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Abstract 

Computational learning models are critical for understanding mechanisms 

of adaptive behavior. However, the two major current frameworks, 

reinforcement learning (RL) and Bayesian learning, both have certain 

limitations. For example, many Bayesian models are agnostic of inter-

individual variability and involve complicated integrals, making online 

learning difficult. Here, I introduce the hierarchical Gaussian Filter (HGF), a 

generic hierarchical Bayesian framework for individual learning under 

multiple forms of uncertainty (e.g., environmental volatility and sensory 

uncertainty). The HGF assumes Gaussian random walks of states, with the 

step size determined by the next higher level. The coupling between levels 

is controlled by parameters that shape the influence of uncertainty on 

learning in a subject-specific fashion. Using variational Bayes under a 

mean field approximation and a novel approximation to the posterior 

energy function, I derive trial-by-trial update equations which (i) are 

analytical and extremely efficient, enabling real-time learning, (ii) have a 

natural interpretation in terms of RL, and (iii) contain parameters 

representing processes which play a key role in current theories of 

learning, e.g., precision-weighting of prediction error. These parameters 

allow for the expression of individual differences in learning and may 

relate to specific neuromodulatory mechanisms in the brain. The HGF is 

very general: it can deal with both discrete and continuous states and 

equally accounts for deterministic and probabilistic relations between 

environmental events and perceptual states (i.e., situations with and 

without sensory uncertainty). These properties are illustrated by 

simulations and analyses of empirical time series from financial markets, 

behavioral experiments, and fMRI measurements. Overall, this framework 

provides a novel foundation for understanding normal and pathological 

learning that contextualizes RL within a generic Bayesian scheme and thus 

connects it to principles of optimality from probability theory. 
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1 INTRODUCTION 

 Inference and Bayesian learning 1.1

Learning can be understood as the process of updating an agent’s beliefs 

about the world by integrating new and old information. This enables the 

agent to exploit past experience and improve predictions about the future; 

e.g., the consequences of chosen actions. Understanding how biological 

agents, such as humans or animals, learn requires a specification of both 

the computational principles and their neurophysiological implementation 

in the brain.  This can be approached in a bottom-up fashion, building a 

neuronal circuit from neurons and synapses and studying what forms of 

learning are supported by the ensuing neuronal architecture. 

Alternatively, one can choose a top-down approach, using generic 

computational principles to construct generative models of learning and 

use these to infer on underlying mechanisms. (Daunizeau et al., 2010a, 

2010b). The latter approach is the one that I pursue in this thesis. 

The laws of inductive inference, prescribing an optimal way to learn from 

new information, have long been known (Laplace, 1774, 1812). They have 

a unique mathematical form, i.e. it has been proven that there is no 

alternative formulation of inductive reasoning that does not violate either 

consistency or common sense (Cox, 1946). Inductive reasoning is also 

known as Bayesian learning because the requisite updating of conditional 

probabilities is described by Bayes’ theorem. Since a Bayesian learner 

processes information optimally, it should have an evolutionary advantage 

over other types of agents, and one might therefore expect the human 

brain to have evolved such that it implements an ideal Bayesian learner 

(Geisler and Diehl, 2002). Indeed, there is substantial evidence from 

studies on various domains of learning and perception that human 

behavior is better described by Bayesian models than by other theories 

(e.g., Behrens et al., 2007; Bresciani et al., 2006; den Ouden et al., 2010; 

Kording and Wolpert, 2004; Orbán et al., 2008; Xu and Tenenbaum, 2007; 

Yuille and Kersten, 2006). However, there remain at least three serious 

difficulties with the hypothesis that humans act as ideal Bayesian learners. 

The first problem is that in all but the simplest cases, the application of 
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Bayes’ rule involves complicated integrals that require burdensome and 

time-consuming numerical calculations. This makes online learning a 

challenging task for Bayesian models, and any evolutionary advantage 

conferred by optimal learning might be outweighed by these 

computational costs. A second and associated problem is how ideal 

Bayesian learning, with its requirement to evaluate high-dimensional 

integrals, would be implemented neuronally (cf. Beck et al., 2008; Deneve, 

2008; Yang and Shadlen, 2007). The third difficulty is that Bayesian 

learning constitutes a normative framework that prescribes how 

information should be dealt with. In reality, though, even when endowed 

with equal prior knowledge, not all agents process new information alike. 

Instead, even under carefully controlled conditions, animals and humans 

display considerable inter-individual variability in learning (e.g., 

Daunizeau et al., 2010a; Gluck et al., 2002). Despite previous attempts of 

Bayesian models to deal with individual variability (e.g., Steyvers et al., 

2009; Nassar et al., 2010), the failure of orthodox Bayesian learning theory 

to account for these individual differences remains a key problem for 

understanding (mal)adaptive behavior of humans. Formal and mechanistic 

characterizations of this inter-subject variability are needed to 

comprehend fundamental aspects of brain function and disease.  For 

example, individual differences in learning may result from inter-

individual variability in basic physiological mechanisms, such as the 

neuromodulatory regulation of synaptic plasticity (Thiel et al., 1998), and 

such differences may explain the heterogeneous nature of psychiatric 

diseases (Stephan et al., 2009a). 

 Reinforcement learning 1.2

The difficulties of Bayesian learning have been avoided by descriptive 

approaches to learning, which are not grounded in probability theory, 

notably some forms of reinforcement learning (RL), where agents learn 

the “value” of different stimuli and actions (Sutton and Barto, 1998; Dayan 

and Niv, 2008). While RL is a wide field encompassing a variety of 

schemes, perhaps the most prototypical and widely used model is that by 

(Rescorla and Wagner, 1972). In this description, predictions of value are 

updated in relation to the current prediction error, weighted by a learning 

rate (which may differ across individuals and contexts). The great 
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advantage of this scheme is its conceptual simplicity and computational 

efficiency. It has been applied empirically to various learning tasks (Sutton 

and Barto, 1998) and has played a major role in attempts to explain 

electrophysiological and functional magnetic resonance imaging (fMRI) 

measures of brain activity during reward learning (e.g., O’Doherty et al., 

2004; Schultz et al., 1997; Daw et al., 2006; Montague et al., 2004). 

Furthermore, its non-normative descriptive nature allows for modeling 

aberrant modes of learning, such as in schizophrenia or depression (Dayan 

and Huys, 2009; Frank, 2008; Murray et al., 2007; Smith et al., 2006). 

Similarly, it has found widespread use in modeling the effects of 

neuromodulatory transmitters, such as dopamine, on learning (e.g., Yu and 

Dayan, 2005; Doya, 2008; Pessiglione et al., 2006). 

Despite these advantages, RL also suffers from major limitations.  On the 

theoretical side, it is a heuristic approach that does not follow from the 

principles of probability theory. In practical terms, it often performs badly 

in real-world situations where environmental states and the outcomes of 

actions are not known to the agent, but must also be inferred or learned.  

These practical limitations have led some authors to argue that Bayesian 

principles and "structure learning" are essential in improving RL 

approaches (Gershman and Niv, 2010). In this thesis, I introduce a novel 

model of Bayesian learning that overcomes the three limitations of ideal 

Bayesian learning discussed above (i.e., computational complexity, 

questionable biological implementation, and failure to account for 

individual differences) and that connects Bayesian learning to RL schemes. 

 The proposed hierarchical Bayesian 1.3

generative model 

Any Bayesian learning scheme relies upon the definition of a so-called 

“generative model”, i.e. a set of probabilistic assumptions about how 

sensory signals are generated. The generative model I propose is inspired 

by the seminal work of (Behrens et al., 2007) and comprises a hierarchy of 

states that evolve in time as Gaussian random walks, with each walk’s step 

size determined by the next higher level of the hierarchy. This model can 

be inverted (fitted) by an agent using a mean field approximation and a 

novel approximation to the conditional probabilities over unknown 
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quantities that replaces the conventional Laplace approximation. This 

enables us to derive closed-form update equations for the posterior 

expectations of all hidden states governing contingencies in the 

environment. This results in extremely efficient computations that allow 

for real-time learning. The form of these update equations is similar to 

those of Rescorla-Wagner learning, providing a Bayesian analogon to RL 

theory. Finally, by introducing parameters that determine the nature of the 

coupling between the levels of the hierarchical model, the optimality of an 

update is made conditional upon parameter values that may vary from 

agent to agent. These parameters encode prior beliefs about higher-order 

structure in the environment and enable the model to account for inter-

individual (and inter-temporal intra-individual) differences in learning. In 

other words, the model is capable of describing behavior that is 

subjectively optimal (in relation to the agent’s prior beliefs) but objectively 

maladaptive. Importantly, the model parameters that determine the 

nature of learning may relate to specific physiological processes, such as 

the neuromodulation of synaptic plasticity. For example, it has been 

hypothesized that dopamine, which regulates plasticity of glutamatergic 

synapses (Gu, 2002), may encode the precision of prediction errors 

(Friston, 2009).  In my model, this precision-weighting of prediction errors 

is determined by the model’s parameters (cf. Figure 4). Ultimately, this 

approach may therefore be useful for model-based inference on subject-

specific computational and physiological mechanisms of learning, with 

potential clinical applications for diagnostic classifications of psychiatric 

spectrum disorders (Stephan et al., 2009a).  

 Overview 1.4

This thesis is structured as follows: 

 Chapter 2: This chapter lays the groundwork by introducing the 

main contribution of this work: the hierarchical Gaussian filter 

(HGF). Along with the general formulation, a simple example 

model is introduced that will serve as a practical tool in many 

applications throughout the thesis.  
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 Chapter 3: Here, we deal with the inversion of the HGF. Exact 

inversion is discussed, variational inversion is explained in the 

context of the mean field approximation and the corresponding 

variational energies are derived. 

 Chapter 4: Closed-form update equations are derived and 

interpreted. After their introduction, the quadratic 

approximation that leads to them is discussed in detail, and the 

structure of the equations is analyzed extensively. The updates 

are then discussed in the context of a very general feature of 

Bayesian updating: precision-weighting of prediction errors. 

Finally, their properties are explored in a series of simulations. 

 Chapter 5: This chapter deals with sensory input, that is with the 

interface between the perceptual prediction-generating machine 

that the HGF is and the hidden states of the world that it is 

predicting. Sensory uncertainty is discussed both in the case of 

binary categorical and in the case of continuous hidden states. 

 Chapter 6: Response models are introduced, completing the 

“observing the observer” framework. Two simple examples of 

response models are derived from first principles (i.e., from a 

loss function). 

 Chapter 7: In this chapter, we deal with parameter estimation. 

First, we establish theoretically, illustrated by an example, what 

parameters we can estimate under what circumstances. We then 

lay out the mechanism of inference and discuss the choice of 

priors and parameter transformations. To establish that 

parameter estimation really works, I then present a simulation 

study that we conducted, comparing four different optimization 

strategies. We then look at the optimization of parameters, that is 

at how to find the parameter values that imply least surprise for 

an agent receiving a given set of inputs. Finally, we discuss 

Bayesian model comparison and model selection. 
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 Chapter 8: The HGF toolbox, a collection of Matlab routines 

implementing the HGF and related models (and their estimation), 

is introduced. 

 Chapter 9: We report a study applying the HGF to saccadic 

reaction times in a modified Posner paradigm. The HGF here 

serves as the framework in which to assess competing response 

models and is itself subjected to comparison with competing 

models. 

 Chapter 10: In this chapter, the HGF  is used in the analysis of an 

fMRI study that introduces a novel paradigm: the observed 

iterated trust game. This amounts to the observation of an 

observing observer and provides for the modeling of complex 

mental inferences. Despite their complexity, these inferred 

mental states appear to have associated neuronal activations as 

revealed by fMRI. 
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2 THE GENERATIVE MODEL 

 The Hierarchical Gaussian Filter (HGF) 2.1

The goal of the model I introduce here is simple and general: to describe 

how an agent learns about a continuous quantity   that moves. One simple 

way of describing this motion is a Gaussian random walk: 

       (        ) (1) 

where   is a time index, and        and   are the mean and variance (not 

standard deviation) of a Gaussian distribution, respectively. In this 

formulation, the volatility in   is governed by the positive constant  ; 

however, there is in principle no reason to assume that volatility is 

constant. To allow for changes in volatility, we replace   by a positive 

function   of a second quantity,   , while   becomes   : 

   
   

  (  
     

      ) (2) 

We may now further assume that    performs a Gaussian random walk of 

its own, albeit with a constant variance   (Eq. (1)), taking the former role 

of   . This adding of levels of Gaussian random walks coupled by their 

variances can now continue up to any number   of levels in the hierarchy, 

as illustrated in Figure 1. At each level  , the coupling to the next highest 

level     is given by a positive function          which represents the 

variance or step size of the random walk: 
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  (  
     

         ),             . (3) 

At the top level, instead of   , we have  : 

   
   

  (  
     

  )  (4) 

The estimation of such a time-series model to yield a prediction on   
   

 

given inputs (i.e., measurements of   )                    is called filtering 

(as opposed to smoothing, which refers to estimating   
   

 on the basis of 

inputs earlier and also later than    ). Since the model consists of a 

hierarchy of Gaussian random walks and its purpose is filtering, I call it the 

Hierarchical Gaussian Filter (HGF). 

 

Figure 1. Overview of the hierarchical generative model. The model represents a 

hierarchy of coupled Gaussian random walks.. The levels of the hierarchy relate to 

each other by determining the step size (volatility or variance) of a random walk. The 

topmost step size is a constant parameter  . 
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 The coupling between levels 2.2

To complete the model, we still need to define the    in Eq. (3). A flexible 

and straightforward approach to this is to allow any positive analytic   , 

but to expand it in powers to first order to give it a simple functional form. 

However, since    has to be everywhere positive, we cannot approximate it 

by expanding it directly. Instead, dropping indices for clarity, we expand 

its logarithm. 

                          (    )      (5) 

 

 

                                    

             
     

    
                         

            
     

    ⏟  
  

             
     

    ⏟            
  

           

                                                                

(6) 

                                           (7) 

This motivates my definition of coupling between levels: 

                         (8) 
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Moreover, this form of coupling has the advantage of enabling the 

derivation of simple one-step update equations for an approximate 

inversion of the model. Before I derive these update equations in Chapter 

3, I will first give an example of this model under minimal assumptions: 

noiseless binary inputs and a minimal number of levels. 

 

 The generative model under minimal 2.3

assumptions 

A full generative model consists of the joint probability density of all states 

and parameters. This joint density is the product of the likelihood function 

defined in Eqs (3), (4), and (8) and a prior density over states and 

parameters. To make the construction of the joint density clearer and also 

to introduce a first concrete example of a hierarchical Gaussian filtering 

model, I first give the joint density of a very simple model before turning to 

the general case. This simple example will also serve us in further sections 

and chapters. 

An overview of this simple form of the generative model is given by Figure 

2. We imagine an agent who receives a sequence of sensory inputs 

                . To keep the presentation as simple as possible, we 

initially deal with an environment where the sensory input      {   } on 

trial   is of a binary form. In this form, the generative model can be seen as 

an extension of the model proposed by (Daunizeau et al., 2010b). It is then 

also similar to the model of (Behrens et al., 2007). However, in its general 

form, it can deal with states and inputs that are discrete or continuous and 

uni- or multivariate, and it equally accounts for deterministic and 

probabilistic relationships between environmental events and perceptual 

states (i.e., situations with and without sensory uncertainty). In fact, at a 

later stage we will also deal with stochastic mappings (i.e., sensory 

uncertainty; cf. Eq. (72)) and continuous (real-valued) inputs and states 

(cf. Eq. (75)).  
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Figure 2. The simple example model. There are three levels; the lowest level    is 

binary and corresponds, in the absence of sensory noise, to sensory input  . Left: 

schematic representation of the generative model as a Bayesian network.   
   

,   
   

, 

  
   

 are hidden states of the environment at time point  . They generate     , the input 

at time point  , and depend on their immediately preceding values   
     ,   

      and 

on the on parameters  ,  ,  . Right: model definition. 

 

To illustrate the situation we are modeling here, imagine a case where the 

agent is only interested in a single (binary) state of its environment; e.g., 

whether it is light or dark. In this model, the environmental state    at time 

 , denoted by    
   

 {   }, causes input     . Here,    could represent the 

on/off state of a light switch and   the sensation of light or darkness. (For 

simplicity, I will often omit the time index  .) Note that while in the 

previous sections, all level    were continuous, we now have a binary level 

   at the bottom of the hierarchy. The equations in the previous sections 

accordingly apply to levels    . 

Since we assume that the binary state    can be observed directly, without 

sensory uncertainty, we have 
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      . (9) 

This will later be replaced by a stochastic mapping when dealing with 

sensory uncertainty (cf. Eq. (72), Section 5.1). 

Since    is binary, its probability distribution can be described by a single 

real number, the state    at the next level of the hierarchy. We map    to 

the probability of    such that      means that      and      are 

equally probable. For      the probability for      and      should 

approach   and  , respectively. Conversely, for       the probabilities 

for       and       should approach   and , respectively. This can be 

achieved with the following conditional density: 

     |         
  (       )

    
          (        )  (10) 

where      is the logistic sigmoid (softmax) function: 

      
 

          
  (11) 

Put simply,      is an unbounded real parameter of the probability that 

    . In the light/dark example, one might interpret    as the tendency 

of the light to be on. 

For the sake of generality, we make no assumptions about the probability 

of    except that it may change with time as a Gaussian random walk. This 

means that the value of    at time   will be normally distributed around its 

value at the previous time point,   
     

: 
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  (  
   

|  
     

   
   

)   (  
   

   
     

         
   

   ) (12) 

Importantly, the dispersion of the random walk (i.e., the variance 

            of the conditional probability) is determined by the 

parameters   and    as well as by the state   . Here, this state determines 

the log-volatility of the environment (cf. Behrens et al., 2007, 2008). In 

other words, the tendency    of the light switch to be on performs a 

Gaussian random walk with volatility            . Introducing   

allows for a volatility that scales independently of the state   . Everything 

applying to    now equally applies to   , such that we could add as many 

levels as we please. Here, we stop at the fourth level, and set the volatility 

of    to  , a constant parameter (which may again differ across agents): 

  (  
   

|  
     

  )   (  
   

   
     

  ) (13) 

Given full priors on the parameters, i.e.         , we can now write the 

full generative model 

 

 (       
   

   
   

   
   

   
     

   
     

      )

  (    |  
   

)  (  
   

|  
   

)  (  
   

|  
     

   
   

    ) 

       (  
   

|  
     

  )  (  
     

   
     

)          

(14) 

Given priors on the initial state  (  
   

   
   

)  the generative model is 

defined for all times   by recursion to      To perform the recursion, the 

density  (  
     

   
     

) has to be computed by marginalizing over the 

joint distribution for the previous time point: 
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 (  
     

   
     

)

 ∫ (         
     

   
     

   
     

   
     

   
     

      ) 

         
     

   
     

       

(15) 

Note that there is no marginalization over   and    since these quantities 

are known because they are directly observed. 

Inverting this model corresponds to optimizing the posterior densities 

over the unknown (hidden) states   {        } and parameters 

  {     }. This corresponds to perceptual inference and learning, 

respectively. In the next section, I consider the nature of this inversion or 

optimization. 

Turning from this simple example to the general model defined in Eqs (3), 

(4), and (8), we have   {               } and      {  
   

     
   

}. 

Combining all levels and introducing priors on the states and parameters 

yields 

 

 (             )

      (      ) (  
   |  

       )  ∏ (  
   |  

          
         )

   

   

 

      (      ) (  
      

        )∏ (  
      

          (      
      ))

   

   

  

(16) 

Here again, this is fully defined by recursion to     given a state prior 

 (  
   

     
   

) and marginalization at each time step: 
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  (      )  ∫ (               )          . (17) 
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3 INVERSION 

 Exact inversion 3.1

Returning to the simple example of the previous chapter, it is instructive to 

consider the factorization of the generative density 

 
 (       

   
   

   
   

   
   

     
   

     
  )

  (       
   

   
   

   
   

  |  
     

   
     

)  (  
     

   
     

) 
(18) 

In this form, the Markovian structure of the model becomes apparent: the 

joint probability of the input and the states at time   depends only on the 

states at the immediately preceding time      It is the probability 

distribution of these states that contains the information conveyed by 

previous inputs          (             );  i.e.: 

  (  
     

   
     

)   (  
     

   
     

|        ) (19) 

By integrating out   
     

 and   
     

 we obtain the following compact form 

of the generative model at time  : 
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∫ ∫  (       
   

   
   

   
   

  |  
     

   
     

) 

 

  

 

  

 

                 (  
     

   
     

|        )    
     

   
     

 

  (           |        ) 

(20) 

Once      is observed, we can plug it into this expression and obtain 

  (      |      ) (21) 

This is the quantity of interest to us, because it describes the posterior 

probability of the time-dependent states,      (and time-independent 

parameters,  ) in the agent’s environment. This is what the agent infers 

(and learns), given the history of previous inputs. Computing this 

probability is called model inversion: unlike the likelihood 

 (    |               ) the posterior does not predict data (    ) from 

hidden states and parameters but predicts states and parameters from 

data. 

In the framework I introduce here, I model the individual variability 

between agents by putting delta-function priors on the parameters: 

 
 (      |      )   (    |        ) ( |      ) 

 ( |      )          
(22) 

Where    are the fixed parameter values that characterize a particular 

agent at a particular time (e.g., during the experimental session). This 

corresponds to the common distinction between states (as variables that 
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change quickly) and parameters (as variables that change slowly or not at 

all). In other words, I assume that the timescale at which parameter 

estimates change is much larger than the one on which state estimates 

change, and also larger than the periods during which we observe agents 

in a single experiment. This is not a strong assumption, given that the 

model has multiple hierarchical levels of states that give the agent the 

required flexibility to adapt its beliefs to a changing environment. In effect, 

this approach gives us a family of Bayesian learners whose (slowly 

changing) individuality is captured by their priors on the parameters. For 

other examples where subjects’ beliefs about the nature of their 

environment were modeled as priors on parameters, see Daunizeau et al. 

(2010b) and Steyvers et al. (2009). 

In principle, model inversion can proceed in an online fashion: By 

(numerical) marginalization, we can obtain the (marginal) posteriors 

  (  
   

|      ) and  (  
   

|      ); this is the approach adopted by 

(Behrens et al., 2007), allowing one to compute  (               |      ) 

according to Eqs (14) and (15), and subsequently  (        |        ) 

once        becomes known, and so on. Unfortunately, this (exact) 

inversion involves integrals that cannot be solved analytically for every 

new input, rendering exact Bayesian inversion unsuitable for real-time 

learning in a biological setting, and inefficient in all settings.  If the brain 

uses a Bayesian scheme, it is likely that it relies on some sufficiently 

accurate, but fast, approximation to Eq. (20). As described in the next 

section, a generic and efficient approach is to employ a mean field 

approximation within a variational scheme. This furnishes an efficient 

solution with biological plausibility and interpretability. 

 Variational inversion 3.2

Variational Bayesian (VB) inversion determines the posterior distributions 

 (      |      ) by maximizing the log-model evidence. The log-evidence 

corresponds to the negative surprise about the data, given a model, and is 

approximated by a lower bound, the negative free energy. Detailed 

treatments of the general principles of the VB procedure can be found in 

numerous papers (e.g., Beal, 2003; Friston and Stephan, 2007); they are 
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summarized in Appendix A. The approximations inherent in VB enable a 

computationally efficient inversion scheme with closed-form single-step 

probability updates from trial to trial. In particular, VB can incorporate the 

so-called mean field approximation which turns the joint posterior 

distribution into the product of approximate marginal posterior 

distributions: 

 

 (      |      )    (    |        ) ( |      ) 

 (    |        )  ∏ ̂

 

   

(  
   

) 

 (  
   

)   ̂ (  
   

) 

(23) 

Based on this assumption, the variational maximization of the negative 

free energy is implemented in a series of variational updates for each level 

  of the model separately. The second line in Eq. (23) represents the mean 

field assumption (factorization of the posterior), while the third line 

reflects the fact that we assume a fixed form      for the approximate 

marginal  ̂   . We make minimal assumptions about the form of the 

approximate posteriors by following the maximum entropy principle: 

given knowledge of, or assumptions about, constraints on a distribution, 

the least arbitrary choice of distribution is the one that maximizes entropy 

(Jaynes, 1957). To keep the description of the posteriors simple and 

biologically plausible, we take them to be characterized only by their first 

two moments; i.e., by their mean and variance. 

All of the above applies to our simple example as well as to the full model. 

Before inverting the model variationally in the most general terms, I again 

first demonstrate the procedure for our simple example. There, at the first 

level, we have a binary state    with a mean           . Under this 

constraint, the maximum entropy distribution is the Bernoulli distribution 

with parameter    (where the variance           is a function of the 

mean): 
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)           (  
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(    
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(24) 

At the second and third level, the maximum entropy distribution of the 

unbounded real variables    and   , given their means and variances, is 

Gaussian. Note that the choice of a Gaussian distribution for the 

approximate posteriors is not due simply to computational expediency (or 

the law of large numbers) but follows from the fact that, given the 

assumption that the posterior is encoded by its first two moments, the 

maximum entropy principle prescribes a Gaussian distribution. Labeling 

the means   ,    and the variances   ,   , we obtain 

 
 (  

   
|      )   (  

   
)   (  

   
   

   
   

   
) 

 (  
   

|      )   (  
   

)   (  
   

   
   

   
   

) 
(25) 

Now that we have approximate posteriors   that we treat as known for all 

but the  th level, the next step is to determine the variational posterior 

 ̂     for this level  . Variational calculus shows that given       

(   {     } and    ), the approximate posterior 

 ̂ (  
   

)   (  
   

|        ) under the mean field approximation is 

proportional to the exponential of the variational energy      : 

  ̂ (  
   

 )  
 

  
   ( (  

   
)) (26) 

   is a normalization constant that ensures that the integral (or sum, in the 

discrete case) of  ̂ over   equals unity. This fundamental relation is 
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derived in detail in Appendix B (Beal, 2003). Under our generative model, 

the variational energy is 

 

 (  
   

)  ∫  (   
   

)     (   
   

    
   

  |      )

   

    
   

 

 (   )  ∏     

   

 

(27) 

where     denotes all    with     and       ∏             is the direct 

product of the ranges (or values in the discrete case) of the    contained in 

   . The integral over discrete values is again a sum. In what follows, I take 

this general theory and unpack it using the generative model for 

sequential learning above. Our special focus here will be on the form of the 

variational updates that underlie inference and learning. 

