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Abstract

Many of today’s urgent challenges, such as greenhouse gas emissions and climate
change, air quality and health, or traffic and congestion, are closely linked to the
movement of people and goods. A major cause of these problems is fossil fuel based
individual transport, making individual mobility behavior change a requirement for
solving them. Computational methods based on data collected using Information
and Communication Technologies and Location-Based Services can play key a role
in supporting sustainable mobility.

The focus of this dissertation is the development and application of computational
methods to support sustainable individual mobility in four different ways. Gathering
empirical evidence on how Mobility as a Service affects the mobility behavior of
individuals, developing a framework for more generalizable methods to preprocess
tracking data, developing methods to support the modal shift of individuals toward
more sustainable modes, and developing methods to support the sustainability of
personal vehicles.

A core contribution of this dissertation is the formalization of a graph-based repre-
sentation of individual mobility called location graph. This representation is compact,
privacy-preserving, and can be created based on a wide range of different datasets,
which simplifies the development of transferable computational methods. Based
on location graphs, we developed machine learning methods for identifying user
groups with similar mobility behavior and for imputing missing activity labels. These
methods were applied to problems related to the management of Mobility as a
Service offers, a core concept to enable modal shift for individuals.

To support the sustainability of personal vehicles this thesis includes work on traffic
prediction, a critical component of an intelligent traffic management system. Fur-
thermore, it also includes a study showing that owners of battery electric vehicles
can meet most of their charging demand using power generated from their own
rooftop photovoltaic system. The latter has great potential to further reduce the
greenhouse gas emissions of personal vehicles.
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Zusammenfassung

Der auf fossilen Brennstoffen basierende Individualverkehr ist für viele schwer-
wiegende Probleme unserer Zeit mitverantwortlich. Das Senken der Treibhausgase-
missionen, die Verbesserung der Luftqualität in den Städten und die Reduktion
von Verkehrsunfällen ist deshalb nur möglich, wenn wir unser Mobilitätsverhalten
ändern.

Der Schwerpunkt dieser Dissertation liegt auf der Entwicklung und Anwendung
von computergestützten Methoden zur Unterstützung nachhaltiger individueller
Mobilität. Dabei konzentriert sich diese Arbeit auf vier Bereiche: das Sammeln em-
pirischer Daten über den Einfluss von Mobility as a Service auf das individuelle Mo-
bilitätsverhalten, die Entwicklung verallgemeinerbarer Methoden zur Aufbereitung
von Tracking Daten, Methodenentwicklung für die Verlagerung von Mobilität auf
nachhaltigere Verkehrsmittel und die Entwicklung von Methoden zur Unterstützung
der Nachhaltigkeit von Privatfahrzeugen.

Ein zentraler Beitrag ist die Formalisierung eines graphenbasierten Modells für
individuelle Mobilität, das als location graph bezeichnet wird. Location graphs sind
kompakt, wahren die Privatsphäre und sind mit einer Vielzahl unterschiedlicher
Datensätze kompatibel. Auf der Grundlage des location graphs und maschinellen
Lernens wurden Algorithmen entwickelt, um Nutzergruppen mit ähnlichem Mobil-
itätsverhalten zu identifizieren und um die, in Trackingdaten oft fehlenden Informa-
tionen zu Aktivitäten, hinzuzufügen. Diese Methoden können unter anderem dazu
verwendet werden, um Mobility as a Service Angebote zu verbessen.

Um die Nachhaltigkeit von Privatfahrzeugen zu unterstützen, wurden im Rahmen
dieser Arbeit kurzfristige Verkehrsprognosen erstellt, die eine zentrale Komponente
für intelligente Verkehrsmanagementsysteme sind. Ausserdem umfasst diese Disser-
tation auch eine Studie zur Kombination von Elektroautos und Photovoltaikanlagen
im Privatbereich. Das Ergebnis der Studie zeigt, dass Besitzer von batteriebetriebe-
nen Elektrofahrzeugen den Großteil ihres Ladebedarfs mit Strom aus ihrer eigenen
Photovoltaikanlage decken können. Letzteres hat ein großes Potenzial zur höheren
Dekarbonisierung von Privatfahrzeugen.
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1.1 Background

Many of today’s urgent global challenges, as defined in the United Nations Sustainable
Development Goals are related to the movement of people and goods (Jaramillo et al.,
2022). Action in the transport sector is required for fighting poverty and hunger (Sasidharan,
2017), to ensure health and well-being (Krzyzanowski et al., 2005; Sofiev et al., 2018),
provide access to education (Hernandez, 2018), reduce gender inequality (Levin and Faith-
Ell, 2019; Prati, 2018), ensure economic growth (Rodrigue, 2020) and for the creation of
sustainable and livable cities (Vuchic, 1999). Most importantly, the transport sector is a
major emitter of greenhouse gases and thereby contributes to climate change which by itself
negatively impacts the progress of most of the SDGs (WMO, 2021).

Globally, the transport sector is responsible for about 16% of total GHG emissions (Ritchie
et al., 2020) and 25% of the total final energy consumption (IEA, 2020b). In developed
countries, the transport sector is usually the largest emitter of GHG with 28.5% in 2021
in the US (EPA, 2023), 28% in 2021 in the European Union (EU) (EEA, 2023) and with
30.6% in 2021 in Switzerland (BAFU, 2023). In addition to its high emissions, the transport
sector is not on track for decarbonization. It is the energy sector with the highest emission
growth globally (SLOCAT, 2023, 2021) and the only sector in the EU that is still increasing
its emissions relative to 1990 levels (EEA, 2023). The slow decarbonization progress of
the transport sector is especially problematic because the world is likely to fail to keep
the increase of global average temperature below 1.5°C or even 2°C as agreed upon in the
Paris Agreement (UNFCCC, 2015) as there currently is a need for additional GHG reduction
measures of 17 GtCO2e to limit global temperature rise to below 2°C or 25 GtCO2e to keep
global temperature rise to below 1.5°C (UNEP, 2022).

In order to limit global temperature rise and support the progress on the SDGs it is crucial
that the transport sector and thereby our mobility becomes more sustainable. Sustainability
with regards to achieving the SDGs can be defined as the “development that meets the
needs of the present without compromising the ability of future generations to meet their
own needs” (WCED, 1987, p.41) while balancing its economic, social and environmental
dimensions (UN, 2015).

Sustainable mobility, therefore, has to continue to fulfill our society’s needs for affordable
transportation while reducing its environmental and social impact to a manageable level.
Achieving this compromise is difficult however, research in the past decades has focused
on these problems and today we know conceptually how to make our mobility sustainable.
The required actions can be summarized using the three following categories: Avoid, Shift,
Improve (Banister, 2008; Boulouchos et al., 2021; Holden et al., 2020; Jaramillo et al.,
2022; SLOCAT, 2023). The Avoid-Shift-Improve (A-S-I) framework represents a set of
hierarchical interventions that should be applied for the step-wise transformation of the
transport sector.

2 Chapter 1 Introduction



Avoid
The best way to reduce emissions is to prevent them from being generated from the beginning
by reducing the need to travel. There are short-term interventions to avoid travel such
as incentivizing working from home and online meetings, or restrictions of car use on
Sundays (Bongardt et al., 2019), and long-term planning-related measures that reduce
the length of trips such as the planning of compact cities that combine mixed-use and
high-density development (Burton et al., 2003).

Shift
The part of our mobility that can not be avoided should be covered by more energy-efficient
modes of transport. The main source of GHG emissions in the transport sector is the usage
of fossil fuels in road-based transportation. Therefore the transition of the transport sector
will have to focus on a sustainable alternative for these modes. For freight transport, great
potential lies in shifting goods from road to rail (Lawrence and Bullock, 2022), and for
individual mobility we have to serve trips with a combination of public transport, walking,
cycling, or micromobility modes instead of privately owned cars. A core concept for this
shift away from the privately owned vehicle is Mobility as a Service (MaaS) which integrates
shared modes with public transport to facilitate intermodal travel (Reck et al., 2020).
Changing the modes that people use regularly requires individuals to change their mobility
behavior significantly, which will be only acceptable for a broad population if MaaS offers
are able to compete with the comfort and ease of a private car (Boulouchos et al., 2021;
Raubal et al., 2021; Weiser et al., 2016). However, it is still an open question how to design
MaaS offers that are appealing to many individuals and lead to a more sustainable mobility
behavior at the same time (Martin et al., 2021c). Hence, more empirical data on how people
use MaaS offers are required. Nowadays, these data can be collected on a large scale with
comparably low costs by conducting tracking studies using GNSS devices (Zheng et al.,
2008) or smartphones (Bucher et al., 2019b) while the study participants have access to
a MaaS offer. However, the collected tracking data are highly sensitive and often suffer
from poor data quality with location data that are often noisy or incomplete and labels for
transport modes or activities that are partially implausible or missing. This all leads to a
high preprocessing effort in order to correctly measure the mobility behavior.

Improve
Finally, for all mobility that can not be avoided or shifted to more sustainable modes,
the energy efficiency of the employed mode should be improved through technological
advances (Bongardt et al., 2019). The most important intervention in this category is the
use of battery electric vehicles instead of internal combustion engine vehicles, as BEVs have
significantly lower GHG emissions than ICEVs over their respective lifetime (Cox et al., 2020;
Haasz et al., 2018; Ruhnau et al., 2019) which makes the large-scale roll-out of BEVs a
promising path for fast decarbonization. It is important to note, that simply replacing an
ICEV with a BEV leaves many challenges unresolved. Individual motorized transportation
will still block large areas of public space for parking and infrastructure instead of using it for
housing or recreational space and the problem of increasing traffic is left unresolved. These
problems, and particularly congestion, will intensify as the world’s population is expected to
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continue to grow and urbanize until 2050 (UN, 2018) which will require smart management
of the growing traffic volume in order to reduce its negative impact.

The combination of A-S-I measures represents a known possible pathway for the decar-
bonization of the transport sector (ITF, 2021) until 2050. However, their implementation is
challenging as it requires an in-depth understanding of people’s mobility behavior which
can often only be accessed through noisy, sparse, and unlabeled tracking data. At the
same time, their implementation also demands an optimal allocation and management of
(spatial) resources which requires the prediction of mobility demand and the prediction of
the availability of mobility assets.

A great opportunity to support their implementation lies in the ongoing digitization of
our society. Today we have the possibility to collect tracking and contextual data sets
on a large scale using ubiquitous Information and Communication Technologies (ICT)
and leverage the advances in machine learning for their processing and analysis to gain
a deep understanding of people’s mobility behavior. Especially deep learning methods
created disruptive breakthroughs in image (Krizhevsky et al., 2012), speech (Hinton et al.,
2012), and video processing however, attempts to use deep learning with human mobility
data (Chen et al., 2016b; Dabiri and Heaslip, 2018; Fan et al., 2018; Kumar and Raubal,
2021; Toch et al., 2018) did not yet lead to break-through successes that disrupted the
field of human movement analysis. As their success relies on their ability to self-learn rich
representations (e.g., features) from raw data (Bronstein et al., 2017; LeCun et al., 2015) a
possible reason for their limited success is that deep learning methods are mostly focused on
image processing while it is difficult to represent human mobility data as images.

A natural way to represent individual mobility is given by person-specific graphs based on
the already visited locations (Martin et al., 2018; Pappalardo et al., 2015; Rinzivillo et al.,
2014; Zheng et al., 2008). In such a graph, nodes correspond to visited locations and edges
may correspond to any measure of distance between the nodes (e.g., the counts of sequential
visits of two locations, spatial distance, transport time, or cost (Martin et al., 2018)). These
representations offer several advantages: 1) they can be enriched with node and edge
features based on the application needs, 2) they are compact and grow sub-linearly in size
with increasing tracking duration, 3) they still provide rich insight into mobility behavior
despite their compactness (Martin et al., 2023b; Rinzivillo et al., 2014; Wiedemann et al.,
2022) and can be analyzed efficiently with graph neural networks for various applications
such as activity purpose imputation (Martin et al., 2018).

The focus of this dissertation, therefore, lies in the combination of machine learning and
graph-based methods to address the computational and algorithmic challenges associated
with the decarbonization of mobility and transport.
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1.2 Research scope

The goal of this dissertation is to develop computational methods to support sustainable
mobility with a focus on the Shift and Improve measures of the A-S-I framework with a focus
on individual mobility. It thereby focuses on the following two main research questions:

• How can the modal shift of individuals be supported using computational methods?

• How can the sustainability of personal vehicles be supported using computational
methods?

The focus on computational methods for the support of sustainable mobility brought two
additional research questions into the focus of this doctoral thesis.

• Tracking datasets of individuals are highly diverse in terms of sample size, tracking
source, and available label and context data (Chen et al., 2016a). In any case, they
pose a high privacy risk (Keßler and McKenzie, 2018; Song et al., 2010a) to the
tracked individuals.
How can individual mobility from different data sources be represented in a com-
pact, and privacy-friendly way such that it allows the development of computational
methods?

• Preprocessing and analysis methods for tracking data have a strong influence on the
results of mobility studies. However, these are currently not standardized and highly
specialized on specific datasets or studies making them difficult to reuse and results
difficult to generalize.
How can the reproducibility and generalizability of preprocessing and analysis meth-
ods for human mobility be improved?

1.3 Contributions and structure of the dissertation

The contribution of this dissertation is the development of computational methods with a
focus on machine learning and graph methods that support the shift of individuals towards
more sustainable modes using MaaS and improve the sustainability of personal vehicles.

The individual contributions of this dissertation are structured in four main chapters as
shown in Figure 1.1. The following provides a brief summary of the individual chapters.

Empirical data collection
Empirical data on the impact of MaaS offers on mobility behavior and the usage of BEV
are still scarce or inaccessible to researchers. As part of this dissertation, we have collected
empirical tracking datasets in three case studies. The SBB Green Class E-Car (GC1) with
139 participants tracked over one year, SBB Green Class E-Bike (GC2) with 50 participants
tracked over 1 year, and the yumuv study with 871 participants tracked over three months.
All participants had access to a study-specific MaaS offer, a personal BEV in the GC1 study,
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Fig. 1.1.: Organization of the dissertation.

and an e-bike in the GC2 study. These case studies are summarized in Chapter 2 of the
dissertation.

Reproducible preprocessing and compact mobility representation
The collection of the different GPS-based tracking datasets in this dissertation highlighted
the complexity and impact of preprocessing for further analysis. At the same time, it revealed
the lack of a coherent preprocessing framework for the analysis of individual mobility data.
Therefore, Trackintel1, an open-source Python library for mobility data preprocessing and
analysis, was developed as a part of this dissertation and is further described in Section 3.1

Finally, after collecting and processing the data, a core part of this dissertation is to intro-
duce location graphs as a graph-based representation of individual human mobility based
on visited locations in Section 3.2. The location graph of an individual is constructed

1https://github.com/mie-lab/trackintel
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using activity locations as nodes and direct transitions between activity locations (trips) as
weighted edges. Section 3.2 discusses the properties, advantages, and disadvantages of this
representation. The location graph also serves as the basis for the methods developed in
Chapter 4. Since privacy is particularly important in the context of personalized geodata,
the privacy properties of this representation are further analyzed in Section 3.3.

Supporting modal shift
The collected datasets presented in Chapter 2 and the graph representation presented in
Section 3.3 are used to develop methods for the analysis and management of MaaS offers
to support the shift of individuals towards more sustainable modes of transport. The work
presented in Section 4.1 uses location graphs to identify groups of individuals with similar
mobility behavior that appear across several datasets.

Section 4.2 presents a graph neural network based approach to predict the activity label of
visited locations. The network is trained on location graphs of individuals and is used to
predict the node activity labels of unknown persons. This approach can be used to enrich
unlabeled tracking data to better understand the mobility behavior of individuals which may
be used to personalize transportation offers.

Supporting sustainability of personal vehicles
Section 5.1 investigates to what extent a BEV owner could operate his or her vehicle solely
relying on a photovoltaic (PV) system on their own roof. We used the detailed BEV data
available in the GC1 dataset (consumption per trip, state of charge, charging behavior)
and combined them with a fine-grained digital surface model of Switzerland to extract the
detailed roof geometry and the corresponding rooftop PV generation capacity of each of the
BEV owner’s houses. The results demonstrate that the recorded mobility energy demand
could be covered entirely by the less GHG-intensive rooftop PV generation for almost the
entire study period of 10 months. However, the results strongly depend on the specific
emissions of the power used for charging and on the employed charging strategy which
emphasizes the need to optimize charging for renewable energy consumption in order to
reduce the GHG emissions of BEVs.

Section 5.1 shows that BEVs can be used to reduce the GHG emissions of an individual
by covering their consumption using local renewable energy generation. However, the
growing traffic volume still has to be managed in a smart way to reduce its negative impacts
which will require short-term traffic forecasts. Section 5.2 presents a graph neural network
based approach to predict traffic in cities that were not part of the training set and were
not previously seen by the network. For the tested traffic forecasting experiment, the
generalization properties of graph neural networks were significantly better than those of
previously used convolutional neural networks which facilitates the transfer of a learned
network to predict the traffic status in unknown cities.

Finally, Chapter 6 summarizes the contributions of this work with respect to the research
questions and offers potential avenues for future research.
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Empirical data collection 2
MaaS is considered a key concept to support the transition away from the individual private
car and to increase the sustainability of (urban) mobility. However, while MaaS has been
conceptualized for some time, there is a lack of empirical data on the actual impact of MaaS
offers on an individual’s mobility behavior or the required computational models to support
more sustainable travel behavior in the context of MaaS.

Over the course of this dissertation, two large empirical datasets on MaaS usage were
collected and analyzed. This chapter summarizes the data collection, processing, and results
of the SBB Green Class studies in Section 2.1 and the Empirical use and Impact analysis of
MaaS (EIM) project in Section 2.2.

2.1 SBB Green Class
This Section is a translated summary of the following non peer-reviewed technical report:

Henry Martin, Henrik Becker, Dominik Bucher, David Jonietz, Martin Raubal, and Kay
W Axhausen (2019b). “Begleitstudie SBB Green Class-Abschlussbericht”. Arbeitsberichte
Verkehrs-und Raumplanung 1439. DOI: https://doi.org/10.3929/ethz-b-000353337.

2.1.1 Background and summary

In 2016 and 2017, the Swiss Federal Railways (SBB)1 conducted two large, one-year MaaS
pilots, in each of which customers were provided with a comprehensive mobility package in
return for paying a fee. In 2016, the Green Class e-car (GC1) pilot started, which included a
1st class general transport pass valid in Switzerland, a BMW i32 electric vehicle, a parking
space near a train station of choice, and credit for using Mobility3 car sharing and PubliBike4

bike sharing. In 2017, the second pilot, Green Class e-bike (GC2), was launched, where
customers could choose between a 1st class and 2nd class general transport pass and received
an ST2 e-bike from Stromer5 and credit for using Mobility car sharing. The special feature of
these offers was that they represented a flat rate for mobility, with almost all costs covered
by the subscription fee.

1https://www.sbb.ch/en/home.html
2https://www.bmw.com/en/index.html
3https://www.mobility.ch/en
4https://www.publibike.ch/en/home
5https://www.stromerbike.com/en
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As part of the pilot tests, SBB collected detailed information on the socio-demographic
background, daily mobility behavior, and the use of the various service components. These
were evaluated in a scientific study by the Institute of Cartography and Geoinformation
(IKG) and at the Institute for Transport Planning and Systems (IVT) of ETH Zurich.

2.1.2 Data collection

Survey
Access to the Green Class pilots was limited. Interested parties had to apply for participation
by completing an online questionnaire. This questionnaire collected, among other things,
information on the socio-demographic background of the applicants as well as on vehicle and
subscription ownership. This information can be used for a comparison with the Mobility
and Transport Microcensus (MTMC) (BFS and ARE, 2017). For the evaluations, only the
actual Green Class participants are considered, since only for them is information on daily
transport behavior also available.

Travel diaries
The core of the evaluations is the travel diaries, which were recorded in both pilot studies
using the DailyTracks app. For the GC1 pilot study, the movement behavior of 139 users was
recorded between November 2016 and the end of January 2018. For the GC2 pilot study,
the movement behavior of 50 users was recorded between August 2017 and August 2018.
The app recorded the user’s movements using GPS and segmented them into triplegs and
staypoints. For each tripleg, users were suggested the most sensible means of transport, and
for each staypoint, an activity label. These could then be checked, changed, and confirmed
by the user. Here are some key figures on the available data from the GC1 pilot study (data
on SBB GC2 in brackets): In total, over 227 million (74 million) positions were recorded
using GPS. These were aggregated to 242 012 (62 470) trips with 465 195 (128 640) triplegs
and 326 926 (87 884) activity locations. Paths summarize all movements between 2 activity
locations and can consist of several triplegs. In total, about 5.7 million (2.15 million)
kilometers were traveled within Switzerland.

BMW i3 data
In addition to the DailyTracks travel diaries, the electric vehicle of the GC1 participants was
also available to support the analysis. The data contains information on the battery charge
level, the outside temperature, the mileage as well as time stamps and coordinates (point
coordinates).

2.1.3 Data processing

The tracking data that were collected during the Green Class studies required several
preprocessing steps before they could be used to analyze the mobility behavior of participants.
Figure 2.1 shows a schematic representation of the different preparation steps.
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The preparation of the travel diaries for GC1 and GC2 was analogous except for the steps
concerning the electric car. In the GC2 study no data concerning the operation of the electric
bicycles were recorded. For the preparation, the data were first imported into a PostgreSQL
database with PostGIS extension and separated into triplegs and staypoints (steps 1-4). Then
the data were validated with the available records of the BMW i3, mainly to identify and
validate the electric car mode label of triplegs (step 5). Afterward, the activity labels of
staypoints were imputed using a random forest model (step 6). The DailyTracks app had
difficulties in correctly detecting transfers when traveling using public transport, therefore
all public transit triplegs were compared to timetable and stop data and segmented when
necessary (step 7). Furthermore, access and egress walks for public transport trips were
often not detected by the app and were segmented post-tracking (step 8). Then all triplegs
were matched to the road and path network (step 9). In the following, plausibility tests
were carried out to identify and correct incorrectly validated or incorrectly recorded data.
Anomalies that could not be corrected automatically were then flagged.

Fig. 2.1.: Data preprocessing workflow deployed for the SBB Green Class pilot studies.

2.1.4 Results

The Green Class pilot customers are predominantly male, middle-aged, and well-off.

When comparing Green Class clients with the MTMC, substantial differences emerge. Green
Class customers are predominantly men (86 % GC1; 82 % GC2) in their mid-30s to mid-50s.
91 % of GC1 customers work full-time, compared to 78 % of GC2 customers and 53 % in the
MTMC. This is another reason why Green Class customers have an above-average household
income and wealth. The latter can also be seen by the fact that only 11 % of GC1 customers
live for rent (MTMC: 49 %; GC2: no information). 70 % of Green Class customers live
in detached houses (MTMC: 39 %), the household size of Green Class customers is not
significantly different from the MTMC.
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Green Class customers travel more than the Swiss average.
Customers of both Green Class offers make an average of 4.55 trips per day. This is almost
12 % more than their respective control group sampled from the MTMC. GC1 customers
cover 97 km (GC2 82 km) a day. Only the GC1 customers thus travel more than the control
group. GC1 customers travel longer distances for all trip purposes, but especially for trips
to work and errands. In return, they spend significantly less time at home, but more on
the road, at work or for leisure activities. With GC2 customers, an exact allocation is more
difficult, as a larger part of the trip purposes is undefined.

Green Class customers travel multimodal.
Green Class customers show an above-average share of multimodal travel. GC1 customers
combined different modes of transport for 15%̇ of their trips (GC2: 18%̇). In the control
group, the share of multimodal car trips is significantly lower at a total of 5 %.

For most Green Class customers, the offer is not financially worthwhile.
For only 12 % of GC1 and 18 % of GC2 customers the package offer is cheaper than a
(fictitious) individual billing of their journeys. For the majority of customers, however, it
is significantly more expensive. The difference is so large that it can hardly be explained
solely by the advantages of parking near the station or individual car-sharing journeys. This
indicates that customers are willing to pay a rather high surcharge for a flat-rate solution
such as Green Class.

The average CO2 emissions of the GC1 participants decreased significantly with the
start of the project.
After the initial tracking period without intervention (∼8 weeks), the CO2 emissions of
almost all users of the GC1 bundle decreases strongly, which can be attributed to a decrease
in conventional car trips. Figure 2.2 shows the development of the distance-based modal
split of all GC1 users over the project period. With the start of the intervention (access to
the MaaS offer), conventional car trips are replaced by trips with the BEV which has a stable
share until calendar week 50 when the project officially ended. The shares of train trips
remained stable over the project duration except during holiday periods.

Without the replacement of conventional cars, CO2 emission reduction is unstable.
The GC2 pilot study participants do not show a clear trend for their average CO2 emissions
over the course of the project. In particular, there is no clear difference between the time
emissions before and after the start of the project. On the one hand, the emissions of the GC2
participants were already on a low level before the project, on the other hand, conventional
car trips were not replaced by the e-bike in the same manner as they were replaced by the
e-car for GC1 participants.

Figure 2.3 shows the development of the distance-based modal split of all GC2 users over
the project duration. At the start of the project (approx. from week 38), an increase in
the share of electric bikes in the modal split can be seen which decreases again after a few
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Fig. 2.2.: Distance-based modal split of GC1 participants over the course of the project.
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Fig. 2.3.: Distance-based modal split of GC2 participants over the course of the project.
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weeks. When interpreting the shares of bicycles and electric bicycles, it should be noted that,
in contrast to the GC1 pilot study, no movement data of the electric bicycles were available
for validation.
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2.2 Empirical use and impact analysis of MaaS

This Section is a translated summary of the following non peer-reviewed technical report:

Henry Martin, Daniel Jan Reck, Kay W Axhausen, and Martin Raubal (2021a). ETH Mobility
Initiative Project MI-01-19 Empirical use and Impact analysis of MaaS: Ergebnisse. Tech. rep.
ETH Zurich. DOI: https://doi.org/10.3929/ethz-b-000521380.

2.2.1 Background and summary

In 2020 the SBB together with the public transport providers in three major Swiss cities,
Basel (Basler Verkehrs-Betriebe), Bern (Bernmobil), and Zurich (Verkehrsbetriebe Zürich),
launched a new MaaS app called yumuv. The yumuv app integrated the local public transport
with two shared e-scooter providers (Tier, Voi) and a shared e-bike provider (BOND) and
allowed multi-modal trip planning and booking without leaving the app. Additionally, the
app offered a subscription, also called mobility bundle, with a combined price for all mobility
options (e.g., the bundle yumuv easy allowed for traveling 60 minutes per month with any
provider without additional fees).

In parallel to the roll-out of the yumuv app, the Institute of Cartography and Geoinformation
(IKG) and the Institute for Transport Planning and Systems (IVT) of ETH Zurich conducted
a user study in Zurich. The study was part of the Empirical use and Impact analysis of
MaaS (EIM)6 project to explore the influence of MaaS bundles on mobility behavior and to
explore the potential of graph-based representations of an individual’s mobility for mobility
analytics.

The participants of the user study were separated into two groups, the treatment group (TG)
and a control group (CG). Both groups participated in a survey at the beginning and the
end of the study to collect socio-demographic information and used a tracking app to record
their movement for three months. After one month of tracking, the TG was provided to the
yumuv app and a mobility bundle. An overview of the study design is shown in Figure 2.4.

2.2.2 Data collection

Tracking data
The mobility of the participants was recorded for the duration of the study via a tracking
app. The app automatically segmented the movement data and collected approximately
371 000 (TG: 112 000) triplegs and approximately 248 000 (TG: 65 000) staypoints for the
CG. Triplegs are labeled with one of the following means of transport by the app: {tram,
walk, train, motorbike, bus, boat, car, e-car, e-bicycle, bicycle, coach, ski, kick scooter}.
Staypoints are automatically assigned one of the following purposes: {eat, sport, wait, work,
leisure, errand, unknown, study, home}. The study participants were obliged to check the
data and correct them if necessary.

6https://csfm.ethz.ch/en/research/projects/eim.html
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Fig. 2.4.: Overview of study design of the EIM project and the number of participants of
the treatment group (TG) and the control group (CG) that successfully completed
each phase of the study.

Survey data
Two online surveys were conducted at the beginning and end of the project with a total of
171 questions. The questions were divided into the following categories:

• Person-specific socio-demographic questions (e.g. date of birth, gender, educational
background, employment)

• Household-specific socio-demographic questions (e.g. number of adult persons and
children in the household, monthly household income, mobility tool ownership).

• Person-specific mobility questions (e.g. ownership of public transport season tickets,
awareness of shared mobility services, access to shared mobility services).

Non-chosen alternatives
For the mode-choice analysis of participants, attributes about the non-chosen mode alter-
natives are required. Therefore, the travel distances for public transport, car, bicycle, and
walking were calculated for each trip using MaTSim (Horni et al., 2016).

Booking data
For participants of the TG, the booking data for micromobility triplegs was recorded via the
yumuv app. The relevant booking data included the price and time stamp at the start and
end of the booking.

Context data
Additionally, the following context data were used in the analysis:

• Weather data (temperature, wind, and precipitation values) from the ERA5T dataset
with an hourly temporal resolution and a 30x30 km spatial resolution.

• Elevation profile information from a digital elevation model of Switzerland with a
resolution of 25 meters (Swisstopo DHM25 - Basis Model).

16 Chapter 2 Empirical data collection



• Availability and positions of all relevant shared vehicles (e-scooters: VOI and Tier;
e-bikes: BOND) with a temporal resolution of 5 minutes and full spatial resolution.

2.2.3 Data processing

The data processing for the EIM project was organized within an interdisciplinary team
between all project partners and implemented directly in production on the infrastructure of
SBB. Data were stored in a PostgreSQL database with PostGIS extension and processed using
Python using the Trackintel library (Martin et al., 2023c) for movement data processing.
Figure 2.5 provides an overview of the preprocessing steps applied in this project. In the first
step, the movement data were summarized into trips, which are the central unit of analysis in
transport planning (step 1). Then staypoints were summarized into locations using clustering
(step 2). Locations represent activity locations that are of specific importance to individuals.
Next, the tracking data of the participants of the CG were matched with the booking data
from the yumuv app (step 3). The booking data of micromobility modes allowed to correct
mode labels, which was necessary because scooters were often misclassified as walking
or biking (step 4). The map-matching algorithm and the MATSim simulation support
different sets of modes of transport, the mode chains available for trips, therefore have to
be aggregated for and matched to {bicycle, bus, car, tram} for map matching (step 6) and
to {walk, bicycle, car, public transport} for the calculation of non-chosen alternatives using
MatSim. Finally, all available context data was integrated on the individual trip level (step
7) to create the final dataset to be used for further analysis (step 8).

Fig. 2.5.: Data preprocessing workflow deployed for the EIM project.

2.2.4 Results

A typical user of the yumuv app is a young, male, student without a car but with a
public transport pass.

As part of the study, the socio-demographic structure of the CG was compared to the TG.
Participants (TG: n=71, CG: n=427) of the TG are primarily male (TG: 76 %; CG: 48 %),
young (average age TG: 32; CG: 36), currently pursuing an education (TG: 23 %; CG: 9 %),
do not live in a household with a car (TG: 68 %; CG: 44 %) but have a general transit pass
(GA) (TG: 55 %; CG: 14 %).
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Location graphs are suitable to model and analyze individual mobility behavior to
analyze MaaS impact.
In the project, the location graph was formalized as a graph-based representation of indi-
vidual mobility that is compact, privacy-friendly, and easy to combine with tracking data
from different sources. The location graph was then used to describe the mobility behavior
of the participants by mapping graph-based features to the individual mobility behavior.
Furthermore, we developed a pipeline based on the graph representation that can be used
to identify mobility behavior-based user groups, the impact of the MaaS offer on group
membership and the attractiveness of a MaaS offer for different user groups.

The mobility bundle jointly increased the usage of micromobility and public
transport.
Based on the results of a mode choice model fitted on the collected and prepared dataset,
we analyzed the impact of the bundle yumuv Abo easy. The results of the model showed that
the bundle particularly increases the use of e-scooters and to a lesser extent the use of public
transport. The main substitutes are journeys with one’s own bicycle and one’s own e-bike.
There was no significant impact on the participants’ private car use.
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Processing and representing
individual tracking data

3
3.1 Trackintel: an open-source Python library for

human mobility analysis

The following section is a reprint of the publication: Henry Martin*, Ye Hong*, Nina
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Abstract
Over the past decade, scientific studies have used the growing availability of large tracking
datasets to enhance our understanding of human mobility behavior. However, so far data
processing pipelines for the varying data collection methods are not standardized and
consequently limit the reproducibility, comparability, and transferability of methods and
results in quantitative human mobility analysis. This paper presents Trackintel, an open-
source Python library for human mobility analysis. Trackintel is built on a standard data
model for human mobility used in transport planning that is compatible with different types
of tracking data. We introduce the main functionalities of the library that covers the full life-
cycle of human mobility analysis, including processing steps according to the conceptual data
model, read and write interfaces, as well as analysis functions (e.g., data quality assessment,
travel mode prediction, and location labeling). We showcase the effectiveness of the
Trackintel library through a case study with four different tracking datasets. Trackintel can
serve as an essential tool to standardize mobility data analysis and increase the transparency
and comparability of novel research on human mobility.

∗ Equal contribution
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3.1.1 Introduction

Human mobility studies using large-scale human digital traces have boomed over the
last decade. On the collective level, researchers revealed that human movement can
be universally described using statistical distributions, i.e., the power-law distribution of
consecutive displacements (Brockmann et al., 2006; Rhee et al., 2011), stationary time
between displacements (Rhee et al., 2011; Song et al., 2010b), and characteristic distance
traveled by individuals (i.e., the radius of gyration) (González et al., 2008; Pappalardo
et al., 2015). Moreover, it has been shown that individuals exhibit markedly regular location
visitation patterns (Schneider et al., 2013) with high theoretical predictability (Song et al.,
2010a). People spend most of their time in a few locations (González et al., 2008; Song
et al., 2010b) and maintain a stable number of important locations over time (Alessandretti
et al., 2018).

To a large extent, this progress can be attributed to the widespread availability of large mobil-
ity datasets stemming from information and communications technology (ICT) and location-
based services (LBS) that are now integrated into many aspects of our daily life (Huang et al.,
2018a; Keßler and McKenzie, 2018). Aside from the progress on the analysis of human
movement itself, the increased availability of tracking data has led to the rapid growth
of studies that use human mobility data to study phenomena related to human mobility,
such as understanding of residential income segregation (Moro et al., 2021), quantifying
urbanization levels and city livability (Bassolas et al., 2019), classifying functional areas of a
city (Yuan and Raubal, 2012), urban sensing (Ahas et al., 2015), developing infrastructure
for sustainable mobility (Xu et al., 2018) and responding to epidemic spreading (Chang
et al., 2021). However, the raw digital traces are often not the targeted unit of analysis; for
example, a location where people perform an activity can not directly be derived from GPS
track points or mobile phone tower data. Studies thus employ various steps to preprocess
data into the desired format. These steps and their outcome are often different across
studies (Chen et al., 2016a) due to the variety of the datasets and the different understand-
ing of the definitions, which has led to a vast collection of dataset-specific preprocessing
and analysis methods. For example, the study by Feng et al. (2018), which proposes the
DeepMove model that is now widely accepted as a deep learning baseline model for next
location prediction (Luca et al., 2021), generally regards each raw position record as a
location and does not perform preprocessing. However, focusing on the same problem, Urner
et al. (2018) extract staypoints (i.e., all the points where a user stayed for at least a certain
duration) from GPS track points and further aggregate them into locations using the k-means
algorithm. Solomon et al. (2021) apply a similar processing concept but introduce the mean
shift algorithm to detect staypoints, which are then merged into locations according to
a distance threshold. These examples show how not using a standard movement model
definition and a common preprocessing standard limit the reproducibility and comparability
of the methods and analysis results.

To address these problems, we present Trackintel, an open-source python library for the
processing and analysis of movement data. Trackintel is based on an established model
for human mobility taken from transport planning, which defines hierarchical levels of
movement centred around the concept of activities. Trackintel standardizes the definition and
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implementation of the data processing steps derived from this data model. Our work thereby
makes the assumptions, parameters and filtering steps explicit and provides transparent
preprocessing steps, whose implementations are known to have substantial effects on the
analysis results. Trackintel further provides analysis, visualization and support functions to
enrich the raw tracking data with human-mobility-specific information. Due to the versatility
of the data model, Trackintel standardizes preprocessing for many types of tracking data.
It thereby greatly simplifies the benchmarking of novel analysis methods, increases their
reproducibility, and facilitates quantitative research based on tracking data.

The remainder of the paper is structured as follows. Section 3.1.2 provides an overview
of existing libraries for analysing and preprocessing movement data. Section 3.1.3 first
introduces the hierarchical model for human mobility analysis and describes its implementa-
tion in Trackintel. This section then proceeds to present the most important functionalities
of Trackintel to process movement data. In section 3.1.4, we showcase the capabilities of
Trackintel to simplify the analysis and comparison of several different tracking datasets.
Finally, we summarize and conclude this work in section 3.1.5.

3.1.2 Related work: libraries for movement data

Due to the long history of research in transportation, human migration, and animal behav-
ioral research, a large variety of libraries for (human) movement data processing exists. Joo
et al. (2020) survey an impressive number of 58 packages for movement analysis in R. Based
on this work and the overview provided by Graser (2020), we selected the libraries that
aim at supporting movement analysis in Python, R and C++. In Table 3.1, these selected
libraries are compared in terms of their user-friendliness (documentation and robustness),
their focus and their provided functionality for human movement data analysis. To compare
packages by the quality of their documentation, we evaluate them on a scale from 0-6 based
on criteria used for peer-review of packages by pyOpenSci1 and ROpenSci2. See appendix
A.1.1 for the list of criteria.

Many of the surveyed R libraries have a strong focus on animal behavioral analysis (Joo
et al., 2020) (not all included in Table 3.1). The packages that can (also) be applied to
human mobility analysis have a focus on basic statistical analysis of trajectories, such as
measuring the spatial extent of animal motion (e.g., adehabitatLT (Calenge, 2006)), or the
duration and distance of movement trajectories (e.g., TrackR (Frick and Kosmidis, 2017)).
Currently, no coherent framework is available in R that provides the functionalities specific
to human movement analysis, e.g. trip detection and transport mode labeling. Furthermore,
there are several libraries available in C++, such as Tracktable (Wilson, 2014), MEOS3,
and MoveTK4 that promise efficient and fast tools for trajectory data processing, although
they may be less accessible for the research audience in human mobility and transportation.

