
i
i

“output” — 2023/12/11 — 11:30 — page 1 — #1 i
i

i
i

i
i

Diss. ETH No. 29849

Applications of Deep Learning to Scientific
Computing

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

ROBERTO MOLINARO

M.Sc. Mechanical Engineering, ETH Zurich

born June 16, 1995
citizen of Italy

Examination Committee

Prof. Dr. Siddhartha Mishra, ETH Zürich, examiner
Prof. Dr. George Karniadakis, Brown University, co-examiner

Prof. Dr. Paris Perdikaris, University of Pennsylvania, co-examiner

2023

i
i

“output” — 2023/12/11 — 11:30 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 3 — #3 i
i

i
i

i
i

Abstract

Physics-informed neural networks (PINNs) have been widely used for the robust and accurate approxima-
tion of partial differential equations. In the present thesis, we provide upper bounds on the generalization
error of PINNs approximating solutions to the forward and inverse problems for PDEs. Specifically, we
focus on a particular class of inverse problems, the so-called data assimilation or unique continuation
problems. An abstract formalism is introduced, and stability properties of the underlying PDE are lever-
aged to derive an estimate for the generalization error in terms of the training error and the number of
training samples. This abstract framework is illustrated with several examples of PDEs, and numerical
examples validating the proposed theory are also presented. The derived estimates show two relevant
facts: (1) PINNs require regularity of solutions to the underlying PDE to guarantee accurate approxi-
mation. Consequently, they may fail to approximate discontinuous solutions of PDEs, such as nonlinear
hyperbolic equations. We then propose a novel variant of PINNs, termed weak PINNs (wPINNs), for
accurate approximation of entropy solutions of scalar conservation laws. wPINNs are based on approx-
imating the solution of a min-max optimization problem for a residual, defined in terms of Kruzhkov
entropies, to determine parameters for the neural networks approximating the entropy solution as well as
test functions. Moreover, (2) with a suitable quadrature rule, i.e., Monte Carlo quadrature, PINNs may
potentially overcome the curse of dimensionality. Hence, we embrace physics-informed neural networks
(PINNs) to solve the forward and inverse problems for a broad range of high-dimensional PDEs, includ-
ing the radiative transfer equation and financial equations. We present a suite of numerical experiments
demonstrating that PINNs provide very accurate solutions for both the forward and inverse problems at
low computational cost without incurring the curse of dimensionality. In the final part of the thesis, we
transition to the operator learning framework and consider a class of inverse problems for PDEs that are
only well-defined as mappings from operators to functions. Existing operator learning architectures map
functions to functions and need to be modified to learn inverse maps from data. We propose a novel
architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated
by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and
FNOs to approximate mappings from operators to functions. A variety of experiments are presented to
demonstrate that NIO significantly outperform baselines and solve PDE inverse problems robustly and
accurately. Moreover, NIO is several orders of magnitude faster than existing direct and PDE-constrained
optimization methods.

3

i
i

“output” — 2023/12/11 — 11:30 — page 4 — #4 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 5 — #5 i
i

i
i

i
i

Sinossi

Le reti neurali informate dalla fisica (PINNs) sono state ampiamente utilizzate per approssimare con
robustezza e precisione le equazioni differenziali alle derivate parziali. In questa tesi, forniamo limiti
superiori sull’errore di generalizzazione delle PINNs nel calcolo delle soluzioni di problemi diretti e inversi
per le EDP. Ci concentriamo su una classe particolare di problemi inversi, noti come problemi di assimi-
lazione dei dati o di continuazione unica. Presentiamo un formalismo astratto e sfruttiamo le proprietà
di stabilità delle EDP corrispondenti per derivare una stima dell’errore di generalizzazione in funzione
dell’errore di addestramento e del numero di esempi di addestramento. Questo quadro astratto è illus-
trato con vari esempi di EDP e sono presentati anche esempi numerici che validano la teoria proposta.
Le stime ottenute mostrano due fatti rilevanti: (1) le PINNs richiedono la regolarità delle soluzioni alle
EDP sottostanti per garantire un’approssimazione accurata. Di conseguenza, potrebbero non riuscire ad
approssimare soluzioni discontinue di EDP, come le equazioni iperboliche non lineari. Proponiamo quindi
una nuova variante delle PINNs, denominate wPINNs, per l’approssimazione accurata delle soluzioni
entropiche delle leggi di conservazione scalare. Le wPINNs si basano sull’approssimazione della soluzione
di un problema di ottimizzazione min-max per un residuo definito in termini di entropie di Kruzhkov,
per determinare i parametri delle reti neurali che approssimano la soluzione entropica così come le fun-
zioni di test. Inoltre, (2) con un metodo di integrazione adeguato, come l’integrazione di Monte Carlo,
le PINNs potrebbero potenzialmente superare la curse of dimensionality. Pertanto, adottiamo le reti
neurali informate dalla fisica (PINNs) per risolvere i problemi diretti e inversi per un’ampia gamma di
EDP ad alta dimensionalità, comprese l’equazione del trasferimento radiativo e le equazioni finanziarie.
Presentiamo una serie di esperimenti numerici che dimostrano come le PINNs forniscano soluzioni molto
accurate per entrambi i problemi diretti e inversi a basso costo computazionale senza incorrere nella curse
of dimensionality.

Nella parte finale della tesi, passiamo al framework di operator learning e consideriamo una classe di
problemi inversi per le EDP che sono ben definiti solo come mappe da operatori a funzioni. Le attuali
architetture di apprendimento degli operatori mappano funzioni a funzioni e devono essere modificate per
imparare mappe inverse dai dati. Proponiamo una nuova architettura chiamata Neural Inverse Operator
(NIO) per risolvere questi problemi inversi delle EDP. Motivati dalla struttura matematica sottostante,
NIO si basa su una composizione adeguata di DeepONets e FNOs per approssimare mappe da operatori a
funzioni. Vengono presentati una varietà di esperimenti per dimostrare che NIO supera significativamente
le baseline e risolve i problemi inversi delle EDP in modo robusto e accurato. Inoltre, NIO è diversi ordini
di grandezza più veloce rispetto ai metodi tradizionali per la risoluzione dei problemi inversi.

5

i
i

“output” — 2023/12/11 — 11:30 — page 6 — #6 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 7 — #7 i
i

i
i

i
i

Contents

1 Introduction 11
1.1 Outline . 14

2 Preliminaries 15
2.1 Abstract Partial Differential Equation . 15
2.2 Forward Problems for Partial Differential Equations . 16
2.3 Inverse Problems for Partial Differential Equations . 16

2.3.1 Parameter Identification . 17
2.3.2 Data Assimilation . 18

2.4 Quadrature . 18
2.5 Artificial Neural Networks . 19

2.5.1 Feedforward Dense Neural Networks . 19
2.5.2 Convolutional Neural Networks . 21

3 Physics Informed Neural Networks for the Forward Problem of PDEs 25
3.1 General Description of Physics Informed Neural Networks 25
3.2 Abstract Estimate of the Generalization Error . 26
3.3 Semi-linear Parabolic equations . 29

3.3.1 The underlying PDEs . 29
3.3.2 PINNs . 29
3.3.3 Estimate on the generalization error. 31

3.4 Viscous scalar conservation laws . 33
3.4.1 The underlying PDE . 33
3.4.2 PINNs . 34
3.4.3 Estimate on the generalization error. 35

3.5 Incompressible Euler Equations . 38
3.5.1 The underlying PDE . 38
3.5.2 PINNs . 39
3.5.3 Estimate on the generalization error. 40

3.6 Korteweg de-Vries and Kawahara equations . 42
3.6.1 The underlying PDEs . 43
3.6.2 PINNs . 43
3.6.3 Estimate on the generalization error . 45

3.7 Numerical Experiments . 46
3.7.1 Ensemble Training . 46
3.7.2 Semi-linear Parabolic Equation . 46
3.7.3 Viscous Scalar Conservation Law . 49
3.7.4 Incompressible Euler Equations . 51
3.7.5 KdV equation . 55
3.7.6 Kawahara equation . 58

7

i
i

“output” — 2023/12/11 — 11:30 — page 8 — #8 i
i

i
i

i
i

Contents

4 wPINNs for the Forward Problem of Hyperbolic Conservation Laws 61
4.1 Scalar Conservation Laws . 61
4.2 Weak PINNs (wPINNs) . 62
4.3 Estimate of the Generalization Error . 64
4.4 Implementation of wPINNs . 66

4.4.1 Ensemble Training . 66
4.4.2 Random Reinitialization of the Test function Parameters 66
4.4.3 Averages of retrainings . 66

4.5 Numerical Experiments . 67
4.5.1 Standing and Moving Shock . 68
4.5.2 Rarefaction Wave . 70
4.5.3 Sine Wave Initial Datum . 72

5 Physics Informed Neural Networks for the Inverse Problem of PDEs 73
5.1 PINNs for the Parameter Identification Problem . 73
5.2 PINNs for the Data Assimilation Problem . 74

5.2.1 An abstract estimate on the generalization error 76
5.3 Poisson’s equation . 79

5.3.1 The underlying inverse problem . 79
5.3.2 PINNs . 80
5.3.3 Estimates on the generalization error . 81

5.4 Heat Equation . 82
5.4.1 The underlying inverse problem . 82
5.4.2 PINNs . 83
5.4.3 Estimates on the generalization error . 84

5.5 The Wave equation . 85
5.5.1 The underlying inverse problem . 85
5.5.2 PINNs . 86
5.5.3 Estimates on the generalization error . 87

5.6 The Stokes equation . 88
5.6.1 The underlying inverse problem . 89
5.6.2 PINNs . 90
5.6.3 Estimates on the generalization error . 91

5.7 Numerical experiments . 93
5.7.1 Poisson’s Equation . 93
5.7.2 Heat equation . 95
5.7.3 Wave Equation . 97
5.7.4 Stokes Equation . 99

6 Physics Informed Neural Networks for High-Dimensional PDEs 103
6.1 A Motivating Example . 103
6.2 Radiative Transfer Equation . 105

6.2.1 The underlying PDEs . 107
6.2.2 PINNs . 107
6.2.3 Estimates on the generalization error . 108
6.2.4 Numerical Experiments . 109

6.3 Kolmogorov Equations . 119
6.3.1 PINNs . 120
6.3.2 Numerical Experiments . 121

8

i
i

“output” — 2023/12/11 — 11:30 — page 9 — #9 i
i

i
i

i
i

Contents

7 Operator Learning 125
7.1 DeepONet . 126
7.2 Neural Operators . 127

7.2.1 Fourier Neural Operators . 128
7.3 Neural Inverse Operators for solving PDE Inverse problems 129

7.3.1 Mathematical Framework. 129
7.3.2 Learning Task and Challenges . 132
7.3.3 A Motivating (Formal) Calculation. 133
7.3.4 The Architecture. 134

7.4 Numerical Experiments. 136
7.4.1 Calderón Problem for EIT. 137
7.4.2 Inverse Wave Scattering. 139
7.4.3 Radiative Transport Equation and Optical Imaging. 140
7.4.4 Seismic Imaging. 141
7.4.5 Numerical Results . 141
7.4.6 Comparison with Standard Numerical Methods for Inverse Problems 154

8 Conclusions 159

9 Appendix 163
9.1 Radiative Transfer . 163

9.1.1 Estimates on the Generalization Error for the Radiative Transfer Equation 163
9.1.2 Estimates on the Generalization Error in the Steady Case 166

9.2 Neural Inverse Operator . 168
9.2.1 Architecture Details . 168
9.2.2 Training Details . 172

References 1

9

i
i

“output” — 2023/12/11 — 11:30 — page 10 — #10 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 11 — #11 i
i

i
i

i
i

1 Introduction

Deep learning has emerged as a central tool in science and technology in the last few years. It is
based on using deep artificial neural networks (DNNs), which are formed by composing many layers of
affine transformations and scalar non-linearities. These deep neural networks have been applied with
tremendous success [1] in a variety of tasks such as image and text classification, speech and natural
language processing, robotics, game intelligence, and protein folding [2], among others.

Partial differential equations (PDEs) model a vast array of natural and manmade phenomena in all
areas of science and technology. Explicit solution formulas are only available for very specific types
and examples of PDEs. Hence, numerical simulations are necessary for most practical applications
featuring PDEs. A diverse set of methods for approximating PDEs numerically are available, such as
finite difference, finite element, finite volume and spectral methods. Although very successful in practice,
it is still challenging to numerically simulate problems such as Uncertainty Quantification (UQ), multi-
scale and multi-physics problems, Inverse and constrained optimization problems, PDEs in domains with
very complex geometries, and PDEs in very high dimensions.

Deep learning techniques are being increasingly used in the numerical approximations of PDEs. A brief
and very incomplete survey of this rapidly emerging literature follows: one approach in using deep neural
networks (DNNs) for numerically approximating PDEs is based on explicit (or semi-implicit) representa-
tion formulas such as the Feynman-Kac formula for parabolic (and elliptic) PDEs, whose compositional
structure is in turn utilized to facilitate approximation by DNNs. This approach is presented and an-
alyzed for a variety of (parametric) elliptic and parabolic PDEs in [3, 4, 5] and references therein, see
a recent paper [6] for a similar approach to approximating linear transport equations with deep neural
networks.

Another strategy is to enhance existing numerical methods by adding deep learning inspired modules into
them. The paradigm has become popular with the name of differentiable physics. On this line of thought
several works have been proposed. In [7, 8] it was proposed to learn free parameters of numerical schemes
from data. In [9], the authors show that neural networks used in the loop of differentiable simulators
can improve the solution accuracy of the solver by correcting for effects not captured by the discretized
PDE.

Finally, deep learning has found a large application in scientific computing particularly for the con-
struction of fast surrogates for approximating a variety of high-dimensional partial differential equations
(PDEs) including elliptic [10, 11], parabolic [4] and hyperbolic PDEs [12, 13].

A prominent category of high-dimensional problems is known as many-query problems, where the high-
dimensionality arises from the large parameters space involved. For instance in the context of aero-
dynamic, a fundamental task is the optimization of the shape of an airfoil in order to maximize its
aerodynamic efficiency. A standard practice in this field is to perturb a reference shape with a given class
of parametric functions, which depends on several parameters (of order of hundreds), and then maximize
the efficiency with respect to such set of parameters. In order to do that, the underlying partial differential
equation, corresponding in this case to the well-know Euler equations, is solved for a very large number

11

i
i

“output” — 2023/12/11 — 11:30 — page 12 — #12 i
i

i
i

i
i

Introduction

of instances, each corresponding to a particular realization of the input parameter space. Clearly, query-
ing the computationally costly PDE solver multiple times renders these problems prohibitively expensive.
Many-query problems extend beyond aerodynamics and PDE-constrained optimization, and encompass a
broad range of problems in scientific computing, including uncertainty quantification, Bayesian inversion,
among others.

One additional class of high-dimensional partial differential equations (PDEs) includes problems char-
acterized by a inherently large state space. Examples of such PDEs include the Boltzmann equation,
Radiative transfer equation, Schrödinger equation, and Black-Scholes equation with large number of spa-
tial dimensions. Conventional grid-based numerical methods, such as finite elements or finite differences,
prove inadequate in accurately approximating solutions for these PDEs. This inadequacy arises from the
well-established curse of dimensionality, whereby the computational cost required to solve these problems
to a desired accuracy increases exponentially with the dimensionality of the system. Consequently, these
PDEs become computationally intractable using traditional approaches.

Given that neural networks are very powerful universal function approximators [14, 15], it is natural to
consider the space of neural networks as an ansatz space for approximating solutions of these PDEs. In
particular, neural networks can be used to learn the map from the high-dimensional input space to, either
the entire solution field, or relevant observables (for instance the efficiency of the airfoil in the case of the
shape optimization). This is usually done by minimizing a suitable loss function.

Two different philosophies have emerged to build fast surrogates: one, which falls under the rubric of
supervised learning, aims at collecting sufficient amount of training data, generated from either observa-
tions (experiments) or numerical simulations, and minimizing the mismatch between the training data
and the model predictions. However, despite a few techniques have been developed over the years to build
surrogates even with very small amount of data [16, 12], the generation of the data can nonetheless still
be very expensive. Such approach fits very well the class of many-query problems, which have intrinsic
low dimensionality of the state space (up to 4 dimensions). However, in many contexts, for instance in
the case of inherently high-dimensional PDEs one needs a learning framework that can approximate the
underlying PDE solutions with possibly no data. The second philosophy is founded on physics informed
loss and corresponding physics informed neural networks (PINNs), which provide a very popular example
of such an unsupervised learning framework. In contrast to supervised learning approaches where the
mismatch between the ground truth and neural network predictions is minimized during training, training
of PINNs relies on the minimization of an underlying (pointwise) residual associated with the PDE in
suitable hypotheses spaces of neural networks.

There has been an explosive growth of papers that present algorithms with PINNs for various applications
to both forward and inverse problems for PDEs and a very incomplete list of references include [17, 18,
19, 20, 21] and references therein. Needless to say, PINNs have emerged as a very successful paradigm
for approximating different aspects of solutions of PDEs. However why do PINNs approximate a wide
variety of PDEs so well? Although many heuristic reasons have been proposed in some of the afore-cited
papers there is very little rigorous justification of why PINNs work. With the exception of the very recent
paper [22], there are few rigorous bounds on the approximation error due to PINNs. In [22], the authors
prove consistency of PINNs by showing convergence, under reasonable hypothesis, to solutions of linear
elliptic and parabolic PDEs as the number of training samples is increased.

The first part of this thesis aims at providing some rationale of why PINNs are so efficient at approximating
solutions for the forward problem for PDEs, under reasonable and verifiable hypothesis on the underlying
PDE. The key issue that we wish to address is to understand the mechanisms by which minimizing
the PDE residuals at collocation points, which is the main ingredient of the PINNs training algorithm,
might lead to control (bounds) on the overall error. To this end, we will present an abstract framework

12

i
i

“output” — 2023/12/11 — 11:30 — page 13 — #13 i
i

i
i

i
i

Introduction

for PINNs that encompasses a wide variety of potential applications, including elliptic and parabolic
nonlinear PDEs, and prove estimates on the so-called generalization error i.e, the error of the neural
network on predicting unseen data.

These elements also bring forth the limitations of PINNs by highlighting PDEs where PINNs might not
provide an accurate approximation. In particular, there are a large number of contexts in which solutions
of PDEs might not be smooth. A prototypical example of a class of PDEs for which the underlying
solutions are not smooth, is provided by nonlinear hyperbolic systems of conservation laws such as the
Euler, shallow-water and ideal Magneto-Hydrodynamics (MHD) equations [23]. Even in the simplest case
of a scalar conservation law, e.g. inviscid Burgers’ equation, it is well-known that, even if the initial datum
is smooth, discontinuities in the form of shock waves form within a finite time. Hence, the underlying
equation can no longer be interpreted in a (pointwise) strong sense, rather weak solutions need to be
considered [23]. Moreover, these weak solutions are no longer unique and additional admissibility criteria
or entropy conditions have to be imposed in order to restore uniqueness [23]. Given this context, we ask
if one can modify PINNs to design an unsupervised learning framework for approximating (entropy) weak
solutions of hyperbolic conservation laws. To this end, we will focus on the simple yet prototypical case
of scalar conservation laws here and propose a suitable weak versions, named wPINNs.

PINNs have also emerged very succesfully as an attractive framework for approximating the so-called
PDEs inverse problems (see [24, 17, 19, 25] and references therein). For such inverse problems, one does
not necessarily have complete information on the inputs to the PDEs, such as initial data, boundary
conditions and coefficients. Hence, the so-called forward problem cannot be solved uniquely. However, we
have access to (noisy) data for (observables) of the underlying solution. The aim is to use this data in order
to determine the unknown inputs of the PDEs and consequently its solution. In this context, data and
physics informed loss can be combined in order to efficiently solve inverse problems. However, also in this
case, very few rigorous results on the approximation error with PINNs are available. The goal of the third
part of this work is to derive rigorous bounds on the generalization errors of PINNs for approximating
solutions to a class of inverse problems for PDEs. We will focus on the so-called unique continuation
or data assimilation problems, where boundary conditions to the PDEs are unknown and need to be
inferred from (possibly noisy) measurements of certain observables of the underlying solution.

We will conclude the first part of the thesis, by focusing on the second class of high-dimensional PDEs,
which are distinguished by their large state space. Specifically, we will employ a physics-informed neural
network (PINN) to approximate the solutions of both the Radiative Transfer equation and the Black-
Scholes equation in extremely high-dimensional settings. By doing so, we aim to illustrate the advantage
of utilizing the PINN loss function, thereby substantiating the initial assertion regarding the relevance of
PINNs in the context of scientific computing.

In the last part of the thesis, we will focus on operator learning, which has very recently emerged as a
dominant paradigm in the applications of machine learning to PDEs. As a matter of fact, constructing
fast surrogates to specifically solve many-query problems boils down to approximate the solution operator
underlying a given partial differential equation. As the task at hand in this context is to learn the
underlying solution operator, recently developed operator learning methods can be employed in this
infinite-dimensional setting. A very partial list of architectures for operator learning include operator
networks [26], DeepONets [27] and its variants [28, 29, 30], PCA-net [31] , neural operators [32] such as
graph neural operator [33], Multipole neural operator [34] and the very popular Fourier Neural Operator
[35] and its variants [36, 37], VIDON [38], spectral neural operator [39], LOCA [40], NOMAD [41],
transformer based operator learning architectures [42], and the very recent convolutions-based neural
operator CNO [43]. Moreover, as in the case of neural networks, also for operator learning architectures
a data or physics-inspired loss can be employed, see [44] and references therein.

13

i
i

“output” — 2023/12/11 — 11:30 — page 14 — #14 i
i

i
i

i
i

Introduction

Given the widespread success of operator learning and other deep learning-based algorithms in the con-
text of forward problems for PDEs, it is natural to investigate their utility in learning the solutions of
the corresponding inverse problems from data. A large class of such inverse problems takes the following
abstract form: given observables as operators (mappings between function spaces), infer the underlying
input coefficient (functions) of the associated PDE. A prototypical example is the well-studied Calderón
Problem [45] that arises in electrical impedance tomography (EIT) in medical imaging. Here, the observ-
able is the Dirichlet-to-Neumann (DtN) operator that maps the voltage on the boundary to the current,
and one is interested in inferring the underlying conductivity field. A related example is inverse wave
scattering for geophysical applications. Other examples include optical tomography [46] where the ob-
servable is the so-called Albedo operator, and one needs to infer the scattering and absorption coefficients
of the underlying medium. Another prominent example arises in seismic imaging in geophysics [47] where
the observable is the source-to-receiver (StR) operator, and the task at hand is to infer the underlying
sub-surface properties such as wave velocity or material density. In many of these examples, the solu-
tion to the resulting inverse problem is unique and stable if and only if the inverse problem is posed as
a mapping from operators to functions. Hence, one needs non-trivial modifications of existing operator
learning architectures to handle inverse problems. We conclude by proposing a novel architecture, termed
as Neural Inverse Operators (NIOs), for learning solutions of these inverse problems from data and test
it extensively on a suite of problems, including the Calderón problem in EIT, inverse wave scattering
for object detection, reconstructing the absorption and scattering coefficients in optical tomography, and
seismic wave migration.

1.1 Outline

For the convenience of the reader, we provide a brief summary of the contents of the present thesis:

• Chapter 2 provides an overview of the preliminaries necessary for the entire thesis. We establish an
abstract framework for forward and inverse problems involving partial differential equations (PDEs)
and introduce two relevant architectures used in deep learning: feed-forward and convolutional
neural networks.

• In Chapter 3, we formulate physics-informed neural networks (PINNs) for the abstract forward
problem and prove an estimate on the generalization error. Subsequently, we apply this abstract
framework and error estimate to concrete examples, including semi-linear Parabolic PDEs, viscous
scalar conservation laws, incompressible Euler equations of fluid dynamics, and dispersive equations.

• Chapter 4 focuses on the weak formulation of PINNs and presents the solution to the forward
problem for an extensive set of experiments based on scalar conservation laws.

• In Chapter 5, we describe the PINNs algorithm for parameter identification and unique continuation
(data assimilation) problems for abstract PDEs and derive an estimates on the generalization error
for the latter class. We will then prove specific estimates for the Poisson, Heat, Wave and Stokes
equations.

• Concluding the first part of the thesis that revolves around PINNs, Chapter 6 delves into high-
dimensional state space PDEs, particularly Radiative Transfer and Black-Scholes equations.

• Finally, in Chapter 7 we describe the general framework of operator learning and present Neural
Inverse Operator to approximate the inverse map underlying a large class of PDEs inverse problems.

14

i
i

“output” — 2023/12/11 — 11:30 — page 15 — #15 i
i

i
i

i
i

2 Preliminaries

In this chapter, we outline the essential elements upon which the entire thesis is built on. We begin
by providing a comprehensive formulation of the forward and inverse problem for Partial Differential
Equations (PDEs). Specifically, we address two distinct classes of inverse problems: (1) parameter
identification and (2) data continuation problems. The chapter concludes with the description of two
relevant network architectures: feed-forward and convolutional neural networks.

2.1 Abstract Partial Differential Equation

Let DT ⊂ Rd̄, for some d̄ ≥ 1, be the underlying domain, with smooth (C1) boundary, denoted by ∂DT .
We include space-time domains by setting DT = D × (0, T), D ⊂ Rd with d ≥ 1. In this case d̄ = d+ 1
and the space-time boundary is ∂DT = ∂D×(0, T)∪D×{t = 0}, with ∂D denoting the smooth boundary
of D. Let

U(DT) = Lpu(DT ;Rm),
S(DT) = Lps(DT ;Rm)
A(DT) = Lpa(DT ;Rm),

(2.1)

be Banach spaces, with

Lp(DT ;Rm) =
{
f : DT → Rm, s.t

∫
DT

|f(z)|pdz <∞
}

(2.2)

and m ≥ 1, 1 ≤ pu, pa, ps < ∞. For ease of notation, we omit the explicit dependence of the domain
when the domain is known from the context, i.e. U(DT) = U .

A generic abstract partial differential equation (PDE) is represented by the following differential equa-
tion,

Da(u) = s. (2.3)

Here, Da : U(DT)→ S(DT) is a differential operator and s ∈ S(DT) is the source term. The differential
operator may also depend on some equation coefficient a ∈ A(DT).

Given the definitions above, it follows

(H1) : ∥Da(u)∥S < +∞, ∀u ∈ U , with ∥u∥U < +∞ and ∀a ∈ A, with ∥a∥A < +∞.
(H2) : ∥s∥S < +∞.

(2.4)

A prototypical example of PDE is the heat equation. Let t ∈ [0, T] and x ∈ D, then the differential
operator becomes:

Da(u) = ∂tu− a(x)∆xu (2.5)

with ∆x =
∑d

i=1 ∂xixi
u being the Laplacian of the solution u. The heat equation describes the time-space

evolution of the temperature u. The coefficient a in this case represents the thermal diffusivity.

15

i
i

“output” — 2023/12/11 — 11:30 — page 16 — #16 i
i

i
i

i
i

Preliminaries

2.2 Forward Problems for Partial Differential Equations

Let us further consider the Banach spaces

B(∂DT) = Lpb(∂DT ;Rm), Bu(∂DT) = Lpub (∂DT ;Rm), (2.6)

and the generic boundary operator B : Bu(∂DT)→ B(∂DT)

B (Tu) = fb, (2.7)

with T : U(DT) → Bu(∂DT) being the trace operator and fb ∈ B(∂DT). We note that the generic
boundary condition also includes initial conditions when DT = (0, T)×D. From the definitions above it
follows

(H3) : ∥B (Tu) ∥B < +∞, ∀u ∈ U , with ∥u∥U < +∞.
(H4) : ∥fb∥B < +∞.

(2.8)

The forward problem for 2.3 consists in finding u ∈ U , u : DT → Rm, such that:

Da(u) = s, x ∈ DT

B (Tu) = fb, y ∈ ∂DT

(2.9)

The forward problem is well-posed if the following three conditions are satisfied:

1. Existence. There exist a u ∈ U(DT) such that

Da(u) = s, x ∈ DT

B (Tu) = fb, y ∈ ∂DT

2. Uniqueness. ∀u, v ∈ U(DT), u = v if and only if

Da(v) = Da(v), x ∈ DT

B (Tu) = B (Tv) , y ∈ ∂DT

3. Stability. There exist constants C(bd) = C(bd)(Tu,Tv) and C(pde) = C(pde)(u, v) such that ∀u, v ∈
U(DT),

∥u− v∥U(DT) < C(bc)ω(bc)
(
∥B (Tu)−B (Tv) ∥Bu(∂DT)

)
+ C(pde)ω(pde)

(
∥Da(u)−Da(v)∥S(DT)

)
(2.10)

with ω(·) : R+ → R+, denoted as modulus of continuity, being a monotonically increasing function
with limy→0 ω(y) = 0..

2.3 Inverse Problems for Partial Differential Equations

Inverse problems are ubiquitous across many fields of science and engineering and they can be of different
types and nature. In inverse problems, one has usually access to (possibly noisy) measurements of the
underlying solution u in the domain D′

T i.e,

L(u) = u′, (2.11)

16

i
i

“output” — 2023/12/11 — 11:30 — page 17 — #17 i
i

i
i

i
i

2.3. INVERSE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS

with the observation operator L : U(DT) → Z(D′
T) and data u′ ∈ Z(D′

T). The domain D′
T is usually

named observation domain. Depending on the specific problem and measurement setup, the observation
operator may have different forms. For instance, it could be the identity operator, a restriction operator
to a subset of the domain, a trace operator to boundary measurements, etc. As a consequence, the
observation domain may correspond to the entire domain DT , to an its subset, for instance the boundaries
of DT , etc. In general, given the measurements data u′ and a state of interest w ∈ W(DT), there exists a
forward operator F :W(DT)→ Z(D′

T), such that F(w) = u′. In the case of partial differential equation,
the forward operator arises from (2.9) which links together the state w and the observable u′. Hence, an
inverse problem can be generally formulates as: find w ∈ W(DT) such that F(w) = u′.

Similarly to the forward problem, the inverse one is well-posed if the following three conditions are
satisfied:

1. Existence. There exists w ∈ W(DT) such that F(w) = u′

2. Uniqueness. ∀w,w′ ∈ W(DT), w = w′ if and only if F(w) = F(w′)

3. Stability. There exists a constant C = C(w,w′), such that ∀w,w′ ∈ W(DT),

∥w − w′∥W(DT) < Cω
(
∥F (u)− F (v) ∥U(D′

T
)

)
(2.12)

with ω : R+ → R+, denoted as modulus of continuity, being a monotonically increasing function
with limy→0 ω(y) = 0.

In the rest of this work, we will focus on two different classes of inverse problems related to partial
differential equations, (1) parameter identification, and (2) data assimilation or unique continuation
problem.

2.3.1 Parameter Identification

The parameter identification problem consists in finding a ∈ A given the data u′. Formally, let us define
the parameter-to-solution map ϕ : A → U , ϕ : a 7→ u. Since a and u are coupled through the partial
differential equation 2.3, the existence of such operator is guaranteed by the implicit function theorem
under reasonable assumptions. Then, we can define the forward operator as

F := L ◦ ϕ : A(DT)→ Z(D′
T). (2.13)

The parameter identification boils down to finding a ∈ A such that F(a) = u′. In the parameter
identification problem the observation operator is usually defined as the identity. However, for some
inverse problems, including electrical impedance tomography, inverse scattering, optical imaging, etc.,
the observation operator is a trace operator to the boundary of DT . For instance, in electrical impedance
tomography (EIT), different electrical voltages are applied at the boundary of an object, and the arising
electrical currents are measured there. From these measurements one would like to reconstruct the
conductivity as a function of space, which gives information about different materials inside the object.
The last class of problems is described in more detail in the next section and in Section 7.3.1.

17

i
i

“output” — 2023/12/11 — 11:30 — page 18 — #18 i
i

i
i

i
i

Preliminaries

Impedance Tomography, Inverse Scattering, Optical Imaging, and Sesimic Imaging

A large class of parameter identification problems takes the following abstract form: given an operator as
observable, infer the underlying input coefficient a ∈ A of the associated PDE. Specifically, such operators
are boundary operators

Λa : B(∂DT)→ H(∂DT), (2.14)
which map the boundary data fb ∈ B(∂DT) to the measurement Λa(fb) = h(u) ∈ H(∂DT), with H a
Banach space on ∂DT . In the example of the EIT, for instance, the collection of all the voltage-current
measurements represent a discrete realization of such boundary operator. Hence, one can rewrite the
forward problem associated with the PDE (2.3) as,

F : A(DT)→ L (B(∂DT),H(∂DT)) , a 7→ F(a) = Λa, (2.15)

where Λa is the boundary observation operator (2.14) and L(X,Y) denotes continuous operators between
function spaces X and Y .

The inverse map for the forward problem (2.15) takes the form

F−1 : L (B(∂DT),H(∂DT))→ A(DT), Λa 7→ a = F−1(Λa), (2.16)

The rigorous guarantee of the existence and, more importantly, the uniqueness of this inverse map F−1

for a large class of PDEs, is a crowning achievement of the mathematical theory of inverse problems [48].
Moreover, one can also show Lipschitz or α-Hölder-stability of the inverse problem by proving estimates
of the form,

∥F(a)− F(ā)∥L ∼ ∥a− ā∥α
A, 0 < α ≤ 1, ∀a, ā ∈ A(DT) (2.17)

In some cases, the right-hand side of the above stability estimate is replaced by a logarithm of ∥a− ā∥A,
which only guarantees (weak) logarithmic stability.

2.3.2 Data Assimilation

Differently from the parameter identification problem, in the data assimilation, we assume that the
generic boundary conditions (which include initial conditions) fb in (2.7) are not known. Moreover, in
this case, the observation operator corresponds to a restriction operator to the subset D′

T ⊂ DT . Then,
in solving the data assimilation problem, one determines the function u ∈ U(DT) and consequently the
boundary conditions T(u) from the data (2.11), given measurements only on the observation domain D′

T .
Equivalently, given the non-linear operator

F := L ◦ ϕ : B(∂DT)→ Z(D′
T), (2.18)

with ϕ : B → U , ϕ : fb 7→ u, being the boundary-to-solution map, the data assimilation problem consists
in finding u ∈ U(DT) and fb ∈ B(∂DT) such that F(u, fb) = u′.

2.4 Quadrature

In the following section, we consider approximating integrals of functions with quadrature. To this end,
we consider a mapping g : DT → Rm, with g living in a suitable Banach space. We are interested in
approximating the integral,

g :=
∫

DT

g(y)dy,

18

i
i

“output” — 2023/12/11 — 11:30 — page 19 — #19 i
i

i
i

i
i

2.5. ARTIFICIAL NEURAL NETWORKS

with dy denoting the d̄-dimensional Lebesgue measure. In order to approximate the above integral by
a quadrature rule, we need the quadrature points yi ∈ DT for 1 ≤ i ≤ N , for some N ∈ N as well as
weights wi, with wi ∈ R+. Then a quadrature is defined by,

gN :=
N∑

i=1
wig(yi), (2.19)

for weights wi and quadrature points yi. We further assume that the quadrature error is bounded as,

|g − gN | ≤ Cquad

(
∥g∥Z∗ , d̄

)
N−α, (2.20)

for some α > 0.

As long as the domain DT is in reasonably low dimension i.e d̄ ≤ 4, we can use standard (composite)
quadrature rules on an underlying grid. In this case, the quadrature points and weights depend on the
order of the quadrature rule [49] and the rate α depends on the regularity of the underlying integrand
i.e, on the space Z∗. As an example let us consider the midpoint rule. For M ∈ N, we partition DT ⊂ Rd̄

into N ∼M d̄ cubes of edge length 1
M and we denote by S = {yn}N

n=1 the midpoints of these cubes. The
formula and accuracy of the midpoint rule are then given by,

gN := 1
N

N∑
i=1

g(yi), |g − gN | ≤

 1
24

d̄∑
i=1

∂2g

∂x2
i

N− 2
d̄ . (2.21)

Because of the exponential dependence of the error on the dimension d of the underlying domain DT ,
these grid based quadrature rules are not suitable for domains in high dimensions. For moderately high
dimensions i.e 4 ≤ d̄ ≤ 20, we can use low discrepancy sequences, such as the Sobol and Halton sequences,
as quadrature points [50]. As long as the integrand g is of bounded Hardy-Krause variation [51], the error
in (2.20) converges at a rate (log(N))d̄N−1,

gN := 1
N

N∑
i=1

g(yi), |g − gN | ≤ VHK (g) (log(N))d̄

N
(2.22)

Here, VHK denotes the Hardy-Krause variation and VHK (g) ≤ ∞

For problems in very high dimensions d̄ ≫ 20, Monte-Carlo quadrature is the numerical integration
method of choice [50]. In this case, the quadrature points are randomly chosen, independent and identi-
cally distributed (with respect to a scaled Lebesgue measure). Given the non-deterministic nature of the
quadrature, the quadrature error has to be defined in a probabilistic sense,

gN := 1
N

N∑
i=1

g(yi),
∫

DL
T

|g − gN |
2
dµL(S) ≤ V(g) 1

2

N
1
2

(2.23)

with µL(S) being the induced product measure on the quadrature points S and V(g) the variance of g.

2.5 Artificial Neural Networks

2.5.1 Feedforward Dense Neural Networks

Given an input x ∈ DT , a feedforward neural network, also termed as a Multi-Layer Perceptron (MLP),
shown in figure 2.1, transforms it to an output, through a layer of units (neurons) which compose of

19

i
i

“output” — 2023/12/11 — 11:30 — page 20 — #20 i
i

i
i

i
i

Preliminaries

either affine-linear maps between units (in successive layers) or scalar non-linear activation functions
within units [52], resulting in the representation,

uθ(x) = CK ◦ σ ◦ CK−1 ◦ σ ◦ C2 ◦ σ ◦ C1(x). (2.24)

Here, ◦ refers to the composition of functions and σ is a scalar (non-linear) activation function. A
large variety of activation functions have been considered in the machine learning literature [52]. Popular
choices for the activation function σ in (2.24) include the sigmoid function, the hyperbolic tangent function
and the ReLU function.

For any 1 ≤ k ≤ K, we define

Ckzk = Wkzk + bk, for Wk ∈ Rdk+1×dk , zk ∈ Rdk , bk ∈ Rdk+1 , (2.25)

For consistency of notation, we set d1 = d̄ and dK = m.

Thus in the terminology of machine learning (see also figure 2.1), our neural network (2.24) consists of
an input layer, an output layer and (K − 1) hidden layers for some 1 < K ∈ N. The k-th hidden layer
(with dk neurons) is given an input vector zk ∈ Rdk and transforms it first by an affine linear map Ck

(2.25) and then by a nonlinear (component wise) activation σ. A straightforward addition shows that

our network contains
(
d̄+m+

K−1∑
k=2

dk

)
neurons. We also denote,

θ = {Wk, bk}, θW = {Wk} ∀ 1 ≤ k ≤ K, (2.26)

to be the concatenated set of (tunable) weights for our network. It is straightforward to check that
θ ∈ Θ ⊂ RM with

M =
K−1∑
k=1

(dk + 1)dk+1. (2.27)

Figure 2.1: An illustration of a (fully connected) deep neural network. The red neurons represent the
inputs to the network and the blue neurons denote the output layer. They are connected by
hidden layers with yellow neurons. Each hidden unit (neuron) is connected by affine linear
maps between units in different layers and then with nonlinear (scalar) activation functions
within units.

20

i
i

“output” — 2023/12/11 — 11:30 — page 21 — #21 i
i

i
i

i
i

2.5. ARTIFICIAL NEURAL NETWORKS

2.5.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specialized type of Multi-Layer Perceptrons (MLPs) [52].
CNNs are widely employed in image processing tasks such as image classification, segmentation, and video
recognition. They have also found applications in time series analysis and natural language processing.
The fundamental building blocks of CNNs are the convolution operation and convolutional layers. In
the following sections, we will describe the relevant operations in convolutional neural networks. Finally,
we will discuss a specific type of architecture known as Fully Convolutional Neural Networks (FCNNs),
which solely consist of convolutional layers.

Convolution Operation

Let’s consider x ∈ Rh×w×c, where h, w, and c denote the width, height, and number of channels of x.
Let Kw ∈ Rk×k×c×ĉ be a discrete kernel of size k.

The discrete, multi-channel convolution with an s-stride of the input x is defined as follows:

K : Rh×w×c → Rĥ×ŵ×ĉ, (2.28)

K(x) = (x ⋆ Kw)[i, j, l̂] :=
k−1∑

m,n=0

c∑
l=1

Kw[m,n, l, l̂] · x[is+m, js+ n, l], (2.29)

where l, l̂ correspond to the indices of the input and output channels, respectively, and i = 0, . . . , h −
1, j = 0, . . . , w − 1, l̂ = 1, . . . , ĉ. To mitigate the loss of information at the borders of the input
feature map, padding of size p can be performed. This involves adding extra pixels around the border
of the input feature map before convolution. Hence, a convolution operator can be characterized by the
hyperparameters (k, s, p, c, ĉ). The kernel size, padding, and stride can be chosen appropriately to achieve
a downsampling of the input map with a desired scaling. Figure 2.2 provides a schematic representation
of the convolution.

Transposed Convolution Operation

Let’s define y ∈ Rĥ×ŵ×ĉ, where ĥ, ŵ, and ĉ represent the height, width, and number of channels of y. A
transposed convolution, denoted as KT (y), with a kernel Kw and stride s, transforms y into the output
x ∈ Rh×w×c, where h = (s · (ĥ− 1) + k) and w = (s · (ŵ − 1) + k):

KT : Rĥ×ŵ×ĉ → Rh×w×c. (2.30)

Similar to the convolution operation, a transposed convolution can also have a suitable padding, which in
this case involves cropping the output x. A schematic representation of a transposed convolution is shown
in Figures 2.2b and 2.2c. Just like with convolutions, a transposed convolution can be characterized via
the hyperparameters (k, s, p, c, ĉ).

21

i
i

“output” — 2023/12/11 — 11:30 — page 22 — #22 i
i

i
i

i
i

Preliminaries

Fully Convolutional Neural Network

Fully Convolutional Neural Networks (FCNNs) are a special class of convolutional networks that can be
evaluated for input of any resolution. These networks are composed of an encoder and a decoder, both
defined by a series of linear and nonlinear transformations:

Eθe
(y) = CL ◦ σ ◦ CL−1 ◦ . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y),

Dθd
(z) = CT

L ◦ σ ◦ CT
L−1 ◦ . . . ◦ σ ◦ CT

2 ◦ σ ◦ CT
1 (z),

uθ(y) = Dθd
◦ Eθe

(y).
(2.31)

The affine transformations Cℓ and CT
ℓ typically correspond to the convolution operation in the encoder

and the deconvolution operation in the decoder, respectively. The convolution usually performs, with an
abuse of notation, a "downsampling" of the signal, whereas the deconvolution an "upsampling". In the 2D
case, for instance, as ℓ increases in the encoder, the width and height of the signal progressively decrease,
while the number of channels cℓ is usually chosen to increase. Conversely, in the decoder, the width and
height increase while the number of channels decreases. Examples of fully convolutional models include
U-Net, ResNet and CNO [53, 54, 43].

In this thesis, we will focus on classes of FCNNs where the decoder consists of transposed convolutions
as described earlier.

22

i
i

“output” — 2023/12/11 — 11:30 — page 23 — #23 i
i

i
i

i
i

2.5. ARTIFICIAL NEURAL NETWORKS

(a) Convolution with stride s = 2, padding p = 1 and kernel Kw of size k = 3

(b) Transposed convolution with stride s = 1, padding p = 0 and kernel Kw of size k = 2

(c) Transposed convolution with stride s = 2, padding p = 1 and kernel Kw of size k = 2

Figure 2.2: Schematic representation of Convolution and Transpose Convolution Operators

23

i
i

“output” — 2023/12/11 — 11:30 — page 24 — #24 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 25 — #25 i
i

i
i

i
i

3 Physics Informed Neural Networks for the
Forward Problem of PDEs

In this chapter we provide a general description of physics informed neural networks (PINNs) for approx-
imating the forward problems of partial differential equations. PINNs are first presented in an abstract
framework which encompasses a wide variety of potential applications. For this abstract PDE, we provide
a bound on the generalization error, which identifies possible mechanisms by which PINNs are able to
approximate PDEs so well and provide a firm mathematical foundation for approximations by PINNs.
Eventually, the abstract error estimate is described in concrete terms for a wide range of specific PDEs,
including linear and semi-linear parabolic equations, one-dimensional scalar quasilinear parabolic (and
hyperbolic) conservation laws and the incompressible Euler equations of fluid dynamics. In the rest of
the thesis, with an abuse of notation, we will denote |v|p =

∑m
i=1 |vi|p, for all vectors v ∈ Rm.

3.1 General Description of Physics Informed Neural Networks

Let us consider a feedforward dense neural network uθ (2.24) with tuning parameters θ ∈ Θ. We wish to
find the tuning parameters θ such that the resulting neural network uθ approximate the solution of the
forward problem (2.9):

uθ(x) ≈ u(x), x ∈ DT (3.1)

In order to do so, we define the following residuals:

PDE (or Interior) residual rint[uθ] := Da(uθ)− s, x ∈ DT

Boundary residual rbc[uθ] := B(Tuθ)− fb, x ∈ ∂DT

(3.2)

and corresponding losses,

Jint(θ) := ∥rint[uθ]∥ps

S(DT), Jbc(θ) := ∥rbc[uθ]∥pb

B(∂DT). (3.3)

By assumptions (H1),(H2) in (2.4), and (H3), (H4) in (2.8), we see that rint[uθ] ∈ S, ∥rint[uθ]∥S < +∞,
and rbc[uθ] ∈ B, ∥rbc[uθ]∥B < +∞ for all θ ∈ Θ.

As it will not be possible to evaluate the integral in (3.3) exactly, we need to approximate it numerically
by a quadrature rule. To this end, we use the quadrature rules (2.19) discussed earlier and select the
training set Sint = {xn} with xn ∈ DT for all 1 ≤ n ≤ N , and Sbc = {ym, fb(ym)}, ym ∈ ∂DT for
all 1 ≤ m ≤ M as the quadrature points for the quadrature rule (2.19) and consider the following
approximation of (3.3):

Jint(θ) :=
N∑

n=1
wn|rint[uθ](xn)|ps , Jbc(θ) :=

M∑
m=1

wm|rbc[uθ](ym)|pb (3.4)

25

i
i

“output” — 2023/12/11 — 11:30 — page 26 — #26 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Finally, we can minimize the loss function

J(θ) = λJint(θ) + Jbc(θ), (3.5)

with λ being a hyperparameter for balancing the residuals, on account of the PDE and the boundary
residuals, over the admissible set of tuning parameters θ ∈ Θ i.e:

θ∗ = arg min
θ∈Θ

J(θ), (3.6)

and call the resulting neural network u∗ = uθ∗ physics informed neural network (PINN).

It is common in machine learning [52] to regularize the minimization problem for the loss function i.e we
seek to find,

θ∗ = arg min
θ∈Θ

(J(θ) + λregJreg(θ)) . (3.7)

Here,
Jreg : Θ→ R (3.8)

is a regularization (penalization) term. A popular choice is to set Jreg(θ) = ∥θ∥q
q for either q = 1 (to

induce sparsity) or q = 2. The parameter 0 ≤ λreg ≪ 1 balances the regularization term with the actual
loss J (3.5).

The above minimization problem amounts to finding a minimum of a possibly non-convex function over
a subset of RM for possibly very large M . We will follow standard practice in machine learning and solve
this minimization problem approximately by either (first-order) stochastic gradient descent methods such
as ADAM [55] or even higher-order optimization methods such as LBFGS [56].

In summary, a physics informed neural networks is based on the following building blocks:

1. A standard feedforward neural network (as described in section 2.5.1) approximating the solution
of the forward problem 2.9, uθ(x) ≈ u(x), x ∈ DT

2. Training sets S = Sint ∪ Sbc

3. Interior and boundary residuals rbc[uθ], rint[uθ]

4. A loss function J(θ) = λJint(θ) + Jbc(θ)

The training algorithm for PINNs is described in Algorithm 1.

3.2 Abstract Estimate of the Generalization Error

In this section, we will estimate the error due to the PINN in approximating the solution u of the
forward problem (2.9). The relevant concept of error is the total error, often referred to as the so-called
generalization error (see [57]):

EG = EG(θ∗; Sint, Sd) := ∥u− u∗∥U(DT). (3.9)

Clearly, the generalization error depends on the chosen training set S and the trained neural network
with tuning parameters θ∗, found by minimizing (3.5). However, we will suppress this dependence due
to notational convenience.

26

i
i

“output” — 2023/12/11 — 11:30 — page 27 — #27 i
i

i
i

i
i

3.2. ABSTRACT ESTIMATE OF THE GENERALIZATION ERROR

Algorithm 1: Finding a physics informed neural network to approximate the solution of the forward
problem (2.9)

Input
Da differential operator on the underlying domain DT

s input source term
fb boundary conditions
Sint training set for approximating the PDE residual norm
Sbc training set for approximating the boundary residual norm
θ initial value of the tunable parameters
λ balancing parameter

Output
uθ∗ PINN approximating the forward problem 2.9

Step 1: For the initial value of the weight vector θ ∈ Θ, evaluate the neural network uθ (2.24), the
PDE and boundary residuals (3.2), the loss function (3.5) and its gradients.
Step 2: Run the optimization algorithm until an approximate local minimum θ∗ of (3.5) is reached.
The map u∗ = uθ∗ is the desired PINN for approximating the solution u of the forward problem (2.9).

Note that there is no computation of the generalization error during the training process. On the other
hand, we exclusively monitor the so-called training error given by,

ET :=
(
(Eint

T)ps + (Ebc
T)pb

) 2
ps+pb

(3.10)

with

Eint
T :=

(
N∑

n=1
wn|rint[uθ∗](xn)|ps

) 1
ps

, Ebc
T :=

(
M∑

m=1
wm|rbc[uθ∗](ym)|pb

) 1
pb

. (3.11)

Hence, the training error ET can be readily computed, after training has been completed, from the loss
function (3.5). The generalization error (3.9) can be estimated in terms of the training error in the
following theorem.

Theorem 3.2.1. Let u ∈ U be the unique solution of the forward problem (2.9) and assume that the
forward problem is stable, namely, for all u, v ∈ U , it follows

∥u− v∥U(DT) < Cbc (∥T(u)∥B, ∥T(v)∥B) ∥B (Tu)−B (Tv) ∥B(∂DT)+
Cint(u, v)∥Da(u)−Da(v)∥S(DT)

(3.12)

Let u∗ ∈ U be the PINN generated by (3.6), based on the training sets Sint, Sbc of quadrature points
corresponding to the quadrature rule (2.19). Further assume that the residuals rint[uθ∗] and rbc[uθ∗],
defined in (3.2), be such that rint[uθ∗] ∈ S(DT) and rbc[uθ∗] ∈ B(∂DT) and the quadrature error satisfies
(2.20). Then the following estimate on the generalization error holds,

EG ≤ Cint

(
Eint

T

) ps
pu + Cbc

(
Ebc

T

) pb
pu + Cint

(
Cint

quad

) 1
pu N− αu

pu + Cbc

(
Cbc

quad

) 1
pb M

− αb
pb , (3.13)

with constants Cint = Cint (∥u∥U , ∥u∗∥U), Cbc = Cbc (∥T(u)∥B, ∥T(u∗)∥B), Cint
quad = Cint

quad (∥rint[uθ∗]∥S)
and Cbc

quad = Cbc
quad (∥rbc[uθ∗]∥B) stemming from (2.10) and (2.20), respectively. Note that these constants

depend on the underlying PINN u∗, which in turn can depend on the number of training points N , M .