 The variational energies 3.3

To compute  ̂ (  
   

), we need  (   
   

) and therefore the sufficient 

statistics     {       } for the posteriors at all but the  -th level. One 

could try to extract them from  ̂ (   
   

) but that would constitute a circular 

problem. We avoid this by exploiting the hierarchical form of the model: 

for the first level, we use the sufficient statistics of the higher levels from 

the previous time point    , since information about input      cannot 

yet have reached those levels. From there we proceed upward through the 

hierarchy of levels, always using the updated parameters    
   

 for levels 

lower than the current level and pre-update values    
     

 for higher levels. 

Extending the approach suggested by Daunizeau et al. (2010b), and using 

power series approximations where necessary, the variational energy 

integrals can then be calculated for all    (see Appendix C for details), 

giving, in our example 
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(30) 

In the general case, the variational energy is 
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(31) 
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with                (      
   

   )     

Substituting these variational energies into Eq. (26, we obtain the 

posterior distribution of   under the mean field approximation. 

According to Eqs (26) and (28 to (30,  ̂ (  
   

) depends on     ,   
     

, 

   
     

,    
   

, and  . In the next section, I show that it is possible to derive 

simple closed-form Markovian update equations of the form 

   
   

    ( 
      

     
    

     
    

   
  ) (32) 

Update equations of this form allow the agent to update its approximate 

posteriors over    
   

 very efficiently and thus optimize its beliefs about the 

environment in real time. We now consider the detailed form of these 

equations and how they relate to classical heuristics from reinforcement 

learning. 
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4 THE UPDATE EQUATIONS 

 Derivation of the update equations 4.1

At the first level of the model, it is simple to determine       since 

 ̂                      is a Bernoulli distribution with parameter 

   
   

  ̂ (  
   

  )       (33) 

and therefore already has the form required of       by Eq. (23. We can 

thus take        ̂     and have in Eq. (33) an update rule of the form of 

Eq. (32). 

At the second level,  ̂     does not have the form required of       by Eq. 

(24) since it is only approximately Gaussian. It is proportional to the 

exponential of       and would only be Gaussian if       were quadratic. 

The problem of finding a Gaussian approximation        ̂     can 

therefore be reformulated as finding a quadratic approximation to       . 

The obvious way to achieve this is to expand       in powers of    up to 

second order. The choice of expansion point, however, is not trivial. One 

possible choice is the mode or maximum of      , resulting in the 

frequently used Laplace approximation (Friston et al., 2007). This has the 

disadvantage that the maximum of       is unknown and has to be found 

by numerical optimization methods, precluding a single-step analytical 

update rule of the form of Eq. (32). This is no problem in a continuous time 

setting, where the mode of the variational energy can be updated 

continuously (cf. Friston, 2008). However, for the discrete updates we 

seek, one can use the expectation   
     

 as the expansion point for time  , 

when the agent receives input      and the expectation of   
   

 is   
     

. In 

terms of computational and mnemonic costs, this is the most economical 

choice since this value is known. Moreover, it yields analytical update 

equations which (i) bear structural resemblance to those used by RL 
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models (see next section) and (ii) can be computed very efficiently in a 

single step: 

   
   

 
 

  ̂ 
   

  ̂ 
   ⁄

 (34) 

   
   

   
     

   
   

  
   

 (35) 

where, for clarity, I have used the definitions 

  ̂ 
   

  (  
     

) (36) 

   
   

   
   

  ̂ 
   

 (37) 

  ̂ 
   

  ̂ 
   

(   ̂ 
   

) (38) 

  ̂ 
   

   
     

     
     

   (39) 

Formulated in terms of precisions (inverse variances)   
   

    
   ⁄ , 

 ̂ 
   

   ̂ 
   ⁄ ,  ̂ 

   
   ̂ 

   ⁄ , the variance update (Eq. (34)) takes the 

simple form 
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  ̂ 
   

 
 

 ̂ 
   

  (40) 

In the context of the update equations, I use the hat notation to indicate 

“referring to prediction”. While the  ̂ 
   

are the predictions before seeing 

the input     , the   ̂ 
   

and   ̂ 
   

 are the variances (i.e., uncertainties) and 

precisions of these predictions (see Structural interpretation of the Update 

Equations). 

The approach that produces these update equations is conceptually similar 

to a Gauss-Newton ascent on the variational energy that would, by 

iteration, produce the Laplace approximation (cf. Figure 3). The same 

approach can be taken at the third level, where we also have a Gaussian 

approximate posterior: 

   
   

  ̂ 
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with   
   

    
   ⁄ and 
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 (43) 
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Turning to the general case, I choose a slightly different notation for the 

updates that will later (cf. Section 4.1) provide a complementary 

interpretation in terms of precision-weighted prediction errors. We here 

obtain 
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with 
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One may easily verify that these updates correspond exactly to those given 

for the third level in our example model. From that level up to the  -th, the 

updates retain this same compact and interpretable form, never becoming 

more complicated. 

Applying Eq. (32) recursively and using the updates of Eqs (47) and (48) 

for its right-hand side, we can now write the inferences implied by the HGF 

as the following computationally efficient function 

          (        )  (52) 

where      {  
   

     
   

} and   {           }.  

The derivation of the update equations, based on the quadratic 

approximation to       and       briefly introduced above, is described in 

detail in the next section, and Figure 3 provides a graphical illustration of 

the ensuing procedure. The meaning of the terms that appear in the update 
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equations and the overall structure of the updates will be discussed in 

detail in the Section 4.1. 

 Quadratic approximation to the 4.2

variational energies 

While knowing       (with        ) gives us the unconstrained posterior 

 ̂     given       , we still need to determine the constrained posterior 

      for all but the first levels, where        ̂    . Schematically, the 

approximation procedure can be pictured in the following way: 

 
 (  

   
|        )

          
→         ̂ (  

   
)     (  

   
) 

                                  
        
→        (  

   
)      ̃ (  

   
) 

(53) 

I denote by  ̃ the quadratic function obtained by expansion of   around 

  
   

   
     

 (see Figure 3 for a graphical summary). Its exponential has 

the Gaussian form required by Eqs (24) and (25) (where  ̃  is a 

normalization constant): 

  (  
   

)  
 

√    
   

   ( 
(  

   
   

   
)
 

   
   

)  
 

 ̃ 

   ( ̃ (  
   

)) (54) 

This equation lets us find   
   

 and   
   

. Taking the logarithm on both sides 

and then differentiating twice with respect to   
   

 gives 
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   ̃ (  
   

) 
        (55) 

where    denotes the second derivative, which is constant for a quadratic 

function. Because      and    ̃ agree at the expansion point   
   

   
     

, 

we may write 

   
   

  
 

   (  
     

) 
 (56) 

A somewhat different line of reasoning leads to   
   

. Since   
   

 is the 

argument of the maximum (argmax) of   (and exponentiation preserves 

the argmax),   
   

 has to be the argmax of  ̃. Starting at any point   
   

, the 

exact argmax of a quadratic function can be found in one step by Newton’s 

method: 

   
   

         ̃ (  
   

)    
   

 
  ̃ (  

   
)

   ̃ (   
   

)
 (57) 

If we choose   
   

 to be the expansion point   
     

, we have agreement of   

with  ̃ up to the second derivative at this point and may therefore write 

   
   

   
     

 
  (  

     
)

   (  
     

)
   

     
   

   
  (  

     
) (58) 
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Figure 3. Quadratic approximation to the variational energy. Approximating the 

variational energy      (blue) by a quadratic function leads (by exponentiation) to a 

Gaussian posterior. To find our approximation  ̃    (red), we expand      to second 

order at the preceding posterior expectation       . The argmax of  ̃    is then the 

new posterior expectation     . This generally leads to a different result from the 

Laplace approximation (dashed), but there is a priori no reason to regard either 

approximation as more exact than the other. 

 

Plugging       from Eq. (29) into Eqs (56) and (58) now yields the 

parameter update equations  (Eqs (34) and (35)) of the form of Eq. (32) 

for the second level. For the third level, the same procedure gives Eqs (41) 

and (42), and in the general case of   levels, we obtain Eqs  (47) and (48). 

Note that this method of obtaining closed-form Markovian parameter 

update equations can readily be applied to multidimensional   ’s with 

approximately multivariate Gaussian posteriors by reinterpreting    as a 

gradient and     ⁄  as the inverse of a Hessian in Eqs (56) and (58). 
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 Structural interpretation of the update 4.3

equations 

As we have seen, variational inversion of our model, using a new quadratic 

approximation to the variational energies, provides a set of simple trial-by-

trial update rules for the sufficient statistics    {     } of the posterior 

distributions we seek. These update equations do not increase in 

complexity with trials, in contrast to exact Bayesian inversion, which 

requires analytically intractable integrations (cf. Eq. (20)). In our 

approach, almost all the work is in deriving the update rules, not in doing 

the actual updates. 

Crucially, the update equations for    and    have a form that is familiar 

from RL models such as Rescorla-Wagner learning (cf. also Figure 4). The 

general structure of RL models can be summarized as: 

          
   

           
     

                                

As I explain in detail below, this same structure appears in Eqs (35) and 

(42) – displayed here in their full forms: 
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The term   
   

   
   

  ̂ 
   

 in Eq. (35) corresponds to the prediction error 

at the first level. This prediction error is the difference between the 

expectation   
   

 of    having observed input      and the prediction 

 ̂ 
   

  (  
     

) before receiving     ; i.e. the softmax transformation of 

the expectation of    before seeing     . Furthermore,    in Eq. (35) can be 

interpreted as the equivalent of a (time-varying) learning rate in RL 
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models (cf. Preuschoff and Bossaerts, 2007). Since    represents the width 

of   ’s posterior and thus the degree of our uncertainty about   , it makes 

sense that updates in    are proportional to this estimate of posterior 

uncertainty: the less confident the agent is about what it knows, the 

greater the influence of new information should be.  

According to its update equation (Eq. (34)),    always remains positive 

since it contains only positive terms. Crucially,   , through
 
 ̂ , depends on 

the log-volatility estimate    from the third level of the model. For 

vanishing volatility, i.e.         ,    can only decrease from trial to trial. 

This corresponds to the case in which the agent believes that    is fixed; 

the information from every trial then has the same weight and new 

information can only shrink   . On the other hand, even with         ,  

   has a lower bound: when    approaches zero, the denominator of Eq. 

(34) approaches    ⁄  from above, leading to ever smaller decreases in   . 

This means that after a long train of inputs, the agent still learns from new 

input, even when it infers that the environment is stable. 

The precision formulation (cf. Eq. (40)) 

   
   

  ̂ 
   

 
 

 ̂ 
   

 
 

  
     

     
     

  
  ̂ 

   
 (59) 

illustrates that three forms of uncertainty influence the posterior 

variance  
   

: the informational (  
     

) and the environmental 

(    
     

  ) uncertainty at the second level (see discussion in the next 

paragraph), and the uncertainty  ̂ 
   

 of the  prediction at the first level. 

While environmental uncertainty at the second level thus decreases 

precision   
   

 
relative to its previous value   

     
    

     ⁄ , predictive 

uncertainty at the first level counteracts that decrease, i.e., it keeps the 

learning rate   
   

 smaller than it would otherwise be. This makes sense 

because prediction error should mean less when predictions are more 

uncertain. 
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The update rule (Eq. (42)) for    has a similar structure to that of    (Eq. 

(35)) and can also be interpreted in terms of RL. Although perhaps not 

obvious at first glance,   
   

 (Eq. (46)) represents prediction error. It is 

positive if the updates at the second level (of    and   ) in response to 

input     indicate that the agent was underestimating   . Conversely, it is 

negative if the agent was overestimating   . This can be seen by noting 

that the uncertainty about    has two sources: informational, i.e. the lack of 

knowledge about    (represented by   ), and environmental, i.e. the 

volatility of the environment (represented by       ). Before receiving 

input       the total uncertainty is  ̂ 
   

   
     

      
     

  . After 

receiving the input, the updated total uncertainty is   
   

 (  
   

 

  
     

)
 

, where    has been updated according to Eq. (34) and     
     

   

has been replaced by the squared update of     If the total uncertainty is 

greater after seeing     , the fraction in   
   

  is greater than one and    

increases. Conversely, if seeing      reduces total uncertainty,    

decreases. (Since    is on a logarithmic scale with respect to   , the ratio 

and not the difference of quantities referring to    is relevant for the 

prediction error in   .) It is important to note that we did not construct the 

update equations with any of these properties in mind. It is simply a 

reflection of Bayes-optimality that emerges on applying our variational 

update method. 

The term corresponding to the learning rate of    is 

   
   

 
 

 
   

   
   

   
 
 

 
 

    
     

  

  
     

      
     

  
 (60) 

As at the second level, this is proportional to the variance    of the 

posterior. But here, the learning rate is also proportional to the parameter 

  and a weighting factor   
   

 for prediction error.   determines the form 

of the Gaussian random walk at the second level and couples the third 

level to the second (cf. Eqs (12)  (42));   
   

 is a measure of the 
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(environmental) volatility       of    relative to its (informational) 

conditional uncertainty,   . It is bounded between 0 and 1 and approaches 

0 as        becomes negligibly small relative to   ; conversely, it 

approaches 1 as    becomes negligibly small relative to       . This 

means that lack of knowledge about   ; i.e. conditional uncertainty  , 

suppresses updates of    by reducing the learning rate, reflecting the fact 

that prediction errors in    are only informative    if the agent is confident 

about its predictions of   . As with the prediction error term, this 

weighting factor emerged from our variational approximation. 

The precision update (Eq. (41)) at third level also has an interpretable 

form. In addition to   
   

 and   
   

, we now also have the term   
   

 (Eq. 

(45)), which is the relative difference of environmental and informational 

uncertainty (i.e., relative to their sum). Note that it is a simple affine 

function of the weighting factor   
   

 

   
   

    
   

   (61) 

As at the second level, the precision update is the sum of the precision  ̂ 
   

 

of the prediction, reflecting the informational and environmental 

uncertainty at the third level, and the term 

 
  

 
  

   
(  

   
   

   
  
   

) (62) 

Proportionality to    reflects the fact that stronger coupling between the 

second and third levels leads to higher posterior precision (i.e., less 

posterior uncertainty) at the third level, while proportionality to    

depresses precision at the third level when informational uncertainty at 

the second level is high relative to environmental uncertainty; the latter 

also applies to the first summand in the brackets. The second summand 

     means that, when the agent regards environmental uncertainty at the 
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second level as relatively high (    ), volatility is held back from rising 

further if      by way of a decrease in the learning rate (which is 

proportional to the inverse precision), but conversely pushed to fall if 

    . If, however, environmental uncertainty is relatively low (    ), 

the opposite applies: positive volatility prediction errors increase the 

learning rate, allowing the environmental uncertainty to rise more easily, 

while negative prediction errors decrease the learning rate. The term      
thus exerts a stabilizing influence on the estimate of   . 

 This automatic integration of all the information relevant to a situation is 

typical of Bayesian methods and brings to mind a remark made by Jaynes 

(Jaynes, 2003, 517) in a different context: “This is still another example 

where Bayes’ theorem detects a genuinely complicated situation and 

automatically corrects for it, but in such a slick, efficient way that one is [at 

first, I would say] unaware of what is happening.” In the next section, I use 

simulations to illustrate the nature of this inference and demonstrate some 

of its more important properties. 

 The updates are precision-weighted 4.4

prediction errors 

A crucial feature of the update equations is emphasized by the notation 

used in Eq. (48): the updates of the means are precision-weighted 

prediction errors. For a full understanding of this important property, I 

will first discuss Bayesian updates in the simplest possible case, where 

they can be calculated exactly. In this simplest case, there is only one 

hidden state     that is the target of our inference, and there is a 

Gaussian prior on  : 

                  (63) 

where    is the mean and    the precision. The likelihood of   (i.e., the 

probability of observing the datum     given  ) is also Gaussian, with 

precision (sc. inverse observation noise)   : 
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    |              (64) 

According to Bayes’ theorem, the posterior then also turns out to be 

Gaussian: 

    |   
   |      

∫    |           
  (    |    | )  (65) 

The posterior precision   |  and mean   |  can then be written as the 

following analytical and exact one-step updates: 

   |        (66) 

   |     
  

  | 

       (67) 

Note that the update in the mean is a precision-weighted prediction error. 

The prediction error      is weighted proportionally to the observation 

precision   , reflecting the fact that the more observation noise there is, 

the less prediction error can mean since the part of it attributable to noise 

is growing. On the other hand, prediction error is weighted inverse-

proportionally to the posterior precision   | , reflecting the fact that the 

more precise knowledge of   is, the less impact new information will have. 

This same precision-weighting of prediction errors now appears in the 

update of the means    of the states    in the inversion of the general HGF 

(Eq. (48)): 
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    ̂   
   

  
   

    
   

  (68) 

or, in more compact notation, 

     
 ̂   

  
      (69) 

Owing to the hierarchical nature of the HGF, the place of the likelihood 

precision    in Eq. (76) is here taken by the precision of the prediction on 

the level below,  ̂   , while the posterior precision    in the HGF 

corresponds exactly to the posterior precision   |  in Eq. (76). 

The prediction error      is a volatility prediction error (VOPE) in the HGF 

while the prediction errors in the conjugate exponential-family updates 

above refer to value prediction errors (VAPEs). The volatility prediction 

error is perhaps the most important novelty introduced by the HGF. That 

the VOPE’s role in the updating of inferences on volatilities is the same as 

that of the VAPE in the updating of inferences on values shows that it is 

usefully defined and speaks to its value as a concept. These results are 

summarized in Figure 4. 
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Figure 4. Posterior mean update equation. Updates are precision-weighted 

prediction errors. This general feature of Bayesian updating is concretized by the HGF 

for volatility predictions in a hierarchical setting. 

 

In our example model, we have a transition to binary states    from 

continuous   . This leads to a somewhat different update for    (cf. Eq. 

(35)): 
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At first, this simply looks like an uncertainty-weighted update. However, if 

we unpack    according to Eq. (34) and do a Taylor expansion in powers of 

 ̂ , we see that it is again proportional to the precision of the prediction on 

the level below: 
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 Simulations 4.5

In this section, I present several simulations to illustrate the behavior of 

the HGF update equations under different values of the parameters  ,  , 

and   in our simple example model. Figure 5 depicts a “reference” 

scenario, which will serve as the basis for subsequent variations. Figures 6, 

7, and 8 display the effects of selectively changing one of the parameters  , 

 , and  , leading to distinctly different types of inference.  The HGF 

toolbox, introduced in Chapter 8, makes it easy to perform such 

simulations. 

 

Figure 5. Reference scenario:      ,       ,      . A simulation of 320 

trials. Bottom: the first level. Input   is represented by green dots. In the absence of 

sensory uncertainty, this corresponds to   . The fine black line is the true probability 

(unknown to the agent) that     . The red line shows      ; i.e., the agent’s 

posterior expectation that     . Given the input and update rules, the simulation is 

uniquely determined by the value of the parameters  ,  , and  . Middle: the second 

level with the posterior expectation    of   . Top: the third level with the posterior 

expectation    of   . In all three panels, the initial values of the various   and   are 

indicated by circles at trial    . 
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The reference scenario in Figure 5 (and Figure 9, top row) illustrates some 

basic features of the model and its update rules. For this reference, I chose 

the following parameter values:      ,       , and       . Overall, 

the agent is exposed to 320 sensory outcomes (stimuli) that are 

administered in three stages. In a first stage, it is exposed to 100 trials 

where the probability that      is    . The posterior expectation of    

accordingly fluctuates around 0.5 and that of    around 0; the expected 

volatility remains relatively stable. There then follows a second period of 

120 trials with higher volatility, where the probability that      

alternates between 0.9 and 0.1 every 20 trials. After each change, the 

estimate of    reliably approaches the true value within about 20 trials. In 

accordance with the changes in probability, the expected outcome 

tendency    now fluctuates more widely around zero. At the third level, 

the expected log-volatility     shows a tendency to rise throughout this 

period, displaying upward jumps whenever the probability of an outcome 

changes (and thus    experiences sudden updates). As would be 

anticipated, the expected log-volatility declines during periods of stable 

outcome probability. In a third and final period, the first 100 trials were 

repeated in exactly the same order. Note how owing to the higher estimate 

of volatility (i.e., greater            ), the learning rate has increased, 

now causing the same sequence of inputs to have a greater effect on    

than during the first stage of the simulation. As expected, a more volatile 

environment leads to a higher learning rate. 

One may wonder why, in the third stage of the simulation, the expected 

log-volatility    continues to rise even after the true    has returned to a 

stable value of 0 (corresponding to            ; see the fine black line 

in Figure 5). This is because a series of three      outcomes, followed by 

three      could just as well reflect a stable             or a jump 

from           to           after the first three trials. Depending 

on the particular choice of parameters  ,  , and  , the agent shows 

qualitatively different updating behavior: Under the parameters in the 

reference scenario, it has a strong tendency to increase its posterior 

expectation of volatility in response to unexpected stimuli. For other 

parameterizations (as in the scenarios described below), this is not the 

case. 
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The nature of the simulation in Figure 5 is not only determined by the 

choice of values for the parameters  ,  , and  , but also by initial values 

for   ,   ,   , and    (the initial value of    is      ). Any change in the 

initial value   
   

 of    can be neutralized by corresponding changes in   

and  . We may therefore assume   
   

   without loss of generality but 

remembering that   and   are only unique relative to this choice. 

However, the initial values of   ,   , and    are, in principle, not neutral: 

They are nevertheless of little consequence in practice since, when chosen 

reasonably, they make the time series of hidden states 
( )kx  quickly 

converge to values that do not depend on the choice of initial value in any 

appreciable extent. In the simulations of Figures 5-8, I used   
   

  , 

  
   

  , and   
   

  . 

If we reduce   (the log-volatility of   ) from     in the reference scenario 

to     , we find an agent who is overly confident about its prior estimate of 

environmental volatility and expects to see little change (Figure 6; Figure 

9, second row). This leads to a greatly diminished learning rate for 

  ,while learning in    is not directly affected. There is, however, an 

indirect effect on    in that the learning rate at the second level during the 

third period is no longer noticeably increased by the preceding period of 

higher volatility. In other words, this agent shows superficial (low-level) 

adaptability but has higher-level beliefs that remain impervious to new 

information. 
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Figure 6. Reduced      , (unchanged       ,      ). Symbols have the 

same meaning as in Figure 5. Here, the expected    is more stable. The learning rate in 

   is initially unaffected but owing to more stable    it no longer increases after the 

period of increased volatility. 

 

Figure 7 (and Figure 9, third row) illustrate the effect of reducing  , the 

absolute (i.e., independent of   ) component of log-volatility to -4. The 

multiplicative scaling        of volatility is thus reduced to a sixth of that 

in the reference scenario. This leads to a low learning rate for   , which in 

turn leads to little learning in   , since the agent can only infer changes in 

   from changes in    (cf. Eq. (42)). This corresponds to an agent who pays 

little attention to new information, effectively filtering it out at an early 

stage. 
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Figure 7. Reduced     , (unchanged      ,      ). Symbols have the same 

meaning as in Figure 5. The small learning rate in    leads to an extremely stable 

expected   . Despite prediction errors, the agent makes only small updates to its 

beliefs about its environment. 

 

The coupling between    and    can be diminished by reducing the value 

of  , the relative (i.e.,    -dependent) scaling of volatility    (      in 

Figure 8; Figure 9, bottom row). This impedes the flow of information up 

the hierarchy of levels in such a way that the agent’s belief about    is 

effectively insulated from the effects of prediction error in    (cf. Eq. (42)). 

This leads to less learning about    and to a much larger posterior variance 

   than in any of the above scenarios (see Figure 9, right panel). As with a 

reduced   (Figure 6), learning about    itself is not directly affected except 

that the second stage of the simulation, where higher volatility remains 

without affecting the learning rate of    in the third stage. This time, 

however, this effect is not caused by overconfidence about    (due to small 

 ) as in the above scenario.  Instead, it obtains despite uncertainty about 

   (large   ), which would normally be expected to lead to greater learning 

because of the dependency of the learning rate on   . This paradoxical 

effect can be understood by examining Eqs (42) and (41), where smaller   
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exerts opposite direct and indirect effects on the learning rate for   . 

Indirectly, the learning rate is increased, in that smaller   increases   . But 

this is dominated by the dependency of the learning rate on  , which leads 

to a decrease in learning for smaller  . This is quite an important property 

of the model: it makes it possible to have low learning rates in a highly 

volatile environment. This scenario describes an agent who is keen to 

learn but fails because the levels of its model are too weakly coupled for 

information to be passed efficiently up the hierarchy. In other words, the 

agent’s low-level adaptability is accompanied by uncertainty about higher-

level variables (i.e., volatility), leading to inflexibility. In anthropomorphic 

terms, one might imagine a person who displays rigid behavior because 

he/she remains uncertain about how volatile the world is (e.g., in anxiety 

disorders). 

 

Figure 8. Reduced      , (unchanged      ,       ). Symbols have the 

same meaning as in Figure 5.    and    are only weakly coupled. Despite uncertainty 

about   , only small updates to    take place. Sensitivity to changes in volatility is 

reduced.    is not affected directly, but its learning rate does not increase with 

volatility. 
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Figure 9. Simulations including standard deviations of posterior distributions. 

Top to bottom: the four scenarios from Figures 5-8. Left:    (bold red line); fine red 

lines indicate the range of  √   around   . Right:    (bold blue line); fine blue lines 

indicate the range of  √   around   . Circles indicate initial values.  

The simulations described above switch between two probability regimes:  

            and              or 0.1. The stimulus distributions 

under these two regimes have different variances (or risk). Figure 10 

shows an additional simulation run where risk is constant, i.e.  

             or 0.15, throughout the entire simulation. One recovers 

the same effects as in the reference scenario. I now consider 

generalizations of the generative model that relax some of the simplifying 

assumptions about sensory mappings and outcomes I made during its 

exposition above. 
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Figure 10. A simulation where risk is constant (     ,       ,      ). 

