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Abstract

The railway track is the main component of the railway infrastructure, whose task is to carry the
load of the traversing railway vehicles. Its structure is composed of numerous sub-components,
namely the substructure, ballast, sleepers and rails, each of which has to fulfill different require-
ments in terms of load bearing capacity and durability. The recent increases in train speed,
traffic density and passenger/freight loads, has urgently brought forth the need for efficient
management practices, able to exploit monitoring data for ensuring optimization of availabil-
ity, operation and maintenance costs and guaranteeing safety.

The determination of the condition (state) of railway assets has traditionally been based
on visual on-site inspections and measurements. The nature, quality and completeness of
measurements for railway tracks have been refined and significantly improved since the initial
stages of track parameter measurements, conducted in the 1960s. An important catalytic agent
in this respect was the introduction of automatic storage, analysis, and interpretation of digital
measurement data collected by diagnostic vehicles. These are specialized vehicles, equipped
with sophisticated and often costly measurement systems, which however can only infrequently
traverse the network, implying limited temporal resolution for the monitoring data. Nowadays,
On-Board Monitoring (OBM) vehicles, or in-service trains, can be used equipped with low cost
measurement device,s such as Axle Box Accelerometers (ABAs), which regularly traverse the
railway network, thus offering an almost continuous data stream that can be linked to the
condition of the traversed railway infrastructure.

The primary objective of this research is to develop efficient monitoring techniques enabling
the extraction of diagnostic indicators for guiding the maintenance of railway assets. To address
this challenge, we rely on the principle of On Board Monitoring, i.e., the exploitation of low-
cost sensors, mounted on vehicles (feasibly in service vehicles), for continuous and spatially
dense monitoring of the railway network. Nevertheless, the transformation of raw measurement
data, particularly accelerations, into robust and actionable condition indicators represents a
significant challenge. Particularly since it is non-trivial to achieve the seamless integration of
measurement data into existing asset management processes.

This thesis presents a comprehensive approach to monitoring the railway track, by pri-
marily relying on exploitation of vibration-based data, and assessing their potency in terms
of discovering long (longitudinal level) and short wavelength defects (surface defects, welds,
squats). The first chapter contextualizes the problem of infrastructure monitoring and presents
the state of the art in terms of conventional track monitoring techniques and vibration-based
monitoring techniques. Through applications in several case studies, we show that acceleration-
based approaches demonstrate high potential for complementing, or feasibly replacing in part,
traditional schemes.

The second chapter proposes a robust method for examining the influence of individual
parametric excitation sources. We propose adoption of the Vold-Kalman filter for identifying
the periodic speed-dependent components of a measured ABA signal, such as the sleeper passage
frequency and the wheel Out-Of-Roundness order. The wheel Out-Of-Roundness components
are used to reconstruct the wheel profile, while the amplitude of the sleeper passage frequency
is shown to form a proxy of the track stiffness. Moreover, it is demonstrated that track sections
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corresponding to higher stiffness feature increased accelerations at the sleeper passage frequency,
which correlate to higher forces and increased maintenance actions.

Chapter 3 zooms into the assessment of critical components of the rail in what is termed
a short wave classification scheme. The rail forms an element whose structural integrity is
essential for safety of operation, but which is exposed to elevated loading that leads to frequent
appearance of faults such as squats, cracks or surface defects. Short wavelength rail-related
effects bear a significant influence on the vehicle-track dynamics. This chapter proposes an
acceleration-based automated classification scheme for classifying main rail components and
surface faults (healthy rail, surface defects and squats, insulated joints and welds). Random
Forests (RFs), which have been trained on engineered features, are contrasted against Con-
volutional Neural Networks (CNNs), which are trained on the Short Time Fourier Transform
coefficients of the ABA signals. While the validation of the scheme cannot be full corroborated
due to largely missing reference labels, the implementation endorses automation and motivates
implementation of acceleration-based classifiers to support early detection of faults.

The influence of reliability of labels from the available condition monitoring databases and
the incorporation of expert feedback into the analysis process closes the loop of our suggested
scheme. The afore-mentioned short wave classification framework relies on availability of labels
that are automatically extracted from rail head images. However, such labels do not adequately
reflect the progressively evolving health status of critical components. The final study of this
thesis focuses on welds, as salient critical components of rail infrastructure. Chapter 4 presents a
Proof-of-Concept study which brings OBM-derived indicators, database information and expert
feedback in the loop. The study was conducted in collaboration with asset managers and
field experts of the SBB. The framework combines on-site and visual inspections, diagnostic
information, and expert assessments to automate the detection of weld defects from ABA-
indicator outliers. Rail head images corresponding to these outliers are reviewed by experts,
leading to the identification and further labeling of suspected weld defects. This information
loop is further exploited to develop robust automated defect classification schemes. Three
methods are tested to this end, Binary Classification, Random Forest classifiers, and Bayesian
Logistic Regression. We demonstrate that the latter additionally endows estimation with a
quantification of the uncertainty involved.

In summary, this thesis contributes to the development of actionable monitoring-driven
indicators and frameworks, across a range of applications; initiating from the more global iden-
tification of track geometry and stiffness to the more local identification of short wavelength
faults, such as surface defects or deteriorated welds. More importantly, it delivers a holistic
approach, which ties automated and continuous monitoring, sparse historic condition informa-
tion, and expert opinion into one loop. This research delivers the effectuating tools and a valid
proof of concept for assimilation of ABA data into the monitoring protocol of railway assets.
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Zusammenfassung

Das Gleis ist der Hauptbestandteil der Eisenbahninfrastruktur, dessen Aufgabe es ist, die
Last der verkehrenden Schienenfahrzeuge zu tragen. Seine Struktur setzt sich aus zahlre-
ichen Teilkomponenten zusammen, nämlich dem Unterbau, dem Schotter, den Schwellen und
den Schienen, die jeweils unterschiedliche Anforderungen an die Tragfähigkeit und die Dauer-
haftigkeit erfüllen müssen. Der jüngste Anstieg der Zuggeschwindigkeiten, der Verkehrsdichte
und der Passagier- und Frachtlasten hat dringend effiziente Managementverfahren erforderlich
gemacht, die in der Lage sind, die Überwachungsdaten zur Optimierung der Verfügbarkeit, der
Betriebs- und Wartungskosten und zur Gewährleistung der Sicherheit zu nutzen.

Die Bestimmung des Zustands von Eisenbahnanlagen basiert traditionell auf visuellen In-
spektionen und Messungen vor Ort. Die Art, die Qualität und die Vollständigkeit der Messun-
gen für Eisenbahngleise wurden seit den ersten Messungen der Gleisparameter in den 1960er
Jahren verfeinert und erheblich verbessert. Ein wichtiger Katalysator in dieser Hinsicht war die
Einführung der automatischen Speicherung, Analyse und Interpretation digitaler Messdaten,
die von Diagnosefahrzeugen erfasst werden. Dabei handelt es sich um Spezialfahrzeuge, die mit
hochentwickelten und oft kostspieligen Messsystemen ausgestattet sind, die jedoch nur selten
das Netz befahren können, was eine begrenzte zeitliche Auflösung der Überwachungsdaten zur
Folge hat. Heutzutage können On-Board-Monitoring-Fahrzeuge (OBM) oder in Betrieb befind-
liche Züge eingesetzt werden, die mit kostengünstigen Messgeräten wie Achslager-Beschleuni-
gungsmessern (ABA) ausgestattet sind und das Schienennetz regelmässig befahren, wodurch
ein nahezu kontinuierlicher Datenstrom entsteht, der mit dem Zustand der befahrenen Eisen-
bahninfrastruktur in Verbindung gebracht werden kann.

Das Hauptziel dieser Forschungsarbeit ist die Entwicklung effizienter Überwachungstechniken,
die die Gewinnung diagnostischer Indikatoren für die Steuerung der Instandhaltung von Eisen-
bahnanlagen ermöglichen. Zur Bewältigung dieser Herausforderung stützen wir uns auf das
Prinzip des On-Board-Monitoring, d. h. die Nutzung kostengünstiger Sensoren, die auf
Fahrzeugen (möglicherweise in Dienstfahrzeugen) angebracht sind, für eine kontinuierliche und
räumlich dichte Überwachung des Eisenbahnnetzes. Dennoch stellt die Umwandlung von
Rohmessdaten, insbesondere Beschleunigungen, in robuste und umsetzbare Zustandsindika-
toren eine grosse Herausforderung dar. Zumal es nicht trivial ist, die Messdaten nahtlos in
bestehende Asset-Management-Prozesse zu integrieren.

In dieser Arbeit wird ein umfassender Ansatz für die Überwachung von Eisenbahnschienen
vorgestellt, der sich in erster Linie auf die Auswertung von schwingungsbasierten Daten stützt
und deren Wirksamkeit im Hinblick auf die Entdeckung von lang- (Längsebene) und kurzwelli-
gen Defekten (Oberflächenfehler, Schweissnähte, Squats) bewertet. Im ersten Kapitel wird das
Problem der Infrastrukturüberwachung kontextualisiert und der Stand der Technik in Bezug auf
herkömmliche Gleisüberwachungsmethoden und vibrationsbasierte Überwachungsmethoden vor-
gestellt. Anhand mehrerer Fallstudien wird gezeigt, dass beschleunigungsbasierte Ansätze ein
hohes Potenzial aufweisen, um herkömmliche Verfahren zu ergänzen oder teilweise zu ersetzen.

Im zweiten Kapitel wird eine robuste Methode zur Untersuchung des Einflusses einzel-
ner parametrischer Anregungsquellen vorgeschlagen. Wir schlagen die Anwendung des Vold-
Kalman-Filters vor, um die periodischen, geschwindigkeitsabhängigen Komponenten eines ge-
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messenen ABA-Signals zu identifizieren, wie z. B. die Schwellendurchgangsfrequenz und die
Radaussenrundungsordnung. Die Komponenten der Unrundheit des Rades werden zur Rekon-
struktion des Radprofils verwendet, während die Amplitude der Schwellendurchgangsfrequenz
nachweislich ein Mass für die Gleissteifigkeit darstellt. Darüber hinaus wird gezeigt, dass Gleis-
abschnitte mit höherer Steifigkeit höhere Beschleunigungen bei der Schwellenübergangsfrequenz
aufweisen, die mit höheren Kräften und verstärkten Instandhaltungsmassnahmen korrelieren.

Kapitel 3 befasst sich mit der Bewertung kritischer Komponenten der Schiene in einem
so genannten Kurzwellenklassifizierungsschema. Die Schiene stellt ein Element dar, dessen
strukturelle Integrität für die Betriebssicherheit wesentlich ist, das jedoch einer erhöhten Be-
lastung ausgesetzt ist, die zu einem häufigen Auftreten von Fehlern wie Squats, Rissen oder
Oberflächenfehlern führt. Kurzwellige schienenbedingte Effekte haben einen erheblichen Ein-
fluss auf die Fahrzeug-Gleis-Dynamik. In diesem Kapitel wird ein beschleunigungsbasiertes
automatisiertes Klassifizierungssystem zur Klassifizierung von Hauptschienenkomponenten und
Oberflächenfehlern (gesunde Schiene, Oberflächenfehler und Squats, Isolierstösse und Schweiss-
nähte) vorgeschlagen. Random Forests (RFs), die auf technischen Merkmalen trainiert wurden,
werden Convolutional Neural Networks (CNNs) gegenübergestellt, die auf den Koeffizienten der
Kurzzeit-Fourier-Transformation der ABA-Signale trainiert werden. Während die Validierung
des Systems aufgrund der weitgehend fehlenden Referenzmarken nicht vollständig bestätigt
werden kann, unterstützt die Implementierung die Automatisierung und motiviert die Imple-
mentierung von beschleunigungsbasierten Klassifikatoren zur Unterstützung der Früherkennung
von Fehlern.

Der Einfluss der Zuverlässigkeit von Kennzeichnungen aus den verfügbaren Zustandsüber-
wachungsdatenbanken und die Einbeziehung von Expertenfeedback in den Analyseprozess schlies-
sen den Kreis unseres vorgeschlagenen Systems. Der oben erwähnte Rahmen für die Kurzwellen-
klassifizierung stützt sich auf die Verfügbarkeit von Kennzeichnungen, die automatisch aus
Bildern von Schienenköpfen extrahiert werden. Diese Kennzeichnungen spiegeln jedoch den
sich ständig verändernden Gesundheitszustand der kritischen Komponenten nicht angemessen
wider. Die abschliessende Studie dieser Arbeit konzentriert sich auf Schweissnähte als wichtige
kritische Komponenten der Eisenbahninfrastruktur. In Kapitel 4 wird eine Proof-of-Concept-
Studie vorgestellt, bei der von OBM abgeleitete Indikatoren, Datenbankinformationen und Ex-
pertenfeedback in den Kreislauf einbezogen werden. Die Studie wurde in Zusammenarbeit mit
Asset Managern und Fachleuten der SBB durchgeführt. Das Framework kombiniert Vor-Ort-
und Sichtprüfungen, Diagnoseinformationen und Experteneinschätzungen, um die Erkennung
von Schweissnahtfehlern anhand von Ausreissern bei ABA-Indikatoren zu automatisieren. Die
Bilder der Schienenköpfe, die zu diesen Ausreissern gehören, werden von Experten überprüft,
was zur Identifizierung und weiteren Kennzeichnung der vermuteten Schweissfehler führt. Diese
Informationsschleife wird weiter genutzt, um robuste automatische Fehlerklassifizierungsver-
fahren zu entwickeln. Zu diesem Zweck werden drei Methoden getestet: Binäre Klassifikation,
Random-Forest-Klassifikatoren und logistische Regression nach Bayes. Wir zeigen, dass letztere
die Schätzung zusätzlich mit einer Quantifizierung der Unsicherheit ausstattet.

Zusammenfassend lässt sich sagen, dass diese Arbeit einen Beitrag zur Entwicklung hand-
lungsfähiger, überwachungsgesteuerter Indikatoren und Rahmenwerke für eine Reihe von An-
wendungen leistet, angefangen von der eher globalen Identifizierung der Gleisgeometrie und
-steifigkeit bis hin zur eher lokalen Identifizierung von Fehlern mit kurzer Wellenlänge, wie
z. B. Oberflächenfehler oder beschädigte Schweissnähte. Noch wichtiger ist, dass sie einen
ganzheitlichen Ansatz liefert, der automatisierte und kontinuierliche Überwachung, spärliche
historische Zustandsinformationen und Expertenmeinungen zu einem Kreislauf verknüpft. Diese
Forschung liefert die effektiven Werkzeuge und einen gültigen Konzeptnachweis für die Auf-
nahme von ABA-Daten in das Überwachungsprotokoll von Eisenbahnanlagen.
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Résumé

La voie ferrée est l’élément principal de l’infrastructure ferroviaire, dont la tâche est de supporter
la charge des véhicules ferroviaires qui la traversent. Sa structure est composée de nombreux
sous-composants, à savoir la sous-structure, le ballast, les traverses et les rails, chacun d’entre
eux devant répondre à des exigences différentes en termes de capacité de charge et de durabilité.
L’augmentation récente de la vitesse des trains, de la densité du trafic et des charges de passagers
et de marchandises a fait nâıtre le besoin urgent de pratiques de gestion efficaces, capables
d’exploiter les données de surveillance pour assurer l’optimisation de la disponibilité, des coûts
d’exploitation et de maintenance et pour garantir la sécurité.

La détermination de l’état des actifs ferroviaires est traditionnellement basée sur des inspec-
tions et des mesures visuelles sur site. La nature, la qualité et l’exhaustivité des mesures ef-
fectuées sur les voies ferrées ont été affinées et considérablement améliorées depuis les premières
étapes de la mesure des paramètres de la voie, réalisées dans les années 1960. L’introduction du
stockage, de l’analyse et de l’interprétation automatiques des données de mesure numériques
collectées par des véhicules de diagnostic a joué un rôle catalyseur important à cet égard. Il
s’agit de véhicules spécialisés, équipés de systèmes de mesure sophistiqués et souvent coûteux,
qui ne peuvent toutefois parcourir le réseau que rarement, ce qui implique une résolution tem-
porelle limitée pour les données de surveillance. De nos jours, les véhicules de surveillance
à bord (OBM), ou les trains en service, peuvent être équipés de dispositifs de mesure peu
coûteux, tels que les accéléromètres de bôıtes d’essieu (ABA), qui traversent régulièrement le
réseau ferroviaire, offrant ainsi un flux de données presque continu qui peut être lié à l’état de
l’infrastructure ferroviaire traversée.

L’objectif principal de cette recherche est de développer des techniques de surveillance ef-
ficaces permettant d’extraire des indicateurs de diagnostic pour guider la maintenance des
actifs ferroviaires. Pour relever ce défi, nous nous appuyons sur le principe de la surveil-
lance à bord, c’est-à-dire l’exploitation de capteurs peu coûteux, montés sur des véhicules
(éventuellement dans des véhicules de service), pour une surveillance continue et spatialement
dense du réseau ferroviaire. Néanmoins, la transformation des données de mesure brutes, en
particulier des accélérations, en indicateurs d’état robustes et exploitables représente un défi im-
portant. D’autant plus qu’il n’est pas facile d’intégrer les données de mesure dans les processus
de gestion des actifs existants.

Cette thèse présente une approche globale de la surveillance des voies ferrées, en s’appuyant
principalement sur l’exploitation des données vibratoires, et en évaluant leur efficacité en ter-
mes de découverte des défauts de grande longueur d’onde (niveau longitudinal) et de petite
longueur d’onde (défauts de surface, soudures, accroupissements). Le premier chapitre contex-
tualise le problème de la surveillance des infrastructures et présente l’état de l’art en termes
de techniques conventionnelles de surveillance des voies et de techniques de surveillance basées
sur les vibrations. Grâce à des applications dans plusieurs études de cas, nous montrons que
les approches basées sur l’accélération ont un fort potentiel pour compléter, ou remplacer en
partie, les schémas traditionnels.

Le deuxième chapitre propose une méthode robuste pour examiner l’influence des sources
d’excitation paramétriques individuelles. Nous proposons d’adopter le filtre de Vold-Kalman
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pour identifier les composantes périodiques d’un signal ABA mesuré qui dépendent de la vitesse,
telles que la fréquence de passage des traverses et l’ordre de déviation des roues. Les com-
posantes de l’ovalisation de la roue sont utilisées pour reconstruire le profil de la roue, tandis
que l’amplitude de la fréquence de passage des traverses est considérée comme une approxima-
tion de la rigidité de la voie. En outre, il est démontré que les sections de voie correspondant
à une rigidité plus élevée présentent des accélérations accrues à la fréquence de passage des
traverses, ce qui est corrélé à des forces plus élevées et à des actions de maintenance plus
importantes.

Le chapitre 3 se concentre sur l’évaluation des composants critiques du rail dans ce que
l’on appelle un schéma de classification des ondes courtes. Le rail constitue un élément dont
l’intégrité structurelle est essentielle pour la sécurité de l’exploitation, mais qui est exposé à
des charges élevées entrâınant l’apparition fréquente de défauts tels que des déformations, des
fissures ou des défauts de surface. Les effets de courte longueur d’onde liés au rail ont une influ-
ence significative sur la dynamique du véhicule et de la voie. Ce chapitre propose un système
de classification automatisé basé sur l’accélération pour classer les composants principaux du
rail et les défauts de surface (rail sain, défauts de surface et squats, joints isolés et soudures).
Les forêts aléatoires (RF), qui ont été entrâınées sur des caractéristiques techniques, sont com-
parées aux réseaux neuronaux convolutionnels (CNN), qui sont entrâınés sur les coefficients de
la transformée de Fourier à court terme des signaux ABA. Bien que la validation du système
ne puisse pas être entièrement corroborée en raison de l’absence d’étiquettes de référence, la
mise en œuvre approuve l’automatisation et motive la mise en œuvre de classificateurs basés
sur l’accélération pour soutenir la détection précoce des défaillances.

L’influence de la fiabilité des étiquettes provenant des bases de données de surveillance
de l’état disponibles et l’incorporation du retour d’information des experts dans le processus
d’analyse ferment la boucle du schéma que nous proposons. Le cadre de classification des ondes
courtes mentionné ci-dessus repose sur la disponibilité d’étiquettes extraites automatiquement
des images du champignon ferroviaire. Cependant, ces étiquettes ne reflètent pas correcte-
ment l’évolution progressive de l’état de santé des composants critiques. La dernière étude
de cette thèse se concentre sur les soudures, en tant que composants critiques importants de
l’infrastructure ferroviaire. Le chapitre 4 présente une étude de validation du concept qui intègre
dans la boucle les indicateurs dérivés de l’OBM, les informations de la base de données et le
retour d’information des experts. L’étude a été menée en collaboration avec des gestionnaires
d’actifs et des experts de terrain des CFF. Le cadre combine des inspections visuelles et sur
site, des informations de diagnostic et des évaluations d’experts pour automatiser la détection
des défauts de soudure à partir des valeurs aberrantes de l’indicateur ABA. Les images du
champignon de rail correspondant à ces valeurs aberrantes sont examinées par des experts, ce
qui permet d’identifier et d’étiqueter plus précisément les défauts de soudure suspectés. Cette
boucle d’information est ensuite exploitée pour développer des systèmes robustes de classifica-
tion automatique des défauts. Trois méthodes sont testées à cette fin : la classification binaire,
les classificateurs forêt aléatoire et la régression logistique bayésienne. Nous démontrons que
cette dernière permet en outre de quantifier l’incertitude liée à l’estimation.

En résumé, cette thèse contribue au développement d’indicateurs et de cadres de surveil-
lance exploitables, dans une gamme d’applications allant de l’identification plus globale de la
géométrie et de la rigidité de la voie à l’identification plus locale de défauts de courte longueur
d’onde, tels que les défauts de surface ou les soudures détériorées. Plus important encore, il
s’agit d’une approche holistique qui associe en une seule boucle la surveillance automatisée et
continue, les informations historiques peu nombreuses sur l’état de la voie et l’avis d’experts.
Cette recherche fournit les outils nécessaires et une preuve de concept valide pour l’assimilation
des données ABA dans le protocole de surveillance des actifs ferroviaires.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Critical infrastructure systems, such as the power grid, our built environment and transport
of people and goods, are essential for the functionality of modern societies and economies.
However, growing requirements in developed societies place increased demands on such infras-
tructure. Specifically to what transportation is concerned, the ever-increasing demands for
mobility result in increased complexity and interdependencies in transport networks, and rail-
ways in particular [34, 187]. In Switzerland, the railway network usage has increased by almost
40% in the last 30 years and this growth is projected to expand[112]. The amount of traffic per
track kilometre in Switzerland, the Netherlands and Japan is the highest worldwide, approach-
ing 100 vehicle-passenger-kilometre per kilometre, per day, about twice that of other European
railway networks [249, 60]. In view of the growing population in urban areas and the increasing
demand for climate-friendly solutions, traditional public transport (rail, urban buses...) and
shared mobility solutions (car-, bike-sharing...) will dominate future developments [187, 259].
Such solutions are particularly relevant for urban areas, where about half of the world’s popu-
lation is concentrated today and which more than 70% of the population will inhabit by 2050
[133]. Such a booming growth and expansion, is linked with higher loads and a higher risk
for disruptions due to system failures. This motivates new methods and tools for improving
operation and maintenance planning.

Maintenance and renewals are necessary to ensure the safety, reliability, cost-effectiveness,
compliance and efficiency of railway systems. The current approach to railway management
relies on preventive maintenance schemes, which involve the scheduling of regular maintenance
actions in advance in order to prevent degradation and to extend the lifespan of railway assets
[200, 289]. While such a scheme reduces the risk of unexpected downtime (due to the reac-
tive maintenance resulting from failed assets), it may also lead to unnecessary repairs when
the assets are not actually in need of maintenance [88, 234]. To alleviate this disadvantage,
predictive maintenance has been proposed as an approach that capitalizes on data and, often
exploits models, for establishing predictive scheme for asset degradation in order to guide as-
set managers in optimal policy planning and scheduling of maintenance and remedial action
[88, 155]. Predictive maintenance often relies on condition-based maintenance schemes, which
harness sensor data and Structural Health Monitoring (SHM) approaches to determine the
actual condition of the assets [7, 181, 46, 319, 149]. While Predictive Maintenance is more
focused on the global state of the assets and predicting how their condition will evolve over
time, condition-based maintenance is more focused on the present, monitoring the current state
of the equipment [246, 20, 319, 88]. Maintenance and renewal actions result in short term costs,
which can, however, result in lower costs over the life-cycle of the infrastructure.

Railway operators pursue a long-term sustainable strategy based on minimizing the costs
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of the complete infrastructure over its life-cycle. Managing the infrastructure over a long-
time horizon implies that high investment costs are occurring point-wise. In the case of Swiss
Federal Railways (SBB), cost saving measures (Within the years 1990 - 2009) resulted in an
insufficient number of renewals, which resulted in a large backlog buildup [112]. As a means
to addressing such a backlog, preventive condition-based schemes enable the optimal decision
of maintenance and renewal actions in order to ensure availability and safety [305, 289, 290,
10]. While preventive maintenance can alleviate these issues, condition-based maintenance can
further eliminate unnecessary and costly interventions [10, 22, 136]. One of the main drivers
for cost are the track assets, which account for over one third of the maintenance and renewal
costs [43, 249].

The growing pressure faced by railway companies due to the previously identified challenges
motivates new and innovative solutions, able to provide asset managers with precise information
on the infrastructure condition. A means to this end is delivered by assimilation of intelligent
and data-driven monitoring system into the management and maintenance procedures. Current
options for monitoring and inspection of railway vehicles primarily include i) on site track
inspections performed by field experts, such as switches or insulated joints, and ii) use of
specialized diagnostic vehicles, which are equipped with high-end monitoring equipment [247],
such as optical and inertial sensors [47, 14], or even more refined Non-Destructive Evaluation
(NDE) tools, such as ultrasonic or Eddy current methods [124, 274].

In Switzerland, track monitoring is accomplished by means of Diagnostic Vehicles (Diagnose-
fahrzeug -DFZ/gDFZ), which use optical methods to provide information on track geometry
(alignment, track profile, short-pitch corrugation, rail wear) at a frequency of twice a year for
regular tracks, or on a monthly basis for high-speed tracks. The diagnostic data pertaining to
the health of the infrastructure collected by these vehicles is then forwarded to decision aid
tools, such as the RCM Viewer [247] or SwissTAMP (Swiss Track Analysis & Maintenance
Planning) [305], which support the asset managers in planning maintenance and renewal ac-
tions. As mentioned by Lederman et al. (2017) [154] monitoring of track geometry provides
essential information for the safe operation of the rail infrastructure, albeit requiring special
scheduling of the diagnostic vehicles, which limits their operation to relatively rare intervals in
order to alleviate the associated down-time and availability restrictions [25, 71].

To overcome these hurdles and reduce Life-Cycle Costs (LCC), recent work has focused on
shifting the monitoring paradigm from sophisticated monitoring vehicles to in-service passenger
trains [40, 188, 167, 260]. Recent advances in sensor technology enable the simple adoption of
relatively low-cost, yet sufficiently accurate sensors on revenue trains; a process that is here
referred to as On-Board Monitoring (OBM). In Switzerland, a number of OBM projects, such
as the OBM-ICN and the SOB-CTM [260], have been recently initiated. In practice, OBM is
achieved through continuous vehicle reaction measurements of dynamic nature (vehicle posi-
tion, accelerations, wheel/rail force) that are drawn from IMUs (Inertial Measurement Units)
mounted on regular passenger vehicles (class ”ICN”). However, accelerations in their raw form
are of limited use; it is only after these measurements are processed (e.g., via feature extraction)
and linked to condition that such information gains exploitable value (see Section 1.2). Aside
from the technical challenge of building a complete data chain able to convey measurements
from the sensors, to the processing, to the data warehouse, and eventually the end user, it is
important to ensure that meaningful and repeatable indicators are established. This is com-
monly realized by defining and extracting condition indicators, which can inform on condition
and support decisions on downstream tasks. Such indicators are often fashioned with a view
to achieve detection of damage, which also forms the first level of the SHM hierarchy [238].
Such diagnostic tasks necessitates the definition of thresholds which can be used to classify
the monitored condition as normal or abnormal [149, 10, 326, 52]. Reliance on this first SHM
level can often prove insufficient for informing maintenance decision making, as the type and
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severity of defects is ignored. The use of vibration.based monitoring, which forms an essential
OBM tool, can facilitate more refined assessment. The measured dynamic parameters enable
the extraction of more informative features,which enable to track the progression of the fault
severity.

This thesis fuses on mobile sensing as a means to railway condition assessment. The devel-
oped tools rely on vibration-based data collected from Axle Box Accelerometers (ABA) that
are mounted both on the ”gDFZ” diagnostic vehicle, as well as the ”OBM-ICN” vehicle [107].
In the first case, a point is made as to the potential of such sensors in complementing or pos-
sible replacing further diagnostic technologies. In the second case, we explore availability of
low costs ABA solutions for ensuring a spatially and temporally denser supervision, as the in
service trains regularly traverse the railway network. It is demonstrated that the indicators
obtained from such a vibration-based condition monitoring approach offer a robust equivalent
to optical sensors (which are often hard to maintain and preserve at a high-quality/clean state),
and complement the more specialized non-destructive evaluation sensors (Ultrasonic testing,
Eddy current), which are often fragile and sensitive to local features of the tracks.

1.2 State of the Art and Open Challenges

This section offers an overview of the current state of knowledge on condition-based assessment
of the railway track infrastructure. The discussion first gives an overarching view on condi-
tion monitoring of railway track assets using specialized equipment, before describing dynamic
based assessments using vibration measurements. Finally, the chapter concludes on the open
challenges that are explored as part of this thesis.

1.2.1 Diagnosis and Prognosis

In the field of condition monitoring of railway track infrastructure, diagnosis and prognosis
are two essential aspects that are closely linked. Diagnosis refers to the process of identifying
the presence of a defect or a potential problem in the track, while prognosis refers to the
prediction of the remaining useful life of the track components [8, 198, 85]. Railways assets
typically degrade over time under repeated loading cycles, implying a slow deterioration process
[167, 267, 266] that is usually modelled using empirical analysis (statistical approaches) [67].
Damage, thus, initiates earlier than it can be detected, it is eventually picked up upon its
progression by the monitoring systems in place, and if no maintenance is performed failure
is eventually observed. This degradation process is illustrated qualitatively in Fig. 1.1 along
with the different maintenance strategies explained in the subsequent paragraphs. Maintenance
and repairs that take place closer to failure occurrence result in high costs, while premature
maintenance may result in unnecessary investment/expenditure. Thus, the challenge for the
asset manager is to determine the optimal time point for maintenance and renewal in terms of
safety, availability and costs [220].

In the absence of information regarding the state of the assets, reactive or preventive mainte-
nance schemes form the main types of available strategies for guiding policy planning. Reactive
maintenance follows the run-to-failure methodology, which is the repair and/or replacement
work after an equipment outage has occurred [155]. This can lead to increased costs due to
urgent repair work and unexpected downtime. To avoid this, preventive maintenance is per-
formed based on a certain periodic interval to prevent and correct problems before breakdown
without considering the actual health condition of a system [155, 246, 22], often aligned to
be slightly shorter than the typical damage initiation of failure interval. In an ideal scenario,
just-in-time (JIT) maintenance is applied just before failure occurs [155]. This cannot however
be ensured via scheduled (preventive) maintenance.
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A switch to data-driven maintenance paradigms allows to track and detect damage at an
earlier stage, by relying on condition indicators that are used to inform maintenance and renewal
decisions [319]. However, a considerable amount of degradation is often required to reach these
thresholds, which hinders early damage prevention and is not optimal as scheduling maintenance
and renewals is subject to time constraints [316] while the procedures when predefined defined
limits are exceeded are not always clearly defined as described by Weston et al. [304].In the case
of faster degradation processes, damage and failure may altogether be missed in certain cases,
if the condition is not monitored at sufficiently frequent intervals. Predictive maintenance seeks
alleviate this problem by shifting from strict thresholds to a more continuous oversight over
the measured asset condition, evaluating how the asset evolves over time, in order to predict
degradation trends, enabling earlier detection than condition-based maintenance which poses
more emphasis on real-time inspections [317, 155, 132].

In the following sections, we will focus on the aspects of deriving condition indicators to
serve predictive maintenance schemes, exploiting data from both state-of-the-art specialized
measurement systems, as well as from lower cost ABA measurements.

Cost to Repair

Preventive Maintenance: may be too early or too late

Predictive maintenance
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Figure 1.1: Conceptual illustration of the evolution of the condition of a railway asset and
different types of maintenance. Maintenance closer to the failure of a component results in
higher costs. Preventive maintenance is applied at scheduled intervals depending on the degra-
dation rate of the asset class. Condition-based maintenance prescribed thresholds on measured
condition indicators in order to signal maintenance requirements. Predictive maintenance uses
the measured asset condition to predict trends in degradation, which enables earlier detection
and intervention [155].

1.2.2 Monitoring Data for Informed Condition Assessment

As previously outlined, knowledge on the condition of the railway assets is of central concern to
ensure efficient, reliable and safe operation. Infrastructure maintenance and renewal planning
is nowadays performed in a data-rich environment, supported by four main information sources
available at any position on the railway network: fixed asset information (substructure type,
superstructure type, rail type, age of each component), maintenance information (number of
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performed rail grinding, tamping...), loading conditions (number of axles per year, total gross
tons per year) and asset condition (measurement data, inspection data and condition logs)
[200, 149, 183, 27].

Fixed asset information, maintenance data and loading conditions are primarily used by rail-
way operators to derive investment and maintenance strategies. These maintenance strategies
often rely on classification schemes, such as the so-called “Standard Elements” classification,
which group similar track types and loading conditions to estimate attributes such as expected
lifespan, average maintenance and life-cycle cost [200, 77, 313]. Railway companies, such as
the SBB and Austrian Railways (ÖBB), use the Standard Elements to improve their long-term
maintenance and renewal decision making [200][77]. This approach combines data–driven ap-
proaches [77] with expert know-how to determine service life and maintenance requirements
[305], in turn enabling preventive maintenance schemes.

Predictive or condition-based maintenance schemes, however, require more granular infor-
mation on infrastructural condition [22]. Infrastructure condition is nowadays mainly assessed
with diagnostic vehicles which deliver a large range of indicators pertaining to the track health
such as track geometry measurements, images of the railhead and of the track bed, subsi-
dence measurements, vibration analysis or ultrasonic testing. The systems used currently by
railway authorities are summarized in Sec. 2.3.1. Aside from the automated inspection that
is achieved via diagnostic measurement vehicles, at somewhat sparse time intervals, certain
inspection tasks still rely on manual on-site inspection conducted by field experts. Such inspec-
tions are performed in two week intervals on critical components such as switches [121, 293]
or, in some cases, are triggered by the manifestation of irregular behavior. The advantages of
automated inspection via measurement vehicles are obvious from the point of view of safety,
as well as in terms of optimizing cost and efficiency. Consequently, the railroad industry is
currently researching approaches to automatize the tasks that still rely on on-site inspections
today [25, 222].

Asset managers currently require component-based assessment of the condition, in order to
optimally schedule maintenance. This is achieved, as described in Sec. 2.3.1, via a large number
of state-of-the-art monitoring systems that exist to monitor the condition of railway track in-
frastructure. These techniques are used to detect a wide range of defects such as stiffness, track
geometry faults, rail surface defects or squats, cracks in sleepers, rail corrugations, rail profile,
subsurface defects and internal defects in the rails (see also Sec. 2.2). The track components
monitored via diagnostic measurement vehicles are illustrated in Fig. 1.2. Certain components,
such as the substructure, are more recently assessed via data-driven indicators. An example for
this is found in the so-called “fractal values” indicator, which are derived from the longitudinal
level, which are an indirect indicator of the substructure condition [150, 149, 148]. The rail is
one of the most critical components as it is exposed to high stresses by directly carrying vehicle
loads. For this reason, within the Swiss context, the rail is regularly monitored to detect both
internal flaws, using ultrasonic and Eddy-current measurements, as well as surface flaws via
images captured by the rail head imaging system (V CUBE). The latter are used to detect
faults in critical rail components such as welds, insulated joints and surface defects [247]. This
automated detection is achieved with the aid of an algorithm developed by SBB and CSEM
(Innosuisse Project: RailCheck mit Fingerprinting).

One limitation of the monitoring via specialized vehicles is that their relatively high costs and
infrequent measurements limit a continuous assessment of structural condition. In Switzerland,
for instance, at a measurement frequency of only twice a year for the complete network, the
delivered information is mostly exploitable for faults with a relatively low degradation rate [52].
For faults that feature fast growth such as squats, the frequency of measurements would need to
be increased in order to provide a sufficient observation rate for condition-based assessment and
predictive maintenance [167]. In the OBM scenario, therefore, Structural Health Monitoring
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(SHM) would offer a way to continuously extract information on system performance in an
almost automated manner [74]. The result would be more reliable condition status reports
and, accordingly, more efficient just-in-time maintenance.
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Figure 1.2: Illustration of the assets monitored on the railway track.

1.2.3 On-Board Monitoring Applications

On-Board Monitoring setups record the interaction between track and vehicle, which is influ-
enced by the boundary conditions between vehicle and track, as well as by the specific vehicle
parameters. Boundary conditions include track parameters such as mass, stiffness and rail-
wheel contact parameters [140]. The vehicle’s response to excitations caused by vehicle and
track irregularities is a function of these parameters. Irregularities have several scales ranging
from below a centimeter to over a decameter [150]. They can be periodic (short pitch corruga-
tion, waves) or transient (turnouts, alignment, squats, welds, rail joints) [107]. The resulting
excitation relates to track geometry (longitudinal level, alignment), rail defects (squats, cracks,
corrugation) and wheel condition (damaged bearings, wheel Out-Of-Roundness and flat spots)
[201]. An effective OBM setup needs to minimize the sources of variation (noise) in the data
and, thus, maximize the information that needs to be extracted. Different approaches are
followed to this end by railway companies and researchers.

Hardware implementations of OBM setups, which rely on ABA measurements, have been
tested with promising results on a number of applications [201]. A complete OBM setup,
illustrated in Fig. 1.3, includes accelerometers on several axles, on the bogies and the body. In
some implementations, tensiometric wheelsets, which are specialized systems used to measure
wheel/rail forces, are also included. The feasibility of extracting track quality indicators (TQIs),
which are indicators summarizing the asset condition [316], in relation to the track geometry
(waverange 3-70 m), from such measurements has been successfully demonstrated by means
of both high precision sensors [280] [170] [191] as well as cheap smartphone accelerometers
[314]. In several of these studies, the track geometry data is obtained via double integration of
the ABA measurements and application of appropriate filters. Since 2018, for instance, such
data has been reported weekly on the network of SOB [260]. In fact, a similar system is used
in Germany by DB Systemtechnik, where certain tracks are monitored and maintained using
indicators extracted from accelerometer measurements [196].
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The identification of defects on a small scale (< 3 m) has been mainly investigated via
adoption of machine learning techniques, with currently no known commercial products or
applications. TU Delft has developed algorithms to detect small scale rail surface defects,
such as early stage squats or damaged insulation joints, using data from their OBM vehicles
[188]. Studies carried out in Delft have shown that it is possible to reduce the signal-to-noise
ratio in the measurement data by using the longitudinal signal from the ABAs, which is less
influenced by the track properties, and results in a better detection of small scale irregularities
[189, 190, 175]. In the UK, on-board self-powered axle box sensors are used to identify wheel
and bearing condition, as well as track quality, by characterizing the energy levels in frequency
bands [61]. On-board accelerometers have shown high potential for monitoring high-speed lines;
several studies illustrate that indications on the condition of rail welds [9] and rail pads [311] can
be yielded by combining acceleration measurements with vehicle-track interaction simulation.
The interpretation of acceleration-based measurements often relies on system identification
techniques [107, 106] that are overviewed in the next section.