27

i
i

“output” — 2023/12/11 — 11:30 — page 28 — #28 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Proof. Let us consider the residuals rint[uθ∗] and rbc[uθ∗] corresponding to the trained neural network
u∗, defined (3.2). As u solves the forward problem (2.3) we easily see that,

rint[uθ∗] = Da(u∗)−Da(u), rbc[uθ∗] = B (T(u∗))−B (T(u)) . (3.14)

Hence, we can directly apply the stability bound (3.12) to yield,

EG = ∥u− u∗∥U (by (3.9),
≤ Cbc∥B (Tu)−B (Tv) ∥B(∂DT) + Cint∥Da(u)−Da(v)∥S(DT) (by (2.10)),
≤ Cbc∥rbc[uθ∗]∥B(∂DT) + Cint∥rint[uθ∗]∥S(DT) (by (3.14)),

(3.15)

By the fact that S ⊂ Lps(DT) and B ⊂ Lpb(∂DT), the definition of the training error (3.10) and the
quadrature rule (2.19), we see that,

∥rint[uθ∗]∥ps

S(DT) ≈
N∑

n=1
wn|rint[uθ∗](xn)|ps =

(
Eint

T

)ps
,

∥rbc[uθ∗]∥pb

B(∂DT) ≈
M∑

m=1
wm|rbc[uθ∗](ym)|pb =

(
Ebc

T

)pb
.

Hence, the training error is a quadrature for the residual (3.2) and the resulting quadrature error, given
by (2.20) translates to,

∥rint[uθ∗]∥ps

S(DT) ≤
(
Eint

T

)ps + Cint
quadN

−αs ,

∥rbc[uθ∗]∥pb

B(∂DT) ≤
(
Ebc

T

)pb + Cbc
quadM

−αb .
(3.16)

Substituting (3.16) into (3.15) yields the desired bound (3.13).

Observe that the stability estimate (3.12) is a special case of the general estimate (2.10).

The main point of the error estimate (3.13) is to link the total (generalization) error to the training error.
As a matter of fact, it is not at all obvious that minimizing the PDE residual (3.2) can lead to any control
on the generalization error (3.9). The error estimate (3.13) provides this connection by leveraging the
stability of PDEs to derive an error estimate in terms of the PDE residual. Hence, the theorem rigorously
establishes the underlying mechanism by which PINNs can effectively approximate solutions to partial
differential equations, and this mechanism is primarily centered on the stability of the forward problem.

Clearly, the stability of the forward problem is not the unique element to guarantee low generalization
error. Indeed, an inspection of the estimate (3.13) reveals that the generalization error for the PINN is
small as long as the following hold,

• The training error ET ≪ 1 has to be sufficiently small. Note that we have no a priori control on
the training error but can compute it a posteriori. We observe that the error estimate (3.13) holds
for any function u∗, defined in terms of the residual (3.2), as it only relies on the stability of the
underlying PDE and on the accuracy of the underlying quadrature rule. We have not used the
structure of neural networks in the proof of Theorem 3.2.1, nor have we used any specific details
of the training process. In particular, this estimate (3.13) holds for any neural network of the form
(2.24). However, there is no guarantee that the training error ET is small for such neural networks.
On the other hand, one could expect that the training error for the trained PINN u∗ is small.

28

i
i

“output” — 2023/12/11 — 11:30 — page 29 — #29 i
i

i
i

i
i

3.3. SEMI-LINEAR PARABOLIC EQUATIONS

• The quadrature error depends on the number of quadrature (training) points N , M as well as on
the quadrature constants Cbc

quad, Cint
quad, which in turn, depends on the residual of the underlying

PINN u∗ and indirectly, on the number of training points N , M . In particular, it might grow with
increasing N and M . Thus, one might need to choose the number of quadrature points N , M large
enough such that Cint

quadN
−αs ≪ 1, Cbc

quadM
−αb ≪ 1. More pertinently, the constants Cbc

quad, Cint
quad

depends on the architecture of the underlying neural network.

• The constants Cint, Cbc, that encode the stability of the underlying PDE and depend on both the
underlying exact solution u as well as the trained PINN u∗ needs to be bounded.

In particular, the evaluation of the bound’s constants depends on the details on the underlying PDE and
quadrature rule and cannot be worked out in the abstract setup of Theorem 3.2.1. Therefore, in the next
sections, we are going to work out details of the stability estimates for a wide class of PDEs, including,
semi-linear parabolic PDE, viscous scalar conservation laws, and two examples of dispersive equations.

3.3 Semi-linear Parabolic equations

3.3.1 The underlying PDEs

Let D ⊂ Rd be a domain i.e, an open connected bounded set with a Ck boundary ∂D. We consider the
following model of a semi-linear parabolic equation,

ut = ∆u+ f(u), ∀x ∈ D, t ∈ (0, T),
u(x, 0) = ū(x), ∀x ∈ D,
u(x, t) = 0, ∀x ∈ ∂D, t ∈ (0, T).

(3.17)

Here, ū ∈ H s̄(D;R) is the initial data, u ∈ Hs(((0, T) × D);R) is the solution, and f : R → R is the
non-linear source (reaction) term. We assume that the non-linearity is globally Lipschitz i.e, there exists
a constant Cf (independent of v, w) such that

|f(v)− f(w)| ≤ Cf |v − w|, v, w ∈ R. (3.18)

In particular, the homogeneous linear heat equation with f(u) ≡ 0 and the linear source term f(u) = cfu
are examples of (3.17). Semilinear heat equations with globally Lipschitz non-linearities arise in several
models in biology and finance [5].

The existence, uniqueness, and regularity of the semi-linear parabolic equations with Lipschitz non-
linearities such as (3.17) can be found in classical textbooks such as [58]. For our purposes here, we will
choose s̄ > k + d/2 + 1 such that the initial data ū ∈ Ck(D) and we obtain u ∈ Ck([0, T] × D), with
k ≥ 2 as the classical solution of the semi-linear parabolic equation (3.17).

3.3.2 PINNs

In accordance with section 3.1, we will proceed to outline the foundational components of PINNs for a
semi-linear parabolic equation.

29

i
i

“output” — 2023/12/11 — 11:30 — page 30 — #30 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Training set

Let DT = D × (0, T) be the space-time domain. As in section 3.1, we will choose the training set
SD̄× ⊂ [0, T], based on suitable quadrature points, corresponding to a suitable space-time grid-based
composite Gauss quadrature rule as long d ≤ 3 or correspond to low-discrepancy sequences for moderately
high dimensions or randomly chosen points in very high dimensions.

We then divide the training set into the following three sets,

• Interior training points Sint = {yn} for 1 ≤ n ≤ Nint, with each yn = (xn, tn) ∈ DT .

• Spatial boundary training points Ssb = {zn, 0} for 1 ≤ n ≤ Nsb with each zn = (xn, tn) and each
xn ∈ ∂D.

• Temporal boundary training points Stb = {xn, ū(xn)}, with 1 ≤ n ≤ Ntb and each xn ∈ D.

The full training set is S = Sint ∪ Ssb ∪ Stb.

Residuals

For the neural network uθ ∈ Ck(D̄ × [0, T]), with continuous extensions of the derivatives to the bound-
aries, defined by (2.24), with a smooth activation function σ and θ ∈ Θ as the set of tuning parameters,
we define the following residuals,

• Interior Residual given by,

rint[uθ](x, t) := ∂tuθ(x, t)−∆uθ(x, t)− f(uθ(x, t)). (3.19)

Here ∆ = ∆x is the spatial Laplacian. Note that the residual is well defined and rint[uθ] ∈
Ck−2(D̄ × [0, T]) for every θ ∈ Θ.

• Spatial boundary Residual given by,

rsb[uθ](x, t) := uθ(x, t), ∀x ∈ ∂D, t ∈ (0, T]. (3.20)

Given the fact that the neural network is smooth, this residual is well defined.

• Temporal boundary Residual given by,

rtb[uθ](x) := uθ(x, 0)− ū(x), ∀x ∈ D. (3.21)

Again this quantity is well-defined and rtb[uθ](x) ∈ Ck(D) as both the initial data and the neural
network are smooth.

Loss function

We need a loss function to train the PINN. To this end, we set the following loss function,

J(θ) :=
Ntb∑
n=1

wtb
n |rtb[uθ](xn)|2 +

Nsb∑
n=1

wsb
n |rsb[uθ](xn, tn)|2 +

Nint∑
n=1

wint
n |rint[uθ](xn, tn)|2. (3.22)

Here the residuals are defined by (3.21), (3.20), (3.19), wtb
n are the Ntb quadrature weights corresponding

to the temporal boundary training points Stb, wsb
n are the Nsb quadrature weights corresponding to the

spatial boundary training points Ssb, and wint
n are the Nint quadrature weights corresponding to the

interior training points Sint.

30

i
i

“output” — 2023/12/11 — 11:30 — page 31 — #31 i
i

i
i

i
i

3.3. SEMI-LINEAR PARABOLIC EQUATIONS

3.3.3 Estimate on the generalization error.

We are interested now in estimating the generalization error (3.9) for a PINN approximating a semi-linear
parabolic equation. In this case, DT ⊂ L2(D × (0, T)) and the generalization error is concretely defined
as,

EG :=

 T∫
0

∫
D

|u(x, t)− u∗(x, t)|2dxdt


1
2

. (3.23)

As for the abstract PDE (2.3), we are going to estimate the generalization error in terms of the training
error that we define as,

E2
T :=

Ntb∑
n=1

wtb
n |rtb[uθ∗](xn)|2︸ ︷︷ ︸

(Etb
T

)2

+
Nsb∑
n=1

wsb
n |rsb[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Esb
T

)2

+λ
Nint∑
n=1

wint
n |rint[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Eint
T

)2

. (3.24)

We also need the following assumptions on the quadrature error, analogous to (2.10). For any function
g ∈ Ck(D), the quadrature rule corresponding to quadrature weights wtb

n at points xn ∈ Stb, with
1 ≤ n ≤ Ntb, satisfies ∣∣∣∣∣∣

∫
D

g(x)dx−
Ntb∑
n=1

wtb
n g(xn)

∣∣∣∣∣∣ ≤ Ctb
quad(∥g∥Ck)N−αtb

tb . (3.25)

For any function g ∈ Ck(∂D × [0, T]), the quadrature rule corresponding to quadrature weights wsb
n at

points (xn, tn) ∈ Ssb, with 1 ≤ n ≤ Nsb, satisfies∣∣∣∣∣∣
T∫

0

∫
∂D

g(x, t)ds(x)dt−
Nsb∑
n=1

wsb
n g(xn, tn)

∣∣∣∣∣∣ ≤ Csb
quad(∥g∥Ck)N−αsb

sb . (3.26)

Finally, for any function g ∈ Cℓ(D × [0, T]), the quadrature rule corresponding to quadrature weights
wint

n at points (xn, tn) ∈ Sint, with 1 ≤ n ≤ Nint, satisfies∣∣∣∣∣∣
T∫

0

∫
D

g(x, t)dxdt−
Nint∑
n=1

wint
n g(xn, tn)

∣∣∣∣∣∣ ≤ Cint
quad(∥g∥Cℓ)N−αint

int . (3.27)

In the above, αint, αsb, αtb > 0 and in principle, different order quadrature rules can be used. We estimate
the generalization error for the PINN in the following,

Theorem 3.3.1. Let u ∈ Ck(D̄×[0, T]) be the unique classical solution of the semilinear parabolic equation
(3.17) with the source f satisfying (3.18). Let u∗ = uθ∗ be a PINN generated by algorithm 1, corresponding
to loss function (3.22). Then the generalization error (3.23) can be estimated as,

EG ≤ C1

(
Etb

T + Eint
T + C2(Esb

T) 1
2 + (Ctb

quad) 1
2N

− αtb
2

tb + (Cint
quad) 1

2N
− αint

2
int + C2(Csb

quad) 1
4N

− αsb
4

sb

)
, (3.28)

with constants given by,

C1 =
√
T + (1 + 2Cf)T 2e(1+2Cf)T , C2 =

√
2C∂D(u, u∗)T 1

2 ,

C∂D = |∂D| 12
(
∥u∥C1([0,T]×∂D) + ∥u∗∥C1([0,T]×∂D)

)
,

(3.29)

31

i
i

“output” — 2023/12/11 — 11:30 — page 32 — #32 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

and Ctb
quad = Ctb

quad(∥rtb[uθ∗]2∥Ck), Csb
quad = Ctb

quad(∥rsb[uθ∗]∥Ck) and Cint
quad = Cint

quad(∥rint[uθ∗]∥Ck−2) are
the constants defined by the quadrature error (3.25), (3.26), (3.27), respectively.

Proof. By the definitions of the residuals (3.19), (3.20), (3.21) and the underlying PDE (3.17), we can
readily verify that the error û := u∗ − u satisfies the following (forced) parabolic equation,

ût = ∆û+ f(u∗)− f(u) + rint, ∀x ∈ D, t ∈ (0, T),
û(x, 0) = rtb(x), ∀x ∈ D,
u(x, t) = rsb(x, t), ∀x ∈ ∂D, t ∈ (0, T).

(3.30)

Here, we have denoted rint = rint[uθ∗] for notational convenience and analogously for the residuals rtb, rsb.

Multiplying both sides of the PDE (3.30) with û, integrating over the domain and integrating by parts,
denoting n as the unit outward normal, yields,

1
2
d

dt

∫
D

|û(x, t)|2dx = −
∫

D

|∇û|2dx+
∫

∂D

rsb(x, t)(∇û · n)ds(x) +
∫

D

û(f(u∗)− f(u))dx+
∫

D

rintûdx.

≤
∫

D

|û||f(u∗)− f(u)|dx+ 1
2

∫
D

û(x, t)2dx+ 1
2

∫
D

|rint|2dx

+ |∂D| 12
(
∥u∥C1([0,T]×∂D) + ∥u∗∥C1([0,T]×∂D)

)︸ ︷︷ ︸
C∂D(u,u∗)

(∫
∂D

|rsb(x, t)|2ds(x)
) 1

2

(by (3.18))
≤ (Cf + 1

2)
∫

D

|û(x, t)|2dx+ 1
2

∫
D

|rint|2dx+ C∂D(u, u∗)
(∫

∂D

|rsb(x, t)|2ds(x)
) 1

2

.

Integrating the above inequality over [0, T̄] for any T̄ ≤ T and the definition (3.21) together with Cauchy-
Schwarz inequality, we obtain,

∫
D

|û(x, T̄)|2dx ≤
∫

D

|rtb(x)|2dx+ (1 + 2Cf)
∫ T̄

0

∫
D

|û(x, t)|2dxdt+
∫ T

0

∫
D

|rint|2dxdt

+ 2C∂D(u, u∗)T 1
2

(∫ T

0

∫
∂D

|rsb(x, t)|2ds(x)dt
) 1

2

.

Applying the integral form of the Grönwall’s inequality to the above, we obtain,∫
D

|û(x, T̄)|2dx

≤
(

1 + (1 + 2Cf)Te(1+2Cf)T
)(∫

D

|rtb(x)|2dx+

∫ T

0

∫
D

|rint|2dxdt+ C∂D(u, u∗)T 1
2

(∫ T

0

∫
∂D

|rsb(x, t)|2ds(x)dt
) 1

2
)
.

32

i
i

“output” — 2023/12/11 — 11:30 — page 33 — #33 i
i

i
i

i
i

3.4. VISCOUS SCALAR CONSERVATION LAWS

Integrating over T̄ ∈ [0, T] yields,

E2
G =

∫ T

0

∫
D

|û(x, T̄)|2dxdt

≤
(
T + (1 + 2Cf)T 2e(1+2Cf)T

)(∫
D

|rtb(x)|2dx+

+
∫ T

0

∫
D

|rint|2dxdt+ 2C∂D(u, u∗)T 1
2

(∫ T

0

∫
∂D

|rsb(x, t)|2ds(x)dt
) 1

2
)
.

(3.31)

By the definitions of different components of the training error (3.24) and applying the estimates (3.25),
(3.26), (3.27) on the quadrature error yields the desired inequality (3.28).

Remark 3.3.2. The estimate (3.28) bounds the generalization error in terms of each component of the
training error and the quadrature errors. Clearly, each component of the training error can be computed
from (3.24), once the training has been completed. As long as each component of the PINN training error
is small, the bound (3.28) implies that the generalization error will be small for large enough number
of training points. Although, the estimate is not by any means sharp as triangle inequalities and the
Grönwall’s inequality are used, information can be gleaned from it. For instance, the error due to the
boundary residual has a bigger weight in (3.28), relative to the interior and initial residuals. This is
consistent with the observations of [59] and can also be seen in the recent papers such as [22] and suggests
that the loss function (3.22) could be modified such that the boundary residual is penalized more.

Remark 3.3.3. In addition to the training errors, which could depend on the underlying PDE solution,
the estimate (3.28) shows explicit dependence on the underlying solution through the constant C∂D, which
is based only on the value of the underlying solution on the boundary. Similarly, the dependence on
dimension is only seen through the quadrature error.

3.4 Viscous scalar conservation laws

3.4.1 The underlying PDE

In this section, we consider the following one-dimensional version of viscous scalar conservation laws as
a model problem for quasilinear, convection-dominated diffusion equations,

ut + f(u)x = νuxx, ∀x ∈ (0, 1), t ∈ [0, T],
u(x, 0) = ū(x), ∀x ∈ (0, 1).
u(0, t) = u(1, t) = 0, ∀t ∈ [0, T].

(3.32)

Here, ū ∈ Ck([0, 1]), for any k ≥ 2, is the initial data and we consider zero Dirichlet boundary conditions.
Note that 0 < ν ≪ 1 is the viscosity coefficient. The flux function is denoted by f ∈ Ck(R;R).

We emphasize that (3.32) is a model problem that we present here for notational and expositional
simplicity. The following results can be readily extended in the following directions:

• Several space dimensions.

• Other boundary conditions such as Periodic or Neumann boundary conditions.

33

i
i

“output” — 2023/12/11 — 11:30 — page 34 — #34 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

• More general forms of the viscous term, namely ν (B(u)ux)x, for any B ∈ Ck(R;R) with B(v) ≥
c > 0, for all v ∈ R and for some c.

Moreover, we can follow standard textbooks such as [60] to conclude that as long as ν > 0, there exists
a classical solution u ∈ Ck([0, 1]× [0, T)) of the viscous scalar conservation law (3.32).

3.4.2 PINNs

We realize the abstract algorithm 1 in the following concrete steps,

Training Set.

Let D = (0, 1) and DT = (0, 1)× (0, T). As in section 3.1, we divide the training set S = Sint ∪ Ssb ∪ Stb

of the abstract PINNs algorithm 1 into the following three subsets,

• Interior training points Sint = {yn} for 1 ≤ n ≤ Nint, with each yn = (xn, tn) ∈ DT . These points
can the quadrature points, corresponding to a suitable space-time grid-based composite Gauss
quadrature rule or generated from a low-discrepancy sequence in DT .

• Spatial boundary training points Ssb = (0, tn) ∪ (1, tn) for 1 ≤ n ≤ Nsb, and the points tn chosen
either as Gauss quadrature points or low discrepancy sequences in [0, T].

• Temporal boundary training points Stb = {xn}, with 1 ≤ n ≤ Ntb and each xn ∈ (0, 1), chosen
either as Gauss quadrature points of low-discrepancy sequences.

Residuals

In algorithm 1 for generating PINNs, we need to define appropriate residuals. For the neural network
uθ ∈ Ck([0, 1]× [0, T]), defined by (2.24), with a smooth activation function such as σ = tanh and θ ∈ Θ
as the set of tuning parameters, we define the following residuals,

• Interior Residual given by,

rint[uθ](x, t) := ∂t(uθ(x, t)) + ∂x(f(uθ(x, t)))− ν∂xx(uθ(x, t)). (3.33)

• Spatial boundary Residual given by,

rsb,0[uθ](t) := uθ(0, t), ∀t ∈ (0, T]
rsb,1[uθ](t) := uθ(1, t), ∀t ∈ (0, T]

(3.34)

• Temporal boundary Residual given by,

rtb[uθ](x) := uθ(x, 0)− ū(x), ∀x ∈ [0, 1]. (3.35)

All the above quantities are well defined for k ≥ 2 and rint[uθ] ∈ Ck−2([0, 1] × [0, T]), rsb[uθ] ∈
Ck([0, T]), rtb[uθ] ∈ Ck([0, 1]).

34

i
i

“output” — 2023/12/11 — 11:30 — page 35 — #35 i
i

i
i

i
i

3.4. VISCOUS SCALAR CONSERVATION LAWS

Loss function

We use the following loss function to train the PINN for approximating the viscous scalar conservation
law (3.32),

J(θ) :=
Ntb∑
n=1

wtb
n |rtb[uθ](xn)|2+

Nsb∑
n=1

wsb
n |rsb,0[uθ](tn)|2+

Nsb∑
n=1

wsb
n |rsb,1[uθ](tn)|2+λ

Nint∑
n=1

wint
n |rint[uθ](xn, tn)|2.

(3.36)
Here the residuals are defined by (3.35), (3.34), (3.33). wtb

n are the Ntb quadrature weights corresponding
to the temporal boundary training points Stb, wsb

n are the Nsb quadrature weights corresponding to the
spatial boundary training points Ssb and wint

n are the Nint quadrature weights corresponding to the
interior training points Sint. Furthermore, λ is a hyperparameter for balancing the residuals, on account
of the PDE and the initial and boundary data, respectively.

3.4.3 Estimate on the generalization error.

As for the semilinear parabolic equation, we will try to estimate the following generalization error for the
PINN u∗ = uθ∗ , generated through algorithm 1, with loss function (3.36), for approximating the solution
of the viscous scalar conservation law (3.32):

EG :=

 T∫
0

1∫
0

|u(x, t)− u∗(x, t)|2dxdt


1
2

. (3.37)

This generalization error will be estimated in terms of the training error,

E2
T :=

Nint∑
n=1

wint
n |rint[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Eint
T

)2

+
Ntb∑
n=1

+wtb
n |rtb[uθ∗](xn)|2︸ ︷︷ ︸

(Etb
T

)2

+
Nsb∑
n=1

wsb
n |rsb,0[uθ∗](tn)|2︸ ︷︷ ︸

(Esb,0
T

)2

+
Nsb∑
n=1

wsb
n |rsb,1[uθ∗](tn)|2︸ ︷︷ ︸

(Esb,1
T

)2

,

(3.38)

readily computed from the training loss (3.36) a posteriori. We have the following estimate,

Theorem 3.4.1. Let ν > 0 and let u ∈ Ck((0, 1) × (0, T)) be the unique classical solution of the viscous
scalar conservation law (3.32). Let u∗ = uθ∗ be the PINN, generated by algorithm 1, with loss function
(3.36). Then, the generalization error (3.37) is bounded by,

E2
G ≤

(
T + CT 2eCT

) [(
Etb

T

)2 +
(
Eint

T

)2 + 2C̄b

((
E

sb,0
T

)2
+
(
E

sb,1
T

)2
)

+ 2νCbT
1
2

(
E

sb,0
T + E

sb,1
T

)]
+
(
T + CT 2eT

) [
Ctb

quadN
−αtb

tb + Cint
quadN

−αint
int + 2C̄b

((
Csb,0

quad + Csb,1
quad

)
N−αsb

sb

)
+ 2νCbT

1
2

((
Csb,0

quad + Csb,1
quad

) 1
2
N

− αsb
2

sb

)]
.

(3.39)

35

i
i

“output” — 2023/12/11 — 11:30 — page 36 — #36 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Here, the training errors are defined by (3.38) and the constants are given by C = 1 + 2Cf,u,u∗ , with

Cf,u,u∗ = C (∥f∥C2 , ∥u∥W 1,∞ , ∥u∗∥L∞) = |f ′′ (max{∥u∥L∞ , ∥u∗∥L∞})| ∥ux∥L∞ ,

Cb =
(
∥ux∥C([0,1]×[0,T]) + ∥u∗

x∥C([0,1]×[0,T])
)
,

(3.40)

C̄b = C̄b

(
∥f ′∥∞, ∥u∗∥C0([0,1]×[0,T])

)
and Ctb

quad = Ctb
quad (∥rtb[uθ∗]∥Ck), Cint

quad = Cint
quad (∥rint[uθ∗]∥Ck−2),

Csb,0
quad = Csb,0

quad

(
∥rsb,0[uθ∗]2∥Ck

)
, Csb,1

quad = Csb,1
quad

(
∥rsb,0[uθ∗]2∥Ck

)
are the constants that appear in the

bounds on quadrature error (3.25)-(3.27).

Proof. We drop the θ∗-dependence of the residuals (3.33)-(3.35) for notational convenience in the follow-
ing. Define the entropy flux function,

Q(u) =
u∫

a

sf ′(s)ds, (3.41)

for any a ∈ R. Let û = u∗ − u be the error with the PINN. From the PDE (3.32) and the definition of
the interior residual (3.33), we have the following identities,

∂t

(
(u∗)2

2

)
+ ∂xQ(u∗) = νu∗u∗

xx + rintu
∗

∂t

(
u2

2

)
+ ∂xQ(u) = νuuxx

(3.42)

A straightforward calculation with (3.32) and (3.33) yields,

∂t(uû) + ∂x (u (f(u∗)− f(u))) = [f(u∗)− f(u)− f ′(u)û]ux + rintu+ ν (uûxx + ûuxx) . (3.43)

Subtracting the second equation of (3.42) and (3.43) from the first equation of (3.42) yields,

∂tS(u, u∗) + ∂xH(u, u∗) = rintû+ T1 + T2, (3.44)

with,

S(u, u∗) := (u∗)2

2 − u2

2 − ûu = 1
2 û

2,

H(u, u∗) := Q(u∗)−Q(u)− u(f(u∗)− f(u)),
T1 = − [f(u∗)− f(u)− f ′(u)û]ux,

T2 = ν (u∗u∗
xx − uuxx − uûxx − ûuxx) = νûûxx.

As the flux f is smooth, by a Taylor expansion, we see that

T1 = −f ′′(u+ γ(u∗ − u))û2ux, (3.45)

for some γ ∈ (0, 1). Hence, a straightforward estimate for T1 is given by,

|T1| ≤ Cf,u,u∗ û2, (3.46)

with Cf,u,u∗ defined in (3.40). Next, we integrate (3.44) over the domain (0, 1) and integrate by parts to
obtain,

d

dt

∫ 1

0
û2(x, t)dx ≤ 2H(u(0, t), u∗(0, t))− 2H(u(1, t), u∗(1, t))

+ C

∫ 1

0
û2(x, t)dx+

∫ 1

0
r2

int(x, t)dx,

− 2ν
∫ 1

0
û2

x(x, t)dx+ 2ν (û(1, t)ûx(1, t)− û(0, t)ûx(0, t)) ,

(3.47)

36

i
i

“output” — 2023/12/11 — 11:30 — page 37 — #37 i
i

i
i

i
i

3.4. VISCOUS SCALAR CONSERVATION LAWS

with the constant, C = 1 + 2Cf,u,u∗ .

Next, for any T̄ ≤ T , we estimate the boundary terms starting with,

T̄∫
0

û(0, t)ûx(0, t)dt =
T̄∫

0

rsb,0(t) (u∗
x(0, t)− ux(0, t)) dt

≤
(
∥ux∥C([0,1]×[0,T]) + ∥u∗

x∥C([0,1]×[0,T])
)︸ ︷︷ ︸

Cb

T
1
2

(∫ T

0
r2

sb,0(t)dt
) 1

2

.

Analogously we can estimate,

T̄∫
0

û(1, t)ûx(1, t)dt ≤ CbT
1
2

(∫ T

0
r2

sb,1(t)dt
) 1

2

.

We can also estimate from (3.32) and (3.20) that,

H(u(0, t), u∗(0, t)) = Q(u∗(0, t))−Q(u(0, t))− u(0, t)(f(u∗(0, t))− f(u(0, t))),
= Q(rsb,0(t))−Q(0), as u(0, t) = 0,
= Q′(γ0rsb,0(t))rsb,0(t), for some γ0 ∈ (0, 1),
= γ0f

′(γ0u
∗(0, t))r2

sb,0(t), by (3.41),
≤ C̄br

2
sb,0(t), with C̄b = C̄b

(
∥f ′∥∞, ∥u∗∥C0([0,1]×[0,T])

)
.

Analogously, we can estimate,

H(u(1, t), u∗(1, t)) ≤ C̄br
2
sb,1(t).

For any T̄ ≤ T , integrating (3.47) over the time interval [0, T̄] and using the above inequalities on the
boundary terms, together with the definition of the residual (3.35) yields,∫ 1

0
û2(x, T̄)dx ≤ C + C

∫ T̄

0

∫ 1

0
û2(x, t)dxdt,

C =
∫ 1

0
r2

tb(x)dx+
∫ T

0

∫ 1

0
r2

int(x, t)dxdt

+ 2C̄b

[∫ T

0
r2

sb,0(t)dt+
∫ T

0
r2

sb,1(t)dt
]

+ 2νCbT
1
2

(∫ T

0
r2

sb,0(t)dt
) 1

2

+
(∫ T

0
r2

sb,1(t)dt
) 1

2
 .

(3.48)
By applying the integral form of the Grönwall’s inequality to (3.48) for any T̄ ≤ T and integrating again
over T̄ , together with the definition of the generalization error (3.37), we obtain,

E2
G ≤

(
T + CT 2eCT

)
C. (3.49)

Using the bounds (3.25)-(3.27) on the quadrature errors and the definition of C in (3.48), we obtain,

C ≤
Ntb∑
n=1

wtb
n |rtb(xn)|2 + Ctb

quad (∥rtb∥Ck)N−αtb

tb

37

i
i

“output” — 2023/12/11 — 11:30 — page 38 — #38 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

+
Nint∑
n=1

wint
n |rint(xn, tn)|2 + Cint

quad (∥rint∥Ck−2)N−αint
int ,

+ 2C̄b

[
Nsb∑
n=1

wsb
n |rsb,0(tn)|2 +

Nsb∑
n=1

wsb
n |rsb,1(tn)|2 +

(
Csb

quad (∥rsb,0∥Ck) + Csb
quad (∥rsb,1∥Ck)

)
N−αsb

sb

]

+ 2νCbT
1
2

[(
Nsb∑
n=1

wsb
n |rsb,0(tn)|2

) 1
2

+
(

Nsb∑
n=1

wsb
n |rsb,1(tn)|2

) 1
2

+

+
(
Csb

quad (∥rsb,0∥Ck) + Csb
quad (∥rsb,1∥Ck)

) 1
2 N

− αsb
2

sb

]
.

From definition of training errors (3.38) and (3.49) and the above inequality, we obtain the desired
estimate (3.39).

Remark 3.4.2. The estimate (3.39) is a concrete realization of the abstract estimate (3.13), with training
error decomposed into 4 parts, the constants, associated with the PDE, are given by Cf,u,u∗ , Cb (3.40) and
the constants due to the quadrature errors are also clearly delineated.

Remark 3.4.3. A close inspection of the estimate (3.39) reveals that at the very least, the classical solution
u of the PDE (3.32) needs to be in L∞((0, T);W 1,∞((0, 1))) for the rhs of (3.39) to be bounded. This
indeed holds as long as ν > 0. However, it is well known (see [60] and references therein) that if uν is
the solution of (3.32) for viscosity ν, then for some initial data,

∥uν∥L∞((0,T);W 1,∞((0,1))) ∼
1√
ν
. (3.50)

Thus, in the limit ν → 0, the constant Cf,u,u∗ can blow up (exponentially in time) and the bound (3.39)
no longer controls the generalization error. This is not unexpected as the whole strategy of this paper
relies on pointwise realization of residuals. However, the zero-viscosity limit of (3.32), leads to a scalar
conservation law with discontinuous solutions (shocks) and the residuals are measures that do not make
sense pointwise. Thus, the estimate (3.39) also points out the limitations of a PINN for approximating
discontinuous solutions.

An alternative strategy has to be pursued in order approximate solutions to inviscid scalar conservation
laws (ν = 0). This will be formally addressed in Chapter 4.

3.5 Incompressible Euler Equations

3.5.1 The underlying PDE

The motion of an inviscid, incompressible fluid is modeled by the incompressible Euler equations [61].
We consider the following form of these PDEs,

ut + (u · ∇)u+∇p = f, (x, t) ∈ D × (0, T),
∇ · u = 0, (x, t) ∈ D × (0, T),
u · n = 0, (x, t) ∈ ∂D × (0, T),

u(x, 0) = ū(x), x ∈ D.

(3.51)

38

i
i

“output” — 2023/12/11 — 11:30 — page 39 — #39 i
i

i
i

i
i

3.5. INCOMPRESSIBLE EULER EQUATIONS

Here, D ⊂ Rd, for d = 2, 3 is an open, bounded, connected subset with smooth C1 boundary ∂D,
DT = D × (0, T), u : DT → Rd is the velocity field, p : DT → R is the pressure that acts as a Lagrange
multiplier to enforce the divergence constraint and f ∈ C1(DT ;Rd) is a forcing term. We use the no
penetration boundary conditions here with n denoting the unit outward normal to ∂D.

Note that we have chosen to present this form of the incompressible Euler equations for simplicity of
exposition. The analysis, presented below, can be readily but tediously extended to the following,

• Other boundary conditions such as periodic boundary conditions on the torus Td.

• The Navier-Stokes equations, where we add the viscous term ν∆u to the first equation in (3.51),
with either periodic boundary conditions or the so-called no slip boundary conditions i.e, u ≡ 0,
for all x ∈ ∂D and for all t ∈ (0, T].

3.5.2 PINNs

We describe the algorithm 1 for this PDE in the following steps,

Training set

We chose the training set S ⊂ DT with S = Sint ∪ Ssb ∪ Stb, with interior, spatial and temporal boundary
training sets, chosen exactly as in section 3.3.2, either as quadrature points for a (composite) Gauss rule
or as low-discrepancy sequences on the underlying domains.

Residuals

For the neural networks (x, t) 7→ (uθ(x, t), pθ(x, t)) ∈ Ck(D × (0, T)) ∩ C(D̄ × [0, T]), defined by (2.24),
with a smooth activation function and θ ∈ Θ as the set of tuning parameters, we define the residual r in
algorithm 1, consisting of the following parts,

• Velocity residual given by,

ru[uθ](x, t) := (uθ)t + (uθ · ∇)uθ +∇pθ − f, (x, t) ∈ D × (0, T), (3.52)

• Divergence residual given by,

rdiv[uθ](x, t) := ∇·uθ(x, t), (x, t) ∈ D × (0, T), (3.53)

• Spatial boundary Residual given by,

rsb[uθ](x, t) := uθ(x, t) · n, ∀x ∈ ∂D, t ∈ (0, T]. (3.54)

• Temporal boundary Residual given by,

rtb[uθ](x) := uθ(x, 0)− ū(x), ∀x ∈ D. (3.55)

As the underlying neural networks have the required regularity, the residuals are well-defined.

39

i
i

“output” — 2023/12/11 — 11:30 — page 40 — #40 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Loss function

We consider the following loss function for training PINNs to approximate the incompressible Euler
equation (3.51),

J(θ) :=
Ntb∑
n=1

wtb
n |rtb[uθ](xn)|2+

Nsb∑
n=1

wsb
n |rsb[uθ](xn, tn)|2+λ

(
Nint∑
n=1

wint
n |ru[uθ](xn, tn)|2 +

Nint∑
n=1

wint
n |rdiv[uθ](xn, tn)|2

)
.

(3.56)
Here the residuals are defined by (3.52)-(3.55). wtb

n are the Ntb quadrature weights corresponding to the
temporal boundary training points Stb, wsb

n are the Nsb quadrature weights corresponding to the spatial
boundary training points Ssb and wint

n are the Nint quadrature weights corresponding to the interior
training points Sint. Furthermore, λ is a hyperparameter for balancing the residuals, on account of the
PDE and the initial and boundary data, respectively.

3.5.3 Estimate on the generalization error.

We denote the PINN, obtained by the algorithm 1, for approximating the incompressible Euler equations,
as u∗ = uθ∗ , with θ∗ being a (approximate local) minimum of the loss function (3.56). We consider the
following generalization error,

EG :=

 T∫
0

∫
D

∥u(x, t)− u∗(x, t)∥2dxdt


1
2

, (3.57)

with ∥ · ∥ denoting the Euclidean norm in Rd. Note that we only consider the error with respect to the
velocity field u in (3.57). Although the pressure p in (3.51) is approximated by the neural network p∗ =
pθ∗ , we recall that the pressure is a Lagrange multiplier, and not a primary variable in the incompressible
Euler equations. Hence, we will not consider pressure errors here.

As in section 3.2, we will bound the generalization error in terms of the following training errors,

E2
T :=

Ntb∑
n=1

wtb
n |rtb[uθ∗](xn)|2︸ ︷︷ ︸

(Etb
T)2

+
Nsb∑
n=1

wsb
n |rsb[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Esb
T)2

+
Nint∑
n=1

wint
n |ru[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Eu
T)2

+λ
Nint∑
n=1

wint
n |rdiv[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Ed
T)2

.

(3.58)
As in the previous sections, the training errors can be readily computed a posteriori from the loss function
(3.6), (3.56).

We have the following bound on the generalization error in terms of the training error,

Theorem 3.5.1. Let u ∈ C1(D × (0, T)) ∩ C(D̄ × [0, T]) be the classical solution of the incompressible
Euler equations (3.51). Let u∗ = uθ∗ , p∗ = pθ∗ be the PINN generated by algorithm 1, then the resulting
generalization error (3.57) is bounded as,

E2
G ≤

(
T + C∞T

2eC∞T
) [(

Etb
T

)2 + (Eu
T)2 + C0T

1
2
(
Ediv

T + Esb
T

)]
+
(
T + C∞T

2eC∞T
) [
Ctb

quadN
−αtb

tb + Cu
quadN

−αint
int +

(
Cdiv

quad

) 1
2 N

− αint
2

int +
(
Csb

quad

) 1
2 N

− αsb
2

sb

]
.

(3.59)

40

i
i

“output” — 2023/12/11 — 11:30 — page 41 — #41 i
i

i
i

i
i

3.5. INCOMPRESSIBLE EULER EQUATIONS

Here, the training errors are defined in (3.58) and the constants are given by,

C0 = C
(
∥u∥C0([0,T]×D̄), ∥u∗∥C0([0,T]×D̄), ∥p∥C0([0,T]×D̄), ∥p∗∥C0([0,T]×D̄)

)
,

C∞ = 1 + 2Cd∥∇u∥L∞(DT),
(3.60)

with Cd only depending on dimension d and Ctb
quad = Ctb

quad

(
∥rtb[uθ∗]2∥Ck

)
, Cu

quad = Cint
quad

(
∥ru[uθ∗]2∥Ck−1

)
,

Cdiv
quad = Cint

quad

(
∥rdiv[uθ∗]2∥Ck−1

)
and Csb

quad = Csb
quad (∥rsb[uθ∗]s∥Ck) are the constants associated with the

quadrature errors (3.25)-(3.27).

Proof. We will drop explicit dependence of all quantities on the parameters θ∗ for notational convenience.
We denote the difference between the underlying solution u of (3.51) and PINN u∗ as û = u∗−u. Similarly
p̂ = p∗ − p. Using the PDE (3.51) and the definitions of the residuals (3.52)-(3.55), a straightforward
calculation yields the following PDE for the û,

ût + (û · ∇) û+ (u · ∇) û+ (û · ∇)u+∇p̂ = ru, (x, t) ∈ D × (0, T),
∇ · û = rdiv, (x, t) ∈ D × (0, T),
û · n = rsb, (x, t) ∈ ∂D × (0, T),

u(x, 0) = rtb, x ∈ D.

(3.61)

We take a inner product of the first equation in (3.61) with the vector û and use the following vector
identities,

û · ∂tû = ∂t

(
∥û∥2

2

)
,

û · ((û · ∇) û) = (û · ∇)
(
∥û∥2

2

)
,

û · ((u · ∇) û) = (u · ∇)
(
∥û∥2

2

)
,

yields the following identity,

∂t

(
∥û∥2

2

)
+ (û · ∇)

(
∥û∥2

2

)
+ (u · ∇)

(
∥û∥2

2

)
+ û · ((û · ∇)u) + (û · ∇) p̂ = û · ru.

Integrating the above identity over D and integrating by parts, together with (3.51) and (3.61) yields,

d

dt

∫
D

(
∥û∥2

2

)
dx =

∫
D

rdiv

(
∥û∥2

2 + p̂

)
dx−

∫
∂D

rsb

(
∥û∥2

2 + p̂

)
ds(x)

−
∫

D

û · ((û · ∇)u) dx+
∫

D

û · rudx.

(3.62)

It is straightforward to obtain the following inequality,∫
D

û · ((û · ∇)u) dx ≤ Cd∥∇u∥∞

∫
D

∥û∥2dx,

with the constant Cd only depending on dimension and ∥u∥∞ = ∥u∥L∞(DT).

Using the above estimate and estimating (3.62) yields,

d

dt

∫
D

∥û∥2dx ≤ C0

[(∫
D

(rdiv)2
dx

) 1
2

+
(∫

∂D

(rsb)2
ds(x)

) 1
2
]

+ C∞

∫
D

∥û∥2dx+
∫

D

r2
udx, (3.63)

41

i
i

“output” — 2023/12/11 — 11:30 — page 42 — #42 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

with constants given by (3.60).

For any T̄ ≤ T , we integrate (3.63) over time and use some simple inequalities to obtain,∫
D

∥û(x, T̄)∥2dx ≤ C + C∞

∫ T̄

0

∫
D

∥û(x, t)∥2dxdt,

C =
∫

D

r2
tbdx+

∫ T

0

∫
D

r2
udxdt,

+ C0T
1
2

(∫ T

0

∫
D

(rdiv)2
dxdt

) 1
2

+
(∫ T

0

∫
∂D

(rsb)2
ds(x)dt

) 1
2
 .

(3.64)

Now by using the integral form of the Grönwall’s inequality in (3.64) and integrating again over [0, T]
results in,

E2
G ≤

(
T + C∞T

2eC∞T
)
C. (3.65)

Using the bounds (3.25)-(3.27) on the quadrature errors and the definition of C in (3.64), we obtain,

C ≤
Ntb∑
n=1

wtb
n |rtb(xn)|2 + Ctb

quad (∥rtb∥Ck)N−αtb

tb

+
Nint∑
n=1

wint
n |ru(xn, tn)|2 + Cint

quad (∥ru∥Ck−1)N−αint
int ,

+ C0T
1
2

(Nint∑
n=1

wint
n |rdiv(xn, tn)|2

) 1
2

+
(
Cint

quad (∥rdiv∥Ck−1)
) 1

2 N
− αint

2
int


+ C0T

1
2

(Nsb∑
n=1

wsb
n |rsb(xn, tn)|2

) 1
2

+
(
Csb

quad (∥rsb∥Ck)
) 1

2 N
− αsb

2
sb


From definition of training errors (3.58) and (3.65) and the above inequality, we obtain the desired
estimate (3.59).

The bound (3.59) explicitly requires the existence of a classical solution u to the incompressible Euler
equations, with a minimum regularity of ∇u ∈ L∞(D × (0, T)). Such solutions do exist as long as we
consider the incompressible Euler equations in two space dimensions and with sufficiently smooth initial
data [61]. However, in three space dimensions, even with smooth initial data, the existence of smooth
solutions is a major open question. It is possible that the derivative blows up and the constant C∞ in
(3.59) is unbounded, leading to a loss of control on the generalization error. In general, complicated
solutions of the Euler equations are characterized by strong vorticity, resulting in large values of the
spatial derivative. The bound (3.59) makes it clear that the generalization error with PINNs can be large
for such problems.

3.6 Korteweg de-Vries and Kawahara equations

We will finally apply the PINNs algorithm 1 to the well-known KdV-Kawahara equations, which is an
example of dispersive equation.

42

i
i

“output” — 2023/12/11 — 11:30 — page 43 — #43 i
i

i
i

i
i

3.6. KORTEWEG DE-VRIES AND KAWAHARA EQUATIONS

3.6.1 The underlying PDEs

The general form of the KdV-Kawahara equation is given by,

ut + uux + αuxxx − βuxxxxx = 0, ∀ x ∈ (0, 1), t ∈ (0, T),
u(x, 0) = ū(x), ∀ x ∈ (0, 1),
u(0, t) = h1(t), ∀ t ∈ (0, T),
u(1, t) = h2(t), ∀ t ∈ (0, T),
ux(0, t) = h3(t), ∀ t ∈ (0, T),
ux(1, t) = h4(t), ∀ t ∈ (0, T),
uxx(1, t) = h5(t), ∀ t ∈ (0, T).

(3.66)

Here α, β are non-negative real constants. Note that if β = 0, then the above equation is called Korteweg
de-Vries (KdV) equation, and if β ̸= 0, then the above equation is called the Kawahara equation. It
is well known that KdV equation plays a pivotal role in the modeling of shallow water waves, and in
particular, the one-dimensional waves of small but finite amplitude in dispersive systems. However, under
certain circumstances, the coefficient of the third order derivative in the KdV equation may become very
small or even zero [62]. In such a scenario, one has to take account of the higher order effect of dispersion
in order to balance the nonlinear effect, which leads to the Kawahara equation.

For the sake of simplicity it will be assumed α = β = 1 in the upcoming analysis, since their values are
not relevant in the present setting, while emphasizing that that the subsequent analysis also holds for
the case β = 0 (KdV equations). Regarding the existence and stability of solutions to (3.66), we closely
follow the work by Faminskii & Larkin [63], and recall the following result.

Theorem 3.6.1. For any integer k ≥ 0, n ∈ N, l = 1 or 2, define the spaces

Xk((0, 1)× (0, T)) :=
{
u : ∂n

t u ∈ C([0, T];H5(k−n)(0, 1)) ∩ L2((0, T);H5(k−n)+1(0, 1))
}
,

Bl
k(0, T) :=

l∏
j=0

Hk+(2−j)/5(0, T).

Let ū ∈ H5k(0, 1), boundary data (h1, h3) ∈ B1
k(0, T), and (h2, h4, h5) ∈ B2

k(0, T) satisfy the natural
compatibility conditions. Then there exists a unique solution u ∈ Xk, and the flow map is Lipschitz
continuous on any ball in the corresponding norm.

By choosing appropriate values of k (for our purpose, we take k = 2) in the above theorem, we readily
infer the existence of classical solutions of the Kawahara equations (3.66) by the embedding of Sobolev
spaces in the Cℓ spaces.

3.6.2 PINNs

We apply algorithm 1 to approximate the solutions of (3.66). To this end, we need the following steps,

43

i
i

“output” — 2023/12/11 — 11:30 — page 44 — #44 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Training Set.

Let us define the space-time domain DT = (0, 1)× (0, T), and divide the training set S = Sint ∪ Ssb ∪ Stb

of the abstract PINNs algorithm 1 into the following three subsets,

• Interior training points Sint = {yn} for 1 ≤ n ≤ Nint, with each yn = (xn, tn) ∈ DT . We use
low-discrepancy Sobol points as training points.

• Spatial boundary training points Ssb = (0, tn) ∪ (1, tn) for 1 ≤ n ≤ Nsb, and the points tn chosen
as low-discrepancy Sobol points.

• Temporal boundary training points Stb = {xn}, with 1 ≤ n ≤ Ntb and each xn ∈ (0, 1), chosen as
low-discrepancy Sobol points.

Residuals

To define residuals for the neural network uθ ∈ C5([0, T] × [0, 1]), defined by (2.24), with θ ∈ Θ as the
set of tuning parameters, we use the hyperbolic tangent tanh activation function, i.e., σ = tanh. With
this setting, we define the following residuals

• Interior Residual given by,

rint[uθ](x, t) := ∂tuθ(x, t) + uθ(uθ)x(x, t) + (uθ)xxx(x, t)− (uθ)xxxxx(x, t). (3.67)

Note that the above residual is well-defined and rint[uθ] ∈ C([0, T]× [0, 1]) for every θ ∈ Θ.

• Spatial boundary Residual given by,

rsb1[uθ](0, t) := uθ(0, t)− h1(t), ∀t ∈ (0, T),
rsb2[uθ](1, t) := uθ(1, t)− h2(t), ∀t ∈ (0, T),
rsb3[uθ](0, t) := (uθ)x(0, t)− h3(t), ∀t ∈ (0, T),
rsb4[uθ](1, t) := (uθ)x(1, t)− h4(t), ∀t ∈ (0, T),
rsb5[uθ](1, t) := (uθ)xx(1, t)− h5(t), ∀t ∈ (0, T).

(3.68)

Given the fact that the neural network and boundary data are smooth, above residuals are well-
defined.

• Temporal boundary Residual given by,

rtb[uθ](x) := uθ(x, 0)− ū(x), ∀x ∈ (0, 1). (3.69)

Again the above quantity is well-defined and rtb[uθ] ∈ C5((0, 1)), as both the initial data and the
neural network are smooth.

Loss function

We set the following loss function

J(θ) :=
Ntb∑
n=1

wtb
n |rtb[uθ](xn)|2 +

Nsb∑
n=1

5∑
i=1

wsb
n |rsbi[uθ](tn)|2 + λ

Nint∑
n=1

wint
n |rint[uθ](xn, tn)|2. (3.70)

44

i
i

“output” — 2023/12/11 — 11:30 — page 45 — #45 i
i

i
i

i
i

3.6. KORTEWEG DE-VRIES AND KAWAHARA EQUATIONS

Here the residuals are defined by (3.69), (3.68), (3.67), wtb
n are the Ntb quadrature weights corresponding

to the temporal boundary training points Stb, wsb
n are the Nsb quadrature weights corresponding to the

spatial boundary training points Ssb and wint
n are the Nint quadrature weights corresponding to the

interior training points Sint. Furthermore, λ is a hyperparameter for balancing the residuals, on account
of the PDE and the initial and boundary data, respectively.

3.6.3 Estimate on the generalization error

We are interested in estimating the following generalization error for the PINN u∗ = uθ∗ with loss function
(3.70), for approximating the solution of (3.66):

EG :=

 T∫
0

1∫
0

|u(x, t)− u∗(x, t)|2dxdt


1
2

. (3.71)

We are going to estimate the generalization error in terms of the training error that we define as,

E2
T :=

Ntb∑
n=1

wtb
n |rtb[uθ∗](xn)|2︸ ︷︷ ︸

(Etb
T

)2

+
Nsb∑
n=1

5∑
i=1

wsb
n |rsbi[uθ∗](tn)|2︸ ︷︷ ︸
(Esb

T
)2

+λ
Nint∑
n=1

wint
n |rint[uθ∗](xn, tn)|2︸ ︷︷ ︸

(Eint
T

)2

. (3.72)

Note that the training error can be readily computed a posteriori from the loss function (3.70).

We also need the following assumptions on the quadrature error. For any function g ∈ Ck(Ω), the
quadrature rule corresponding to quadrature weights wtb

n at points xn ∈ Stb, with 1 ≤ n ≤ Ntb, satisfies∣∣∣∣∣∣
∫
Ω

g(x)dx−
Ntb∑
n=1

wtb
n g(xn)

∣∣∣∣∣∣ ≤ Ctb
quad(∥g∥Ck)N−αtb

tb . (3.73)

For any function g ∈ Ck(∂Ω × [0, T]), the quadrature rule corresponding to quadrature weights wsb
n at

points (xn, tn) ∈ Ssb, with 1 ≤ n ≤ Nsb, satisfies∣∣∣∣∣∣
T∫

0

∫
∂Ω

g(x, t)ds(x)dt−
Nsb∑
n=1

wsb
n g(xn, tn)

∣∣∣∣∣∣ ≤ Csb
quad(∥g∥Ck)N−αsb

sb . (3.74)

Finally, for any function g ∈ Cℓ(Ω × [0, T]), the quadrature rule corresponding to quadrature weights
wint

n at points (xn, tn) ∈ Sint, with 1 ≤ n ≤ Nint, satisfies∣∣∣∣∣∣
T∫

0

∫
Ω

g(x, t)dxdt−
Nint∑
n=1

wint
n g(xn, tn)

∣∣∣∣∣∣ ≤ Cint
quad(∥g∥Cℓ)N−αint

int . (3.75)

In the above, αint, αsb, αtb > 0 and in principle, different order quadrature rules can be used. We estimate
the generalization error for the PINN in the following,

45

i
i

“output” — 2023/12/11 — 11:30 — page 46 — #46 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Theorem 3.6.2. Let u ∈ C5([0, 1] × [0, T]) be the unique classical solution of the Korteweg de-Vries &
Kawahara equation (3.66). Let u∗ = uθ∗ be a PINN generated by algorithm 1, corresponding to loss
function (3.6), (3.70). Then the generalization error (3.71) can be estimated as,

EG ≤ C1
(
Etb

T + Eint
T + C2(Esb

T) + C3(Esb
T)1/2

+ (Ctb
quad)1/2N

−αtb/2
tb + (Cint

quad)1/2N
−αint/2
int + C2(Csb

quad)1/2N
−αsb/2
sb + C3(Csb

quad)1/4N
−αsb/4
sb

)
,

(3.76)
where

C1 =
√
T + 2C4T 2e2C4T , C2 =

√
∥u∥C0

t C0
x

+ 1,

C3 =
√

10(∥u∗∥C0
t C4

x
+ ∥u∥C0

t C4
x
)T 1/2, C4 = ∥u∗∥C0

t C1
x

+ 1
2∥u∥C0

t C1
x

+ 1
2 ,

(3.77)

and Ctb
quad = Ctb

quad(∥rtb[uθ∗]∥C5), Csb
quad = Csb

quad(
5∑

i=1
∥rsbi[uθ∗]∥C3) and Cint

quad = Cint
quad(∥rint[uθ∗]∥C0) are

the constants defined by the quadrature error (3.73), (3.74), (3.75), respectively.