Symbols have the same meanings as in Figure 5.  The same basic phenomena shown in 

Figure 5 can be observed here. 
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5 SENSORY INPUT 

 Sensory uncertainty 5.1

The HGF can readily accommodate sensory uncertainty at the first level. 

This pertains to the mapping from stimulus category    to sensory input  . 

I first deal with the case of binary input. 

To allow for sensory uncertainty, for example when the sensory inputs are 

ambiguous or affected by noise, I replace the deterministic relation in Eq. 

(9) by a stochastic one (cf. Daunizeau et al., 2010a). 

    |                              (72) 

Here, the input   is no longer binary but a real number whose distribution 

is a mixture of Gaussians. If     , the probability of   is normally 

distributed with constant variance   around a constant value   , 

corresponding to the most likely sensation if     . If however     , the 

most likely sensation is    with the probability of   normally distributed 

with the same variance  . The greater   (relative to the squared distance 

       
 ), the greater the sensory uncertainty. The main point here is 

that with this modification, the model can account for situations where    

can no longer be inferred with certainty from  . The variational energy of 

the first level now is 
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With Eq. (26) we find the update rule for   : 
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If        , one sees that   
   

   regardless of   
   

. Likewise,   
   

   if 

       . This means that if the sensory input is sufficiently discriminable, 

   has no influence on the agent’s belief about   . If, however, the sensory 

input is ambiguous in that      is far from both    and    , (rendering all 

exponential terms similarly small) we have   
   

  (  
   

); i.e. the agent 

has to rely on its belief about    to predict stimulus category. Importantly, 

the update equations for the higher levels of the model are not affected by 

this introduction of sensory uncertainty at the first level. 

 Inference on continuous-valued states 5.2

Here, I turn to the general HGF model where the bottom-level state being 

inferred is not binary but continuous (i.e., a real number). As a concrete 

example, I use the exchange rate between the U.S. Dollar (USD) and the 

Swiss franc (CHF) during the first 180 trading days of the year 2010 

(source: http://www.oanda.com/). In this example, the agent represented 

by our model can be seen as an individual market observer (e.g., a 
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currency trader), with the model describing how he “perceives” the 

relative value (and volatility) of USD. The data   are taken to be the closing 

USD-CHF exchange rate of each trading day with a likelihood model 

    |              (75) 

where   is the constant variance with which the input   is normally 

distributed around the true value   . This can be regarded as a measure of 

uncertainty (i.e., how uncertain the trader is about his “perception” of USD 

value relative to CHF). On top of this input level, we can now add as many 

coupled random walks as we please. All higher levels will then be 

described by Eqs. (3), (4), and (8), leading to the general HGF updates of 

Eqs (47) and (48). 

At the first level, we obtain by the method introduced above 
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For     (no sensory uncertainty), the last two equations reduce, as they 

should, to   
   

  ,   
   

     . Note also that since       is already 

quadratic here, no further approximation to the mean field approximation 

is needed, and     and    are the exact moments of the posterior under the 

mean field approximation. 

In the equivalent precision formulation, with  ̂    ⁄ , the updates read 

   
   

  ̂ 
   

  ̂   (79) 
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Here again, we find that the update is a precision-weighted prediction 

error. 

Scenarios with different parameter values for the USD-CHF example are 

presented in Figures 11-14. To keep the example simple, the number of 

levels is chosen as    . These scenarios can be thought of as 

corresponding to different individual traders who receive the same market 

data but process them differently. The reference scenario (Figure 11) is 

based on the parameter values     ,       ,      , and 

        . This parameterization conveys a small amount of sensory 

uncertainty that leads to minor but visible deviations of    from  . The 

updates to    are conservative in the sense that they consider prior 
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information along with new input. Note also that    rises whenever the 

prediction error about    is large, that is when the green dots denoting   

are outside the range    √   indicated by the red lines. Conversely,    

falls when predictions of    are more accurate. In the next scenario (Figure 

12), the value of   is further reduced to 10-6. This scenario thus shows an 

agent who is effectively without sensory uncertainty. As prescribed by the 

update equations above,    now follows   with great accuracy and    

tracks the amount of change in   . In Figure 13, sensory uncertainty is 

increased by two orders of magnitude (      ). Here, the agent adapts 

more slowly to changes in the exchange rate since it cannot be sure 

whether prediction error is due to a change in the true value of    or to 

misperception. The final scenario in Figure 14 shows an agent with the 

same sensory uncertainty as in the reference scenario but a prior belief 

that the environment is not very volatile, i.e.,   is reduced from 0.3 to 0.01. 

Smaller values of   smooth the trajectory of    in a similar way that 

sensory uncertainty smoothes the trajectory of   .  
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Figure 11. Inference on a continuous-valued state (     ,      ,    , 

        ). Reference scenario for the model of hierarchical Gaussian random 

walks applied to a continuous-valued state at the bottom level. The state is the value 

   of the U.S. Dollar against the Swiss franc during the first 180 trading days of the 

year 2010. Bottom panel: input   representing closing exchange rates (green dots). 

The bold red line surrounded by two fine red lines indicates the range    √  . Top 

panel: The range    √   of the log-volatility    of   . 
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Figure 12. Reduced         (     ,      ,    ). Reduced sensory 

uncertainty   with respect to the reference scenario of Figure 11. 
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Figure 13. Increased         (     ,      ,    ). Increased sensory 

uncertainty   with respect to the reference scenario of Figure 11. 
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Figure 14. Reduced        (     ,    ,         ). Reduced   with 

respect to the reference scenario of Figure 11. 

 

This example again emphasizes the fact that Bayes-optimal  behavior can 

manifest in many diverse forms. The different behaviors emitted by the 

agents above are all optimal under their implicit prior beliefs encoded by 

the parameters that control the evolution of high-level hidden states. 

Clearly, it would be possible to optimize these parameters using the same 

variational techniques we have considered for the hidden states. This 

would involve optimizing the free energy bound on the evidence for each 

agent’s model (prior beliefs) integrated over time (i.e., learning). 

Alternatively, one could optimize performance by selecting those agents 

with prior beliefs (about the parameters) that had the best free energy 

(made the most accurate inferences over time). Colloquially, this would be 

the difference between training an expert to predict financial markets and 

simply hiring experts whose priors were the closest to the true values. 
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6 RESPONSE MODELS 

 The need for response models 6.1

The need for a response model (or equivalently, decision model) arises 

whenever we are observing an observer. Modeling such a situation is 

discussed in detail in Daunizeau et al. (2010a, 2010b). Since two kinds of 

observations have to be modeled, namely the observations made by the 

observer and our observations of the observer, and since perceptual 

models such as the HGF only model the first of these, we need a model of 

how the decisions the observed agent makes come about given its 

perception (i.e., its observations and its resulting inferences). 

Note that not all possible applications of the HGF fit this description; two 

cases in particular do not require a response model: first, when simply 

filtering data with a given parameter setting as in the simulations above, 

no response is ever made or observed, only an inference is modeled. 

Second, when optimizing parameters using, for example, Empirical Bayes, 

the same applies. 

In this chapter, I give two examples of simple response models and I 

demonstrate their principled derivation from a loss function. Other 

response models will be discussed in Chapters 8 and 10 on applications of 

the HGF in experimental studies. 

 Response model for a simple binary loss 6.2

function 

One of the simplest decision situations for an agent is having to choose 

between two options, only one of which will be rewarded, but both of 

which offer the same gain (i.e., negative loss), if rewarded. One may 

imagine the game sometimes played with children where an adult holds 

both hands behind his back and asks the child to guess in which of them he 

is holding a present.  
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In the HGF, we may code one such binary outcome as      and the other 

as     . This allows us to define a quadratic loss function   where 

making the wrong choice   {   } leads to a loss of 1 while the right 

choice leads to a loss of 0: 

                 (81) 

The expected loss   of response  , given the agent’s representations  , is 

then the expectation of   under the distributions   described by  : 

         ⌊       ⌋    |   ∑             |  

   {   }

 (82) 

To evaluate this, we must remember that the agent has to rely on its beliefs 

deriving from time     to make response      at time  . In the above 

equation, elements of   therefore have time index    , while    and   

have time index  . Specifically, the belief on the outcome probability at the 

first level is  ̂ 
   

  (  
     

). With     |     ̂  
      ̂  

     ((Mathys 

et al., 2011), Eq. 12), we then have 

           ̂                         ̂  (83) 

The optimal response    is the one that minimizes expected loss  : 
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This means, quite anticlimactically, that to minimize its losses, the agent 

should choose the option it believes more likely to be rewarded. It may 

seem superfluous to go to such lengths to derive such an obvious result, 

but the purpose of the above is also to give an illustration of the principled 

way a decision rule can be derived by combining a perceptual model with a 

loss function in more complicated cases. 

It is, however, unreasonable to assume that human agents will always 

choose the option that minimizes their expected loss in the current trial, 

for two reasons. First, if there is more than one trial and the probabilities 

of the different options are independent, there is an 

exploration/exploitation tradeoff that makes it worth the agent’s while (in 

the long run) sometimes to choose an option that is not expected to 

minimize loss in the current trial (Daw et al., 2006; Steyvers et al., 2009). 

Second, biological agents exhibit response noise (Faisal et al., 2008). To 

allow for exploration and noise, I use a response model that corresponds 

to the right-hand side of Eq. (84), without taking the limit, instead leaving 

  as a parameter to be estimated from the data: 
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Figure 15 contains a graph of this function for        where   plays the 

role of the noise (or exploration) parameter. This response model was the 

basis for the simulations described below. I call this response model the 
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unit square sigmoid model: since both its argument and value are always in 

the unit interval, its graph is restricted to the unit square, and it has the 

shape of a sigmoid. 

 

Figure 15. The unit square sigmoid (cf. Eqs (84) and (85)). The parameter   can be 

interpreted as inverse response noise because the sigmoid approaches a step function 

as   approaches infinity. 

 

 Response model for a one-armed bandit 6.3

As an additional example, I discuss a more complex binary decision task 

that we used to collect data from human subjects. In this variant of a one-

armed bandit experiment, subjects were asked to play a series of gambles 

with the goal of maximizing their overall score (Daw et al., 2006; Steyvers 

et al., 2009). On each trial, subjects chose between two options 

represented by the same two fractals, which had different and time-

varying reward probabilities. At any point in time, these probabilities 

summed to unity, and exactly one of the two options would be rewarded. 

Although subjects knew that probabilities varied throughout the course of 

the experiment, they were not told the schedule that governed these 

changes. The schedule included both a period of low volatility and a period 

of high volatility. 
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In order to encourage subjects to switch options above and beyond normal 

exploration behavior (Steyvers et al., 2009), the two fractals were 

associated with varying reward magnitudes. On each trial, magnitudes 

were drawn from a uniform distribution        (i.e., rewards would take 

values out of the range {1, 2,…, 9} with equal probability). 

Subjects began the experiment with an initial score of 0 points. Once a 

fractal had been chosen, if that fractal was rewarded, the associated 

reward would be added to the current score. The final score at the end of 

the experiment was translated into monetary reimbursement. The 

experiment consisted of 160 trials. 

Calling the two fractals A and B, I parameterize the agent’s response by 

   {
                 
                 

  (86) 

Correspondingly, the state    is 

    {
                  
                  

 (87) 

Taking    and    to be the rewards for A and B, respectively, I introduce 

the quadratic loss function 

 
                                          

                          
(88) 

This corresponds to the following loss table: 
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(89) 

Following the same procedure as above, we get: 

 

       ∑             |  

   {   }

         ̂                ̂  
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     ̂                            

       ̂                  
 

(90) 

With the expected loss from each option on a continuous scale, a simple 

but powerful response model is the softmax rule (Daw et al., 2006; Sutton 

and Barto, 1998) 

     |     
   (         )

∑    (   (    )) 

  (91) 

where    is one particular option and the sum runs over all options. This 

means that the response probabilities are Boltzmann-distributed 

according to their expected rewards (i.e., their expected negative losses) 

with the parameter   serving as the analogon of inverse temperature.  In 

our binary case, this evaluates to 
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     |      (  (    ̂        ̂  ))   

     |      (  (    ̂        ̂  ))  
(92) 

This is a logistic sigmoid function of the difference     ̂        ̂   of 

expected reward for choice B minus expected reward for choice A. If the 

expected reward of choice B exceeds that of choice A, the likelihood of 

choice B is greater than half and vice versa. 

In the next chapter, I look at the estimation of the parameters of both the 

perceptual and response models, either given observed responses or some 

criterion of optimality. 
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7 PARAMETER ESTIMATION AND MODEL 

COMPARISON 

 Coordinate choice on higher levels 7.1

The definition of response models (or, from the point of view of the 

experimenter, observation models) such as Eqs (85) and (92) completes 

the “observing-the-observer” framework (Daunizeau et al., 2010b). This 

permits us to invert the ensemble of perceptual and response models, that 

is to infer on the response parameters   {       } (just one in the above 

examples, but in general many) and on the perceptual parameters 

  {               }. Before I return to our example perceptual model, 

where we only have      and     , and to the response models 

discussed above, I discuss some of the subtler aspects of the perceptual 

parameters in more depth and generality. 

The question I will deal with in this section is the meaning of the hidden 

states    at higher levels of the HGF. I will again do this by using the by now 

familiar example of a three-level model with binary   . There, the state    

at the third level of the model represents the volatility (or, more precisely, 

the log-volatility) of   ; this raises the question what units we should 

measure    in – what effect will moving the origin on    have? – what 

effect will rescaling    have? 

In Section 4.5 I said that any change in the initial value   
   

 of    can be 

neutralized by corresponding changes in   and  . This means that instead 

of setting   
   

 to a fixed value, we may just as well set    , thereby 

making it (seemingly) disappear from the model. But we now have a 

variable   
   

. As an example, let us take data from a behavioral study 

where parameters have been estimated with   
   

 set  to 1. The relevant 

parameter estimates are: 
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We can now make   disappear by setting it to 1. This change should be 

neutral to the model’s predictions of input, which can only be achieved by 

the following compensatory substitutions: 

 

  
   

     
   

      

  
   

         
   

             

                            

(94) 

At the first two levels, nothing has changed (the trajectory of    and 

therefore the input predictions  ̂  are the same); however, at the third 

level    has been rescaled by the inverse of the factor with which   has 

been rescaled (i.e.,      ⁄ ). This means that the term 

         (   
     

  ) (95) 

is invariant under the above transformation for all time points  , leading to 

the same trajectory in    and    according to Eqs (34) and (35) as before. 

Effectively, because of the transformation to a fixed    , our estimate of 

  has been reinterpreted as an estimate of   
   

. This is a consequence of 

our freedom to choose coordinates on   . To take an analogy from 

geometry, the distance between Zurich and London is an objective 

geometric quantity that does not change whether it is measured in miles or 
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kilometers; we may even introduce new units where this distance is 1. 

Likewise, we may always rescale    individually for each agent (and run) 

such that the coupling   between the second and third level has value 1. 

Note, however, that this does not prevent the coupling from existing or 

from differing between agents. 

If the representations of    (i.e.,    and   ) were part of the observation 

model, this would give us a direct handle on    and measures of its 

representations could immediately be compared between agents, provided 

we use common coordinates (which we would automatically do without 

even thinking about it; individually rescaling   to 1 would then obviously 

be unwise). 

However, as long as we have no measure of   , there is a fundamental 

ambiguity between individual differences in coupling and individual 

differences in priors for   . 

Nonetheless, we have to make some choice of coordinates. In setting 

  
   

  , we choose to take the belief on environmental volatility that an 

agent begins inference with as the benchmark. Observed differences in 

learning are then attributed to, inter alia, differences in coupling. This is 

one way to obtain comparable measures of belief on    (and consequently, 

 ) between agents, since one may be able to influence their priors while 

there is usually no way to equalize their coupling levels. 

Just as it is possible to set   to an arbitrary non-zero value while keeping   

invariant by compensatory substitutions, one can set   to an arbitrary 

value with invariant   using another set of compensatory substitutions. In 

particular,   can be set to zero, thereby making it seemingly disappear 

from the model, just as   seems to disappear when set to 1. 

We have seen that any change of scale in    is expressed in a 

corresponding change of  . However, in choosing coordinates on   , we 

have an additional degree of freedom: the choice of origin. Changes in this 

are expressed in a corresponding change of   : 
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       (96) 

then 

                    
               

      (97) 

with 

          (98) 

In our example, we have reinterpreted the estimate of   as one of   
   

. We 

may now go on to reinterpret it another time, this time as an estimate of   

(up to now fixed to -4) by shifting the origin on    such that   
   

 is again 

fixed to 1: 

 
  
   

        
   

   

                              

(99) 

Again, the trajectories at the first two levels have not changed. It is now 

apparent that by rescaling    and shifting its origin, we can choose 

arbitrary values for two out of the three parameters   
   

,  , and  . 

However, I repeat that this is only possible as long as we do not measure 

   on any objective scale. 

Equivalence classes (with equivalence defined as leading to invariant  ) of 

parameter values are defined by the following conservation laws: 
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(100) 

Using these equations, we can now make   and   seemingly disappear by 

setting them to 1 and 0, respectively. Note that this does not really amount 

to a simplification of the model: it is only a coordinate choice. In our 

example this means: 

 

             

  
   

     
   

       

(101) 

This disappearance of   and   (and in the general case, all    and   ) from 

the model may seem convenient. However, a danger here is to confuse 

coordinates with the underlying reality they describe (in gravitation, it 

took more than two centuries to see that error). Crucially, it is impossible 

to discuss the choice of coordinate choice on higher levels in a model that 

lacks    and     It is however important to note that this choice does not 

cease to exist when one stops acknowledging it. The model takes the 

hidden states at higher levels to be an objective property of the agent’s 

environment. To compare beliefs on it across agents, we need a common 

scale to measure them on. However, individually adjusting the scale to 

make things look more convenient (which is what transforming    and    

away achieves) moves us away from such a common scale. 

This raises the question how a common scale can be found. This is 

important, for example, for the comparison of estimates such as that of  , 

which are always relative to the scale of   . If we measure inferences on 

  , this would automatically give us a common scale. Likewise, to have a 

common scale on any of the   , inferences on that    have to be measured. 
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The way to measure such inferences is to include them (sc. the 

representations   ) in the response model. In cases where this is not done 

(it is often either not possible or not desirable), it is important to 

remember that the choice of coordinates on some higher levels is 

arbitrary. In order to avoid on overparameterized model, it is then 

advisable to be explicitly arbitrary by fixing two out of   
   

,   , and   , 

reflecting a choice of origin and scale on   . By contrast, when    is 

included in the response model, all of   
   

,   , and    can be estimated. 

 The MAP estimate 7.2

Our goal in this section will be to find an expression for the maximum-a-

posteriori (MAP) estimate for the parameters   {        } (with 

perceptual parameters   {               }, initial representations 

     {  
   

   
   

     
   

   
   

}, and response parameters   {       }  . 

The MAP estimate    of   is defined as 

           
 

    |      (102) 

where   {           } and   {           } are the inputs and 

responses from time points     to    , respectively. I unpack this to 

make it tractable: 
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(103) 

The objective function      that needs to be maximized is therefore the 

log-joint probability density of the parameters   and responses   given 

inputs  : 

 

   |            |   

                ∑   (    |    (        )  )

 

        
(104) 

While the response model furnishes  (    |      ) (cf. Eqs (85) and (92)), 

the perceptual model (i.e., the HGF) provides the representations 

    (        ) (cf. Eq. (52)) by way of its update equations. 

The last missing part in Eq. (104) is the prior distribution     . This will be 

discussed in the next section. 

There are many practical ways to perform the maximization in Eq. (103). 

We have compared four of them in a simulation study that is discussed in 

Section 7.4. 
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 Priors and transformed parameter 7.3

spaces 

A crucial part of Bayesian inference is the specification of a prior 

distribution, in our case     . There is in principle no reason why the 

priors on the different elements of   should not be independent; therefore, 

we may assume 

          ∏           (  
   

)  (  
   

)∏ (  )

  

  (105) 

The  (  ) depend on the response model chosen and will have to be 

discussed on a case-by-case basis, but the rest are generic and will be 

discussed in what follows. 

The most straightforward case are the priors on the   . Since the    can 

take values on the whole real line, they can be estimated in their native 

space with a (possibly wide) Gaussian prior: 

        (      
    

)  (106) 

The same applies to the   
   

: 

  (  
   

)   (  
   

  
  

     
  

   )  (107) 

The   
   

 have a natural lower bound at zero since they are variances. We 

can avoid non-positive values by estimating   
   

 in log-space. In that 

transformed space, we again choose a Gaussian prior: 



  Priors and transformed parameter 

spaces 

87 
 

  (    
   

)   (    
   

  
    

     
    

   )  (108) 

Just like   
   

,   is a variance and has a lower bound at zero. But here, the 

case is slightly more complicated. In addition to the lower bound, it is 

desirable to have an upper bound on  . This is because, for a   too large, 

the assumptions underlying the derivation of the update equations of the 

HGF no longer hold. It is then possible to get updates that push the 

precision    at the top level below zero, indicating that the agent knows 

“less than nothing” about   . In less extreme cases, a large   may allow    

to jump to very high levels, giving rise to improbable inference 

trajectories. This is due to a violation of the assumption underlying Eqs 

(56) and (58) that the variational energies       are nearly quadratic. 

To avoid such violations, it is sensible to place an upper bound on   in 

addition to the lower bound at zero. This can be achieved by estimating   

in “logit-space”, a logistic sigmoid transformation of native space with a 

variable upper bound    : 

 

             (
 

   
)   

 

     
 

     (          )
 

(109) 

In that space, the prior on   can then be taken as 

  (       
 )   (       

                     )  (110) 

While the   ’s can in principle take any real value, flipping the sign of    is 

equivalent to flipping it on      (cf. Eq. (8)). It is therefore useful to adopt 
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the convention that all     . This leads to the more intuitive relation that 

greater      means greater variability in   ; in other words, this makes the 

  ’s in Eq. (8) monotonically increasing functions. A second useful 

constraint on the   ’s is that they be bounded above, for the same reason 

as  . The violations that can occur at the top level for a   too large can 

occur at lower levels for   ’s too large. Consequently, we evaluate the   ’s 

in logit-space with the following priors: 

  (        
  )   (        

            
  
          

  
)  (111) 

Choosing appropriate upper bounds, means, and variances in a given case 

is not as tricky (or as arbitrary) as it may seem at first. Since a model is 

fully defined by the combination of likelihood and prior, choosing a 

different prior amounts to having a different model. This allows us to 

justify our choice of prior using model comparison (cf. Section 7.6). As a 

rule of thumb, one may first try to be generous regarding the widths and 

upper bounds of priors, only decreasing them as needed to increase model 

evidence as computed during model comparison. How restrictive one 

wants to be depends on how general he wants his proposed model to be: 

while restricting priors further may increase model evidence for the 

dataset at hand, it may impede generalization to other datasets. 

 Simulation study 7.4

7.4.1 PURPOSE AND SCOPE 

To assess our ability to estimate the parameters 

  {        
   

   
   

   
   

   
   

  } in our example model, we conducted a 

simulation study. Simulations took place in four steps: 

1. We chose a particular sequence of 320 binary inputs 

  {             }. 

2. We chose a particular set of values for the parameters  . 
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3. We generated 320 binary responses   {             } by 

drawing from the response distribution of Eq. (85). 

4. We estimated    according to Eq. (103). 

Step 1 was only performed once, so that   was the same in all simulations. 

The values of   in step 2 were constant for all parameters except   and  . 

The values of   and   were taken from a two-dimensional grid in which the 

  dimension took the values {               } while the   dimension took 

the values {          }. Steps 3 and 4 were then repeated 1’000 times for 

each value pair on the {   } grid. The   values on the grid were chosen 

such that they covered the whole range from very little response noise 

(    ) to very much (     , cf. Figure 15). The   values were chosen to 

cover the range observed in an empirical behavioral study of 42 human 

subjects using the same inputs   (Iglesias et al., 2012). The remaining 

model parameters were held constant ( =-4,  =0.0025). 

This whole procedure was repeated for each of four different methods of 

performing step 4. The four methods were 

a. The Nelder-Mead simplex algorithm (NMSA), 

b. Gaussian process-based global optimization (GPGO), 

c. Variational Bayes (VB), 

d. Markov Chain Monte Carlo estimation (MCMC). 

Owing to the computational burden imposed by MCMC, only 100 

estimations instead of 1’000 were performed in its case. 

  was chosen as the perceptual parameter to vary because of the 

interesting effects it has on the nature of the inferential process (cf. Section 

4.5). The response parameter   was chosen as the second parameter to 

vary because it represents inverse response noise, with the expectation 

that the lower   was, the more difficult the other parameters would be to 

estimate. 
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I will now briefly discuss each of the optimization algorithms employed, 

before I turn to the results. The discussion of the algorithms will be in 

terms of minimization, as is customary. Note that every maximization 

problem can be turned into a minimization problem by taking the negative 

of the objective function. In our case, maximizing the log-joint    |     is 

equivalent to minimizing the negative log-joint   . 

7.4.2 THE NELDER-MEAD SIMPLEX ALGORITHM 

The Nelder-Mead simplex algorithm (Nelder and Mead, 1965) is a simple 

and very popular (15’172 citations of the original paper according to 

Google Scholar) local optimization algorithm. It is based on the geometric 

concept of a simplex. A simplex is the convex hull of a set of     points in 

 -dimensional space. It is non-degenerate if and only if its volume is 

positive. For example, in    a simplex is a triangle; in    it is a 

tetrahedron, etc. 

Given an initial non-degenerate simplex, the NMSA moves downhill by 

replacing that point of the simplex where the objective function is largest – 

leading to the next simplex. It does this by reflecting the point to be 

replaced through the opposing face and choosing the new point on the line 

defined by the original point and its reflection, according to appropriate 

criteria, or by contracting the whole simplex toward the point where the 

objective function is smallest. This is repeated until convergence. We used 

the NMSA as implemented in the fminsearch function in Matlab. 

7.4.3 GAUSSIAN-PROCESS BASED GLOBAL OPTIMIZATION 

The goal of Gaussian-process based global optimization (GPGO) (Lomakina 

et al., 2012) is to approximate complicated objective functions by an easy-

to-evaluate function modeled as a Gaussian process. A Gaussian process is 

defined as a process any finite set of observations of which is distributed 

according to a multivariate Gaussian distribution with a covariance matrix 

consisting of a pairwise kernel function of corresponding data points. 