4 Axle Box Accelerometers (y,z)

4 Displacement Primary Suspension (z)

4 Bogie Accelerometers (y)

4 Car Body Accelerometers (y,z)

1 Uncompensated Lateral Acceleration (aq)

2 Pairs of Measuring Wheelsets
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1 ETCS balise antenna

Air humidity and Temperature sensor
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Rack
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Vehicle Body
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ICN OBM sensor positions

Figure 1.3: Overview of sensor positions for a complete OBM setup of an in-service train at
SBB. ABAs form a salient means to the current data-driven approach to assessment of the
track condition.

1.2.4 System Identification in Railways

The assessment of condition on the basis of dynamic response can be traced back to the ini-
tial work conducted, more than 200 years ago, for deepening the understanding of the vehi-
cle/track interaction effects. Here, simulation played a crucial role. This includes running
stability investigations based on analytic solutions of the railway vehicle motions [137, 41, 51].
Breakthroughs in fundamental research on stability and contact mechanics were achieved in the
1970s [186]. These linear and nonlinear stability investigations, were encoded into specialised
software, such as Simpack, that enable the simulation of vehicle/track dynamics. Simpack,
Medyna or Adams/rail are Multibody Body Simulation (MBS) engines, in which the vehicle
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and track are assembled using substructures consisting of bodies and joints with specific prop-
erties [235]. For complex investigations MBS software, such as Simpack. allow for considerable
flexibility in simulating the vehicle response [141]. Analytical solutions relying on simplified
models have been commonly adopted [140] for the analysis of the vertical and lateral vehicle
axle, bogie or body dynamics. To what concerns coupling of such available models, across
their different granularities, with measurements, this often requires simplifying assumptions in
terms of boundary conditions, contact mechanics, or abstraction/elimination of certain degrees
of freedom. However, such a coupling is important to achieve in order to validate the employed
models by in-situ measurements [258] or by means of hybrid-simulations [96]. Hybrid simulation
is a technique which combines the use of physical testing and numerical simulations in order
to analyse the behaviour of mechanical systems which have subcomponents that are highly
nonlinear or safety critical which cannot be adequately modelled [257]. While such simulations
enable the definition of baselines for condition indicators under varying track types and oper-
ating conditions, the variety of excitation sources and track characteristics poses a challenge in
inferring the system parameters or condition [123].

One of the main excitation sources on the railway vehicles stems from the geometric align-
ment of the track. The characterization of the track geometry in terms of roughness and
wavelength is fundamental for understanding the degradation mechanisms of the track [150].
Identification of the track alignment, short wavelength defects or the condition of the vehicle
wheels or bearings from acceleration measurements can follow two main tracks, namely model-
based or purely data-driven approaches [107]. While data-driven models are successful in terms
of detecting changes, they are often disadvantageous for interpreting the measured variation,
since they do not explicitly link to the underlying physics. On the other hand, interaction mod-
els suffer from simplifying a-priori assumptions, which often result in inaccuracies [141]. An
in-depth review of parametric methods, which are often used in combination with vehicle-track
models, is provided in Sec. 2.5.

In the first case, a-priori models of the vehicle (train & suspension system) are fused with
measurement data, revealing an analytical connection to the underlying track geometry [231,
210, 69]. Changes in the estimated track profile across several crossings are then associated
with a possible deterioration. Beyond the recovery of track geometry, model-based assessment
is in many studies exploited for characterizing the effect of the track stiffness on the vehicle
response [192, 29, 37, 36]. The vertical track stiffness is an important parameter since it strongly
affects the wheel/rail contact forces. The stiffness is usually assessed via in-situ measurements
by measuring the subsidence of the rail or sleeper under the load of a train or via specialized
measurements systems. The continuous measurement of the track stiffness is obtained from so-
called subsidence measurement vehicles (EMW – Einsenkungsmesswagen) [262]. Alternative
track stiffness assessments exist, that exploit the dynamic response of the track to an oscillating
mass, which is either connected to the axle in the case of the Portancemetre [192] or that is
hydraulically actuated axle in the case of the Rolling Stiffness Measurement Vehicle (RSMV)
[29]. The assessment from oscillating axles relies on the assumption of a simplified underlying
spring-mass-damper systems to inversely determine the track stiffness.

In the second case, the assessment relies on the exploitation of available data and their pro-
cessing in the temporal and spectral domains [153] [50]. In Sec. 2.6, we present a comprehensive
overview of data-driven approaches including time-frequency analysis, numerical integration,
and statistical features. The observed wavelengths of the faults on the track depend on the
type of defect. For this reason, different methods of time-frequency analysis have been ap-
plied in research to extract wavelength or frequency specific components. Concerning longer
wavelengths, accelerations signals are usually related to faults in the track geometry [280] [170]
[191]. Short wavelength faults cause impacts on the axle, which appear as large acceleration
peaks. The dynamics for such faults are quite complex as they form a combined result of the
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vibrations of the axle, rail and wheel system, each of which include many unknowns. For this
reason, data-driven approaches have been preferred over model-based schemes for assessing such
types of faults. As an instance of such an approach, an application for squat detection, using
ABAs, has been developed at TU Delft. The accelerations are filtered to remove wheel-related
excitation before being transformed into a time-frequency representation using the continuous
wavelet transform [188]. More recently, Yang et al. [319] have shown that both feature-based
methods and Convolutional Neural Networks (CNNs) can be applied to effectively detect in-
sulated joints from acceleration measurements. Tsunashima and Takikawa [283] propose an
approach based on outliers identified from the CWT spectrograms, which were analyzed by
experts who identified that ABA based detection has a higher false positive rate for small
faults. In their work, Shadfar et al. [250] propose an index based on the combination of Fast
Fourier Transform (FFT) coefficients, Principal Component Analysis (PCA), and a non-linear
neural network for evaluating the health of rail welds. One limitation identified by Shadfar et
al. is that their proposed index only serves as an indicative tool that must be further enhanced
with expert judgement to build a more adequate dataset for full automation. Xiao et al. [312]
combine the wavelet packet decomposition (WPD) with adaptive synchro-squeezed short time
Fourier transform (ASSTFT) to locate poorly diagnosed welds on a heavy-haul railway line.
Multi-frequency analysis often involves the decomposition of the signal into several modes via
empirical mode decomposition (EMD) or the Hilbert-Huang transform (HHT) on the acceler-
ation signals. The HHT has been used to characterize abnormal vibrations in damaged welds
on tramway lines [126] and the EMD has been successfully applied to extract condition in-
dicators for the catenary [115]. Such approaches, although more computationally intense are
particularly well suited for non-stationary signals such as the measured ABA.

1.2.5 Uncertainty quantification

The vibration response measured on the axles, the bogie and the body is determined by the
interaction dynamics between the vehicle and the track. The establishment of robust indicators
from vehicle track dynamics requires the incorporation of prior knowledge relating to the track
assets or the vehicle. Vehicle-track dynamics are a function of vehicle and track parameters.
Vehicle parameters are generally provided by the train manufacturer during the homologation
process, while track parameters are less clearly known since not all components are inventoried
with the same level of detail. The vehicle parameters are non-linear and usually time-invariant.
Time-variant vehicle properties such as passenger load, rail-wheel-rail contact parameters, wheel
condition and dynamic are uncertain and have to be determined or estimated.

In general, existing uncertainties can be classified into the aleatoric and epistemic class.
Aleatoric uncertainty pertains to the statistical uncertainty that arises due to unknowns that
cannot be easily determined, eventually inducing variance in the output of an experiment
[254, 197]. Noise during measurements and unknown vehicle track boundary conditions are
aleatory, as no device can record every source of variance. The variance in the vehicle response
for each experiment is partly due to parameters which are unknown and unmeasured. For
example, the exact rail-wheel contact geometry at any point in time and the rail-wheel friction
coefficient are unknowns that can only roughly be estimated. The aleatory uncertainty in a
measurement system is often modeled by considering the statistical properties across multiple
observations [197, 70, 38].

Epistemic uncertainty, also called systematic uncertainty, stems from factors that in prin-
ciple can be inferred, but which are missing in practice. The source of this uncertainty is
the incomplete knowledge of the railway system. Incorporating models and parameters can
reduce the epistemic uncertainty. Epistemic can be reduced by adapting the model and its
parameters. For instance, one common source of epistemic uncertainty in monitoring vehicles
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is vehicle localization, whose error stems from the combination of multiple systems such as
odometric data, track transponder data and in some cases GPS data [237] and from their re-
spective measurement noise. Adding more channels via data-fusion processes can reduce the
noise or errors in the estimated location of the vehicle (see also Sec. 2.3.3). Such uncertainties
can be quantified via probabilistic modelling, uncertainty propagation (Monte Carlo simula-
tion and polynomial chaos expansions) [193][17] and sensitivity analysis (correlation measures,
Sobol’ indices) [38][270]. Bayesian logistic regression is a statistical modeling technique that
uses Bayesian inference to estimate the uncertainty associated with the predictions made by a
logistic regression model via Markov Chain Monte Carlo (see also Section 7.4.2).

1.2.6 Adaptive Approaches

A common challenge when developing diagnostics or prognostics for the condition assessment
of the railway track is the integration of the variability due to the previously identified uncer-
tainties. Differences encountered in practice may stem from the following situations:

1. Variations in track type, such as different ballast conditions, sleepers, pads or rails.

2. Variations in the vehicle parameters for different monitoring vehicles.

3. Changes in operating condition such as the vehicle speed, which varies along the track
position depending on the regulation.

Considering the large diversity of asset choices and operating conditions observed in rail-
ways, the resulting dynamic characteristics can vary widely, which impedes the applicability of
methods beyond the tested scenarios. Finally, for the case of fully equipped vehicle fleets, the
repeatability of the methodologies applied across several vehicles must be demonstrated. It is
thus important to consider the varying characteristics through data processing techniques in
order to ensure that the condition indicators are stable over time and space.

Several adaptive approaches and transfer learning approaches have been applied in different
fields to generalize models beyond one specific set [82, 115]. In many studies this issue is
circumvented by narrowing down the scope of the research, focusing on a small track sections
and a limited number of defects [312, 250, 283]. The vehicle speed is often in such scenarios
ignored, or is taken into account via linear correction factors [189]. The applicability of such
methods decreases when increasing the monitored track sections, since more causes of variation
are inevitably included in the data. Therefore, models or approaches that can adapt to different
conditions are essential, since they enable the generalization to other conditions.

So far, adaptive approaches for assessing the condition of the track is still a major research
issue [279]. Such approaches are particularly important for features that are dependent on
other environmental or operational parameters [82]. For instance, time-frequency approaches
are usually used to separate sources of vibration occurring at different scales (short wavelength
rail faults to long wavelength track geometry faults). In the case of varying track properties,
these sources of variation are often ignored, because the fixed asset data information is in
many studies incomplete or not available. Longitudinal ABAs have been for example adopted
by Molodova et al. to characterize squats, since these accelerations are less dependent on
track properties [189]. Vehicle speed is often accounted by applying regression techniques to
correct for its influence [189, 134]. However, such an approach only partially solves the issue,
as these regression factors depends on more factors than only the speed. Adaptive approaches
may further be enabled by including expert knowledge [115], since this additional information
improves adaptation to different observed conditions or individual assessment.
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1.2.7 Research gap and open challenges

The above mentioned research works reveal the large potential of On-Board Monitoring via
ABAs for assessing the structural condition of the railway track. However, they simultaneously
shed light on the challenges in extracting meaningful information to deliver reliable indications
on the state of the railway assets.

Dynamic measurements intrinsically capture the response to a large number of excitations
of a system that has multiple degrees of freedom and resonant modes. For instance, changes in
track stiffness due to parametric variations of track parameters strongly influence the dynamic
response of the axle. The resulting effects on contact forces and wear have been theoretically
shown, but the practical implications have not been demonstrated [140, 286, 64].

Another aspect is that in most academic studies, the case studies remain quite limited in
the length of the track or in the assessed faults, which reduces the actual problem complexity.
While previous studies demonstrate the large potential for an acceleration-based assessment of
short-wavelength faults, most studies do not perform component-based assessment and often
neglect the assessment in term of severity due to difficulty in quantifying magnitudes of faults.
Indeed, most of the published research is either restricted to small case studies with dozens
of samples on short track lengths, or does not provide a sufficient level of granularity when
assessing the individual components on the track [250, 326, 283, 312].

To enable large scale adoption and acceptance, the condition indicators delivered from ABA-
based processes must be in tune with the needs of experts and asset managers. Expert feedback
is an essential aspect to include when assessing asset condition for structural health monitoring
applications, as expert feedback enables improved informed assessments. Expert feedback and
labels generally stem from condition monitoring databases or alternative feedback processes.
These labels generally feature an uncertainty that must also be accounted for when assessing
the infrastructure using such information sources [181, 115, 279].

Overcoming the challenges in generating transparent ABA-based condition indicators and
fusing them with expert feedback would ultimately lead to a comprehensive track condition
assessment. Such an approach relying on low-cost sensors installed on a train fleet would result
in large-scale continuous infrastructure condition assessment. In this work, we aim to address
the identified challenges with the goal of achieving reliable condition monitoring using ABA
measurements and infusing these in a holistic process that exploits machine learning tools and
statistical methods for uncertainty quantification and robust diagnostic indicators, which are
then offered to experts for further corroboration and assessment; in this way closing the loop.

1.3 Theoretical Background and Methods

As previously mentioned, acceleration-based condition monitoring is of great relevance for rail-
way operators and poses a particular challenge when considering the more challenging feature
extraction and interpretation in comparison to geometric measurements or visual inspection,
whose outcome has an almost obvious connotation in terms of conditions and faults. While
considerable work has been done in the field of asset monitoring via ABAs, the identification
of essential parameters, such as the track stiffness or the condition of specific components such
as welds, insulated joints, squats and surface defects still requires further analysis.

In this section, we present the general topics that are closely related to this dissertation.
We introduce acceleration-based monitoring approaches and the relevant methods developed in
the literature. A more detailed review is provided in the respective chapters.
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1.3.1 Railway Infrastructure and Data Assets

Asset managers nowadays base their decisions on a large number of data sources. This expert-
based approach enables more reliable decisions by integrating a multitude of factors, but such
experiences and know-how is difficult to reproduce in a data-driven way. By incorporating prior
knowledge about the infrastructure and the evolution of its condition over time, the uncertainty
of condition indicators can be reduced. Infrastructure managers work within a data-driven
environment to pursue their long-term maintenance strategy planning. Fixed Infrastructure
Assets (Datenbank feste Anlagen - DfA, SBB [306]) , scheduling data (Anabel, SBB [113]) ,
deviation logs (Zustands-Monitoring - ZMON, SBB) , maintenance logs (Auftragsmanagement
- AMGT, SBB) , and measurements (ICN-OBM, DFZ and gDFZ measurements, SwissTamp,
SBB) are data streams that provide a picture of the infrastructure over its entire life-cycle [27].
This information is usually logged by most railway operators. In Switzerland, SwissTamp (SBB)
forms a decision aid tool that is used by asset managers for track analysis and maintenance
planning [200]. Main limitations are communication protocols, access restrictions and the
processing of bulk information, which can sometimes be outdated and incorrect. Research has
shown that these data streams contain valuable information that should not be neglected [27].
For example, infrastructure components such as road and railways bridges or railway tracks are
still assessed based on manual inspections and other metadata. These data combined with data-
driven decision support, can be used for condition assessment, remaining lifetime estimation
and action recommendation [44]. Throughout this thesis, these data sources are used in order
to explain and improve the proposed approaches to condition assessment.

1.3.2 Parametric and non-parametric methods for feature extrac-
tion

The condition of a structural system is often characterized by extracting indicators from mea-
surements using parametric or non-parametric approaches as noted in Sec. 1.2.4. The traditional
approach in Structural Health Monitoring requires the initial computation of characteristic in-
dicators from time-series. More recently, the direct classification of time-series given as an
input to deep learning frameworks such as Convolutional Neural Networks has been proposed
[318, 146, 75]. While this approach in principle bypasses the need to calculate some features,
it is more challenging to train such models since they require more input data to learn the
optimal weights of the model. A comparison of feature based and time-series based approaches
is given in Chapter 5 to enable the direct classification of the time-series.

The methodologies applied to extract features in this work are described in Sec. 2.6 and
2.5 for parametric methods and non-parametric methods respectively. The methods for feature
extraction fall in the following categories:

• Displacement-based indicators: longitudinal level and lateral displacement can be recov-
ered from ABA using Bayesian filters such as the Kalman Filter (see also Sec. 2.5.3)
or via direct integration techniques (see also Sec. 2.6.2). They characterize the level of
roughness of the track at wavelengths between 0.5 and 70 m.

• Time frequency representations: coefficients of the Short Time Fourier transform (STFT),
the Discrete Wavelet Transform (DWT), or the Continuous Wavelet Transform (CWT)
enable the characterization of the vehicle response in both time and frequency. These
methods are especially well adapted for short wavelength defects.

• Signal filtering: Band-pass filtered time series to selected frequencies of interest. Vold-
Kalman filter, which is a parametric approach used to extract periodic components from
a noisy signal as a function of vehicle speed. The time series from such filters may
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contain less noise by focusing on frequency ranges of interest. The Vold-Kalman filter is
for example used to separate the wheel Out-Of-Roundness (OOR) and sleeper passage
response from other sources of noise in Section 3.

• Essential indicators: summary statistics (mean, maximum, minimum, quantiles, kurto-
sis...), energy and entropy are computed on the extracted features and correspond to a
reduced set of indicators for the underlying condition of the track.

These above-listed features enable an efficient and transparent application of outlier analysis
and classification schemes for the assessment of the track condition. The next section introduces
different methods that can be applied on these indicators for the assessment of track condition.

1.3.3 Outlier analysis and classification

Outlier analysis and classification are the subsequent stages following feature extraction with
the purpose of inferring condition labels or component classes from the ABA data. The tra-
versed (and measured) component or the related condition labels are in some cases known
from inpection logs, which enables the use of supervised classification approaches. Supervised
classification are used in a wide range of SHM applications to predict class labels from unseen
data. Models are first trained on samples with known condition labels. Special care must be
taken in order to ensure a good separation between the training data, the testing data and the
validation data.

Decision Trees (DTs) and Random Forests (RFs) are commonly utilized machine learning
algorithms that generate interpretable results for classification [181]. However, these algorithms
perform optimally when utilizing a smaller set of parameters. RFs, in particular, are a type of
ensemble model, which aggregates the results from multiple decision trees to produce a more
reliable prediction compared to a single DT.

With the proliferation of time series data, Deep Neural Networks (DNNs) have gained in-
creasing popularity for solving complex time series classification problems [75, 318, 146]. DNNs
are capable of achieving results that are equal to, or better than, those produced by traditional
machine learning methods such as Decision Trees (DTs) and Random Forests (RFs), without
the need for feature engineering. It is important to note, however, that the injection of prior
knowledge or physics into the learning system can still be advantageous in capturing the un-
derlying dynamics of the data, as demonstrated in [146]. The ability of DNNs to automatically
extract useful representations from the input data based on examples is what makes them a
highly effective tool for solving complex problems. Convolutional Neural Networks (CNNs)
have often been utilized in time series classification tasks. For example, a CNN was applied to
raw axle box acceleration data for the detection of insulated joints in [318].

Supervised classification approaches are applied to solve two aspects of monitoring railway
assets challenges in this work. The first aspect of classification between rail components such
as welds, insulated joints, and squats or surface defects is described in Chapter 5. The labels
automatically obtained from V CUBE images (see Section 1.2.2) are used to identify acceler-
ation time-series and features. In this study, CNNs trained on ABA time-series are compared
to RF models trained on a set of essential indicators.

Such classification approaches are well suited for training models to learn the relation be-
tween the ABA features and the class labels when a large number of labels is available. However,
sometimes such labels are not available. In Chapter 5, it is observed that some components
such as welds do not have condition labels, which hinders the assessment of their condition.

In the absence of labels regarding the condition of the assets, outlier analysis is a statistical
technique used to identify unusual or extreme data values in a dataset. The abnormal values
identified may for example relate to faults. In this thesis metrics that quantify the distance
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of data points to minimum acceleration levels in terms of quantiles are proposed. Outliers are
samples which show abnormally high acceleration levels for their respective component class
(e.g., welds). This metric is proposed for welds, which are a component whose condition is
not known, since the automatic detection algorithm on the VCUBE images does not quantify
the condition of welds or insulated joints. This challenge is addressed in this work by using
outlier analysis techniques, namely statistical methods to characterize outliers for the welds.
The identified outliers are submitted to experts for validation validation to gather feedback for
training improved models. This process is described in Sec. 1.3.4.

The expert knowledge obtained from the assessment of outliers is combined with the re-
sulting condition logs from ZMON in Chapter 7, where an expert informed classification of
the weld condition is proposed. This approach compares three types of models: simple Bi-
nary Choice (BC) models, Random Forest classifiers and Bayesian Logistic Regression (BLR)
a applied to the ABA features. BC models are the simple and understandable models that are
used as a basedline for comparison with more complex models such as RF and BLR. BLR is a
statistical method for modeling the relationship between a binary outcome variable and one or
more predictor variables. BLR uses Bayesian inference to estimate the model parameters in a
probabilistic framework.

For this reason, the BLR model [35], compared to BC and RF models, further delivers a
probability of prediction, thus quantifying the confidence which we may attribute to the assigned
labels. Its main advantages, compared to other models, are a reduced risk of over-fitting thanks
to the regularization of the priors, a probabilistic estimate on the posterior under the model
assumptions (i.e., the priors) and providing an indication of the predictive uncertainty.

1.3.4 Expert feedback

Expert-in-the-loop approaches in Structural Health Monitoring (SHM) involve the incorpora-
tion of human expert knowledge and expertise into the process of monitoring and analyzing
the health of a structure [45]. The data obtained on the condition of assets such as the railway
track is then analyzed by both automated algorithms and human experts. The human experts
in such a scenario review the data, provide feedback and make decisions on how to proceed with
monitoring and maintenance. Leveraging the knowledge of experts is achieved in this thesis for
the identification of the condition of welds. Outlier analysis, as previously described, is used
to extract ABA-based condition metrics. Samples of outliers are then given to experts after
each vehicle-based automated track inspection campaign. An expert then rates these outliers
in terms of binary condition labels (healthy/defect), introduces the defect samples into the con-
dition monitoring database (ZMON). In a second stage, the expert labels are used to improve
the performance of the model in a supervised classification framework developed in Chapter 7.

The knowledge gained by the ABA-based condition assessment and expert feedback also
drives maintenance decisions, as each expert will depending on the observed state initiate the
process leading to maintenance measures. By tracking the condition indicators over time,
the effectiveness of a resulting maintenance measure can be assessed. For example, after the
replacement of a damaged weld, the increased ABA-feature may return to low values, meaning
the problem was solved. The analysis of the condition indicators over time gives an insight on
the origin and evolution of shortcomings in the infrastructure (see also Sec. 7.4.3).

The assessment of certain components on the track is nowadays achieved via rail-head
images or via on-site inspection. Both these approaches are insufficient, as they do not deliver
clear metrics on the severity or urgency of a fault. For this reason, maintenance and renewal
decisions are today largely in the hands of the judgement of experts, which each may have
different assessment criteria. Chapter 7 identifies the challenges of biased assessment and
proposes the usage of ABA, as a more quantifiable metric of the rail condition.
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1.4 Thesis Objectives

The traditional approach to Life-Cycle Assessment (LCA) and infrastructure maintenance plan-
ning is based on inspections performed at regular time intervals via specialized systems or
manual inspections that are triggered by the manifestation of irregular behavior. The disad-
vantages of this approach are obvious from both a cost and efficiency perspective. Structural
Health Monitoring (SHM), for instance via accelerometers installed on passenger vehicles, of-
fers an alternative approach that uses sensors for extracting continuous information on system
performance in an almost automated manner [74]. This dissertation aims to shift the current
condition assessment and monitoring paradigm for railways, based on periodic inspections by
track inspectors and diagnostic vehicles, to a continuous condition assessment via on-board
accelerometers mounted on specialized and/or in-service trains.

To this end, this work presents newly developed methodologies that allow for continuous
monitoring and analysis of the track infrastructure condition. This is achieved on the basis
of measurements from Axle Box Accelerometers (ABA) that are installed on the diagnostic
measurement vehicle of the SBB (gDFZ) and the On-Board-Monitoring ICN (OBM-ICN) of
the SBB. The integration of system knowledge, i.e., the fusion of locally collected data with
global data sources, such as fixed asset information, physics-based vehicle models, expert feed-
back, condition logs or maintenance logs, forms an essential element to provide estimates with
increased confidence for the estimated infrastructure condition. This thesis aims to propose
component-based assessments of asset condition using axle box accelerations that are consis-
tent with the component-based assessment pursued by the railways [247].

These aspects are further elaborated in the six detailed objectives of this thesis:

• Investigate new methods enabling robust diagnostics from ABA measurements.

• Develop an assessment methodology of the wheel Out-Of-Roundness and the track stiff-
ness exploiting a data driven - yet dynamics aware - approach, namely the Vold-Kalman
filter.

• Develop a methodology for calibrating physics based models relying on MCMC Bayesian
updating, to improve the understanding of vehicle-track dynamics.

• Investigate and develop models for the automated classification of critical rail components,
namely welds, insulated joints and surface defects by exploiting a Big-Data framework
powered by Machine Learning tools.

• Develop new methods for automated and data-driven assessments of the condition of
welds and for enabling the early detection of faults.

• Delivering a holistic framework, which combines data-driven condition indicators with
robust outlier analysis and complementary expert feedback for actionable implementation
in railway management.

First, a comprehensive overview of methods and applications is provided, summarizing the
approaches to infrastructure condition assessment using ABA and demonstrating them using
our data.

To achieve the second objective, the influence of the sleeper passage and the wheel OOR on
the dynamics of the rail-axle system is investigated by extracting these components from the
signal using the Vold-Kalman filter. The extracted harmonic components are then leveraged
to quantify the track stiffness or wheel Out-Of-Roundness.

To achieve the third research objective of understanding vehicle-track dynamics is inves-
tigated by integrating physics-based models with data-driven approaches for model updating
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using the MCMC Bayesian updating method. The resulting models enable the improved esti-
mation of wear and fault development.

In line with the fourth goal, algorithms are developed to detect and identify deviations such
as squats, insulated joints and squats or rail surface irregularities. These algorithms rely on
a large database of labels that are automatically generated from an algorithm used by SBB
on the Rail-Head images (VCUBE). Two approaches are explored: one that directly feeds the
ABA time-series into Convolutional Neural Networks and a second one that uses engineered
features as an input to Random Forests.

The last two objectives are reached by combining the welds identified from the images of
VCUBE with ABA-based indications. Outlier analysis is performed on features extracted from
the ABA and potentially faulty welds are given for expert feedback. More advanced classi-
fication models such as Random Forest (RF) and Bayesian Logistic Regression (BLR) which
combine the expert labels with information from ZMON, are subsequently used in order to de-
liver improved metrics that integrate essential indicators from ABA and an essential operational
parameter, namely the vehicle speed.

1.5 Thesis Outline

The thesis is structured in six chapters containing journal and conference papers produced by
the author during the doctoral studies and combined in a comprehensive flow.

In line with the overall objectives of assessing the state of assets using axle box accelerations
for On-Board Monitoring application, Chapter 2 presents an in-depth analysis of the existing
methodologies and approaches for railway infrastructure assessment using vehicle-based accel-
eration measurements. This work summarizes the approaches to assessing the condition of the
complex railway infrastructure, which consists of many elements, such as ballast, sleepers rail
and sleepers. Special emphasis is given to the most common defects that develop over many
load cycles and affect the safety, availability and costs of the railway system. Parametric and
non-parametric methods are then described and complemented by examples produced from the
axle box acceleration measurements of the diagnostic vehicle of SBB, to illustrate the use of
ABA for asset condition assessment. Finally, an overview of the most commonly used clas-
sification and outlier analysis methods in the railway field is given. The findings show that
acceleration measurements can complement a wide range of specialized systems currently used
to monitor separate components.
This work is published in The Rise of Smart Cities – Advanced Structural Sensing and Moni-
toring Systems [107].

Drawing from the first objective, Chapter 3 shifts towards the assessment of the track
stiffness, an essential parameter to quantify the track performance. The vibrations induced by
the sleeper passage and the wheel Out-Of-Roundness result in periodic responses of the axle,
which are extracted using the Vold-Kalman filter. After formulating the Vold-Kalman filter,
we provide a novel application in the field of railway asset condition assessment by extracting
periodic components. The harmonic components extracted using the VKF are then correlated
with the track stiffness. Finally, increased ballast and rail maintenance can be attributed to
the stiffer track sections. These findings motivate further work on improved design criteria for
the asset, taking into account the dynamic nature of the vehicle/track system.
This chapter has been submitted to Mechanical Systems and Signal Processing.

In line with the third objective, Chapter 4 is dedicated to the process of integrating physics-
based models with data-driven approaches, specifically utilizing the MCMC Bayesian updating
method, to fine-tune parameters within an ICN RABDe500 wagon model. This calibration
process is based on actual OBM measurements gathered from an in-service ICN RABDe500
train. This work results in a well-calibrated model, significantly improving its ability to predict
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loads and assess damage. Furthermore, the study underscores a key feature of MCMC scheme:
the generation of a posterior probability distribution for parameters, which aids in quantifying
uncertainty in predicted outcomes.
This work was presented at the XII International Conference on Structural Dynamics and will
be published in the Proceedings of the European Association for Structural Dynamics.

In accordance with the fourth objective, Chapter 5 presents a data-driven classification
of rail irregularities from Axle Box Accelerations. Welds, insulated joints, surface defects and
squats are classified from the ABA using two approaches: one, which requires the construction
of features from the ABA as input to a Random Forest. The second uses the time series of
accelerations, which are transformed into a time-frequency representation with using the STFT
and then classified using a CNN. Both the CNN and the RF approach gave good results for the
classification on unvalidated labels obtained from the Rail-Head (VCUBE) image recognition
algorithm of SBB. However, welds and rail defects were not always identified reliably, because
these classes are not clearly defined today and contain a mixture of healthy and defective
instances. This further motivated an in-depth investigation of the condition of welds using
ABA.
This work was presented at the 40th International Modal Analysis Conference and is published
in the Proceedings of the Society for Experimental Mechanics Series [104].

Further delving into short wavelength faults, Chapter 6 and Chapter 7 present a holistic
framework for the automated detection of defect welds, by fusing a variety of informations,
such as visual or on-site inspections with automated diagnostic information extracted from the
monitoring vehicles.

Chapter 6 presents an approach relying on Extreme Value Analysis (EVA) that is per-
formed on a set of the essential indicators obtained from the ABA measurements, to characterize
outlier welds. Outliers detected via EVA are submitted to field experts, in a first of its kind
Proof-of-Concept (PoC) project in collaboration with the Swiss Federal Railways (SBB) to
obtain expert feedback. The expert feedback is then exploited in the subsequent chapter for
expert-informed condition assessment.
This work was presented at the European Workshop on Structural Health Monitoring (EWSHM)
and is published in Lecture Notes in Civil Engineering [253] [110].

Chapter 7 harnesses the expert feedback stemming from the expert assessment of outliers
presented in the previous chapter. The combined information from the expert feedback and
the logs in the condition monitoring database of SBB (ZMON) is used to deliver an automated
classification scheme based on three different evaluated methods: Binary Classification (BC),
Random Forest (RF) and Bayesian Logistic Regression (BLR). The resulting analysis shows
that the relatively low classification metrics can be attributed to several sources of uncertainty,
such as uncertainty in vehicle positioning and uncertainty in the expert labeling, as well as the
binary labeling that does not capture the granularity of the continuous degradation in terms
of severity.
This work is published in Sensors 2023 [23(5)] [105].

In Chapter 8, a summary of the main findings and conclusions of this dissertation is
provided, followed by an outlook on the future developments of this research.
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Chapter 2

On-Board Monitoring for Smart
Assessment of Railway Infrastructure:
A Systematic Review

Paper Details

The following chapter was published on April 15, 2022, as:
“Hoelzl, C.*, Dertimanis V., Landgraf, M., Ancu, L., Zurkirchen, M., Chatzi , E.N. (2022).
On-board monitoring for smart assessment of railway infrastructure: A systematic review.
Published in Book: The Rise of Smart Cities – Advanced Structural Sensing and Monitoring
Systems.” DOI: https://doi.org/10.1016/B978-0-12-817784-6.00015-1 - Under a Cre-
ative Commons license. This is a post-print version of the article, which differs from the
published version only in terms of layout, formatting, and minor amendments which have been
implemented in the text to adapt the original paper to the format of the thesis and improve
readability.

* First authors.

Author and Co-Author Contributions

The author of this thesis conceived and developed the review and analysis developed here.
Prof. E. N. Chatzi and Dr. V. Dertimanis provided supervision and guidance. Dr. M. Landgraf,
Dr. L. Ancu and M. Zurkirchen provided reviews on this work.

Key Findings

• A review of track infrastructure components and monitoring techniques applied for intel-
ligent maintenance schemes.

• Review of parametric methods and non-parametric methods for acceleration-based condi-
tion assessment, as well as application examples on the data from the diagnostic vehicles
of SBB.

• Review of methodologies for classification and outlier detection techniques.

• OBM-derived indicators require further research for effective preventive maintenance.
Current acceleration-based monitoring systems are customized and require human inter-
vention and expert opinion for maintenance decisions.
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• The other challenge identified relates to building efficient frameworks for processing the
aggregated data and integrating these into existing processes while ensuring good model
performance and reproducibility beyond the test cases.

General comments and Link to the next chapter

This study tackles the first objective of the thesis (see Section 1.4) by proposing a review
of the state of the art of the assessment of track infrastructure using traditional monitoring
vehicles and On-Board monitoring via accelerometers mounted on in-service vehicles.

This chapter proves the potential for assessment of railway infrastructure by mounted
(OBM) sensors on railway vehicles. It also highlights the challenges in the generalization of
the models beyond simple test studies and the challenges in integrating such novel approaches
into existing processes. In the following chapter, one of the proposed methods for assessment,
namely the Vold-Kalman filter is applied to the axle box accelerations of the railway vehicle to
assess the wheel Out-Of-Roundness and the superstructure stiffness.
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Abstract

The increasing demand in mobility forms a major challenge for modern cities, even more so
when examined under the prism of transition from traditional to CO2-free mobility. Railway
infrastructure forms a main carrier for the mobility of people and goods and a salient com-
ponent of critical infrastructures. The increased traffic frequency in urban transport imposes
higher capacity demands and leads to more frequent damage, more severe deterioration and
associated disruptions to service and availability. Aligning with the spirit of smart cities, and
data-driven decision support, infrastructure operators require timely information regarding the
current (diagnosis) and future (prognosis) condition of their assets in order to sensibly decide
on maintenance and renewal actions. Railway condition assessment has traditionally heavily
relied on on-site visual inspections. Main measurement parameters for railway tracks are ob-
tained since the 1960s. Quality, accuracy and precision of measurements heavily evolved since
then, including aspects such as storage, analyses and interpretation of data. In recent years,
specialized monitoring vehicles offer an automated means for relaying essential information on
condition, obtained from diverse measurements including laser measurements, vibration, im-
age and ultrasonic information. Powered by this information diagnostic vehicles have shifted
assessment from a reactive to a predictive mode. More recently, in-service vehicles equipped
with low-cost On-Board Monitoring (OBM) measuring devices, such as accelerometers, have
been introduced on railroad networks, traversing the network at higher frequencies than the
specialized diagnostic vehicles. The collected information includes position, acceleration and
in some cases force measurements. The measured data requires interpretation into quantifiable
track-quality indicators, before it can be meaningfully incorporated in asset management tools.
These indicators form the basis for real-time forecasting of condition evolution and asset man-
agement, which are essential traits of a transport infrastructure that fits the vision of smart
cities. This article explores the state of the art of OBM for railway infrastructure condition
assessment, conducting a thorough review of data processing methodologies, which is further
complemented with application examples.

2.1 Introduction

Railways form part of what is termed critical infrastructure of modern cities. The advent of
digital technologies, within the grand vision of smart cities, has allowed for tremendous develop-
ments in the monitoring of railway assets and the subsequent utilization of such data for intel-
ligent and preventive maintenance. Railway asset managers pursue a long-term infrastructure
maintenance and renewal strategy, which aims at maximum safety, availability and reliability,
while simultaneously reducing life-cycle costs (LCC) [200]. In order to guarantee an adequate
track quality, track components are required to satisfy quality control under various mainte-
nance measures over their entire service life [288]. Maintenance actions are either corrective or
predictive and are often performed under many constraints such as budget and availability. A
sound knowledge of the condition of the track infrastructure, including substructure, ballast,
sleepers, rail pads and rails, is essential for applying appropriate maintenance measures in a
timely manner. An estimate of the overall behaviour of the track condition is achieved us-
ing the standard elements approach [180] (both for the Swiss Federal Railways– SBB and the
Austrian Federal Railways – ÖBB); a stochastic model that is used for strategic assessment of
maintenance and renewal demands on a network-wide basis. The model evaluates the expected
behaviour and guides on necessary interventions during the entire service life of the railway
track on the basis of the most influential asset parameters, such as track type, curvature, age
of components and load conditions.

The standard elements approach enables strategic planning in terms of budget-forecasting,
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scheduling of required maintenance renewals, as well as setting the optimal time for reinvest-
ment, determined by the point where the increasing maintenance costs outweigh the decreasing
costs of deprecation. Such a model cannot be used for section-specific maintenance planning
since deviations from the global model occur and can be attributed to different local condi-
tions [306]. The information gathered about assets has become increasingly diverse, as it is
facilitated via harnessing of network-wide measurement data from diagnostic vehicles and On-
Board Monitoring solutions (OBM) [157]. This increasingly richer digital data can typically be
aggregated after compression and feature extraction, in digital platforms and tools, such as the
SwissTAMP in the case of SBB [200]. Such tools can be used to plan maintenance and renewal
measures based on a comprehensive overview of the current and past condition of the tracks
[306].

The collection of data from diagnostic and in-service vehicles offers a major boost to the
process of assessment for the current (diagnosis) and future (prognosis) state of assets. Asset
state has traditionally been determined through on-site visual inspections and measurements.
Main measurement parameters for railway track are obtained since the 1960s in Austria [148].
Quality, accuracy and precision of measurements significantly evolved since then, including
aspects such as the automatic storage, analyses and interpretation of digital measurement.
Currently, data from measurement vehicles are automatically collected and transmitted, which
enables an efficient assessment of the condition of the track. Diagnostic vehicles regularly
measure the condition of the track with high accuracy, albeit with limited temporal resolution.

OBM vehicles are passenger vehicles equipped with measurement devices such as accelerom-
eters that regularly traverse the network and thus provide a nearly daily data stream consisting
of position and acceleration. In order to meaningfully include such information in asset man-
agement tools, the measured data must be processed into quantifiable condition indicators.
Track-quality indicators (TQIs) form the basis for asset management, which is based on a
real-time forecasts of development of the condition. They are powerful when it comes to de-
scribing the holistic condition of the track, as they summarize the standard deviation of several
measurement values (gauge, longitudinal level, alignment, superelevation, etc) [316]. However,
component-specific wear monitoring and prognosis are required for sophisticated maintenance
planning (treatment of the root cause of degradation) [214]. This article first describes the
most common types of damage of railway track components and the non-destructive condition
measurement systems that currently exist to measure the condition. In addition, the state
of the art is overviewed, primarily under the prism of acceleration-based OBM for condition
assessment of railway infrastructure, while further offering a thorough review of the relevant
data-processing methods and tools, which is supplemented with implementation examples. The
information harnessed from a mobile sensor network, enabled via an OBM vehicle fleet, is a
major step toward effectuating a vision of smarter infrastructure and smarter cities.