1https://www.pyopensci.org/contributing-guide/intro.html
2https://ropensci.org/
3https://github.com/adonmo/meos
4https://github.com/movetk/movetk
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Tab. 3.1.: Comparison of movement data libraries. Packages are predominantly available
open source in R and Python and they are compared with regard to their fo-
cus, documentation and functionality. While other movement analysis libraries
already provide well-maintained and documented code with rich functionality
for trajectory analysis, only Trackintel provides robust and flexible methods to
aggregate trajectories into locations, trips and tours.
( / / x : available / partially available / not available)
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Trackintel Human mobility analysis P 6 98% I H +

Scikit-mobility (Pappalardo et al., 2022) Human mobility analysis P 5 ** I H x x x ++

Movingpandas (Graser, 2019) Movement data analysis P 6 96% I H/A/O x x x x x ++

PyMove
Querying and
visualizing trajectories

P 5 85% I H/A/O x x x x x x +

MovinPy Mobility data analysis P 3 0 I H x x x x x x x -

HuMobi (Smolak et al., 2021) Human mobility prediction P 3 0 I H x x x x x +

PTRAIL (Haidri et al., 2021)
Parallelization and
feature extraction

P 4 ** I H/A/O x x x x x x x ++

TransBigData (Yu and Yuan, 2022) Transportation P 5 90% C H x x x x -

mobilityDB (Zimányi et al., 2020) Storing and querying SQL 6 97% I H/A x x x x x x x +

Traja (Shenk et al., 2021) Animal trajectories P 6 76% I A x x x x x x ++

Tracktable (Wilson, 2014) Moving object tracking P/C++ 2 ** I O x x x x x x ++

MEOS Spatio-temporal data analysis C++ 4 * I H/A/O x x x x x x x x +

MoveTK
Computational movement
analysis

C++ - ** I/C H/A/O x x x x x x x x ++

adehabitatLT (Calenge, 2011) Animal habitat R 4 ** I A x x x x x x x x ++

moveVis Visualization R 6 93% I A x x x x x x x -

stplanr (Lovelace and Ellison, 2018)
Sustainable
transport planning

R 6 * C H x x x x x x x x -

trajectories
Object tracking
and interaction

R 5 * I O/H/A x x x x x x x +

TrackR Running and cycling data R 6 52% I H x x x x x x +

ArcGIS Pro Spatial data (P) - ** I/C O/H/A x x x x ++
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Furthermore, these libraries provide only highly specific functionalities and do not represent
a comprehensive framework for movement data analysis.

ArcGIS Pro is a proprietary software for general spatial data processing with modules for
movement data analysis such as speed and acceleration computation, trackpoint clustering
and in particular trajectory visualization5. However, the different functionalities are scattered
over different toolboxes and ArcGIS Pro does not provide a consistent framework for
the analysis of movement data. Due to its proprietary nature, we could not evaluate
documentation and testing as we did for the other packages, but we assume both are on
a high level. We did not include QGIS6, a high quality open-source GIS Project, in the
table, as there are no well-maintained plug-ins for movement or trajectory data analysis
available. However, QGIS could be used in combination with Python libraries or the
mobilityDB (Zimányi et al., 2020) library.

In Python, many open-source libraries have emerged as tools to both facilitate and stan-
dardize data processing and analysis. The geographic information science (GIScience)
community in particular has benefited significantly from Python libraries, for example, the
data models implemented in Shapely (Gillies, 2013) and the I/O formats for geographic
data as offered in the Fiona package7. Most importantly, spatial data can be handled easily
with the Geopandas library (Jordahl et al., 2021) that directly builds up on Pandas (The
pandas development team, 2020), one of the most established Python libraries for data
analysis and manipulation.

In the past years, Python has become the de-facto standard for data science and ma-
chine learning applications, which are increasingly important for the analysis of movement
data (Luca et al., 2021; Toch et al., 2018). However, only a few libraries have attempted to
provide preprocessing and analysis tools specifically for human mobility in a comprehensive
Python package (see Table 3.1). Although many algorithms for trajectory data mining were
developed in the last decade (Zheng, 2015), their open-source availability in Python is
limited, and they often suffer from insufficient documentation and testing standards, such as
HuMobi (Smolak et al., 2021) or MovinPy. Others are well-maintained but limited in scopes,
such as Traja (Shenk et al., 2021) that targets animal movement, PTRAIL (Haidri et al.,
2021) for parallel processing, and TransBigData (Yu and Yuan, 2022) which focuses on data
analysis on a collective level, similar to the R library stplanr (Lovelace and Ellison, 2018).

Notable exceptions are MovingPandas (Graser, 2019) and scikit-mobility (Pappalardo et al.,
2022). MovingPandas is based on Pandas and Geopandas and focuses on low-level trajectory
manipulation, such as splitting, merging and visualizing trajectories. On the contrary, the
scikit-mobility library targets high-level analysis functions, including computing human
mobility metrics, generating synthetic trajectories and assessing privacy risks. Both libraries
are actively maintained and contain various measures to ensure high code quality, but the
definition of their data model implies a focus on movement trajectories (MovingPandas)

5https://pro.arcgis.com/en/pro-app/2.8/tool-reference/intelligence/
an-overview-of-the-movement-analysis-toolset.htm

6https://www.qgis.org/en/site/
7https://github.com/Toblerity/Fiona
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or mobility flows (scikit-mobility), which omits important concepts describing individual
human mobility such as activities, trips or tours (Axhausen, 2007).

We aim to close this gap with the Trackintel framework that utilizes an established data
model from the transportation literature, which incorporates different semantic aggregation
levels of tracking data specific to human mobility.

3.1.3 Trackintel framework
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Fig. 3.1.: Overview of the Trackintel framework.

Trackintel8 is a library for the analysis of spatio-temporal tracking data with a focus on human
mobility. The core of Trackintel is the hierarchical data model for movement data (Axhausen,
2007) that is widely adopted in GIScience (Bucher et al., 2019b), transport planning (Chen
et al., 2016a) and related fields (Rout et al., 2021). We provide easy-to-use and efficient
functionalities for the full life-cycle of human mobility data analysis, including import and
export of tracking data of various types (e.g., GPS track points, location-based social network
(LBSN) check-ins, call detail records), data model generation and preprocessing, analysis,
and visualization. A conceptual overview of the different components of Trackintel can be
found in Figure 3.1.

Trackintel focuses on the mobility of individual persons or objects (e.g., as opposed to
crowd flows), and all functionalities are implemented as user-specific, based on unique user
identifiers that link data to the respective tracked users. Trackintel is implemented in Python
and is built mainly on top of Pandas (McKinney, 2010) and GeoPandas (Jordahl et al., 2021)
using accessor classes, a method to extend Pandas classes9. This design makes Trackintel

8https://github.com/mie-lab/trackintel
9https://pandas.pydata.org/docs/development/extending.html
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Fig. 3.2.: Semantic visualization of the Trackintel data models and their UML diagram,
with mandatory and optional attributes (shown in square brackets). The relations
between the different classes are shown in the connecting lines. Figure adapted
from (Jonietz and Bucher, 2018)

easy to use for Python users and ensures its broad compatibility with other Python spatial
analysis libraries.

The Trackintel data model

The modeling framework employed by Trackintel is based on the activity-based analysis
framework in transport planning, which regards travel demand as derived from our need
to perform activities at different locations. We follow the definition from (Schönfelder and
Axhausen, 2016) that people’s daily mobility consists of staying at locations to perform
activities and traveling between locations for the next activity (Schönfelder and Axhausen,
2016). In this definition and following the description in (Axhausen, 2007), movement is
separated from activities at different semantic levels. Trackintel implements six classes to
represent movement data in this hierarchical model: positionfix, staypoint, tripleg, trip, tour,
and location. Figure 3.2 gives an overview of the hierarchical modeling structure and shows
the classes in a UML diagram with their mandatory attributes and optional attributes in
square brackets. All Trackintel classes are implemented as Pandas Dataframes or Geopandas
Geodataframes. In order to be considered a valid Trackintel object, all mandatory attributes
have to be present as columns with the correct names, as shown in Figure 3.2. A more
detailed explanation of the required and optional attributes of the Trackintel classes is given
in Table 3.2. Geometries need to be of the defined type, with the exception of the Location
class that can have multiple geometries. Furthermore, all timestamps for the time fields
required by Trackintel have to be timezone-aware10. Besides these formal requirements,
classes can contain any additional information required for specific analysis. In the following,
the different classes and their semantics are introduced.
10See https://docs.python.org/3/library/datetime.html#aware-and-naive-objects for an

explanation
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Tab. 3.2.: Description of the mandatory and optional columns for Trackintel data models.

Data models Fields Description

All id The unique identifier for the record
user_id The unique user identifier
tracked_at The timestamp for the point (only for positionfix)
started_at The starting time of the record (except for positionfix

and location)
finished_at The ending time of the record (except for positionfix

and location)
Positionfix geometries Point geometry
Staypoint geometries Point geometry

purpose (optional) Purpose label for the staypoint. This could be either
an activity purpose (e.g., home), or an non-activity
purpose (e.g., wait).

is_activity (optional) Boolean flag indicating whether the staypoint is an
activity

Location center Point geometry representing the center
extent (optional) Polygon geometry representing the extent

Tripleg geometries Line geometry
mode (optional) Transport mode label

Trip origin_staypoint_id The identifier of the starting staypoint
destination_staypoint_id The identifier of the destination staypoint
primary_mode (optional) The main transport mode label

Tour location_id The start and end location identifier
journey Boolean flag indicating whether the tour is a journey

(A tour is called a journey if the start and end location
is home).

Positionfix. Positionfix is the smallest tracking unit in the Trackintel data model, consisting
of timestamped position records, for example, generated by GNSS trackers or call detailed
records (CDR) data. Positionfixes are often directly transferred from raw tracking data
and are thus a natural entry point to the Trackintel data model, where it can further be
processed and segmented into triplegs and staypoints. No inherent semantics are included
since movements and activities cannot be distinguished from Positionfix.

Staypoint. Staypoint represents a point in space, which is defined as an individual remaining
within a defined geographical radius for a defined time. Compared to the raw positionfix
points, staypoints can represent stationary points that carry particular semantics, such as the
purpose of the stay, or they can represent an intermediate stay, such as waiting for a bus. To
distinguish between these two types of staypoints, we introduce the concept of activity: an
activity staypoint is usually the reason for a person to travel and has an important purpose
with an attached activity label (e.g., home), while a non-activity staypoint only represents a
trivial stationary point (e.g., waiting). The exact definition of an activity depends on the goal
of the study. In Trackintel, activities are staypoints with the attribute activity_flag set to True,
which can be obtained through user labels or directly inferred from data (see section 3.1.3).
While activity staypoints are the basic unit for constructing trips, which mark the start and
end of a trip, non-activity staypoints can only be part of a trip. Additionally, staypoints can
be spatially aggregated to form locations.

Tripleg. The most basic level of movement is defined as tripleg (referred to as stage in
Axhausen (2007)), which formally represents a continuous movement without changing
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transport mode or vehicle. Therefore, triplegs contain semantics about the movement of
an individual, such as the mode of transport that is stored in the attribute field mode if
available. This information can be obtained from user labels (Hong et al., 2021; Zheng et al.,
2010) or inferred using heuristics directly from the data, which is implemented as labeling
functions in Trackintel (see Section 3.1.3). Triplegs can be created from positionfixes and
can be aggregated to form trips.

Trip. Trip represents all travels between two activities and summarizes all triplegs and
non-activity staypoints between two consecutive activity staypoints. Trips inherit the activity
purpose from the activity label attribute of the destination staypoint. As they are often the
primary quantity of interest in transport planning studies, trips, together with activities, are
the core of the movement data model proposed in Axhausen (2007).

Location. Activity staypoints represent individual visits to places that are significant to
the visitor. Trackintel models these significant places using the location class to enable the
characterization of the place that is visited. While the information attached to staypoints is
bound to the individual visit (e.g., the specific activity or the time of day), the semantics
of locations are related to the place independent of the visit (e.g., land use or the opening
hours of a shop). Locations are modeled with two different geometries, a point geometry for
the center of the location and a polygon geometry to describe the extent of a location.

Tour. The mobility of individuals is centered around a few significant locations that act as the
basis of their travel behavior. Individuals conduct several activities and trips if convenient
but return home (or to a similar significant location) to plan their next activity. This behavior
can be analyzed using the tours class, which is defined as “a sequence of trips starting and
ending at the same location” (Axhausen, 2007, p. 4), referring to the location class defined
above. A special case of a tour is the concept of journey that starts and ends at the home
location of an individual. In Trackintel, a tour can be flagged as a journey using the journey
attribute. A tour contains multiple trips, but one trip can also be part of several tours in case
they are nested, e.g. the trip from the work location to the supermarket and back is part of a
larger journey that started at home.

Data model generation

The core functionality of Trackintel is to generate all classes defined in the movement data
model from the raw tracking data. In practice, this refers to the generation of the entire
hierarchical movement data model from positionfix data. However, it should be noted that
it is not required and often not practical to enter the framework from positionfixes - the
framework can be accessed at any semantic level depending on the available data (e.g.,
location-based social network (LSBN) check-ins represent staypoints without the availability
of positionfixes; see Figure 3.1 for examples of input levels for different tracking data types).
The following section presents the implemented preprocessing steps necessary to aggregate
data through the hierarchy levels. The output of all generate functions is a (Geo)DataFrame
with the fields listed in Table 3.2.

Generate staypoints. In Trackintel, staypoints are generated from positionfixes based on the
sliding window detection algorithm first reported in (Li et al., 2008), which has become a
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standard algorithm for staypoint detection (Zheng, 2015). For each individual, the algorithm
iterates over all positionfixes and determines groups of points that satisfy the predefined
distance and time thresholds. Each output staypoint inherits the starting and ending time
from the first and last positionfix that belongs to it, respectively, as well as the mean geometry
coordinates of the group of positionfixes. The implemented staypoint detection algorithm
extends the algorithm from (Li et al., 2008) by an option to exclude temporal gaps in the
tracking data, commonly observed in many datasets due to low temporal tracking coverage.
This behavior can be controlled using a parameter representing the maximum time between
two consecutive positionfixes such that they are still considered to belong to the same
staypoint.

Generate locations. Locations can be generated by aggregating staypoints. Existing
studies proposed community detection algorithm (Aslak and Alessandretti, 2020) and spatial
clustering algorithms, such as OPTICS (Yuan et al., 2013), mean shift (Solomon et al., 2021),
and DBSCAN (Luo et al., 2017) to perform this processing step. Here, we implement the
most commonly employed DBSCAN algorithm to aggregate staypoints that are spatially
close to locations (Hariharan and Toyama, 2004; Jonietz and Bucher, 2018). DBSCAN
adopts a set of neighborhood characterization parameters ϵ and the minimum number of
samples (min_samples) to define how dense the input data has to be considered a cluster.
In the context of location generation, ϵ controls the distance of which nearby staypoints will
be merged into a single location, and min_samples determines the minimum number of
staypoints to form a location (i.e., how many visits are required at the same place to consider
it as significant). Generated locations are equipped with two different geometries. The
center is a point geometry, calculated as the mean coordinates from all staypoints assigned
to the cluster; the extent is a polygon geometry, defined as the bounding box of all belonging
staypoints. Furthermore, we provide the flexibility to generate locations that are significant
to a single user (Figure 3.3 right) or to all users present in a dataset (Figure 3.3 left). While
user locations regard staypoints of each tracked user separately in the clustering process
and prevent generating locations that are excessively large (Aslak and Alessandretti, 2020),
dataset locations consider all staypoints at the same time and output locations with shared
semantics across users (e.g., train stations or shopping malls). In both options, the center
and the extent of the clustered staypoints are attached to the generated locations, providing
geometry information that facilitates further processing and analysis tasks.

Generate triplegs. Trackintel implements an algorithm that extracts triplegs from position-
fixes based on the assumption that an individual is moving if he or she is not stationary,
meaning that all positionfixes that do not belong to any staypoint are assigned to a tripleg.
This assignment process requires the input of positionfixes with the identifier of the already
generated staypoints. Internally, the function aggregates all positionfixes between two
consecutive staypoints to form a tripleg, whose line geometry is constructed by connecting
the point geometries in chronological order. Similar to the generation process of staypoints,
the start and end timestamp of each tripleg are inherited from the first and last positionfixes
that belong to it, respectively.

Generate trips. Trackintel implements a method to generate trips based on existing stay-
points and triplegs. Trips summarize all movement and all non-activity staypoints (e.g.
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Fig. 3.3.: Semantic visualization of the relations between positionfix, staypoint and lo-
cations. Staypoints are groups of positionfixes where the users are stationary,
and locations are aggregations of staypoints that the user visits multiple times.
Locations can be generated across users (left) or for each user individually (right).
Map data ©2022 Google.

depending on the data, this could correspond to waiting at a bus stop) between two stay-
points flagged as activity. This seems trivial at first sight however, there are no easy-to-use
implementations available in other libraries, and there are several special cases related to
gaps in the tracking data that should be considered during the trip generation. Another
important feature of the implemented trip generation is the identifier management that
connects trips with their associated staypoints and triplegs.

The trip detection implemented in Trackintel can handle incomplete tracking data and
supports the detection of temporal gaps. A temporal gap is defined as missing tracking
signals longer than a certain time period (Zhao et al., 2021), which can be specified using
the θtrip_gap input parameter to the function. If a temporal gap greater than θtrip_gap is
detected, we assume the individual performed an unobserved activity and, therefore, the
destination of the current and the origin of the next trip is unknown (NaN in the resulting
table). Finally, the function provides the flexibility to specify whether the trips table should
include the geometry. The geometry of a trip consists of the points for the origin and
destination staypoints. If the origin is unknown, we use the first point of the first tripleg
instead, or analogously the last point for the destination.

Generate tours. To the best of our knowledge, there is no standardized approach yet on how
to combine trips into tours. Here, we take a rather broad definition of tours that includes
nested tours as described in (Axhausen, 2007), leaving the user the choice to filter the
outputs later. An example of a nested tour is shown in Figure 3.4: the tour Work-Cafe-Work
is part of the longer tour Home-Work-Cafe-Work-Home. This definition implies an n-to-n
relationship between trips and tours: One tour contains multiple trips, and one trip can be
part of multiple tours.

Our algorithm to generate tours from trips is explained visually in Figure 3.4, and shown as
pseudocode in Algorithm 2. We iterate over the trips sorted chronologically and maintain a
list C of tour-starting candidates. Each trip ϕi is a potential candidate to start a tour. At each
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Algorithm 1 Trip generation
1: Given
2: s: staypoints of a user
3: t: triplegs of a user
4: θtrip_gap: Gap threshold to start new trip
5: procedure GENERATE TRIPS(s, t, θtrip_gap)
6: st← merge s, t and sort by timestamp
7: n = length(st)
8: i = 0
9: Φ = {} ▷ Initialize trips as empty set

10: inTrip = False
11: while i < n do ▷ iterate all elements of st
12: if (inTrip is False) ∧ (st[i] is no activity) then ▷ go to next activity
13: i++
14: continue with next iteration
15: end if
16: if (InTrip is False) ∧ (st[i] is activity) ∧ (i + 1 < n) ∧ (st[i + 1] is activity) then
17: i++ ▷ Skip sequential activities w/o travel
18: continue with next iteration
19: end if
20: if InTrip is False then
21: inTrip = True ▷ Start trip
22: initialize new trip ϕcurrent

23: ϕcurrent.origin = st[i] ▷ set st[i] as origin of trip; add start time, activity label and
geometry

24: i++
25: continue with next iteration
26: end if
27:
28: δt = startTime(st[i]) − endTime(st[i− 1]) ▷ compute gap duration
29:
30: if (InTrip is True) ∧ (δt ≥ θtrip_gap) then ▷ check for gap in tracking data
31: ϕcurrent.destination = unknown ▷ set trip destination as unknown
32: Φ = Φ ∪ ϕcurrent ▷ Add trip to collection of trips
33: inTrip = False
34: else if (InTrip is True) ∧ (st is no activity) then
35: add st[i] to trip ϕcurrent

36: else if (InTrip is True) ∧ (st is activity) then
37: ϕcurrent.destination = st[i] ▷ set st[i] as trip destination
38: Φ = Φ ∪ ϕcurrent ▷ Add trip to collection of trips
39: inTrip = False
40: end if
41: i++
42: end while
43: end procedure
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Algorithm 2 Tour generation
1: Given
2: Φ : {ϕ0, . . . , ϕn}: trips (sort by timestamp)
3: loc: (Optional) location function that returns the location ID given trip origin or destination
4: start: Function that returns the geometry of the start point of a trip
5: end: Function that returns the geometry of the end point of a trip
6: θmax_dist: Maximum distance (in m) between the end of one trip and the start of the next trip

on the same tour
7: θmax_time: Maximum duration of a tour
8: θmax_gaps: Maximum gaps that are allowed on a tour
9: procedure GENERATE TOURS(Φ, loc, θmax_dist, θmax_time, θmax_gaps)

10: C = [ϕ0]: List of candidate trips to form a tour
11: i = 1
12: locAvail = True if loc is given, otherwise False ▷ Are locations provided or not?
13: while i < n do
14: ▷ Part 1: Check if the previous and the current trip are connected
15: gapInbetween = False
16: if locAvail then ▷ Option 1: Compare locations
17: if loc(end(ϕi−1)) ̸= loc(start(ϕi)) then
18: gapInbetween = True
19: end if
20: else ▷ Option 2: Check distance
21: if distance(start(ϕi−1), end(ϕi)) > θmax_dist then
22: gapInbetween = True
23: end if
24: end if
25: if gapInbetween then
26: C = C.append(gap) ▷ Record a gap in the tour candidates
27: end if
28: C.append(ϕi) ▷ Add trip to tour candidate
29: ▷ Part 2: Check if the current trip closes a tour
30: for ϕC ∈ C (iterate in reverse order) do
31: closesTour = False ▷ Check if ϕC is the start of a tour ending at ϕi

32: if locAvail then ▷ Option 1: Compare locations
33: if loc(end(ϕi)) == loc(start(ϕC)) then
34: closesTour = True
35: end if
36: else ▷ Option 2: Check distance
37: if distance(end(ϕi), start(ϕC)) ≤ θmax_dist then
38: closesTour = True
39: end if
40: end if
41: if closesTour then
42: n_gaps = count gaps between ϕC and ϕi

43: if
(

n_gaps < θmax_gaps

)
∧

(
endTime(ϕi) − startTime(ϕC) < θmax_time

)
then ▷

Tour found!
44: Aggregate all trips from ϕC to ϕi into a tour
45: end if
46: end if
47: end for
48: Remove trips from C that are more than θmax_time before ϕi

49: i++
50: end while
51: end procedure
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Fig. 3.4.: The algorithm of tour generation implemented in Trackintel. A list of start
candidates is maintained and iteratively checked for tour-closing trips.

iteration, that is, for each trip, we first check whether there is a spatial gap between the
current and the previous trip ϕi−1. Two options are implemented: If the table staypoints with
the attribute location_id is provided, we compare the location identifier of the end of ϕi−1

to the one of the start of ϕi, formally loc(end(ϕi−1)) = loc(start(ϕi)). Alternatively, if the
staypoints are not available, the predefined spatial distance threshold θmax_dist controls the
maximum distance between the end and start points, i.e. distance

(
start(ϕi), end(ϕi−1)

)
≤

θmax_dist.

Additionally, our implementation offers the possibility to generate partially observed tours to
accommodate tracking datasets with a low temporal tracking coverage, e.g., mobile phone
data-based studies. A parameter θmax_gaps determines how many spatial gaps are allowed
within a single tour. Note that no gaps are allowed at the start or end of a tour, because a
tour must start and end at the same location, or the start- and end-staypoints must lie within
the permitted range. If the test described above yields a spatial gap between ϕi−1 and ϕi,
and θmax_gaps = 0, the candidate list is reset to [ϕi]. Otherwise, a gap is registered.

Next, we test whether ϕi concludes a tour (Algorithm 2 line 15). For this purpose, we iterate
over all candidates in the reversed order, such that the shortest possible tour is found first.
We compare the start point of a candidate ϕC to the end point of ϕi. Again, the points
are compared either by the location identifier or via the θmax_dist parameter. If they are
the same, the trips {ϕk | j ≤ k ≤ i} form a tour, subject to two further conditions: A.
While iterating over candidates, the encountered gaps are counted, and the time duration is
checked. The parameter θmax_time is used to certify whether the tour takes place within an
appropriate time period, by default 24 hours. B. When encountering more than θmax_gaps in
the reversed iteration, or when reaching a candidate that started more than θmax_time hours
ago, the loop ends, and no tour is found. Figure 3.4 shows an example where two tours are
found after considering ϕ3 and ϕ4 respectively.

Import and export

Reading and writing data are important steps in a standard movement data analysis pipeline.
To simplify this process, Trackintel provides an I/O module for accessing movement data
and storing intermediate or final results in a file or database. Three methods for converting
movement data with attached attribute information to Trackintel-compatible formats are
provided: 1) Reading from Pandas Dataframes and Geopandas Geodataframes, 2) reading
and writing from CSV file formats, and 3) reading and storing from PostgreSQL databases
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with PostGIS extension. For every Trackintel data type, we provide I/O functions that
internally check the validity of the input data formats. Also, Trackintel implements reading
functions to convert tracking data from publicly available open-source datasets into the
Trackintel data model. For example, raw tracking records from the Geolife dataset (Zheng
et al., 2010) can be loaded with Trackintel into the positionfix format. In addition, we
provide helper functions to attach transport mode labels, which are provided separately
for some individuals in the Geolife dataset. The dataset reading functions facilitate and
standardize the processing of public movement datasets using Trackintel, which also help to
benchmark new methods on the same dataset.

Pre- and postprocessing

Trackintel offers several pre- and postprocessing methods. First, to smoothen the trajectory
of triplegs, we employ the Douglas-Peucker algorithm (Douglas and Peucker, 1973). Further-
more, staypoints that appear consecutively at the same location can be aggregated in time.
Such repetitions are a common artefact in tracking data due to noise or outliers recordings
in GNSS tracking data. We propose to merge two staypoints s1, s2 of one individual if the
following conditions hold: a) s1 and s2 are consecutive in time, b) s1 and s2 are assigned to
the same location, c) there is no tripleg registered between s1 and s2, and d) the time gap
between the end time point of s1 and the start of s2 is shorter than a predefined threshold
θmax_time_gap. The start time of s1 and the end time of s2 define the start and end time of
the new staypoint. The aggregation of other staypoint attributes, e.g. the geometry, must be
specified explicitly.

Analysis

While the main functionality of Trackintel is the implementation of the hierarchical data
model, the framework also includes advanced analysis functions to label transport modes
and activity purposes, as well as methods to assess the tracking quality of each individual.

Mode labeling

Applications in transport planning often require access to the travel modes of an individ-
ual (Kim et al., 2022). Since Trackintel does not assume the availability of user-provided
labels, context or advanced data from the tracking device (e.g., accelerometer), we im-
plement a simple heuristic to determine the travel mode from the tracking data. This
classification is done per tripleg based on speed. The speed is approximated by the tripleg
length (the distance of individual points in its LineString geometry) divided by its total time
duration. The triplegs are labeled based on a simple division into slow mobility (<15km/h
average speed), motorized mobility (<100km/h) and fast mobility (>100km/h). In future
versions, a more in-depth analysis of travel patterns or map matching (Bachir et al., 2018;
Huang et al., 2019; Prelipcean et al., 2017; Widhalm et al., 2012) could be incorporated
into Trackintel.
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Location labeling
An individual’s home- and work-locations play a major role in mobility data analysis. As
described in Section 3.1.3, staypoints may be associated with an activity label, but oftentimes
this information is not available. We assign “home” and “work” activity labels to the
staypoints with an adapted version of the OSNA algorithm proposed by Efstathiades et al.
(2015). In detail, the OSNA algorithm divides weekdays into rest, work and leisure time
frames. The location with the longest accumulated duration in the “rest” and “leisure”
periods is labeled as home, while work is set to the most predominant location in the
“work” periods. While the original algorithm derives the hours spent at a location from
geo-tagged tweets, we take advantage of the started_at and finished_at attributes of a
staypoint. Additionally, similar to in the R package proposed by Chen and Poorthuis (2021),
we provide a fast method that simply assigns home and work labels to the two locations that
are visited more often in the data (in this order). In both cases, the locations can optionally
be pre-filtered in order to exclude locations with an insufficient number of staypoints or an
insufficient length of stay.

Modal split
If mode labels for triplegs are available, Trackintel supports the calculation of the modal split
in three different ways: Computing the modal split by count (i.e., how many triplegs with this
mode exist), by duration (i.e., sum of individual’s tripleg duration) or by travelled distance.
Furthermore, the frequency can be set according to the Pandas time series frequency syntax11,
and the modes can either be aggregated by user or by dataset. An example for one user is
visualized in Figure 3.6 where the differences between a modal split by count (Figure 3.6(a))
and by distance (Figure 3.6(b)) stand out.

Tracking quality assessment
An important step in data analysis of tracking studies is the assessment of the tracking
quality, i.e. the temporal coverage. Temporal tracking quality, here defined as the proportion
of time where the user’s whereabouts are recorded, is regarded as a basic measure of the
temporal resolution of the dataset (Alessandretti et al., 2018). Trackintel supports the
calculation of the daily, weekly or overall tracking quality of each user according to the
required granularity levels, which enables individual-level temporal resolution assessment,
providing support for filtering low-quality users for further analysis. Additionally, tracking
quality of hours of the day and weekdays can be obtained for measuring the tracking data
quality differences across time periods.

Visualization

Trackintel provides a module that supports the visualization of positionfixes, staypoints and
triplegs. Our implementation standardizes these functions such that each data type can
be displayed together with lower aggregation levels (see Figure 3.1). For example, the

11https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
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(a) Positionfixes (b) Staypoints (c) Triplegs

Fig. 3.5.: The Trackintel framework offers functions to plot positionfixes (a), staypoints (b),
and triplegs (c) together with the road network acquired from OpenStreetMaps.
This example maps the movements of one Geolife participant.

(a) Modal split by count (b) Modal split by distance

Fig. 3.6.: The visualization result of the Trackintel plot_modal_split() function of the
triplegs recorded from one Geolife participant. Major differences can be observed
between the aggregation by count (number of triplegs) (a) and distance traveled
(b).

locations can be optionally shown together with positionfixes and staypoints. In that case,
staypoints and locations are displayed as circles with a predefined radius. Furthermore,
Trackintel integrates osmnx (Boeing, 2017) to optionally show the street network from Open
Street Maps as background. Figure 3.5 shows example outputs of the plotting functions for
positionfixes, staypoints and triplegs for one exemplary participant in the Geolife study.

Finally, Trackintel provides a flexible method to visualize changes in the modal split over
time. The modal split by count, distance or duration, as explained in Section 3.1.3, is shown
in a bar plot with one bar for each temporal bin. Different temporal resolutions (i.e., weeks
and months) are handled internally. An example for one user is shown in Figure 3.6 where
the modal split has been aggregated by month.
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3.1.4 A case study on multiple tracking datasets

Trackintel is a framework to standardize mobility data processing and analysis. We carried
out a case study on four datasets to demonstrate its capability to handle data from various
tracking studies. We read all data from a PostGIS database with the I/O module, preprocess
them according to the Trackintel movement data model and compare the datasets in terms of
tracking quality, trip characteristics, and modal split. The code of the case study is available
in the supplemental material and the public repository12.

Tracking studies

We include the data from four tracking studies with two different tracking data types. An
overview of the dataset properties is given in Table 3.3. The first study is the open-source
Geolife dataset (Zheng et al., 2009) that covers the movement of employees of Microsoft
Research Asia, who recorded their movement using GPS trackers. Second, we include two
studies that were conducted in collaboration with the Swiss Federal Railway Systems (SBB)
under the project name SBB Green Class (Martin et al., 2019a). In both studies, participants
were given full access to all public transport in Switzerland. In addition, the participants
from the first Green Class study (Green Class 1) received an electric vehicle and those
from the second study (Green Class 2) an e-bike. Study participants were tracked with a
GNSS-based application (app) called Myway13. The app already provides the data partially
preprocessed as staypoints and triplegs. The same app was further used in our fourth
dataset, the yumuv study14 which investigated the impact of a Mobility-as-a-Service app
that integrates shared e-scooters, e-bikes and public transport (Martin et al., 2021b). In the
yumuv study, participants were divided into control and treatment groups and were tracked
for three months.

Tab. 3.3.: Overview of basic features of the considered tracking studies. Locations, stay-
points, triplegs, trips and tours are given in multiples of a thousand.

Users
Tracking period

in days (std)
Input Study type Locations Staypoints Triplegs Trips Tours

Green Class 1 139 401 (59) Staypoints, Triplegs GNSS (app) 104.5 326.9 465.2 241.8 95.0
Green Class 2 50 314 (76) Staypoints, Triplegs GNSS (app) 35.7 87.9 128.6 61.4 22.7
Yumuv 806 87 (38) Staypoints, Triplegs GNSS (app) 127.3 326.3 502.3 199.7 83.0
Geolife 177 193 (443) Positionfixes GPS tracker 13.6 28.9 30.2 30.2 7.2

Standardized processing according to the Trackintel data model

The Trackintel framework offers a straightforward way to transform all data into the same
format and aggregate the data into trips and tours with minimal code. First, the raw
GPS data in the Geolife dataset are converted to staypoints and triplegs with the Trackintel

12https://github.com/mie-lab/trackintel/blob/master/examples/Trackintel_case_study.
pdf

13https://www.sbb.ch/en/timetable/mobile-apps/myway.html
14https://yumuv.ch/en
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generate_staypoints() and generate_triplegs() functions. Staypoints are created with
a distance threshold of 100m, i.e. a user must have traveled 100 meters to generate a new
staypoint, and a temporal threshold of 30 minutes, as suggested in the original paper (Li
et al., 2008). Furthermore, consecutive positionfixes with a temporal gap of more than 24
hours in between cannot belong to the same staypoint.

All further preprocessing steps based on staypoints and triplegs are applied with the same
parameters for all four datasets. This ensures the comparability of the results across
datasets. More specifically, we derive the user’s locations from the staypoints with the
generate_locations() function. The method uses the DBSCAN algorithm with ϵ = 30
meters and min_samples = 1, such that one staypoint is sufficient to form a location.
Furthermore, triplegs and staypoints are aggregated to trips with the generate_trips()
function, with input parameter θtrip_gap = 25 minutes. At last, tours are generated by
merging trips based on a maximum distance (θmax_dist) of 100m between their start and
end points, and with the default parameters θmax_gaps = 0 and θmax_time = 24 hours.

Table 3.3 provides the absolute numbers of locations, staypoints, triplegs, trips and tours per
dataset. These quantities decrease from triplegs to trips and tours due to the aggregation
steps. Note that for Geolife our parameter choices prevent triplegs from being merged (see
Table 3.3 where the number of triplegs and trips are the same); however, parameters that
are more suitable for the trip generation would have decreased the quality of other parts
significantly due to the low tracking quality of Geolife. In total, the considered datasets
include 769,957 staypoints and 1,123,931 triplegs. These quantities depend on the number
of participants in the study and the total tracking duration. While the yumuv study has
the largest sample size of 806 users, the Green Class 1 study participants have the longest
tracking period, with each individual tracked for more than a year on average.

Analysis and comparison of tracking datasets

We now compare the mobility behavior of the study participants of all studies on the trip
level as an exemplary usage of the Trackintel analysis module. The insights from this analysis
are summarized in Table 3.4. First, we can derive the number of daily trips per individual
from the absolute numbers given above. The study participants in Green Class 1 and Green
Class 2 are most active in conducting trips. The low number of trips for Geolife users may
be due to the low temporal tracking coverage of the dataset. Furthermore, we compare the
average trip distances and duration across datasets. Interestingly, yumuv and Geolife users
take longer trips on average in terms of duration. There is also a clear effect of the bias of
yumuv participants towards urban areas, where the trips cover much shorter distances. The
number of trips per tour and the number of triplegs that are part of the same trip do not
differ much between studies.

Another key part of tracking data analysis regards the temporal tracking quality of a
dataset. Here, temporal tracking quality is defined as the temporal coverage of the
tracking data (i.e., the completeness) and is computed with the Trackintel function
temporal_tracking_quality() as explained in section 3.1.3. The results are given in
the last column of Table 3.4. The three GNSS-based studies show a high coverage of more
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Tab. 3.4.: Overview of the mobility statistics for the considered tracking datasets.

Trips per day Trips per tour Legs per trip Trip distance in km (std) Trip duration (std) Tracking quality (std)

Green Class 1 4.32 2.73 1.92 27.4 (478.7) 0.52 (0.73) 0.85 (0.17)
Green Class 2 3.80 2.66 2.09 33.7 (568.2) 0.51 (0.75) 0.75 (0.24)
Yumuv 3.13 2.11 2.51 16.9 (100.4) 0.68 (0.91) 0.77 (0.23)
Geolife 1.70 2.37 1.00 36.1 (3163.5) 0.64 (0.94) 0.4 (0.32)

than 75% on average per user, whereas Geolife data only covers about 40% of the time
on average per user. Figure 3.7 shows the distribution of the tracking quality over users.
In the Geolife dataset, the temporal tracking quality largely differs across individuals. In
comparison, the large majority of Green Class 1 participants reached a coverage of more
than 0.7. The large difference between Geolife and the other datasets can be explained by
the different hardware that was used in the studies. While the Geolife individuals were
equipped with dedicated GPS-only trackers that are prone to localization problems when
indoors or in urban canyons, the participants in the Green Class and yumuv studies were
tracked with an app on their smartphone that uses the location API of the operating system.
The latter has access to all GNSS systems in addition to GPS and can fall back to other
technologies such as WIFI or cell tower triangulation if no satellite is available.
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Fig. 3.7.: Distribution of the individual temporal tracking quality for the considered
datasets.

We further compare the modal split of the tracking studies. The split is computed first as
the number of triplegs per mode and second as the covered distance per mode. We use the
Trackintel function predict_transport_mode() to approximate the modes for the Geolife
dataset, since the original mode labels are not available for all participants and not all the
time. In all other studies, high-quality mode labels are provided, and we aggregate them
into the simplified categories of slow mobility (walk, bicycle, scooter), motorized mobility
(tram, bus, car and motorbike) and fast mobility (airplane and train). The results are shown
in Figure 3.8. The datasets differ significantly with respect to their modal split, which can
be explained by the study target group, for example, Green Class participants were given
full access to all public transport in Switzerland and are thus more likely to use trains
(fast transport). Yumuv individuals on the other hand mostly live in urban areas and they
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were using the yumuv bundle of shared e- bicycles and scooters, which explains the higher
proportion of slow mobility for yumuv.

Geolife Green Class 1 Green Class 2 Yumuv
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
M

od
al

 sp
lit

 (c
ou

nt
)

fast
motorized
slow

(a) Split by count

Geolife Green Class 1 Green Class 2 Yumuv
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

M
od

al
 sp

lit
 (d

ist
an

ce
)

fast
motorized
slow

(b) Split by distance

Fig. 3.8.: Comparison of modal split between datasets. The users of different studies differ
considerably in terms of their usage of slow, motorized or fast transport.

Finally, we analyze the daily activity patterns of individuals. Specifically, the time periods
when the individuals are at home and at work are computed. For the Green Class 1 & 2
studies, the activity label for each staypoint is provided by the participants. For the Geolife
and yumuv datasets, on the other hand, we adopt the Trackintel location_identifier()
function that implements the OSNA algorithm (Efstathiades et al., 2015) to infer the home
and work locations. In Figure 3.9, the distribution of home and work staypoints over the
course of a day is shown. Specifically, the average fraction of users with a staypoint labeled
home (or work respectively) is shown for every minute of the day. The fraction of users
at home (work) is thereby computed as the number of staypoints per day divided by the
number of actively tracked users, where a user is actively tracked if there is at least one
staypoint on that day. The working time between 8am and 5pm as well as the lunch breaks
are clearly visible in Figure 3.9(b) for Green Class 1 & 2 and yumuv, although there are
fewer work-staypoints for yumuv. While the home location is reliably identified for both
yumuv and Geolife, the identification of the work location seems impaired for the Geolife
dataset. As the OSNA algorithm simply selects the second-most visited location as work if
the “home” and “work” labels overlap, the low tracking quality of the Geolife dataset (see
Figure 3.7) could have affected the accuracy of the identification.

In summary, our study demonstrates the ease of comparing data from different sources on all
levels of the movement data model and concerning various labels for the movement data. The
standardized preprocessing functions implemented in Trackintel also help compare methods
and explain possible discrepancies in the analysis results from the different datasets.