Thus, when modeling a function with a Gaussian process we force it to be 

smooth. In other words, we force those data points which are similar to 

each other in terms of a specific kernel function to have similar objective 

function values. For any as yet unevaluated point, given a set of 
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observations, we can estimate not only the most likely value of the output 

but the whole distribution for the value, which is Gaussian. The routine 

that describes how a Gaussian process approximates an objective function 

is illustrated in Figure 16. 

 

Figure 16. Illustration of GPGO. Left: the optimization (in this illustration, 

maximization) routine using Gaussian processes is the following: we evaluate the 

objective function at a set of initial points (red dots) and use these values to 

approximate the objective function by a Gaussian process (red dashed line). Next, we 

find the new point which has the best balance, by some criterion, of estimated mean 

and variance. Since this approach preferentially samples both regions of high value 

and regions of high uncertainty, it allows for exploration along with exploitation. 

Right: the objective function is evaluated at the new point, leading to a new 

approximation. We repeat this procedure until appropriate stopping criteria are 

satisfied. As a result of this routine we obtain not only the maximum but also a 

reasonable approximation of the whole objective function. 

 

Given an initial set of points, this algorithm evaluates the objective 

function at these points and produces, based on these evaluations, a global 

estimate of the objective function, consisting of the mean and variance of a 

Gaussian distribution at each point. It then chooses the next point at which 

to evaluate the objective function by balancing the competing demands of 

exploitation (search where the current estimate is minimal) and 

exploration (search where the current estimate is most uncertain). New 

evaluation points are added until 110 points have been evaluated. A global 

estimate of the objective function, including its minimum, is then returned. 
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7.4.4 VARIATIONAL BAYES 

Variational Bayes (VB) is described in detail in Appendices A and B. For 

our simulation study, we used VB as implemented in Jean Daunizeau’s 

DAVB toolbox, available at http://goo.gl/As8p7 (Daunizeau et al., 2009). In 

addition to the MAP estimate, this method also furnishes an estimate of the 

parameter covariance at that point, and thus, under Gaussian assumptions, 

an estimate of the full posterior distribution. 

7.4.5 MARKOV CHAIN MONTE CARLO SAMPLING 

Markov chain Monte Carlo (MCMC) sampling leads to a sample of points in 

parameter space whose distribution converges, in infinite time, to the 

target distribution (Gelman et al., 2003, 283ff). For this reason, MCMC was 

the standard against which we compared the other methods: if a method 

performed as well as MCMC without imposing a comparable 

computational burden, we would see this as a reason to prefer it and feel 

confident in its results. 

To sample from the posterior over all parameters, we used Gibbs sampling 

with a one-dimensional Metropolis step for each of the parameters (cf. 

Gelman et al., 2003, 292). For each of the 100 simulation runs that we ran 

at each point on our parameter grid, we used one chain with a length of 

500’000 samples and a burn-in period of 25’000 samples. 

7.4.6 RESULTS 

All methods could reliably distinguish different values of   with low or 

moderate decision noise (Figure 17). Unsurprisingly, this became harder 

for high levels of noise. The noise level itself could also be determined by 

all four methods (Figure 18). Figure 19A shows the root mean squared 

error in   and        , jointly for all values of  . Figure 19B displays the 

accuracy of the confidence with which VB and MCMC make their estimates. 
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Figure 17. Estimation of coupling   by four methods at different noise levels  . A 

range of   from 0.5 to 3.5 was chosen based on the range of estimates observed in the 

analysis of experimental data. Decision noise levels were chosen in a range from very 

high (0.5) to very low (24). The remaining model parameters were held constant ( =-

4,  =0.0025). For each point of the resulting two-dimensional grid, 1000 task runs 

with 320 decisions each were simulated. Given the fixed sequence of inputs and 

simulated sequence of decisions, we then attempted to recover the model parameters, 

including   and  , by four estimation methods: (1) the function Nelder-Mead simplex 

algorithm (NMSA), (2) Bayesian global optimization based on Gaussian processes 

(GPGO), (4)  variational Bayes (VB), and Markov chain Monte Carlo sampling (MCMC). 

The figure shows boxplots of the distributions of the maximum-a-posteriori (MAP) 

point estimates for the four methods at each grid point. Horizontal shifts within boxes 

are for readability. Black bars indicate ground truth. The results show that all 

methods can recover the ground truth reliably when decision noise is moderate to low 

( =6,24). At higher noise levels, estimates become less reliable. With GP, VB, and 

MCMC, they then exhibit a tendency to underestimate  , while FMIN tends to mid-

range values. Nonetheless, substantial differences in   wthin the range observed 

experimentally will be detected by all four methods even at high levels of noise.  
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Figure 18. Estimation of noise level   at different levels of coupling  .   is 

estimated and displayed here at the logarithmic scale because it has a natural lower 

bound at 0. See Figure 17 for key to legend. The figure shows boxplots of the 

distributions of the maximum-a-posteriori (MAP) point estimates for the four methods 

at each point of the simulation grid. Horizontal shifts within boxes are for readability. 

Black bars indicate ground truth. The methods do not differ appreciably in their 

performance. They all tend to underestimate the noise level owing to a mild shrinkage 

(i.e., large  ) prior, and errors are smaller for moderate noise levels, increasing for 

both high and low noise (cf. Figure 19, A2). 
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Figure 19. Quantitative assessment of parameter estimation. (A) Root mean 

squared error of MAP estimates by noise level   for all four estimation methods (see 

Figure 17 for key to legends). (A1) Estimates for   improve with decreasing noise and 

do not exhibit substantially significant  differences between methods although NMSA is 

somewhat better at very high noise. (A2) As in Figure 18, estimates for   were assessed 

at the logarithmic scale. The results show that the noise level can best be estimated  at 

moderate levels, where in fact most estimates of experimental data are found. Again, 

the methods perform comparably well, with NMSA best at high noise. (B) VB and 

MCMC estimate the whole posterior distribution. Parameter estimates can therefore 

not only be summarized as point estimates, but also as posterior intervals (PI’s). If an 

estimation method were neither over- nor underconfident, 95% of 95% PI’s would 

contain the true parameter value. If the proportion is less than 0.95, this indicates 

overconfidence; if it is greater than 0.95, underconfidence. (B1) Both methods are 

realistically confident about their inference on   across noise levels, with a slight 

tendency towards overconfidence with higher noise. (B2) This tendency is more 

pronounced with estimates of    
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7.4.7 DISCUSSION 

The results show that all methods can recover the ground truth reliably 

when decision noise is moderate to low ( =6,24). Substantial differences in 

  wthin the range observed experimentally will be detected by all four 

methods even at high levels of noise. 

Two of the methods tested have serious drawbacks: the NMSA only comes 

up with a MAP estimate without giving any indication about the shape of 

the posterior; MCMC sampling imposes a heavy computational burden. I 

therefore see a clear advantage for GPGO and VB since they are 

computationally relatively efficient and furnish an estimate of the full 

posterior. I have implemented VB in the HGF toolbox (cf. Chapter 8), and 

the addition of GPGO is planned for the near future. 

 Optimization of parameters 7.5

It is often desirable to optimize parameters in a broader sense than fitting 

them, under an appropriate response model, to observed responses. The 

question such an optimization seeks to answer is: what parameter setting 

would allow an agent to make optimal predictions? To answer this 

question, we need to determine the most probable parameter setting given 

the inputs, that is we have to maximize    |  . 

Adapting Eq. (103), we derive this as 
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(112) 

Since     (    | ̂ 
   

  ̂ 
   

) is the surprise at seeing      given the 

prediction  ̂ 
   

 and its variance  ̂ 
   

, and         is the surprise at seeing 

a particular set of parameter values given the prior,     can be interpreted 

as the parameter setting that minimizes the agent’s surprise. 

 Model comparison 7.6

Model comparison calls for a Bayesian approach because classical 

significance testing does not offer any generic framework for this (Kass 

and Raftery, 1995). The theory of Bayesian model comparison was 

developed by Jeffreys (1935, 1961) and involves as its central concept the 

Bayes factor; this is the factor by which the posterior odds of a model over 

another differ from the prior odds: 

 
    |  

    |  
   

     

     
  (113) 

where    and    are the models being compared,   are the data observed, 

and   is the Bayes factor. By application of Bayes’ theorem, one sees that 
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   |   

   |   
  (114) 

It is convenient to interpret   in logarithmic space, where, according to the 

convention introduced by (Kass and Raftery, 1995),      indicates the 

following weight of evidence in favor of   : 

     Evidence for    

0 to1 Barely mentionable 

1 to 3 Positive 

3 to 5 Strong 

> 5 Very strong 

 

To calculate  , we need to know    |    and    |   . These are the 

marginal likelihoods, or model evidences, of    and   , respectively. If   is 

the set of parameters of the model  , consisting of the likelihood    |     

and the prior    |  , then the model evidence of   is 

    |   ∫   |       |      (115) 

This integral is often - when   involves a variant of the HGF, always - 

intractable. We can, however, derive a lower bound  , the negative free 

energy, of its logarithm: 
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(116) 

where       is an arbitrary probability density and ⌌   ⌍  is the expectation 

under  . As its physical analogon, the negative free energy is the sum the 

expected negative energy (     is the negative Lagrangian) and the 

entropy  . 

As I show in Appendix A, maximizing   (thereby approximating      |   

by it) is equivalent to approximating the posterior    |     by     . In 

Appendix B I show how the   that maximizes   can be found by variational 

calculus. If we constrain   to be Gaussian,  [ ] can be calculated 

analytically, but ⌌    ⌍  is still intractable. We can, however, deal with this 

by introducing the Laplace approximation, that is expanding      around 

its mode to second order. 

Conveniently, we already know the mode: it is    from Eq. (103), whose 

expression        |   is equivalent to             |  , apart from the 

purely notational difference that instead of the model   the inputs   are 

made explicit. Besides the mode itself, we need to know the Hessian 

        of   at the mode for our power expansion (the gradient, of course, 

vanishes at the mode). In Appendix D, I show that the covariance matrix   

of the parameters   at the mode is negative inverse of the Hessian. 

              (117) 

I further show there that, under the Laplace approximation, the maximum 

of the negative free energy can be calculated as 
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where | | is the determinant of   and   is the number of parameters in  . 

Since this approximates  , which in turn approximates the model evidence 

     |  , we can now calculate the log-Bayes factor of    over    as 
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(119) 

This Bayesian framework of model comparison can be extended to 

comparisons of multiple models, and also to group studies (Stephan et al., 

2009b). I give an example of this in Chapter 9. 
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8 THE HGF TOOLBOX 

 Overview 8.1

The HGF toolbox is a collection of Matlab functions that implement the 

models and estimation strategies described in the preceding chapters. It is 

an integral part of this thesis and can be downloaded from 

http://www.tnu-zurich.com/topics/software/ or http://goo.gl/Wv0zq. In 

addition to the HGF and the response models discussed above, it contains 

models such as the Rescorla-Wagner learning model for binary inputs and 

the softmax decision rule. For a given application, it may be necessary to 

extend the functions offered by the toolbox to suit the requirements of that 

case. However, the toolbox's modular nature should make it easy to add 

new models (see Section 8.5 below). 

The HGF toolbox assumes a framework where an agent in the broadest 

sense (e.g., a human being, an animal, a machine, the stock market, etc.) 

receives a time series of inputs to which it reacts by emitting a time series 

of responses. In particular, this process is modeled by the combination of a 

perceptual (sc. state space) and an observation (sc. decision or response) 

model. The perceptual model is the time series model on which the agent 

bases its responses; the observation model describes how the agent makes 

decisions based on its perceptual inference. Note that what I refer to here 

as the observation model describes a "second-order" observation in the 

sense that the perceptual model already contains a ("first-order") 

observation part that describes how perceptual states relate to inputs. 

This implements the "observing the observer" framework described 

Daunizeau et al. (2010b). 

 Usage 8.2

There are two main ways to use the HGF toolbox: 

1. To fit various combinations of perceptual and observation 

models to observed responses. In cases where optimal (by some 
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criterion) parameters are estimated using empirical Bayes, 

responses may simply be omitted. 

2. To simulate the trajectories of perceptual states, and responses. 

In simpler cases (e.g., when simply filtering inputs), only the 

evolution of the perceptual inference is of interest. Responses 

and the specification of an observation model may then simply be 

omitted. 

Currently, the following perceptual models are implemented in the HGF 

toolbox: 

Perceptual model Description 

hgf The generic HGF for continuous inputs, 
with or without sensory uncertainty 
 

hgf_binary The 3-level HGF for binary inputs, 
without sensory uncertainty 
 

rw_binary The Rescorla-Wagner model for binary 
inputs 
 

 

The list of response models is: 

Response model Description Compatible with 

gaussian_obs Gaussian noise on 
responses on a continuous 
scale 
 

Hgf 

empirical_bayes Estimation of parameter 
values that lead to least 
surprise at the inputs (on a 
continuous scale) for the 
agent 
 

Hgf 

unitsq_sgm The unit square sigmoid 
binary response model 
(cf Eq. (85)) 
 

hgf_binary 
rw_binary 
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softmax_binary The softmax response 
model for binary responses 
 

hgf_binary 
rw_binary 

empirical_bayes_binary Estimation of parameter 
values that lead to least 
surprise at the inputs 
(binary) for the agent 
 

hgf_binary 
rw_binary 

 

The toolbox uses the BFGS quasi-Newton optimization algorithm due to 

Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970) to 

implement the optimization in Eqs (103) and (112). 

 Installation and main functions 8.3

To install the toolbox, simply move the contents of the zip-file 

hgfToolBox.zip to a location of your choice. 

Each of the two usages has its main function. The function 

    fitModel(...) 

fits models to observed responses, while the function 

    simModel(...) 

simulates the trajectories of perceptual states, and responses. The 

documentation to these functions is located at the top of their respcective 

files fitModel.m and simModel.m. 

 Documentation, configuration, and 8.4

examples 

Documentation is given in the toolbox’s README file and in extensive 

comments at the beginning of the main functions and configuration files. 

To give a few examples of how one can use the toolbox, the remainder of 

this section has the form of a short tutorial: 
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Start Matlab, open the files fitModel.m or simModel.m, and read the 

documentation there. This will point you to the relevant configuration 

files. 

As a simple example, start Matlab and load the example binary inputs 

provided in the file example_binary_input.txt: 

>> u = load('example_binary_input.txt'); 

Now use this to generate simulated responses: 

>> sim = simModel(u, 'hgf_binary', [0 1 1 1 1 -2.5 0.01], 

'unitsq_sgm', 5); 

>> hgf_binary_plotTraj(sim) 

Next, try to recover these parameters by fitting the corresponding models 

to the simulated data: 

>> est = fitModel(sim.y, sim.u, 'hgf_binary_config', 

'unitsq_sgm_config', 'quasinewton_optim_config'); 

>> fit_plotCorr(est) 

>> hgf_binary_plotTraj(est) 

 

You can also try to fit the same data using a different perceptual model: 

>> est2 = fitModel(sim.y, sim.u, 'rw_binary_config', 

'unitsq_sgm_config', 'quasinewton_optim_config'); 

>> fit_plotCorr(est2) 

>> rw_binary_plotTraj(est2) 

 

The same procedure can be applied to continuous data. The file 

example_usdchf.txt contains the value of the US dollar in Swiss francs 

throughout much of 2010 and 2011 (source: http://www.oanda.com). 

>> usdchf = load('example_usdchf.txt'); 

>> sim2 = simModel(usdchf, 'hgf', [1.04 0 0.0001 1 1 -12  

0.3 0.0003], 'gaussian_obs', 1e-2); 

>> hgf_plotTraj(sim2) 

>> sim3 = simModel(usdchf, 'hgf', [1.04 0 0 0.0001 1 1 1 1 

-12  -2 0.3 0.0001], 'gaussian_obs', 1e-2); 
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>> hgf_plotTraj(sim3) 

>> est3 = fitModel(sim2.y, sim2.u, 'hgf_config', 

'gaussian_obs_config', 'quasinewton_optim_config'); 

>> fit_plotCorr(est3) 

>> hgf_plotTraj(est3) 

 Adding models or optimization 8.5

algorithms 

The modularity of the toolbox enables you to add perceptual and 

observation models of your choice. This requires the following functions 

that fitModel(...) and simModel(...) will expect to find (replace 

<modelname> by the name of your model): 

<modelname>             contains the model machinery 

<modelname>_config contains the configuration settings (only for 

fitModel(...)) 

<modelname>_transp      transforms parameters from the space they are 

estimated in to their native space (only for 

fitModel(...)) 

<modelname>_namep returns a structure of named parameters (only 

for simModel(...)) 

Additionally, for observation models, simModel(...) expects to find a 

function that performs the simulation of responses: 

<modelname>_sim 

For details, look at the corresponding files of an existing model (e.g. 

hgf_binary) and use them as templates. 

To add a new optimization algorithm, provide the following functions that 

fitModel(...) will expect to find (replace <algo> by the name of your 

algorithm): 

<algo>             contains the machinery of your algorithm 
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<algo>_config      contains the configuration settings 

For details, look at the corresponding files of an existing algorithm (e.g. 

quasinewton_optim) and use them as templates. 
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9 APPLICATION TO SACCADIC REACTION 

TIMES 

 Overview 9.1

Inferring the environment’s statistical structure and adapting behaviour 

accordingly is a fundamental modus operandi of the brain. A simple form of 

this faculty based on spatial orienting of attention can be studied with 

Posner’s location-cueing paradigm in which a cue indicates the location of 

a target with a known probability. In a first experimental application of the 

HGF, we focused on a more complex version of this task, where 

probabilistic context (the proportion of valid cues) changes unpredictably 

over time, thereby creating a volatile environment. Saccadic response 

speeds were recorded in 15 subjects and used to estimate the subject-

specific parameters of the HGF (i.e., the simple example model that we 

used throughout Chapters 1-5) that modeled the subjects’ trial-by-trial 

updates of beliefs. Different response models – specifying how 

computational states translate into observable behavior – were compared 

using Bayesian model selection as described in Section 7.6. Saccadic 

response speed was most plausibly explained as a function of the precision 

of the belief about the causes of sensory input. This finding is in 

accordance with current Bayesian theories of brain function, and 

specifically with the proposal that spatial attention is mediated by a 

precision-dependent gain modulation of sensory input. Our results 

therefore provide empirical support for precision-dependent changes in 

beliefs about saccade target locations and motivate future neuroimaging 

and neuropharmacological studies of how Bayesian inference may 

determine spatial attention. 

 Introduction 9.2

Prior beliefs about the location of a behaviorally relevant stimulus 

facilitate stimulus detection and speed up reaction times (RTs). One of the 

first experimental demonstrations of this effect was provided by Posner’s 
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location-cueing paradigm (Posner, 1980). In this task, a spatial cue (e.g., an 

arrow) indicates the most likely position of a behaviorally relevant target 

stimulus on a trial-by-trial basis. Average RTs are faster on valid trials – 

where the target appears at the expected or cued location – than on invalid 

trials, where target location is unexpected. This reflects covert orienting of 

attention to the cued location in analogy to an attentional spotlight. 

Attentional orienting enhances information processing at the cued location 

at the expense of alternative (uncued) locations.  

However, there is accumulating evidence that attentional orienting in 

response to the spatial cue is not an all-or-none phenomenon, but is 

critically affected by trial history and by the current probabilistic context. 

For example, RT costs of invalid cueing are larger after a valid than after an 

invalid trial (Jongen and Smulders, 2007) – and RTs to invalid targets 

increase with the number of preceding valid trials (Vossel et al., 2011). 

Moreover, the RT difference between invalid and valid trials increases, the 

higher the proportion of validly cued trials (percentage of cue validity, 

%CV; Eriksen and Yeh, 1985; Giessing et al., 2006; Jonides, 1980; Risko 

and Stolz, 2010). These results imply that subjects infer and predict the 

current probabilistic context and adjust their behavior accordingly. 

The behavioral effects observed in Posner’s location-cueing paradigm can 

be interpreted within recent theoretical frameworks of perception and 

attention based on Bayesian principles (Chikkerur et al., 2010; Friston, 

2009, 2010; Feldman and Friston, 2010; Itti and Baldi, 2009; Rao, 2005). 

Here, the brain is considered as a Bayesian inference machine (e.g., Dayan 

et al., 1995; Friston, 2009) which maintains and updates a generative 

model of its sensory inputs. In other words, perception can be framed as 

an ‘inverse problem’: under a specific generative model, the current state 

of the world has to be inferred from the noisy signals conveyed by the 

sensorium. Notably, even when stimuli are presented with very high 

signal-to-noise, there are many aspects about the state of the world (i.e., 

the cause of sensory inputs) that are non-trivial to infer, such as its 

probabilistic structure (the “laws” that relate causes of stimuli to each 

other) or non-linear interactions among causes (e.g., visual occlusion). The 

overall goal of this architecture is to minimize surprise about sensory 

inputs and thus underwrite homeostasis – either by updating model-based 
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predictions or by eliciting actions to sample the world according to prior 

expectations. Notably, because surprise about sensory inputs cannot be 

evaluated directly, it has been proposed that perception and action 

optimize a free-energy bound on surprise (Friston et al., 2006; Friston, 

2009, 2010). Based on this free-energy principle, simulations have 

demonstrated how spatially selective attention can be understood as a 

function of precision (confidence or inverse uncertainty) during 

perceptual inference: attentional selection serves to increase the precision 

of sensory channels, enabling faster responses to attended stimuli 

(Feldman and Friston, 2010). Physiologically, this attentional effect may be 

mediated by an increase in the synaptic gain of neuronal populations 

encoding prediction error. These populations are assumed to project to 

higher-level units in the visual hierarchy where faster changes in neuronal 

activity are engendered in the context of higher precision (for details, see 

Feldman and Friston, 2010).  

An important aspect of Posner’s location-cueing task relates to the trial-by-

trial uncertainty about the predictive value of the spatial cue (i.e., the 

probability that the target appears at the cued location in a given trial) (cf. 

Yu and Dayan, 2005). This becomes particularly important in volatile 

environments, where the cue predicts the target location with varying 

probabilities over the course of the experiment – in other words, situations 

in which probabilistic context changes unpredictably over time. Here, the 

estimate (representation) of this probability – which we will 

operationalize in terms of percentage of cue validity, %CV – depends on 

the integration of information over past events.  

A simple description of trial-by-trial learning of cue-target contingencies is 

provided by reinforcement learning models such as Rescorla-Wagner 

(Rescorla and Wagner, 1972). There, the update of the probability 

estimate (in our case, the probability that the target will appear in the cued 

hemifield) after completing a trial equals the product of a fixed learning 

rate and the prediction error (i.e., the difference between observed and 

predicted outcome). The learning rate determines the impact of the 

prediction error on the belief update and, at the same time, determines to 

which extent the current belief is affected by past events, since it 
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determines the slope of the exponential decay function of the influence of 

previous trials (cf. Rushworth and Behrens, 2008).  

While the Rescorla-Wagner rule describes a variety of human and animal 

behaviors, it is a heuristic approach that does not follow from principles of 

probability theory. Moreover, it suffers from some practical limitations 

which might be overcome by the application of Bayesian principles 

(Gershman and Niv, 2010). For associative learning paradigms, 

hierarchical Bayesian learning models provide a principled prescription of 

how beliefs are updated optimally in the presence of new data. These 

models may provide a more plausible account of behavior than the 

Rescorla-Wagner rule, particularly in volatile environments where a fixed 

learning rate is suboptimal (Behrens et al., 2007; den Ouden et al., 2010). 

The HGF now grandfathers and extends existing normative models 

(Mathys et al., 2011). To repeat its main features (cf. Chapters 1-5), the 

HGF results in analytical update equations that (i) minimize free-energy, 

(ii) are extremely fast to evaluate, (iii) contain parameters allowing for 

individual differences in learning, and (iv) directly express the crucial role 

of prediction errors (and their weighting by uncertainty) that play such a 

prominent role in predictive coding schemes based on the free-energy 

principle described above. Crucially, the HGF can be applied to empirical 

behavioral data, allowing one to compare different models of subject 

responses and quantify their trial-by-trial estimates of states of the 

environment that lead to sensory predictions, including the precision of 

these estimates (cf. Chapters 6 and 7). This enables formal tests of free-

energy based accounts of attention using empirically observed behavior 

that complements simulation work (e.g., Feldman and Friston, 2010). In 

particular, it can be tested which quantities from the Bayesian learning 

model are most influential in determining response speed (RS). While one 

might hypothesize a relationship between precision and RS in the present 

attentional cueing task (or even more generally; see e.g., Whiteley and 

Sahani, 2008), other studies (employing different experimental 

paradigms) have shown that reaction times can be related to the (log) 

probability estimate per se (Anderson and Carpenter, 2006; Carpenter and 

Williams, 1995; Brodersen et al., 2008; den Ouden et al., 2010), or to the 

amount of surprise that is associated with a particular stimulus (Bestmann 
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et al., 2008). Here, we try to explain the observed RS under these different 

assumptions (in contrast to RTs, RS tends to have a Gaussian distribution 

(Brodersen et al., 2008; Carpenter and Williams, 1995) and are thus a 

preferred behavioral quantity for modeling). To this end, we formulate 

competing models that embody the different notions above and formally 

compare their evidence, using Bayesian model selection.   

In particular, we here apply this hierarchal Bayesian learning model to 

saccadic RS data from a variant of Posner’s location-cueing paradigm with 

changes of probabilistic context (%CV) that are unknown to the subject. 

Saccadic eye movements and covert spatial attention are closely linked 

and share a common functional neuroanatomy (Beauchamp et al., 2001; 

Corbetta et al., 1998; de Haan et al., 2008; Nobre et al., 2000; Perry and 

Zeki, 2000). There is very strong evidence that eye movements to a given 

location are inevitably preceded by covert attention shifts to this location 

enhancing local perceptual processing (e.g., Deubel and Schneider, 1996; 

Deubel, 2008; Doré-Mazars et al., 2004; Godijn and Theeuwes, 2003). The 

‘premotor theory of attention’ (Rizzolatti et al., 1987) states that 

attentional orienting may be functionally equivalent to saccade planning 

and initiation, and that therefore programming a saccade causes a shift of 

spatial attention. In a related theory, the ‘Visual Attention Model’ 

(Schneider, 1995), a single visual attention mechanism is proposed which 

controls both the selection for perception and the selection for action. 