2.2 Track infrastructure components and condition

The railway track ensures the safe guidance of the trains on the desired path and the transfer
of loads from the axles to the substructure. High-quality tracks are characterized by low main-
tenance and stable long-term behavior even with high train frequency, increasing travel speeds
and the higher resulting loads [165]. The vehicle-track system should always be regarded at
system-level, as opposed to a component-wise consideration, since all infrastructure components
are interconnected. At this point, an overview of the infrastructure components and their most
common deficiencies is given.
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2.2.1 The track and its geometry

The two main types of track are ballast (Fig. 2.1) and, less often, slab tracks [165]. In the case
of ballast tracks, the ballast material supports evenly spaced sleepers, while in the case of slab
tracks, the ballast material is replaced by a concrete slab to which the sleepers are fixed. The
substructure under the ballast or slab supports the superstructure and enables the drainage of
rainwater. The substructure functionality is essential for track stability and durability.

Slab tracks meet higher requirements for track quality, have a longer service life and lower
maintenance demands, when the substructure is completely homogeneous [66]. This track type
is often used for High Speed Rail, for bridges and tunnels. The renewal is very costly and
particularly time-consuming. Therefore, the planning and construction costs are higher for
slab tracks [89]. Ballasted tracks, on the other hand, have a potentially long service life, albeit
requiring a larger number of maintenance actions, such as tamping [102]. In contrast to slab
tracks, maintenance is here easier to accomplish, which leads to an enormous advantage, since
weak or deteriorating substructure conditions can be compensated by the ballast bed.

rail

sleeper

track bed

substructure / subgrade

superstructure

ballast

subballast

formation layer

base

3-5%

Figure 2.1: Illustration of a ballasted track.

Geometric parameters such as longitudinal level, alignment, twist, gauge and cant are reg-
ularly recorded by means of monitoring vehicles [128]. The geometric parameters are typically
filtered to certain wavelength ranges that are defined as D0 (0.6-3 m), D1 (3-25 m) and D2
(25-70 m) in the Euronorm EN 13848 [52]. Irregularities in the geometric parameters of the
track result from a combined effect of repeated load cycles on a track, with possibly decreased
substructure and ballast bearing capacity, as well as insufficient drainage. Localized deviations
in track geometry can occur at the location of specific components, such as switches, welds,
joints, and transition zones from ballasted to slab tracks, as well as in positions of defects
(squats1) due to changes in track parameters and repeated loading cycles [89]. Safety and
comfort are guaranteed by limiting the irregularities in track geometry with maximum allowed
geometric deviations. Tamping is used as a main repair (maintenance) action to correct errors
in geometric parameters before these values reach critical thresholds [121].

2.2.2 Rail Connections: welds and insulated joints

Rails are mounted on the sleeper and directly bear the loads of the railway vehicles. Rails
are produced as standardized components of finite length that are usually continuously welded
together and, in some cases, connected using insulated joints consisting of two electrically

1A squat is type of surface defect that will be elaborated in following sections
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insulated rails that are bolted together with steel plates. Welds and insulated joints form
discontinuities on the rail surface and are thus picked up as such in the measured response
during a vehicle run. In proximity of these components, the occurrence of stress concentrations
and wear lead in irregularities in the track geometry and on the rail [179].

2.2.3 Rail corrugation

Rail corrugation is a periodic wave-like surface defect. The mechanism by which the corruga-
tion arises is explained by a wavelength fixing mechanism and a damage mechanism [93]. The
wavelength is determined by vehicle-track resonance mechanisms, such as pinned-pinned reso-
nance (resonance of the rail), P2 resonance and rutting [277]. The P2 resonance is the vertical
system resonance where vehicle unsprung mass, rails and sleepers vibrate in phase with one
another. Rutting corresponds to short-pitch corrugation developing on the low rail on curves.
The main damage mechanism is wear due to the resonant effects [315]. Squats sometimes arise
as a result of rolling contact fatigue (RCF), caused by corrugation [205]. Corrugation is of-
ten categorized by wavelength. Asset managers typically subdivide periodic irregularities into
short (2-10 cm), medium (10-30 cm) and long (30-100 cm) wavelength ones [244]. Preventive
maintenance, such as grinding, can temporarily remove the effects of corrugation. The dynamic
properties of selected track components during a renewal influence the growth rate of waves on
the rail surface can be further reduced [272].

(a) Intact insulated joint (b) Joint with broken joint plate

(c) Squat on rail (d) Weld

Figure 2.2: Infrastructure components leading transient excitation (images extracted from a
high speed camera, mounted on a diagnostic vehicle of the SBB)
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2.2.4 Transient rail defects

Transient rail defects are surface or internal defects that are localized in space. Many mecha-
nisms influence the appearance and growth of defects on the rail. The main types of transient
defects are the following:

Cracks to the head, web, foot, weld and joint plates are events that can lead to a rail
breakage. Cracks are caused by material defects that are internal or on the surface of the rail.
Cracks propagate under repeated loading cycles. Fig. 2.2b shows a joint in which the joint
plates cracked.

Surface defects are a broad category of defects that appear on the rail surface. These
surface defects are, in some cases, due to lost goods or ballast on the rail surface and damaged
wheels that lead to indentations on the rail. Surface defects and light squats share many visual
characteristics and it has been observed that some surface defects grow into a squat. A rigorous
definition of the rail surface defects is not an easy task as surface defects appear and develop
in different locations under different conditions.

Squats are a type of rolling contact fatigue (RCF) that has been an important driver for
rail replacements in the past decades due to its safety relevance [122]. Rolling contact fatigue
pertains to accumulation of plastic deformations on the rail surface. Squats usually appear
on tracks that are straight or have large curves. In certain cases, their appearance is related
to surface corrugation, where surface defects spread under the rail surface, resulting in large
breakouts [268]. The initiation of squats has been hypothesized to be associated with tracks,
where the traction control employed by certain vehicles causes wheel slips. The International
Union of Railways defines a squat as a ”widening and localized depression of the rail/wheel
contact band, accompanied by a dark spot containing cracks with a circular arc or V shape”
[213]. The length of the squat is the main parameter used to measure its severity [244]. The
severity classes are designated as severity 1 (L<20 mm), severity 2 (20 mm<L<40 mm) and
severity 3 (L>40 mm). A squat of severity class 3 (48 mm length) is illustrated in Fig. 2.2c. Less
severe squats are tentatively treated by grinding, while more severe ones require the replacement
of the rail.

2.2.5 Switches

Switches are mechanical installations in which the train can be guided on different track seg-
ments. The switch forms a critical installation regulating the connection between fixed stock
rails and switch rails, which are operated mechanically or hydraulically at the switch point in
order to regulate the routing of the train. The frog is located at the separation point of the
two tracks. This point is also termed as the crossing. The guard and wing rails, which are
located next to the rails facing the frog, prevent a train derailment. The diagram in Fig. 2.3
illustrates the labeled components of a switch in the case of a switch without a movable frog.
Movable frogs, which close the gap between the stock and the running rail, are sometimes
chosen for high-speed tracks. These types of switches are expensive and complex, but guaran-
tee a homogeneous rail surface, which is particularly important at high speeds. The rails on
switches typically have multiple welds, while in certain cases, insulated joints can be installed
in proximity of switches. The switches form an essential component for railway operations and
require special attention in the life-cycle management of these components.

Currently, the monitoring of switches is performed using a combination of on-site inspec-
tions, stationary on-site measurement systems (strain gauges, accelerometers on the track, fiber
optics, etc) and diagnostic monitoring vehicles. The tested properties range from the previously
mentioned track geometry parameters, rail surface defects, squats, joint and weld conditions to
conformity of the rail profile with the required profile geometry [293].
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Figure 2.3: Diagram of a switch.

2.3 Condition monitoring in railways

Non-destructive monitoring aims to assess the properties or condition of an engineering asset
without causing damage. In the context of railways tracks, the track condition is regularly
assessed with specialized diagnostic vehicles and with On-Board-Monitoring (OBM) vehicles.
Regular monitoring of the track condition ensures an optimal planning of maintenance actions,
which leads to lower life-cycle costs and increased availability of railways assets.

2.3.1 Diagnostic Vehicles

Diagnostic vehicles are equipped with measurement systems, that measure quantities related to
track geometry, track stiffness, rail profile, rail surface condition and the internal rail condition.
Tab. 2.1 summarizes some of the systems that are commonly mounted on vehicles for monitoring
the railway track. These measurement systems are specialized in detecting specific irregularities
with the help of dedicated hardware, such as laser scanners and high-speed cameras. Vehicle-
track interaction measurement systems (VTIMS) differ from conventional measurement systems
that are specialized in recording single types of defect. VTIMS capture the effect on the vehicle-
track dynamics that are caused by a large spectrum of deviations (see also Section 2.4) while
using comparatively simple and inexpensive sensors, such as accelerometers.

The assessment of the infrastructure condition based on dedicated vehicles is limited by
the complexity of planning and organisation of diagnostic runs on networks that are already
heavily traversed by regular trains. A continuous assessment scheme using sensors on passenger
vehicles can complement the periodic measurements of diagnostic vehicles with near real-time
information on the state of the infrastructure.

2.3.2 On Board Monitoring

OBM vehicles typically have a simple and inexpensive hardware and software architecture that
includes accelerometers mounted on the axle, bogie or body. In some cases, the vehicles are
equipped with tensiometric wheel-sets [236]. These wheel-sets are modified to measure the
contact forces between wheel and rail. Sometimes microphones are also installed on these
vehicles. An overview of an OBM setup, such as the one implemented by SBB, is shown in
Fig. 2.4. Vibration-based measurements have been tested across different railway networks to
diagnose diverse pathologies, such as geometric track irregularities, corrugation, weld and joint
conditions, detection of squats and monitoring of switches. Tab. 2.2 summarizes the sensor
location and the approach used to monitor specific components at different railways.
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Table 2.1: Non destructive track condition monitoring systems and methods

System Method Damage types Limitations
Vehicle-track
interaction mea-
surement (VTIMS)

Force and ac-
celeration

Effects and damages
that impact vehicle-
track dynamics

Data processing required for
meaningful interpretation

Track geometry
measurement sys-
tem (TGMS)

Laser chord
method or
IMU

Geometric parame-
ters in wavelength 1-
70m [52]

Recolouring necessary to
accurately represent some
wavelengths for chord mea-
surement [128][303]

Rail profile mea-
surement system
(RPMS)

Profiles from
laser scanners

Rail profiles & wear
of rail every 2cm

Coordinates of laser system
vary with respect to rail co-
ordinates

Track stiffness
measurement sys-
tem (TSMS)

Subsidence of
axle

Regions of high
track stiffness, and
sudden stiffness
variations

Maximum measurement
speed 15 km/h [83]

Track surface and
inspection mea-
surement system
(TSIMS)

On-Board
camera

Visible damages
to rail surface and
track components

False positives and nega-
tives due to light reflections
or rail contamination.

Eddy current test-
ing system (ET)

Electrical cur-
rent, magnetic
field

Surface cracks up to
5mm of depth

Detection sometimes inac-
curate due to complex de-
fect geometries and rail
properties [124]

Ultrasonic mea-
surement system
(UT)

Ultrasound Rail cracks under
4mm of depth

Used as a rail quality indica-
tion due to low hit rate and
many false positives [274]

Ground penetrat-
ing radar (GPR)

Radar Ballast and sub-
structure condition

Uncertain dielectric proper-
ties of materials [28]

2.3.3 Uncertainty in vehicle localization

The localization of the vehicle on the train network is essential in order to follow the development
of the infrastructure state over time. If several measurement rides are combined in an analysis
in order to predict the current state and to forecast the future development, the required
quality of the position depends directly on the length of influence of the observed effects. The
synchronization of time–series for distributed sensor networks is a challenge [255], especially
when the sensors themselves are located in a moving reference frame. The minimal setup
for track-selective georeferencing is achieved by combining map information with IMU and
GNSS data [237][304]. A rough position on the network is achieved through a combination
of track segment information with GNSS, ETCS balise detectors 2 and odometric data. The
position uncertainty obtained with these information sources is less than one meter under good
conditions. On track segments where no Eurobalise data is available, where the Eurobalise
position data is inaccurate or where the GPS reception is poor, the position error can increase
to many meters, which in rare cases could lead to incorrect localization [200].

There are two main approaches for dealing with unsatisfying precision of the position es-
timation. The first lies in detecting a deterioration on the position estimation quality and

2ETCS balise (Eurobalise) are transponders used by the European Train Control System (ETCS) to give
the exact location of the train on the track and to transmit signaling information to the train.
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Figure 2.4: Overview of sensor positions for a complete OBM setup of an in-service train.

discarding these samples. This is typically succeeded via the fusion of multiple input streams
such as GPS, ETCS balise, and odometric data. The second option is to synchronize the posi-
tion in a post-processing step by using information extracted from previous measurement runs.
Features that are most meaningful for this task are those that present reduced variability over
a longer period of time. Such features can be continuous, such as the longitudinal level D0
and D1 or the uncompensated lateral acceleration. Events detected from a short wavelength
response, such as crossings of insulated joints and frogs, can also be used as latching points
when locating the vehicle on the network. The synchronization of time–series can be achieved
by combining several methods, such as time lagged cross-correlation (or dynamic time warping)
for continuous data or point set registration methods for punctual events [33][323][195].

Fig. 2.5 shows the synchronization of two measurement runs, via the indicators extracted
from ABA, using the methodology described in Section 2.6.2. The reference measurement
ride on 30th March 2021 is synchronized to all other measurement runs, such as the one on
27th January, using the maximization of the time-lagged cross correlation. The estimated drift
between measurement rides on each track segment can be automatically corrected using such
a synchronization process.

2.3.4 Digital Infrastructure

Data driven condition monitoring requires a robust digital infrastructure that allows to process,
transmit and store information in a structured manner. The automated acquisition, processing
and transmission of measurements from OBM systems is essential for an efficient scheme. The
collected measurements are usually stored in a database, which is fed with the daily OBM
measurements, thus entailing a structure that can grow rapidly with large amounts of redundant
information. Data management is therefore essential in this context because, despite the obvious
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Table 2.2: Recent On-Board acceleration based track condition monitoring implementations

System Monitored
components

Approach Railway
network

Ref.

Bogie
vertical
acc.

Longitudinal level Longitudinal level by
Extended Kalman Fil-
ter

Indian Railways [152]

Bogie
vertical
acc. and gy-
rometer

Longitudinal level Longitudinal level by
Cross entropy optimi-
sation

Irish Railways [211]
[212]

Body
vertical
acc.

Longitudinal level Track faults using
Kalman Filter and
Hilbert Huang Trans-
form

Japan Railways [282]
[281]

ABA,
vertical

Longitudinal
Level, TQI

Signal integration
& Karhunen–Loève
transformation

Polish Railways [57]

ABA,
vertical

Longitudinal level Signal integration &
filtering

Deutsche Bahn [167]

ABA,
vertical

Track irregularities Speed normalized
RMS amplitude

DLR, Germany [21]
[19]

ABA,
vertical

Corrugation Multiresolution analy-
sis and multiple model
method

Japan Railways [99]

ABA,
vertical
& lateral

Corrugation RMS value & Fre-
quency spectrum

Subway of Milan [40]

ABA,
vertical &
longitudinal

Corrugation Scale-averaged
wavelet power

ProRail, Dutch
Railways

[159]

ABA,
vertical
&
longitudinal

Squats, joints Coefficients of contin-
uous wavelet trans-
form

ProRail, Dutch
Railways

[188]
[175]
[326]

ABA, vertical
& lateral

Longitudinal level,
switches, welds, in-
sulated joints and
squats

Vold kalman filter, sig-
nal integration, time-
frequency decomposi-
tion

Swiss Federal
Railways (SBB)

ETH
[108]

benefits offered by comprehensive information in refining predictive models, guaranteeing data
quality through the automatic detection of sensor faults is also a challenge. The amount of
data transmitted can be reduced by performing suitable pre-processing steps already on the
”edge” level, i.e., the instrumented vehicle. When analyzing certain deterioration processes,
such as the degradation of track alignment, a weekly measurement is sufficient, as indicated
by the SOB-OBM3 [167]. For other estimation tasks, it suffices to follow the development of
indicators on certain critical components, such as insulated joints, welds, frogs or other impulses

3Schweizerische Südostbahn
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Figure 2.5: Illustration of fine synchronisation via time lagged cross-correlation for estimating
the drift between the longitudinal level D0 and D1 from ABA (raw data from SBB).

due to surface defects or squats. The outliers generated in the measured acceleration signal
from the crossings of these components are also called events. Events can be detected by means
of an Outlier Detection process, shown in Fig. 2.6. The extraction of events from the processed
data is then carried out in an unsupervised manner, based on baseline measurement data,
complemented by ground truth labels, which can be obtained from other data sources. These
events are then used to identify and classify outliers in order to generate warnings and alarms
on potentially abnormal behavior. In such a scenario, a confidence statistic has to be carried
out in order to avoid false alarms [207]. A measurement databases and an event database with
positioned data are key to infrastructure monitoring.

2.3.5 Challenges in Condition Monitoring

One major challenge is to extract meaningful information from a large amount and variety of
measurement information for decision making. Every sensing system has known strengths and
weaknesses. The main causes of uncertainty in sensing data are known and quantifiable mea-
surement errors on the one hand, and uncontrollable factors such as changes in environmental
and operational conditions (EOPs) on the other hand. Noise can be decreased by adapting the
measurement hardware, by accounting for EOPs or by averaging. EOPs can be accounted for by
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Figure 2.6: Event database generation for classification and outlier detection.

Table 2.3: Summary of excitation mechanisms [139]

Excitation source Periodic / Nearly periodic Transient
Track and rails Corrugation, waves Alignment, turnouts,

squats, welds,
insulated joints...

Wheel excitation Eccentric & polygonal wheels, -
flat spots

Parameter excitation Sleeper crossing Hollows, crossings
Self-excitation Sinusoidal motion -

measuring these parameters and including them as inputs in a stochastic regression model [16]
or alternatively by using projection based tools that do not require the explicit measurement of
EOPs [253]. The noise can be further reduced by combining the indications or measurements
from repeated rides. Such methods are particularly suitable when continuous track monitoring
with OBM vehicles is carried out. In addition, the combination of several measurements from
different systems enhances predictive capabilities. For example, the further exploitation of eddy
current and ultrasonic measurements for assessing the rail condition can reduce the number of
false positive assessments on welds [274][222]. Finally, information about the condition and
recommended maintenance must be communicated to the asset managers in order to optimally
plan and schedule maintenance. Decision aid tools, as the example of the SwissTAMP platform
adopted in Switzerland [200], support a proactive infrastructure management by summarizing
infrastructure type and condition, maintenance and planning.

2.4 Vehicle track interaction

OBM vehicles record accelerations that reflect the vehicle-track dynamics. Irregularities on
the running surfaces of the wheel and on the track, as well as the vehicle dynamics cause
periodic or transient excitation of the vehicle-track system. Tab. 2.3 illustrates the sources and
types of excitation, which are owed to various components or dynamic processes. The category
designated as ”tracks and rails” pertains to excitation that can be generated both by defects
or as a result of the inherent properties of the track and vehicle.

The frequency range of interest depends on the phenomena considered. Frequencies up to
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20 Hz have the largest impact on vehicle dynamics. Forces that are transferred from the wheel
to the axle and the bogie are generally considered to occur up to 500 Hz. The contact surface
between the wheel and rail has a radius of approximately 1 cm and thus when analyzing rail–
wheel contact dynamics, in terms of short-wave irregularities, the upper limit is between 1.5 and
2 kHz. Higher frequencies up to 20kHz relate to acoustics and noise emissions. Acceleration
amplitudes beyond 100g can be observed during impacts of the wheel on switch components or
on severe surface defects.

Fig. 2.7 illustrates the relationship between vehicle speed, frequency and wavelength. The
transverse lines are lines with a constant wavelength. The colored areas indicate the main
excitation wavelength ranges, which range from short-wave corrugation to long-wave geometric
deviations (D2). The lowest bound of the frequency range of commercially available MEMS4

based sensors is often around 0.5 Hz. At low speeds, this leads to certain wavelengths being
cut off at the minimum frequency of the sensor, which results in missing low frequency vibra-
tion information. For shorter wavelength defects at high speeds, a sufficiently high sampling
frequency is required to detect an excitation with a higher frequency (i.e. 3.2 kHz).

From the point of view of monitoring the structural condition, the consideration of the
wavelength is essential, since different defects occur at different scales and lead to diversified
dynamics at these corresponding scales. For example, it has been shown that ballast and sub-
structure conditions relate to the lower wavelength ranges D1 and D2 [150]. Issues related
to the sleeper such as hollows, are proposed to affect the wavelength D0 and the wavelength
of the sleeper passage [166]. Wheel out-of-roundness and wheel flats affect the frequencies
which correspond to integer multiples of the wheel circumference [164]. Rail corrugation in-
duces pronounced vibration in the wavelength range that corresponds to the wavelength of
the corrugation [93]. For this reason, acceleration–based condition indicators must take into
consideration the variation of the scale of resulting vibrations depending on the frequency and
wavelength characteristics of the excitation.

2.5 Parametric methods

For analyzing time–series data, parametric time–series models are often chosen because of their
transparency and low computing power requirements. These models feature parameters that
define the dynamics of the time–series and determine the relationship between the potentially
unknown (or unmeasured) excitation source and the observed response. The residual difference
between the measurement and the predicted data indicators can serve as an indicator (or dam-
age sensitive feature) for detecting faults that affect vehicle-track dynamics. The next sections
offer an overview of parametric methods that can be applied in the context of railway infrastruc-
ture condition assessment, including the AutoRegressive Moving Average model (ARMA), the
Linear Parameter Varying AutoRegressive model (LPV-AR), the Vold Kalman filter (VKF),
the linear and Extended Kalman Filter (KF/EKF), as well as the Unscented Kalman Filter
(UKF).

2.5.1 Autoregressive Moving Average Models

Autoregressive Moving Average Models (ARMA) occur via coupling of the AutoRegressive
(AR) and the Moving Average (MA) model classes. ARMA models can be used in a k-step
ahead prediction mode, in order to predict future response based on past observations. The
moving average part in particular is often used as beneficial due to its smoothing effect on

4Microelectromechanical system
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Figure 2.7: Relation between vehicle speed [m/s], frequency [Hz] and wavelength [m].

time–series data [86].

y[t] = α0 +
n∑
i=1

ai · y[t− i] + w[t] +

q∑
i=1

bi · w[t− i] (2.1)

where y[t] reflect the 1-step ahead prediction at time instance t, w[t] is a white noise source
of zero mean and variance σ2

w; ai, bi determine the AR and MA coefficients respectively, while
n and q designate the AR and MA orders, which define the number of previous observations
y[t − i] and previous innovation terms w[t − i] to be used, respectively [173]. A fitted ARMA
model has been used to identify railway track irregularities for forecasting maintenance actions
[127][156].

2.5.2 Linear Parameter Varying Autoregressive models

Linear Parameter Varying AutoRegressive models (LPV-AR) form an extension of the classic
AutoRegressive (AR) models, which are used to model non-stationary vibration response when
the dynamics are controlled by an external scheduling variable. In this sense, LPV-AR models
are defined as time-dependent AR models, where the values of the AR parameters ai(β[t]) are
expressed as a function of a scheduling variable β[t]. In vehicle-track dynamics, the scheduling
variable is the vehicle speed. The regression vector of LPV-AR models is defined as [15]:

y[t] = −
na∑
i=1

ai(β[t]) · y[t− i] + w[t] w[t] ∼ NID(0, σ2(β[t])) (2.2)
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ai(β[t]) ≜
pa∑
j=1

ai,j ·Gba(j)(β[t]) FAR = {Gba(1)(β[t]), . . . , Gba(pa)
(β[t])} (2.3)

σ2
w(β[t]) ≜

ps∑
j=1

sj ·Gbs(j)(β[t]) Fsigma2w
= {Gbs(1)(β[t]), . . . , Gbs(ps)

(β[t])} (2.4)

where w[t] reflects the sequence of zero mean NID innovations with variance σ2
w, F stands for

a functional subspace of the respective quantity, ba(j) and bs(j) are the indices of the specific
basis functions that are included in each functional subspace, while ai,j and sj stand for the
projection coefficients of the AR parameters and the innovations variance. LPV-AR models
have been used to characterize the time-varying dynamics of wind turbine structures, where
the scheduling variable β[t] reflects the azimuth (position) of the rotor, while the additional
dependence on varying Environmental and Operational Parameters (EOPs) was captured by
additional use of Gaussian Process regression [15]. For OBM, LPV-AR enables the modeling of
the response behavior of the vehicle axle for different types of track superstructure depending
on the vehicle speed [108]. Fig. 2.8 shows the LPV-AR based Power Spectral Density (PSD)
of the axle response in function of the vehicle speed and the type of track superstructure.
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Figure 2.8: LPV-AR based PSD of the response for different track superstructures as a function
of speed (adapted from [108]).

2.5.3 Bayesian Filtering

Bayesian filtering methods, such as the Kalman filter (KF), offer an efficient means for mon-
itoring the state of linear dynamical systems. This approach has found broad application in
real-time response estimation for the purpose of diagnostics and control. The KF requires cou-
pling with a dynamic model of the system, which is used to establish the filter’s state (process)
equation. Such a model assumes that the state at time k is formulated as:

xk = Akxk−1 + Bkuk + wk (2.5)

where Ak and Bk denote the state and input matrices, correspondingly, of the linearized vehicle–
track interaction model, xk is the vector of dynamic states of the system, in discrete time, which
comprises a concatenation of displacement and velocities, uk is the vector of the inputs (exci-
tation) to the system and wk is the process noise, which is assumed to be drawn from a zero
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mean multivariate normal distribution, N , with covariance, Qk : wk N (0, Qk).

The second equation necessary for the filter formulation is the measurement (observation)
equation. The vector of sparse observations of the system response (e.g. accelerations of the
axle), yk, is given as:

yk = Ckxk + Dkuk + vk (2.6)

where Ck and Dk denote the observation and feed-through matrices and vk is the observation
noise, which is assumed to be zero mean Gaussian white noise with covariance, Rk : vk N (0, Rk).
The observation vector, or rather the discrepancy between the estimated and actually observed
quantities (innovation vector), is used to update the model-based estimate of the system’s
response at time tk.The interested reader is referred to [18] for more information on the KF
formulation.

The KF has been used to detect faults on vehicle suspension systems [171] [125] [300].
Lederman et al. [154] have applied the adaptive KF, which weighs the data according to their
estimated reliability, in order to combine data from several inexpensive sensors for monitoring
the railway track geometry. Tsunashima et al. have shown that by applying KFs to the body
motions of Shinkansen trains, irregularities in the track geometry can be reconstructed with
acceptable accuracy [282]. Fig. 2.9 shows the comparison of the time–series and the PSD of
the longitudinal level estimate obtained via application of a Dual Kalman Filter (DKF) on
acceleration data (estimate) versus the true (measured) level. The DKF is a variant of the KF,
which achieves dual estimation of the dynamic system’s response (state) and the (unmeasured)
input, which in this case corresponds to the rail level. The procedure proposed by Dertimanis
et al. [69] can be used to accurately reconstruct the longitudinal level from accelerations.
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Figure 2.9: Time–series and PSD of KF–based estimate of longitudinal level (adapted from
[69]).
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2.5.4 The Vold Kalman Filter

KFs require knowledge of a-priori information on system dynamics in order to recursively
estimate unknown states. This is succeeded via use of a proper state-space model, i.e., a model
of the dynamics, as the employed process equation. The Vold Kalman Filter (VKF) operates
on a different premise, whereby the known system dynamics is reflected in the measurable
harmonic components within a response signal. The VKF is used to decompose a stationary
stochastic process into the uncorrelated sum of a purely deterministic and a purely stochastic
process [308].

The deterministic process is driven by the instantaneous frequencies of the system’s periodic
components [292][297]. The dynamics generated by a rotating structure, such as the axle of a
train, forms a process y(t) that can be described as the sum of a deterministic harmonic signal
x(t), whose parameters are function of the vehicle speed v(t), and a stochastic process η(t).

y(t) = x(t) + η(t) (2.7)

Within the context of rail condition assessment, the process, y(t), corresponds to the measured
axle box accelerations, while η(t) reflects noise contamination in the measurements. The har-
monic signal, x(t), is formulated as the product of a complex envelope Ak(t) with a phasor
ρk(t).

x(t) =
∑
s∈S

∑
k∈Ks

Ask(t)ρsk(t) (2.8)

where the phasor ρsk(t) = eik
∫ t
0 ωs(u)du for each tracked order k of each measured instantaneous

shaft speed s. Each component in the harmonic signal X corresponds to a process generated
by a tracked order k and a shaft speed x. The VKF has been applied used to diagnose rotating
equipment components, such as bearings and shafts of machines, vehicles and wind turbines
[321][160][296][79][80] that are subjected to non-stationary conditions. While the VKF has
been used extensively for order tracking in axles of vehicles and machinery, its use to diagnose
the condition of the axle, wheel or track of OBM systems has not yet been reported. Here
we show the potential of using the sleeper passage frequency, extracted using the VKF, for
the estimation of the track stiffness. A high track stiffness results in increased contact forces
and accelerations, which may result in premature failure of the infrastructure [165]. The track
stiffness is commonly measured using special subsidence measurement vehicles5. Fig. 2.10
indicates that locations with increased track stiffness exhibit increased VKF sleeper passage
components (corresponding to a wavelength of 0.6 m).

2.5.5 Extended-Kalman Filter

The extended Kalman filter (EKF) is an approximate filter for nonlinear systems, based on
first-order linearization of the process and measurement functions. It is frequently used in joint
parameter and state estimation problems for linear systems with unknown parameters [173]. In
this case, the inclusion of the unknown parameters in the state vector of the system renders the
estimation problem a nonlinear one. In the context that relates to rail condition estimation, the
EKF has been combined with a weighted global integration procedure to identify the parameters
of a beam under a moving mass load [116]. Lathe and Gautam [152] demonstrate the use of
the EKF for reconstruction of vertical profile irregularities from OBM vibration measurements.

5For instance, the vertical track subsidence under an axle load of 20 tons is used by the SBB to measure the
track stiffness[262]
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Figure 2.10: VKF Sleeper Passage acceleration amplitude compared to the measured track
stiffness for varying sleeper and Under Sleeper Pad (USP) types (raw data from SBB).

2.5.6 Unscented-Kalman Filter

The Unscented-Kalman Filter (UKF) is a nonlinear variant of the KF that employs a determin-
istic sampling approach to estimate the state of nonlinear systems [130], i.e., systems where the
state and/or observation equations are governed by nonlinear functions. Instead of linearizing
the transformation function, as is the approach followed by the EKF, the UKF propagates the
deterministic sample points (sigma points) through the nonlinear system functions in order to
yield a posterior estimate of the system response (state). The friction coefficient is essential
for estimating the lateral and creep forces exerted on the rail. The UKF has been used in
railway condition assessment applications to indirectly estimate the rail-wheel friction coeffi-
cient, relying on measurements of the observed traction motor behavior [324], or of the dynamic
response of a wheelset [217]. The rail-wheel friction coefficient has been indirectly estimated
using the UKF applied on measurements of the observed traction motor behavior [324], or from
the dynamic response of a wheelset [217].

2.6 Non-parametric methods

Non-parametric methods have gained popularity in dynamic signal analysis, since they al-
leviate the requirement for fitting a specific (parametric) model structure. Parametric and
non-parametric methods are not mutually exclusive and their combination can prove beneficial
for certain tasks, such as correlation and outlier analysis from signal statistics. Non-parametric
methods include time and frequency domain analysis methods via time- or space-frequency
decomposition.
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2.6.1 Time-frequency analysis

Time–series of non-stationary signals, such as accelerations due to vehicle-track interactions,
can be analyzed using a time-frequency or time-scale decomposition. Transformation methods
used for non-stationary signals are the short-time Fourier transform (STFT), discrete wavelet
transform (DWT),continuous wavelet transform (CWT) and fractal dimension analysis (FA)
[150]. Further techniques include adaptive time-space methods, such as the empirical mode
decomposition and the Hilbert-Huang transform, which are used to decompose a signal into
intrinsic modes [39].

For the frequently employed fractal analysis indicator, the fractal dimension corresponds
to the degree of roughness of a time–series for varying wavelengths. The fractal dimension
is calculated from the slope of the logarithmic representation of the polygonal length to the
logarithmic wavelength [150]. The fractal values, first applied to railway condition assessment
by Landgraf [148], are commonly used to detect ballast and substructure damage. In the case
of the Fourier and Wavelet transforms, the convolution of a functional basis with the time–
series results in a time-frequency representation [92]. The choice of the optimal time–frequency
analysis method to select, according to a specific assessment goal, is guided by the properties
of each algorithm. In contrast to the STFT, which uses a fixed window size, wavelet transforms
use an adaptive window size that is scaled proportionally to the length of the functional basis.
Adaptive techniques, such as the wavelet transforms, result in an optimal resolution in the time
and frequency domain. The continuous wavelet transform results in a significant redundancy
at the expense of a large set of coefficients, while on the opposite spectrum, the discrete wavelet
transform offers an efficient representation, where each level corresponds to a frequency band
[92]. Invertibility is a desirable property that enables the recovery of the original signal from
the set of coefficients. Both the STFT and the DWT satisfy the property of invertibility.

The most common time-frequency representations are shown in Fig. 2.11 for the time–series
of vertical axle box accelerations during the crossing of a surface defect. The limitation in
the resolution of the STFT is apparent, as compromises are made on both the time and the
frequency resolution for a given window size. The CWT results in a redundant representation,
while the DWT allows a condensed representation of the signal in both time and frequency.

Spectral analysis based on the Fourier transform has been applied to ABA signals to in-
versely determine the parameters of the vehicle from the measured response spectrum. The
comparison between response spectra of different vehicles at different track locations has been
used to identify damage locations on the vehicle suspension of Shinkansen trains [209]. Zili et al.
[326] used the wavelet coefficients from a continuous wavelet transform (CWT) to classify squats
and welds from axle box acceleration signals. Schenkendorf and Dutschk [246] used a similar
approach as Molodova et al. [190] for identification of insulation joints. The irregularities on
rail welds are characterized by identifying frequency and amplitude characteristics in the time-
frequency response at joints and augmenting the identification process with a FE-Model [9]. In
[55] axle box accelerations have been analyzed by means of the empirical mode decomposition
and the Hilbert-Huang Transform in order to detect characteristic response signatures due to
short-wave rail defects. The empirical mode decomposition and the Wigner-Ville distribution
are used to characterize the amplitude of the wheel out-of-roundness [263].

Time-frequency analysis has been used to match acceleration patterns to the excitation
source. However the limited generalizability due to variations of track parameters, vehicle pa-
rameters, environmental parameters and vehicle speed remains a major challenge. The numeri-
cal integration procedure described in Section 2.6.2 can be used to increase the interpretability
of time-frequency analysis.
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Figure 2.11: Time frequency representations of acceleration time–series on surface defect cross-
ing.

2.6.2 Numerical Integration

The double integration of a discretely sampled acceleration signal at an observed degree of
freedom makes it possible to recover the time–series of its displacement. Studies have shown
that axle and track vibration are mostly independent of other vehicle degrees of freedom [69][6].
Therefore, the vertical displacement of the axle, obtained by double integration of the axle box
accelerations corresponds to the combination of the longitudinal level and the displacement
due to the wheel out-of-roundness. Due to its periodic nature, wheel out-of-roundness can be
separated from the vertical displacement with suitable filters or with model based approaches
such as the afore-mentioned Vold-Kalman Filter. The acceleration based longitudinal level has
been proposed as a robust indicator in several studies [57][167]. The lateral axle displacement
and the longitudinal level are band-pass filtered to the wavelength bands D0, D1 and D2 that
are specified in the standards [52] in order to obtain a space-wavelength decomposition with
three wavelength levels. Using the geometric properties of the track, the twist can be derived
from the longitudinal level and the rail gauge. From the longitudinal level D0, the dip angle
corresponding to the slope of the signal, is an indication for wheel rail impact loads that occur
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on switches and joints [278][23]. Fig. 2.12 shows the comparison between the longitudinal level
D1 obtained by TGMS (a laser based system) and by OBM (ABA based measurement). The
difference between the longitudinal level D1 obtained from both systems is generally under
0.5[mm]. The indicators obtained from integration offer numerous advantages. Such indica-
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Figure 2.12: Comparison between TGMS (optical system) and OBM (ABA) based longitudinal
level D1 (raw data from SBB).

tors are easy to interpret, largely independent of the vehicle speed and are straightforward to
assimilate with existing measurements (TGMS Tab. 2.1); a trait which allows for the direct
integration into existing processes and norms [52].

2.6.3 Statistical Features

Statistical Features are numerical measures, which allow the condensation of the signal into
a set of indicators, resulting in a sparse representation of essential attributes [233]. These
features include minimum, maximum and mean values, as well as standard deviation and
higher statistical moments (skewness, kurtosis) and entropy. Depending on the scale of the
phenomenon under consideration, these statistics can be calculated on the raw (original time–
series or on processed data over different lengths of influence. The influence length (or window
size) is usually chosen to be greater than the length of signal that is influenced by the effect of
interest. For OBM data, the comparison of statistics between measurement rides is sensitive to
the positioning precision, as well as to the influence length. The process of generating an event
database containing statistical features is illustrated in Fig. 2.6. Regression, classification and
outlier detection based on statistical features that are contained in such an event database can
be used to define thresholds and related alerts for triggering decisions on remedial actions.
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2.6.4 Parametric versus non-parametric methods

In general, parametric representations of times-series offer important benefits in comparison to
their non-parametric counterparts. Starting with parsimony, parametric methods succeed in
modelling time-series with a limited set of parameters. Indicatively, the spectral description
of a signal of length N requires the same amount of data, whereas an ARMA model may
require 20-40 parameters (depending on the complexity of the underlying dynamics), leading
to significant data compression.

Parametric methods are further attributed with improved accuracy while using consider-
ably less data. This is due to the fact that the associated finite parametrizations (difference
equations, modal models, and state-space models) offer closed form expressions for engineer-
ing quantities of interest (e.g., frequencies, damping ratios, mode shapes, impulse responses,
and spectra) at a considerably higher resolution, as well as reduced, theoretically sound, and
quantified uncertainty (in most cases).

Arguably, parametric methods stand as the only available solution, when further analysis
is required, as for example in applications that involve signal prediction, condition monitoring
and control.

The power of non-parametric methods, on the contrary, lies in the immediate accessibility
of the visual information they offer. Indeed, it is a matter of microseconds to derive the power
spectrum, or the wavelet transform of a digital signal. This is further supported by the very low
requirements for user-expertise, as opposed to parametric modelling, which requires a certain
degree of familiarity with the associated methods. These methodologies are not mutually
exclusive. For instance, statistical analysis or time-frequency analysis is often applied on the
outputs of parametric or non parametric schemes [108][15].

2.7 Classification and outlier analysis

Non-parametric and parametric methods provide indicators that are related to the condition of
the asset. The approximate state of the asset components at the time of an OBM measurement
can be known a-priori from previous assessments. The resulting decision making is based on
discrete (i.e. inspection labels) and continuous (i.e. exploitation percentage) condition quan-
tities that are defined in railway norms and regulations. OBM provides additional indicators
that should be linked to condition definitions based on a physics–based model or data driven
model. Identification and classification methods presented in this section are often employed
to achieve this goal.