3.1.5 Discussion and conclusion

Quantitative analysis of human mobility currently suffers from a lack of a common model
for preprocessing movement data, limiting the reproducibility and comparability of scientific
studies. Existing libraries focus on data analysis, leaving seemingly easy preprocessing
steps up to the user, although design choices of these steps can significantly affect the
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Fig. 3.9.: Distribution of activities over time.

results (Sambasivan et al., 2021). This article presented Trackintel, a new open-source tool
to address these problems. Trackintel implements a widely accepted conceptual data model
for movement data and provides functionalities for the full life-cycle of human mobility
data analysis: import and export of tracking data collected through various methods,
preprocessing, data quality assessment, semantic enrichment, quantitative analysis and
mining tasks, and visualization of data and results.

A particular strength of Trackintel is that it greatly simplifies the joint analysis of several
movement datasets with different properties. This was shown in a case study where four
different datasets were jointly preprocessed and analyzed. We used the analysis methods
implemented in Trackintel to compare the datasets with respect to their trip properties, their
tracking quality, their modal split and their daily activity patterns. It was demonstrated in
the supplementary material that rich insights about the characteristics of different tracking
datasets could be easily obtained in Trackintel with few lines of code. Our library is thus also
a response to recent calls in GIS for systematic benchmarking of new methods on several
datasets (Konkol et al., 2019).

Importantly, the purpose of Trackintel is not to provide a comprehensive set of analysis
functions, but rather a high-quality implementation of standard aggregation and semantics-
enrichment steps that are relevant for most tracking studies. This goal is fulfilled in the
current version of the library since functions for all aggregation steps in the data movement
model are provided and were tested extensively on diverse datasets. Further work on the
preprocessing module will focus on improvements, such as outlier filtering functions or
methods to fill small gaps in the tracking data.

We plan to extend the analysis functionality of Trackintel and improve the integration with
other open-source libraries. Currently, the goal of compatibility with arbitrary tracking
datasets limits the capabilities of the analysis model. A good example is the transport
mode prediction function provided by Trackintel, which is based on a simple heuristic. A
more sophisticated and powerful method can in principle be implemented for a specific
dataset, however, the applicability of this method to other datasets will be limited by the
availability of specific input data or additional context data. Nevertheless, Trackintel will be
continuously extended to incorporate the latest processing and analysis algorithms and to
offer a wider variety of options for the preprocessing, analysis and visualization of movement
data. In particular, we will work towards the integration of Trackintel with other popular
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Python libraries, such as the Open Street Maps package osmnx. The data analysis module
can be substantially improved when considering mobility-related context information, such
as enriching trips with point-of-interest data for transport mode identification. Moreover, we
plan to provide a basic behavioral analysis module that allows insights into users’ mobility
behavior, for example, user mobility profiling and detecting changes in users’ mobility
behavior over time.

Finally, Trackintel does not aim to cover all preprocessing and analysis needs for every
movement data study. However, due to the compatibility with Pandas and Geopandas,
Trackintel can easily be integrated into a larger workflow that comprises a variety of Python
data and spatial analysis libraries. In particular, it is targeted at providing the same reliability
as these standard libraries. This is achieved through strong compliance with Python library
standards, including a high coverage of unit tests with both real and synthetic data, a code
review process, and continuous integration. In this setup, new algorithms can be contributed
without risking breaking existing functionality. We therefore believe that Trackintel can
serve as a standard and well-trusted mobility processing tool.
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Abstract
Information and communication technologies and location-based services in combination
with machine learning methods will play key roles in assisting and enabling behavior change
toward a more sustainable mobility behavior. To take advantage of their full potential, they
require large labeled datasets. However, tracking datasets are often small, unlabeled, and
can not be shared due to the high privacy concerns related to location data. In this work, we
analyze location graphs that model individual mobility based on visited locations as nodes
using counts of trips between locations as weighted edges. This representation is privacy-
friendly because it does not require coordinates, can be created based on a wide range of
different datasets which can then be combined and allows to characterize the mobility of
individuals based on the graph topology. We present a guide to interpreting an individual’s
mobility based on four different graph features and apply this representation to four different
datasets. As validation we show that location graphs can be used to reproduce important
statistical properties of individual mobility and the journey distribution of an individual with
high accuracy despite being a compressed representation of individual mobility. Location
graphs are suited to be used as a standardized and privacy-friendly way to store individual
mobility data in the future.
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3.2.1 Introduction

The transport sector is responsible for 16% of total global GHG emissions (Ritchie et al.,
2020), therefore its swift decarbonization is a key requirement in order to limit global
warming below 2 °C as required by the Paris Agreement. An important asset for the decar-
bonization of the transport sector is the digitalization of our society and the ubiquitous use
of Information and Communication Technologies (ICT) (Weiser et al., 2016) and Location-
Based Services (LBS) (Bucher et al., 2019b; Huang et al., 2018a). They can be used to assist
individuals in changing their mobility behavior (Bucher et al., 2019b), support integrated
multi-modal transport systems, and provide data required for optimized electric vehicle
charging (Cai et al., 2022). However, these and other applications require computational
methods for predicting and analyzing individual mobility and for the labeling of passively
collected tracking data (Chen et al., 2016a). These tasks are treated in quantitative human
mobility analysis (Dodge et al., 2016, 2020) and commonly rely on machine learning models
in combination with (optionally enriched) tracking data (Gong et al., 2016; Kumar and
Raubal, 2021; Luca et al., 2021; Toch et al., 2018; Urner et al., 2018; Wang et al., 2015).
These methods learn dependencies between input and output variables from the available
data and their performance is therefore closely linked to the quality and the quantity of such
data. Especially the size of labeled datasets is a difficult requirement when working with
human movement data. Labeled tracking data sets are often small due to the high costs of
generating them via user studies and because of the high privacy concerns related to location
data (Keßler and McKenzie, 2018; Montjoye et al., 2013). Additionally, the available rather
small, labeled datasets are often recorded using different tracking technologies (e.g., global
navigation satellite system (GNSS), Wi-Fi, call detail record (CDR)(Yuan et al., 2012)) and
study designs. These problems can be mitigated by using a privacy-friendly representation
of an individual’s mobility data that allows merging datasets from different sources.

In this work, we formally introduce the location graph as a representation of an individual’s
mobility. Location graphs model individual mobility based on visited locations as nodes and
by using counts of trips between locations as weighted and directed edges. Location graphs
have several advantages for processing individual mobility data, they are efficient in terms
of memory, they are privacy friendly, and have low requirements which means that they can
be created based on a wide range of different datasets that can then be combined in the
graph space.

The contributions of this work can be summarized as follows:

• Formal introduction of location graphs as a generalizable and privacy-friendly repre-
sentation of individual human mobility that is based on visited locations.

• A guide on how to interpret location graphs with respect to individual mobility tested
on five different tracking datasets.

• Validation of the capabilities and limits of location graphs.

The rest of the paper is organized as follows: Section 3.2.2 reviews and compares commonly
used representations of individual human mobility. Section 3.2.3 formally introduces the
location graph as a graph-based representation of individual human mobility. Section 3.2.4
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provides an overview of the datasets used as examples in the later sections and explains
how location graphs can be created from data. In Section 3.2.5 we introduce four different
graph features together with a guide on how they can be used to interpret the mobility
of individuals based on the topology of their location graph. Section 3.2.6 analyzes the
limits of location graphs to represent individual mobility and Section 3.2.7 reviews and
discusses the results. Finally, Section 3.2.8 concludes this work and presents avenues for
future research.

3.2.2 Representations of individual human mobility

Individual human mobility in the sense of geography and transport planning is a broad
term to describe anything related to the spatio-temporal whereabouts and movements of an
individual person and its context. The modeling and analysis of human mobility is difficult
when starting from such an ambiguous definition and therefore requires a compact and
well-defined representation of the mobility of an individual.

In the quantitative literature, the model for the representation of individual human mobility
is often not explicitly discussed but rather assumed to be the same as the data that was
collected. For example, in a travel survey participants record their trips and therefore the
collection of all trips of a person is assumed to be the representation of the participant’s
mobility. This approach is reasonable; however, it often represents a blind spot in the
modeling framework.

In the following, we present the most common approaches to represent individual human
mobility.

Based on activities

The State-of-the-art in transport planning is to model travel demand based on activities (Cas-
tiglione et al., 2015; Jiang et al., 2017). These activity-based models use our decisions
whether, where, and when to perform an activity to model the resulting travel demand (Ax-
hausen and Gärling, 1992).

Following this hypothesis, the optimal representation of individual mobility is based on
activities. In reality, not all of our mobility such as recreational walks, can be explained
by the need to perform an activity at a distant location (Mokhtarian and Salomon, 2001).
However, the empirical success of activity-based modeling (Castiglione et al., 2015) shows
that activity-based approaches are still a reasonable choice.

Ghosh et al. (2018) present a comprehensive graph-based framework to model the activity
behavior and thereby also the mobility behavior based on temporal activity logs. The
activity logs consist of records of activity labels and time stamps. This framework has a
solid theoretical foundation based on activity theory (Das and Winter, 2016), however, in
practice detailed information about activities is hard to obtain (Chen et al., 2016a), and the
definition of activity might change significantly depending on the context and the specific
application (Das and Winter, 2016).
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Therefore, it is common to use the activity location instead of the true activity, as the former
can be extracted from tracking data. The process of replacing activities by locations comes
naturally in the domain of human mobility analysis, however, the relevant assumptions
involved in this modeling step are often not discussed or mentioned in the literature.

Based on sequences of activities or visited locations

Individual mobility behavior is most commonly represented as the sequence of locations that
were visited. This corresponds to the location history that was presented in (Zheng et al.,
2009) which is similar to lifeline beads introduced in (Hornsby and Egenhofer, 2002).

The mobility profile of an individual person Mp is built by storing a location li in a list every
time this location is visited by this person. The movement profile is then a non-unique list
of locations, ordered by the time of visitation Mp = [l1, l2, l3, l1, ...]. Every location in the
list can then be enriched with additional information such as timestamps, context data, or
semantic information. Bhattacharya and Das (2002) offer a good source for further reading
on this type of model.

The location history is very expressive and highly unique so it can act like a fingerprint. It
was shown that only four time-stamped locations are sufficient to uniquely identify 95 %
out of 1.5 M users (Montjoye et al., 2013). Typical applications of this location history are
as an input for next place prediction (Hong et al., 2022), the identification or verification
of users (De Mulder et al., 2008; Lin et al., 2015), or the location management in mobile
networks (Bhattacharya and Das, 2002).

The most common approach for modeling the location history is via hidden Markov models
(HMM), even though it does not capture certain properties of human mobility such as
scale-invariant long-distance dependencies (Kulkarni et al., 2019; Zhao et al., 2015), a
problem that can be solved using deep learning approaches (Damiani et al., 2020; Hong
et al., 2022). A significant disadvantage of this representation of mobility behavior is that
the size of the profile grows with the tracking time as also known places are simply appended
to the existing profile. A way to mitigate this problem is to split the location history into
subsequences such as weeks as done in (Damiani et al., 2020).

Based on location networks/graphs

A modification of the location history that addresses the lack of a compact representation
is given by approaches that construct a location graph based on the full location history. A
location graph or individual mobility network is a directed weighted graph with all unique
locations that have been visited by an individual as nodes that are connected with an edge if
the person transitioned directly between two locations. The weight of an edge corresponds
to the number of direct transitions between two places. The location graph can be enriched
with context such as the spatial location of a node or aggregations of temporal data such as
the average stay duration at a location.
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An advantage of a location graph over the location history is that mobility data are stored
in a compact way because every visited location is only stored once. This comes with the
trade-off to lose some of the sequential information that is still available in the full location
history. This compression also makes location graphs more privacy-friendly as it does not
require the coordinates of a location but only an arbitrary identifier and it does not require
information about individual visits such as start and end times. Despite being compact,
(Manousakas et al., 2018) could show that the pruned topology of a location graph that is
constructed by only keeping the 10 most frequently visited locations is highly unique and
can act as a fingerprint of individuals. However, while it is still possible to match users to
previously recorded tracking data, it is a difficult task that strongly depends on the tracking
period (Wiedemann et al., 2023). These results show that the transformation of the location
history into a location graph preserves a significant portion of the mobility information.

Location graphs can serve as a mobility representation that allows using the information in
downstream tasks such as the classification of activity purposes as it was done in (Rinzivillo
et al., 2014). Here the authors extracted network features such as various average centrality
measures and showed that a random forest classifier significantly increases its performance
with access to these features. (Wang et al., 2019) presented a deep learning-based ap-
proach for the automated generation of network embeddings that could be used for similar
downstream tasks.

A particularly interesting analysis was performed in (Schneider et al., 2013) where the
authors analyzed daily location graphs and showed that these daily graphs are not random
but that only 17 out of over 1 million possible 6-node networks are required to describe over
90 % of the mobility of the daily travel patterns in a large data set. These results show that
location graphs are a rich representation of human mobility, despite their simplicity.

Based on sets of visited locations

A further simplification of descriptions of human mobility is by omitting the topology of
location graphs and simply storing the nodes. This corresponds to the set of unique locations
available in the location history of an individual. The concept has been successfully applied
to studies that analyze mobility behavior on a highly aggregated level. An example is the
study of Alessandretti et al. (2018) which showed that people only visit a limited set of
locations that slowly evolves over time.

Despite these very interesting results, sets of visited locations are not well suited to generate
insights on an individual level due to the absence of the relation between an individual’s
locations.

Based on movement

Another branch of movement profiles that is not directly related to activities and therefore
not further discussed in this work is based on the movement of persons instead of the
visited locations. A recent example is given by (Trasarti et al., 2017) who proposes an
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approach where a mobility profile is defined by the set of medoid trajectories that result
from a trajectory clustering step.

Discussion of approaches

The different approaches based on activities and locations represent different trade-offs
between accuracy, privacy, and generalizability. The realization of these trade-offs by
choosing a representation for a study based on individual tracking data or as input for a
novel method to analyze individual tracking data has a strong impact of the limitations of the
respective outcome. Very importantly, the choice of representation also has a large impact
on the privacy risk for an individual associated with the tracking of location data (Duckham
and Kulik, 2005). However, the assumptions related to the choice of the representation are
usually not discussed in detail or even not at all as data is taken as available. A notable
exception is given in (Das and Winter, 2016).

In this work, we focus on the representation of individual mobility as graphs based only
on visited locations. This representation has minimal requirements on the complexity of
the tracking study (e.g., no labels or additional user information is needed) which allows
us to easily combine tracking data from different datasets. At the same time, the minimal
information requirements are privacy-friendly as the time of individual visits or the exact
purpose of a visit are obfuscated through aggregation. However, location graphs still retain
valuable information related to an individual’s mobility that allows applications such as the
personalization of services or a general analysis of mobility behavior.

3.2.3 Graph based representation of mobility

A natural way to represent individual mobility is given by person-specific graphs based
on the already visited locations (Martin et al., 2018; Pappalardo et al., 2015; Rinzivillo
et al., 2014; Zheng et al., 2008). In such a graph, nodes correspond to activities or
visited locations, and edges may correspond to any measure of distance between the nodes
(e.g., the counts of sequential visits of two locations, spatial distance, transport time or
cost (Martin et al., 2018)). Using visited locations is generally advantageous, as it was
shown in (Alessandretti et al., 2018) that the set of visited locations grows sublinearly over
time. Furthermore, patterns of daily location visits have already been shown to offer rich
insights into the mobility of individuals (Schneider et al., 2013). Both findings show that a
graph representation of individual human mobility based on visited locations can capture
relevant temporal patterns of human mobility.

Both are hints that personalized location graphs can be used as a compact yet information-
rich model to represent individual human mobility. In such a representation, spatial in-
formation is encoded in the topology of the graph and the relative position of the nodes
given the edges. Temporal information could be encoded either in the graph signal (e.g.,
changing values in nodes or edges over time) or by the changing topology (Holme and
Saramäki, 2012; Kivelä et al., 2014). Context data relevant to human mobility are often
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already represented as a graph (e.g., street networks, transportation networks, or social
networks), therefore they could be directly integrated into the existing graph structure by
creating a multilayer network (i.e., interconnected layers of different graphs) (Kivelä et al.,
2014).

This section offers a formal introduction to a graph representation of human mobility. Given
the strong relation between activities and travel, the graph is defined based on the sequence
of activities of a person which are aggregated into the location graph (Figure 3.10).
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Fig. 3.10.: Location graphs are generated based on the activity sequence of a person in
two aggregation steps. In the first step, activities represented by nodes are
aggregated if they were performed at the same location (li) and share the same
activity label (si), which leads to the activity graph. In the second step, all nodes
of the activity graph are aggregated if they share the same location (li).

Activity graph

We follow the concept of activities used in transport planning where activities need to
utilize resources and opportunities that are dispersed at different locations and possibly only
accessible at certain times (Das and Winter, 2016). Furthermore, we include the context by
following the argumentation of Das and Winter that the semantics of activities are context
dependent. Activities in this sense have a relatively low granularity and describe what a
person does throughout the day (e.g., shopping for food, going to work, being at home,
etc.)
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Based on these assumptions we represent the activity of an individual as a 4-tuple of a
semantic activity label s, the activity location l, the activity time t, and the context of the
activity c. We can then describe an arbitrary time span of an individual’s behavior (in the
sense of the above definition) using the sequence of activities ordered by their appearance

A = [a1, a2, ..., ai, ..., an] for ai = (si, li, ti, ci). (3.1)

In this definition, t, l, and c are conceptual terms that summarize all location, timing, and
context information that is relevant to the particular application. One could argue that
time and space are context information of the activity and could therefore be summarized
as context. While this is generally true, we chose to model them explicitly as they are
non-optional context information for the purpose of the representation of individual mobility
while the relevance of other context information such as the weather, the number of friends,
or the mood of a person depends on the application area of the mobility representation.

Using this definition, all activities are unique, as no two activities ever take place at the
exact same time and space and with the same context. This might be true from a theoretical
perspective but contradicts our experience in life where we usually consider activities that
we do at the same place and with the same purpose as being the same activity. Examples are
“going to work at the office” or “workout at the fitness studio”. Even though we do these
things at different times and under changing context, we consider them the same activity.

We, therefore, define an aggregated activity that summarizes all activities that have the same
semantic label and are taking place at the same location as

a′
i = (si, li),

the sequence of aggregated activities as

A′ = [a′
1, a′

2, ..., a′
i, ..., a′

m] with m ≤ n,

and the set of aggregated activities as A′ = {A′}.

Every aggregated activity a′
i is now associated to a set of timing information Ti and a set of

context information Ci that are defined as

Ci = {cj | lj = li ∧ sj = si for cj , sj , lj ∈ aj , si, li ∈ a′
i,

i ∈ [1, 2, ..., m], j ∈ [1, 2, ..., n]}
(3.2)

Ti = {tj | lj = li ∧ sj = si for tj , sj , lj ∈ aj , si, li ∈ a′
i,

i ∈ [1, 2, ..., m], j ∈ [1, 2, ..., n]}.
(3.3)

We further define the set of all pairs of sequential aggregated activities

E′ = {(a′
i, a′

j) | j = i + 1 ∀ a′
i, a′

j ∈ A′}. (3.4)

50 Chapter 3 Processing and representing individual tracking data



Using the aggregated activities A′ we define the individual activity graph of a person as the
pair

GA′ = (A′, E′) (3.5)

Here all aggregated activities are defined as nodes with a directed edge between all aggre-
gated activities that were performed sequentially. Edges can be weighted by counting the
number of transitions and can be undirected ignoring the edge direction, in the latter case,
the weights of both directions would be summed up.

Location graph

In practice, tracking studies are often based on the passive collection of location data which
means that the activity label is often unobserved. It is then impossible to create the individual
activity graph, however, we can use the activity location as a proxy for the unobserved
activity labels. Formally, we can define the individual location graph analogous to the
individual activity graph as an aggregation of activities.

A′′ = [a′′
1 , a′′

2 , ..., a′′
i , ..., a′′

m] with m ≤ n, (3.6)

a′′
i = (li) (3.7)

Equations 3.6 and 3.7 show that the aggregated activity sequence A′′ is the same as the
sequence of visited locations L:

L = [l1, l2, ..., li, ..., lm} with m ≤ n. (3.8)

We further define L = {L} as the set of all visited locations, with o = |L| as the number of
unique locations and n the number of activities of a user. For brevity and clarity, we define
the individual location graph directly via the set of unique locations L. Every unique location
li ∈ L is now associated with a set of timing information T l

i , a set of context information Cl
i

and a set of unobserved semantics Sl
i defined as

Cl
i = {cj | lj = li for cj , lj ∈ aj , aj ∈ A, li ∈ L,

i ∈ [1, 2, ..., o], j ∈ [1, 2, ..., n]}
(3.9)

T l
i = {tj | lj = li for tj , lj ∈ aj , aj ∈ A, li ∈ L,

i ∈ [1, 2, ..., o], j ∈ [1, 2, ..., n]}
(3.10)

Sl
i = {sj | lj = li for sj , lj ∈ aj , aj ∈ A, li ∈ L,

i ∈ [1, 2, ..., o], j ∈ [1, 2, ..., n]}
(3.11)

We further define the set of all pairs of sequentially visited locations

E = {(li, lj) | j = i + 1 ∀ li, lj ∈ L}. (3.12)
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We then define the individual location graph as the pair

GL = (L, E) (3.13)

Just as the individual activity graph, the individual location graph can be weighted by counting
the number of transitions and it can be undirected ignoring the edge direction, in the latter
case, the weights of both directions are summed up.

Advanced modeling and possibilities for extension of the location graph

The individual location graph is very versatile to use in practice because of its low require-
ments on the data. However, often more data than the raw tracking data are available,
and in this case, the individual location graph offers many possibilities to add additional
information based on the application and the available data sources.

Nodes represent the physical locations and can act as a container that can store all infor-
mation associated with the activity locations. Depending on the application, nodes can be
associated with a geometry such as the position of the location or the extent of a place which
might be a building footprint, a room, or a defined outdoor space such as a park. It can also
be associated with arbitrary properties of this place such as the size, the density of trees in
the surroundings, or the noisiness.

Edges encode the relation between the visited places and could in theory correspond to any
measure of distance or proximity between the nodes such as the counts of sequential visits
of two locations, the spatial distance, the travel time, travel costs, or even more abstract
measures such as the cultural distance between two locations. Furthermore, location graphs
could be defined as multigraphs that allow multiple types of edges in parallel.

Available temporal information can be encoded explicitly by aggregating visiting times per
location as shown in Equation 3.10, in the graph signal (e.g., changing values in nodes or
edges over time), or by the changing topology (Holme and Saramäki, 2012; Kivelä et al.,
2014) which can be done by binning the tracking data over time as done in (Wiedemann
et al., 2023).

Context data that are related to locations can be included in the graph as aggregated
node features as presented in Equation 3.9. Context data that are already represented
as a graph (e.g., street networks, transportation networks, or social networks), can be
directly integrated into the existing graph structure by creating a multilayer network (i.e.,
interconnected layers of different graphs) (Kivelä et al., 2014).

3.2.4 Data and graph generation

To further explore the properties of the location graphs, we use data from four different
tracking studies: the yumuv dataset (Martin et al., 2021b,c), the Green Class (GC) I and
II datasets (Martin et al., 2019a), the Geolife dataset (Zheng et al., 2009) and a subset of
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Study Tracking type Users Number
of nodes

Av. daily
activities

GC1 GNSS via app 137/139 558±188 6.5±1.3
GC2 GNSS via app 49/50 460±194 6.6±1.7
Geolife GPS tracker 59/176 159±147 2.7±1
yumuv GNSS via app 671/813 134±113 5.1±1.6
Foursquare
(1000) LBSN checkins 1000/27252 70±94 2.4±1.2

Tab. 3.5.: Used datasets with properties. Column users shows participants after filtering
and the total participants in the dataset. For Number of nodes and Average daily
activities the average and the standard deviation over users is shown.

a Foursquare dataset15 (Yang et al., 2015, 2016). An overview of the selected datasets is
shown in Table 3.5.

All data preprocessing is performed using the Trackintel python library (Martin et al.,
2023c). Trackintel uses a well-known hierarchical movement data model that segments data
into staypoints which represent individual visits, locations which are the places that are
visited by an individual, trips which are the travel between two staypoints and tours which
are a collection of all trips required to return to the same place. For the Geolife dataset
staypoints are generated based on the GPS position fixes using the algorithm and parameters
presented in (Li et al., 2008), for the other GNSS based datasets (yumuv and Greenclass)
staypoints were already available. For all three GPS datasets, locations are extracted using
DBSCAN (Ester et al., 1996) with a search radius of 30 meters and a minimum number of
one point to form a cluster. Trips and tours are extracted using the algorithms available
in Trackintel described in (Martin et al., 2023c). Before creating the graphs for the GNSS
based datasets, we filter to include only users with at least 14 days with tracking coverage
of more than 70 % of the time of the day.

For the foursquare dataset, venues are considered as locations and check-ins as staypoints.
In this dataset we consider only users with high data quality to mitigate the bias introduced
by the check-in behavior. Specifically, we require a user to have at least 81 check-ins (25th

percentile), to have visited at least 40 different locations (25th percentile), and to have at
least 24 check-ins at a labeled home location (75th percentile). There are 27’252 users with
sufficiently high data quality of which we randomly sample 1’000 users that are analyzed in
this study.

The location graph for each person is generated as described in Section 3.2.3. For all datasets,
every location is considered a node in the location graph. For the GNSS based datasets every
trip between two locations increases the weight of the edge between the two associated
nodes by 1, for the Foursquare dataset two consecutive check-ins increase the weight of
the edge between the corresponding locations by 1 if the check-ins are less than 12 hours
apart.

15https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_56
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3.2.5 Interpretation of location graphs

Figures 3.11, 3.12, 3.13 and 3.14 show examples of location graphs. While these location
graphs are hard to read at first glance, they are rich in information that can be used to
analyze individual mobility. This section introduces metrics and methods to analyze mobility
graphs with respect to individual mobility behavior.

In-degree distribution

The degree distribution of a graph pk describes the probability that a randomly selected
node v has degree k (Barabási, 2016). For location graphs, the weight of the in-degree
represents how often an individual visited a location while the unweighted in-degree of
a node represents from how many different locations the individual visited a location.
Therefore, without tracking errors, their weighted in-degree equals their weighted out-
degree. In the following, we analyze the unweighted in-degree distribution and explain how
the weighted in-degree distribution can be analyzed accordingly.

The absolute values of the in-degrees depend strongly on the observation period. However,
as the in-degree distribution of a location graph follows a power law its shape parameter β

offers a way to characterize how individuals visit locations that is robust to the observation
period. We follow the guidelines from (Clauset et al., 2009) and use the Powerlaw python
package (Alstott et al., 2014) to fit a power law of the form

p(x) = Pr(X = x) = Cx−β (3.14)

to the (unweighted) in-degree distribution. Here, C is the normalization constant that
includes the lower bound of the power law behavior in the data.

The shape parameter β is then a measure of how we visit places. Moving flexibly from
place to place will lead to several nodes with similar in-degree and a higher β while always
returning to the same node after visiting a new node will lead to a single dominant node
with high in-degree and a lower β. We’ll refer to this measure as the in-degree distribution
β.

If we would fit on the weighted in-degree distribution, the shape parameter β would measure
how we distribute our visits among places. Mostly visiting a few places leads to dominant
nodes and a lower β, and a distribution among many places leads to a high β.

Figures 3.11 a) and b) show examples of two location graphs of an individual with a low
in-degree distribution β (a) and an individual with a high in-degree distribution β (b). The
graphs were chosen to be average (within the 25th and 75th percentile) with respect to the
other features but noteworthy (below or above the 25th and 75th percentile) with respect to
the in-degree distribution β and to have a similar number of nodes. The graph in Figure 3.11
(a) has multiple centers that serve as hubs while the graph in (b) has a more star-like shape
with a single main node in the center. Figure 3.11 (c) shows the degrees of all nodes in a
log-log plot. The graph with higher in-degree distribution β (shown in orange) has a single
high-degree node while the graph with a lower in-degree distribution β (shown in blue)
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has multiple nodes with a similar high degree. Figure 3.11 (d) shows the distribution of
in-degree distribution β values over all considered datasets. The in-degree distribution β

of most graphs lies between 2 and 2.5, therefore most of the individual location networks
are scale-free (2 <= β <= 3 (Barabási, 2016)). Scale-free is a property that is found in
many real networks such as the World Wide Web (Barabási and Albert, 1999) or e-mail
communication networks (Ebel et al., 2002) and its most prominent feature is the presence
of hubs in the network. For location graphs, hubs are typically places that play a prominent
role in our lives such as our home or work location, and are the start and end of many of our
trips. It is noteworthy that β = 2 is the theoretical minimum for graphs as here the degree
of the main hub is close to the number of nodes (Barabási, 2016). Figure 3.11 (d) shows
that some of the graphs are below this theoretical limit which can most likely be attributed
to a low tracking coverage or errors in the tracking data processing leading to noise in the
fitting process.
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Fig. 3.11.: a: example of a typical location graph with a relatively low in-degree distribution
β; b: example of a typical location graph with a relatively high in-degree
distribution β; c: degree distribution of the graphs shown in a) (blue) and b)
(orange); d: distribution of in-degree distribution β for different datasets.

Journey distribution

As described in Section 3.2.4, human mobility can be well represented using a hierarchical
model for movement. Relevant units are trips, which summarize all travel between two
consecutive activities, tours which summarize all consecutive trips needed to return to
the start location, and journeys which are tours that start and end at the home location
of a person. A journey can therefore be represented as a sequence of locations that are
visited until a person returns home again. Typically, our mobility behavior is characterized
by strong regularities which means that the same journeys are repeated on a monthly,
weekly, or even daily basis and can therefore be observed multiple times. An interesting
representation of individual human mobility is the distribution of journeys of an individual.
The journey distribution describes the probability that a journey was observed k times over
the observation period of a person. To further analyze the journey distribution, we will now
define trips and tours within the notation framework introduced in Section 3.2.3.
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Definition 1 (Trip). A trip ti summarizes all movement and non-activity related stays
between the origin activity a′

i−1 ∈ A′ and the destination activity a′
i ∈ A′. A trip ti is

therefore related to an origin location li−1 ∈ ai−1 and a destination location li ∈ ai

Definition 2 (Tour). A tour τk is the sequence of all sequential trips that start and end at
the same activity location.

τk = {ti, ti+1, ..., tj} ∀li = lj , i ̸= j

li ̸= lk, i < k < j

i < j, 1 < j < m.

Definition 3 (Journey and sequence of journeys). A journey ϕ is a tour that starts and ends
at the home location of a person. Φ is the sequence of all journeys ordered by their start
time.

Definition 4 (Journey distribution). The journey distribution p(ϕ) describes the probability
that a randomly drawn journey ϕi was observed k times over the observation period of a
person. The journey distribution is defined as

p(ϕ) = 1
|Φ|

∑
ϕ∈Φ

I(ϕ), (3.15)

where I is the indicator function.

With access to the full tracking data of an individual, journeys and their distribution can
be generated directly from the sequence of visited locations. This is not possible using only
the location graph however, the journey distribution can be approximated using a random
walk. Every walk that starts at the home location (or the node with the highest degree if no
semantic information is available) and records all nodes until it reaches the home location
again is a journey. When the approximated journey distribution stabilizes, then a sufficient
number of walks were simulated.

The journey distribution can be used to characterize the mobility of an individual quantita-
tively by measuring the concentration of the distribution. We introduce the feature nϕ50 that
counts how many journeys are required for 50 % of all journeys. Users with a low nϕ50 have
a highly regular mobility behavior as they travel to the same locations in the same order
most of the time, the mobility of individuals with a high nϕ50 is less regular and distributed
more equally over different edges in the graph.

Figure 3.12 (a) and (b) show examples of location graphs of an individual with low nϕ50

(top) and an individual with a high nϕ50 (bottom). The top graph shows only a few important
edges (edge weight determines line width) between the main nodes whereas the bottom
graph has more important edges and more important edges that connect to the periphery of
the graph. Figures (c) and (d) show a bar plot with the importance of the top 10 journeys for

56 Chapter 3 Processing and representing individual tracking data



the same individuals shown in (a) and (b). The individual with a low nϕ50 has significantly
higher weight on the main journey and less on the subsequent journeys, while the journey
importance is more equally distributed for the individual with high nϕ50. Figure 3.12 (d)
shows the distribution of nϕ50 over all datasets. For most datasets, the peak is around
nϕ50 = 10, however for GC1 and GC2 the distribution has a second mode at around 40
which might be a hint that these datasets can be segmented into individuals with more
regular and non-regular mobility behavior.
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Fig. 3.12.: a: Location graph of an individual with low nϕ50; b: Location graph of an
individual with high nϕ50; c: Histogram of frequency of top 10 journeys for the
individual in a); d: Histogram of frequency of top 10 journeys for the individual
in b); e: distribution of nϕ50 over individuals for different datasets.

Finally, the analysis based on the journey distribution is very closely related to the analysis
of motifs in the mobility of individuals (Schneider et al., 2013). The main difference lies in
different aggregation concepts, a motif captures all location visits within a day until a user
returns home at night and does not distinguish between visits to different locations as long
as they show the same pattern (e.g., A → B → A equals A → C → A). A journey on the
other hand only captures mobility until an individual returns home, therefore there could be
several journeys per day and journeys distinguish between visits at different locations (e.g.,
A → B → A does not equal A → C → A). The journey distribution, therefore, allows for a
more detailed analysis of an individual’s mobility patterns but it may be more difficult to
identify patterns that generalize to a wide range of individuals. Finally, it is important to
note that the concept of motifs in mobility graphs as introduced in (Schneider et al., 2013)
is related but not identical to the well-known concept of motifs used in network science
introduced in (Milo et al., 2002)

Connectedness

An important property of graphs is the clustering of nodes that describes how well connected
or well meshed a graph is. The connectedness of a graph can be measured using the average
of the clustering coefficient which measures for every node how well connected its neighbors
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are among each other. The clustering coefficient cci for node i in an unweighted and
undirected graph is defined as

cci = 2Li

ki(ki − 1)

and the average clustering coefficient of the graph is defined as

cci
1
N

N∑
i

cci,

where Li is the number of triangles through node i.

This concept can be extended to weighted graphs by replacing the number of triangles Li

with the sum of the geometric mean of the weights of the triangles (Onnela et al., 2005),
to directed graphs by counting all possible directed triangles (Fagiolo, 2007), or to both by
combining both measures (Fagiolo, 2007).

All versions of the clustering coefficient can be used to analyze location graphs but they
focus on different aspects of an individual’s mobility. The choice between the directed and
undirected coefficient relies on the definition of when two locations should be considered
connected and whether the order of visitation is important (A → B vs. B → A) and can be
used to analyze differences in visitation patterns of whether a person visits places in both
directions or rather in one direction.

The choice between the weighted or unweighted clustering coefficient is more impactful
as it changes whether the focus is on the general visitation structure or on the visitation
frequency (cf. the analysis of the degree distribution in Section 3.2.5). The unweighted
clustering coefficient of a graph is high if the nearest neighbors of a node are connected on
average while the weighted clustering coefficient is high if the edges with high weights form
triangles. In the location graph, edges with high weights describe our most common trips
(e.g., from home to work).

A well-connected or meshed graph is an indication of flexible mobility behavior, as we
travel between places in multiple manners. The weighted clustering coefficient is therefore
a measure of how flexible we are in our regular mobility behavior while the unweighted
clustering coefficient is a measure of how flexible we are in our overall mobility behavior.

In the following, we analyze the unweighted and undirected clustering coefficient. Fig-
ure 3.13 shows a location graph for a user with a relatively low clustering coefficient and a
user with a relatively high clustering coefficient. The location graph with a high average
clustering coefficient shows a more connected center of high-degree nodes but also more
connections between the periphery of the graph and several nodes in the center, showing
that the person is more flexible in the order he or she visits different locations while the
person with the low average clustering coefficient does rather go back and forth between
the main node and other nodes. Figure 3.13 also shows the distribution of the average
clustering coefficients for all graphs in different datasets.
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Fig. 3.13.: Examples of (unweighted and undirected) location graphs with low and high
unweighted and undirected clustering coefficient and the distribution of un-
weighted and undirected clustering coefficients over users for different datasets.

Hubbiness

The most important property of scale-free networks is the tendency to build hubs. In the
case of individual location graphs, we can explain the tendency to form hubs by the fact
that some locations play a much bigger role in our lives than other locations. For most
people, these locations are the home and work locations. However, some people might have
changing work locations, work in a different city during the week, or have several other
locations of great importance such as the house of a partner, a family member, or a close
friend. An indication of these differences is already given by the distribution of the power
law exponents shown in Figure 3.11, however, to analyze this dimension of mobility behavior
in greater detail we propose to use the PageRank algorithm (Page et al., 1999). PageRank
assigns an importance to every node based on the structure of incoming links that can be
interpreted as the probability of arriving at a node after a random walk in the network. With
this in mind, PageRank can be used to identify and quantify hubs (of incoming edges). In
order to quantify the hubbiness of a graph we calculate how many nodes are required to
cover more than 50 % of the probability which we will refer to as PR0.5. If an individual
has strong hubs and concentrates his mobility on a few hubs, this number will be low; if a
person often visits different locations, his location importance will be more distributed and
the number of locations required to reach 0.5 of the PageRank probability will be high.

Figure 3.14 shows the location graph of an individual with a low PR0.5 number and a
location graph of a person with a high PR0.5 number. Figure 3.14 shows the distribution of
PR0.5
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Fig. 3.14.: Examples of (unweighted and undirected) location graphs with low and high
PR0.5 and the distribution of PR0.5 over users for different datasets. Graphs are
drawn unweighted and undirected for better visibility
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3.2.6 Validation

The creation of the location graph of an individual based on tracking data is not lossless and
we now examine the mobility-related information retained in the model. In this section,
we will first analyze how well the information stored in the location graph can be used
to reproduce important statistical patterns characteristic of human mobility and then see
whether a location graph is a suitable model to approximate the journey distribution of an
individual.

Reproducing stylized facts of human mobility

Since the advent of large-scale tracking data sets, more generalizable statistical properties of
human mobility often referred to as laws have been discovered. These findings can often be
reproduced on a wide range of different tracking data sets and it is therefore likely that they
relate to an underlying process that is specific to individual human mobility.

In the following, we will present a set of well-known statistical characteristics of (individ-
ual) human mobility and analyze to what extent these are preserved in the location graph
model of an individual’s mobility. We hypothesize that if these statistical laws are preserved
during the transformation of tracking data into a location graph, then information relevant
to describe individual human mobility is preserved in the graph. The power laws in this
section are fitted using the python package powerlaw16 following the guidelines established
in (Clauset et al., 2009) and provided in the publication associated to the powerlaw pack-
age (Alstott et al., 2014) using the Akaike information criterion (AIC) (Akaike, 1998) to
identify the best fitting distribution.

Visitation frequency
A statistical regularity reported in (González et al., 2008) and among others confirmed in
(Song et al., 2010b) is that the frequency of location visits of an individual follows Zipf’s law.
This means that the number of visits at a location follows a power law when the locations are
ordered by their visitation frequency. This shows that people generally visit a few locations
very often (e.g., home or work locations) while most locations are visited only a few times
(e.g., running an exotic errand).

For a quantitative evaluation, we compare the shape parameter of the power law fit on
the tracking data-based visitation frequency with the power law fit of the graph data on a
per-user level. 3.6 shows that there are no significant differences for the shape parameters
of both fits except for the Foursquare (1000) dataset.