Here, attention shifts are not caused by - but are a precondition for - 

saccade preparation (Deubel, 2008). The obligatory coupling between 

spatial attention and saccade programming is also evident in a recent 

computational model of evidence accumulation in the visuomotor cascade: 

visually responsive neurons which can be found in the frontal eye fields 

(FEF), the lateral intraparietal area (LIP) and superior colliculi (SC) 

provide the source of drive for motor neurons in FEF and SC to elicit a 

saccade (Schall et al., 2011). 

Saccadic RS have been shown to be critically affected by the probability of 

the saccade target location (Carpenter and Williams, 1995; Chiau et al., 

2011; Farrell et al., 2010) and there is initial evidence that trial-by-trial 

changes in saccadic RS reflect learning of probabilistic context according to 

Bayesian principles (Anderson and Carpenter, 2006; Brodersen et al., 
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2008). Anderson and Carpenter (2006) presented two subjects with 

multiple trial blocks in which targets initially appeared to the left and right 

side of fixation with equal probability. After 70-120 trials in each block this 

probability could abruptly change, so that saccades were more likely to be 

made to one of the targets. Estimating an exponential decay parameter of 

the trial-by-trial probability of the target location, the authors showed that 

saccadic RS is related to the learned prior probability of target appearance. 

Brodersen et al. (2008) presented three subjects with different 

experimental blocks of left and right targets with different stochastic 

properties: the targets were either presented with different fixed 

probabilities, or the probability of the target location was conditional on 

the target location in the previous trial (1st order Markov sequence). They 

used two different learning models to examine each case whether the 

subjects learned and utilized the marginal probabilites of the targets’ 

locations or their conditional probabilities (and thus a transition matrix).  

While both studies (Anderson and Carpenter, 2006; Brodersen et al., 2008) 

started to address the question of inter-trial variability in probabilistic 

beliefs, they did not deal with the effects of the uncertainty (precision) of 

these beliefs which has been suggested as a prominent mechanism in 

spatial attention (Feldman and Friston, 2010). Moreover, both studies 

employed models that are agnostic about environmental volatility, thereby 

precluding the possibility that the subjects can adapt their learning rates 

based on their current belief about the stability of the environment. 

Here we extend the previous findings in two ways.  First, we show that 

trial-by-trial saccadic RS in the location-cueing paradigm can be explained 

as a function of the precision of trial-wise beliefs, as inferred using the 

HGF. Secondly, the HGF accommodates individual learning processes by 

introducing subject-specific parameters for coupling the different 

hierarchical levels of learning and thus provides a novel quantification of 

and explanation for individual learning differences, expressed by saccadic 

RS.  In what follows, we will refer to the HGF simply as the perceptual 

model, since it provides a mapping from hidden states (or environmental 

causes) to sensory inputs. Furthermore, we will introduce and compare 

different response models  (cf. Chapter 6 and Daunizeau et al. (2010b)) that 

describe the mapping from the subject’s probabilistic representations 
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(beliefs) – as provided by the perceptual model – to the observed 

responses (i.e., response speed, RS). 

 Methods 9.3

9.3.1 SUBJECTS 

Sixteen healthy subjects gave written informed consent to participate in 

the current study. One subject had to be excluded from further analysis 

due to lack of fixation during the cue-target interval. Therefore, data from 

fifteen subjects were analyzed (9 males, 6 females; age range from 23-35 

years; mean age 27.4 years). All subjects were right-handed and had 

normal or corrected to normal vision. The study had been approved by the 

local ethics committee (University College London). 

9.3.2 STIMULI AND EXPERIMENTAL PARADIGM 

We used a location-cueing paradigm with central predictive cueing 

(Posner, 1980). Stimuli were presented on a 19-inch monitor (spatial 

resolution 1024 x 768 pixels, refresh rate 75Hz) with a viewing distance of 

60cm. On each trial, two peripherally located boxes were shown (1.9° wide 

and 8° eccentric in each visual field, see Figure 20) that could contain 

target stimuli. A central diamond (0.65° eccentric in each visual field) was 

placed between them, serving as a fixation point. Cues comprised a 200ms 

increasing brightness of one side of the diamond – creating an arrowhead 

pointing to one of the peripheral boxes. After a 1200ms stimulus onset 

asynchrony, a target appeared for 100ms in one of the boxes. The targets 

were vertical and horizontal circular sinusoidal gratings (1.3° visual 

angle). Vertical and horizontal grating were presented with equal 

probability. 
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Figure 20. Task. Illustration of the experimental task and the manipulation of %CV 

over the 612 trials. 

 

Subjects were instructed to maintain central fixation during the cue period 

and to make a saccade to the target stimulus as fast as possible. They were 

encouraged to blink and re-fixate the central fixation dot after the saccade. 

After a short practice session of 64 trials – with constant 88 %CV – the 

experiment comprised 612 trials with block-wise changes in %CV that 

were unknown to the subjects. Each block with constant %CV contained an 

equal number of left and right targets, counterbalanced across valid and 

invalid trials. %CV changed after either 32 or 36 trials switching 

unpredictably to levels of 88%, 69% or 50% (see Figure 20). Subjects were 

told in advance that there would be changes in %CV over the course of the 

experiment, but were not informed about the levels of these probabilities 

or when they would change. Each subject was presented with the same 

sequence of trials. This is a standard procedure in computational studies of 

learning processes that require inference on conditional probabilities in 

time series (cf. Behrens et al., 2008; Daunizeau et al., 2010b).  In this 

common case, the parameters of the learning process depend on the exact 

sequence of trials used. Although this dependency will diminish 

asymptotically with increasing numbers of trials, for the relatively short 

200 ms

100 ms

1000 ms

1700 ms
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sequences (of a few hundred trials at best) that are feasible within a 

standard experiment, introducing a different sequence for each participant 

could increase the variability of parameter estimates, over and beyond the 

intrinsic inter-individual trait-differences per se. We therefore decided to 

keep this factor constant to ensure that differences in the model 

parameters can be attributed to subject-specific rather than task-specific 

factors. After half of the trials, the subjects had a short rest of 1 min.  

9.3.3 EYE MOVEMENT DATA RECORDING AND ANALYSIS 

Participants sat in a dimly lit sound-proof cabin with their head stabilized 

by a chinrest. Eye movements were recorded from the right eye with an 

EyeLink 1000 desktop mounted eye-tracker (SR Research Ltd.) with a 

sampling rate of 250Hz. A 9-point eye-tracker calibration and validation 

was performed at the start of the experiment and after the pause in the 

middle of the experiment. The validation error was less than 1° of visual 

angle. 

Eye movement data were analyzed with MATLAB (Mathworks) and ILAB 

(Gitelman, 2002). Blinks were filtered out and pupil coordinates within a 

time window of 20 ms around the blink were removed. Trials with more 

than 20% missing data were discarded from the analyses. To ensure 

central fixation after presentation of the spatial cue, the time period 

between cue and target was analyzed for gaze deviations from the center. 

After target appearance, only the first saccade was analyzed. Saccades 

were identified when the eye velocity exceeded 30°/s (Stampe, 1993; 

Fischer et al., 1993). Once this threshold was reached, the start of the 

saccade was defined as the time when the velocity exceeded 15% of the 

trial-specific maximum velocity (Fischer et al., 1993). Likewise, the end of 

the saccade was defined by the time when the velocity fell below 15% of 

the trial-specific maximum velocity. Moreover, the saccade amplitude 

needed to subtend at least 2\3 of the distance between fixation point and 

the actual target location. Saccadic RT was defined as the latency between 

target and saccade onset. Saccades in which the starting position was not 

within a region of 1° from the fixation point and saccades with a latency 

<90ms were discarded from the analyses. Our analyses focused on inverse 

RTs (i.e., response speed, RS) since, in contrast to RTs, RS are normally 

distributed (cf. Brodersen et al., 2008; Carpenter and Williams, 1995). 
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To assess the effect of probabilistic context (true %CV), mean RS for each 

subject and for each %CV condition were entered into a 2 (cue: valid, 

invalid) x 3 (%CV: 50, 69, 88%) within-subjects ANOVA. In this analysis, 

evidence for an impact of probabilistic context would be reflected in a 

significant cue x %CV interaction effect – with increasing differences 

between valid and invalid RS with higher %CV. Results from this analysis 

are reported in the Results section at a significance level of p<0.05 after 

Greenhouse-Geisser correction. Condition-specific mean RS was also 

calculated separately for the two halves of the experiment and analyzed 

with a 2 (cue: valid, invalid)  3 (%CV: 50, 69, 88%)  2 (time: 1st half, 2nd 

half) within-subjects ANOVA (note that each %CV condition was presented 

3 times in each half, cf. Figure 20).  

Having established the significance of the experimental effects we then 

sought to model them in terms of hierarchical Bayesian updating. 

9.3.4 PERCEPTUAL MODEL 

In what follows, we briefly outline the particular variant of the HGF used in 

this study. The perceptual model (dark grey panel in Figure 21) here 

comprises a hierarchy of 3 hidden states (denoted by x), with states 2 and 

3 evolving in time as Gaussian random walks. 
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Figure 21. Models. Graphical illustration of the perceptual (generative) model with 

states   ,    and   . The model parameters   and   impact on the time course of 

subjects’ inferred belief about the states x and are estimated from the individual 

subject RS data. Circles represent constants, while diamonds represent quantities that 

change in time (i.e., that carry a time (or trial) index). Hexagons, like diamonds, 

represent quantities that change in time but that additionally depend on their 

previous state in time in a Markovian fashion.  

 

The probability of a target appearing at the cued location in a given trial 

( ) (represented by the state   
   

, with      for valid and      for 

invalid targets) is governed by a state    at the next level of the hierarchy. 

Hence, in the current location-cueing paradigm,    determines the trial-

specific estimate for %CV. Note that in this particular experiment, the 

target stimulus was visible without any ambiguity (very high signal-to-

noise ratio); this means there is a simple deterministic mapping between 

the (mean of)    and input   of the general model, which allows for 

situations with perceptual ambiguity (e.g., visual noise). 

Since the response models used in this study did not involve the 

representations    and   , we chose a scale on    by fixing   to 1 (cf. the 
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discussion of coordinate choice on higher levels in Section 7.1). Since   is a 

multiplicative constant, this effectively removes it from the model. 

As described in detail in Chapter 4, the precision-weighting of the updates 

at the second level can be understood as a time-varying learning rate, 

which varies with the state-dependent component    of the log-volatility. 

An alternative – but equally useful – perspective on the generic precision-

weighted prediction error update scheme of Chapter 4 (particularly Eq. 

(69)) is in terms of Bayesian filtering, for example Kalman filtering. The 

Kalman filter can be regarded as an extension of the Rescorla-Wagner rule. 

It formalizes the predictive relationship between events, but also 

comprises expectations about how this relationship is expected to change 

over time and takes into account the uncertainty about this prediction 

(Dayan et al., 2000). Note, however, that the model underlying the Kalman 

filter is linear and therefore more limited than the generic non-linear 

model we use here. From this perspective, the precision–dependent 

weighting of prediction errors in our scheme correspond to the Kalman 

gain. These two perspectives (reinforcement learning rates and Kalman 

gain) illustrate the close relationship between reinforcement learning and 

Bayesian inference disclosed by the general scheme used here. 

In addition to the full three-level HGF, we employed two reduced versions 

of the perceptual model. This was done to evaluate whether the relatively 

complex hierarchical model was truly needed to explain subjects’ 

behavior. Specifically, the full hierarchical model assumes that (i) subjects 

are indeed capable of learning the hierarchical structure of the 

probabilities in this experiment, and (ii) exploit this knowledge to 

dynamically adapt the speed at which they update beliefs (i.e., learning 

rate) by using precision-weighted prediction errors. Although these 

assumptions are theoretically well-founded, it needs to be shown that 

equivalent explanations of the data could not be afforded by simpler, non-

hierarchical learning models. Therefore, we specified two alternative 

perceptual Bayesian models which eschewed assumptions about 

hierarchically structured learning, but in different ways. The first 

alternative model assumed that subjects ignored the instructions that the 

environment was volatile, expecting negligible changes in log-volatility 

(third level):   was thus fixed to zero, and only   was estimated. The 
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second perceptual model did not exploit the estimates of environmental 

volatility for adapting learning optimally by precision-weighted prediction 

errors. In this model, the influence of    on the variance of    was 

therefore fixed to zero, so that levels 2 and 3 of the model became 

decoupled and rendered the values at the third level of the hierarchical 

model irrelevant (an equivalent effect is obtained by fixing   
   

to zero). 

9.3.5 RESPONSE MODELS 

To map from the subject’s posterior beliefs to observed responses, three 

different response models were compared. A detailed analysis and 

motivation of their functional forms can be found in Appendix E. All 

response models predict inverse RT (response speed, RS), since the 

distribution of RS is typically normal, in contrast to RTs themselves 

(Carpenter and Williams, 1995). Furthermore, all response models 

describe trial-wise RS as a linear function of an attentional factor  , based 

on the posterior beliefs of the perceptual model. This factor can be 

regarded as the proportion of attentional resources allocated to the cued 

location (i.e.,   is normalized to the unit interval): 

    {
                          for    1 (i.e., valid trial)

                      for    0 (i.e., invalid trial)
 (120) 

Note that in all cases, RS is the same function of attentional resources 

allocated to the outcome location: on valid trials, this is the amount of 

attentional resources   allocated to the cued location, while – on invalid 

trials – it is the amount of attentional resources     allocated to the 

uncued location (cf. Figure 22). Here,         ,            and    are subject-

specific parameters that are estimated from the data. Minimal and 

maximal RS for valid and invalid trials are then defined by                
 and 

                   , respectively. 
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Figure 22. Reaction speed as a function of attention. Illustration of the relationship 

between RS (inverse RT) and the quantity  , representing the amount of attentional 

resources allocated to the cued location. For each response model, RS were assumed to 

be linearly related to   (which differs between the three models, see Appendix). Note 

the opposite behaviour of RS for increasing   on valid (black line and equation) and 

invalid (grey line and equation) trials (cf. Eq. (120)). 

 

Crucially, the three competing response models differ in how they specify 

the dependence of   on computational quantities from the perceptual 

model: these are precision, belief, and surprise about the sensory signal, 

respectively.  All three models respected the same boundary conditions, 

i.e.,   remained confined to the unit interval with       when  ̂      

(cf. Appendix and Figure 9).  

The first response model focused on the precision estimate at the first 

level of the perceptual model – following the recent proposal by Feldman 

and Friston (2010) concerning the role of precision for spatially selective 
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attention in the location-cueing paradigm. Here, we assumed that on a 

given trial   the attentional factor      was determined by a sigmoid 

transformation ( ) of  ̂ 
   

, the precision of the prediction at the first level, 

relative to its minimal value (i.e., 4 when  ̂     ): 

       ( ̂ 
   

  ) (121) 

In the second response model, the ‘belief’ model, the attentional factor   

depended on the strength of the prediction about cue validity: 

       ̂ 
   

  (  
     

) (122) 

The third response model (‘surprise’) was based upon the (Shannon) 

surprise associated with the target stimulus. The Shannon surprise 

(Shannon, 1948) is the negative logarithm of a probability estimate (here 

 ̂ 
   

). This response model was inspired by a previous study on cueing of 

motor responses in which RTs were examined in relation to trial-wise 

surprise (Bestmann et al., 2008). Here, we defined   as a nonlinear 

function of Shannon surprise: 

 
     

 

(          ( ̂ 
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with         ( ̂ 
   

)        (  
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)        ( ̂ 
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In summary, we specified three alternative perceptual models and three 

alternative response models. This resulted in a 33 factorial model space. 
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We compared the relative plausibility of these models using a random 

effects Bayesian model selection (BMS) procedure at the group level, both 

for individual models and model families (Penny et al., 2010; Stephan et al., 

2009b). In addition, we compared these models to a standard Rescorla-

Wagner learning model as well as to a model assuming that the true 

underlying (categorical) probabilities were known to subjects – in other 

words, they did not have to be inferred on the basis of experience. In the 

latter two models, trial-wise RS was supposed to be linearly related to the 

estimated or true %CV, respectively. 

9.3.6 ESTIMATION OF THE MODEL PARAMETERS 

The perceptual model parameters   and  , as well as the response model 

parameters          ,            and    were estimated from the trial-wise RS 

measures using variational Bayes as described in Chapter 7 and 

implemented in Jean Daunizeau’s DAVB toolbox, available at 

http://goo.gl/As8p7 (Daunizeau et al., 2009). This approach is analogous 

to the Bayesian inversion of Dynamic Causal Models (DCM’s) for functional 

imaging or electrophysiological data (Friston et al., 2003; Daunizeau et al., 

2011). 

 As any Bayesian approach, variational Bayesian inversion requires the 

definition of priors on the parameters. Importantly, the prior (co)variance 

influences the estimability of parameters, e.g., their degree of 

independence; also by choosing a very small prior variance (very high 

prior precision) one can effectively fix the value of a parameter. Table 1 

provides the priors used for inverting the full hierarchical model. In the 

perceptual model, initial values for   and   of states 2 and 3 were fixed and 

an upper bound of 1 was defined for the parameter  . In the response 

model, the prior variance for   , which parameterizes the relationship 

between the attentional factor   and RS (Figure 22), was set to a fairly 

small value (10-3). In other words, we assumed that the relation between 

RS and   (see equation 5) did not differ greatly across subjects. In contrast, 

to account for individual baseline differences in response speed (i.e., the 

intercept of the linear slope); the response model parameters           and 

            were given a larger prior variance, allowing for substantial 

individual differences between subjects.  
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While trials with missing responses did not contribute to parameter 

estimation, they did contribute to estimating the evolution of the states x, 

since they still provided the subject with an observation about the cue-

target contingency. In other words, we used what the subject saw to 

estimate the Bayes optimal estimate of hidden states over the experiment 

– under a particular set of parameters and used subject responses to 

optimize the parameters of the perceptual and response models. 

Table 1. Priors. Prior mean and variance for the parameters of the perceptual and 

response models, and the noise parameter.   is estimated in logit-space, while  1_valid , 

 1_invalid and  2 are estimated in log-space. 

Parameter Prior mean Prior variance 

Perceptual Model 

 -6 100 

  0.1 100 

Response model 

 1_valid 0.0052 0.1 

 1_invalid 0.0052 0.1 

 2 0.0006 0.001 

Noise parameters   

 3 0.001 1000 

 

9.3.7 BAYESIAN MODEL SELECTION (BMS) 

BMS is described in detail in Section 7.6. It evaluates the relative log-

evidence (or log-marginal likelihood) of alternative models. The log-

evidence of a model is the negative surprise about the data, given a model, 

and represents a generic trade-off between the accuracy and complexity of 

a model that can be derived from first principles of probability theory. 

Over the past decade, BMS has become a standard approach to assess the 

relative plausibility of competing models that describe how 

neurophysiological or behavioral responses are generated (cf. Daunizeau 

et al., 2010a, 2010b; Stephan et al., 2009b). Here, we use it to disambiguate 

different hypotheses about how learning (as described by the perceptual 
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models) and decision making (as described by the response models) 

evolve across and within trials. 

Above, we introduced three perceptual models and three response models 

(‘precision’, ‘belief’ and ‘surprise’). Combining these alternatives provides 

9 models in a 33 factorial model space, plus the additional two control 

models (standard Rescorla-Wagner model and a model assuming that the 

true probabilities were known to the subjects). To assess the relative 

plausibility of our models at the group level, we used random effects BMS 

(Stephan et al., 2009b) and report both posterior probabilities and the 

exceedance probabilities of the competing models. Importantly, random 

effects BMS treats the model itself as being probabilistically distributed in 

the population (i.e., as a random variable following a Dirichlet distribution) 

using a full hierarchical model for multi-subject data. In brief, this enables 

group-level inference while taking into account inter-individual 

differences (e.g., the optimal model can vary across subjects). Critically, 

random effects BMS not only assesses the relative goodness of competing 

models but also quantifies (via the Dirichlet parameter estimates) the 

degree of heterogeneity in the sample studied (Stephan et al., 2009b).  

The exceedance probability of a model is the probability that it is more 

likely than any other model considered, given the data. For example, an 

exceedance probability of 95% for a particular model means that one has 

95% confidence that this model has a greater posterior probability than 

any other model tested (Stephan et al., 2009b).  Both posterior 

probabilities and exceedance probabilities sum to unity over all models 

tested. 

9.3.8 REPRODUCIBILITY OF RESULTS 

To examine the replicability and hence generalizability of our findings, we 

performed an additional analysis, using an independent set of subjects 

(n=16, 8 males, 8 females: age range from 19-30 years; mean age 23.4 

years). Again, all subjects were right-handed and had normal or corrected 

to normal vision. The subjects were tested as part of a separate 

psychopharmacological study employing a within-subject cross-over 

design. The data presented here were taken from the placebo session only, 
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during which the subjects received a multivitamin tablet. This study had 

been approved by the NHS Research Ethics Committee.  

The subjects were presented with exactly the same trial sequence as the 

subjects in the original dataset. The within-trial structure was also almost 

identical, with slight modifications to the timing of the task: the cue-target 

SOA was reduced to 800ms and the target was presented for 200ms. 

Moreover, the trials were interspersed with 106 ‘null-trials’ where only 

the baseline display (the fixation point and peripheral boxes) was shown. 

The task had a duration of 35 minutes and comprised 4 short rest periods. 

Finally, the subjects received a slightly longer training than the original 

group (one session with 100 trials with constant 80 %CV and one session 

with 121 trials with changes in %CV).  

The same procedures and analyses as outlined above were applied to the 

eye movement data, except that the data here were recorded with a 

sampling rate of 1000Hz. Using trial-wise RS, we again fitted the 

parameters of the perceptual and response models as outlined above. 

 Results 9.4

9.4.1 FIXATION DURING THE CUE-TARGET INTERVAL AND 

MISSING TRIAL DATA 

Between the appearance of the cue and the target, the subjects fixated the 

centre of the display in 87.7 2.3% (mean  SEM) of the trials – within a 

region of interest of 1° – and in 95.4  1.2% of the trials within in a region 

of 2° from the fixation point. The proportion of trials with missing eye data 

or missing or incorrect saccades amounted to 20.0  3%, so that on 

average 80% of the trials (487 of 612 trials) were analyzed. Trials needed 

to be excluded due to anticipated responses (3  1%), incorrect or absent 

saccades (5  1%), saccades not starting from the fixation zone (8  1%), 

or missing data points, e.g., due to blinks (4  1%). There was no 

significant difference in the percentage of correct trials between the first 

and second half of the experiment (paired t-test, p=0.895). 
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9.4.2 CLASSICAL INFERENCE ABOUT THE EFFECTS OF 

PROBABILITY ON RS 

The 2 (cue: valid, invalid)  3 (%CV: 50, 69, 88%) ANOVA on RS data 

revealed a significant main effect of cue (F(1,14)=8.8, p=0.01) reflecting 

faster responses (higher RS) on valid than on invalid trials. The main effect 

of %CV was not significant – in other words, averaging over valid and 

invalid trials removed any effect of probability. Crucially, we observed a 

significant cue  %CV interaction effect (F(1.9,26.6)=9.5, p=0.001) reflecting a 

differential impact of %CV on valid and invalid trials (Figure 23). A 

separate analysis also considered general trends in the data over time, e.g. 

due to fatigue, by including time (first vs. second half of the experiment) as 

additional factor. This resulted in a three-factorial cue (valid, invalid)  

%CV (50, 69, 88%)  time (1st, 2nd half) ANOVA. Again, this analysis 

revealed a main effect of cue (F(1,14)=8.2, p=0.013) and a significant cue  

%CV interaction (F(1.6, 22.5)=10.5, p=0.001). The main effect of %CV was not 

significant. Importantly, there was neither a significant main effect of time 

nor interaction effects of the factor time with any of the other factors (all p-

values >0.4). 

The cue  %CV interaction effect indicates a significant influence of 

probabilistic context on the subjects’ responses, with stronger attentional 

orienting to the cue (and higher RT costs after invalid cueing) with higher 

%CV. However, Figure 23 does not show a strictly monotonic relationship 

between RS and true %CV for valid cues. This probably results from the 

fact that the underlying probabilistic structure (i.e., %CV) was unknown to 

the subjects and was changing in time fairly rapidly. It therefore had to be 

inferred by the subjects online, and these subject-specific and dynamic 

estimates should be the relevant predictors of observed RS, not %CV. In 

other words, the ANOVAs above (and the visualization in Figure 23) 

average across trials which are heterogeneous in terms of subjective 

probability estimates, and a model predicting the subjective estimates 

should be superior in explaining behavior (cf. Figure 27). In what follows, 

we test this, evaluating whether the empirically observed RS might reflect 

trial-by-trial updating of the subjects’ expectancies according to our 

Bayesian perceptual model. Additionally, we compare a systematic set of 

models that combine different putative learning processes (perceptual 
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models) with different ways in which the learned quantities drive behavior 

(response models). 

 

Figure 23. Reaction speed/time and %CV. (A) Average RS in valid and invalid trials 

for the three (true) %CV levels. Error bars depict standard errors of the mean (SEM). 

(B) Illustration of how the observed RS costs after invalid cueing translate into RT 

differences (in ms). 

 

9.4.3 BAYESIAN MODEL SELECTION 

Random effects BMS among the 3 perceptual model families (i.e., the full 

models and the two reduced model versions for each of the 3 response 

models) revealed that the full hierarchical Bayesian model had 

substantially higher model evidence than the two reduced (null) versions 

(Table 2). 
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Table 2. Results of the Bayesian model selection (BMS). PP is posterior probability 

and XP is exceedance probability. 