The proof of theorem (3.6.2) is available in [64], which also contains further theoretical results on dispersive
equations, such as the Benjamin-Ono and Camassa-Holm equations.

3.7 Numerical Experiments

In this section, we present numerical experiments for the approximation of solutions of the equations
above by PINNs, generated with algorithm 1.

3.7.1 Ensemble Training

PINNs include several hyperparameters, including number of hidden layers K and neurons d̄ of the
networks, residual parameter λ, etc. A user is always confronted with the question of which parameter
to choose. It is standard practice in machine learning to perform a systematic hyperparameter search.
To this end, we follow the ensemble training procedure of [12]: for each of them, the model is retrained
nθ times with different starting values of the trainable weights in the optimization algorithm and the one
resulting in the smallest value of the training loss is selected.

3.7.2 Semi-linear Parabolic Equation

For the first numerical experiment, as an example of semi-linear parabolic equation, we consider the heat
equation in one space dimension i.e, d = 1 in (3.17) with f ≡ 0, domain D = [−1, 1], T = 1, and initial
data ū(x) = − sin(πx). Then, the exact solution of the heat equation is given by,

u(x, t) = − sin(πx)e−π2t. (3.78)

Clearly both the initial data and the exact solution are smooth and Theorem 3.3.1 holds. Our first aim
in this experiment is to illustrate the estimate (3.28) on the generalization error. To this end, we choose
training the training sets Sint, Ssb, Stb as quadrature points corresponding to the composite midpoint rule
2.19. In this case, αint = 1, αtb = αsb = 2. We run algorithm 1 with the following hyperparameters:
we consider a fully connected neural network architecture (2.24), with the tanh activation function, with

46

i
i

“output” — 2023/12/11 — 11:30 — page 47 — #47 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

3 hidden layers and 10 neurons in each layer, resulting in neural networks with less than 500 tuning
parameters. Moreover, we use the loss function (3.22), with λ = 1 and with q = 2 i.e L2-regularization,
with regularization parameter λreg = 0. Finally, the optimizer is the second-order LBFGS method.

On this hyperparameter configuration, we consider two cases: (1) we vary the number of training points
Nint while keeping Ntb and Nsb constant Ntb = Nsb = 800 (Nint = [4096, 16384]) and (2) we vary the
number of training points Nsb = Ntb = [25, 50, 100, 200, 400, 800, 1600], while keeping constant Nint =
1024. We then run the algorithm 1 to obtain the corresponding trained neural network and evaluate
the resulting errors i.e, the training errors (3.24), generalization error (3.23), and the upper bound in
(3.28). The generalization error (3.23) is computed by evaluating the error of the neural network with
respect to the exact solution (3.78) on a randomly chosen test set of 105 points. Since the results are
very susceptible to the initialization of the network parameters, we retrain each model 10 times, every
time with different initial weights, and compute the averages of the above mentioned quantities. The
results for this procedure are shown in figure 3.1. We see from this figure that the generalization error
(3.23) is very low to begin with and decays with both the number of interior training points Nint and
Nu = Nsb + Ntb. On the other hand, while the computable upper bound (3.28) decays with respect to
increasing the number of interior training points, it is approximately constant with respect to increasing
number of boundaries points. This can be explained in terms of the very low values of Csb

quad, Ctb
quad,

compared to Cint
quad. In both cases, the plot shows that the constants in the bound (3.23) are not blowing

up as the number of training points is increased, and, more importantly, both the computed generalization
error and the upper bound follow the same decay in the number of training samples. However, this upper
bound does appear to be a significant overestimate as it is almost three orders of magnitude greater
than the actual generalization error. This is not surprising as we had used non-sharp estimates such as
triangle inequality and Grönwall’s inequality rather indiscriminately while deriving (3.28). The plots also
show that the training errors (3.24) are slightly larger than the computed generalization errors for this
example, in particular for large number of training samples. Note that this observation is still consistent
with the bound (3.28). Given the fact that the training error is defined in terms of residuals and the
generalization error is the error in approximating the solution of the underlying PDE by the PINN, there
is no reason, a priori, to expect that the generalization error should be greater than the training error.

Figure 3.1: Generalization error, training error and theoretical bound (3.28) VS number of training sam-
ples Nint (left) and number of training samples Nu = Nsb +Ntb

47

i
i

“output” — 2023/12/11 — 11:30 — page 48 — #48 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

K − 1 d̄ q λreg λ

1D Heat Equation 2, 4, 8 12, 16, 20 1, 2 0, 10−6, 10−5, 10−4, 10−3 0.01, 0.1, 1, 10

Burgers Equation 4, 8, 10 16, 20, 24 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Taylor Vortex 4, 8, 12 16, 20, 24 1, 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Double Shear Layer 16, 20, 24 32, 40, 48 1, 2 0, 10−6, 10−5 0.1, 1, 10

KdV Equation 4, 8 20, 24, 28 2 0 0.1, 1, 10

Kawahara Equation 4, 8, 12 20, 24, 28, 32 2 0 0.1, 1, 10

Table 3.1: Hyperparameter configurations employed in the ensemble training of PINNs: K − 1 is the
number of hidden layers, d̄ is the number of neurons per layer, q and λreg are the exponent
in the regularization term (3.8) and the regularization parameter, respectively, λ is the scalar
balancing the role of PDE and the data loss.

Sensitivity to Hyperparameters

A PINN involves several hyperparameters, some of which are shown in Table 3.1. An user is always
confronted with the question of which parameter to choose. The theory, presented in this paper and in
the literature, offers very little guidance about the choice of hyperparameters. Instead, it is standard
practice in machine learning to do a systematic hyperparameter search. To this end, we follow the
ensemble training procedure of [12] with a randomly chosen training set (Nint = 1024, Nsb = Ntb = 64)
and compute the marginal distribution of the generalization error with respect to different choices of the
hyperparameters (see Table 3.1). The ensemble training results in a total number of 360 configurations.
For each of them, the model is retrained five times with different starting values of the trainable weights in
the optimization algorithm and the one resulting in the smallest value of the training loss is selected. We
plot the corresponding histograms, visualizing the marginal generalization error distributions, in figure
3.2.

As seen from figure 3.2, there is a large variation in the spread of the generalization error, often two
to three orders of magnitude, indicating sensitivity to hyperparameters. However, even the worst case
errors are fairly low for this example. Comparing different hyperparameters, we see that there is not much
sensitivity to the network architecture (number of hidden layers and number of neurons per layer) and a
slight regularization or no regularization in the loss function (3.6) is preferable to large regularizations.
The most sensitive parameter is λ in (3.22) where λ = 1 or 0.1 are significantly better than larger values
of λ. This can be explained in terms of the bound (3.28), where the boundary residual rsb has a larger
weight in error. A smaller value of λ enforces this component of error, and hence the overall error, to be
small, and we see exactly this behavior in the results.

Finally, in figure 3.3, we plot the total training error (3.24) on a logarithmic scale (x-axis) against the
generalization error (3.23) (in log scale) (y-axis) for all the hyperparameter configurations in the ensemble
training. This plot clearly shows that the two errors are highly correlated and validates the fundamental
point of the estimates (3.28) and (3.28) that if the PINNs are trained well, they generalize very well. In
other words, low training errors imply low generalization errors. Moreover, we see from figure 3.3 that
the generalization error scales as a square root of the total training error, as predicted by the estimate
(3.28).

48

i
i

“output” — 2023/12/11 — 11:30 — page 49 — #49 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

(a) Number of neurons per layer n (b) Number of hidden layers K−1 (c) Regularization kernel q

(d) Regularization parameter λreg (e) Residual parameter λ

Figure 3.2: Marginal distributions of the (log) generalization error to different network hyperparameters

3.7.3 Viscous Scalar Conservation Law

We consider the viscous scalar conservation law (3.32), but in the domain DT = [−1, 1] × [0, 1], with
initial conditions, ū(x) = − sin(πx) and zero Dirichlet boundary conditions. We choose the flux function
f(u) = u2

2 , resulting in the well-known viscous Burgers’ equation.

This problem is considered for 4 different values of the viscosity parameter ν = c
π , with c = 0.01, 0.005,

0.001, 0.0, and with Nint = 8192, Ntb = 256, Nsb = 256 points. All the training points are chosen as
low-discrepancy Sobol sequences on the underlying domains. An ensemble training procedure, based on
the hyperparameters presented in Table 3.1, is performed and the best performing hyperparameters i.e.
those that led to the smallest training errors, are chosen and presented in Table 3.2.

In figure 3.4, we present the reference solution field u(·, t), at different time snapshots, of the viscous
Burgers’ equation computed with a simple upwind finite volume scheme and forward Euler time integra-
tion with 2 × 106 Cartesian grid points in space-time, and the predicted solution u∗(·, t) of the PINN,
generated with algorithm 1, corresponding to the best performing hyperparameters (see Table 3.2), for
different values of the viscosity coefficient. From this figure, we observe that for the viscosity coefficients,
corresponding to c = 0.01, 0.005, the approximate solution, predicted by the PINN, approximates the un-
derlying exact solution, which involves self steepening of the initial sine wave into a steady sharp profile at
the origin, very well. This is further reinforced by the very low (relative percentage) generalization errors
of approximately 1%, presented in Table 3.2. However, this efficient approximation is no longer the case
for the inviscid problem i.e ν = 0. As seen from figure 3.4 (bottom right), the PINN fails to resolve the
solution, which in this case, consists of a steady shock at the origin. In fact, this failure to approximate
is already seen with a viscosity coefficient of ν = 0.001

π . For this very low viscosity coefficient, we see
that the relative generalization error is approximately 11%. The generalization error rises to 23% for the
inviscid Burgers’ equation. This increase in error appears consistent with the bound (3.39), combined

49

i
i

“output” — 2023/12/11 — 11:30 — page 50 — #50 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Figure 3.3: Log of Training error (X-axis) vs Log of Generalization error (Y-axis) for each hyperparameter
configuration during ensemble training.

with the blow-up estimate (3.50) for the derivatives of the viscous Burgers’ equation. As the viscosity
ν → 0, the bounds in the right-hand-side of (3.39) can increase exponentially, which appears to be the
case here.

To further test the bound (3.39)’s ability to explain performance of PINNs for the viscous Burgers’
equation, we consider the following initial and boundary conditions,

ū(x) =
{

0, if x ≤ 0
1, if x > 0

∀ x ∈ [−1, 1],

u(t,−1) = 0, u(t, 1) = 1, ∀ t ∈ [0, 1]. (3.79)

Given the discontinuity in the initial data we train the PINNs with a larger number of boundary training
samples Ntb = 512 and Nsb = 512, while leaving Nint = 8192, unchanged. As in the previous experi-
ments, training sets are Sobol sequences and an ensemble training is preformed to configure the network
architecture. The results are summarized in Table 3.3 and figure 3.5. In this case, the exact solution is a
so-called rarefaction wave (see figure 3.5 for the reference solution, computed in the manner, analogous
to the previous numerical experiment) and the gradient of the solution remains uniformly bounded, as
the viscosity coefficient ν → 0. Hence, from the bound (3.39), we expect that PINNs will efficiently
approximate the underlying solution for all values of the viscosity coefficient. This is indeed verified in
the solution snapshots, presented figure 3.5, where we observe that the PINN approximates the reference
solution quite well, for all values of the viscosity coefficient. This behavior is further verified in table 3.3,
where we see that the generalization error (3.37), remains low (less than 2%) for all the values of viscosity
and in fact, reduces slightly as ν → 0, completely validating the error estimate (3.39).

50

i
i

“output” — 2023/12/11 — 11:30 — page 51 — #51 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

(a) ν = 0.01
π

, Er
G = 0.010 (b) ν = 0.005

π
, Er

G = 0.012

(c) ν = 0.001
π

, Er
G = 0.11 (d) ν = 0, Er

G = 0.23

Figure 3.4: Burgers equation with discontinuos solution for different values of ν

3.7.4 Incompressible Euler Equations

We present experiments for the incompressible Euler equations in two space dimensions, i.e d = 2 in
(3.51). Moreover, we will use the CELU function, given by,

CELU(x) = max(0, x) + min
(
0, exp(x)− 1

)
, (3.80)

as the activation function σ in (2.24), [65]. The CELU function results in better approximation than the
hyperbolic tangent, for the Euler equations.

51

i
i

“output” — 2023/12/11 — 11:30 — page 52 — #52 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

(a) ν = 0.01
π

, Er
G = 0.022 (b) ν = 0.005

π
, Er

G = 0.018

(c) ν = 0.001
π

, Er
G = 0.016 (d) ν = 0, Er

G = 0.012

Figure 3.5: Burgers equation with rarefaction wave for different values of ν

Taylor Vortex

In the first numerical experiment, we consider the well-known Taylor Vortex, in a computational domain
DT = [−8, 8]2 × [0, 1] with periodic boundary conditions and with the initial conditions,

ū(x, y) = −ye 1
2 (1−x2−y2) + ax, (x, y) ∈ [−8, 8]2,

v̄(x, y) = xe
1
2 (1−x2−y2) + ay, (x, y) ∈ [−8, 8]2,

(3.81)

with ax = 4 and ay = 0.

In this case, one can obtain the following exact solution,

u(x, y, t) = −(y − ayt)e
1
2

[
1−(x−axt)2−(y−ayt)2

]
+ ax,

v(x, y, t) = (x− axt)e
1
2

[
1−(x−axt)2−(y−ayt)2

]
+ ay.

(3.82)

52

i
i

“output” — 2023/12/11 — 11:30 — page 53 — #53 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

ν Nint Nsb Ntb K − 1 d̄ L1-reg. L2-reg. λ ET Er
G

0.01/π 8192 256 256 8 20 0.0 0.0 0.1 0.0005 1.0%

0.005/π 8192 256 256 10 20 0.0 0.0 0.1 0.00075 1.2%

0.001/π 8192 256 256 10 20 0.0 10−6 0.1 0.009 11.0%

0.0 8192 256 256 8 24 0.0 10−5 0.1 0.08 23.0%

Table 3.2: Best performing Neural Network configurations for the Burgers equation with shock, for dif-
ferent values of the parameter ν.

ν Nint Nsb Ntb K − 1 d̄ L1-reg. L2-reg. λ ET Er
G

0.01/π 8192 512 512 4 20 0.0 0.0 0.1 0.0043 2.2%

0.005/π 8192 512 512 4 20 0.0 0.0 0.1 0.0034 1.8%

0.001/π 8192 512 512 4 16 0.0 0.0 0.1 0.00048 1.6%

0.0 8192 512 512 4 20 0.0 0.0 0.1 0.00033 1.2%

Table 3.3: Best performing Neural Network configurations for the Burgers equation with rarefaction wave,
for different values of the parameter ν.

We will generate the training set with Nint = 8192, Ntb = Nsb = 256 points, chosen as low-discrepancy
Sobol sequences on the underlying domains. An ensemble training procedure is performed, as described
in the previous section, and resulted in the hyperparameter configuration presented in Table 3.4.

To visualize the solution, we follow standard practice and compute the vorticity ω = curl(u) and present
the exact vorticity and the one obtained from the PINN, generated by algorithm 1 in figure 3.6. We
remark that the vorticity can be readily computed from the PINN u∗ by automatic differentiation. We
see from the figure, that the PINN, approximates the flow field very well, both initially as well as at
later times, with small numerical errors. This good quality of approximation is further reinforced by
the generalization error (3.57), computed from (3.82) with 105 uniformly distributed random points, and
presented in Table 3.4. We see that the generalization error for the best hyperparameter configuration is
only 0.012%, indicating very high accuracy of the approximation for this test problem.

Nint Nsb Ntb K − 1 d̄ L1-reg. L2-reg. λ ET Er
G

Taylor Vortex 8192 256 256 12 24 0.0 0.0 1 0.0003 0.012%

Double Shear Layer 65536 16384 16384 24 48 0.0 0.0 0.1 0.0025 3.8%

Table 3.4: Best performing Neural Network configurations for the Taylor Vortex and Double Shear Layer
problem. Low-discrepancy Sobol points are used for every reported numerical example.

Double shear Layer

We consider the two-dimensional Euler equations (3.51) in the spatial computational domain D = [0, 2π]2
with periodic boundary conditions and consider initial data with the underlying vorticity, shown in figure
3.7 (Top Left). This vorticity, corresponds to a velocity field that has been evolved with a standard

53

i
i

“output” — 2023/12/11 — 11:30 — page 54 — #54 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

(a) Exact vorticity at T = 0 (b) Approximate (PINN) vorticity at T = 0

(c) Exact vorticity at T = 1 (d) Approximate (PINN) vorticity at T = 1

Figure 3.6: Exact and PINN solutions to the Taylor Vortex

second-order finite difference projection method, with the well-known double shear layer initial data [66],
evolved until T = 1. We are interested in determining if we can train a PINN to match the solution for
later times.

To this end, we acknowledge that the underlying solution is rather complicated (see figure 3.7 Top row) for
the corresponding reference vorticity, and consists of fast moving sharp vortices. Moreover, the vorticity is
high, implying from the bound (3.59), that the generalization errors with PINNs can be high in this case.
Hence, we consider training sets with larger number of points than the previous experiment, by setting
Nint = 65536 and Ntb = Nsb = 16384. The ensemble training procedure resulted in hyperparameters
presented in Table 3.4.

We present the approximate vorticity computed with the PINN, together with the exact vorticity, in figure
3.7, at three different times. From the figure, we see that the vorticity is approximated by the PINN
quite well. However, the sharp vortices are smeared out and this is particularly apparent at later times.
This is not surprising as the underlying solution is much more complicated in this case. Moreover, we
have trained the PINN to approximate the velocity field, rather than the vorticity, and the generalization

54

i
i

“output” — 2023/12/11 — 11:30 — page 55 — #55 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

(a) Reference, T = 0 (b) Reference, T = 2 (c) Reference, T = 4

(d) PINN, T = 0 (e) PINN, T = 2 (f) PINN, T = 4

Figure 3.7: Reference (Top Row) and PINN generated (Bottom Row) vorticities for the double shear layer
problem at different times

error (3.57) is still quite low at 3.8% (see Table 3.4).

3.7.5 KdV equation

We set β = 0 in (3.17) to recover the KdV equation and consider the well-known numerical benchmarks
of single and double soliton solutions, with exact solution formulas for both cases.

For the single soliton, the exact solution is given by,

u(x, t) = 9sech2(
√

3/4(x− 3t)), (3.83)

representing a single bump moving to the right with speed 3 with initial peak at x = 0.

The ensemble training for the PINNs in this case resulted in the selection of hyperparameters, reported in
Table 3.5. We plot the exact solution and the approximate solution, computed with the PINNs algorithm
1 in figure 3.8 (left). As seen from this figure, PINNs provide a very accurate approximation for the
single soliton. This is further verified in the extremely low generalization errors reported in Table 3.5,
showcasing the ability of PINNs to accurately approximate single solitons for the KdV equation.

The double soliton is instead described by the following equation

u(x, t) = 6(b− a)
bcsch2(

√
b/2(x− 2bt)) + asech2(

√
a/2(x− 2at))(√

a tan(
√
a/2(x− 2at))−

√
b tanh(

√
b/2(x− 2bt))

)2 , (3.84)

55

i
i

“output” — 2023/12/11 — 11:30 — page 56 — #56 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

(a) Single soliton (b) Double soliton

Figure 3.8: The exact and PINN solutions of single and double soliton test case of KdV equation.

Nint Nsb Ntb K − 1 d̄ λ ET Er
G

Single Soliton 2048 512 512 4 20 0.1 0.000236 0.00338%

Double Soliton 4096 1024 1024 4 32 1 0.000713 0.059%

Table 3.5: Best performing Neural Network configurations for the single soliton and double soliton prob-
lem. Low-discrepancy Sobol points are used for every reported numerical example.

where we set a = 0.5 and b = 1. Equation 3.84 represents two solitary waves which collide at t = 0 and
separate for t > 0. For large |t|, u(·, t) is close to a sum of two single solitons at different locations.

The ensemble training for the PINNs in this case resulted in the selection of hyperparameters, reported
in Table 3.5 (bottom row). We plot the exact solution and the approximate solution, computed with
the PINNs algorithm 1 in figure 3.8 (right). As seen from this figure, PINNs provide a very accurate
approximation for the double soliton, which is further verified in the extremely low generalization errors
reported in Table 3.5. Thus, PINNs are able to approximate KdV solitons to very high accuracy.

Iterations Training Time[s] ET Er
G

100 4 6.75e-02 1.84e-01

500 21 2.41e-03 1.65e-03

1000 44 7.34e-04 4.92e-04

2000 61 2.36e-04 3.38e-05

Table 3.6: Results of different training iterations for single soliton case of KdV equation.

We further investigate the computational cost of PINNs in approximating the KdV solutions. In par-
ticular, we consider the training cost, quantified in terms of the number of LBFGS iterations and the
corresponding elapsed time, as the main indicators of the total computational burden of algorithm 1.
Tables 3.6 and 3.7 provide detailed information on the training times (in seconds) for different numbers

56

i
i

“output” — 2023/12/11 — 11:30 — page 57 — #57 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

of iterations, as well as the achieved errors (both training and generalization errors) for the single and
double soliton test cases, respectively. Upon analyzing the data in Table 3.6, we observe that training the
PINN for approximating the single soliton is remarkably fast. A relative error of 1% is already achieved
with fewer than 500 LBFGS iterations, requiring approximately 20 seconds of training time.

In contrast, training the PINN to accurately represent the double soliton takes a longer duration. Achiev-
ing an error of 1% necessitates approximately 2000 iterations, with a training time of under 3 minutes.
This outcome is not surprising, considering the significantly more complicated structure of the double
soliton. Nevertheless, despite the increased training time, the overall computational cost remains quite
low, considering the high accuracy achieved.

Iterations Training Time[s] ET Er
G

100 9 1.21e-01 4.82e-01

500 48 2.60e-02 1.30e-01

1000 95 7.00e-03 4.32e-02

2000 159 2.54e-03 1.11e-02

5000 436 7.89e-04 6.50e-04

10000 499 7.13e-04 5.88e-04

Table 3.7: Results of different training iterations for double soliton case of KdV equation.

Solving the Parametrized KdV Equation.

As highlighted in the introduction, a key advantage of deep learning in scientific computing is the ability
of neural networks to approximate solutions of high-dimensional PDEs at high accuracy.

As an example, we consider the following parameterized initial-value problem for the KdV equations:

ut + γuux + κuxxx = 0,

ū(x, α, β, γ) = β

γ
+ α− β

γ
sech2

(√α− β
12κ (x)

) (3.85)

Here, α, β, γ are scalar parameters that specify the initial location and amplitude for the soliton initial
data, and κ is a scalar parameter that measures the dispersivity of the medium.

We aim to obtain a solution of the PDE as a function of the time-space coordinate and the parameters
α, β, γ, κ as well, i.e., u = u(x, t, α, β, γ, κ) : Ω ⊆ R6 → R. The solution accounts for a total of six
dimensions. Hence, we classify this parameterized partial differential equation as a high-dimensional
PDE.

It turns out that this parametrized KdV equation (3.85) admits an exact soliton solution given by:

u = β

γ
+ α− β

γ
sech2

(√α− β
12κ (x− (β + α− β

3)t)
)

(3.86)

We can readily see that the KdV single soliton solution (3.83) is recovered by setting (α, β, γ, κ) =
(9, 0, 1, 1).

57

i
i

“output” — 2023/12/11 — 11:30 — page 58 — #58 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

The solution is approximated with PINNs by collocating the PINN residual resulting from (3.85) on
Sobol points from the underlying 6-dimensional domain. In particular, we choose α ∼ U(8.7, 9.3), β ∼
U(−0.4, 0.4), γ ∼ U(0.9, 1.1), and κ ∼ U(0.9, 1.1) such that E(α, β, γ, κ) = (9, 0, 1, 1). The initial and
periodic boundary residuals are computed analogously.

Once the model is trained, we employ it to solve the uncertainty quantification problem as an example
of a many-query problem. Specifically, we are interested in computing the mean and standard deviation
of the pushforward measure of the solution of the PDE given the distributions of the input parameters
mentioned above.

In Figure 3.9, we plot the mean ± standard deviation for both the initial data and the uncertain solution
at a later time, and compare it with the exact solution computed from (3.86). From this figure, we
observe that the statistical quantities computed with the PINN approximate the exact solution quite
well. This qualitative observation is reinforced by the quantitative results presented in Table 3.8, where
the generalization error, defined analogously to (3.23) by integrating over the parameter space, is observed
to be less than 0.5% in approximately 5 minutes of training time. This result highlights the ability of
PINNs to approximate high-dimensional parametric dispersive PDEs with high accuracy.

Figure 3.9: The mean and standard deviation plot of exact and PINN solution of parametrized single
soliton test case of parametrized KdV equation (3.85).

Nint Nsb Ntb K − 1 d̄ λ ET Er
G

Single Soliton UQ 16384 4096 4096 4 24 0.1 0.00351 0.442%

Table 3.8: Best performing Neural Network configurations for the single soliton UQ test case for the
parametrized KdV equations (3.85). Low-discrepancy Sobol points are used for every reported
numerical example.

3.7.6 Kawahara equation

Following [67, 68, 69], we consider a Kawahara-type equation which differs from Kawahara equation (3.17)
in a first-order term ux,

ut + ux + uux + uxxx − uxxxxx = 0. (3.87)

58

i
i

“output” — 2023/12/11 — 11:30 — page 59 — #59 i
i

i
i

i
i

3.7. NUMERICAL EXPERIMENTS

This first-order term ux is a linear perturbation and we can easily derive a similar a posteriori bound
on generalization error, as for (3.17). As no exact solution formulas for the double soliton test case are
known for the Kawahara equation (3.87), we focus on the single soliton case, with exact solutions given
by

u(x, t) = 105
169sech4

(1
2
√

13
(x− 205

169 t− x0)
)
. (3.88)

This represents a single bump moving to the right with speed 205
169 with initial peak at x = x0. The

ensemble training selected PINNs with hyperparameters, given in Table 3.9. The resulting PINN ap-
proximation, together with the exact solution is plotted in figure 3.10 and shows that the trained PINN
approximates the exact solution with very high accuracy. This is further verified in the extremely low
generalization error of 0.1%, reported in Table 3.9. In Table 3.10, we present training times (in seconds)

Nint Nsb Ntb K − 1 d̄ λ ET Er
G

Single Soliton 2048 512 512 4 24 10 0.000321 0.101%

Table 3.9: Best performing Neural Network configurations for the single soliton test case for the Kawahara
equations (3.87). Low-discrepancy Sobol points are used for every reported numerical example.

for the PINNs algorithm for the Kawahara equation 3.87. We observe from this Table that an error of less
than 1% percent is achieved in approximately 6− 7 minutes. Given the fact that the Kawahara equation
requires the evaluation of 5-th order derivatives, it is expected that each training iteration is significantly
more expensive than that of the KdV equation. Table 3.10 shows that this is indeed the case and partly
explains the higher computational cost for the PINN to approximate the Kawahara equation. Never-
theless, the total cost is still considerably smaller than those reported for the finite difference scheme in
[68, 69]. As an examples, to achieve 1% error, it takes approximately 15− 18 minutes for the dissipative
finite-difference scheme presented in [69].

Figure 3.10: The exact and PINN solution of single soliton test case of Kawahara equation (3.87).

59

i
i

“output” — 2023/12/11 — 11:30 — page 60 — #60 i
i

i
i

i
i

CHAPTER 3. PHYSICS INFORMED NEURAL NETWORKS FOR THE FORWARD PROBLEM OF PDES

Iterations Training Time[s] ET Er
G

100 25 8.89e-02 9.70e-01

500 127 4.76e-02 7.86e-01

1000 249 8.40e-03 1.89e-01

2000 466 1.06e-03 5.88e-03

5000 964 3.21e-04 1.01e-03

Table 3.10: Results of different training iterations for single soliton case of Kawahara equation.

60

i
i

“output” — 2023/12/11 — 11:30 — page 61 — #61 i
i

i
i

i
i

4 wPINNs for the Forward Problem of
Hyperbolic Conservation Laws

As shown in last chapter, the pointwise residuals associated with (approximations of) weak solutions can
blow up. Hence, we need to replace these pointwise PDE residuals with suitable weak versions. This can
be achieved by mimicking the weak formulation of the underlying conservation laws and integrating by
parts with respect to smooth test functions to define a weak form of the PDE residual. Such weak versions
of PINNs have already been considered in the context of so-called variational PINNs [70], where the test
functions are selected as suitable basis functions, such as orthogonal polynomials. Such an approach
can indeed be considered in our context. However, we refrain from doing so here as a key advantage for
PINNs is that it is a meshless approach and does not require any underlying grid. Instead, we will leverage
the universal approximation properties of neural networks and choose parametrized neural networks as
our test functions. Neural networks are also used as approximations to the underlying solution i.e., as
trial functions. Hence, our weak formulation leads to a min-max optimization problem where the neural
network parameters (weights and biases) are maximized with respect to test functions and minimized
with respect to trial functions.

However, working with the weak formulation alone does not suffice to build an accurate approximation
strategy for scalar conservation laws as one also needs to incorporate entropy conditions. To this end, we
will define a novel entropy residual, based on the well-known family of Kruzkhov entropies [23] and solve
the corresponding min-max optimization problem for training the neural networks that will approximate
the entropy solution accurately. We term the resulting construction as wPINNs.

4.1 Scalar Conservation Laws

Consider the scalar conservation law (3.32) with ν = 0 and D = [0, 1]

ut + f(u)x = 0 x ∈ D, t ∈ [0, T]
u = g x ∈ ∂D, t ∈ [0, T]

u = ū(x) x ∈ D.
(4.1)

Here, u ∈ L1(D × (0, T)) is the conserved quantity and f is the so-called flux function with ū being the
initial data. Moreover, the PDE (4.1) needs to be supplemented with suitable boundary conditions. We
mostly consider periodic boundary conditions in this chapter.

Following [23], one defines weak solutions of (4.1) as follows,

Definition 4.1.1. A function u ∈ L∞(R×R+) is a weak solution of (4.1) with initial data ū ∈ L∞(R) if∫
R+

∫
R

(uφt + f(u)φx) dxdt+
∫
R
ū(x)φ(x, 0)dx = 0, (4.2)

holds for all test functions φ ∈ C1
c (R× R+).

61

i
i

“output” — 2023/12/11 — 11:30 — page 62 — #62 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

However, weak solutions are not unique [23]. To recover uniqueness, one needs to impose additional
admissibility criteria or entropy conditions. To this end, we consider the so-called Kruzkhov entropy
functions, given by |u− c|, for any c ∈ R and the resulting entropy flux functions,

∂t |u− c|+ ∂xQ[u; c] ≤ 0 where Q : R2 → R : (u, c) 7→ Q(u, c) = sgn(u− c)(f(u)− f(c)). (4.3)

With this notation, we have the following definition of entropy solutions,

Definition 4.1.2. We say that a function u ∈ L∞(R × R+) is an entropy solution of (4.1) with initial
data ū ∈ L∞(R) if u is a weak solution of (4.1) and if u satisfies that∫ T

0

∫
R

(|u− c|φt +Q[u; c]φx) dxdt−
∫
R

(|u(x, T)− c|φ(x, T)− |ū(x)− c|φ(x, 0)) dx ≥ 0 (4.4)

for all φ ∈ C1
c (R× R+), c ∈ R and T > 0.

It holds that entropy solutions are unique and continuous in time, as formulated below [23], where ∥·∥T V

denotes the total variation seminorm.

Theorem 4.1.3. Assume that f ∈ C1 and ū ∈ L∞ ∩L1. Then there exists a unique entropy solution u of
(4.1) and if ∥ū∥T V <∞ then u satisfies the following,

∥u(t)− u(s)∥L1 ≤ |t− s|M ∥ū∥T V and ∥u(t)∥L∞ ≤ ∥ū∥L∞ , ∥u(t)∥BV ≤ ∥ū∥BV , (4.5)

where M = M(ū) = maxessinfxū(x)≤u≤esssupxū(x) |f ′(u)|.

4.2 Weak PINNs (wPINNs)

We will circumvent the failure of conventional PINNs that minimized the pointwise PDE residual

rint[uθ](x, t) := ∂t(uθ(x, t)) + ∂x(f(uθ(x, t)))− ν∂xx(uθ(x, t)), x ∈ D, t ∈ [0, T] (4.6)

defined in chapter 3, Section 3.4 by searching for neural networks that minimize a residual, related
to the Kruzkhov entropy condition instead. To this end, we define for v ∈ (L∞ ∩ L1)(D × [0, T]),
φ ∈W 1,∞

0 (D × [0, T]) and c ∈ R the following Kruzhov entropy residual,

R(v, φ, c) := −
∫

D

∫
[0,T]

(|v(x, t)− c| ∂tφ(x, t) +Q[v(x, t); c]∂xφ(x, t)) dxdt. (4.7)

Note that if u is an entropy solution of (4.1), then it holds that R(u, φ, c) ≤ 0. Similarly to standard
PINNs, let us consider a feed-forward dense neural network uθ (2.24) with tuning parameters θ ∈ Θ,
approximating the entropy of the scalar conservation law (4.1):

uθ(x, t) ≈ u(x, t), x ∈ D, t ∈ [0, T] (4.8)

and, motivated by (4.7), define the following residuals:

62

i
i

“output” — 2023/12/11 — 11:30 — page 63 — #63 i
i

i
i

i
i

4.2. WEAK PINNS (WPINNS)

• Interior residual given by,

rint[uθ, φ](x, t, c) := ∂tφ(x, t) |uθ(x, t)− c|+Q[uθ(x, t); c]∂xφ(x, t). (4.9)

Observe that the residual depends on the test function φ ∈ W 1,∞
0 , and needs to be replaced by

a finite-dimensional approximation. One possibility is to use locally supported (piecewise) poly-
nomials or orthogonal polynomials such as Legendre polynomials. Such choices lead to what is
often termed as variational PINNs. Instead, we defer from it and restrict the choice of the test
function to the parametrized family of functions φη(x, t) defined as φη(x, t) = ω(x, t)ξη(x, t). Here,
ω : D × [0, T]→ R is a cutoff function satisfying the following properties:

1. ω(x, t) = 1, (x, t) ∈ DT
ε ,

2. ω(x, t) = 0, (x, t) ∈ ∂(D × [0, T]),

DT
ϵ = {(x, t) ∈ D × [0, T] : dist((x, t), ∂(D × [0, T])) < ϵ}, (4.10)

and ξη(x, t) a neural network with trainable parameters η. The choice of the cutoff function guar-
antees that the test function has compact support. Then, the interior residual becomes,

rint[uθ, φη] := ∂tφη(x, t) |uθ(x, t)− c|+Q[uθ(x, t); c]∂xφη(x, t). (4.11)

• Spatial boundary residual given by,

rsb[uθ](x, t) := uθ(x, t)− g(x, t). ∀x ∈ ∂D, t ∈ (0, T], (4.12)

Although the estimates below are derived assuming periodic boundary conditions, the numerical
experiments are carried out with Dirichlet boundary conditions g(x, t) = u|∂D×(0,T).

• Temporal boundary residual given by,

rtb[uθ](x) := uθ(x, 0)− ū(x), ∀x ∈ D. (4.13)

Let us further define the following sets of training points:

• Interior collocation points Sint = {ym} for 1 ≤ m ≤ Nint, with each ym = (xm, tm) ∈ D × [0, T].

• Spatial boundary collocation points Ssb = {zm} for 1 ≤ m ≤ Nsb with each zm = (xm, tm) and
zm ∈ ∂D × [0, T].

• Temporal boundary collocation points Stb = {xm}, with 1 ≤ m ≤ Ntb and xm ∈ D.

The full set of collocation points is S = Sint ∪ Ssb ∪ Stb and M = Nint +Nsb +Ntb.

Given the definitions above, we consider the following loss function,

J(θ, η, c) = Jint(θ, η, c) + λJu(θ) (4.14)

with

Jint(θ, η, c) =

(
ReLU

(
−
∑Nint

m=1 rint[uθ, φη](ym, c)
))2

∑Nint

m=1 φη(ym)2 + ∂xφη(ym)2
, Ju(θ) =

Ntb∑
m=1

rtb[uθ](xm)2 +
Nsb∑
m=1

rsb[uθ](zm)2.

(4.15)
Here, the denominator of Jint a Monte Carlo approximation of the H1-norm of φη(x, t). Eventually, we
solve the min-max problem,

θ∗, η∗c∗ = arg min
θ∈Θ

max
η∈Θ

max
c∈C

J(θ, η, c), (4.16)

and denote the corresponding NN uθ∗ as the weak PINN, wPINN for short.

63

i
i

“output” — 2023/12/11 — 11:30 — page 64 — #64 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

Remark 4.2.1. In practice, the maximization problem with respect to the scalar c is solved by computing
Jmax,C(θ, η) = maxci∈C Jmax(θ, η, ci), for a discrete set of values C = {ci}M

i=1, ci ∈ [cmin, cmax], whereas
the optimization problems with respect to the neural network parameters θ and η is approximated with
gradient descent and ascent, respectively.

The algorithm for training wPINN is summarized below,

Algorithm 2: Training of wPINNs
Result: θ∗

S, η
∗
S, c

∗
S

Initialize the networks uθ, φη : D × [0, T]→ R and C;
for i = 1, ..., e do

for k = 1, ...,Kmax do
Compute Jmax,C(θ, η) = maxci∈C Jmax(θ, η, ci);
Update η ← η + τη∇Jmax,C(θ, η);

end
for k = 1, ...,Kmin do

Compute Jmax,C(θ, η) = maxci∈C Jmax(θ, η, ci);
Update θ ← θ − τθ∇(λJmax,C + Ju)(θ, η);

end
end

4.3 Estimate of the Generalization Error

In this section, we will estimate the error due to the wPINN in approximating the entropy solution u
of the scalar conservation law (4.1) with periodic boundary conditions u(0, t) = u(1, t), ∀t ∈ [0, T]. The
definition of the spatial boundary residual also has to be adjusted accordingly

rsb[uθ](x, t) := uθ(0, t)− uθ(1, t), ∀t ∈ (0, T]. (4.17)

The relevant error in this context is the L1-error :

EG = EG(θ∗; S) := ∥u− u∗∥L1 (4.18)

As stated in section 3.2, the generalization error depends on the chosen training set S and the trained
neural network with tuning parameters θ∗.

Note that there is no computation of the generalization error during the training process. On the other
hand, we exclusively monitor the so-called training error given by,

ET := Eint
T + Esb

T + Esb
T (4.19)

with

Eint
T :=

(
Nint∑
m=1

wn|rint[uθ∗ , φη∗](ym, c
∗)|
)
, Etb

T :=
(

Ntb∑
m=1

wm|rtb[uθ∗](zm)|
)

Esb
T :=

(
Nsb∑
m=1

wm|rsb[uθ∗](xm)|
)

(4.20)

We further define the following set of test functions,

64

i
i

“output” — 2023/12/11 — 11:30 — page 65 — #65 i
i

i
i

i
i

4.3. ESTIMATE OF THE GENERALIZATION ERROR

Definition 4.3.1. Let for any (y, s) ∈ [0, 1]× [0, T] and ϵ > 0 the function φy,s
ϵ : [0, 1]× [0, T]→ [0,∞) be

given by,

φy,s
ϵ (x, t) = χϵ

(
t+ s

2

)
ρϵ(x− y)ρϵ(t− s),

χϵ(t) = 1
2σ(αϵ) (σ(α(t− 2ϵ))− σ(α(t− T + 2ϵ))), α = 3 ln(1/ϵ)/ϵ,

ρϵ(x) = σ(β(x+ ϵ6))− σ(β(x− ϵ6))
2ϵ6 , β = 9 ln(1/ϵ)/ϵ3,

(4.21)

for (x, t) ∈ [0, 1]× [0, T]. Furthermore we define the set Φϵ by,

Φϵ = {φy,s
ϵ : (y, s) ∈ [0, 1]× [0, T]} . (4.22)

Now, we will modify the famous doubling of variables argument of Kruzkhov to obtain the following
bound on the L1-error of wPINNs approximating the entropy solution of (4.1) with periodic boundary
conditons,

Theorem 4.3.2. Assume that u is the piecewise smooth entropy solution of (4.1) with essential range C
and that u(0, t) = u(1, t) for all t ∈ [0, T]. There is a constant C > 0 such that for every ϵ > 0 and
v ∈ C1(D × [0, T]), it holds that∫ 1

0
|v(x, T)− u(x, T)| dx ≤ C

(∫ 1

0
|rtb[v](x)| dx− max

c∈C,φ∈Φϵ

∫
D

∫
[0,T]

rint[v, φ](x, t, c)dxdt

+ (1 + ∥v∥C1) ln(1/ϵ)3ϵ+
∫ T

0
|rsb[v](t)| dt

)
.

(4.23)

The proof of the theorem can be fund in [71]. The main point of Theorem 4.3.2 was to provide an upper
bound on the L1-generalization error in terms of the residuals. Once the stability estimated is derived, the
bound of the generalization error in term of the training error can be obtained by simply observing that
the training errors are quadrature approximation of the integrals in the stability estimate 4.23 similarly
to what was established for the proofs presented in the previous chapter. Further details and theoretical
results are reported in [71].

The following remarks are in order,

Remark 4.3.3. Throughout the entire section, we have focused on calculating the L1-error of the weak
PINN, as the L1-norm is a natural choice for scalar conservation laws. In practice, however, we observe
that it is easier to train the weak PINN using an L2-based loss function.

Remark 4.3.4. The terms appearing in the loss function (4.15) terms are approximations of the integrals
in the error estimate, cf. Theorem 4.3.2, where the L1 norm has been replaced by the L2 (Remark 4.3.3).
This is done to facilitate optimization of the resulting min-max problem.

Remark 4.3.5. We observe that additional terms, i.e., use of the ReLU function and test function H1-
seminorm, have been introduced in the definition of the loss function (4.15), when compared to the terms
in the error estimate in Theorem 4.3.2. These are introduced to facilitate training and the estimates can
be readily extended to incorporate the contributions of these terms.

65

i
i

“output” — 2023/12/11 — 11:30 — page 66 — #66 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

Remark 4.3.6. In experiments (cf. Section 4.2), one can replace R with the following alternative,

R̃(v, φ, c) :=
∫

D

∫
[0,T]

(φ(x, t)∂t |v(x, t)− c| −Q[v(x, t); c]∂xφ(x, t)) dxdt. (4.24)

The only difference with R is that in R̃ the time derivative is with |v(x, t)− c| and not with the test
function. Because of Lemma A.6 in [71] it holds that

∣∣R̃(v, φ, c)−R(v, φ, c)
∣∣ = O(ϵ) if φ ∈ Φϵ.

4.4 Implementation of wPINNs

To begin with, we describe some key implementation details.

4.4.1 Ensemble Training

wPINNs include several hyperparameters, including number of hidden layers Lθ, Lη, and neurons d̄θ, d̄η

of the networks, the number of iterations Kmax, Kmin, number of epochs e, residual parameter λ, etc.
A user is always confronted with the question of which parameter to choose. It is standard practice in
machine learning to perform a systematic hyperparameter search. To this end, we follow the ensemble
training procedure of [12]: for each configuration of the model hyperparameters we retrain the wPINN nθ

times, each with different initialisation of the networks hyperparameters, and select the hyperparameter
configuration that minimises the average value over the retrainings of the following:

ET (θ∗
S, η

∗
S, c

∗
S) =

Nint∑
m=1

(φ∗(ym)∂t |u∗(ym)− c∗
S| −Q[uθ(ym); c∗

S]∂xφ
∗(ym))2

+
Nsb∑
m=1
|uθ(xm, 0)− u(xm, 0)|2 +

Ntb∑
m=1
|u∗(zm)− u(zm)|2 .

(4.25)

4.4.2 Random Reinitialization of the Test function Parameters

(Approximate) solutions of min-max problems are significantly harder to reach, when compared to stan-
dard minimization (or maximization) problems, as they correspond to saddle points of the underlying
loss function. One essential ingredient for improving the numerical stability of the algorithm is the ran-
dom reinitialization of the trainable parameters η, corresponding to the test function neural network in
(4.14). This can be performed with frequency rf . This reset frequency can be suitably chosen as any
other model hyperparameters through ensemble training. On account of this random reinitialization of
the test function parameters η, the algorithm 2 can be readily modified to yield algorithm 3, that is used
in practice.

4.4.3 Averages of retrainings

The final wPINN approximation to the solution of the scalar conservation law (4.1) at any given input
(x, t), denoted as uav(x, t), is defined as the average over retrainings,

uav(x, t) = 1
nθ

nθ∑
i

u∗
i (x, t), (4.26)

66

i
i

“output” — 2023/12/11 — 11:30 — page 67 — #67 i
i

i
i

i
i

4.5. NUMERICAL EXPERIMENTS

where u∗
i (x, t) denotes the predictions of the underlying wPINN at (x, t), trained via algorithm 3, with

initial parameters θi, ηi. This averaging is performed to yield more robust predictions as well as to provide
an estimate of the underlying uncertainty in predictions, due to the random initializations of the neural
network parameters during training.

Algorithm 3: Weak PINN training with random reset of the test function parameters
Result: θ∗

S, η
∗
S, c

∗
S

Initialize the networks uθ, φη : D × [0, T]→ R and C;
for i = 1, ..., e do

if i % (rfN) = 0 then
Randomly initialize η;

end
for k = 1, ...,Kmax do

Compute Jmax,C(θ, η) = maxci∈C Jmax(θ, η, ci);
Update η ← η + τη∇Jmax,C(θ, η);

end
for k = 1, ...,Kmin do

Compute Jmax,C(θ, η) = maxci∈C Jmax(θ, η, ci);
Update θ ← θ − τθ∇(λJmax,C + Ju)(θ, η);

end
end

4.5 Numerical Experiments

In this section, we present numerical experiments to illustrate the performance of wPINNs. To this
end, we consider the scalar conservation law (4.1) in the domain D = [−1, 1], with the flux function
f(u) = 1

2u
2. Note that this amounts to considering the well-known inviscid Burgers’ equation. We

evaluate the performance of wPINNs, implemented through algorithm 3, by computing the (relative)
total error at a final time T ,

ET
r (θ∗

S) =
∫

D
|u∗(x, T)− u(x, T)| dx∫

D
|u(x, T)| dx

, (4.27)

where u∗ is the prediction of the wPINN algorithm 3. We also compute the space-time relative error,

Er(θ∗
S) =

∫
D×[0,T] |u

∗(x, t)− u(x, t)| dxdt∫
D×[0,T] |u(x, t)| dxdt

, (4.28)

to assess the performance of wPINNs over the entire evolution of the entropy solution. We remark that
the integrals in the above error expressions can be readily approximated with Monte Carlo quadratures.
We consider the following numerical experiments,

67

i
i

“output” — 2023/12/11 — 11:30 — page 68 — #68 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

4.5.1 Standing and Moving Shock

As a first numerical example, we consider the Burgers’ equation in [−1, 1] × [0, 0.5] with initial condi-
tions:

u0(x) =
{

1 x ≤ 0
−1 x > 0

, u0(x) =
{

1 x ≤ 0
0 x > 0

(4.29)

which result into a standing shock located at x = 0 and a shock moving with speed 0.5, respectively:

u(x, t) =
{

1 x ≤ 0
−1 x > 0

, u(x, t) =
{

1 x ≤ t
2

0 x > t
2

(4.30)

We perform an ensemble training, as outlined in the previous section, to find the best set of hyperpa-
rameters among those mentioned in Tables 4.1 and 4.3. On the other hand, we fix d̄θ = 20, d̄η = 10,
Nmin = 1, λ = 10 e = 5000, τθ = 0.01 and τη = 0.015, nθ = 10 and the tanh activation function as the
activation function σθ for the neural network approximating the solution of (4.1).

Lθ Lη ση Nmax rf

4,6 2,4 sin,tanh 6, 8 0.001, 0.005, 0.025, 0.05

Table 4.1: Hyperparameter configurations and number of retrainings employed in the ensemble training
of wPINN for moving shock.

Lθ Lη ση Nmax rf

4,6 2,4 sin,tanh 6, 8 0.025, 0.05, 0.25

Table 4.2: Hyperparameter configurations and number of retrainings employed in the ensemble training
of wPINN for standing shock and rarefaction wave.

λ Nmin Nmax rf

0.1, 1, 10 1, 2 6, 8 0.025, 0.05, 0.25

Table 4.3: Hyperparameter configurations and number of retrainings employed in the ensemble training
of wPINN for initial sine wave.

With this setting, the wPINNs algorithm 3 is run and its average prediction (as described in Section 4.4.3)
is plotted in Figures 4.1a and 4.1b, respectively, where we also compare the predictions with the exact
solutions (4.30) at different times. From these figures, we observe that the wPINNs average prediction
accurately approximates both the standing as well as the moving shock. There is some variance in
the predictions of multiple retrainings. This is completely expected as a highly non-convex min-max
optimization problem is being approximated and it is possible to be trapped at local saddle points.
Nevertheless, the quantitative predictions of the relative total errors Er(θ∗

S) and ET
r (θ∗

S), presented in Table
4.4, are very accurate, with even errors for the whole time-history of evolution, being below 2%. Finally,
in Figure 4.2, we also plot the wPINN prediction that corresponds to the hyperparameter configuration
that leads to smallest overall error among all tested hyperparameter configurations. We term it as the
best hyperparameter configuration. This best prediction is extremely accurate, with the largest error below
0.2%. However, in practice, one does not have access to exact (or reference) solutions and needs to choose
hyperparameter configurations that correspond to the smallest values of the loss function.

68

i
i

“output” — 2023/12/11 — 11:30 — page 69 — #69 i
i

i
i

i
i

4.5. NUMERICAL EXPERIMENTS

(a) Standing Shock Solution , ET
r (θ∗

S) = 0.01 (b) Moving Shock Solution, ET
r (θ∗

S) = 0.019

(c) Rarefaction Wave, ET
r (θ∗

S) = 0.022 (d) Initial Sine Wave, ET
r (θ∗

S) = 0.057

Figure 4.1: Exact solutions and average predictions obtained with wPINN for the Burgers’ equation.
Retraining average and standard deviation are plotted.