Distribution of displacements
Brockmann et al. (2006) analyzed a large dataset of banknote locations over time and
noticed that the geographical distance of their displacements follows a power law. As these
bank notes were carried by people, they could relate these findings to the distribution of trip

16https://github.com/jeffalstott/powerlaw
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Tab. 3.6.: Average and standard deviation of power law fitting parameters over users for the
distribution of visitation frequency. The asterisk indicates a significant difference
on a p = 0.05 level.

βtrue βgraph

mean std mean std

Green Class 1 1.34 0.05 1.34 0.05
Green Class 2 1.35 0.10 1.34 0.09
Geolife 1.40 0.10 1.41 0.11
yumuv 1.46 0.12 1.46 0.12
Foursquare (1000)* 1.42 0.08 1.43 0.09

distances of a population. These findings were later reproduced on several large tracking
datasets (Alessandretti et al., 2017; González et al., 2008; Song et al., 2010b). To test the
reproducibility of this empirical finding we collect all displacements of all individuals per
dataset as ground truth. Under the assumption that the coordinates of the locations are
available as node features in the context information Ci of a node i (cf. Equation 3.9) we
calculate the distance matrix between all nodes and repeat every distance between two nodes
a number of times that corresponds to the weight of their shared edge as displacements.
It is important to note that this corresponds to the linear distance approximation while
the original data uses the distance recorded in the tracking data. We then fit power laws
separately for the ground truth displacements and the displacements based on location
graphs.

Figure 3.15 shows the distribution of displacements and the fit of a log-normal distribution
of the original trip-based data and the graph-based data for 4 datasets. It can be seen that
both datasets are fitted with the same type of distribution with the same or very similar
parameters for all datasets. For GC2, Geolife, and yumuv the fringes of the distribution
cannot be well recovered. This is especially true for very short trips below 100 meters.
A likely reason for this is that because locations are extracted from the tracking data via
clustering, close-by locations might be merged and trips between them are lost. At the same
time, graph-based distances do not include trips that start and end at the same location.
While the graph does record self-loops in such cases, their distance will always be zero. The
results show that the distribution of displacements is generally very well preserved in the
graph with the exception of short trips.

Radius of gyration
The radius of gyration as a metric to characterize the travel behavior of individuals was
introduced in (González et al., 2008) where the authors showed that it can be used to
standardize the distribution of displacements of individuals. Since its introduction, the radius
of gyration has become a standard metric to characterize the movement of individuals, e.g.,
to identify user groups (Pappalardo et al., 2015) or as personalized features for forecasting
trip distances (Cai et al., 2022).

An individual’s radius of Gyration is defined as
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Fig. 3.15.: Distribution of displacements and best-fit comparison between original data and
graph-based approximation for different datasets.

rg =

√√√√ 1
n

n∑
j

(lj − lcm)2

where n is the total number of activities and lcm = 1
n

∑n
j lj is the geographical center of

mass of all visits to activity locations.

If the coordinates of the locations are available and stored in the nodes of the location graph
as context information ci as described in Section 3.2.3, the radius of gyration for the location
graph can be calculated as

r′
g =

√√√√ 1∑k
i din,i

k∑
i

(din,i(li − lcm,g)2)

where k is the number of nodes, din,i is the in-degree of the ith node related to the ith

location li and

lcm,g = 1
m

k∑
i

din,i · li

is the geographical center of mass of the nodes in the location graph weighted by the
in-degree.
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Fig. 3.16.: Box plot of the difference between the radius of gyration and the graph-based
radius of gyration over users for different datasets (absolute average erel shown
in parentheses).

We calculate the radius of gyration of every user based on the original tracking data and
based on the location graph and evaluate their similarity using the relative error

erel =
|rg − r′

g|
|rg|

.

Figure 3.16 shows the difference between the radius of gyration based on location visits
and based on graphs in km per user for different datasets. The relative error is given
in parentheses next to the dataset labels and shows that the location graph with node
coordinate preserves the radius of gyration of a person very well with erel < 5%, meaning
that the characteristic travel distance of an individual can be recovered from the location
graph with coordinates. The Foursquare (1000) dataset is an exception where erel = 20.07%.
This can be attributed to uniquely visited locations that are far away and within a temporal
gap of more than 12 hours (e.g., because the journey to get there took longer than that).
These locations are then filtered as described in Section 3.2.4.

Journey based evaluation

Journeys are a central part of our daily mobility behavior as we are constantly returning
to where we started our travels. The journey distribution was introduced in Section 3.2.5
as a feature to describe the mobility of an individual that can be derived from a location
graph.

However, the location graph which is the 1st order Markov chain (MC) approximation of the
sequence of visited locations, can not perfectly reconstruct the journey distribution and we
are therefore interested in how well the graph-based journey distribution approximates the
true journey distribution of a user and to what extent a higher-order MC might be a better
fit to represent the mobility of a user.
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Background
This problem can be formulated as a variational inference problem which can be described
in the following way (Murphy, 2012):

Given a set of inputs D = {xi}N
i=1, we want to approximate a potentially intrac distribution

p∗(x) = p(x|D) by a trac parameterized distribution q(x). We chose the free parameters of
q(x) such that the Kullback-Leibler-divergence (KL) between q and p∗(x) is minimized:

KL(p∗||q) =
∑

x

p∗(x) log
(

p∗(x)
q(x)

)
(3.16)

which can be reformulated as

L(q) = −KL(q||p∗) + log(p(D)), (3.17)

where L(q), is the evidence lower bound (ELBO), which is a lower bound on the log-
likelihood of the data (Murphy, 2012), and log(p(D)) is the evidence.

For this work, we define p∗(x) as the true journey distribution of a person which we want to
approximate by using a simpler distribution from a family of candidate distributions.

A Markov chain that operates on a set of S = s1, s2, ..., sn different states with |S| = n can
be represented by a transition matrix P ∈ Rn×n with the transition probabilities between
states pij = p(xj |xi), i, j ≤ n as elements (Singer et al., 2014).

pij = nij∑n
j nij

Given the true journey distribution of an individual p∗(ϕ) and the journey distribution related
to the kth order Markov model approximation q(ϕ|k, θ) we want to choose the parameters k

and θ such that the ELBO is maximized:

max
k,θ

L(q) = min
k,θ

KL(q(ϕ|k, θ)||p∗(ϕ)) + log p(D) (3.18)

As log p(D) is fixed with respect to k and θ, we have to minimize KL(q(ϕ|k, θ) which is
done by calculating the maximum likelihood fit of the candidate model given the data.
For a Markov model with fixed order k all parameters θ are represented by the transition
probabilities and its maximum likelihood fit is calculated as

pij = nij∑
j nij

, (3.19)

where nij is the number of times that a transition from state si to state sj was observed in
the data.
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A higher-order Markov chain will potentially fit the data better and might therefore reproduce
the journey distribution leading to a lower Kullback–Leibler (KL) divergence by default. In
order to evaluate the goodness of fit while considering the disadvantages of a higher order
model such as increased complexity and the potential to overfit, we calculate the Akaike
Information Criterion (AIC) (Akaike, 1998) which evaluates the trade-off between model
complexity and gain in performance.

The AIC for MC is defined in (Tong, 1975) as

AIC(k) = kηm − 2(|S|m − |S|k)(|S| − 1) (3.20)

where kηm is the likelihood ratio, |S| is the number of states, m is the order of a reference MC
and k is the order of the MC that is tested. The optimal order according to this criterion is the
k that minimizes the AIC (see (Singer et al., 2014) for a Markov chain-related example).

Reproduction of journey distribution
For the evaluation, we collect and count all journeys separately for each user as ground
truth. We then prepare a single sequence of visited locations by concatenating the locations
visited during all journeys of a user. As all journeys have the home location as the start
and endpoint, we delete the endpoint during concatenation to avoid artificially increasing
the home location count. We then fit a series of MCs of different orders k ∈ [0, 1, ..., 6] on
this sequence for each user. We enforce irreducibility for each MC by isolating the largest
strongly connected component of the graph associated to the transition matrix of the MC.

For each MC, we sample a sequence of 10000 visited locations by setting the first visited
location of the sequence to home for k ∈ [0, 1] or by sampling from all states that start with
the home location from the stationary distribution of the MC k ≥ 2. In both cases, we extract
journeys from the sampled location sequence, count the number of their appearances and
normalize the count by the total number of journeys which yields the simulated journey
distribution for a user and an order k. Finally, we calculate the KL divergence as defined in
Equation 3.16 with the simulated journey distribution as q and the true journey distribution
as p∗ for each user. For the calculation of the KL divergence we define 0 log(0) = 0 log( 0

0 ) =
0 (Basterrech and Woźniak, 2022) and use additive smoothing on the elements of q with
α = 1e − 6 and renormalize the vector so that the sum of the elements is one.

Figure 3.17 shows the average KL divergence per dataset as a function of the MC’s order. The
KL divergence declines strongly when increasing the order to one and continues to decline
moderately until it goes into saturation for orders larger than two. The trajectory is similar
for all datasets but those with a longer tracking period and therefore more complex location
sequences have a higher KL divergence for k equaling zero and one. The evaluation of the
AIC suggests an optimal order of zero for all users except for two users of the yumuv dataset.
However, Figure 3.18 which plots the AIC as a function of k divided by AICk=0, shows that
the AIC is very similar for orders ≤ 2 suggesting that the trade-off of model complexity and
performance is very close for these orders. The AIC stays similar for orders ≤ 3 for the GC1
and GC2 datasets which suggests that they could accommodate more complex models as
they have more tracking data available because of their longer tracking periods.
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Fig. 3.17.: KL divergence for journey distri-
butions generated from Markov
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Fig. 3.18.: AIC for different k normalized
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Fig. 3.19.: Log likelihood evaluated for Markov models with different order evaluated
for unseen test data. Impossible transitions (as defined by the mm) return no
log-likelihood.

Likelihood evaluation of hold-out journeys

To further evaluate the suitability of the location graph to represent journey information
we calculate the likelihood of a hold-out set of journeys using cross-validation. This allows
quantifying the degree of overfitting of a MC of a given order. We use 5-fold cross-validation
without shuffling to separate all journeys of a user into a training and a testing set. Both sets
of journeys are concatenated as described in paragraph 3.2.6. The training sequence is then
used to fit MCs of varying order k ∈ [0, 1, ..., 7] using maximum likelihood estimation. The
total log-likelihood is calculated as the sum of the log-likelihood of all transitions of the test
sequence and the likelihood of the initial state calculated using the stationary distribution,
impossible transitions (e.g, states with a transition probability of zero) are not evaluated but
counted and reported later. The cross-validation results are averaged for each user.

Figure 3.19(a) shows the results of the likelihood evaluation on hold-out data for different
orders k. The likelihood strongly increases when increasing the order of the MC and then
continues to rise slowly for higher orders, analogously to the KL shown in Figure 3.17.
Figure 3.19(b) however, reveals an overfitting issue with higher orders of the MC. Already
first order MCs have a high number of impossible evaluations of around 30%, which
continues to increase strongly with the increasing order of the MC. These impossible
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evaluations occur if a transition in the test set was never seen in the training set and the
associated transition probability is therefore zero.

3.2.7 Discussion

Dataset requirements-utility trade-off
One of the motivations that led to the in-depth analysis of location graphs to represent
individual human mobility are the low technical and semantic requirements for their creation
and interpretation (c.f. Section 3.2.5). The creation of a location graph does not require
high-resolution tracking data or user-provided labels but only sequential records of visited
locations. This allows the creation and combination of location graphs based on different
types of tracking data such as CDR, GNSS, location based social network (LBSN) check-ins,
geotagged tweets, or travel surveys. However, these low requirements have the drawback
that the analyses that can be performed using location graphs are limited. Most notably, the
location graph as presented here does not represent trajectories or routes and does therefore
not allow the analysis of mobility behavior with respect to trajectories of routes.

Privacy-utility trade-off
Location graphs aggregate sequences of visited locations and by that obfuscate information
that is critical from the perspective of individual geo-privacy. Notably, the times of individual
visits at locations are not accessible using the location graph. Furthermore, the location
graph model retains utility for the analysis of individual mobility behavior without storing co-
ordinates. This is shown by the interpretation of the different graph features in Section 3.2.5
of which none requires location information. However, there is necessarily a trade-off
between utility and privacy and it is, for example, not possible to analyze how individuals
spend their days as it is done in time budget studies. Furthermore, it is important to note
that while location graphs are significantly more privacy friendly than other representations
they are not an anonymized representation as it was shown in (Manousakas et al., 2018)
and (Wiedemann et al., 2023)

Reproduction of statistical properties
Section 3.2.6 showed that location graphs can reproduce important statistical properties of
an individual’s mobility data with high accuracy. This shows that the location graph preserves
mobility-related information which can be made available again using the features presented
in Section 3.2.5 or by other features that might be proposed in future work. Section 3.2.6
also revealed limits of location graphs as very short and very long displacements were not
well preserved for some datasets. Knowledge of these limitations is important to correctly
evaluate the explanatory power of applications based on location graphs.

Suitability of first order MC approximation
The decision of the optimal order of MC to model the location sequences for individual
mobility with respect to journeys is difficult. On the one hand, Figure 3.17 shows a strong
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decrease in the KL and Figure 3.19(a) shows respectively a strong increase in the likelihood
gained by increasing the order to 1 and above, on the other hand, Figure 3.19(b) shows
that even a first-order MC already yields around 30% invalid transitions during an out-of-
sample validation. This behavior can be explained by the state space, created by the visited
locations, which is relatively large compared to the number of samples and which is poorly
covered due to the power law distribution of observation across the locations. This property
of the visitation frequency of locations is discussed in paragraph 3.2.6 and leads to most
locations only being visited once or twice while some few important locations are visited
very often. The result is that an out-of-sample dataset may contain unseen locations as
shown in Figure 3.19(b).

The unevenly sampled state space makes it difficult to draw general conclusions about the
optimal order of a MC to model individual mobility based on locations. This is also reflected
in the literature where the optimal order of a MC is still discussed. E.g, Lu et al. (2013)
show that a MC does not improve prediction accuracy for orders greater than one while
Gambs et al. (2012) claimed that second-order MC and Chen et al. (2014) reported a third
order MC as the model with highest performance.

Generally, this issue could be mitigated by collecting more samples. However, the state space
for individual human mobility determined by the visited locations is not stable but evolves
slowly over time (Alessandretti et al., 2020). A more suitable approach for individual human
mobility would be to further aggregate locations by using semantics or topologically, e.g., by
using node roles (Rossi and Ahmed, 2014) if semantics are not available.

3.2.8 Conclusion

This work formally introduced, analyzed, and validated location graphs as a compact, rich,
and privacy-friendly representation of individual mobility suitable for different types of
tracking datasets. Location graphs are built based on the visited locations of an individual as
nodes with the counts of trips between locations as weighted and directed edges.

Despite the low requirements, location graphs still describe important dimensions of indivi-
dual mobility behavior. In this work, we present four different graph features (connectedness,
hubbiness, journey distribution, and in-degree distribution) and showed how they relate to
the mobility of an individual, showcased on five different datasets.

We further find that location graphs retain information necessary to reproduce three well-
known statistical properties of individual human mobility, namely the power law distribution
of location visitation frequency, the power law distribution of displacements, and the radius
of gyration of an individual. Furthermore, we can show that location graphs, which are
the first order MC approximation of the location history, present a good trade-off between
model complexity and expressive power given the properties of individual mobility data.

Future work should focus on three different directions, namely the properties, possible
extensions, and applications of location graphs. This work has related a set of graph and node
properties of the location graph of a person to his mobility behavior. This work can further
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be extended by analyzing the sources of the complexity of a location graph as, for example,
measured by the entropy (Dehmer und Mowshowitz, 2011), the analysis of community
structure in location graphs, or the analysis of further graph features or node centralities.
A second research direction should focus on the analysis of extensions of the location
graph. This work concentrated on location graphs with minimal requirements. In practice,
additional information such as coordinates, time stamps, or geographic contexts such as
land-use or point-of-interest data are often available and could provide additional insights
into the mobility behavior of individuals (Zhang und Raubal, 2022). However, currently, it
is unknown how they would influence the complexity-utility trade-off of location graphs.
Finally, there are many applications that would benefit from the unique privacy properties of
location graphs and their ability to be used on multiple different datasets. However, currently,
there are only a few examples where location graphs are used for semantic enrichment
of passively tracked data e.g., by assigning activity labels to nodes (Martin et al., 2018;
Rinzivillo et al., 2014), or for the segmentation of individuals into groups based on their
mobility behavior (Ben-Gal et al., 2019; Martin et al., 2023b). This small body of literature
should be extended to further explore the potential of location graphs as a standardized and
privacy-friendly way to store individual mobility data in the future.

Data availability statement

The data, codes, and instructions that support the findings of this study are available at the
link17. The Geolife18 and Foursquare19 datasets are publicly availalble. The Green Class
and yumuv datasets are not publicly available due to confidentiality agreements with the
participants under the European General Data Protection Regulation (GDPR).

17https://github.com/henrymartin1/graph_representation
18https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
19https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_56
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Abstract
Location graphs, compact representations of human mobility without geocoordinates, can
be used to personalize location-based services. While they are more privacy-preserving
than raw tracking data, it was shown that they still hold a considerable risk for users to be
re-identified solely by the graph topology. However, it is unclear how this risk depends on the
tracking duration. Here, we consider a scenario where the attacker wants to match the new
tracking data of a user to a pool of previously recorded mobility profiles, and we analyze the
dependence of the re-identification performance on the tracking duration. Our experiment
uses a one-year-long tracking dataset of 137 users divided into subsets of varying durations
(1, 2, 4, 8, 16, 20, 24, and 28 weeks). We find that the top-1 re-identification accuracy is
between 0.41% and 20.97% depending on the pool- and test-user tracking duration. We
further show that re-identification performance is affected by both the pool duration and
the test-user tracking duration, it is greater if both have the same duration, and it is not
significantly affected by socio-demographics such as age or gender, but can to some extent
be explained by different mobility and graph features such as the radius of gyration and the
hub-size in graphs depending on the durations. Overall, the influence of tracking duration
on user privacy has clear implications for data collection and storage strategies, even if only
minimal information is being used. We advise data collectors to limit the tracking duration
or to reset user IDs regularly when storing long-term tracking data.

∗ Equal contribution
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3.3.1 Introduction and background

Companies are increasingly gathering and using spatio-temporal location data from personal
mobile devices. User location data have substantially improved location-based services
(LBS) and personalized offers (Keßler and McKenzie, 2018). However, detailed mobility
traces collected from individuals may contain sensitive personal data associated with high
privacy risks (Banerjee, 2019; Primault et al., 2018). A particular concern is the increasing
integration of user data from different sources (Thompson and Warzel, 2019), enabling
companies to build more detailed and complete user profiles (Melendez and Pasternack,
2019). Therefore, identifiability (and matching) of individuals from different datasets is a
critical dimension of data privacy risk (Keßler and McKenzie, 2018).

Previous studies showed that removing basic identity information from mobility traces is
insufficient in this context, as users can be re-identified using the information on frequently
visited locations (De Mulder et al., 2008; Gambs et al., 2014; Golle and Partridge, 2009;
Montjoye et al., 2013; Rossi et al., 2015; Zang and Bolot, 2011). One solution proposed in the
literature is to obscure the geographic coordinates to guarantee ϵ-differential privacy (Andrés
et al., 2013; Duckham and Kulik, 2005; Haydari et al., 2021; Wang et al., 2017) or k-
anonymity (Charleux and Schofield, 2020; Gruteser and Grunwald, 2003; Shokri et al.,
2010; Sweeney, 2002). For reviews of geoprivacy attacks and protection methods, we refer
readers to Kounadi et al. (2018) and Fiore et al. (2020). Nevertheless, location obfuscation
and related methods only provide limited privacy protection. For example, Tong et al. (2022)
extend the notion of “location uniqueness” to “trajectory uniqueness” and show that full
trajectories may be exploited for improving re-identification, and Tu et al. (2019) argue that
k-anonymity does not protect from a semantic inference about visited locations.

Another promising possibility for privacy-preserving storage and processing of individual
tracking data is given with so-called location graphs or mobility networks (Raubal et al.,
2021; Rinzivillo et al., 2014). In these graphs, nodes represent visited locations, and edge
weights correspond to the number of observed movements between these locations. Graph
representations offer several benefits: 1) they can be enriched with node and edge features
based on the application needs, 2) they are compact and grow sub-linearly in size with
increasing tracking duration, 3) they still provide rich insight into mobility behavior despite
their compactness (Martin et al., 2023b; Rinzivillo et al., 2014; Wiedemann et al., 2022)
and can be analyzed efficiently with graph neural networks for various applications such as
activity purpose imputation (Martin et al., 2018).

However, the privacy and unique identifiability properties of individual mobility graphs are
not well understood. Recently, Manousakas et al. (2018) showed that the graph topology
of personalized mobility graphs, even when all coordinate and time stamp information is
removed from its nodes, is often uniquely identifiable. In this paper, we build upon their
work and aim to understand the dependency of privacy preservation on tracking duration.
Intuitively, location graphs over short periods contain less information about users and may
reduce the risk of deanonymization. To investigate this possibility, we divide a tracking
dataset of 137 users into distinct periods of different durations and analyze attack scenarios
where a new location graph is matched to a pool of location graphs of known users. Our
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experiments indeed show that matching performance depends on the tracking duration of
both pool data and new data; however, there is a considerable re-identification risk even
with just a few weeks of tracking duration.

3.3.2 Materials and methods

Data and preprocessing

We analyze the time dependency of topology privacy on a high-quality tracking dataset,
collected through the SBB Green Class 1 tracking study (Martin et al., 2019a). The study
was conducted by the Swiss Federal Railways (SBB) to evaluate the impact of a mobility-as-
a-service offer on individuals’ travel behavior. Study participants are predominantly male
with above-average income. All study participants were tracked over a full year using an
application installed on their phone that segments tracking data into stationary periods
called staypoints, labeled with activity purpose, and movement behavior called triplegs,
labeled with transport modes. All preprocessing is done in Python and PostgreSQL using
the Trackintel movement data processing library (Martin et al., 2023c). The staypoints are
clustered into locations with the DBSCAN algorithm with the parameter ϵ = 30m, and a
minimum number of one point per cluster, i.e. each staypoint is assigned to a location. The
Trackintel library merges consecutive staypoints and triplegs into trips as long as they are not
interrupted by an activity (staypoints with duration >25 min or labeled with a purpose other
than wait and unknown) or by a temporal gap (here 25 minutes). Finally, when constructing
the graph, we filter out users with low tracking coverage during the selected time period.
The users are required to have a tracking coverage of at least 70% in at least one-third of
the days. In our experiments, this leads to a varying number of 132-137 users depending on
the time periods used.

Based on the sequence of locations and trips of a user, we construct the individual location
graph (or mobility network) as described by Manousakas et al. (2018): In the graph G(V, E),
each location is one node, and each trip between two locations increases the weight of the
directed edge by one. The edge weight w(e) thus corresponds to the number of transitions
during the observation period. To analyze the impact of different tracking periods, we
build the graphs on subsets of the dataset that are created by binning the dataset into
non-overlapping time periods of 1, 2, 4, 8, 16, 20, 24, and 28 weeks (see Figure 3.20).

Furthermore, we use the SBB Green Class 2 study (Martin et al., 2019a), which was a smaller
follow-up study where 50 different participants were tracked under similar conditions for a
full year directly after the Green Class 1 study. The data is processed in the same way as
the Green Class 1 data, but due to the lower number of users, we will only use this dataset
to validate our results in Section 3.3.3 in the Paragraphs Ablation of approximate graph
matching workflow, Validation of matching methodology based on related work and the Green
Class 2 dataset and Intra-user vs inter-user variability of re-identification performance.
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Feature based graph matching

Graph matching describes the problem of either identifying if two graphs are isomorphic
(exact graph matching) or identifying the best match from a set of candidate graphs (inexact
graph matching) (Riesen et al., 2010). The exact solutions for both problems are computa-
tionally intractable, therefore we rely on heuristics to accomplish inexact graph matching.
Related works have proposed so-called R-convolution graph kernels (Haussler, 1999) that
measure the difference between two graphs in terms of counts of certain substructures, such
as paths. Similarly, we compare the distributions of selected graph features to approximate
the graph similarity. We represent each graph in a fixed-size vector v(G) that expresses
graph characteristics, e.g., the distribution of node in-degrees. Two graphs G1 and G2 are
compared in terms of the distance between their vector representations, d(v(G1), v(G2)). As
distance metrics d, we test a simple Mean Squared Error (MSE), Kullback-Leibler divergence,
and Wasserstein distance.

We experiment with five vector-based graph representations v(G):

• vindegree: Distribution of (unweighted) node in-degrees, i.e., the number of connec-
tions of one location to other locations. The distribution of in-degrees over the 20
most popular locations is used.

• voutdegree: Similar to the in-degree, the distribution of out-degrees over the 20 loca-
tions with the highest out-degree is computed.

• vtransition: The distribution of transition weights over the 20 most popular trips.
Intuitively, some users commute between very few locations more frequently than
other locations, whereas some users transit more evenly among locations (Pappalardo
et al., 2015).

• vshortest_path: The distribution of shortest-path lengths in the graph. All-pairs shortest
paths were computed with the Floyd-Warshall algorithm (Floyd, 1962; Warshall,
1962). The ratio of shortest paths with length x for x ≤ 10 is reported in vshortest_path.

• vcentrality: The betweenness centrality (Freeman, 1977) of a node denotes its central-
ity in terms of network hops with respect to other nodes, which is bounded between 0
and 1. Since many nodes have low centrality in mobility graphs, we construct 10 bins
from 0 to 1 in log space and report the number of nodes per centrality bin.

Finally, we concatenate all five graph descriptors into one combined vector vcomb.

Experiment design

We analyze the following privacy attack scenario: The adversary is a data broker with access
to a pool of users and their tracking data. The attacker then gets access to additional tracking
data of a test user, which she wants to match to the correct user in the pool to create a
combined user profile. All tracking data are represented as weighted and directed individual
location graphs without node or edge features such as coordinates. In the following, we
define upool

i (i ∈ [1..n]) as the i-th user in a pool of n users, and utest
j (j ∈ [1..m]) as a user
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of the test dataset, Dtest = {utest
j }. Let Gpool

i and Gtest
j further denote the corresponding

location graphs.

The adversary now aims to find the best match out of the pool users for each test user
utest

j . This is accomplished by computing the distance of the graph descriptors presented in
Section 3.3.2. The pairwise distances from a test user to all users of the pool are computed
as d

(
v(Gtest

j ), v(Gpool
i )

)
and the pool users are ranked according to their distances. As a

result, we obtain the rank assigned to the true match of a user in the pool. In other words,
we are only interested in the rank that was assigned to the user in the pool that corresponds
to the test user (upool

i = utest
j ) and the assigned rank rj = r(utest

j ) means that this user had
the rj-highest similarity to herself compared to all other users in the pool.

To obtain statistically robust results, we evaluate the scenario on all possible tracking
period combinations for the pool and the test user. Figure 3.20 gives an overview of the
experimental setup and demonstrates that the tracking period combinations are not unique.
For example, for our total tracking time of 56 weeks, there are 14 distinct 4-week periods
and 7 distinct 8-week periods. We do not evaluate all possible combinations (here 98) but
regard only combinations where the test user is matched to the closest, directly preceding
tracking period in the pool. This choice of valid pool and test user pairs is exemplified by
the black arrows in Figure 3.20. In Section 3.3.3, we additionally consider periods that are
not directly successive in order to understand the effect of temporal gaps between the pool
and test user.

For every valid time bin combination for a given combination of tracking periods, we match
every available test user to the users from the pool and evaluate the matching success using
the metrics introduced below. All code for the experiments is publicly available20, however,
we can not publish the tracking dataset to protect the privacy of the study participants.

Metrics for re-identification performance

To evaluate the success of the matching attack, we employ two metrics: the top-k matching
performance and the mean reciprocal rank (MRR) (Voorhees, 1999). Both rely on the rank
assigned to the true match of a test user in the pool as introduced above, r(utest

j ).

We then report the top-k matching performance in one set of test users Dtest as

Acc(Dtest, k) = 1
|Dtest|

∑
uj∈Dtest

1{r(utest
j ) ≤ k}.

This considers a match as successful if the true match of the test user is among the top-k
closest users in the pool.

20https://github.com/mie-lab/topology_privacy
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Fig. 3.20.: Experimental setup: The tracking data, comprising 56 weeks, are split into
non-overlapping bins of varying duration. In the attack scenario, new tracking
data from one period is matched to a pool of users at a previous time period.
In example 1) the test data of four weeks length can be compared to the pool
in the preceding 1, 2, 4 and 8 weeks. In the second example (marked as 2), a
test user with tracking data from the second 24-week period is matched to users
from all directly preceding tracking data, which includes one from each tracking
duration except for 28 weeks.

Furthermore, we use the MRR as a second evaluation metric, defined as the average of the
inverse of the ranks in a test dataset. It is a common metric in information retrieval and
re-identification tasks (Craswell, 2009). The MRR of a test set is

MRR(Dtest) = 1
m

∑
uj∈Dtest

1
r(utest

j ) .

The MRR can be interpreted as the harmonic mean of the ranks, with the property that good
matches (high rank) have a much higher influence than bad matches (low rank).
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3.3.3 Results and discussion

We run the experiment described in Section 3.3.2 for all combinations of tracking periods and
consecutive start times, resulting in 827 combinations. For each of these combinations, we
attempt a matching for every user available in the dataset, which results in over 13 million
user-to-user comparisons (Green Class 1). We find that the best matching performance is
achieved with the combined graph descriptor vcomb and the mean squared error (MSE) as
the similarity metric d. See Table 3.8 and Section 3.3.3 for more details on this choice.

In the following, we report the MRR and top-k matching accuracy for each combination of
the pool- and test-user tracking duration. We report the average result and the standard
deviation if several accuracy results for a tracking period combination are obtained (due to
multiple time bin combinations).

Effect of tracking period on re-identification performance

Figure 3.21 shows the average matching performance and the standard deviation for
all duration combinations of the pool and the test users. All metrics show a significant
dependency on both the duration of the pool and the duration of the test user data. This
result implies that privacy-friendly applications should be designed such that their tracking
duration is as short as possible. This is especially true when new tracking data is to be
collected because a privacy-concerned person does not have control over the duration of the
pool in our scenario, as the pool represents data already collected by a third party.

Furthermore, even for the shortest tracking duration that was tested (i.e., one week com-
bined with one week), the re-identification capability of our simple matching strategy is
substantially better than random (see Figure 3.21). A random rank assignment would
result in a top-10 accuracy of 7.6%, compared to the accuracy of 19.4% from the shortest
tracking duration. Thus, the graph representation, even without any additional context or
coordinate information, is not anonymous, which is in line with the conclusion reported
from (Manousakas et al., 2018).

We further analyzed the importance of the pool duration, the test user duration, and
the difference between their durations, using linear regression with the duration as the
independent variable and the average performance as the dependent variable. The resulting
coefficients are shown in Table 3.7. While both duration variables positively impact the
performance, the influence of test duration is slightly stronger. For every additional week of
test tracking duration, the top-10 identification accuracy increases by 1.06% on average. As
the pool is not under the user’s control, a potential solution to minimize the privacy risk is to
require data brokers to reset user IDs after a specific tracking period. Notably, Table 3.7 also
reveals a major effect from the similarity of pool and test tracking duration, corresponding
to the strong performance on the diagonals in Figure 3.21. This can be explained by the
higher similarity of graphs constructed from the same tracking duration, making it easier to
match the correct user.

For the interpretation of the results, it is important to note that the results with small
bins are statistically more robust than those with large bin combinations because more
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Fig. 3.21.: Dependency of matching performance on tracking duration. Top-k accuracy and
MRR increase with both the tracking duration of the pool users as well as the
test user.

bins are available. For several combinations of large bins, only one trial was available;
therefore, no standard deviation was reported, and no distinct time bins were available for
the combination of 28 weeks pool duration and 24 weeks test tracking duration.

test duration pool duration
absolute difference

between pool and test duration
intercept R2 score

MRR 0.01 0.01 -0.01 0.09 0.90
1-Accuracy 0.41 0.43 -0.42 2.42 0.90
5-Accuracy 0.83 0.82 -0.87 10.89 0.89
10-Accuracy 1.06 0.97 -1.10 18.76 0.87

Tab. 3.7.: Regression analysis of the effect of the pool- and test-user tracking duration on the
matching performance. Both positively affect the re-identification performance
(=negative impact on privacy); however, the effect of the test duration is slightly
higher. The matching performance is higher if the absolute difference between
the pool and test user duration is low. All results are significant (p-values « 0.01).
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Ablation of approximate graph matching workflow

In Section 3.3.2, we proposed several graph descriptors to calculate the distance between
graphs. Table 3.8 lists the matching performance of different graph features and distance
functions. We note that the distance function does not strongly affect the matching per-
formance. In contrast, the features result in very different re-identification abilities. The
transition weight and in-degree distribution are the most useful features, whereas node
centrality obtains low matching capability. Based on the results in Table 3.8, we chose the
MSE of all features combined, as this performs best on average according to three out of four
error metrics. While our focus is on the time-dependency of privacy preservation, future
work could analyze the limits of re-identification of location graphs by using more complex
matching methods such as deep graph kernels (Yanardag and Vishwanathan, 2015).

Recip. rank 1-Accuracy 5-Accuracy 10-Accuracy
Distance metric d v(G) Mean Max Mean Max Mean Max Mean Max

transition 0.10 0.19 3.92 9.60 13.19 28.46 21.73 40.80
in_degree 0.10 0.20 3.29 10.40 12.05 24.80 20.83 41.60

KL- out_degree 0.09 0.17 3.07 7.32 11.74 24.80 21.06 36.29
divergence shortest_path 0.07 0.11 1.77 4.13 7.45 14.52 13.59 26.61

centrality 0.04 0.06 0.79 2.02 4.14 8.06 8.52 15.32
combined 0.16 0.35 7.96 23.33 21.41 51.20 31.25 62.40

transition 0.10 0.19 3.89 9.24 12.98 28.00 21.80 41.60
in_degree 0.10 0.18 3.49 9.76 12.22 22.40 20.73 35.48
out_degree 0.09 0.16 2.76 6.61 11.48 25.60 20.52 39.20

MSE shortest_path 0.07 0.11 1.89 4.04 7.80 15.32 14.16 29.03
centrality 0.05 0.07 1.17 3.25 5.26 11.16 9.67 16.74
combined 0.17 0.34 8.40 20.97 22.36 46.40 32.73 64.00

transition 0.10 0.19 3.82 9.21 13.32 30.08 21.50 41.60
in_degree 0.10 0.19 3.38 10.40 12.18 25.60 20.96 36.00

Wasserstein out_degree 0.09 0.17 2.96 8.13 11.64 24.00 20.70 40.32
distance shortest_path 0.06 0.11 1.64 4.20 6.48 16.00 11.94 24.00

centrality 0.05 0.09 1.14 4.13 5.03 11.38 9.69 16.53
combined 0.15 0.36 7.14 24.00 19.71 52.80 28.94 61.60

Sum all metrics combined 0.16 0.36 8.07 22.50 21.81 52.80 31.67 62.40

Tab. 3.8.: Matching performance of different combinations of features, distance functions,
and evaluation metrics. The highest matching accuracy is achieved with an
R-convolution kernel that computes the MSE between all graph-features distribu-
tions combined.

Validation of matching methodology based on related work and the Green
Class 2 dataset

We first validate our results by conducting the same experiment on the Green Class 2
data described above. The full pool-user-duration matrices can be found in Figure A.1 in
Appendix A.2.1. The results show a similar dependency on pool and tracking duration, but,
due to the lower number of users, the re-identification accuracy is generally higher (up to
82% top-10 accuracy) and the results are less stable.
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We further compare our results on both datasets to the results reported by Manousakas
et al. (2018). In their longitudinal study, Manousakas et al. (2018) split the tracking data
user-wise into two parts at a random point in time, sampled uniformly between 30% and
70% of the whole period (around one year). The most comparable experiment from our
study is the one where both the pool and the test duration are 28 weeks. Following the
evaluation by Manousakas et al. (2018), we show the distribution of ranks and the “privacy
loss” in Figure 3.22. Although the absolute ranks are not informative due to the different
pool sizes (132 users / 27 users21 for our dataset versus 1500), the re-identification ability
can be compared in terms of the shift of true rank. Specifically, the mean of the true rank
is shifted from 62 (random) to 17.1 (informed adversary) for Green Class 1 and from
13 (random) to 7.6 (informed adversary) for Green Class 2, whereas the experiment in
(Manousakas et al., 2018, p. 13) yields a shift from 750 to 140. The study by Manousakas et
al. (2018) also reported a median privacy loss of 2.52 which means “the informed adversary
can achieve a median deanonymization probability 3.52 times higher than an uninformed
adversary” (Manousakas et al., 2018, p. 14). In our experiments, the median privacy loss is
2.85 for the Green Class 1 data and 1.31 for the Green Class 2 data. Overall, we reproduced
the results successfully and extended their results with additional analysis of the impact of
tracking durations.
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(b) Privacy loss (Manousakas et al., 2018)

Fig. 3.22.: Evaluation of rank distribution and privacy loss as proposed by Manousakas
et al. (2018).

Intra-user vs inter-user variability of re-identification performance

The main results of this study (Figure 3.21) are reported as average matching performance.
We now further analyze the sources of variance of the matching performance by analyzing
the variance of the rank assigned to users during the matching. In particular, we aim to
answer the following question: Is the variance due to strong differences between users

21For long time bin durations, not all users matched the criteria set for the tracking coverage.
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(e.g., easy-to-match vs. hard-to-match users), or due to a change in a user’s re-identification
ability over time? To answer this question, we calculate the standard deviation between
different users in the same timesteps (inter-user) and for the same user over several timesteps
(intra-user).
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Fig. 3.23.: Inter vs intra person variability of matching performance. The variance over
users is higher than the variance over time bins. Intra-user variance decreases
with growing tracking duration.

Figure 3.23 shows that the inter-user standard deviation is consistently higher than the
intra-user standard deviation for both datasets. This indicates the existence of user groups
that are consistently hard or easy to match. Moreover, the intra-user standard deviation
in general decreases as the tracking duration increases for both datasets, which can be
explained by the higher stability of long-term location graphs.

Factors that explain re-identification performance

Given the high variance in the re-identification ability over users, we further analyze features
that could drive the degree of recognition of a user. For this purpose, we compute features
commonly used to describe individual mobility behavior, such as the radius of gyration, the
typical trip distances, and the entropy of location sequences (random and real entropy) (Song
et al., 2010a). Additionally, we compute graph features proposed by Martin et al. (2023b),
which describe the complexity and centeredness of the location graphs. Last, we regard
socio-demographics extracted from surveys in the context of the Green Class 1 and Green
Class 2 studies, namely age, gender and whether the user subscribed to a public transport
subscription in Switzerland (PT). Note that all features are computed as a single value for
all users since there is only one value per user for sociodemographics and classical mobility
features. We use the average value over both 28-week bins for the graph features to describe
the user’s stable graph topology.

In Table 3.9, the coefficients of a regression analysis with the above-presented features as
independent variables and the normalized rank as the dependent variable are given. The
normalized rank is the true user’s rank in the matching process, normalized by the total

3.3 Influence of tracking duration on the privacy of individual mobility gra-
phs

81



number of users, which allows to combine the users of Green Class 1 with the ones from
Green Class 2 in this study. We further checked the correlation r between attributes to
exclude potential collinearity issues, but r < 0.6 for all pairs. A significant positive coefficient
indicates that a feature hampers the re-identification ability since it leads to a higher rank.
The model is fitted separately for each tracking duration (1, 2, 4, . . . , 28), whereby we only
consider scenarios with the same pool- and user tracking duration, corresponding to the
diagonal of the matrices in Figure 3.21, and we average all available rank predictions for
each user (i.e., average over time bins).

