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Abstract

Climate models are large and complex constructs. They are built and used with
different purposes in mind, to generate realistic projections or aid in developing
understanding. A common approach to model building is to try to represent all
processes that are deemed important for a specific climate system compartment.
Aerosols and cloud microphysics are two features of the climate system that influence
the radiation balance as well as the hydrological cycle. Since the associated processes
cannot be resolved explicitly on the coarse climate model grid, their effect on grid-
scale variables needs to be parameterized. In developing such parameterizations, it is
often assumed that greater detail is beneficial since it increases the representativeness
of the model compared to the physical world. Thus, model complexity has become
a norm in climate model development.

However, model complexity also has negative effects. Among others, it hinders
understanding and the interpretability of the model. Here I address model complexity
by simplifying the aerosol and cloud microphysics scheme of the global climate model
ECHAM-HAM.

First I developed a method to assess the potential for simplifications in the cloud
microphysics (CMPs) scheme. I implemented parameters for perturbing a processes’
effect on model variables. Simulating many simultaneous perturbations I generated
a perturbed parameter ensemble (PPE). Constructing a surrogate model from the
PPE allows us to apply a quantitative sensitivity analysis. Indeed, I find that
model sensitivities are dominated by one of the four investigated cloud microphysical
processes, while two are negligible in comparison and thus could be simplified.

I go on to apply this methodology to the whole two moment (2M) CMPs scheme
of the aerosol climate model ECHAM-HAM. Perturbing 15 processes, I find that
8 have potential for simplification. Indeed, setting processes’ effects constant or
to a prescribed climatology or even removing some gives satisfying results for 7
of them. Importantly, the derived simplifications are robust in different climate
states, preserving the models’ fit for climate projection applications. Repeating the
same analysis for the alternative P3 scheme, I see shared sensitivities. However, the
process of ice crystal autoconversion, which dominates sensitivities in the 2M scheme
is unnecessary in the P3 scheme and thus the latter scheme exhibits more balanced
sensitivities.

Third, I turned to the aerosols which impact clouds via their role as nucleation
centers for cloud droplets or ice crystals. Since our scientific interest focuses on
the CMPs, I attempted to drastically simplify the aerosol module. I developed two
simplifications in the form of prescribed climatologies, one for potential cloud conden-
sation nuclei (CCN) and one for aerosol mass and number concentrations. In terms
of global cloud variables, the climatological approach proves promising. However,
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a mean climatology of CCN underestimates cloud droplet number concentrations
in the Southern Ocean. This bias can be eliminated by incorporating a treatment
of hygroscopic growth in the climatology. At the same time, the climatological
treatment enables large computational savings.

The sensitivity analysis and simplifications highlight scheme redundancies and
peculiar model behaviour. Thereby the method of simplification is shown to generate
new understanding, enable a new perspective, and open up promising avenues for
model development. The results of this work call into question the complexity
paradigm in climate modeling.



Zusammenfassung

Klimamodelle sind große und komplexe Konstrukte. Sie werden für unterschiedliche
Zwecke entwickelt und genutzt, um realistische Projektionen zu generieren oder um
zu einem besseren Verständnis beizutragen. Ein verbreiteter Ansatz in der Modell-
entwicklung ist der Versuch einer Abbildung aller Prozesse, die für eine spezifische
Klimasystemkomponente Relevanz zu haben scheinen. Aerosolpartikel und die Wol-
kenmikrophysik sind zwei Teile des Klimasystems, die sowohl die Strahlungsbilanz als
auch den hydrologischen Kreislauf beeinflussen. Weil die damit verbundenen Prozesse
auf dem groben numerischen Klimamodellgitter nicht aufgelöst werden können, wird
ihr Effekt mit Hilfe gitterskaliger Variablen parameterisiert. Bei der Entwicklung
solcher Parameterisierungen wird meist angenommen, dass die Berücksichtigung von
mehr Details die Aussagekraft des Modells in Bezug auf die Realität verbessert.

Aber Modellkomplexität birgt auch negative Effekte. Unter anderem erschwert
sie das Verständnis des Modells und die Interpretation seiner Ergebnisse. In der
vorliegenden Arbeit befasse ich mich mit dieser Modellkomplexität, indem ich die
Aerosol- undWolkenmikrophysikschemata des globalen Klimamodells ECHAM-HAM
vereinfache.

Zunächst entwickelte ich eine Methode, um Potential für Vereinfachungen im
Wolkenmikrophysik (WMP) Schema zu identifizieren. Dafür implementierte ich Pa-
rameter, mit denen der Effekt eines Prozesses auf die Modellvariablen perturbiert,
also kontrolliert gestört, werden kann. Mit vielen gleichzeitigen Perturbationen ge-
nerierte ich ein sogenanntes Perturbed Parameter Ensemble (PPE, sinngemäß ein
Ensemble von perturbierten Parametern). Ausgehend von dem PPE konstruierte ich
ein Stellvertretermodell, um darauf quantitative Sensitivitätsanalyse anzuwenden.
Tatsächlich zeigt die Analyse, dass die Modellsensitivitäten von einem von vier un-
tersuchten WMP Prozessen dominiert werden. Zwei der Prozesse sind im Vergleich
vernachlässigbar und könnten vereinfacht werden.

Weiter wendete ich die entwickelte Methodik auf das gesamte zwei Momenten
WMP Schema des Aerosol-Klimamodells ECHAM-HAM an. Von 15 perturbierten
Prozessen haben 8 Potential für Vereinfachungen. Tatsächlich zeigt das Modell gerin-
ge Abweichungen in globalen Mittelwerten für Vereinfachungen von sieben Prozessen,
in denen ihr Effekt entweder konstant, auf eine Klimatologie oder sogar eliminiert
wird. Weil diese Vereinfachungen in verschiedenen Klimazuständen robust sind, wird
der Wert des Modells für Klimaprojektionen erhalten. Die Durchführung derselben
Analyse mit dem alternativen P3 WMP Schema zeigt geteilte Sensitivitäten. Aller-
dings ist der Prozess der Eiskristallautokonversion, der im 2M Schema die Sensitivität
dominiert, im P3 Schema obsolet. Deshalb sind die Sensitivitäten im P3 Schema
ausgeglichener.

iii
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Zuletzt wendete ich mich den Aerosolpartikeln zu, die in ihrer Rolle als Nuklea-
tionszentren für Wolkentröpfchen oder Eiskristalle die Wolkenbildung beeinflussen.
Weil sich unser wissenschaftliches Interesse auf die WMP fokussiert, vereinfachte ich
das Aerosolmodul drastisch. Ich entwickele zwei Vereinfachungen in Form von Kli-
matologien, eine für potentielle Wolkenkondensationskeime und eine für die Massen-
und Anzahlkonzentrationen der Aerosolpartikel. Im Hinblick auf global gemittelte
Wolkeneigenschaften ist der klimatologische Ansatz vielversprechend und ermöglicht
zugleich Rechenzeiteinsparungen. Allerdings unterschätzt eine Mittelwertklimatolo-
gie von Wolkenkondensationskeimen die Anzahl der Wolkentröpfchen im südlichen
Ozean. Um diesen Bias zu eliminieren, muss die Klimatologie den Effekt des hygro-
skopischen Wachstums an der Wolkenbasis mit einbeziehen.

Die Sensitivitätsanalyse und die Vereinfachungen offenbaren Redundanzen in den
untersuchten Schemata und eigenartiges Modellverhalten. Diese Arbeit zeigt, dass die
Methode der Vereinfachung neues Verständnis generieren kann, eine neue Perspektive
ermöglicht und neue Wege für die Modellentwicklung eröffnet. Die Ergebnisse stellen
das Komplexitätsparadigma der Klimamodellierung infrage.
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1
Introduction and background

Climate models are huge constructs containing multiple compartments, from the
atmosphere to the soil, and a host of processes, from the growth of aerosol particles
to sedimenting precipitation particles. They emerge from decades of development,
millions of lines of source code and can produce terabytes of data. Climate models’
complexity is one of their deeply engrained characteristics. This thesis sets out to
question this complexity and how it arose.

1.1 What is a global climate model?
By global climate model (GCM) we mean a model of the atmosphere and other com-
ponents in the climate system (such as the ocean or land surface) that is implemented
into computer code. It aims to include parts of the climate system that are thought
to matter for the study of climate, to help researchers generating understanding and
to facilitate projections of climate change. In a research context, the models are
used and manipulated daily. Their results, downsized to a few central numbers, also
are a central pillar of climate change assessments and projections and thus influence
policy making. For example, the IPCC bases its assessments largely on such GCMs,
in combination with observations and expert judgement.

1.1.1 Why do scientists construct models?

Before delving into the specifics of climate modeling, it is illustrative to ask why
scientists construct (computer) models in the first place1,2:

1I recognize there is a host of work on the differences of models and experimentation or ob-
servations as scientific tools, and the specifics of computer models from a philosophy of science
perspective, but leave out its discussion here and refer the reader to e.g. Humphreys (2004),
Winsberg (2006), Humphreys (2009), Parker (2021), and Parker (2022b)

2Note that this non-exhaustive list of reasons to model the climate system is closely related to
the modeling visions discussed in 1.3.2.
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• System complexity – Natural systems involve so many components, pro-
cesses and interactions that they do not fit into a single human’s understanding.
Computer models and their simulations can help us make sense of these natural
systems and their dynamics (Gramelsberger et al., 2020).

• Mediating models – In trying to represent these natural systems, models “aim
to encapsulate our understanding of the system” (Hrachowitz and Clark, 2017).
Modelers translate our theories about a system into computer code. Fittingly,
Winsberg (1999) has thus described models as “rich physical constructs that
mediate between our theories and the world.” Accordingly, environmental
models can be characterized as mediating models (Morrison and Morgan, 1999;
Babel and Karssenberg, 20133).

• Numerical solving – When the system to be described by the model is large
and complex, the equations describing the system may not be solvable analyt-
ically (as is the case for the Navier-Stokes equations describing atmospheric
motion that are at the base of the dynamical core of every atmospheric model).
Then numerical approximations become the only way to solve and evaluate
these equations, and computers help to automate the task.

• Experimental tools – Standing in for the natural system under study, models
allow for investigation of and experimentation with the system that would not
be feasible or desirable to conduct in reality (Lahsen, 2005). Modeling can
thus also be regarded as a tool for asking “What if?”.

• Communication objects – In pouring theories or knowledge into model code,
modelers commit to one way they assume the world works. They translate
their knowledge and assumptions into the language of math and computer code,
which forces them to become explicit. Thus models can serve as communication
objects, embodying a “collection of testable hypotheses” (Crout et al., 2014,
citing Jameson et al. (1998b)) and data in a readable and comparable way
(Randall and Wielicki, 1997).

• Book-keeping – At the extreme, climate models can be seen as a “space
in which all scientific knowledge about processes relevant to climate needs
to be represented and synthesized” (Heymann and Achermann, 2018). The
climate science community can hence be characterized to use models as “book-
keepers”4.

In summary, scientists use climate models to construct a “world in a box” (Miller
(2004), citing Edwards (2001)). They serve to organize knowledge and understand
complex systems (Hulme, 2013).

3Babel and Karssenberg (2013) summarize this view for hydrological modeling. Throughout
this chapter I refer to hydrology papers often as this community is further advanced in certain
reflective modeling discussions, and I assume that key reflections about numerical models apply to
different climate science disciplines.

4Wendy Parker used this term in a discussion we had in March 2022. This modeling motivation
can culminate in the “mirror view” that aims to mirror the real system observations with the model
(Parker, 2022a) and closely links to the representative vision of modeling described in Sec. 1.3.2.
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Box 1: “Models are imperfect”

. . . so the key to success is how we deal
with these imperfections

— Stensrud (2007)

For the work presented in the following, it is important to realize
that numerical models such as GCMs are naturally “wrong”. Knutti
(2008) states that “all current climate models are known to be empir-
ically inadequate”, referring to their inability to match observations
(citing Sanderson et al. (2008) as an example). In fact, as Oreskes
et al. (1994) argue, “verification and validation of numerical models of
natural systems is impossible.” It is thus not even clear how a model
could be (proven to be) “correct”. What one can argue for instead,
when justifying model use for a scientific question, is the adequacy-
for-purpose of the model at hand (Parker, 2009). There is no clear
scientific rule for the design of a model, but modeling is based on
knowledge, plausibility, pragmatic considerations and restrictions by
computer power (Heymann, 2010a). Usually only one out of a range
of alternative model formulations is chosen (Crout et al., 2009; Hour-
din et al., 2017). As Sundberg (2009) states, “there is no algorithm
for reading of models from theories. Therefore, theories function as
constraints and not as determinants in the process of simulation and
construction.” In addition, numerical climate models contain param-
eters that are known to be artificial and necessarily incorrect (see
the discussion of the autoconversion scaling factor in Sec. 2.3.3 and
Sec. 3.3.1). Thus, Bjorn Stevens has called climate models “fantasies”
(Stevens, 26.09.22)a. However, while highlighting this limitation of
GCMs is important, it is not meant to criticize their value. Instead, it
serves to view GCMs as “valuable, yet flawed, tools” (Stensrud, 2007,
pg.394). In appreciation of the difficulty of constructing a GCM, it is
remarkable that numerical predictions have value (Stensrud, 2007).

aWhile he recognizes that this naming is provocative to the public and scien-
tists who communicate with the public, he claims that honesty in this regard is
important.
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Box 2: Models are social constructs

There is no Archimedean point outside the
world upon which to stand. One is always
inside the world, and the world is messy.

— Schaffer (2015)

Talking about numerical models, one tends to forget that these are
not pure physics and equations, but that they consist of files that are
written by humans (Menard et al., 2021). Melsen et al. (2018b) call
this the “naturalizing force” of modeling, which makes it appear “as if
these human-invented models would represent ‘nature’.” They claim
that this “often conceal[s] the model’s social and political construction”
and hides underlying assumptions and conventions.
In model construction, modelers have to make “literally thousands” of
“unforced” methodological choices (where one option is not “objectively
better” than the alternatives) (Ward (2021) quoting Winsberg (2012)).
The opacity of complex modelsa further allows such manipulations
to be implemented without deeper theoretical justification (Heymann
(2010a)). In these decisions, epistemic and non-epistemic considera-
tions play a role, including simply pragmatic ones. Thus “a model
is shaped by the group that constructs and modifies it” (Dalmedico,
2007). Hence, even when modelers are seen to simply translate cli-
mate knowledge into code, models are not neutral, as “knowledge of
climate always carries with it beliefs and values about the world it is
seeking to describe” (Mahony and Hulme, 2018). Physicists construct-
ing climate models bring a particular set of values and are part of a
scientific culture (Heymann and Dahan Dalmedico, 2019)b. Modelers’
values have been shown to influence model construction and resultsc.
Hence, we can conclude that “models are social constructs, making
model results time and place dependent” (Melsen, 2022).

ameaning that the relationship between inputs and outputs is not open for
inspection

bModelers of a specific discipline form “epistemic communities of like-minded
scholars” (Melsen et al., 2018b), whose emergence is detailed in Sec. 1.2.3.

cfor climate science and modeling see Mayer et al. (2017), Parker and Winsberg
(2018), Pulkkinen et al. (2022), and Undorf et al. (2022); for hydrology see e.g.
Deitrick et al. (2021)
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1.1.2 Parameterizations

At the core of atmospheric models are dynamic equations. Since we have no analytical
solution for those, they need to be solved numerically and hence discretized to the grid
of the model. This approach has been a huge success for numerical weather prediction
and the start of the atmospheric modeling enterprise (see Fig. 1.2). However, there
are many other processes that cannot be resolved explicitly in atmospheric models.
For example, a single plant’s growth process or the formation of a cloud occur at
scales much smaller than the model resolution (1.875° × 1.875° in the case of our
GCM ECHAM-HAM). Hence, to include them in models, these processes need to be
represented in terms of their effect on grid-scale variables, such as land surface albedo
or relative humidity, meaning that the processes’ “climatic effect is estimated rather
than actually calculated” (Dalmedico, 2007). Such a representation of unresolved
processes is termed a parameterization (Stensrud, 2007; Sundberg, 2007). The
approach to develop parameterizations can be distinguished ideal-typically into
theoretical and experimental approaches (Sundberg, 2007), starting either from
physical laws or observational data. In practice, global climate model resolution is
so coarse that it renders purely theory based parameterizations impossible. Thus
parameterizations always include certain empirical elements.

In principle, moving to higher model resolution allows to represent processes
physically resolved rather than parameterized and thus high hopes are put into the
move to global high-resolution models (Marotzke et al., 2017). While this hope
is justified for some processes such as convection, the need for other processes’
parameterization (such as for cloud microphysics) will remain, at any conceivable
resolution (Stensrud, 2007, pg. 6). There are always processes that occur on
scales smaller than the model resolution, and hence nearly all models5 incorporate
parameterizations (Parker, 2003).

In developing parameterizations, the discussion on model development being
non-deterministic (see Box 1) becomes especially urgent. In fact, for parameteri-
zations, “scale-dependence and some degree of arbitrariness is the rule rather than
the exception” (Shackley et al., 1998). This is because in parameterizations, per
definition, processes are not being represented explicitly but approximated6. This
leaves room for epistemic and pragmatic values to enter model development, such as
completeness, realism, complexity, simplicity, computational stability and efficiency
(Undorf et al. (2022); see Box 2). Sundberg (2009) has interviewed modelers on
parameterizations and one of the interviewees stated that “It’s a bit arbitrary how to
do parameterizations. Different researchers can have very different opinions about
what they think is the best and it is hard to say who’s wrong, but everybody is
right in some way” (quote from interview 7). Because parameterizations include
interactions but are only approximations, one even has to be “very careful when you

5Note that there are other proposed approaches to model climate than the reductionist approach
that requires parameterizations. For example, Lovejoy (2022) has argued for the development of
stochastic macroweather models that exploit behaviour on scales larger than the weather scale and
weather prediction limit without explicitly representing features smaller than this scale.

6One might object here that there exist effective models of small scale processes such as diffusion
or the Navier-Stokes equations. If one could get such physical laws for the behaviour of cloud
particles at km scales, one might get a non-approximate parameterization. However, this debate
seems rather philosophically out of scope as it is tangled up in what one might call truth in science
(Kuhn, 1996) and where approximations start. Practically, in climate science the Navier-Stokes
equations are termed rather physical laws than a parameterization.
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have parameterizations in a model so that you don’t parameterize the same thing
several times” (quote from interview 15). The interviewee continues: “I think that is
why you go to the mathematical and physical laws and parameterize the processes
[from them].” (Sundberg, 2009, Interview 15), demonstrating the thought process
from realizing model weaknesses to calling for more physics as a cure that I discuss
next.

Role of physics Due to the ambiguity in creating parameterizations, there are
conflicting views in the research community regarding what makes a good parame-
terization. Physical background of a parameterization (or model) is often invoked as
a justifying strength. In light of the fact that models cannot be validated (Oreskes et
al., 1994) and that empirical parameterizations impair the representational accuracy
of a model (Knüsel and Baumberger, 2020), the “physical” basis of a parameteriza-
tion serves as an anchor and a promise of correctness (Knutti, 2008; Hrachowitz and
Clark, 2017). For example, it is often argued that to be able to extrapolate model
simulations into different climate states, parameterizations “need to be based on (or
at least loosely inspired by) physical, chemical or biological principles” (Baumberger
et al., 2017). By basing parameterizations on physical theory or observations, model
developers try to come close to a theoretically justified representation. Consequently,
experimentalists focus on detailed studies of physical processes to then derive param-
eterizations for a model (e.g. Vergara-Temprado et al. (2017) and Lohmann et al.
(2020))7.

However, the role of physics in models is also questioned8. One can argue that
on climate model grid scales parameterizations are not (and cannot be) a realistic
representation (Heymann, 2020) and that therefore processes represented in models
are not meant to be interpreted physically (see e.g. Melsen and Guse (2019, pg.
10545)). To put it simply but provocatively, “the model doesn’t care what the
process is called” (Ulrike Lohmann, personal communication). Whether a process
that combines two liquid hydrometeors into one large one is called cloud droplet
autoconversion or collision-coalescence does not matter to the model per se, but of
course the formulations of the process representations will differ. In contrast, what is
meant by processes or variables in one model may differ so widely from their meaning
in another model that it makes their physical basis questionable (Dalmedico (2007),
referring to Herve Douville).

In that sense, no one would argue that the model is piecewise “correct” or that
parameterizations are (the degree of wrongness is of course dependent on the process).
In addition, even if there were such a thing as a physically correct parameterization,
it would likely not lead to the best model performance because it may disturb the
models’ “balance of approximations” (Lambert and Boer, 2001; Parker, 2009) 9.
Thus, there is no direct link from physics to a good parameterization. Despite or

7Whether this is the most promising route for model development is questionable. Modelers
such as Jakob (2010) criticize that process studies aimed at model improvements do not address
major model shortcomings. They see the need to “establish a solid connection of process-oriented
model development to overall model errors”.