69

i
i

“output” — 2023/12/11 — 11:30 — page 70 — #70 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

4.5.2 Rarefaction Wave

We further test the performance of wPINNs by considering the Burgers’ equation with initial data,

u0(x) =
{
−1 x ≤ 0
1 x > 0

(4.31)

The exact solution, given by,

u(x, t) =


−1 x ≤ −t
x
t −t < x ≤ t
1 x > t

(4.32)

corresponds to a rarefaction wave. We observe that this initial datum is often used to illustrate the

Nint Ntb Nsb Er ET
r

Standing Shock 16384 4096 4096 0.005 0.01

Moving Shock 16384 4096 4096 0.011 0.019

Rarefaction Wave 16384 4096 4096 0.013 0.022

Initial Sine Wave 16384 4096 4096 0.03 0.057

Table 4.4: Number of training samples, total error (at final time) and total error over time, obtained with
wPINNs (average) predictions in the numerical experiments for the Burgers’ equation

multiplicity of weak solutions of hyperbolic conservation laws as the standing shock, corresponding to the
initial datum is clearly a weak solution but does not satisfy the entropy conditions. To illustrate the
rationale behind considering entropy residuals (4.7) in our definitions of the loss function (3.22) in the
wPINNs algorithm 3, we first run the same algorithm but replace the entropy residual (4.7) in Algorithm
3 with the following residuals,

rint,θ,η =
∫

D

∫
[0,T]

(
uθ,t(x, t)φη(x, t)− f(uθ(x, t))φη,x(x, t)

)
dtdx (4.33)

and

Jint(θ, η) =

(∑Nint

m=1 rint,θ,η(ym, c)
)2

∑Nint

m=1 φη(ym)2 + ∂xφη(ym)2
, (4.34)

that correspond to the standard weak formulation (see definition 4.1.1) of the scalar conservation law.
The resulting predictions are plotted in figure 4.3 and show that the resulting wPINN only approximated
the non-entropic standing shock solution corresponding to the initial datum. Thus, a naive weak formu-
lation of PINNs does not suffice in accurate approximations of scalar conservation laws. On the other
hand, the wPINN average predictions of algorithm 3, with the entropy residual (4.7), provide accurate
approximation of the rarefaction wave entropy solution, as shown in Figure 4.1c and Table 4.4. In par-
ticular, the error at the final time T is approximately 2% on average, whereas the error corresponding to
the best hyperparameter configuration (see Figure 4.2) is only slightly lower (1.9%).

70

i
i

“output” — 2023/12/11 — 11:30 — page 71 — #71 i
i

i
i

i
i

4.5. NUMERICAL EXPERIMENTS

(a) Standing Shock Solution , ET
r (θ∗

S) = 0.0004 (b) Moving Shock Solution, ET
r (θ∗

S) = 0.002

(c) Rarefaction Wave, ET
r (θ∗

S) = 0.019 (d) Initial Sine Wave, ET
r (θ∗

S) = 0.047

Figure 4.2: Exact solutions and best predictions obtained with wPINN for the Burgers’ equation.

71

i
i

“output” — 2023/12/11 — 11:30 — page 72 — #72 i
i

i
i

i
i

CHAPTER 4. WPINNS FOR THE FORWARD PROBLEM OF HYPERBOLIC CONSERVATION LAWS

Figure 4.3: Exact rarefaction wave solution and prediction obtained with weak PINNs, without entropy
conditions incorporated into the weak residual.

4.5.3 Sine Wave Initial Datum

As a final numerical experiment, we consider the Burgers’ equation with the initial data,

u0(x) = − sin(πx)

and zero Dirichlet boundary conditions in the spatio-temporal domain [−1, 1]× [0, 1]. The exact solution
(approximated in Figure 4.1d with a high-resolution finite volume scheme), shows a complex evolution
with both steepening as well as expansions of the sine wave that eventually form into a shock wave that
separates two rarefactions. We run the wPINNs algorithm 3, with low-discrepancy Sobol points [72],
instead of random collocation points. An ensemble training procedure, based on the hyperparameters
presented in Table 4.3. The remaining parameters are set as follows: Lθ = 4, Lη = 2, d̄θ = 20, d̄η = 10,
τη = 0.015, τθ = 0.01 and sin activation function for both the networks. The networks are trained for
e = 75000 epochs and parameters reinitialized nθ = 15 times, on account of the more complex underlying
solution.

The (average) predictions with the wPINNs algorithm 3 are depicted in Figure 4.1d and show that
this complicated underlying solution is approximated accurately with wPINNs, although there are very
small spurious oscillations in the approximation. These might be further eliminated by adding additional
regularization terms, such as the BV-norm into the loss function (4.14). Nevertheless, as shown in
Table 4.4, the error over the entire time period is approximately 3% (8% in the L2−norm), whereas the
error at final time is understandably higher. This should also be contrasted with the relative error of
approximately 24% (in the in the L2−norm), obtained for this particular test case with conventional
PINNs, as observed in [73] (Figure 6 (d)). Moreover, the error ET

r is even smaller and the approximation
significantly more accurate, with the best performing hyperparameter configuration shown in Figure
4.2.

72

i
i

“output” — 2023/12/11 — 11:30 — page 73 — #73 i
i

i
i

i
i

5 Physics Informed Neural Networks for the
Inverse Problem of PDEs

This chapter presents a comprehensive methodology for tackling inverse problems for PDEs, including
the parameter identification and data assimilation problem outlined in Section 2.3, utilizing PINNs.
Additionally, we provide a rigorous estimation of PINNs’ generalization error in solving data assimilation
problems across a broad spectrum of linear partial differential equations.

5.1 PINNs for the Parameter Identification Problem

Consider the abstract partial differential equation with boundary conditions

D(u, a) = s, x ∈ DT

B (Tu) = fb, x ∈ ∂DT

(5.1)

with u ∈ U . Assume that the equation parameter a ∈ A is not known. Furthermore, we assume that we
have access to (noiseless) measurements of the underlying solution u in D′

T i.e,

L(u) = u′, (5.2)

with L : U(DT)→ Z(D′
T) being the observation operator defined in Section 2.3. The parameter identifi-

cation problem for 5.1 consists in finding a ∈ A such that (5.2) and (5.1) are satisfied.

In order to solve the parameter identification problem with physic informed neural networks, we approx-
imate both u ∈ U and a ∈ A with neural networks (2.24) with parameters θ, η ∈ Θ,

uθ(x) ≈ u(x), aη(x) ≈ a(x), x ∈ DT . (5.3)

We then define the following residuals:

PDE (or Interior) residual rint[uθ, aη] := D(uθ, aη)− s, x ∈ DT

Boundary residual rbc[uθ] := B(Tuθ)− fb, x ∈ ∂DT

Data residual rd[uθ] := L(uθ)− u′, x ∈ D′
T

(5.4)

and corresponding losses,

Jint(θ, η) := ∥rint[uθ, aη]∥ps

S(DT), Jbc(θ) := ∥rbc[uθ]∥pb

B(∂DT), Jd(θ) := ∥rd[uθ]∥pz

Z(D′
T

) (5.5)

which we approximate with the quadrature rule on the quadrature points Sint = {xn} with xn ∈ DT for
all 1 ≤ n ≤ N , and Sbc = {ym, fb(ym)}, ym ∈ ∂DT , for all 1 ≤ m ≤ M and Sd = {zℓ, u

′(zℓ)}, zℓ ∈ ∂DT

for all 1 ≤ ℓ ≤ L :

Jint(θ, η) :=
N∑

n=1
wn|rint[uθ, aη](xm)|ps , Jbc(θ) :=

M∑
m=1

wm|rbc[uθ](ym)|pb , Jd(θ) :=
L∑

ℓ=1
wℓ|rd[uθ](zℓ)|pz

(5.6)

73

i
i

“output” — 2023/12/11 — 11:30 — page 74 — #74 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Finally, we solve the following optimization problem

θ∗, η∗ = arg min
θ,η∈Θ

J(θ), (5.7)

with
J(θ, η) = Jint(θ, η) + λJu(θ), Ju(θ) = Jbc(θ) + Jd(θ) (5.8)

The algorithm for training PINNs can then be described as follows.

Algorithm 4: Finding a physics informed neural network to approximate the solution of the param-
eter identification problem (5.1), (5.2)

Input
D differential operator on the underlying domain DT

s input source term
fb boundary conditions
u′ observable
Sint training set for approximating the PDE residual norm
Sbc training set for approximating the boundary residual norm
Sd training set for approximating the data residual norm
θ initial value of the tunable parameters for uθ

η initial value of the tunable parameters for aη

λ balancing parameter
Output

uθ∗ PINNs approximating u in the parameter identification problem (5.1), (5.2)
aη∗ PINNs approximating a in the parameter identification problem (5.1), (5.2)

Step 1: For the initial value of the weight vectors θ, η ∈ Θ, evaluate the neural network uθ, aη

(2.24), the PDE, boundary, and data residuals (5.4), the loss function (5.8) and its gradients.
Step 2: Run the optimization algorithm till an approximate local minimum θ∗, η∗ of (5.8) is
reached. The maps u∗ = uθ∗ and a∗ = aη∗ are the desired PINNs for approximating the solution
(u, a) of the parameter identification problem (5.1), (5.2).

5.2 PINNs for the Data Assimilation Problem

Similar to the parameter identification problem, consider the partial differential equation

D(u) = s, x ∈ DT (5.9)

with u ∈ U and assume that we have access to (noiseless) measurements of the underlying solution u in
a sub-domain D′

T ⊂ DT i.e,
L(u) = u′, ∀x ∈ D′

T , (5.10)
In the data assimilation problem the generic boundary conditions (which might include initial conditions)
fb are not known. Thus, in solving the inverse problem (5.9), (5.10), one determines the function u ∈ U
and consequently the boundary conditions B (Tu) from the data (5.10) such that (5.9) is satisfied.

We assume that solutions to the data assimilation problem (5.9), (5.10), satisfy the following estimate,

74

i
i

“output” — 2023/12/11 — 11:30 — page 75 — #75 i
i

i
i

i
i

5.2. PINNS FOR THE DATA ASSIMILATION PROBLEM

Definition 5.2.1 (Conditional Stability). Let Û ⊂ U ⊂ Lpu(DT) be Banach spaces. For any u, v ∈ Û , the
differential operator D and restriction operator L satisfy,

∥u− v∥Lpu (E) ≤ Cpd

(
∥u∥Û , ∥v∥Û

) (
∥D(u)−D(v)∥τp

S + ∥L(u)− L(v)∥τd

Z
)
, (5.11)

for some 0 < τp, τd ≤ 1 and for any subset D′
T ⊂ E ⊂ DT .

This bound (5.11) is termed as conditional stability estimate as it presupposes that the underlying solu-
tions have sufficiently regularity as Û ⊂ U ⊂ Lpu(DT).

The stability condition can be also be replaced by the following weaker one,

Definition 5.2.2 (Weak Conditional Stability). Let Û ⊂ U ⊂ Lpu(DT) be Banach spaces. For any u, v ∈
U(DT), the differential operator D and restriction operator L satisfy,

∥u− v∥Lpu (E) ≤ Cpd

(
∥u∥Û , ∥v∥Û

)
ω (∥D(u)−D(v)∥S + ∥L(u)− L(v)∥Z) , (5.12)

for any subset D′
T ⊂ E ⊂ DT , with ω : R→ R+ being a modulus of continuity.

Observe that the stability estimate (5.12) is a specialization of the general stability estimate (2.12), where
the roles of the PDE and data are made explicit.

In order to approximate a solution to the data assimilation problem with PINNs, we proceed as before
and choose a feed-forward neural network (2.24) as possible solution:

uθ(x) ≈ u(x), x ∈ DT (5.13)

Next, we define the following residual

PDE (or Interior) residual rint[uθ] := D(uθ)− s, x ∈ DT

Data residual rd[uθ] := L(uθ)− u′, x ∈ D′
T

(5.14)

and loss
J(θ) = Jint(θ) + λJd(θ) (5.15)

with
Jint(θ) := ∥rint[uθ]∥ps

S(DT), Jd(θ) := ∥rd[uθ]∥pu

Z(D′
T

) (5.16)

The strategy of PINNs, following Sections 3.1 and 5.1, is to minimize the resulting loss over the admissible
set of tuning parameters θ ∈ Θ i.e

θ∗ = arg min
θ∈Θ

J(θ), (5.17)

in order to find an approximate solution to the data assimilation problem. The algorithm for training
PINNs is summarized in Algorithm 5.

Remark 5.2.3. One of the most notable features of PINNs is their ability to approximate solutions of
inverse problems, with the same accuracy and computational cost as that of forward problems for PDEs.
Observe, in fact, that approximating both the forward and inverse problems for PDEs with PINNs simpli-
fies to (1) approximate the solution of the problem with a neural network (2.24) and (2) simultaneously
minimize the losses Jint and Ju, with Ju including any available type of data, for instance boundary data
only (as in the forward problem), observation data (as in data assimilation problem) or boundary and
observation data (as in the parameter identification problem).

75

i
i

“output” — 2023/12/11 — 11:30 — page 76 — #76 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Algorithm 5: Finding a physics informed neural network to approximate the solution of the data
assimilation problem (5.9), (5.10)

Input
D differential operator on the underlying domain DT

s input source term
u′ observable
Sint training set for approximating the PDE residual norm
Sd training set for approximating the data residual norm
θ initial value of the tunable parameters for uθ

λ balancing parameter
Output

uθ∗ PINN approximating u in the parameter identification problem (5.9), (5.10)

Step 1: For the initial value of the weight vector θ ∈ Θ, evaluate the neural network uθ (2.24), the
PDE and data residuals (5.14), the loss function (5.15) and its gradients.
Step 2: Run the optimization algorithm until an approximate local minimum θ∗ of (5.15) is reached.
The map u∗ = uθ∗ is the desired PINN for approximating the solution u of the data assimilation
problem (5.9), (5.10).

5.2.1 An abstract estimate on the generalization error

In this section, we will estimate the error due to the PINN in approximating the solution u of the inverse
problem for PDE (5.9), (5.10).

We focus on the so-called generalization error of the PINN

EG(E) = EG(E; θ∗, Sint, Sd) := ∥u− u∗∥U(E), (5.18)

with D′
T ⊂ E ⊂ DT . As written out above, the generalization error clearly depends on the training

sets Sint, Sd, as well as on the parameters θ∗ of the PINN, generated by algorithm 5. However, we shall
suppress this explicit dependence for notational convenience.

We estimate the generalization error (5.18) in terms of the so-called training error ET = ET (θ∗, Sint, Sd)
defined by,

ET =
(

(Ed
T)pz +(Eint

T)ps

) 2
ps+pz

, Ed
T :=

(
L∑

ℓ=1
wd

ℓ |rd[uθ](zℓ)|pz

) 1
pz

, Eint
T :=

(
N∑

n=1
wint

i |rint[uθ](yi)|ps

) 1
ps

.

(5.19)
Note that, after the training has concluded, the training error ET can be readily computed from the loss
functions (5.16).

The bound on generalization error in terms of training error is given by the following estimate,

Theorem 5.2.4. Let u ∈ Û ⊂ U ⊂ Lpu(DT) be the solution of the inverse problem associated with
PDE (5.9) and data (5.10). Assume that the stability hypothesis (5.11) holds for any D′

T ⊂ E ⊂ DT .
Let u∗ ∈ Û ⊂ U be a PINN generated by minimizing (5.15), based on the training sets Sint and Sd (of
quadrature points corresponding to the quadrature rule (2.19)). Further assume that the residuals rint[uθ∗]

76

i
i

“output” — 2023/12/11 — 11:30 — page 77 — #77 i
i

i
i

i
i

5.2. PINNS FOR THE DATA ASSIMILATION PROBLEM

and rint[uθ∗], defined in (5.14), be such that rint[uθ∗] ∈ S(DT) and rd[uθ∗] ∈ Z(D′
T) and the quadrature

errors satisfy (2.20). Then the following estimate on the generalization error (5.18) holds,

EG ≤ Cpd

(
(Eint

T)τp + (Ed
T)τd + (Cint

quad)
τp
ps N− ατp

ps + (Cd
quad)

τd
pz L− ατd

pz

)
, (5.20)

with constants Cpd = Cpd

(
∥u∥Û , ∥u∗∥Û

)
, Cint

quad = Cint
quad

(
∥rint[uθ∗]∥S(DT)

)
, and Cd

quad = Cd
quad

(
∥rd[uθ∗]∥Z(D′

T
)

)
stem from (5.11) and (2.20), respectively.

Proof. For notational simplicity, we denote rint = rint[uθ∗], the residual (3.2), corresponding to the
trained neural network u∗. Similarly, rd = rd[uθ∗] is the data residual (5.14), corresponding to u∗.

As u solves the PDE (5.9) and rint is defined by (5.14), we easily see that,

rint = D(u∗)−D(u). (5.21)

Similarly, u satisfies the data relation (5.10) and by definition (5.14), we have,

rd = L(u∗)− L(u). (5.22)

By our assumptions, PINN u∗ ∈ Û , hence, we can directly apply the conditional stability estimate (5.11)
and use (5.21), (5.22) to obtain,

EG(E) = ∥u− u∗∥Lpx (E) (by (5.18)),

≤ Cpd

(
∥D(u∗)−D(u)∥τp

S(DT) + ∥L(u)− L(u∗)∥τd

Z

)
(by (5.11)),

≤ Cpd

(
∥rint∥

τp

S(DT) + ∥rd∥τd

Z

)
(by (5.21), (5.22)).

(5.23)

By the fact that S(DT) ⊂ Lps(DT), the definition of the training error (5.19) and the quadrature rule
(2.19), we see that,

∥rint∥ps

S(DT) ≈
N∑

n=1
wint

n |rint(xn)|ps = (Eint
T)ps .

Hence, the training error component Eint
T is a quadrature for the residual (3.2) and the resulting quadra-

ture error, given by (2.20) translates to,

∥rint∥ps

S(DT) ≤ (Eint
T)ps + Cint

quadN
−α,

and as τp ≤ 1
∥rint∥

τp

S(DT) ≤ (Eint
T)τp + (Cint

quad)
τp
ps N− ατp

ps . (5.24)

Similarly as Z(D′
T) ⊂ Lpz (D′

T), the definition of the training error (5.19) and the quadrature rule (2.19),
we have that,

∥rd∥pz

Z ≈
L∑

ℓ=1
wd

ℓ |rd(zℓ)|pz = (Ed
T)pz .

Hence, the training error component Ed
T is a quadrature for the residual (5.14) and the resulting quadra-

ture error, given by (2.20) leads to,

∥rd∥pz

Z ≤ (Ed
T)pz + Cd

quadL
−α,

77

i
i

“output” — 2023/12/11 — 11:30 — page 78 — #78 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

and as τd ≤ 1
∥rd∥τd

Z ≤ (Ed
T)τd + (Cd

quad)
τd
pz L− ατd

pz . (5.25)

Substituting (5.24) and (5.25) into (5.23) yields the desired bound (5.20).

We term a PINN, generated by the algorithm 5 to be well-trained if the following condition hold,

max
{

(Eint
T)τp , (Ed

T)τd
}
≤ (Cint

quad)
τp
ps N− ατp

ps + (Cd
quad)

τd
pz L− ατd

pz . (5.26)

Thus, a well-trained PINN is one for which the training errors are smaller than the so-called generalization
gap (given by the righ-hand-side of (5.26)).

The following remarks about Theorem 5.2.4 are in order.

Remark 5.2.5. The estimate (5.20) indicates mechanisms that underpin possible efficient approximation
of solutions of inverse (unique continuation, data assimilation) problems by PINNs as it breaks down the
sources of error into the following parts,

• The PINN has to be well-trained i.e, the training error ET has to be sufficiently small. Note that
we have no a priori control on the training error but can compute it a posteriori.

• The class of approximating PINNs has to be sufficiently regular such that the residuals in (5.14)
can be approximated to high accuracy by the quadrature rules (2.19). This regularity of PINNs can
be enforced by choosing smooth activation functions such as the sigmoid and hyperbolic tangent in
(2.24).

• Finally, the whole estimate (5.20) relies on the conditional stability estimate (5.11) for the inverse
problem (5.9), (5.10). Thus, the generalization error estimate leverages conditional stability for
inverse problems of PDEs into efficient approximation by PINNs. This is very similar to the
conclusion outlined for the forward problem of PDE (Section 3.2).

Remark 5.2.6. We note that the estimate (5.20) on the error due to PINNs contains the constants
Cpd, C

int
quad, C

d
quad. These constants depend on the underlying solution but also on the trained neural

network u∗ and on the residuals. For any given number of training samples N,L, these constants are
bounded as the underlying neural networks and residuals are smooth functions on bounded domains.
However, as N,L→∞, these constants might blow-up. As long as these constants blow up at rates that
are slower wrt N,L than the decay terms in (5.20), one can expect that the overall bound (5.20) still
decays to zero as N,L→∞. In practice, one has a finite number of training samples and the bounds on
the constants can be verified a posteriori from the computed residuals and trained neural networks.

Remark 5.2.7. The estimate (5.20) was based on deterministic quadrature rules (2.19). Following section
2.4.1 of [73], it can be extended, in a straightforward manner, to the case of randomly chosen training
points that stem from Monte Carlo quadrature.

Remark 5.2.8. We have considered a noiseless measurement in the data term (2.11) on the observation
domain. However, the bound (5.20) can be readily extended to cover the noisy case in the following
manner. We assume that the measurements for the inverse problem are given by,

L(u) = u′ + η, (5.27)

78

i
i

“output” — 2023/12/11 — 11:30 — page 79 — #79 i
i

i
i

i
i

5.3. POISSON’S EQUATION

for a noise term η ∈ Z. Then, a straightforward modification of the argument in the proof of Theorem
5.2.4 yields the bound,

EG ≤ Cpd

(
(Eint

T)τp + (Ed
T)τd + ∥η∥τd

Lpz (D′
T

) + (Cint
quad)

τp
ps N− ατp

ps + (Cd
quad)

τd
pz L− ατd

pz

)
, (5.28)

with constants already defined in (5.20). Thus, as long as the noise term is small in magnitude, the PINN
will still efficiently approximate solution of the inverse problem. However, for N,Nd sufficiently small,
the noise term will dominate (5.28) and one has to use a Bayesian framework to approximate solutions
of the inverse problem in this regime.

5.3 Poisson’s equation

As a first example for the abstract inverse problem (5.9), (5.10), we consider the Poisson’s equation as a
model problem for linear elliptic PDEs.

5.3.1 The underlying inverse problem

Let D ⊂ Rd be an open, bounded, simply connected set with smooth boundary ∂D1. We consider the
Poisson’s equation on this domain,

−∆u = f, ∀x ∈ D, (5.29)
with ∆ denoting the Laplace operator and f ∈ L2(D) being a source term. We will assume that u ∈
H1(D) will satisfy the Poisson’s equation (5.29) in the following weak sense,∫

D

∇u · ∇vdx =
∫
D

fvdx, (5.30)

for all test functions v ∈ H1
0 (D). Note that (5.30) follows as a consequence of multiplying the test function

v ∈ H1
0 (D) and integrating by parts. Moreover, the PDE (5.29) is not well-posed as u is not necessarily

in H1
0 (D).

The unique continuation (data assimilation) inverse problem in this case is given by,

u|D′ = g, for some D′ ⊂ D, (5.31)

with g ∈ H1(D′) and the observation domain D′ being open, simply connected and with a smooth
boundary ∂D′.

Formally, in order for the unique continuation problem (5.29), (5.31) to have a solution, it is necessary
that g satisfies the Poisson’s equation (5.29) in D′. Hence, the unique continuation problem is formally
equivalent to,

−∆u = f, ∀x ∈ D \D′,

u = g, ∀x ∈ ∂D′,

∇u · n = ∇g · n, ∀x ∈ ∂D′.

(5.32)

The problem (5.32) is termed as the Elliptic Cauchy problem and was already studied by Hadamard as
an example of ill-posed problems for PDEs.

Well-posedness results for the inverse problem (5.29), (5.31) are classical, see [74] for a detailed survey.
Here, we follow the slightly simplified presentation due to [75] and state the following result,

1Further geometric conditions on the boundary might be necessary for obtaining bounds on the quadrature error

79

i
i

“output” — 2023/12/11 — 11:30 — page 80 — #80 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Theorem 5.3.1. [[75], Theorem 7.1]: Let f ∈ L2(D) and let u ∈ H1(D) such that (5.30) holds for all
test functions v ∈ H1

0 (D). Let g ∈ H1(D′) such that (5.31) holds, then for every open simply connected
set E ⊂ D such that dist(E, ∂D) > 0, there holds,

∥u∥H1(E) ≤ C
(
∥u∥H1(D)

)
ω
(
∥f∥L2(D) + ∥g∥L2(D′)

)
. (5.33)

Here, C(R) = CR1−τ and ω(R) = Rτ , for some absolute constant C and exponent τ ∈ (0, 1), depending
on the set E.

Moreover, we have the global stability estimate,

∥u∥H1(D) ≤ C
(
∥u∥H1(D)

)
ω
(
∥f∥L2(D) + ∥g∥L2(D′)

)
, (5.34)

with the same C(R) as in (5.33), but with modulus of continuity given by ω(R) = | log(R)|−τ , with
τ ∈ (0, 1).

The theorem, as presented in [75] (Theorem 7.1) has slightly better estimates than (5.33), (5.34). In
particular, on the righ-hand-side, the norm on the source term is the H−1 norm. However, the current
version of these estimates suffices for our purposes here. Moreover, detailed derivation of the constants
is given in Theorem 4.4 of [74] and the proof of (5.33), (5.34) is based on the three-balls inequality.

Remark 5.3.2. Relating the above formulation of the unique continuation inverse problem (5.29), (5.31)
to the abstract formalism presented in section 5.2.1, we see that with U ⊂ L2(D),S ⊂ L2(D),Z ⊂ L2(D′),
the differential operator D = −∆, interpreted weakly, and the observable L = ID, it is straightforward to
bound the abstract conditional stability estimate (5.12) in the concrete forms (5.33) or (5.34). Thus, this
problem falls squarely in the framework considered in section 5.2.1 and can be approximated by PINNs.

5.3.2 PINNs

Training sets

As the training set Sint in algorithm 5, we take a set of quadrature points yi ∈ D, for 1 ≤ i ≤ Nint,
corresponding to the quadrature rule (2.19). These can be quadrature points for a grid based (composite)
Gauss quadrature rule or low-discrepancy sequences such as Sobol points. Similarly, the training set
Sd = {zj , g(zj)} for zj ∈ D′, with 1 ≤ j ≤ Nd, are quadrature points, corresponding to the quadrature
rule (2.19).

Residuals

We will require that for parameters θ ∈ Θ, the neural networks uθ ∈ Ck(D), for k ≥ 2. This can be
enforced by choosing a sufficiently regular activation function in (2.24). We define the following residuals
that are needed in algorithm 5. The PDE residual (3.2) is given by,

rint[uθ] = −∆uθ − f, ∀x ∈ D, (5.35)

and the data residual on the observation domain is given by,

rd[uθ] = uθ − g, ∀x ∈ D′. (5.36)

80

i
i

“output” — 2023/12/11 — 11:30 — page 81 — #81 i
i

i
i

i
i

5.3. POISSON’S EQUATION

Loss functions

In algorithm 5 for approximating the inverse problem (5.29), (5.31), we will need the following loss
function,

J(θ) = λ

Nd∑
j=1

wd
j |rd[uθ](zj)|2 +

Nint∑
i=1

wint
i |rint[uθ](yi)|2, (5.37)

with hyperparamter λ, residuals defined in (5.35), (5.36), training points defined above and weights wint
i ,

wd
j , corresponding to quadrature rule (2.19).

5.3.3 Estimates on the generalization error

We consider any E ⊂ D, with E open, simply connected and such that dist(E, ∂D) > 0 and define the
generalization error with respect to the PINN u∗ = uθ∗ , generated by the algorithm 5 with training sets,
residuals and loss functions described above, as

EG(E) = ∥u− u∗∥H1(E). (5.38)

As in theorem 3.2.1, this generalization error will be estimated in terms of the following training errors,

Ed
T =

 Nd∑
j=1

wd
j |rd[uθ∗](zj)|2

 1
2

, Eint
T =

(
Nint∑
i=1

wint
i |rint[uθ∗](yi)|2

) 1
2

. (5.39)

Note that the training errors Eint
T and Ed

T , can be readily computed from the loss functions (3.6), (5.37),
a posteriori. We have the following estimate on the generalization error in terms of the training error,

Lemma 5.3.3. For f ∈ Ck−2(D) and g ∈ Ck(D′), with continuous extensions of the functions and
derivatives up to the boundaries of the underlying sets and with k ≥ 2, Let u ∈ H1(D) be the solution
of the inverse problem corresponding to the Poisson’s equation (5.29) i.e, it satisfies (5.30) for all test
functions v ∈ H1

0 (D) and satisfies the data (5.31). Let u∗ = uθ∗ ∈ Ck(D) be a PINN generated by the
algorithm 5, with loss functions (3.6), (5.37). Then, the generalization error (5.38) for any any E ⊂ D,
with E open, simply connected and such that dist(E, ∂D) > 0 is bounded by,

∥u− u∗∥H1(E) ≤ C
(
∥u∥1−τ

H1(D) + ∥u∗∥1−τ
H1(D)

)(
(Eint

T)τ + (Ed
T)τ + (Cint

quad) τ
2 N

− ατ
2

int + (Cd
quad) τ

2 N
− ατ

2
d

)
,

(5.40)
for some τ ∈ (0, 1) and constant C depending on E and with constants Cint

quad = Cint
quad

(
∥rint[uθ∗]∥Ck−2(D)

)
and Cd

quad = Cd
quad

(
∥rd[uθ∗]∥Ck(D′)

)
, given by the quadrature error bound (2.20).

Moreover, we also have the global error bound,

∥u− u∗∥H1(D) ≤ C
(
∥u∥1−τ

H1(D) + ∥u∗∥1−τ
H1(D)

) ∣∣∣log
(
Eint

T + Ed
T + (Cint

quad) 1
2N

− α
2

int + (Cd
quad) 1

2N
− α

2
d

)∣∣∣−τ

.

(5.41)

Proof. For notational simplicity, we denote rint = rint[uθ∗] and rd = rd[uθ∗].

81

i
i

“output” — 2023/12/11 — 11:30 — page 82 — #82 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Define û = u∗ − u ∈ H1(D), by linearity of the differential operator in (5.29) and the data observable in
(5.31) and by definitions (5.35), (5.36), we see that û satisfies,

−∆û = rint, ∀x ∈ D,
û = rd, ∀x ∈ D′,

(5.42)

with Poisson equation being satisfied in the following weak sense,∫
D

∇û · ∇vdx =
∫
D

rintvdx, (5.43)

for all test functions v ∈ H1
0 (D). Hence, we can directly apply the conditional stability estimate (5.33)

to obtain for some τ ∈ (0, 1),

∥û∥H1(E) ≤ C(∥û∥1−τ
H1(D))

(
∥rd∥L2(D′) + ∥rint∥L2(D)

)τ

≤ C
(
∥u∥1−τ

H1(D) + ∥u∗∥1−τ
H1(D)

) (
∥rd∥L2(D′) + ∥rint∥L2(D)

)τ
.

(5.44)

Recognizing that the training errors (Ed
T)2 and (Eint

T)2 are the quadratures for ∥rd∥2
L2(D′) and ∥rint∥2

L2(D)
with respect to the quadrature rule (2.19), respectively and using bound (2.20) yields,

∥rd∥L2(D′) ≤ Ed
T + (Cd

quad) 1
2N

α
2

d ,

∥rint∥L2(D) ≤ Eint
T + (Cint

quad) 1
2N

α
2

int,
(5.45)

with constants Cint
quad = Cint

quad

(
∥rint∥Ck−2(D)

)
and Cd

quad = Cd
quad

(
∥rd∥Ck(D′)

)
.

It is straightforward to obtain the desired inequality (5.40) by substituting (5.45) into (5.44).

The bound (5.41) can be obtained, completely analogously, by replacing (5.33) in (5.44) with (5.34).

5.4 Heat Equation

As a model inverse problem for linear parabolic PDEs, we will consider the data assimilation problem
for the heat equation.

5.4.1 The underlying inverse problem

With D ⊂ Rd being an open, bounded, simply connected set with smooth boundary ∂D, we consider the
heat equation with zero Dirichlet boundary conditions,

ut −∆u = f, ∀x ∈ D, t ∈ (0, T),
u = h = 0, ∀x ∈ ∂D, t ∈ (0, T),

(5.46)

for some T ∈ R+, with ∆ denoting the spatial Laplace operator and f ∈ L2(DT) with DT = D × (0, T)
being the source term. We also assume zero Dirichlet boundary conditions for simplicity.

We will assume that u ∈ H1(((0, T);H−1(D)) ∩ L2((0, T);H1(D)) will solve the heat equation (5.46) in
a weak sense.

82

i
i

“output” — 2023/12/11 — 11:30 — page 83 — #83 i
i

i
i

i
i

5.4. HEAT EQUATION

The heat equation (5.46) would have been well-posed if the initial conditions i.e u0 = u(x, 0) had been
specified. In fact, the aim of the data assimilation problem is to infer the initial conditions and the entire
solution field at later times from some measurements of the solution in time. To model this, we consider
the following observables:

u = g, ∀(x, t) ∈ D′ × (0, T), (5.47)
for some open, simply connected observation domainD′ ⊂ D and for g ∈ L2(D′

T) withD′
T = D′×(0, T).

Thus solving the data assimilation problem (5.46), (5.47), amounts to finding the solution u of the
heat equation (5.46) in the whole space-time domain DT , given data on the observation sub-domain
D′

T . The theory for this data assimilation inverse problem for the heat equation is classical and several
well-posedness and stability results are available. Our subsequent error estimates for PINNs rely on the
following classical result of Imanuvilov [76], based on the well-known Carleman estimates,

Theorem 5.4.1. [76]: Let u ∈ H1((0, T);H−1(D))∩L2((0, T);H1(D)) solve the heat equation (5.46) with
source term f ∈ L2(DT), then for every 0 ≤ T̄ < T , there holds,

∥u∥C([T̄ ,T];L2(D)) + ∥u∥L2((0,T);H1(D)) ≤ C
(
∥u∥L2(D′

T
) + ∥f∥L2(DT) + ∥u∥L2(∂D×(0,T))

)
, (5.48)

for some constant C > 0.

Remark 5.4.2. Relating the above formulation of the data assimilation inverse problem (5.46), (5.47) to
the abstract formalism presented in section 5.2.1, we readily see that U ⊂ L2(DT),S ⊂ L2(DT),Z ⊂
L2(D′

T), the differential operator is D = ∂t − ∆, interpreted weakly, and the observable is L = ID.
Moreover, the abstract conditional stability estimate (5.12) takes the concrete form (5.48). Thus, this
problem falls squarely in the framework considered in section 5.2.1 and can be approximated by PINNs.

5.4.2 PINNs

Training sets

The training set Sd = {zj , g(zj)} for zj = (xj , tj) ∈ D′
T , with 1 ≤ j ≤ Nd, are quadrature points,

corresponding to the quadrature rule (2.19). Given the fact that we also consider boundary conditions in
(5.46), we need to slightly modify the training set on which the PDE residual (3.2) is going to be collocated.
We take interior training set Sint as set of quadrature points yi = (xi, ti) ∈ DT , for 1 ≤ i ≤ Nint,
corresponding to the quadrature rule (2.19). These can be quadrature points for a grid based (composite)
Gauss quadrature rule or low-discrepancy sequences such as Sobol points. We also need to introduce
spatial boundary training set Ssb = {ȳi, h(ȳi)} for 1 ≤ i ≤ Nsb, with ȳi = (x̄i, ti), and ti ∈ (0, T),
x̄i ∈ ∂D, for each i. These points can be quadrature points corresponding to a boundary quadrature rule
i.e for any function h : ∂D × (0, T)→ R, we approximate

T∫
0

∫
∂D

h(x, t)dσ(x)dt ≈
Nsb∑
i=1

wsb
i h(x̄i, ti), (5.49)

and we also assume that this boundary quadrature rule satisfies an error estimate of the form,∣∣∣∣∣∣
T∫

0

∫
∂D

h(x, t)dσ(x)dt−
Nsb∑
i=1

wsb
i h(x̄i, ti)

∣∣∣∣∣∣ ≤ CbdN
−αsb

sb , (5.50)

with constant Cbd = C
(
∥h∥Cℓ(∂D×(0,T))

)
.

83

i
i

“output” — 2023/12/11 — 11:30 — page 84 — #84 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Residuals

We will require that for parameters θ ∈ Θ, the neural networks (x, t) 7→ uθ(x, t) ∈ Ck(DT), for k ≥ 2.
We define the following residuals that are needed in algorithm 5. The PDE residual (3.2) is given by,

rint[uθ] = ∂tuθ −∆uθ − f, ∀(x, t) ∈ DT . (5.51)

We need the following residual to account for the boundary data in (5.46),

rsb[uθ] = uθ|∂D×(0,T), ∀(x, t) ∈ ∂D × (0, T) (5.52)

and the data residual is given by,

rd[uθ] = uθ − g, ∀(x, t) ∈ D′
T . (5.53)

Loss functions

In algorithm 5 for approximating the inverse problem (5.46), (5.47), we will need the following loss
function,

J(θ) =
Nd∑
j=1

wd
j |rd[uθ](zj)|2 +

Nsb∑
i=1

wsb
i |rsb[uθ](ȳi)|2 + λ

Nint∑
i=1

wint
i |rint[uθ](yi)|2, (5.54)

with hyperparamter λ, residuals defined in (5.51), (5.52), (5.53), training points defined above and weights
wint

i , wsb
i , wd

j , corresponding to quadrature rules (2.19), (5.49), respectively.

5.4.3 Estimates on the generalization error

For any 0 ≤ T̄ < T , we define the generalization error for the PINN u∗ = uθ∗ , generated by algorithm 5
to approximate the solution u to the data assimilation, inverse problem (5.46), (5.47) as,

EG(T̄) = ∥u− u∗∥C([T̄ ,T];L2(D)) + ∥u− u∗∥L2((0,T);H1(D)). (5.55)

We estimate this generalization error in terms of the following training errors,

Ed
T =

 Nd∑
j=1

wd
j |rd[uθ∗](zj)|2

 1
2

, Eint
T =

(
Nint∑
i=1

wint
i |rint[uθ∗](yi)|2

) 1
2

, Esb
T =

(
Nsb∑
i=1

wsb
i |rsb[uθ](ȳi)|2

) 1
2

.

(5.56)
Note that the training errors Eint

T ,Esb
T and Ed

T , can be readily computed from the loss functions (3.6),
(5.54), a posteriori. We have the following estimate on the generalization error in terms of the training
error,

Lemma 5.4.3. For f ∈ Ck−2(DT) and g ∈ Ck(D′
T), with continuous extensions of the functions and

derivatives upto the boundaries of the underlying sets and with k ≥ 2, let u ∈ H1((0, T);H−1(D)) ∩
L2((0, T);H1(D)) be the solution of the inverse problem corresponding to the heat equation (5.46) and
satisfies the data (5.47). Let u∗ = uθ∗ ∈ Ck(DT) be a PINN generated by the algorithm 5, with loss
functions (3.6), (5.54). Then, the generalization error (5.55) for any 0 ≤ T̄ < T is bounded by,

EG(T̄) ≤ C
(
Ed

T + Eint
T + Esb

T + C
1
2
q N

− α
2

int + C
1
2
bdN

− αsb
2

sb + C
1
2
qdN

− αd
2

d

)
, (5.57)

84

i
i

“output” — 2023/12/11 — 11:30 — page 85 — #85 i
i

i
i

i
i

5.5. THE WAVE EQUATION

for some constant C depending on T̄ , u, u∗ and with constants Cq = Cq

(
∥rint[uθ∗]∥Ck−2(DT)

)
, Cbd =

Cbd

(
∥rsb[uθ∗]∥Ck(∂D×(0,T))

)
and Cqd = Cqd

(
∥rd[uθ∗]∥Ck(D′

T
)

)
, given by the quadrature error bounds

(2.20), (5.50).

Proof. For notational simplicity, we denote rint = rint[uθ∗], rsb = rsb[uθ∗] and rd = rd[uθ∗].

Define û = u∗ − u ∈ H1((0, T);H−1(D)) ∩ L2((0, T);H1(D)), by linearity of the differential operator
in (5.46) and the data observable in (5.47) and by definitions (5.51), (5.52) and (5.53), we see that û
satisfies,

ût −∆û = rint, ∀x, t ∈ DT ,

û = rsb, ∀x ∈ ∂D, t ∈ (0, T),
û = rd, ∀x, t ∈ D′

T .

(5.58)

Hence, we can directly apply the conditional stability estimate (5.48) to obtain,

∥û∥C([T̄ ,T];L2(D)) ≤ C
(
∥rd∥L2(D′)T

+ ∥rint∥L2(DT) + ∥rsb∥L2(∂D×(0,T))
)
, (5.59)

with the constant C from (5.48).

Recognizing that the training errors (Ed
T)2, (Esb

T)2 and (Eint
T)2 are the quadrature approximations for

∥rd∥2
L2(D′)T

, ∥rsb∥L2(∂D×(0,T)) and ∥rint∥2
L2(DT) with respect to the quadrature rules (5.49) and (2.19),

respectively and using bounds (5.50) and (2.20) yields the inequality (5.45). Substituting it into (5.59)
leads to the desired bound (5.57) in a straightforward manner.

5.5 The Wave equation

Next, we will consider the wave equation as a model problem for linear hyperbolic PDEs.

5.5.1 The underlying inverse problem

With D ⊂ Rd being an open, bounded, simply connected set with smooth boundary ∂D, we consider the
wave equation with zero Dirichlet boundary conditions,

utt −∆u = f, ∀(x, t) ∈ D × (0, T),
u = h ≡ 0, ∀(x, t) ∈ ∂D × (0, T),

(5.60)

for some T ∈ R+, with ∆ denoting the spatial Laplace operator and f ∈ L2(DT) with DT = D × (0, T)
being the source term.

The forward problem for the wave equation is only well-posed when we know the initial conditions,

u(x, 0) = u0(x), ∀x ∈ D,
ut(x, 0) = u1(x), ∀x ∈ D,

(5.61)

for some u0 ∈ L2(D) and u1 ∈ H−1(D). However, in many problems of interest, the initial data u0,1 are
not known and have to be inferred from measurements of the form,

u(x, t) = g, (x, t) ∈ D′ × (0, T), (5.62)

85

i
i

“output” — 2023/12/11 — 11:30 — page 86 — #86 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

for some subset D′ ⊂ D̄. We also denote the observation domain as D′
T = D′ × (0, T) .

The resulting data assimilation inverse problem consists of finding the initial data u0, u1 and consequently
the entire solution field u of the wave equation (5.60), given data f, g. A slight variant of this problem
stems from photoacoustic tomography (PAT) [77] and it also arises in control theory, in the form of
so-called Luenberger observers [78].

The data assimilation problem for the wave equation (5.60), (5.62) has received considerable amount of
attention in the mathematical literature and can be solved as long as the following geometric control
condition, introduced in the seminal paper [79], is satified,

Definition 5.5.1. Geometric Control Condition(GCC) (see [79, 80]): The domain D′
T ⊂ D̄T , is said

to satisfy the geometric control condition (gcc) in DT if every compressed generalized bicharacteristic
(x(s), t(s), τ(s), ξ(s)) intersects the set D′

T for some s ∈ R

We refer the reader to [79, 80] for the rather technical definition of generalized bicharacteristics. It roughly
states that all light rays in DT must intersect D′

T , taking reflections at the boundary into account. An
even stronger, sufficient condition that implies the GCC is the so-called Γ-condition that [81] roughly
requires that the final time T and the set ∂D′ ∩ ∂D are relatively large.

Under the GCC, one can follow [82] and prove the following well-posedness result for the data assimilation
problem for the wave equation (5.60),(5.62),

Theorem 5.5.2. [[82],Theorem 2.2]: Let DT = D × (0, T), such that D ⊂ Rd is a domain with smooth
boundary ∂D. Let D′

T = D′×(0, T), with D′ ⊂ D̄, satisfy the geometric control condition. If u ∈ L2(DT)
be such that u(·, 0) ∈ L2(D), ∂tu(·, 0) ∈ H−1(D), u|∂D×(0,T) ∈ L2(∂D × (0, T)), then the following
estimate holds,

sup
t∈[0,T]

(
∥u(·, t)∥L2(D) + ∥∂tu(·, t)∥H−1(D)

)
≤ κ

(
∥u∥L2(D′

T
) + ∥f∥L2(DT) + ∥u∥L2(∂D×(0,T))

)
, (5.63)

with observability constant κ that depends on the underlying domain geometry and final time T . The
proof of this theorem relies heavily on the so-called observability estimates of [79], which are derived by
using micro-local propagation of singularities for the wave equation. Alternative proofs use Carleman
estimates [83].

Again, we can recast the data assimilation inverse problem for the wave equation in the abstract formu-
lation of section 5.2.1, with (5.63) playing the role of the conditional stability estimate (5.12). Thus, this
inverse problem is amenable to efficient approximation by PINNs.

5.5.2 PINNs

We specify the algorithm 5 to generate a PINN for approximating the data assimilation inverse problem
(5.60), (5.62), in the following steps,

86

i
i

“output” — 2023/12/11 — 11:30 — page 87 — #87 i
i

i
i

i
i

5.5. THE WAVE EQUATION

Training sets

We consider exactly the same training sets as for the heat equationn i.e, Sd = {zj , g(zj)} for zj = (xj , tj) ∈
D′

T , with 1 ≤ j ≤ Nd, are quadrature points, corresponding to the quadrature rule (2.19), Sint as set
of quadrature points yi = (xi, ti) ∈ DT , for 1 ≤ i ≤ Nint, corresponding to the quadrature rule (2.19)
and spatial boundary training set Ssb = {ȳi, h(ȳi)} for 1 ≤ i ≤ Nsb, with ȳi = (x̄i, ti), and ti ∈ (0, T),
x̄i ∈ ∂D, for each i. These points can be quadrature points corresponding to the boundary quadrature
rule (5.49).

Residuals

We will require that for parameters θ ∈ Θ, the neural networks (x, t) 7→ uθ(x, t) ∈ Ck(DT), for k ≥ 2.
We define the following residuals that are needed in algorithm 5. The PDE residual (3.2) is given by,

rint[uθ] = ∂ttuθ −∆uθ − f, ∀(x, t) ∈ DT . (5.64)

We need the following residual to account for the boundary data in (5.60),

rsb[uθ] = uθ|∂D×(0,T), ∀(x, t) ∈ ∂D × (0, T). (5.65)

The data residual is given by,
rd[uθ] = uθ − g, ∀(x, t) ∈ D′

T . (5.66)

Loss functions

In algorithm 5 for approximating the inverse problem (5.60), (5.62), we will need the following loss
function (which is identically the same as the loss function (5.54) for the heat equation),

J(θ) =
Nd∑
j=1

wd
j |rd[uθ](zj)|2 +

Nsb∑
i=1

wsb
i |rsb[uθ](ȳi)|2 + λ

Nint∑
i=1

wint
i |rint[uθ](yi)|2, (5.67)

with hyperparamter λ, residuals defined in (5.66), (5.64) and (5.65), training points defined above and
weights wd

j , wint
i and wsb

i , corresponding to quadrature rules (2.19) and (5.49), respectively.

5.5.3 Estimates on the generalization error

Denoting u∗ = uθ∗ as the PINN, generated by algorithm 5 to approximate the data assimilation problem
(5.60), (5.62), for the wave equation, we define the following generalization error,

EG := ∥u−u∗∥C1([0,T];H−1(D))∩C([0,T];L2(D)) = sup
t∈[0,T]

(
∥u(·, t)− u∗(·, t)∥L2(D) + ∥∂tu(·, t)− u∗(·, t)∥H−1(D)

)
.

(5.68)
As in theorem 3.2.1 and the previous examples, we will bound the generalization error in terms of the
following training errors,

Ed
T =

 Nd∑
j=1

wd
j |rd[uθ∗](zj)|2

 1
2

, Eint
T =

(
Nint∑
i=1

wint
i |rint[uθ∗](yi)|2

) 1
2

, Esb
T =

(
Nsb∑
i=1

wsb
i |rsb[uθ∗](ȳi)|2

) 1
2

.

(5.69)

87

i
i

“output” — 2023/12/11 — 11:30 — page 88 — #88 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

The training errors Eint
T ,Esb

T and Ed
T , can be readily computed from the loss functions (3.6), (5.67), a

posteriori. We have the following estimate on the generalization error in terms of the training error,

Lemma 5.5.3. Let the domain D′
T satisfy the geometric control condition in DT . For f ∈ Ck−2(DT)

and g ∈ Ck(D′
T), with k ≥ 2, let u ∈ C([0, T)];L2(D)) ∩ C1([0, T];H−1(D)) be the solution of the

data assimilation corresponding to the wave equation (5.60) and satisfies the data (5.62). Let u∗ =
uθ∗ ∈ Ck(DT) be a PINN generated by the algorithm 5, with loss functions (3.6), (5.67). Then, the
generalization error (5.68) is bounded by,

EG ≤ κ
(
Ed

T + Eint
T + Esb

T + C
1
2
q N

− α
2

int + C
1
2
bdN

− αsb
2

sb + C
1
2
qdN

− αd
2

d

)
, (5.70)

for observability constant κ depending on the underlying geometry, T, u, u∗ and with constants Cq =
Cq

(
∥rint[uθ∗]∥Ck−2(DT)

)
, Cbd = Cbd

(
∥rsb[uθ∗]∥Ck(∂D×(0,T))

)
and Cqd = Cqd

(
∥rd[uθ∗]∥Ck(D′

T
)

)
, given by

the quadrature error bounds (2.20), (5.50), respectively.

Proof. For notational simplicity, we denote rint = rint[uθ∗], rsb = rsb[uθ∗] and rd = rd[uθ∗].

Define û = u∗ − u ∈ C1([0, T];H−1(D)) ∩ C([0, T];L2(D)), by linearity of the differential operator and
boundary conditions in (5.60) and the data observable in (5.62) and by definitions (5.64),(5.65),(5.53),
we see that û satisfies,

ûtt −∆û = rint, ∀(x, t) ∈ DT ,

û|∂D×(0,T) = rsb,

û = rd, ∀(x, t) ∈ D′
T .

(5.71)

Therefore, we can apply the observability estimate (5.63) to obtain,

sup
t∈[0,T]

(
||û(·, t)∥L2(D) + ∥∂tû(·, t)∥H−1(D)

)
≤ κ

(
∥rd∥L2(D′

T
) + ∥rint∥L2(DT) + ∥rsb∥L2(∂D×(0,T))

)
, (5.72)

with the observability constant κ from (5.63).

Realizing that the training errors (Ed
T)2, (Eint

T)2 and (Esb
T)2 are the quadrature approximations for

∥rd∥2
L2(D′)T

, ∥rint∥2
L2(DT)and ∥rsb∥2

L2(∂D×(0,T)) with respect to the quadrature rules (2.19) and (5.49),
respectively and using bounds (2.20) and (5.50) and substituting the result into (5.72) yields the desired
bound (5.70).

5.6 The Stokes equation

The effectiveness of PINNs in approximating inverse problems was brilliantly showcased in the recent
paper [17], where the authors proposed PINNs for the data assimilation problem with the Navier-Stokes
equation. As a first step towards rigorously analyzing this, we will focus on the much simpler model of
the stationary Stokes equation below.

88

i
i

“output” — 2023/12/11 — 11:30 — page 89 — #89 i
i

i
i

i
i

5.6. THE STOKES EQUATION

5.6.1 The underlying inverse problem

Let D ⊂ Rd be an open, bounded, simply connected set with smooth boundary. We consider the Stokes’
equations as a model of stationary, highly viscous fluid:

∆u+∇p = f, ∀x ∈ D,
∇ · u = fd, ∀x ∈ D.

(5.73)

Here, u : D 7→ Rd is the velocity field, p : D 7→ R is the pressure and f : D 7→ Rd, fd : D 7→ R are source
terms.

Note that the Stokes equation (5.73) is not well-posed as we are not providing any boundary conditions.
In the corresponding data assimilation problem [84] and references therein, one provides the following
data,

u = u′, ∀x ∈ D′, (5.74)

for some open, simply connected set D′ ⊂ D. Thus, the data assimilation inverse problem for the Stokes
equation amounts to inferring the velocity field u (and the pressure p)), given f, fd and u′. In particular,
we wish to find solutions u ∈ H1(D;Rd) and p ∈ L2

0(D) (i.e, square integrable functions with zero mean),
such that the following holds, ∫

D

∇u · ∇vdx+
∫
D

p∇ · vdx =
∫
D

fvdx,

∫
D

∇ · uwdx =
∫
D

fdwdx,

(5.75)

for all test functions v ∈ H1
0 (D;Rd) and w ∈ L2(D).