 Main dataset 
(n=15) 

Replication 
dataset 
(n=16) 

Model PP XP PP XP 
Model family comparison – Perceptual Models 
Full hierarchical Bayesian family .873 .999 .777 .997 
Reduced model family (  =0) .064 <.001 .105 .001 

Reduced model family (  
   

=0) .063 <.001 .118 .002 

Model family comparison – Response Models 
‘Precision’ family .756 .991 .642 .930 
‘Belief’ family .076 .001 .251 .066 
‘Surprise’ family .168 .008 .107 .004 
Model comparison of all 11 models 
Full hierarchical Bayesian model 
‘Precision’ 

.499 .995 .381 .914 

Reduced model (   0) ‘Precision’ .006 <.001 .182 .074 

Reduced model (  
   
 0) ‘Precision’ .119 .004 .047 <.001 

Full hierarchical Bayesian model 
‘Belief’ 

.040 <.001 .041 <.001 

Reduced model (   0) ‘Belief’ .040 <.001 .042 <.001 

Reduced model (  
   
 0) ‘Belief’ .040 <.001 .074 .004 

Full hierarchical Bayesian model 
‘Surprise’ 

.040 <.001 .079 .004 

Reduced model (   0) ‘Surprise’ .040 <.001 .039 <.001 

Reduced model (  
   
 0) ‘Surprise’ .040 <.001 .039 <.001 

Rescorla-Wagner model .040 <.001 .038 <.001 
True categorical probability model .040 <.001 .038 <.001 
 

Comparing the 3 response model families (i.e., the precision, belief and 

surprise models for each of the 3 versions of the perceptual model) 

showed that the response model based upon precision was clearly 

superior to the ‘belief’ and the ‘surprise’ model (Table 2). Finally, 

comparison of all 11 individual models revealed that the full hierarchical 

Bayesian model combined with the precision response model was clearly 
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superior to all other models we considered (Table 2, supplementary Figure 

S1). 

9.4.4 PARAMETERS OF THE WINNING MODEL  

The subject-specific values for log-volatility   and meta-volatility   

derived from the full hierarchical perceptual model – based upon precision 

– are depicted in Figure 24A. Figure 24B shows the minimal and maximal 

RS for each subject as derived from the response model parameters  

        ,            and    in relation to the subject’s overall (mean) RS. The 

graph shows that there were considerable differences in the absolute 

speed of responding across subjects, as parameterized by averaged values 

for           and             which were estimated from the individual 

datasets. 
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Figure 24. Subject-specific parameters. (A) Illustration of the subject-specific 

patterns for the values of the volatility estimate  and the meta-volatility estimate  . 

(B) Illustration of minimal and maximal RS (as derived from the response model 

parameters    (averaged for valid and invalid trials) and   ) in relation to overall 

(mean) RS. The symbols * and ** denote the data from subjects A and B depicted in 

Figure 26, respectively. 

 

In our hierarchical Bayesian scheme, the precision-weighting 

 ̂ 
   

( ̂ 
   

 ̂ 
   

  )⁄  (cf. Eq. (98)) at the second level plays the role of a 
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(time-varying) learning rate that depends on the log-volatility, determined 

by   and   .  This dependence – on higher-order knowledge about change 

points in the environment – enables more adaptive learning in volatile 

environments, such as our paradigm. This is also reflected by the BMS 

results described above, where the hierarchical Bayesian model clearly 

outperformed a standard Rescorla-Wagner model with a fixed learning 

rate.  However, given the formal similarity of the two models, one may 

expect to find a correlation between the fixed learning rate of the Rescorla-

Wagner model and the parameters determining the learning rate of our 

hierarchical Bayesian model.  Figure 25 depicts this relationship between 

the perceptual parameters   and  , and the learning rate   derived from 

the Rescorla-Wagner model. While there was a significantly positive 

correlation between the subject-specific volatility estimate   and learning 

rate   (r=0.69; p=0.004), no relationship was observed between   and the 

meta-volatility   (p>0.25) (Figure 25). 
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Figure 25. HGF – Rescorla-Wagner parameter comparison. Relationship between 

the perceptual parameters   and  , and the Rescorla-Wagner learning rate  . 

 

To illustrate different individual learning styles, Figure 26 shows the 

exemplary time courses of the third and first levels of the Bayesian model 

for two subjects with distinct updating behavior. The two subjects show 

differences in the volatility estimate   as well as the meta-volatility 

estimate   (cf. Figure 24 where these subjects are indicated by stars). 

Despite the meta-volatility estimate   is higher in subject A than in subject 

B, subject B shows faster updating of beliefs due to a higher value of the 
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volatility estimate  . In other words, our model indicates that the first 

subject perceives the environment as substantially less volatile than the 

second subject. Since the updates of   
   

, the estimated cue validity, are 

coupled to the estimated log-volatility   
     

, this translates into a higher 

learning rate and visibly more rapid updating behaviour in the second 

subject when the true underlying %CV changes. 

 

Figure 26. Illustration of the time course of    (upper panels) and       (lower 

panels) during observation of    (diamonds) for two exemplary subjects with different 

parameters for   and  . The true %CV is depicted as a dotted line. It can be seen that 

subject A (  = -6.09;   = 0.97) shows slower updating of the probability estimate that 

the target will appear at the cued location than subject B (  = -2.78;   = 0.12). This 

can be attributed to subject A’s lower value of   (reflecting the subject’s belief in a less 

volatile environment). 

 

To illustrate how reaction times are related to the precision-based 

attentional factor  , we pooled response speeds over different bins of the 

attentional factor (using bins of 0.1, separately for valid and invalid trials) 

using estimates of trial-specific   based on the group average values for   

and  . Figure 27 depicts the binned RS over subjects as a function of  . A 2 

(cue: valid, invalid) x 6 (precision-based quantity  : 0.5, 0.6, 0.7, 0.8, 0.9, 

1.0) ANOVA revealed a significant main effect of cue (F(1,14)=11.8, p=.004 

and a significant cue x   interaction effect (F(3.44,48.09)=10.5, p<.001). We 
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compared these empirical RS values to the RS predicted by the model. For 

this, we computed the expected RS as a function of   on the basis of the 

group average values for          and             and  2 (see Figure 27). It can 

be seen that the observed RS shows a similar pattern as the predicted RS. 

As expected, as precision (confidence in the validity of the cue) increases, 

there is a reaction time benefit for valid trials and an equivalent cost for 

invalid trials. This illustrates that one can explain attention formally in 

terms of optimizing or learning the relative precision of competing sensory 

channels. 

 

 

Figure 27. Observed and predicted reaction speeds. (A) Observed and predicted 

average RS in valid and invalid trials as a function of the precision-dependent 

attentional weight parameter   (attention to cued location; calculated for the group 

average values). Error bars depict standard errors of the mean (SEM). The lines 

correspond to the predictions using the average response model parameters, over 

subjects. (B) Illustration of how the observed RS costs after invalid cueing translate 

into RT differences (in ms). 
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9.4.5 REPLICABILITY OF RESULTS 

In the independent replication dataset, the proportion of trials with 

missing eye data or missing or incorrect saccades amounted to 7.6  2%, 

so that on average 92.4% of the trials (566 of 612 trials) were analyzed. 

Trials needed to be excluded due to anticipated responses (0.6  0.2%), 

incorrect or absent saccades (0.6  0.2%), saccades not starting from the 

fixation zone (3.3  1%), or missing data points (e.g. due to blinks) (3.1  

1%). Note that due to the extended training and the increased number of 

resting periods, the amount of usable trials was higher than in the original 

dataset. 

The 2 (cue: valid, invalid)  3 (%CV: 50, 69, 88%) ANOVA on RS data gave 

the same results as for the original dataset.  Specifically, it revealed a 

significant main effect of cue (F(1,15)=17.6, p=0.001) reflecting faster 

responses (higher RS) on valid than on invalid trials. As before, the main 

effect of %CV was not significant but we observed a significant cue  %CV 

interaction effect (F(1.99,29.88)=4.7, p=0.017). Since the data were derived 

from a within-subject cross-over design (where half of the subjects 

received the placebo tablet in the first session while the placebo session 

for the other half of subjects was the second experimental session), we 

additionally tested for an effect of session order by adding this variable as 

a between-subject factor to the ANOVA. No main effect of session order 

(p=0.15) or interaction of session order with any of the other factors (all 

p>0.28) was observed. 

The results of the Bayesian model comparison are depicted in Table 2. 

Again, the full Bayesian model based upon precision showed the highest 

exceedance probability (0.914) when compared to alternative models. For 

the winning model, we again observed a significant positive correlation 

between the Rescorla-Wagner learning rate   and   (r=0.59, p=0.017), 

while no such relationship was observed between   and   (p=0.97). In 

summary, this second dataset provided a full replication of our original 

results. 
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 Discussion 9.5

The present study analyzed saccadic RTs in a location-cueing paradigm 

with a volatile probabilistic context, probing Bayesian theories of 

perceptual inference. Extending previous theoretical work (Feldman and 

Friston, 2010), we were able to provide empirical evidence for the free-

energy formulation of attention in the context of a Posner paradigm – 

where cue validity changed unpredictably in time, thus requiring the 

subject to learn about environmental volatility. Specifically, using the HGF, 

we compared 3 alternative models of how subjects might update estimates 

of cue validity across trials (perceptual models) and crossed these with 3 

alternative hypotheses about how posterior beliefs (precision, belief, 

surprise) might inform decision making within trials (response models). 

The resulting 9 models – and two control models – were optimized using 

empirical measures of saccadic response speed and their relative 

plausibility was evaluated using Bayesian model selection (BMS). The 

results of this model comparison provided strong evidence in favor of the 

hierarchical Bayesian model combined with the precision response model 

(Table 2) and this finding was replicated in an independent dataset.  This 

supports the notion that attention can be formulated as optimizing the 

confidence in (or precision of) the inference on sensory input (Friston, 

2009). In the following, we examine our results in more detail, discuss 

them in the context of previous work, and outline future extensions. 

Our experimental paradigm differed from a conventional Posner task, in 

that the spatial cues predicted the target location with different 

probabilities at different times during the experiment, thus requiring the 

subject to infer cue validity while accounting for environmental volatility. 

Indeed, a conventional ANOVA showed that the subjects’ response speed 

varied as a function of the (unknown) true probabilities, reflecting 

adaptation to the changing environmental statistics. In other words, 

probabilistic context significantly influenced saccadic latencies, although 

the probabilistic structure of the task was changing in a way that was 

unknown to subjects.  

This relates to previous work in so far as it has been shown that (inverse) 

saccadic RTs are sensitive to the probability of the saccade target location 
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when abrupt changes in location probability occur within an experimental 

block (Anderson and Carpenter, 2006), or when different experimental 

blocks employ saccade targets with different probabilities and/or different 

stochastic properties (Brodersen et al., 2008). In contrast to our task, both 

studies presented targets without preceding cues, and the latter study also 

examined learning of sequential (conditional) dependencies between 

successive stimuli according to a 1st order Markov sequence. The present 

task used explicit cues to elicit spatial attention shifts and investigated 

how the impact of these cues depended on the subject’s current belief (and 

its precision) about the cue-target contingency. Moreover, instead of 

presenting different experimental blocks with different probabilistic 

contexts, here we introduced a volatile environment with frequent but 

hidden changes of probabilistic context within one continuous trial 

sequence. A natural modeling framework for explaining the ensuing 

saccadic reactions is a hierarchical Bayesian learning model – where the 

subject’s belief about the environment’s volatility affects the updating of 

beliefs about the most likely saccade target location. Indeed, comparison of 

competing perceptual models showed that a full hierarchical perceptual 

model had higher evidence than reduced models; assuming either that 

subjects ignored prior knowledge about the volatile nature of the 

environment or that they did not use them for updating beliefs about 

current cue validity. Moreover, the optimal full hierarchical Bayesian 

learning model showed higher model evidence than a Rescorla-Wagner 

learning model or a model which assumes that the subjects knew the true 

underlying probabilities. Interestingly, however, the subject-specific 

volatility parameter   significantly correlated with the learning rate   of 

the Rescorla-Wagner model, while no such relationship was observed for 

the meta-volatility parameter  . The effects of the Bayesian model 

selection as well as the relationship to the learning parameter of a 

Rescorla-Wagner model could be replicated in an independent dataset. 

Hierarchical Bayesian models have been used previously to successfully 

explain various aspects of human behavior under uncertainty, such as 

binary choices (Behrens et al., 2007) or manual RTs (den Ouden et al., 

2010). These previous studies, however, assumed an ideal Bayesian 

observer with no inter-individual variation in the learning process per se. 

In contrast, we followed the meta-Bayesian approach of Daunizeau et al. 
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(2010a, 2010b) and inferred subject-specific parameters of the HGF from 

empirical RS. Our results showed that there is considerable inter-

individual variability, even within our group of young healthy subjects (cf. 

Figures 5 and 7).  An obvious and important extension of the present work 

is to relate this variability to demographic or neurobiological factors.  In 

fact, the present work is a prelude to future psychopharmacological and 

patient studies in which we will examine the putative relation of individual 

differences in learning and attention (as encoded by our model 

parameters) to individual differences in neuromodulatory processes (as 

induced by medication, aging or disease). 

Moreover, we introduced and tested different response models; i.e., 

mappings from posterior beliefs provided by the perceptual model to 

observable behavior. These response models account for the individual 

variability in the overall speed of responding (Figure 24B), but differ in 

assuming whether precision of predictions, strength of the 

prediction about cue validity or surprise, respectively, determine saccadic 

response speed. Our results showed that model evidence was highest for 

the response model in which RS was determined by the precision of the 

prediction.  

In one sense, our findings from the Bayesian model comparison – that 

precision was the most plausible account for reaction time benefits – 

should not be surprising. This is because precision plays the role of a rate-

constant in evidence accumulation schemes based upon predictive coding 

(Feldman and Friston, 2010). In other words, precision modulates the gain 

of prediction error in driving changes in conditional representations or 

expectations. This means that sensory channels that enjoy greater 

precision will engender faster changes in high-level representations and 

lead to more rapid perceptual convergence. Behaviorally, this should be 

manifest in speeded up reaction times. Exactly the same theme is seen at 

higher levels of the hierarchy – that concern slower timescales – such as 

inference about the probabilistic (trial-to-trial) contingencies we 

manipulated in our volatility paradigm. Here, the rate-constant 

corresponds to a learning rate in conventional (reinforcement learning) 

formulations. In short, sensory evidence and empirical priors that are 

afforded greater precision have preferential access to higher levels in 
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hierarchical inference. This is expressed as more efficient and faster 

convergence in those processing streams – and provides a nice metaphor 

for attention. 

In other words, attention corresponds to optimizing estimates of precision 

in sensory hierarchies and is implemented by changing the post-synaptic 

gain of neuronal prediction error units. Hence, attention determines which 

part of the sensorium is treated as furnishing precise information. In this 

respect, this approach is perfectly congruent with spotlight or zoomlens 

theories of attention (Posner, 1980; Eriksen and James, 1986) as well as 

with the biased competition model (Desimone and Duncan, 1995): the 

limitation of processing capacities demands a selection of stimulus 

locations or features, so that only the most relevant receive full attention. 

Neurobiologically, this is likely reflected in increased synaptic gain and 

neuronal synchronization, manifesting itself in enhanced firing rates (e.g., 

Luck et al., 1997) or BOLD responses (e.g., Brefczynski and DeYoe, 1999; 

Kastner et al., 1999) in visual cortex, when attention is directed to a 

particular spatial location. It may also be noteworthy that, 

neurochemically, precision-dependent synaptic gain (e.g., at superficial 

pyramidal cells) may be controlled by classical neuromodulators such as 

dopamine or acetylcholine (Friston, 2009). Increased gain may engender 

faster changes in neuronal activity in higher-level areas (such as the 

intraparietal sulcus, IPS, or the FEF), so that evidence can accumulate 

more rapidly and saccades are elicited more quickly. This notion resonates 

with findings from several recent studies. For example, Saproo and 

Serences (2010) showed that spatial attention increases the mutual 

information of population response profiles in early visual cortex and 

suggested that this should enable higher visual areas to read out this 

information more quickly and efficiently. This is similar to the proposals 

by Feldman and Friston (2010) and in this thesis, where higher precision 

at lower levels induces more rapid changes in the activity of higher-level 

areas. Others have suggested that attention produces behavioral 

improvements by efficiently selecting the “relevant” sensory signals 

(Pestilli et al., 2011); the suggested mechanism (focusing on the 

magnitudes of signals and employing pooling operations) differs from 

ours, and it would be interesting to see whether the results obtained by 

Pestilli et al. on behavioral contrast-discrimination performance could be 
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replicated when trials are grouped according to precision estimates.  

Finally, it has been shown that electrical stimulation of direction-selective 

neurons in MT elicits faster perceptual decisions due to faster evidence 

accumulation (Ditterich et al., 2003).  

According to hierarchical Bayesian schemes as employed here, precision 

controls the gain of prediction error associated with bottom-up signals.  

Physiologically, precision may be encoded by the gain of superficial 

pyramidal cells (Brown and Friston, 2012).  Accordingly, our 

computational model would predict that during spatial attention, activity 

in hierarchically related visual areas should exhibit precision-dependent 

modulatory effects that result from the enhanced gain of superficial 

pyramidal cells.  This hypothesis - as well as the question where in the 

spatial attention/saccade network precision exerts this effect - could be 

tested with models that infer on mechanisms of measured EEG or MEG 

data (Bastos et al., 2011; Brown and Friston, 2012). Interestingly, a recent 

fMRI study, using a simpler and less fine-grained DCM for fMRI, has 

highlighted the importance of the modulation of inhibitory self-

connections in visual areas by attention and prediction. This type of 

modulation corresponds (at a coarser level) to a simple gain control 

mechanism that may reflect the precision-dependent modulation of 

pyramidal cells described above. 

Given the involvement of common areas (FEF, IPS) in both covert 

attentional orienting of attention and overt eye movements (Beauchamp et 

al., 2001; Corbetta et al., 1998; de Haan et al., 2008; Nobre et al., 2000; 

Perry and Zeki, 2000), the psychophysical evidence for an inherent link 

between attention shifts and saccade programming (Deubel and 

Schneider, 1996; Deubel, 2008; Doré-Mazars et al., 2004; Godijn and 

Theeuwes, 2003), and the existence of both visual and motor neurons in 

key structures such as the FEF (e.g., Bruce and Goldberg, 1985; Schall and 

Hanes, 1993), it seems plausible that precision should affect both sensory-

perceptual as well as motor preparatory processes (cf. the model proposed 

by Schall et al., 2011). Hence, one could also frame the processes studied 

here in the broader context of visual-saccadic decision making (see 

Glimcher, 2001, 2003 for comprehensive reviews). 
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The focus of the present study was on explaining observed trial-wise 

saccadic RS by a generative (hierarchical Bayesian) model and use model 

selection to disambiguate potential computations that govern the updating 

of beliefs about upcoming saccade target locations in a volatile 

environment. While our analyses suggest a precision-based mechanism for 

spatial attention, it remains to be investigated where these precision 

estimates are computed within the hierarchical visual attention/saccade 

network.  The present behavioral modeling results are a foundation for 

future imaging studies that will exploit the across-trial and between-

subject variation in model states and parameters to identify the network of 

regions in which precision plays a role for belief updating in spatial 

attention. Concretely, future neuroimaging studies could use the time-

series of the states of our perceptual model as predictor variables to 

identify brain responses that covary with these computational processes 

(cf. Behrens et al., 2007; den Ouden et al., 2010). Furthermore, as 

mentioned above, subject-specific estimates of the parameters encoding 

individual learning style can be used in group analyses to reveal the 

neuronal substrates of inter-individual differences. 

In conclusion, we have used the HGF for characterizing Bayes-optimal 

trial-by-trial updating of probabilistic beliefs under uncertainty for 

explaining attentional mechanisms. Specifically, we characterized saccadic 

response speed during an extended Posner paradigm with variable cue 

validity. Comparing 11 alternative models, we found that empirical 

responses are most plausibly explained as a function of precision (of the 

beliefs about the causes of sensory input). This finding is consistent with 

attention theories derived from Bayesian theories of brain function (the 

free-energy principle) that equate spatial attention to a precision-

dependent gain modulation of sensory input. Future neuroimaging work 

could use the modeling approach introduced in this thesis to identify the 

neural and neurochemical basis of attentional selection and saccadic eye 

movements, in relation to probabilistic expectancies. 
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10  APPLICATION TO THE OBSERVATION 

OF AN ITERATED TRUST GAME 

 Overview 10.1

Trust games are widespread in behavioral economic research and have 

recently been shown to have relevant applications in psychopathological 

research. In that context, the dynamics of the participants’ unfolding 

interaction is crucial, as opposed to more static attitudes that may be 

revealed. While the nature of such interaction dynamics has been 

quantified previously in a model-free way, in the study I report here, we 

used the HGF to model the perception, by the observer of a trust game, of 

the interaction dynamics. 44 healthy human subjects observed the 

interactions in a trust game that had previously taken place between two 

additional subjects. While lying in an fMRI scanner, they had to predict the 

next decision by one of the participants in the trust game (the trustee) 

before that decision was revealed to them. The game went over 70 rounds, 

and prediction accuracy was rewarded. Several questionnaire- and 

behavior-based psychological measures were assessed. Performance in the 

trust game prediction task was significantly correlated with the “openness 

to experience” scale of the NEO-FFI, and, in women, with the “reward 

responsiveness” scale of the BIS/BAS. The fMRI analysis revealed strong 

responses in various brain regions to very abstract inferred measures: 

cooperativity of the trustee and its volatility (i.e., measures at the first and 

second hidden level of the HGF). This study thus provides proof of concept 

for the applicability of the HGF to inference on complex learning and 

decision making tasks. It also takes the “observing the observer” 

framework one step further and extends it to the observation of an 

observing observer. Furthermore, it introduces a task that is quick and 

simple, and which can crucially be performed by the subject alone while 

potentially retaining the anticipated advantages of assessing multiplayer 

interactions for clinical diagnosis and prognosis. 
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 Introduction 10.2

Trust games (Berg et al., 1995) have become an essential empirical tool in 

behavioral economics (Fehr, 2009). The basic version of a trust game 

involves two players, an investor and a trustee. Both receive the same 

initial endowment to prevent effects such as inequality aversion from 

distorting subsequent behavior. The investor may now transfer some or all 

of his endowment to the trustee. On the way to the trustee, the transferred 

amount is multiplied by a factor greater than one – usually, three. The 

trustee may then repay some or all of what he has (i.e., his initial 

endowment plus the multiplied transferred amount) to the investor. Note 

that if the transferred amount was tripled, both players will end up with 

the same amount if the trustee repays twice what the investor sent him 

(i.e., two thirds of what he received in addition to his endowment); 

however, the interaction is profitable to the investor as soon as the trustee 

sends back more than one third of what he received. 

While it is often important to exclude reputation effects in behavioral 

economics, leading to a preference for one-shot interactions, the dynamics 

of repeated interactions are of keen interest in psychology and 

psychopathology. For example, King-Casas et al. (2008) have shown that in 

a trust game that runs over 10 rounds, the behavior individuals with a 

diagnosis of borderline personality disorder (BPD) differs from that of 

healthy controls in important ways. When cooperation is breaking down 

(sc. investment levels are low) healthy controls are twice as likely to 

engage in coaxing, that is to repay a large amount nonetheless. This is 

called coaxing because it is assumed to take place with a view to raising 

the amounts invested by showing oneself trustworthy and generous. In the 

study by King-Casas et al. (2008), coaxing did indeed pay off: investment 

levels subsequently rose. 

While letting subjects engage in interactions may prove to be a valuable 

tool for clinical assessments, it poses logistical and conceptual problems. 

Concerning the logistics, it is impractical always to need two subjects for a 

task; and conceptually, it is unclear how to compare the behavior of two 

subjects who have interacted with two possibly very different partners. 
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For these reasons, we developed a task that can be performed by one 

subject alone and that is exactly the same for all subjects. 

Iterative (i.e., multi-round) trust games are usually played over no more 

than 15 rounds (e.g., Buskens et al., 2010). While this may in many cases 

be enough to lead to interesting behavior, we were concerned that it 

would only allow us to capture the initial phase of a series of interactions 

that might have taken further turns. This had us lengthen the game 

considerably to 70 rounds. 

 Methods 10.3

10.3.1 TASK 

Subjects were asked to observe an iterated trust game that went over 70 

rounds. They were informed that the game had actually taken place at our 

lab in precisely the way they would see it. They were not given any 

information about the two players they were observing beyond the 

numbers announcing the investor’s investment and subsequently the 

trustee’s repayment, sequentially for each round. Subjects knew that both 

players had an endowment of 100 points on each round, convertible into 

Swiss francs at the end of the game at a certain fixed, but unmentioned 

rate. They were asked to do a number of example calculations before 

beginning the task to make sure they had understood it. 

While the subjects were lying in the MRI scanner, they first saw the 

amount invested by the investor displayed on a screen for 2 s. After a delay 

jittered around 3 s, they then had 6 s to announce by a button press that 

they had reached a decision on their prediction of the amount the trustee 

would repay in that round. They were informed that they would not be 

rewarded on that trial if they failed to press a button within the allotted 6 

s. After this decision period of 6 s (the screen simply went blank after the 

button press for the remainder of the period) a horizontal scale from 0 to 

400 appeared on the screen, with two vertical lines across. The red line on 

the right-hand side indicated the maximal possible repayment by the 

trustee on that trial, given the investors investment. This could range from 

100 for an investment of 0 (all the trustee then has is his endowment) to 
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400 for an investment of 100. The second, green, vertical line was placed at 

a random initial point between zero and the red line. This indicated the 

subject’s prediction and could be moved around quasi-continuously (steps 

of 1) by button presses. Subjects had 10 s to move the green bar to the 

location of their prediction and finalize their choice by a button press. If 

they failed to finalize a prediction, a missed trial was recorded and 

subjects were not rewarded for that trial. After a delay jittered around 6 s 

and beginning immediately with the finalization of their prediction, they 

saw the amount the trustee had actually repaid on the screen for 2 s. After 

an intertribal interval jittered around 4 s, the next trial began. 

On each trial, subjects could win 400 points. They received this maximum 

for exactly accurate predictions, but reward fell with the squared 

difference between prediction and outcome, so that no reward was given 

for prediction errors of 20 or more points. At the end of the experiment, 

points were converted into Swiss francs at a rate of 0.002, resulting in a 

maximal total reward of 56 francs (about 59 U.S. dollars). 

Note that at no point in this experiment were subjects deceived. 

10.3.2 PRE-STUDY 

In order to acquire the trust game data to be used in the main study, we 

conducted a pre-study where 24 subjects were randomly matched into 

pairs to play a trust game over 70 rounds. Subjects each sat in their own 

cubicles in front of a computer screen. They knew that one of the other 

people in the room was their partner in the trust game but they did not 

know who. They were also informed that the identity of their partner 

would not be revealed after the game, nor would their identity be revealed 

to their partner. The trust game was implemented in the software z-Tree 

(Fischbacher, 2007). At the end of the experiment, points were converted 

into Swiss francs at a rate of 0.002. 