According to the regression coefficients (Table 3.9), socio-demographics do not affect the
rank significantly. A higher radius of gyration makes a user harder to identify which might
be related to an increased variability of the location graph over time due to a higher level
of travel activity. For long durations, a high random entropy increases the identification
performance. The random entropy increases if time is spent at many different locations
which increases the complexity and uniqueness of a graph and therefore makes it easier to
match. The graph features, in particular the journey length, also significantly affect the rank,
but in an unexpected direction: More star-shaped graphs, indicated by low journey length,
low hub size, and high transition β, yield higher ranks.

D
u

ra
ti

on Classical mobility features Graph features Sociodemographics

Const.
Radius of
gyration

Random
entropy

Real
entropy

Median
distance

Journey
length

Hub
size

Degree
β

Transition
β

Age Sex PT R2

1 32.62 (*) 1.54 (*) -0.73 0.48 -0.04 -0.83 -0.65 0.04 0.77 -0.25 -0.39 -0.48 0.13
2 29.8 (*) 1.83 (*) -0.62 0.19 0.06 -1.46 (*) -0.1 -0.6 -0.46 -0.09 -0.61 -0.64 0.11
4 26.01 (*) 2.7 (*) -0.93 -0.19 0.51 -2.5 (*) -0.44 -1.06 -1.17 0.14 0.2 -0.98 0.15
8 20.56 (*) 2.65 (*) -3.2 (*) 2.35 -1.44 -2.75 (*) -1.23 -3.41 (*) -0.01 -0.39 0.84 -1.16 0.17
12 19.24 (*) 2.52 (*) -3.64 (*) -0.18 -2.73 (*) 0.52 -1.92 0.35 2.28 1.63 0.6 1.09 0.14
16 20.33 (*) 2.98 -1.67 1.68 -1.05 -2.71 1.16 -3.66 2.34 0.56 0.95 0.88 0.07
20 17.75 (*) 1.92 -3.68 1.43 -0.51 -0.45 2.12 -1.8 0.42 1.69 -0.21 0.82 0.04
24 16.3 (*) 2.82 -4.18 1.63 0.34 1.72 0.93 -0.26 5.62 (*) 0.71 -0.12 3.02 0.08
28 16.53 (*) 2.58 -7.27 (*) 2.99 0.53 0.43 4.7 (*) -1.45 6.43 (*) 0.09 0.43 3.46 0.12

Tab. 3.9.: Effect of mobility behavior and socio-demographics on re-identification accuracy,
i.e., the rank of a user. A linear model is fitted and the coefficients are reported.
Significant coefficients (p-value below 0.05) are marked with (*).

Influence of temporal difference between pool and user tracking period

The experiments reported so far were restricted to consecutive time periods (see Figure 3.20).
Here, we further analyze the effect of a temporal gap between the tracking periods. Since the
number of possible combinations becomes very high in this setting, we restrict the analysis to
one pool- and user duration combination and analyze the 1.56 million combinations where
pool- and user duration are four weeks and the pool was recorded before the user duration.
Figure 3.24 shows the results, where the top-10 re-identification accuracy is shown by the
temporal gap. As expected, the matching performance decreases as we increase the duration
of the gap. However, it stabilizes already at around 16 weeks between pool and test user,
and remains surprisingly high even for the longest gap of 56 weeks. This finding implies
that saved location data can be exploited by an attacker for a long time.
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Fig. 3.24.: The re-identification accuracy decreases when there is a larger temporal gap
between pool-bin and user-bin. However, the accuracy converges slowly and
retains more than half of its former value even after one year.

3.3.4 Conclusion

In this work, we present a set of experiments to analyze how tracking duration influences
the re-identification ability of individual location graphs. Our experiments on time-binned
subsets of one-year tracking data show that the tracking duration indeed has a strong
effect on the success of a privacy attack, with the re-identification accuracy at the longest
tracking duration (28 weeks) being more than 3 times higher than when matching 1-week
tracking data. We further show that the re-identification ability increases in roughly equal
parts with increased tracking duration of the pool of candidate users on the one hand, and
increased tracking duration of the test user on the other hand. Therefore, privacy-friendly
applications should only require tracking data over periods that are as short as possible, and
data brokers should be required to reset the user IDs of their data regularly to limit the pool
duration. On top of that, long-term storage of tracking data should be impeded, since the
re-identification accuracy only slowly decreases with increasing time between pool and test
tracking period.

More generally, we confirm results from Manousakas et al. (2018) that location graphs
without coordinates or additional context information are sufficient to re-identify users
with a success rate significantly higher than random. At the longest tracking duration,
the de-anonymization probability of an informed adversary is 3.85 times higher than the
one of an uninformed adversary for our dataset. Our work reveals many opportunities
for further work on location-graph privacy. For example, we found that certain users are
consistently hard or easy to be identified. Characterization of these user groups should be
explored in future work. We take a step in this direction with our analysis of the relation to
different mobility-behavior features and socio-demographics, but our results hint at more
complex characteristics that make a user hard to re-identify. Evidence from more diverse
datasets may help to find such influence factors. The reproduction of our experiments on
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new datasets is straightforward as the individual location graphs have very few requirements
(e.g., no specific features or labels needed). At the same time, future work could also regard
the re-identification risk of more complex location graphs, e.g., amended with temporal
information.

Finally, it is important to mention that we only employed a simplistic matching strategy,
and a more sophisticated matching approach, such as learning graph similarities with deep
neural networks (Ma et al., 2021), could lead to even higher success rates for matching.
The results should therefore be considered as a lower bound of possible matching success.
The presented analysis however augments the understanding of the privacy risk of tracking
data - even if it is reduced to topology - and can improve the regulation of anonymization
practices.
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4.1 Graph-based mobility profiling
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Abstract
The decarbonization of the transport system requires a better understanding of human
mobility behavior to optimally plan and evaluate sustainable transport options (such as
Mobility as a Service). Current analysis frameworks often rely on specific datasets or data-
specific assumptions and hence are difficult to generalize to other datasets or studies. In
this work, we present a workflow to identify groups of users with similar mobility behavior
that appear across several datasets. Our method does not depend on a specific clustering
algorithm, is robust against the choice of hyperparameters, does not require specific labels
in the dataset, and is not limited to specific types of tracking data. This allows the extraction
of stable mobility profiles based on several small and inhomogeneous tracking data sets.
Our method consists of the following main steps: Representing individual mobility using
location-based graphs; extraction of graph-based mobility features; clustering using different
hyperparameter configurations; group identification using statistical testing. The method
is applied to six tracking datasets (Geolife, Green Class 1+2, yumuv and two Foursquare
datasets) with a total of 1070 users that visit about 3’000’000 different locations with a total
tracking duration of over 200’000 days. We can identify and interpret five mobility profiles
that appear in all datasets and show how these profiles can be used to analyze longitudinal
and cross-sectional tracking studies.
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4.1.1 Introduction

Individual motorized transportation is a major contributor to global GHG emissions (Chap-
man, 2007; Creutzig et al., 2015) and linked to additional problems such as the creation
of microplastics (Evangeliou et al., 2020), injuries, an increase of impervious cover for
infrastructure (Gössling, 2020), and more traffic and congestion which already results in
high economic costs (Reed, 2019).

Tackling these problems requires covering people’s growing mobility needs using fewer
resources like energy, cars, or space. This is the goal of several novel mobility concepts such
as MaaS but apart from being more sustainable, these services will need to be comparable
with personal cars in terms of comfort and flexibility in order to convince people to change
their mobility behavior.

This challenge will require knowledge about the mobility behavior of people and the ability
to predict it in the near future in order to optimally allocate shared mobility resources.
With the recent success of machine learning algorithms (LeCun et al., 2015), research
in computational movement analysis (Long et al., 2018) shifted towards using machine
learning methods to support data interpretation (e.g., labeling (Toch et al., 2018), clustering
tasks (Ben-Gal et al., 2019; Jonietz et al., 2018)) or prediction tasks (Kreil et al., 2020;
Kumar and Raubal, 2021; Luca et al., 2021).

While large tracking datasets of human movement have become available in recent years,
they are oftentimes unlabeled (Chen et al., 2016a), thereby preventing the use of supervised
machine learning methods. Furthermore, available datasets are often different in key
properties such as the duration of a tracking study, the deployed tracking technology, and its
spatio-temporal resolution of trackpoints, and sample biases.

A particularly difficult problem in this situation is the identification of stable groups of
users with similar mobility behavior, which are comparable across datasets. Finding such
mobility types can help us to enhance our understanding of mobility behavior (Pappalardo
et al., 2015), to measure regional similarities between cities (McKenzie and Romm, 2021)
or neighborhoods (Calafiore et al., 2021), and to detect changes in mobility behavior over
time (Hong et al., 2021; Jonietz et al., 2018). However, existing solutions are often based
on dataset-specific features and can either not be applied to different datasets, or results
from different datasets are not comparable.

In this work, we develop an approach to identify mobility types with minimal dataset specific
assumptions, which facilitates the application to different datasets. The problems stated
above are solved with a graph-based approach that uses a compact representation, does not
require labeled data, and allows to easily merge different datasets. Our method is tested on
six datasets to demonstrate its general validity independent of the specifics of one tracking
study.

In summary, our contributions are the following:

• We propose a set of features that are based on a compact graph representation. They
describe integral dimensions of individual mobility behavior and are robust to dataset
properties such as tracking duration or spatio-temporal resolution of trackpoints.
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• We develop a method that uses statistical testing on multiple clustering results of the
same dataset and yields stable user groups.

• We apply our method to six tracking datasets and extract five mobility profiles that ap-
pear in all datasets. These profiles are robust against the parameters and initialization
of the clustering algorithm.

• We demonstrate in two applications how to use graph-based mobility profiles to
analyze longitudinal and cross-sectional tracking studies.

The remainder of this paper is structured as follows: In Section 4.1.2 we describe related
research on human mobility profiling, clustering, and graph representations. In Section 4.1.3,
our graph features and the clustering approach are explained. Next, in Section 4.1.4 the
data and preprocessing steps are outlined, and the results and applications are presented
and discussed in Section 4.1.5. Section 4.1.6 includes further experiments that validate our
proposed methodology. Finally, we summarize our conclusions in Section 4.1.7.

4.1.2 Related work

Representing individual human mobility

In transport planning, human mobility is commonly modeled based on the hypothesis
that travel demand is derived from the need to perform different activities at different
locations (Jiang et al., 2017). This activity-based perspective interprets travel demand as
a result of people’s decisions whether, where and when to perform activities (Axhausen
and Gärling, 1992; Castiglione et al., 2015). In practice, data about human mobility
are often collected passively to avoid asking users to perform time consuming labelling
tasks. Therefore, additional information such as activity labels are often not available in
datasets (Chen et al., 2016a).

To circumvent this problem, most approaches fall back on available tracking information
such as the activity location as proxy for the true activity. A common way to represent
an individual’s mobility behavior is based on a sequence of visited locations such as the
concept of location history mentioned in (Zheng et al., 2009) or the concept of lifeline beads
introduced in (Hornsby and Egenhofer, 2002). In this case the movement profile of a person
is a list of locations, ordered by the time of visitation. Depending on the definition, the
model can include context data for each visit such as temporal information like start time or
duration, spatial information such as coordinates, or semantics such as an associated POI
category. Some further variations of this model can be found in (Bhattacharya and Das,
2002).

A major downside of this representation is that it grows quickly in size because the raw
data are appended to the sequence for every visit. Furthermore, this representation is
privacy sensitive as it contains information such as the time and duration of each individual
visit. Representing individual movement profiles using a location graph of visited locations
can solve these problems as it can be stored and processed efficiently. In such a graph,
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nodes correspond to visited locations (as a proxy for activities) and edges correspond to
the transition count between two locations. Alessandretti et al. (2018) showed that people
only visit a limited set of locations that slowly evolves over time and Schneider et al. (2013)
demonstrated that our daily mobility can be described by a small set of sequential location
visiting patterns (motifs). Furthermore Yan et al. (2017) created a model based on a graph
of visited locations that reproduced important scaling laws of human mobility. This provides
evidence that a personalized graph that is based on the visited locations can parsimoniously
represent individual human mobility.

Graphs based on visited locations of individual persons have already been explored in
the past. For example, (Zheng et al., 2008) transformed GPS tracking data into a graph
representation to support the prediction of the transport mode of transitions between nodes.
(Rinzivillo et al., 2014) transformed a large GPS tracking data set of about 150k vehicles
from Tuscany into individual graph representations. They then combined structural features
extracted from the graphs and classical features, such as length or duration, to show that
including graph features increases the performance of trip purpose classification. Further-
more, (Martin et al., 2018) used graph representations of individuals in combination with
graph neural networks to predict the distribution of activity labels at visited locations. Even
though all these examples show promising results, the literature in this area is still sparse,
especially with regards to unsupervised learning applications such as the identification of
groups with similar mobility behavior based on graphs.

Clustering based on mobility behavior

Research on the identification of similarities based on movement data is mostly used for
the discovery of previously unknown patterns and insights. Studies that do not focus on
individuals often analyze movement at a city scale, such as in (Yuan and Raubal, 2012)
where CDR data enriched with demographic data are used to classify different urban areas
in a city in China. Their approach allows to identify areas of the city in which people move
alike. Similarly, Ratti et al. (2006) analyze urban activities from mobile phone data in Italy,
and Sulis and Manley (2018) use a combination of twitter data and smart card data to
cluster places in London according to their travel activity patterns, which can be used to
analyze the daily rhythms of places in a city.

Studies that focus on the movement of individuals usually present workflows that are used
to mine patterns from specific situational datasets such as in (El Mahrsi et al., 2016) where
the authors use public transport smart-card data to cluster users by their travel behavior
with respect to time and frequency of trips. They identify 13 different passenger clusters
which they further analyze to identify fine grained commute patterns. Xin and MacEachren
(2020) present a methodology to extract mobility patterns to characterize different groups
of football fans from twitter data. These studies are insightful; however, the methods often
rely on very specific features such as the mode of transport of a trip or the content of a
twitter message related to a trip destination. This makes the methods difficult to apply to
different datasets or other types of tracking data where the required information might be
unavailable. There are exceptions such as (Pappalardo et al., 2015) who group individuals
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in returners and explorers based on their (k-) radius of gyration. These groups can be found
across many datasets, but their work does not contain an approach to identify novel groups
based on mobility behavior that generalize over different datasets, and further research
showed that the results may depend on dataset properties such as the study duration (Wang
et al., 2021). A potentially generalizable clustering approach is presented in Ben-Gal et al.
(2019) who develop a lifestyle-based clustering method. They identify five patterns, namely
home, sweet home, working 9 to 5, traveling salesmen, and commuters based on a large CDR
dataset. Their activity-based approach could be applied to different datasets but they do not
provide any analysis in this regard.

We fill this gap by presenting a workflow that allows to identify groups of individuals based
on their mobility behavior. Our approach only requires minimal assumptions on tracking
data, no labels and it permits to integrate different tracking datasets to identify their overall
user groups.

4.1.3 Methods

Location based graph representation

In contrast to sequential tracking data, graph representations are compact, privacy-
preserving, easy to process and still rich in information. Motivated by these properties, we
choose a graph-based representation of individual human mobility. The graph is constructed
based on the location sequence of a person, where a location is seen broadly as a place
of interest that a person visited to perform an activity. The location sequence of a user
Lseq = [l1

1, l2
2, l3

1 . . . , ln
m] is a list of visits at locations ordered by their visitation time. Lseq

contains n visits to m unique locations and li is defined as the ith element of Lseq. Based on
the location sequence we define the set of all visited locations as L = {l1, l2, ..., lm} as the
collection of all visited locations without repetition, therefore |L| = m.

The graph is constructed using unique locations as nodes and the number of direct transitions
between pairs of nodes as weighted and directed edges. More formally, given the location
sequence and the set of all visited locations of a person we define the weighted directed
individual location graph as the pair (GL, W ) where

GL = {L, E}, with e = (li, lj) ∈ E(GL) ∀ (lk
i , lk+1

j ) ∈ Lseq | k < n (4.1)

and the elements w of the weight matrix W ∈ R|L|×|L| are

wij =
n−1∑
k=1

θ with θ =

1 if (lk, lk+1) = (li, lj)

0 otherwise.
(4.2)

Examples of individual location graphs are given in Figure 4.1, where the transition count
is proportional to the edge line width. Creating the graph representation only requires
Lseq, it does not require specific label or context information. It can therefore be applied to
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datasets that differ in properties such as the data collection methods (e.g., GNSS vs. CDR).
A notable exception would be a significant bias in the sampling of visited locations as it
might be present, for example, in public transport smart card data, where only visits at
public transport stations are recorded and important locations such as the home location are
missing systematically. This would lead to a systematically different graph structure that is
incomparable to graphs based on other collection methods.

The graph representation compresses the location sequence of an individual significantly
as we are mostly revisiting known locations (Alessandretti et al., 2018; González et al.,
2008). However, despite the compression we know from previous work that the topology
of location graphs is highly unique for each individual (Manousakas et al., 2018) and that
human mobility can be well represented by substructures of such a graph (Schneider et al.,
2013).

Graph-based mobility features

In order to characterize human mobility, we leverage the topology of the graph representa-
tion. Network characteristics extracted from the individual location graph can yield insights
into a user’s mobility behavior, despite relying on a compressed version of the raw movement
data.

We propose a set of non-redundant and interpretable features that each represent separate
dimensions of human mobility behavior. The features are motivated by a set of questions
that address individual mobility behavior along the dimensions of the role of base locations,
the complexity, the regularity and the geometry of individual mobility behavior. The numbers
in square brackets link to the corresponding features from Figure 4.1 that relate to the
specific question.

Role of home bases:

• Does a person have a single home base where he starts her trips from or several
such bases? [1, 6]

• How home-centered is the person’s behavior? Does he return home after each
activity, or rather move from place to place? [1, 5]

Complexity:

• Are the activities of the person focused on few locations and trips, or distributed
over many? [1, 2, 6]

• Are most trips of the user between the same locations? [2]

Regularity and geometry:

• Is the user flexible, or does he have a very regular mobility behavior? [5, 2]

• How far does a user usually travel? How far does he travel exceptionally? [3,4]
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Showing 25 nodes with highest degree
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Restricted to Switzerland for visibility
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Fig. 4.1.: Overview of graph features with an example graph from the Green Class 1 dataset
for which the feature is rather low or rather high.
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Fig. 4.2.: Power law fit for location graphs. The degrees are normalized by the highest
degree found and ranked, and a power law is fitted.

Degree distribution β

The feature degree distribution β measures whether users start most of their trips from a
single location or have several base locations. This will allow us to distinguish users who
prefer to return home before visiting a new location from users who are more flexible, e.g.,
go to different places directly after being at work.

The (unweighted) out-degree of a node u in the location graph is defined as the number of
locations that are visited starting from node u. If a single node has a very high out-degree
compared to the other nodes, the user starts most of his trips from the same location. If
multiple nodes have a high out-degree, the user has several base locations from where he
starts his trips.

The importance of locations ranked by visitation frequency follows a power law distribution
(González et al., 2008). We therefore propose to fit a power law to the distribution of
ranked node out-degrees. Let δ1, δ2, . . . , δn be the degrees of a graph with n nodes, sorted in
descending order (δ1 ≥ δ2 ≥ · · · ≥ δn). The values are normalized by the highest degree:
δ̂i = δi

δ1
. We then fit a simple power law following the rule δ̂i = i−β , where 0 ≤ β ≤ 5 (β > 5

is not realistic in our data and was thus excluded to accelerate the optimization). Note that
we defined δ̂1 = 1−β = 1.

A small β therefore describes graphs that have a multi-hub behavior, meaning that users start
trips from several base locations. A high β characterizes user behavior that is centralized to
few base locations. Figure 4.2(a) shows the power law fit for exemplary location graphs and
Figure 4.1 shows example graphs of a user with high and a user with low degree distribution
β.

Transition γ

This feature measures whether most trips (i.e., transitions between two locations) of a user
are between the same locations or between many different locations. This information
provides insights about the variety of a person’s mobility behavior and visiting patterns. The
transitions are stored as edge weights wij in the location graph, and their rank distribution
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follows a power law. Thus, we can measure this feature with the parameter of a power law
distribution fitted on the sorted transition weights, where the weights are normalized by the
maximum (maxi,j wij). Examples are shown in Figure 4.2(b). In the commuter example,
we expect high transition γ, in contrast to low transition γ for a salesman because trips are
very distributed.

Median and 9th decile trip distance
The median trip distance describes how far users usually travel in their day-to-day mobility
while the 9th decile trip distance describes the travel behavior for non-everyday trips. The
distribution of trip distances follows a power law (Brockmann et al., 2006). It is therefore
important to use robust measures such as the median or the 9th decile as metrics.

The median or 9th decile are computed over the distances between each pair of nodes,
weighted by their transition counts wij . Note that we use the Haversine distance between
node coordinates and no map-matched distances, since the latter cannot be recovered from
the location graph alone and would require information on the transport mode.

Average journey length
The average journey length of a user measures how flexible a user is in moving from place
to place. If a user oftentimes visits multiple places without returning home, his graph will
become more connected and show more (highly weighted) edges. We measure this quantity
as the number of visited locations in a journey, where a journey is defined as a simple cycle
in the location graph that starts and ends at the home location following the definition
of journeys from (Axhausen, 2007). We propose to approximate the journey length using
a random walk in the graph: Starting at the home location node, we conduct a random
walk of 5000 steps. Assuming that the current location is li, we select the next node j

with probability p(j) = wij∑
k

wik
, i.e., proportional to the transition counts. When reaching a

node that does not have any outgoing edges, or only an edge pointing at itself, we reset the
random walk to home. The journey length is then defined as the number of steps between
each consecutive encounter of the home location, excluding the resets.

Hub size
With the hub size feature we measure how many locations are visited on a regular basis
and thereby account for a significant portion of the user’s activity. It is therefore a measure
of concentration of the mobility behavior (on few or many locations) and by that of the
user’s flexibility. In the graph, we measure the hubbiness as the number of nodes required
to account for at least 80% of the total visits. The feature can be approximated from a
random walk, similarly to the journey length. A random walk of 5000 steps yields a list
of visited locations Lrandom[l1, l2, . . . , l5000]. The locations are sorted by their occurrence
count (cl) in Lrandom, such that c(l̂1) ≥ c(l̂2), ≥ . . . . The (unnormalized) hub size h∗ is the
required number of locations such that their counts sum up to > 4000 occurrences (80%
of 5000 steps), formally h∗ = minh :

∑h
i c(l̂i) > 4000. Since this number increases with

the size of the graph, we normalize the feature by the square root of the total number
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Fig. 4.3.: Correlation between features

of locations, h = h∗√
|L|

. We chose a square root as it has been shown that the number of

locations that are important to a person can be characterized with sub-linear exponential
growth (Alessandretti et al., 2018). The importance values assigned to each node by this
method correspond to the PageRank value of a node (Page et al., 1999; Schütze et al., 2008),
with the slight variation that the implemented random walk always starts at the home node
and restarts at the home node if it hits a dead end.

A visual summary of all features is given in Figure 4.1. In addition, Figure 4.3 shows
the correlation matrix of all features of the users of six datasets combined as described in
Section 4.1.5. It demonstrates that only few features are significantly correlated. Apart from
the obvious correlation between median and 9th-decile trip distance, we find that journey
length is negatively correlated with degree distribution β (−0.47) and transition γ (−0.27),
and positively correlated with hub size (0.27). Intuitively, if there are many nodes with high
degree (=low degree distribution β) the probability to encounter longer cycles in a random
walk (=high journey length) increases. Nevertheless, we decided to keep both features to
further distinguish users with a flexible mobility behavior. Specifically, a high average journey
length characterizes users that visit several locations in a row, independent of the locations’
node degree. The journey length feature is also included due to its robustness to the tracking
duration (cf. Section 4.1.6).

Identifying user groups

User group definition based on statistical testing
Given a clustering algorithm and m mobility features f1, . . . , fm, we aim to find meaningful
user groups of distinct mobility behavior. Unsupervised machine learning methods can
identify patterns in high-dimensional feature spaces based on a given distance metric.
However, clustering methods are oftentimes sensitive to initialization or to their parameters,
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Fig. 4.4.: Workflow of user identification via clustering. a) Features fi are extracted from
the location graphs of each user ui and form a feature matrix. b) A clustering
algorithm is applied t times with different random initialization and parameters,
yielding t different partitions of the users. In c), one such partition P is shown
schematically for two features. d) By means of a statistical test, we determine
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new groups. The result is a set of groups G with every cluster assigned to one
group.
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e.g., the number of desired clusters. To overcome these problems, we propose a method
based on statistical testing that yields stable user groups. The method is explained visually
in Figure 4.4.

Based on a fixed set of features and users, the clustering algorithm is run t times with
different parameter choices or randomization, yielding multiple partitions P1, P2, . . . , Pt

where each Pi = {ci1, . . . , cis} is the set of clusters that define the i-th partition (see
Figure 4.4a and b). One such partition is shown in Figure 4.4c. We then consider all
clusters in each partition and apply a suitable statistical test to determine which features
are significantly different from the other clusters (Figure 4.4d). Let Fj(cik) denote the
distribution of feature fj in cluster cik. We test the hypothesis that Fj(cik) does not differ
from Fj(Pi \ cik), i.e., the distribution of fj in all other clusters.

Next, the test results are combined in a m-tuple for each cluster, called g(cik), which
defines a potential user group. The entries of g(cik) describe for each feature whether
it is significantly lower (-1), higher (1) or not significantly different (0) from the other
clusters. For example, given the features height, age and weight of a person, the tuple
g(cik) = (0, 1, −1) would denote that the people in cluster cik are not of significantly different
height, but are significantly older and of lower weight than the people in other clusters.

Merging similar user groups
In the next step, we aggregate clusters to user groups (Figure 4.4e). In the aggregation step,
the assignment of a cluster cik is independent of its partition Pi and we therefore drop the
partition index to simplify notation in this section, i.e., a cluster is simply denoted as ck. Two
clusters are of the same user group if their significant features do not contradict each other.
Formally, we define a valid merge of two clusters ck, cl as the following: Let [g(ck)g(cl)]− be
the result of subtracting g(ck) from g(cl) element-wise. If any of the values in [g(ck)g(cl)]−

is 2 or -2, then the clusters are not merged. The intuition is that if one or more features
are opposite to each other (low in one but high in the other), the clusters are dissimilar.
However, with this definition, it could still occur that, for example, g(ck) = (1, 1, 0) is merged
with g(cl) = (0, 0, 1) because [g(ck)g(cl)]− = (1, 1, −1), even though not a single significant
feature corresponds. Thus, as a second requirement, they are only merged if they share
at least θminf significant features, i.e., at least two elements of [g(ck)g(cl)]− are zero. By
definition of this merging process, the maximum number of resulting groups is 2m.

Iterative group finding and assignment
In practice, we distinguish between an iterative group-finding phase and an assignment
phase. In the group finding phase, we start with c11 ∈ P1 and store G1 = g(c11) as the first
user group. For c12 it is then checked whether a merge with G1 is possible; otherwise, a new
group G2 = g(c12) is added. All subsequent clusters are assigned to the existing groups or
serve as new groups. Clusters with less than θminf significant features are skipped. Note
that this rarely occurs in practice and the effect of θminf is therefore limited, as analyzed
quantitatively in appendix A.3.4.

After the groups have been identified, we iterate over all clusters a second time and as-
sign each cluster cik the group with best correspondence which is defined as the largest
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Study Tracking type Users Tracking
days

Visited
locations

Geolife GPS tracker 66/177 301±392 168±187
GC1 GNSS via app 134/139 401±60 756±249
GC2 GNSS via app 47/50 321±63 718±318
Foursquare home LBSN checkins 88/100 477±94 219±146
Foursquare random LBSN checkins 82/100 413±116 88±43
yumuv GNSS via app 653/871 99±27 184±86

Tab. 4.1.: Overview of the datasets used in this study. Column users shows the number of
participants used in the study after filtering and the total number of available
users. The columns tracking days and visited locations show the average and
standard deviation over users.

overlap between characteristic tuples. Formally, let g[j] denote the entry at the j-th po-
sition in the tuple g. Then the group of cik is assigned to the group with index l∗,
l∗ = arg maxl

∑
j g(cik)[j] · Gl[j]. Finally, each user is assigned to the group that occurred

most often in her clusters. Two groups can occur equally often. However, as ties were not
frequent (<5%), this case was disregarded, and ties were solved by randomly assigning a
user to one of the groups.

4.1.4 Data and preprocessing

All preprocessing steps are performed using Python and the Trackintel movement data
processing library (Martin et al., 2023c) which provides functionality to extract staypoints,
triplegs, trips, and locations. Triplegs are defined as continuous movement trajectories,
staypoints are periods of stationary behavior. Staypoints are defined as activity if their
duration is longer than 25 minutes or if there exists a non-trivial purpose label (any purpose
except wait or unknown). Trips are defined as the collection of all movement and idling
between two activities (Axhausen, 2007). Trips with gaps longer than 25 minutes are
considered to have an unknown destination as a person could have performed an activity in
between, Locations are extracted using DBSCAN with 1 sample required for a cluster and a
search radius of 30 meters for GNSS datasets.

yumuv

The yumuv dataset was recorded during the roll-out of a new MaaS offer in Zurich, Switzer-
land, called yumuv1 to study the impact of mobility bundles on mobility behavior (Martin
et al., 2021b). The total study duration was three months and participants were either part
of the TG, which had access to the new MaaS offer available via the yumuv app after one
month of pre-tracking, or part of the CG. Both groups had to install the app MyWay2, a

1https://yumuv.ch/en
2https://play.google.com/store/apps/details?id=ch.sbb.myway
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GNSS based tracking app, on their phone to record their mobility behavior. The app already
provided staypoints and triplegs. The participants labeled triplegs with the used mode of
transportation and staypoints with an activity label. Additionally, all participants took part
in an online survey before and after the study period and provided person and household
specific data such as socio-demographic information or mobility tool ownership. The dataset
contains a total of 871 users (161 TG, 710 CG) of which 498 (71 TG, 427 CG) finished the
study.

We additionally separate the dataset into four weeks before and four weeks after getting
access to the MaaS bundle via the yumuv app. The exact dates and durations of the before
and after periods are slightly different for every user depending on when users started
tracking and installed the yumuv app. For the users of the TG we use each individual’s start
and end date as defined above. As the users of the CG do not get access to a MaaS bundle,
we use the average start and end date of all TG users as the start and end date for the CG.

Green Class

The Swiss Federal Railways (SBB) conducted two large-scale 1-year pilot studies to evaluate
the use of a comprehensive all you can travel mobility package (Martin et al., 2019a). In
the pilot studies the participants had access to a general public transport pass valid in
Switzerland, access to popular car- and bike-sharing programs, and taxi vouchers. Addition-
ally, participants of the first pilot study referred to as Green Class 1 (GC1) had access to a
personal battery electric vehicle whereas participants of the second pilot study referred to as
Green Class 2 (GC2) had access to a premium electric bike. Participants agreed to be tracked
via the MyWay app and provided socio-demographic information in surveys.

Geolife

The Geolife GPS trajectory dataset was collected by Microsoft Research Asia over a span of
three years (Zheng et al., 2009). Employees were provided with different global positioning
system (GPS) loggers and GPS-phones that were used to passively track their everyday
movement continuously. The dataset does not systematically provide additional labels or
socio-demographic information; however, it is still one of the few publicly available large-
scale tracking datasets and is included to allow an easy reproduction of the results of this
study. Staypoints are generated with Trackintel using the staypoint detection algorithm
from (Li et al., 2008). We used the parameters proposed by the authors for this dataset and
we additionally added a threshold that excludes periods without trackpoints for more than
24 hours as gaps.

Foursquare

The global scale Foursquare-dataset3 presented in (Yang et al., 2015, 2016) is a vast collection
of publicly available check-in data from the location-based social network Foursquare. We
3https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_56
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chose to include the Foursquare dataset to showcase the possibility of the graph-based
approach for non-GPS datasets. The full dataset contains check-ins of 144’704 users all
over the world collected over the course of 18 months. Users track their movements by
checking in at venues (e.g., points of interests). Data quality varies highly between users
and not all users provided check-ins at their home location. Especially the second issue is
problematic, as the structure of the location graph with a missing home location would be
systematically different. We therefore create two subsets of the Foursquare dataset. The
Foursquare Home subset consists of the 100 users with the most home check-ins in the
dataset. As these are some of the most active users in the dataset, we further create the
Foursquare Random dataset where we randomly draw 100 users from the 27’227 users that
have at least 81 check-ins reported (above the 25th percentile), that checked-in at least at 40
different locations (above the 25th percentile) and that have at least 24 check-ins at home
(above the 75th percentile).

Graph generation

The location graph for each person is generated as described in 4.1.3. Following the
definition of trips given in Section 4.1.4, every trip of a person increases the edge weight
between the two activity locations (i.e. nodes) by 1. The graph creation for the Foursquare
dataset is slightly different as it uses check-ins without stay duration instead of continuous
tracking. Here, all sequential check-ins at locations are used to increase the edge weight
between two venues (nodes). Before creating the graphs for the GNSS based datasets, we
filter to include only users with at least 14 days with tracking coverage of more than 70 %
of the time of the day.

4.1.5 Results and discussion

Given the location graphs for all users, we calculate the features as described in Section 4.1.3.
We then combine the six datasets and classify users by their mobility behavior with K-means
clustering and our group identification algorithm (Section 4.1.3). In the following, we first
describe the obtained user groups, secondly, we present cross-sectional and longitudinal
studies based on these groups and finally validate our feature set and the method.

Identification of user groups across datasets

The aim is to study universal differences in mobility behavior that appear in diverse tracking
studies. Therefore, the six datasets (GC1, GC2, yumuv, Geolife, Foursquare-Random, and
Foursquare-Home) are combined and processed in an analogous manner. We then exclude
users if one or more of their feature values is more than four standard deviations apart from
the mean value of that feature. By that 67 users or ∼ 6% of the total users are excluded.
The Foursquare-Random dataset has the highest outlier ratio with 18%.
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Next, the features are normalized to z-scores. We proceed with the group identification
algorithm introduced in Section 4.1.3. Here, the K-Means++ algorithm (Vassilvitskii and
Arthur, 2006) is utilized for clustering, since it enforces compact clusters which are more
likely to have significantly different feature values. Although the impact of the initialization
of K-Means++ is significantly lower than for the original K-Means algorithm (Lloyd, 1982),
we observed different outcomes depending on the initialization. Therefore, we vary both
the random initialization as well as the number of clusters k. Specifically, we apply K-means
three times for each k ∈ [6, 7, 8, 9], resulting in t = 4 ∗ 3 partitions P1, . . . P12. We test for
significant difference in the feature distribution with a Mann-Whitney U test (Mann and
Whitney, 1947). Furthermore, we set θminf = 2, such that clusters with less than two
significant features are skipped. In the group finding phase (cf. Section 4.1.3) we identified
six user groups. However, in the subsequent group assignment phase, the users were only
assigned to five groups. In other words, one of the groups only appeared in few clustering
runs and every user was assigned to one of the other five groups more often. The consistency
of user-group assignments is analyzed further in Section 4.1.6.

Interpretation of user groups

To further analyze the identified groups, we inspect which feature dimensions are distinctive
for a group. For that we calculate the deviation of the feature value of a single group from
the mean of the distribution of this feature value from all other groups. Figure 4.5 shows
the deviation for each feature by group. For example, the median trip distance of the first
group is more than two standard deviations above the average of this feature in all other
groups. On the basis of Figure 4.5 we interpret the clustering results and summarize each
group’s mobility behavior in one term. This group-naming is a subjective decision that is
dataset- and context-dependent; however, it greatly facilitates the communication of results
to decision-makers and the public. Here, we base our group description on the underlying
mobility behavior that leads to a specific layout in the mobility graph as measured by the
features described in Figure 4.1.

The first two groups are clearly related to trip distances, where we can safely assume that
users with a high median distance cover much distance on a regular basis (as commuters
do), whereas the 9th decile is expected to be high only for users that regularly cover very
long distances. The third group is characterized by their flexibility, because their activities
are highly distributed (high hub size), they move from place to place (high journey length)
and their graphs are less concentrated on single nodes or edges. In contrast, the fourth
group’s activity is more skewed towards one or few trips (high transition γ) and few nodes
(low hub size) and takes place at a lower radius (low median distance). The fifth group
uses a single node (or few nodes) with high degree (high degree distribution β) as a base
and other activities are started from this center of the locations (low journey length). For a
more detailed visualization of the groups, we refer to the scatterplot matrix of each pair of
features in Figure A.2 in appendix A.3.1.
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* : significant (p < 0.05)

*
Fig. 4.5.: Feature properties for each user group: The user groups that are consistently

found in the data are named based on significant differences in their feature
values with respect to the other clusters.

Comparison of user groups across datasets
One of the main contributions of this work is the identification of user groups across several
datasets that do not depend on technical data set properties such as tracking technology
or the study duration. To verify this hypothesis, we analyze the distribution of user groups
over the different studies in Figure 4.6. We observe that the groups are not study-specific
as two groups appear in all studies and the other four groups appear in all studies but
Foursquare-Home. This rules out the case where the clustering process identifies each dataset
as its own cluster. In appendix A.3.6, we further use a logistic regression model to show
that tracking duration and coverage have very little influence on the graph-based mobility
profiles while they strongly influence the mobility profiles generated based on basic features
from the literature (cf. Section 4.1.6).

The variation in group distribution over studies can be explained by actual differences
between study populations: For example, the yumuv app attracted mainly young people
living in urban areas while the Green Class studies had a focus on suburban professionals.
An exception is the two subsets of the Foursquare dataset where only few user groups are
present. In general, it is reasonable to assume that persons in the Foursquare datasets
are rather young and live in cities, similar to users of the yumuv app. Therefore, it is not
surprising that all three datasets share the same two majority classes Flexible and Local
routine. One important difference between the datasets is certainly that many LBSN users
do not check-in at their home location. However, even though the group distribution of
Foursquare users who do check-in at home (Foursquare-Home) is closer to yumuv than the
group distribution of Foursquare-Random, it is still significantly different. Further analysis
revealed that Foursquare users rarely cover long distances and have a rather low degree
distribution β. At this point, it is still unclear to which degree these differences can be
attributed to a sample bias of the study participants or to a technical bias caused by the
characteristics of check-ins compared to GNSS tracking.

4.1 Graph-based mobility profiling 101



YUMUV Green Class 2 Geolife Green Class 1 Foursquare
Random

Foursquare
Home

0

20

40

60

80
Pe

rc
en

ta
ge

Centered
Commuter

Flexible
Local routine

Traveller

Fig. 4.6.: User groups by study. With the exception of the Foursquare dataset, the user
groups are similarly distributed. Differences can be explained by variations in the
study target group, e.g., the Green Class 1 offer attracted individuals that cover
longer distances.

Overall, we conclude that the differences in the group distribution over datasets can mainly
be explained by differences in the mobility behavior of study participants. The presented
method is therefore robust to changes in tracking techniques and reflects actual differences
in mobility behavior.