The well-posedness and conditional stability estimates for the data assimilation problem for the Stokes
equation (5.73), (5.74) has been extensively investigated in [85] and references therein. In particular, we
have the following stability estimate,

Theorem 5.6.1. Let D′ ⊂ D and let BR1(x0) be the largest ball, BR1(x0) ⊂ D′. Let u ∈ H1(D;Rd)
and p ∈ L2

0(D) satisfy (5.75) for all test functions v ∈ H1
0 (D;Rd) and w ∈ L2(D). Then for any

f ∈ L2(D;Rd), fd ∈ L2(D) and for any R2 > R1 such that BR2(x0) ⊂ D, the following bound holds,

∥u∥2
L2(BR2 (x0)) ≤ C

(
Cf,fd

+ Cτ
uC

1−τ
f,fd

+
(
C1−τ

f,fd
C1−τ

u

)
∥u∥2τ

L2(D′)

)
, (5.76)

with constants defined as,

Cf,fd
:= ∥f |2L2(D) + ∥fd∥2

L2(D), Cu := ∥u∥2
L2(D). (5.77)

Proof. Let u1, p1 be solutions of the following boundary-value problem for the Stokes equations,

∆u1 +∇p1 = f, ∀x ∈ D,
∇ · u1 = fd, ∀x ∈ D,

u1 ≡ 0, ∀x ∈ ∂D.
(5.78)

We know from classical theory for the Stokes’ equation [86], [84](estimate 2.2) that,

∥u1∥H1(D) + ∥p1∥L2(D) ≤ C
(
∥f∥L2(D) + ∥fd∥L2(D)

)
, (5.79)

89

i
i

“output” — 2023/12/11 — 11:30 — page 90 — #90 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

for some constant C that depends only on the domain D.

Define u2, p2 as the solutions of the following homogeneous Stokes’ equations,

∆u2 +∇p2 = 0, ∀x ∈ D,
∇ · u2 = 0, ∀x ∈ D.

(5.80)

We know that for any R1 < R2 < R3, such that BR2(x0) ⊂ D, the following three balls inequality [85]
holds for the solutions u2 ∈ H1(D;Rd) and p2 ∈ H1(D) of the homogeneous Stokes equations (5.80),

∫
BR2 (x0)

|u2|2dx ≤ C

(∫
BR1 (x0)

|u2|2dx

)τ (∫
BR3 (x0)

|u2|2dx

)1−τ

, (5.81)

with a constant C and τ ∈ (0, 1) that depends on R1
R3

, R2
R3

and d (see [85] for more on the constants).

It is easy to check that u = u1 +u2 and p = p1 + p2, satisfy the Stokes equation (5.73) in the weak sense,
i.e they satisfy (5.75). By identifying all constants in the following calculation with a generic constant
C, we have,∫

BR2 (x0)
|u|2dx =

∫
BR2 (x0)

|u1 + u2|2dx

≤ C

(∫
BR2 (x0)

|u1|2dx+
∫

BR2 (x0)
|u2|2dx

)
≤ C

(∫
D

|u1|2dx+
∫

BR2 (x0)
|u2|2dx

)
(by (5.79), (5.81))

≤ C

∥f∥2
L2(D) + ∥fd∥2

L2(D) +
(∫

BR1 (x0)
|u2|2dx

)τ (∫
BR3 (x0)

|u2|2dx

)1−τ


≤ C

∥f∥2
L2(D) + ∥fd∥2

L2(D) +
(∫

BR1 (x0)
|u− u1|2dx

)τ (∫
BR3 (x0)

|u− u1|2dx

)1−τ


≤ C
(
∥f∥2

L2(D) + ∥fd∥2
L2(D) + ∥u∥2τ

L2(BR1 (x0))∥u∥
2(1−τ)
L2(D)

)
+ C

(
∥u∥2τ

L2(BR1 (x0))∥u1∥2(1−τ)
L2(D) + ∥u1∥2τ

L2(D)∥u∥
2(1−τ)
L2(D) + ∥u1∥2

L2(D)

)
.

Substituting (5.79) and identifying the constants yields the desired bound (5.76).

As in the previous examples, this inverse problem can be recast in terms of the abstract formalism of
section 5.2.1, with the conditional stability estimate (5.76) occupying the role of (5.12) and making this
inverse problem amenable to efficient approximation by PINNs.

5.6.2 PINNs

We specify the algorithm 5 to generate a PINN for approximating the inverse problem (5.73), (5.74) in
the following steps,

90

i
i

“output” — 2023/12/11 — 11:30 — page 91 — #91 i
i

i
i

i
i

5.6. THE STOKES EQUATION

Training sets

As the training set Sint in algorithm 5, we take a set of quadrature points yi ∈ D, for 1 ≤ i ≤ Nint,
corresponding to the quadrature rule (2.19). These can be quadrature points for a grid based (composite)
Gauss quadrature rule or low-discrepancy sequences such as Sobol points. Similarly, the training set
Sd = {zj , g(zj)} for zj ∈ D′, with 1 ≤ j ≤ Nd, are quadrature points, corresponding to the quadrature
rule (2.19).

Residuals

We will require that for parameters θ ∈ Θ, the neural networks uθ ∈ Ck(D;Rd), pθ ∈ Ck(D;R), for
k ≥ 2. We define the following residuals that are needed in algorithm 5. The PDE residual (3.2), consists
of two parts in this case (see also [73], section 5), given by,

rint[uθ] = ∆uθ +∇pθ − f, ∀x ∈ D, (5.82)

and
rdiv[uθ] = ∇ · uθ − u′, ∀x ∈ D, (5.83)

The data residual is given by,
rd[uθ] = uθ − u′, ∀x ∈ D′. (5.84)

Loss functions

In algorithm 5 for approximating the inverse problem (5.73), (5.74), we will need the following loss
function,

J(θ) =
Nd∑
j=1

wd
j |rd[uθ](zj)|2 + λ

(Nint∑
i=1

wint
i |rint[uθ](yi)|2 +

Nint∑
i=1

wint
i |rdiv[uθ](yi)|2

)
, (5.85)

with hyperparamter λ, residuals defined in (5.35), (5.36), training points defined above and weights wint
i ,

wd
j , corresponding to quadrature rule (2.19).

5.6.3 Estimates on the generalization error

Let BR1(x0) be the largest ball inside the observation domain D′ ⊂ D. We will consider balls BR(x0) ∈ D
such that R > R1 and estimate the generalization error,

EG(BR) := ∥u− u∗∥L2(BR(x0)), (5.86)

with u∗ = uθ∗ is the PINN generated by algorithm 5. We will estimate this generalization error in terms
of the training errors defined by,

Ed
T =

 Nd∑
j=1

wd
j |rd[uθ∗](zj)|2

 1
2

, Eint
T =

(
Nint∑
i=1

wint
i rint[uθ∗](yi)|2 +

Nint∑
i=1

wint
i |rdiv[uθ](yi)|2

) 1
2

, (5.87)

in the following lemma,

91

i
i

“output” — 2023/12/11 — 11:30 — page 92 — #92 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

Lemma 5.6.2. For f ∈ Ck−2(D;Rd), fd ∈ Ck−1(D) and u′ ∈ Ck(D′), with k ≥ 2. Let u ∈ H1(D;Rd)
and p ∈ H1(D) be the solution of the inverse problem corresponding to the Stokes’ equations (5.73) i.e,
they satisfy (5.75) for all test functions v ∈ H1

0 (D;Rd), w ∈ L2(D) and satisfies the data (5.74). Let
u∗ = uθ∗ ∈ Ck(D;Rd), p∗ = pθ∗ ∈ Ck(D) be a PINN generated by the algorithm 5, with loss functions
(3.6), (5.85). Let BR1(x0) be the largest ball inside D′ ⊂ D. Then, the generalization error (5.86) for
balls BR(x0) ∈ D with R > R1 is bounded by,

(EG(BR))2 ≤

C
[
(Eint

T)2 + Cτ
û(Eint

T)2(1−τ) + C1−τ
û (Eint

T)2(1−τ)(Ed
T)2τ +

+ CqN
−α + Cτ

ûC
(1−τ)
q N−(1−τ)α + C1−τ

û C(1−τ)
q Cτ

qdN
−(1−τ)αN−αdτ

d

] (5.88)

with constants Cû = ∥u∥2
L2(D)+∥u∗∥2

L2(D), Cq = Cq

(
resint[uθ∗]∥Ck−2(D) + ∥rdiv[uθ∗]∥Ck−1(D)

)
and Cqd =

Cqd

(
∥rd[uθ∗]∥Ck(D′)

)
, given by the quadrature error bound (2.20) and τ given in (5.76).

Proof. For notational simplicity, we denote rint = rint[uθ∗], rdiv = rdiv[uθ∗] and rd = rd[uθ∗].

Define û = u∗−u ∈ H1(D;Rd) and p̂ = p∗−p ∈ H1(D), by linearity of the differential operator in (5.73)
and the data observable in (5.74) and by definitions (5.82), (5.83), (5.84), we see that û, p̂ satisfy,

∆û+∇p̂ = rint, ∀x ∈ D,
∇ · û = rdiv, ∀x ∈ D,

û = rd, ∀x ∈ D′,

(5.89)

with Stokes’ equation being satisfied in the sense of (5.75).

Hence, we can directly apply the conditional stability estimate (5.76) to obtain,

E2
G(BR) ≤ C

(
Crint + Cτ

ûC
1−τ
rint

+
(
C1−τ

rint
C1−τ

û

)
∥rd∥2τ

L2(D′)

)
, (5.90)

with constants,
Crint

= ∥rint∥2
L2(D) + ∥rdiv∥2

L2(D), Cû = ∥u∥2
L2(D) + ∥u∗∥L2(D). (5.91)

By observing that (Ed
T)2 is the quadrature approximation of ∥rd∥2

L2(D′) and (Eint
T)2 is the quadrature

approximation of Crint with the quadrature rule (2.19), we can directly apply (2.20) to obtain the desired
inequality (5.88).

Remark 5.6.3. The bound (5.88) is more complicated than the corresponding generalization error es-
timates for the Poisson, Heat and Wave equations. Nevertheless, the same general structure can be
observed. There are two types of terms, one based on the training errors Eint

T ,Ed
T , which can be computed

a posteriori and should be made small during the training process. The other set of terms are decreasing
in the number Nint, Nd of training samples. Thus the total error can be reduced by increasing the number
of training points, while keeping the resulting training errors low.

Remark 5.6.4. We observe that the generalization error in (5.88) is given in terms of balls. Arbitrary
sets can be readily included by considering the estimate in a union of balls containing that set. Moreover,
the generalization error (5.86) only considers errors in the velocity field. In principle, this estimate can
be used to bound pressure errors by working with the corresponding pressure Poisson equation.

92

i
i

“output” — 2023/12/11 — 11:30 — page 93 — #93 i
i

i
i

i
i

5.7. NUMERICAL EXPERIMENTS

Figure 5.1: The domains D,D′ for the Poission’s equation numerical experiment. Training set Sint are
Sobol points (blue dots) and training set Sd are Cartesian grid points (grey squares).

5.7 Numerical experiments

5.7.1 Poisson’s Equation

We follow [75] and repeat their experiment from section 7.4.3. As in [75], the unique continuation problem
for the Poisson equation is solved by considering the PDE (5.29) in the domain D = (0, 1)2 (see figure
5.1), with source term,

f(x1, x2) = −60
(
x1 − x2

1 + x2 − x2
2

)
. (5.92)

The data (5.31) will be given in the observation domain (see figure 5.1),

D′ = {(x1, x2) ∈ R2 : |x1 − 0.5| < 0.375; |x2 − 0.5| < 0.375}. (5.93)

In order to generate the data term g in (5.31), we find that,

u(x1, x2) = 30x1x2(1− x1)(1− x2), (5.94)

is an exact solution of the Poisson equation (5.29), with the source term (5.92) and let g = u|D′ , with D′

(5.93), as the data term in (5.31). Clearly the exact solution u (5.94) and inputs f, g are as regular as
required in Lemma 5.3.3.

N K − 1 d̄ λreg λ ET ||u − u∗||L2 ||u − u∗||H1

20 × 20 4 24 0.0 0.001 0.0008 0.28 % 1.1 %

40 × 40 4 24 0.0 0.001 0.0006 0.25 % 1.0 %

80 × 80 4 24 0.0 0.001 0.00053 0.24 % 0.9 %

160 × 160 4 24 0.0 0.001 0.00043 0.2 % 0.8 %

Table 5.1: Poisson’s equation: relative percentage generalization errors and training errors for different
numbers of training points.

93

i
i

“output” — 2023/12/11 — 11:30 — page 94 — #94 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

(a) Exact Solution u (b) PINN u∗ (c) Relative error |û|
∥u∥

L2

Figure 5.2: Comparison of the Exact solution, the PINN approximation and norm of the resulting error
for the unique continuation problem for the Poisson’s equation, with N = 20 × 20 training
points.

We will generate PINNs by algorithm 5, with loss functions (5.37), corresponding to training sets Sint, Sd.
For Sint, we will use Sobol points on the domain D (and the corresponding quasi-Monte Carlo integration
as quadrature rule) and for Sd, we set up a Cartesian grid on the inner square D′ (5.93) (with midpoint
rule as the quadrature rule), see figure 5.1 for a representation of both training sets.

The PINNs in algorithm 5 contain several hyperparameters namely, the number of hidden layers K − 1
(depth) in (2.24), number of neurons d̄ (width) in each hidden layer, the exponent q of the regularization
term in loss function (3.6), the size λreg of the regularization term and the hyperparameter λ in the
loss function (5.37). Therefore, consistently with the previous chapter, we follow [12] and perform an
ensemble training, with the hyperparameter range specified in Table 3.1 to find the best hyperparameters
for each experiment. To do so, for each hyperparameter configuration, we will run the BFGS-B optimizer
with 30 randomly selected starting values and select the configuration resulting in the smallest training
error ET = Ed

T + Eint
T over the retrainings.

N K − 1 d̄ λreg λ ET ||u − u∗||L2 ||u − u∗||H1

20 × 20 4 24 0.0 0.001 0.0125 0.70 % 2.3 %

40 × 40 4 24 0.0 0.001 0.0127 0.53 % 1.9 %

80 × 80 4 24 0.0 0.001 0.0127 0.45 % 1.7 %

160 × 160 4 24 0.0 0.001 0.013 0.34 % 1.3 %

Table 5.2: Poisson’s equation with noisy measurements: relative percentage generalization errors and
training errors for different numbers of training points.

We set r = meas(D′) = 9/16, with and for any N = Nint + Nd, we set Nd = rN and present results
for the PINNs in figure 5.2, where we plot the exact solution u (5.94), the PINN solution u∗ and the
error û = u∗ − u, associated with a PINN generated with N = 202 = 400 training points and with a
network with 4 hidden layers, with 24 neurons in each layer, λ = 10−3 in (5.37) and λreg = 0 in (3.6). We
observe from this figure, that already for this very low number of training points, the PINN generated
by algorithm 5 is able to approximate the underlying solution of the inverse problem (5.29), (5.31), very
accurately. The plot of the error in Figure 5.2 (right) shows that the error is mostly concentrated near
the boundary and shows a logarithmic behavior, as predicted by the theory and seen in [75].

94

i
i

“output” — 2023/12/11 — 11:30 — page 95 — #95 i
i

i
i

i
i

5.7. NUMERICAL EXPERIMENTS

The efficiency of PINNs in approximating solutions to this problem is reinforced from Table 5.1, where
we present the (percentage relative) generalization errors EG(D) (5.38) and total training errors ET , for
PINNs with N = 202, 402, 802, 1602, and consequently Nd = rN , training points. We also tabulate the
(relative percentage) error in L2 between the PINN and the exact solution. From the table, we see that
even for very few (202) training points, the L2 and H1-generalization errors are very low, with H1-error
being around 1% and L2-error around 0.3%. This is particularly impressive as it takes approximately
21s to train the PINN for this training set. The error decays slowly as the number of training samples is
increased. This is consistent with the logarithmic decay predicted in (5.41). Moreover, the training error
is already of the size of 10−4, even for 202 training points and it is difficult to reduce the training error
further.

Note that we present the generalization errors, averaged over K = 30 retrainings i.e, different random
starting values for the optimizer. The generalization error, corresponding to the starting value with the
smallest training loss, is considerably smaller.

Finally, as stated in remark 5.2.8, we can also extend the bounds (5.40), (5.41), to the case of noisy data,
analogous to (5.28). To test the validity of PINNs in this regime, we perturb the right hand side of the
data term (5.31), with 1% standard normal noise, run algorithm 5 to generate PINNs for approximating
the inverse problem for the Poisson equation and present the results in Table 5.2. From this table, we
see that although slightly higher than in the noise-free case (compare with Table 5.1), the L2 and H1-
generalization errors are still very low and decay a bit faster than in the noise-free case. Thus, at least
for noisy data with small noise amplitude, we can readily use PINNs for approximating the solutions of
the data assimilation problem.

5.7.2 Heat equation

We follow [87] and start by considering the heat equation (5.46) in one space dimension (with zero
Dirichlet boundary conditions) and setting D = (0, 1). The final time is set as T = 0.02 and the data
term in (5.47) is specified in the observation domain D′

T , with D′ = (a, 1 − a), and as in [87], we set
a = 0.2. The data term g and the source term f are generated from the exact solution,

u(x, t) = e−4π2t2
sin(2πx). (5.95)

In the first numerical experiment, we use Sobol points as training points Sint in the domain DT and
Cartesian grid points are chosen as the training set Sd ⊂ D′

T and Ssb ⊂ ∂D× (0, T) (see figure 5.3 for an
illustration). We run the algorithm 5 on these training sets to generate the PINN for approximating the
data assimilation problem for the heat equation (5.46), (5.47).

In figure 5.4, we plot the exact solution and the solution field, generated by a PINN, and the relative
error (in norm), with a total of N = Nint + Nsb + Nd = 16 × 50 training points, with Nint = (1 − r)N ,
and r = 0.6 training points and with hyperparameters, shown in Table 5.3. We see from this figure that
the PINN is able to approximate the exact solution (in both space and time) to very high accuracy. From
the plot of the error (figure 5.4 (right)), we see that bulk of the error is concentrated near the initial time
i.e T ≈ 0. This is not surprising as the solution of the heat equation is damped very quickly in time and
initial errors are dissipated.

To further quantity this high accuracy of PINNs, we present the percentage relative errors, ∥u−u∗∥L2(DT)
and ∥u − u∗∥L2((0,T);H1(D)) , for a sequence of PINNs, with increasing number of training points. Note
that this quantity is a slight perturbation of the generalization error in (5.57) and can be readily bounded
above by the lhs of (5.57). For each configuration the model is retrained 20 times and the configuration

95

i
i

“output” — 2023/12/11 — 11:30 — page 96 — #96 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

realizing the lowest value of the average training loss over the retrainings is selected. We see from this
table that the errors in both L2 and H1 are very small (significantly less than 1%), even for very few
16 × 50 = 800 training points. However, there is some saturation effect and the errors do not really
decrease on increasing the number of training samples. This can be due to the fact that training error ET

is already very small, even for the smallest number of training points, and it is difficult to reduce them
further with the LBFGS optimizer for the loss function (5.54).

N K − 1 d̄ λreg λ ET ||u − u∗||L2 ||u − u∗||H1

16 × 50 8 20 0.0 0.001 0.001 0.18 % 0.42 %

16 × 100 8 20 0.0 0.001 0.00096 0.25 % 0.52 %

16 × 200 8 20 0.0 0.001 0.00078 0.23 % 0.55 %

Table 5.3: 1-D Heat equation: relative percentages errors for different values of the number of training
samples.

Finally, in order to investigate the sensitivity of the PINN errors with respect to the type of training
points (underlying quadrature rule), we repeat the numerical experiment for data assimilation with the
heat equation (with exact solution (5.95)), but with randomly chosen training points in the training sets
Sint,sb,d. All points are chosen with respect to underlying uniform distributions and the corresponding
PINNs are generated by running algorithm 5. Note that we can readily prove a version of the generaliza-
tion error estimate (5.57) in this setting by adapting the arguments in [73] (see Lemma 2.10) and also the
recent paper [16]. The resulting (averaged over K = 30 different randomly chosen training sets) general-
ization errors in L2 and H1 are shown in Table 5.4. From this table, we observe that the generalization
errors are as small as the ones in the case of Sobol and Cartesian training points. Moreover, there is a
slight but consistent decay in the error with increasing number of training points. These results indicate
considerable robustness of the PINNs, with respect to the choice of training points.

N K − 1 d̄ λreg λ ET ||u − u∗||L2 ||u − u∗||H1

16 × 50 4 24 0.0 0.001 0.001 0.27 % 0.55 %

16 × 100 4 24 0.0 0.001 0.00098 0.25 % 0.52 %

16 × 200 4 24 0.0 0.000788 0.00076 0.22 % 0.47 %

Table 5.4: 1-D Heat equation with randomly chosen training points: relative percentages errors for dif-
ferent values of the number of training samples.

N K − 1 d̄ λreg λ ET ||u − u∗||L2

60 × 60 4 24 0.0 0.001 0.00125 0.29 %

90 × 90 4 20 0.0 0.001 0.0011 0.28 %

120 × 120 4 24 0.0 0.001 0.00085 0.21 %

Table 5.5: 1-D Wave equation with observation domain satisfying the geometric control condition and
shown in figure 5.5(left): relative percentage L2 errors for different values of the number of
training samples.

96

i
i

“output” — 2023/12/11 — 11:30 — page 97 — #97 i
i

i
i

i
i

5.7. NUMERICAL EXPERIMENTS

Figure 5.3: The domains DT , D
′
T for the heat equation numerical experiment. Training set Sint are Sobol

points (blue dots) and training set Sd ∪ Ssb are Cartesian grid points (grey squares).

(a) Exact Solution u (b) PINN u∗ (c) Relative error |û|
∥u∥

L2

Figure 5.4: Comparison of the Exact solution, the PINN approximation and relative error for the data
assimilation problem for the heat equation, with N = 16× 50 training points.

5.7.3 Wave Equation

We present the following experiment proposed in [82], where the authors considered the wave equation
in one space dimension, in the domain D = [0, 1] and with final time T = 1. The source term f and data
term g in (5.62) are generated from the exact solution

u(t, x) = sin(2πt) sin(2πx), (5.96)

resulting in f = 0 and also satisfying the zero Dirichlet boundary conditions of (5.60).

For the first numerical experiment, we choose D′ = (0, 0.2) ∪ (0.8, 1) as the domain on which data g is
specified, see figure 5.5 for an illustration of the domains. Note that the resulting observation domain
D′

T satisfies the geometric control condition [82]. For these domains, we choose training sets as follows:
the training set Sint consists of Sobol points and the training sets Ssb and Sd are Cartesian grid points.

In figure 5.6, we plot the exact solution, the PINN and the resulting error, corresponding to N = Nint +
Nsb +Nd = 60×60 and Nint = 0.6N training points. We see from this figure that the PINN approximates

97

i
i

“output” — 2023/12/11 — 11:30 — page 98 — #98 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

(a) Domain D′
T satisfying geometric control condition (b) Domain D′

T not satisfying geometric control con-
dition

Figure 5.5: The domains DT , D
′
T for the numerical experiment for the wave equation. Left: Domain

satisfying the geometric control condition (GCC), Right: Domain not satisfying the GCC.
Training sets Sint are Sobol points (blue dots) and training set Sd ∪ Ssb are Cartesian grid
points (grey squares).

the underlying solution very well, with errors being small and distributed throughout the space-time
domain. The accuracy of the PINNs is further confirmed in Table 5.5, where we present the errors for
a sequence of PINNs (with increasing number of training points). We focus on the sup

t∈[0,T]

(
∥u(·, t) −

u(·, t)∗∥L2(D)

)
error, which can be readily bounded above by the generalization error bound (5.70). We

see from this table that the approximation errors are very low, with less than 0.3% relative error, already
with 60 × 60 training points. This error decays further but saturates around a value of 0.2% for more
training points.

For the second numerical experiment with the wave equation, we choose D′ = (0, 0.2) as the domain on
which data g is specified. Note that this domain does not satisfy the geometric control condition [82].
The interior, spatial boundary and data training points are chosen similarly to the previous numerical
experiment and are illustrated in figure 5.5 (right). In figure 5.8, we plot the exact solution, the PINN,
and the corresponding error, obtained for N = Nint + Nsb + Nd = 60 × 60, and Nint = 0.8N training
points. We see from this figure that although the geometric control condition is not satisfied, the PINN
seems to approximate the underlying exact solution rather well. However, a close inspection of the error,
plotted in figure 5.8 (right) reveals that the error is significantly greater than in the previous numerical
experiment where the domain D′

T satisfied the geometric control condition. In particular, we see that
the error seems to be transported along rays that do not belong to the observable part of the boundary.
Nevertheless and as observed in [82], the errors are of small amplitude, even for this example. This is
further verified in Table 5.6 where we present the generalization errors for this example for a sequence
of PINNs, with increasing numbers of training points. From this table, we observe decay of the error
with increasing number of training points. The overall generalization error is quite low, around 1.4%
for largest number of training points considered here. Note that this error is still an order of magnitude
larger than in the previous numerical experiment, where the geometric control condition was satisfied.
This experiment nicely illustrates the role of the geometric control condition of [79] in this context.

98

i
i

“output” — 2023/12/11 — 11:30 — page 99 — #99 i
i

i
i

i
i

5.7. NUMERICAL EXPERIMENTS

(a) Exact Solution u (b) PINN u∗ (c) Relative error |û|
∥u∥

L2

Figure 5.6: Data assimilation problem for the Wave equation in domains shown in figure 5.5 (left) satis-
fying the geometric control condition. Exact solution, PINN with N = 60×60 training points
and error.

Figure 5.7: The domains D,D′ for the numerical experiment for the Stokes equation. Training set Sint are
Sobol points (blue dots) and training set Sd are Radial (Cartesian) grid points (grey squares).

5.7.4 Stokes Equation

We follow [84] and consider the homogeneous version of Stokes equation i.e f, fd ≡ 0, in the two-
dimensional domain (0, 1)2. We consider the exact solutions,

u(x1, x2) = (4x1x
3
2, x

4
1 − x4

2), p(x1, x2) = 12x2
1x2 − 4x3

2 − 1, (5.97)

and define the data term g = u|D′ on the sub-domain,

D′ = {(x1, x2) ∈ R2 :
√

(x1 − 0.5)2 + (x2 − 0.5)2 < 0.25}. (5.98)

The domain D and the sub-domain D′ are illustrated in figure 5.7. We chose Sobol points as the training
set Sint and equally spaced (Cartesian) radial points as the training set Sd ⊂ D′. See figure 5.7 for an
illustration of these training sets.

With these training sets, we run algorithm 5 with loss function (5.85) to obtain PINNs approximating
the data assimilation problem for the Stokes equation (5.73), (5.74). The results with a PINN, trained

99

i
i

“output” — 2023/12/11 — 11:30 — page 100 — #100 i
i

i
i

i
i

CHAPTER 5. PHYSICS INFORMED NEURAL NETWORKS FOR THE INVERSE PROBLEM OF PDES

(a) Exact Solution u (b) PINN u∗ (c) Relative error |û|
∥u∥

L2

Figure 5.8: Data assimilation problem for the Wave equation in domains shown in figure 5.5 (right)
satisfying the geometric control condition. Exact solution, PINN with N = 60× 60 training
points and error.

N K − 1 d̄ λreg λ ET ||u − u∗||L2

60 × 60 4 24 0.0 0.001 0.0011 2.2 %

90 × 90 4 24 0.0 0.001 0.00087 1.5 %

120 × 120 4 24 0.0 0.001 0.00081 1.4 %

Table 5.6: 1-D Wave equation with observation domain not satisfying the geometric control condition
and shown in figure 5.5 (right): relative percentage L2 errors for different values of the number
of training samples.

with N = 40× 40 and Nd = rN points, with r = meas(D′)/meas(D), are shown in figure 5.9, where we
plot the exact and PINNs solutions for the velocity components u1, u2 and pressure p. We see from this
figure that the PINN is approximating the exact solution quite well, at least to the eye.

In order to quantify the approximation abilities of PINN for this example, in Table 5.7, we present the
training errors and relative percentage errors of ∥u − u∗∥L2(D) and ∥p − p∗∥L2(D). From this table, we
observe a slow, yet consistent, decay of the L2-errors of the velocity field. This is consistent with the
estimate (5.88) on the generalization error. More surprisingly, we also observe from the Table 5.7 that
the pressure errors are reasonably small and decay with increasing numbers of training samples. Note
that we did not provide any estimate on pressure errors, nor was pressure observed in the data in (5.74).
Yet, given that pressure is a Lagrange multiplier for the Stokes equations and we can control pressure
in terms of the velocity through the pressure Poission equations, we observe good approximation for the
pressure by PINNs. If the pressure was also specified in the observation domain D′, the data residual
(5.84), and the loss function (5.85) can de readily modified and the resulting PINN is likely to lead to a
better approximation of the pressure.

However, the amplitude of the error, for both the velocity field and the pressure, is higher than the other
three equations that we considered earlier in the paper. This is not unexpected as the observation domain
D′ is smaller in this case (see figure 5.7) and has approximately 20% of the area of the whole domain
D. To be able to reconstruct the velocity and pressure fields with reasonable accuracy from such a small
observation domain is significant. Note that we have used the best retraining i.e, the PINN with the
smallest training loss among the different random initializations of the optimizer. Choosing the average
over all the retrainings led to slightly greater generalization error.

100

i
i

“output” — 2023/12/11 — 11:30 — page 101 — #101 i
i

i
i

i
i

5.7. NUMERICAL EXPERIMENTS

N K − 1 d̄ λreg λ ET ||u − u∗||L2 ||p − p∗||L2

20 × 20 4 24 0.0 0.001 0.0007 2.3 % 5.6 %

40 × 40 4 24 0.0 0.001 0.0004 1.7 % 4.0 %

80 × 80 4 20 0.0 0.01 0.00046 1.6 % 3.5 %

Table 5.7: Stokes equation: Relative percentages errors for different numbers of training points.

(a) Exact solution u1 (b) Exact solution u2 (c) Exact solution p

(d) PINN u∗
1 (e) PINN u∗

2 (f) PINN p∗

Figure 5.9: Comparison of the Exact solution and the PINN approximations for the inverse problem for
the Stokes equation, with N = 20× 20 training points.

101

i
i

“output” — 2023/12/11 — 11:30 — page 102 — #102 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 103 — #103 i
i

i
i

i
i

6 Physics Informed Neural Networks for
High-Dimensional PDEs

Chapter 3 and Chapter 5 provide a rigorous estimate of the generalization error for physics-informed
neural networks (PINNs) when approximating forward and inverse problems of partial differential equa-
tions (PDEs). This estimate is derived based on the stability of the underlying problem. In summary,
for a stable (forward or inverse) problem, the generalization error can be bounded by the following
expression:

EG ≤ C(u, u∗) (ET + Cquad(u, u∗, d)f(N, d)) (6.1)

where u, u∗ ∈ U(DT), DT ⊂ Rd represents the d-dimensional domain, Cquad and C are constants de-
pending on the quadrature rule and the regularity of the solution, and f is a function of the number of
training points.

It should be noted that the constants Cquad and the function f explicitly depend on the dimensionality
of the problem. This is particularly true for standard composite quadrature rules and Quasi-Monte Carlo
methods, as discussed in Section 2.4. On the other hand, Monte Carlo quadrature is independent of the
problem’s dimensionality.

In this regard, several works have rigorously demonstrated that PINNs can overcome the curve of di-
mensionality, when uniform distributed random training samples are used [73, 88], making PINNs a very
attractive framework to solve high-dimensional PDEs. This is in contrast to traditional grid-based nu-
merical methods such as finite elements or finite differences, which require approximately Nd degrees of
freedom (for d dimensions, with N being the number of points in each dimension).

Therefore, in spite of their well-documented successes, it is clear that these methods are inadequate for
approximating solutions of PDEs with high-dimensional state or parameter spaces. Such problems arise
in different contexts ranging from PDEs with considerably large state-space, such as the Boltzmann,
Radiative transfer, Schrödinger and Black-Scholes type equations with very high number of spatial di-
mensions, to many-query problems, as in uncertainty quantification (UQ), optimal design and inverse
problems, which are modelled by PDEs with very high parametric dimensions [89, 90].

In this chapter, we first start with a motivating example of an high-dimensional parametric PDE (similar
to the problem shown in 3.7.5) and afterwards focus on two major classes of high-dimensional PDEs,
namely the radiative transfer equation and the Kolmogorov equations, which include many PDEs used
in finance, such as the Black-Scholes equation.

6.1 A Motivating Example

As a first example, we consider the following parametric heat equation in the domain Ω = DT × P :

ut(x, t, µ) = uxx(x, t, µ), (x, t, µ) ∈ Ω, (6.2)

103

i
i

“output” — 2023/12/11 — 11:30 — page 104 — #104 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

with DT = D × [0, T] (T = 0.1, D = [−1, 1]) being the space-time domain, and P = [0, 1]d the
parameter-space.

The parametric nature of the equation arises from the initial condition which is defined as:

u(x, 0, µ) = ū(x, µ) =
d∑

m=1
ūm(x, µm) =

d∑
m=1
−1
d

sin (πm (x− µm)) /m2. (6.3)

We further consider Dirichlet boundary conditions u(x, t, µ) = ub(x, t, µ), ∀(x, t, µ) ∈ ∂D × (0, T] × P
(obtained from the available exact solution of the PDE) and solve the underlying problem with PINNs.
To this end, we take the following ansatz function:

uθ(x, t, µ) =
d∑

m=1

(
1− t

T
ûθ,m(x, t, µ)

)
ūm(x, µm) (6.4)

with
ûθ : Ω→ Rd (6.5)

being a neural network of the form (2.24), with tunable parameters θ and with d outputs ûθ,1, ûθ,2, ..., ûθ,d.
This ansatz for the solution is dictated by the following facts:

1. The heat equation is a linear PDE. Hence, the solution of the equation is the superposition of the
solutions of the same PDE, each obtained with initial conditions ūm(x, µm).

2. The solution of the heat equation shows temporal decay, which in the approximate solution is
modelled by the multiplicative term

(
1− t

T ûθ,m(x, t, µ)
)
.

3. The ansatz directly enforces the initial condition.

Next, we define the main building blocks of algorithm 1.

Residuals.

• Interior Residual given by,

rint[uθ](x, t, µ) := ∂tuθ(x, t, µ)−∆xuθ(x, t, µ), (x, t, µ) ∈ D × [0, T]× P (6.6)

• Spatial boundary Residual given by,

rsb[uθ](x, t, µ) := uθ(x, t, µ)− ub(x, t, µ), ∀(x, t, µ) ∈ ∂D × (0, T]× P. (6.7)

• Temporal boundary Residual given by,

rtb[uθ](x, µ) := uθ(x, 0, µ)− ū(x, µ), ∀(x, µ) ∈ D × P. (6.8)

Given the definition of the the approximate ansatz solution (6.4), the temporal boundary residual
rtb[uθ](x, t, µ) is identically zero.

Training set. Given the potential high-dimensionality of the PDE, we choose the training sets based on
uniformly distributed random points. Since, the temporal boundary residual is identically zero, we only
need to define the interior training points Sint = {ym} for 1 ≤ m ≤ Nint, with each ym = (xm, tm, µm) ∈
Ω, and spatial boundary training points Ssb = {zm} for 1 ≤ n ≤ Nsb, with each zn = (xn, tn, µn) ∈
∂D × [0, T]× P

104

i
i

“output” — 2023/12/11 — 11:30 — page 105 — #105 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

Loss function. According to the definitions above, the loss function is

J(θ) :=
Nint∑
m=1

wint
n |rint[uθ](xm, tm, µm)|2 +

Nsb∑
n=1

wsb
n |rsb[uθ](xn, tn, µn)|2, (6.9)

with wint
m = 1

Nint
, ∀m = 1, ..., Nint, and wsb

n = 1
Nsb

, ∀n = 1, ..., Nsb being the quadrature weights
corresponding to the interior and spatial boundary training points.

Given the problem at hand, we run algorithm 1 to approximate the solution of the heat equation for
different numbers of input dimensions d = [4, 10, 20, 40, 60, 80, 100]. To do so, we set ûθ : Ω → Rd to
be a neural network with 2 hidden layers and 20 neurons. For each d, we then train the model on a
training set S = Sint ∪ Ssb with Nint = 16384 and Nsb = 8192 training points, by minimizing the loss
(6.9) for 10 different initializations of the trainable parameters, and pick the one minimizing the training
loss. The resulting best-performing network is denoted as u∗(x, t, µ). The main metrics of interest are
the generalization error:

EG =
(∫

D×[0,T]×P

|u(x, t, µ)− u∗(x, t, µ)|2dxdtdµ
) 1

2

(6.10)

and the elapsed training time. In this case an exact solution is readily available and given by

u(x, t, µ) =
d∑

m=1
exp

(
−(mπ)2t

)
ūm(x, µ). (6.11)

In Figure 6.1, we plot the achieved generalization error and the training time versus the number of
dimensions d for the best performing model. From the plot, we observe that both the generalization
error and the training time scale polynomially with the number of dimensions d. Specifically, the growth
of the generalization error is approximately quadratic, whereas the growth of the training time is linear.
This proves, at least experimentally, that PINNs can overcome the curse of dimensionality, which instead
would imply an exponential increase of the metrics. Moreover, it should be noted that even for 100
dimensions, the final error is below 2%, and the surrogate model is obtained in only 2 hours.

Finally, as an alternative to the physics-informed loss, given the low-dimensionality of the PDE state
space (two dimensions, time and space), the model can be trained in a supervised fashion, based on a
training set S = {(xi, tj , µk, u(xi, tj , µk))}, i = 1, ..., N, j = 1, ..., NT , k = 1, ...,M generated by solving
equation (6.4) with standard numerical methods, on a spatial grid with spatial resolution ∆x := xi+1−xi,
∀i = 1, . . . , N , for NT time-steps and for M realizations of the parameters µk ∼ Unif (P), k = 1, . . . ,M .
However, for problems with high-dimensional state space, solving the PDE even once might entail an
extremely large computational cost. We will address PDEs belonging to this class in the following
sections.

6.2 Radiative Transfer Equation

The study of radiative transfer is of vital importance in many fields of science and engineering including
astrophysics, climate dynamics, meteorology, nuclear engineering, and medical imaging [91]. The funda-
mental equation describing radiative transfer is a linear partial integro-differential equation, termed as

105

i
i

“output” — 2023/12/11 — 11:30 — page 106 — #106 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

(a) Generalization error VS number of dimensions d (b) Elapsed Training time VS number of dimensions d

Figure 6.1: Relative percentage generalization error (left) and training time (right) of PINN trained with
loss (6.9) versus the number of dimensions d of the underlying parameter space.

the radiative transfer equation. Under the assumption of a static underlying medium, it has the following
form [91],

1
c
ut + ω · ∇xu+ ku+ σ

(
u− 1

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)u(x, t, ω′, ν′)dω′dν′

)
=f, (6.12)

with time variable t ∈ [0, T], space variable x ∈ D ⊂ Rd (and DT = D × [0, T]), angle ω ∈ S = Sd−1

i.e. the d-dimensional sphere and frequency (or group energy) ν ∈ Λ ⊂ R. The constants in (6.12) are
the speed of light c and the surface area sd of the d-dimensional unit sphere. The unknown of interest
in (6.12) is the so-called radiative intensity u : DT × S × Λ→ R, while k = k(x, ν) : D × Λ→ R+ is the
absorption coefficient and σ = σ(x, ν) : D × Λ → R+ is the scattering coefficient. The integral term in
(6.12) involves the so-called scattering kernel Φ : S × S × Λ× Λ→ R, which is normalized as

∫
S×Λ

Φ(·, ω′, ·, ν′)dω′dν′ = 1,

in order to account for the conservation of photons during scattering. The dynamics of radiative transfer
are driven by a source (emission) term f = f(x, ν) : D × Λ→ R.

Although the radiative transfer equation (6.12) is linear, explicit solution formulas are only available in
very special cases [91]. Hence, numerical methods are essential for the simulation of the radiative intensity
in (6.12). However, the design of efficient numerical methods is considered to be very challenging, on
account of the high-dimensionality of the radiative transfer equation (6.12), where in the most general
case of three space dimensions, the radiative intensity is a function of 7 variables (4 for space-time, 2 for
angle and 1 for frequency) [89, 90, 91]. In order to solve the radiative transfer with PINNs, we apply
algorithm 1. Below we explicitly define the building blocks of the algorithm.

106

i
i

“output” — 2023/12/11 — 11:30 — page 107 — #107 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

6.2.1 The underlying PDEs

We model radiative transfer in a static medium by the evolution equation (6.12) for the radiative intensity
u. This partial integro-differential equation is supplemented with the initial condition,

u(x, 0, ω, ν) = u0(x, ω, ν), (x, ω, ν) ∈ D × S × Λ, (6.13)

for some initial datum u0 : D × S × Λ→ R.

Given that the radiative transfer equation (6.12) is a transport equation, the boundary conditions are
imposed on the so-called inflow boundary given by,

Γ− = {(x, t, ω, ν) ∈ ∂D × [0, T]× S × Λ : ω · n(x) < 0} (6.14)

with n(x) denoting the unit outward normal at any point x ∈ ∂D (the boundary of the spatial domain
D). We specify the following boundary condition,

u(x, t, ω, ν) = ub(x, t, ω, ν), (x, t, ω, ν) ∈ Γ−, (6.15)

for some boundary datum ub : Γ− → R.

Given that the radiative intensity is a function of 2d + 1 variables, it is essential to find suitable low-
dimensional functionals (observables) to visualize and interpret it. To this end, one often considers
physically interesting angular-moments such as the incident radiation (zeroth angular moment) and heat
flux (first angular moment) given by,

G(x, t, ν) =
∫
S

u(x, t, ω, ν)dω (6.16)

F (x, t, ν) =
∫
S

u(x, t, ω, ν)ωdω (6.17)

We note that for many applications of radiative transfer, it is common to consider the steady (time-
independent) version of the radiative transfer equation (6.12), which formally results from setting c→∞
and dropping the time-derivative term in the left hand side of (6.12).

6.2.2 PINNs

Training sets

As in section 3.1, we divide the training set S = Sint ∪ Ssb ∪ Stb into the following three subsets,

• Interior training points Sint = {zint
j }, for 1 ≤ j ≤ Nint, and zint

j = (xint
j , tint

j , ωint
j , νint

j) with
xint

j ∈ D, tint
j ∈ [0, T], ωint

j ∈ S, νint
j ∈ Λ, for all j. These points are the quadrature points of

a suitable quadrature rule with weights wint
j . If the underlying spatial domain D ⊂ Rd can be

mapped to a d-dimensional rectangle, either entirely or in patches, then we can set the training
points zint

j as a low-discrepancy Sobol sequence [92] in [0, 1]2d+1, by rescaling the relevant domains.
Sobol sequences arise in the context of Quasi-Monte Carlo integration [50] and the corresponding
quadrature weights are wint

j ≡ 1
Nint

, for all j. Note that the QMC quadrature rule does not suffer
from the curse of dimensionality (see section 6.2.3 for details). In case the geometry of the domain
is very complicated, one has simply choose random points, independent and identically distributed
with the underlying uniform distribution, as training points.

107

i
i

“output” — 2023/12/11 — 11:30 — page 108 — #108 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

• Spatial Boundary points Ssb = {zsb
j }, for 1 ≤ j ≤ Nsb, and zsb

j = (xtb
j , t

tb
j , ω

tb
j , ν

tb
j) with xtb

j ∈
∂D, ttb

j ∈ [0, T], ωtb
j ∈ S, νtb

j ∈ Λ, for all j. These points are the quadrature points of a suitable
quadrature rule with weights wsb

j . As before, we can choose Sobol points for logically rectangular
domains D or random points.

• Temporal boundary points Stb = {ztb
j }, for 1 ≤ j ≤ Ntb, and ztb

j = (xtb
j , ω

tb
j , ν

tb
j) with xtb

j ∈
D,ωtb

j ∈ S, νtb
j ∈ Λ, for all j. These points are the quadrature points of a suitable quadrature rule

with weights wtb
j . We can choose Sobol points for logically rectangular domains D or random points

to constitute this training set.

Residuals

Next, we follow Section 3.1 and define the following PDE residual rint[uθ] = rint[uθ](x, t, ω, ν), for all
(x, t, ω, ν) ∈ DT ,

rint[uθ] := 1
c
∂tuθ + ω · ∇xuθ + kuθ + σ

(
uθ −

1
sd

NS∑
i=1

wS
i Φ(ω, ωS

i , ν, ν
S
i)uθ(x, t, ωS

i , ν
S
i)
)
− f, (6.18)

where we have used Gauss-Legendre quadrature rules [49] with quadrature points and corresponding
weights zS

i = (ωS
i , ν

S
i), for 1 ≤ i ≤ NS , and ωS

i ∈ S and νS
i ∈ Λ, to approximate the scattering kernel

integral in (6.12). Moreover, k, σ, f are defined from (6.12).

We also need the following residuals for the initial and boundary conditions,

rtb[uθ] := uθ − u0, ∀(x, ω, ν) ∈ D × S × Λ,
rsb[uθ] := uθ − ub, ∀(x, t, ω, ν) ∈ Γ−.

(6.19)

Loss Functions

Based on the residuals and training sets above, we complete algorithm 1 by defining the following loss
function,

J(θ) :=
Nsb∑
j=1

wsb
j |rsb[uθ](zsb

j)|2 +
Ntb∑
j=1

wtb
j |rtb[uθ](ztb

j)|2 + λ

Nint∑
j=1

wint
j |rint[uθ](zint

j)|2. (6.20)

6.2.3 Estimates on the generalization error

For the sake of definiteness and simplicity, we consider the spatial domain as D = [0, 1]d, with d being

the spatial dimension. Any rectangular domain
d∏

i=1
[ai, bi], with ai < bi, for any ai, bi ∈ R can be mapped

to [0, 1]d by rescaling. Similarly, logically (patch or block) cartesian domains can be transformed to
(0, 1)d by combinations of coordinate transforms. We also rescale time and frequency to set T = 1 and
Λ = [0, 1]. Finally, the angular domains can be mapped onto to [0, 1]d−1 by rescaling the underlying
polar coordinates. Hence, the underlying domain is DT = [0, 1]2d+1. Thus, we can choose our interior
training points Sint, temporal boundary training points Stb and spatial boundary training points Ssb as
low-discrepancy Sobol points [50].

108

i
i

“output” — 2023/12/11 — 11:30 — page 109 — #109 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

Our aim in this section is to derive a rigorous estimate on the so-called generalization error (or approx-
imation error) for the trained neural network u∗ = uθ∗ , which is the output of the PINNs algorithm 1.
This error is of the form,

EG = EG(θ∗) :=

∫
DT

|u(x, t, ω, ν)− u∗(x, t, ω, ν)|2dz

 1
2

, (6.21)

with dz = dxdtdωdν denoting the volume measure on DT .

We follow Chapter 3.1, Section 3.2 and estimate the generalization error (6.21), in terms of training
errors,

Esb
T :=

Nsb∑
j=1

wsb
j |rsb[uθ∗](zsb

j)|2
 1

2

, Etb
T :=

Ntb∑
j=1

wtb
j |rtb[uθ∗](ztb

j)|2
 1

2

, Eint
T :=

Nint∑
j=1

wint
j |rint[uθ∗](zint

j)|2
 1

2

(6.22)
Note that the training errors, defined above, correspond to a local minimizer θ∗ of (3.6) and are readily
computable from the loss function (3.6), during and at the end of the training process.

The detailed estimate on the generalization error in Lemma 9.1.1, together with the assumptions on the
underlying coefficients, functions and neural network, is presented and proved in Appendix 9.1.1. We
direct the interested reader to the appendix and focus on the following form of the error estimate (9.3),

(EG)2 ≤ C1
(
(Etb

T)2 + c(Esb
T)2 + c(Eint

T)2)
+ C2

(
(log(Ntb))2d

Ntb
+ c

(log(Nsb))2d

Nsb
+ c

(log(Nint))2d+1

Nint
+ cN−2s

S

)
,

(6.23)

with finite constants C1 = C, C2 = CC∗ defined in (9.4). The following remarks about the bound (6.23)
are in order,

Remark 6.2.1. We see from the right hand side of the bound (6.23) that the dimensional dependence of
the upper bound is only a logarithmic factor. This is not a severe restriction in this case, as the spatial
dimension d is atmost 3. It is well known [50] that the logarithmic factor in the rhs of (6.23) starts
affecting the rate of decay only when Nint < 22d+1. Thus as long as Nint > 128 and Ntb, Ntb > 64, we
should see a linear decay in the error contributions of the Sobol points in (6.23). Hence, we claim that as
long as the training errors do not depend on the underlying dimension, the estimate (6.23) suggests that
the PINNs algorithm 1 will not suffer from a curse of dimensionality.

Remark 6.2.2. The estimate (6.23) brings out the role of the speed of light c very clearly. As long as c is
finite, we can rescale time to set c = 1. Nevertheless, the constant C1 in (6.23) grows exponentially with
the rescaled time, deteriorating the control on the error provided by the bound (6.23). Thus, this bound
is not suitable for steady-state problems (formally) obtained by letting c → ∞. Nevertheless, a modified
error estimate can be derived for the steady state case and we present it in the appendix 9.1.1.

6.2.4 Numerical Experiments

The PINNs algorithm has the following hyperparameters, the number of hidden layers K−1, the width of
each hidden layer dk ≡ d̄ in (2.24), the specific activation function A, the parameter λ in the loss function

109

i
i

“output” — 2023/12/11 — 11:30 — page 110 — #110 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

(6.20), the regularization parameter λreg in the cumulative loss function (3.6) and the specific gradient
descent algorithm for approximating the optimization problem (3.6). We use the hyperbolic tangent tanh
activation function, thus ensuring that all the smoothness hypothesis on the resulting neural networks,
as required in lemmas 9.1.1 and 9.1.2 are satisfied. Moreover, we use the second-order LBFGS method
[56] as the optimizer. We follow the ensemble training procedure of [12] in order to choose the remaining
hyperparameters. To this end, we consider a range of values, shown in Table 6.1, for the number of hidden
layers, the depth of each hidden layer, the parameter λ and the regularization parameter λreg. For each
configuration in the ensemble, the resulting model is retrained (in parallel) nθ times with different random
starting values of the trainable weights in the optimization algorithm and the one yielding the smallest
value of the training loss is selected.

K − 1 d̄ λ λreg nθ

Example 6.2.4, 6.2.4 4, 8 16, 20, 24 0.1, 1, 10 0 5

Example 6.2.4 4, 8 16, 20 0.1, 1 0, 10−6, 10−5 10

Example 6.2.4 4, 8, 12, 16, 20 16, 20, 24, 28, 32, 36, 40 0.1, 1 0 20

Example 6.2.4 4, 8 16, 20, 24 1, 10 0 5

Table 6.1: Hyperparameter configurations and number of retrainings employed in the ensemble training
of PINNs for the radiative transfer equation (6.12)

Monochromatic stationary radiative transfer in one space dimension

We begin with the much simpler case of steady state radiative transfer in the one space dimension, also
referred to as slab geometry [93]. In this case, the radiative transfer equations (6.12) simplify to,

µ
∂

∂x
u(x, µ) +

(
σ(x) + k(x)

)
u(x, µ) = σ(x)

2

∫ 1

−1
Φ(µ, µ′)u(x, µ′)dµ′, µ = cos(θ), (x, µ) ∈ [0, 1]× [−1, 1].

(6.24)
We follow the setup of [94] where the authors benchmarked least squares finite element methods for
one-dimensional radiative transfer on this problem. As in [94], the following inflow boundary conditions
are imposed:

u(0, µ) = 1, µ ∈ (0, 1],
u(1, µ) = 0, µ ∈ [−1, 0).