10.3.3 SUBJECTS 

For the main study, 44 healthy adult human subjects (22 men, 22 women) 

were recruited via a subject pool administered by the Department of 

Economics at the University of Zurich. They gave written informed consent 
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to participate in the study which was approved by the Zurich cantonal 

ethics committee (KEK-ZH 2010-0327). None of the subjects had a history 

of mental health problems. 

For the pre-study, 24 subjects with the same characteristics were 

recruited. 

10.3.4 MRI ACQUISITION 

MRI images were acquired on a Philips 3 Tesla Achieva whole body MR 

scanner (Philips Healthcare, Best, The Netherlands) equipped with an 

eight-channel Philips SENSE head-coil. Structural images were acquired 

using a   -weighted sequence. For functional imaging, 40 transverse slices 

were measured in ascending order with a slice thickness of 2.6 mm and a 

gap of 0.7mm for a voxel size of             mm and a field of view of 

              mm.  A   
 -weighted single-shot echo-planar imaging 

sequence with a TR of 2500 ms, a TE of 25 ms, and a flip angle of 80° was 

used. 

10.3.5 QUESTIONNAIRES AND ADDITIONAL BEHAVIORAL 

MEASURES 

In addition to the trust game prediction task during fMRI acquisition, 

subjects were asked to fill in a number of questionnaires and carry out a 

behavioral task. 

The questionnaires were 

 the NEO-FFI (McCrae and Costa Jr., 2004), a five-factor 

personality inventory; 

 the Barratt impulsiveness scale (BIS11) (Patton et al., 1995); 

 the BIS/BAS scales (Carver and White, 1994), which measure 

behavioral approach and behavioral inhibition; 

 the MACH-IV test of “Machiavellianism” (Christie and Geis, 1970); 
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 a measure of social value orientation (SVO) (Murphy et al., 2011); 

 the Davis empathy scales (Davis, 1980); 

 the Yamagishi trust scale (Yamagishi and Yamagishi, 1994); 

 and a measure of betrayal aversion (Bohnet and Zeckhauser, 

2004). 

The behavioral measure taken was the balloon analogue risk task (BART) 

(Lejuez et al., 2002). 

10.3.6 DATA ANALYSIS 

Questionnaire and BART data were analyzed using the statistical software 

R (R Core Team, 2012); data from the trust game prediction task were 

analyzed using the HGF toolbox introduced in Chapter 8. 

The fMRI data were analyzed using Statistical Parametric Mapping (SPM8, 

Wellcome Trust Center for Neuroimaging, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm).  All functional images and the 

structural image of each subject were preprocessed prior to the statistical 

analyses. We applied motion correction to the functional time-series and a 

‘new segmentation’ procedure, including the computation of bias-

corrected images and forward deformation fields, of the resliced mean 

functional and the structural image.  For the segmentation of the functional 

image, tissue probability maps resulting from the segmentation of the 

subject-specific structural image were used. After coregistration of the 

bias-corrected functional images to the subject-specific bias-corrected 

structural image, the images were normalized to MNI space using the 

forward deformation field of the structural image.  Finally, the functional 

images were smoothed applying a 6 mm full-width at half maximum 

Gaussian kernel and resampled to             mm  resolution. 

The HGF was used to infer on subjects’ beliefs regarding the current level 

of cooperation to be expected from the trustee. This was based on a 

framework that assumes us, the experimenters, to be the observers of an 

observing observer. We therefore needed three models: 
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1. A model for the subject’s perception of the trustee’s level of 

cooperation, 

2. A decision model for the trustee, and 

3. A decision model for the subject. 

Before specifying the details of the first (i.e., perceptual) model we made 

the assumption that the trustee’s level of cooperation, which I will call his 

cooperativity   , could be quantified on an unbounded continuous scale (cf. 

Eq. (128) below) and tracked by the HGF. This permitted us to construct 

the second and third models from very simple assumptions: the trustee’s 

decisions   are characterized by constant Gaussian noise   around his 

cooperativity: 

    |              (124) 

This is exactly Eq. (75), meaning that we can model the subject to use the 

HGF directly with the trustee’s decisions to infer on his cooperativity. The 

HGF then is the first model in the list above. 

Note, however, that before we can use   as inputs for the HGF, they have to 

be transformed from the bounded space in which they occur to an 

unbounded space. We did this by applying a logit transformation to the 

observed number of points repaid by the trustee. If      is the maximal 

possible number of points that can be repaid on trial  , and the observed 

repayment is     
   

 , then      is defined as 

        (
    

   

         
   

)  (125) 

and the space of      is cooperativity space. In the event that     
   

 is either 

zero or     , we move it slightly away from these extremes to            
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or           , respectively, to keep      within bounds even though it 

now lives in an unbounded space where it can be modeled by Eq. (124). An 

illustration of such a transformation to cooperativity space is given in 

Figure 28 and Figure 29. 

If we now apply the transformation of Eq. (128) also to the subject’s 

predictions     
   

, a simple choice of model (third in the list above) for the 

transformed predictions      is 

    | ̂        ̂      (126) 

where  ̂  is the predicted cooperativity as modeled by the HGF and   is a 

constant decision noise parameter. Note that the parameters governing 

the HGF updates will differ from subject to subject, resulting in subject-

specific predictions  ̂ . It is these subject-specific predictions that the 

inversion of the HGF detailed in the preceding chapters allows us to model 

efficiently. 

Using the model defined by Eqs (124)-(126), trajectories for    and    (i.e., 

the volatility of cooperativity) were computed for each subject. Weakly 

informative (i.e., wide) priors were chosen with means suggested by the 

empirical Bayes estimation of optimal parameters implemented in the HGF 

toolbox. The    and    trajectories were then used as individual 

parametric modulators in the GLM regression analysis of the fMRI data. 

 Results 10.4

10.4.1 PRE-STUDY 

Out of the twelve subject pairs that played an iterated trust game, about 

half (seven) showed relatively uninteresting and simple-to-predict 

patterns of consistently high cooperation. The other five exhibited a more 

varied series of interactions with cooperation intermittently breaking 

down before picking up again. The game shown in Figure 28 was chosen 

for use in this study. 
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Figure 28. Chosen trust game trajectory. Coaxing by the trustee is evident in many 

places throughout the game, for example around trials 15 and 60. 

 

The same trajectory transformed into cooperativity space is shown in 

Figure 29. 

 

Figure 29. Chosen trust game trajectory in cooperativity space. In this 

presentation, it seems apparent that the trustee’s recurring unwillingness to share 

profits equitably (which would be indicated by a cooperativity of 0) ultimately led to a 

breakdown of cooperation despite repeated coaxing. 

 

10.4.2 QUESTIONNAIRES AND BEHAVIORAL MEASURES 

Subjects achieved a median score of 29.64 francs in the prediction task, 

with an interquartile range of 4.79 francs. This score was regressed onto 

the various questionnaire scales. The only significant results were a 

significant positive association of score with the “openness to experience” 

scale of the NEO-FFI (effect size       ;       ) and a significant 

positive association with the “reward responsiveness” scale of the BIS/BAS 

in women (effect size       ;       ), but not in men (effect size 

      ;       ). 
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10.4.3 FMRI 

An example of an individual HGF estimation of cooperativity and its 

volatility is given in Figure 30. 

 

Figure 30. HGF estimation of cooperativity and its volatility. Trajectories for one 

example subject. 

 

When applied as a parametric modulator to the outcome phase of trials,    

was associated with strong activations (       whole brain family-wise 

error (FWE) corrected) in regions previously associated with reward and 

learning signals (cf. Figure 31 and Table 3). Most notably, the cooperativity 

regressor correlates positively with large clusters in the dorsal anterior 

cingulate cortex (dACC), the anterior insula (AI), and with two clusters in 

the midbrain and brainstem. The larger one of these (79 voxels) is situated 

in the superior colliculi while the smaller one (22 voxels) represents the 

ventral tegmental area (VTA).  These regions are more active the higher 

the cooperativity of the trustee is seen to be by the subject. 

 



  Results 

153 
 

 

Figure 31. Positive correlation with   . Activation clusters are found in the dACC, the 

anterior insula, and in the brainstem, where one cluster of 22 voxels occupies the VTA 

while the superior colliculi are represented with 79 voxels. 
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Table 3. Positive correlation with   : significant clusters at        FWE.      

is the family-wise error-corrected  -value,      is the false discovery rate-corrected  -

value,    is the number of voxels in the cluster, and   is the t-statistic at the peak. 

Cluster  Peak  Coordinates (mm) 

             
 

            
 

      

0 0 9864  0 0 12.53  -18 -91 -11 

   
 0 0 12.47  -24 -82 -11 

   
 0 0 11.84  14 -90 -9 

0 0 1055  0 0 11.13  34 30 -5 

   
 0 0 10.17  33 21 -8 

   
 0 0.001 8.6  40 22 1 

0 0 491  0 0 9.86  -28 23 -5 

   
 0 0.001 8.42  -38 18 -3 

   
 0.031 0.648 5.98  -28 17 -14 

0 0 949  0 0.001 8.81  3 23 42 

   
 0 0.003 8.09  6 15 46 

   
 0 0.006 7.82  6 30 34 

0 0 209  0 0.001 8.67  -32 -58 52 

   
 0.005 0.139 6.63  -30 -54 43 

0 0 566  0 0.005 7.96  -46 6 31 
0 0 365  0 0.005 7.88  46 9 33 

   
 0.006 0.149 6.58  57 18 33 

   
 0.007 0.189 6.49  52 11 43 

0 0 79  0 0.012 7.57  -3 -28 -5 

   
 0.001 0.025 7.25  6 -27 -5 

0 0 93  0.001 0.025 7.26  32 -61 42 

   
 0.016 0.379 6.21  38 -51 40 

0 0.004 39  0.002 0.048 7.01  50 38 27 
0.001 0.019 22  0.005 0.132 6.65  2 -21 -21 

0 0.007 32  0.005 0.14 6.63  -48 3 49 
0.001 0.019 22  0.005 0.14 6.6  48 -40 51 
0.002 0.049 15  0.006 0.159 6.55  48 -51 56 

0 0.015 26  0.008 0.208 6.45  45 48 13 
0.005 0.138 8  0.012 0.293 6.32  -6 27 37 
0.005 0.138 8  0.013 0.311 6.3  2 -58 -36 
0.002 0.054 14  0.015 0.355 6.25  -39 24 27 
0.006 0.161 7  0.016 0.377 6.22  38 38 13 
0.009 0.224 5  0.017 0.385 6.2  -46 -43 9 

0 0.015 25  0.019 0.437 6.15  40 -54 51 
0 0.016 24  0.019 0.437 6.15  44 33 21 

0.009 0.224 5  0.02 0.438 6.14  50 12 12 
0.028 0.561 1  0.031 0.648 5.98  -8 23 40 
0.028 0.561 1  0.031 0.648 5.98  39 44 18 

0.02 0.466 2  0.033 0.68 5.96  39 42 15 
0.028 0.561 1  0.035 0.714 5.94  38 45 16 
0.028 0.561 1  0.039 0.769 5.9  36 -48 45 

 

At the second level (volatility of cooperativity), it is the negative 

correlation with    that produces interesting results: as shown in Table 4, 

there is a cluster of 12 voxels in the ventral striatum that retains 

significance under whole brain FWE correction at the        level.  
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Table 4. Negative correlation with   : significant clusters at        FWE.      

is the family-wise error-corrected  -value,      is the false discovery rate-corrected  -

value,    is the number of voxels in the cluster, and   is the t-statistic at the peak. 

Cluster  Peak  Coordinates (mm) 

                                 

0.002 0.239 12  0.009 0.855 6.45  15 9 -8 
0.027 0.541 1  0.034 0.954 5.98  20 16 -6 
0.027 0.541 1  0.034 0.954 5.97  34 47 30 
0.019 0.541 2  0.035 0.954 5.97  -14 18 -5 
0.027 0.541 1  0.045 0.954 5.87  -32 50 27 
0.027 0.541 1  0.048 0.954 5.86  16 21 10 

 

If we look at the same contrast at the         uncorrected level, we find 

large clusters of activation (significant at the cluster level) in the ventral 

striatum (VS), the dorsolateral prefrontal cortex (dlPFC), and the OFC (cf. 

Figure 32 and Figure 33, and Table 5) These regions are more active the 

lower the volatility of the cooperativity of the trustee is seen to be by the 

subjects. 
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Figure 32. Negative correlation with   . Activations are displayed at a threshold of 

        uncorrected. Both large clusters in the ventral striatum are significant at 

the cluster level. 
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Figure 33. Negative correlation with    (cont’d). Further clusters (significant at the 

cluster level) in OFC and dlPFC displayed at a threshold of         uncorrected. 

 ‘ 

Table 5. Negative correlation with   : selection of significant clusters at 

        uncorrected.      is the family-wise error-corrected  -value,      is the 

false discovery rate-corrected  -value,    is the number of voxels in the cluster, and   

is the t-statistic at the peak. 

Cluster  Peak  Coordinates (mm) 

             
 

                   

0 0 2804  0.009 0.077 6.45  15 9 -8 

   
 0.034 0.077 5.98  20 16 -6 

   
 0.034 0.077 5.97  34 47 30 

0 0 1337  0.035 0.077 5.97  -14 18 -5 

   
 0.076 0.077 5.69  -15 6 -9 

   
 0.288 0.14 5.16  -26 44 -8 

0 0 1551  0.045 0.077 5.87  -32 50 27 

   
 0.077 0.077 5.68  -30 36 36 

   
 0.139 0.103 5.46  -26 41 27 

0 0 891  0.059 0.077 5.78  -16 -6 63 

   
 0.412 0.183 5  -28 -9 55 

   
 0.987 0.479 4.18  -20 5 72 

0.003 0.002 328  0.084 0.077 5.65  24 -19 13 

   
 1 0.716 3.74  20 -25 19 

0 0 1278  0.103 0.084 5.57  -21 -48 51 

   
 0.242 0.129 5.24  -12 -54 57 

   
 0.42 0.183 4.99  -24 -48 63 

0.009 0.004 277  0.442 0.187 4.96  -30 -15 7 

   
 0.977 0.468 4.24  -24 9 10 

   
 0.995 0.479 4.1  -24 2 7 

0.028 0.013 218  0.454 0.188 4.95  -56 -36 15 

   
 0.996 0.492 4.07  -45 -34 13 
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0.001 0.001 391  0.627 0.254 4.76  20 46 -5 

   
 0.854 0.345 4.51  18 54 1 

   
 0.927 0.397 4.38  14 52 -8 

0.264 0.073 117  0.722 0.276 4.66  15 -3 60 

   
 0.998 0.508 4.04  14 -10 63 

   
 0.999 0.58 3.96  16 -3 69 

0.089 0.032 165  0.739 0.276 4.65  -18 23 10 
0.427 0.106 95  0.766 0.289 4.62  -44 -13 1 

0.82 0.257 58  0.817 0.323 4.55  4 5 49 
0.401 0.104 98  0.853 0.345 4.51  6 -18 42 

   
 1 0.825 3.54  9 -31 43 

0.061 0.023 182  0.868 0.354 4.49  -14 51 3 

   
 1 0.637 3.87  -16 51 12 

0.436 0.106 94  0.903 0.381 4.43  -48 -15 51 

   
 1 0.716 3.74  -46 -19 60 

0.886 0.285 51  0.909 0.387 4.42  16 2 37 
1 0.825 14  0.92 0.394 4.4  33 -10 22 

0.157 0.051 140  0.922 0.394 4.39  60 -36 10 

   
 0.989 0.479 4.17  57 -33 19 

   
 1 0.854 3.5  50 -37 21 

0.911 0.306 48  0.923 0.394 4.39  50 33 3 
0.83 0.257 57  0.934 0.407 4.37  -15 -40 72 

0.337 0.088 106  0.944 0.412 4.34  22 -48 54 

   
 1 0.61 3.92  26 -48 63 

0.252 0.073 119  0.945 0.412 4.34  -36 -45 -45 

   
 0.951 0.42 4.33  -42 -51 -42 

   
 1 0.706 3.77  -48 -52 -35 

0.965 0.401 39  0.956 0.427 4.31  34 52 -11 
0.16 0.051 139  0.976 0.468 4.24  -20 -21 67 

   
 0.991 0.479 4.14  -33 -28 70 

   
 1 0.918 3.39  -20 -18 76 

1 0.825 13  0.984 0.479 4.2  -21 0 -33 
0.83 0.257 57  0.985 0.479 4.2  50 -55 6 

0.999 0.737 20  0.987 0.479 4.18  39 -46 -41 
0.886 0.285 51  0.988 0.479 4.17  18 0 22 
0.315 0.085 109  0.992 0.479 4.13  24 -9 58 

   
 1 0.706 3.77  21 -7 51 

0.04 0.017 201  0.992 0.479 4.13  -46 -31 51 

   
 1 0.788 3.62  -42 -28 45 

   
 1 0.791 3.62  -50 -24 46 

0.86 0.274 54  0.993 0.479 4.12  48 -43 10 
0.82 0.257 58  0.993 0.479 4.12  -48 -18 12 

0.999 0.737 21  0.994 0.479 4.11  34 -66 7 
0.236 0.073 122  0.995 0.479 4.1  9 8 16 

   
 0.998 0.508 4.04  0 9 12 

   
 0.999 0.562 3.98  -8 6 16 

1 0.825 3  0.996 0.492 4.07  -18 38 10 
1 0.799 16  0.997 0.492 4.07  28 20 30 

0.999 0.724 22  0.998 0.508 4.04  33 -55 16 
1 0.825 11  0.998 0.52 4.02  -16 -30 63 

0.599 0.161 78  0.999 0.562 3.98  -16 -28 40 
0.983 0.472 34  1 0.605 3.94  -54 11 3 
0.999 0.737 20  1 0.61 3.92  12 18 34 
0.745 0.231 65  1 0.611 3.9  44 22 3 

   
 1 0.832 3.53  38 15 1 

   
 1 0.854 3.48  34 22 10 

1 0.825 10  1 0.627 3.88  18 -43 19 
1 0.825 10  1 0.631 3.88  36 40 -6 

etc.           
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 Discussion 10.5

This is to my knowledge the first study that has applied complex individual 

inferential modeling to a mentalizing task and found whole-brain 

corrected activations associated with individually inferred cognitive states 

of the subjects. Moreover, activations are found in the midbrain and 

brainstem, which are notoriously difficult to image functionally. 

In previous work, Behrens et al. (2007, 2008) found that learning in a 

volatile environment entails activations in the dACC, the ventral striatum, 

and the VTA – a collection of regions notable for their dopaminergic 

connectivity. Interestingly, they found similar patterns of activation for 

learning in the social domain as in the non-social. In the non-social domain, 

this agreed with earlier findings that dopaminergic neurons in the VTA 

encode reward prediction error (Schultz et al., 1997), but it suggested that 

social learning depended on much the same mechanisms. Our results 

confirm these findings and extend them in several ways: first, we take 

social inference one step further: instead of inferring on a one-way 

relationship where one partner is always the giver and the other the taker 

(of advice, in Behrens et al. (2008)), we study inference on a situation that 

is truly interactive – an iterated trust game. Second, we model the subject’s 

beliefs individually, allowing for different parameter values (underpinned 

by different notions of optimality) that govern the Bayesian updates in the 

HGF. Third, the value that the subject is tracking – the cooperativity of the 

trustee – does not relate to the subject himself, but to the investor. Note 

that VTA activity correlates positively with cooperativity of the trustee 

despite the fact that this is not directly rewarding to the subject – the 

sequences of the experiment where it is easiest for subjects to make 

money are in fact those where cooperation has broken down and the 

trustee predictably repays nothing. This raises the possibility that 

rewarding interactions among others – and be they complete strangers – 

can elicit strong reward prediction error signals in those observing them, 

perhaps on condition that these interactions happen to be relevant to the 

observer. Strong activations in the anterior insula and the dorsal ACC point 

in the same direction since they have been found to be associated with 
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empathic reactions (Singer et al., 2004). Activations in the ventral striatum 

in response to low volatility may indicate yet another way in which reward 

can be experienced by the subject: the less volatility, the more 

predictability and therefore the more reward from predicting the 

repayment.  

A second strand of inquiry this study builds upon is that of King-Casas et 

al. (2008). In that regard, the innovation of this study is to set subjects the 

task of observing a trust game and having them make predictions. The 

strong activations found in regions previously associated with reward, 

learning, and decision making are an indication that subjects were heavily 

engaged in the task; many spontaneously reported that during the task 

they had developed a feeling of familiarity with the players they had been 

observing. This is remarkable since the players were complete strangers 

about whom the subjects knew nothing except the numbers they had 

entered into a computer in the course of a trust game at some earlier time. 

The human brain’s capacity to make far-reaching and often quite accurate 

inferences based on very little information was on vivid display here. The 

very astoundingness of this capacity could be an indication of its fragility, 

suggesting that disruptions of it could lead to subtle deficits in social 

interactions that may underlie psychopathological symptoms. If that is the 

case, one may hope to find such abnormalities reflected in the individual 

parameter estimates that inversion of the HGF in combination with 

decision models entails. 

In the pre-study, letting a trust game go over 70 rounds has proved a 

success. In more than a third of the observed cases, interesting long-term 

interaction patterns were visible, raising the possibility that the study of 

such interaction patterns might yield insights into the mechanisms of 

social interactions as they manifest themselves under uncertainty and in 

the face of competing interests. 

The results obtained here could be strengthened in various ways. 

Returning to the three interrelated models defining the data analysis 

outlined in the previous section, the second and third of them could be 

improved considerably by taking into account the behavior of the investor 

along with that of the trustee. Specifically, it would seem obvious that the 

trustee’s decision to repay a certain amount will not only be informed by 
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his current inclination to cooperate (cooperativity), but also quite directly 

by his perception of the amount invested by his partner in the game. That 

is, manifest cooperation may not reveal hidden cooperativity in any 

straightforward way. This could be accommodated by more sophisticated 

decision models for the trustee that also involve the cooperativity of the 

investor. Note that this is not necessarily restricted to the cooperation by 

the investor on the current trial, but also on his history of cooperation. For 

example, coaxing becomes important in situations where current 

cooperation has fallen below levels previously seen, opening the 

possibility to restore these levels. 

Similar concerns apply to the subject’s decision model (third in the list 

above). The subject may not base his prediction of the trustee’s repayment 

solely on the cooperativity he imputes to him. A more sophisticated 

decision model could capture interaction effects between the perceived 

cooperativities of both investor and trustee.  
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11 CONCLUSIONS 

 The hierarachical Gaussian filter (HGF) 11.1

In this thesis, we have introduced a generic hierarchical Bayesian 

framework that describes inference under uncertainty; for example, due to 

environmental volatility or sensory uncertainty. The model assumes that 

the states evolve as Gaussian random walks at all but the first level, where 

their volatility (i.e., conditional variance of the state given the previous 

state) is determined by the next highest level. This coupling across levels is 

controlled by parameters, whose values may differ across subjects.  In 

contrast to “ideal” Bayesian learning models, which prescribe a fixed 

process for any agent, this allows for the representation of inter-individual 

differences in behavior and how it is influenced by uncertainty. This 

variation is cast in terms of prior beliefs about the parameters coupling 

hierarchical levels in the generative model.  

A major goal of our work was to eschew the complicated integrals in exact 

Bayesian inference and instead derive analytical update equations with 

algorithmic efficiency and biological plausibility. For this purpose, we used 

an approximate (variational) Bayesian approach, under a mean field 

assumption and a novel approximation to the posterior energy function. 

The resulting single-step, trial-by-trial update equations have several 

important properties: 

i. They have an analytical form and are extremely efficient, 

allowing for real-time inference. 

ii. They are biologically plausible in that the mathematical 

operations required for calculating the updates are fairly basic 

and could be performed by single neurons (Herz et al., 2006; 

London and Hausser, 2005). 

iii. Their structure is remarkably similar to update equations from 

standard RL models; this enables an interpretation that places 
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RL heuristics, such as learning rate or prediction error, in a 

principled (Bayesian) framework.  

iv. The model parameters determine processes, such as precision-

weighting of prediction errors, which play a key role in current 

theories of normal and pathological learning and may relate to 

specific neuromodulatory mechanisms in the brain (see below).  

v. They can accommodate states of either discrete or continuous 

nature and can deal with deterministic and probabilistic 

mappings between environmental causes and perceptual 

consequences (i.e., situations with and without sensory 

uncertainty).  

Crucially, the closed-form update equations do not depend on the details of 

the model but only on its hierarchical structure and the assumptions on 

which the mean field and quadratic approximation to the posteriors rest. 

Our method of deriving the update equations may thus be adopted for the 

inversion of a large class of models. Above, we demonstrated this 

anecdotally by providing update equations for two extensions of the 

original model, which accounted for sensory states of a continuous (rather 

than discrete) nature and sensory uncertainty, respectively. 

 Alternatives to the HGF 11.2

As alternatives to our variational scheme, one could deal with the 

complicated integrals of Bayesian inference by sampling methods or 

eschew them altogether and use simpler reinforcement learning schemes. 

We did not pursue these options because we wanted to take a principled 

approach to individual learning under uncertainty; i.e., one that rests on 

the inversion of a full Bayesian generative model. Furthermore, we wanted 

to avoid sampling approximations because of the computational burden 

they impose. Although it is conceivable that neuronal populations could 

implement sampling methods, it is not clear how exactly they would do 

that and at what temporal and energetic cost (Beck et al., 2008; Deneve, 

2008; Yang and Shadlen, 2007). 
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We would like to emphasize that the examples of update equations derived 

here can serve as the building blocks for those of more complicated 

models. For example, if we have more than two categories at the first level, 

this can be accommodated by additional random walks at the second and 

subsequent levels; at those levels, Equations (38) and (40) have a 

straightforward interpretation in   dimensions. Inference using our 

update scheme is thus possible on  -categorical discrete states,  -

dimensional unbounded continuous states, and (by logarithmic or logistic 

transformation of variables)  -dimensional bounded continuous states. 