Use cases of mobility profiling in MaaS applications

After having established stable mobility profiles, we can use them to answer questions that
are typically of interest when analyzing longitudinal or cross-sectional tracking studies. Here,
we consider questions that arise around the introduction of a novel MaaS offer:

• What are the target groups for the MaaS offer? (Section 4.1.5)

• How does access to a specific MaaS offer change mobility behavior over time? (Section
4.1.5)

The yumuv dataset is very suitable for a case study due to the availability of distinct control
group (CG) and treatment group (TG), and the availability of tracking data before and after
access to the app. For the following analysis, we split the yumuv dataset into four parts:
TG-Before, TG-After, CG-Before, and CG-After (cf. Section 4.1.4). For this analysis, we
consider only participants who finished the study; after pre-processing and outlier-filtering
the TG consists of 51 users and the CG of 372 users.

These four yumuv subsets were not part of the merged datasets D that were clustered (cf.
Section 4.1.5). Consequently, the graphs of these subsets must be assigned to a user group
first. However, the final user groups Gfinal = G1, . . . , G5 resulting from the iterative group
finding and assignment procedure do not have a unique cluster center assigned to them,
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as they are the result of merging different partitions P1, . . . , P12. We, therefore, chose the
specific partition Pi out of all partitions P1, . . . , P12 with the highest correspondence to the
final user groups Gfinal, meaning that most users are assigned to the same group.

Here, in the best partition P4 (with k = 7), 95% of the users were assigned to the same
as their final user group. The graphs in subsets TG-Before, TG-After, CG-Before, and CG-
After are now assigned to a user group by finding their closest cluster center in P4, as it is
commonly done in K-Means clustering for new test data. These preprocessing steps yield a
user group for all users per subset, such that the before- and after-groups of one user may
differ.

Cross sectional comparison
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Fig. 4.7.: Characteristics of yumuv users compared to the control group. Users assigned
to the groups Flexible and Traveller are more likely to be interested in the yumuv
MaaS offer.

The assignment of user groups to each of the subsets (TG-Before, CG-Before) can now
be used for a cross-sectional analysis. For mobility service providers and more generally
the design of MaaS offers it is important to know the target group of their offer. For this
purpose, we compare the distribution of groups in the TG with the group distribution in
the CG. We do this comparison for the period before access to the app in order to exclude
possible confounding factors from the app usage that might affect mobility behavior. The
comparison in Figure 4.7 shows that persons who bought the yumuv offer (TG) are more
often assigned to the groups Flexible and Travellers, whereas the Local routine group is more
prevalent in the control group (distributions significantly different in χ2 test with p = 0.02).
These target and non-target groups can now be characterized using Figure 4.5 and using
additional information such as demographics if available (cf. Section 4.1.5).

Longitudinal study
One of the main questions with regards to the introduction of MaaS offers is if and how
they impact the mobility behavior of users (Hensher et al., 2021). The assignment of user
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groups to participants before and after the intervention allows to analyze whether the group
assignment of one user changes from the before period to the after period and allows to
compare the changes between CG and TG.

Figure 4.8 shows the changes between user groups from the period before intervention to
afterward. Each row is normalized to 1 and each cell shows the percentage of users that
were assigned to a specific group before the intervention (row label) and moved to another
group after the intervention (column label). We observe that more people in the treatment
group switch towards the Traveller group than in the control group (cf. rightmost column).
Furthermore, it seems that the Flexible group is more stable in the treatment group (cf.
the values on the diagonal for the row Flexible). However, we compared the distributions
row-wise with a χ2 test, and due to the small size of the Treatment group (51) there are no
significant differences (the lowest p-values are p = 0.09 for the changes of the former Flexible
group and p = 0.23 for former Traveller). Despite the lack of statistical significance this
analysis still serves as a show-case of how to use the identified user groups for a longitudinal
analysis. A graph-based visualization of the user group changes can be seen in Figure A.4 in
appendix A.3.3.
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Fig. 4.8.: User group changes upon intervention (start of the yumuv offer).

Cluster analysis with respect to labels
The yumuv study also included surveys that collected socio-demographic and household
information of the participants. In this section, we analyze which of these features are
significantly different for a specific group with respect to all other groups and therefore
characterize that group. Table 4.2 shows the replies for each user group for a selection
of relevant questions. Many results confirm the assumptions about mobility behavior that
determined our naming of the clusters as user groups. For example, Commuters are less
satisfied with the public transport connections to their home; they oftentimes travel by
car and are seldom in home office. Only 37% of the Commuters live in cities. Travellers
and Flexible users in contrast are younger, oftentimes live in cities and spend more days in
home office. Interestingly, the Centered group works from home significantly more often
than others. The fact that working behavior such as home office is reflected in the user
groups provides evidence for a strong influence of the home and work locations on the
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graph features. Last, the naming of the group Local routine is reflected well in the users’
self-reporting of their covered distance.

Commuter
(n=57)

Traveller
(n=39)

Flexible
(n=206)

Local routine
(n=267)

Centered
(n=84)

[pht] Age
39.11

p=0.46
37.72

p=0.351
37.86

p=0.022
40.7

p=0.059
40.65

p=0.217

Money spent on PT
(in CHF per month)

66.5
p=0.023

78.89
p=0.127

94.19
p=0.243

94.04
p=0.39

107.0
p=0.311

Home office
(in days per week)

0.86
p=0.034

1.81
p=0.007

1.31
p=0.168

0.93
p=0.003

2.19
p=0.002

Distance travelled
by car yearly (in km)

11840
p=0.106

11844
p=0.097

11039
p=0.027

7855
p=0.001

9656
p=0.413

Satisfaction with
PT reachability (%)

79.12
p=0.034

86.25
p=0.364

85.4
p=0.205

87.22
p=0.079

84.69
p=0.416

Tab. 4.2.: User group analysis with respect to demographic and mobility characteristics
from study questionnaire. The mean values are given and compared to the other
groups in a Mann-Whitney U test for continuous variables or a Chi-Squared test
for categorical variables. Significant differences are marked bold, and PT denotes
public transport. Note that all fields are self-reported in a questionnaire and not
measured in the tracking study.

4.1.6 Validation

This section provides analyses to validate the method for extraction of generalizable user
groups based on graph representations of individual mobility.

Feature robustness to study duration

An important factor in the feature selection process is their robustness to dataset properties.
Here we investigate how much the feature values depend on the tracking duration. For this
experiment, we split the Green Class 1 data into distinct bins of t = 4, 8, 12, 16, 20, 24 and
t = 28 weeks. Since the participants in the study were tracked for 56 weeks, t = 4 yields 14
non-overlapping bins and t = 28 is the maximum duration with two distinct bins. Next, we
construct the location graphs from the activity of each user in each time bin and compute
the corresponding features. In Figure 4.9 the mean feature values for all users per time bin
are shown. Our selected features (top two rows) are largely robust to the tracking period
or converge after around t = 12 in the case of degree and transition γ. In contrast, other
considered features show a strong time dependency, such as the mean Eigenvector centrality
in a graph or the clustering coefficient as proposed by (Onnela et al., 2005). Similarly,
features of human mobility that are commonly used in the literature usually depend on the
number of nodes and therefore change significantly with the tracking duration.
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Fig. 4.9.: Mean and standard deviation of different features with respect to tracking period.
The selected features are within the green box.
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Relation of graph-based and classical mobility features

Furthermore, we investigate the relation of the proposed graph features to a selection of
classical non graph-based mobility features that are commonly used to characterize mobility
behavior. These features are directly calculated from the raw data and can therefore make
use of information that is lost in the location graph, such as the order of the activities or
their duration.

Concentrating on the most widely used measures, we consider the following features, which
are termed basic features from here on:

• Number of visited locations

• Radius of gyration (González et al., 2008)

• Maximal distance from home

• Random, uncorrelated, and real entropy (Song et al., 2010a)

• Mean trip duration and distance

Except for trip distance and trip duration, we utilize the implementation in the
scikit-mobility package (Pappalardo et al., 2022).

For this experiment, we use only the datasets Green Class 1 and 2, yumuv and Geolife,
because there is no trip information available for the Foursquare datasets (only check-ins).
First, we were interested in whether clustering based on the basic features results in similar
clusters as our user groups. We cluster the basic features with k = 5 and compare the
resulting clustering to our user groups with the Adjusted Rand Index (Hubert and Arabie,
1985; Rand, 1971). Intuitively, the Rand Index is proportional to the number of pairs that
end up in the same cluster in both partitions or in different clusters in both partitions. The
Adjusted Rand Index is its normalized version that yields a value between -1 and 1. An index
of 0 means that there is no relation between two partitions while the same partitions would
yield an index of 1. Here, the similarity to our user groups is 0.08., i.e., the user groups
found with graph features are fairly distinct from clusters that are identified with the basic
features.

Secondly, Figure 4.10 depicts the mean and standard deviation of the raw features in the
proposed user groups. It can be observed that Traveller obtain significantly higher values
also in these basic features, confirming the differences between groups also with respect to
these basic measures.

We conclude that using graph features results in different user groups that can then be
analyzed with respect to classical features.

Group robustness to cluster ordering

Last, although it was shown that all clusters of 12 partitions can be reduced to five user
groups, we found that the resulting groups still depend on the order of considered clusters
during the iterative group-finding phase. For example, the first cluster is always used as G1,
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Fig. 4.10.: Distribution of basic features over the identified user groups. On the one hand,
differences in the basic features are also reflected in our user groups. On the
other hand, our groups seem to identify further differences in mobility behavior
that are hardly reflected in the basic features (e.g., group Centered).

and other clusters may be merged with this particular cluster. The properties of G1 thus
depend on which cluster is considered first. Nevertheless, we qualitatively observed a strong
stability of the resulting groups and their properties.

To quantify this stability, we perform 20 runs of the group-finding and assignment phases
with different random seeds and compare the resulting groupings to the main grouping
found in Section 4.1.5 on a per-user basis using the Adjusted Rand Index (Hubert and Arabie,
1985; Rand, 1971). In our analysis, the Adjusted Rand Index of the pair-wise comparison
of the groupings with the main grouping is 0.91 on average. Another initialization would
therefore yield a very similar output, where the resulting groups could be named in a similar
manner and a large majority of users would be assigned to the same group.

Consistency of group assignment

In the method presented in (cf. Section 4.1.3) the clusters resulting from the different runs
are assigned to groups. A user can therefore belong to clusters that are assigned to different
groups and is finally assigned to the group that most of his clusters are assigned to (cf.
Section 4.1.3).

We now analyze how consistent this assignment is by computing a consistency score that
indicates how often a user belonged to its most dominant group. The score is calculated by
counting the number of times a user was assigned to its majority group divided by the total
number of assignments.

In our case study, the average consistency score over all users is 0.87, i.e., an average user
is assigned in 87% of the runs to its most dominant group. 80% of the users obtain a
consistency greater than 0.9.
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4.1.7 Conclusion

Research on mobility behavior oftentimes suffers from a lack of reproducibility and trans-
ferability. Big tracking datasets are inherently noisy and usually unlabeled, and proposed
methods do not generalize to other datasets. Here, we have presented an attempt to develop
a generic clustering approach that yields stable mobility behavior groups on several diverse
datasets. In contrast to previous work, we base our analysis on a compact graph representa-
tion of the tracking data, which 1) reduces memory resources needed to store long-term
tracking data, 2) facilitates the comparability of different datasets, and 3) captures other
aspects of mobility behavior than time-series based basic features. Based on six features that
were shown to be particularly robust with respect to the time period, we apply a clustering
algorithm multiple times and extract stable and interpretable user groups in an iterative
fashion based on statistical testing.

Our analysis showed that five groups could consistently be found in the six datasets, which
differ by the complexity, the role of home bases, and the geometric extent of their mobility
behavior. All user groups can be found in all studies except Foursquare, despite significant
differences in the tracking quality, duration, and user demography of the studies. These
user groups were also shown to be robust to the clustering parameters, consistent, and
seem to depict novel aspects of mobility behavior that are not contained in classical mobility
features. It is still unclear to what degree the differences of the Foursquare data are due to
a sample bias of highly active urban LBSN users or due to systematic differences between
GNSS based and check-in based tracking data. However, the Foursquare datasets did not
generate exclusive user groups and could still be described by our framework. Furthermore,
it could be shown that differences of the distribution of user groups also reflect differences
of the target groups of each study. Such analysis is of interest to providers of MaaS offers
to direct their services to the right people. Similarly, it could be shown that the effect of a
MaaS offer on mobility behavior can be viewed in the context of user group changes over
time. While a detailed analysis of the changes of location-graphs over time is out of scope
of this paper, it is an interesting endeavor for future research. While the cluster analysis
can be used to describe the change in mobility behavior over time, we noticed that this
description of mobility behavior exhibits a higher volatility than expected, i.e., up to 50%
of users change their group from one slot to the next. A possible reason for this could be
that the mobility behavior did not fully stabilize after the considered tracking duration or
clusters are overlapping which may lead to a certain number of samples that lie between two
clusters and thus easily switch clusters over time. Further work could explore the possibility
to connect our clustering approach with soft assignments where each sample belongs to
multiple groups with certain probability.

Finally, it should be stressed that much of the proposed methodology is by no means
restricted to mobility research. Some of the proposed features could be relevant in other
fields where data is represented in graph structures, such as molecules in biology or computer
networks (e.g., hub size as a descriptor of network activity). More importantly, clustering
is a popular method used in many fields, and the identification of stable, statistically valid
groups is a common problem. Our algorithm is a simple yet effective method to make
clustering results more generic and reproducible.
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Abstract
Automatic location tracking of people has recently become a viable source for mobility and
movement data. Such data are used in a wide range of applications, from city and transport
planning to individual recommendations and schedule optimization. For many of these
uses, it is of high interest to know why a person visited at a given location at a certain point
in time. We use multiple personalized graphs to model human mobility behavior and to
embed a large variety of spatio-temporal information and structure in the graphs’ weights
and connections. Taking these graphs as input for graph convolutional neural networks
(GCNs) allows us to build models that can exploit the structural information inherent in
human mobility. We use GPS travel survey data to build person specific mobility graphs and
use GCNs to predict the purpose of a user’s visit at a certain location. Our results show that
GCNs are suitable to exploit the structure embedded in the mobility graphs.
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4.2.1 Introduction and related work

In recent years, human mobility analysis has become increasingly important since it is
closely associated with opportunities (e.g., on-demand travel and shared mobility services,
location-aware recommender systems) and challenges (e.g., traffic congestion, air and
noise pollution, decisions on transportation infrastructure investments) in modern society.
Advanced information and communication technology presents a unique opportunity to
better understand highly complex mobility behavior (Urner et al., 2018). Specifically,
the prevailing availability of Global Navigation Satellite System (GNSS) based movement
trajectory data allows low-cost collection of trajectory data from very large numbers of
participants over long periods of time. To take advantage of the available data, researchers
both from domain sciences and machine learning are developing methods for cleaning raw
data, identification of trips (i.e., movements) and activities (i.e., staypoints), and prediction
of transport modes and activity types (Chen et al., 2016a; Zheng, 2015).

Previous studies have proposed a number of methods to identify activity types from various
trajectory datasets (Chen et al., 2016a; Liao et al., 2006; Liu et al., 2013). For instance,
Montini et al. (2015, 2014) trained a random forest model on GPS trace data to improve
trip purpose identification and Chen et al. (2018) and Zhao et al. (2017) used Bayesian
theory-based models to infer trip purposes using taxi trajectory data. However, these studies
often neglect high regularity of human activity patterns while predicting activity types and
mostly rely on extracted features of activities (e.g., average stay duration, time of day, points
of interest in the vicinity, etc.). In this paper, we propose a new method based on graph
convolutional neural networks (Defferrard et al., 2016) for the prediction of activity types
(i.e., trip purposes) from GPS trajectory data generated by personal smartphones. This
allows incorporating the high regularity of human mobility in terms of locations visited at
specific times of day and the frequency of observed direct trips between two locations (Song
et al., 2010a). For example, a person might prefer to go grocery shopping at their favorite
supermarket after work every Friday; and such regularity in behavior is potentially useful
for inferring activity types from location data. To the best of our knowledge, this is the
first application of GCNs for the task of predicting activity purposes from trajectory data.
Furthermore, we use a unique dataset that includes raw trajectories from 139 users over
one year in Switzerland, in which the participants labeled each staypoint with the purpose
of their visit.

4.2.2 Data and methods

Data

We use semantically enriched tracking data from the SBB Green Class pilot study4. Here, 139
Swiss users were tracked over the course of one year with an app on their smartphone. The
tracking app5 segmented the movement data into staypoints (a user does not move out of a
4https://www.sbb.ch/de/abos-billette/abonnemente/greenclass/ueber-sbb-green-class/
pilotprojekte.html

5https://motion-tag.com/en/mobility/
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Fig. 4.11.: To create activity areas (Ai) from individual staypoints, we employ a DBSCAN
clustering algorithm. Activity areas can be connected (wi,j) in various ways,
e.g., with their weights corresponding to the number of times a user directly
traveled between two activity areas. The labels of the activity areas correspond
to the distribution of the underlying staypoints.

certain area during a given period) and movement trajectories and presented it to the users
for validation and labeling. The trajectories are labeled with the used mode of transport and
the staypoints with an activity purpose lp ∈ {home, work, errand, leisure, wait}. The study
participants generate between 2 and 20 staypoints every day which results in between 2000
and 4000 staypoints per user over the course of the tracking period.

Methods

Activity areas
From prior work on human mobility analysis, we know that humans tend to visit a fixed set
of spatial locations that evolves over time (Alessandretti et al., 2018; Song et al., 2010a). To
exploit the spatio-temporal patterns and structure that lies within human mobility and the
sequential visits of these places, we explicitly model the human mobility behavior between
these locations. Based on the point-cloud like staypoint data, we create frequently visited
places which we call activity areas using the DBSCAN clustering algorithm (Ester et al.,
1996; Jonietz and Bucher, 2018).

Graph network construction
To exploit the spatial information encoded in the relation between activity areas and the
spatio-temporal structure that lies within the sequential visit patterns, we construct a set
of person-specific, undirected, and connected graphs Gu,j = (Vu, Eu,j). We define Gu,j

as the jth mobility graph of user u with a user specific, finite (|Vu| = nu) set of nodes
Vu = {Vu,i}, i ∈ [1, 2, ..., nu], where nu is the number of nodes per user and Vu,i denotes
a specific node of that user. The nodes are connected with m sets of weighted edges
Eu,j , j ∈ [1, 2, ..., m]. For every graph Gu,j we define Wu,j ∈ Rnu×nu as its weighted
adjacency matrix.

To construct the mobility graphs for one user, we define every activity area as a node Vu,i in
his graphs Gu,j (cf. Figure 4.11). The creation of a simplified graph by clustering (spatially)
similar staypoints to activity areas can be interpreted as a coarsening step comparable to the
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graph coarsening step from (Defferrard et al., 2016). To showcase the ability of the GCNs
to learn on different graphs (with the same set of nodes), we use two different definitions
of spatio-temporal connectivity to create the edges between the nodes. Specifically, we use
the transition frequency between nodes and the spatial (Euclidean) distance between all
nodes as two different sets of weighted edges. The transition frequencies are calculated
by counting how often a user directly traveled between two activity areas. Other suitable
definitions for the edges between nodes could be based on the travel times (e.g., one graph
per mode of transport), angles, ticket prices, or soft similarity measures such as cultural
similarity.

Feature extraction

For each node (activity area) Vu,i, i ∈ (1, 2, ..., nu), we extract 30 features6 based on the
aggregated information of the associated staypoints. Similarly, we assign labels to the nodes
based on the aggregated staypoints. This process is visualized in Figure 4.11 on the right.
Staypoints associated with the same node can have different labels; we therefore assign a
distribution over all classes to each node. The probability of label lp at node i (short for
Vu,i) is defined as pi,lp

= ni,lp
/ni, where ni is the number of all staypoints and ni,lp

is the
number of staypoints with label lp at the node i. As the node labels are unbalanced, we
introduce sample weights based on the inverse label weights wlp

= nL/(|L| · nlp
) (where

nL is the cumulative weight of all labels and nlp
is the cumulative weight for a single label

lp ∈ L). These are later used to compute a weighted cross-entropy loss as the cost function.
Out of the 136 users we select a subset of 82 users with similar labeling behavior (number
of staypoints per class is over 100). During the experiment, we randomly select 41 out of
the 82 users for training, 5 users for validation, and 36 completely unseen users for testing.
Additionally, we standardize all training features by removing their mean and scaling them
to unit variance and apply the standardization estimated on the training data to the test
data.

Activity purpose imputation

The breakthrough success of convolutional neural networks (CNN) in many areas like image,
speech, text, or video processing (Karpathy et al., 2014; Kim, 2014; Krizhevsky et al., 2012)
is based on their ability to exploit the structure that lies within the data by using self-learned
instead of handcrafted features. In recent publications, the concept of GCNs emerged to
generalize this ability to arbitrary graph structures and manifolds (Bronstein et al., 2017;
Defferrard et al., 2016). Applications of GCNs on traffic forecasting (Cui et al., 2019b)
and human action classification (Yan et al., 2018) showed the potential of GCNs to use
information embedded in the graph structure and to exploit spatio-temporal structure for
their task.

6Mean stay duration, maximal duration, minimal duration, total number of staypoints within Vu,i,
mean longitude and latitude, average distance to public transport stops (train, tram, bus), distribution
of arrival and departure time at staypoints (classified into night, early morning, late morning, early
afternoon, late afternoon, early evening, late evening), and the distribution over weekdays and weekends
(Mon-Sun).
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Fig. 4.12.: The computation graph used within this work: The transition and distance
graphs are each convoluted twice (layer sizes of 400 and 200). Their outputs are
then combined using a weighted sum (layer size 50). Finally, a fully connected
layer produces the output label distributions.

We follow the approach of (Defferrard et al., 2016) to approximate graph convolutions
formulated in the Fourier domain using a truncated expansion in terms of Chebyshev
polynomials. As it was done in (Kipf and Welling, 2016), we only use the first-order
approximation. For readability we now consider only the mobility graphs of a single user
and omit the index u, however, all graph-related parameters stay user-specific. This results
in the following propagation rule for graph convolution layers:

H
(l+1)
Gj

= σ(D− 1
2

j WjD
− 1

2
j H

(l)
Gj

M (l)) (4.3)

where l is the layer index, H l
Gj

is the input from the previous layer with H0
Gj

= Xj (corre-
sponding to the input feature matrix of graph Gj), Dj is the degree matrix corresponding
to the weighted adjacency matrix Wj . Dj is used to normalize the weighted adjacency
matrix. M (l) denotes the weight matrix for the lth neural network layer and σ(·) is the ReLu
activation function. Note that the network parameters M (l) are independent of a specific
graph Gj (or user). Figure 4.12 shows the network used in this work. We employ two
graph convolutional layers on each of the two graphs (G1 and G2, one graph for every set of
edges), whose outputs are then combined using a weighted sum:

H(S) = H
(2)
G1 M

(S)
G1 + H

(2)
G2 M

(S)
G2 (4.4)

Finally, a fully connected layer creates the label predictions Y = H(S)M (Y ) + b(Y ) (where
b(Y ) denotes a bias term).

4.2.3 Results

The here presented model predicts a distribution of labels for each activity area Vu,i. To
measure the performance of our model we employ the earth mover’s distance (EMD; also
referred to as the Wasserstein metric) (Rubner et al., 1998). In essence, this metric reports
the minimal shift of probability masses required to reach a given target distribution from
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Tab. 4.3.: EMD comparison of different models.

Learning Method EMD

GCN 0.076
MLP 0.097
RDF 0.146
RDF (regression) 0.146
Average Label Distr. 0.200

a predicted one. Table 4.3 shows the results for the here introduced GCN, for a multi-
layer perceptron (MLP), a random forest (RDF) classifier, a multi-output random forest
regressor and as a baseline, the average label distribution for each node7. All classifiers can
outperform the trivial baseline and both neural network implementations outperform the
random forests which might be because the random forests can not take advantage of the
additional information provided by the soft class labels.

The GCN performs better than the MLP implementation, even though both are trained
and tuned similarly. This indicates that the GCN can take advantage of the additional
information embedded in the graphs (connections and weights) and use them to exploit
local structure.

4.2.4 Conclusion and future work

In this work, we presented a GCN-based approach for imputing human activity purposes
from GPS trajectory data. Our results show that we can use multiple personalized graphs to
model human mobility behavior and embed a large variety of spatiotemporal information
and structure in their weights and connections. We could also show that we can exploit this
structure using GCNs.

For our future work on the exploitation of spatio-temporal structure using graph-based
modeling in combination with GCNs, we plan to experiment with different graph-building
methods and compare them to the clustering approach applied in this work. For example,
the here presented study merely considers the features of staypoints for predicting activity
types. Taking into account other contextual information (e.g., points of interest or the road
network) could significantly influence the predictive powers of a GCN model. Finally, we
would like to analyze the impact of using more complex GCN models (e.g., use a kth-order
approximation instead of a first-order approximation for the graph convolution).

7MLP: implementation in TensorFlow, cross-entropy-loss, parameters: 3 layers (400,200,50), dropout:
p=(0.8,0.5) between layers; RDF classif.: implementation only supports one-hotted label training,
parameters: trees=500, balanced+scikit learn default; RDF reg.: output normalized that classes add
up to 1, parameters: trees=500+scikit learn default. All classifiers except for the GCN only use the
node features.
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Abstract
The introduction of battery electric vehicles (BEV) and the expansion of rooftop photovoltaic
(PV) power generation are both progressing at a fast pace to decarbonize the transport and
the energy sector in Switzerland. These parallel developments have an enormous synergy
potential as the actual decarbonization impact of BEVs depends heavily on the carbon
footprint of the power source and the PV expansion requires local storage as a buffer to
reduce negative impacts on the distribution grid. We present an empirical analysis based
on a detailed 10-month data set of the charging and mobility behavior of 78 BEV users
in Switzerland. It is combined with a fine-grained digital surface model of Switzerland to
extract the detailed roof geometry and the corresponding rooftop PV generation capacity of
each of the BEV owner’s houses.

We test four different smart charging strategies with a varying degree of complexity and find
that when charging uncontrolled (the strategy used during the study), BEV owners can only
cover 15 % of their BEV’s demand using PV generated from the roofs of their own houses. A
simple controlled charging approach greatly increases the average coverage to 56 % and
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up to 90 % or 99 % when using an optimized charging strategy without or with a home
battery storage. All charging strategies ensure that the individual mobility behavior of the
BEV owners is not affected.

We further show that using rooftop PV power generation for BEV charging has a large
potential to further decrease the climate impact of BEVs and propose simple adjustments to
consider in charging strategies that help to increase the owners’ PV consumption.

∗ Equal contribution
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5.1.1 Introduction

In light of the threatening progression of climate change, 196 countries have negotiated the
Paris Agreement and committed to keeping the global temperature increase to well below
2°C compared to pre-industrial levels (UNFCCC, 2015). To reach this goal, the committing
countries formulated national emission targets and measures to achieve decarbonization
of their economies. For example, China plans to peak in carbon emissions in 2030 and to
achieve carbon neutrality by 2060 (The Economist, 2020), the EU adopted the European
Green Deal (a set of measures to achieve climate neutrality in 20501) and Switzerland passed
the Climate strategy 2050 that also targets climate neutrality in 2050.

These examples sound promising; however, we are currently losing the global fight against
climate change. There is a significant gap between the emission reduction that is achieved
if all countries implement their proposed measures and the emission reductions that are
required to achieve the goals of the Paris Agreement. This is even true under the considera-
tion of the impact that the COVID-19 global pandemic had on the world’s economy (Olhoff
and Christensen, 2020). As of 2021, only two larger countries (Morocco and Gambia)
are considered to be on track to achieve the stricter 1.5°C target of the Paris Agreement,
and of the eight countries that fulfill the 2°C goal India is the only one that is part of the G202.

Joint decarbonization of the transport and electricity sectors

This makes it clear that we must drastically increase our decarbonization efforts. A major
contributor to climate change is the transport sector where the overwhelming majority of
energy demand (e.g., 93.7 % in Switzerland (BFE, 2019b)) is covered by fossil fuels. From
today’s perspective, the most promising path to a fast decarbonization of the transport sector
and especially of individual mobility is given by the introduction of BEVs (Haasz et al.,
2018). However, the decarbonization potential of BEVs strongly depends on the emissions
of the power used for charging (Casals et al., 2016; Hawkins et al., 2013). This makes the
parallel decarbonization of the electricity sector a prerequisite for the decarbonization of the
transport sector using BEVs.

The decarbonization of the electricity sector relies mainly on the large-scale integration
of wind and solar power into the energy system while their relative importance varies
depending on the geographic location (Lu et al., 2009; World Bank, 2020). Globally,
installed photovoltaic (PV) generation grows faster (Breyer et al., 2017) and is expected
to be the main driver of the expansion of renewable energy generation (IEA, 2020a). In
contrast to wind power generation, small roof-top PV systems installed on the roofs of
private homes play a major role in this growth. For example, in Germany, the share of
non-utility scale systems (< 100 kWp) is close to 50 % of the total installed PV generation
capacity (Philipps and Warmuth, 2020).

1https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
2https://climateactiontracker.org/countries/
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Grid impact of PV and BEV growth, and impact mitigation strategies

A possible obstacle for the fast growth of PV generation and the quick introduction of BEVs
is given by the stability of the distribution grid. Both phenomena, large-scale roof-top PV
generation and the simultaneous charging of BEVs are possibly threatening the distribution
grid stability as they introduce high and intermittent generation capacity and consumption
into the grid (Clement-Nyns et al., 2010; Luthander et al., 2015).

One idea to mitigate the negative grid impact of rooftop PV generation and BEV charging at
the same time is to charge the BEVs directly using power generated from rooftop PV systems
installed on the BEV owners’ home (Hoarau and Perez, 2018). In this case, the power is
used directly where it is generated without entering and stressing the distribution grid. This
idea is especially important for BEV charging as the majority of the BEV charging processes
are undertaken at home (Mwasilu et al., 2014).

Another advantage of the use of residential rooftop PV for BEV charging lies in the potential
for faster decarbonization of the transportation sector. The reason for this is that the
self-consumption of rooftop PV has considerably lower GHG emissions than most other
electricity sources (Fthenakis and Raugei, 2017; Fthenakis et al., 2008) and especially than
the electricity generation mix of most countries.

Research gaps and contributions

In an optimistic, hypothetical future, a large share of the individual energy demand could be
covered by PV cells that are installed directly on each person’s house, as this could reduce
the complexity and required capacity of the electric distribution grid and would increase the
decarbonization potential of BEVs. Several studies consider the self-consumption potentials
of individually generated renewable energy (Luthander et al., 2015) however, there is a lack
of studies that analyze the combination of high-resolution BEV charging data with detailed
PV generation models (Shepero et al., 2018). It is therefore still unknown how well the
individual electricity demand for mobility can be covered when considering the intersection
of when the BEV is at home and available for charging and the availability of PV generation
at these times.

To fill this gap this study analyzes what share of the energy demand of a BEV can be covered
by rooftop PV generation installed on the house of the BEV owner. This study has the
following main contributions:

• We use a high-resolution data set of 78 BEVs that includes GPS position information,
information about the battery’s state of charge (SoC), and about the charging activity
to calculate the energy demand of each of the BEVs over time.

• We estimate the potential rooftop PV generation based on a high-resolution digital
surface model in combination with building footprints to extract the surface, tilt, and
aspect of the roof of the actual house of every BEV owner. This allows us to create a
PV generation profile with a half-hour resolution for each house.
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• We match the potential PV energy generation with the recorded BEV usage of each of
the 78 households and then analyze to what extent it is possible to fuel their BEVs
with self-generated power.

Our study confirms findings of more theoretical work, e.g., by Munkhammar et al. (2013)
that there is only a limited potential for increased self-consumption for BEVs if they charge
uncontrolled. However, we can extend these results and demonstrate that this potential is
greatly enhanced if an appropriate charging algorithm is used.

Paper outline

In the next section, we review previous research related to our case study. Section 5.1.3
explains the data used in detail and highlights strengths and weaknesses of the dataset. In
Section 5.1.4 we explain how the data sources are integrated, in particular the different
movement and mobility tracking data, as well as the data from the building and PV produc-
tion models. Finally, section 5.1.5 presents the results. In the last sections we discuss our
findings, potential generalizations and conclude the paper by providing an outlook on future
research.

5.1.2 Background

Decarbonization paths for the transportation sector

The energy consumption of the transport sector is still mostly covered by fossil fuels. Globally,
we use about 32 % of our energy for mobility and transport. Out of these 32 % only about
3.3 % are covered by renewable energy sources (REN21, 2020).

On a European level road transportation accounted for 26 % of the EU GHG emissions in 2018
and was the only energy sector that has increased its GHG emissions since 1990 (Pilzecker
et al., 2020). The situation in Switzerland is similar where the transport sector is with
32.4 % of the GHG emissions the largest emitter (Schilt, 2020).

With regard to these numbers, it is clear that a quick decarbonization of the transport sector
has to become a high priority in view of reaching the goals formulated in the Paris Agreement.
Among the strategies to decarbonize the transport sector, we find soft incentives targeting
mobility behavior (Bucher et al., 2019b; Cellina et al., 2019; Froehlich et al., 2009), policy
interventions that use a top-down governing approach (Nash and Whitelegg, 2016), and
technological innovations such as synthetic fuels (Çabukoglu et al., 2019; Küng et al., 2018)
or battery improvements that foster quicker transitions to electric vehicles (Hu et al., 2017).
While many of these proposals consider a wide range of different decarbonization measures,
our study focuses only on BEVs as electrification is likely to be the main factor for the
decarbonization of transport. Ruhnau et al. (2019) summarize their review of 22 scenarios
from 12 independent studies about possible decarbonization paths as: “the more the
emissions are to be reduced, the more road transport is expected to be electrified” (Ruhnau
et al., 2019, p. 997). At this point, it is important to mention that the environmental impact
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of BEVs will depend on the conditions under which the battery was produced (McManus,
2012; Saner et al., 2013) and on the emissions created to generate the energy necessary for
charging the BEV (Faria et al., 2013).

It is estimated that by 2030 approximately 20 % of all vehicles in Switzerland will be
electric (Haan and Bianchetti, 2016), a value that changes to around 6 % (or 125 million
vehicles) globally (Bunsen et al., 2018). This is driven by the desire of many people to travel
and behave more sustainably, but also because the costs for BEV batteries are falling rapidly
and are expected to decrease further (Nykvist and Nilsson, 2015).

Grid impact of battery electric vehicles

Apart from the mostly positive impact on CO2 emissions, BEV charging has a potential impact
on the stability of the distribution grid (Clement-Nyns et al., 2010; Hoarau and Perez, 2018;
Richardson, 2013; Stiasny et al., 2020). Clement-Nyns et al. (2010) propose and evaluate
coordinated charging strategies for BEVs to keep the impact of residential distribution grids
within bounds. They find that BEV penetration levels of 10-30 % already significantly impact
power losses and grid voltages, which can be counteracted to some degree by coordinated
charging strategies. On the other hand, the smart chargers of BEVs could even be used to
help stabilize the grid, especially considering that vehicles are typically unused 23 out of 24
hours per day (Zah and Haan, 2012).

Photovoltaic potentials and self-consumption of solar power

A potential solution to both problems, the slow decarbonization and potential grid impact
of a BEV large-scale roll-out is utilizing the distributed nature of many renewable energy
sources and charging the BEVs using locally generated power. As Luthander et al. (2015)
note, problems arising from high penetration of distributed intermittent power generation
such as the threat to exceed voltage limits can be mitigated with increased self-consumption
of the distributed generation and Hoarau and Perez argue that BEVs in combination with PV
systems can lead to higher self-consumption (Hoarau and Perez, 2018).

Of particular interest for distributed generation are PV installations on rooftops. Researchers
explored the automatic extraction of rooftops from satellite or remote sensing imagery, e.g.,
Wiginton et al. (2010) analyze the PV potential in Ontario, Canada, and find that approx.
30 % of the region’s energy demand could be met using on-house PV installations. Similarly,
Ordóñez et al. (2010) classify satellite imagery by hand to estimate the potential of PV
energy in Andalusia, Spain and find that around 80 % of the residential housing sector
energy demand could be covered. Several studies computed the rooftop PV potential in
Switzerland. In (Buffat et al., 2018a), the rooftop PV potential was modeled based on a
detailed digital elevation model and building footprints. They estimated the PV energy
potential in the range from 48.6 TWh to 58.8 TWh if the rooftops of all buildings within
Switzerland would be covered by PV panels and assuming a conversion efficiency from
solar irradiation to generated electricity of 10.33 %. Compared to the total Swiss electricity
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consumption of 58.3 TWh in 2015, this is a considerable amount. Note that especially in
regions like Ontario or Switzerland, solar irradiation is largely dependent on the seasons
of the year3. As costs of PV panels have dwindled over the last decade, more and more PV
installations are available. It is aimed that PV energy will contribute at least 11.4 TWh by
2030 and at least 34 TWh by 2050 to the total energy demand of Switzerland (BFE, 2020,
2019a).

With dropping prices for PV panels, it becomes increasingly interesting to add batteries to
individual homes in order to further decrease the stress on the grid and bridge cloudy days.
These batteries have the potential to reduce peak loads, especially in combination with
smart meters and adaptive control systems (Mahmud et al., 2018). Regarding the direct
influence on electric mobility, Buffat et al. (2018b) analyzed the effects of home-installed
batteries on the provision of energy for BEVs used for commuting. The study shows that
vehicles are concentrated during working hours in areas with a high workplace density
while a significant share of the PV production is in suburban areas. Using home-installed
batteries would enable using the produced PV energy locally without the grid. However, as
this study used no real trajectories of BEV the assumed charging scenarios could not reflect
the spatio-temporal characteristics of PV energy production and BEVs.

Effects of self-consumption on the decarbonization of the mobility sector

(Mohammadi and Taylor, 2017) show that human mobility and power consumption in
buildings are strongly related. Using the battery from electric vehicles to increase the
self-consumption of a household is seen as difficult because of the low coincidence between
PV generation and the charging of electric vehicles (Munkhammar et al., 2013). It was
also shown previously that changing mobility behaviors in combination with the provision
of PV energy provides important steps to reach lower greenhouse gas emissions and thus
fulfills the goals of various energy strategies (Bucher et al., 2019a; Buffat et al., 2018b).
However, the question stays how much residential roof-top solar power may contribute to the
decarbonization of the mobility sector by charging electric vehicles. Also, the multi-modality
of transportation and flexible working concepts like home office are forecasted to increase
in the future (the latter even received an unexpected boost due to the global COVID-19
pandemic), which could unlock new potentials for the usage of BEV charging to increase
residential self-consumption.

3To help people plan individual PV installations, a number of online calculators and estimators are avail-
able such as www.sonnendach.ch from the Swiss Federal office for energy or www.solarpotenzial.ch
from a local grid and power plant operator.
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5.1.3 Data

Mobility data

We analyze the energy consumption from BEV usage, based on Swiss BEV users who
participated in the SBB Green Class E-Car pilot study4 from Feb 1st to Dec 23rd, 2017.
Participants of the study were equipped with a comprehensive Mobility as a Service (MaaS)
package, containing (among others) a general public transport pass valid everywhere in
Switzerland and a BEV for their personal use. Participation in this pilot study required paying
a participation fee of 12’200 CHF, which led to a sample of participants with above-average
income who travel more than the average Swiss person (Martin et al., 2019a). All study
participants had access to a garage to install a home-charging station for the BEV, 83 % of
the participants lived in single-family homes and all participants had access to more than 1
car at a household level (including the E-Car), however, participants had to pledge that at
least 80 % of all drives of the BEV are done by themselves. The original Green Class E-Car
pilot study had 144 participants of which we excluded participants who dropped out of
the study early, who never used their BEV, users who could not be matched to houses (see
Section 5.1.4), users who were matched to vacation homes or work locations (distinguished
based on mobility patterns) and users with too large houses that resulted in PV system sizes
with peak generation capacities over 30 kWp. For the remaining 78 users we also exclude the
data between the 24st of December and the 31st of December because of low data coverage
during these days. Furthermore, about 5 days of data are missing for most users in late
September and early October (Martin et al., 2019a). These days are therefore also excluded
from the study. Figure 5.1 shows the percentage of cars that are at the home location for
every hour of the day over the full study period. The Figure allows to draw conclusions on
the usage behavior of the study participants as it shows distinct usage patterns during the
night and during the day as well as during the week and on week-ends.
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Fig. 5.1.: Share of BEVs at home or not at home

4More information about SBB Green Class can be found under www.sbb.ch/en/travelcards-and-
tickets/railpasses/greenclass/pilotprojects.html.