(6.25)

Note that the boundary conditions allow for possible discontinuities at µ = 0. The coefficients and
scattering kernel are,

σ(x) = x, k(x) = 0, Φ(µ′, µ) =
L∑

ℓ=0
dℓPℓ(µ)Pℓ(µ′), d0 = 1, (6.26)

with Pℓ(µ) denoting the Legendre polynomial of order ℓ. We employ the sequence of coefficients dℓ =
{1.0, 1.98398, 1.50823, 0.70075, 0.23489, 0.05133, 0.00760, 0.00048}, proposed in [94]. Although only in 2
dimensions, this problem is nevertheless considered rather challenging on account of the possible presence
of discontinuities.

We use the PINNs algorithm 1 to approximate (6.24), with Sobol points for the interior training set
Sint and spatial boundary training set Ssb. Similarly, a Gauss-Legendre quadrature rule with NS = 10

110

i
i

“output” — 2023/12/11 — 11:30 — page 111 — #111 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

Nint Nsb K − 1 d̄ λ ET ||u− − u∗
−||L2 ||u+ − u∗

+||L2 ||u − u∗||L2 Training Time

8192 2048 8 24 0.1 0.00015 1.1% 1.2% 0.24% 20 min

Table 6.2: Results for monochromatic stationary radiative transfer in one space dimension.

quadrature points is used for approximating the integral with the scattering kernel. We also set Nint =
8192, Nsb = 2048, for this experiment. The hyperparameters that resulted from the ensemble training
are presented in Table 6.2. As seen from the table, a very low training error is obtained in this case,
together with a comparably low generalization error of 0.24%. A contour plot of the resulting radiative
intensity in (x, µ)-plane is presented in figure 6.2. The results are very similar to those obtained with a
finite element solver. It is interesting to note that this very good match with the finite element method
is obtained with a training time of 20 minutes on a CPU.

Figure 6.2: Contour plot of the PINN radiative intensity u∗(x, µ) for the 1D monochromatic experiment
(left), compared with the solution u(x, µ) obtained with a finite element solver (right)

Another attractive feature of this simplified problem lies in the fact that the authors in [95] obtained an
exact analytical solution for it. Although it is very complicated to evaluate this solution for the whole
(x, µ)-plane, its values on the boundaries u−(µ) = u(0, µ) and u+(µ) = u(1, µ) can be readily evaluated.
We do so and compare the exact solution with the trained PINN, denoted by u∗

±. These results are
plotted in figure 6.3. We see from this figure that the PINN is able to very accurately approximate the
discontinuous exact solution at the boundary. A quantitative comparison in performed by computed the
errors u± − u∗

± in L2-norm. These errors, presented in table 6.2, are very small for both boundaries
and further demonstrate that the PINN is able to approximate the underlying discontinuous solution to

111

i
i

“output” — 2023/12/11 — 11:30 — page 112 — #112 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

high-accuracy, at very low computational cost.

Figure 6.3: Comparison of the analytical and PINN radiative intensity at the physical domain boundaries
for the stationary monochromatic radiative transfer in one-space dimension.

Monochromatic stationary radiative transfer in three space dimensions

Next, we consider a monochromatic and stationary version of the general radiative transfer equations
(6.12), but in three space dimensions. Already, this problem is in 5 dimensions and is challenging on
account of possibly high computational cost. We use the same setup as in [96] (section 8.2, experiment
3) and consider the problem in the unit cube D = [0, 1]3 where a source, located at the center c =
(0.5, 0.5, 0.5), radiates into the surrounding medium. We consider no further radiation entering the
domain (zero Dirichlet boundary conditions on the inflow boundary). The source term f is given by

f(x) = k(x)Ib(x), Ib(x) =
{

0.5− r, r ≤ 0.5
0, otherwise (6.27)

with r = |x − c|. The absorption coefficient is k(x) = Ib(x) and isotropic scattering Φ = 1, with unit
scattering coefficient σ(x) = 1 is considered.

As before, we use Sobol points for the interior training set Sint and boundary training set Ssb. Quadrature
points, corresponding to a Gauss quadrature rule of order 20 are also used to approximate the scattering
integral. We set Nint = 16384, Nsb = 12288 and NS = 100. The hyperparameters, corresponding to the
best performing networks, that result from ensemble training are presented in Table 6.3. We see from this
table that this hyperparameter configuration resulted in a very low (total) training error of 4.4 × 10−4,
which is comparable to those obtained in the one-space dimension case (see table 6.2).

Nint Nsb K − 1 d̄ λ ET Training Time

16384 12288 8 24 0.1 0.00044 1 hr 9 min

Table 6.3: Results of the ensemble training for the stationary monochromatic radiative transfer in three
space dimensions.

112

i
i

“output” — 2023/12/11 — 11:30 — page 113 — #113 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

As there is no analytical solution available for the radiative intensity in this case, we cannot compute
generalization errors. However, based on the theory (see estimate (9.3)) and on the comparison with
the one-dimensional case, we expect very low generalization errors when the training errors are this low.
Moreover, we can perform qualitative comparisons with the results obtained in [96]. To this end, we
plot three-dimensional volume plot for the incident radiation G(x) (see the first equation in (6.16) for
definition) in figure 6.4. We see from this figure that the results with PINN are very similar to the results
with the discrete ordinate method, shown in [96] (figure 8.12, page 126). Thus, we are able to approximate
the incident radiation to the same accuracy as a discrete ordinate method. The main differences lies in
the simplicity of implementation and very low computational cost. We observe from table 6.3 that the
PINN was trained in approximately 70 minutes on a single GPU. This should be contrasted with the very
intricate parallel algorithm of [96], which required considerably more computational time as the method
resulted in very number of degrees of freedom ranging from 200000− 600000.

Figure 6.4: Contour plot of the incident radiation G(x) for the 3D monochromatic experiment

Polychromatic stationary radiative transfer in three space dimensions

Next, we consider the most general case of the steady state radiative transfer equation (9.16) by following
the setup of [97] and references therein, where (9.16) is considered in the unit cube D = [0, 1]3 and in the
frequency domain Λ = [−6, 6], with normalization of energy groups. Furthermore, we consider a simple
case of zero absorption, isotropic kernel, zero Dirichlet boundary conditions (on the inflow boundary)
and spherical symmetry. Under the assumptions, by integrating equation (9.16) over the unit sphere S,
we arrive at the following ordinary differential equation for the radial flux i.e the incident heat flux (6.16)
along the radius,

∇ · Fr = 1
r2

d

dr
r2Fr = 4πf(r, ν) (6.28)

with r = |x− (0.5, 0.5, 0.5)| (see also [97] and references therein).

113

i
i

“output” — 2023/12/11 — 11:30 — page 114 — #114 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

An exact solution for the above ODE can be easily obtained. In particular, with the source term:

f(x, ν) =
{√

πϕ(ν)
(

1− 2r
)

if r ≤ 0.5,
0 otherwise,

ϕ(ν) = 1√
π

exp
(
− ν2), (6.29)

the radial flux Fr results in

Fr =
{

4
√
π3ϕ(ν)

(
r
3 −

r2

2

)
if r ≤ 0.5,

4
√
π3ϕ(ν) 1

96r2 otherwise.
(6.30)

As in the previous numerical experiment, we use Sobol points for the interior and boundary training sets
and Gauss quadrature points for integrating the scattering kernel, with Nint = 16384, Nsb = 12288, and
NS = 100. The hyperparameters used in the ensemble trainig are reported in table 6.1 and the resulting
best performing configuration is shown in table 6.4. We observe from this table that the resulting training
error is 1.6 × 10−3, which is about three times higher than the training error with the monochromatic
experiment (see table 6.3). This is not surprising as the underlying problem is more complicated on
account of introducing frequency as an additional variable and resulting in a 6-dimensional problem.

As no analytical solution is available for the radiative intensity, we cannot compute the generalization
error (9.19). However, we can compute the error between the analytical radial flux (6.30) and the PINN
approximation (computed from the intensity with a Gauss-Legendre quadrature rule). We show the
resulting L2-norm of the error in table 6.4. We see from this table that the error for the flux is quite
low at approximately 2% relative error, even for this rather complicated underlying problem. Moreover,
the training time is only one hour, comparable to the training time required to train the model for the
previous experiment, despite including one additional input dimension compared to before.

Nint Nsb K − 1 d̄ λ ET ||Fr − F ∗
r ||L2 Training Time

16384 12288 8 20 0.1 0.0016 2.1 % 1 hr 6 min

Table 6.4: Results for steady polychromatic radiative transfer in three space dimensions.

Polychromatic time-dependent Radiative transfer in three space dimensions

For the final numerical experiment, we consider the configuration proposed in [98], which is widely used in
benchmarking the radiative transport modules in production codes for radiation-(magneto)hydrodynamics,
in the context of Astrophysics [99]. The setup is as follows; a sphere with radius Ri and fixed temperature
TS is surrounded by a cold static medium at temperature Tm < TS . The experiment might represent, for
instance, the model of a star radiating in the surrounding atmosphere. It is assumed that the sphere, as
well as the surrounding medium, are emitting with a Planckian distribution

B(T, ν) = 2hν3

c2
1

e
hν

kbT − 1
(6.31)

with h and kb being the Planck and Boltzmann constant, and c the speed of light.

To make the problem tractable, the authors of [98] neglect scattering entirely by setting σ ≡ 0. Moreover,
the absorption coefficient is modeled by a constant k(x, ν) = kν , with ν being the frequency. The emission

114

i
i

“output” — 2023/12/11 — 11:30 — page 115 — #115 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

term is modeled by f(x, ν) = kνB(Tm, ν), resulting in the following form of the radiative transfer equation
(6.12),

1
c

∂u

∂t
+ ω · ∇xu = kν(B(Tm, ν)− u), (t, x, n, ν) ∈ DT × S × Λ. (6.32)

In the context of radiation-(magneto)hydrodynamics, one is mostly interested in the angular moments of
the radiative intensity that naturally arise in calculating the contribution of radiation to the total energy
of the fluid (plasma). Hence, it is customary to integrate (6.32) over the sphere S to derive the following
PDE for incident radiation (6.16):

1
c

∂

∂t
G+∇x · F = kν

(
b(Tm, ν)−G

)
, (t, x, ν) ∈ DT × Λ. (6.33)

with b(T, ν) = 4πB(T, ν).

However, the PDE (6.33) is not closed and one needs a closure for the flux F in terms of the incident
radiation G. It is common practice in astrophysics to use the so-called diffusion approximation of the
flux [100]:

F (t, x, ν) = − 1
3kν
∇G(t, x, ν), (6.34)

resulting in the following PDE,

1
c

∂

∂t
G− 1

3kν
∆G = kν

(
b(Tm, ν)−G

)
, (t, x, ν) ∈ DT × Λ. (6.35)

Defining the Knudsen number K = Lkν (with L being a characteristic length scale), it is well known that
the diffusion approximation is justified in the limit of K →∞.

kν Nint Nsb Ntb K − 1 d̄ λ ET Training Time

1 16384 12288 12288 4 40 0.1 0.0028 3 hr 25 min

10 16384 12288 12288 4 40 0.1 0.012 2 hr 15 min

Table 6.5: Results for polychromatic time-dependent radiative transfer in three space dimensions.

Although the PDE (6.35) is simpler than the full radiative transfer equation (6.12), efficient numerical
approximation of (6.35) is still quite challenging as the incident radiation is a function of 5 variables. As
it happens, PINNs provide an efficient method for approximating high-dimensional parabolic equations
such as (6.35), see [73] section 3 for details.

However, by assuming radial symmetry and with the flux approximation given in (6.34), the differential
equation (6.35) admits an analytical solution satisfying the initial and boundary conditions

G(0, r, ν) = b(Tm, ν),
G(t, r →∞, ν) = b(Tm, ν),

G(0, Ri, ν) = b(Ts, ν).
(6.36)

115

i
i

“output” — 2023/12/11 — 11:30 — page 116 — #116 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

The exact solution for (6.35) then reads [98],

G(t, r, ν) = b(Tm, ν) + Ri

r

(
b(Ts, ν)− b(Tm, ν)

)
F (t, r, ν),

F (t, r, ν) = 1
2 exp (−3kν(r −R))

{
Erfc

(√
3kν

4ct (r −R)−
√
kνct

)
+ Erfc

bigg(
√

3kν

4ct (r −R) +
√
kνct

)}
.

(6.37)

For this numerical experiment, we will approximate the full time-dependent radiative transfer equations
(6.32) with the PINNs algorithm 1. To this end, we consider (6.32) in the spatial domain D enclosed
between two spheres with radii Ri = 2 and Re = 4. Moreover, we introduce an auxiliary temporal
variable τ = ct to rescale time to [0, 1], whereas the energy group ν ranges between 1015 and 1018. We
set Ts = 150eV and Tm = 120eV .

The PINNs algorithm 1 employs Sobol points in the interior, spatial and temporal boundary training sets
and we set Nint = 16384, Nsb = Ntb = 12228. Moreover, we solve this problem for two different values
of the (constant in frequency) absorption coefficient i.e kν = 1 and kν = 10, resulting in two different
Knudsen numbers of K = 2 and K = 20, respectively. Given the challenging nature of this problem,
we choose slightly different ranges of the hyperparameters, presented in tabel 6.1 for ensemble training
and also use 20 retrainings, corresponding to different random starting values for the weights and biases
in the training procedure. The resulting best performing configurations are reported in table 6.5. We
observe from this table that PINNs provide a very low training error of 2.8× 10−3, for the K = 2 case.
This training error is comparable to the training errors for the previous two examples. The training error
increases by a factor of 4 for the K = 20 case, but still remains relatively low.

As we do not have exact analytical formulas for the full radiative intensity, it is not possible to compute
generalization errors. However to ascertain the quality of the solution, we compare with the exact solution
(6.37) of the diffusion equation (6.35) for the incident radiation. This comparison is shown as contour
plots for the incident radiation in the (r, ν)-plane (with r denoting the radial direction) in figure 6.5 as
well as one-dimensional cross-sections for different values of the radius r in figure 6.6. As seen from both
these figures, there is good agreement between the incident radiation, computed by a Gauss quadrature of
the PINN approximation to the radiative intensity in (6.32), and the analytical solution of the diffusion
approximation (6.35) for the K = 20 case. This is not unexpected as the diffusion approximation is
accurate for large Knudsen numbers. On the other hand, there is a significant difference between the
the incident radiation, computed by a Gauss quadrature of the PINN approximation to the radiative
intensity in (6.32), and the analytical solution of the diffusion approximation (6.35) for the K = 2 case.
This follows from the fact that the diffusion approximation will provide a poor approximation of (6.32)
for low Knudsen numbers. On the other hand, given the relatively low training error as well as the error
estimate (9.3), coupled with the results of the previous numerical experiments, we argue that the PINN
provides a much more accurate approximation to the underlying radiative intensity (and its moments)
than the diffusion approximation will do, atleast for low to moderate Knudsen numbers. Hence, PINNs
provide a viable and accurate method for competing radiative transfer in media with different optical
properties. Moreover, the runtime for even this very complicated problem was reasonably small, ranging
from two to three and half hours on a single GPU.

116

i
i

“output” — 2023/12/11 — 11:30 — page 117 — #117 i
i

i
i

i
i

6.2. RADIATIVE TRANSFER EQUATION

(a) Exact solution of (6.35) for kν = 1 (b) PINN for kν = 1

(c) Exact solution of (6.35) for kν = 10 (d) PINN at τ = 1 for kν = 10

Figure 6.5: Comparison of incident radiation with respect to the exact solution of the diffusion approxima-
tion (6.35) and PINN approximation of the full radiative transfer equation (6.32) at rescaled
time τ = 1 for two different values of the absorption coefficient kν = 1, 10

PINNs for the Inverse problem for radiative transfer

Next, we focus on a parameter identification problem (see Section 5.1) for radiative transfer. More
specifically, we consider the monochromatic stationary version of the radiative transfer equation (6.12)
in three space dimensions and choose the following concrete parameter identification problem:
Given measurements of the incident radiation G(x), find the unknown absorption coefficient k = k(x) and
the resulting radiative intensity u(x, ω) which solves the stationary radiative transfer equation. The spatial
domain is the unit cube D = [0, 1]3, with scattering coefficient σ = 0.5, scattering kernel Φ ≡ 1. The
source term f and boundary term ub are generated using the following synthetic absorption coefficient
and exact solution,

k(x) =
3∏

i=1
x2

i , u(x, ω) = 3
16π (1 + (ω · ω′)2)

3∏
i=1

xi(xi − 1), n′ =
(1√

3
,

1√
3
,

1√
3

)T

. (6.38)

117

i
i

“output” — 2023/12/11 — 11:30 — page 118 — #118 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

(a) Solution of (6.32) and (6.33) for kν = 1 (b) Solution of (6.32) and (6.33) for kν = 10

Figure 6.6: Comparison of exact solutions of the diffusion approximation (6.35) with the PINN approxi-
mation of the full radiative transfer equation (6.32) for two different values of the absorption
coefficient kν = 1, 10 at different radial locations and at rescaled time τ = 1

Nint Nsb Nd K − 1 d̄ λ ET ||u − u∗||L2 ||k − k∗||L2 ||G − G∗||L2 Training Time

16384 120 4096 8 20 1.0 0.00094 0.65 % 2.8 % 0.073% 1 hr 44 min

Table 6.6: Results for the inverse problem for radiative transfer.

The measured incident radiation Ḡ in (6.40) is calculated from the radiative intensity u above by using
the formula (6.16).

Following Section 5.1, we seek to find the deep neural networks kθk
: D → R+ and uθu

: D × S → R,
with the concatenated parameter vector θ = {θk, θu} ∈ Θ, approximating the absorption coefficient and
radiative intensity, respectively. The interior and data residual 5.4 are,

rint[uθu
, kθk

] := uθu
+ ω · ∇xuθu

+ kθk
uθu

+ σ

(
uθu
− 1
sd

NS∑
i=1

wS
i uθu

(x, ωS
i)
)
− f. (6.39)

rd[uθ] := G (uθu)− Ḡ(x), ∀x ∈ D, (6.40)

with G being the incident radiation calculated from (6.16) with a Gauss quadrature approximation of
the angular integral and Ḡ being the measured incident radiation.

Clearly this inverse problem is ill-posed as multiple absorption coefficients might lead to the same incident
radiation. Therefore, in order to ensure uniqueness of the absorption coefficient we also impose boundary
conditions on the neural network approximating the absorption coefficient kθk

to approximately match
the values of k, defined in (6.38) on the boundary of D and include in the loss function the so-called
Tikhonov regularization:

JT (θ) = λk||∇kθ||22, λk = 0.001. (6.41)

We use Sobol points for the interior training points and uniformly distributed random points are used
as data training points, with Nint = 16384, Nd = 4096. The resulting best performing hyperparameter
configuration after ensemble training is presented in Table 6.6.

118

i
i

“output” — 2023/12/11 — 11:30 — page 119 — #119 i
i

i
i

i
i

6.3. KOLMOGOROV EQUATIONS

In figure 6.7 we plot the incident radiation G and the absorption coefficient k, along the diagonal of the
unit cube. As observed from this figure, the incident radiation is almost identical to the measured data
Ḡ. This is further verified from table 6.6, from which we observe a very low L2-error for the incident
radiation. On the other hand, the absorption coefficient agrees reasonably well with the ground truth in
(6.38), with an error of less than 3%. Also the radiative intensity is approximated to very high accuracy,
with a generalization error below 1%. This is even more impressive if one consider that the problem is
solved within a computational time of approximately 100 minutes.

(a) Incident radiation G (b) Absorption Coefficient k

Figure 6.7: PINNs results for the inverse problem for radiative transfer. The PINNs approximation to the
incident radiation and absorption coefficient are plotted along the diagonal of the unit cube
and compared with the measured data Ḡ and ground truth absorption coefficient k given by
(6.38).

6.3 Kolmogorov Equations

Several different financial phenomena, including option pricing, are described by the high-dimensional
Kolmogorov partial differential equation,

ut = 1
2Tr

(
σ(x)σ(x)THx[u]

)
+ µ(x)T∇xu, ∀(x, t) ∈ D × [0, T]

u(x, 0) = φ(x), ∀x ∈ D
u(y, t) = ψ(y, t), ∀(y, t) ∈ ∂D × [0, T]

(6.42)

In the financial context, the equation describes the evolution of an option price, u : D × [0, T]→ R, as a
function of the portfolio assets’ price x ∈ D. These might include, for instance, stocks and funds prices.
Moreover, σ : Rd → Rd × Rd and µ : Rd → Rd are functions describing is the assets volatility and the
assets return, respectively. On the other hand, ∇x and Hx[u] are the gradient and the Hessian of u with
respect to the coordinate x. In order to uniquely define a solution of the PDE, suitable boundary data
ψ(y, t), ∀(y, t) ∈ ∂D × [0, T] and initial condition φ(x), ∀x ∈ D have to be provided.

The main challenge in solving 6.42 is the high-dimensionality d of the state space D ⊂ Rd, which might
account hundreds or even thousands of different assets.

119

i
i

“output” — 2023/12/11 — 11:30 — page 120 — #120 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

Prototypical examples of Kolmogorov PDEs include,

• Heat Equation. Let σ =
√
kID, with k being the thermal diffusivity of the medium and µ = 0.

This results in the heat equation for the temperature u of the medium:

ut = k∆xu, (6.43)

with ∆x =
∑d

i=1
∂2

∂x2
i
.

• Black-Scholes Equations. Let σ, µ be linear functions, then the Kolmogorov equation 6.42 reduces
to

ut =
d∑

i,j=1
βiβjρijxixjuxixj

+
d∑

i=1
µixiuxi

(6.44)

where βi and µi, i = 1, .., d, denote the volatility and interest rate of the stock prices xi, i = 1, .., d,
and ρi,j the correlation between the stocks price. The initial condition ϕ can be interpreted as a
payoff function. Common examples are the basket call option φ(x) = max

(∑d
i=1 aixi −K, 0

)
and

call on max option φ(x) = max (maxi aixi −K, 0)

Our goal in this chapter is to approximate the classical solution of Kolmogorov equations with PINNs.

6.3.1 PINNs

As commonly done in the rest of thesis, we begin by describing the building elements of PINNs algorithm
1.

Training Sets

For definiteness, we set D = [0, 1]d. Given the high-dimensionality of the partial differential equation
(d > 20), we choose the training sets based on uniformly distributed random points. We then divide the
training set into the following three sets, S = Sint ∪ Ssb ∪ Stb

• Interior training points Sint = {yn} for 1 ≤ n ≤ Nint, with each yn = (x, t)n ∈ D × [0, T].

• Spatial boundary training points Ssb = {zn, ψ(zn)} for 1 ≤ n ≤ Nsb with each zn = (xn, tn) and
each xn ∈ ∂D × [0, T].

• Temporal boundary training points Stb = {xn, φ(xn)}, with 1 ≤ n ≤ Ntb and each xn ∈ D.

Residuals

Next, we define the following residuals:

• Interior residuals:

rint[uθ] := ∂tuθ −
n∑

i,j=1
βiβjρijxixj∂xixjuθ −

n∑
i=1

µixi∂xiuθ, ∀(x, t) ∈ D × [0, T] (6.45)

120

i
i

“output” — 2023/12/11 — 11:30 — page 121 — #121 i
i

i
i

i
i

6.3. KOLMOGOROV EQUATIONS

• Spatial boundary residuals,

rsb[uθ] := uθ − ψ, ∀(y, t) ∈ ∂D × [0, T] (6.46)

• Temporal Boundary residual
rtb[uθ] := uθ − φ, ∀x ∈ D (6.47)

Loss Functions

Finally, the associated loss function to the problem 6.42 is the same as the one defined in (6.20), which
we write below for sake of definiteness,

J(θ) :=
Nsb∑
j=1

wsb
j |rsb[uθ](zsb

j)|2 +
Ntb∑
j=1

wtb
j |rtb[uθ](xtb

j)|2 + λ

Nint∑
j=1

wint
j |rint[uθ](yint

j)|2 (6.48)

Estimate on the Generalization Error

The generalization error of PINN approximating the linear Kolmogorov equation, defined as

EG = EG(θ∗) = ||u− u∗||L2(D×[0,T]) (6.49)

can be bounded, similarly to to the previous chapters, by leveraging the stability of the PDE (see Theorem
4 in [88]), and by making use of suitable quadrature error bounds. Differently from before, given the
random nature of the quadrature, only a probabilistic bound can be obtained. However, as proven in [88],
such bound is independent of the dimensionality of the underlying PDE, demonstrating that PINNs can
overcome the curse of dimensionality. Details and technicalities of the proof can be found in the paper
[88].

6.3.2 Numerical Experiments

Heat equation in several space dimensions

The Forward Problem. As a first numerical example, we consider the linear heat equation 6.43 with
k = 1 in the domain [0, 1]d and for the time interval [0, 1], for different space dimensions d. We consider
the initial data ū(x) = ∥x∥2

d . In this case, the explicit solution of the linear heat equation is given by

u(x, t) = ∥x∥
2

d
+ 2t. (6.50)

For different values of d ranging up to d = 100, we train PINNs with algorithm 1, by selecting randomly
chosen training points, with respect to the underlying uniform distribution. Ensemble training, as outlined
above, is performed in order to select the best performing hyperparameters among the ones listed in Table
3.1 and resulting errors are shown in 6.7. In particular, we present the relative percentage generalization
error EG, readily computed from definition (6.49) and normalized with the L2-norm of the exact solution
(6.50). We see from the table that the generalization errors and training times are very low, less than
1%, achieved in 45 minutes for 10 spatial dimensions, and rise rather slowly (approximately linearly) with
dimension, resulting in a low generalization error of 4.3%, even for 100 space dimensions. Note that we

121

i
i

“output” — 2023/12/11 — 11:30 — page 122 — #122 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

have not used any explicit solution formulas, such as the Feynman-Kac formulas, in algorithm 1. Still,
PINNs were able to obtain low enough errors, comparable to supervised learning based neural networks
that relied on the availability of an explicit solution formula [4, 5]. This experiment illustrates the ability
of PINNs to overcome the curse of dimensionality, at least with random training points.

d Nint Nsb Ntb K − 1 d L1-reg. L2-reg. λ ET Er
G Training Time

20 65536 65536 65536 4 20 0.0 10−6 0.1 0.006 0.89% 27min

50 65536 65536 65536 4 20 0.0 10−6 0.1 0.0056 2.6% 50min

100 65536 65536 65536 4 20 0.0 0.0 0.1 0.0035 4.3% 1h 45min

Table 6.7: Best performing hyperparameters configurations for the forward problem of the high-
dimensional heat equation, for different values of the dimensions d.

The Data Assimilation Problem. Next we consider the data assimilation problem for the heat
equation in the same setting described above. In particular, following 5.2, we set the observation as
D′

T = [a, 1 − a] × [a, 1 − a]d with a = 0.4 and the data term (5.10) is defined by restricting the exact
solution (6.50) to this observation domain.

All the training sets Sint, Ssb and Sd consists of points, chosen randomly and independently with the
underlying uniform distribution. For all dimensions d considered here, we let Nint = 8192, Nd = 6144
and Nsb = 2048, resulting in a total of N = Nint +Nsb +Nd = 16384 training points.

On these training sets, the algorithm 1 is run with loss function (5.54) and the best performing hy-
perparameters are identified after ensemble training and presented in Table 6.8. The resulting L2-error
EG = ∥u − u∗∥L2(DT) (in relative percentages and computed on a test set of 105 randomly chosen sam-
ples) is shown in Table 6.8. We observe from this table that the PINN error is very small and increases
apparently linearly, with still very low errors of 2% for d = 100 space dimensions. These results are
striking on account of the following factors,

• The linear increase of error with respect to dimension appears to overcome the well-known curse
of dimensionality, even in the case of the inverse problem.

• The relative size of the observation domain D′
T with respect to the whole domain DT , shrinks

exponentially with dimension. Yet, the PINNs algorithm is able to reconstruct the entire solution
field with high accuracy, from observations in this very small domain.

• We observe that the PINNs are able to approximate the very high-dimensional inverse problem for
the heat equation with greater accuracy for even smaller computational cost, than for the forward
problem. This surprising observation merits further investigation and highlights the potential of
PINNs in solving inverse problems.

d Nint Nsb Nd K − 1 d̄ λreg λ ET Er
G Training Time

20 8192 6144 2048 4 20 10−6 0.001 0.002 0.62% 13min

50 8192 6144 2048 4 20 10−6 0.001 0.003 1.18% 39min

100 8192 6144 2048 4 20 10−6 0.001 0.0023 2.6% 1h 11min

Table 6.8: Best performing hyperparameters configurations for the data assimilation problem of the high-
dimensional heat equation, for different values of the dimensions d.

122

i
i

“output” — 2023/12/11 — 11:30 — page 123 — #123 i
i

i
i

i
i

6.3. KOLMOGOROV EQUATIONS

Black-Scholes with Uncorrelated Noise

Next, we consider the multidimensional Black-Scholes equation 6.44 in the domain DT = [0, T]×[90, 110]d
with uncorrelated noise (ρij = 0, for all i, j = 1, ..., d, i ̸= j). We assume µi = µ = −0.05, for all
i = 1, ..., d and βi = 0.1 + 0.02i, i = 1 . . . , d. We further consider the basket call option initial condition
φ(x) = max(maxi∈{1,...,d} xi − 100, 0).

Given this configuration, we proceed as for the heat equation and train a PINN for different values of d,
up to d = 200, on randomly selected training points. The results are summarized in Table 6.9. The table
shows that the generalization error of the PINN increases only linearly (similar to the training time) for
progressively greater input dimension d. In particular, the error does not grow beyond 2.5% even for
d = 200, reinforcing again the claim that PINNs overcome the curse of dimensionality.

d Nint Nsb Ntb K − 1 d λ L2-reg. ET Er
G Training Time

1 32768 16384 16384 4 28 0.1 0 0.0052 0.74% 3m 30s

2 32768 16384 16384 4 24 0.1 0 0.0767 1.0% 4m 46s

10 32768 16384 16384 4 28 0.1 10−6 0.0467 1.55% 11m 13s

20 32768 16384 16384 4 32 1 10−6 0.0254 1.51% 18m 23s

50 32768 16384 16384 4 28 1 0 0.0097 1.62% 40m 59s

100 32768 16384 16384 4 28 0.1 0 0.0045 1.51% 1h 18m 28s

200 32768 16384 16384 4 32 0.1 0 0.0015 2.28% 2h 28m 55s

Table 6.9: Best performing hyperparameters configurations for the multi-dimensional Black-Scholes equa-
tion with uncorrelated noise, for different values of the dimensions d.

Black-Scholes with Correlated Noise

As a last numerical experiment, we consider again the Black-Scholes equation 6.44 in the domain DT =
[0, T]× [90, 110]d, for d ranging from 2 to 200. However, this time we assume the model with correlated
noise. In particular ρij = ⟨ζi, ζj⟩, with ζk = (Σk,1, . . . ,Σk,d) ∈ Rd and Σ = (Σi,j)d

i,j=1 ∈ Rd×d being the
lower triangular Cholesky factor of the matrix Q ∈ Rd×d given by Qij = 1 for i = j and Qij = 0.5 for
i ̸= j. We assume µi = µ = −0.05, for all i = 1, ..., d and βi = 0.1 + 0.02i, i = 1 . . . , d, and consider the
initial condition φ(x) = max(100−mini∈{1,...,d}(xi), 0).

An important issue to address in this case is the expensive computation of the double sum in the corre-
sponding model (6.44). More precisely, we define a scalar ν to be

ν :=
d∑

i=1

d∑
j=1

Zij , Zij = βiβj⟨ζi, ζj⟩Rd(∂2
xixj

u)(t, x), Zij = Zji ∀i, j. (6.51)

The matrix Z = (Zij)ij ∈ Rd×d is symmetric and hence only the upper triangular part, including the
diagonal is required to compute the scalar ν. Thus, equation (6.51) can be rewritten as

ν =
d∑

i=1

d∑
j=i+1

2Zij +
d∑

i=1
Zii (6.52)

123

i
i

“output” — 2023/12/11 — 11:30 — page 124 — #124 i
i

i
i

i
i

CHAPTER 6. PHYSICS INFORMED NEURAL NETWORKS FOR HIGH-DIMENSIONAL PDES

For d ∈ N, computing ν in the form of (6.51) requires computing the d2 elements of Z, however one needs
to evaluate only d

2 (d+1) entries of Z by adapting equation (6.52) and hence saving d
2 (d−1) computations.

For large d, that makes a big difference in training PINNs (computational time-wise) since ν has to be
computed in each training iteration.

In Table 6.10 we report the results obtained by training PINNs on a set of randomly chosen training
samples. The results are consistent with what we obtained in the previous numerical experiments. In
fact, in this case, they are even more impressive, as the generalization error remain almost constant with
increasing number of dimensions.

d Nint Nsb Ntb K − 1 d λ L2-reg. ET Er
G Training Time

2 32768 16384 16384 4 24 1 0 0.0040 0.14% 3m 34s

10 32768 16384 16384 4 28 0.1 10−6 0.0277 1.11% 8m 32s

20 32768 16384 16384 4 24 1 0 0.0198 1.18% 20m 03s

50 32768 16384 16384 4 28 1 0 0.0099 0.69% 38m 03s

100 32768 16384 16384 4 28 0.1 0 0.0064 0.77% 1h 53m 23s

Table 6.10: Best performing hyperparameters configurations for the multi-dimensional Black-Scholes
equation with correlated noise, for different values of the dimensions d.

124

i
i

“output” — 2023/12/11 — 11:30 — page 125 — #125 i
i

i
i

i
i

7 Operator Learning

So far we have only considered the scenario where we aim at directly solving a partial differential equation
with no or little data. In this context, PINNs represent a very appealing learning framework, as it
has been proven theoretically and numerically in the previous chapters. However, PINNs come with
several drawbacks, in particular when it comes to training. An alternative to PINNs is using supervised
learning, based on data generated by solving the underlying PDEs with standard numerical methods. This
approach is particularly advantageous for many-query problems, like uncertainty quantification, Bayesian
inversion, etc., where the underlying PDE is low dimensional in the state space and high-dimensional in
the parameter space.

As a motivating example, let us consider the parameterized heat equation in the space-time domain
DT = [0, L]× [0, T], and parameter space P = [0, 1]n (with n even),

ut(x, t, µ) = uxx(x, t, µ), x ∈ [0, L], t ∈ [0, T], µ ∈ [0, 1]n (7.1)

Further assume that the parametric nature of the PDE stems from the initial condition

ū(x, µ) =
n
2∑

i=1
µi sin

(
2iπ x

L

)
+

n∑
i= n

2

µi cos
(

2iπ x
L

)
(7.2)

with µ ∼ Unif ([0, 1]n), drawn from a uniform distribution. We are interested in the solution of the PDE
u(x, T, µ) at a later time t = T . We addressed already a similar example in Section 6.1. Clearly, the
equation can be readily and efficiently solved with standard numerical methods for a single realization of
the parameter µ. However, in order to solve many-query problems the equation has to be solved several
times, making these problems extremely expensive. A natural choice to reduce the computational cost
of many-query problem is to approximate the underlying map

(x, µ) 7→ u(x, T, µ) (7.3)

with neural networks:
u(x, T, µ) ≈ uθ(x, T, µ), (7.4)

trained with data S = {(xi, µj , u(xi, T, µj))}, i = 1, ..., N, j = 1, ...,M generated by solving equation 7.1
with standard numerical methods, on a grid with spatial resolution ∆x := xi+1 − xi, ∀i = 1, . . . , N , for
M realizations µj ∼ Unif ([0, 1]n), j = 1, . . . ,M .

The task at hand may also be interpreted as an operator learning task, since, as a matter of fact, we aim
at approximating a function to function map:

ū(x) 7→ u(x, T) = G(ū)(x) (7.5)

Formally, let X = X (D,RnX) and Y = Y(D,RnY) be two separable, Banach spaces, with D ⊂ Rd

being a bounded domain and nX , nY ∈ N. We refer to the space X as the input space (e.g. space of
initial conditions) and the space Y as the output space (e.g solution space of the PDE at time T). Let

125

i
i

“output” — 2023/12/11 — 11:30 — page 126 — #126 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

G : X → Y be an operator that represents the solution operator of a PDE of interest. The ultimate goal
is to approximate the operator G from finite data of measurements of input and output function pairs
{ūj(x), uj(x)}M

j=1. However, one usually only gets access to the point-wise evaluations of the functions ūj

and uj at prescribed points, {ūj(xi)}N
i=1, {uj(xi)}N

i=1. One naive approach to constructing a surrogate
model of the underlying operator G is to use a straightforward feed-forward neural networks, in the form
of 2.24, with N features and N labels corresponding to the discretized input and output functions. Let
us denote the approximate operator G∗ ≈ G, then

G∗ : RN → RN , G∗ (EX (ū)) = EY(u), (7.6)

with
EX : X → RN , EX (ū) = (ū(x1), . . . , ū(xN)) ∈ RN ,

EY : Y → RN , EY(u) = (u(x1), . . . , u(xN)) ∈ RN ,
(7.7)

being encoding operators, which in this case represent the evaluation of the input and output functions at
given sensor points. For instance, in the case of 7.2, EX (ū) = (µ1, ..., µn), with µj being the coefficients
of the truncated discrete Fourier transform of ū. However, the models described in Equation 7.6 with
the encoding (7.7) do not serve as suitable operator learning surrogates, since it may not generalize
well to different discretization, beside the one of the training data. Indeed, despite a rigorous definition
of an operator learning model remains an active area of research, all existing definitions concur on a
crucial requirement: operator learning models must exhibit invariance with respect to the discretization
of the input and output functions. An initial attempt to formally define operator learning models was
presented in [101]. The authors introduced a precise mathematical notion of discretization invariance
and established three requirements for a model to qualify as a discretization-invariant model, referred to
as Neural Operators:

1. acts on any discretization of the input function, i.e. accepts any set of points in the input domain,

2. can be evaluated at any point of the output domain,

3. converges to a continuum operator as the discretization is refined.

However, the proposed definition establishes the equivalence between the continuous and discrete models
only in the infinite limit. Instead, more recently the authors of [102] proposed an alternative definition
based on frames, according to which such continuous-discrete equivalence should hold at any level of
discretization, not just in the limit. In contrast, the model described in (7.6), with the encoding operator
given by the point-wise evaluation of the input and output functions, does not qualify as a neural operator
according to both [102] and [101]. On the other hand, when the encoding is defined with respect to the
the coefficient of the Fourier basis of the input-output function, the model represents a neural operator
in the sense of [102]. Such a model is also know in the literature as Spectral Neural Operator [39].

Below we describe two popular classes of operator learning models, DeepONet and Fourier Neural Op-
erator. In Section 7.3 we proposed a new learning architecture, named Neural Inverse Operator, which
combines DeepONet and FNO, to approximate a large class of inverse problems for partial differential
equations.

7.1 DeepONet

DeepONet has been first introduced in [103]. The architecture belongs to the class of models known as
operator networks. Let D ⊂ Rdx , U ⊂ Rdu , and X = X (D,RnX) and Y = Y(U,RnY) be suitable function

126

i
i

“output” — 2023/12/11 — 11:30 — page 127 — #127 i
i

i
i

i
i

7.2. NEURAL OPERATORS

Figure 7.1: Schematic representation of DeepONet architecture

spaces. Then, a DeepONet is the operator, NDON : X → Y, given by

NDON (ū)(y) =
p∑

k=1
βk(ū)τk(y), ū ∈ X , y ∈ U, (7.8)

where the branch-net β is a neural network that maps E(ū) = (ū(x1), . . . , ū(xm)) ∈ Rm, evaluations of
the input ū at sensor points x := (x1, . . . , xm) ∈ D, to Rp:

β : Rm → Rp, E(ū) 7→ (β1(E(ū)), . . . , βp(E(ū)), (7.9)

and the trunk-net τ(y) = (τ1(y), . . . , τp(y)) is another neural network mapping,

τ : U → Rp, y 7→ (τ1(y), . . . , τp(y)). (7.10)

Thus, a DeepONet combines the branch net (as coefficient functions) and trunk net (as basis functions) to
create a mapping between functions. DeepONet, as defined above, does not represent a neural operator.
In fact, although the trunk-net can be queried at any point, and thus, the output function can be obtained
at any point, the branch-net constraints the input to fixed sensor locations. A way to circumvent this
limitation is by interpolation of the input function, or by using the PCA-based approach proposed in
[104, 105].

7.2 Neural Operators

As proposed in [101], a Neural Operator NNO is formulated as iterative architecture

NNO(ū)(x) = Q ◦ LT ◦ . . .Lt ◦ · · · ◦ L1 ◦R(ū)(x) (7.11)

It consists of three main building pieces:

1. Lifting. The lifting operator R is defined as a linear or non linear transformation:

R : X (D,RnX)→ Z(D,Rdv), R : ū 7→ v1

with dv > nX and Z(D,RnY), and being a suitable Banach space. In other words, the lifting oper-
ator transforms (or lifts) the input to an high-dimensional latent space. Usually R is parameterized
with a fully-connected neural network, or a simple linear layer.

127

i
i

“output” — 2023/12/11 — 11:30 — page 128 — #128 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

2. Iterative Kernel Integration. The kernel operator is usually defined as follows:

kt = K(vt)(x) =
∫

D

κ(t)(x, y)vtdy, ∀x ∈ D (7.12)

with κ(t) ∈ C(D ×D;Rdv × Rdv) being a kernel function. Then the hidden layers Lt, t = 1, ..., T
are defined as

vt+1(x) = Lt(vt)(x) = σ (Wtvt(x) + bt(x) +K(vt)(x)) , (7.13)

where Wt ∈ Rdv × Rdv is a local linear operators and b : D → Rdv is a bias function.

3. Projection. The final operator Q consist of a projection to the output function space:

Q : Z(D,Rdv)→ Y(D,RnY), Q : v̄L 7→ u

with dv > nY .

The crucial difference between a Neural Operator as proposed in [101] and a standard feed-forward neural
network is that all operations are directly defined in function space and therefore do not depend on any
discretization of the data. However, the implementation of an iterative architecture as defined in (7.11)
comes with a very high computational cost associated with the computation of the integral term. Let
{x1, x2, ..., xN} ⊂ D be a set of N quadrature points (N = N1 · N2 · ... · Ndx , in the case of Cartesian
grid-points), with associated weights {w1, w2, ..., wN}, then

kt(xn) =
N∑

i=1
wiκ(xn, xi)vt(xi), n = 1, . . . , N. (7.14)

Hence, to compute kt on the entire set of pints requires O(N2) matrix-vector multiplications.

Several architectures, including Graph Neural Operator (GNO), Low-rank Neural Operator (LNO),
Fourier Neural Operator (FNO), etc., have been introduced in order to efficiently compute the kernel
integral and alleviate the computation cost of implementing Neural Operators [101].

7.2.1 Fourier Neural Operators

To mitigate the computational cost associated with computing the integral kernel, the authors of [35]
proposed to represent and parameterize the kernel function directly in the Fourier space, leveraging the
Fast Fourier Transform (FFT) algorithm with nearly linear complexity. The resulting architecture is
termed Fourier Neural Operator (FNO).

In particular, by letting κ(t)(x, y) = κ(t)(x − y) in (7.12) and exploiting the convolution theorem, the
integral kernel can be explicitly formulated as:

Ktvt = F−1 [F [κ](k) · F [vt](k)]

where F [v] represents the Fourier transform of a function v, and F−1[v] its inverse. In the discrete setting,
the Fourier transform is replaced by the Fourier coefficients FNvt(k) of the discrete Fourier transform
(DFT) of the function vt(x), with the corresponding modes (in each spatial direction) truncated up to
kmax. These coefficients are computed based on an Ni-points grid in each spatial direction, i = 1, ..., dx.
Moreover, the DFT of κ at the frequency k is parameterized as complex-valued (dv × dv)-tensor Pt(k) ∈
Cdv×dv . Then, the integral kernel simplifies to

Ktvt = F−1
N [Pt(k) · FN [vt](k)] , k = 1, ..., kdx

max.

128

i
i

“output” — 2023/12/11 — 11:30 — page 129 — #129 i
i

i
i

i
i

7.3. NEURAL INVERSE OPERATORS FOR SOLVING PDE INVERSE PROBLEMS

Figure 7.2: Schematic representation of Fourier Neural Operator architecture

See Figure 7.2 for a schematic representation of the architecture).

By utilizing the FFT, the computation complexity of the integral kernel reduces to O(N logN), which
corresponds to the complexity of the FFT, while the total cost of the inner matrix-vector computation
(of complexity O(kdx

max)) is overall negligible given that kmax is usually small. However, this approach
requires evaluating the input-output function pair on a Cartesian grid.

In the rest of the thesis, we assume that the lifting operation R is a linear function. For simplicity, we
denote the composition of nonlinear operators L1,L2, . . . ,LT followed by Q as M. Therefore, the FNO
neural operator NFNO can be expressed as:

NFNO(ū)(x) = M ◦R(ū)(x). (7.15)

7.3 Neural Inverse Operators for solving PDE Inverse problems

In this section we focus on the class of inverse problems outlined in Section 2.3.1, which are only well-
defined as mappings from operators to functions. This class of problems includes problems such as
electrical impedance tomography, inverse wave scattering, optical imaging and seisimic imaging.

We begin by recalling the abstract formalism for the class of PDE inverse problems that we consider
herein.

7.3.1 Mathematical Framework.

Let D ⊂ Rd be a bounded open set, with (smooth) boundary ∂D. Let T > 0 and DT = D or DT =
D × (0, T), depending on whether the PDE is time-(in)dependent. Correspondingly, ∂DT = ∂D or
∂DT = ∂D × (0, T), respectively. Let a ∈ A(D), with A denoting a suitable function space over D, be a
coefficient. Then, an abstract PDE can be written as

Da(u) = s, B(u) = g, (7.16)

129

i
i

“output” — 2023/12/11 — 11:30 — page 130 — #130 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

where u ∈ U(DT) is the solution, s ∈ S(DT) is the source term and g ∈ B(∂DT) is the boundary
condition, for the PDE (7.16). Here, Da : U → S and B : U → B are the differential and boundary
operators, respectively.

The forward problem for the abstract PDE (7.16) amounts to the following: given the coefficient a ∈ A,
source term s ∈ S and boundary condition g ∈ B, find the solution u ∈ U of the PDE (7.16).

However, in practice, one is often interested in the inverse problem associated with the PDE (7.16). For
the specific class of problem we consider here, the inverse problem consists in reconstructing the coefficient
a, given measurements of the solution u recorded at the boundary of the domain DT . Without loss of
generality, we denote such measurements as Ψ ∈ H(∂Ω). In general, a single instance (or small number)
of boundary conditions g and measurements Ψ of the corresponding solutions u, do not suffice in inferring
the underlying coefficient a. Instead, a collection of a all input-output pairs (g,Ψ) is needed in order to
uniquely reconstruct the underlying coefficient.

Formally, the observable for this class of problem is a boundary operator :

Λa : B(∂DT)→ H(∂DT), (7.17)

Then, the inverse map

F−1 : L (B(∂DT),H(∂Ω))→ A(DT), Λa 7→ a = F−1(Λa). (7.18)

is unique and weakly stable ([106, 107, 108]).

Below, we provide four concrete examples of PDE inverse problems to which this abstract framework
applies.

1. Calderón Problem (Electrical Impedance Tomography).

Let us restrict ourselves to the case of time independent problem, DT = D. Let the coefficient
0 < a ∈ C2(D) represent the conductivity of the underlying medium (domain D ⊂ Rd) and the
associated PDE (7.16) is the following elliptic equation,

−∇ ·
(
a(z)∇u

)
= 0, z ∈ D,

u(z) = g(z), z ∈ ∂D,
(7.19)

with Dirichlet boundary value g ∈ H 1
2 (∂D) representing the voltage and the current source term is

s = 0. The associated boundary observation operator Λa is the well-known Dirichlet-to-Neumann
(DtN) map,

Λa : H1/2(∂D)→ H−1/2(∂D),

Λa[g] = a
∂u

∂ν

∣∣∣
∂D
, ∀g ∈ H1/2(∂D),

(7.20)

which maps the input voltage g into the current a(z) ∂u
∂ν = a∇u · ν (with ν being the unit outward

normal vector) at the boundary and u is the solution of (7.19).

The inverse problem, often referred to as the Calderón problem, constitutes the basis of EIT [45].
It aims to find the conductivity a of the medium, given different measurements of the DtN (voltage-
to-current) pairs. Thus, this inverse problem falls into the considered abstract formalism and the
inverse map (2.16) is given by,

F−1 : L
(
H1/2(∂D), H−1/2(∂D)

)
→ C2(D),

F−1 : Λa 7→ a = F−1(Λa),
(7.21)

130

i
i

“output” — 2023/12/11 — 11:30 — page 131 — #131 i
i

i
i

i
i

7.3. NEURAL INVERSE OPERATORS FOR SOLVING PDE INVERSE PROBLEMS

with L(·, ·) denoting the corresponding bounded linear operators. This inverse problem is shown to
be well-defined and (logarithmic-) stable [106].

2. Inverse Wave Scattering.

In many applications of interest, wave propagation in the frequency domain is used to infer material
properties of the medium, modelled by the squared slowness 0 < a ∈ L∞(D). The associated PDE
is the Helmholtz equation,

−∆u− ω2a(z)u = 0, z ∈ D,
u(z) = g(z), z ∈ ∂D,

(7.22)

for some frequency ω and Dirichlet boundary condition g ∈ H
1
2 (∂D). The resulting boundary

observation operator is again the Dirichlet-to-Neumann (DtN) map

Λa : H1/2(∂D)→ H−1/2(∂D),

Λa[g] = ∂u

∂ν

∣∣∣
∂D
, ∀g ∈ H1/2(∂D),

(7.23)

where u is the solution to (7.22) with the coefficient a. The corresponding inverse problem amounts
to inferring the wave coefficient a from the DtN map (7.23). Thus, it can be formulated similar to
the inverse map (7.21). Its well-posedness and stability have been demonstrated for the Helmholtz
equation in [107] and references therein.

3. Optical Imaging.

In optical imaging or tomography, the material properties of the medium D ⊂ Rd are expressed in
terms of the scattering and absorption coefficients, 0 ≤ a, σa ∈ C(D). The associated PDE is the
well-known radiative transport equation (RTE) for the particle density u(z, v) at location z ∈ D
and velocity v ∈ V ⊂ Rd, given by

v · ∇zu(z, v) + σa(z)u(z, v) = 1
ϵ
a(z)Q[u], z ∈ D,

u(z, v) = ϕ(z, v), z ∈ Γ−,
(7.24)

where
Q[u] =

∫
k(v, v′)u(z, v′)dv′ − u(z, v)

is the collision term, ϵ is the Knudsen number,

Γ± = {(z, v) ∈ ∂D × V : ±nz · v ≥ 0}

are the inflow (outflow) boundaries and nz is the unit outer normal vector at z ∈ ∂D. Thus, the
input to this problem is provided by the particle density, uΓ− ∈ L1(∂D × V), prescribed on the
inflow boundary. The associated boundary observation operator Λa defined in (2.14) is the so-called
Albedo operator,

Λa : L1(Γ−)→ L1(Γ+), Λa : u
∣∣
Γ−

= ϕ 7→ u
∣∣
Γ+
, (7.25)

that maps the incident boundary values on Γ− to the observed boundary values on the outflow
boundary Γ+.

The corresponding inverse problem aims to infer the medium properties characterized by the scat-
tering and absorption coefficients a, σa from the measurements of the Albedo operator. It leads to
the following inverse map,

F−1 : L
(
L1(Γ−), L1(Γ+)

)
→ C(D),

F−1 : Λa 7→ a = F−1(Λa).
(7.26)

131

i
i

“output” — 2023/12/11 — 11:30 — page 132 — #132 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

The well-posedness and Lipschitz-stability of this inverse map were shown in [108].