8Here, the issues in parameterizations already bring out the contrast between different model
views (Dalmedico, 2007), namely between understanding and realistic representation, corresponding
to the heuristic and representative vision, that will be discussed further in Sec. 1.3.2

9However, in the heuristic and representative vision (see Sec. 1.3.2), constraining a process
physically means less degrees of freedom in the model and thus is clearly an advancement.
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Figure 1.1: Schematic depiction of aerosol and cloud microphysics that are represented
in our GCM ECHAM-HAM and the object of this work’s studies (right side inspired by
Lohmann et al. (2016, Fig. 8.19)). Chapter 2 tests the simplification potential of four
cloud microphysical processes (highlighted in green). Chapter 3 expands this investigation
to all cloud microphysical processes in two different cloud microphysics (CMPs) schemes
(highlighted in orange). Chapter 4 studies the link between aerosol and CMPs, which is
the activation of cloud droplets on aerosols acting as cloud condensation nuclei (CCN) or
ice nucleating particles (INPs) and aims to simplify the whole aerosol module HAM by
replacing it with a climatology (highlighted in blue). For more details on the processes see
the respective Chapters and especially Figures 2.1, 3.2, 3.3, and 4.2.

even because of this ambiguity and the fact that parameterization development offers
no easy answers, it is a challenging area of research.

1.1.3 Aerosols and cloud microphysics

One particular component of global climate models that this work is focused on are
aerosols and cloud microphysics (see Fig. 1.1). They exert a significant influence on
the radiative balance and hydrological cycle of the climate system. Next to direct
radiative effects, aerosols act as cloud condensation nuclei (CCN) or ice-nucleating
particles (INPs). They thereby influence cloud formation and cloud phase, which in
turn influences the cloud’s radiative impact (Tan et al., 2016; Matus and L’Ecuyer,
2017; Lohmann and Neubauer, 2018). In a cloud hydrometeors interact with each
other and with the environmental conditions. These cloud microphysical processes
modulate the aerosol-cloud interactions (ACI, see Lohmann and Feichter (2005),
Lohmann (2017)) and exert an influence on clouds and climate themselves (Undorf et
al., 2022). However, our understanding of ACI is incomplete and their quantification
uncertain (Boucher et al., 2013; Bellouin et al., 2020). In addition, uncertainties in
cloud microphysics (CMPs) propagate to enhance uncertainties in ACI (Gettelman,
2015). CMP effects and ACI are inherently difficult to quantify, because – like
an archetype of the parameterization problem – here microscopic particles have
global scale climate influences (Korolev et al., 2017; Bender, 2020; Morrison et al.,
2020; de Jong et al., 2022). As for other parameterizations, there are numerous
approaches on how to parameterize cloud and aerosol microphysics (see e.g. de Jong
et al. (2022) for the distinction between bulk and bin schemes). Their treatment
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has grown increasingly sophisticated, with the motivation to enhance realism and
address uncertainty (Burls and Sagoo, 2022), but their sophistication introduces
additional uncertain parameters (Sullivan et al., 2022) (see Sec. 1.3). At the same
time, results from different schemes differ, even when using the same base model
and dynamics (Sullivan et al., 2022). Randall et al. (2003) summarize the state of
affairs aptly: “There is little question why the cloud parameterization problem is
taking a long time to solve: It is very, very hard.”

1.1.4 The global aerosol climate model ECHAM-HAM

The global climate model employed and investigated in the following chapters
is ECHAM6.3-HAM2.3 (Neubauer et al. (2019) and Tegen et al. (2019), termed
ECHAM-HAM in the following). It consists of the land surface module JSBACH
(Reick et al., 2013), climatological ocean surface treatment, the aerosol module
HAM (Stier et al., 2005) (for more details see Chapter 4), and an extended cloud
microphysics module (which is described in more detail in Chapters 2 and 3). The
latter has seen continuous development and sophistication (see Fig. 1.2), from the
introduction of prognostic equations for the cloud liquid and ice mass mixing ratios
(Lohmann and Roeckner (1996), first moment) to the introduction of prognostic
cloud droplet and ice crystal number to account for aerosol effects (Lohmann et al.
(1999) and Lohmann (2002), second moment).

1.2 History of climate modeling

Reflection is the courage to make the truth of our
own presuppositions.

— Heidegger (1996), The Age of the World Picture

As model development is path dependent and models are social constructs, it is
helpful to reflect how they came about and were developed within climate science
(see Fig. 1.2) to understand their present condition.

Alexander von Humboldt, a pioneer of scientific climatology, defined climate as
“all changes in the atmosphere which noticeably affect the human organs” (Heymann,
2010b). Humboldt was a representative of 19th century climatology (Heymann
and Dahan Dalmedico, 2019), when meteorology and climatology were two distinct
fields (Heymann, 2010b). In 1904, the meteorologist Vilhelm Bjerknes managed
to summarize all meteorological processes in the atmosphere into seven parameters
and six differential equations (Heymann, 2010b). Hence the first half of the 20th
century saw the emergence of dynamic meteorology, “a reductionist physical science,
interested in the mathematical description of meteorological parameters” (Heymann,
2010b). Heymann and Achermann (2018) argue that this physical view manifested in
equations came to replace human-oriented climatology with physical reductionism10.
Equations based on the laws of physics allowed for the possibility of predictions
(Heymann, 2010b). In 1922, Lewis Fry Richardson was the first to manually com-
pute a weather prediction, and John von Neumann managed to compute the first

10Reductionism refers to the idea that a complex system is made up of smaller entities (see Sec.
1.2.3).
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weather prediction based on computer calculations (Heymann, 2010b). When Nor-
man Phillips performed the first long time weather prediction with a model with
a simplified version of Bjerknes’ equations it was taken as a great success that cy-
clone patterns evolved “naturally” in the simulations (Heymann, 2010b). From these
weather models, climate models emerged, which “initially served heuristic purposes”
(Heymann and Hundebol, 2017). Already in the 1950s and 1960s, heuristic modelers
followed the research strategy of expanding GCMs with more sub-models (Heymann,
2020).

World War II and the early cold war fueled modeling ambitions. New tools
(such as computers) emerged. Authority and resources were granted to science and
technology, and expectations placed upon them (Heymann and Dahan Dalmedico,
2019). Erickson et al. (2013) have termed “Cold War rationality” the “deep belief
pervading this era that all systems, natural and social, could be understood, modeled,
and controlled, provided sufficient resources were made available” (Heymann and
Dahan Dalmedico, 2019)11. Thus, digital computing was a product of, but also
supported the Cold War emphasis on surveillance, planning, prediction and control
(Heymann et al., 2017b, pg. 34).

The societal perception shifted in the second half of the 20th century when over-
whelming technological power raised fears of a loss of control (Heymann, 2010b).
In the 1970s, “enthusiasm for environmental control had faded” and gave place to
environmental concern, but “confidence in numerical approaches” persisted (Hey-
mann, 2020). This environmental paradigm brought the focus of climate science on
predictive modeling (Heymann, 2020). In the 1970s, a culture of climate projection
emerged and resources were shifted from developing and testing models to their ap-
plication (Heymann, 2020). Francis P. Bretherton and Klaus Hasselmann called for a
broader modeling program that represented other subsystems of the climate system
than just the atmosphere, in an effort to more realistically represent this complex
system, and thus conceived the field of Earth System Science (Hasselmann, 1979;
Bretherton, 1988; Heymann and Hundebol, 2017; Heymann and Dahan Dalmedico,
2019)12. The global view of Earth System science corresponded to globalisation in
other realms, such as the emergence of satellites that further enforced the idea of a
“global climate” (Heymann, 2010b).

By 1988 the IPCC and with it a scientific culture and identity had emerged,
which included climate projection, public communication and deliberate connection
of science and politics (Heymann, 2020). The cornerstones of climate research have
moved far from the classical climatology of Humboldt’s days (Heymann, 2010b): we
are more interested in the human impact on climate than in the effects of climate
on humans, climate has become a global phenomenon that is perceived not as stable
but as changing in time and which we aim to model with global models that aim for
a grasp of the complex global climate system.

11This belief in the power of ever increasing resources is still manifested in the present great push
for ever higher resolution weather and climate models (Palmer, 2014; Palmer and Stevens, 2019;
Schär et al., 2020; Hewitt et al., 2022).

12Which still today demands a global, holistic view of the climate system and connects this to
policy aspirations, as e.g. Rauser et al. (2017) claim that a “coordinated, interdisciplinary, and
truly global approach to Earth system science is the best means to foster understanding of the
complex interplay of Earth’s processes and to develop applicable tools to confront the challenges
facing society both now and in the future.”
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Figure 1.2: Timeline of a) ECHAM-HAM development and b) climate modeling and societal history, compiled from the sources mentioned in Sec.
1.2, CarbonBrief (2018), and additional literature search. Note that the development of ECHAM-HAM may also be interestingly put into perspective
with its positioning in the model family tree or genealogy (Pennell and Reichler, 2011; Knutti et al., 2013; Kuma et al., 2022).
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1.2.1 Co-production

In its evolution, climate science and in particular climate modeling interacted with
society (as has become apparent in Sec. 1.2 and Fig. 1.2). “Co-production” terms
the idea that science and societal orders are being produced together (Jasanoff, 2010;
Heymann and Dahan Dalmedico, 2019).

On the one hand, climate science and modeling is co-produced with climate
politics (Shackley and Wynne (1995); see Fig. 1.3). Climate policy signals to GCM
development that climate change simulations are needed, while GCMs signal to
policy that climate change projections are ‘do-able’ and that climate change is a
serious issue, which grants climate policy legitimacy (Shackley et al., 1998; Shackley
et al., 1999). Thus GCMs have become a “common currency” between scientists and
policy makers, where each gains in intellectual, scientific, and social terms (Shackley
et al., 1998). In particular, the IPCC reinforced a global, systemic understanding of
climate and climate change, but also the necessity for and the possibility of a global
politics of climate (Miller, 2004). Modeling centers are compelled to use GCMs for
projections, for funding obligations, or because of pressure from funding agencies
and government departments, or desired public status and relevance (Shackley et al.,
1999; Heymann, 2020).

On the other hand, climate modeling is co-produced with other scientific do-
mains. GCM science and development signal to surrounding sciences that specialist
knowledge is needed at sub-grid scales, while the surrounding sciences reinforce
the notion that model evaluation and extension is ‘do-able’ and desirable (Shackley
et al., 1998). Thus, Heymann (2013) argues that models and trust in models were
co-produced. Shackley et al. (1998) highlight that other disciplines produced trusts
in GCMs as well, because “by perceiving the advantages and opportunities of collab-
oration with GCMers [. . . ], these other [. . . ] scientists are effectively endorsing and
advocating GCMs”. Indeed, model simulations may serve to illustrate the impact of
one’s work. Also experimentalists justify their research with the need for improved
GCMs (Shackley et al., 1998; Sundberg, 2009). Similarly, GCMs were developed
in co-production with the climate impacts and policy community. The latter two
signal that climate projections are desirable, while GCM developers signal that these
projections are ‘do-able’ and highlight climate change as a global problem. Thus,
Shackley et al. (1998) argue that GCMs are supported in part because they help to
create an interactive and international community of scientists and policymakers13.

Lastly, models and the model development or user teams co-produce. A research
team develops a model, but also “a research team is built around its investigation
of a model and its understanding of a model’s particular characteristics”(Dalmedico,
2007). This co-production is illustrated by the finding from Addor and Melsen (2019)
that “hydrologists tend to stick to the model they have experience with, and rarely
switch to competing models, although these models might be more adequate given
the study objects”.

13Note that Henderson-Sellers and McGuffie (1999) answered Shackley et al. (1998) disagreeingly.
I read their response not as disagreeing with the points that I mention above, but rather pointing
out that modelers are not naively subjected to these forces but aware of them.
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Figure 1.3: Illustration of the co-production of climate modeling between model develop-
ers, climate policy, surrounding sciences and the climate impacts community (adapted from
Shackley, Simon, Peter Young, Stuart Parkinson, and Brian Wynne. “Uncertainty, Complex-
ity and Concepts of Good Science in Climate Change Modelling: Are GCMs the Best Tools?”
Climatic Change 38, no. 2 (1998): 159–205. https://doi.org/10.1023/A:1005310109968).
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Box 3: Models have power

Modeling and simulation have transformed
the toolbox of exercising power and shap-
ing the world. The promises of modeling
[. . . ] have been sources of epistemic and
political power, fundamentally re-shaping
expectations about the links between nature
and society, science and politics, and tech-
nology and culture.

— Heymann et al. (2017b)

Working with climate models as in this thesis, it is important to
reflect upon the fact that these models exercise power. Their ability
to become surrogates for reality, their integrative capacity and their
unique position as tools to understand the influence of humans on the
climate system, have given them a “hegemonic status” (Rödder et al.,
2020). The global view of such models and Earth System Science
in general enables a new kind of governmentality (Lövbrand et al.,
2009) and new forms of authority. As Melsen et al. (2018a) conclude,
“models are ‘social and political actors’ in and by themselves”. They
act and exercise power in multiple ways:
Future making – Historically, the notion of futures is young. Only
being able to conceive futures that could be influenced by human forces
allowed for the idea of simulating the future (Heymann et al., 2017a,
Intro). In climate simulations, modelers engage in the “generation of
possible or desirable climate futures” (Heymann and Dahan Dalmedico,
2019; Rödder et al., 2020). Seeing the influence of the sciences on the
climate discourse, Hulme (2008) therefore provocatively asks “Who
speaks for the twenty-second century?”.
“World building” (Edwards, 2001) – Climate models reproduce a
certain understanding and vision of the world (Heymann and Dahan
Dalmedico, 2019), while they are at the same time seen as to resemble
truth (Boelens, 2015). Thus they influence what is possible to look at,
how we can imagine to intervene in the system, and also which ideas
or understandings we cannot develop because they are outside of the
model world (Heymann et al., 2017b; Heymann and Dahan Dalmedico,
2019).
Global view – As discussed above, global climate models have co-
produced with globalist politics and imaginations, portraying and
producing climate knowledge “with bird-eye view from above” (Hey-
mann, 2019; Mahony and Hulme, 2018). This globalization of climate
change influences the conceivable and agreeable space of solution or
counter measures (Heymann et al. (2017b, pg. 35), citing Miller (2004)
and Lövbrand et al. (2009); Mahony and Hulme (2018)).
Authority – Sophisticated models and the quantitative results they
produce carry authority (Heymann et al., 2017a; Heymann et al.,
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2017b; Heymann, 2019), not only for themselves but also for the hu-
man actors involved. Heymann et al. (2017b, pg. 35) attest that
“on the level of states, the authority to make legitimate contributions
to climate knowledge and discourse [. . . ] seems to require the op-
eration of a national climate modeling [. . . ] effort”. This authority
is reinforced by the use of advanced technology and maintained by
large-scale infrastructures and powerful institutions (Heymann, 2019).
This authority has lead other scientists to motivate their research with
climate modeling progress (Shackley et al., 1998; Sundberg, 2007) and
influences science funding.

1.2.2 Interaction with climate change

Climate knowledge based on GCMs occupies a strong position, with a large social,
media and political impact (Heymann, 2020). Sundberg (2007) even claims that
“climate models have become gatekeepers for claims about climate change” (Sundberg,
2007). The role of GCMs for investigating the threat of climate change and for raising
it as a serious issue on the political agenda cannot be overstated (Shackley et al.,
1998; Heymann, 2013). Methodologically, they allow for attribution as well as process
and sensitivity studies and have thus contributed heavily to our understanding of
the climate system and climate change (Edwards, 2001; Parker, 2003). Moreover,
for climate change mitigation efforts, models serve to evaluate the effects of different
policy options (Edwards, 2001).

However, in the process GCMs sidelines alternative approaches to understanding
climate (Heymann et al., 2017b, pg. 25)14. Hulme (2008) goes so far as to say
that the IPCC “almost trade-marked Climate Change™”. At the very least, climate
change knowledge and discussions have remained firmly in the hands of natural
sciences, circling around projections and a problem-solution or managerial policy
framing (Shackley et al., 1998; Hulme, 2008; Mahony and Hulme, 2016). Sarewitz
(2004) attests the problem of politics and climate change becoming “scientized” and
depoliticized (see also Heymann et al. (2017a), Melsen et al. (2018b), and Rödder
et al. (2020)). Rödder et al. (2020) suggest that there is a lack of progress in
climate policy “because science has taken center stage but is unable to offer political
solutions” (Rödder et al. (2020) citing Grundmann (2018)). As Sarewitz (2004)
argues, in fact more science may not solve environmental controversies but make
them worse15. In fact, the global view of GCMs is separated from local, personal
experience and perception (Mahony and Hulme, 2018) and thus opens up a schism
of reality (Hulme, 2008; Heymann and Dahan Dalmedico, 2019). Heymann (2019)
see this “dehumanization” of the climate concept as a “crucial dilemma behind the

14Heymann et al. (2017b) and Heymann et al. (2017a) list as alternative approaches those that
emphasize local ecologies and climate-society interactions, indigenous knowledge and humanities,
extremes rather than global means, and risk management frameworks for dealing with climate
change.

15He argues that by scientizing a given political issue, the underlying conflict of values or interests
is ignored, and thus the conflict cannot be solved. Relatedly, Glavovic et al. (2022) even call for a
moratorium on climate science. Other than Sarewitz (2004) they diagnose the reason for lack of
climate action despite of amounting climate change evidence as the broken “science-policy contract”.
Thus they see no hope of more climate science leading to more climate action.
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failure of climate politics”.

1.2.3 A scientific culture emerges

Out of historical development and co-production a scientific culture of climate mod-
eling was formed. The scientific culture of climate modelers determines practices,
shared values, norms and views of the world (Heymann and Dahan Dalmedico, 2019).
Heymann (2020) uses the concept of “codes” to describe the culture of climate model-
ing. He takes “codes” as a broad term for “foundational interests, concepts, language,
practices, approaches, values, standards and rules”. He identifies codes of the cli-
mate modeling community to be theory-based mathematical modeling, grid-based
numerical approximation, radical reductionism, heuristic modeling, model experi-
mentation and validation, parameterization and model expansion. I would argue
for another code, namely that climate modeling welcomes and seeks a diversity of
models, which distinguishes it from other scientific disciplines (see Parker (2006),
Knutti et al. (2010), and Babel (2019) and Horton et al. (2022) and Heymann (2010a)
for streamflow and atmospheric chemistry models). We have seen how theory-based
mathematical and heuristic modeling have shaped the field historically (Sec. 1.2)
and how parameterizations (Sec. 1.1.2) are key to model expansion. For the fol-
lowing discussion, the norms of model expansion and reductionism, which leads to
increased model complexity, are of particular interest. Reductionism refers to the
idea of reducing a complex system (such as the climate system) to the sum of its
parts and interconnections (Shackley et al., 1998; Saltelli et al., 2020a)16. While this
seems intuitive to atmospheric scientists today, it represented a “significant revolu-
tion” (Heymann, 2020). In fact, Shackley et al. (1998) note that “the reductionist
argument that large scale behaviour can be represented by the aggregative effects of
smaller scale process[es] has never been validated in the context of natural environ-
mental systems”. The idea to represent the climate system as the sum of its parts
is prone to lead to complexity in formulation. That is because in this reductionist
view, more realism requires to represent more system parts in ever more details. For
example, increasing the realism of an aerosol module seems to require the addition
of different aerosol species and emission mechanisms. Thus, somewhat unintuitively,
the code of reductionism has lead to a vast complexity in model formulation.

1.3 Model complexity
As shown in Figure 1.2, historically climate models have included more and more
interacting components and added details to those (exemplified by the development
of ECHAM-HAM in part Fig. 1.2a, see also Edwards (2011)), which leaves GCMs
to be incredibly complex. While model complexity is increasingly recognized and
researched, there is a multitude of model complexity definitions, and Baartman
et al. (2020) even conclude that “aiming for a single definition of model complexity
is neither feasible nor desirable”. In this work, what I mean by complexity is the
comprehensiveness of the model, the number of processes included, and the number of
influential parameters and interactions (Parker, 2003; Crout et al., 2014; Hrachowitz

16Heymann (2020) specifically discuss “physical reductionism” and criticizes that representing
the climate system by physical equations left human affairs out of the picture.
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and Clark, 2017; Puy et al., 2022). Note that when this complexity is excessive and
useless, it may instead be called complicatedness (Baartman et al. (2020), referring
to Grand (2000)). For climate models the utility of their complexity is unclear a
priori and is context dependent. Therefore it cannot be judged excessive and useless
a priori, so I stay with the term of complexity.