126 Chapter 5 Supporting sustainability of personal vehicles

https://www.sbb.ch/en/travelcards-and-tickets/railpasses/greenclass/pilotprojects.html
https://www.sbb.ch/en/travelcards-and-tickets/railpasses/greenclass/pilotprojects.html


The BEV of the participants records data event-driven and creates a new entry when the
engine is started, the engine is stopped, the car starts charging or the car stops charging. For
the start and the end of every entry, the following relevant information is stored: Timestamp,
mileage, SoC, and geographic position. The entries are labeled as either charging, driving,
pausing or gap. In total, the data set of the 78 used BEVs contains 189’446 entries with
77’065 drives and 19’867 charging processes and covers a total distance of 791’273 km. This
corresponds to an average of about 10’145 km per car accumulated over 10 months.

Data used for solar irradiation estimation

The Federal Register of Buildings and Dwellings 5 contains for each building in Switzerland
associated properties such as a unique identification number, the coordinates of the building,
the complete address, or the building type (e.g. if it is a single or multi-family house).
In combination with the home addresses, we can match each participant to a building.
However, the register does not contain the exact building footprint or rooftop shape (i.e., its
slope and orientation), which is required for an accurate estimation of the PV potential. We
retrieve building shapes from the swissBUILDINGS3D 2.0 dataset of the Federal Office of
Topography6. This dataset contains the most current building data available for Switzerland
and includes 3D vector data for each building. Furthermore, to model the shading effects
of canopy and topography we use a digital surface model (DSM) with a resolution of 0.5
meters derived from LIDAR data (Buffat, 2016). To extract the PV potential in 2017 (when
the mobility data was recorded), we additionally utilized solar irradiation data as provided
by the Satellite Application Facility on Climate Monitoring (CM SAF) Surface Solar Radiation
Data Set – Heliosat (SARAH) (Müller et al., 2015). This dataset contains direct as well as
diffuse solar irradiation data derived from weather satellites and covers Switzerland with
a spatial resolution of 0.05◦, corresponding to rectangular grid cells of roughly 3.8 km ×
5.6 km, and provides one data point for each cell every 30 minutes. Additionally, to estimate
the efficiency of PV cell we use hourly ambient temperature data from MeteoSwiss weather
stations extracted from IDAweb7.

Combining the building footprint, DSM and solar irradiation data (cf. (Buffat et al., 2018a))
lets us compute accurate energy production values for each building in intervals of 30
minutes.

5More information can be found under https://www.bfs.admin.ch/bfs/en/home/ registers/federal-
register-buildings-dwellings.html

6More information can be found under https://shop.swisstopo.admin.ch/en/products/ land-
scape/build3D2

7More information can be found under https://www.meteoschweiz.admin.ch/home/ service-und-
publikationen/beratung-und-service/datenportal-fuer-lehre-und-forschung.html
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5.1.4 Methods

Mobility data preparation

We preprocess the BEV tracking data in two steps. At first, we fill in missing tracking
locations, then we aggregate all entries where the BEV is successively at the home location
or not at the home location of the user.

Out of all available BEV entries 34 % have a missing start and/or end location. However,
we can define rules to fill in trivial missing locations that leverage the available location
information and the reading of the mileage counter. Given a BEV, we define the following
rules about its starting location li

start and its stopping location li
stop for a tracking entry i:

li
start = li

stop ∀ ∆mi = 0

li
stop = li

start ∀ ∆mi = 0

li
start = li−1

stop

li
stop = li+1

start

with ∆mi being the difference of the mileage counter between the start and the end of the
same segment. The first two rules state that the car is still at the same location when the
mileage counter has not changed, the third rule states that a car starts at its last stopping
location, and the last rule states that a car stops at its next starting location. If any of the
right-side locations is known, we can use it to fill in the left counterpart. These rules are
sufficient to fill 61% of the gaps which leaves 13% of the total tracking entries without
complete location information.

In the next preprocessing step, all BEV entries of a user are aggregated into segments where
the BEV was continuously either at the home location or not at the home location. For this
we label the tracked locations as at home if the car is less than 500 meters away from the
users’ home location as it is defined in Section 5.1.4. The threshold of 500 meters is chosen
relatively high because the BEVs are often parked in the garage which leads to a higher
than usual GPS localization error. We then aggregate all information of all entries when a
BEV was continuously at home or not at home into one new entry that we call segment. We
especially keep the first starting time of an entry and the last ending time of an entry as the
start and end time of the segment, the total energy consumption within the segment and the
difference in the SoC of the first and last entry of the segment.

A one-week example of a single BEV user can be seen in Figure 5.2. Here the dark green
patches correspond to segments where the BEV was at the home location and the light green
patches correspond to the segments where the BEV was not close to the home location. The
black line shows the SoC of the BEV over this period and the blue line the theoretical PV
generation available at the house of the BEV owner (see Section 5.1.4 for information about
PV generation).
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Fig. 5.2.: Exemplary week of a single user showing the usage of the BEV as well as the
energy production by rooftop PV. In this recorded charging pattern (i.e., the
baseline scenario, as explained below), it would be beneficial to not immediately
recharge the car to the maximum, but instead wait for periods of increased PV
energy generation.

Energy demand of the BEV

The BEV provides data about the SoC at the beginning of a drive and at the end of a drive,
as well as the consumed energy. However, we do not know exactly how much energy is
required to fully charge the BEV based on a specific SoC. We take advantage of the large
amount of data we have access to and determine how much energy is required to fully
reload the BEV as the solution to an ordinary least squares problem:

α̂ = arg min
α

||y − Xα|| (5.1)

For the fit we exclude outliers where either the SoC or the consumed power are ≤ 0 and
we enforce the intercept to be 0 to account for the physics of charging, meaning that there
is no change in the SoC if no power was consumed. We chose a polynomial with a square
root term in order to account for the small bend close to zero. Therefore, in our case y in
Equation 5.1 is the consumed power during one drive and X is the data matrix that was
combined using the vector of the change in the SoC and the vector of the square-root of the
change in the SoC. Figure 5.3 shows a hex bin plot of the data together with the polynomial
fit and a linear fit as a reference. The result of the least squares regression is:

Consumed power = 0.293 kWh · ∆SoC + 0.232 kWh ·
√

∆SoC (5.2)
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This method assumes that the battery capacity of the BEVs of all users is constant over the
study period. All our study participants use the same (newly bought) type of BEV; however,
we are neglecting ageing and temperature effects.
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Fig. 5.3.: Scatterplot of the difference of the SoC before and after a drive and the consumed
energy.

Over the whole study period the 78 BEVs consume and charge a total of 134.03 MWh of
which 80 % is charged at home. Figure 5.4 (left) shows the average daily demand of all
study participants and its 95 % confidence interval. This Figure shows that there is a slight
seasonality in the consumption data such that participants consume more per week in cold
months. Figure 5.4 (right) shows the daily energy demand for mobility over the course of
the study and aggregated per weekday. It reveals the aggregated demand does not depend
on particular weekdays which have median values between 6.28 kWh and 6.56 kWh with
the exception of Sundays where the demand is considerably lower with a median value of
4.63 kWh.

PV generation

To estimate the PV energy production potential of rooftops, we use building footprints, a
custom-created DSM, and satellite-based spatio-temporal solar irradiation data (at a spatial
resolution of roughly 5 km and a temporal resolution of 30 min). We calculate the solar
irradiation for each cell of the DSM within a building footprint for every 30 min during the
case study period taking the shadowing effects of neighboring buildings and topography into
account. Thereby we assumed that the complete roof can be used for PV generation. As the
available technology impacts the overall electricity generation, we model the PV generation
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Fig. 5.4.: Daily energy demand of the electric vehicles of study participants. On the left,
the average demand and its 95% confidence intervals are shown over the course
of the study. The data shows a week of excluded data in the beginning of October.
On the right, box plots of individual weekdays are shown. Outliers in the box plot
go up until about 100 kWh which corresponds to the consumption of three full
charges in a single day.

two folds. For all detailed analyses, we model the PV cell and inverter efficiencies for each
30 min based on the current conditions. The PV cell efficiency is estimated based on the
PV cell properties (see A.4.1), the amount of solar irradiation hitting the cell, as well as the
ambient temperature. Inverter efficiencies are modeled using the PVWATT8 model using the
yearly peak production to dimension the maximum power of the inverter.

In a second experiment in Section 5.1.5, we investigate the sensitivity of the PV energy con-
version and model only the effect of shadowing and assume otherwise constant efficiencies
for PV panels and inverter. The applied workflow is based on (Buffat et al., 2018a), but
differs in the following key areas:

• We modified the digital terrain model used in (Buffat et al., 2018a) by replacing all
buildings using the SwissBuildings 2.09 dataset. This is achieved by rasterization of
the 3D vector shapes of the SwissBuildings 2.0 with the same spatial resolution of 0.5
m of the existing DSM. Thereby, we ensure to use the most recent available rooftop
shapes while still modeling the surrounding topography, such as terrain features or
vegetation.

• In contrast to calculating long-term mean time series, we calculate the electricity
generation for every 30 minutes for the year 2017 for each building assigned to a BEV
user.

• For each building, the ambient temperature of the nearest available weather station
is used in the process to model the PV cell efficiencies. The temperature is corrected

8https://pvwatts.nrel.gov/downloads/pvwattsv5.pdf
9https://shop.swisstopo.admin.ch/en/products/landscape/build3D2
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based on the elevation difference between the building and the weather station and a
factor of −0.66 °C per 100 m difference of elevation10.

Photovoltaic potential

By combining the solar irradiation data (cf. section 5.1.3) with the geographic data describ-
ing the rooftops of participants’ houses (cf. sections 5.1.4 and 5.1.4) we compute accurate
estimations of the energy that could potentially have been generated using photovoltaic
cells on each house.

Figure 5.5 shows the average daily PV energy generation of all participants over the course
of the study period. It can be seen that the production in winter is a fraction of the one
during summer months, that there are occasional days on which the production on all houses
drops to values close to zero (mostly days where all of Switzerland is covered by clouds).
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Fig. 5.5.: PV energy generation at homes of study participants. Left side shows the average
daily PV generation per participant as well as the 95 % confidence interval over
the course of the study period. The right side shows the distribution of the peak
generation capacity per house.

Combination with PV model

We validate each match between home location and building footprint manually in a
geographic information system (Paul A. Longley et al., 2011) by overlaying recent satellite
imagery. 65 of the 78 persons live in single-family homes. We also include 10 users who live
in two-family homes and 4 users who live in homes for multiple families with the condition
that we could clearly identify the number of households living in this house. For houses with
more than 1 household we later divide the PV system size and the generated power by the
number of households as if the electricity would be equally shared among all households.
The right side of Figure 5.5 shows the distribution of the resulting peak generation capacity
for all users.
10This value was recommended by the Federal Office of Meteorology and Climatology MeteoSwiss as

the vertical temperature gradient.
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Smart charging scenarios

In this study we compare four different charging scenarios for the BEV. An overview of these
charging scenarios is shown in Figure 5.6.

Scenario assumptions
All scenarios assume perfect knowledge of the PV generation as well as the mobility energy
demand over the whole study period. These assumptions are justified because the goal of
this work is not to present a novel operational smart charging algorithm but to analyze the
potential to cover mobility energy demand using residential rooftop PV systems. An overview
of existing smart charging algorithms for BEV charging using PV systems was presented
in (Fachrizal et al., 2020). The temporal resolution of all scenarios with exception of the
baseline is one segment in which the car was continuously at home or away from home. As
described in Section 5.1.3 all users in the study have access to the same BEV with a battery
capacity (cf. Section 5.1.4) of 31.61 kWh. As part of the project all participants installed a
private charging station at home; we will assume that all participants have installed a 11 kW
charger. In general, we do not explicitly model the plug-in behavior of a user, however, the
plug-in behavior was recorded during the study and is implicitly considered in scenario 1.
Scenarios 2 and 3 assume that the BEV is able to charge when it is at home.

Baseline scenario: recorded charging schedule
As a baseline we analyze the actual charging behavior of the BEV owners as it was recorded
in the study. The charging of the BEVs in the tracking study is uncontrolled, i.e., if a user
plugs in the BEV it immediately starts charging until it is fully charged or unplugged. An
example of the recorded charging behavior is shown in Figure 5.2.

Scenario 1: segment-wise optimization
The first charging scenario, shown in the top left of Figure 5.6, optimizes the share of rooftop
PV generation used for BEV charging by only shifting the charging schedule within the same
segment (cf. Section 5.1.4 for the definition of segments). In this scenario, the SoC of the
BEV at the start and the end of every segment is the same as the reference SoC (SoC_ref)
that was recorded for this segment in the case study. We allow, however, to change the
charging trajectory (e.g., by deferring charging) between these points. In the example given
in Figure 5.2 this would mean that the SoC at the beginning and the end of every dark
green segment is fixed but we can alter the time when charging takes place in between
these points. The purpose of this scenario is to offer a charging schedule that optimizes the
consumption of PV energy but remains as close as possible to the recorded data. By that,
this scenario implicitly considers the plug-in behavior of a person on a per-segment level as
we are only allowed to charge in this scenario when the user also charged in reality.

Scenario 2: cross-segment optimization
The second smart charging scenario, shown in the top right of Figure 5.6, implements a
greedy approach to maximize the share of PV generation used for the charging of the BEV
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Fig. 5.6.: Flowcharts representing the charging logic of the different scenarios (top left:
scenario 1 segment-wise optimization, top right: scenario 2 cross-segment opti-
mization, bottom: scenario 3 cross-segment optimization with battery).
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over the whole study period. Therefore, the BEV in scenario 2 always charges as much as
possible using PV power and only takes a minimal amount of energy from the grid to be
able to serve the mobility needs of the user. In the example given in Figure 5.2 we would
be allowed to do any operation as long as we only charge when the user is at home, the
maximum charging power is not surpassed and the SoC of the BEV is always greater than
0.

Scenario 3: storage capacity
In the third scenario we analyze the impact of a commercial home battery storage that is
used to buffer the PV power generation. We set the capacity and the maximum symmetric
power flow based on a commercial product to 13.5 kWh and 4.6 kW. An overview of the
third scenario is shown in the bottom of Figure 5.6. The simulation runs as follows: We
specify the battery size available. If there is energy generation available from PV, it gets
charged to the electric vehicle if it is at home and not full. Otherwise, the generated power
is stored in the battery.

The car is charged from either the PV power currently being generated or from the battery.
Only if this is insufficient, energy from the power grid gets charged up to the minimum
required level to fulfill the mobility requirements.

Calculation of CO2 emissions

We evaluate the sustainability of the different scenarios by calculating their relative GHG
emissions as CO2 equivalent. For the comparison we include the GHG emissions of the
power used for charging the BEVs, and the emissions generated by the production and the
disposal of the rooftop PV and the battery system (scenario 3). We specifically exclude all
emissions related to the production and the disposal of the BEV as we only use the calculated
emissions to compare the scenarios against each other and the BEVs are the same in all
scenarios. All used emission factors were determined in cradle-to-grave LCA studies with the
exception of the emission factor for the German power mix which is only published based
on marginal emissions.

Emission factor for grid charging
The emission factor for the Swiss household consumer mix is published by the Federal
Office for the Environment (FOEN) and is 181.1 gCO2-eq/kWh (Messmer and Frischknecht,
2016). While the power generated in Switzerland has considerably lower emissions, much
of the Swiss energy is imported (often from Germany) and often stored in one of the many
pumped storage power plants to be distributed at a later point in time. The emission factor
for Germany is 401 gCO2-eq/kWh (Icha and Kuhs, 2020) and is significantly higher even
though it comprises only direct emissions.

Emission factor for PV charging
Even though PV power generation is considered a clean source of energy, it is not carbon
free (Barros et al., 2020) and its cradle-to-grave emission factors are controversially debated

5.1 Using rooftop photovoltaic generation to cover individual electric vehi-
cle demand - a detailed case study

135



as they can strongly vary depending on the assumptions taken on production techniques (Nu-
gent and Sovacool, 2014). The 2014 study from Nugent and Sovacool (2014) reported an
average emission factor of 49.91 gCO2-eq/kWh but noted that large-scale PV generation
facilities are generally more efficient than rooftop PV systems. We assume an emission factor
of 53.6 gCO2-eq/kWh as this was reported by a recent study with a very similar use case to
ours (Krebs et al., 2020). The factor is in line with the study of Nugent and Sovacool (Nugent
and Sovacool, 2014) and another recent study (Jones and Gilbert, 2018) that reported
average values ranging between 30 gCO2-eq/kWh and 80 gCO2-eq/kWh depending on
the panel technology. We further omit emissions stemming from the hypothetical need of
additional infrastructure (such as a distribution grid expansion) and system management
losses as they are expected to only have a minor impact (Jones and Gilbert, 2018).

Emission factor for home storage
For the home storage we use a capacity specific emission factor of 76.1 kgCO2-eq/kWh as
it was reported for a recent lithium-ion battery (lithium cobalt phosphate) (Raugei and
Winfield, 2019). We follow (Krebs et al., 2020) and assume a lifetime of 5000 cycles and
an average usage of 1 cycle per day which results in an average lifetime of 13.7 years. To
correctly account for the battery related emissions over the study duration, we calculate the
average weekly emissions of the battery. A battery with a capacity of 13.5 kWh has then
average emissions of 1.44 kgCO2-eq per week.

5.1.5 Results

We calculate the detailed mobility energy demand and the rooftop PV generation potential
for all users using the steps described in Section 5.1.4 and simulate a detailed charging
schedule for each of the four charging scenarios presented in Section 5.1.4. In this section,
we analyze the potential to cover the mobility energy demand using rooftop PV generation,
the development of this coverage ratio over time, and the impact of the PV generation on
the GHG emissions stemming from mobility. In the end of this section, we further analyze
the sensitivity of the results to roof size, overall BEV usage and panel efficiency.

Coverage of mobility energy demand using rooftop PV generation

All scenarios were implemented as Python 3 scripts11 following the procedures outlined in
Section 5.1.4. The main result of this work is a detailed juxtaposition of mobility-induced
electric energy requirements (stemming from individual motorized transport) and potential
(local, i.e., on an individual’s home’s rooftop) generation using photovoltaics under the
assumption of different smart charging scenarios.

Figure 5.7 shows a histogram per scenario for the overall coverage ratio per user for the full
study duration. The coverage ratio is defined as the total energy charged from rooftop PV
divided by the total energy charged by the BEV. Additionally, the average coverage ratio over

11All code used for this project can be accessed via https://github.com/mie-lab/rooftop-PV-EV-charging
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all users is given in the title of each scenario. As expected, the coverage ratio is increasing
with increasing complexity of the scenarios. The baseline scenario represents the charging
behavior of the users as it was recorded in the study. The evaluation of this scenario shows
that uncontrolled charging results in a very low coverage of the mobility demand with rooftop
PV generation of only 15 %. These results are lower than the reported self-consumption
of the total household load in combination with a plug-in electric vehicle (Munkhammar
et al., 2013) or the self-consumption reported in a case-study that looked at shared BEVs in
a microgrid (Van Der Kam and Sark, 2015). However, already shifting the charging within
individual at-home segments increases the coverage ratio by 41%. This is rather surprising
given that the overlap between sunny hours and when the car is at home is thought to
be comparatively low. Scenario 2 represents a theoretical upper boundary on how much
of the individual’s mobility behavior energy demand could be covered by PV generation
under the assumption of perfect forecast of the upcoming PV generation and the mobility
behavior. The results of scenario 2 show that 32 users could theoretically cover more than
95 % (height of the last bin) and the others substantially more than 50 % of their mobility
energy demand by PV generation based on their own roofs. Scenario 3 follows the same
charging strategy and assumptions as scenario 2 but uses an additional home energy storage
to buffer energy generated by PV if possible. In this scenario almost all users can cover their
demand by 100 %; while this is very high, the difference to scenario 2 is small.
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Fig. 5.7.: Share of energy (required for mobility) generated by local rooftop PV for each
user in all scenarios over the full study duration.
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Coverage ratio over time

Figure 5.8 shows a different view on the results. Here, we plot the cumulative sum of the
energy that was used by the cars against the net energy generated (and utilized) by PV. In
this graph the two lines through the origin x = y and x = −y represent the case when only
PV generation or only energy from the grid was used to charge the BEV. The graph is based
on the data of all study participants and was sorted by time before creating it. The total
energy used, drawn on the x-axis, is therefore monotonic over time and can be seen as a
proxy for temporal progression. This graph shows again that scenario 2 and scenario 3 are
close to optimal over the whole study period, as opposed to the baseline charging strategy
which is close to the worst-case scenario. Both, the baseline scenario and scenario 1 show a
hump in the second half of the graph which is already a hint for the (expected) influence of
seasonality on the PV generation and therefore on the results.
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Fig. 5.8.: Energy sources (rooftop PV or the grid) for the (cumulative) energy demand of
BEVs for each scenario.

Figure 5.9 shows the distribution of the coverage per week per user for every scenario. In
this graph the seasonality effect is clearly visible. In all scenarios except for scenario 3
coverage is higher during the sunny months. Figure 5.9 could support the assumption that
the coverage ratio is increased due to the higher generation during the summer months
which could also lead to the assumption that the result mostly depends on the roof size and
the installed generation capacity. This question is further investigated in section 5.1.5.

Effect on CO2 Emissions

We calculate the average CO2 emissions of each user on a weekly basis. Therefore, we
multiply the sum of the weekly energy usage per user with the emission factors discussed
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Fig. 5.9.: Shares of energy produced by rooftop PV for each user over the duration of the
study period.

in Section 5.1.4. For the used power we distinguished between energy used from the grid
and energy used from the rooftop PV system. For scenario 3 the emissions of the battery
are added as a constant factor each week, PV generation that was temporarily stored in the
battery is accounted for in the rooftop PV emission factor.

Figure 5.10 shows the average emissions over all users for the different scenarios. The
left side of the Figure shows the results for the Swiss electricity mix. It demonstrates that
there is a significant potential of saving CO2 emissions. For the comparably clean Swiss
power mix, every user would save on average 2.93 kgCO2-eq per week for scenario 1, 4.11
kgCO2-eq per week for scenario 2, and 3.13 kgCO2-eq per week for scenario 3 in comparison
to the baseline scenario. Further, the graph shows that already scenario 1 has a significant
potential to save emissions when compared to the baseline. We can also see that the battery
in scenario 3 is not able to amortize its initial emissions with higher PV usage which leads to
weekly average emissions that are often higher than those of scenario 1.

The right side of Figure 5.10 shows the same analysis for the German power mix. The result
follows a similar trend but the absolute difference in emissions is larger. For the comparably
emission-heavy German power mix, every user would save on average 7.29 kgCO2-eq per
week for scenario 1, 10.78 kgCO2-eq per week for scenario 2, and 10.63 kgCO2-eq per week
for scenario 3 in comparison to the baseline scenario. Furthermore, it shows that scenario 3
now achieves lower emissions than scenario 1 and also lower CO2 emissions than scenario 2

5.1 Using rooftop photovoltaic generation to cover individual electric vehi-
cle demand - a detailed case study
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Fig. 5.10.: Average greenhouse gas emissions stemming from electric mobility for all users.
On the left side, a typical Swiss power mix is assumed, on the right side a
German power mix (only the direct emissions considered for Germany). Two
weeks in October affected by missing data are excluded. Uncertainty intervals
show the 95% confidence interval of the mean.

in early spring and late autumn. The higher difference in emissions between power from the
grid and the rooftop PV generation allows for a better amortization.

Sensitivity

To provide insights into the reasons for the coverage variance between users, we analyze
the influence of the roof size, the total energy demand, and the overall efficiency of the PV
system.

Influence of PV system size and charging demand
Intuitively we would expect that it is easier to cover the mobility energy demand if a study
participant has a large rooftop PV system or if she does not use the car very often. However,
our analysis suggests that the influence of these factors is rather small.

Tab. 5.1.: Results of the regression analysis examining the correlations between total energy
demand for mobility resp. peak PV power and PV coverage ratio.

Demand PV peak power R2

Coef. [%]
kW h p Coef. [%]

kW p p

Baseline -4.94E-03 2.40E-02 4.68E-01 4.73E-02 0.10
Scenario 1 -1.10E-02 2.20E-04 6.29E-01 4.42E-02 0.19
Scenario 2 -9.00E-03 3.83E-08 1.93E-01 2.16E-01 0.33
Scenario 3 -1.44E-03 2.55E-05 7.07E-02 4.04E-02 0.23

To test the influence of these factors we run a regression analysis for each scenario using the
average yearly coverage ratio per person as dependent variable and the PV system’s peak
power and the total mobility energy consumption as independent variables.

The results of this analysis are shown in Table 5.1. Total energy demand and PV system
size are below the 5 % significance level for all scenarios except for the PV peak power for
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scenario 2. However, the rather low R2 values suggest that these factors can only partially
explain the result of the analysis. A more detailed look at the regression coefficients further
reveals that the linear relationship might be significant, but for the baseline scenario as well
as scenarios 2 and 4 its influence is rather low as a change of several hundreds of kWh in
yearly demand or a change of several kWp in PV system size are necessary to change the
coverage value by 1 %. This can be also seen in the scatter plots shown in Figure 5.11,
where it is visible that neither the total yearly electricity demand of the BEV nor the size of
the PV system can explain a substantial part of the variance.
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Fig. 5.11.: Analysis of correlation between total energy demand for mobility resp. peak
power production on individual rooftops and energy coverage by PV power. In
red, the baseline scenario is shown, in blue scenario 1, in purple scenario 2 and
in grey scenario 3.

Influence of overall PV system efficiency

In addition to the sensitivity to PV system size and total energy demand, we tested the
influence of varying the overall PV system efficiency. We therefore repeated the main
experiment 24 times and calculated the coverage ratio for every user for all scenarios
assuming a fixed PV system efficiency that varies its efficiency between 6 % and 29 %. The
overall system efficiency here is defined as the ratio of generated power and incoming solar
irradiation (see also Section 5.1.4). Figure 5.12 shows the average coverage value over all
users and its 95 % confidence interval. The average coverage ratio grows quickly for low
panel efficiency values and slowly saturates for efficiency values between 10 % and 16 %
depending on the scenario.
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A close look reveals that the uncertainty of the estimated mean slowly grows with growing
panel efficiency for scenario 1 and 2 while it shrinks for scenario 3 and 4. This indicates that
the scatter of the coverage values increases for the first two scenarios while it decreases for
the others. Scenario 1 and 2 preserve the original mobility and plug-in behavior, the increase
of the scatter in the data shows that there are some users who can better take advantage of
the increased generation while others cannot, e.g., because they rarely plug-in their BEV.
Scenario 3 and 4 optimize the PV usage with the mobility demand as the only boundary
condition. In this case the only distinction between users are their usage patterns and an
increased generation will lead to an increased coverage for all users that cannot yet fully
cover their BEV’s demand.
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Fig. 5.12.: Average coverage value as a function of the overall PV system efficacy. The graph
shows the average over all users per scenario and the 95 % confidence interval.

5.1.6 Discussion

Potential of home charging of EVs

The evaluation of the real-life charging schedules shows that there is a great potential to
cover the mobility energy demand using rooftop PV generation. However, the results also
show that uncontrolled greedy charging (as it is mostly the case at the moment) leads to
almost worst-case results in terms of coverage (cf. Figure 5.9). The results from scenario 1
demonstrate that it is theoretically possible to increase the average coverage ratio by 41%
without requiring any change in the behavior of the BEV owner (e.g., to always plug in
the BEV). These results could be achieved by two simple adjustments to smart charging
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algorithms: Restrict the maximum charge to the available PV generation as long as sunlight
is available and do not fully charge the BEV during the night to have the possibility to take
advantage of the sunlight in the morning hours.

Scenario 2 shows that almost all BEV owners could fully cover their mobility energy demand
using rooftop PV generation. In practice it will be hard to achieve these values as it requires
good forecasts of the PV generation and the individual mobility energy demand. In this study
the results of scenario 2 are already close to optimal which could lead to the conclusion that
the installation of an additional home battery storage is unnecessary. However, the design of
a good charging strategy that relies on uncertain forecasts becomes significantly easier with
the possibility of buffering the energy. This consideration could thus justify the installation
of a home battery system.

Potential of rooftop PV to decarbonize transport

Even though BEV have lower GHG emissions than fossil fuel dependent ICEVs, their emissions
depend strongly on the technologies used for power generation. The analysis of the average
CO2 emissions in the different scenarios reveals the large potential that the combination
of rooftop PV generation and BEVs offers for the decarbonization of individual mobility.
The reduction potential depends on the emission intensity of the energy mix available to
the consumer, which means that the reduction potential becomes lower over time with
the ongoing progression of the decarbonization of the energy sector. The impact of home-
charging might be reduced if a BEV can be charged using PV at the workplace (Nunes et al.,
2016) (e.g., if a person can charge her BEV using PV at the workplace, the BEV might be
almost full when returning home).

Potential of rooftop PV and BEVs for increased grid stability

The stability of the distribution grid is an important factor that has to be considered during
the expansion of PV generation as well as during the roll-out of BEVs. It is realistically
feasible to cover a large portion of the mobility energy demand using the own rooftop PV
generation and by that residential roof-top PV might be able to lower the grid impact of BEV
charging. However, the inverse might not be true as for PV the critical point is the peak in
the middle of the day where BEVs are usually not available at home.

Limitations

Due to the employed methods and because of the used datasets the results of this study are
subject to several limitations.

The movement data used to estimate the BEV demand is entirely sourced from Switzerland, a
country that is known for its excellent transportation and public transportation infrastructure.
The transfer of the results to countries with differing infrastructure might be limited due to
the impact that available infrastructure has on BEV demand.

5.1 Using rooftop photovoltaic generation to cover individual electric vehi-
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Furthermore, the developed methodology cannot be used to directly derive operational
smart charging algorithms due to the assumptions taken (see Section 5.1.4). Most notably,
we are assuming the availability of perfect forecasts for mobility energy demand and the
available solar generation. The results therefore present an upper limit of the achievable
performance of an operational smart charging algorithm.

Lastly, we are not considering seasonal effects for the calculation of the CO2 emission
factor for grid charging in Switzerland, but simply use the yearly average. This might
lead to an overestimation of the CO2 emission factor for grid charging in summer and an
underestimation in winter.

5.1.7 Conclusion

In this work we presented a detailed case study as a contribution to the open question to
what extent BEV owners can be self-sustainable using rooftop PV generation. To answer this
question, we combined the detailed mobility data records from 78 BEVs in combination with
a detailed model of the BEV owners’ roofs to estimate the potential rooftop PV generation.

Our results show that currently deployed uncontrolled greedy charging strategies (baseline
scenario) lead to a very low coverage factor of only 15 % on average over all BEV users. Very
simple adjustments without changing mobility or plug-in behavior (scenario 1) can already
greatly increase this to an average coverage of 56 %. We argue that these values could be
easily reproduced in practice by currently feasible smart charging algorithms if they charge
slower and limit their charging intake to the currently available PV generation, and if they
do not fully charge during the night in order to take advantage of the morning hours.

We further showed that the upper boundary of the coverage with and without additional
home battery storage over all users is on average 90 % and 99 % respectively without
restricting a person in their mobility. The degree to which these values can be achieved in
practice will depend strongly on the quality of mobility demand and generation forecasts.
Considering these uncertainties, it could be that the home battery storage will provide a
more significant advantage than it does for the theoretical upper boundary.

No matter the charging schedule scenario, all of them greatly increase the consumption of
rooftop generated PV which significantly reduces the emissions from driving the BEV. This
highlights the large potential that rooftop PV power generation has to accelerate the BEV
based decarbonization of the transport sector.

Future work should investigate smart charging algorithms that consider the goal of maximiz-
ing the usage of rooftop PV energy as it is cheaper and more sustainable for the user. Very
high self-consumption rates for BEV charging will only be achievable if sufficiently good
predictions of the energy demand of the BEV are available. However, reliable predictions of
individual mobility behavior which induces the mobility demand are still an open problem
and should be tackled in the future.
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Abstract
The 2019 IARAI traffic4cast competition is a traffic forecasting problem based on traffic
data from three cities that are encoded as images. We developed a ResNet-inspired graph
convolutional neural network (GCN) approach that uses street network-based subgraphs
of the image lattice graphs as a prior. We train the Graph-ResNet together with GCN and
convolutional neural network (CNN) benchmark models on Moscow traffic data and use
them to first predict the traffic in Moscow and then to predict the traffic in Berlin and
Istanbul. The results suggest that the graph-based models have superior generalization
properties than CNN-based models for this application. We argue that in contrast to purely
image-based approaches, formulating the prediction problem on a graph allows the neural
network to learn properties given by the underlying street network. This facilitates the
transfer of a learned network to predict the traffic status at unknown locations.

∗ Equal contribution
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5.2.1 Introduction

Today 55 % of the world’s population lives in urban areas. This number is expected to rise
to 68 % by 2050 (UN, 2018). The growing urbanization in combination with population
growth and private car ownership threatens to raise the already high levels of congestion
which in turn increases pollution and economic costs and accelerates climate change (Reed,
2019). In order to facilitate the transition towards a more sustainable traffic system the
growing traffic volume has to be managed in a smart way to reduce its negative impact.

A backbone of smart traffic management is short-term traffic flow predictions. They allow the
detection of anomalies, such as accidents or obstacles (Wang et al., 2016), the smart routing
of vehicles to optimally use the existing infrastructure (Ringhand and Vollrath, 2018) or
the predictive control of the transportation system using traffic lights (Huang et al., 2018b).
There is a vast body of literature concerning traffic forecasting available (Ermagun and
Levinson, 2018; Vlahogianni et al., 2014), however, “comparing the forecasting applications
across studies is almost impossible” (Ermagun and Levinson, 2018, p. 791) as studies use
different spatio-temporal data resolution and report different error metrics on different
aggregation levels.

Traffic4cast competition
In response to this lack of standardization, the Institute of Advanced Research in Artificial
Intelligence (IARAI) published a novel, publicly available traffic forecasting benchmark
dataset as part of the traffic4cast competition12. The Traffic4cast dataset comprises traffic
data from three cities (Berlin, Istanbul, and Moscow) and covers one year in 5-minute
intervals. The data is given as three-channel images with normalized information about
traffic volume, average speed, and average direction, which all range from 0 - 255. An
example of the data can be seen in Figure 5.13. Here the logarithm of the per-city sum of all
channels over all training images is shown as a proxy for the activity level per pixel. Only a
few pixels are always zero over the whole dataset13, nevertheless, the street network is still
clearly visible in each city.

The task in the traffic4cast competition is to predict the traffic of the next 15 minutes (3
images) based on the last hour (12 images). The results are then evaluated using a pixel-
wise calculation of the mean-squared error (MSE) between the prediction and the ground
truth.

Graph convolutional neural networks (GCNs)
The competition specifically encoded the traffic data as images to facilitate the usage of
deep convolutional neural networks (CNN). However, the image-based representation omits
explicit information about the street network and therefore disregards that the movement
of cars is usually restricted to the road network. While a CNN-based approach will likely

12www.iarai.ac.at/traffic4cast
1329 % for Berlin, 11 % for Moscow and 23 % for Istanbul.
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Fig. 5.13.: Logarithm of the per city sum of all training images of all channels.

be able to extract the street network and store it in its weights, the street network could be
provided explicitly to greatly reduce the problem’s complexity.

GCNs have been developed over the past couple of years in an attempt to generalize
the success of CNNs to irregularly structured domains that can often be described via
graphs (Bronstein et al., 2017; Defferrard et al., 2016). By now, there are several propo-
sitions for graph (convolutional) neural network architectures that are described in the
available review papers (Wu et al., 2019; Zhou et al., 2018). GCNs have already been
applied to many different domains (Bronstein et al., 2017; Wu et al., 2019; Zhou et al.,
2018) but there are only few examples that are related to the movement of people (Martin
et al., 2018) or short-term traffic forecasting (Cui et al., 2019a; Yu et al., 2018; Zhang et al.,
2019).

Contribution

In this work, we use the image-based U-Net approach of team MIE-Lab (Martin et al.,
2019c)14 that won the second place in the traffic4cast competition and compare it with
an alternative approach based on GCNs. We use well-known GCN architectures as well as
suitable modifications such as the Graph Residual Network (Graph-ResNet) which is inspired
by the residual learning network (ResNet) presented in (He et al., 2016a). We provide
evidence that while the U-Net approach outperforms the GCN approach on known cities, the
GCN approach generalizes better to unknown cities. The code to reproduce all experiments
is publicly available15.

14Code and pretrained networks are available under https://github.com/mie-lab/traffic4cast.
15https://github.com/mie-lab/traffic4cast-Graph-ResNet
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5.2.2 Graph-based traffic forecasting

Preprocessing

We introduce the ordered set of timestamps T = N12×24×365 to index all the 5-minute
intervals throughout the year16. We denote all available training data as a 5-dimensional
tensor P with shape (|U |, |T |, h, w, |C|), where an individual value Pu,t,i,j,c ∈ N255 denotes
the integer value of a single pixel with u ∈ U = {B, I, M} (for Berlin, Istanbul and Moscow),
t ∈ T the timestamp throughout the year, i ∈ N495 and j ∈ N436 the pixel coordinates,
c ∈ C = {V, S, H} the channel (corresponding to Volume, Speed and Heading), and h = 495
and w = 436 are the height and width of a single image.

We define a sample as (x(i),y(i)) where xi is a short movie of 12 consecutive traffic images
with the timestamps [t(i), t(i) + 1, ..., t(i) + 12] and y(i) consists of the images with the next
three consecutive timestamps [t(i) + 13, t(i) + 14, t(i) + 15] which represent the prediction
target. As it is described in (Martin et al., 2019c) we collapse the time dimension into the
channel dimension. x(i) is then of shape (12 · |C|, h, w) and y(i) of shape (3 · |C|, h, w). The
official test set in the traffic4cast competition contains only a small subset of timestamps
for every day, namely 01:30, 04:45, 09:30, 14:30, 18:30. In this work, all experiments are
performed using only the subset of the data that corresponds to the available test timestamps
(e.g, we use all training images corresponding to 01:30, 04:45, 09:30, 14:30, 18:30 but we
omit training images corresponding to different time stamps). This approach leads to only a
slight loss in performance while greatly decreasing training time.

Graph extraction

To enable the usage of GCNs we follow the workflow shown in Figure 5.14. (1) a city-specific
mask is used to extract pixels that lie on the street network. The mask is generated based on
the training images of the city. (2) the remaining pixels are transformed into a graph. In this
graph representation, data is represented as a vector of node features and a sparse adjacency
matrix to store their connectivity. (3) we use GCNs to generate node level predictions. (4)
the data is transformed back from the graph domain into the image domain where the error
is calculated based on the competition rules.