4. Seismic Imaging.

Seismic imaging is widely used in geophysics to infer and reconstruct sub-surface material properties
for various applications such as CO2 storage monitoring and seismic hazard assessment. Given a
domain D ⊂ Rd, we are interested in reconstructing the velocity coefficient 0 < a ∈ L∞(D) by
sending in acoustic waves from the top boundary into the medium and measuring the response in
the time domain. The associated PDE is the acoustic wave equation,

utt(z, t) + a2(z)∆u = s(z, t), (z, t) ∈ D × [0, T], (7.27)

with a time-dependent source term s. Here, u is the pressure variation. The wave equation is
supplemented with zero initial conditions, i.e., u(·, 0) = ut(·, 0) = 0 and suitable boundary condi-
tions. In particular, sources are placed on a subset of the boundary and it is common to consider
point sources s(t, z) = g(t)δS(z) with g(t) ∈ L2([0, T]) and δS(z) being the Dirac measure con-
centrated on a set S ⊂ ∂D. These waves are transmitted, reflected, and refracted through the
medium. Under certain assumptions (see Sec. 2.3 in [109]), the effective source s can be treated as
in L2([0, T]×D), which ensures the well-posedness of the PDE. The resulting signal is recorded at
a set of receivers R ⊂ ∂D on the boundary that take continuous measurement in time [0, T]. The
boundary observation operator (2.14) for this wave inverse problem is the Source-to-Receiver (StR)
operator,

Λa : L2([0, T]×D)→ L2([0, T];XR),
Λa : s 7→ u

∣∣
[0,T]×R

,
(7.28)

where XR is the metric space for the (discrete) set R. The inverse problem that underpins seismic
imaging is

F−1 : L
(
L2([0, T]×D), L2([0, T];XR)

)
→ L∞(D),

F−1 : Λa 7→ a = F−1(Λa), (7.29)

with Λa being the StR operator (7.28). Thus, seismic imaging aims to infer the subsurface spatial
medium properties from spatial-temporal StR signals. This process is also termed as migration,
or Full waveform Inversion (FWI) in the literature [110]. There have been studies on the well-
posedness of the inverse problem for the wave equation (7.27) [111, 112, 113] although they do not
directly apply to the setting considered here.

7.3.2 Learning Task and Challenges

Thus, the solution of the inverse problem (7.18) boils down to inferring (learning) the inverse map F−1

from relevant data. Given sufficient training data in the form of pairs
(
Λa,F

−1(Λa)
)

(or given the
injectivity of the forward map, data in the form of pairs (Λa, a)), we aim to learn the inverse map F−1

and evaluate it on test (unseen) data. This task is very challenging on account of the following factors:

1. The inputs to the inverse map F−1 (2.16) are specified on the boundaries ∂DT whereas the output
is the coefficient a, defined in the interior of the underlying domain D. Thus, there is a mismatch
in the domains of the inputs and outputs for the inverse map F−1.

2. The learning task requires us to learn mappings from operators to functions for F−1 defined in (2.16).

132

i
i

“output” — 2023/12/11 — 11:30 — page 133 — #133 i
i

i
i

i
i

7.3. NEURAL INVERSE OPERATORS FOR SOLVING PDE INVERSE PROBLEMS

3. In general, the inverse map F−1 (2.16) may only be weakly stable, for instance, either in terms of
small values of the Hölder exponent α in (2.17) or even only logarithmic-stable. In these cases, the
learning task can be very sensitive to noises from the input, and additional regularization terms
might be necessary.

7.3.3 A Motivating (Formal) Calculation.

We start by providing a heuristic motivation for our proposed architecture to learn the inverse map
(2.16). To this end and for definiteness, we consider the inverse wave scattering problem for the Helmholtz
equation (7.22), presented in section 2.3.1. Given the domainD ⊂ Rd, we consider the following eigenvalue
problem with Neumann boundary conditions,

−∆φk = λkφk, ∀z ∈ D.
∂φk

∂ν

∣∣
∂D

= 0,
∫
D

φkdz = 0. (7.30)

By standard PDE theory [114], there exist eigenvalues 0 ≤ λk ∈ R for k ∈ N, and the corresponding
eigenfunctions {φk}, k ∈ N, form an orthonormal basis for L2(D). We fix K ∈ N sufficiently large and
without loss of generality, we assume ω = 1 in the Helmholtz equation (7.22) to consider the following
Dirichlet boundary value problems,

−∆uk − a(z)uk = 0, z ∈ D, 1 ≤ k ≤ K,
u(z) = gk(z), z ∈ ∂D,

(7.31)

where gk = φk

∣∣
∂D

. Using (7.30) and (7.31), we can prove, the following formal representation formula
for all 1 ≤ k ≤ K, ∫

D

aukφkdz =
∫
D

λkukφkdz −
∫

∂D

gk
∂uk

∂ν
dσ(z). (7.32)

Proof. Multiplying uk (the solution of (7.31)) to Eqn (7.30) and integrating over space, we obtain,∫
D

uk∆φkdz + λk

∫
D

φkdz = 0

Integrating by parts in the above equation and using the Gauss-Green formula yields,

−
∫
D

⟨∇uk,∇φk⟩dz +
∫

∂D

uk
∂φk

∂ν︸︷︷︸
=0

ds(z) + λk

∫
D

ukφkdz = 0. (7.33)

Note that ∂φk

∂ν

∣∣
∂D

= 0 follows from the Neumann boundary conditions in (7.30).

Similarly, multiplying the solution φk of the Neumann problem (7.30) to the Eqn (7.31) and repeating
the above integration parts yields,

−
∫
D

⟨∇uk,∇φk⟩dz +
∫

∂D

gk
∂uk

∂ν
ds(z) +

∫
D

a(z)ukφkdz = 0. (7.34)

Formula (7.32) follows by subtracting (7.33) from (7.34).

133

i
i

“output” — 2023/12/11 — 11:30 — page 134 — #134 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

The formula (7.32) can be used to construct an approximation to the coefficient a ∈ L2(D) in the following

manner. Writing a ≈
K∑

ℓ=1
aℓφℓ (using the orthonormality of φ’s) for K sufficiently large, we can evaluate

the coefficients aℓ by solving the following Matrix equation for A = {aℓ}K
ℓ=1,

CA = B, Ckℓ =
∫
D

ukφkφldx, ∀k, l,

Bk =
∫
D

λkukφkdz +
∫

∂D

gk
∂uk

∂ν
dσ(z),∀k.

(7.35)

Further setting Ψk = ∂uk

∂ν , we observe that the formal approximation of the coefficient a relies on the
following building blocks,

• Basis Construction. The operations Bk : z 7→ (φk(z), λk), 1 ≤ k ≤ K, that form a basis. Note that
they are independent of the coefficient a.

• PDE Solve. The operation Ek : (gk,Ψk) 7→
(
{uk

j }K
j=1,

∫
∂D

gkΨkdσ(z)
)

that amounts to (approxi-

mately) inferring the coefficients {uk
j }K

j=1 of the solution uk of the Helmholtz equation (7.31), given
the Dirichlet gk and Neumann Ψk boundary values. A part of the right-hand side term Bk is also
appended to this operation. Once the coefficients uk

j are computed, the approximation uk to the

solution of (7.31) is readily computed in terms of the basis {φk} by setting uk ≈
K∑

j=1
uk

jφj .

• Mode Mixing. The previous two operations were restricted to individual modes, i.e., to each k, for
1 ≤ k ≤ K. However, to construct the coefficients Ckl in (7.35), we need to mix different modes.
One way to do so is through multiplication. We denote this operation by M :

(
{φk}K

k=1, {uk}K
k=1
)
7→(

{ukφkφℓ}K
k,ℓ=1, {λkukφk}K

k=1

)
.

• Matrix Inversion. In the final step, we need to build the Matrix C in (7.35) and (approximately)
invert it. This operation can be summarized by I :

(
{ukφkφℓ}K

k,ℓ=1, {λkukφk}K
k=1

)
7→
∑K

j=1 ajφj ,
with A = {aj} being the solution of (7.35).

7.3.4 The Architecture.

The formal approximation of the inverse map F−1 (2.16) for the Helmholtz equation by formulas (7.32)-
(7.35) cannot be directly used in practice as one cannot solve the PDE (7.31) without knowing the
coefficient a. However, the building blocks enumerated above motivate either an iterative fixed-point
procedure or, in our case, a learning algorithm approximating F−1 from data. To this end, we observe
that the basis construction z 7→ φk(z) amounts to a particular instantiation of a trunk-net (7.10) of
a DeepONet. Similarly, the PDE solve map Ek : (gk,Ψk) 7→ {uk

j }K
j=1 is a particular instance of the

application of a branch-net (7.9) of a DeepONet. Moreover, they can be combined in a DeepONet (7.8)
to approximate the solutions uk of the PDE (7.31). However, a DeepONet (7.8) is linear in its trunk-net
basis functions and thus cannot represent the nonlinear mode mixing operator M. Instead, one can do so
by passing the outputs of the DeepONet to the nonlinear layers of an FNO (7.15), which also performs
the final inversion operator I.

134

i
i

“output” — 2023/12/11 — 11:30 — page 135 — #135 i
i

i
i

i
i

7.3. NEURAL INVERSE OPERATORS FOR SOLVING PDE INVERSE PROBLEMS

Figure 7.3: Schematic representation of Neural Inverse Operator (NIO) architecture, with R given by
equation (7.38), and Randomized Batching.

These heuristic considerations are generalized to the abstract formalism of the inverse problem (2.16)
and motivate us to propose the composition (stacking) of DeepONets and FNO to result in the following
map,

NNIO :
(

z
{Ψℓ}L

ℓ=1

)
τ,β7−→

(
{τk(z)}p

k=1
{βk}p

k=1

)
N DON

7−→ {fℓ(z)}L
ℓ=1

R7−→ h(z) M7−→ a∗(z), (7.36)

for approximating the abstract inverse map F−1 (2.16). Recall that M represents the composition of the
non-linear operatos of FNO. Here, the linear map R can be explicitly defined as

h(z) = R(f1, . . . , fL, z) = 1
L

L∑
ℓ=1

Dℓfℓ + Ez, (7.37)

with E,Dℓ ∈ Rdv . In other words, the inputs z ∈ D and Ψℓ = Λa(gℓ) (2.14), for 1 ≤ ℓ ≤ L, are fed into the
trunk- and branch-nets of a DeepONet NDON (7.8), respectively, to create L representations {fℓ}L

ℓ=1,
defined in the interior of the underlying domain. These representations are first linearly transformed
through R yielding h(z), and finally mixed by the nonlinear component M of FNO resulting in an
approximation of the underlying coefficient a∗. We observe that the DeepONet NDON in NNIO (7.36)
is flexible enough to handle inputs defined on the boundary, i.e., Ψℓ, and produce outputs fℓ, defined on
the interior of the underlying domain.

It is important to note that the model takes only z and {Ψℓ}L
ℓ=1 as input, rather than z and the input-

output pair {(gℓ,Ψℓ)}L
ℓ=1. This choice is motivated by the following consideration: let us define µg as the

underlying measure (distribution) on the boundary data g, where gℓ ∼ µg, and µΨ = Λa#µg represents
the pushforward measure given the boundary operator Λa. Hence, Ψℓ ∼ µΨ for all ℓ = 1, ..., L, with
{Ψℓ}L

ℓ=1 representing the empirical distribution approximating µΨ. This, together with the injectivity of
the boundary observation operator (2.14), implies that {Ψℓ}L

ℓ=1 suffices to provide statistical information
about the operator Λa given µg satisfying certain properties. We denote L as the number of samples
discretizing the measure µΨ or, with abuse of notation, the operator Λa.

135

i
i

“output” — 2023/12/11 — 11:30 — page 136 — #136 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

The construction above addresses point (1) in Section 7.3. However, it does not necessarily satisfy point
(2) in its current form. For the model to effectively process µΨ as the input rather than a particular
discrete realization of it, the following desirable properties should be met:

• The architecture should exhibit invariance under permutations of the input measurements {Ψℓ}L
ℓ=1

as they are i.i.d. samples of µΨ.

• The learning framework must be able to handle an empirical measure of the distribution µΨ with
an arbitrary sample size L̃. In particular, the input sample size at the training and testing stages
could be different.

• The performance of the model should be independent of the sample size L̃ used to discretize µΨ.

To address the first two points, we can modify the architecture by redefining the linear transformation
R as follows:

h(z) = R(f1, . . . , fL, z) = D

L

L∑
ℓ=1

fℓ + Ez, E,D ∈ Rdv (7.38)

To ensure the performance is independent of L̃, a naive and inefficient approach would involve constructing
all possible permutations of {Ψℓ}L

ℓ=1 with size L̂ for all L̂ = 2, . . . , L and providing them as input to the
model. However, inspired by the well-known bagging algorithm widely used in machine learning, we
propose an efficient and novel method to tackle this point which we term randomized batching. In this
approach, given the sequence {Ψℓ}L

ℓ=1, during each training iteration, an integer number L̂ is randomly
drawn from the set {2, . . . , L}. Then, L̂ samples are randomly picked from {Ψℓ}L

ℓ=1 and the new sequence
{Ψk}L̂

k=1 are fed into the model at each iteration during training.

We refer to the architecture (7.36) with the linear transformation R given in (7.38), and incorporating
the randomized batching algorithm, as Neural Inverse Operator, or NIO in short (see Figure 7.3 for a
schematic representation of the architecture).

7.4 Numerical Experiments.

We empirically test NIO on benchmark PDE inverse problems below. The exact details of the training,
as well as the architecture and hyperparameter choices, are presented in the appendix, Sections 9.2.2 and
9.2.1.

As baselines in the following experiments, we choose two models. First, we consider a DeepONet (DONet)
with a CNN as the branch net in (7.8), which performs mixing of the input function within the branch
itself

NDONet :
(

z
{Ψℓ}L

ℓ=1

)
τ,βcon7−→

(
{τk(z)}p

k=1
{βk}p

k=1

)
N DON

7−→ a∗(z). (7.39)

Second, we consider a fully convolutional image-to-image neural network architecture (FCNN, details in
the Appendix 9.2.1). A variant of this architecture was already used in seismic imaging (full waveform
inversion) in [110]. We have extended this architecture significantly to apply it to the abstract inverse
problem (2.16).

In all the experiments, the training (and test) data are generated by sampling from a probability distribu-
tion on the conductivity coefficient a. Once a sample conductivity is drawn, a set of Dirichlet boundary
conditions {gℓ}L

ℓ=1 are drawn from a probability distribution on the boundary values. For each gℓ, the

136

i
i

“output” — 2023/12/11 — 11:30 — page 137 — #137 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

g ∂u
∂ν

∣∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.4: Illustration of a typical input (left) and output (right) sample for the Calderón Problem for
EIT with trigonometric coefficients. The input is the Dirichlet-to-Neumann (DtN) map (7.20),
represented here by three Dirichlet Boundary conditions (Voltage) to Current pairs, and the
output is the conductivity coefficient a.

underlying elliptic equation is solved numerically and the corresponding observable, Ψℓ, is evaluated on
the boundary. Eventually the training set is defined as follows:

Strain =
{(
{Ψ(i)

ℓ }
L
ℓ=1, a

(i)
)
, i = 1, ..., N

}
(7.40)

with N being the number of training samples. The total number of training samples used for different
benchmarks are reported in Table 7.1.

7.4.1 Calderón Problem for EIT.

For the Calderón Problem for EIT we consider two different numerical examples.

1. We start with the Calderón problem for the elliptic equation (7.19) on the computational domain
D = [0, 1]2, with source s = 0. We choose the boundary data gℓ, for 1 ≤ ℓ ≤ L = 20 as the
boundary values of

Gℓ(x, y) = cos(ω(x cos(θℓ) + y sin(θℓ))),

with θℓ = 2πℓ
20 and ω = 2π. For the coefficient a, we sample from trigonometric functions by setting

a(x, y) = exp
(m∑

k=1
ck sin(kπx) sin(kπy)

)
,

137

i
i

“output” — 2023/12/11 — 11:30 — page 138 — #138 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

g ∂u
∂ν

∣∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.5: Illustration of EIT for the discontinuous heart-lung Phantom of [115]. Left: Input through
the DtN (voltage-to-current) map. Right: Conductivity field showing the Phantom of the
heart and lungs.

with m = Unif({1, 2, 3, 4, 5}) and {ck} ∼ Unif([−1, 1]m).

2. As a second experiment for EIT, we consider a more practical example suggested in [115], where
the authors model the EIT imaging of the heart and lungs of a patient using electrodes on the
body. The underlying domain D is the unit circle and the boundary conditions are given by
gℓ(θ) = 1

2π exp(i2πθfℓ), with ℓ = 1, . . . , 32 and f = [−16, . . . ,−1, 1, 14, 15, 16]. To describe the
phantom for the heart and lungs, we define the following sets of points on the domain D:

sh =
{

(x, y) ∈ D s.t
√
eh,1(x− ch,1)2 + eh,2(y − ch,2)2 < 0.2

}
sl1 =

{
(x, y) ∈ D s.t

√
el1,1 (cos(α)x+ sin(α)y − cl1,1)2 + el1,2 (cos(α)y − sin(α)x− cl1,2)2

< 0.5
}

sl2 =
{

(x, y) ∈ D s.t
√
el2,1 (cos(α)x+ sin(α)y − cl2,1)2 + el2,2 (cos(α)y − sin(α)x− cl2,2)2

< 0.4
}

Here, eh,1 = 0.8, eh,2 = 1, el1,1 = 3, el1,2 = 1, el2,1 = 3, and el2,2 = 1 represent the eccentricities of
the ellipses describing the heart and lungs. The center locations of the heart and lungs are given
by ch,1 = −0.1, ch,2 = 0.4, cl1,1 = 0.5, cl1,2 = 0.2, cl2,1 = −0.6, and cl2,2 = 0.1 and the orientation
of the lungs by α = π

7 . Then the body conductivity coefficient is defined as,

a(x, y) =


ah (x, y) ∈ sh

al1 (x, y) ∈ sl1

al2 (x, y) ∈ sl2

ab else

138

i
i

“output” — 2023/12/11 — 11:30 — page 139 — #139 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

g ∂u
∂ν

∣∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.6: Illustration of detection of inclusions through the Inverse Wave Scattering with the Helmholtz
equation. Left: Input represented through 3 samples for the DtN map. Right: Coefficient a.

with ah = 2, al1 = al2 = 0.7, ab = 1. The training coefficients are obtained by adding 8% white
noise to all the parameters above. Specifically, given

p = [eh,1, eh,2, el1,1, el1,2, el2,1, el2,2, ch,1, ch,2, cl1,1, cl1,2, cl2,1, cl2,2, ah, al1 , al2],

we define the perturbed version of the parameter vector p as p̃ = p(1 + 0.08ξ), where ξ ∼ N (0, 1) is
a random variable drawn from the standard normal distribution. The coefficient is then defined as:

ã(x, y) =


ãh (x, y) ∈ s̃h

ãl1 (x, y) ∈ s̃l1

ãl2 (x, y) ∈ s̃l2

ãb else

where s̃h, s̃l1 and s̃l2 are defined as above, but with the parameters replaced by their corresponding
perturbed values in p̃.

The input of the learning operators is then obtained by computing the Fourier transform at fre-
quencies f of the difference between the Neumann trace of the PDE solution with the coefficient a
and the one with the unit coefficient a = 1.

7.4.2 Inverse Wave Scattering.

In this problem, the Helmholtz equation (7.22) is considered on the domain D = [0, 1]2, and the task is
to learn coefficients sampled from a distribution,

a(x, y) =
m∑

k=1
exp

(
− c(x− c1,k)4 − c(y − c2,k)4),

139

i
i

“output” — 2023/12/11 — 11:30 — page 140 — #140 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

u
∣∣∣
Γ−

u
∣∣∣
Γ+

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.7: Illustration of Optimal Imaging through the Radiative Transport Equation. Left: Input is
the Albedo operator (7.25) illustrated with three mappings between the inflow and outflow
boundaries. Right: Output is the Scattering coefficient.

with c = 2×104/3. It represents a homogeneous medium with square-shaped inclusions, randomly spread
in the domain (see Figure 7.6). Here, m = Unif({1, 2, 3, 4}), and {(c1,k, c2,k)} ∼ Unif([0, 1]m×2). For each
draw of the coefficient, 20 Dirichlet boundary values are prescribed, exactly as in the EIT experiment with
trigonometric coefficients. The corresponding (approximate) solutions of the Helmholtz equation (7.22)
are computed with a central finite difference scheme, and the Neumann trace is evaluated to represent
the DtN map.

7.4.3 Radiative Transport Equation and Optical Imaging.

Next, we consider the radiative transport equation (7.24) in the domain X × V , where X = [0, 1] and
V = [−1, 1], with ε = 1. Consequently,

Γ− = {(0, v) : v ∈ [0, 1]} ∪ {(1, v) : v ∈ [−1, 0]}.

The task is to infer the absorption and scattering coefficients from the Albedo operator (7.25). To this
end, we fix k(v, v′) = 1, σa = 1−a in (7.24) and draw the absorption coefficient a from the distribution,

a(x) = cχ[−1/2,1/2](rx− x0) + 1,

with χ denoting the characteristic function and with c ∼ Unif([0.5, 1]), x0 ∼ Unif([0, 1]) and r ∼
Unif([0, 0.8]). Once the coefficient is drawn, boundary conditions on the inflow boundary Γ− are im-
posed by setting

ϕℓ(0, v) = exp
(
− 200 (v − vℓ)2)

, ϕℓ(1, v) = 0, vℓ > 0,

and
ϕℓ(0, v) = 0, ϕℓ(1, v) = exp

(
− 200 (v − vℓ)2)

, vℓ < 0,

140

i
i

“output” — 2023/12/11 — 11:30 — page 141 — #141 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

s u
∣∣∣
R

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.8: Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (7.28) between Incident
waves generated at Sources to Temporal signals recorded at Receivers. Right: Output is the
velocity coefficient, corresponding to Style A dataset of [110].

with vℓ being the ℓ-th quadrature point used to approximate the integral term in (7.24), 1 ≤ ℓ ≤ 32.
Then, the radiative transport equation is approximated with a finite-element method, and the resulting
solution uℓ is evaluated at the outflow boundary Γ+ as the output of the Albedo operator (7.25).

7.4.4 Seismic Imaging.

In the final test, we model seismic imaging by considering the acoustic wave equation (7.27) in the space-
time domain [0, 1]2 × [0, T] and the task at hand is to learn the underlying squared-slowness coefficients
a from the source-to-receiver map (7.28). To this end, we choose two types of coefficients from [110], the
so-called Style-A and CurveVel-A datasets. For each medium, waves are generated at source locations
(xsℓ,0) on the vertical boundary, for ℓ = 1, . . . , 5. The corresponding acoustic wave equation is solved
with a finite difference scheme, and the temporal data is recorded at receivers on the vertical boundary.

7.4.5 Numerical Results

We start by testing the proposed architecture and baselines on a test set

Stest =
{(
{Ψ(i)

ℓ }
L
ℓ=1, a

(i)
)
, i = 1, ...,M

}
(7.41)

with the input measure µΨ discretized as the training input measure (observe that not only the number
of samples L is the same, but also their ordering). The results, together with the number of testing
samples M , are summarized in Table 7.1.

141

i
i

“output” — 2023/12/11 — 11:30 — page 142 — #142 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

s u
∣∣∣
R

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7.9: Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (7.28) between Incident
waves generated at Sources to Temporal signals recorded at Receivers. Right: Output is the
velocity coefficient, corresponding to CurveVel A dataset of [110]

As the table shows, NIO is the best-performing model, outperforming the next-best FCNN model by
almost halving the errors for most of the benchmarks. We also observe that even for the Seismic Imaging
problem, NIO is either outperforming or on par with FCNN. This is particularly noteworthy as the FCNN
architecture was demonstrated to be one of the states of the art on this problem in [110] among several
machine learning models.

The low test errors are futher visually reinforced. In Figure 7.10, we show two randomly drawn test
samples for the Calderón Problem for inferring conductivity with trigonometric coefficients by EIT. For
both these test samples, we see that NIO (and FCNN) can accurately approximate the ground truth
without any visible artifacts. This observation correlates with very small test errors with NIO. At least
for these two samples, there appears to be little visible difference between NIO and FCNN. Nevertheless,
the results from Table 7.1 demonstrate that NIO outperforms FCNN considerably on this problem by
almost halving the test error.

Next, in Figure 7.11, we focus on the discontinuous Heart&Lungs Phantom inferred with EIT. Also,
in this case, there is no visual difference between the NIO and FCNN, which are both very accurate
in reconstructing the ground truth, and this is indeed consistent with the very low generalization error
achieved by both models.

In Figure 7.12, we plot the results of two randomly chosen test samples for the inverse wave scattering
problem and compare the ground truth with the reconstruction with NIO and FCNN. In the first sample
(top row), both models accurately reconstruct the ground truth coefficient with very little visible difference
between the competing models. In contrast, in the second sample, the reconstruction with NIO and FCNN
show noticeable differences. In particular, FCNN cannot reconstruct the small rectangular scatterer (in
the middle of the square domain), whereas NIO can reconstruct it. This possibly explains why NIO is
significantly more accurate (see Table 7.1) for this experiment in reconstructing scatterers.

142

i
i

“output” — 2023/12/11 — 11:30 — page 143 — #143 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

DONet FCNN NIO

N M L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓

Calderón Problem
Trigonometric 4096 2048 1.97% 2.36% 1.49% 1.82% 0.85% 1.05%

Calderón Problem
Heart&Lungs 4096 2048 0.95% 3.69% 0.27% 1.62% 0.18% 1.16%

Inverse Wave Scattering 4096 2048 3.83% 7.41% 2.53% 7.55% 1.07% 2.94%

Radiative transport 4096 2048 2.35% 4.35% 1.46% 3.71% 1.1% 2.9%

Seismic Imaging
CurveVel - A 55000 6000 3.98% 5.86% 2.65% 5.05% 2.71% 4.71%

Seismic Imaging
Style - A 22000 5000 3.82% 5.17% 3.12% 4.63% 3.04% 4.36%

Table 7.1: Relative median L1-error and L2-error computed over M testing samples for different bench-
marks and models trained with N training samples.

In Figure 7.13, we plot two randomly chosen test samples to recover the absorption coefficient with optical
imaging for the Radiative transport equation (7.24). The ground truth and reconstructions obtained with
NIO and FCNN are shown. For the first test sample, both models can provide an accurate reconstruction
with a sharp resolution of the discontinuities in the absorption coefficient. On the other hand, for the
second sample (Figure 7.13 Right), we see that FCNN gets the correct location but the wrong magnitude of
the discontinuity, whereas NIO can approximate both accurately, probably accounting for the significant
gain in accuracy on this problem (see Table 7.1 of main text).

In Figures 7.14 and 7.15, we show two randomly chosen test samples for Seismic imaging of the subsurface
property (squared slowness) by the acoustic wave equation (7.27), corresponding to the CurveVel-A and
Style A datasets (considered in [110]), respectively. Both figures show that NIO and FCNN reconstruct
the coefficient reasonably accurately, although slight differences exist between the models.

Robustness of Reconstruction to Λa-Discretizazion.

As outlined in Section 7.3.4, one crucial property that the model should exhibit is robustness to the
number of samples L̃ used to approximate the pushforward measure µΨ. To assess this, we conduct two
different experiments.

In the first experiment, we consider the test set 7.41 and for each benchmark, we construct a new test
set by picking at random (without replacement) L̃ samples from {Ψℓ}L

ℓ=1, L̃ ≤ L, and compute the
corresponding testing error (for NIO and baselines). As a remark, it should be noted that NIO can be
evaluated directly for any input {Ψk}L̃

k=1, without any change in the architecture. On the other hand,
in order to even evaluate the baselines, interpolation (we chose to use the nearest interpolation) must
be used to obtain inputs consisting of exactly L samples. In Figure 7.16, we plot the median L1-error
obtained as a function of the number of samples L̃ for different models and benchmarks. We observe
that the performance of NIO remains invariant with respect to L̃, with the testing error only showing
a slight increase as L̃ decreases, which is typically expected since the approximation of the measure µΨ
by the empirical distribution becomes less accurate as the number of samples decreases. In contrast, the

143

i
i

“output” — 2023/12/11 — 11:30 — page 144 — #144 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

(a) Test Sample 1

(b) Test Sample 2

Figure 7.10: Exact and predicted coefficients for two different test samples (Rows) for the Calderón prob-
lem with Trigonometric coefficients. Left Column: Ground Truth. Middle Column: NIO
reconstruction. Right Column: FCNN Reconstruction.

performance of the baselines significantly deteriorate when the number of samples L̃ is different from the
training ones L. The same behaviour is observed even when L̃ is extremely close to L.

Next, we consider the Calderón problem with trigonometric functions and the inverse wave scattering
problem. We generate a new testing set from scratch, consisting of input-output pairs ({Ψℓ}L

ℓ=1, a),
where L = 100 (compared to the L = 20 samples used for model training). We then conduct the same
experiments as before and present the results in Figure 7.17. These results further reinforce the fact that
NIO exhibits invariance with respect to the discretization of the input measure µΨ.

Robustness of Reconstruction to Noise

Inverse problems, such as the abstract PDE inverse problem (2.16), can be very sensitive to noise as
the stability estimate (2.17) indicates, and reconstruction methods have to show some robustness with
respect to noisy measurements in order to be practically useful. To test the robustness of NIO (and
competing models) to noise, we take all the benchmark test problems reported in Table 4.4 of the main

144

i
i

“output” — 2023/12/11 — 11:30 — page 145 — #145 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

(a) Test Sample 1

(b) Test Sample 2

Figure 7.11: Exact and predicted coefficients for two different test samples (Rows) for the Calderón prob-
lem with Heart&Lungs Phantom. Left Column: Ground Truth. Middle Column: NIO
reconstruction. Right Column: FCNN Reconstruction.

text and add 1% noise to the inputs to each model at test time. Table 7.2 presents the resulting test
errors. This table shows that NIO (as well as DOnet and FCNN) is very robust to this measurement
noise.

Furthermore, upon closer examination of the results, it is evident that the models displaying the highest
robustness with respect to additional noise are those trained using the log-MinMax data scaling trans-
formation. To validate this observation, we consider the inverse wave scattering problem and train NIO
with the hyperparameters reported in Table 9.4, but employing the log-MinMax scaling of the data.
Additionally, instead of monitoring the validation error computed on the noiseless data, we monitor the
validation error computed on data corrupted by 10% noise and interrupt the training based on this met-
ric. The final median testing error on 1%-noisy data is 1.64%, two times lower than the value reported
in Table 7.2. Moreover, the testing error on the noise-free data only marginally increased to 1.61%.
These findings suggest that utilizing log-MinMax scaling and potentially monitoring the validation error
on the corrupted data can significantly enhance the model’s robustness to noise, with minimal loss in
performance on the noise-free data.

145

i
i

“output” — 2023/12/11 — 11:30 — page 146 — #146 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

(a) Test Sample 1

(b) Test Sample 2

Figure 7.12: Exact and predicted coefficients for two different test samples (Rows) for the Inverse Wave
Scattering with Helmholtz Equation. Left Column: Ground Truth. Middle Column: NIO
reconstruction. Right Column: FCNN Reconstruction.

Robustness of Reconstructions to Varying Grid Sizes.

Although the inputs and outputs to the inverse problem (2.16) are continuous objects in principle, in
practice, one has to deal with discretized versions of both inputs and outputs. This is true when the
ground truth is generated by numerical simulations and observed through other forms of measurement.
It is highly desirable that an operator learning algorithm be robust to the resolutions at which it is tested;
see [32] for further discussion on this topic. To test if the proposed NIO architecture is robust with respect
to resolution, we focus on the inverse wave scattering with the Helmholtz equation example, where NIO
was trained with data obtained from a finite difference scheme on a uniform 70 × 70 grid. To test the
robustness with respect to resolution, we use this trained model to also infer at two different resolutions,
namely at 50× 50 and 100× 100, and present the results, together with DeepONet and FCNN baselines
in Table 7.3 to observe that NIO (and the baselines) is robust to varying resolutions.

146

i
i

“output” — 2023/12/11 — 11:30 — page 147 — #147 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

(a) Test Sample 1 (b) Test Sample 2

Figure 7.13: Exact and predicted absorption coefficients for two different test samples, obtained with
optical imaging for the radiative transport Equation.

Robustness of Reconstruction to Random Sensors Location.

While training data typically assumes equidistant placement of sensors along the boundaries of the square
domain (as they are synthetically generated using standard numerical methods), real-world scenarios
often involve sensors located randomly along the boundaries. Hence, the learning model must exhibit
robustness to these random sensor placements.

Our experiments to assess this robustness focus on two specific problems: the Calderón problem with
trigonometric function and inverse wave scattering. We perform testing with input data obtained from
200 sensors randomly distributed along the domain boundary. Observe that the training data accounts
for 272 sensors. Therefore, before feeding the data to NIO (and baselines), we interpolate it onto the
original equispaced set of points. For both problems, we examine the L1 error, as presented in Table
7.4.

The results show that the L1-error increases only to 1.18% and 1.43%, compared to the original setup
where the errors were 0.86% and 1.11%, respectively. These findings underscore the NIO model’s ability
to maintain robust performance even when the boundary sensors are placed at different locations.

Out-of-Distribution Reconstruction.

In addition to in-distribution testing, we also consider an out-of-distribution testing task. This will enable
us to evaluate the ability of the models to generalize to inputs (and outputs) that possess different features
from the training ones.

First, we considered the Calderón Problem (Trigonometric) benchmark. The coefficients in the training
distribution were sampled from the exponential of a sum of sines, with up to 4 frequency modes (up to
8π). We now test with the following distributions:

• Distribution A: a(x, y) = exp
(∑6

k=1 ck sin(kπx) sin(kπy)/k 3
2
)

• Distribution B: a(x, y) = exp
(∑6

k=1 ck sin(kπx) sin(kπy)/k
)

147

i
i

“output” — 2023/12/11 — 11:30 — page 148 — #148 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

(a) Test Sample 1

(b) Test Sample 2

Figure 7.14: Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging
with the acoustic wave equation with CurveVel A data set. Left Column: Ground Truth.
Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.

148

i
i

“output” — 2023/12/11 — 11:30 — page 149 — #149 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

(a) Test Sample 1

(b) Test Sample 2

Figure 7.15: Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging
with the acoustic wave equation with Style A data set. Left Column: Ground Truth. Middle
Column: NIO reconstruction. Right Column: FCNN Reconstruction.

149

i
i

“output” — 2023/12/11 — 11:30 — page 150 — #150 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

(a) Calderón Problem Trigonometric (b) Calderón Problem Heart&Lungs

(c) Inverse Wave Scattering (d) Radiative transport

(e) Seismic Imaging CurveVel - A (f) Seismic Imaging StyleVel - A

Figure 7.16: Median of the L1-error computed over testing samples ({Ψk}L̃
k=1, a) VS L̃ for different bench-

marks with different models (L̃ < L).

150

i
i

“output” — 2023/12/11 — 11:30 — page 151 — #151 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

(a) Calderón Problem Trigonometric (b) Inverse Wave Scattering

Figure 7.17: Median of the L1-error computed over testing samples ({Ψk}L̃
k=1, a) VS L̃ for different bench-

marks with different models (L̃ spans the entire range 10-100).

DONet FCNN NIO

Calderón Problem
Trigonometric 2.02% 1.51% 0.91%

Calderón Problem
Heart&Lungs 0.95% 0.27% 0.18%

Inverse Wave Scattering 3.83% 2.54% 3.72%

Radiative transport 2.38% 1.47% 1.1%

Seismic Imaging
CurveVel - A 3.98% 2.65% 2.73%

Seismic Imaging
Style - A 3.82% 3.13% 3.09%

Table 7.2: Median of the relative L1-error computed over 1%-noisy testing samples for different bench-
marks with different models.

Here, ck is a uniformly distributed random variable in the range [0, 1]m. The coefficients include up to
6 frequency modes, with different decays of the higher order modes (1.5 and 1). Thus, at test time, the
model now has to infer data with significantly higher frequencies than the training data.

Next, we consider the Calderon problem of the Heart&Lungs. Here, the training distribution was based on
a normally distributed perturbation of the Heart&Lungs Phantom, with the amplitude of the perturbation
being at most 8% of the Phantom values (See 7.5). At test time, we now consider perturbations with
amplitudes being 12% of the Phantom values, thus sampling from a different distribution. For instance,
this higher amplitude could model individuals with some diseases. Note that even higher variations
are probably unrealistic as this problem models body organs and one has to restrict to some biological
constraints.

As a third benchmark, we consider the inverse scattering problem. Here, the training distribution was of
a coefficient that consisted of between 1-4 scatterers, of identical shape, whose locations were randomly
chosen (See 7.6). We chose to test this model now on two different test distributions

• Distribution A: a(x, y) =
∑5

k=1 exp
(
− c(x− c1,k)4 − c(y − c2,k)4). In this case, we use a family of

151

i
i

“output” — 2023/12/11 — 11:30 — page 152 — #152 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

DONet FCNN NIO

Resolution 50 × 50 100 × 100 50 × 50 100 × 100 50 × 50 100 × 100

Inverse Wave Scattering 3.74% 3.63% 1.81% 1.66% 0.93% 0.95%

Table 7.3: Relative median L1-error computed over testing samples generated at different resolutions
(grid sizes).

DONet FCNN NIO

L1 ↓ L1 ↓ L1 ↓

Calderón Problem Trigonometric 3.39% 1.88% 1.18%

Inverse Wave Scattering 3.84% 2.53% 1.43%

Table 7.4: Relative median L1-error computed over testing samples with random location of the boundary
measurements with different models and different benchmarks.

coefficients with a fixed number of inclusions equal to five.

• Distribution B: a(x, y) =
∑m

k=1 exp
(
− b4

k(x − c1,k)4 − b4
k(y − c2,k)4), with bk ∼ Unif[5, 15], m ∼

Unif({1, 2, 3, 4} and {(c1,k, c2,k)} ∼ Unif([0, 1]m×2). This corresponds to a medium with one to four
scatterers with varying shapes.

The relative median L1 error for different models and different out-of-distribution testing is reported in
Table 7.5. We observe that NIO generalizes well to unseen data, with test errors increasing at most by
approximately a factor of 4, and still outperforms the baselines in all cases.

DONet FCNN NIO

L1 ↓ L1 ↓ L1 ↓

Calderón Problem
Trigonometric Distribution A 1.37% 1.27% 1.2%

Calderón Problem Trigonometric
Distribution B 1.62% 1.28% 0.91%

Calderón Problem
Heart&Lungs 1.05% 0.28% 0.19%

Inverse Wave Scattering
Distribution A 4.61% 3.84% 3.0%

Inverse Wave Scattering
Distribution B 8.61% 8.98% 4.54%

Table 7.5: Relative median L1-error computed over out-of-distribution test samples with different models
and different benchmarks.

152

i
i

“output” — 2023/12/11 — 11:30 — page 153 — #153 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

Ablation Studies.

(a) Calderón Problem Trigonometric (b) Calderón Problem Heart&Lungs

(c) Inverse Wave Scattering (d) Radiative Transport

Figure 7.18: Median of the L1-error computed over testing samples ({Ψk}L̃
k=1, a), VS L̃ for different

benchmarks with different models (NIO and ablations).

We conduct two ablation studies focusing on two key elements of the Neural Inverse Operator. Firstly,
we focus on the architecture shown in Figure 7.3, where we remove the nonlinear part M of FNO and set
dv = 1. In this case, we have:

a∗(z) = R(f1, . . . , fL, z) = D

L

L∑
ℓ=1

fℓ + Ez, (7.42)

where E and D are real-valued parameters. With these experiments, we aim to assess if the channels’
mixing realized with M could improve the model’s performance. Secondly, we examine the influence of
randomized batching by training NIO without including the algorithm.

In order to maintain consistency, we use the same hyperparameter configurations for the ablation models
as those of the best-performing NIO models (refer to Table 9.4 for the specific values).

The ablation study is being carried out for the Calderón problem with trigonometric function and
heart&lungs Phantom, inverse wave scattering, and radiative transport. We consider the same experimen-
tal setup outlined in Section 7.4.5 and report the corresponding results in Figure 7.18. The figure shows
that the nonlinear term M and randomized batching significantly improve the model’s performance. For
the Calderón problem with trigonometric coefficients, removing M resulted in a nearly 2-times increase of
the generalization error. On the other hand, for the remaining problems, the improvement is considerably
more relevant, up to a factor of six for the inverse wave scattering.

153

i
i

“output” — 2023/12/11 — 11:30 — page 154 — #154 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

It should be noted that in all experiments, only between L = 20 and L = 32 boundary measurements are
used for training. In this scenario, the limited measurement data represents a bottleneck in accurately
reconstructing the target coefficient. With a larger number, the nonlinear part may lead to an even
greater reduction in the generalization error.

Regarding randomized batching, the improvements for the Calderón problem and radiative transport
are substantial, ranging from 5 to 10 times compared to the ablated version. On the other hand, the
improvements are more modest for the Inverse Wave Scattering, and the algorithm does not appear to
considerably enhance generalization. However, these results are particularly impressive on account of the
virtually zero cost associated with the randomized batching algorithm.

7.4.6 Comparison with Standard Numerical Methods for Inverse Problems

(a) Test Sample 1

(b) Test Sample 2

Figure 7.19: Exact and predicted coefficients for two different test samples (Rows) for the Calderón prob-
lem with Trigonometric-coefficients. Left Column: Ground Truth. Middle Column: NIO
reconstruction. Right Column: Reconstruction with the D-bar Direct method of [115].

In this section, we compare the performance of the proposed architecture, in terms of accuracy and infer-
ence time, with standard numerical methods, particularly PDE-constrained optimization techniques.

154

i
i

“output” — 2023/12/11 — 11:30 — page 155 — #155 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

Figure 7.20: Exact and predicted coefficients for an out-of-distribution test sample for the Inverse Wave
Scattering. Left Column: Ground Truth. Middle Column: NIO reconstruction. Right
Column: Reconstruction with the PDE-constrained optimization method.

Calderón Problem Heart&Lungs

We begin by considering the Calderón problem for the discontinuous Heart&Lungs Phantom and conduct
a comparative analysis between the proposed approach and the well-known D-bar method [115], which
is commonly employed in the context of EIT. In Figure 7.5, we present the ground truth along with
the NIO reconstruction for a randomly selected set of test samples. For comparison, we also include the
reconstruction obtained using the D-bar method. As the figure shows, NIO reconstructs the ground truth
to very high accuracy, consistent with the very small errors presented in Table 4.4. On the other hand, the
D-bar method is relatively inaccurate and provides a blurred and diffusive reconstruction of the shapes.
In fact, the L1-test error for the D-bar method is an unacceptably high 8.75%, compared to the almost
0.15% test error with NIO. This is even more impressive when one looks at the run times. The D-bar
method takes approximately 2 hours to run for a single sample, whereas the inference time for NIO is
only 0.1 seconds (on CPU). Thus, we can provide a method which two orders of magnitude more accurate
while being four orders of magnitude faster to run. This highlights the massive gain in performance with
machine learning-based methods, such as NIO, compared to traditional direct methods.

Inverse Wave Scattering

Next, we investigate the Inverse Wave Scattering problem and compare the NIO reconstruction with the
results obtained through PDE-constrained optimization. We examine an out-of-distribution (Distribution
A) test sample to accomplish this.

For PDE-constrained optimization, we employ a feed-forward neural network with trainable parameters
θ that parameterizes the coefficient a. The neural network architecture follows the form specified in
Equation 2.24, with L layers, d neurons, and activation function σ. The model parameters θ are initialized
randomly, and the Helmholtz equation (7.22) is numerically solved for L = 20 realizations of the boundary
conditions gℓ, where ℓ = 1, ..., L and the L2-loss

J(θ) =
L∑

ℓ=1
||Ψℓ − Ψ̃ℓ||22 (7.43)

155

i
i

“output” — 2023/12/11 — 11:30 — page 156 — #156 i
i

i
i

i
i

CHAPTER 7. OPERATOR LEARNING

(a) Test Sample 1

(b) Test Sample 2

Figure 7.21: Exact and predicted coefficients for two different test samples (Rows) for the Curve Vel
family. Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column:
Reconstruction with the PDE-constrained optimization method.

computed. Here, Ψ̃ℓ, ℓ = 1, ..., L denotes the target data. The trainable network parameters are updated
using LBFG in the direction of the negative gradient of J(θ). The process is iterated until convergence
(1000 iterations, corresponding to 1000× 20 PDE solves).

Observe that the hyperparameters of the network are chosen through a random search (as described in
the appendix 9.2.2) by picking the one minimizing J(θ).

The reconstructed coefficient obtained through PDE-constrained optimization, along with the NIO pre-
diction obtained by directly feeding the model with Ψ̃ℓ for ℓ = 1, . . . , L, are depicted in Figure 7.20.
The NIO reconstruction is significantly more accurate than the one obtained with PDE-constrained op-
timization, further reinforced by the corresponding L1-error, equal to 2.3% and 11.1%, respectively. The
corresponding total time required to reconstruct the coefficient, amounts to less than 1 second (on CPU)
for NIO and 8.5 hours for the traditional method. It is worth noting that the finite difference (FD) solver
employed for solving the equation is implemented on GPU within the PyTorch framework. By solving
the PDE in parallel for L = 20 boundary measurements on 20 different GPUs, the computation time
could potentially be reduced to 30 minutes, which is still three orders of magnitude slower than NIO’s

156

i
i

“output” — 2023/12/11 — 11:30 — page 157 — #157 i
i

i
i

i
i

7.4. NUMERICAL EXPERIMENTS.

inference.

Finally, an alternative approach to directly learning the inverse map would be to replace the forward
solver with a learning model in the iterative loop described above. Although the surrogate model might
achieve low errors in learning the forward map (compared to the inverse map), the inference time for the
model would still be approximately 0.1 seconds (on a CPU). If we require 1000 calls to the model for the
optimization process, this will result in an overall inference time that is two orders of magnitude longer
than NIO. Moreover, the reconstruction accuracy cannot surpass that obtained using the FD solver as
forward map, since any surrogate model approximating the forward map will be less accurate than the
FD solver itself.

Seismic Imaging

We also tested the PDE-constrained optimization method in the context of Seismic imaging with the
CurveVel-A dataset. Unlike the NIO approach, in the PDE-constrained optimization approach, we first
discretize the velocity coefficient a(z) using a piecewise-constant parameterization, denoting the param-
eters as θ. We then solve the wave equation (7.27) using the finite difference method. The method is
thus naturally dependent on the discretization of a(z) and the PDE solver used to evaluate the source-
to-receiver operator. We use the same experimental setup as provided in [110]. A similar squared L2 loss
to (7.43) is used as the objective function to measure the mismatch between the observed data and the
simulated receiver data based on the current prediction of a(z). We also solve a corresponding adjoint
wave equation whose solution is used to compute the gradient of the objective function J(θ) with respect
to θ. We use the standard gradient descent method to perform the optimization. Each gradient evalua-
tion requires two time-dependent PDE solves, which is the most expensive part of this PDE-constrained
optimization approach.

The method leads to errors (in L1) 2.5-4 times larger than CNIO for the same test sample while taking
approximately 30 minutes of run-time on an 8-core M1-chip CPU. Figure 7.21 depicts the results for two
test samples. The L1-error achieved with NIO is 2.03% and 4.84% for samples 1 and 2, respectively,
whereas the ones obtained with PDE-constrained optimization are 5.05% and 16.9%.

157

i
i

“output” — 2023/12/11 — 11:30 — page 158 — #158 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 159 — #159 i
i

i
i

i
i

8 Conclusions

Physics informed neural networks (PINNs), originally proposed in [59], have recently been extensively used
to numerically approximate solutions of both forward and inverse problems for PDEs in different contexts
[17, 116, 24] and references therein. One of the main aims of the thesis was to suggest possible explanations
for this efficient approximation by PINNs. In particular, one needs to explain why jointly minimizing
the PDE residual and the data residual, (stemming from boundary conditions, initial conditions and,
possibly noisy, observables of the solution in the case of inverse problems) will lead to bounds (control)
on the overall approximation or generalization error.

In Chapter 3 of the thesis, we focused on the forward problem of a wide range of linear and non linear
PDEs with sufficiently smooth solutions. We introduced an abstract framework, where an abstract
nonlinear PDE is approximated by a PINN. The key point of this algorithm is to minimize the PDE and
boundary residuals at training points chosen as the quadrature points, corresponding to an underlying
quadrature rule. The resulting generalization error is bounded in the abstract error estimate (3.13). The
bound depends on the training error, the number of training samples, and involves constants that stem
from stability estimates for the underlying PDE as well as in the quadrature error. From the bound
(3.13), one can conclude that as long as the training error is small, the number of quadrature points
is sufficiently large, and one has some control on the stability and quadrature constants, the resulting
generalization error will be small. A key role in our error analysis is played by the stability of solutions
of the underlying PDE that we leveraged to derive the abstract error bound (3.13).

We illustrate our approach with four representative examples for PDEs, i.e, semilinear parabolic PDEs,
viscous scalar conservation laws, the incompressible Euler equations of fluid dynamics and dispersive
equations. For each of these examples, the abstract framework was worked out and resulted in the bounds
(3.28), (3.39), (3.59), (3.76) on the PINN generalization errors. All the bounds were of the form (3.13),
in terms of the training and quadrature errors, and with constants relying on stability (and regularity)
estimates for classical solutions of the underlying PDE. We also presented numerical experiments to
validate the proposed theory.

For the viscous scalar conservation laws, we observed very accurate approximations with PINNs, for all
values of the viscosity, as long as the underlying solution was at least Lipschitz continuous. However,
as expected from the estimate (3.39), the accuracy deteriorated for the inviscid problem, when shocks
were formed. This motivated the design of a novel variant of PINNs for the accurate approximation of
entropy solutions of scalar conservation laws (Chapter 4). To this end, we based the PDE residual on
the weak form of the Kruzkhov entropy conditions (4.7) and solve the resulting min-max optimization
problem for determining parameters (weights and biases), for the neural networks approximating the
entropy solution as well as test functions. The resulting PINN was termed as a weak PINN (wPINN).
We presented numerical experiments with the Burgers’ equation to illustrate that wPINNs, with suitable
choices of loss functions and training protocol (see section 4.2), can approximate the entropy solutions of
scalar conservation laws accurately. The algorithm is also supported by rigorous theoretical results which
are outlined in more details in [71].

In Chapter 5, we focused on inverse problems for PDE, specifically on the so-called data assimilation
or unique continuation. For these problems, the inputs necessary for the forward problem of the under-

159

i
i

“output” — 2023/12/11 — 11:30 — page 160 — #160 i
i

i
i

i
i

CHAPTER 8. CONCLUSIONS

lying PDE (for instance the abstract pde (2.3)), such as initial and boundary conditions are unknown.
However, one has access to observables of the solution on a subset of the underlying domain, which is
called observation domain. Such data assimilation problems arise in many applications, particularly in
geophysics and meteorology.

We followed the outline of Chapter 3 and began by posing the data assimilation inverse problem in an
abstract framework for the generic PDE (5.9). Under the assumption that solutions to the underlying
inverse problem (5.9), (5.10), satisfy a conditional stability estimate, we were able to prove a rigorous
upper bound on the error (5.18) of the PINN, in terms of the (computable) training error (5.19) and
the number of training samples (with a rate prescribed by the quadrature errors). Remarkably, this
bound shares the same structure as the one obtained for the forward problem. This observation suggests
that, irrespective of whether applied to forward or inverse problems, the mechanism by which PINNs can
effectively approximate solutions of such problems remains the same. More specifically, this mechanism
leverages the (conditional) stability estimate on the corresponding inverse or forward problem for the
underlying PDE.

We then proceeded and illustrated this abstract framework for concrete examples of linear PDEs that
arise in a wide variety of models (Poisson, heat, wave and Stokes equations). All these PDEs possess
conditional stability estimates for the underlying data assimilation inverse problem, proved either by
the well-known three balls inequalities or Carleman estimates. We adapt the abstract formalism to each
example and provide concrete estimates on the generalization error. Numerical experiments are presented
and validated the proposed theory for each of the linear PDEs considered here. We observe from the
numerical experiments that PINNs are very efficient at approximating the underlying inverse problem.
The resulting errors are very small and are less than 1%, even for a few training samples.