1.3.1 Why did climate models evolve to become complex?

Arguably the simplest computational models of climate are zero dimensional radi-
ation models. They treat the Earth as a point mass and calculate its radiative
equilibrium (Edwards, 2011). Starting from these models, historically it made sense
to add more components and processes for the models to be a useful tool to study
and predict their behaviour. As models are used to study climate as an interrelated
system, naturally their scope grows (Fisher and Koven, 2020).

Thus, more components, processes and detail were added to increase the “descrip-
tive capacity” (Puy et al., 2022) of the model. After all, the Earth system is complex
and thus scientists may feel that to represent reality, the complexity needs to be
mirrored in the model (Shackley et al., 1998; Fisher and Koven, 2020; Saltelli et al.,
2020b). A relation to reality can be argued to be a pre-condition for the usefulness of
a model, but can become a primary goal when scientists are improving the realism of
their models further and further (Jakob, 2010)17. Critics of this approach argue that
the addition of details in an attempt to capture reality is merely capitulation in front
of a complex system, where scientists cannot think of another way to represent it18.
Similarly, it may even be argued that humans’ psychology tends to favor additive
rather than subtractive solutions to a given problem (Adams, 2021).

Knutti (2008) argue that the focus on understanding processes may be a driver
behind the wish to reproduce reality accurately in the models. For process studies,
the model may even be used for “accounting”, collecting the processes that we know
of, and assuring us when the processes have a small effect19. One may also argue
that new knowledge from experiments or theory that is added to a model adds
constraints to it. However, often models are detailed where the least is known
(Stevens, 26.09.22, personal communication). For example, the effects of aerosol-
cloud interactions on climate are repeatedly highlighted as a source of uncertainty
in climate change assessments (Boucher et al., 2013; Carslaw et al., 2013; Bender,
2020). At the same time, as shown in Fig. 4.3, the aerosol module makes up about
70% of the computing time of ECHAM-HAM. This contrast may stem from the
most active areas of research revolving around uncertain topics, or that scientists
focus on their own area of interest and expertise also in developing models (Fisher
and Koven, 2020). For land surface models, Fisher and Koven (2020) find that “the
historical development pathways by which process complexification has proceeded
[. . . ] have been largely ad hoc and based on a collection of institutional, geographic,
and individual preferences and interests.”

Scientifically, complex models may be used as tools to understand systems and
derive simpler process formulations, superparameterizations or to build higher order

17Lahsen (2005) even claims that modelers may come to think of their models as reality.
18I developed this thought together with Shaun Lovejoy in a discussion in May 2022, who, as

mentioned previously, is a proponent of stochastical macroweather modeling.
19personal communication Wendy Parker, 14.03.22, see footnote 4
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models (Parker (2003, pg. 41), Baartman et al. (2020)). In fact, this is what I
attempt in Chapter 4.

Especially in aerosol modeling, it is also often claimed that the addition of
processes into the model will help to reduce uncertainties, e.g. in aerosol-cloud
interactions (Puy et al., 2022). There may also be pragmatic reasons for the increase
in model complexity. For example, Bjorn Stevens has argued that GCM complexity
arose in a large part to make the model generally configurable20.

These accounts from the domain of science itself focus on heuristic and represen-
tative reasons, likely inspired by the corresponding modeling visions (see Sec. 1.3.2).
History and sociology of science offer different perspectives on how to understand in-
creasing model complexity. Heymann and Dahan Dalmedico (2019) attribute GCMs
a holistic aspiration (referring to Heymann and Achermann (2018) and Uhrqvist
(2015)). Their aim to represent the Earth system as a whole and to integrate all
knowledge unified science. It also gave confidence that GCMs in fact were an ade-
quate representation (see Fig. 1.3; Heymann and Achermann (2018) and Heymann
and Dahan Dalmedico (2019)). Complexity and completeness came to be important
value terms (Undorf et al., 2022). Comprehensiveness of a model increases trust in
the model as well as raises the models’ and modelers’ authority (see Box 3; Shackley
et al. (1998), Dalmedico (2007), Heymann (2010a), Koivisto (2017), and Puy et al.
(2022)).

When predictive modeling emerged, this “fueled an expansion of the holistic
aspiration” of GCMs, expanding also into economic sciences (Heymann and Dahan
Dalmedico, 2019). Models’ co-production with politics that drove a desire for more
detailed information and especially the IPCC contributed to the development of
increasingly sophisticated models (Dalmedico, 2007; Knutti, 2008). The coevolution
with technology suggests that the increase in complexity may also be due to “con-
tinued availability of ever larger and faster computers” (Stensrud, 2007), as large
computing demands make models appear more attractive. Model expansion has
become a code of the climate modeling community (Heymann (2020), see 1.2.3) and
the complexity of model representation a normative principle (Shackley et al., 1998).
Thus, complexity in models has come to be seen as an end in itself (Jakob, 2010;
Saltelli et al., 2020b)21.

While heuristic goals drove the development of the first numerical climate models
(Heymann and Hundebol, 2017), the GCMs of today are multi-purpose tools, which
are used for projections as well as process studies that aim to derive understanding.
In fact, environmental models are used across such a wide range of purposes and
scales that they may be called “Model[s] of everything and everywhere”, as Addor and
Melsen (2019) suggest for the case of hydrology. This “one model to fit all” strategy

20 Putting it concisely and provocatively, he claimed that the Earth System Model “ICON was
developed to be the backend of a domain specific language whose front end was the namelist”
(Stevens, 2022), where the namelist is the file where the model user defines the model options for
a specific simulation. A domain specific language is a computer language that is geared towards
one specific application. Bjorn Stevens thereby refers to the practice of making any doable model
configuration easily accessible in the namelist that leads to clutter and misunderstanding of the
model itself.

21Andrea Saltelli moved from statistically rigorous but purely mathematical sensitivity analysis
(Saltelli, 2008a) to publishing calls for more reflections about the blind use of environmental models
to inform policy (Saltelli and Piano, 2017). Interestingly, his work appears in both contexts in this
thesis.
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Figure 1.4: Sketch22 illustrating the different modeling visions and some of their relations.
Following one vision may bring progress in another. The conflict between the represen-
tative and heuristic vision, that increased representative complexity makes models less
interpretable, is what we aim to address in our work of simplification. Note that in the
predictive vision, the match of model output to observations may also concern past obser-
vations, for example in hindcasts.

(Heymann and Dahan Dalmedico (2019), referring to Uhrqvist (2015)) means that
the adequacy-for-purpose (Parker, 2009) of GCMs and hence the appropriateness of
details in their formulation is impossible to attest.

1.3.2 Visions

A key to understanding how complexity evolved but also how scientists may judge
simplification efforts are the different motivations and cultures that model developers
follow or adhere to23. These may be conceptualised as epistemic lifestyles, which
Shackley (2001) has introduced as a set of intellectual questions, problems, practices,
purpose, achievements, ambitions, social networks, connections and necessary activi-
ties that form a researcher’s character and vision to model development24. At least
three of these lifestyles or visions can be distinguished (see Fig. 1.4):

• “Climate model constructors” (Shackley, 2001) are those researchers that
follow the “representative” vision (Sundberg, 2009). They aim to represent
the climate system in its full complexity, thus for them a more complex model
will have a greater truth-content (Shackley et al., 1998). For them, the more

22We used various files from wikimedia commons as templates for our sketch reproductions. The
files are distributed under a creative commons attribution-share alike license or in public domain.
We acknowledge the authors Achodanick, Malchen53, NASA, Mrmw, Ninjastrikers, Agência Brasil,
Jahobr and Ibex73.

23This discussion is closely linked to Sec. 1.1.1
24Melsen (2022) has termed the modeling motivation and philosophy of any given modeler his

or her modeling vision. To me, the purist and pragmatic stance of Shackley et al. (1999), the
epistemic lifestyles described by Shackley (2001), and the predictive and representative construction
of Sundberg (2009) are examples of such modeling visions.
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realistic the model, the better. Thus, for a climate model constructor “a single
state-of-the-art model exists irrespective of its application” (Shackley, 2001).
The ultimate goal would be a model that includes all processes and interactions
in a realistic fashion (Schneider and Dickinson, 1974; Shackley et al., 1998;
Parker, 2003). Accordingly, for cloud microphysics the dream would be the
“numerical representation of all microphysical particles in a single, consistent
framework” (de Jong et al., 2022). In designing parameterizations, climate
model constructors emphasize theoretical practice and physics (see Sec. 1.1.2,
Sundberg (2009)).

• “Climate seers” (Shackley, 2001) or heuristic vision: in constructing mod-
els, they aim for an understanding and exploration of the climate system. Thus,
which model is ‘state of the art’ depends on the question that is being asked.
Also, heuristic modelers may pursue modeling purely to advance and help their
thoughts25. Using e.g. sensitivity analysis, they may use models to corroborate
a hypothesis or learn from discrepancies to other models (Oreskes et al., 1994).
They may see mathematical models’ use in exploring questions, not in asserting
answers (Saltelli et al., 2020b).

• Predictive vision (Sundberg, 2009): improving the forecast or the perfor-
mance of the simulation with respect to observational data is the main goal,
which leads to choosing practical over the best theoretical solutions.

Of course, the distinction between these lifestyles is not sharp (Heymann and Hun-
debol, 2017). In practice, many modelers will find themselves sharing thoughts with
all of these visions. In fact, choices to be made in model development may often
come down to a choice between visions, e.g. asking “What is the goal? [Is it] to have
a physically correct parameterization or one that gives a good result?” (Sundberg,
2009). In their most drastic pursuit, visions may even contradict themselves, as e.g.
Edward Lorenz has claimed that we cannot gain understanding from a model that
achieves representative perfection (Parker, 2003, pg. 75).

Disagreement between model developers can often be traced back to a different
weighting of the visions. Similarly, Randall et al. (2003) identify a “deadlock” in
cloud parameterization development following the representative vision26, which they
criticize: “We should be asking ourselves: Is it really possible to parameterize all
of this complexity with quantitative accuracy?” Koivisto (2017) terms “complexity
pitfall” an overemphasis on the representative vision, as he insists that “the main
goal of the scientific model is not to be as realistic as possible but to provide
better understanding of the studied system.”, with this statement being a prime
example for the heuristic visions. Also criticizing the representative vision, Carslaw
et al. (2017) argue that “the scientist cannot obtain a ‘correct’ [model] by excessive
elaboration” (citing Box (1976)). Held (2005) and Emanuel (2020) criticize the
lack of heuristic work where the focus instead lies on model improvements (see also
Guillemot (2017), who traces how scientists’ visions influence how they develop
parameterizations and models). The opposition to different modeling visions may
become fierce. For example, Emanuel (2020) stated: “We must resist the wholesale

25For example Bjorn Stevens names this as the idea behind his use of modeling (personal
communication, 26.09.22).

26which of course they don’t name as such
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migration of atmospheric, oceanic, and climate science away from a traditional
curiosity-driven scientific endeavor to the more strictly applied venture of predicting
weather and climate.”

The differing visions have come in one after the other historically (Heymann,
2020) and now co-exist. As detailed in Sec. 1.2, the first climate modelers were
interested in generating physical understanding. Only later numerical prediction
was conceived (Heymann and Dahan Dalmedico, 2019), and by the 1970s, model
development was pushed to deliver long-term climate projections (Heymann and
Hundebol, 2017). Historically, justification of the model has resulted also from
successful comparison of the model’s results with observations, even if the scientific
understanding was insufficient (Heymann, 2010a; Heymann, 2013; Heymann, 2020).
Often times scientists have not reflected on their model visions, by themselves or
in their working group. They come to adopt their epistemic lifestyle depending on
their institution, the relationship of their modeling to the policy making process
or how the model’s output is used, and their ‘style’ of modeling (e.g., disciplinary,
institutional, or personal career trajectory backgrounds) (Shackley et al., 1999)27.
Today the same GCMs are used for both projections and heuristic purposes, with
representative accuracy being evoked as synonym for truth content. This may lead
to problems, e.g. where scientists are using schemes rooted in predictive construction
to answer heuristic questions.

1.3.3 Problematic complexity

While increased complexity may be seen as a welcome development, e.g. following
the representative vision (see 1.3.2), it brings about a bouquet of problems:

• Model development itself has moved faster than it can be tested. For snow
models, Menard et al. (2021) state that “new parameterizations are added
faster than old ones are deprecated”, which results in a growing user interface
and configurations becoming incomprehensible (see footnote 20).

• Complexity likely does not reduce uncertainty (Knutti and Sedláček, 2013;
Stevens and Bony, 2013; Carslaw et al., 2018). However, it gives an illusion
of certainty, because it makes the uncertainty of results difficult to take into
account or even invisible (Heymann, 2013; Bender, 2020; Puy et al., 2022).
Puy et al. (2022) put it boldly: “More detailed models may be thought of as
more accurate simply because their very design complicates any attempt at
proving otherwise.”

• The more complex a model, the more free parameters it contains, leaving the
model more “wiggle room” (Carslaw et al., 2018). Hulme (2013) have called
such models with many degrees of freedom “nervous models”. At the same time,
the data to meaningfully constrain parameters or processes in environmental
models are lacking (Dalmedico, 2007; Hrachowitz and Clark, 2017; Baartman
et al., 2020; Puy et al., 2022), but more complex models need more data for the

27To be transparent, I want to acknowledge here that I was embedded in the Atmospheric Physics
group at IAC, ETH. To me it seems like the group mostly follows the heuristic vision in model
construction and use. At the same time, we are well aware that a different configuration of the
model is used for climate projections and that the predictive vision seems to be followed in other
working groups of our institute.
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same justifiability (Guthke, 2017; Burls and Sagoo, 2022). Increasing model
complexity also implies that “errors (. . . ) can be much more difficult to find
and correct” (Stensrud, 2007).

• The complexity and its authority may hide the effect of ill-constrained minor-
looking treatments (Kawai et al., 2022), such as artificial parameters, limits,
order, thresholds, parallel or sequential splitting, ordering dependency, timestep
or resolution (Kiehl and Williamson, 1991; Teixeira et al., 2007; Donahue and
Caldwell, 2018; Barrett et al., 2019; Hieronymus et al., 2022; Kawai et al.,
2022; Zarzycki, 2022).

• Similarly, modelers’ judgements and choices become hidden in complexity
(Shackley et al., 1998) (for subjective decisions in e.g. in hydrological modeling
see Melsen et al. (2019) and Mendoza et al. (2016), and Tapiador et al. (2019)
for a comprehensive compilation of choices and assumption in modeling cloud
microphysics).

• Larger models require more resources to run, which may limit the length,
resolution or number of simulations feasible.

• More complex models also require advanced programming skills, and domain
scientists may lack the necessary training (Merali, 2010; Barnes and Jones,
2011; Emanuel, 2020).

• Excessive model complexity limits a model’s social usefulness and may have
“deleterious social-environmental consequences” (Puy et al. (2022), citing (Saltelli
et al., 2020b) and Pilkey and Pilkey-Jarvis (2007))

While for Chapter 4 the computing time is a prime motivation, for Chapter 2 and
3 our main motivation lies on the difficulty to understand complex GCMs. Knüsel
and Baumberger (2020) have developed a framework for analysing the fitness of a
model for understanding a phenomenon. That fitness depends on three dimensions,
the representational accuracy, the representational depth or detail of the model, and
its graspability (Knüsel and Baumberger, 2020). These dimensions represent a trade
off: as accuracy and detail increase, graspability decreases. Thus increased com-
plexity harms the modelers’ ability to analyse and grasp model behaviour (Shackley
et al., 1998; Fisher and Koven, 2020; Knüsel and Baumberger, 2020). Gramelsberger
et al. (2020) call this the “dilemma of growth”: “On the one hand, simulation mod-
eling is the method of choice (arguably without alternative) for understanding the
dynamics of a system as complex as the Earth System. On the other hand, the
growing complexity makes that understanding difficult to achieve.” In particular (in
addition to the general problems of complexity listed above), there is a specific set
of climate model(ing) characteristics, which make a complex model less amendable
to interpretation and understanding (see also Knüsel (2020, Sec. 1.2.6.)):

• Epistemic opacity names the phenomenon that in complex computer simu-
lations, the relationship between inputs and outputs is ‘opaque’ and not easily
open to inspection or analytical understanding (Humphreys, 2004; Heymann,
2010a; Lenhard and Winsberg, 2010; Heymann, 2013; Rödder et al., 2020).
Thus scientists have to devise sophisticated methods to make sense of their
models (Gramelsberger et al., 2020), such as process rates diagnostics (Bacer
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et al., 2021), piggybacking (Sarkadi et al., 2022), pathway analysis (Schut-
gens and Stier, 2014; Dietlicher et al., 2019), emulation (Rougier et al., 2009;
Lee et al., 2011; Holden et al., 2015; Johnson et al., 2018; Tsushima et al.,
2020), algorithmic differentiation (Hieronymus et al., 2022), sensitivity stud-
ies (Saltelli, 2004; Montgomery, 2017) (for examples see Lohmann and Diehl
(2006), Lohmann and Hoose (2009), Lohmann and Ferrachat (2010), Dedekind
et al. (2021), and Ickes et al. (2022)). The following chapters in this work may
serve as a case in point.

• Generative entrenchment or path dependency (Wimsatt, 2007; Lenhard
and Winsberg, 2010; Winsberg, 2012; Babel, 2019) conceptualizes the fact
that in the development of such a large model, presently available choices are
restricted by past choices. The more complex the model, the more choices have
gone into it, and the more restricted or time consuming are future implementa-
tions. This problem is exemplified by the development of a CCN climatology
in Chp. 4. The quantities that need to be prescribed in a climatology are at
least partially determined by the quantitites that the activation scheme needs
as input (see Fig. 4.2).

• Availability bias may exaggerate the importance of processes that are repre-
sented (Guthke, 2017; Mülmenstädt and Feingold, 2018; Bender, 2020). While
this phenomenon holds true for simple models as well, the complex models’
increased authority may give a false sense of certainty, exacerbating the bias’
effect.

• Radically distributed epistemic agency (Winsberg et al., 2014) means
that no actor has ever been in a position to know about all methodological
choices that went into the construction of a GCM and thus that no one is
responsible for their results.

• Distributed or sparse documentation accentuates poor understanding
and prompts mistakes (Menard et al., 2021).

• More detailed GCMs swamp scientists with more output data: “the more
complex the model, the messier the garbage” (Heymann and Dahan Dalmedico,
2019, Frances Bretherton (quoted in Fisher (1988))).

• At the same time, climate models are relatively easy to use. The flow allows
the modeler to set up a simulation easily, without understanding or even
knowing what other programmers may have implemented, meant, switched on
or adjusted (Lahsen, 2005; Dalmedico, 2007; Sundberg, 2009; Winsberg et al.,
2014; Melsen, 2022).

Parker (2003) has put it pointedly: “determining why things happen as they do in
complex model simulations is often very nearly as difficult as figuring out why things
happen as they do in the real atmosphere”. Thus, missing understanding of GCMs
risks limiting their overall usefulness (Shackley et al., 1998).

Simplifications
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Science may be described as the art of systematic
oversimplification: the art of discerning what we
may with advantage omit

— Shackley et al. (1998), citing Popper (1982) and
Tennekes (1992)

While complexity has a firm stand in science, so does simplification. Models
in particular “are useful precisely because they simplify the otherwise baffling com-
plexity of the phenomena modeled” (Lahsen (2005), referring to Norton and Supper
(2001)). Next to model expansion, radical pragmatism and drastic simplifications or
approximations are also codes of climate modeling (Heymann, 2020). Thus modeling
is always a question of where to draw the line for details28.

The position of the line of course depends on the model’s purpose, which may re-
lax the constraint of realism (Rödder et al., 2020; Puy et al., 2022). In this work, we
aim to reduce complexity that is underdetermined. We aim for model variants that
are empirically equivalent in our purpose of modeling clouds in the climate system,
yet simpler (Oreskes et al., 1994). Simplifications that remove unconstrained detail
cater to all visions, as they enhance understanding and interpretability, leave results
intact (while possibly allowing for time savings) and point out where representations
are unconstrained. I attempt these simplifications in three parts (see Fig. 1.1). For
the cloud microphysics scheme, I follow a bottom-up approach for process simplifi-
cations. Chapter 2 introduces a method to identify potential for simplifications in
the cloud microphysics scheme of ECHAM-HAM. This method is then employed to
two cloud microphysics schemes in Chapter 3. Indeed processes that the model is
insensitive to are identified, and accordingly simplifications for these processes are
suggested. For the aerosol module HAM, I attempt a top-down approach, testing
radical simplifications of the whole module. In Chapter 4, the representation of
aerosols entering the cloud microphysics scheme as CCN or INPs is simplified. The
approach replaces the whole aerosol module HAM with climatologies for aerosol
concentrations. Lastly, Chapter 5 discusses the results and common conclusions.