2.7.1 Classification

Classification methods are machine learning algorithms that enable the prediction of a discrete
outcome variable based on the value of one or multiple predictor variables. The outcome vari-
able in monitoring railway tracks is often a continuous fault indicator or a discrete label. The
predictor variables correspond to the measurements that are used to diagnose the infrastruc-
ture. The most common classification algorithms in supervised and unsupervised analysis are
summarized in Tab. 2.5 [5]. For predictive maintenance of railway tracks, data driven methods
are preferred, in which machine learning makes up three quarters of available literature [313].
Support Vector Machines (SVMs) (33%), Neural Networks (26%) and tree-based models (21%)
are the most frequently adopted algorithms. These algorithms can be applied to raw time–series
data or to features extracted from that data using the methods exposed in Section 2.6 and 2.6
[35].

49



Table 2.4: Comparison of parametric versus non-parametric methods

Method Features Limitations
Parametric Methods

AR, ARMA Stationary time-series modelling.
Does not require input data
(output-only)

Assumes linearity. Requires
moderate user-expertise.

LPV-AR Non-stationary time-series mod-
elling. Does not require input
data (output-only)

Assumes the observation of
scheduling variables. May reach
high model orders. Requires
high user-expertise.

KF Linear state, or state-input ob-
server. Optimal for Gaussian
process and measurement noise

Requires knowledge of the sys-
tem dynamics

EKF Nonlinear state, state-input, and
state-input-parameter observer.
Linearizes a model around an op-
erating point.

Requires knowledge of the sys-
tem dynamics. Not optimal,
even for Gaussian process and
measurement noise. Stability
and convergence problems.

UKF Nonlinear state, state-input, and
state-input-parameter observer.
Approximates the state proba-
bility density by a deterministic
cloud sampling.

Requires knowledge of the sys-
tem dynamics. Stability and
convergence problems.

VKF Separation of time-series of peri-
odic system processes

Requires the observation of the
system phasor and the assump-
tion of the filter bandwidth

Non-Parametric Methods
STFT, DWT, CWT Compact time-frequency repre-

sentations
Dependence on track and vehicle
parameters or speed are not ex-
plicitly considered

Numerical Integration Recovery of the time-history of
directly observed states

Requires the direct observation
of each degree of freedom that is
to be analyzed

Statistical Measures Can be applied for outlier detec-
tion on the parameters and sig-
nals of all previous methods

Best used in combination
with other parametric or non-
Parametric Methods
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Table 2.5: Classification methods in supervised and unsupervised analysis [5]

Supervised Model Unsupervised Analogs
Support-vector machines One-class SVM
Neural Networks Replicator neural networks
Decision Trees Isolation Trees
Random Forests Isolation Forests
Naive Bayes Expectation-maximization
Rocchio Mahalanobis method, Clustering
k-nearest neighbor k-NN distance, LOF, LOCI
Rule-based FP-Outlier
Linear Regression Principal Component Analysis

A SVM has been applied to the continuous wavelet transform coefficients of acceleration
signals to identify rail defects in [246]. The detection was improved by applying model inversion
to the raw data. The model inputs are obtained by applying the inverse system derived from
a quarter-car model to reconstruct the inputs that cause the dynamic response. In [318] a
Convolution Neural Network (CNN) has been applied to raw axle box acceleration data to
detect insulated joints. The CNN yields similar performance to a decision tree model trained
on features that are computed on wavelet coefficients, but at the cost of higher complexity and
elevated computational cost.

The continuous equivalent of classification is regression analysis. Regression methods are
machine learning methods that allow to predict a continuous outcome variable based on the
value of one or more predictor variables. Continuous outcome variables are in some cases
reference measurements from an established system, such as track geometry or rail profile
measurements. Sometimes continuous variables relate to operational conditions such as the
vehicle speed. In [189] it is demonstrated how a polynomial regression implemented on a
parametric analysis model has allowed to predict the expected peak acceleration from the
crossing of a light squat at a given vehicle speed.

2.7.2 Outlier analysis

Outlier Analysis involves the identification of anomalous, deviant or discordant observations in
a dataset. Outliers are observations of unusual behaviour in a system or process. There are two
main causes of abnormal observations: Outliers can be caused by errors in the collected data
itself due to hardware or software issues. Outliers can also reflect an abnormality in the system
itself due to irregularities. All outlier detection schemes require a model that classifies normal
behavior and anomalies. The model can be based on a physical vehicle track interaction model
(see Section 2.5) or on machine learning classifiers [35].

A fully supervised scenario, in which both normal and abnormal samples are available
and clearly labeled, is often preferred. However, the number of labels for a large amount of
generated samples or measurements is in practice limited. Most often, examples of outliers
and normal data are available from the existing track inspection processes. These labels can
have an unknown proportion of biases, errors and noise. When a limited number of most
informative observations are available, semi-supervised classification methods can be applied
[46]. Unsupervised classification methods in Tab. 2.5 are suitable for identifying outliers from
unlabeled data. Outliers can be qualified with binary labels or in terms of an outlier score by
assessing each sample based on its deviation from a regular data model [4].

In real-world applications, such as OBM measurement scenarios, the data (and labels) can
contain a significant amount of noise that blurs the line between normal samples and significant
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anomalies. Each sample lies in a continuous spectrum from low to high outlier scores with the
score uncertainty depending on the amount of noise. Fig. 2.13 illustrates the spectrum of outlier
scores for three classes: normal data, noise and anomalies. The separation between these three
classes is usually continuous. Some authors qualify noise and anomalies as weak outliers and
strong outliers [5] [138].

Increasing Outlier score from left to right

Normal Data Noise Anomalies

Weak or Strong Outliers

Figure 2.13: Spectrum from normal data to outliers [4].

With regard to OBM, outlier analysis aims to identify outliers that are due to irregularities
on the rolling contact surface or to the dynamics caused by irregularities in the track geometry.
Fig. 2.14 shows an application of outlier analysis to the insulated joint crossings stored in
the event database, which is presented in Fig. 2.6. While typical insulated joints result in a
longitudinal level D0 of in average -0.4 mm and a longitudinal level D1 around -2.5 mm, joints
with loose screws - or even broken joint plate - result in severely increased values. Fig. 2.14
illustrates this effect for a joint with a broken joint plate. The longitudinal level at the location
of the joint presents a dip in D0 of over 2.5 mm and a dip in D1 of around 13 mm after the
damage occurrence. The evolution of outlier scores over measurement runs can be used to
detect potential degradation of the condition of an asset and carry out interventions in time.

2.8 Conclusion

This work examines the potential rendered by exploitation of On Board Monitoring (OBM)
data, that have been extracted from diagnostic or in service vehicles for monitoring the condition
of railway infrastructure. Railways form a main pillar of modern transport infrastructure and a
principal enabler of mobility. Following the idea of smart cities and the principles of digitization
that underlie such a vision, it is imperative to build a mobility system of the future, i.e., one
that exploits current monitoring potential for ensuring, safe, sustainable and resilient transport
of people and goods. OBM measurements can be carried out at regular intervals in order to
identify early damage, or deterioration of the condition of the tracks and further critical rail
components, and to prompt associated maintenance measures with optimal planning. The
use of such a diagnostic vehicle comes with operation costs, while further requiring trained
personnel and careful planning, so as not to interfere with regular rail traffic. To overcome
these obstacles, OBM via in service trains was recently proposed for supporting preventive and
reactive maintenance tasks with a view toward automation.

This work offers an extensive overview of state-of-the-art research approaches for monitoring
the condition of the rail and the track using data from simple, inexpensive and robust sensors
installed in regular rolling stock. This offers an efficient and cost-effective complement to the
calibrated measurements of the specialized diagnostic vehicles, which can yield significant ben-
efits in preventive maintenance planning. A suite of parametric and non–parametric methods
are presented in this article, along with exemplary applications on data from the Swiss federal
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Figure 2.14: Outliers in Longitudinal level D0 (0.6-3 m) and D1 (3-25 m) from ABA (raw data
from SBB) for left and right rail during crossings of insulated joints on the left side of the rail.
Before (Fig. 2.2a) and after damage (Fig. 2.2b).

Railways (SBB) database. These methods are applied for extracting condition indicators which
in a second step are coupled with classification techniques for damage characterization.

Owing to its potential for broad network coverage at frequent intervals, OBM via in-service
vehicles offers a valuable tool for the timely detection of faults in railways. This approach may
further be coupled with less frequent but higher precision measurements from specialized diag-
nostic vehicles in an effort to increase the predictive capabilities of the demonstrated diagnostic
algorithms. Specialized diagnostic vehicles remain important for measuring the parameters
related to the condition of the track that cannot be inversely determined via in-service OBM
accelerometers (such as rail profile wear). The intelligent and meaningful evaluation of sensor
data mounted on regular passenger trains represents a challenge, both in terms of the deploy-
ment aspects and the necessary investment in the required technology. Further research is nec-
essary for direct exploitation of OBM-derived indicators for preventive maintenance. Existing
acceleration-based monitoring systems are often customized to individual vehicles and require
human intervention and expert opinion, for supporting further decision-making processes, in-
cluding maintenance and repair actions. Challenges lie in building efficient frameworks for
processing the aggregated data and integrating these into existing processes, reducing manual
workload, and simultaneously dealing with potential false alarms or errors. A fully automated
implementation is not a “low hanging fruit” - but bears tremendous potential for an intelligent
and integrated railroad infrastructure of future smart cities.
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Chapter 3

Vold-Kalman Filter Order tracking of
Axle Box Accelerations for Rail
Stiffness Assessment

Paper Details

The following chapter was submitted on March 16, 2022, as:
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ter Order tracking of Axle Box Accelerations for Rail Stiffness Assessment. Submitted to the
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minor amendments which have been implemented in the text to adapt the original paper to
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* First authors.
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of the manuscript. Prof. E. N. Chatzi and Dr V. Dertimanis helped to conceive the framework
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Key Findings

• The proposed multi-order extraction scheme separates deterministic (periodic) compo-
nents from non-deterministic contributions to the measured axle response.

• The Vold-Kalman Filter (VKF) is a suitable approach to extract condition indicators
characterizing the railway track stiffness and the condition of the vehicle wheels.

• The VKF can estimate amplitude components corresponding to the wheels and sleeper
passage, providing information on wheel condition, potential flaws, and changes in track
stiffness.
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• The VKF-derived stiffness indicator is proportional to the rail-wheel forces and can im-
prove the planning of optimal maintenance measures. High stiffness leads to increased
damage accumulation on the rails and ballast. Coupled with existing substructure condi-
tion indicators such as the fractal values, this information could further support the Root
Cause Analysis of the origins of increased stiffness.

General comments and Link to the next chapter

This study tackles the second objective of the thesis (see Section 1.4) by proposing a novel
approach, exploiting a Vold-Kalman filter scheme, to assess the wheel Out-Of-Roundness and
the track stiffness.

This chapter concludes the analysis of continuous excitation effects due to parametric excita-
tion. It demonstrates the significant effect of track parameters on the vehicle axle response and
the resulting degradation of infrastructure. In the following chapter, we shift the assessment
focus to the classification of short-wavelength components and defects.
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Abstract

Intelligent data-driven monitoring procedures hold enormous potential for ensuring safe
operation and optimal management of railway infrastructure in the face of increasing demands
on cost and operations efficiency. Numerous studies have highlighted track stiffness as a main
parameter influencing the evolution of degradation that drives maintenance processes. As such,
the measurement of track stiffness is fundamental for characterizing the performance of the
track in terms of deterioration rate and noise emission. In this work, we propose a rail stiffness
assessment scheme relying on low-cost On Board Monitoring (OBM) sensors, namely axle-box
accelerometers, that are mounted on in-service trains and enable frequent, real-time monitoring
of the railway infrastructure network. A Vold-Kalman filter is proposed for decomposing the
signal into periodic wheel and track related excitation–response pair functions. We demonstrate
that these components are in turn correlated to operational conditions, such as wheel out-of-
roundness and the rail type. We further illustrate the relationship between the track stiffness,
the measured wheel-rail forces and the sleeper passage amplitude, which can ultimately serve
as an indicator for predictive track maintenance and prediction of track durability.

3.1 Introduction

The measurement of track stiffness is considered a fundamental driver for the continuous devel-
opment of railway engineering, holding both theoretical and practical significance [298]. Track
stiffness forms a primary feature, which can define the performance of railway infrastructure in
terms of degradation progression [204] and acoustic noise emission to the surrounding environ-
ment [215].

The degradation of railway tracks is typically modeled by an analytical degradation model
(e.g. a settlement equation), which relates cycles of dynamic forcing to incremental damage
accumulation (i.e., ballast settlement or component wear) [63]. In such models, track stiffness is
one of the critical parameters influencing loads. Real et al. [232] demonstrate that higher track
stiffness, or equivalently low subsidence, generates axle loads that are distributed between
fewer sleepers. As a result, the rail–wheel and sleeper-ballast contact forces increase, which
may lead to premature rail and ballast wear [286]. A sudden decrease in track stiffness is
often related to local damage of the ballast, substructure, and subgrade (changes in track type,
fouled ballast, mud pumping or hanging ties) [106]. Given the defining nature of track stiffness
for rail condition assessment, reliable measurements of this property can substantially support
maintenance decisions [64].

Track stiffness can be estimated by (i) controlled experiments, where a measured external
excitation is applied, e.g. using impact hammers, oscillating masses, or hydraulic cylinders [252,
147, 218, 30, 81]; (ii) standstill measurements of rail deflections at distinct track locations, due
to the axle load of crossing vehicles [298]; or (iii) various types of vehicle–based measurement
systems [262, 299, 48, 184, 117, 192, 229, 29, 30]. The latter category, which often uses the
subsidence of the track under an axle load as an indicator of track stiffness [262], is increasingly
preferred over the first two, since it delivers a high-accuracy assessment along extended track
lengths. A common conclusion of all approaches is that the track stiffness is strongly dependent
to the excitation frequency [142, 78, 141].

In terms of proposed methods, the stiffness may be directly calculated from measured force-
displacement hysteresis curves [117, 192, 229], or by applying an explicit model (e.g. the Winkler
model), which relates the subsidence to the load [184]. A wide class of studies applies some
form of model updating [30], by fitting features of identified frequency response functions, either
manually [81, 158], or by solving an associated optimization problem [62, 131, 310, 252]. The
effects of varying track stiffness, resulting from the discretely supported rails, is also investigated
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in several studies, primarily in a forward approach where the response of the track is simulated
with finite element models [252, 239, 37, 36, 103]. In such scenarios, the rails are most commonly
modeled as 4 DOF Timoshenko beam elements linked to the sleepers via discrete [239, 37] or
distributed springs and dampers [36, 103]. The vertical wheel/rail contact stiffness is modeled
via a Herzian spring. Vehicle models are most commonly composed of an axle and a sprung
mass when considering only the track or axle response. From such studies, one can observe
that peak responses occur at specific frequencies, such as the P2 resonance (50-100 Hz) or the
rutting and roaring effects (250-1000 Hz). Such resonances are shown to lead to higher fatigue
and damage [239].

Recently, on-board monitoring (OBM) vehicles have been introduced for conducting sparser
measurements [107]. OBM vehicles are conventional passenger vehicles equipped with sensors,
such as axle box accelerometers (ABA), which enable a nearly daily data collection and can be
be processed into quantifiable track quality indicators [316].

Song et al. [263] characterize the wheel out-of-roundness (OOR) by applying the Empirical
Mode Decomposition and the Wigner-Ville distribution to ABA. The Hilbert Huang transform
spectrum characteristics have been used to study the effect of wheel flats on ABA while propos-
ing different the frequency bands at different running speeds [164]. Li et al. [159] propose a
short pitch corrugation detection method based on signatures in the wavelet power spectrum.
Huang et al. [119] identify stiffness using convolutional neural networks from ABA response of
the vehicle axle in a FE model. Quirke et al. [230] estimate both stiffness and damping from
bogie accelerations.

Most of the aforementioned studies rely on the availability of a physical model. Purely
data-driven schemes may also be applied, however such approaches are inherently challenging,
especially when considering the particular nature of the excitation and disturbance sources for
this problem, as well as the many parametric unknowns that occur in practice. It is noted
that several methods have been applied to relate ABAs with geometric flaws, including the use
of Kalman filters [69], double integration and filtering techniques [107] and linear parameter
varying autoregressive models [108]. Non-parametric methods, such as time frequency analysis
via Discrete [104] or Continuous Wavelet Transforms [326], have been also applied to identify
rail flaws such as squats. Other fault effects, such as wheel OOR, are characterized using
the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform (HHT) [263].
Infusing such non-parametric methods with physics–based models is proposed by Quirke et
al. [230], who infer the track stiffness from the vertical bogie accelerations using a methodology
that combines a vehicle-track interaction model with cross–entropy optimization.

In suggesting a scheme that is fit for an on–board, automated setting, we propose a stiff-
ness indicator based on use of a Vold-Kalman Filter (VKF) on Axle Box Acceleration (ABA)
measurements, which exploits the physical parameters of the wheel and the track to deliver
wheel condition and track condition indicators. Unlike standstill stiffness and subsidence mea-
surements, the proposed indicator can be applied in an in-service monitoring scheme, which
attempts to deliver continuous assessment. The VKF is a parametric identification method
that can be used to decompose the signal into harmonic responses, or orders, of periodic
loads [100, 42]. It has been extensively used for monitoring the condition of rotating machinery
equipment, such as wind turbine gearboxes [114, 160].

In the current setting, the VKF is used to extract the response functions corresponding to
the sleeper passage frequency and to the wheel OOR frequencies from ABA measurements. Few
previous studies have identified the large influence of periodic excitation such as the sleeper
passage [239] and the wheel OOR excitation [26, 263] on the degradation of infrastructure.
We demonstrate that these response functions are related to operational conditions, such as
subsidence, wheel OOR and vehicle speed. We further show the relation between track stiffness,
rail–wheel forces and the sleeper passage amplitude, suggesting that a VKF-derived stiffness
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indicator can indeed support maintenance actions in a straightforward manner.
The structure of this paper is organized as follows: In Sec. 3.2 we describe the inverse prob-

lem of estimating track stiffness from ABA measurements. The fundamental aspects of the
Vold-Kalman Filter are described in Sec. 3.3, whereas Sec. 3.4 contains the measurement data
description and the results of the application of the proposed stiffness and wheel OOR identi-
fication. Finally, Sec. 3.5 outlines the core concept and results of the proposed methodology.

3.2 Problem formulation

3.2.1 Railway track stiffness

A stable track with generally consistent stiffness that can absorb the cyclic vehicle loads is
a essential for an efficient low-maintenance rail system [271]. The characteristics of the sub-
structure and the superstructure, including the drainage system, the ballast, and the sleeper,
affect the degradation of the geometry and the rail. In particular, a homogeneous substructure
improves the track geometry durability [106]. The vertical track stiffness is an essential pa-
rameter, which strongly affects the dynamic behaviour of the track and the resulting rail-wheel
contact forces [140]. Vertical stiffness is often used to detect substructure flaws [262, 285], but
it has in some cases also been related to rail faults such as squats [163].

The static track stiffness, or in other words, the overall stiffness of the track ks, corresponds
to the ratio of vertical load to the vertical deflection of the track,

ks =
Q

u
(3.1)

where u is the subsidence or deflection under the applied load Q. Variations in the static
track stiffness can be attributed to the condition of the track superstructure and substructure,
especially due to changes in selected components (rail, fasteners, sleepers, ballast and subgrade).
The transition between superstructure or substructure types can cause sudden variations in
stiffness resulting in increased wear and maintenance.

The dynamic track stiffness is defined as the inverse of the track receptance α(f) [298],

kdyn(f) =
1

α(f)
=

Q(f)

u(f)
(3.2)

where u is the subsidence, or deflection, under the load Q and f . is the is the frequency of
excitation. Dynamic stiffness expresses the ability of the railway track to resist dynamic loads
such as wheel-rail interaction forces caused by the motion of trains. It is a measure of the
track’s ability to absorb and distribute these dynamic loads, reducing track deformation and
preventing excessive track wear [94]. The dynamic track stiffness is influenced by factors such
as track geometry, rail fastening systems, ballast condition, and subgrade stiffness. Resonance
results in high deflections since the railway system is force-driven [276].

Table 3.1: Meaning of the DA,S naming convention of the sensors.

Letter Explanation Possible entries

D direction Y for lateral, Z/Q for vertical
A axle number 1 to 4, starting from the front (leading) axle
S vehicle side 1 for right, 2 for left (w.r.t vehicle’s top view)
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Figure 3.1: Schematic 2D primary suspension representation of wheelset, bogie and track with
corresponding measured degrees of freedom.

3.2.2 Objective of this work

We consider the case of a diagnostic vehicle travelling along a railway track. The vehicle is
instrumented with ABAs, mounted on its leading and trailing axles. Figure 3.1 displays a
simplified roll-bounce dynamics representation of a vehicle axle connected to track and bogie,
and shows the position of the sensors. The naming convention of the ABAs, complying with
railway–specific standards, is DA,S, with the related letter-entries being explained in Tab. 3.1.

The vibration response of the axle is composed of several periodic processes driven by
the wheel OOR and the periodicity of sleepers. The wheelset is excited by the geometric
irregularities of the track [267], OOR of the wheel [266] and parametric excitation (sleeper
passage frequency, track parameters) [141]. Each of these excitation sources comprises a specific
wavelength range (e.g. sleeper spacing and factors of the wheel diameter).

The vehicle-track interaction is dominated by four main classes of resonant effects: vehicle
modes, the P2 effect and roaring or rutting [141]. Roaring or rutting result from the rail cor-
rugation that occurs through a wavelength “fixing mechanism”, which represents the dynamic
behaviour of the vehicle–track system [93]. The P2 effect corresponds to the vertical resonance
of the coupled train–track system [129]. Figure 3.2 illustrates the relation between vehicle
speed, frequency and wavelength, as well as the frequency ranges for the main vehicle-track
resonances that stem from vehicle-track interaction [107]. The vehicle speed is the main factor
modulating the excitation frequencies relating to these effects [141].

Many studies demonstrate that increased dynamic response occurring at resonant frequen-
cies, such as P2 resonance (50-100 Hz), or the rutting and roaring resonance (250-1000 Hz),
leads to higher fatigue and damage on both on the railway vehicle (wheel OOR) and the railway
track (corrugation) [129, 93]. The track stiffness has a major influence on these degradation
processes, as contact forces directly relate to the track stiffness [141]. The periodic excitation
stemming from the discrete rail supports (sleeper passage) can interact with these resonant
modes, such as the P2 resonance and the track stiffness, resulting in high-amplitude dynam-
ics [239].

The wheel OOR and the sleeper passage excitation are the two periodic excitation sources
with known wavelength. The ABA response to these two periodic excitation sources is the result
of their interaction with resonant modes, such as the P2 one. The response from the sleeper
passage excitation is largely dependent on the stiffness and the damping of the track [239],
but is also affected by the P2 resonance. Evidently, for tracks with comparatively higher
superstructure stiffness, the amplitude of the acceleration response is increased in the frequency
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Figure 3.2: Relation between vehicle speed, frequency and wavelength, as well as frequency
ranges for the main vehicle-track resonances. Excitation due to geometric irregularities (D0,
D1, D2), corrugation, sleeper spacing and wheel OOR occur in specific wavelength ranges. The
frequencies of excitation corresponding to these wavelengths are proportional to the vehicle
speed. The main resonance levels (vehicle modes, P2, rutting and roaring) are highlighted on
the left part of the figure

range up to 200 Hz [37, 36, 103].
The angular velocity of the wheel depends on the measured vehicle speed v(t) and the known

diameter of the wheel (herein dw = 0.92 m) by

fw[ℓ] =
v(t)ℓ

πdw
(3.3)

and it is used for extracting indicators of the wheel condition (OOR and flat spots). Each order
ℓ of wheel OOR causes an instantaneous frequency of fw[ℓ = 1, 2, ...n]. The track stiffness is
related to the instantaneous frequency caused by the sleeper passage, defined as

fs = fw[1]
πdw
ds

(3.4)

with ds denoting the sleepers’ spacing (herein ds = 0.6 m). The remaining ABA signal com-
ponents comprise non-deterministic processes and measurement noise and may be used to
characterize all non-periodic effects.

Under this setting, given estimates of fw and fs, the aim is to apply a data–driven scheme
and identify the deterministic periodic components related to wheel OOR and sleeper passage,
and correlate these to the dynamic stiffness of the track. This is succeeded by applying the
VKF, outlined in the next section, to the measured ABAs of the vehicle.
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3.3 The Vold-Kalman Filter

3.3.1 The process and measurement equations

Given a realization of a discrete-time, noise-corrupted ABA stochastic process, the Wold de-
composition reads [307],

y[k] = x[k] + η[k] (3.5)

where k ∈ Z+, t = kTs (s) are the associated discrete time indices for a given equidistant sam-
pling period Ts, and x[k], η[k] comprise the mutually uncorrelated deterministic and stochastic
components, respectively, with the latter corresponding to broadband random noise.

For the purpose of the current study, x[k] is assumed to form a superposition of harmonic
components, which are represented as modulated carrier waves of varying frequency [284],
parameterized over the vehicle speed v(t). That is

x[k] =
s∑

n=1

An[k]ejϕn[k] (3.6)

where An[k] is a complex envelope and

ϕn[k] =
k∑
ℓ=1

2π
fn[ℓ]

Fs
(3.7)

is the phase of the complex phasor, with fn[ℓ] and Fs denoting the instantaneous frequency and
the sampling rate in Hz, respectively.

The Vold-Kalman filter aims at identifying the complex envelopes An[k], given noise-corrupted
observations y[k], for k = 1, . . . , N , and estimates of the instantaneous frequencies fn[ℓ]. Assum-
ing that the complex envelopes comprise smooth, slowly-varying modulations of their associated
phasors, they may be approximated by

∇qAn[k] = ϵn,q[k] (3.8)

where ∇q is the finite difference operator of order q and ϵn,q[k] may be considered as the q-th
gradient of An[k]. Under the adopted assumptions, Eq. 3.8 implies that the finite differences
among successive time instants of the complex envelopes are “small”. Moreover, it introduces
a filtering effect. Indicatively, for q = 1, 2, 3 we get,

An[k] − An[k − 1] = ϵn,1[k] (3.9a)

An[k] − 2An[k − 1] + An[k − 2] = ϵn,2[k] (3.9b)

An[k] − 3An[k − 1] + 3An[k − 2] − An[k − 3] = ϵn,3[k] (3.9c)

which pertain to standard, non-homogeneous difference equations, represented by associated
fixed-pole digital transfer functions in the Z domain.

By considering Eqs. 3.8 and 3.5 as process and measurement equations, respectively, a
state-space system of the form,

∇qa[k] = ϵ[k] (3.10a)

y[k] = c[k]a[k] + η[k] (3.10b)

is generated, where

a[k] =
[
A1[k] A2[k] . . . As[k]

]T
[s× 1] (3.11)
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is the unknown state vector,

ϵ[k] =
[
ϵ1,q[k] ϵ2,q[k] . . . ϵs,q[k]

]T
[s× 1] (3.12)

c[k] =
[
ejϕ1[k] ejϕ2[k] . . . ejϕs[k]

]
[1 × s] (3.13)

and ϕn[k] is given by Eq. 3.7.

3.3.2 A least-squares solution

We cannot apply the original Kalman filter to the set of Eqs. 3.10, since both ϵ[k] and η[k] are
unknown and the entries of c[k] are usually estimated from data. Instead, a Kalman smoothing
solution can be established on the basis of available measurements [76]. To demonstrate this
solution, define the [N × 1] vectors

An =


An[1]
An[2]

...
An[N ]

 , En =


ϵn,q[1]
ϵn,q[2]

...
ϵn,q[N ]

 (3.14)

for n = 1, 2, . . . , s and

y =


y[1]
y[2]

...
y[N ]

 , η =


η[1]
η[2]

...
η[N ]

 (3.15)

Then, Eq. 3.8 can be written over the available data indices as

SqAn = En (3.16)

for n = 1, 2, . . . , s, where Sq is a known [N×N ] matrix that depends only on the filter’s order q
(i.e., it is n-independent, as demonstrated in Eq. 3.9). By further defining the [Ns× 1] vectors

a =


A1

A2
...
As

 , e =


E1

E2
...
Es

 (3.17)

allows expanding Eq. 3.16 over the index n as

Sa = e (3.18)

for S = Is ⊗ Sq ([Ns×Ns]).
Accordingly, Eq. 3.10b may be written as

y[k] =
s∑

n=1

cn[k]An[k] + η[k] (3.19)
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with cn[k] denoting the n-th entry of c[k] in Eq. 3.13. Writing Eq. 3.19 for k = 1, 2, . . . , N gives

y[1] = c1[1]A1[1] + c2[1]A2[1] + · · · + cs[1]As[1] + η[1]

y[2] = c1[2]A1[2] + c2[2]A2[2] + · · · + cs[2]As[2] + η[2]

...
...

y[N ] = c1[N ]A1[N ] + c2[N ]A2[N ] + · · · + cs[N ]As[N ] + η[N ]

or, using the definitions of Eqs. 3.14–3.15

y =
s∑

n=1

CnAn + η (3.20)

with Cn = diag{cn[1], cn[2], . . . , cn[N ]}. Then, for

C =
[
C1 C2 . . . Cs

]
[N ×Ns] (3.21)

Eq. 3.20 becomes
y = Ca + η (3.22)

A least-squares problem can be now formulated by considering the objective function

V (a) =
(
Re
)T (

Re
)

+ ηTη (3.23)

where R = diag{I
N
r1, IN r2, . . . , IN rs} ([Ns × Ns]) is a diagonal matrix of weighting factors,

which balance the influence of the process equation to the objective function [76]. Substituting
Eqs. 3.18,3.22 and setting the gradient of V (a) equal to zero finally yields[

CHC +
(
RS
)T (

RS
)]
a = CHy (3.24)

with H denoting Hermitian transpose. Due to the special structure of the involved matrices,
Eq. 3.24 constitutes an ill-conditioned problem, the solution of which requires iterative methods,
such as the preconditioned conjugate gradient one. UMFPACK [65] is a library which was
used to efficiently solve this sparse inverse problem. The reader is referred to Feldbauer and
Holdrich [76] for further details.

3.3.3 Implementation and solution

The resulting linear system of coupled equations is formulated as a sparse matrix product and
is solved using a sparse direct solver [65]. The execution time of this solver depends linearly
on the matrix order. For a large time series, the direct solution is obtained by dividing the
time history into overlapping bins. The decomposed signals are reassembled with a Hanning
window taper on the overlapping parts. The source code for the Python 3 implementation of
the second order VKF, developed as a part of this paper, has been made openly available [101]
for reuse by interested readers.
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3.3.4 Validation on a simulated signal

In demonstrating the workflow of the VKF, the filter is first applied on a synthetic multi-
harmonic acceleration signal of the form,

y[k] = x[k] + η[k] (3.25)

where

x[k] =
3∑

n=1

an cos

(
2π

fn
Fs

k + θn

)
= x1[k] + x2[k] + x3[k] (3.26)

with k = 1, . . . , N , N = 6 × 105 and Fs = 12 kHz. The amplitudes an, frequencies fn and
phases θn are given by

f1f2
f3

 =


600 + 120 cos

(
2π 0.03

Fs
k
)

240 − 120 cos
(

2π 0.01
Fs

k
)

252 − 126 cos
(

2π 0.01
Fs

k
)
 (3.27a)

a1a2
a3

 =


0.02
Fs

k + 1

0.7 + 0.4 sin
(

2π 0.02
Fs

k
)

cos
(

2π 0.04
Fs

k
)

0.9 + 0.4 sin
(

2π 0.02
Fs

k
)

cos
(

2π 0.04
Fs

k
)
 (3.27b)

θ1θ2
θ3

 =

0.06
Fs

k − 2

0
−1

 (3.27c)

respectively, while η ∈ N (0, σ2
η), with ση = 0.75 m/s2. Equations 3.26–3.27 indicate that x1[k]

features a sinusoidal frequency variation and a linearly varying amplitude variation and phase,
x2[k] attains a sinusoidal frequency and amplitude variation, whereas x3[k] corresponds to x2[k]
with a small shift in frequency, amplitude and phase to demonstrate the approach on two closely
spaced phasors. The spectrogram (Welch’s method with N

FFT
= 256 and 50% overlap) of y[k]

is displayed in Figure 3.3a.
The implementation of the VKF to the synthetic, noise-corrupted data of Eq. 3.25 proceeds

by estimating first the complex envelopes An of Eq. 3.6 via Eq. 3.24 and accordingly recovering
the amplitudes an and phases θn from

ân = ||An|| (3.28a)

θ̂n = arg{An} (3.28b)

The results are illustrated in Figs. 3.3b–3.3c and show excellent match to Eqs. 3.27b–3.27c,
allowing a proper reconstruction of the simulated signal. Indeed, as Fig. 3.4 demonstrates, the
VKF-estimated noise–free signal

x̂[k] =
3∑

n=1

ân cos

(
2π

fn
Fs

k + θ̂n

)
(3.29)

is in very good agreement to the original one.
In demonstrating the robustness of the filter against noise–corrupted observations, the multi-

harmonic synthetic signal x[k] defined in Eq. 3.26 is corrupted with white noise η[k] of varying
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Figure 3.3: The synthetic, noise–corrupted signal of Eq. 3.25 and the VKF estimates of order
q = 2. The extracted amplitudes and phases agree to the original ones.

Noise-to-Signal Ratios (NSRs), herein defined as

NSR = 100

∑
k η[k]2∑
k x[k]2

(%) (3.30)

while the error on the extracted VKF components is quantified in terms of Normalized Mean
Square Error (NMSE)

NMSE = 100
||xn − x̂n||
||xn − x̄n)||

(%) (3.31)

where x̄n are the mean values of the theoretical signal components xn and x̂n are the estimated
VKF components. The NMSE of the estimated VKF components is shown in Fig. 3.5, from
where the robustness of the filter is confirmed: even for noise levels of around 100%, the error
remains constrained below 0.5%.

3.4 Case study on real-world ABA measurements

3.4.1 Data description

To demonstrate the use of the VKF for the estimation of the wheel OOR and the dynamic
stiffness of the railway track, data from different sources is analyzed, covering more than 100 km
of track on the network of the Swiss Federal Railways (SBB). This data, which is generally
used by railway infrastructure asset managers for decision-making purposes [200], is composed
of periodic inspection data, infrastructure inventory information and maintenance data.

65



0 10 20 30 40 50
kTs (s)

−4

−2

0

2

4

(m
/s

2 )
y[k] x̂[k] x̂1[k] x̂2[k] x̂3[k]

(a) Full time series of the noisy signal y[k], the VKF-filtered noise free signal x̂[k], and its constitutive
components x̂1[k], x̂2[k], x̂3[k].

31.995 31.996 31.997 31.998 31.999 32.000
kTs (s)

−2

−1

0

1

2

(m
/s

2 )

x̂1[k] x̂2[k] x̂3[k] xn[k]

(b) 5 ms zoom showing the VKF-filtered components x̂n[k] against the theoretical ones xn[k].

31.995 31.996 31.997 31.998 31.999 32.000
kTs (s)

−5.0

−2.5

0.0

2.5

5.0

(m
/s

2 )

y[k] x̂[k] x[k]

(c) 5 ms zoom showing y[k], x̂[k], and x[k].
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Table 3.2: Summary of VKF frequencies for wheel OOR and sleeper passage signal extraction.

VKF parameters Wheel OOR Sleeper passage

f (Hz) fw(l = 1, ..., 11) (Eq. 3.3) fs (Eq. 3.4)

In more detail, inspection data acquired from a specialized diagnostic vehicle (gDFZ) and
a subsidence measurement vehicle (EMW) are herein assessed. The gDFZ, which is a special-
ized measurement vehicle equipped with a variety of instrumentation systems, offers dynamic
measurements of acceleration and force, using ABA and tensiometric wheelsets (TWS), respec-
tively. TWS are special wheelsets measuring wheel-rail contact forces [248]. The ABA and the
TWS are mounted to the leading and the trailing axle of the vehicle, as shown in Fig. 3.1. The
subsidence measured by the EMW is inversely proportional the track static stiffness ks

ks =
QEMW

u
(3.32)

where u is the subsidence and Q
EMW

is the static axle load of the EMW.
Dynamic measurements from the gDFZ vehicle, conducted since Spring 2019, are processed

using the VKF and subsequently correlated to the subsidence. Measurement of the latter was
carried out on the same track section in 2016 by the EMW (InfraMT & SBB) [262]. Moreover,
information on the track superstructure components and their maintenance history is extracted
from the fixed asset database (DfA of SBB) and used to correlate the static and the dynamic
track stiffness characteristics to the track type.

3.4.2 Order extraction with Vold-Kalman filter

Harmonic signals are extracted from the ABA signals to account for the sleeper passage fre-
quency and 11 orders of wheel OOR, as defined in Tab. 3.2. Figure 3.6 illustrates the spec-
trograms of the original noisy signal and the VKF-based estimated harmonics, as a function
of the vehicle speed. The VKF clearly succeeds in separating the deterministic components of
the noise–corrupted observations. These components are composed of the ones relating to the
wheel geometry (OOR) and excitation linked to passage over the sleepers, which are spaced
usually at a distance of 60 cm. The response associated to sleeper-passage is non-stationary,
since the track properties (stiffness, inertia, damping) are varying.

Figure 3.7 illustrates the time series of the raw ABA signal Z12, the filtered components Ẑ12

and Ẑ12,i and the residuals η. The VKF filtered signal separates the excitation stemming from
the wheel OOR and the sleepers spacing from the remaining noise. The VKF specifically filters
the frequencies corresponding to the periodic excitations, which in some cases may overlap
further resonant effects described in the problem formulation. While the specification of the
target frequency does not allow distinguishing between specific sources of excitation that may be
jointly contributing in that frequency, the VKF captures the complete response corresponding
to that frequency; in this case, the sleeper passage and wheel OOR wavelengths.

3.4.3 Wheel OOR

The wheel OOR causes a harmonic excitation, whose components are apparent in the acceler-
ation spectrogram of sensor Z12 in Fig. 3.6b. The profile of the wheel can be reconstructed by
summing up the components of the 11 VKF–orders extracted in Sec. 3.4.2 that correspond to
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(a) Spectrogram of the unfiltered ABA signal Z12. The signal reflects the large diversity
of several excitation sources and operating conditions.0
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(b) Spectrogram of the extracted VKF components for sensor channel Z12. The noise
free VKF components corresponding to the frequencies defined in Tab. 3.2
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(c) The non-stationary vehicle speed v(t) can reach up to 200 km/h.
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Figure 3.6: Spectrogram of the noisy signal and of the corresponding harmonics whose frequency
is proportional to the vehicle speed. The VKF filtered signal separates the excitation stemming
from the wheel OOR and the sleepers spacing from the remaining noise.

the wheel’s OOR harmonic frequencies, i.e.,

r(x) = 0.5dw +
11∑
k=1

Ak(x) (3.33)

where the radius r of the wheel is the sum of the mean wheel radius rw = 0.5dw = 0.46 m and
the amplitude of the envelope function Ak for each wheel OOR order k along a position x of the
wheel circumference. Figure 3.8a shows a polar plot with the wheel OOR for the four wheels
that are equipped with vertical acceleration sensors. The maximum OOR amplitude shown
in Fig. 3.8b lies below 300 µm, which is equivalent to the OOR observed in the field tests by
Nielsen and Johansson [206]. The left wheel (Z42) and the right wheel (Z41) on axle 4 have a
similar OOR to the left wheel (Z12) and right wheel (Z11) on axle 1. While an exact profile
is not available for these wheelsets, it is known that they are in good condition at the time
of measurement. This is corroborated by the low amplitude of the VKF-based wheel profile
reconstruction.