A key advantage of machine learning approaches, as highlighted in the introduction, is their ability to serve
as fast surrogates, particularly for parametric PDEs. Once the model has been trained on a (random)
sampling of the parameter space, it can efficiently infer solutions for other parameters with minimal
computational cost. The choice of the loss function to train the model can stem from various sources:
(1) solely data, generated by solving the underlying PDEs for different parameter realizations, (2) solely
physics-based constraints, or (3) a combination of data and physics. An example of the second approach
was presented in Section 3.7.5, where the parameterized KdV equation was solved with a physics-informed
loss function in an unsupervised manner. In the same spirit, in Section 6.1 we considered the parametrized
version of the heat equation 7.1 and solved it for different dimensions of the underlying parameter space
(up to 100), showing a growth of the generalization error in terms of the parameter space dimension
between linear and quadratic.

However, in cases where the high dimensionality of the PDE arises from the large state space, the data-
driven approach is often not feasible due to the curse of dimensionality affecting traditional numerical
methods. On the other hand, physics-informed neural networks (PINNs) offer a valuable approach to
solving PDEs with large state spaces. This has been theoretically justified in the recent paper [88], where
PINNs have been rigorously proven to overcome the curse of dimensionality when solving Kolmogorov
equations in many dimensions. This opens up new possibilities for solving high-dimensional PDEs, such
as the radiative transport equation, Boltzmann equation, and Kolmogorov equation, using PINNs.

In Chapter 6, we specifically focused on the radiative transfer equation as an illustrative example of a
high-dimensional PDE, and successfully solved it using PINNs. We conducted a series of numerical ex-
periments, ranging from the simplest monochromatic stationary radiative transfer in one space dimension
(6.24) to the more complex time-dependent polychromatic radiative transfer in three space dimensions.
PINNs exhibited excellent performance across all the experiments, achieving low errors with short train-
ing times. Notably, the results were qualitatively and quantitatively comparable to published findings,

160

i
i

“output” — 2023/12/11 — 11:30 — page 161 — #161 i
i

i
i

i
i

but with potentially significantly reduced computational costs. We supplemented the experimental re-
sults with rigorous error estimates that bounded the generalization error (6.21) in terms of computable
training errors (6.22) and the number of quadrature points, independent of the underlying dimension.
Refer to bounds (9.3) for detailed information. Furthermore, we also addressed an example of a param-
eter identification inverse problem for the radiative transfer equation using the PINN algorithm. In this
problem, the objective was to compute the unknown absorption coefficient based on measurements of
the incident radiation. The PINN algorithm proved to be both fast and accurate in solving this inverse
problem.

Finally, we concluded the first part of the thesis centered on PINNs by considering the Kolmogorov PDE
as an additional prototypical example of high-dimensional PDEs. For this equation we only provided
experimental evidence of the fact that PINNs can overcome the curse of dimensionality for this equation,
whereas a rigorous estimate of the total error was established in [88]. We examined different examples of
the Kolmogorov PDE, including the well-known heat equation and Black-Scholes equations, across a wide
range of spatial dimensions. The results demonstrated that PINNs can achieve highly accurate solutions
with an error below 2%, even for 100 dimensions. Most importantly, the training time and corresponding
generalization error scaled linearly with the number of dimensions, confirming the ability of PINNs to
overcome the curse of dimensionality.

In the last chapter of thesis, we focused on operator learning and specifically addressed a large class of
inverse problems that are only well-defined when the underlying inverse operator (2.16), maps an opera-
tor (the boundary observation operator (2.14)) to the underlying coefficient (a function). The resulting
inverse problem amounts to inferring the unknown coefficient a from data pairs (Λa, a), with Λa represent-
ing the observation operator. Existing operator learning frameworks such as DeepONets (7.8) and FNOs
(7.15) only map functions to functions. Hence, one needs to adapt them to be able to learn mappings
between operators and functions in order to solve the inverse problem (2.16). To this end, we proposed a
novel architecture, termed Neural Inverse Operators (NIO), based on a composition of DeepONets and
FNOs, augmented with suitable architectural priors (definition of R in (7.38)), and trained with ran-
domized batching, to guarantee invariance of the generalization error to the different discretization of the
input operator. Our architecture is motivated by the underlying structure of the inverse map. We tested
the NIO on a variety of benchmark inverse problems. These include the Calderón Problem in electrical
impedance tomography, inverse wave scattering modelled with the Helmholtz equation, optical imaging
using the radiative transport equation, and seismic imaging with the acoustic wave equation. For all
these problems, NIO outperformed baselines significantly and provided accurate and, more importantly,
robust approximations to the unknown coefficients with small errors. Finally, a series of experiments
were also presented to demonstrate that NIO is robust with respect to various factors such as varying
sensor locations, grid resolutions, noise, and discretizations of the input operator while being able to
generalize out-of-distribution and being more accurate and much faster than direct and PDE constrained
optimization algorithms. Various extensions of the architecture are possible. For instance, other archi-
tectures, such as recently proposed LOCA [40], VIDON [38], or graph-based approaches [117, 118], can
be adapted in this context. Problems in higher-dimensional (particularly with seismic) imaging need to
be considered to explore how NIOs scale with increasing problem size. Finally, approximation bounds
and universality results, in the spirit of [119, 120] need to be derived in order to place NIOs on a solid
theoretical footing.

161

i
i

“output” — 2023/12/11 — 11:30 — page 162 — #162 i
i

i
i

i
i

i
i

“output” — 2023/12/11 — 11:30 — page 163 — #163 i
i

i
i

i
i

9 Appendix

9.1 Radiative Transfer

9.1.1 Estimates on the Generalization Error for the Radiative Transfer Equation

In order to derive an error estimate for the PINNs algorithm, we need to make some assumptions on the
scattering kernel Φ in (6.12). We follow standard practice and assume that it is symmetric Φ(ω, ω′, ν, ν′) =
Φ(ω′, ω, ν′, ν). Moreover, the following function,

Ψ(ω, ν) =
∫

S×Λ

Φ(ω, ω′, ν, ν′)dω′dν′, (9.1)

is essentially bounded i.e. Ψ ∈ L∞(S × Λ). We have the following estimate on the generalization error
(6.21),

Lemma 9.1.1. Let u ∈ L2(DT) be the unique weak solution of the radiative transfer equation (6.12), with
absorption coefficient 0 ≤ k ∈ L∞(D × Λ), scattering coefficient 0 ≤ σ ∈ L∞(D × Λ) and a symmetric
scattering kernel Φ ∈ Cℓ(S × Λ× S × Λ), for some ℓ ≥ 1, such that the function Ψ (defined in (9.1)) is
in L∞(S × Λ). Let u∗ = uθ∗ ∈ Cℓ(DT) be the output of the PINNs algorithm 1 for approximating the
radiative transfer equation (6.12), such that

max{VHK(u∗), VHK (rint,θ∗)} < +∞, (9.2)

with VHK being the so-called Hardy-Krause variation (see [50, 72] for the precise definition). We also
assume that the initial data u0 and boundary data ub are of bounded Hardy-Krause variation. Then,
under the assumption that Sobol points are used as the training points Sint, Ssb, Stb in algorithm 1 and
Guass-quadrature rule of order s = s(ℓ) is used in approximating the scattering kernel in the residual
(3.2), we have the following estimate on the generalization error,

(EG)2 ≤ C
(
(Etb

T)2 + c(Esb
T)2 + c(Eint

T)2)
+ CC∗

(
(log(Ntb))2d

Ntb
+ c

(log(Nsb))2d

Nsb
+ c

(log(Nint))2d+1

Nint
+ cN−2s

S

) (9.3)

with constants defined as,

C = T + cĈT 2ecĈT , Ĉ = 2 + 2(∥σ∥L∞ + ∥Ψ∥L∞)
sd

C∗ = max
{
VHK

(
(r∗

tb)2) , VHK

(
(r∗

sb)2) , VHK

(
(r∗

int)2) , C}
C = C (|DT |, ∥Φ∥Cℓ , ∥u∗∥Cℓ)

(9.4)

163

i
i

“output” — 2023/12/11 — 11:30 — page 164 — #164 i
i

i
i

i
i

CHAPTER 9. APPENDIX

Proof. We drop the θ∗ dependence in the residuals (3.2), (6.19), for notational convenience and denote
the residuals as r∗

int, r
∗
sb, r

∗
tb. Define,

E(u∗,Φ) :=
NS∑
i=1

wS
i Φ(ω, ωS

i , ν, ν
S
i)u∗(t, x, ωS

i , ν
S
i)−

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)u∗(t, x, ω′, ν′)dω′dν′. (9.5)

It is straightforward to derive from the radiative transfer equation (6.12) and the definition of residuals
(3.2), (6.19), that the error û = u∗ − u, satisfies the following integro-differential equation,

1
c
ût + ω · ∇xû = −(k + σ)û+ σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)dω′dν′

+ r∗
int + E(u∗,Φ).

û(0, x, ω, ν) = r∗
tb, (x, ω, ν) ∈ D × S × Λ,

û(t, x, ω, ν) = r∗
sb, (t, x, ω, ν) ∈ Γ− × Λ.

(9.6)

Multiplying û on both sides of the first equation in (9.6), we obtain,

1
2c
d(û2)
dt

+ ω · ∇x(û
2

2) = −(k + σ)û2 + σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′

+ r∗
intû+ E(u∗,Φ)û

(9.7)

Integrating the above over D × S × ν, integrating by parts and using the Cauchy’s inequality and the
fact that k, σ ≥ 0, we obtain for any t ∈ (0, T],

1
2c

d

dt

∫
D×S×Λ

û2(t, x, ω, ν)dxdωdν ≤
∫

D×S×Λ
û2(t, x, ω, ν)dxdωdν −

∫
(∂D×S×Λ)−

(ω · n(x)) û
2(t, x, ω, ν)

2 ds(x)dωdν

+
∫

D×S×Λ

σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′dνdωdx,

+
∫

D×S×Λ

(r∗
int(t, x, ω, ν))2

2 dνdωdx+
∫

D×S×Λ

(E(u∗,Φ)(t, x, ω, ν))2

2 dνdωdx

(9.8)
Here ds(x) denotes the surface measure on ∂D and we define

(∂D × S × Λ)− := {(x, ω, ν) ∈ ∂D × S × Λ : ω · n(x) ≤ 0},

with n(x) being the unit outward normal at x ∈ ∂D.

We fix any T̄ ∈ (0, T] and integrate (9.8) over (0, T̄) and estimate the result to obtain,

∫
D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν ≤
∫

D×S×Λ

û2(0, x, ω, ν)dxdωdν + 2c
T̄∫

0

∫
D×S×Λ

û2(t, x, ω, ν)dtdxdωdν

+ c

∫
Γ−

|ω · n|û2(t, x, ω, ν)dtds(x)dωdν + I + c

∫
DT

(r∗
int)2dz + c

∫
DT

(E(u∗,Φ))2dz.

(9.9)

164

i
i

“output” — 2023/12/11 — 11:30 — page 165 — #165 i
i

i
i

i
i

9.1. RADIATIVE TRANSFER

Here, the term I in (9.9), is defined and estimated by successive applications of Cauchy-Schwatrz in-
equality as,

I = 2c
T̄∫

0

∫
D×S×Λ

σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′dνdωdxdt,

≤ 2c(∥σ∥L∞ + ∥Ψ∥L∞)
sd

T̄∫
0

∫
D×S×Λ

û2(t, x, ω, ν)dtdxdωdν.

By identifying constant Ĉ from (9.4), we obtain from (9.9) and (9.6) that,∫
D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν ≤
∫

D×S×Λ

(r∗
tb)2dxdωdν + c

∫
Γ−

(r∗
sb)2dtds(x)dωdν

+ c

∫
DT

(r∗
int)2dz + c

∫
DT

(E(u∗,Φ))2dz

+ cĈ

T̄∫
0

∫
D×S×Λ

û2(t, x, ω, ν)dtdxdωdν.

(9.10)

Applying the integral form of Grönwall’s inequality to (9.10), we obtain for any 0 < T̄ ≤ T ,

∫
D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν ≤
(

1 + cĈT̄ ecĈT̄
) ∫

D×S×Λ

(r∗
tb)2dxdωdν + c

∫
Γ−

(r∗
sb)2dtds(x)dωdν


+
(

1 + cĈT̄ ecĈT̄
)c ∫

DT

(r∗
int)2dz + c

∫
DT

(E(u∗,Φ))2dz


(9.11)

Integrating (9.11) over (0, T) yields,

(EG)2 :=
∫

DT

û2(t, x, ω, ν)dz ≤
(
T + cĈT 2ecĈT

) ∫
D×S×Λ

(r∗
tb)2dxdωdν + c

∫
Γ−

(r∗
sb)2dtds(x)dωdν


+
(
T + cĈT 2ecĈT

)c ∫
DT

(r∗
int)2dz + c

∫
DT

(E(u∗,Φ))2dz


(9.12)

As the training points in Stb are the Sobol quadrature points, we realize that the training error (Etb
T)2

(6.22) is the quasi-Monte Carlo quadrature for the first integral in (9.12). Hence by the well-known
Koksma-Hlawka inequality [50], we obtain the following estimate,∫

D×S×Λ

(r∗
tb)2dxdωdν ≤ (Etb

T)2 + VHK

(
(r∗

tb)2) (log(Ntb))2d

Ntb
. (9.13)

165

i
i

“output” — 2023/12/11 — 11:30 — page 166 — #166 i
i

i
i

i
i

CHAPTER 9. APPENDIX

By a similar argument, we can estimate,∫
Γ−

(r∗
sb)2dtds(x)dωdν ≤ (Esb

T)2 + VHK

(
(r∗

sb)2) (log(Nsb))2d

Nsb
,

∫
DT

(r∗
int)2dz ≤ (Eint

T)2 + VHK

(
(r∗

int)2) (log(Nint))2d+1

Nint
,

(9.14)

As ωS
i , ν

S
i , for 1 ≤ i ≤ NS are Gauss-quadrature points, we follow [49] and readily estimate E defined in

(9.5) by the error for an s-th order accurate Gauss quadrature rule with s = s(ℓ) as,∫
DT

(E(u∗,Φ))2dz ≤ CN−2s
S , (9.15)

with constant C defined in (9.4) By plugging in the estimates (9.13), (9.14), (9.15) in (9.12) and identifying
constants, we derive the desired estimate (9.3) on the generalization error (6.21).

9.1.2 Estimates on the Generalization Error in the Steady Case

The steady-state (time-independent) version of the radiative transfer equation (6.12) is obtained by letting
the speed of light c→∞ and resulting in,

(k + σ)u = −ω · ∇xu+ σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)u(x, ω′, ν′)dω′dν′ + f, (9.16)

with all the coefficients and sources as defined before. We also impose the inflow boundary condition,

u(x, ω, ν) = ub(x, ω, ν), (x, ω, ν) ∈ Γs
, (9.17)

with inflow boundary defined by,

Γs
− = {(x, ω, ν) ∈ ∂D × S × Λ : ω · n(x) < 0} (9.18)

with n(x) denoting the unit outward normal at any point x ∈ ∂D.

The PINNs algorithm 1 can be readily adpated to this case by simply (formally) neglecting the temporal
dependence in the residuals (3.2), (6.19) and loss functions and the underlying definitions of neural
networks. We omit detailing this procedure here. Our objective is to bound the resulting generalization
error,

Es
G = Es

G(θ∗) :=

 ∫
D×S×Λ

|u(x, ω, ν)− u∗(x, ω, ν)|2dz

 1
2

, (9.19)

with dz = dxdωdν denoting the underlying volume measure. As in lemma 9.1.1, we will bound the
generalization error in terms of the training errors,

Esb
T :=

Nsb∑
j=1

wsb
j |rsb,θ∗(zsb

j)|2
 1

2

, Eint
T :=

Nint∑
j=1

wint
j |rint,θ∗(zint

j)|2
 1

2

(9.20)

Here, zint
j and zsb

j are the interior and spatial boundary training points.

We have the following estimate on the generalization error,

166

i
i

“output” — 2023/12/11 — 11:30 — page 167 — #167 i
i

i
i

i
i

9.1. RADIATIVE TRANSFER

Lemma 9.1.2. Let u ∈ L2(D×S×Λ) be the unique weak solution of the radiative transfer equation (9.16),
with absorption coefficient 0 < kmin ≤ k(x, ν) ≤ kmax < ∞, scattering coefficient 0 < σmin ≤ σ(x, ν) ≤
σmax < ∞, for almost every x ∈ D, ν ∈ Λ and a symmetric scattering kernel Φ ∈ Cℓ(S × Λ × S × Λ),
for some ℓ ≥ 1, such that the function Ψ (defined in (9.1)) is in L∞(S ×Λ). We further assume that the
absorption and scattering coefficients are related in the following manner, there exists a κ > 0, such that

kmin + σmin −
σmax + ∥Ψ∥L∞

sd
≥ κ (9.21)

Let u∗ = uθ∗ ∈ Cℓ(D × S × Λ) be the output of the PINNs algorithm 1 for approximating the stationary
radiative transfer equation (9.16), such that

max{VHK(u∗), VHK (rint,θ∗)} < +∞, (9.22)

with VHK being the Hardy-Krause variation. We also assume that the boundary data ub is of bounded
Hardy-Krause variation. Then, under the assumption that Sobol points are used as the training points
Sint, Ssb in algorithm 1 and Guass-quadrature rule of order s = s(ℓ) is used in approximating the scattering
kernel in the residual (3.2), we have the following estimate on the generalization error,

(Es
G)2 ≤ C

(
(Esb

T)2 + (Eint
T)2 + (log(Nsb))2d−1

Nsb
+ (log(Nint))2d

Nint
+N−2s

S

)
(9.23)

with constants defined as,

C = max
{

2
κ
,

2
κ
VHK

(
(r∗

sb)2) , 2Cϵ

κ

(
(r∗

int)2) , 2Cϵ

κ
CN−2s

S

}
, (9.24)

where C is defined in (9.4). Here, Cϵ is a constant that depends on κ and is defined in (9.29).

Proof. We drop the θ∗ dependence in the residuals (3.2), (6.19), for notational convenience and denote
the residuals as r∗

int, r
∗
sb. Define,

Es(u∗,Φ) :=
NS∑
i=1

wS
i Φ(ω, ωS

i , ν, ν
S
i)u∗(x, ωS

i , ν
S
i)−

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)u∗(x, ω′, ν′)dω′dν′. (9.25)

It is straightforward to derive from the radiative transfer equation (9.16) and the definition of residuals
(3.2), (6.19), that the error û = u∗ − u, satisfies the following integro-differential equation,

(k + σ)û = −ω · ∇xû+ σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(x, ω′, ν′)dω′dν′ + r∗
int + Es(u∗,Φ),

û(x, ω, ν) = r∗
sb, (x, ω, ν) ∈ Γs

−

(9.26)

Multiplying û on both sides of the first equation in (9.26), we obtain,

(k + σ)û2 = −ω · ∇x(û
2

2) + σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(x, ω′, ν′)û(x, ω, ν)dω′dν′

+ r∗
intû+ Es(u∗,Φ)û

(9.27)

167

i
i

“output” — 2023/12/11 — 11:30 — page 168 — #168 i
i

i
i

i
i

CHAPTER 9. APPENDIX

Integrating the above over D × S × ν, integrating by parts, using the assumed lower and upper bounds
on k, σ, we obtain,

(kmin + σmin)
∫

D×S×ν

û2dz ≤
∫

Γs
−

(r∗
sb)2ds(x)dωdν + I +

∫
D×S×ν

(r∗
intû+ Es(u∗,Φ)û)dz, (9.28)

with term I defined and estimated by,

I =
∫

D×S×Λ

σ

sd

∫
Λ

∫
S

Φ(ω, ω′, ν, ν′)û(x, ω′, ν′)û(x, ω, ν)dω′dν′dνdωdx,

≤ σmax + ∥Ψ∥L∞

sd

∫
D×S×Λ

û2(x, ω, ν)dz.

From the assumption (9.21), there exists an ϵ > 0 such that kmin +σmin− σmax+∥Ψ∥L∞

sd
− 2ϵ > κ

2 , we use
the ϵ-version of Cauchy’s inequality,

ab ≤ ϵa2 + Cϵb
2, (9.29)

to further estimate (9.28) as,

∫
D×S×Λ

û2dz ≤ 2
κ

∫
Γs

−

(r∗
sb)2ds(x)dωdν + 2Cϵ

κ

 ∫
D×S×ν

(r∗
int)2 + (Es(u∗,Φ))2dz

 (9.30)

By using the estimates (9.14) and (9.15) and identifying constants, we obtain the desired bound (9.23)
on the generalization error (9.19).

As for the time-dependent case, the bound (9.23) should be considered in the sense of if the PINN is
trained well, it generalizes well. Moreover, the bound, and consequently, the PINN does not suffer from
a curse of dimensionality by the same argument as in the time-dependent case. Infact, the logarithmic
corrections to the linear decay of the rhs in (9.23) can be ignored at an even smaller number of training
points.

The assumption (9.21) plays a key role in the derivation of the bound (9.23). A careful inspection of this
assumption reveals that the scattering coefficient is not allowed to vary over a large range, unless there
is enough absorption in the medium. However, there is no restriction on the range of scales over which
the absorption coefficient can vary.

9.2 Neural Inverse Operator

9.2.1 Architecture Details

Feed Forward Dense Neural Networks

A description of feed-forward dense neural network is provided in 2.5.1 In all numerical experiments,
the trunk net of DeepONet is a feed-forward neural network. We consider a uniform number of neurons
across all the layers of the network dℓ = dℓ−1 = d, 1 < ℓ < Lt.

168

i
i

“output” — 2023/12/11 — 11:30 — page 169 — #169 i
i

i
i

i
i

9.2. NEURAL INVERSE OPERATOR

Fully Convolutional Neural Network

Fully convolutional neural networks are a special class of convolutional networks which can be evaluated
for virtually any resolution of the input. A detailed description of CNN and FCNN is provided in Section
2.5.2.

A visual representation of the convolutional architectures used for the benchmark problems is depicted in
Figures 9.1, 9.2, 9.3,9.4. The convolutional block (or transposed convolution block) is the composition of a
convolution (or transposed convolution) operation, batch normalization, and activation function (Leaky
ReLU). The cropping operation involves adding negative padding to the edges of a tensor to achieve
the desired output width and height. The number of channels c is selected with cross-validation. The
architecture used for seismic imagining is referred to as InversionNet in [110].

4 68

20

c 34

20

2c 2c 17

20

2c 2c 9

10

conv1

4c 4c 5

5

conv1

8c 8c 1
1

conv1 8c 5

5

8c

4c

10

4c 10

2c

20

2c 20

2c

40

2c 40

c 80

80

c 70

70

1 70

70

Encoder

Decoder

Conv. Block

Transposed Conv. Block

Crop

Figure 9.1: Schematic representation of the Fully-Convolutional Neural Network (FCNN) architecture
used for the Calderón problem with Trigonometric coefficients and for the Inverse Wave
Scattering with Helmholtz Equation.

DeepONet

The architectures of the branch and trunk are chosen according to the benchmark addressed. In particular,
we employ standard feed-forward neural networks as trunk-net in all the experiments. In contrast, the
branch is obtained as a composition of the encoder of the fully convolutional networks depicted in figures
9.1, 9.2 9.3 and 9.4, and a linear transformation from Rn to Rp, where n denotes the number of channels
in the last layer of the encoder and p the number of basis functions. Moreover, c = 32 for the seismic
imaging and c = 64 for all the other benchmarks.

Hence, the architecture of the branch is fixed. The number of the trunk hidden layers Lt, units d, and p
are chosen through cross-validation. On the other hand, the activation function σ is chosen to be a leaky
ReLU for both the branch and the trunk.

169

i
i

“output” — 2023/12/11 — 11:30 — page 170 — #170 i
i

i
i

i
i

CHAPTER 9. APPENDIX

1 32

32

c 32

32

c 16

16

2c 16

16

2c 8

8

4c 8

8

4c 4

4

8c 4

4
8c 2

2
16c 2

2
16c 1

1

8c 5

5

8c

4c

10

4c 10

2c

20

2c 20

2c

40

2c 40

c 80

80

c 70

70

1 70

70

Encoder

Decoder

Figure 9.2: Schematic representation of the Fully-Convolutional Neural Network architecture used for the
optical imaging for the Calderón Problem with Heart&Lungs phantom.

1 32

32

c 32

32

c 16

16

2c 16

16

2c 8

8

4c 8

8

4c 4

4

8c 4

4
8c 2

2
16c 2

2
16c 1

1

8c 1

5

16c

8c

10

8c 1

4c

20

4c 1

2c

40

2c 1

c 1

80

c 1

70

1 1

70

Encoder

Decoder

Figure 9.3: Schematic representation of the Fully-Convolutional Neural Network architecture used for the
optical imaging for the radiative transport Equation.

Fourier Neural Operator

We use the implementation of the FNO model provided by the authors of [35]. Specifically, the projection
Q to the target space is performed by a shallow neural network with a single hidden layer with 128
neurons and GeLU activation function. The same activation function is also used for all the Fourier
layers. Moreover, bℓ(x) = 0, for all ℓ = 1, . . . , T and the weight matrix Wℓ used in the residual connection
derives from a convolutional layer defined by (kℓ = 1, s = 1, p = 0, cℓ = dv, cℓ+1 = dv), for all 1 < ℓ < T .

Neural Inverse Operator

In all numerical experiments, the proposed architecture is constructed by combining the DeepONet and
Fourier Neural Operator by means of the lifting operator R defined in equation (7.38).

The implementation of DeepONet follows the same description as outlined in Section 9.2.1. However,
the branch structure differs from the encoder structure depicted in figures 9.1, 9.2, 9.3, and 9.4. In
the proposed NIO architecture, the channel mixing is performed downstream through the operator M.

170

i
i

“output” — 2023/12/11 — 11:30 — page 171 — #171 i
i

i
i

i
i

9.2. NEURAL INVERSE OPERATOR

510
00

70

32 50
0

70

64 64 25
0

70

64 64 12
5

70

128 128 63

70

128 128 32

35

256 256 16

18

256 256 8

9
512 1

1

512 5

5

512

256

10

256 10

128

20

128 20

64

40

64 40

64

40

64 40 32 80

80

32 70

70

1 70

70

Encoder

Decoder

Figure 9.4: Schematic representation of the Fully-Convolutional Neural Network architecture used for the
seismic imaging problems.

1 68

4

64 34

4

128 128 17

4

128 128 9

4

256 256 5

4
512 512 1

1
p 1

1

Conv. Block

Linear Layer

Figure 9.5: Schematic representation of the NIO-BranchNet architecture used for the Calderón problem
with Trigononmetric coefficients and for the Inverse Wave Scattering with Helmholtz Equation

1 32
1

64 32
1

64 16
1

128 16
1 128 8

1
256 8

1 256 4
1

512 4
1

512 2
1

512 1
1

p 1
1

Figure 9.6: Schematic representation of the NIO-BranchNet architecture used for the optical Imaging
with Radiative transport Equation and Calderón Problem with Heart&Lungs phantom.

Specific details regarding the branch-net architectures used in NIO for the benchmark problems can be
found in Figures 9.5, 9.6, and 9.7. For instance, for the seismic imaging, the branch architecture is the
same as the encoder shown in Figure 9.4, but only a single input channel is used instead of five, following
the same rationale as mentioned above. Overall, the model includes the following hyperparameters: the
number of layers Lt and neurons d of the DeepONet trunk, the number of basis functions p, and the
lifting dimension dv, the number of Fourier layers T and number of (truncated)-Fourier coefficients k, of
FNO.

171

i
i

“output” — 2023/12/11 — 11:30 — page 172 — #172 i
i

i
i

i
i

CHAPTER 9. APPENDIX

110
00

70

32 50
0

70

64 64 25
0

70

64 64 12
5

70

128 128 63

70

128 128 32

35

256 256 16

18

256 256 8

9
512 1

1
p 1

1

Figure 9.7: Schematic representation of the NIO-BranchNet architecture used for the seismic imaging.

9.2.2 Training Details

The training of the models, including the baselines, is performed with the ADAM optimizer, with a
learning rate η for 1000 epochs (250 epochs in the Seismic imaging problem) and minimizing the L1-loss
function. We also use a step learning rate scheduler and reduce the learning rate of each parameter
group by a factor γ every epoch. We train the models in mini-batches of size 256, and a weight decay of
magnitude w is used. Moreover, the input and output data are transformed with a suitable map before
training. Observe that the testing error reported in Table 4.4 has been obtained on the non-transformed
output data. We consider two different data transformations to preprocess the data:

1. MinMax. This transformation involves scaling both the inputs and outputs to a range between -1
and 1:

f̃ = 2 f −m
M −m

− 1, (9.31)

where M and m are the maximum and the minimum value of f across all the training samples.

2. log-MinMax. This transformation is specifically used for Seismic Imaging problems. The input data
are transformed according to the following equation:

f̃ = log (|f |) sign (f) , (9.32)

and then, the obtained input and output scaled between −1 and 1.

All the parameters mentioned above, including the type of data transformation (Identity, MinMax, log-
MinMax, are chosen through cross-validation.

At every epoch, the relative L1 error is computed on the validation set, and the set of trainable parameters
resulting in the lowest error during the entire process is saved for testing. Early stopping is used to
interrupt the training if the best validation error does not improve after 50 epochs.

The cross-validation is performed by running a random search over a chosen range of hyperparameters
values and selecting the configuration, realizing the lowest relative L1 error on the validation set. Overall,

172

i
i

“output” — 2023/12/11 — 11:30 — page 173 — #173 i
i

i
i

i
i

9.2. NEURAL INVERSE OPERATOR

50 hyperparameter configurations are tested for NIO and 30 for the baselines. The model size (minimum
and maximum number of trainable parameters) covered in this search are reported in Table 9.1.

The results of the random search, i.e., the best-performing hyperparameter configurations for each model
and each benchmark, are reported in tables 9.2, 9.3, and 9.4. The FCNN hyperparameters reported in
the table for the seismic imaging problem are those used in [110].

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

DONet 4.6M
9.07M

4.6M
9.07M

9.54M
14.01M

9.54M
14.01M

12.01M
15.85M

12.01M
15.85M

FCNN 1.07M
68.32M

1.07M
68.32M

4.31M
275.37M

2.48M
39.53M

24.4M
24.4M

24.4M
24.4M

NIO 7.95M
27.79M

10.6M
50.76M

7.95M
27.79M

9.6M
10.3M

13.07M
32.91M

13.07M
32.91M

Table 9.1: Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable parameters
among the random-search hyperparameters configurations for all the models in every problem
reported in Table 4.4 in the main text.

173

i
i

“output” — 2023/12/11 — 11:30 — page 174 — #174 i
i

i
i

i
i

CHAPTER 9. APPENDIX

η γ w Data Trans p Lt d
Trainable
Params

Calderón Problem
Trigonometric 0.001 1.0 0.0 Identity 25 8 200 4.84M

Calderón Problem
Heart&Lungs 0.001 1.0 0.0 MinMax 100 15 500 13.1M

Inverse Wave Scattering 0.001 1.0 1e-06 Identity 1000 12 500 8.32M

Radiative transport 0.001 1.0 0.0 MinMax 100 15 500 13.1M

Seismic Imaging
CurveVel - A 0.001 0.98 1e-06 log-MinMax 400 12 500 15.09M

Seismic Imaging
Style - A 0.001 0.98 1e-06 log-MinMax 400 12 500 15.09M

Table 9.2: DeepONet best-performing hyperparameters configuration for different benchmark problems.

η γ w Data Trans c
Trainable
Params

Calderón Problem
Trigonometric 0.001 1.0 0.0 MinMax 16 1.07M

Calderón Problem
Heart&Lungs 0.001 1.0 0.0 MinMax 128 275.37M

Inverse Wave Scattering 0.001 1.0 0.0 MinMax 128 68.32M

Radiative transport 0.001 1.0 1e-06 MinMax 16 2.48M

Seismic Imaging
CurveVel - A 0.001 1 1e-04 log-MinMax 64 24.4M

Seismic Imaging
Style - A 0.001 1 1e-04 log-MinMax 64 24.4M

Table 9.3: Fully convolutional neural network best-performing hyperparameters configuration for different
benchmark problems.

η γ w Data Trans p Lt d k dv L
Trainable
Params

Calderón Problem
Trigonometric 0.001 1.0 1e-06 Identity 100 8 100 25 32 4 12.06M

Calderón Problem
Heart&Lungs 0.001 1.0 1e-06 MinMax 100 8 100 25 32 4 14.74M

Inverse Wave Scattering 0.001 0.98 0.0 Identity 100 8 200 16 64 4 15.57M

Radiative transport 0.001 0.98 1e-06 MinMax 400 4 100 32 64 4 10.3M

Seismic Imaging
CurveVel - A 0.001 0.98 1e-06 MinMax 25 4 200 16 32 3 16.49M

Seismic Imaging
Style - A 0.001 0.98 1e-06 log-MinMax 100 8 200 16 64 2 16.49M

Table 9.4: Neural Inverse Operator best-performing hyperparameters configuration for different bench-
mark problems.

174

i
i

“output” — 2023/12/11 — 11:30 — page 1 — #175 i
i

i
i

i
i

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[2] R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin, A Zidek, A Nelson, A Bridgland,
H Penedones, et al. De novo structure prediction with deep-learning based scoring. Annual Review
of Biochemistry, 77(6):363–382, 2018.

[3] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[4] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential equations.
Communications in Mathematics and Statistics, 5(4):349–380, 2017.

[5] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen. Solving stochastic differential equations
and kolmogorov equations by means of deep learning. Preprint, available as arXiv:1806.00421v1.

[6] F. Laakmann and P. Petersen. Efficient approximation of solutions of parametric linear transport
equations by reludnns. Preprint, 2019.

[7] Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of
differential equations. Mathematics in Engineering, 1:118, 2019.

[8] Deep Ray and Jan S Hesthaven. An artificial neural network as a troubled-cell indicator. Journal
of Computational Physics, 367:166–191, 2018.

[9] Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
loop: Learning from differentiable physics to interact with iterative pde-solvers. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 6111–6122. Curran Associates, Inc., 2020.

[10] Christoph Schwab and Jakob Zech. Deep learning in high dimension: Neural network expression
rates for generalized polynomial chaos expansions in uq. Analysis and Applications, 17(01):19–55,
2019.

[11] Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical analysis
of deep neural networks and parametric pdes. Constructive Approximation, pages 1–53, 2021.

[12] Kjetil O Lye, Siddhartha Mishra, and Deep Ray. Deep learning observables in computational fluid
dynamics. Journal of Computational Physics, page 109339, 2020.

[13] Kjetil O Lye, Siddhartha Mishra, Deep Ray, and Praveen Chandrashekar. Iterative surrogate
model optimization (ISMO): An active learning algorithm for pde constrained optimization with
deep neural networks. Computer Methods in Applied Mechanics and Engineering, 374:113575, 2021.

[14] G. Cybenko. Approximations by superpositions of sigmoidal functions. Approximation theory and
its applications., 9(3):17–28, 1989.

1

i
i

“output” — 2023/12/11 — 11:30 — page 2 — #176 i
i

i
i

i
i

References

[15] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–
114, 2017.

[16] Kjetil O Lye, Siddhartha Mishra, and Roberto Molinaro. A multi-level procedure for enhancing
accuracy of machine learning algorithms. European Journal of Applied Mathematics, 2020.

[17] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: A navier-
stokes informed deep learning framework for assimilating flow visualization data. arXiv preprint
arXiv:1808.04327, 2018.

[18] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde: A deep learning library for solving
differential equations. Preprint, available from arXiv:1907.04502, 2019.

[19] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for high-speed
flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

[20] G. Pang, L. Lu, and G. E. Karniadakis. fpinns: Fractional physics-informed neural networks. SIAM
journal of Scientific computing, 41:A2603–A2626, 2019.

[21] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differential equations,
2021.

[22] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of physics
informed neural networks. Preprint, available from arXiv:2004.01806v1, 2020.

[23] Helge Holden and Nils Henrik Risebro. Front tracking for hyperbolic conservation laws, volume 152.
Springer, 2015.

[24] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019.

[25] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro. Physics-informed neural networks for inverse
problems in nano-optics and metamaterials. Preprint, available from arXiv:1912.01085, 2019.

[26] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

[27] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

[28] Z. Mao, L. Lu, O. Marxen, T. Zaki, and G. E. Karniadakis. DeepMandMnet for hypersonics:
Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network
approximation of operators. Preprint, available from arXiv:2011.03349v1, 2020.

[29] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis. Deepm&mnet:
Inferring the electroconvection multiphysics fields based on operator approximation by neural net-
works. Journal of Computational Physics, 436:110296, 2021.

[30] Samuel Lanthaler, Roberto Molinaro, Patrik Hadorn, and Siddhartha Mishra. Nonlinear reconstruc-
tion for operator learning of PDEs with discontinuities. In The Eleventh International Conference
on Learning Representations, 2023.

2

i
i

“output” — 2023/12/11 — 11:30 — page 3 — #177 i
i

i
i

i
i

References

[31] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model
Reduction And Neural Networks For Parametric PDEs. The SMAI journal of computational math-
ematics, 7:121–157, 2021.

[32] N. Kovachki, Z. Li, B. Liu, K. Azizzadensheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481v3, 2021.

[33] Zongyi Li, Nikola B Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. CoRR, abs/2003.03485, 2020.

[34] Zongyi Li, Nikola B Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew M Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 6755–6766.
Curran Associates, Inc., 2020.

[35] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

[36] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

[37] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth,
D. Hall, Z. Li, K. Azizzadenesheli, p. Hassanzadeh, K. Kashinath, and A. Anandkumar. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

[38] M. Prasthofer, T. De Ryck, and S. Mishra. Variable input deep operator networks. arXiv preprint
arXiv:2205.11404, 2022.

[39] V. Fanaskov and I. Oseledets. Spectral neural operators, 2022.

[40] Georgios Kissas, Jacob H Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J
Pappas, and Paris Perdikaris. Learning operators with coupled attention. Journal of Machine
Learning Research, 23(215):1–63, 2022.

[41] Jacob H Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. NOMAD: Nonlinear
manifold decoders for operator learning. arXiv preprint arXiv:2206.03551, 2022.

[42] Shuhao Cao. Choose a transformer: Fourier or galerkin. In 35th conference on neural information
processing systems, 2021.

[43] Bogdan RaoniÄ‡, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de BÃ©zenac. Convolutional neural operators for
robust and accurate learning of pdes, 2023.

[44] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations, 2023.

[45] Gunther Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse problems,
25(12):123011, 2009.

3

i
i

“output” — 2023/12/11 — 11:30 — page 4 — #178 i
i

i
i

i
i

References

[46] Ru-Yu Lai, Qin Li, and Gunther Uhlmann. Inverse problems for the stationary transport equation
in the diffusion scaling. SIAM Journal on Applied Mathematics, 79(6):2340–2358, 2019.

[47] Oz Yilmaz. Seismic Data Analysis. Society for exploration geophysicists, 2011.

[48] Victor Isakov. Inverse Problems for Partial Differential Equations. Springer, 2017.

[49] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer Verlag, 2002.

[50] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1–49, 1998.

[51] Art B Owen. Multidimensional variation for quasi-monte carlo. In Contemporary Multivariate
Analysis And Design Of Experiments: In Celebration of Professor Kai-Tai Fang’s 65th Birthday,
pages 49–74. World Scientific, 2005.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation, 2015.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[55] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

[56] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on mathematical
software (TOMS), 23(4):550–560, 1997.

[57] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge University Press, 2014.

[58] A. Friedman. Partial differential equations of the parabolic type. prentice hall, 1964.

[59] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
1998.

[60] E. Godlewski and P. A. Raviart. Hyperbolic systems of conservation laws. Ellipsis, 1991.

[61] Andrew J. Majda and Andrea L. Bertozzi. Vorticity and Incompressible Flow. Cambridge Texts in
Applied Mathematics. Cambridge University Press, 2001.

[62] J. K Hunter and J Scheurle. Existence of perturbed solitary wave solutions to a model equation
for water waves. Physica D., 32:253–268, 1988.

[63] Andrei Faminskii and Nikolai Larkin. Initial-boundary value problems for quasilinear dispersive
equations posed on a bounded interval. Electronic Journal of Differential Equations, 01:1–20, 2010.

[64] Genming Bai, Ujjwal Koley, Siddhartha Mishra, and Roberto Molinaro. Physics informed neural
networks (pinns) for approximating nonlinear dispersive pdes. Journal of Computational Mathe-
matics, 39(6), 2021.

[65] Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

[66] J.B. Bell, P. Collela, and H. M. Glaz. A second-order projection method for the incompressible
Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

4

i
i

“output” — 2023/12/11 — 11:30 — page 5 — #179 i
i

i
i

i
i

References

[67] Juan Carlos Ceballos, Mauricio SepÃºlveda, and Octavio Paulo Vera VillagrÃ¡n. The ko-
rtewegâ€“de vriesâ€“kawahara equation in a bounded domain and some numerical results. Applied
Mathematics and Computation, 190(1):912 – 936, 2007.

[68] Ujjwal Koley. Error estimate for a fully discrete spectral scheme for korteweg-de vries-kawahara
equation. Cent. Eur. J. Math., 10(1):173–187, 2012.

[69] Ujjwal Koley. Finite difference schemes for the kortewegâ€“de vriesâ€“kawahara equation. Int. J.
Numer. Anal. Model., 13(3):344–367, 2016.

[70] E Kharazmi, Z Zhang, and G. Em Karniadakis. Variational physics informed neural networks for
solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

[71] Tim De Ryck, Siddhartha Mishra, and Roberto Molinaro. wpinns: Weak physics informed neu-
ral networks for approximating entropy solutions of hyperbolic conservation laws. arXiv preprint
arXiv:2207.08483, 2022.

[72] S. Mishra and T. Konstantin Rusch. Enhancing accuracy of deep learning algorithms by training
with low-discrepancy sequences. Preprint, available as arXiv:2005.12564, 2020.

[73] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating PDEs. IMA Journal of Numerical Analysis, 43(1):1–43, 01 2022.

[74] G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella. The stability of the cauchy problem for
elliptic equations. Inverse problems, 25(12):47, 2009.

[75] E. Burman and L. Oksanen. Weakly consistent regularization methods for ill-posed problems. In
Numerical methods for PDEs, D. A. Di Pietro (eds), pages 171–202. World Scientific, 2018.

[76] O. Yu. Imanuvilov. Controllability of parabolic equations. Math. Sb., 186(6):109–132, 1995.

[77] P. Kuchment and L. Kunyansky. Mathematics of thermoacoustic tomography. European J. Appl.
Math., 2(19):191–224, 2008.

[78] K. Ramdani, M. Tucsnak, and L. Kunyansky. Recovering the initial state of an infinite-dimennsional
system using observers. Automatica J., 46(10):1616–1625, 2010.

[79] C. Bardos, G. Lebeau, and J. Rauch. Un example dutilization des notions de propagation pour
le controle et al stabilisation de prolémes hyperboliques. Rend. Sem. Math. Univ. Politec. Torino,
pages 11–31, 1989.

[80] J. Le Rousseau, G. Lebeau, P. Terpolilli, and E. Trélat. Geometric control condition for the wave
equation with a time-dependent observation domain. Analysis PDE., 10(4):983–1015, 2017.

[81] L. Miller. Escape function conditions for the observation, control and stabilization of the wave
equation. SIAM J. Control. Opt., 41(5):1554–1566, 2002.

[82] E. Burman, A. Feizmohammadi, and L. Oksanen. A finite element data assimilation method for
the wave equation. Math. Comp., 89(324):1681–1709, 2020.

[83] L. Baudouin and M. De Buhan annd S. Ervedoza. Global carleman estimates for waves and appli-
cations. Commun. PDE., 38:556–598, 2013.

[84] E. Burman and P. Hansbo. Stabilized nonconfirming finite element methods for data assimilation
in incompressible flows. Math. Comp., 87(311):1029–1050, 2018.

[85] C-L. Lin, G. Uhlmann, and J-N. Wang. Optimal three-ball inequalities and quantitative uniqueness
for the stokes system. Discrete Contin. Dyn. Syst., 28(3):1273–1290, 2010.

5

i
i

“output” — 2023/12/11 — 11:30 — page 6 — #180 i
i

i
i

i
i

References

[86] G. Seregin. Lecture notes on regularity theory for the Navier-Stokes equations. World Scientific,
2015.

[87] E. Burman, J. Ish-Horowicz, and L. Oksanen. Fully discrete finite element data assimilation method
for the heat equation. ESIAM: Math. Model. Num. Anal., 52:2065–2082, 2018.

[88] Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns)
approximating kolmogorov pdes. Advances in Computational Mathematics, 48(6):1–40, 2022.

[89] G. Kanschat and et. al. Numerical methods in multi-dimensional radiative transfer. Springer, 2008.

[90] D. Kaushik, M. Smith, A. Wollaber, B. Smith, A. Siegel, and W. S. Yang. Enabling high fidelity
neutron transport simulations on petascle architectures. In Proceedings of the Conference on High
Performance Computing Networking, Storage, and Analysis, volume 67, Portland, Oregon, 2009.

[91] M. F. Modest. Radiative heat transfer. Elsevier, 2003.

[92] Il’ya Meerovich Sobol’. On the distribution of points in a cube and the approximate evaluation of
integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967.

[93] M. Frank. Approximate models for radiative transfer. Bull. Inst. Math. Acad. Sinica (New Series),
2:409–432, 2007.

[94] JP Pontaza and JN Reddy. Least-squares finite element formulations for one-dimensional radiative
transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(3):387–406, 2005.

[95] YA Cengel, MN Özi, et al. Radiation transfer in an anisotropically scattering plane-parallel medium
with space-dependent albedo ω(x). Journal of Quantitative Spectroscopy and Radiative Transfer,
34(3):263–270, 1985.

[96] Konstantin Grella. Sparse tensor approximation for radiative transport. PhD thesis, ETH Zurich,
2013.

[97] Sabine Richling, Erik Meinköhn, N Kryzhevoi, and Guido Kanschat. Radiative transfer with finite
elements-i. basic method and tests. Astronomy & Astrophysics, 380(2):776–788, 2001.

[98] F. Graziani. The prompt spectrum of a radiating sphere: Benchmark solutions for diffusion and
transport. In Computational methods in transport: verification and validation, LNCSE-62, pages
151–167. Springer, 2008.

[99] W. Zhang, L. Howell, A. Almgren, A. Burrows, J . Dolence, and J. Bell. Castro: A new compressible
astrophysical solver. iii. multigroup radiation hydrodynamics. Astrophysical Journal (supplement
series), 204(7):27 pp, 2013.

[100] John I Castor. Radiation hydrodynamics. Cambridge University Press, 2004.

[101] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

[102] Francesca Bartolucci, Emmanuel de BÃ©zenac, Bogdan RaoniÄ‡, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Are neural operators really neural operators? frame theory meets
operator learning, 2023.

[103] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

6

i
i

“output” — 2023/12/11 — 11:30 — page 7 — #181 i
i

i
i

i
i

References

[104] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model
reduction and neural networks for parametric pdes, 2021.

[105] Maarten V. de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M. Stuart. The cost-
accuracy trade-off in operator learning with neural networks, 2022.

[106] Albert Clop, Daniel Faraco, and Alberto Ruiz. Stability of Calderón’s inverse conductivity problem
in the plane for discontinuous conductivities. Inverse Problems & Imaging, 4(1):49, 2010.

[107] Adrian Nachman. Reconstructions from boundary measurements. Ann. Math., 128(3):531–576,
1988.

[108] Guillaume Bal and Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse
Problems & Imaging, 2(4):427, 2008.

[109] William W Symes. The seismic reflection inverse problem. Inverse problems, 25(12):123008, 2009.

[110] Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng,
Yinpeng Chen, and Youzuo Lin. OpenFWI: Large-Scale Multi-Structural Benchmark Datasets for
Seismic Full Waveform Inversion. arXiv preprint arXiv:2111.02926, 2021.

[111] Shitao Liu and Lauri Oksanen. A Lipschitz stable reconstruction formula for the inverse problem
for the wave equation. Transactions of the American Mathematical Society, 368(1):319–335, 2016.

[112] Plamen Stefanov, Gunther Uhlmann, and Andras Vasy. On the stable recovery of a metric from
the hyperbolic DN map with incomplete data. Inverse Problems & Imaging, 10(4):1141, 2016.

[113] Peter Caday, Maarten V de Hoop, Vitaly Katsnelson, and Gunther Uhlmann. Scattering control
for the wave equation with unknown wave speed. Archive for Rational Mechanics and Analysis,
231(1):409–464, 2019.

[114] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

[115] J. Muller and S. Siltanen. Linear and nonlinear inverse problems with practical applications. SIAM,
2012.

[116] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

[117] O. Boussif, D. Assouline, L. Benabbou, and Y. Bengio. MAgNet: Mesh Agnostic Neural PDE
solver. arXiv preprint arXiv:2210.05495, 2022.

[118] J. Brandstetter, D. E. Worrall, and M. Welling. Message Passsing Neural PDE solvers. arXiv
preprint arXiv:2202.03376, 2022.

[119] Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for DeepONets:
A deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,
6(1):tnac001, 2022.

[120] Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for Fourier Neural Operators. Journal of Machine Learning Research, 22:Art–No, 2021.

7

	Introduction
	Outline

	Preliminaries
	Abstract Partial Differential Equation
	Forward Problems for Partial Differential Equations
	Inverse Problems for Partial Differential Equations
	Parameter Identification
	Data Assimilation

	Quadrature
	Artificial Neural Networks
	Feedforward Dense Neural Networks
	Convolutional Neural Networks

	Physics Informed Neural Networks for the Forward Problem of PDEs
	General Description of Physics Informed Neural Networks
	Abstract Estimate of the Generalization Error
	Semi-linear Parabolic equations
	The underlying PDEs
	PINNs
	Estimate on the generalization error.

	Viscous scalar conservation laws
	The underlying PDE
	PINNs
	Estimate on the generalization error.

	Incompressible Euler Equations
	The underlying PDE
	PINNs
	Estimate on the generalization error.

	Korteweg de-Vries and Kawahara equations
	The underlying PDEs
	PINNs
	Estimate on the generalization error

	Numerical Experiments
	Ensemble Training
	Semi-linear Parabolic Equation
	Viscous Scalar Conservation Law
	Incompressible Euler Equations
	KdV equation
	Kawahara equation

	wPINNs for the Forward Problem of Hyperbolic Conservation Laws
	Scalar Conservation Laws
	Weak PINNs (wPINNs)
	Estimate of the Generalization Error
	Implementation of wPINNs
	Ensemble Training
	Random Reinitialization of the Test function Parameters
	Averages of retrainings

	Numerical Experiments
	Standing and Moving Shock
	Rarefaction Wave
	Sine Wave Initial Datum

	Physics Informed Neural Networks for the Inverse Problem of PDEs
	PINNs for the Parameter Identification Problem
	PINNs for the Data Assimilation Problem
	An abstract estimate on the generalization error

	Poisson's equation
	The underlying inverse problem
	PINNs
	Estimates on the generalization error

	Heat Equation
	The underlying inverse problem
	PINNs
	Estimates on the generalization error

	The Wave equation
	The underlying inverse problem
	PINNs
	Estimates on the generalization error

	The Stokes equation
	The underlying inverse problem
	PINNs
	Estimates on the generalization error

	Numerical experiments
	Poisson's Equation
	Heat equation
	Wave Equation
	Stokes Equation

	Physics Informed Neural Networks for High-Dimensional PDEs
	A Motivating Example
	Radiative Transfer Equation
	The underlying PDEs
	PINNs
	Estimates on the generalization error
	Numerical Experiments

	Kolmogorov Equations
	PINNs
	Numerical Experiments

	Operator Learning
	DeepONet
	Neural Operators
	Fourier Neural Operators

	Neural Inverse Operators for solving PDE Inverse problems
	Mathematical Framework.
	Learning Task and Challenges
	A Motivating (Formal) Calculation.
	The Architecture.

	Numerical Experiments.
	Calderón Problem for EIT.
	Inverse Wave Scattering.
	Radiative Transport Equation and Optical Imaging.
	Seismic Imaging.
	Numerical Results
	Comparison with Standard Numerical Methods for Inverse Problems

	Conclusions
	Appendix
	Radiative Transfer
	Estimates on the Generalization Error for the Radiative Transfer Equation
	Estimates on the Generalization Error in the Steady Case

	Neural Inverse Operator
	Architecture Details
	Training Details

	References