28As Gleick (1998) states: “The choice is always the same. You can make your model more
complex and more faithful to reality, or you can make it simpler and easier to handle. Only the
most naive scientist believes that the perfect model is the one that perfectly represents reality. Such
a model would have the same drawbacks as a map as large and detailed as the city it represents.
[. . . ] Were such a map possible, its specificity would defeat its purpose: to generalize and abstract.
[. . . ] Whatever their purpose, maps and models must simplify as much as they mimic the world.”
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Abstract Cloud properties and their evolution influence Earth’s radiative balance.
The cloud microphysical (CMP) processes that shape these properties are therefore
important to represent in global climate models. Historically, parameterizations in
these models have grown more detailed and complex. However, a simpler formulation
of CMP processes may leave the model results mostly unchanged while enabling an
easier interpretation of model results and helping to increase process understanding.
This study employs sensitivity analysis of an emulated perturbed parameter ensem-
ble of the global aerosol–climate model ECHAM-HAM to illuminate the impact of
selected CMP cloud ice processes on model output. The response to the perturbation
of a process serves as a proxy for the effect of a simplification. Autoconversion of
ice crystals is found to be the dominant CMP process in influencing key variables
such as the ice water path and cloud radiative effects, while riming of cloud droplets
on snow has the most influence on the liquid phase. Accretion of ice and snow and
self-collection of ice crystals have a negligible influence on model output and are
therefore identified as suitable candidates for future simplifications. In turn, the
dominating role of autoconversion suggests that this process has the greatest need
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to be represented correctly. A seasonal and spatially resolved analysis employing
a spherical harmonics expansion of the data corroborates the results. This study
introduces a new application for the combination of statistical emulation and sensi-
tivity analysis to evaluate the sensitivity of a complex numerical model to a specific
parameterized process. It paves the way for simplifications of CMP processes leading
to more interpretable climate model results.

2.1 Introduction
Aerosols and cloud microphysics (CMPs) control cloud properties and thereby exert
a large influence on Earth’s climate. For example, the cloud water and ice contents
determine the cloud albedo and lifetime, and they also control precipitation formation
(Mülmenstädt et al., 2015). In a changing climate, the correct representation of
clouds is especially important to estimate Earth’s radiation budget (Sun and Shine,
1995; Tan et al., 2016; Matus and L’Ecuyer, 2017; Lohmann and Neubauer, 2018).
However, clouds and cloud feedbacks are a major source of uncertainty for projections
of climate sensitivity in global climate models (Cess et al., 1990; Soden and Held,
2006; Williams and Tselioudis, 2007; Boucher et al., 2013).

Since cloud microphysical processes such as the riming of cloud droplets on
snowflakes occur on scales much smaller than the resolution of global climate models
(GCMs), they are parameterized; i.e., only their macroscopic effects at the scale of
the model grid are described. Responding to the challenge of incorporating these
processes in climate models, the community has added more and more processes into
GCMs (Knutti and Sedláček, 2013) with increasing detail in their representation
(e.g., Archer-Nicholls et al. (2021) and Morrison et al. (2020)). As Fisher and Koven
(2020) argue for a similar situation in land surface modeling, this may be due on
the one hand to scientists’ tendency to focus on their own area of expertise. On
the other hand, it also reflects the fact that the Earth system is indeed complex
and that many processes may matter. However, it is doubtful whether more detail
will help us to reduce uncertainty (Knutti and Sedláček, 2013; Carslaw et al., 2018).
More complexity also has its downsides: more parameterized processes lead to more
parametric uncertainty, which in turn scientists investigate and try to reduce with
large scientific effort (e.g., Rougier et al. (2009), Lee et al. (2011), Yan et al. (2015),
Williamson et al. (2015), and Dagon et al. (2020)). In fact, Reddington et al. (2017)
argue that “aerosol–climate models are close to becoming an overdetermined system
with many interacting sources of uncertainty but a limited range of observations
to constrain them”, referring to the complexity in the representation of aerosols
and their interaction with clouds. This is related to equifinality, meaning that
model versions from different regions of the input parameter space may lead to
the same results that compare well with observations. These models may simulate
a range of aerosol forcings (Lee et al., 2016), which is not possible to constrain
with current observations. Morrison et al. (2020) diagnose the same problem for
CMP schemes, whose complexity they say is “ ‘running ahead’ of current cloud
physics knowledge and the ability to constrain schemes observationally”. Climate
models have become so complex that they are impossible to comprehend by any one
scientist (Fisher and Koven, 2020). More detail means more heterogeneity between
climate models, which increases the difficulty of a meaningful comparison of their
projections (Fisher and Koven, 2020). But also within a given model, the attention
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and detail given to some cloud microphysical processes come at the expense of other
less accessible processes. This brings the danger of overinterpreting those processes
that are represented in detail while neglecting the impacts of poorly represented
ones (Mülmenstädt and Feingold, 2018). Finally, the detail of the aerosol and cloud
microphysics increases computational demand and thereby costs (though anticipating
the results of Sec. 2.3.6, the four CMP processes investigated in this study require
negligible computing time). It can thereby inhibit other advancements such as
the move towards high-resolution simulations (which may themselves also require
adaptations of the CMP schemes) or larger ensembles.

In contrast, simple models are easier to interpret and derive understanding from,
as long as they represent processes correctly (Koren and Feingold, 2011; Mülmenstädt
and Feingold, 2018). Also, assumptions and their consequences are more traceable
in simpler or more system-oriented models (Mülmenstädt and Feingold, 2018). For
example, conceptual cloud models have been used to investigate the impact of
the choice of precipitation particle attributes on the cloud structure and evolution
(Wacker, 1995) or to confirm microphysics findings qualitatively (Wood et al., 2009).
Simplifications reduce computational demand, and simplified models yield themselves
to other applications, e.g., the use in integrated assessment models (Ghan et al.,
2013). At the same time, they may produce similarly good results as more complex
models. For example, Ghan et al. (2012) developed a simple yet physical model for
the aerosol indirect effect, whose estimates are comparable to those of complex global
aerosol models. Similarly, Liu et al. (2012) compared two aerosol modules with seven
and three lognormal modes and find that the simulated aerosol concentrations are
remarkably similar.

The addition of detail and refinement of a model description is a natural response
to the challenge of capturing something as complex as the climate system in a
computer model. This is legitimate and beneficial. For example, it may lead to a
physically more correct representation and reduce the number of tuning parameters
(e.g., Storelvmo et al. (2008)). And for some applications modelers may need as
much detail as possible in one specific module. Hence, scientists tend to call for
more detail in process representations (e.g., Gettelman et al. (2013), for warm-rain
microphysics; Sotiropoulou et al. (2021), for secondary ice production by break-up
from collisions between ice crystals) instead of less. This may in part be because
humans are biased towards searching for additive pathways as problem solutions
while overlooking subtractive transformations (Adams, 2021). However, due to the
reasons mentioned above, a simplified model equifinal to a more complex model may
be more useful for gaining understanding of climate models (equifinal meaning that
the two model versions lead to similar results). One can therefore question the need
for an ever increasing amount of detail, especially in the face of overdetermination
(Reddington et al., 2017). In this paper, we propose a new methodology to assess
where process parameterizations can be stripped of detail to aid the development of
a simplified model as well as to increase understanding of the model.

The role of CMPs within GCMs has been investigated previously: the influence
of CMPs has been shown to dominate over that of aerosol schemes in affecting
clouds and precipitation in the Weather Research and Forecasting model (White
et al., 2017), as well as to dampen the influence of aerosol microphysics on cloud
condensation nuclei and ice-nucleating particles in a regional model (Glassmeier
et al., 2017). For the HadGEM-UKCA global aerosol–climate model, Regayre et al.
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(2018) have shown that both aerosol and physical atmosphere parameters contribute
to uncertainty in aerosol effective radiative forcing. Diving into the importance of
single processes for the overall CMPs, Bacer et al. (2021) extracted process rates
from the chemistry–climate model EMAC, which is based on the same CMPs as
this study’s ECHAM-HAM. They found that ice crystal sources in large-scale clouds
are controlled by freezing and detrainment from convective clouds, while sinks are
dominated by autoconversion and accretion. This approach is somewhat similar to
a pathway analysis (e.g., Schutgens and Stier (2014) and Dietlicher et al. (2019))
in that it deepens understanding of immediate effects but is not able to relate the
effect of a process on variables further down the process chain.

A promising method for investigating the effect of model input on output is
the use of perturbed parameter ensembles (PPEs) (Murphy et al., 2004; Collins
et al., 2011). In a PPE multiple input parameters are perturbed at the same time.
In this way, PPEs expand upon sensitivity studies that vary one parameter (e.g.,
Lohmann and Ferrachat (2010) and He and Posselt (2015)) or multiple parameters
at a time (e.g., Ghan et al. (2013)), allowing the investigation of the interaction
effects of perturbations within the whole possible parameter space. For example,
Sengupta et al. (2021) used a PPE to determine the impact of parameters related
to secondary aerosol formation on organic aerosol in a global aerosol microphysics
model. In a next step, parameter ranges can be constrained when comparing the
PPE to observations (Posselt, 2016; van Lier-Walqui et al., 2014; van Lier-Walqui
et al., 2019, note that these studies all used synthetic observations as constraints).
Morales et al. (2021) built a PPE of CMP process parameters and environmental
conditions, generated using a Markov chain Monte Carlo algorithm, in idealized
simulations to then constrain the parameters with synthetic observations.

Another benefit is that a PPE does not require any additional changes to model
code, in contrast to a pathway analysis that requires additional diagnostics and
tracers. The downside is that PPEs require many simulations to sample the whole
parameter space, which is prohibitive given the cost of global climate model simu-
lations. A remedy is the combination of a PPE with a surrogate model such as an
emulator. The emulator is first fitted to the PPE model output and then sampled
instead of the GCM, which is expensive to run. This technique has been used,
for example, to study the effect of model parameters such as the entrainment rate
coefficient on climate sensitivity in a GCM (Rougier et al., 2009) or how model
parameters affect forecast model drift (Mulholland et al., 2017).

Global sensitivity analysis is a method to quantify the effect of inputs on model
output more formally. It allows us to divide the total variation in output into the
direct contributions from variations in independent inputs as well as from their
interactions. For example, Tan and Storelvmo (2016) used variance-based sensitiv-
ity analysis on a generalized model of their PPE to determine that the Wegener–
Bergeron–Findeisen timescale is the most influential parameter in determining the
cloud-phase partitioning in mixed-phase clouds. Bernus et al. (2021) have employed
sensitivity analysis of their PPE directly to improve the understanding of their lake
model prior to its implementation into a climate model.

When dealing with large models that are expensive to run, a surrogate model
that is cheap to run allows for a tight sampling of the whole parameter space which
permits for sensitivity analysis on the resulting surface. As such, the combination of
a PPE with a surrogate model upon which sensitivity analysis is performed has found
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wide use in cloud simulation studies (Wellmann et al., 2018; Glassmeier et al., 2019;
Wellmann et al., 2020; Hawker et al., 2021a). For example, Lee et al. (2011) emulated
a global aerosol model and found that the cloud condensation nuclei concentration in
polluted environments is dominated by sulfur emissions but that in remote regions
interactions between different parameters are substantial. In particular, a range
of recent studies has employed the methodology to investigate how uncertainty in
input parameters (which are often not well constrained within parameterizations)
translates to an uncertainty of climate model output: quantifying the effect of aerosol
parameters on cloud properties or radiative forcing (Lee et al., 2011; Lee et al., 2012;
Carslaw et al., 2013; Lee et al., 2013; Regayre et al., 2014; Johnson et al., 2015;
Regayre et al., 2015; Yan et al., 2015; Regayre et al., 2018), but also in various other
areas of environmental modeling (e.g. a land model in Dagon et al. (2020)). In a
further step, the effect of an observational constraint on the model output can be
investigated with the emulator as a surrogate model (Tett et al., 2013; Williamson
et al., 2013; Lee et al., 2016; McNeall et al., 2016; Johnson et al., 2018), yielding
important conclusions about which observations are needed to constrain climate
models and on which parameters we need to focus research efforts. The approach
also lends itself to an investigation of tuning parameters since these also form a
parameter space that needs to be explored and constrained (Williamson et al., 2015;
Hourdin et al., 2020; Couvreux et al., 2021).

Here we propose a new application of the combined PPE and sensitivity analysis
approach to learn about the needed accuracy in process parameterizations within
GCMs. Instead of varying parameters within parameterizations, we perturb the
processes themselves as a whole. By perturbing we mean that we vary the effec-
tiveness of a given process, going from using 50% to 200% of a process’s effect in
the model. For example, if a process affects the ice crystal number concentration,
the change induced on it is multiplied by a perturbation factor between 0.5 and 2
in each time step. This means that in the extreme cases it would produce half or
twice the effect on the ice crystal number concentration that it has in the default
model (see Sec. 2.2.2 for further detail). From the resulting response surface we
infer the sensitivity of model output to the CMP processes. The thus generated
understanding points to processes whose representation needs to be accurate since
they have a large influence and suggests simplifying those processes that have little
influence on model output. Accepting the notion of equifinality, we aim to identify
the parts of our current model that do not contribute to variation in output. Thus,
we develop a “global sensitivity analysis that can weed out unimportant parameters”
as called for by Qian et al. (2016).

To avoid misunderstanding: we are using a surrogate model to learn about
sensitivities within the ECHAM-HAM GCM. We are not aiming to replace CMP
parameterizations with machine learned substitutes (as e.g., Seifert and Rasp (2020))
or substitute model components (e.g., Beusch et al. (2020)) because interpretable,
physics-based models should be preferred (Rudin, 2019). Instead, in line with
Couvreux et al. (2021) we are using emulation and sensitivity analysis as a tool to
generate understanding that allows us to build a more interpretable model version
in a second step. Please note that the potential for simplification is evaluated in
the current climate. Thus, any derived simplifications would need to be evaluated
against a reference model for their suitability in a changed climate state prior to
employing it in, e.g., climate change projections.
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Figure 2.1: The four cloud microphysical processes investigated in this study, depicted
as they are represented in ECHAM-HAM.

In Sec. 2.2 the CMP processes that we investigate, their treatment in the ECHAM-
HAM GCM, the generation of the PPE and emulator, and the sensitivity analysis
are described. In Sec. 2.3 the results from a “one-at-a-time” sensitivity study that
explores the axes of the parameter space (Sec. 2.3.1), the emulated PPE (Sec. 2.3.2),
and the sensitivity study on the fully sampled parameter space (Sec. 2.3.3) including
a scale dependency (Sec. 2.3.4) and seasonal analysis (Sec. 2.3.5) are presented and
discussed. Conclusions and an outlook are given in Sec. 2.4.

2.2 Methods

2.2.1 Cloud Microphysics in ECHAM-HAM

This study employs the global aerosol–climate model ECHAM6.3-HAM2.3 (Tegen
et al., 2019; Neubauer et al., 2019), with a T63 horizontal spectral resolution and 47
vertical levels. The cloud microphysics consist of a two-moment prognostic scheme
for ice crystals and cloud droplets, with additional one-moment prognostic repre-
sentation of snow and rain (Lohmann and Roeckner, 1996; Lohmann et al., 1999;
Lohmann, 2002; Lohmann et al., 2007; Lohmann and Hoose, 2009; Lohmann and
Neubauer, 2018). The stratiform cirrus scheme includes homogeneous nucleation of
supercooled liquid droplets (Kärcher and Lohmann, 2002b; Kärcher and Lohmann,
2002a; Lohmann, 2003). The stratiform liquid cloud scheme encompasses condensa-
tion, aerosol activation, autoconversion of cloud droplets to rain, accretion of cloud
droplets by rain, evaporation of cloud and rainwater, and wet scavenging of aerosol
particles (for further details and references see Neubauer et al. (2019)). In stratiform
mixed-phase clouds, various CMP processes are included: heterogeneous nucleation
via immersion and contact freezing, depositional growth of cloud ice, growth of ice
crystals at the expense of cloud droplets via the Wegener–Bergeron–Findeisen pro-
cess (Wegener, 1911; Bergeron, 1935; Findeisen, 1938), and sublimation and melting
of ice crystals and snow below clouds. In this study, we are investigating the effect of
four different CMP processes involving the ice phase (see Fig. 2.1). Self-collection
of ice is the process of ice crystals sticking together to form a single ice crystal. Au-
toconversion also has two ice crystals sticking together, albeit forming a snowflake.
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In accretion, a snowflake collects an ice crystal, resulting in a larger snowflake. The
fourth process is the only one involving the liquid phase: cloud droplets are riming
on a snowflake, again enhancing its size. The implementation of these processes in
terms of changes to the ice crystal and cloud droplet mass is detailed in Lohmann
and Roeckner (1996), while the implementation of changes to the ice crystal and
cloud droplet number concentration is simply in proportion to the mass changes
(except for where the mass concentration is unaffected; Lohmann et al. (1999) and
Lohmann (2002)). The distinction between accretion and autoconversion is necessary
due to the separation between ice crystals and snowflakes in their representation as
categories of ice in the model. Snowflakes precipitate, while ice crystals are smaller
and sediment but do not survive outside clouds. The four processes were chosen for
their comparability, as they all represent particle interactions, to represent a range of
assumed impacts, as well as for their implementation, which is clearly distinguishable
in the code and allowed for easy implementation of the perturbations (see Sec. 2.2.2).
In this study, we do not include any ice multiplication processes. Convective clouds
are treated separately from stratiform clouds, except for the interaction through
detrained condensate from convective clouds, which is added to stratiform clouds if
they exist at the respective model level.

Apart from the perturbations described in the next section, substantial changes
that were applied with respect to the published model version ECHAM6.3-HAM2.3
(Neubauer et al., 2019) are the following.

• Detrained condensate from the convective cloud scheme produced an unre-
alistically large amount of ice crystals at mixed-phase temperatures, which
were then removed with a correction term. The detrained cloud particles are
now assumed to be all liquid at mixed-phase temperatures (0 °C<T <−35 °C;
Dietlicher et al. (2019) and Muench and Lohmann (2020)).

• In line with Muench and Lohmann (2020, Sec. 3.3.1.2), we now include the
immediate, updraft-dependent self-collection of detrained ice crystals.

• Previously, a fixed minimal cloud droplet number concentration (CDNC) was
applied, which led to unrealistically high CDNCs in high-latitude and/or high-
altitude clouds with low liquid water content (LWC) and hence small droplets.
We replace this with a dynamically calculated minimal CDNC, which is cal-
culated from the in-cloud water content and a set maximum volumetric cloud
droplet radius (set at 15 µm in the simulations conducted for this study). The
resulting minimum CDNC needs to lie between 10× 106 m−3 and 4× 107 m−3.
Admittedly, we are replacing the tuning parameter of fixed minimum CDNC
with one for a maximum cloud droplet radius. The latter is preferred as it is
more physical.

• The model version of Neubauer et al. (2019) contains a mistake in the calcula-
tion of the hygroscopicity parameter in the aerosol activation parameterization,
leading to an underestimation of the individual aerosol-mode solubility. The
calculation was updated in Friebel et al. (2019) and subsequently used in
Lohmann et al. (2020); this correction is also applied here.

• In part motivated by the large correction terms highlighted in the process
rate study of Bacer et al. (2021) we reduce these if they are unnecessary
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and/or unphysical. For example, conditions of maximum ice crystal number
concentration (ICNC) were enforced after a few CMP processes took place
in Bacer et al. (2021). We could reduce the value of that correction term
by applying it after each relevant process. Most importantly, the diagnosis
of multiple correction terms acting on the same variable led to an artificial
increase in corrections. For example, correction terms would enhance ICNC
concentrations at model points that later were identified to be outside a cloud
(due to the way the code is structured, the diagnosis of cloud cover happens
after, e.g., activation/nucleation takes place). In turn, ICNCs outside a cloud
were then corrected to be zero, so an unnecessary correction was in fact counted
twice. We reduce this artifact by correcting the correction terms themselves.
Staying with the example above, the first correction term is now itself set to
zero outside a cloud.