3.4.4 Track stiffness

The sleeper passage excitation stems from the discrete support condition of the rail which is
fixed to the sleepers at intervals on 60 cm. The amplitude of the sleeper passage component
of the axle vibration varies in function of the vehicle speed and track stiffness. As the vehicle
speed varies, the parametric excitation due to the vehicle or the track may overlap with the
frequency of the vibration modes, resulting in increased accelerations. The amplitude of the
sleeper passage acceleration component, obtained in Sec. 3.4.2 is henceforth notated as VKF
Z12 (60 cm wavelength).

Figure 3.9b displays the VKF–estimated Z12 amplitude, extracted for a measurement per-
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(b) Time series of the extracted VKF components x̂ for sensor channel Z12.
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(c) Time series of the extracted VKF components x̂i for sensor channel Z12.
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(d) Time series of the residual η.

Figure 3.7: Time series of the raw ABA signal Z12, the filtered components Ẑ12 and Ẑ12,i and
the residuals η. The VKF filtered signal separates the excitation stemming from the wheel
OOR and the sleepers spacing from the remaining noise.

formed on a 30 km section. The corresponding subsidence measurement, obtained from the
EMW, is shown in Fig. 3.9a. One can observe that high sleeper passage acceleration amplitudes
are located in areas of low subsidence. This is further supported by Fig. 3.10a, which illustrates
that the subsidence closely matches the VKF Z12 amplitude. The three main clusters observed
in Fig. 3.10a correspond to concrete sleepers with padding (B-91 sleepers with Sylomer SLS
1308G under sleeper pads), slab tracks (L77-B sleeper) and concrete sleepers with under-sleeper
pads (B-91 sleepers without under sleeper pads).

Figure 3.10a demonstrates that when the subsidence approaches −0.5 mm, the acceleration
amplitude of the in-phase sleeper passage mode Z12 increases significantly. Indeed, when the
track stiffness is high (or equivalently when the subsidence is low), the energy of the crossing
vehicle is mostly dissipated via the dynamics of the rail and the wheel, resulting in increased
VKF–estimated Z12 amplitude. In fact, the track subsidence u is proportional to the logarithm
of the acceleration amplitude Z12, i.e.,

u = a log{Z12} + b (3.34)

The Pearson correlation of the VKF–estimated Z12 amplitude and the subsidence is high (r2 =
0.74). The slopes a and the intercepts b are estimated via conventional regression analysis and
are summarized in Tab. 3.3, along with the Root Mean Square Error (RMSE), which remains
below 0.35 mm for all channels.

The error between subsidence and the VKF–estimated Z12 amplitude has two main origins:
On one hand, differences in track stiffness can be due to changes in stiffness over time. Indeed,
the EMW subsidence measurement was performed in 2015, while the earliest ABA measure-
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Figure 3.8: Wheel Out–Of–Roundness profile obtained from the sum of the first 11 OOR orders
for wheel Z11, Z12, Z41 and Z42 as defined in Eq. 3.33.

Table 3.3: Parameters of the subsidence prediction model defined in Eq. 3.34. The RMSE
achieved by the predictor is around 0.33 mm.

Regressor Wheel 11 Wheel 12 Wheel 41 Wheel 42

b -1.624 -1.617 -1.701 -1.760
a 0.304 0.285 0.356 0.343
RMSE 0.324 0.311 0.350 0.333
Samples 18605 18605 18605 18605

ments are available from 2019. On the other hand, the discrepancy can also be partly attributed
to the different measurement processes: the VKF–estimated Z12 amplitude reflects the dynamic
stiffness occurring at the regular line speed, whereas the subsidence measurements reflects the
static stiffness that occurs at low speeds. Both the subsidence and the VKF–estimated Z12

amplitude are albeit not perfectly correlated, well in agreement with each other, illustrating
the significant effect of the subsidence on the vehicle axle dynamics.

3.4.5 Longitudinal Level

Sources of excitation, such as the longitudinal level measurement obtained by the optical sys-
tems of the gDFZ, may also affect the sleeper passage response. The relation between stiffness,
VKF–estimated sleeper passage acceleration and the longitudinal level must be assessed. The
standard deviation over a length of 50 m is computed for the longitudinal level that was filtered
to the wavelength range 1 to 70 m. This is a commonly used Track Quality Indicator (TQI)
[316] indicating the roughness of the track. However this TQI does not contain the wavelength
of 0.6 m, which was previously identified as critical for indicating effects due to variation in
stiffness. The standard deviation of the longitudinal level is then compared to the subsidence
measured by the EMW and to the VKF–estimated sleeper passage acceleration Z12 obtained
from the gDFZ in ABA. Figure 3.10 illustrates the weak correlation between the VKF Z12

amplitude and the longitudinal level LL Zσ200m . The Pearson correlation coefficient between
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Figure 3.9: The subsidence and VKF Z12 acceleration amplitude are well correlated to each
other. The increased VKF acceleration on stiff sections is primarily caused by the superstructure
type. A low correlation is observed between the standard deviation of the longitudinal level
1-70 m (LL Zσ200m) and the VKF Z12 indicator.

these two parameters is low (r2 = 0.18). Figure 3.9a-c shows the relation between changes in
subsidence or the VKF–estimated sleeper passage acceleration Z12 and the standard deviation
of the longitudinal level. The relative changes in subsidence in Fig.3.9a are also observed by
the VKF in Fig.3.9b . The effect of changes in stiffness results in the appearance of geometric
irregularities corresponding to the peaks in Fig.3.9a at kilometer offset 29.4, 30.1 or 31.1, but
stiffness changes is not the only origin of geometric errors.The longitudinal level has overall a
low correlation to the sections with low subsidence and high VKF–estimated sleeper passage
acceleration Z12 signifying that this indicator is not highly sensitive to the geometric irregular-
ities as shown in Fig.3.10b. Nevertheless, the sudden changes in stiffness result in measurable
geometric irregularities that require regular maintenance.

3.4.6 Relation between acceleration, forces and damage accumula-
tion

The VKF order extraction process, carried out in Sec. 3.4.2, is now applied to the force mea-
surements from the TWS, in order to separate the sleeper passage force amplitude. The VKF–
estimated sleeper passage force Q12 and acceleration Z12 amplitude, extracted for a 30 km track
section, are shown in Fig. 3.11a and Fig. 3.11b respectively. Figure 3.11c illustrates the direct
relation between the amplitude of rail–wheel force and ABA amplitudes. The resulting VKF–
estimated forces Q12 are proportional to the VKF–estimated Z12 amplitudes and, expectedly,
high forces and accelerations are observed for stiffer superstructures. In contrast, at flexible
superstructures, the VKF Z12 amplitude is lower, since the load is uniformly distributed across
multiple sleepers.
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Figure 3.10: The VKF–estimated sleeper passage acceleration amplitude Z12 is compared to the
subsidence and the standard deviation of the longitudinal level 1-70 m (LL Zσ200m). A strong
Pearson correlation (r2 = 0.74) is observed between the subsidence and VKF Z12 indicator while
a weak Pearson correlation (r2 = 0.18) is observed between the longitudinal level indicator and
the VKF Z12 indicator.

20 25 30 35 40 45 50
offset (km)

0

2

4

6

V
K

F
Q

12
(k

N
)

20 25 30 35 40 45 50
offset (km)

0

5

10

15

20

V
K

F
Z

12
(m

/s
2 )

0 2 4 6
VKF Q12 (kN)

0

5

10

15

20

V
K

F
Z

12
(m

/s
2 )

Sleeper and USP
B-91 sleepers, SLS 1308 G
Concrete sleepers,
Sylomer SLS 1308 G
B-70 sleepers, SLS 1707
L77-B sleepers
B-91 sleepers
B-70 sleepers

(a) Forces along track position

20 25 30 35 40 45 50
offset (km)

0

2

4

6

V
K

F
Q

12
(k

N
)

20 25 30 35 40 45 50
offset (km)

0

5

10

15

20

V
K

F
Z

12
(m

/s
2 )

0 2 4 6
VKF Q12 (kN)

0

5

10

15

20

V
K

F
Z

12
(m

/s
2 )

Sleeper and USP
B-91 sleepers, SLS 1308 G
Concrete sleepers,
Sylomer SLS 1308 G
B-70 sleepers, SLS 1707
L77-B sleepers
B-91 sleepers
B-70 sleepers

(b) Accelerations along track position
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(c) Scatter of forces and acceleration

Figure 3.11: The VKF–estimated sleeper passage force Q12 is strongly correlated to the ac-
celeration amplitude Z12. Both quantities exhibit similar responses for varying superstructure
types.

The direct relation between forces and accelerations is useful in quantifying track deterio-
ration, since the degradation of the alignment of ballasted tracks is a time-dependent process
that originates from the dynamic excitation of vehicles. Repeated loading cycles, during which
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(a) The VKF sleeper passage acceleration amplitude Z12 corre-
lates to the number of rail maintenance actions.
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Figure 3.12: Boxplots and regression line with amplitude of the VKF acceleration Z12 in func-
tion of the number of rail maintenance actions and tamping actions between 2006 and 2020 for
a sampling interval of 25 cm on the 100 km track sections. The VKF-derived sleeper passage
amplitude correlates to the number of rail maintenance actions and tamping actions.

energy is dissipated via mechanical processes (damping of pads, friction of ballast grains,etc)
cause material degradation. The consequence of the degradation of the ballast and the sub-
structure is a reduced bearing capacity, leading to geometric deviations and settlement of the
track structure [267, 266]. Aside from the number of loading cycles, the most important param-
eter of mechanistic degradation models is the dynamic excitation forces on the ballast [243].
The VKF–estimated dynamic excitation forces are indications of increased dynamic response of
the vehicle axle under certain superstructure configurations. Hence, the damage accumulation
to the infrastructure components is closely related to the load; larger load variations induce a
higher rate of damage accumulation.

In verifying the relationship between the extracted indicators and the prompting for suitable
maintenance actions, the track maintenance actions recorded in the Database of Fixed Assets
(DfA), between 2006 and 2020, are extracted for the analyzed track segments for a total length
of more than 100 km. To estimate the number of maintenance actions at any location along the
track, we use the type of maintenance, start and end position on the track and the maintenance
date extracted obtained from the DfA. The number of track maintenance actions that are
related to the ballast and the rail are subsequently derived along the track at spatial intervals
of 25 cm, by summing up the number of interventions that were performed at any position
along the track section over a period of 14 years (2007–2020). The distribution of the VKF-
derived sleeper passage acceleration amplitude Z12 given a number of maintenance actions can
be visualized with boxplots. Figure 3.12a and Fig. 3.12b show that the number of maintenance
actions to the ballast (tamping) and the rail (grinding) correlates with the VKF-derived sleeper
passage amplitude. Thus, we demonstrate that decreased VKF sleeper passage acceleration and
force amplitude due to lower superstructure stiffness results in a more durable track [286].

The large variance in Fig. 3.12 of the VKF-derived sleeper passage acceleration amplitude is
explained by two main factors. Firstly, maintenance is usually performed on a large scale and
therefore these actions overlap between degraded and healthy sections. Secondly, preventive
maintenance actions are not considered and may also influence the evolution of the overall track
condition. Figure 3.12 demonstrates that the use of under sleeper pads (effectively resulting in
track lower stiffness) has a beneficial effect by significantly lowering rail–wheel force amplitudes.
This is confirmed by the work of Dahlberg [64], who suggests that the wheel/rail contact forces
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are considerably reduced by decreasing the local stiffness variation via use of grouting or under-
sleeper pads.

3.5 Conclusion

The efficient and continuous monitoring of vehicle-track dynamics is essential for maximizing
the lifespan of the railway infrastructure, while minimizing the required maintenance actions.
The Vold-Kalman Filter (VKF), a time-domain filtering technique, is here suggested as a fit-
ting approach to extract condition indicators that characterize the condition of railway tracks
and vehicle wheels. The proposed multi-order extraction scheme separates the deterministic
(periodic) components from non-deterministic contributions to the measured axle response.

The VKF–estimated amplitude components corresponding to the wheels are used to re-
construct the wheel profile, which in turn provides information on the condition of the wheel
and the potential existence of flaws, such as wheel OOR, thus serving for condition assessment
of wheel assets. The VKF–estimated component related to the sleeper passage, on the other
hand, contains information that is indicative of changes in the track stiffness. It is shown that
the VKF sleeper passage acceleration amplitude is proportional to the rail–wheel forces. The
VKF-derived indicator, thus, delivers an indirect, yet reliable, means to assess the underlying
track stiffness, which serves as a proxy of the track condition and implies that OBM-based ABA
measurements could potentially supplement such subsidence recordings, delivering temporally
denser measurements. The VKF-based indicator can be exploited to improve the planning of
optimal maintenance measures, since, railway track sections with higher stiffness were demon-
strated in this and prior works to lead to increased forces at the rail–wheel interface, resulting
in damage accumulation on the rails and ballast. Future work will investigate the effects of
stiffness changes stemming from fouled ballast and hanging sleepers by performing additional
stiffness measurements with the EMW. Moreover the coupling of the VKF-derived stiffness
indicator with existing substructure condition indicators, such as fractal values [149] will be
explored to further support he characterization of the specific source of increased stiffness.
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Chapter 4

Data-Driven Railway Vehicle
Parameter Tuning using Markov-Chain
Monte Carlo Bayesian updating

Paper Details
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Key Findings

• Literature review focusing on the development of models and approaches used to capture
coupled vehicle-track system dynamic with an emphasis on their role in facilitating the
interpretation of dynamic measurements.

• This chapter employs an MCMC Bayesian updating method to optimize the parameters of
an ICN RABDe500 wagon model system based on actual on-board measurement (OBM)
data from an in-service train. This approach results in a well-calibrated model capable
of predicting wheel rail forces and accelerations.

• The proposed Bayesian model updating approach method proves to be an efficient and
suitable tool for optimizing wagon model parameters by minimizing the estimation error
between simulation model contact forces and OBM-measured forces. It particularly en-
hances the prediction of lateral forces by optimizing the friction coefficient between rails
and wheels.
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• Several avenues for further research and improvement of the MCMC approach are pro-
posed, including defining an automatic termination criterion, exploring alternative evalu-
ation criteria, considering additional monitored parameters, and incorporating the prob-
abilistic nature of parameter estimates. Additionally, the proposed approach is extensible
to other vehicle types and track sections, indicating its broader applicability.

General comments and Link to the next chapter

In pursuit of the fourth objective outlined in the thesis (see Section 1.4), this chapter delves
into the critical task of understanding the dynamic interplay between railway vehicles and
tracks. This understanding is essential for accurately predicting the condition of both the
vehicles and the tracks, ultimately ensuring the safety and longevity of railway infrastructure.
Physics-based models are commonly used to simulate the dynamic response of railway vehicles,
however such models contain numerous parameters requiring validation and potential tuning.

MCMC is a suitable tool for vehicle modelling updating, which can increase simulation ac-
curacy and decrease model building workload. We employ a Bayesian model updating approach
with Markov-Chain Monte Carlo (MCMC) to estimate optimal vehicle parameters and their
uncertainties, minimizing the mean squared error between simulated and measured contact
forces. The process described in the following chapter, results in an improved ’vehicle twin,’
providing valuable insights into vehicle-track dynamics.
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Abstract

Understanding the dynamics of the interaction between railway vehicles and tracks is essen-
tial for forecasting vehicle and track conditions and performing maintenance actions to preserve
the safety of railway infrastructure. In this work, physics-based models are deployed to predict
the dynamic response of railway vehicles to track alignment and irregularities. Such models
comprise a large number of parameters that need to be validated and possibly tuned, a task
often accomplished on the basis of expert knowledge or trial-and-error without necessarily re-
flecting the condition of the operating system as-is. Therefore, model uncertainties persist due
to assumptions on the actual system behavior, as well as due to varying operational parame-
ters (e.g., wheel profile, rail profile, rail moisture). To improve modelling accuracy, this study
adopts a multi-body vehicle model, realized in SIMPACK software, and performs parameter
tuning based on on-board measurement data (accelerations and forces) from an instrumented
tilting train, which regularly traverses the Swiss Federal Railways (SBB) network. The perti-
nent vehicle model is optimized in terms of the interaction forces at the wheel-rail contact using
a Bayesian model updating approach, relying on Markov-Chain Monte Carlo (MCMC). Specif-
ically, the MCMC method is applied to estimate both optimal vehicle parameters and their
uncertainty by minimizing the mean squared error between simulated and measured contact
forces, leading to an improved vehicle twin.

4.1 Introduction

Ensuring the quality and safety of rail transport requires monitoring and evaluating the condi-
tion of rail infrastructure. Specifically, for the track system, continuous monitoring can identify
faults at an early stage [200, 149, 107, 106], preventing severe damage to track and vehicle
components, reducing rolling noise, minimizing passengers’ discomfort due to excessive vibra-
tions, and, ultimately, enhancing the overall safety of rail transport [23, 317]. This degradation
of tracks mainly owes to vehicle load cycles and vehicle-track interaction [93, 267]. For this
reason, the modelling of the dynamic interaction between railway vehicles and tracks has been
a topic of significant research over the past decades [301, 141], with some studies also propos-
ing operational criteria to avoid adverse effects due to vehicle-track interaction. For example,
Knothe and Stichel [141] proposed a set of short- and long-term criteria regarding the dynamics
a vehicle must meet for operational approval [1]. Short-term criteria are those related to the
vehicle’s operation (e.g., excitation of the vehicle to the rails). In contrast, long-term criteria
relate to consequences on the infrastructure after hundreds or thousands of cycles (e.g., damage
to the infrastructure due to fatigue). To define these criteria, diverse factors are considered,
mainly associated with three essential aspects: safety, comfort, and cost.

However, in order to develop such safety operational criteria, accurate models that reflect
the actual dynamic behavior of coupled railway vehicle-track systems are required. Simplified
or reduced-order models are often adopted for simplicity or to reduce computational complex-
ity when studying specific components or processes, such as the vehicle axle response [273].
For example, Dertimanis et al. [69] used a two-dimensional (2D) half-car model approximat-
ing the vehicle dynamics to estimate the track roughness and vehicle-track forces. Although
computationally more efficient, reduced-order models may not fully represent the actual dy-
namics of the vehicle. To this end, full-order vehicle models (Fig. 4.1) enable more realistic
vehicle-track dynamic simulations since they can capture more complex dynamic phenomena
than the simplified models [301, 141]. However, such models are composed of a large number
of bodies and connections whose properties are inherently uncertain and may sometimes vary
with environmental conditions [240]. The calibration of full-order models nowadays often re-
lies on trial-and-error approaches or requires specific dynamic tests performed in the lab [240].
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Figure 4.1: 3D multi-body simulation model of the ICN RABDe500 wagon in SIMPACK
software [143].

To avoid such cumbersome approaches, more comprehensive parameter optimization methods
relying on genetic algorithms are often used to tune the vehicle parameters [120].

Towards this direction, in this study, we use a Markov-Chain Monte Carlo (MCMC) algo-
rithm to optimize the parameters of the vehicle model. MCMC-based approaches are commonly
applied to estimate the parameters of a system which are inherently uncertain. For example,
Arcieri et al. [12] modelled the problem of optimal railway maintenance scheduling policies as
a partially observable Markov decision process and inferred the underlying transition dynamics
and observation-generating process via MCMC sampling. MCMC sampling has also been used
to calibrate finite element models for structural dynamics problems [221]. Thus. in the same
premise, this work employs an MCMC method to optimize vehicle parameters by minimizing
the error between simulated and measured wheel-rail contact forces via iterations. Simulations
are performed with the aid of the ICN (”Intercity Neigezug”) wagon (RABDe 500) of SBB
[143] in the multi-body simulation software SIMPACK [256]. The on-board monitoring (OBM)
system installed on the same train measures contact forces and accelerations, which are then
used for calibrating the model.

4.2 Methodology

This section presents a methodology to calibrate the ICN RABDe500 model. Fig. 4.2 graphi-
cally illustrates the proposed calibration method step-by-step. The goal is to estimate optimal
vehicle parameters that minimise the mean squared error (MSE) between the wheel-rail forces
as predicted by the simulations in SIMPACK software and those measured on-board. Minimis-
ing the MSE between estimated and measured contact forces results in a well-calibrated wagon
model which can be used in subsequent simulations.

4.2.1 Simpack Simulation Model

Fig. 4.1 demonstrates the three-dimensional (3D) ICN RABDe500 wagon model [143], imple-
mented in SIMPACK software, which comprises a first-class carriage modelled as a rigid body.
The track on which the train runs is modelled as a continuously supported two-layer model
(the rail and sleeper layers) composed of two rails elastically connected to a sleeper. The track
gauge is set to the Swiss standard of 1435 mm. Both rails and sleepers are modelled as rigid
bodies. The rail-sleeper and sleeper-ground contacts are realised via force elements of linear
stiffness and linear damping. The mm-accurate track geometric layout and excitation, used as
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Figure 4.2: Proposed methodology for vehicle parameter optimization.

an input for the simulation, are obtained from measurements of a diagnostic vehicle [107].
The interaction surface between the wheels of the wagon and the rails is modelled as discrete

elastic, i.e., it considers the actual wheel-rail contact area for the estimation of the normal and
tangential forces. The normal (vertical) force is composed of an elastic normal force and a
damping normal force evaluated at each slice of the contact patch. For the tangential and
lateral interaction, the FASTSIM method of J.J. Kalker is used [256]. The Kalker weighting
factor is set to 1, and the friction coefficient is initially set to 0.35. The input variables for
initiating the simulation are a geometry profile (track layout), an excitation profile (geometric
irregularities), a velocity profile and a tilting profile and, optionally, a measured wheel and/or
a measured rail surface profile. Fig. 4.3 illustrates the geometry and excitation profiles for the
selected section. The velocity profile is taken directly from a measurement run, while the tilting
profile is calculated from several measurement properties of the corresponding measurement
run. For each of the measurement runs, both wheel-rail force and accelerations are measured.

The initial simulations, using the default parameters, have a reasonably good performance
in approximating the measured wheel-rail forces. However, their values can further be improved
by incorporating changes that may be attributed, for example, to environmental parameters,
which can vary in day-to-day operations. For instance, the vertical forces are influenced by the
train’s body mass and centre of gravity, which changes under different passenger loads. On
the other hand, lateral forces are strongly affected by the wheel-rail friction coefficient, which
is unknown and dependent on environmental conditions [141]. Therefore, in the next section,
an MCMC methodology for parameter optimization is proposed which provides probabilistic
estimates of these parameters in an automated manner.

4.2.2 MCMC-supported Parameter Optimization

The parameters of the model presented in Fig. 4.2.1 are optimized using the MCMC algorithm.
A thorough treatment of the MCMC algorithm can be found in [174], while this Section will also
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Figure 4.3: Geometry profile (curvature and cant) and excitation profile (longitudinal level,
alignment, cross level, and gauge deviations) measured by the diagnostic vehicle of SBB [106].

provide a brief overview. Fig. 4.2 also gives a general insight into the procedure for optimising
the parameters.

First, in the initialization phase, the parameters to be identified are chosen, and suitable
prior distributions are assumed for their initial values. The MCMC algorithm then updates
these prior distributions to find the posterior distributions on these parameters, or, in other
words, the likely distribution of these parameters given the measured forces and assumed model.
This process works through sampling; samples are drawn from the prior distributions, and sim-
ulations are run using these samples as the model parameters. The sampled parameters are
then evaluated using a defined likelihood function which determines how well the simulation
outputs correspond to the measurements. Given this likelihood value, the sampled values are
accepted or rejected by the Metropolis-Hastings algorithm [185], thus updating the distribu-
tion. This process is repeated until convergence is achieved, and the final output consists of
the samples from the posterior distribution. The MCMC updating process is implemented in
Matlab software using the UQLab toolbox [294]. As previously mentioned, the MCMC algo-
rithm requires a likelihood function that evaluates a certain parameter vector to be defined. In
this case, the likelihood is chosen as the MSE between the estimated and measured forces in
both lateral (Y21 and Y22) and vertical (Q21 and Q22) directions for a 1 km long section of
the 13 km long track that the wagon runs on.
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Table 4.1: Overall posterior parameter optimization results and comparison with individual
MCMC given the prior estimates.

Parameters Prior estimate,
N (µ, σ2),
U(a, b)

Individual re-
sult

Overall result Difference
(|µoverall−
µindiv|)

Car body
mass

µprior=35487
kg, σprior=3000
kg

µindiv=37027 kg,
σindiv=325.7 kg

µoverall=36891 kg,
σoverall=92.3 kg

136 kg

Centre of
gravity side-
ways

µprior=-0.0267
m, σprior= 0.5
m

µindiv=-0.0611
m, σindiv=0.01
m

µoverall=-0.0405
m, σoverall=0.01
m

0.02 m

Friction coeffi-
cient

a=0, b=0.7 µindiv=0.1993,
σindiv=0.02

µoverall=0.2137,
σoverall=0.02

0.01

Flange friction
coefficient

a=0.6, b=0.18 µindiv=0.1393,
σ=0.02

µoverall=0.1687,
σoverall=0.005

0.03

Navigator fac-
tor

µprior=1,
σprior=0.25

µindiv=0.8403,
σindiv=0.04

µoverall=0.8399,
σoverall=0.03

0.00

Primary
spring cx
factor

µprior=1,
σprior=0.25

µindiv=6.2835,
σindiv=1.07

µoverall=5.1403,
σoverall=0.11

1.14

Tab. 4.1 demonstrates the results of the optimization procedure. The parameters update
assumes a single measurement run with a specific speed and tilting profile. The first column of
Tab. 4.1 presents the optimized parameters using the MCMC-based scheme. Tab. 4.1 also shows
the posteriors resulting from the MCMC optimization, which are discussed in Section 4.3. The
selection of the initial values of the vehicle parameters relies on prior knowledge of the vehicle
dynamics. In Tab. 4.1, cx denotes the factor which is multiplied with the translational stiffness
constant of the primary suspension in the x-direction (longitudinal direction of the rail). The
navigator factor indicates how much the axes can be adjusted radially. A factor of one means
that both axes (leading and trailing) are perfectly perpendicular to the rails. Note that a
perfect coupling is usually not observed in practice due to friction and parasitic stiffness. The
body mass and center of gravity can vary under passenger load and thus are modelled with
Gaussian priors N (µ, σ2). The wheel-rail friction coefficient is modelled with a uniform prior
U(a, b). In the next section, the results of the MCMC-based optimization are presented.

4.3 Results & Discussion

The force data measured by the OBM system installed on the in-service ICN vehicle are com-
pared with the simulations in SIMPACK software for a case study that considers a 13 km track
section. First, the simulation is carried out with the initial parameter values, and the predicted
wheel-rail forces are compared with the measured values recorded by the recording system of
the ICN vehicle. Then, MCMC is used to optimize the initial parameters, as those are likely to
strongly influence the response of the vehicle. It is worth noting that the parameter optimiza-
tion uses a shorter track section (of 1 km in length), while the performance of the simulation
is assessed across the entire length of 13 km. This 1 km track segment, highlighted in Fig. 4.6,
was used for the MCMC identification as it includes curves in both directions. The good results
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(a) (b)

Figure 4.4: Prior (a) and posterior (b) distribution of the friction coefficient according to the
MCMC algorithm.

Figure 4.5: Illustration of the convergence of a single chain for the friction coefficient.

along the entire 13 km track section indicate that the parameters identified by the MCMC are
generalizable, performing well also on track sections not included in the training data.

This Section further elaborates on the MCMC identification process for a single parameter,
the friction coefficient. Fig. 4.4a shows a sample drawn from the assumed prior distribution for
the friction coefficient, which assumes a uniform distribution between 0 and 0.7. Fig. 4.4b shows
the identified posterior distribution of the friction coefficient following the MCMC process.
The distribution has significantly narrowed, and both shape and mean value have considerably
changed. Fig. 4.5 shows the process of parameter identification through the convergence of one
of the Markov chains used in the MCMC algorithm, where only the first 200 steps are shown for
visualization purposes. The chain quickly converges to the mean value of the identified posterior
distribution. The kernel density estimation of the posterior distribution is also shown, which is
estimated based on the samples from this Markov chain after the first 50 % of values have been
discarded as the burn-in period [174]. All identified parameters converge, and their posterior
estimates demonstrate low variance, as shown in Tab. 4.1.

Fig. 4.6 shows the time series for the vertical (Q21) and lateral (Y21) forces of wheel 21
(right wheel of the second axle in rolling direction) along the track. The lateral forces (Fig. 4.6b)
resulting from the simulation with the initial parameters do not perfectly match the measured
accelerations, especially in the curved track sections, which are identified as the regions of high
amplitude lateral forces. However, after optimization of the parameters via MCMC, we observe
that the simulated lateral forces show better agreement with the measured lateral forces. On
the other hand, according to Fig. 4.6a, the vertical forces after parameter optimization improve
less than the lateral ones.

Fig. 4.7 further supports this finding showing that the MSE shows significant improvement
only in the case of lateral forces (Y21 and Y22). In contrast, in the case of vertical forces (Q21
and Q22) the MSE is practically the same before and after optimisation. Tab. 4.1 summarizes
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(a)

(b)

Figure 4.6: Force-position histories of the (a) vertical Q21 and (b) lateral Y21 contact forces of
the right wheel of the second wheelset of the wagon, for simulations with the initial (red) and
updated (blue) vehicle parameters, along with the measured contact force values (green). The
highlighted yellow section indicates the section used for the MCMC algorithm.

the mean and standard deviation (or a, b of the uniform distributions) of the prior estimates.
The statistics on the posteriors of the individual and overall optimizations deviate only slightly.
The larger standard deviation of the lateral forces compared with vertical forces stems from
differences in the friction coefficient, which is strongly influenced by environmental conditions
(weather, humidity, etc.), among other parameters. Thus, lateral forces are more sensitive to
variations in the rail surface moisture [141] and other rail surface contaminants, such as oil and
dirt [227], that can affect the contact between rails and wheels. However, specific conclusions
about the interdependence of weather and lateral forces are difficult to draw; thus, further
analysis is required.

The MCMC algorithm is programmed in MATLAB R2022a software using the UQLab
toolbox[294]. The simulations invoked by the algorithm are performed using SIMPACK Ver-
sion 2021x.6 on a device with ”Intel(R) Xeon(R) CPU E3-1246 v3 @ 3.50GHz” processor.
This results in simulation times listed in Tab. 4.2. MCMC is computationally expensive; how-
ever, this offline process does not require engineering judgment and, thus, direct supervision.
Moreover, parallelization, which was not implemented herein, can further reduce computation
time.
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Figure 4.7: MSE between simulated and measured contact forces in the vertical and lateral
directions for simulations with the initial (red) and updated (blue) vehicle parameters.

Table 4.2: Simulation times

Simulation specification duration
[hh:mm:ss]

Single run ≈ 13 km ≈ 00:35:00

Single run ≈ 1 km ≈ 00:02:30

MCMC simulation, 6 parameters updated, 400 steps, ≈ 1 km ≈ 15:30:00

4.4 Conclusion

To preserve and further develop railway infrastructure, it is crucial to understand vehicle-track
dynamics and develop simulation models that can capture the actual dynamics of coupled
vehicle-track systems. One way to achieve that is by fusing physical models with data-driven
approaches for model updating. Therefore, in this study, we employ an MCMC Bayesian
updating method to tune/optimize the parameters of an ICN RABDe500 wagon model system
based on actual OBM measurements from an ICN RABDe500 in-service train. This leads
to a well-calibrated model that can be used for predicting loads and damage, and improving
maintenance periods.

To realize this scheme, we first perform simulations based on the initial wagon model values.
These initial simulations already show a good agreement with the measured data in terms
of contact forces. However, there is still space for improvement by updating the simulation
parameters of the wagon. To this end, MCMC proves to be a very efficient and suitable tool
to accomplish this task. MCMC optimizes the wagon model parameters by minimizing the
MSE between the contact forces of the simulation model and the forces measured by the OBM
system of the ICN train. The friction coefficient between the rails and the wheels appears to
be a critical optimization parameter, the tuning of which significantly improves the prediction
of lateral forces. On the other hand, the vehicle’s body mass and centre of gravity mainly
influence the vertical contact forces, but the effect of those parameters is not as strong. Opposite
to current approaches that calculate optimal values using a trial-and-error approach, MCMC
determines these values automatically. However, this process requires a prior selection of a
set of parameters and the definition of their prior distribution. A key feature of the MCMC
approach is that the resulting output offers a posterior probability distribution of the parameter,
enabling uncertainty quantification of the predicted results. Eventually, the calibrated model
can be used for further simulations.
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MCMC is a suitable tool for vehicle modelling updating, which can increase simulation
accuracy and decrease model building workload. However, further investigation is required
to enhance its performance and ease of application. An extension could define an automatic
termination criterion instead of implementing a fixed number of iterations at the beginning of
the algorithm, which could decrease the computation time. Such a termination criterion would
be based on the convergence of the likelihood evaluation. Furthermore, a different evaluation
criterion, other than the MSE between contact forces, could be chosen in the log-likelihood
function, such as frequency differences estimation, to improve accuracy and computational ef-
ficiency. In addition, since more than 50 vehicle parameters are monitored, a similar approach
combining acceleration measurements could be implemented. Finally, incorporating the prob-
abilistic nature of parameter estimates provided by MCMC could help capture uncertainty in
the simulation predictions. Lastly, the proposed approach is extensible to other vehicle types
and track sections.
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Chapter 5

Classification of Rail Irregularities
from Axle Box Accelerations using
Random Forests and Convolutional
Neural Networks

Paper Details

The following chapter was published on July 4, 2022, as:
“Hoelzl, C.*, Ancu, L., Grossmann, H., Ferrari, D., Dertimanis V., Chatzi , E.N. (2022).
Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and
Convolutional Neural Networks. Data Science in Engineering, Volume 9. Proceedings of the
40th IMAC, A Conference and Exposition on Structural Dynamics 2022.”
DOI: https://doi.org/10.1007/978-3-031-04122-8 - Under a Creative Commons license.
This is a post-print version of the article, which differs from the published version only in terms
of layout, formatting, and minor amendments which have been implemented in the text to
adapt the original paper to the format of the thesis and improve readability.

* First authors.

Author and Co-Author Contributions

The author of this thesis prepared the data, performed the initial conception, validation
and description of the classification schemes presented here. L. Ancu conceived the CNN-based
framework. M. Grossmann and D. Ferrari supported the development and testing of the RF-
based and CNN-based frameworks respectively. Prof. E. N. Chatzi and Dr. V. Dertimanis
helped to conceive the framework, provided supervision and guidance.

Key Findings

• We demonstrate the feasibility of detecting and classifying rail components (welds, insu-
lated joints, squats) in a Big-Data framework using ABA only.

• Two approaches were compared: Random Forest trained on features from the ABA and
CNN trained on the time-frequency representation of the ABA using the STFT.

• Insulated joints and defect-free rails can be distinguished quite well. Welds, surface defects
and squats, however, feature more uncertainty in classification which can partly be traced
back to the ground truth labels.

86

https://doi.org/10.1007/978-3-031-04122-8


General comments and Link to the next chapter

This study tackles the fourth objective of the thesis (see Section 1.4) by extracting auto-
matically labeled accelerations obtained from the image recognition on the rail-head images
of V CUBE in a data-driven classification framework which can accurately predict the rail
components using accelerations only.

This chapter proves the potential of machine learning tools applied on ABA measurements
for distinguishing between critical rail components and faults. This chapter further demon-
strates the limitations in the precise identification of surface defects, since these typically reflect
damage of various intensities, which in itself requires a more targeted scheme for classification
of damage intensity. Likewise, it is noticeable that welds can feature various levels of dam-
age. Considering that there are far more welds than insulation joints or surface defects in the
network, the next chapter investigates the potential for refining detection of defective welds us-
ing ABAs by fusing information from ABA, rail-head images (V CUBE), and expert-informed
labeling.
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Abstract

The continuously increasing demand for mobility results in increased loading of the Swiss
railway network, which is further associated with higher wear and deterioration of the rail in-
frastructure. Safety relevant surface defects on railway tracks, such as squats, have acted as
an important driver of rail replacements in Europe. The early detection of such defects can
support the planning of appropriate maintenance measures, such as grinding, which prolong
the remaining life of the rails. On-board monitoring has redefined the paradigm of railway
infrastructure monitoring, via use of in-service vehicles as mobile sensing systems. Such vehi-
cles are equipped with sensors, e.g. axle box accelerometers in order to continuously collect
information on the track and vehicle condition, and support the monitoring of railway assets
and infrastructure. Acceleration–based monitoring has been shown to bear tremendous poten-
tial for offering temporally and spatially dense diagnostics of railway infrastructure. While the
potential of such a monitoring scheme has been proven, the generalization has been limited due
to the small sample sizes in existing studies.

We propose a methodology to recognize and classify between the most common rail irregu-
larities, namely surface defects, insulated joints and welds, by exclusively relying on availability
of on board acceleration measurements. We combine labeled information, stemming from rail-
head image based detection, with acceleration measurements. Two classification approaches are
compared in this work. The first methodology exploits Convolutional Neural Networks (CNNs)
that are applied to the Fourier coefficients, which are computed from acceleration time-series
data. The second methodology relies on a more classical machine learning approach, applied
on features that are extracted from the acceleration time series, which are then classified using
Random Forests. Finally, the uncertainty of the acceleration metrics and of the ground-truth
labels is analyzed, motivating the application of acceleration based detection for improvement
of rail condition monitoring. The resulting classifiers can be deployed on regular passenger
trains for enabling the continuous and automated monitoring of the rail condition.

5.1 Introduction

Frequent monitoring to assess the condition of the rails is indispensable for applying predictive
maintenance. Most railway tracks consist of continuously welded rails that are discretely sup-
ported onto sleepers. In some cases, instead of welds, the rails are connected using insulated
joints, which consist of two electrically insulated rails that are bolted together with steel plates.
The appearance of a fault usually initiates with small material imperfections that under accu-
mulated load grow to more severe faults. Surface defects are a broad category of defects that
have many origins. They can be caused by ballast on the rail surface, lost goods or damaged
wheels leading to indentations on the rail. It has been observed that some surface defects grow
into a squat. Squats are defined by the International Union of Railways as a ”widening and
localized depression of the rail/wheel contact band, accompanied by a dark spot containing
cracks with a circular arc or V shape” [213]. Cracks to the head, web, foot, weld and joint
plates are events that can lead to a broken rail. This type of flaw is a more rare occurrence
that is further elaborated in the UIC Code 712 [213].

Diagnostic vehicles and their low cost counterpart - OBM vehicles - have been introduced to
measure and collect data relating to the track state. Diagnostic vehicles are equipped with sen-
sitive and highly accurate measurement systems, but require specially organized measurement
rides and periodic system maintenance. OBM vehicles on the other hand are in-service vehicle
equipped with simple sensors such as accelerometers, to continuously gather data related to
track and vehicle condition.