One specific problem that has been addressed with Bayesian methods in 

the recent past concerns online inference of “changepoints”, i.e. sudden 

changes in the statistical structure of the environment (Corrado et al., 

2005; Fearnhead and Liu, 2007; Krugel et al., 2009; Wilson et al., 2010; 

Steyvers et al., 2009). Our generative model based on hierarchically 

coupled random walks describes belief updating without representing 

such discrete changepoints explicitly. As illustrated by the simulations in 

Figures 5-8, this does not diminish its ability to deal with volatile 

environments. See also previous studies where similar models were 

applied to data generated by changepoint models (Behrens et al., 2007, 

2008) or where RL-type update models were equipped with an adjustable 

learning rate in order to deal with sudden changes in the environment 

(Krugel et al., 2009; Steyvers et al., 2009). One such sudden change in the 

environment that is nicely picked up in the application of our model to the 

empirical exchange rate data is the outbreak of the Greek financial crisis in 

spring 2010. The sudden realization of the financial markets that Greece 

was insolvent led to a flight into the U.S. Dollar which is reflected by a 

sharply increasing value of the Dollar against the Swiss franc visible in the 

lower panel of Figure 11. Because this sudden rise of the Dollar is 

unexpected, it immediately leads to a jump in the agent’s belief about the 

volatility of its environment, as is clearly visible in the upper panel of 

Figures 11 or 13. In this manner, a sudden event akin to a changepoint is 

detected without representations of changepoints being an explicit 

component of the model.  

Clearly, our approach is not the first that has tried to derive tractable 

update equations from the full Bayesian formulation of learning. Although 
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not described in this way in the original work, even the famous Kalman 

filter can be interpreted as a Bayesian scheme with RL-like update 

properties but is restricted to relatively simple (non-hierarchical) learning 

processes in stable environments (Kalman, 1960). Notably, none of the 

previous Bayesian learning models we know leads to analytical one-step 

update equations without resorting to additional assumptions that are 

specifically tailored for the update equations (Steyvers et al., 2009) or the 

learning rate (Krugel et al., 2009). In contrast, in our scheme, the update 

equations and their critical components, such as learning rate or 

prediction error, emerge naturally by inverting a full Bayesian generative 

model of arbitrary hierarchical depth under a generic mean field 

reduction. That is, once we have specified the nature of our approximate 

inversion, the update equations are fully defined and do not require any 

further assumptions. This distinguishes our framework conceptually and 

mathematically from any previously suggested approach to Bayesian 

learning we are aware of.  

The distinction between hidden states, which vary in time and are the 

dynamic components of the agent’s model of the world, and parameters, 

which are time-invariant and encode stable subject-specific learning styles, 

is a key component of the HGF.  One might compare this to classical 

reinforcement learning models where value estimates (states) are updated 

dynamically while the learning rate is an invariant parameter.  In our case, 

however, the (implicit) learning rate is dynamic and results from an 

interaction between states and parameters: the latter determine how 

higher-level states influence lower-level ones.  This effect of the static 

parameters on dynamic cross-level coupling can be seen directly from the 

update equations above (e.g., Eqs (35) and (39)) and is illustrated in 

Figures 5 and 10 where the learning rate visibly changes while the 

parameters are fixed. In other words, subject-specific learning 

mechanisms, represented by cross-level coupling in the HGF, have both 

dynamic (higher-level states) and static (parameters) components in the 

HGF. 

One could, of course, consider alternative formulations of our model in 

which individual learning mechanisms, determined by the coupling across 

levels, are encoded entirely by states. There is a simple reason why we did 
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not pursue this alternative. Clearly, modeling dynamic aspects of learning, 

such as rapid updating of learning rates, does require a representation 

involving states (see above). On the other hand, within an individual 

agent’s brain, the physiological mechanism underlying this coupling must 

obey some general principles that have been shaped both by (life-long) 

experience and genetic background (cf. reinforcement learning depends on 

individual genotype (Frank et al., 2007, 2009; Krugel et al., 2009). Such 

stable subject-specific learning mechanisms could be represented in two 

ways. One could choose a relatively deep hierarchical model with high-

level states that change very slowly. Alternatively, these mechanisms can 

be represented by time-invariant parameters. We chose the latter option 

simply because it provides a more concise and interpretable summary of 

subject-specific learning mechanisms. For example, when quantifying 

individual differences in computational learning mechanisms as a function 

of individual differences in physiology (e.g., pharmacological treatment) or 

genetics, it is not only statistically easier to deal with time-invariant 

parameters (i.e., a single number per subject) rather than temporal 

trajectories of states, but the results are also more readily interpretable.  

It should be emphasized that the idea of fitting learning models to subject-

specific data and using the ensuing individual parameter estimates for 

assessing inter-individual variability is not new and has been pursued by 

many previous studies (e.g., Steyvers and Brown, 2006; 2007, 2009; Krugel 

et al., 2009). This, however, is less straightforward with those “ideal” 

Bayesian models that have no free parameters; in this case, parameters 

can only be taken from adjunct models in which ideal Bayesian models are 

often embedded (e.g., observation or decision models; (cf. Brodersen et al., 

2008)).  The novelty of our approach is that we transform, by variational 

approximation, an ideal Bayesian learner into a near-optimal scheme in 

which parameters represent individual learning traits as an integral part 

of Bayesian learning. These parameters shape the ensuing update 

equations which are analytical and have an RL-like structure. By 

combining the principled nature of Bayesian approaches and the practical 

ease of RL models, we hope that our approach will facilitate future 

empirical investigations of individual variability. 
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 Limitations of the HGF 11.3

Our update scheme also has its limitations. The most important of these is 

that it depends on the variational energies being approximately quadratic. 

If they are not, the approximate posterior implied by our update equations 

might bear little resemblance (e.g., in terms of Kullback-Leibler 

divergence) to the true posterior. Specifically, the update fails if the 

curvature of the variational energy at the expansion point is negative 

(which implies that the conditional variance is negative; see Eq. (56)). 

According to the update Eq. (34),    can never become negative;       ⁄  

however could become negative according to Eq. (41). However, the 

simulations and application to empirical data in this thesis suggest that 

this is not a problem in practice.  

 Validation of the HGF 11.4

While the theoretical soundness of its derivation and the intuitive appeal 

of its update equations provide strong a priori reasons to have confidence 

in it, this is certainly not enough. 

I have therefore striven to provide empirical validation for the HGF from 

multiple sources. The simplest validation has come in the form of the 

simulations in Section 4.5 that demonstrate model behavior under 

different parameterizations (priors). These simulations confirmed the 

computational efficiency of the HGF: the simulations in Figures 5-8 (with 

320 trials) each take about 5 ms on a standard laptop computer. 

Furthermore, they demonstrate that changes in any of the parameters lead 

to plausible changes in the evolution of the states (i.e., as predicted from 

the structure of the model) and that each parameter produces distinctly 

different behavior. 

A second and more important validation has come from the simulation 

study of parameter estimation in Section 7.4. We could show there that at 

least four different optimization strategies are able to recover parameter 

values with tolerable accuracy as long as response noise is not extreme. 

A third validation comes from the application to saccadic reaction times in 

the study reported in Chapter 9, where we deal with experimental data for 
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the first time. One crucial aspect of this is the validation of the number of 

levels in the simple example of HGF that has been used throughout this 

thesis: human subjects seem to exhibit behavior that can in fact better be 

described by a three-level model than by a less complex one. 

Finally, the observed iterated trust game study provides proof of concept 

that the HGF can be used for inference on complex mental states and may 

be a valuable tool for the construction of regressor in fMRI studies that 

capture trajectories of quantities relevant to reward processing, learning, 

and decision making under uncertainty. 

 The HGF as a model of adaptive and 11.5

maladaptive inference 

Maladaptive behavior, due to inappropriate learning and decision making, 

is at the heart of most psychiatric diseases, and our framework may be 

particularly useful for modeling the underlying mechanisms. There are 

two complementary approaches one might consider: phenomenological 

and neurophysiological. To illustrate a phenomenological approach, I will 

consider extreme settings of the parameters in terms of psychopathology. 

In the example of Figures 5-8, variations in the parameters can explain a 

spectrum of different types of inference, some of which may be interpreted 

as aberrant or even pathological. Given the scenario in Figure 8, we could 

adopt the anthropomorphic interpretation of the agent and interpret 

underconfidence about estimates of environmental volatility (i.e., high   ) 

as the possible cause of anxiety. In other words, knowing that the world is 

changing quickly is frightening enough, but being uncertain about the 

extent of this change may be even more upsetting. Anxiety of this sort is 

often observed prior to (or in the early phase of) psychotic episodes 

(Häfner et al., 1998). One way to reduce anxiety (that is, to reduce the 

effects of high    due to abnormally low  ), would be to reduce  , leading 

to a scenario akin to that in Figure 6. This, however, would induce a rigid 

high-level belief that is impervious to prediction error from the lower 

level. Rigid high-level priors of this sort that provide inappropriate 

predictions for lower levels may provide a metaphor for delusions and 

hallucinations that constitute the positive symptoms of schizophrenia. In 

contrast, negative symptoms could be related to the scenario in Figure 7: 
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here, a reduction in   renders the agent completely passive, such that new 

information is barely taken in and only weakly processed. Notably, in these 

simple and anecdotal simulations, I chose some parameter settings that 

lead to superficially similar behavior (e.g., Figs 6 and 8). While this 

indicates some degree of interdependence among the parameters, this 

does not mean that the parameters are non-identifiable. Informally, one 

can intuit this by noting the obvious differences expressed in the evolution 

of higher-level states of the model; these will be expressed in different 

behavioral predictions, given a suitably chosen sequence of stimuli. When 

fitting the model to empirical data, one can test for parameter 

identifiability more formally using a sensitivity analysis or, equivalently 

but more conveniently, their posterior covariance. 

From a neurophysiological perspective, it has been proposed that 

dopamine might not encode the prediction error on value (Schultz et al., 

1997) but instead the value of prediction error, i.e. the precision-weighting 

of prediction errors (Friston, 2009). In our model, this process is 

represented, at the second level, by the parameters   and  . It is apparent 

from the definition Eq. (39) and the update Eq. (34) that these parameters 

influence the precision of the prediction on the next trial, the precision of 

the posterior belief, and the learning rate. If dopaminergic midbrain 

activity encodes the conditional (posterior) precision of beliefs, this 

dopaminergic activity should be reflected by estimates of   and  , 

obtained from behavioral, fMRI or electrophysiological data. This 

hypothesis can be tested using neuropharmacological experiments.  In 

short, by harvesting subject-specific parameter estimates for group 

analyses of physiological measurements, hierarchical generative models 

(of the sort considered in this work) could be used to test hypotheses 

about the relations between computational and physiological processes. 

We are currently pursuing this approach in ongoing research. 

Alternatively, one can also use our model for analyses at the subject level: 

the sequence of inferred hidden states, as represented by their sufficient 

statistics   and  , can be used as predictor variables in analyses of fMRI, 

EEG or behavioral data to shed light on the neurophysiological correlates 

of inference and learning (cf. den Ouden et al., 2010). 
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12  SUMMARY 

This thesis has introduced the hierarchical Gaussian filter, a novel and 

generic framework for approximate Bayesian inference with 

computationally efficient and interpretable closed-form update equations. 

Simulations show that this approach is applicable to a range of situations 

beyond classical RL, including inductive inference on discrete and 

continuous states and situations with perceptual ambiguity. Crucially, my 

approach accommodates inter-individual differences, in terms of prior 

beliefs about key model parameters, and quantifies their computational 

effects: Some of these parameters may map to neurophysiological 

(neuromodulatory) mechanisms that have been implicated in the 

neurobiology of learning and psychopathology. As such, it may be a useful 

framework for modeling individual differences in behavior and to formally 

characterize behavioral stereotypes and pathophysiologically distinct 

subgroups in psychiatric spectrum diseases (Stephan et al., 2009a). 

We have further validated the HGF in several applications. The first has 

been a simulation study where the combination of the HGF with a decision 

model and the subsequent recovery of parameters underlying simulations 

was proven to be possible, breaking down only at very high levels of 

response noise. The second validation has been an application to saccadic 

reaction time data from human subjects. In this application, the HGF has 

proven able to serve as the underlying perceptual model for various 

decision models, enabling us to adjudicate among them by Bayesian model 

selection. Furthermore, in this application, it has been shown that the 

three-level HGF outperforms simpler versions of itself, suggesting that 

subjects used hierarchical inference even in this relatively simple task. 

Finally, I have shown that the HGF can serve as an inferential mechanism 

describing complex cognitive states as they occur in the observation of an 

iterated trust game. States inferred by the HGF correlate strongly with 

neuronal activation as measured by fMRI, suggesting that the HGF 

captures quantities that are represented by the human brain during 

reward processing, learning, and decision making.   
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APPENDICES 

A. Variational Bayes 

The term variational Bayes refers to the approximation of posterior 

probability densities by means of a variational optimization of a free-

energy bound on the log-model evidence. The free energy bound derives 

its name from a mathematically analogous bound in statistical mechanics 

(Feynman, 1972, 47). 

Given a model      |   with observed data  , hidden states  , and fixed 

parameters  , any arbitrary probability density      of the hidden states 

gives rise to a lower bound on the logarithm of the model evidence    |    

 

                |     ∫     |       ∫    
     |  

    
   

                               ∫      (
     |  

    
)      

(127) 

where we have used Jensen’s inequality (which results from the concavity 

of the logarithm). The right-hand side of the inequality can be rearranged 

in two ways: 
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and 
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The first rearrangement, which in physical terms represents expected 

negative energy plus entropy (i.e., negative free energy  ), can be 

calculated because the model      |   and the density      are known. 

The second rearrangement shows that if we choose      such that    is 

maximized, the expression  [        |    ], which is always positive, is 

minimized. This expression is the Kullback-Leibler divergence of    |     

from     . The better      approximates the posterior    |    , the 

smaller the divergence; vanishing when the two are equal. Maximizing the 

(negative) free energy bound on the log-model evidence by varying      is 

therefore the same as approximating the true posterior    |     by     . 

In other words, we find the posterior by introducing   and   and 

maximizing   as a functional  [ |   ] of  . This procedure is called 

variational Bayes because finding the maximum of   under variations of   

involves variational calculus and leads to an approximation to the 

posterior distribution in Bayesian inference. The precise mechanics of 

maximization of   are explained in Appendix B. 

Another way to optimize      is to introduce parametric constraints on  , 

such that         |   with parameters  . For example,   could be 

assumed to be Gaussian with sufficient statistics  .   can then be seen as a 

function of   (cf. Eq. (128)): 
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     |     ∫   |         |     ∫   |       |     (130) 

According to Eq. (129), the parameter values    that maximize   with 

respect to   now give us the posterior    |    that approximates the true 

posterior    |     most closely in the sense that it minimizes their 

Kullback-Leibler divergence under the parametric constraints on  : 

 
          

 
    |     

      |       |       
(131) 
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B. Variational optimization of the free energy 

under the mean field approximation 

Given a model      |  , our goal is to optimize an arbitrary density      

so that it maximizes negative free energy   and therefore approximates 

the posterior density    |     most closely (cf. Appendix A). 

Under the mean field approximation, we assume that      can be factored 

into the densities of pairwise disjoint index sets  : 

      ∏ (  )

   

 (132) 

where   is a set of index sets. To simplify our notation, we set 

     {  }   
                    ∏ (  )

   

              (133) 

Since   is a functional of  , the mean field approximation allows us to 

write  [ ]   [      ] and thus to optimize each of the    separately. 

When optimizing  , we have to observe the constraints that 

 ∫ (  )                 (134) 

We account for these constraints by introducing Lagrange multipliers    

and defining 
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To optimize  ̃[      ] with respect to   , we make use of the fundamental 

lemma of variational calculus, which states that 
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where    is a test function and the equation on the left of the mutual 

implication contains the definition of the functional derivative 
 

   
. The rest, 

as they say, is algebra: 
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The optimal    is then characterized by 
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C. Calculation of the variational energies 

As in the main text, I first deal with the three-level example model before 

turning to the general case. Using the notation 

 ⌌    ⌍  
 ∫ (  )        (139) 

for the expectation of      under       together with the definition of the 

model described graphically in Figure 2, we can rewrite Eq. (27) as a sum 

of expectations 
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The term    (    |  
   

) is included here to cover also models with 

sensory uncertainty as discussed in Section 5.1. In cases without such 

uncertainty (sc.     ),  the term vanishes.  

 (  
   

|  
   

) can be taken directly from Eq. (10), while 
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and 
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This is akin to the “prediction step” in the Kalman filter literature since it 

gives us the predictive densities for   
   

 given inputs up to time    ; it is 

this point where the mean field approximation unfolds its effect.  

We only need to determine the  (  
   

) up to a constant because any 

constant term can always be absorbed into    when forming   ̂ (  
   

) 

according to Eq. (26). For the three levels of our example model, this 

means 
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With two exceptions, all integrals on the right-hand sides above can be 

solved analytically in all cases considered here, including sensory 

uncertainty and inference on continuous-valued states. 

The two exceptions are the following: first, to solve ⌌   (  
   

|  
   

)⌍   
, we 

expand    (  
   

) to second order around the prior expectation   
     

of 
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Second, to solve ⌌   (  
   

|  
   

    )⌍   
, we take 
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 (147) 

The result of doing the integrals in Eqs (143)-(145) is given in Eqs (28)-

(30). 

In the general case, I will give the calculation in full detail. For convenience, 

I restate the relevant definitions: 
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  Unpacking this, we see 
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where the last line reflects the mean field approximation. Performing this 

integral, we obtain 
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By substituting this into the definition of   in Eq. (148), we get 
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(151) 

We thus have to solve these last two integrals. The first one can be solved 

analytically: 
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To solve the second integral, we take 
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yielding 
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The sum of Eqs (152) and (154) then is the variational energy of Eq. (31), 

up to a constant term that can be absorbed into the normalization constant 

   (cf. Eq. (26)): 
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D. The negative free energy under the Laplace 

approximation 

The Laplace approximation is the approximation of a probability 

distribution by a Gaussian distribution centered around the approximated 

distribution’s mode. Originally introduced for beta distributions on the 

unit interval, the Laplace approximation can be extended to many other 

posterior distributions since in many cases, for moderate to large samples, 

the posterior may be expected to be sharply peaked around its mode (Kass 

and Raftery, 1995). 

In what follows, we take  the posterior    |   to be approximated by the 

Gaussian    |    , that is 

 

   |      |     

                        

                    
 
 | | 
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              )  

(156) 

where       ,   a positive definite    -Matrix, and | | its determinant. 

Our goal here will be to determine those values of   (the conditional mode) 

and   (the conditional variance) that maximize the negative free energy   

and thus make   approximate the true posterior density most closely (cf. 

Appendix A). To simplify the notation, we use    
  

  
,     

   

   
, etc. for 

partial derivatives and set 

                (157) 

For what follows, it will also be useful to note that for a constant    -

Matrix   
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and specifically 

 ⌌              ⌍             (    )     (159) 

The free energy is   ⌌    ⌍   [ ] (cf. Eq. (128)). I will deal with those 

terms separately, beginning by expanding the first term in powers to 

second order around  : 
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The second term in  , the entropy  [ ], can be calculated exactly: 
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Taking the two terms together, we have 

          (       )  
 

 
        

 

 
  | |  (162) 

The conditional variance that maximizes this approximation to   can now 

be found by differentiating with respect to  , setting to zero, and solving 

for  . We take the vectors {          } to be an orthonormal basis of   . 

We do two preliminary calculations. First, (with   as above): 
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(163) 

where     (0 for    ; 1 for    ) is the Kronecker symbol. 
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Since   is symmetric and positive definite, we may assume without loss of 

generality that it is diagonal with respect to the basis {          }, so that 

| |  ∏       . Then 
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(164) 

Applying this to Eq. (162) and setting to zero, we have  

 

    
 

 
(          )    

 

            
      

(165) 

Inserting this into Eq. (162) gives us 

        
 

 
  | |  

 

 
        (166) 

To evaluate this, we need the mode   of  . In general, this cannot be found 

analytically but has to be approximated numerically. 
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E. Response models for saccadic reaction 

times 

In the following, I explain the functional form of our three response models 

in more detail. All models assume a linear relationship between   and RS, 

parameterized by the two parameters    and    (cf. Eq.  (120) and Figure 

22).   represents the proportion of total attentional capacity that is 

allocated to the cued location (and therefore lies in the unit interval) and 

should amount to 0.5 if both target locations are equally likely. These 

constraints, which all response models conform to, can be summarized as: 

 
C1:        

                  C2:        for  ̂      
(167) 

Given these constraints, our response models differ in which attribute of 

the predicted validity of the cue maps to the attentional factor   (and thus 

determines RS in Eq. (120)). The functional forms of these models are 

motivated in the following and are depicted graphically in Figure 34. (Note 

that the vertical axis in Figure 34 is attention to outcome location. For 

valid trials, this is equal to attention to cued location  , while for invalid 

trials it is    .) 

The ‘precision’ model (Eq. (121)) links attention to the precision of 

predictions as suggested by Feldman and Friston (2010). In our specific 

case, the precision of the prediction at the 1st level   ̂   has a minimal 

value of 4 when  ̂      and approaches infinity as  ̂  approaches 1 (cf. 

Eq. (38)). The most parsimonious way to meet the above constraints C1 

and C2 is to define   as the logistic sigmoid of  ̂ , minus its minimum (cf. 

Eq. (121)): 

      ̂      (168) 
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Note that since the cue becomes a counter-indication of outcome location 

when    falls below 0 (or equivalently, when  ̂  drops below 0.5), a 

suitable definition of   for the whole range of  ̂  is 

       (    (  
     

) ( ̂ 
   

  ))  (169) 

This ensures that attention to the cued location falls to 0 as  ̂  approaches 

0. 

A simpler model of attention allocation given a cue-induced belief about 

outcome is that attention is proportional to predicted probability of 

outcome: if the agent believes that the probability of seeing outcome ‘left’ 

is   (e.g., 80%), then it will allocate proportion   (i.e., 80%) of its 

attentional resources to location ‘left’. I call this the ‘belief’ model (cf. Eq. 

(122)). In terms of our perceptual model, the predicted probability of a 

valid trial is simply  ̂ : 

    ̂   (170) 

Finally, the ‘surprise’ model describes the attentional factor   as a function 

of the Shannon surprise (the negative logarithm of the probability of the 

outcome being the cued location given the prediction  ̂ ) (cf. Bestmann et 

al., 2008). For a predicted probability  ̂    of a valid trial, surprise is 

zero, whereas for  ̂   , it is infinite. In the first case, attention is 

therefore allocated exclusively to the cued location (i.e.,    ), while in 

the second case, attention is allocated exclusively to the non-cued location 

(i.e.,    ). The simplest way this can be achieved under consideration of 

constraints C1 and C2 is (cf. Eq. (123)): 
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where         ( ̂ 
   

)        (  
   

  | ̂ 
   

)        ( ̂ 
   

) 

Note that we make use of                to ensure we meet constraint 

C2.  

 

Figure 34. Attention as a function of belief. Illustration of the amount of attentional 

resources   for the three different theoretical response models as a function of  ̂ . 
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KURZFASSUNG 

Mathematische Modelle der Informationsverarbeitung sind entscheidend 

für ein Verständnis der Mechanismen, die situationsbedingtem Verhalten 

zugrundeliegen. Die zwei gegenwärtig auf diesem Gebiet dominanten 

Herangehensweisen, Verstärkungslernen (reinforcement learning – RL) 

und Bayes’sches Lernen, haben jedoch beide gewisse Nachteile. Bayes’sche 

Modelle kennen zum Beispiel oft keine interindividuellen Unterschiede 

und erfordern den Umgang mit analytisch nicht lösbaren Integralen, was 

zeitgerechtes Lernen erschwert, wenn nicht verunmöglicht. In der 

vorliegenden Dissertation führe ich den hierarchischen Gauss’schen Filter 

(HGF) ein, ein generisches hierarchisches Bayes’sches Modell für 

individuell angepasstes Lernen unter verschiedenen Formen von 

Unsicherheit (zum Beispiel eine schnell wechselnde Umwelt oder 

sensorische Unsicherheit). Der HGF verfolgt den Ansatz, verborgene 

Zustände der Umwelt als eine Hierarchie von Gauss’schen 

Zufallsprozessen aufzufassen, wobei jeweils die nächsthöhere Ebene die 

Varianz der darunterliegenden bestimmt. Die Kopplung zwischen den 

Ebenen wird von Parametern gesteuert, die den Einfluss von Unsicherheit 

auf die Informationsverarbeitung auf eine individuell verschiedene Weise 

prägen. Unter Rückgriff auf Variationsrechnung und Molekularfeldtheorie 

sowie mit Hilfe einer neuartigen Näherung für die Energiefunktion im 

informationstheoretischen Sinne leite ich Aktualisierungsgleichungen her, 

die (i) von geschlossener Form und daher extrem effizient sind, wodurch 

sie zeitgerechtes Lernen erlauben, (ii) sich auf natürliche Weise im 

Rahmen von RL deuten lassen und die (iii) Parameter enthalten, die 

Prozesse abbilden, welche in aktuellen Lerntheorien eine Schlüsselrolle 

spielen, zum Beispiel die Präzisionsgewichtung von Voraussagefehlern. 

Diese Parameter erlauben die Ausprägung individueller Unterschiede im 

Lernverhalten und könnten mit neuromodulatorischen Mechanismen im 

Hirn in Beziehung stehen. Der HGF ist sehr allgemein: er kann sowohl 

diskrete wie auch stetige Zustände beschreiben, und er umfasst sowohl 

deterministische als auch stochastische Beziehungen zwischen 

Umweltereignissen und Wahrnehmungszuständen. Diese Eigenschaften 

erläutere ich anhand von Simulationen und Analysen empirischer 
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Zeitreihen, die auf die Finanzmärkte zurückgehen, auf 

Verhaltensexperimente und auf funktionelle Magnetresonzmessungen. 

Insgesamt bietet der Rahmen des HGF eine neuartige mathematische 

Grundlage für das Verständnis normalen und pathologischen Lernens; er 

stellt RL in den Zusammenhang eines generischen Bayes’schen Ansatzes 

und verbindet es so mit Optimalitätsgrundsätzen aus der 

Wahrscheinlichkeitstheorie. 
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