• The sublimation of sedimenting ice crystals appears to be too weak in ECHAM-
HAM. This became apparent as in-cloud ICNCs were increasing through sedi-
mentation from above, which indicates that sublimation of ice crystals falling
into the cloud-free part of a grid box is too weak. While the underlying problem
of a weak sublimation needs to be addressed with future efforts, we introduced
a correction of the sedimentation routine: the gain of ice crystal concentrations
in the level k into which the ice crystals sediment, ∆ICNCsed,k, is restricted to
the loss of in-cloud ice crystal number concentration in the lowest model level
above level k that lost ice crystals by sedimentation. Also, in-cloud ICNC and
the snow formation rate are now set to 0 outside clouds inside the ice crys-
tal sedimentation routine wherein they were previously set to the grid-mean
values. This contains the implicit assumption that ice crystals do not survive
sedimentation outside a cloud in ECHAM-HAM.

With the described changes, the model requires retuning. The tuning procedure
follows the one described in Neubauer et al. (2019), with the final tuning parameters
given in Table A.1 in Appendix A.1. Model simulations were conducted with the
same tuning for all simulations.

2.2.2 Perturbations as a proxy for complexity

In order to see the effect of whole processes on model output, we can turn processes
off in sensitivity studies. In the present study, we achieve this by setting the change
that the process induces on prognostic variables to zero. For example, at every model
time step t autoconversion impacts the ICNC:

ICNCt+1 = ICNCt + ∆ICNCautc. (2.1)

We can turn off the effect of autoconversion by multiplying ∆ICNCautc, the change
in ICNC due to autoconversion in one time step, by zero when it is added to the
affected variables.

More generally, instead of setting the changes induced by a process to zero, we
can perturb the process using a newly defined parameter η.

ICNCt+1 = ICNCt + ηautc ·∆ICNCautc (2.2)
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Figure 2.2: Sketch of the envisioned interpretation. The shading indicates the area that
is of most interest to judge the effect of process simplifications on the model output. If
the slope in this area is small, this suggests that the process can be simplified (green and
purple lines). A large slope indicates that the process needs to be represented accurately
(orange lines). If no perturbations of the process in the 0.5 to 2 perturbation parameter
range and the suppression of the process (perturbation parameter of 0, not shown) have
a significant influence on the model output, the process may be removed entirely (green
line).
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Figure 2.3: Sketch of the employed methodology: we move from (a) one-dimensional
sensitivity studies wherein one process is perturbed by varying the parameter η (Sec. 2.3.1)
to (b) a multidimensional parameter space. (c) The input parameter space is filled with
Latin hypercube sampling and supplied as input to ECHAM-HAM. The simulations form
the perturbed parameter ensemble (PPE). The (d) PPE output is (e) fitted using a
Gaussian process emulator for each variable of interest to generate a smooth response
surface, upon which sensitivity analysis can be applied. Note that this is an illustrative
sketch of the method for a PPE with two input dimensions, whereas our PPE has four
dimensions, and that the data used to generate it are only illustrative as well. The shading
in (d) illustrates depth only.

This perturbation of whole processes was introduced by van Lier-Walqui et al. (2014)
to estimate the uncertainty including errors in the physical assumptions of process
formulations. In our case, the parameters aid understanding the sensitivity of the
model to each process: from the response of model output to variations in ηi, we
can extract information on how accurately a process i needs to be represented in the
model (see Fig. 2.2 for a visualization). For example, if the model output variable
(e.g., ice water path, IWP) as a function of ηi has a slope close to zero at ηi = 1
(green and purple line in Fig. 2.2), this suggests that the process i needs to be
represented only approximately and that some detail could probably be removed
from its parameterization without much of an effect on the model performance.
Note that the perturbations are constant in space and time for each PPE member,
serving as a proxy for understanding the effect of possible simplifications, which
would likely be variable in time and space. In this study, four cloud microphysical
processes, namely self-collection, autoconversion, accretion, and riming (see Fig. 2.1),
are perturbed, i.e., i ∈ [1, 4]. Combining perturbations of multiple processes allows us
to study and take into account possible interaction effects, such as the compensation
by one process which is perturbed by another one.

2.2.3 Generating and emulating the perturbed parameter en-
semble (PPE)

In a first scoping study, we perturb each process one by one by multiplying its
effect with 0 < ηi < 1. Multiplicative perturbations between zero and 1 correspond
to a reduction in the effectiveness of the process. However, to take into account
interactions, all ηi values need to be varied at the same time, thereby creating a
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multidimensional input parameter space in a second step. In addition, the range of ηi
is expanded to values up to ηi = 2 to imitate an overestimation of a given process
due to an inaccurate description. As we are most interested in the space around
ηi = 1, and to sample the over- and underestimation equally, we vary ηi from 0.5
to 2 in the multidimensional input parameter space. If the process uncertainty were
known, it would influence the extent of the perturbation range, which could be
different for each process. The perturbations and the procedure described in the
following are visualized in Fig. 2.3. To probe the multidimensional input parameter
space effectively, the sets of input parameter combinations (η1, η2, η3, η4) to be
simulated with the model were generated with Latin hypercube sampling (LHS, using
the Python library PyDOE, tisimst (2021)), which maximizes the spacing between
inputs and provides good coverage of the parameter space, even when only a few
input parameters are important (Morris and Mitchell, 1995). The LHS was applied
to the logarithmically scaled input range to account for the multiplicative behavior
of the ηi. Each of the LHS-generated input combinations was then used as input for
a 1-year ECHAM-HAM model simulation, creating a perturbed parameter ensemble
(PPE) with 48 members. This is in line with the suggestion of Loeppky et al. (2009)
to use 10 times as many training runs as the number of input parameters for such a
computer experiment. To estimate the interannual variability, the control simulation
with all processes at full effectiveness (ηi = 1∀i) spanned 10 years. This estimate
is used to judge whether perturbations observed in the PPE are significantly larger
than the interannual variability and therefore contain a signal that originates from
the perturbation in ηi. As the interannual variability exhibited no strong variations
throughout the probed phase space in the one-at-a-time sensitivity studies, the 1-
year simulations for the PPE members in combination with the control simulation
estimate of the variability were deemed sufficient for the analysis. All the simulations
were performed with climatological sea surface temperatures and sea ice extents, as
well as aerosol emissions representative for the year 2003. These simulations were
not nudged to meteorological data but ran freely so that the full effect of perturbing
the processes could be observed. Each simulation included 3 months of spin-up that
was not included in the analysis.

Using the PPE output as input for the creation of a surrogate model, we can
construct a smooth response surface over the whole parameter space (see Fig. 2.3e).
As a surrogate model, we choose a Gaussian process emulator (O’Hagan, 2006;
Rasmussen and Williams, 2006), which has found wide use in atmospheric and
climate science (Lee et al., 2011; Carslaw et al., 2013; Johnson et al., 2015). We
prefer the Gaussian process emulator over, e.g., a neural network because of its
demonstrated suitability and need for fewer input data (see Watson-Parris et al.,
2021a, for a more in-depth discussion). Using a recent Python package for emulating
Earth system models (Watson-Parris et al., 2021c; Watson-Parris et al., 2021a), the
implementation is straightforward. From the PPE, we can construct a surrogate
model for every output variable that we are interested in by training a separate
emulator for each output variable (ice crystal and cloud droplet number concentration,
ice and liquid water path, shortwave and longwave cloud radiative effect, cloud cover,
surface precipitation, ice, liquid, and mixed-phase cloud cover). For the kernel (or
covariance function, Watson-Parris et al., 2021a), an additive combination of the
linear, polynomial, bias, and exponential kernels was used as this performed best
in preliminary tests (not shown, Duvenaud (2014)). Other model specifics were
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Figure 2.4: Leave-one-out validation of the emulator for global annual mean IWP. Each
point corresponds to the training of the emulator on all points except one and then testing
on exactly that point. Individual standardized errors are plotted against (a) emulator
output and (b) input parameters (colors according to Fig. 2.5: autoconversion – blue,
accretion – purple, riming – green, self-collection – orange). The dashed lines are drawn
at an individual standardized error of zero and 2, which is the threshold discussed in
Bastos and O’Hagan (2009). (c) QQ-plot of the individual standardized errors against a
Student’s t distribution. (d) Emulator against model output, with the error bars indicating
the 95% confidence interval on the emulator predictions. Predictions for which the model
result lies outside that interval are marked red.

set as default in Watson-Parris et al. (2021c). As the emulation operates best on
standardized data with zero mean and unity variance, the mean was removed from
the input data, which was then scaled by dividing it by the standard deviation, prior
to emulation. With the cheap surrogate model a variance-based sensitivity analysis
(see Sec. 2.2.5) becomes feasible (Oakley and O’Hagan, 2004), picking 3000 samples
from the emulator as input. This approach is similar to Johnson et al. (2015), except
that they perturbed CMP parameters, while we vary the effectiveness of whole CMP
processes. It allows us to identify the importance of the different ηi for the variables
in question and thereby the processes which require a detailed representation.

2.2.4 Validation

To make sure that the chosen emulators are a fair representation of the model output,
we validate them according to Bastos and O’Hagan (2009) except for using leave-
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one-out validation, as visualized in Fig. 2.4 for the IWP. In Fig. 2.4a and b, the
individual standardized errors, Ysim−Yemu√

Vemu
(with Ysim and Yemu as the output of the

ECHAM-HAM simulations and the emulated output, respectively, and Vemu the
emulator variance), are plotted against the emulated output and input parameters.
We observe only a few errors larger than 2, which would signal a conflict.

We employ a QQ-plot to determine whether the normality assumption of a
Gaussian process is met in the emulator (Bastos and O’Hagan, 2009). The plot
compares the quantiles of the standardized errors against those of a Student’s t
distribution. Figure 2.4 c indicates that the normality assumption holds and that
the predictive variability is well estimated by the emulator (Bastos and O’Hagan,
2009). In a direct comparison of emulated and simulated ECHAM-HAM model
output (Fig. 2.4d), the points should lie close to the line of equality, with the 95%
confidence bounds on the emulator predictions crossing it. This should be the case
for 95% of the validation points. In our emulations, the number of points with
confidence bounds that do not cross the line of equality is sometimes larger (up
to 27%), depending on the variable. We attribute this to the disruptive changes
that the CMP process perturbations induce compared to, e.g., the aerosol and CMP
parameter changes applied by Johnson et al. (2015) (which did not include ice
crystal autoconversion and perturbed parameters only within uncertainty bounds
instead of whole processes), as well as to the fact that the simulations were not
nudged. The difficulty in emulating the response surface for some of the variables
was also apparent in computational limitations: some of the leave-one-out validation
emulations were not possible to compute because of numerical instabilities in the
computations when constructing the emulator. As these were only a few cases (up
to two for global means and four for seasonal means in 48 validation emulations),
the validation for those variables as a whole is still deemed valid.

The good qualitative agreement with the line of equality and the lack of systematic
errors are sufficient for a validation of the emulator, especially considering that we
are not aiming for exact quantitative estimates as results of the presented analysis.
Rather, we are looking for a conceptual understanding of the need for an accurate
description of CMP processes, for which this emulator validation is sufficient.

For the variables which passed the leave-one-out validation, the final emulator
used for the sensitivity analysis was trained on all PPE members (note that in a
few cases only 47 PPE members were used due to numerical instabilities in the
computations when constructing the emulator). Note that the setup of the emulator
includes design choices such as the kernel combination to use. Therefore, the present
emulator is only one of multiple possible emulators that could be used to represent
the model data. However, as it is shown to validate well, other setups are expected
to lead to the same conclusions as this one in the analysis.

2.2.5 Sensitivity analysis

In our framework, the question of how detailed the representation of a given process i
needs to be translates to the question of how sensitive the model output is to a
variation of the perturbation parameter ηi. For an answer, we employ variance-
based sensitivity analysis, following Saltelli (2008a). In contrast to derivative-based
local methods (Errico, 1997), global variance-based sensitivity analysis allows for
an investigation of sensitivities within the whole input parameter space. Its main
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metrics are the first- and total-order sensitivity indices (S1i and STi, respectively).
The first-order sensitivity index of ηi measures the contribution of variance in ηi to
the variance in an output variable Y . It is constructed as

S1i =
Vηi (Eη∼i

(Y |ηi))
V (Y )

(2.3)

E is the average over Y with all η except ηi (η∼i) being allowed to vary while ηi is
kept fixed at η∗i . Then Vηi is the variance over that average for varying η∗i . S1i is
always between 0 and 1, and high values signal an important variable. For additive
models all first-order terms add up to 1, i.e.,

∑
i Sηi = 1. In non-additive models

(e.g., a climate model) interaction terms also have to be taken into account. However,
in models with many input parameters the computation of all interaction sensitivities
can be cumbersome. The total effect sensitivity index STi offers a remedy in that it
summarizes all direct and interactive effects a parameter’s variance has on the total
variance in output (Homma and Saltelli, 1996; Saltelli, 2008a). It is defined as

STi =
Vη∼i

(Eηi (Y |η∼i))
V (Y )

(2.4)

Here all but ηi (η∼i) are kept fixed at η∗∼i and only ηi is allowed to vary for the
average Eηi . Then the variance of that average over varying η∗∼i is computed and
divided by the variance in output Y . Saltelli et al. (1999) argue that the first
and total sensitivity index suffice for a meaningful global sensitivity analysis. To
compute these indices via the Sobol method, we make use of the Python library
SALib (Herman and Usher, 2017).

2.3 Results and discussion

2.3.1 One-at-a-time sensitivity studies

In a first scoping experiment, we perturbed each process separately, which one can
imagine as tracing the edges of the cube shown in Fig. 2.3. The results are presented
in Fig. 2.5. Of the four perturbed processes, turning off autoconversion has the
largest effect on model output: the global annual mean ice water path (IWP) is
more than doubled, and the increase in cloud cover and decrease in precipitation
dwarf the changes induced by turning off the other three processes. In fact, the
perturbations induced by perturbing accretion and self-collection are mostly insignifi-
cant compared to the interannual variability. As autoconversion is a removal process
for ice crystals, it is reasonable that its suppression leads to an increase of ice in the
atmosphere (note that the IWP in ECHAM-HAM only counts ice crystals and not
snow). Similarly, riming is a removal process for liquid droplets, so the liquid water
path (LWP) increases with its suppression. However, surprisingly the suppression
of autoconversion induces a similarly large increase in LWP as that of riming, even
though autoconversion includes no direct interaction with liquid droplets. The shape
of the model response to the gradual perturbation of the processes holds additional
information: while the generated model response is mostly gradual, for low ηautc the
response is more abrupt. This behavior, which we call a threshold response, is most
striking for the global annual mean LWP, for which the signal for ηautc ≥ 0.25 is not
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Figure 2.5: Model response to perturbations of four CMP processes: autoconversion,
accretion, riming, and self-collection (as illustrated in Fig. 2.1) in terms of global annual
mean IWP, liquid water path (LWP), cloud cover (CC), precipitation (Prcp), and short-
wave and longwave cloud radiative effect (SCRE, LCRE). An additional experiment was
conducted to highlight interactive effects between the perturbation of autoconversion and
the suppression of riming and accretion (light blue). The points and line indicate the mean,
and the shading indicates 2 times the standard deviation of annual mean values of a 5-year
simulation. Classical sensitivity studies would only show ηi = 0 and ηi = 1. Note that
we added an extra simulation at ηautc = 0.1 to better illustrate the threshold behavior
discussed in the text and that for the IWP the shading is hidden behind the lines.
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Figure 2.6: Global annual mean vertically integrated process rates for four experiments
that illustrate the suppression of snow formation through turning off autoconversion (mean
of a 5-year simulation). The rates are diagnosed similarly to Bacer et al. (2021), but cor-
rection terms were themselves subtracted from process rates where appropriate, i.e., where
the correction belongs to the logical entity of the process rate (see Sec. 2.2.1). The process
rates are deposition (dep), heterogeneous and homogeneous freezing (frz), detrainment
(detr), deposition in the Wegener–Bergeron–Findeisen process (WBF), correction terms
(corr), autoconversion (autc), accretion (accr), sedimentation (sedi), sublimation (subl),
ice nucleation in the cirrus scheme (nucl), melting (melt), immediate self-collection of ice
crystals when the ICNC is larger than a maximal threshold (immsci), and evaporation
(evap).

significantly different to that of accretion and self-collection. When autoconversion
is completely suppressed, the LWP increases dramatically and the signal becomes
stronger than that for riming, which had increased consistently and gradually. This
behavior can be explained by autoconversion acting as a catalytic process for accre-
tion and riming, creating a threshold behavior when it is turned off. As can be seen
from Fig. 2.1 it is the only process that generates snowflakes. Accretion and riming
need the snowflakes to be able to act upon them. Therefore, when autoconversion
is turned off, accretion and riming are consequently suppressed as well. In this way,
the suppression of autoconversion can strongly influence even the liquid phase. The
simulations in which we perturb autoconversion while having riming and accretion
turned off confirm this hypothesis (light blue line in Fig. 2.5): throughout most of the
phase space, turning off accretion and riming reinforces the signal from phasing out
autoconversion. However, when autoconversion is turned off, turning off accretion
or riming does not change the model output any further. That is because they are
both suppressed when autoconversion is turned off and does not generate any snow
for them to act upon.

Figure 2.6 further elucidates the reaction of the model to a suppression of auto-
conversion: the snow formation rate decreases dramatically, and with increased ice
concentrations in the atmosphere, the other removal processes of sedimentation and
melting subsequently increase. Again the suppression of riming and accretion only
influences the model output when autoconversion is active. When autoconversion is
turned off, accretion and riming have no influence.
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Figure 2.7: Two-dimensional projections of the IWP values sampled from the four-
dimensional parameter space of the emulated PPE. Each perturbed process is a dimension,
and the color bar denotes the global annual mean ice water path for each input parameter
combination.

From this one-at-a-time example, one can already see the benefit of the pertur-
bation approach: in classical sensitivity studies, wherein processes are only turned
on and off, only the large signal induced by autoconversion would have been visible.
However, here it was the peculiar shape of the model response to the whole pertur-
bations that hinted at the threshold effect of autoconversion. The implications for
possible simplifications are different: seeing only the large difference between a sim-
ulation with and without autoconversion, one would think that this is an immensely
important process. Recognizing it as a threshold process and seeing the gradual
response to small deviations from 1.0 in ηautc (similar to the purple curve in Fig. 2.2),
it appears that there is potential for a less accurate description of autoconversion in
the model. It has also become clear that interaction effects need to be taken into
account as well to explain the model behavior. This is what the PPE expands upon
in the next section.

2.3.2 PPE of global mean variables

Conducting a 1-year simulation with ECHAM-HAM for each of the 48 input parame-
ter combinations generates the PPE which is then emulated (see Fig. 2.3). Figure 2.7
illustrates the resulting response surface with points sampled from that emulation of
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Figure 2.8: Same as Fig. 2.7 but for the global annual mean liquid water path. Results
for additional variables are presented in Fig. A.1 in Appendix A.2.
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the annual global mean IWP. To generate the multidimensional response surface 48
1-year simulations were needed compared to the 21 simulations that were needed to
investigate the response along only a few of the parameter space edges in Sec. 2.3.1.
This illustrates the value of the chosen approach: the emulated PPE provides more
information while needing only roughly twice as many simulations. The surface
shows an ordered ascent with decreasing ηautc, while the other dimensions exert no
control over the value of the IWP. Only for accretion is a slight influence visible
from the tilted contours in the phase space shared with autoconversion. Increased
accretion depletes the IWP since it converts ice crystals to snowflakes. Figure 2.8
shows that the LWP is dominated by ηrime, with an additional influence of auto-
conversion. The LWP decreases with increasing ηrime and increasing ηautc. This is
because riming depletes the atmosphere of cloud droplets and a decrease in auto-
conversion suppresses riming. The panels in Figs. 2.7 and 2.8 exhibiting no order
in their parameter space distribution indicate that the processes in question exert
no influence on the respective output variable. Similar to the LWP, the CDNC
is dominated by riming, and for other cloud variables the dominant influence of
autoconversion is confirmed as well (see Fig. A.1 in Appendix A.2).

The ranges in the global annual mean model variables that we observe are mostly
larger than what Lohmann and Ferrachat (2010) find for varying uncertain tuning
parameters, indicating that whole processes exhibit a larger influence on the model
response than those single parameters. Only for LWP do Lohmann and Ferrachat
(2010) find a larger range of about 50 g m−2 when they multiply the autoconversion
rate with a factor between 1 and 10. As this warm-rain process is not included in
the present analysis, it is reasonable that the observed variation for LWP is smaller.

2.3.3 Sensitivity analysis

A global variance-based sensitivity analysis allows us to quantify the qualitative
sensitivities obtained from the graphical representations of the emulated surfaces
in the previous section. The results for the first-order (S1i) and total effect (ST)
sensitivity indices are presented in Fig. 2.9. Indeed, the qualitative results are
confirmed: the global annual mean LWP and CDNC are dominated by riming, while
all other variables are dominated by autoconversion in both first-order and total
effect.