To create a graph from the traffic images, we define an image as a regular grid with pixels
as nodes. The pixel-nodes are connected to all directly adjacent and diagonally adjacent
pixel-nodes via undirected edges with weight 1. The pixel values of all available channels
are stored as a vector of node features. For a given graph, the node feature vectors form
a feature matrix with dimension n × 12 · |C|. We introduce sparsity in the above defined
grid graph by deleting nodes corresponding to low activity pixels. A low-activity pixel P̂i,j is
defined as a pixel for which the sum over all available training images (of a single city u)
does not exceed a certain user-defined threshold µ:

16We define Nw = {1, 2, ..., w} as the set of natural numbers up until w.
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PLA,u = {P̂i,j |
∑
t∈T,

∑
c∈C

Pu,t,i,j,c < µ} (5.3)

A visualisation of the sum (before applying the threshold) is given in Figure 5.13.

A

M
a

s
k

In
p

u
t 

d
a

ta

1 2 3 4

Fig. 5.14.: The graph-based traffic forecasting workflow. The input images are transformed
into graphs by filtering out inactive pixels, after which the Graph ResNet learns
to predict traffic on this graph.

GCN architectures

Based on the graphs extracted in Section 5.2.2, we use a GCN as proposed in (Kipf and
Welling, 2016) as baseline and introduce three variations based on this baseline and on the
ideas of the ResNet proposed by (He et al., 2016a).

Simple graph convolutional neural network
Similar to (Kipf and Welling, 2016), we define a graph convolutional processing block as the
sequential application of a graph convolution and a ReLU activation function (we optionally
consider dropout and batch normalization layers but do not explicitly denote them in the
formalization below):

H
(l+1)
Gu

= σ(D− 1
2 A(u)D− 1

2 H
(l)
Gu

W (l)) (5.4)

Here, l denotes the current layer in the network, H(l)
Gu

the input from the previous layer
(where H

(0)
Gu

= x(i) is the input, A(u) is the adjacency matrix, D is the diagonal node
degree matrix of A(u) (used to normalize the adjacency matrix), and W (l) is a layer-specific
(learned) weight matrix. σ(·) is an appropriate activation function; in this work, we use
rectified linear units (ReLU) for all experiments. In addition to the network proposed
by (Kipf and Welling, 2016), we add a skip connection that concatenates the input x(i)

with the output from the last GCN block before applying a last graph convolution (i.e.,
y(i) = H

(m+1)
Gu

= D− 1
2 A(u)D− 1

2 (H(m)
Gu

⊕ H
(0)
Gu

)W (m) with m being the number of GCN
blocks). The combined SkipfNet has the advantage that it can very well learn functions
resembling the identity function f(x) = x due to the direct availability of the non-convoluted
input (cf. (He et al., 2016b)). A central hyperparameter of the SkipfNet is the number of
GCN blocks; Figure 5.15 shows exemplary networks with one and two blocks.
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Fig. 5.15.: The different GCN architectures used and introduced in this paper.

Graph ResNet
Inspired by the popular ResNet architecture (He et al., 2016a), we introduce a Graph ResNet
to further improve the predictive power of the SkipfNet. We define a graph residual block
similar to the GCN block of the SkipfNet, but add input of the previous layer to the output
of the current layer before passing it on to the next graph residual block (cf. Figure 5.15;
again, we do not mathematically represent dropout and batch normalization below):

H
(l+1)
Gj

= σ(D− 1
2 A(u)D− 1

2 H
(l)
Gj

W (l)) + H
(l)
Gj

(5.5)

While in the original ResNet architecture, the layer size varied throughout the network using
pooling. However, as pooling for graphs is more complex and still under active research
(Lee et al., 2019; Ying et al., 2018), we keep the layer size constant.

5.2.3 Experiments and results

We perform two groups of experiments. At first, we train different graph networks to solve
the traffic4cast prediction task in Moscow and compare the results to U-Nets of different
depth. As a second set of experiments, we use the GCN and U-Nets that were trained only
on Moscow and use them to predict the traffic in Berlin and Istanbul.
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All U-Nets are trained using the parameters and training schedule from (Martin et al., 2019c)
with a varying depth between 2 and 6 layers. Additionally, we include the original KipfNet
with 16 hidden units as used in the original paper for the CORA dataset (Kipf and Welling,
2016) and with 128 hidden units, which is the maximum that our GPU allows. We fit 36
SkipfNets of depth 1, 29 SkipfNets of depth 2, and a total of 42 Graph-ResNets using random
search on the hyperparameter space shown in Table 5.2. All Networks are fitted with the
ADAM optimizer, learning rate 0.01, and weight decay of 0.0001 for a maximum of 10
epochs with early stopping if the validation error is not decreasing for two epochs in a row.
The learning rate is divided by 10 after 5 epochs. We use a batch size of 2 and the mean
squared error as a loss function. All graph networks receive the pixel coordinates of the
nodes as two additional channels. These additional channels were omitted for the U-Nets
as they degraded their performance. Training was performed using a Tesla P100 GPU with
12 GB of RAM. All experiments were implemented in Pytorch (Paszke et al., 2019) and
Pytorch-Geometric (Fey and Lenssen, 2019).

Network H 1 H 2 / depth K K mix sc bn dropout
SkipfNet 8, 16, 32, 48, 64 - 2, 4, 6, 8 1,2,4,6 0, 1 0 0.5
SkipfNet2 8, 16, 32, 48, 64 8, 16, 32, 48 2, 4, 6, 8 1,2,4 0, 1 0 0.5
Graph ResNet 16 - 100 (100) 2 - 60 (4) 2 - 6 (4) 1, 2 (2) 0, 1 (1) 0, 1 0, 0.5

Tab. 5.2.: Hyperparameter space explored during graph network training. H=Hidden layer;
K and K mix=number of terms for the Chebyshev polynomial from (Defferrard
et al., 2016) for the convolutional layers and the last mixing layer; sc=usage
of optional skip connection (blue in Figure 5.15); bn=usage of batchnorm;
dropout=used dropout probability. Hyperparameters of best model are shown in
bold.

Traffic prediction capacity

The out-of-sample errors of the different models for the Moscow validation dataset are shown
in the top graph of Figure 5.16 and in Table 5.3. The Figure shows a clear dependency
between the number of model parameters and the performance. In general, there are two
major ways to add complexity to the models: increasing the depth of the model or increasing
the number of channels of the convolutional layers. The model complexity of the graph
networks is limited because deeper networks lead to over-smoothing of the prediction (Li
et al., 2018) and because the lack of suitable graph pooling operations forces us to add
channels at the full-size graph which quickly drains GPU memory. In our work, the original
KipfNet architecture reaches the memory limit of our GPU at 128 output channels of the
convolution. The Skipfnet architecture with the variable K parameter and the skip connection
allows adding additional parameters without over-smoothing. Finally, the Graph ResNet
allows us to increase the performance even further. None of the graph networks reaches the
performance of the deeper U-Net versions, however, all of the methods are below the official
traffic4cast baseline17 that is shown as a dashed line.

17The baseline is a MSE of 1032 for Moscow, 789 for Istanbul and 582 for Berlin. It consists of
predicting the per-channel mean of the last three images for the next three images. Due to the high
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KipfNet nh16 KipfNet nh128 Graph-ResNet SkipfNet1 SkipfNet2

Nb. of params 1.5 · 103 1.2 · 104 1.7 · 105 1.8 · 104 2.8 · 104

MSE Moscow 867 836 814 836 828
MSE Berlin 492 475 468 474 471
MSE Istanbul 671 645 633 644 639

U-Net d2 U-Net d3 U-Net d4 U-Net d5 U-Net d6

Nb. of params 4.2 · 105 1.8 · 106 7.7 · 106 3.1 · 107 1.2 · 108

MSE Moscow 813 797 791 794 794
MSE Berlin 478 500 520 519 501
MSE Istanbul 653 713 731 727 704
Tab. 5.3.: Number of parameters and the resulting mean squared error for all models in

the different cities. The content of the table is visualized in Figure 5.16.

Generalization capacity

In a second step, we use the models trained on Moscow to predict the traffic in Berlin and
Istanbul. To make up for the GCN’s additional knowledge of the street network we mask
the U-Net predictions by multiplying them with the binary mask of the street network. The
results of this experiment are shown in Figure 5.16.

The first result is that all methods generalize surprisingly well to unknown cities, as all
methods can beat the baseline that is described in Footnote 17 and shown as a dashed line
for each city. Next, the results show that the relationship between performance and the
number of parameters does not hold anymore. For the U-Nets, we observe that the shallow
U-Net has the best prediction results and that the U-Net loses performance the deeper it gets.
This trend is not as clear for U-Nets for depths 5 and 6 which might be a sign that they have
not been trained with enough data or not long enough. To support this claim, we repeated
this experiment with the pre-trained U-Net of depth five used in the traffic4cast competition
by Team MIE-Lab19. This competition network was tuned more carefully and trained with
more data and indeed does fail miserably in the generalization task. It achieves a MSE of
774 for Moscow where it outperforms all other networks but a MSE of 798 for Berlin and an
MSE of 3357 for Istanbul (both off the charts).

For the GCNs, the relationship between performance and the number of parameters is still
intact with the Graph-ResNet now being the overall best performer. An explanation for these
observations is that the more parameters the conventional CNNs have and the more data
they get during training, the better they can extract the (non-transferable) street network
and store it in their weights. Whereas with few parameters they will simply learn a baseline
like the conditional mean of the input data, which is to a large extent generalizable to other
cities. The graph-based networks however already know the street network as it is provided

regularity in traffic, this can be considered a strong baseline. The implementation of the baseline is
available under https://github.com/iarai/NeurIPS2019-traffic4cast.

18See Footnote 17
19See Footnote 14.

154 Chapter 5 Supporting sustainability of personal vehicles

https://github.com/iarai/NeurIPS2019-traffic4cast


800

1000

Moscow

500

600
Berlin

3 4 5 6 7 8
Number of parameters (log)

600

800
IstanbulM

ea
n 

Sq
ua

re
d 

Er
ro

r

KipfNet nh=16 
KipfNet nh=128 

Graph-ResNet
SkipfNet1

SkipfNet2
U-Net depth=2

U-Net depth=3
U-Net depth=4

U-Net depth=5
U-Net depth=6

Fig. 5.16.: Traffic forecasting results. All models are trained on Moscow (top) and tested
on Berlin (middle) and Istanbul (bottom). The competition baseline is shown as
dashed line18.

as an explicit input and can therefore learn transferable rules based on the propagation of
traffic through the network.

5.2.4 Conclusions and future work

In this work, we presented a graph-based approach for traffic forecasting and apply it to
the publicly available dataset from the traffic4cast competition. We define ResNet-inspired
GCN networks with skip connections that allow the training of deeper GCNs without over-
smoothing. We train all models on traffic data from Moscow and validate them on data
from Berlin and Istanbul. Our results suggest that the GCN-based models generalize better
than the state-of-the-art CNN models from the traffic4cast competition. We think that the
large performance difference between U-Nets and GCNs in the known city prediction is
largely because the image-based competition design heavily favors conventional CNNs.
Especially GPS positioning noise in combination with the MSE evaluation which favors
blurry predictions (Lotter et al., 2016) is hard for the graph networks which can, by design,
only predict values exactly on the graph. To still have a good performance under competition
rules20, the threshold for extracting the street network from Equation 5.3 was chosen rather
low. However, a low threshold almost reproduces a grid graph where conventional CNNs
are known to outperform GCNs. Therefore follow-up work should evaluate the performance
of graph models under conditions that do not disadvantage graph-based approaches (e.g.,
by only evaluating pixels that lie on the graph). Furthermore, the relationship between
parameters and model performance for graph models on unknown cities should be further
explored by creating more complex graph models. A key role for this will be the successful
integration of graph pooling methods in the model architecture. These experiments will
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be important to validate the findings of this work that, as opposed to CNN-based models,
GCN-based models continue to increase their performance with increasing model complexity
when forecasting traffic in unknown cities.
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Conclusion 6
6.1 Summary and contributions

The goal of this dissertation was to develop computational methods to support sustainable
individual mobility. It comprises two technical reports and seven peer-reviewed publications
that cover the areas of empirical data collection, preprocessing, analyzing and interpreting
individual mobility based on a graph representation, and the forecasting of mobility using
machine learning. The following is a short summary of the content and the contributions of
this dissertation.

6.1.1 Tracking data collection for the evaluation of mobility
interventions

Chapter 2 summarizes three tracking studies that investigate the impact of different MaaS
products on the mobility behavior of the study participants.

Section 2.1 summarizes the GC1 and GC2 pilot studies. The participants of both studies got
access to a comprehensive mobility package comprising a general public transport pass for
Switzerland, a BEV (GC1) or an e-bike (GC2), access to car and bike sharing, as well as taxi
vouchers. The studies showed that the participants continued to travel multi-modal and
combined their mobility tools with public transport rather than replacing them, which is
an especially important result with regards to the BEV that was provided in the GC1 study.
The provided BEV was primarily used to replace trips that were formerly served using ICEVs.
This led to a strong and stable decline in the GHG emissions of the GC1 participants, a result
that was not observed in the GC2 study where participants received the e-bike instead of the
BEV.

Section 2.2 summarizes the EIM project that analyzed the usage and impact of a MaaS
app called yumuv that was available in the city of Zurich. The app facilitated the booking
of shared e-scooters and e-bikes of several mobility service providers and offered mobility
subscriptions (bundles). Study participants were divided into a control group (CG) and a
treatment group (TG) that had access to the yumuv app. The study showed that access to
the mobility bundle jointly increases the usage of public transport and shared e-scooters.
Furthermore, as part of the project, location graphs were developed as a representation of
individual mobility (cf. Section 3.2) and as the basis of a novel method to analyze mobility
behavior change over time (cf. Section 3.2).
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6.1.2 Making tracking data processing reproducible

A major challenge when studying mobility behavior based on tracking data is the preprocess-
ing of the data. On the one hand, the preprocessing is complex and time-consuming and on
the other hand, it can have a significant impact on the results. Both problems are addressed
in Section 3.1 that presents Trackintel, an open-source Python library for movement data
processing. Trackintel is built on a standard data model for human mobility used in transport
planning that is compatible with different types of tracking data. Based on this data model,
Trackintel standardizes preprocessing steps by providing implementations for the most
common preprocessing algorithms, as well as support for the analysis and visualization of
tracking data. By that, Trackintel simplifies quantitative research based on tracking data and
greatly increases its reproducibility and replicability. Section 3.1 introduces the data model
for mobility data, its implementation in Trackintel, and finally showcases the capabilities
of Trackintel in a comprehensive case study that jointly analyzes four different tracking
datasets.

6.1.3 Analysis and prediction of individual mobility using
location-based graphs

There are various ways to record the mobility behavior of individuals such as (paper-based)
travel surveys, GNSS-based tracking, call detail records, location-based social network data,
public transport check-in data, and others. These types of tracking data can additionally
have a different spatiotemporal resolution (e.g., sampling rate), different spatiotemporal
distribution (track point distribution, e.g., regular vs. burst patterns), and different context
data associated with it. Section 3.2 formalizes individual location graphs, a graph-based
representation for individual mobility data that uses unique visited locations as nodes,
and the count of direct transitions between these nodes as weighted and directed edges.
Location graphs only require information about sequential location visits and therefore
can be created based on a wide range of different tracking datasets. Once transformed
into the location graph representation, different datasets can be jointly analyzed based
on the topology of the location graphs. This allows combining multiple small tracking
datasets to increase the sample size or to transfer models fitted labeled datasets to unlabeled
datasets. After the formal introduction of the graph representation, Section 3.2 offers a
guide to analyze mobility behavior of individuals based on the in-degree distribution of the
graph, the journey distribution, the connectedness, and the presence of hubs in the graph
(hubbiness). Finally, the location graph representation is applied to four different datasets
to show its ability to reproduce well-known statistical properties of mobility data (visitation
frequency, distribution of displacements, and radius of gyration) and to show its limitations
by comparing its ability to reproduce journey distributions compared to higher order Markov
models.

Location graphs can represent the mobility behavior of an individual without geocoordinates
and are therefore a more privacy-preserving alternative to a person’s full profile. However,
location graphs are not anonymous, as it was shown that users can be reidentified from a
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pool of individuals based on past, non-overlapping tracking data (Manousakas et al., 2018).
Section 3.3 further analyzes the privacy properties of location graphs with a focus on the
influence of the tracking duration. Here, a scenario is constructed in which an attacker is
in possession of a pool of graph-encoded tracking data and gets access to a novel set of
graph-encoded tracking data that they want to match. The results of the experiment show
that the top-1 re-identification accuracy is between 0.41% and 20.97% for different tracking
duration combinations, meaning that graphs constructed from a dataset with longer tracking
duration are easier to match. Therefore, we advise data collectors to limit the tracking
duration or to reset user IDs regularly when storing long-term tracking data in order to
protect the privacy of individuals.

Even though location graphs are not anonymous, they are a privacy-friendly alternative to
commonly used mobility profiles and can still provide valuable insights into the mobility
behavior of individuals. Section 4.1 presents a clustering-based method to identify user
groups with similar mobility behavior that appear across several datasets and that can be
used to analyze the adoption and the impact of mobility interventions such as access to
a novel MaaS offer. We apply the method to six datasets with a total of 1070 users and
identify five groups (centered, commuter, flexible, local routine, traveler) that are present in
all datasets. Further analysis of the differences between CG and TG of the yumuv dataset
introduced in Section 2.1 reveals that two groups (flexible, traveler) are overrepresented in
the TG and one group (local routine) is underrepresented in the TG with respect to the CG.
This target group analysis can be used by mobility service providers to optimize their mobility
offers for the intended group of customers. Furthermore, we present a longitudinal analysis
to evaluate the impact of mobility interventions on mobility behavior. Given a mobility
intervention, the group assignment of study participants before and after the intervention
reveals whether or not their behavior changed over the course of the study.

Finally, the short study in Section 4.2 presents an application of graph convolutional neural
networks to location graphs for the imputation of missing activity labels. In transport
planning, travel demand is commonly modeled based on activities (Castiglione et al., 2015;
Jiang et al., 2017). A fine-grained understanding of our activities is therefore central to
understanding and modeling human mobility behavior. However, while participants in
tracking studies are usually asked to label their significant stays, they often only sporadically
provide activity labels. Predicting missing activity labels given the existing labeled activities
or labeling the locations of previously unknown users is therefore an important yet still
open problem. The method proposed in Section 4.2 uses a GCN to predict the activity label
distribution at activity locations. It is applied to undirected location graphs enriched with an
additional pair of edges based on the Euclidean distances between locations. The proposed
GCN outperforms all baselines, indicating that deep learning models can take advantage of
the information encoded in the location graph.

6.1 Summary and contributions 159



6.1.4 Analysis of battery electric vehicle usage and charging
behavior based on tracking data

Chapter 5 turns the attention away from location graphs toward the sustainability of personal
vehicles. Section 5.1 presents a detailed analysis of the potential to charge BEVs at home
using PV panels installed on the roof of the car owner’s house. To answer this question, a
subset of the GC1 participants that live in single-family homes (n=78) was selected. We
then virtually equipped the roof of their houses with PV panels based on the true roof
geometry extracted from a digital elevation model. Using the tracking and charging data
recored by their BEVs in combination with historical weather data, we analyzed to what
extent the energy needs for personal mobility can be covered using power generated by
their rooftop PVs system. We simulated four different smart charging strategies with varying
degrees of complexity and found that when charging uncontrolled (the strategy used by the
participants during the study), BEV owners could only cover 15 % of their BEV’s demand
using PV generated from the roofs of their own houses. A simple controlled charging
approach greatly increased the average coverage to 56 %, and up to 90 % or 99 % when
using an optimized charging strategy without or with a home battery storage. This shows
that it is possible to cover a large portion of the mobility energy demand of BEV owners
using rooftop PV generation without restricting their mobility. However, it is necessary to
use smart charging management with mobility demand and power generation forecasts.

6.1.5 Traffic prediction using graph neural networks

Chapter 5 presents a deep-learning method for forecasting the traffic speed and volume in a
city. In the experiment, we compare our novel GCN based approach with more conventional
image-based approaches that deploy convolutional neural network (CNN) models for the
prediction of traffic in unseen cities. The results suggest that the graph-based models have
superior generalization properties than CNN-based models for this application. We argue
that in contrast to purely image-based approaches, formulating the prediction problem on a
graph allows the neural network to learn properties given by the underlying street network.
This facilitates the transfer of a trained model to predict traffic dynamics in cities with lower
data coverage.

6.2 Research questions

Chapter 1 of this dissertation introduced two primary research questions that focused on
how computational methods can support sustainable mobility and two secondary research
questions that focus on the foundations of computational methods.
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6.2.1 Research questions focused on sustainable mobility.

The primary research questions of this dissertation focus on the development of compu-
tational methods to support modal shift and how computational methods can be used to
support the sustainability of personal vehicles.

How can the modal shift of individuals be supported using computational
methods?

One of the main strategies to make individual mobility more sustainable is to cover our mo-
bility needs using more sustainable modes of transport. The shift towards more sustainable
modes is therefore one of the main interventions covered by the A-S-I framework mentioned
in the introduction of this dissertation. It is also recognized as one of the two most efficient
ways to reduce the carbon footprint of individual transport by the IPCC report on climate
change (Jaramillo et al., 2022). However, while modal shift is widely recognized as an
important and necessary measure, detailed knowledge about the impact of specific mobility
offers is still to be collected. A key tool to collect empirical evidence on mobility behavior
is to record the movement of individuals using travel diaries. In the past, this was done
using paper-based surveys or phone interviews. Nowadays, travel diaries recorded passively
using the mobile phone of a study participant provide higher spatiotemporal coverage and
allow for tracking studies with a high number of participants and longer durations. In such
case studies participants typically install an app on their phone which records and segments
their movement. Each participant then has to provide or validate labels for transport modes
and activities. Despite the advantages of mobile phone-based surveys, the provided labels
are often incomplete or implausible. As these labels are essential for studies that evaluate
the impact of mobility interventions, such as new incentives for modal shifts, completing
and correcting these labels is of great importance. An important step to advance methods
for the completion of activity labels is presented in Section 4.2, where a deep learning
approach based on a GCN is used for the imputation of missing labels. Here, the imputation
was performed based on location graphs and we showed that a GCN can take advantage
of information encoded in the topology of the location graph for analysis and prediction
tasks.

A challenge with regard to the introduction of new incentives for mobility behavior change
is the detection and analysis of mobility behavior change. Section 4.1 of this dissertation
introduces a novel method for the monitoring of mobility behavior change. The main
purpose of the method is to identify groups with similar mobility behavior based on location
graphs. The focus on location graphs allows combining multiple potentially smaller datasets
to increase the sample size and offset potential biases in order to detect more robust and
generalizable groups. An important application of these mobility behavior groups is to track
the group assignment of users over the course of an intervention. This allows detecting
and monitoring behavior change using only the less privacy-sensitive location graphs of an
individual. This work can thereby support the evaluation of the effectiveness of mobility
interventions.
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Finally, another problem potentially preventing the modal shift of individuals is related to the
mobility service providers that offer sustainable mobility options. Due to their novelty, there
is little experience in how to design and manage these shared mobility products effectively.
A key insight that is missing is information about the potential target groups for specific
mobility offers. Section 4.1 presents how the target groups of a MaaS offer can be analyzed
using the yumuv MaaS study introduced in Section 2.2 as an example.

How can the sustainability of personal vehicles be supported using
computational methods?

The replacement of ICEVs with BEVs represents a highly effective way to lower the GHG
emissions of individuals, as it could also be seen in the GC1 study summarized in Section 2.1.
However, to unfold their full decarbonization potential, BEVs require clean energy for
charging. Even though the energy transition is in progress globally (IEA, 2020b), electric
power available to consumers is still partially generated from fossil fuels in most countries.
As rooftop PV systems have relatively low specific GHG emissions (cf. Section 5.1.4), their
installation might be an easy solution for homeowners to further decarbonize their mobility.
However, there is skepticism regarding this solution, as personal vehicles are often not
parked at home during the day when the sun shines. Our study in Section 5.1 found
that even with a trivial smart charging strategy the participants could cover most of their
mobility energy demand with power generated from their own PV system. The results seem
counterintuitive at first, however, people often overestimate their daily driving distances or
underestimate the range of BEV. Therefore, it is often enough if the car can be fully charged
on weekends, on days when a person is working from home, or in the morning and evening
hours. The study showed the high potential of rooftop PV systems for the decarbonization
of personal mobility and the high importance of controlled charging for optimizing the
self-consumption of solar power. This computational study thereby offered valuable decision
support for individuals and policymakers to further decarbonize personal mobility.

Individual mobility and especially non-urban individual mobility will continue to rely on
personal vehicles to a large extent. Even though using BEVs reduces the related GHG
emissions significantly, individual motorized transportation will still block large areas of
public space for parking and infrastructure, and the problem of increasing traffic is left
unresolved. In light of further global urbanization (UN, 2018), it will therefore be essential
to establish smart traffic management in order to maintain livable cities. A key component
of smart traffic management systems is short-term traffic forecasts. Providing these forecasts
is an important way how computational methods can support the sustainability of personal
vehicles. Section 5.2 contributes to the existing literature in this field by exploring the
capabilities of different deep learning models trained for traffic forecasting to generalize to
unseen cities.
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6.2.2 Research questions focused on computational methods

In addition to the primary research questions discussed above, the focus on computational
methods for the support of sustainable mobility brought two further research questions into
the focus of this doctoral dissertation.

How can individual mobility from different data sources be represented in a
compact, and privacy-friendly way such that it allows the development of
computational methods?

A core contribution of this dissertation is the formalization of location graphs as a represen-
tation of individual mobility in Section 3.2. The creation of a location graph requires only
the sequence of visited locations without coordinates which are transformed using a lossy
compression that retains unique locations and the count of 1st order transitions. This has
two main advantages it allows the creation of location graphs based on many different types
of tracking datasets and it is privacy-friendly because much of the sensitive information (e.g.,
multi-hop sequence of visits, visiting times, activity purpose at a location) is aggregated and
thereby partially obscured on a location level. Despite its minimal requirements and the ag-
gregation of personal information, Section 4.1 and Section 4.2 show that the location graph
can still be used as a basis to develop computational methods to support the sustainability
of individual mobility.

How can the reproducibility and generalizability of preprocessing and
analysis methods for human mobility be improved?

The reproducibility and generalizability of computational methods related to human move-
ment data are currently limited by several factors. The first concerns the preprocessing
of tracking data directly. While tracking data are commonly used in various scientific
disciplines, there is no common understanding of the unit of analysis. As an example, a
location might refer to a single recorded raw trackpoint or to a place that was visited several
times and can only be identified from data after several preprocessing steps. Furthermore,
the preprocessing steps applied to tracking data are not standardized. Preprocessing and
analysis algorithms are currently hard to compare, as there is no common understanding of
the processed movement data and because they are often not available in a reliable open-
source implementation. Both problems are addressed with the introduction of Trackintel
in Section 3.1. This data model for movement data is used to standardize the definition
and implementation of preprocessing steps. Furthermore, Trackintel provides a high-quality
implementation of the most common preprocessing algorithms and provides functional-
ities for visualization and analysis. Trackintel thereby improves the reproducibility and
generalizability of preprocessing and analysis methods for human mobility.

Another problem with the reproducibility and generalizability of computational methods is
related to the properties of tracking datasets. Even though all tracking datasets record human
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mobility, they are highly diverse as they use different tracking technologies and might be
different in terms of spatiotemporal resolution, the spatiotemporal distribution of trackpoints,
sample biases, available annotations, or the recorded context data. Additionally tracking
datasets can usually not be shared due to privacy concerns. The result is that algorithms
for the analysis of individual mobility are often highly specialized on a single dataset and
not applicable to others even if an open-source implementation would be available. This
dissertation addresses this issue by leveraging the location graph representation introduced
in Section 3.2. Due to its minimal requirements on the dataset, it can be created based on
many different tracking datasets and is yet flexible to accommodate optional context data
as node or edge information. Section 4.1 and Section 4.2 present computational methods
based on location graph data and Section 3.2 and Section 4.1 show how the location graph
can be used to analyze datasets that are recorded using different technologies.

6.3 Outlook

The research presented in this dissertation was focused on the development of computational
methods that support sustainable individual mobility. However, efforts on decarbonizing the
energy and transport sector have to be further increased in the near future. The following is
a short description of promising avenues for further research on computational methods to
support sustainable mobility.

The first topic for future research is the continuation of research on location graphs. This
dissertation described the advantages of these methods with respect to generalizability and
the privacy-utility trade-off. However, there are very few methods for mobility prediction,
labeling, and analysis of mobility data available, leaving plenty of opportunity for future
research work. Furthermore, we have discussed the properties of location graphs and the
relation of graph properties to mobility behavior. However, the influence of gaps in the
tracking data on location graphs was not yet explored. Because location graphs are created
by aggregation, they could be highly robust to tracking gaps. This would make them a
suitable tool for tracking technologies with a low sampling frequency (eg., CDR data). This
property could also be used to lower the sampling frequency of other tracking technologies
which would benefit the privacy of individuals and the battery life of their devices. Similarly,
the influence of tracking duration on location graphs was not yet explored in detail. Here
it is important to know how long individuals need to be tracked until their location graph
stabilizes.

A second avenue is to further reduce the workload for researchers associated with data
preprocessing for tracking studies. Trackintel provides a standardized framework for prepro-
cessing methods, however, there is currently no protocol that standardizes the preprocessing
steps required to achieve a dataset with high data quality. This makes the data preparation
process a highly manual and cumbersome process.

Finally, future research should continue to work on further decarbonizing BEVs. Given the
insights on BEV charging from this dissertation, smart charging algorithms should be refined
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to consider multiple objectives. These objectives are to fulfill the mobility needs of the
vehicle owner while maximizing the usage of renewable energy generation for charging and
supporting the stability of the distribution grid. This will require forecasts for the mobility
demand of an individual and their combination with renewable generation forecasts.
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Appendix A
A.1 Supporting information for Trackintel: an

open-source Python library for human mobility
analysis

A.1.1 Documentation score

Python

The documentation score reported in Table 3.1 for python libraries is based on the pyOpenSci
package peer-review evaluation critera1

• Has an Open Software Initiative (OSI) approved license.

• Contains a README with instructions for installing the development version.

• Contains a vignette (notebook) with examples of its essential functions and uses.

• Has a test suite.

• Has continuous integration, such as Travis CI, AppVeyor, CircleCI, and/or others.

• Includes documentation with examples for all functions.

R

The documentation score reported in Table 3.1 for R libraries is based on the ROpenScie
package peer-review evaluation critera2

• Does the package have a CRAN accepted license?

• The package contains a reasonably complete readme with devtools install instructions.

• The package contains a vignette with examples of its essential functions.

• The package contains unit tests.

• The repository has continuous integration with Travis and/or another service.

• Package available on CRAN?

1https://www.pyopensci.org/contributing-guide/intro.html
2https://ropensci.org/
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A.2 Supporting information for Influence of tracking
duration on the privacy of individual mobility graphs

A.2.1 Validation on Green Class 2

To validate our results for the Green Class 1 data, we compute the matching performance
results on the Green Class 2 data accordingly. Figure A.1 visualizes the results corresponding
to Figure 3.21. Due to the lower number of users in Green Class 2, the re-identification
accuracy is generally higher, but the same patterns as for Green Class 2 can be observed:
Both the pool and the test duration impact the matching performance, and the best results
are obtained when pool and test duration are the same.
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Fig. A.1.: Dependency of matching performance on tracking duration for the Green Class
2 data. Similarly to the results for Green Class 1, the top-k accuracy and MRR
increase with both the tracking duration of the pool users as well as the test user.
Due to the lower number of users, the re-identification performance is higher,
reaching up to 82% top-10 accuracy.
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Fig. A.2.: Scatterplot matrix for the features of all datasets. Outliers were removed before-
hand. The user groups can be clearly distinguished on certain features axes.

A.3 Supporting information for Graph-based mobility
profiling

A.3.1 Feature exploration

For a more in-depth understanding of the distribution of features over user groups, we
provide the scatterplot matrix in Figure A.2. The two largest groups are Flexible and Local
routine which differ mostly in the hub size feature. The Flexible group also has a striking
difference from the other groups with respect to the journey length feature. Commuters
and Travellers are clearly distinguished by their high median and 9th-percentile trip distance
respectively. In contrast, the group Local routine has a particularly left-skewed distribution
in the distance-based features. Last, the Centered profile is clearly characterized by the high
node degree β in this group.
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A.3.2 Cross-sectional study

The cross-sectional study on the yumuv dataset in Section 4.1.5 can be conducted in similar
form for the Green Class dataset. Since no control group is available in the Green Class
studies, we instead compare their user group distribution to the one in all other studies.
Figure A.3 shows the group prevalence’s. In Green Class 1 and 2, there is a significantly
higher share of the Commuter and Traveller groups compared to the other studies, i.e., these
two groups are above average attracted to the Green Class offer. In contrast, less users
are part of the Local routine and Flexible groups. The differences are slightly weaker for
Green Class 2. In both cases, these differences in the distribution of the user groups are
significant (χ2 test, p < 0.01). These target and non-target groups can be characterized
using Figure 4.5 and it could be further analyzed with respect to additional information
such as demographics (cf. Section 4.1.5).

(a) Green Class 1 (b) Green Class 2

Fig. A.3.: Cross-sectional study for Green Class 1 and 2: There are more Travellers and
Commuters taking part in the Green Class studies compared to the proportion in
other datasets.

A.3.3 Longitudinal study

Analogous to Figure 4.8, Figure A.4 visualizes the movements of users between groups in a
network. The width of the edges is proportional to the number of users that are assigned to
group A before, but switch to group B during the trial period.

A.3.4 Dependence on clustering hyperparameters

Although our clustering approach does not depend on a major design choice such as the
number of clusters as input, it still uses several hyperparameters. Those either provide more
flexibility than before (e.g. the choices of k) or have minor influence on the result, such as
the threshold θminf . The latter is demonstrated with an additional experiment reported in
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Test group
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Control group

Fig. A.4.: Changes of user groups from the period before access to the yumuv offer to the
period after intervention. The arrow width corresponds to the number of users
that change from one group to another.

Table A.1. The initial partitions (cf. Figure 4.4a) with 3 runs for each of k = [6, 7, 8, 9] yield
90 clusters in total. The cluster are merged (cf. Figure 4.4e) if no features are significant in
contradicting directions and if there are more than θminf significant features corresponding.
Increasing θminf leads to more unmerged user groups since more and more clusters have
an insufficient number of significant features to be merged. Similarly, users can only be
assigned to groups with a sufficient number of significant features. Therefore the number
of unassigned users increases (see Table A.1). However, the resulting user groups that are
consistently assigned (see section 4.1.3) are clearly stable and robust to θminf .

θminf clusters user groups (merged) user groups (assigned consistently) unassigned users (%)

1 90 6 5 0.00
2 90 6 5 0.00
3 90 8 5 0.00
4 90 18 6 0.03
5 90 35 7 0.14
6 90 80 2 0.82

Tab. A.1.: Effect of the θminf threshold, defining the minimum number of significant
features to merge user groups. Only when θminf is set to a high value, the
merging process is affected, i.e. clusters cannot be merged due to a small
number of significant features.

As a rule of thumb, a user of the framework should set θminf ≤ m
2 , i.e. not more than half

of the number of features, and ensure that all users can be assigned to a group.
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Fig. A.5.: Characteristics of the identified groups based on classical mobility features.

A.3.5 Mobility profiling based on classical mobility features

To demonstrate the generality of our clustering algorithm, we additionally show its results
when applied on a set of classical mobility features, i.e. the basic features described in
section 4.1.6. The same parameters are used. Note that we can not include the two
Foursquare datasets, as the calculation of some of the features requires trajectory data. In
the group finding phase, 10 groups are identified, but the users are only assigned consistently
to 7 of them. The average consistency score (c.f. 4.1.6) is 0.9, meaning that on average
a user is assigned to its most dominant group in 90% cases. This gives evidence that our
algorithm is in general suitable to derive stable user groups. Figure A.5 shows the user
groups based on classical features analogously to Figure 4.5 (we omit the step of naming
the user groups as it is not the focus of this work). Figure A.6 depicts the groups per dataset
and shows strong differences between the studies, indicating a strong influence of tracking
period and other technical dataset properties on the user groups (c.f. appendix A.3.6 for
further analysis). We argue that graph features are thus more robust to technical dataset
properties and are therefore suitable for comparing mobility behavior of users in different
studies.

A.3.6 Dependency of mobility profiles on technical dataset
properties

In paragraph 4.1.5 the distribution of user groups over studies was discussed, and the
occurrence of all groups in most datasets indicated a certain generality of the mobility
profiles. Here, we provide further evidence that the user groups are robust to technical
properties of the data. A multinomial logistic regression model is used to quantify the
dependence on data properties, namely tracking duration and tracking coverage. We
compare the resulting coefficients and p-values for the user groups derived from graph
features (c.f. Section 4.1.5), given in Table A.2, to the ones for the basic features (c.f.
appendix A.3.5), listed in Table A.3. The logistic regression model for graph-based user
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Fig. A.6.: Distribution of user groups (found based on classical mobility features) over
datasets. Clearly, the groups are highly dependent on dataset properties.

groups is hardly better than random, with an accuracy of 0.375 (random is 0.35 for the
5 imbalanced classes) and an R-Squared value of 0.035. The coefficients in Table A.2 are
also lower than for the basic features and mostly non-significant, with the exception of
the Commuter group. Note that the coefficients of the first group (Centered) can not be
computed since it serves as the reference group in the model.

Commuter Flexible Local routine Traveller

days tracked 5.48 (0.0) 0.13 (0.93) -0.69 (0.62) 6.95 (0.0)
tracking coverage -13.57 (0.02) 4.89 (0.37) 9.82 (0.07) -5.94 (0.39)
Intercept 12.54 (0.02) -3.78 (0.47) -8.32 (0.11) 4.55 (0.49)

Tab. A.2.: Dependence of graph-based mobility profiles on tracking period and coverage.
The coefficients with p-values in parentheses of a multinomial logistic regression
model are shown. Significant coefficients are marked bold.

In contrast, the basic-features lead to user groups that are strongly influenced by the number
of tracked days and the coverage, as shown by the large and significant coefficients in
Table A.3. The accuracy is 0.59 (random: 0.47) and R-Squared is 0.279. In summary,
while undesired dependencies on dataset-specific properties may still exist, the experiment
shows the advantages of our approach with a comparably high robustness of the proposed
graph-based feature set for mobility profiling.

group 2 group 3 group 4 group 5 group 6 group 7

days tracked -30.04 (0.0) 32.7 (0.0) 32.78 (0.0) -18.13 (0.12) -13.66 (0.0) -38.51 (0.02)
tracking coverage 6.11 (0.3) -40.0 (0.0) -32.07 (0.0) -21.11 (0.02) -5.39 (0.22) -6.51 (0.66)
Intercept -5.25 (0.35) 31.98 (0.0) 24.59 (0.0) 17.87 (0.04) 5.5 (0.19) 4.52 (0.74)

Tab. A.3.: Dependence of mobility user groups, derived from basic features, on tracking
coverage and duration. The coefficients with p-values in brackets of a multino-
mial logistic regression model are shown. Significant coefficients are marked
bold.
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A.4 Supporting information for Using rooftop
photovoltaic generation to cover individual electric
vehicle demand—a detailed case study

A.4.1 PV panel parameters

Manufacturer Schüco
Model SPV 170-SME-1
NP 1
NS 72
VOC0 44 V
ISC0 5.15 A
VMP 0 35 V
IMP 0 4.86 A
αISC

0.055
βVOC

-0.37
Tref 45 °C
Acell 125.0 * 125.0 mm
Apanel 1580.4 * 808.4 mm
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