88



(a) Intact insulated joint (b) Joint with broken joint plate

(c) Squat on rail (d) Weld

Figure 5.1: Characteristic defect and component classes (images extracted from a high speed
camera, mounted on a diagnostic vehicle of the SBB)

Two approaches are generally followed when dealing with identifying and classifying acceler-
ations time–series: parametric and non parametric methods. Parametric methods, such as the
Kalman filter can be used to reconstruct the longitudinal level profile [69]. The longitudinal level
is obtained via double integration of axle box accelerations (ABA) [6]. Non-parametric methods
include time frequency domain analysis methods such as Fast Fourier Transform (FFT), Short
Time Fourier Transform (STFT), Discrete Wavelet Transform (DWT) or Continuous Wavelet
Transform (CWT). Molodova [326] used the wavelet coefficients from the CWT to classify
squats and welds from axle box acceleration signals. This generalization of a classifier requires
a dataset of sufficient size containing various types of track, welds, defects and operational
conditions.

The methodology we propose to recognize and classify between the most common rail ir-
regularities, namely surface defects, insulated joints and welds exclusively relies on axle box
acceleration measurements from the vehicle track interaction measurement system of the di-
agnostic vehicle. Labeled information stemming from rail-head image based detection are
combined with regular acceleration measurements to allow the capture of variations in mea-
surement conditions such as measurement speed and weather. Two classification approaches
are compared in this work. The first classifier exploits Convolutional Neural Networks (CNNs)
that are applied to FFT coefficients, which are computed from acceleration time-series data.
The second classifier relies on a more classical machine learning approach, applied on features
that are extracted from the acceleration time series, which are then classified using random
forests (RFs). RFs are compared to CNNs, because RFs allow for root cause analysis while
CNNs perform well accross many time–series classification tasks. Finally, the uncertainty of
the acceleration metrics and of the ground-truth labels is analyzed, motivating the application
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of acceleration based detection for improvement of rail condition monitoring.

5.2 Methodology

Machine learning algorithms have had numerous successful applications for classifying signals
from accelerations. The traditional approach requires the extraction of representative features
from the acceleration time–series. These features are then used for classification. Kubera et
al. [145] compare Support Vector Machines (SVMs) and Random Forests (RFs) to detect the
change of vehicle speed using basic features computed from the time–frequency representation
of audio data. Operational parameters, such as the vehicle speed, directly relate to the re-
sponse of the axle and thus these parameters are important to be taken into account. The
longitudinal level D0 (wavelength 1-3m), D1 (wavelength 3-25m) and D2 (wavelength 25-70m)
are geometric parameters defined the railway norm EN13848-1 [52]. The longitudinal levels
extracted from Axle Box Accelerations using integration and filtering techniques have been
shown to be robust, speed independent and repeatable indicators [69][107]. The high frequency
effects such as the vibrational modes of rail, wheel and axle effect the wavelengths of under
one meter. The representation of these high frequency effects in the time–frequency domain,
is obtained by decomposing the signals using DWT or STFT. Both the STFT and the DWT
satisfy the property of invertibility, but the DWT unlike the STFT offers a high resolution in
time and in frequency [92]. The condensation of a signal into a sparse representation of essential
attributes is generally achieved by computing statistical features [233]. These features include
minimum, maximum and mean values, as well as standard deviation and higher statistical
moments (skewness, kurtosis).

Decision Trees (DTs) and Random Forests (RFs) are classic machine learning algorithms,
that yield interpretable classification results, but similarly to SVMs work best on a reduced
set of parameters. RFs are ensemble models, that aggregate several decision trees to achieve
a more robust prediction than an individual DT. A semi-supervised interpretable machine
learning framework for Sensor Fault detection, based on SVMs trained on numerous features
extracted from acceleration time series, combined with the SHAP algorithm [275] was proposed
by Martakis et al. [181]. The methodology proposed here employs RFs to classify the class
label based on the previously described features (see also Fig. 5.2).

Deep Neural Networks have increasingly become popular in solving complex time series
classification tasks with the increase of time series data availability [75]. Deep learning can
achieve similar or better results, while avoiding to perform the feature engineering required for
machine learning methods such as DTs and RFs. This is not to say that feature engineering has
no place within deep learning; as the injection of some form of prior knowledge or physics in a
learning system is often beneficial in better capturing the governing dynamics [146]. However,
the ability of a neural network to ingest data and extract useful representations on the basis of
examples is what makes deep learning so powerful. CNNs have often been used in tasks relating
the classification of time series. In [318] a CNN has been applied to raw axle box acceleration
data for the detection insulated joints. The methodologies for classifying axle box acceleration
signals using CNNs & RFs are illustrated in Fig. 5.2.

5.3 Case Study

5.3.1 Data Description

The acceleration data are labelled under three main categories: welds, insulated joints (Insul)
and surface defects (SurfDef). The model is trained to differentiate between these three cat-
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Figure 5.2: Proposed methodologies using CNN & RF for classifying labeled acceleration time
series.

egories and a fourth one, named no event (NoEvent). This category corresponds to baseline
samples where no label was identified for the signal. The labeled acceleration events are cre-
ated by merging the peaks in the acceleration signal to the labels stemming from deep learning
models applied on rail head images. Defects recognized in the image are not always crossed
by the wheel. Such occurrences are filtered out during the matching of acceleration peaks to
component labels. The features used for training include accelerations, longitudinal level D0
and D1 obtained from accelerations, vehicle speed, DWT wavelet coefficients (bior 2.2) and
their stochastic analysis (mean, percentiles, number of 0 crossings,..). The RFs are trained on
this reduced features set. The CNN models are trained on the STFT representation of the time
series.

The available data are highly imbalanced as the two classes welds and no event have a
number of observations that is a magnitude higher than the one of insul and surface defects.
Indeed, when a track is split into equal segments, the number of segments presenting a defect
is much smaller than the number of healthy segments. Insulated joints are less common than
welds, as they are only chosen over welds when necessary. The samples count is summarized
in Tab. 5.1. The data was subdivided into a training and a testing set. A balanced dataset is
required in order to train the model for each category and not just for the most represented
classes. Balanced datasets are obtained either by decreasing the class weights of the over-
represented category, or by oversampling the minority class via use of a Synthetic Minority
Oversampling Technique (SMOTE) [54].

Table 5.1: Number of Samples in the database.

No Events Welds Insulated Joints Surface Defects
Sample count 180’042 179’097 11’808 9’657
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5.3.2 Classification Results

The RF and the CNN are trained using the data pre-processing steps illustrated in Fig. 5.2.
The model performance is compared for different data preprocessing steps in Tab. 5.2. The
confusion matrices are illustrated for the classifiers with the best scores for the RF classifier
in Fig. 5.3 and for the CNN model in Fig. 5.4. RF and CNN based models result in similar
metrics.

Table 5.2: Average Accuracy scores of the most important models based on CNN and RF.

Classifier Preprocessing Avg. Acc.1

CNN Speed normalized FFT 0.65
CNN Speed normalized CWT 0.62
RF Statistics on D0, D1 and DWT Bior 2.2 of ABA, speed 0.71
RF PCA of statistics on D0, D1 and DWT Bior 2.2 of ABA, speed 0.64

1 Average Accuracy.

For both RF and CNN models, a test score of around 62-71 % is achieved for the classification
of component and damage labels using only preprocessed accelerations and vehicle speed as
main inputs. The best RF model(71% average accuracy) was achieved by taking only the
data from the accelerometers on the first axle raw data on which the following features were
computed: Stochastic analysis of the accelerations, bandpass filtered signals D0 and D1, DWT
of ABA (bior 2.2) and speed. Using Principal Component Analysis (PCA) to combine correlated
features did not increase the model accuracy. STFT delivered the best classification results
out of the different preprocessing approaches tested (STFT and CWT). The CWT and its
subcategories scored similar results, although always slightly worse than the Fourier approach.
Normalizing the data with the speed of the carriage, balancing the input data and increasing
the number of train events were the steps that brought the major improvements to the results.
Using only one axle instead of two, swapping the ABA data in order to have all defects on the
same side and changing the number of layers in the TensorFlow model only had a minor impact
on the results.

For all models, it can be observed that there is always a trade-off between accuracy and
precision: It is possible to get over 80 % of the welds recognised correctly, however in a such
model many surface defects are also classified as welds. On the other hand, when the model
has a good detection rate of the surface defects, the detection rate of the welds drops to around
60 %. Insulated joints do not show such a clear trade-off as the acceleration response over this
component can be separated quite easily from the other classes. In the conclusion, the sources
of these trade-offs are explained and process and model improvements are proposed which may
yield improved classification results.

5.4 Conclusions

The rail surface irregularities can be classified with a mean accuracy between 62 % and 72 %.
Certain classes, such as insulated joints, are clearly separated from the other fault classes. The
classification of surface defects, welds and no events is more challenging, as they lie in a con-
tinuum of axle box acceleration response dynamics. A perfectly executed weld is for instance
hard to distinguish from a flat rail surface (no event). Certain welds may assimilate to surface
defects due to a surface or internal material irregularity. Smaller surface defects do not cause
a significant acceleration response, while large surface defects cause a stronger response. A
finer subdivision of categories, such as welds and insulated joints, into healthy and damaged
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(a) Absolute numbers (b) Normalized

Figure 5.3: Confusion matrix after applying optimized hyperparameters for RF.

Figure 5.4: Confusion matrix of CNN-model on speed normalized STFT.

component categories, is being explored as a refinement of the scheme. The labels used in the
classification are first automatically assigned from images. The assigned labels may in some
cases be erroneous (false positive or misclassified samples). The categorization of a defect is
not always 100 % clear and even when manually evaluating the image, there is some room for
interpretation. The use of only human validated events may, at the cost of a lower sample size,
help to filter out such unclear or erroneous instances. While the proposed models are successful
at classifying accelerations, further improvements can be obtained by some extensions of the
current framework. The combination of the RF model with the SHapley Additive exPlanations
(SHAP) algorithm could be used to achieve a more interpretable classification framework [181].
The slightly lower performance of the CNN compared to RF may be explained by the smaller
dataset used for training the model. Aside from training the model on a more powerful ma-
chine, directly feeding the untransformed measurement data into the CNN may result in better
classification results. In such an instance, the CNNs would essentially act as feature detectors,
that may be combined with an LSTM for the classification task [194]. The application of the
classifiers to tracks with no prior knowledge is an essential step to validate the performance
of data driven machine learning models. These models may in future enable rail condition
monitoring using low–cost accelerometers on OBM vehicles.
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Chapter 6

Weld condition monitoring using
expert informed Extreme Value
Analysis

Paper Details

The following chapter was published on June 19, 2022, as:
“Hoelzl, C.*, Dertimanis V., Kollros, A., Ancu, L., Chatzi , E.N. (2022). Weld condition
monitoring using expert informed Extreme Value Analysis, was presented during the European
Workshop on Structural Health Monitoring (2022) and is published in Lecture Notes in Civil
Engineering [253] .” DOI: https://dx.doi.org/10.1007/978-3-031-07254-3_72 - Under a
Creative Commons license. This is a post-print version of the article, which differs from the
published version only in terms of layout, formatting, and minor amendments which have been
implemented in the text to adapt the original paper to the format of the thesis and improve
readability.

* First authors.

Author and Co-Author Contributions

The author of this thesis prepared the data, performed the initial conception, validation and
description of the outlier detection scheme presented here. A. Kollros and L. Ancu supported
the conception of the expert validation framework including the setup of the processes that
enabled an actionable feedback loop. Prof. E. N. Chatzi and Dr. V. Dertimanis supported the
conception, provided valuable supervision and guidance.

Key Findings

• The study proposes a process to obtain labeled information from experts, by identify-
ing potentially damaged welds using extreme value analysis performed on data-driven
condition indicators.

• Extreme value analysis (EVA) models calibrated on various ABA metrics are used to
identify outlier welds in an unsupervised fashion.

• Field experts provide feedback on rail-head images corresponding to the EVA-identified
outliers, resulting in characterization of these outliers which are suspected weld defects.
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• Uncertainty in the expert assessment is observed, as we notice that more severe faults
are more commonly perceived as defect, while earlier stage faults are often not as clearly
discerned by experts.

• Finally, we initiate the exploration of continuous monitoring approaches on the condition,
by characterizing the weld condition in terms of outlier scores and their growth rates over
time.

General comments and Link to the next chapter

This study addresses the last two objectives of the thesis (see Section 1.4) by presenting
a salient approach to generate condition labels harnessing expert assessment. Extreme Value
Analysis is performed to identify acceleration outliers that are then submitted for expert vali-
dation. The outlier detection framework combines is part of a first of its kind Proof-Of-Concept
performed in collaboration with track experts at SBB to improve the condition assessment of
welds.

In the following chapter, the expert feedback is exploited to propose actionable weld condi-
tion indicators.
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Abstract

On-board acceleration measurements bear significant potential for the early detection of
damage to railway infrastructure components. Condition assessment forms a complex prob-
lem in this case, due to the mobile nature of the On Board monitoring (OBM) solution, and
the uncertainties associated with the rail-wheel contact dynamics, a lack of knowledge on the
excitation sources (track, rail and wheel irregularities, parameter and self excitation) and the
variability of the environmental and operational conditions. Welds are, amongst critical railway
components, an essential element where high response amplitudes can occur. The monitoring
of welds is still largely based on human assessment via typically visual means. We propose an
automated approach to weld condition diagnostics via use of Extreme Value Analysis; an outlier
detection schema which allows the early detection of flaws. In a second assessment phase, these
potentially damaged welds are then assessed by experts during in-office and on-site inspections.
The evolution of these OBM-based weld condition indicators is then tracked over time, leading
to early detection of damaged welds.

6.1 Introduction

Railway tracks are composed of continuously welded rails that are discretely supported onto
sleepers (e.g. Fig. 6.1a). Faults on welds often initiate due to material imperfections, as for
instance the resulting discontinuity in strength of consecutive sections [68]. The increased
loads that are generated on welds that feature a geometric irregularity (flaw) favor the growth
of defects on welds [161]. Squats are a class of geometric irregularity (e.g. Fig .6.1b and 6.1c),
which is defined by the International Union of Railways as a “widening and localized depression
of the rail/wheel contact band, accompanied by a dark spot containing cracks with a circular
arc or V shape” [213]. Cracks, on the other hand, form a defect which occurs more rarely on
welds, as further elaborated in the UIC Code 712 [213].

The assessment of the rail condition via frequent, or feasibly continuous, monitoring is in-
dispensable for effectuating efficient predictive maintenance schemes. Diagnostic vehicles and
their lower cost counterparts - in-service On Board Monitoring (OBM) solutions - have been
introduced to measure and collect data relating to the track condition. Diagnostic vehicles are
equipped with highly sensitive and accurate measurement systems, but require specially orga-
nized measurement rides. In-service OBM vehicles are, on the other hand, typically equipped
with lower cost, and thus lower precision, sensors such as accelerometers, to continuously gather
data related to track and vehicle condition. Welds are most often visually inspected using im-
ages from diagnostic vehicles [107] or by performing field inspections. Track inspections often
rely on use of handheld rail geometry measurement devices (laser devices such as Calipri C40
[202]) to assess the quality and diligence of the connection [2, 11]. Eddy current or Ultrasound-
based measurements are often additionally used to identify welds with internal material flaws
or cracks [274].

When seeking to execute data-driven damage detection on the basis of acceleration data,
two are the prevailing approaches, namely supervised or unsupervised schemes [35]. Supervised
techniques, such as regression or classification, are applicable when the target variable is known.
While in our scenario, we know the existence and location of a weld, its condition is unknown.
Unsupervised learning methodologies, such as Density Estimation [309], Data Clustering [24]
and Extreme Value Analysis (EVA) [261], are well suited in such a scenario. We investigate
the detection of potentially faulty welds by applying outlier detection, via use of EVA. The
identified welds are, in a second - validation - stage, assessed by experts during in-office or on-
site visual inspections. These validated samples are then used as ground truth-basis to further
improve the automated algorithm for weld-defects identification.
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(a) Healthy weld (camera mounted on a diag-
nostic vehicle of the SBB). (b) Squat on weld

(c) Squat on weld (d) Weld 6.1c after manual grinding

Figure 6.1: Characteristic defect and component classes (images from track inspections)

6.2 Methodology

Supervised machine learning approaches, such as Random Forests and Convolutional Neural
Networks, have been shown to successfully allow the classification of surface defects, welds and
insulated joints [104]. Supervised machine learning approaches are often limited by the quality
of the available labels. The automatic image labeling algorithm of the SBB currently does
not assess the condition of welds or insulated joints. Unsupervised machine learning has to
navigate an unlabeled space and accomplishes this either via direct application to raw time
history signals, such as accelerations, or to processed features that are derived from accelera-
tion measurements during the crossing of welds. A common approach to outlier detection on
acceleration data extracted from multiple channels is to first reduce the dimensionality of the
acceleration data (e.g. via use of a Principal Component Analysis [253] or Autoencoder oper-
ator [242]), and then apply an outlier metric to the reduced manifold. For instance, Ulriksen,
Tcherniak and Damkilde use Principal Component Analysis (PCA) to combine the acceleration
data from 12 accelerometers, whose principal scores are then employed as damage features in
the Mahalanobis metric in order to detect damage-induced anomalies [287]. A similar approach
is also used by Avedano, Chatzi and Tcherniak for the assessment of wind turbine blades [16]

Following a similar logic, in this work, representative features that are extracted from the
acceleration time–series are used for outlier detection. The longitudinal level D0 (wavelength
1-3m), D1 (wavelength 3-25m) and D2 (wavelength 25-70m) are geometric parameters defined
in the railway norm EN13848-1 [52]. The longitudinal levels extracted from Axle Box Accel-
erations (ABA) using integration and filtering techniques are robust, speed independent and
repeatable indicators [69][107]. Esveld and Steenbergen [72] developed geometrical standards
for rail welds, by relating the slope of the longitudinal level D0 to the dynamic wheel-rail contact
force and, thus, the condition of the welds. High frequency effects correspond to the vibrational
modes of rail, wheel and axle. These effect can be represented in the time–frequency domain,
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Figure 6.2: Event database generation for outlier detection, validation and condition prediction

by decomposing the signals using suitable transformations, such as the Discrete Wavelet Trans-
form (DWT) or the Short Time Fourier Transform (STFT) [49]. Statistical features are often
computed to condensate the signal into a sparse representation of essential attributes[233].
These features include minimum, maximum and mean values, energies, as well higher statisti-
cal moments (skewness, kurtosis).

To obtain information a first estimate on the damage state of welds, a feedback loop with
experts was developed. We use EVA to identify outlier welds that are subsequently labeled by
experts using railhead and track inspection system images from the diagnostic vehicle. The
experts assess the condition of welds based on criteria defined in the deviation catalog of SBB
[244]. Deviations in this catalog are for instance welds featuring a squat or a surface defect.
The time history of damaged welds is subsequently analyzed to model the evolution of the
defect. The flow of the proposed framework, from data preparation and feature extraction, to
EVA and expert evaluation is illustrated in Fig. 6.2.

6.3 Case Study

6.3.1 Data Description

The railway tracks specifically selected for this study are regularly inspected on–site. They are
located in the west, south, center and east regions of Switzerland. The data used for the expert
validation in the feedback loops stems from the diagnostic vehicle (gDFZ) of SBB, which is
equipped with 24kHz ABAs on the left and the right side of the first and last axle. The images
from the rail head imaging system (Fig. 6.1a) is used to generate a database of automatically
labeled welds. The acceleration samples related to these welds are processed to extract an
array of features, such as the longitudinal level D0 and D1, DWT wavelet coefficients and their
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stochastic analysis (mean, maximum, minimum, percentiles,...).

Table 6.1: Number of welds in the database.

Condition: Healthy Deviation Unlabeled condition
Low Outliers 0 0 57659
Medium Outlier 276 24 17860
Strong Outlier 318 38 4416

The OBM–ICN of the Swiss Federal Railways (SBB) is an in-service train, equipped with 1
kHz ABAs that allows nearly daily collection of measurement data. The operating region of the
in-service OBM train includes the tracks crossed by the diagnostic vehicle during the validation
routes mainly conducted in the eastern region. This data source, while of lower frequency and
resolution compared against the 24kHz ABA sensors of the diagnostic vehicle, is nevertheless
useful for assessing the variance in vehicle response on a rail with a defect weld. The frequent
measurements of in-service OBM trains allow to more frequently monitor the evolution of the
track parameters over time. Tab. 6.1 summarizes the number of individual welds on all crossed
tracks and the number of welds signaled as faulty or healthy during the feedback loop. Not all
strong and medium outliers are assessed by experts, as not all track segments are part of the
case study.

6.3.2 Application of Extreme Value Analysis

The first rounds of validation use prior-knowledge to identify outlier metrics. The longitudinal
level D0 is an indication on the quality of the weld geometry [72]. Molodova has shown that
squats induce a vibration of the rail–axle system in the frequency range of 200-1200Hz, which
corresponds to wavelengths of less than 1 m [189]. Strong outliers, such as the ones caused by
large squats, are identified as sharp impacts in the vertical ABA channels. Thus, maximum
acceleration or energy metrics yield meaningful indicators for welds that feature short-wave
irregularities such as squats. The 98% quantile for the maximum vertical ABA was selected
based on previously observed welds with breakouts, as well as the capacity of review of the
experts:

Oscore,strong =
ABAZ,max

q98%(ABAZ,max)
> 1 (6.1)

Medium outliers are defined as the combination of outliers in the longitudinal level D0 and
the maximum acceleration. These samples feature either high accelerations due to short wave
irregularities or due to low geometric quality:

Oscore,medium = (
(D0)2Z,min

q95%((D0)Z,min)2
+

ABA2
Z,max

q95%(ABAZ,max)2
)0.5 > 1 (6.2)

The corresponding outlier regions, along with the distribution of the vertical D0 dip and max-
imum acceleration are illustrated in Fig. 6.3. One can see that most welds have a dip of less
than the 0.3 mm measured on good quality welds [72]. The high outliers (red region) represent
2 % of the welds, while the medium outliers (orange region), composed of the combination of
two parameters, correspond to 10% of the samples.

6.3.3 Expert Assessment

The experts are asked to assess all the 356 samples with a high outlier score, while in the case
of welds with a medium outlier score, only a random selection of 300 samples is validated. The
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Figure 6.3: Distribution of maximum ABA and vertical D0 dip and corresponding medium and
strong outlier regions.

results of the expert assessment are summarized in Tab. 6.1. After two feedback loops with
expert assessment, around 11% of the strong outliers were labeled as defect by the in-office
experts, while 8% of the medium outliers were labeled as defect by the experts. Fig. 6.4 shows
the percentage of defects in the validated samples when the threshold of the medium or strong
outliers is fixed to a specific outlier score. The vertical dashed line indicates the threshold
between the strong and medium outlier indications. The dotted horizontal line offers a visual
indicator for regions where the number of defects in the delivered sample is higher than 10%.
One can note that with increasing outlier scores, the ratio of defect welds in the sample grows
to 23%. At very high outlier scores, the fluctuation in the ratio of deviations increases due to
the fewer remaining samples, resulting in a lower statistic significance. The faulty welds are
most commonly identified as low/distorted weldings or as weldings with squats. In the next
section, the time history of a faulty weld is assessed.

Figure 6.4: Percentage of outliers in validated samples for an outlier score higher than the
selected threshold.

6.3.4 Time History analysis

The track sections used in this study are regularly measured by the OBM vehicle of SBB.
Fig. 6.5 shows a waterfall plot of a track section with a weld that was labeled as a low /
distorted aluminothermic weld during the validation rounds. Two outlier welds are located in
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proximity to each other, one weld with a deviation around track offset 2480 m and another one
without a deviation around track offset 2500 m. An increase in the peak energy at the location
of the welds can be observed over time.

Figure 6.5: Evolution in time of OBM accelerations on a track section with a weld labeled as
defect.

The weld that is labeled as defect on the section in Fig. 6.5 is now analyzed more closely.
Fig. 6.6 shows a scatter plot of the maximum vertical ABA, the D0 dip and the maximum
energy (EN25) in the 200-500 Hz frequency range. The blue line corresponds to the linear
regression of the measurements spanning between the identified maintenance windows. The
red line corresponds to the 98% quantile threshold used for initiating an expert review. The
dashed red line, illustrates the time span between the first (29th January 2020) and the last
observation (28th October 2021) of the defect by the track inspectors. Increased maximum
ABA and EN25 during the weld crossing have been measured since the end of 2019 (Fig. 6.5).
EN25 is significantly lower after the maintenance on this weld at the end of October 2021,
however the maximum ABA and D0 dip are largely unchanged. Manually grinding (Fig. 6.1d)
the welds with higher longitudinal level D0 does not always improve the observed rail geometry
(Fig. 6.1c) and mechanical grinding machines are often more appropriate to achieve the required
quality level [72].

6.4 Conclusions

An expert-in-the-loop assessment framework is here suggested, which utilizes acceleration out-
lier data to gather information regarding weld condition. Extreme Value Analysis models
are used to identify outlier welds in an unsupervised fashion on the basis of defined quantile
thresholds. The selected outliers are then passed onto the experts for verification on the basis
of corresponding rail-head images. During the subsequent validation stage, the experts labeled
10 to 25% of the welds as faulty, with this percentage depending on the outlier score threshold.
Internal flaws that would appear during an ultrasonic inspection are not assessed, which limits
the faulty detections to visually recognized ones. This approach enables the monitoring of the
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Figure 6.6: Evolution of OBM accelerations on the weld labeled as defect in Fig. 6.5 before and
after a manual maintenance action was applied.

weld condition by combining expert knowledge with OBM-based measurements in an offline
manner. While this is an initiating approach, the classification of faulty welds can further be
improved by exploiting the assigned final labels from the expert feedback in a supervised de-
tection approach [104]. It is important to note that what experts perceive as defects are those
faults which have reached a rather advanced (and thus visually discernible) stage. On the other
hand, the growth of squats, which can initiate as benign defects, is favored by the resulting
increase in the dynamics, even for those defects that are not currently recognized as such by
experts. Indeed, we here select a quantile, which can allow for early recognition of such defects
at their initiation. The application of regression techniques to the evolution of OBM-based
indicators over time is shown to yield parameters that describe the damage growth and the
variability in contact conditions. The weld diagnostic model will in future be improved, by
combining single measurement indicators with such temporal evolution information, to enable
early flaw detection.
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Chapter 7

Fusing Expert Knowledge with
Monitoring Data for Condition
Assessment of Railway Welds
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Key Findings

• The study delivers a holistic framework, which combines data-driven condition indicators
with robust outlier analysis and complementary expert feedback for actionable implemen-
tation in railway management.

• An automated one-class classification scheme is developed using a combination of Binary
Classification (BC), Random Forest (RF) classifiers, and Bayesian Logistic Regression
(BLR), which identifies defect welds with significantly higher accuracy compared to the
Extreme Value Analysis approach presented in the previous chapter. These models are
trained on fused existing information with further evaluation processes, such as on-site
inspections and non-destructive evaluations.

103

https://doi.org/10.3390/s23052672


• A large challenge in the classification stems from bias or inconsistencies in the labeling of
the data, which in practice cannot be considered in a binary approach, since faults grow
in a continuously. In light of the high uncertainty caused by faulty ground truth labels,
we investigate the BLR model which delivers not only a probability, but further assigns
a level of confidence in the prediction.

• Finally, we demonstrate the importance of continuously monitoring the weld condition in
order to robustly track the evolution of condition and use this as a guide for preventive
maintenance actions.

General comments and Link to the next chapter

This study tackles the last objective of the thesis (see Section 1.4) by presenting a unique
and innovative approach for railway infrastructure monitoring, combining both visual and ac-
celeration information in a first of its kind Proof-Of-Concept to provide acceleration-based
ratings of the rail condition.

This chapter completes the assessment of shortwave defects on welds and prepares the reader
for the Conclusions.

104



Abstract

Monitoring information can facilitate the condition assessment of railway infrastructure,
via delivery of data that is informative on condition. A primary instance of such data is found
in Axle Box Accelerations (ABAs), which track the dynamic vehicle/track interaction. Such
sensors have been installed on specialized monitoring trains, as well as on in-service On-Board
Monitoring (OBM) vehicles across Europe, enabling a continuous assessment of railway track
condition. However, ABA measurements come with uncertainties that stem from noise corrupt
data and the non-linear rail–wheel contact dynamics, as well as variations in environmental
and operational conditions. These uncertainties pose a challenge for the condition assessment
of rail welds through existing assessment tools. In this work, we use expert feedback as a
complementary information source, which allows the narrowing down of these uncertainties,
and, ultimately, refines assessment. Over the past year, with the support of the Swiss Federal
Railways (SBB), we have assembled a database of expert evaluations on the condition of rail
weld samples that have been diagnosed as critical via ABA monitoring. In this work, we
fuse features derived from the ABA data with expert feedback, in order to refine defection
of faulty (defect) welds. Three models are employed to this end; Binary Classification and
Random Forest (RF) models, as well as a Bayesian Logistic Regression (BLR) scheme. The
RF and BLR models proved superior to the Binary Classification model, while the BLR model
further delivered a probability of prediction, quantifying the confidence we might attribute to
the assigned labels. We explain that the classification task necessarily suffers high uncertainty,
which is a result of faulty ground truth labels, and explain the value of continuously tracking
the weld condition.

7.1 Introduction

The increasing need for cost reduction and increase in efficiency and safety of railway infras-
tructure has prompted a surge of data-driven monitoring solutions for optimal management
of railway assets [167]. Two essential aspects motivate the need for adoption of automated
data-driven track inspection tools [183]: on one hand. the safety of the employees performing
visual/on-site field inspections, and, on the other hand, customer comfort and safety [249].
Monitoring-based assessment is achieved by collecting data from specialized diagnostic, as well
as from appropriately equipped in-service vehicles, which can provide a network-wide assess-
ment of the railway infrastructure condition [107, 25, 13] and support preventive maintenance
schemes [317, 313]. Railway track infrastructure typically consists of continuously welded rails
supported by sleepers [97]. Among the critical components of the rail network, welds require
particular attention in terms of execution, monitoring, and maintenance [95, 320]. By collect-
ing and analyzing data on the condition of such critical infrastructural components, railway
operators can better understand the health of their infrastructure and optimize the course of
remedial actions [88].

Material imperfections, often originating near welds, grow into more severe faults over time
when subjected to repeated stress [199]. These imperfections can include the following: surface
defects, which form a broad category of defects caused by factors such as damaged wheels,
ballast on the rail surface, or lost goods that induce indentations on the rail; squats, which are
defined by the International Union of Railways as a “widening and localized depression of the
rail/wheel contact band, accompanied by a dark spot containing cracks with a circular arc or V
shape” [213, 325]; and cracks, which can appear at the head, web, or foot of the weld and which,
although less common, can lead to a broken rail [213, 144]. On the railway network operated
by the Swiss Federal Railways (SBB), the condition of the track is periodically assessed using
data collected from diagnostic measurement vehicles [247]. Diagnostic vehicles are equipped
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with sensitive and high-precision measurement systems, such as the Rail-Head Imaging System
(V CUBE, Mermec Group, Monopoli, Italy) [172] and low-noise piezoelectric accelerometers
(Type 4321, Hottinger Brüel & Kjaer, Virum, Denmark) [107]. While such vehicles can only
traverse the network at rare pre-planned intervals, On-Board Monitoring (OBM) vehicles, on
the other hand, are in-service vehicles equipped with simple and lower-cost sensors, such as
microelectromechanical system-based accelerometers, which allow for continuous monitoring
[219, 178, 169, 167]. In some implementations, OBM has been scaled down to low-power sensor
nodes, further easing installation [32, 58, 228]. Despite, however, their potential to continuously
gather data related to track and vehicle condition across the railway network the use of OBM
vehicles has not been generalized yet [107] and, thus, the assessment of critical rail components
still largely relies on field inspections [245].

ABA measurements can serve for fault identification and classification, since the dynamic
properties of a system often closely reflect its condition [109]. Such a task is accomplished on
the basis of two main approaches: model-based or data-driven schemes. Model-based methods,
also known as hybrid methods, are physics-based models that are combined with data, in order
to accomplish identification tasks, such as the recovery of the rail’s longitudinal level profile
from acceleration measurements [69, 281]. Model-based schemes enable the identification of
the crossing of welds with smooth or degraded surface geometry enabling the identification of
potentially faulty welds [162]. Simulations of the crossing of welds on high speed lines were used
to estimate the relation between ABA and wheel/rail force and to propose a rail-time health
detection method for rail welds [9]. This approach was, however, limited to one type of fault and
the results may not fully reflect the varying conditions observed in reality. In the Netherlands,
the quality of welds is assessed using gradient approaches on the rail geometry [72]. In such
a scenario, limit values on the slope of the rail geometry are derived from a simplified vehicle
model with an unsprung wheel mass to estimate the relation between the geometry of the rail,
the ABA and the rail/wheel contact force during the crossing of welds [269].
Data-driven methods, on the other hand, are freed from a system model and often rely on
transformed representations for extracting features. Typical examples of this class are time–
frequency domain analysis methods, such as the Short Time Fourier Transform (STFT), and
the Discrete or Continuous Wavelet Transform (DWT/CWT). CWT wavelet coefficients were
used by Molodova [326] to classify squats and welds using acceleration data, while, in separate
studies, the scale-averaged wavelet power, derived from the CWT coefficients, was applied to
identify rail corrugation [159].

Time–frequency domain-based approaches were adopted in further studies for the detection
of squat defects [56, 203, 327, 302]. The identification of track quality can also be performed
directly on the basis of measured acceleration inputs, which are fed into statistical [31], Ma-
chine Learning (ML) or Deep Learning (DL) techniques. Such a principle has been exploited
in a number of studies to predict geometric anomalies of the track on the basis of ABA mea-
surements, and, thereby, facilitate the early detection of faults, which might otherwise lead to
derailment [73, 265].

More recently, Yang et al. [319] demonstrated that both feature-extraction based methods
and raw-input based DL methods, such as Convolutional Neural Networks (CNNs), can be
applied to detect insulated joints on the basis of acceleration measurements. To further assess
the condition of the rail, Tsunashima and Takikawa [283] identified outliers from the CWT
spectrograms of ABA. These spectrograms were then analyzed by experts, who noticed that,
for small faults, ABA based detection had a higher false positive rate than for larger faults. In
their work, Shadfar et al. [250] presented an indicator for condition assessment of rail welds,
formulated via coupling of a Fast Fourier Transform (FFT) with Principal Component Analysis
(PCA). The authors noted that the performance of this indicator remained to be substantiated
in a larger study. A similar approach was proposed by Xiao et al. [312], who combined the
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wavelet packet decomposition (WPD) with an adaptive synchro-squeezed short time Fourier
transform (ASSTFT) to locate damaged welds on a heavy-haul railway line. Previous studies
demonstrated the viability of using the Hilbert–Huang Transform (HHT), which is a tool par-
ticularly suited for analysis of non-stationary signals, to characterize abnormal vibrations in
damaged welds, as a means of monitoring tramway lines [126]. Availability of large datasets
containing a range of Environmental and Operational Parameters [223], such as the DR-train
dataset [168], allow for the adoption of more complex classifiers. Lasisi and Attoh-Okine [151]
predicted the probability of rail fatigue defects by combining several Machine Learning model
predictions via Multilayer Stacking Methodology. Their prediction was based on fault logs for
the US Class I freight railroad and a set of parameters, such as the track layout, track type and
the Million Gross Tonnes (MGT) [151]. Deep Learning approaches have gained more popularity
with the appearance of larger datasets enabling the assessment of railway infrastructure with
models, such as Convolutional Neural Networks (CNNs) or recurrent neural Networks (RNNs)
[73, 216, 104, 322, 264]. More recently, approaches for fusing imagery/computer vision with
inertial measurements have been proposed. Peng et al. used accelerometer, inclinometer and
gyroscopic measurements, combined with image sensors, to quantify track alignment and irreg-
ularity and combined this information with visual sensors, but the rail condition (squats and
surface defects) was evaluated using the computer vision-based assessment only [225]. Purely
data-driven approaches are often limited by the quantity and quality of the training data re-
quired to learn a reliable representation of the underlying physical dynamics of the vehicle/track
system.

In previous works of the authoring team [104], welds, surface defects, squats, and insulated
joints were successfully classified using a dataset of over 200,000 instances, via the use of
machine learning techniques, namely Random Forests (RFs) and CNN [104]. This was initial
work towards the automated classification of essential rail elements on the basis of ABA data.
In subsequent work [110], this approach was extended, via the use of an outlier-based detection
scheme, to identify potentially faulty welds. The outcome of this investigation was adopted in
practice by the SBB in a Proof-of-Concept study, where the suspected faulty instances were
delivered to experts for subsequent assessment. The resulting expert-labeled dataset of healthy
and defective welds formed the initial dataset, which was exploited in this study. This dataset
was, then, further complemented with the welds whose condition labels stemmed from the
classical track inspection process. For the SBB, such a process is logged in the form of entries in a
so-called condition monitoring database ZMON (ZustandsMONitoring—condition monitoring).
As highlighted in Table 7.1, several studies have demonstrated the feasibility of the use of ABAs
for identification of squats, welds and insulated joints, usually on a small selection of samples.
No study so far has proposed a component-specific and large-scale assessment, which attempts
to fuse OBM indicators (acceleration-based ratings) with expert feedback. This study focused
on the treatment of welds; a common component of the railway network, whose assessment is
critical for alleviating faults that can cause increased costs or compromise safety [247].

This paper addresses this research gap by proposing a method based on ABA data for
automatic defect detection on welds. The proposed methodology, which builds on a two-step
procedure to assess weld condition, is illustrated in Figure 7.1. First, outlier welds are identified
using Extreme Value Analysis (EVA) applied to the ABA indicators, that are extracted from
the vehicle track interaction measurement system of the diagnostic vehicle of SBB. The images
of these potentially faulty welds, extracted from V CUBE, are, then, submitted to experts for
visual assessment, on the basis of which a dataset of expert-based condition labels is generated.
The feedback from the expert evaluation round is exploited as an extension of the work in [110]
to develop a classification system to distinguish between healthy and defective welds based
on ABA indicators. The following three alternative analysis methods are examined here for
the supervised approach: a pair of more conventional assessment schemes relying on (i) Binary
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Table 7.1: Summary of the state-of-the-art of rail condition assessment with a focus on works
exploiting ABA.

Proposed
Approach

Research Findings Limitations

Time-frequency
analysis via
Continuous Wavelet
Transform (CWT)

Demonstrated identification of
rail faults using the Scale-
Averaged Wavelet Power of the
CWT of ABA [326, 159, 56,
203, 327] or bogie measure-
ments [302].

While the methodology can be
extended to other components,
these studies are limited to the as-
sessment of squats.

Principal Component
Analysis (PCA) on
FFT coefficients.

Threshold for evaluating the
condition of welds for the pri-
oritization of inspection sched-
ules [250].

Definition of linear weighting on
the vehicle speed. The authors
note that further studies are nec-
essary to substantiate this indica-
tor.

Wavelet Packet
Decomposition
(WPD) and Adaptive
Synchro-squeezed
Short Time Fourier
Transform.

The authors identify the
300∼800 Hz frequency range
to be indicative for poorly
welded joints [312].

Empirical definition of a fixed
damage threshold.

Hilbert-Huang
Transform (HHT).

Rail joints were detected as
impact points and outliers in
the ABA signal with the HHT
[126]

The methodology does not differ-
entiate between components and
only is demonstrated on a couple
of samples.

Deep Learning
architectures.

Classification of rail faults
using Random Forests,
Support Vector Machine,
Artificial Neural Networks or
Convolutional Neural Net-
works [73, 216, 104, 322, 264].

Requires large training datasets,
especially when using accelera-
tion time series instead of features
as an input. Complex models re-
quire special care since they have
a higher risk of overfitting.

Model & simulation
based approaches.

Diagnostic thresholds were de-
fined for faulty welds on the
basis of ABA or force response
simulations [9, 226, 72, 203].

No generalization to generic ge-
ometries and track types; simula-
tion may not fully reflect complex
site conditions and noisy data.