The observed sensitivities are different from what Bacer et al. (2021) find in
their investigation of EMAC ICNC process rates. They find that autoconversion
contributes about twice as much as accretion to the ICNCs, while self-collection
has a negligible role. In our analysis, the influence of autoconversion dwarfs that of
accretion in terms of sensitivity indices as well as for the process rates (see Fig. 2.6).
The sensitivity indices are not directly comparable to Bacer et al. (2021). However,
for the default simulation the process rates are diagnosed as in Bacer et al. (2021)
and thus comparable. We attribute the observed differences to the slightly different
model version used in Bacer et al. (2021), which goes along with a different tuning.

The almost binary results for the sensitivity indices are surprising, as in other
studies the sensitivity indices were more evenly distributed (Lee et al., 2011; Well-
mann et al., 2018; Wellmann et al., 2020). However, these studies usually employed a
wider suite of input parameters, whereas here only processes from the limited system
of ice particle interactions are included. We expect that with additional cloud mi-
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Figure 2.9: First-order (a) and total effect (b) sensitivity indices for the emulated response
surface of global annual mean cloud cover (CC), liquid cloud cover (LCC, T > 0 °C), mixed-
phase cloud cover (MCC, 0 °C < T < −35 °C) ice cloud cover (ICC, T < −35 °C), longwave
cloud radiative effect (LCRE), shortwave cloud radiative effect (SCRE), liquid water path
(LWP), ice water path (IWP), and total precipitation. As described in Sec. 2.2.5, the
indices are always between 0 and 1, and high values signal an important variable. Since
the climate model is non-additive, the terms do not add up to 1 as interactions have to be
taken into account.

crophysical processes included, the sensitivities would be more evenly distributed as
well. The binary signal is due to the strong dominance of autoconversion throughout
the parameter space and not due to the threshold behavior upon suppression of auto-
conversion as analyzed in Sec. 2.3.1. This was excluded from the sensitivity analysis
as only the input parameter space with ηautc ≥ 0.5 was taken into consideration.

The dominance of autoconversion is hypothesized to originate from the nonlin-
earity in its parameterization. In contrast to the other processes, the conversion rate
of autoconversion has a squared dependency on the cloud ice content (see Lohmann
and Roeckner (1996)), increasing feedback effects between the two.

Additional reasons for the large role of autoconversion may lie in its role as a tun-
ing parameter in ECHAM-HAM. For tuning, uncertain parameters of the model are
used (Neubauer et al., 2019). Historically, the scaling factor for the stratiform snow
formation rate by autoconversion, γs, has been used as it represents a counterpart to
the scaling factor for the stratiform rain formation rate by autoconversion. To reach
the tuning goals as detailed in Neubauer et al. (2019), it is brought to unrealistically
high values (see Table A.1). This enhances the changes induced by perturbing auto-
conversion in this study using ηautc. Additionally, structural problems in the model
may enhance the role of autoconversion artificially. For example, by accounting
for heterogeneous nucleation in the cirrus scheme, which increased ice crystal sizes,
Gasparini et al. (2018) were able to reduce γs by an order of magnitude compared
to the reference ECHAM-HAM version (Blaž Gasparini, personal communication,
2021). This in turn would be expected to reduce the importance of autoconversion
in the present analysis. Moreover, the design choices of the CMP scheme, e.g., the
order in which processes are called, may also influence the results. However, learning
about the properties of CMP processes in the ECHAM-HAM model is important, no
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matter whether they are physically based or artificially introduced through model
design.

A caveat to these results is of course that only CMP processes were investigated
here. Parameters or processes from other parts of the climate model, e.g., the
dynamics, might exhibit an even larger influence on the investigated model output if
they were allowed to be varied. For example, Wellmann et al. (2020), using idealized
COSMO simulations, found that environmental conditions are more influential for
the diabatic heating rates than microphysical processes. However, for the research
question at hand, namely how accurate the representation of these four processes
within the CMPs needs to be, the comparison of the processes between each other is
sufficient. Indeed, the negligible sensitivity of model output to variations in accretion
and self-collection of ice suggests that their representation may be simplified (Lee
et al., 2012). Due to the small deviations in the considered variables in response
to variations around ηi = 1 for riming and autoconversion (purple line in Fig. 2.2),
there is potential for simplifications of their formulations. In the grand scheme of
CMP parameterization development, however, autoconversion as the most dominant
process of the four is a key process to scrutinize given the possibly troubling origin
of this dominance in its role as a tuning factor.

2.3.4 Scale dependency analysis

The analysis of global annual mean values yields clear conclusions, but climate
models need to simulate not only global mean values correctly but also their spatial
and temporal evolution. Since the emulation and subsequent analysis of grid-point-
level data is tedious and error-prone due to the small signal and large noise, we
compress the information in the data to a space of lower dimensionality. Choosing
to reduce the dimensionality but still represent the whole global data rather than
picking certain regions allows for a more objectified and unbiased analysis. This is
similar to Holden et al. (2015), who also reduce their high-dimensionality output,
albeit with singular value decomposition, and Ryan et al. (2018), who use principal
component analysis. However, as the model data are complete and on a sphere, a
spherical harmonics expansion is our method of choice.

Mathematically, the model data can be represented as a linear combination of
the orthogonal spherical harmonics basis functions as follows:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

Fm
l Y

m
l (θ, φ). (2.5)

The data represented by f are then a function of the longitude θ and latitude φ, with
Y m
l a spherical harmonics function of degree l and order m (l and m are integers,

with −l ≤ m ≤ l). The complex coefficients Fm
l can be computed as

Fm
l =

∫
Ω

f(θ, φ)Y m
l (θ, φ)dΩ. (2.6)

The coefficients make up the angular power spectrum Sff :

Sff (l) =
1

4π

l∑
m=−l

|Fm
l |2, (2.7)
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Figure 2.10: Spherical harmonics expansions for one illustrative PPE member (ηautc ≈
0.87, ηaccr ≈ 1.43, ηrime ≈ 0.81, ηsci ≈ 1.89). (a) Global annual mean IWP and (b) ex-
pansion of spherical harmonics representing the same data as (a), generated from the
coefficients of the expansion displayed as an angular amplitude spectrum in (c) as a func-
tion of the degree l (with m independent solutions, where modes of m = 0 most strongly
resemble rotationally symmetric physical patterns of the Earth system such as a north–
south contrast). Note that the variability explained by each degree l in general decreases
with increasing l, which allows us to truncate the expansion at the degree l where it repre-
sents 95% of the total data variance.

where the sum over the angular power spectrum
∑∞

l=0 Sff(l) is the variance of the
data. In principle, an expansion up to order 95 would represent the model data
at their resolution of 96 latitudinal and 192 longitudinal points perfectly, as they
are equidistant in spherical coordinates. In practice, we truncated the expansion
at the degree l where it represents 95% of the total data variance

∑∞
l=0 Sff(l).

Thereby we represent the data with as few as possible but as many as necessary
basis functions. Note that in principle, a principal component analysis could yield
the same representation with fewer basis functions. However, these functions would
depend on the investigated dataset, while the use of spherical harmonics allows for
intercomparability.

Figure 2.10 illustrates that a spherical harmonics expansion of the data can
serve as an accurate representation, while all the information can be stored in the
coefficients up to l = 20 instead of on the global grid (see Fig. 2.10c). Thus, confident
that the expansion represents the data accurately, we can conduct a spatially resolved
sensitivity analysis in the spherical harmonics space. For each variable and degree l a
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Figure 2.11: First-order sensitivity indices for the emulated angular amplitude spectrum
as a function of the spherical harmonics degree l for the variables as described for Fig. 2.9.
As detailed in the text, emulators that were found to be defaulting in the validation
procedure were not subjected to the sensitivity analysis so that the results for those l
are missing here. The results for the total sensitivity index are shown in Fig. A.2 in
Appendix A.3.
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separate emulator was trained on the angular amplitude spectrum
√
Sff , from which

samples were drawn as input to the sensitivity analysis. The validation procedure
was the same as described in Sec. 2.2.4. Spherical harmonics members of degree
l were excluded from the sensitivity analysis when the emulator was found to be
defaulting to an equal prediction over the phase space (see Appendix A.4). This was
the case mostly for degrees l for which the coefficients could already be seen to have
less amplitude in the angular amplitude spectrum. A total of 5 out of 11 variables
had to be excluded because too many members were defaulting or because their
variations were too small to be sensibly emulated.

The results are displayed in Fig. 2.11. For those variables that had total sensitivity
indices for autoconversion of over 0.9 (IWP, longwave cloud radiative effect, and
ICNC) the dominant effect of autoconversion is present on all length scales. Accretion
is of secondary importance for the IWP, as indicated by the global sensitivity analysis.
The LWP and CDNC are dominated by riming on all regional scales and on the
global scale.

The emulated surfaces for the spherical harmonics are more uncertain than those
for the global mean values (see Appendix A.4). This is expected as the training data
are more noisy and indicate a less detectable signal on smaller length scales than on
the global one. In addition, the separate emulation for different degrees l ignores
correlations between signals included in multiple degrees l, which may lead to the
loss of signals that are small in the different l but correlated, and should therefore
be addressed in future studies. However, as the results of the sensitivity analysis
are clear in that variability is dominated by autoconversion (see Fig. 2.11), we can
conclude that the results of the global sensitivity analysis also hold on regional scales.

Finally, this analysis demonstrates that spherical harmonics expansion is a viable
tool to evaluate model output on all length scales in an efficient and objective manner.
Future studies may use it to compare results, e.g., from different models. As most
expansion degrees are physically difficult to interpret, the method may be expanded
to use physically meaningful modes such as the land–sea contrast instead.

2.3.5 Seasonal analysis

Similar to a regional analysis, we use a temporally resolved sensitivity analysis to
address the concern that conclusions drawn from annual mean values might not hold
on a seasonal scale. Figure 2.12 shows the results of the same sensitivity analysis as
in Fig. 2.9, but split by seasons (one emulator per variable was trained and validated
for each season; note that in a few cases only 47 PPE members were used as with
the 48th member the computational constraint was too tight for the emulator). Due
to a weaker or less consistent signal in the data on seasonal scales, one variable
(mixed-phase cloud cover in MAM) did not pass the validation procedure as the
emulator was found to be defaulting (as described for the spherical harmonics above
and in Appendix A.4). Figure 2.12 reveals that indeed the sensitivities to process
perturbations are much the same as for the annual mean analysis. This confirms
that the conclusions drawn for model simplifications also hold on a seasonal scale.
The model is not sensitive to accretion and self-collection of ice, and therefore these
processes can be simplified, while autoconversion and riming dominate the model
response.
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Figure 2.12: Same as Fig. 2.9 but with seasonal means (a: DJF, b: MAM, c: JJA, d: SON)
and only first-order sensitivity indices shown. The results for the total sensitivity index are
shown in Fig. A.3 in Appendix A.3.
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Table 2.1: Share of the computing time taken up by the cloud microphysical processes
investigated here. In turn, the CMP computing time represents 4.7% of total computing
time (excluding diagnostics; all values averaged over a 12-month control simulation with
ηi = 1∀i). The time in the subroutine cold precipitation formation that is not attributed
to the four processes is used for common initializations and subsequent processing.

Process Share of CMP routine cost (%)
Riming 1.8
Autoconversion 0.62
Accretion 0.46
Self-collection 0.046
Subroutine cold precipitation formation 4.8

2.3.6 Process costs and implications for simplification

The previous analysis shows that the response of ECHAM-HAM to a suppression
of self-collection or accretion is negligible, while for riming and autoconversion a
less accurate representation may be appropriate. A potential benefit could lie in
the reduction of CPU time per model simulation. Table 2.1 lists the CPU time
spent in the CMP routines of the four processes. The timings represent an estimate
of how much time could be gained by removing a process from the model. They
show that, at most, with naively removing (the most drastic simplification) the
whole cold precipitation formation routine, only about 0.2% of total computing time
can be saved (since the cold precipitation formation routine makes up 4.8% of the
4.7% of computing time that the whole CMPs take up, see Table 2.1). In a 10-year
simulation this would allow for 1 additional week of simulation, which is negligible
in comparison to the computing needs of, e.g., increases in model resolution.

Within the CMP routine there are other physical processes that take up time,
but the calculations of diagnostics and preparatory calculations also contribute. Of
course, if numerous CMP processes and interactions with aerosols were simplified,
this would allow for more drastic steps such as fewer prognostic aerosol variables
as those could become redundant. Subsequently, significant reductions in model
cost could be achieved. Yet by itself, the isolated removal or simplification of CMP
processes provides small leverage for a decrease in computing time. However, as
detailed in Sec. 2.1, there are numerous benefits in simplification that are independent
of the associated computing cost, such as a gain in compactness and interpretability.

2.4 Summary, conclusions and outlook
This study conducted a sensitivity analysis with an emulated PPE to illuminate
the impact of selected CMP processes on model output. Different from previous
studies (e.g., Wellmann et al. (2020) and Hawker et al. (2021b)), we perturb the four
CMP processes of autoconversion, riming, accretion, and self-collection of ice as a
whole. This is achieved by multiplying their process rates with a factor between 0.5
and 2. The resulting response surface of model output and its deviation from results
with the default setup serve as a proxy for how accurately a process needs to be
represented.

Perturbing only one process at a time reveals that ice crystal autoconversion
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acts as a threshold process: perturbing it causes the model to deviate, but when it
is turned off the deviation is immense. This is because it is the only process that
converts ice crystals to snow and as such accretion and riming depend on it. Using
only roughly twice as many simulations as in the one-at-a-time perturbations to
generate a PPE, we can generate the whole response surface using Gaussian process
emulation. A sensitivity analysis of global and seasonal annual means reveals that
for cloud cover, ice water path, and number concentration as well as shortwave
and longwave radiative effect, the perturbation of autoconversion has the most
dominant impact by far. Accretion and riming assume a secondary role. As riming
is the only investigated process that directly affects the liquid phase, riming has a
dominant effect on the liquid water path and cloud droplet number concentration.
Self-collection of ice has a negligible impact on the investigated global annual mean
variables. Resolving smaller horizontal scales using a spherical harmonics expansion
of the output variables corroborates the results of the global annual mean analysis, as
does a seasonal analysis. These results, as well as the shape of the response surface,
suggest that the parameterization of self-collection and accretion can be readily and
drastically simplified. While autoconversion and riming have a large impact on the
model output considering the whole investigated phase space, the shallow slope of
the response surface around the default ηi = 1 hints that slight modifications of
their representations may leave the model output unchanged. The strength of the
PPE approach is that interactions are already taken into account, meaning that all
four processes could be simplified at the same time. If one wants to develop the
CMP scheme further, autoconversion is the process to scrutinize as it has the largest
leverage in the model and therefore the most urgent need to be represented correctly.

As we find that the processes themselves use a negligible fraction of the overall
model computing time, simplifications are proposed as a means to make the model
more interpretable, not cheaper (see Secs. 2.1 and 2.3.6). Our analysis shows that
the representation of the four investigated microphysical processes leaves room for
simplification. However, in deciding how drastic these simplifications should be,
process uncertainty should also be considered. At the least, when new parameteriza-
tions are included in climate models we should also question their implementation
regarding the complexity they add, looking for their consistency, interpretability,
simplicity, and comprehensiveness (Mülmenstädt and Feingold, 2018; Touzé-Pfeiffer
et al., 2021). Of course, more drastic simplifications than process reformulations
would provide more leverage on interpretability and computing cost. For example,
CMP schemes that contain only one category for ice, e.g., the predicted particle
properties (P3) ice microphysics scheme (e.g., Morrison and Milbrandt (2015), Ei-
dhammer et al. (2017), Dietlicher et al. (2018), Dietlicher et al. (2019), and Tully
et al. (2021)) are more physical as well as more interpretable. From this perspective
it might seem troubling that in the current CMP scheme the autoconversion process,
which is a transfer mechanism between the two artificial classes, is so dominant
in its importance. However, while the categories are artificial, the process itself is
not: accretion of ice crystals forming larger ice crystals would be the equivalent
process with only one ice category. Still, autoconversion is difficult to constrain in
observations (Morrison et al., 2020) also because it is not a distinct physical process,
so moving towards a scheme with evolving instead of pre-defined ice categories seems
advisable (see, e.g., Milbrandt and Morrison (2016) and Jensen et al. (2017)).

This study introduces the methodological framework to study the sensitivity of a



52 Assessing the potential for simplification in CMPs

climate model to the representation of CMP processes. To complete it, the analysis
needs to be expanded to include other CMP processes in the model: for cold CMP
ice formation, regional modeling studies have demonstrated cloud susceptibility to
the choice of the ice nucleation parameterization (Levkov et al., 1995a; Hawker et
al., 2021b), whereas in ECHAM-HAM heterogeneous immersion freezing in mixed-
phase clouds has been shown to be rather inefficient (Villanueva et al., 2021). More
generally the heterogeneous ice formation pathway in mixed-phase clouds is small in
ECHAM-HAM (Dietlicher et al., 2019; Bacer et al., 2021), hinting at simplification
potential. In a sensitivity study of CMP parameters, Tan and Storelvmo (2016)
found that the timescale of the Wegener–Bergeron–Findeisen process explains a
large variance in supercooled cloud fractions, suggesting that as a whole it may
be a dominating process as well. Secondary ice formation (Korolev and Leisner,
2020) may interact with the ice crystal source processes, allowing for interactive
sensitivities (Hawker et al., 2021b), and should therefore be included, even though
only the Hallett–Mossop process is optionally included in ECHAM-HAM (Neubauer
et al., 2019). Moreover, for a complete CMP process investigation, of course the
warm-rain processes need to be included as well (Wood et al., 2009; Gettelman et al.,
2013).

One might argue that our analysis neglects the influence of other factors external
to the CMPs on our conclusions. However, as our simulations span the whole globe
and a whole year, they cover a range of dynamical situations, and the results are
therefore robust in the current climate. Whether the conclusions hold, e.g., in a
future changed climate will have to be evaluated in a future study. It is important
to stress that while we propose that simplifications to the CMP representation are
possible, care needs to be taken to leave them physically based to ensure that the
model can correctly represent differing climates. We emphasize that our findings are
conditional on the design of the ECHAM-HAM model, including the implementation
of other processes and parameters that were not varied in the current study. Another
factor that has not been investigated here is the model resolution that may affect
the CMP behavior in the model and thereby our conclusions on the importance of
single processes (Santos et al., 2021). The implementation and design choices of the
CMP scheme in ECHAM-HAM may also influence the results, e.g., in the order of
processes that are called, the separation between ice and snow, and the employed
tuning strategy. Thus, the results as such are only applicable to this CMP scheme
and cannot be transferred to the significance of the investigated processes in other
schemes let alone in reality.

Nevertheless, learning about the representation of CMP processes in ECHAM-
HAM and how sensitive the model is to their representation helps us to interpret and
improve the model, especially when comparing the results to experimental studies.
To this end, it will also be fruitful to compare our findings to sensitivities in other
models using different CMP schemes.
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Code and data availability The ECHAM-HAMMOZ model is freely available to
the scientific community under the HAMMOZ Software License Agreement, which
defines the conditions under which the model can be used. The specific version of
the code used for this study is archived in the ECHAM-HAMMOZ SVN repository
at /root/echam6-hammoz/tags/papers/2022/Proske_et_al_2022_ACP_2. More
information can be found on the HAMMOZ website1. Analysis and plotting scripts
are archived at https://doi.org/10.5281/zenodo.5506588 (Proske et al., 2022c). Gen-
erated data is archived at https://doi.org/10.5281/zenodo.5506533 (Proske et al.,
2022b). The PyDOE library (tisimst, 2021) was used for Latin Hypercube Sampling,
ESEm (Watson-Parris et al., 2021c; Watson-Parris et al., 2021a) for the construc-
tion of the emulator, SALib (Usher et al., 2020) for the sensitivity analysis, and
PySphereX (Staab, 2021) for the construction of the spherical harmonics expansion.
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Abstract In a quest to represent the Earth system, climate models have become
more and more complex. This generates problems, for example hindering model
interpretability. This study contributes to a regain of model understanding and
proposes simplifications to decrease scheme complexity. We reflect on the reasons for
model complexity and the problems it generates or deepens, connecting perspectives
from atmospheric science and the philosophy of climate science. Using an emulated
perturbed parameter ensemble of the cloud microphysics (CMPs) process efficiencies,
we investigate the sensitivity of the model to process perturbations. The sensitivity
analysis characterizes the scheme and model behavior, contrasting it to physical
process understanding as well as an alternative CMPs formulation (comparing the 2M
(Lohmann et al., 2007) to the P3 scheme (Morrison and Milbrandt, 2015; Dietlicher
et al., 2018)). For the 2M scheme, ice crystal autoconversion dominates the model
sensitivity in the ice phase. The P3 scheme removes this artificial process and
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thus shows more balanced sensitivities. Model behavior sometimes aligns with
process understanding, but many process sensitivities are masked by other more
dominant processes or the model finally responds differently due to adjustments. We
identify processes that the model is not sensitive to and test their simplification.
For example, heterogeneous freezing or secondary ice production are drastically
simplifiable. Depending on one’s modeling vision one may interpret this study’s
findings as pointing to simplification potential in the CMPs scheme or the need for
process representation improvements where the model behavior does not tally with
our physical understanding.