Current Work: Fusion
of ABA-derived
indicator with expert
feedback.

Statistical methods applied on
essential indicators for the
identification of weld condition
[110].

Uncertainties in the expert assess-
ment cause noise in the input la-
bels for classification algorithms.

Choice classification and (ii) Random Forests, and (iii) a herein proposed approach which adopts
a Bayesian Logistic Regression scheme that capitalizes on availability of expert input. The
novelty of this approach lies in the integration of human expertise with statistical assessments
on ABA indicators, which allows for a more effective and efficient evaluation of welds. By
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integrating expert feedback into the ABA-based condition assessment, we achieve a significant
advance in the field of condition assessment of railway assets which has the potential to improve
the accuracy, consistency, efficiency, and cost-effectiveness of the inspection process. This
PoC constitutes a first step towards actionable integration of acceleration-based infrastructure
condition assessment into the monitoring process of railway operators.

Data preparation

Database of welds

• Unique identifier

• Position on track 

• Side (left /right)

Observation database of welds

• Unique identifier

• Campaign & Date

• Image

Acceleration database

• Unique identifier

• Campaign & Date

• Accelerations

Feature Generation

Extraction of Indicators

• Longitudinal Level D0

• PSD & DWT Coefficients

Computation of Basic Features

• Statistical Parameters 

• Energy & Entropy

Features Selection

• Top 15 uncorrelated features

Expert Evaluation

• Confirms or Rejects labels

• Damage Type, Severity, Urgency

Decision

• Maintenance

• Renewal

Supervised Classification Methods

• Binary Choice models

• Random Forests

• Bayesian Logistic Regression

Model generates

condition estimate

Model learns from

expert feedback

Unsupervised Statistical Methods

• Extreme Value Analysis &  

Outlier Identification

Figure 7.1: Flowchart summarizing the proposed methodology applied for automated weld
defect detection and classification from ABA data. The accelerations and rail-head images
are continuously collected by the diagnostic vehicle of the SBB (gDFZ) and extracted at the
location of welds. Outlier welds, that are statistically identified from the features extracted
from the ABA data, are subsequently delivered for expert assessment with complementary
input of the available image data. The expert assessment is then used to retrain the models
using supervised ML algorithms. Finally, the experts use the improved model to guide their
decisions on maintenance and renewal.

7.2 Description of the Measurement Data

To ensure a representative dataset, the welds assessed in this work were selected from rail-track
portions throughout the Swiss network, namely the west, south, center and east regions. The
selected railway tracks were amongst those that were regularly inspected by the diagnostic
vehicle (gDFZ) and were further accessible for on–site inspections by experts, when required.
The gDFZ was equipped with vertical and lateral ABA on the left and the right side of the
front (axle 1) and rear axle (axle 4) of the vehicle. The sensor range was ±100 g and the
sampling rate was Fs = 24 kHz. The naming convention of the associated sensors, complying
with railway–specific standards, was DAS, with the related letter-entries explained in Table 7.2.

The location of welds on the railway network was obtained from an automated detection
algorithm developed at SBB. It relies on images from V CUBE and determines rail compo-
nents, such as welds, insulated joints and surface defects [247]. Data obtained between June,
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Table 7.2: Meaning of the DAS naming convention of the sensors.

Letter Explanation Possible Entries

D direction Y for lateral, Z for vertical
A axle number 1 to 4, starting from the front (leading) axle
S vehicle side 1 for right, 2 for left (w.r.t vehicle’s top view)

2021, and June, 2022, was, herein, used to generate a weld database containing around 25,000
unique welds. While the automated rail-head inspection system does not always detect all ex-
isting welds, the repeated measurements increase the probability of individual weld detection.
Approximately 10 vehicle runs were conducted within this one year period, implying that the
majority of welds were repeatedly measured in this interval, allowing for tracking of their condi-
tion over time. The resulting collected ABA samples are illustrated in Figure 7.2, which shows
the V CUBE images and the measured ABA for two healthy (Figure 7.2a,b) and two damaged
weld (Figure 7.2c,d) cases. The damaged welds showed higher ABA on all channels compared
to the healthy welds. Figure 7.2 shows the left and right ABA time series for the vertical ABA
on the leading axle Z1, the vertical ABA on the trailing axle Z4, the lateral ABA on the leading
axle Y1 and the lateral ABA on the trailing axle Y4. The ABA data samples corresponding to
welds recognized by V CUBE were processed accordingly, as described in Section 7.3.1.
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Figure 7.2: Illustration (V CUBE) and ABA time series for two healthy (a,b) and two damaged
(c,d) welds. Each figure shows the left (orange) and right (blue) ABA time series, respectively,
for the naming convention defined in Table 7.2.

110



7.3 Methodological Approach

We propose a framework which exploits labeling of rail infrastructure defects on the basis of
expert evaluation on outliers in ABA data, acquired from instrumented trains. An automated
classification framework for weld condition monitoring is, thus, established, that can be applied
to newly acquired measurement data, potentially from in-service trains.

To achieve this goal, we first extracted a range of features from the ABAs of a properly
instrumented diagnostic vehicle. These were calculated over the whole data range (one year
period). Following a statistical characterization of the features, extreme value analysis was
performed and outliers were identified. The latter were submitted to experts, and a large
database of fault characteristics was generated. The expert-feedback was finally incorporated
into a classification framework, which scored the quality of welds, based on the coupling of
ABA features with expert-feedback.

7.3.1 Feature Extraction

The efficient identification and classification of outliers calls for the extraction of representative
features from the ABA time series. A critical requirement for an interpretable anomaly detector
is the computation of features that provide an intuitive and comprehensive illustration of the
state of the assets from the measured time series [181].

The fundamental quantities, on which features were extracted, are listed in Table 7.3 and
further explained in Section 7.3.2. The signal length that was used to compute the features
was determined on the basis of two criteria. First, the signal length should be sufficiently long
to contain the analyzed wavelengths and/or frequencies. For example, a signal length of 5 m
around the weld was chosen for the longitudinal level D0 (see Section 7.3.2 below), since the
filtered wavelengths were up to 3 m. The second criterion stems from uncertainty in vehicle
position when crossing the welds. This positional uncertainty was tackled by choosing a rather
large signal length around the defect (0.625 s for the DWT features or around 2–3 m for all
other features).

The required sparse representation of essential features was achieved by computing statisti-
cal indicators on the basis of the extracted features [233]. These included minimum, maximum,
mean value, standard deviation, and quantiles, as well as higher statistical moments, such as
skewness and kurtosis. Statistics were computed for each quantity of Table 7.3, and for every
channel in the vertical Z and lateral Y direction, where applicable. As multiple vehicle axles
were equipped with sensors, the statistical indicators were also aggregated between the four
sensor locations using the mean, minimum and maximum of the single channel statistics.

Table 7.3: Fundamental quantities used for the feature extraction process.

Feature Quantity Signal
Length

RAW ABA Raw accelerations 2 m, 3 m

VS ABA Vector sum of Y and Z axes 2 m

BP ABA Band Pass filtered accelerations 3 m

STFT Short Time Fourier Transform 2 m

DWT Discrete Wavelet Transform 0.625 s

D0 & D1 Longitudinal level and lateral displacement 5 m, 20 m
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For example, one can consider the maximum vertical acceleration for each of the ABA
sensors separately, or the maximum (or mean of the maximum) vertical acceleration over the
four sensor locations, in order to form aggregated summary statistics. Such statistics capture
the variability in contact conditions mainly arising from defect size, which, for small defects,
can lead to greater variance in response between vehicle axles.

Operational parameters, such as the vehicle speed, were additionally included in our assess-
ment framework, since they retain a non-negligible influence on the axle response.

7.3.2 Time Series Analysis

During the crossing of a damaged weld, increased vibration levels were observed in the vertical
and lateral ABAs. In particular, impacts on the axle caused high amplitudes in the lateral and
vertical vibration of the rail–axle system, whose first resonant frequencies lay, approximately,
around 660 Hz and 1 kHz, respectively [176, 36].

Indicatively (in the sequel, all signals were mean value subtracted prior to any processing
applied), vertical peak accelerations of up to 200 m/s2 and lateral peak accelerations of up to
600 m/s2 were noted during the crossing of the damaged weld shown in Figure 7.3a for both
the vertical (Figure 7.3b) and lateral (Figure 7.3c) ABAs. The vertical (sZ) and the lateral
(sY ) acceleration components were, herein, further combined, by computing the vector sum of
both signals, i.e.,

svector sum,Y Z = (s2Y + s2Z)
1
2 (7.1)

where s is the time series of the respective ABA channel. Figure 7.3d shows the vector sum
computed from the lateral and vertical ABA of the damaged weld.

When investigating high frequency vibrations, the signals of Figure 7.3b,c were zero-phase,
high-pass filtered using a 6th order digital Butteworth filter at 100 Hz cutoff frequency. Fig-
ure 7.4a,b display the spectrograms (Welch’s method with N

FFT
= 128, Hanning window and

50% overlap) of the filtered vertical and lateral ABAs, respectively. The previously identified
pinned–pinned resonant frequencies of the rail/axle system lay around 700 Hz, laterally, and
1 kHz, vertically, for the standard UIC60 rail [176, 36]. These frequencies are identified from
Figure 7.4a,b. The rail–wheel system was less stiff and less damped laterally, which resulted
in higher vibration amplitudes compared to the vertical wheel-set response. Moreover, critical
vibration response of the damaged weld was observed for frequencies up to 12 kHz. For sub-
sequent analysis of the ABA data, a set of empirical frequency bands was, thus, formulated.
These were the following: (i) 200–500 Hz, (ii) 500–800 Hz, (iii) 800 Hz–2 kHz, (iv) 2–4 kHz;
and (v) 4–11 kHz. The associated signals, which form the BP ABA entry of Table 7.3, resulted
from corresponding filtering of the original ABA, using the same zero phase Butterworth filter
as before, applied in band pass mode at the selected ranges.

Similar results for the frequency content of the ABA were extracted by applying the Discrete
Wavelet Transform (DWT) [92]. The DWT was, herein, implemented using the Haar mother
wavelet and successive filtering operations with two FIR filters: a low-pass filter hϕ and a high-
pass filter hψ. The associated approximation Wϕ(j, k) and detail Wψ(j, k) coefficients of the
j-th scale were computed by convolution [91]

Wϕ(j, k) = hϕ(−n) ∗Wϕ(j + 1, n)|n=2k,k≥0 (7.2)

Wψ(j, k) = hψ(−n) ∗Wϕ(j + 1, n)|n=2k,k≥0 (7.3)

Figure 7.5a,b illustrate the detail coefficients computed for the high pass filtered vertical
and lateral ABA time–series of the weld in Figure 7.3a. The same insight, as in the case of the
spectrogram, was obtained for the effective frequency bands of the signals.

Geometric features, such as the longitudinal level, or the lateral alignment, reflect the ver-
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(a) Rail-head image of a weld with a squat identified during the feedback loops (length of image:
0.6 m).
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(b) Unfiltered vertical acceleration for channel Z12 during the crossing of the weld in Figure 7.3a.
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(c) Unfiltered lateral acceleration for channel Y12 during the crossing of the weld in Figure 7.3a.
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(d) Vector sum of vertical and lateral accelerations for channel YZ12 during the crossing of the weld
in Figure 7.3a.

Figure 7.3: Feature extraction from the vertical and lateral ABAs. The vertical and lateral
ABAs were combined using the vector sum. Where applicable, the continuous red horizontal
lines highlight the maximum, minimum and standard deviation of the time series.

tical or lateral smoothness of the rail [295]. These quantities are defined for several wavelength
ranges by the railway norm EN13848-1 [52], namely D0 (wavelength 1–3 m), D1 (wavelength
3–25 m) and D2 (wavelength 25–70 m). Using integration and filtering techniques on ABAs,
one can obtain robust, speed independent and repeatable indicators corresponding to the lon-
gitudinal level and lateral axle displacement [107, 69, 167, 57].

When estimating the longitudinal levels, the ABA signals were initially zero phase, band-
pass filtered (0.5 Hz to 75 Hz, 6th order digital Butterworth filter) and resampled at 150 Hz.
The cumulative trapezoidal numerical integration method was accordingly applied to yield the
double integrated vertical and lateral displacements. Drifts stemming from the integration pro-
cess were removed by applying a 6th order Butterworth high-pass filter with a cutoff frequency
of 0.5 Hz, which corresponded to the minimum frequency response of the sensor. The resulting
displacement signals were then transformed from time series to space series, using a wavelength
rate of 25 cm. Finally, appropriate band-pass filters were applied, to obtain the longitudinal
levels and lateral displacements D0, D1 and D2. This approach for longitudinal level recovery
has been successfully applied at the SBB [107] and the German Railways [167].

The longitudinal levels D0 and D1 computed from the vertical ABA are illustrated in
Figure 7.6a,b, respectively. These correspond to the level during the crossing of the damaged
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(a) Vertical acceleration (channel Z12).

(b) Lateral acceleration (channel Y12).

Figure 7.4: Spectrograms (Welch’s method with N
FFT

= 128, Hanning window and 50% over-
lap) of the high pass filtered (100 Hz cutoff frequency) vertical and lateral ABAs of Figure 7.3b,c.

(a) Vertical acceleration (channel Z12).

(b) Lateral acceleration (channel Y12).

Figure 7.5: DWT (via Haar wavelet) of the high pass filtered (100 Hz cutoff frequency) vertical
and lateral ABAs of Figure 7.3b,c.

weld of Figure 7.3a. The plots revealed settlements, which were commonly observed at the
location of the weld in both the short wavelengths under 3 m and the medium wavelengths
between 3–25 m. These localized track settlements are the result of the repeated impacts of
the vehicle wheels on the damaged weld [243]. The settlements occurring in the wavelength
range of 1–25 m could be attributed to further causes, such as changes in the track stiffness and
substructure condition [64], thus, forming a less robust indicator of rail and weld condition.

7.3.3 Extreme Value Analysis for Outlier Identification and Expert
Labeling

A limitation of supervised machine learning approaches is the limited availability of labels, as
well as their quality, since these are often linked to subjective and, therefore, biased assess-
ment. For the dataset we were handling herein, image labels could be extracted. However,
the automatic image labeling algorithm of the SBB does not currently output the condition of
welds; a task which would be non trivial to effectuate. Capitalizing on the availability of the
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(a) Longitudinal Level D0 for the left sensor on axle 1 (sensor 12).

(b) Longitudinal Level D1 for the left sensor on axle 1 (sensor 12).

Figure 7.6: Longitudinal Levels D0 & D1 for the time series of Figure 7.3b. One can observe
local settlements occured for both the 1–3 m range of D0 and the 3–25 m range of D1.

collected ABA signals, we here adopted an unsupervised scheme, applied directly to raw time
history ABA signals, or to the aforementioned features, to detect abnormal, and potentially
faulty, welds.

Extreme Value Analysis (EVA) is a statistical technique that is used to analyze the likelihood
and impact of the occurrence of extreme events, such as floods, hurricanes, and earthquakes.
In practice, EVA often relies on the use of extreme value distributions, such as the Gumbel,
Fréchet, and Weibull distributions [98], or even empirical distributions [291], which are formed
on the basis of available data. The cumulative density function of an empirical distribution is
formulated as [59]

f̃ED(t) =
i

n + 1
for xi ≤ x < xi+1 (7.4)

where {x1, . . . , xn} is an ordered sample of n independent observations. f̃ED is an estimate of
the true probability distribution f , and should be in reasonable agreement with the candidate
model (e.g., fGumbel), provided the candidate model is an adequate estimate of f [59]. The
Gumbel distribution is commonly applied for modeling the behavior of extreme events and
may have been an alternative to the empirical distribution.

The non-parametric empirical distribution is fitted to the data and is subsequently used to
estimate the probability of specific outlier level occurrences. The probability estimates resulting
from the empirical distribution enable the estimation of the likelihood of the occurrence of a
specific level of an ABA-based feature on a component. The computation of the likelihood of
occurrence of an extreme value enables the assessment of the potential damage of a defect (out-
lier) weld. This further requires the definition of threshold of damage levels for ABA-extracted
features. EVA was here adopted as the first step of our proposed assessment framework, in
order to identify outlier welds that could be subsequently labeled by experts, who were shown
rail-head and track inspection system images extracted from the diagnostic vehicle. The num-
ber of samples that could be evaluated by the experts was limited, which must be taken into
consideration when setting thresholds for outliers. Expert-based labeling requires significant
time, as each sample is checked individually. Therefore, EVA was used in the first step to
identify and forward only suspected defect welds for cross-checking and labeling. Section 7.4.1
details the practical implementation of the expert labeling process, the selected thresholds on
the ABA features and the results of the expert evaluation. The expert feedback resulted in
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a labeled weld condition dataset, which, in turn, enabled the establishment of an automated
classification scheme, as described in Section 7.3.4.

7.3.4 Expert-Informed Classification Models

The derived expert labels were exploited for automated weld damage classification, via the use
of machine learning classification tools. The binary approach used here, to distinguish between
healthy and defective, stemmed primarily from the fact that the magnitude of a defect is not
a clearly defined criterion among experts nowadays.

In the most simple scenario, Binary Choice (BC) models assign a choice between two discrete
alternatives (in this case defective or healthy) on the basis of a classification rule depending
on one variable x. This was used here as an approach to an one-class classification between a
defective or healthy weld, in the sense of what expert judgment tried to offer. However, it has
to be emphasized that this is not entirely consistent with the goal of continuous monitoring. In
reality, the task of characterization of defect welds should also take the damage severity into
account, which, however, is a label that is currently missing. A characterization on the basis
of severity of the defect is valuable and can be provided via ABA data, which can pick up the
initiation and evolution of a defect. Expert labels, on the other hand, tend to only acknowledge
quite progressed defects. Section 7.4.3 indicates how such tracking can be accomplished on the
basis of ABA measurements.

Returning to one-class classification, when considering a BC model, the threshold which
defines the limit for the decision on a healthy or defective weld can be defined as

PBC(y|x) =

{
1 x > γ
0 x ≤ γ

(7.5)

where y is the label from the expert assessment, x is the statistical indicator and γ is the
decision threshold. For indicator values x larger than the decision threshold, the sample is
assumed to be defective.

Beyond mere classification, however, alternate models relying on a graph structure, such
as Decision Trees (DTs), or their ensembles, Random Forests (RFs), can further point to
a root cause analysis path [53, 3]. In other words, they can reveal variable configurations
which lead to a specific outcome. DTs are a graph structure, in which each internal node
denotes the outcome of a test on an attribute, each branch denotes the result of the test,
and each leaf node (end node) denotes a class label. The paths from root to leaf represent
the classification rules. Figure 7.7 conceptually illustrates three DTs, which are combined
into one RF. RFs are ensemble models that aggregate several DTs to achieve a more robust
prediction than an individual DT. The methodology proposed here employed RFs to classify
the class label, based on the features extracted from the ABA signals. More formally, given
a set of N decision trees {T1, T2, . . . , TN} in the forest, the prediction of the RF was achieved
by aggregating the prediction of the individual DTs of the class label y for a set of essential
indicators x={x1, x2, . . . , xk}

PRF (y) =
N∑
i=1

Ti(x)

N
(7.6)

Many models, including RF, benefit from a limited collinearity of the variables [87] by manually
discarding variables using the Pearson correlation or combining them via Principal Component
Analysis [16]. The essential indicators selected for the evaluation of welds via RF and BLR,
summarized in Figure 7.4, were the ones which had the highest F1-score in the univariate BC
model scenario and which had a Pearson correlation of less than 0.8 to the other indicators.

Figure 7.7 conceptually illustrates the structure of an RF. RFs include a set of hyperpa-
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rameters, such as the number of estimators, the minimum number of samples per split, the
maximum depth, and the minimum samples per leaf. The optimal parameters of the RF were
here estimated using a Cross-Validated Grid Search [224]. The optimal set of hyperparameters
identified by the Cross-Validated Grid Search for the Random Forest was a minimum number
of samples per split nsplit = 20, a minimum number of samples per leaf nleaf = 10, a maximum
depth ndepth = 10, and a number of estimators N = 100. The RF model proposed here relied
on the implementation of scikit-learn [224], where the Shannon entropy loss H(Xm) was used
as the tree node splitting criterion [251]

H(Xm) = −phealthy,mlog(phealthy,m) − pdefect,mlog(pdefect,m) (7.7)

where pn,m is the proportion of observations of each class n at a given node m. The Shannon
entropy quantifies the expected uncertainty inherent in the possible outcomes of a discrete
random variable; in other words, it quantifies the impurity in a group of observations. Thus, for
each node, the tree splitting criterion was set such that the entropy loss H(Xm) was minimized
for the data Xm at node m. Each decision tree was obtained by recursively partitioning the
feature space using the previously defined entropy loss function until the constraints defined by
the hyperparameters (e.g., tree depth) were reached. The RF was obtained by initializing N
decision trees with a split composed of a random set of features and random training samples.
The aggregation of several DTs in a RF resulted in a more robust prediction compared to single
DTs.

Training Data

feature sampling and bagging

. . .

Tree 1 Tree 2 Tree n

majority vote

prediction

Figure 7.7: Conceptual illustration of a Random Forest composed of n trees for a two class
classification problem. Cross-Validated Grid Search was used to determine the optimal hy-
perparameters of the RF as having a minimum number of samples per split nsplit = 20, a
minimum number of samples per leaf nleaf = 10, a maximum depth ndepth = 10, and a number
of estimators n = 100.

An alternative tool for automated classification lies in the adoption of Bayesian statistical
models. In this work, we proposed a Bayesian Logistic Regression (BLR) model. Given our set
of features, a logistic regression modeled the probability of the weld being damaged as

PBLR(y|α, βspeed, β1, . . . , β15) = σ(α + βspeedxspeed +
15∑
i=1

βixi) (7.8)

where σ(t) = 1
1+e−t is the logistic function, xspeed and xi form our set of predictor variables, and

α, βspeed and βi are the parameters of the model to be estimated for the linear transformation
of the feature vector (see [35] for an in-depth discussion of the model). The set of essential

117



indicators xi and xspeed corresponding to the BLR parameters βi and βspeed are summarized
in Table 7.4. In order to determine the parameters of the model, for which a closed form
solution is not generally available, a maximum likelihood approach can be used. However, this
comes at the cost of certain drawbacks. First, a maximum likelihood approach is prone to over-
fitting. Second, a set of possible solutions is generally available, but this approach determines a
single solution, which highly depends on the adopted optimization algorithm. Furthermore, the
assigned labels are often noisy, as is typical in real-world measurements, and as a consequence
of the aforementioned subjectivity of the expert assessment. A maximum likelihood approach
cannot, however, provide an indication of inherent uncertainty. For these reasons, in this work
we adopted a Bayesian estimation of the logistic regression.

Table 7.4: Summary of the 15 indicators with the highest F1-score and a cross correlation of
under 80% that were input to the BLR and RF models.

Index Feature

x1 max(max2m(ABASTFT 2800Hz
Z ))

x2 max(max2m(ABASTFT 5800Hz
Z ))

x3 max(max2m(ABASTFT 3000Hz
Z ))

x4 µ(max2m(ABASTFT 1400Hz
Y ))

x5 max(max2m(ABASTFT 5400Hz
Z ))

x6 max(max2m(ABASTFT 400Hz
Z ))

x7 max(max0.625s(ABADWT Haar cD5
Z ))

x8 µ(max3m(ABABP 0.2−0.5kHz
Y ))

x9 µ(max3m(ABABP 0.1−11kHz
Z ))

x10 max(max0.625s(ABADWT Haar cD6
Y ))

x11 max(max2m(ABASTFT 1400Hz
Z ))

x12 max(max2m(ABASTFT 1400Hz
Y ))

x13 max(max2m(ABASTFT 800Hz
Z ))

x14 min(min3m(ABALong. level D0
Z ))

x15 max(max3m(ABALong. level D0
Z ))

xspeed vehicle velocity

A BLR model [35] solves the aforementioned issues in the following way: (i) reducing the
risk of over-fitting thanks to the regularization of the priors; (ii) producing a distribution of
possible model solutions under the model assumptions (i.e., the priors); (iii) providing a more
reliable indication of the predictive uncertainty. Again, exact Bayesian inference of the logistic
regression is intractable and approximate methods are generally used. We, here, estimated
the BLR model by Markov Chain Monte Carlo (MCMC) sampling, exploiting the No-U-Turn
Sampler (NUTS) algorithm [111]. The BLR model was implemented with the probabilistic pro-
gramming Python package PyMC4, which allows for flexible specification of Bayesian statistical
models [241].The model parameters were assigned a Gaussian prior N (0, 1), while the labels
were modeled through a Bernoulli likelihood. Four chains were used in the MCMC inference,
with 2000 sample draws and 10,000 tuning samples per chain. A draw refers to a collected
sample generated from the posterior distribution of the MCMC inference, while tuning samples
are generated before starting to collect posterior samples and are used to tune the sampling
algorithm by adjusting the step size of the updated distribution, as well as to ensure the con-
vergence of the chains. The graphical model of the implemented BLR is displayed in Figure 7.8.
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15

α ∼ Normal

y ∼ Bernoulli

βspeed ∼ Normal βi ∼Normal

Figure 7.8: Bayesian Logistic Regression model, where the coefficients α, βspeed, βi were assigned
a normally distributed prior. The prediction y followed a Bernoulli distribution.

An expert-in-the-loop approach requires the expert feedback to adjust the anomaly detection
scheme, such that the outlier detection classifier or decision threshold are more in tune with
the expert’s understanding of anomalies. Here, the feedback was incorporated using the labels
generated by the expert assessment during the training stage. The process used for applying
the expert labels in the classification process is illustrated in Figure 7.1, where the expert
labels were essentially used to improve the model performance in the supervised classification
framework.

7.4 Results and Discussion

In this section, we elaborate on the results from the expert-based evaluation of outlier welds and
their influence on classification of their condition. We compared performance on identification
of faulty welds for the three schemes outlined above, namely the BC, RF and BLR model.

7.4.1 Expert-Based Evaluation of Outlier Welds

Definition of Capacity-Based Thresholds

Semi-supervised approaches require the definition of suitable outlier metrics. We specified
these, here, on the basis of the two main defect types that are encountered for welds, namely
geometric defects or surface defects/squats. A third category of defects can be attributed to
internal effects, such as cracks, which are, however, not visible, and would not be possible
to assess through expert visual inspection. These may, however, be labeled through non-
destructive evaluation, which is logged to the ZMON database, as explained in Section 7.4.1.
In this subsection, we restricted evaluation tp the visual inspection of experts, for which the first
two defect instances were relevant. Geometric defects are linked to decreased longitudinal level
values (D0Z,min), which point to a degraded weld geometry [72]. On the other hand, surface
defects are linked to peaks in acceleration and energy values [189]. Therefore, we used the
maximum vertical acceleration (ABAZ,max) and the longitudinal level (D0Z,min) as the main
metrics for selection of outliers.

In order to define thresholds for outlier selection, we employed EVA, as described in Section
7.3.3. To this end, we fitted an empirical distribution to the aggregated values of D0Z,min and
ABAZ,max, collected on records from all available weld samples. Two thresholds were defined,
associated with the 98-th and 95-th percentiles of the fitted EDs, corresponding to strong and
weak outliers, respectively. The choice of percentile for the strong outlier case was carried
out so as to include instances of weld defects that were discovered in the field through visual
inspection, but which had not been picked up by the automated image-based detection system
of the diagnostic vehicle (V CUBE), which was considered to be a rare incident. Strong outliers
were defined only on the basis of maximum vertical ABAs, as we suspected this indicator to
be more directly related to the weld defects. The weak outlier definition combined information
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from both the maximum vertical ABA and the longitudinal level D0, as we suspected that
the longitudinal level plays a role, albeit secondary, in the degradation process of welds. The
definition of the sets of strong Ss and weak Sw outliers, given an observation k, was formulated
as follows:

Ss =

{
k
∣∣∣ Os =

ABAZ,max,k

q98%(ABAZ,max)
> 1

}
(7.9)

Sw =

{
k
∣∣∣ Ow =

(
D02

Z,min,k

q95%(D0Z,min)2
+

ABA2
Z,max,k

q95%(ABAZ,max)2

)0.5

> 1 &

Os =
ABAZ,max,k

q98%(ABAZ,max)
< 1

}
(7.10)

where ABAZ,max,k is the maximum vertical ABA for the k-th observation and D0Z,min,k is the
minimum longitudinal level in proximity of the weld for observation k.

An amount of 100 outliers per region and per trimester (evaluation round) was deemed as
realistic, to be checked by the assigned experts. The described process resulted in a total of
195 strong outliers, during the first expert evaluation round. However, the evaluation of weak
outliers resulted in more samples than could feasibly be evaluated by the experts. Thus, a
random selection amongst the weak outlier set was carried out to reach a total of 100 strong
and weak outliers per region and per evaluation round (trimester).

Figure 7.9 illustrates the distributions of the selected outlier metrics, namely, the maxi-
mum vertical acceleration (ABAZ,max) and the minimum longitudinal level (D0Z,min) values.
Furthermore, the defined outlier regions are highlighted in Figure 7.9. For most welds, it was
observed that the peak ABA lay under 100 m/s2 and that the minimal longitudinal level was
lower than 0.3 mm in absolute terms. The defined outlier metrics were used in the next section
to deliver samples for expert assessment.
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Figure 7.9: Distribution of the maximum vertical ABA (ABAZ,max) and the minimum longi-
tudinal level (D0Z,min).The cutoff thresholds were defined on the basis of the 98-th percentile
of the empirical distribution of ABAZ,max for the strong outlier region (highlighted in red),
per Equation (7.9), and on the basis of the 95-th percentiles of the minimum longitudinal
level D0Z,min and ABAZ,max, as formulated in Equation (7.10), for the weak outlier region
(highlighted in orange), respectively.
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Expert Assessment

In the proposed framework, the outliers defined from the EVA analysis in Section 7.4.1, were
forwarded to the experts for cross-check and labeling. The process illustrated in Figure 7.1 was
conducted with actual rail monitoring data, as part of a PoC project, enabling a feedback loop
between the experts, asset managers and researchers. Outlier welds, as defined in Section 7.4.1,
were labeled by experts on the basis of the black & white image feedback offered by rail-head
images acquired from the diagnostic vehicle and the V CUBE system. Over the period of
one year, four feedback loops were performed, during which a total of 1727 outlier welds were
delivered to the experts for evaluation. The thresholds defined prior to the first iteration [110]
were kept identical to track the expert evaluations on critical welds over time. The welds
submitted for evaluation over all feedback cycles in this study were composed of 911 samples
that featured strong outlier scores, and a selection of 816 weak outlier samples. The weak
outlier selection corresponded to random samples selected in order to achieve 100 samples per
region and per expert evaluation round. The condition of the welds was then assessed based
on the criteria defined in the deviation catalog of SBB [244]. Deviations in this catalog are for
instance welds featuring a squat, a surface defect or faults in the geometry.

A two stage identification process was carried out. In the first step, the experts were asked
to identify if the outlier corresponded to a weld. After four evaluation rounds, 132 samples
were not evaluated due to the time-constrains of the inspectors. In 113 cases, the image-based
system recognized other faults as welds and for 1491 samples the experts recognized a weld in
the image, delivering important information on the performance of the rail-head image-based
weld detection (see also Figure 7.11). In the second step, the experts visually assessed the
condition of the welds using the V CUBE images. The results of the expert evaluation, upon
completion of the four feedback loops, are summarized in Table 7.5. Around 12% of the strong
outliers and 6% of the weak outliers were labeled as defective by the in-office experts.

Table 7.5: Number of welds in the database after a monitoring period of one year for the
selected portion of tracks on the SBB network.

Condition No Defect Defect No Defect
Label Source EL-EVA 1 EL-EVA 1 ZMON 2 Unlabeled Condition 3

Low Outliers 0 0 368 19668
Weak Outlier 656 42 141 2242
Strong Outlier 710 83 54 285

1 EL-EVA stands for Expert Labels from the Extreme Value Analysis. 2 Defect welds from the condition
monitoring database ZMON originate from the standard manual and automated track inspection process, or
from the ultrasonic assessment of welds. 3 The samples with unlabeled condition correspond to welds that were
not submitted for expert evaluation or assigned an existing defect within ZMON and are, here, assumed to be
healthy.

Figure 7.10 illustrates the percentage of defect welds versus the values of the corresponding
scores for strong and weak outlier sets defined in Equations (7.9) and (7.10). The vertical dashed
line indicates the threshold between strong and weak outlier regions. The dotted horizontal
line offers a visual indicator for regions where the number of defects in the delivered sample
was higher than 10%. The green markers indicate the welds that were evaluated as healthy on
the basis of expert visual assessment, while the red markers show the defective instances. It is
evident that, under increasing outlier scores, the ratio of welds that were assigned a defective
label versus the complete set of ABA-defined outliers rose from 10% to 22%. At higher outlier
scores, a variability was noted in terms of the outlier score due to the fewer remaining samples,
resulting in decreased statistical significance. It needs to be here noted, however, that ABA
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information can deliver defects in their initiation or formation, which may not be deemed as
faults via the expert visual inspection. Heavier weld faults are most commonly attributed to
the presence of squats or another distortion in the welding, rather than tied to geometric faults.
The outlier scores were, here, formulated so that samples in the weak outlier set included the
instances that corresponded to anomalies in the geometry. It should here be noted that, as
the evaluation criteria were mainly visually-based, the expert evaluation could not thoroughly
capture geometric irregularities, which were smoother (influencing larger wavelengths than a
local squat). In addition, the evaluation was affected by inspector bias (see also Figure 7.14).
The challenges resulting from the uncertainty in the ground truth are further discussed in
Section 7.4.2.
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(a) Faulty weld percentage for strong outliers.
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(b) Faulty weld percentage for weak outliers.

Figure 7.10: Percentage of damaged welds in the samples evaluated by experts after four
evaluation rounds, given outlier scores that were higher than the prescribed thresholds. At
higher outlier scores, 22% of the ABA-based outliers were assigned a faulty label by the experts.

Fusion of Data from the Standard Condition Monitoring Database (ZMON)

As part of the standard evaluation procedure, welds that are inspected and deemed as defective
by experts are recorded in the ZMON (ZustandsMONitoring—condition monitoring) database.
This is a condition logging database containing faults stemming from the following: (i) visual
inspections; (ii) more specialized Non-Destructive Evaluations, such as ultrasonic inspections
conducted by a system mounted on a dedicated diagnostic vehicle; (iii) automated track in-
spections of rail faults by means of the V CUBE system, mounted on a specialized diagnostic
vehicle. Faulty welds that are picked up by the ultrasonic inspection vehicle are verified by
on-site measurements using a handheld device. Furthermore, faults that are picked up by both
the automated track inspection system (V CUBE) and visual inspection need to be first vali-
dated by experts in the office, prior to being added to ZMON. This database serves for efficient
planning of maintenance and renewal actions.

During the expert evaluation process that was executed as part of this PoC, 1491 outlier
welds were evaluated, and, when classified as faulty, added to ZMON. Due to capacity limita-
tions of the experts, only the majority of strong outliers and a selection of weak outliers were
given for evaluation. However, the majority of the 25,000 welds remained unlabeled. To assess
the performance of ABA-based classification, exploited here for the first time, faulty welds
which were not offered for evaluation were identified from the ZMON condition log using the
process illustrated in Figure 7.11. Through this process, the defect dataset was extended to
include non-visual inspection sources, such as ultrasonic testing [90], and was not solely com-
posed of ABA-defined outliers. The inclusion of these samples was crucial as the subsequent
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classification procedure relied on data which comprised all observed cases of welds, regardless
of their ABA status.

Datensätze - Datasets (EN)

1

Outlier Welds Delivered

for expert-Feedback

1727

Not a weld: 113

Weld

1491

No visible fault

1343

New fault 45

Existing fault 103

Rail deviations in condition 

database

ZMON 

(for tracks in PoC)

1519

Weld detections for tracks in 

PoC

around 25’000

Dataset 

Validated by

Experts

d<10 m, on weld: 544 samples

d>10 m: 476

ZMON position correct 279

ZMON position wrong 244

Undetected welds 21

Discarded

Discarded

Dataset with

condition

database

faults

new deviations from Feedback Loop 

Not evaluated: 132

d<10 m, not on weld: 472

Figure 7.11: Process for generating weld condition labels from the ZMON condition database
on the basis of expert feedback conducted on the ABA-derived outliers, as well as through the
standard inspection and evaluation processes, which include visual (on-site), V CUBE-based,
and ultrasonic-based track inspections.

The process of linking rail defects, of a general nature, to weld-specific defects was initiated
by extracting all rail faults from the ZMON database for the portions of track evaluated as
part of this PoC. These rail defects were then associated to the presence of a weld in their
vicinity, allowing for a tolerance of 10 m to account for potential inaccuracy in the reported
positions. The resulting matches were then visually verified by the authoring team using the
V CUBE image system in order to minimize occurrence of wrong matches due to positioning
uncertainties. This process resulted in labels for approximately 544 damaged welds out of the
original set of 25,000 labels. In the absence of a label, a weld was assumed to be healthy for the
classification process in Section 7.4.2, which was naturally a strong assumption, since certain
welds may simply have failed to be picked up as defective.

7.4.2 Classification of Weld Condition

To further improve the aforementioned thresholds for expert feedback, the expert knowledge
stemming from EVA and the ZMON logs was taken into account by considering three types of
models.

The Bayesian Logistic Regression (BLR) model was compared against a Binary Choice
(BC) approach, and the Random Forest (RF) model. As an input, the supervised classification
process (see also Figure 7.1) used the condition labels of ZMON, enhanced with the expert
evaluation, shown in Table 7.5, to provide superior classification thresholds on the basis of the
ABA-derived indicators. Here, it is worth remembering that the longitudinal level indicator is
itself an ABA-derived indicator through the process of integration.
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The ABA features of Table 7.3 were computed for all samples in the dataset presented in
Section 7.4.1. The naming convention of the essential indicators was T1(T2(ABAM

C )), with the
related letter entries explained in Table 7.6.

Table 7.6: Meaning of the T1(T2(ABAM
C )) naming convention of the essential indicators.

Letter Explanation Possible Entries

T1 Summary statistic computed
over all (Y/Z) sensor channels

mean µ, standard deviation σ, min,
max...

T2 Summary statistic computed
over time series where the
subscript denotes the window
size

mean µ, standard deviation σ, min,
max...

M Applied method and parame-
ters

STFT, Longitudinal Level D0,
DWT...

C Sensor channel Z for vertical, Y for lateral

The dataset was divided into a training dataset and a test dataset, with 80% of the samples
included in the former and the remaining 20% included in the latter. The models were trained
on the processed essential indicators with the assigned condition labels. In some studies, data
imbalance and overfitting is prevented by using data augmentation techniques; however, gener-
ating such augmented datasets requires special care since the augmented datasets are prone to
bias [177]. For this reason, resampling techniques were used instead of generative approaches
to account for the large imbalance between the number of healthy welds compared to defective
instances. Certain models, such as the RF-based scheme, require the adjustment of the class
weights to account for the over-represented category during the training procedure [54]. This
was, here, achieved by weighing the minority class proportionally to its count in order to achieve
balanced weights

wj =
n

c · nj
(7.11)

where the weight wj for class j is weighed inversely proportionally to the ratio between the
number of samples nj of class j and the total number of samples n. For the weld assessment
problem, we assigned a binary condition label (“healthy” or “defective”) and, thus, the number
of classes c is 2. This balancing was only applied during the training phase of the RF.

The model performance assessment metrics used here were accuracy, recall, precision, F1-
score, and the Area Under the Receiver Operating Characteristic Curve (ROC–AUC). A brief
description of these metrics is provided in [118]. The accuracy metric measures the ratio of
correct predictions over the total number of evaluated instances. For imbalanced datasets, other
metrics are generally preferred, as accuracy is sensitive to imbalance. The precision is defined as
the ratio of the correctly classified positives (true defects), also referred to as true postives (TP),
versus all classified positive instances (predicted defects), either correctly (TP) or incorrectly
(false positives, FP). A low precision score indicates the presence of a high number of false
positives, which can be an outcome of imbalanced class or untuned model hyperparameters.
The recall, also referred to as the true positive rate (TPR), is calculated as the ratio between
the number of correctly classified positive samples (TP) versus the total number of actually
positive samples, which includes true positives (TP) and false negatives (FN). Both precision
and recall offer metrics on the classification reliability in terms of predicting positives. Low
recall rates result in lower safety due to an increased number of false negatives. The F1-score
is defined as the harmonic mean of precision and recall, and is calculated using the following
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equation

F1-score =
2(precision · recall)

precision + recall
(7.12)

The F1-score is adopted for assessing models with large class imbalance, as it assigns equal
weight to both precision and recall. The Area Under the Receiver Operating Characteristic
Curve (ROC–AUC) is another metric which is commonly used to assess the performance of
binary classifiers, as it assesses the quality of the distinction between positive and negative
classes. The ROC–AUC is calculated using the following equation

ROC-AUC =

∫
(TPR(FPR))dFPR (7.13)

where TPR stands for the true positive rate (or recall) and FPR denotes the false positive rate,
defined as FPR = FP/(TN +FP ). The ROC–AUC score can be misleading when the dataset
is highly imbalanced and, thus, it is best used together with the precision, recall and F1-score
for the assessment of the model performance.

The model selection proposed in Section 7.3.4 was now trained on the training dataset,
which was composed of 80% of the samples of Table 7.5. One should note that the unlabeled
condition and the non-defective samples from EVA were here both assumed to be healthy
samples. In practice, as previously noted, there is uncertainty both in the expert labeling, as
well as regarding the completeness and up-to-dateness of the ZMON database.

Table 7.7 illustrates the classification scores for the formulated models. The BC models
offered lower scores than the BLR and RF classifiers, as their univariate nature did not enable
them to capture more complex relations. The BLR model offered scores that were nearly as high
as the RF classifier, capturing the linear relations of the indicators. The RF classifier offered the
highest scores as this model can capture the non-linear relations between indicators. The BC
classifier was used to evaluate the single features listed in Table 7.3, such as the maximum lateral
acceleration Y measured over a distance of 3m around the weld, averaged across all measurement
channels µ(max3m(ABARAW

Y )). Table 7.7 furthermore shows that for the univariate BC models,
lateral acceleration features performed better, while vertical acceleration features had slightly
lower performance. The EVA for outlier detection could have, in hindsight, been performed on
such an improved indicator. However, because organizing feedback rounds with many experts
and asset managers from different regions was a complex task, expert assessment on the updated
indicators will only be performed in future work. In addition, it was observed that increased
ABA values in the 0.5 to 2 kHz range, for both the vertical and lateral direction, could indicate
the presence of a defect. The single indicator BC models yielded F1-scores between 10% and
32% for the best performing single features. From the BC models, we observed that both
vertical and lateral acceleration features yielded similar F1-scores.

The BLR and RF models were trained using the 15 features yielding the highest F1-score
in the univariate BC models and a cross-feature correlation of less than 0.8. Figure 7.12
illustrates the inferred posterior distributions for a selection of 6 parameters of the BLR model,
inferred by MCMC inference with the samples collected after convergence of the chains. The
essential indicators xi corresponding to the BLR parameters βi are summarized in Table 7.4.
It was observed that certain inferred parameter distributions, such as β1 and β14, assigned high
posterior probability to 0, suggesting low statistical significance. For example, β14 corresponded
to one of the longitudinal level D0 indicators, which further confirmed the limited value in
geometric indications for welds, which are, indeed, nowadays mainly assessed visually and not
in terms of geometry. Likewise, the other displayed variables considerably differed from the
prior, and the 0 value was not contained in the 94% Highest Density Interval (HDI) [182], which
supported their statistical significance.
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Figure 7.12: Posterior distributions of the BLR parameters α,βspeed, β1, β12, β13, β14. Mean
and 94% HDI are reported in the plots. The essential indicators xi corresponding to the BLR
parameters βi are listed in Table 7.4.

The best BLR model yielded an F1-score of around 43 %, while the best-performing RF
model delivered an F1-score of around 48 %. The models based on multiple indicators per-
formed better than the ones using only a single feature. By further including the speed, which
is an important operational parameter, as an input to the RF and the BLR models, the classifi-
cation metrics were further improved. While the BLR delivered slightly lower metrics than the
RF, it presented a reduced risk of over-fitting. Moreover, the BLR model additionally provided
estimates of the predictive uncertainty.

For all models, a trade-off always existed between recall and precision. When the recall
increased, the precision decreased, resulting in a safer monitoring scheme, which, however,
also delivered many false positives. To further illustrate this point, the confusion matrices for
the best performing BLR and RF classifiers are shown in Figure 7.13a,b, respectively. While
only about 2–3% false positive predictions occurred, the number of false negatives was up to
56%. One can observe in Figure 7.13 that the BLR and RF models had similar recall rates,
but different precision, as the RF offered slightly less false positives. The decision threshold
was set to maximize the F1-score. In practice, this decision threshold can be dynamically
adjusted. For example, more ambiguous samples, such as weak outliers, could be considered
for expert validation, but this would be associated with a higher false positive rate and a greater
validation effort. Concerning the BLR model, the expert-in-the-loop approach could have been
further extended to exploit the estimated predictive uncertainty, which offers a quantification
of the confidence we may attribute to each judgment [84, 135]. The predictive uncertainty
could then be exploited for a second iteration of expert labeling on those samples associated
with high uncertainty. The resulting reduced uncertainty in the labels would lead to subsequent
improvement in the predictive models. While this extension was not considered in this PoC, for
simplicity and to present a fair model comparison, it would certainly be useful to consider this
for a practical real-world implementation, in order to fully exploit the BLR model capabilities.

We noticed that the best performing RF model sometimes mistakenly classified healthy
samples as defective and vice versa. Indeed, we noticed that the relatively low precision and
recall could be attributed to the high uncertainty in the labels. Further examining the instances
of correct and misclassified defects, we offer an illustration of some randomly selected instances
for true positive (TP), false positive (FP), true negative (TN), and false negative (FN) instances
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Table 7.7: Defect weld classification scores on the ZMON test dataset for the best performing
features of each feature type of the Binary Choice (BC), as well as the Random Forest (RF)
and Bayesian Logistic Regression (BLR) models that yielded the best F1-scores (see also the
feature naming convention in Table 7.6).

Model Features F1 Auc1 Acc2 Rec3 Prec4

BC µ(min3m(ABALong. level D0
Z )) 0.109 0.553 0.290 0.846 0.058

BC µ(max3m(ABALong. level D0
Z )) 0.111 0.555 0.371 0.761 0.060

BC min(min3m(ABALong. level D0
Z )) 0.116 0.542 0.799 0.256 0.075

BC max(max3m(ABALong. level D0
Z )) 0.119 0.543 0.822 0.233 0.079

BC µ(σ3m(ABARAWY )) 0.250 0.610 0.921 0.265 0.236

BC max(max0.625s(ABADWT Haar cD2
Y )) 0.259 0.647 0.893 0.373 0.198

BC µ(max0.625s(ABADWT Haar cD3
Y )) 0.263 0.634 0.908 0.329 0.219

BC µ(max0.625s(ABADWT Haar cD6
Y )) 0.264 0.645 0.898 0.364 0.207

BC µ(max0.625s(ABADWT Haar cD2
Y )) 0.270 0.635 0.912 0.327 0.230

BC max(max3m(ABARAWY )) 0.293 0.668 0.902 0.408 0.229

BC µ(max3m(ABARAWY )) 0.307 0.641 0.927 0.322 0.293

BC max(max2m(ABASTFT 400Hz
Y )) 0.307 0.654 0.919 0.360 0.268

BC µ(max3m(ABABP 0.8−2kHz
Y )) 0.308 0.638 0.930 0.313 0.303

BC µ(max2m(ABAV S ABAY Z )) 0.315 0.650 0.925 0.344 0.291

BC max(max2m(ABASTFT 800Hz
Z )) 0.323 0.655 0.926 0.355 0.295

BLR
15 indicators with highest F1-score 5 and
cross-feature correlation under 0.8

0.422 0.696 0.937 0.426 0.417

BLR
15 indicators with highest F1-score 5 and
cross-feature correlation under 0.8 & speed

0.431 0.701 0.938 0.432 0.427

RF
15 indicators with highest F1-score 5 and
cross-feature correlation under 0.8

0.479 0.711 0.948 0.446 0.517

RF
15 indicators with highest F1-score 5 and
cross-feature correlation under 0.8 & speed

0.486 0.708 0.950 0.436 0.550

1 Roc-Auc, 2 Accuracy, 3 Recall, 4 Precision.
5 The F1-scores of the indicators were defined with the univariate BC model.

in Figure 7.14. It is evident that these uncertainties were largely related to challenges in the
quality of the dataset labeling. Many samples exhibiting acceleration and visual characteristics
that would place them, respectively, in the healthy or defective category might effectively
belong to a different condition category than the initially assumed one. Several reasons for
these mislabeled samples exist:

1. The assumption that all welds not linked to a fault (from the ZMON database or the PoC
expert-based evaluation) are healthy is inaccurate. Figure 7.14b illustrates that some
samples assumed as healthy, but classified as defective (categorized as False positives),
were indeed defective as they were not recorded in the ZMON database at the time of
the inspection.

2. Additionally, errors can occur when matching the potentially outdated time and inac-
curate location of defects recorded in the ZMON database with the weld observations.
This can result in false negatives, where one can visually observe faults, as shown in
Figure 7.14d.
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Figure 7.13: Confusion matrices for the BLR and RF classification models. The recall rate
was around 44% and only 2% of the samples were mislabeled by the classifiers for the healthy
scenario.

3. Finally, additional uncertainty arises from expert judgment, which tends to vary consid-
erably as each expert can reach a differing conclusion on the same sample.

Furthermore, experts often only generate new faults in the ZMON database for advanced
damage conditions (see also Figure 7.14c), where the resulting maintenance is carried out within
a prescribed time horizon. While this is a resource-efficient strategy, it is crucial to realize that
accelerations are quite sensitive to moderate-intensity defects that lead to early alarms, as is
shown in the next section. A binary classification is less suitable in such a scenario because
it does not distinguish between different damage levels; this implies that damage severity and
its progression need to be taken into account, which is only feasible under continuous tracking
over time.

7.4.3 Continuous Tracking of Health Condition

The ABA-based classification of weld condition in Section 7.4.2 was performed on the basis of
individual observations on welds. This work advocates adoption of an OBM paradigm, whose
purpose is to deliver regular data collection from either diagnostic vehicles or appropriately
instrumented in-service trains. In this way, tracking of the condition and the possible evolution
of damage can be accomplished. By combining consecutive ABA measurements over time, the
evolution of the rail infrastructure condition can be better estimated [317]. In this section,
patterns and trends were identified with respect to the evolution of welds prior to reaching
a damaged state, by analyzing the indicators derived from ABA over time. This information
could lead to early detection of damage, and, in this way, facilitate the scheduling of timely
maintenance activities and the improvement of rail infrastructure reliability.

Figure 7.15 plots the evolution of the ABA-derived indicator observed on a weld with a squat
over time from October, 2020, until November, 2022. The indicator µ(max2m(ABAV S ABA

Y Z ))
that was selected for this comparison was the one returning the highest F1-score for the BC
model (see also Table 7.7), while simultaneously combining both vertical and lateral acceler-
ation information. The ABA feature was normalized to the decision threshold γ defined in
Equation (7.5). The normalized ABA feature grew linearly until November, 2021, for the weld
of this case study. During the subsequent measurement in April, 2022, the ABA indicator
decreased, due to rail grinding maintenance, which took place in March, 2022. The two thresh-
olds highlighted in Figure 7.15 corresponded to the 98-th percentile which was applied during
the initial expert evaluation round, and to the limit value for maximizing the F1-score during
the classification process respectively. The first introduction of the weld of Figure 7.15 in the
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(a) Welds with squat classified by the RF model as faulty

(b) “Healthy” welds classified by RF model as defect

(c) Healthy welds classified by the RF model as healthy

(d) “Faulty” welds classified by RF model as healthy

Figure 7.14: Challenges in the labeling quality of the dataset are showcased with images ex-
tracted from V CUBE of characteristic healthy and defective weld component classes for each
classification scenario.

ZMON database occurted over a year after the highlighted thresholds were crossed showing the
significant potential of using ABA as an early indicator of weld condition. Once the defect was
identified, the weld was replaced within months, resulting in a recovery of low indicator values.
In conclusion, the ABA-based indicator was able to track the true evolution of condition and
deliver an indicator of real time damage progression.

When considering larger scale infrastructure, it may often be more efficient to consider the
assets over space and time, as a large number of welds exist on the network and tracking each
one individually is resource intensive. The indicator of Figure 7.15 can be computed at any
position on the track and visualized as time series plots, or as heatmaps. Asset managers are
nowadays trained on interpreting heatmaps to analyze the variation of Track Quality Indicators
(TQIs) over large track sections over time [200]. Figure 7.16a,b illustrates the heatmap for two
rail sections of 400 m, where the rail condition indicator was normalized to the limit value for
decision making defined in Section 7.4.2. The color scale of the heatmap reflects the increasing
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Figure 7.15: Time history of best performing feature of Section 7.4.2 normalized to the decision
limit of the classifier. The ABA feature grew linearly until November, 2021. In April, 2022,
rail grinding maintenance occurred on the track section, resulting in slightly lower ABA. The
weld was labeled as faulty in June, 2022, by the experts and, subsequently, replaced in August,
2022.

level of rail damage. The unvalidated welds, surface defects and insulated joints automatically
detected by the V CUBE image-based detection are shown at the bottom of the plot. Increased
indicator values are most commonly caused by insulated joints, faulty welds, surface defects
or squats [104]. This is supported by Figure 7.16, as the increased indicator values lined up
with these infrastructural elements. The start point/time and end point/time of the faults,
recorded in the ZMON database, are shown as two stars linked by a dotted line, had lower
space and time resolution, as they could be driven by other considerations. Figure 7.16a shows
a section with two defect welds, including the one having the time series of the weld at position
542 m from Figure 7.15, while Figure 7.16b shows a section with several defective welds (at
positions 525 m, 556 m, 700 m and 706 m). All the damaged welds showed clear growth of
the indicator values over time. Beyond the application of ABA for detecting faulty welds only,
these indicators characterize the rail surface roughness and, thus, they can be applied for all
types of rail surface faults. For instance, a large quantity of surface defects occurred on the rail
between position 550 m and 640 m in Figure 7.16b. In such cases, individual consideration of
faults is of limited use, as it is most optimal to maintain the entire rail section at once.

In summary, the extraction of regular monitoring observations by means of specialized or
in-service measurement vehicles equipped with ABAs bears potential for automating rail fault
diagnostics. This can enhance predictive maintenance schemes by presenting asset managers
with continual and spatially dense supervision of the rail condition over time.

7.5 Conclusions

In this work, we present a holistic framework for the automated detection of weld defects, by
fusing a variety of observations, including on-site and visual inspections, automated diagnostic
information extracted from monitoring vehicles and expert assessment. The scheme capitalizes
on the availability of ABA information, extracted from accelerometer sensors featured on a
diagnostic vehicle of the SBB. Extreme Value Analysis models were initially calibrated on
various metrics stemming from the ABA measurements, in order to identify outlier welds in an
unsupervised fashion on the basis of defined thresholds. The selected outliers were then passed
onto actual field experts, in a first of its kind Proof-of-Concept project in collaboration with
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(a) Section with two damaged welds at positions 440 m and 542 m. The time series of the weld at
position 542 m shown in Figure 7.15.

(b) Section with four damaged welds at positions 525 m, 556 m, 700 m and 706 m. Moreover, there
were a large number of surface defects and squats between 550 m and 640 m.

Figure 7.16: Heatmaps illustrating the spatial and temporal evolution of the ABA-based rail
condition for two 400 m rail sections on different track segments. The detected welds, surface
defects and insulated joints corresponded to unvalidated samples from the rail-head image-based
detection and are marked with color bullets. The start and end point/time of the faults that
are recorded in the ZMON database are shown as two stars linked by a dotted line. Locations
with increased ABA indicators matched the welds which were recorded as faulty, or the sections
with a high density of rail faults.

the SBB. The experts offered their feedback on rail-head images (V CUBE) that corresponded
to the EVA-identified outliers. This novel application combined real world data with expert
feedback and was executed in four evaluation rounds, carried out over a period of one year.
Newly identified defects as part of this PoC were then entered into the condition monitoring
database of the SBB, where they wewre fused with existing information from further evaluation
processes.

The extended dataset was then used to develop an automated one-class classification scheme,
whose purpose was to identify defective welds from the assimilated expert feedback. Three
different methods were applied to this end: BC, RF classifiers and BLR. On the basis of the
conducted analysis, it is possible to suggest a preferred measurement configuration for ABAs.
We recommend the use of both vertical and lateral accelerations in the assessment procedure,
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as both are impacted by faults on welds. As such faults tend to induce an impulse-type of
vibration response of the axle system, characterized by frequencies in the kilohertz range, this
further motivates use of high frequency sensors. In terms of the performance of the suggested
classification schemes, both the BLR and the RF models were trained on the same features,
comprising the 15 features of the BC analysis that yielded the highest correlation to defect
welds, while exhibiting less than 80% cross-feature correlation. The BLR model comes with the
further advantage of delivering a prediction probability, which expresses the level of confidence
we may attribute to the resulting labels.

These results indicate that component-specific evaluation can be delivered by combining
asset type information with acceleration-based indicators and expert evaluation. Such an early
detection of defects facilitated by acceleration-based indicators may improve the safety, effi-
ciency, and cost effectiveness of both the inspection and maintenance process of rail welds in
the future.

Finally, ABA measurements can detect faults much earlier, at their initiation, and, in this
way, yield an estimate on damage severity. The continuous rating of weld condition over time,
as opposed to the binary healthy/defective rating, further argues toward the importance of
long-term monitoring schemes, which allow for tracking of condition over time. In an effort
to demonstrate this, we presented examples which demonstrated that, prior to maintenance
actions, significant growth of the ABA indicators was observed over time. This implied that
emerging (early) faults were not caught by the experts, but were identified by the ABA and
could feasibly be linked to a continuous indicator (rather than a categorical variable - label).
Such ABA-derived indicators bear strong potential for effectuating early detection of faults and
enabling a more granular and objective assessment of rail infrastructure condition.

While the proposed models are successful at classifying accelerations, further improvements
can be obtained by some extensions to the current framework. An unsupervised approach
using the Mahalanobis distance will be used in future work in order to allow assignment of
labels beyond one-class classification, rather than on the the basis of a continuous scale, i.e.,
in terms of fault intensity [16]. The probabilistic framework enabled by the BLR can be
extended by taking such a distance metric into account, while simultaneously incorporating the
uncertainty in the expert labeling [208]. This work shows that such models improve the current
paradigm of automated rail-head image-based inspection, but in the long-term pave the path
for establishing OBM-based rail condition monitoring. The predictions of the proposed models
can be incorporated as observations into a sequential decision-making framework to support
optimal maintenance planning of railway assets [12].
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Chapter 8

Conclusions and Perspectives

The following concluding chapter provides a summary of the main findings achieved in this
thesis and of the research questions and challenges addressed. Moreover, it offers insights into
possible future developments of the presented research.

8.1 Conclusions

The research conducted in this dissertation aims to deliver actionable tools for enhancing the
robustness in the on board monitoring of railway assets; that is via use simple and low-cost
sensing devices that can eventually be mounted on passenger vehicles. We offer an end to end
framework for achieving this task in a first-of-its-kind collaborative Proof-of-Concept study
with the Swiss Federal Railways (SBB). The overarching goal of this thesis is to address the
challenges identified in Section 1.2.7 with the goal of achieving reliable condition monitoring.
To this end, ABA-derived indicators are infused in a framework that exploits machine learning
tools and statistical methods for uncertainty quantification to enhance robustness, prior to
being delivered to experts for further corroboration and assessment; in this way closing the
loop.

The thesis begins with an overarching introduction to the field of railway asset monitoring
in a data rich environment. Emphasis is given to the systems and methodologies nowadays
applied to assess the infrastructure condition, as well as the challenges currently encountered.
The introductory part contextualizes the research work and introduces the approaches applied
in the different chapters for the railway track assessment.

The first part of the dissertation (Chapter 2) focuses a comprehensive overview of the
state-of-the-art of the research in the field of track asset monitoring using data from simple,
inexpensive and robust sensors installed in regular rolling stock. We present a typical sensor
setup of passenger trains for On-Board-Monitoring setups, with accelerometers mounted to the
axle, the bogie and the body that measure the vehicle response at the main degrees of freedom
of the vehicle. In this chapter, a suite of parametric and non-parametric methods are presented
along with exemplary applications on data from the Swiss Federal Railways (SBB) database.
These methods are applied to extract condition indicators using model-based or data-driven
approaches, such as Kalman filters or double integration to recover the longitudinal level, or
such as time-frequency domain representations for assessing short wavelength faults. In a
second step, we perform a short review of classification techniques to characterize asset state
and damage. The state of assets can be inferred from both data-driven and physical model-
based approaches, where the former is often more straightforward to obtain when sufficient
amounts of data are available, while the latter offers a higher degree of transparency and is
better able to capture the physics at hand when data amounts are scarce. From this research
aspect, we conclude that future monitoring approaches would optimally combine the broad
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network coverage at frequent intervals of OBM on in-service vehicles with the less frequent
measurements of diagnostic vehicles. Such an approach of combining frequent lower precision
measurements with more rare but higher precision measurements from specialized diagnostic
vehicles could enable an increase in the predictive capabilities of the demonstrated diagnostic
algorithms.

The second part of this research work (Chapter 3) focuses on the identification of the track
stiffness by using the Vold-Kalman filter in a novel application for superstructure condition
assessment. We show that the VKF-based sleeper passage amplitude can be related to the
track stiffness. In turn the dynamic response caused by varying track stiffness can be observed
to result in increased maintenance on the corresponding track segments. From this chapter,
the following conclusions can be drawn:

• The Vold-Kalman filter is applied to separate the periodic excitations due to the wheel
or the sleeper passage from the axle box acceleration signals.

• The components corresponding to the wheel Out-Of-Roundness can be used to reconstruct
the theoretical shape of the wheel, thus serving for condition assessment of wheel assets.

• The sleeper passage acceleration amplitude obtained via the VKF correlates to track
subsidence measured by the subsidence measurement vehicle, implying that OBM-based
ABA measurements could potentially supplement such subsidence recordings, delivering
temporally denser measurements.

• Increased sleeper passage acceleration and forces results in higher maintenance require-
ments on the corresponding track sections. This illustrates that higher acceleration and
load amplitudes result in more degradation over time; a phenomenon that can be tracked
via ABA recordings.

Chapter 4 proposes the use of physics-based models for the assessment of the vehicle-
track dynamics. This chapter demonstrates the fusion of physical models with data-driven
approaches, utilizing the MCMC Bayesian updating method to optimize parameters in an
ICN RABDe500 wagon model based on actual OBM measurements from an in-service ICN
RABDe500 train. The result is a finely calibrated model capable of predicting loads, assess-
ing damage, and optimizing maintenance intervals. In contrast to conventional trial-and-error
approaches, MCMC automates parameter determination, albeit with a requirement for prior
parameter selection and distribution definition. The posterior probability distribution of the
parameters offered by the MCMC-scheme, allows for robust uncertainty quantification in pre-
dictions. Ultimately, the calibrated model serves as a valuable asset for future simulations.

While the previous parts investigate the general vehicle track dynamics in wavelengths of
over 0.6 m, shorter wavelengths also have a clear influence on the ABA signals, relating to
impacts caused by presence of short-wavelength faults on the rail. As the rail bears wheel loads
on a contact patch that is smaller than a small coin or a postage stamp. Such a high stress
concentration, repeated over several cycles, results in rail wear and in the propagation of cracks
at the surface or inside the rail. By regularly maintaining the rail using grinding or milling
vehicles, the rail profile geometry and the size of the cracks can be controlled. The efficacy of
such interventions and the overall state of the track can be achieved by image recognition drawn
from rail head images (e.g. V CUBE system of the SBB) or ultrasonic measurements. However,
current systems cannot detect the severity of flaws, and are often unable to distinguish between
healthy and defect welds.

In response to the previously identified challenge, the fourth part of this thesis (Chapter
5) builds on the labels that are automatically generated by the image recognition system of
the SBB and proposes an ML-based defect classification tool, exploiting ABAs, in order to
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automatically distinguish between faults and main system (welds, joints, surface defects and
squats). This part compares two approaches: the first one relies on a more traditional feature
engineering approach that is combined with a Random Forest classifier algorithm. The second
approach exploits a meaningful spectrotemporal mapping, namely the STFT of the ABA sig-
nals, whose coefficients are fed as an input to a Convolutional Neural Network. Both algorithms
identify insulated joints and non defect rail samples well, but have a lower performance when
classifying surface defects and welds. This is likely because these two classes are much broader
than reflected by the ground truth labels. Welds can range from pristine and healthy welds
to welds with squats or other damages. Similarly, surface defects range from small defects to
large squats. From this chapter, the following conclusions can be drawn:

• Random Forests applied to features engineered from ABA achieve classification results
similar to Convolutional Neural Networks applied on the time-series themselves.

• Healthy rails and insulated joints are well distinguished from surface defects, squats and
welds.

• The condition of welds range from healthy to damaged ones, which results in lower clas-
sification scores.

• Surface defects and squats are more broadly defined as visual faults on the rail surface.
These faults range from very small indentations to large squats across the full width of
the rolling band. While accelerations capture differences in fault size, the visual labels
classify these faults with the same defect label.

The promising findings from Chapter 5 reveal, however, the need for a more refined investi-
gation of component-based assessment, since the assessment of critical rail components - such
as welds or insulated joints - requires deeper information on their condition (and level of deteri-
oration). We here focus on welds as a salient critical component of the Swiss Railway Network,
which comprises several hundred thousands of welds at different stages in their life-cycle.

To address this challenge, Chapters 6 and 7 provide an in-depth assessment of welds. These
studies are part of a Proof-Of-Concept that was carried out together with asset managers and
field experts of the SBB. Machine learning tools and statistical methods are used to assess
uncertainty and generate dependable diagnostic indicators in a process that includes experts
for additional evaluation and confirmation.

In Chapter 6, we present a process to efficiently deliver acceleration-based outliers identified
from Extreme Value Analysis in an unsupervised fashion to field experts for human validation.
Experts then review rail-head images corresponding to these outliers, leading to the identifica-
tion of suspected weld defects, which are entered into a condition monitoring database. The
expert labels from this study are subsequently adopted in the framework described in Chapter
7 to deliver actionable condition indicators.

Chapter 7 presents a framework for automated detection of weld defects, combining on-
site and visual inspections, diagnostic information from monitoring vehicles and expert assess-
ments.The outliers identified in Chapter 6 are combined with the weld evaluations stemming
from other monitoring processes such as ultrasonic testing and field inspections.

The knowledge gained on weld condition through the expert feedback is then used to de-
velop an automated one-class classification scheme to identify defect welds. Three methods
are applied: Binary Classification (BC), Random Forest (RF) classifiers and Bayesian Logistic
Regression (BLR).
The following conclusions can be drawn regarding the assessment of welds:

• Acceleration-based outliers are validated by experts, based on visual appearance of the
welds. Increased accelerations result in a higher probability of defect rating by experts.

135



• Expert labels from ZMON are used to build improved classification metrics by using
BC, RF and BLR schemes. The BLR and the RF models were trained on the top-15
features from the BC analysis that yielded the highest correlation to defect welds, with
less than 80% correlation to each other. The speed was additionally taken into account
as a parameter in the classification. The RF and BLR models prove superior to the BC
model,

• The BLR model offers the advantage of estimating a defect prediction probability and
further assigning a level of confidence in the prediction, which is particularly advantageous
in light of the high uncertainty caused by faulty ground truth labels.

• Accelerations are tracked over time using heatmaps. We observe continuous growth over
time until maintenance measures are applied. While time-histories would enable the
early detection of faults on welds, the main requirement is a sufficiently accurate vehicle
localization.

• A holistic framework is delivered, combining data-driven condition indicators with robust
outlier analysis and complementary expert feedback for actionable implementation in
railway management.

In summary, the present thesis has investigated the potential of utilizing cost-efficient and
low cost and complexity devices, such as ABA, for comprehensive track asset monitoring appli-
cations. In addition to the existing specialized measurement systems (optical, laser-based,...),
which are adopted for traditional monitoring of the track components, accelerations measure-
ments further capture the dynamic response resulting from the degradation processes usually
observed with specialized monitoring systems. To deliver clear condition labels, the accelera-
tions must be filtered or processed using parametric or non-parametric approaches to generate
features, which are then combined with statistical approaches or machine learning techniques
to translate acceleration indicators into condition indicators or fault labels.
ABA measurements can be used as a complementary information source on the state of the
assets, capturing a large number of common track and vehicle faults. Interpretation challenges
were more specifically addressed in this work by extracting sets of readily interpretable indica-
tors. Long wavelength faults (between 0.6 m and 70 m) were characterized in terms of geometric
indicators. These indicators were obtained using double integration and filtering techniques.
Such indicators are associated with substructure and ballast condition [106]. The wheel ge-
ometry and track stiffness affecting wavelengths below 3 m, were characterized in Chapter 3
with indicators obtained with the Vold-Kalman Filter. In the case of short wavelength faults,
their characterization can be unsupervised in the case of outlier detection, but requires more
complex models when aspects such as the classification of rail fault types and rail component
types are taken into account. It was demonstrated that accelerations not only enable the clas-
sification of infrastructure components in terms of dynamics, but also allow the dynamic-based
assessment of their condition. Such assessments deliver a more refined view of the condition in
terms of acceleration-based defect or outlier scores, eventually offering an oversight over pos-
sible evolution of deterioration processes and permitting continuous tracking of the growth of
faults/defects over time. The continuous condition assessment aspect was demonstrated in a
proof-of-concept for the assessment of welds where it is suggested that the continuous tracking
of such indicators can serve as a valuable guide for preventive maintenance actions. It should be
reminded that due to their nature and the fact that these reflect the interacting vehicle/track
system, ABAs can serve for monitoring of both the traversed infrastructure, as well as the
instrumented fleet. Even though the latter is not a focus of this thesis, it is touched upon in
use of the VKF scheme.
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8.2 Research Contributions and Perspectives

8.2.1 Research Contribution

The present research tackles the field of Structural Health Monitoring of railway assets, with
some milestones for supporting real-time assessments via ABA. More specifically, component-
based (e.g., track geometry, rail condition, welds, insulated joints...) evaluation is proposed by
using features extracted from ABA in a data-driven fashion. This research contributes to several
aspects of ABA-based assessment by fusing ABA with information from heterogeneous sources:
acceleration measurements, measurements from specialized monitoring systems, condition logs,
fixed asset information and asset maintenance data. These data sources are combined to assess
track geometry, track stiffness, wheel Out-Of-Roundness and the rail condition (rail surface de-
fects and squats, welds and insulated joints). The validation of the proposed ABA processing
methods using such auxiliary data sources represents a significant research contribution in the
field, since the demonstration on network wide data and information enables realistic assess-
ments in contrast to previous studies that were often limited to very small selected datasets.

In the context of OBM, in addition to the research value of this work, the outcome of the
application of this research in the railway sector will serve as an opportunity to achieve broad
economic and societal impact. A better understanding of the railway asset condition is essential
to improve rail maintenance scheduling, which would reduce the frequency of rail failures and
accidents, minimize unscheduled downtime, and prolong the lifespan of rail infrastructure.
This in turn would reduce maintenance costs, increase operational efficiency, and potentially
enhance the overall competitiveness of the railway industry. We have shown in this work that
OBM can be used to reliably assess track condition indicators such as the longitudinal level,
stiffness indicators obtained via the VKF or rail condition indicators for the classification and
identification of faults on the rail elements.

High quality railway transportation is the result of healthy assets. Combining condition
indicators obtained from acceleration-based assessments with expert feedback is essential in
improving the knowledge about asset state. From the improved knowledge of asset condition
and optimized maintenance, the societal advantages are clear, since a safer and more reliable
rail system would lead to increased passenger satisfaction and confidence in rail transportation.
In addition, a more efficient rail system can reduce traffic congestion on roads and highways,
and decrease air pollution and greenhouse gas emissions.

The outcomes of this thesis have already proven fruitful in both an academic and applied
context. First of all, the stiffness assessment of the track that was shown to be an important
factor in quantifying the degradation rate of the track. The characterization of the underlying
dynamics is key to delivering improved track designs that better take into account the dynamics
of the vehicle/track interaction. The detection of faulty welds in an expert-informed framework
forms a first step towards actionable decision support algorithms that fuse data from different
sources such as V CUBE and ABA. This study was carried out in collaboration with SBB,
which enabled an intensive exchange of expertise and knowledge regarding asset and condition
databases. Such direct access was a unique opportunity that was instrumental in the research
contributions presented herein. Remarkably, this work gave industrial partners hands-on ex-
perience and full access to apply the novel approaches developed in this work. Furthermore,
demonstration codes, such as the Vold-Kalman filter implementation [101] have been made
publicly available, enabling further collaborative advancements in this domain.

8.2.2 Outlook

Building on the research and conclusions of this thesis, this section presents first presents the
main challenges and limitations of this work, while proposing several research directions as
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extensions or further innovations.
Despite the positive perspectives, some limitation identified in these studies must be high-

lighted here. First of all, a large number of uncertainties stemming from several sources, such
as the vehicle dynamics, the expert assessment ground truth, or the vehicle positioning, are
observed in this work. These uncertainties affect both the results but may also pose a challenge
for the automated assessment using a fleet of vehicles. The approach presented in Chapter 3
that harnesses the VKF for assessing the track stiffness was shown on a section for which sub-
sidence measurements from the EMW were available. While these results are very promising,
hinting that ABA-assessments could complement the measurement of subsidence, the general-
ization would require further studies containing railway sections with wood sleepers and should
further integrate the vehicle speed as a parameter. These drawbacks relate to the lack of data
available on the section for which the EMW measurement were provided.

Chapter 4 presents the combination of physics-based models with data-driven approaches
through MCMC Bayesian updating optimizes railway vehicle parameters. The calibrated mod-
els improve load predictions, damage assessments, and maintenance planning. Future research
will focus on enhancing MCMC’s performance, including automatic termination criteria and
alternative evaluation metrics. Expanding to incorporate acceleration measurements and em-
bracing parameter estimate uncertainty will provide deeper insights. Importantly, this approach
is adaptable to various vehicle types and track sections, promising widespread applicability and
revolutionizing railway system management.

Uncertainties in the vehicle dynamics such as the hunting oscillation can cause variation in
the vehicle response when crossing smaller defects (Chapter 5 and Chapter 7) which can be
a source of noise in the predictions. Uncertainties in the labels were observed in the studies
presented in Chapter 5, 6 and 7. We recommend that future studies quantify these uncertainties
by cross validating the labels using several independent experts. Due to the limited available
time from the experts that supported our work, it was chosen here to maximize the number of
validated samples, instead of cross-checking a smaller number of samples.

The time-evolution of ABA-based indicators on the defects in Chapter 5 and 6 requires a
sufficiently accurate positioning to ensure meaningful results. The uncertainties observed in
the vehicle localization have limited the scope of the results concerning the prediction of the
evolution of defects in time. An improved positioning was not further investigated in this work,
since the focus of this Thesis is not the improvement of the localization system. Uncertainty
due to the vehicle speed was an aspect that was accounted for in a data driven way in Chapter 5
and Chapter 7.

Machine learning and statistical approaches are often complex and subject to assumptions
and constraints relating to the distribution of the training data, which on different track and
in different conditions may result in lower accuracy and reliability, requiring the retraining of
the models (via for example adaptive approaches) using an expert feedback process similar
to the one presented in Chapter 7. This point is particularly essential for the analysis of the
VKF paper, which was shown for a high-speed section on the network of SBB. The algorithms
proposed in these studies were obtained on samples with vehicle speeds up to 200 km/h, and for
generalizations beyond those conditions requires the retraining of the models to ensure stable
predictions. Despite the challenges encountered, I am confident that this work is of high value
in terms of proposed approaches on the research side and that if overcome can improve the
overall monitoring process of the railway assets.

Generally in asset management there are two aspects which this research can support:

• Understanding the dynamics of the vehicle/track system to optimize the design of the
track from a dynamic point of view; especially for high-speed lines, which have much
higher requirements.
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• Development of diagnostic and prognostic railway track condition indicators to enable
more efficient predictive or condition-based maintenance approaches.

• Development of an automated framework, for extraction, processing and analysis of mea-
surement data and the fusion of these indicators with inspection data and complementary
expert feedback for practical implementation.

The following research aspects can be explored to build upon or extend the results obtained
here:

• VKF was used to assess the track stiffness on a high speed rail-line. This approach is very
promising for capturing other faults such as sleeper voids or possibly even substructure
condition. More stiffness measurements by the EMW for diverse track types such as
superstructures with wood are necessary in order to validate this approach for the most
common superstructure configurations on the network of SBB.

• A scheme that utilizes acceleration-based techniques to automate the classification of
main rail components and surface faults, including healthy rail, surface defects and squats,
insulated joints, and welds is introduced in Chapter 5. Two approaches are compared:
Random Forests (RFs) trained on engineered features and Convolutional Neural Networks
(CNNs) trained on Short Time Fourier Transform coefficients of ABA signals. Although
the validation of the scheme is limited by the lack of validated reference labels, the
implementation demonstrates the benefits of automation and encourages the adoption of
acceleration-based classifiers for the early detection of faults.

• Probabilistic approaches for assessing the weld condition were applied in Chapter 7. The
practical use of such models would entail changes in the currently applied processes of
railway maintenance, since the existing approaches for condition assessment are of deter-
ministic nature.

• Bias or errors in the expert labeling leads to increased prediction uncertainties. Models
such as BLR capture this uncertainty. The defect probability and uncertainty on the
prediction are factors that would potentially improve the sample selection submitted
for expert validation. Samples with high uncertainty would be submitted for a second
iteration of expert labeling in order to lower the label bias. Although this extension has
not been considered in this PoC to present a fair model comparison, it would certainly
be useful to consider the prediction uncertainty for a practical real-world implementation
to fully exploit the BLR model capabilities.

• One aspect that was only briefly mentioned in the introduction, but not further explored
in this work, is the optimal maintenance planning. More regular measurements from in-
service vehicles would yield regular observations which could be exploited in the future to
develop optimal maintenance planning frameworks. The integration of these assessments
into the Life-Cycle Management models of SBB would for example enable the estima-
tion of the benefits of regular in-service measurements with low-cost sensors. Partially
observable Markov decision models solved with reinforcement learning algorithms is one
approach commonly applied for such investigations.

• Finally, although this work focuses on regular railway tracks, other elements, such as
bridges and switches, form critical components of the networks that could benefit from
vehicle-based condition assessment. Bridges and switches are complex and critical com-
ponents that nowadays are still often monitored via on-site inspections. The monitoring
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of switches and bridges using on site-sensors has gained popularity in recent years. How-
ever, vehicle-based monitoring of these assets would obviously be more scalable compared
to local asset monitoring.
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