Plain Language Summary Climate models are supposed to help us to under-
stand or project Earth system behavior. In order to represent many aspects of this
system, modelers have added more and more detail to the models. This makes the
models complex and difficult to understand, even for the modelers themselves. We
want to gain more understanding of the model behavior. For this we use a method-
ology where we manipulate the effectiveness of a process in the model to test how
the model reacts to that change. Some of how the model reacts is surprising and
different from what our physical understanding of a process suggests. In particular,
some processes, like the freezing of cloud droplets at temperatures warmer than
−35 °C, are negligible in the model, even though atmospheric scientists think that
this is an important process in the real atmosphere. Now one could either simplify
the representation of such a process, or try to improve the model to reflect physical
reality better. What one decides for depends on the purpose and concept of the
model.

3.1 Introduction
In climate modeling, our task is to represent an immensely complex system which we
wish to understand and learn about. Model development inherently faces tradeoffs
between epistemic values like tractability, interpretability, validation potential, and
specificity (Larsen et al., 2016; Undorf et al., 2022; Beucler et al., 2021), which
manifest themselves in the ever present question of where to draw the line for details.
Understanding nature requires a simplification of the mechanisms at play, but want-
ing to be precise calls for more details that increase complexity (Tapiador et al., 2019).
For the term “model complexity” we here follow the “loose definition” mentioned in
García-Callejas and Araújo (2016) that a model becomes more complex the more
difficult to comprehend its computations are and the more processes/computations
there are (Randall et al., 2003; Baartman et al., 2020).

Climate modeling has followed the mirror view (Parker, 2022a), meaning that it
wants to mirror the Earth system in the model representation. Different modeling
approaches would be following for example the predictive or heuristic view, which
aim for predictive abilities or the ability to generate understanding, respectively;
see for example Held (2005), Lahsen (2005), Sundberg (2009), and Heymann and
Hundebol (2017). In particular, deducing representation from detailed first-principles
is favored in geological modeling (Larsen et al., 2016). Following the mirror view,
improving climate models means trying to represent the system better and this is
achieved by adding more and more detail and hence the models have grown more
complex (Edwards, 2011; Stevens and Bony, 2013). In the face of complexity and
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uncertainty, more detailed or physical formalisms are an anchor to hold onto; but
sometimes it also seems like this quest for more detail is merely the capitulation in
front of a complex system that we cannot grasp otherwise (Saltelli et al., 2020b).
The complexity in process representation brings about a bouquet of problems for
the model:

1. Hindered understanding Too many detailed processes hinder the modeler’s
understanding of the model (Menard et al., 2021). Many of these processes have
been added in the first place to test their impact, and may only stay included
to reassure that nothing that might be of importance is left out, meaning that
the model is used as a book-keeper. However, having more and more processes
included does not improve interpretability of the model. Gramelsberger et al.
(2020) have termed this the “dilemma of growth”: models are meant to aid
understanding of something as complex as the Earth system, but “the growing
complexity of the models themselves seems to jeopardize understanding” (see
also Held (2005)). As the model is built up sequentially, every added process
deepens the generative entrenchment (meaning an entanglement in climate
model evolution with development steps depending on each other so that
modeling options depend on previous choices (Lenhard and Winsberg (2010)
adopting a concept introduced by Wimsatt (2007) for climate science); also
termed path dependence or legacy effect by Babel (2019)).

2. Equifinality More processes mean more free parameters, which need to be
set via tuning and may allow for multiple equally plausible model realizations
with similar or indistinguishable results (Beven and Freer, 2001; Beven, 2006;
Tapiador et al., 2019; Mülmenstädt et al., 2020).

3. Overinterpretation Including more processes or more sophisticated schemes
brings the danger of overinterpreting the processes that are represented while
neglecting the impact of “minor-looking treatments” such as thresholds (Kawai
et al., 2022) or of those processes that are not represented (Mülmenstädt and
Feingold, 2018). Provocatively put, the research into and representation of
more and more processes may even be acting as an “engine of distraction,”
meaning that it may obscure elemental relationships or other study objects
and that thus the detail produces ignorance (Proctor and Schiebinger (2008)
citing Wes Jackson for the term on p. 24).

4. No reduction in uncertainty At the same time, the increase in model and
process complexity may not be decreasing uncertainty (Lahsen, 2005; Maurit-
sen et al., 2012; Knutti and Sedláček, 2013; Stevens and Bony, 2013; Carslaw
et al., 2018; Fiedler et al., 2019b; Puy et al., 2022), increasing the abilities of
the model (see e.g., Zelinka et al. (2022) for the representation of clouds in
improving cloud feedback representations; Krinner et al. (2018) and Menard
et al. (2021) for a snow model intercomparison; Crout et al. (2009) for different
environmental models) or the confidence in its results. Baartman et al. (2020)
have surveyed geoscientists’ opinions on model complexity. Respondents dis-
agreed strongly that models will be improved by making them more complex.
In particular, more experienced modelers are more cautious/suspicious of com-
plexity and disagree that a more complex model warrants more confidence
than a simple one.
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Earth's climate system is 
complex.

So we have included more and 
more details in our climate models 
in a quest to represent it.

To find out which 
processes in the 
cloud 
microphysics 
scheme can be 
simplified, we 
perturb the 
effectiveness of 
each process.

In this study we aim to simplify the 
parameterisations of the cloud 
microphysical processes.

How does the model behaviour compare 
to our physical understanding?

We find that some processes can even be 
removed without changing the results of 
our model version.

With many simulations we 
probe how the model responds 
to the perturbations.

This makes the model difficult to interpret.

Figure 3.1: Visualization of the motivation and methods in this study.

5. Hides non-epistemic influences The opacity (Undorf et al., 2022) and the
authority (Heymann et al., 2017b) of the global climate model hide above
methodological problems. They also conceal the influence of non-epistemic
values (Pulkkinen et al., 2022) and habits (Babel, 2019) involved in model
construction. Especially the influence of the modelers’ unforced choices makes
it even more important to scrutinize what has been included (Winsberg, 2012;
Ward, 2021). Non-epistemic values refer to those values that do not contribute
“to the goal of gaining knowledge,” such as moral or political values (Elliott,
2017; Undorf et al., 2022).

In summary, as Guthke (2017) argues, complexity needs to be tailored to the model’s
purpose (Parker, 2020).

Thus, it may well be time to scrutinize the complexity that has accumulated,
characterize the current model schemes, evaluate which processes have a significant
effect on global model results (within the framework of our scientific questions cloud
properties are especially relevant) and simplify or remove the ones that do not. In
this study, we are documenting and characterizing the 2-moment cloud microphysics
(CMPs) scheme and are comparing it to the P3 CMPs scheme as well as physical
understanding (see Fig. 3.1). Previous studies have used different methodologies to
understand model behavior, for example Dietlicher et al. (2019) have introduced a
pathway analysis of ice formation or Bacer et al. (2021) have analyzed the process
rates of cloud microphysical (CMP) processes in ECHAM-HAM. However, to our
knowledge we present the first sensitivity analysis encompassing the whole CMPs
scheme and the resulting global variables. Then we metaphorically put on Ockham’s
razor, asking what can be left out of the CMPs in a global climate model, with the
model staying equifinal (Beven and Freer, 2001; Beven, 2006). Instead of the mirror
view we aim for adequacy for purpose (Parker, 2020). If the purpose of the model
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is explanatory, even more accurate but complex equations make it less adequate for
purpose. Instead, simplicity aids understanding, and thus reducing the amount or
complexity of process representations serves the models’ adequacy. Another model
purpose could be predictive accuracy, where processes that the model is not sensitive
to do not increase the model’s adequacy. Note that the focus of our study is explicitly
on enhancing interpretability of the model and not on computational time savings.
One might expect simplifications to serve reductions in computational cost, but
Proske et al. (2022a) have shown that the contributions of single CMP process
computations to ECHAM-HAM simulation time are negligible (see their Table 1).

Simplifications of aerosol and climate models have been successfully attempted
(Molteni, 2003; Ghan et al., 2012), for example for the representation of the aerosol
radiative effects with a plume model (Stevens et al., 2017). Conversely, there are also
studies that implement more detail into parameterizations and find small effects. For
example, Karset et al. (2020) have added a size dependence to the parameterization
of entrainment and evaporation and find a small impact on the radiative forcing due
to aerosol-cloud interactions.

Also, the authors acknowledge that there are numerous other paths being ad-
vocated and followed to address the issue of complex climate models. Replacing
climate models with emulators or other machine-learning generated surrogates is an
emerging yet contested field (e.g., Knüsel (2020), Rudin (2019), Kasim et al. (2020),
Nonnenmacher and Greenberg (2021), Beusch et al. (2022), and Watson-Parris et al.
(2022)). On a smaller scale, machine-learning is also used to replace or improve single
parameterizations or schemes (e.g., Seifert and Rasp (2020), Gettelman et al. (2021),
Harder et al. (2021), and Meyer et al. (2022)). However, while these approaches
may help to reduce the computational load of climate simulations, they do little to
improve interpretability of the model (Rudin, 2019). Another approach follows the
idea that in order to simulate climate, many of the details at finer scales are irrelevant
to be forecasted explicitly and can thus be incorporated in stochastic models that
make use of statistical laws at the macroweather time scale (see e.g., the fractional
energy balance equation FEBE (Procyk et al., 2022; Lovejoy, 2022)). Similarly,
Palmer (2001) questions the use of deterministic parameterizations and suggests to
incorporate the variability on scales smaller than the model resolution stochastically.
In our analysis, we stay with the classical, theory- or observation-based parameter-
izations as they summarize physical knowledge and establish the climate model’s
ability to simulate past and possible future climates (Couvreux et al., 2021). Here
we study the model as it is and therefore look for simplification potential inside the
established structures. To the authors’ knowledge there have been no systematic
attempts to reduce the number of processes or their level of detail in a whole model
scheme while leaving the scheme structure itself intact. Here we attempt such a
thorough but minimally invasive investigation for the CMPs scheme in the global
climate model ECHAM-HAM.

The focus of the current analysis is the CMPs, which means all processes and hy-
drometeor interactions taking place inside clouds, representing a chaotic but buffered
system (Tapiador et al., 2019). Clouds themselves are an integral part of the climate
system, influencing the Earth’s radiative and hydrological balance. This influence is
in turn mediated by the clouds’ microphysical properties, which thereby modulate im-
portant yet uncertain climate feedbacks and aerosol cloud interactions (e.g., Boucher
et al. (2013) and Gettelman (2015)). Importantly, while the need for convection
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parameterizations will disappear with the move to higher resolution modeling, CMPs
will continue to need to be parameterized at any resolution above the molecular scale
(Morrison et al., 2020) (following the traditional rather than the statistical modeling
approach mentioned above). Thus, the question of where one can draw the line for
detail in CMPs is of lasting importance.

In climate models, CMPs are parameterized in different ways, from bulk to
bin schemes, with one- (mass concentrations) or two-moments (mass and number
concentrations) for the hydrometeors. These parameterizations are a good example
of detailed schemes that are becoming problematic for interpretation as discussed
above. In particular the CMPs scheme in ECHAM-HAM has a long history of
additive development (see e.g. Lohmann and Roeckner (1996), Lohmann et al. (1999),
Lohmann and Kärcher (2002), Hoose et al. (2008b), Joos et al. (2008), Lohmann
(2008), Croft et al. (2009), Sesartic et al. (2012), Kuebbeler et al. (2014), Dietlicher
et al. (2018), Friebel et al. (2019), and Muench and Lohmann (2020)), which deepens
its generative entrenchment, while at the same time lacking clear documentation
to aid interpretation. Randall et al. (2003) state that “the cloud parameterization
problem is overwhelmingly complicated,” and is becoming more so, because both
numerical and conceptual complexity are rapidly increasing. The development of
CMPs parameterizations may even be ahead of fundamental research (Morrison
et al., 2020), as Hoose (2022) states for the process of secondary ice production.
This may be for example, because the need to improve climate models is often
employed as a justifying value (Ward, 2021) that encourages experimentalists to
frame their research as contributing to parameterization development (Sundberg,
2007). Thus, with parameterizations that may not be grounded in thorough empirical
or theoretical research, the CMPs scheme lends itself to simplification.

Practically, in the 2M scheme, the divide between ice crystals and snow flakes
was modeled in analogy to the divide between cloud droplets and raindrops, which
was based on sedimentation velocity (Lohmann and Roeckner, 1996). For the liquid
phase, this divide into in-cloud cloud droplets and sedimenting raindrops is sensible,
because there is a large gap in the fall speed of cloud droplets and raindrops. However,
there is no such well-defined gap between ice crystals and snow flakes. Hence, the
separation into a sedimenting snow and an in-cloud (not sedimenting) ice class is
somewhat artificial for the ice categories. Subsequently, some of the connecting
processes have artificial qualities in that they transfer between these two classes,
even though they exist as real processes in the atmosphere (e.g., ice crystals really
collide and form a larger ice crystal, but this resulting particle is termed a snowflake
artificially in the process of ice crystal autoconversion in the model). To overcome
the ill-constrained divide between ice crystals and snowflakes, schemes that represent
ice as a single category with variable properties have been proposed. In particular,
Morrison and Milbrandt (2015) have developed the P3 scheme that Dietlicher et al.
(2018) have implemented into the ECHAM-HAM model. The P3 scheme has been
evaluated as both producing results closer to observations and being more physical in
the sense of closer to first principles (based on the absence of the artificial separation
of snow categories) (Dietlicher et al., 2018; Wang et al., 2021). Hence Igel et al.
(2022) call for such a single category in the liquid phase as well. We include the P3
scheme in our analysis here to broaden the scope to a more general treatment of
CMPs schemes with differing properties.

To probe how ECHAM-HAM reacts to alterations of the CMPs scheme param-
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eterizations, we employ extended sensitivity studies. In particular, we construct a
perturbed parameter ensemble (PPE) of altered process efficiencies. We emulate
the resulting response surface with a Gaussian Process emulator (Rasmussen and
Williams, 2006; Watson-Parris et al., 2021b) to be able to conduct quantitative
sensitivity analysis (Saltelli, 2008a). In this approach we follow Proske et al. (2022a),
but extend their analysis to 15 CMP processes and the P3 scheme. The method of
exploring a parameter space with a PPE has been employed widely in atmospheric
science (Lee et al., 2011; Yan et al., 2015; Couvreux et al., 2021; Hawker et al.,
2021a), but we direct it toward a new research question: we want to characterize the
whole entangled system of CMPs parameterizations and use the results to determine
which processes are negligible or can be simplified, aiming to reduce complexity.
For simplifications we try removing a process and replacing its formulation by a
constant (0 dimensional) or a zonal mean (2 dimensional) climatology. If a process
is simplifiable without much effect on the model output, that either means it is
negligible or points to something that is wrong in the model. As the climate model’s
key ability to simulate both past and possible future climates needs to be preserved
for it to remain adequate for purpose, we test the performance of the simplifications
we develop in different climate states.

3.2 Methods
As the present study is a continuation of the work in Proske et al. (2022a), the use of
ECHAM-HAM, the construction of the PPE, the emulation and sensitivity analysis
are akin. Thus we refer the reader to Proske et al. (2022a) for a detailed documen-
tation of these methods, and in the following we provide only a brief overview.

3.2.1 Cloud microphysics in ECHAM-HAM

This study employs the aerosol-climate model ECHAM6.3-HAM2.3 (Tegen et al.,
2019; Neubauer et al., 2019). It has 47 vertical levels and a T63 horizontal spectral
resolution (1.875°× 1.875°). Apart from additional perturbation parameters that we
added (see Sec. 3.2.1), the model version used in this study is the same as in Proske
et al. (2022a). The changes with regard to the published model version ECHAM6.3-
HAM2.3 (Neubauer et al., 2019) as well as the tuning are thus documented in Proske
et al. (2022a).

For stratiform clouds the default model version employs a 2-moment CMPs
scheme that is visualized in Fig. 3.2. Cloud droplets and ice crystals are treated
prognostically in both mass and number concentrations (the first two moments of
a distribution). Snow and rain are diagnosed and reach the surface within one
timestep but undergo processes and transformations while sedimenting through the
model levels. The four hydrometeors interact with each other and with water vapor
through linear and non-linear processes. For example, the sublimation of snow forms
water vapor, or two ice crystals form one snowflake in the process of ice crystal
autoconversion.

Some of the process formulations are simple. For example, in-cloud melting
occurs at temperatures above 273.15 K and transforms all ice crystals into cloud
droplets. Because these physical and simple formulations offer no potential for a
simplification, they are excluded from the following analysis (marked gray in Fig.
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Figure 3.2: Schematic of the cloud microphysical processes included in the ECHAM-
HAM 2-moment cloud microphysics scheme, connecting water vapor (top), cloud droplets
(top left), rain drops (bottom left), ice crystals (top right), and snowflakes (bottom right).
Processes that are present in the scheme but not part of the present analysis are represented
in gray. Acronyms for the processes are explained in Table 3.1.

3.2). Other process parameterizations are sophisticated. For example, sublimation
takes into account the saturation vapor pressure, the ventilation effect as well as
the latent heat release in a semi-empirical formula. Their complexity and specificity
in the face of limited evidence to constrain them begs the question whether their
formulation could be simplified. Thus, these processes are included in the following
sensitivity study (marked black in Fig. 3.2). The CMP process parameterizations are
detailed in Table 3.1 (for a comparison to CMPs schemes employed in other models
see Tapiador et al. (2019, Table 2)). Documentation of the scheme in the literature
and also within the model code is incremental and incomplete, as it is common for
complex climate models (Winsberg, 2012; Menard et al., 2021). Summarizing the
documentation of a module like this aims to ease understanding and reproducibility
and to avoid mistakes as suggested by Menard et al. (2021).

The model treats convective clouds separately, except that their condensate can
produce new stratiform clouds or thicken existing ones by convective detrainment.
This study focusses on the stratiform cloud scheme.
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Table 3.1: Origin of the cloud microphysics (CMPs) parameterizations in the 2M and P3 CMPs scheme. The acronyms from Fig. 3.2 that are explained here
are printed in bold. Where they aid understanding, maximal and minimal conditions are made explicit. fmlt,∆T is the melted flux per temperature difference
that the melting causes; T0 = 273.15 K; F is the snow or ice flux in kg m−2 s−1; qi is the mass mixing ratio of ice crystals kg kg−1; fs,i is the ventilation factor
of snow/ice; Ec,s/i is the collection efficiency between snow/ice and cloud droplets; ICNC abbreviates the ice crystal number concentration; αi is a short-hand
for terms involving multiple constants and variables, introduced to aid accessibility of the formulas.

Process 2M 2M P3 P3
Process parameterization reference parameterization reference
Melting
mlt

Melting of sedimenting
snow and ice: Fmlt,s/i =
MIN

(
Fs/i, fmlt,∆T · (T − T0)

) Roeckner et
al. (1992) and
Lohmann and
Roeckner (1996),
but with a
threshold of
273.15 K and not
275.15 K1

Melting of ice: ∂qi
∂t

=
∂qi
∂t condensation

+ ∂qi
∂t diffusion

Straka (2009,
Equation 11.6)
and Dietlicher
et al. (2018,
Equation 16)

Melting Melting of in-cloud ice: qmlt,i = qi,
where T > T0, with T0 = 273.15 K

Lohmann and
Roeckner (1996)

1In sensitivity tests, using one or the other temperature as T0 made only a small difference (not shown).
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Sublimation
subfis

Sublimation of falling
snow and ice: Fsub,s/i =
MIN

(
qsat,i − q, Fsub,s/i (Si, T, fs,i)

) Lin et al. (1983,
Equation 31),
based on Byers
(1965, Equation
5.29) (differs
from Lohmann
and Roeckner
(1996), which
is based on
Roeckner et al.
(1992) and does
not take e.g. the
ventilation effect
into account)

Sublimation of ice: ∂qi
∂t

=

MIN
(
∂qi
∂t deposition

, 0
)
, limited to

ice saturation

Lohmann et al.
(2016, Equation
8.11)

Evaporation
evp

Evaporation of rain: Fevp,r =
MIN (qsat,w − q, Fevp,r (Sw, T, Frain))

Rotstayn (1997,
Equation 23)
(differs from
Lohmann and
Roeckner (1996),
which is based
solely on the sat-
uration deficit
(Roeckner et al.,
1992))

Same as 2M

Sedimentation Sedimentation of ice: vertical ad-
vection, computing the fall speed

Vertical advection, fall speed read
from lookup table; requires tem-
poral substepping

Sedimentation of snow
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Cloud droplet
nucleation
cdnuc

Köhler theory based Abdul-Razzak
and Ghan (2000)

Same as 2M

Condensation Saturation adjustment Lohmann and
Roeckner (1996)

Saturation adjustment Dietlicher et al.
(2018)

Deposition Saturation adjustment Lohmann and
Roeckner (1996)

Saturation adjustment Dietlicher et al.
(2018)

Deposition
dep

Deposition in cirrus clouds, solv-
ing the depositional growth equa-
tion

Kärcher and
Lohmann
(2002a)

Deposition in cirrus clouds: ∂qi
∂t

=

MAX
(
∂qi
∂t deposition

(RHi,C,T ) , 0
) Lohmann et al.

(2016, Equation
8.11)

Homogeneous
freezing

All cloud droplets freeze at T <
T0

Semi-empirical homogeneous
freezing rate

Jeffery and
Austin (1997)

Heterogeneous
freezing
hetfrz

Immersion and contact freezing Lohmann and
Diehl (2006)

Same as 2M

Ice nucleation
icnucl

Nucleation of solution droplets in
the cirrus regime

Kärcher and
Lohmann
(2002b) and
Kärcher and
Lohmann
(2002a)

Same as 2M

Autoconversion
of CDs
cdautc

(
∂qr
∂t

)
cdautc

= 1350q2.47
c N−1.79

c Khairoutdinov
and Kogan
(2000, Equation
29)

Same as 2M

Accrection of
CDs
cdaccr

(
∂qr
∂t

)
cdaccr

= 3.7qcqr Khairoutdinov
and Kogan
(2000, Equation
34)

Same as 2M
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Autoconversion
of ICs
icautc

–

Accretion of ICs
icaccr

As riming, but with Es,i =
e0.09(T−T0)

Seifert and
Beheng (2006,
Equation 67)

–

Self-collection of
ICs
sci

(
∂ICNC
∂t

)
sci

= α3ICNC · qi Analogous to riming

Riming
rime

(
∂qr
∂t

)
rime

= Ec,sα4ql

(
1.3
ρair

) 1
2 Lohmann (2004,

Equation 1)

(
∂qr
∂t

)
rime

= α5 ·K ·Ec,i · ICNC · qc ·
ρair

Milbrandt and
Morrison (2016)

Wegener-
Bergeron-
Findeisen pro-
cess
wbf

Threshold process: all droplets
evaporate and deposit water onto
existing ice crystals

Lohmann et al.
(2007)

Extended saturation adjustment Dietlicher et al.
(2018)

Secondary ice
production
sip

(
∂qr
∂t

)
sip

= α6Ec,sqc Lohmann (2002,
p. 11) and Lev-
kov et al. (1992)

–
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Figure 3.3: As Fig. 3.2 but for the P3 scheme.

P3 scheme

Dietlicher et al. (2018) have implemented the P3 CMPs scheme from Morrison and
Milbrandt (2015) into the ECHAM6-HAM2 (echam6.3.0-ham2.3-moz1.0) (Zhang et
al., 2012; Stevens et al., 2013) model. We have ported the scheme to the ECHAM6.3-
HAM2.3 model version described above, including various bugfixes that have been
developed in the meantime. This model combination is employed at the same vertical
resolution of 47 levels in this paper (as the 2M model version) and required retuning
that is detailed in Appendix B.1. The P3 CMPs scheme is visualized in Fig. 3.3
and the represented processes are detailed in Table 3.1. The scheme also splits the
hydrometeors by size and assigns them different properties, such as the values for the
ventilation coefficient at a given fall speed. However, they all participate in the same
processes, for example snow and ice crystals are both sedimenting, so their artificial
separation as in the 2M scheme is overcome (but a tuning factor for the aggregation
of ice crystals, which corresponds to self-collection in the 2M scheme, remains).
Another difference to the 2M CMPs scheme is that the P3 scheme introduces sub-
time stepping to resolve the vertical advection of cloud ice and parallel splitting of the
whole CMPs scheme (Dietlicher et al., 2018). This means that the CMP processes act
on the same state of variables, whereas the 2M scheme employs sequential splitting,
where processes are ordered and use the state updated from the preceding processes
(Williamson, 2002; Zarzycki, 2022).

Perturbations

As introduced in Proske et al. (2022a) we use perturbations of the efficiency of single
processes as a proxy for evaluating the model sensitivity to this process. If the
model is sensitive to perturbations in a process, this suggests that this processes’
representation is important and should be implemented accurately. However, if the
model is insensitive to such perturbations, this suggests that the formulation of this
process is not important and can thus be simplified. The perturbations are realised
simply by multiplying the impact that each process i has on the CMPs variables
by a factor ηi between 0.5 and 2 and are constant in time and space. The range is
multiplicatively equally large on both sides of the default 1 (no perturbation), to
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sample over- and underestimations equally. A factor of 2 is deemed sufficient to
approximate the effect of rough simplifications, but we note that this choice is un-
derdetermined. If estimates for for example, the uncertainty of process formulations
were available, this ad-hoc range could be replaced by a more physically meaningful
one that could vary for each process. As estimating such a range would rely on a
host of assumptions and unforced choices, we opt for equal ranges for all parameters.
As detailed above, some process representations are so physical and simple that they
were not perturbed here (e.g., melting). Some processes required implementation
of condition checks after their perturbations to make sure that these do not push
the model out of physically realistic conditions by for example, creating negative
hydrometeor concentrations. These conditions may limit the sensitivity of the model
to a given process. In particular, for the Wegener-Bergeron-Findeisen process the
physical constraint renders efficiencies larger than 1 useless, because that would
mean that more water droplets evaporate than are present.

3.2.2 Perturbed parameter ensemble, emulation, sensitivity
analysis

In order to judge the effect of each process while taking into account interactions be-
tween processes, perturbations are applied to all processes at once in each simulation,
thus creating a PPE. This experimental setup is visualized in Fig. 3.4. Expanding
upon Proske et al. (2022a), who perturbed only four processes (self-collection and
autoconversion of ice crystals, accretion of ice crystals with snowflakes, and riming),
we are perturbing an additional 11 processes (see Table 3.1). The parameter space
is sampled logarithmically because the perturbation parameters are multiplicative.
To sample the space equally, we employ Latin Hypercube Sampling (Morris and
Mitchell, 1995) as in Lee et al. (2011) and Hawker et al. (2021a). We choose 108
experiments, which is smaller than the 10 members suggested by Loeppky et al.
(2009), but this criterion can be relaxed the more dimensions are added. For each of
the PPE members, the full, global ECHAM-HAM model was run with the respective
parameter combinations. These present day (PD) simulations were conducted for
the year 2003, with a 3 months spin-up, climatological sea surface temperatures
(SSTs) and sea ice extents, and aerosol emissions representative for the year 2003.

In order to be able to analyse the PPE results quantitatively, the results in the
15 process-dimensional parameter space were emulated. Gaussian process emulation
was employed to model the behavior of each global annual mean variable of interest
(one for each of the eight variables separately, namely ice crystal and cloud droplet
number concentration (CDNC), ice and liquid water path (LWP), longwave and
shortwave cloud radiative effect, cloud cover (CC) and precipitation). The emulation
was conducted as described in Proske et al. (2022a).

Validation and sensitivity analysis

Validation of the emulator was conducted for each variable included in the analysis
and conducted following Bastos and O’Hagan (2009) and as detailed in Proske
et al. (2022a). It was performed as leave-one-out validation, where iteratively the
emulator is trained on all experiments except one and its prediction is compared
to the real simulated value. Fig. 3.5 displays the validation of the ice water path
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Figure 3.4: Perturbed parameter ensemble experimental setup. For each experiment
(single vertical columns), the perturbation parameters of all processes were varied at once.
Experiment number 50 is highlighted with black edges to illustrate this. The process
acronyms are explained in Fig. 3.2 and Table 3.1.

(IWP) emulator. In Figures 3.5a and b we observe only few individual standardized
errors larger than 2, which would signal a conflict. Fig. 3.5c indicates that the
normality assumption used in a Gaussian process holds. In Fig. 3.5d, the actual
values of emulator and real model output are compared. Points should lie close to
the line of equifinality, with the 95% confidence bounds encompassing it. For IWP
this is the case for 4 %, and for all variables this value lies between 2% and 17%.
As there is good qualitative agreement between the emulator and real model output,
no systematic bias exists. As we are looking for a conceptual analysis in this study,
we deem the emulator representation of the model output to be sufficient.

Subsequently, variance-based global sensitivity analysis (Oakley and O’Hagan,
2004) was conducted on 3.000 points sampled from the emulated response surfaces
to give quantitative estimates of the first order (S1) and total sensitivity index (ST)
(as in Proske et al. (2022a)). S1 of ηi measures the contribution of variance in ηi to
the variance in an output variable such as IWP. S1 lies between 0 and 1, where high
values signal an important variable. ST of ηi summarizes all direct and interactive
effects that this parameter’s variance has on the output variance (Homma and Saltelli,
1996; Saltelli, 2008b). Thus S1 and ST allow to determine the direct and the sum of
direct and indirect effects of each process, respectively (Saltelli, 2008a).

Note that we use the emulation merely as a tool for model analysis. Our aim
is by no means to replace model components with machine learned substitutes or
to replace the full model (in contrast to e.g., Arcomano et al. (2022), Harder et al.
(2021), and Fletcher et al. (2021)), but rather to understand how the model can be
simplified.

3.2.3 Simplifications

Upon identifying processes to which the global model is insensitive, various forms
of simplifications were tested. In order of severity or naivety, we tested removing
a process, that is, setting the effect it has on model variables to zero; replacing



70 Addressing complexity in CMPs

10 20

Emulator IWP (g m−2)

−4

−2

0

2

S
ta

n
d

a
rd

iz
ed

er
ro

r

a)

1 2

ηi

−4

−2

0

2

S
ta

n
d

a
rd

iz
ed

er
ro

r

b)

−2.5 0.0 2.5

Theoretical Quantiles

−4

−2

0

2

S
ta

n
d

a
rd

iz
ed

q
u

an
ti

le
s

c)

15 20

Model IWP (g m−2)

10

15

20

25

E
m

u
la

to
r

IW
P

(g
m
−

2
)

d)

Figure 3.5: Leave-one-out validation of the emulator for the response of the global annual
mean ice water path (IWP) in response to perturbations of the 15 processes, following Bastos
and O’Hagan (2009) (same as Fig. 4 in Proske et al. (2022a)). Individual standardized
errors are plotted against (a) emulator output and (b) input parameters (plotted separately
for each process, colored according to Fig. 3.4). The standardized errors are computed as
the difference between the real and emulated model output for IWP, normalized by the
square root of V , the emulator variance: Model IWP−Emulator IWP)√

V
. The dashed lines are

drawn at an individual standardized error of 0 and 2, which is the threshold discussed in
Bastos and O’Hagan (2009). (c) QQ-plot of the individual standardized errors against a
student-T distribution. (d) Emulator against model output, with the error bars indicating
the 95% confidence interval on the emulator predictions. Predictions for which the model
result lies outside that interval are marked red.

the computed effect in the model with one constant for all grid points and times
that the process is called; or replacing the effect with a constant climatology. This
climatology was derived from monthly mean output of the process effect in a previous
default simulation, with all ηi set to 1. As these values did not vary substantially
in time and meridionally, we employed a zonal mean, but height resolved monthly
climatology. For riming and ice crystal accretion these climatologies are displayed in
Fig. B.1 in the Appendix. How accurate a process needs to be represented or how
drastic a simplification can be depends both on how important a process is in the
model and how much the process rates vary spatially and/or temporally. Of course
various other more sophisticated simplifications are possible to conceive, but since
we only simplify here as a proof that simplifications are possible, we refrain from
exploring these other options. The goal here is not to create a simple model (as e.g.,
Molteni (2003) for long simulations), but to improve interpretability of the CMPs
scheme by simplifying non-influential processes. It is important to note that the
simplifications and their values are not meant to be a physical estimate of what these
processes do in reality. Rather, they are what we can substitute to have the model
perform equally well as the detailed model. Thus, there is freedom in choosing the
simplification’s values, following the thought that there are superfluous degrees of
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freedom in these parameterizations that we replace with a single degree of freedom.

3.2.4 Historical and future simulations

To test whether the simplifications that we derive from PD simulations impede the
model’s ability to simulate different climate states, we perform sensitivity simulations
with each of the simplifications in pre-industrial (PI) and possible future conditions.
Again we keep the applied condition changes simple: for PI simulations we merely
use PI aerosol emissions (ACCMIP data (Lamarque et al., 2010), from 1850, 1870, or
1900 as data was available), but everything else (greenhouse gas concentration, SST
and sea ice) for the year 2003. Similarly, to represent a warmed climate state, we add
a spatially resolved increase of SSTs that amounts to 4 K in the ice-free ocean mean
(as in the AMIP-future4K experiments, see Webb et al. (2017)) to allow for cloud
responses to warming to play out. Again the simulation setup was left unchanged
apart from the prescribed SSTs and simulations were run for the year 2003.

3.3 Results
The PPE results in a response surface in the 15 parameter dimensions (12 for the
P3 scheme) for each variable of interest. For the global annual mean IWP, this is
illustrated in Fig. 3.6. The more order a process imposes on the response surface,
the more that process influences the model output. Practically, the response surface
illustrates which ηi would be most helpful to know in order to predict the variable
of interest (in this case global annual mean IWP). From the first row in Fig. 3.6 a),
it is clear that ice crystal autoconversion has the largest influence on IWP in the
2M scheme, as it imposes most order on the response surface. This is in line with
Proske et al. (2022a). The emulated response surface in Fig. 3.6 c) reproduces this
trend well. The quantitative sensitivity analysis (see Sec. 3.3.1) gives a similar result.
It also indicates that ice crystal accretion is the second most important process for
the global annual mean IWP, which is difficult to see in the response surface.

3.3.1 Sensitivity analysis with the 2-moment CMPs scheme
(2M)

This visual analysis is helpful to illustrate the idea but the sensitivity analysis allows
to quantify the sensitivities and to summarize the results more concisely for all
variables (see Fig. 3.7a)). Indeed ice crystal autoconversion is the most important
process for IWP (as seen in Fig. 3.6), and it also has a large influence on other
variables such as ice crystal number concentration (ICNC) and hence the longwave
cloud radiative effect, CC and precipitation. Other processes that the model is
sensitive to include deposition and evaporation, which mostly influence CC; cloud
droplet autoconversion, which reduces the LWP and hence the shortwave cloud
radiative effect; and cloud droplet activation which increases cloud droplet number
and mass concentration. LWP and CDNC are influenced by perturbations in cloud
droplet activation, autoconversion and accretion as well as the WBF process. All
of these processes are new in this analysis (compared to Proske et al. (2022a)) and
strongly tied to the liquid phase. In the previous analysis riming was the only
process with a direct influence on the liquid phase. This explains why riming had
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Figure 3.6: Visualisation of the model response surface for the global annual mean ice
water path to perturbations in the 15 cloud microphysics processes investigated in this
study. The squares show all perturbed parameter ensemble members collapsed on two
process dimensions to illustrate how the model output varies with each ηi. The large
inlets ((b) and (c)) highlight the two most important process dimensions, where (c) shows
sample points drawn from the emulated surface. Additionally, in panel (b) the thick black
edge around some circles highlights that these circles are within the range of tuning targets
(Neubauer et al., 2019). The lower panel (d) shows the result of the quantitative sensitivity
analysis. Note that ηwbf ∈ [0.5, 1] as detailed in Sec. 3.2.1.

significant effects on the global annual mean LWP and CDNC in the analysis by
Proske et al. (2022a), which included only four processes in total, but is dwarfed by
other processes here. This discrepancy highlights that the result of the sensitivity
analysis depends on how many and which processes are included. In general, more
processes mean that any process’s effect may be dwarfed by another one. Similarly
to ice crystal autoconversion’s dominant influence on IWP, cloud droplet activation
dominantly influences the global CDNC. Only ice phase processes influence the
longwave cloud radiative effect, while both liquid and ice processes influence the
shortwave cloud radiative effect, as expected (Lohmann and Ferrachat, 2010; Hourdin
et al., 2017; Neubauer et al., 2019). Cloud cover is influenced by ice crystal and cloud
droplet autoconversion, most likely via lifetime effects, as both of these processes
form precipitation. Similarly, the growth of hydrometeors via deposition, which
enhances precipitation, explains why that process has a negative effect on CC. The
strongest influence on precipitation is by far from ice crystal autoconversion. While
ice processes are known to have a large effect on precipitation (Mülmenstädt et al.,
2015), the dominant role of one single process is interesting here (see discussion
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below).
To aid the analysis, we have added sensitivities that we expect from physical

understanding of the processes into the picture. These can be understood with the
aid of Fig. 3.2. For example, cloud droplet accretion converts cloud droplets and rain
drops into rain drops and thereby reduces CDNC and LWP, forming precipitation
and thereby reducing the lifetime of liquid clouds and hence the shortwave cloud
radiative effect. For most variables and processes the physical understanding matches
the result of the sensitivity analysis in sign: as expected, CDNC increases with
more cloud droplet activation, and autoconversion decreases the number and mass
concentration of the respective hydrometeor species. However, there are cases where
physically we would expect to see a sensitivity but do not in the model results and
vice versa.

On the one hand, cases where the model includes an effect that is not evident
from physical understanding (circles without a colored edge in Fig. 3.7) can indicate
indirect effects that are difficult to foresee. Mostly this concerns CC, the computation
of which is detached from the CMPs in ECHAM-HAM, because CC formation
depends on the relative humidity only (Sundqvist et al., 1989). Effects on CC from
the CMPs can thus be only indirect. These take place via lifetime effects, where
processes that remove crystals or droplets from the cloud and form precipitation
dissolve the cloud, decrease its lifetime and thus reduce global annual mean CC.
For deposition, one could have expected a direct effect on CC as deposition reduces
relative humidity, but this calculation is limited to within cloud where it does not
matter for the calculation of newly formed CC. However, as deposition increases
ice crystal size and thus precipitation formation, it has a cloud lifetime effect and
via that influences longwave cloud radiative effect (LCRE). The only process that
influences CC directly via the relative humidity is evaporation of precipitating cloud
droplets, which moistens the cloud free air and therefore leads to a subsequent
increase in CC.

On the other hand, unexpected effects can highlight the discrepancy from physical
understanding of direct effects and the adjustments that take place in the model.
For example, looking at Fig. 3.2 one would expect the WBF process to increase
ice and decrease CDNC and LWP, but to leave the ICNC unchanged. However, in
the global annual mean we only observe an influence on ICNC, which is decreased
when increasing the WBF process. Thinking in adjustments, this counterintuitive
result makes sense: in the WBF process mass is transferred to the ice crystals, which
therefore form sedimenting precipitation faster, hence the ICNC is reduced. The
signal in IWP is likely masked out by ice crystal autoconversion, as discussed below.

Where physical understanding suggests an effect but none is found, we suspect
that the influence of this particular process is masked out by another process that
dominates the variable in question. In this context it is interesting to note that
the physical understanding suggests either redundancies in process effects and/or
counteracting processes. For example, secondary ice production, self-collection of
ice and ice crystal nucleation should directly influence the same variables, where in
fact secondary ice production is the reversed process of self-collection of ice. Since
multiple processes are in principle able to affect the same variables, it is clear that
some do this more than others, even though the magnitude of this effect is surprising.
In particular, ice crystal autoconversion is the dominating influence on IWP, ICNC
and the longwave cloud radiative effect. In fact, it dominates the IWP so heavily
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Figure 3.7: Summary of the sensitivity analysis with the (a) 2M and (b) P3 cloud mi-
crophysics schemes in ECHAM6-HAM. The sensitivity of the global annual mean variables
(vertical axis; ice and liquid water path (IWP/LWP), ice crystal and cloud droplet num-
ber concentration (ICNC/CDNC), long/shortwave cloud radiative effect (LCRE/SCRE),
cloud cover (CC) and total precipitation (Prcp)) to 15 (12 for the P3 scheme) investigated
processes (horizontal axis, see Table 3.1) is displayed in terms of the first direct effect (S1).
Outer circles denote sensitivities we expect from physical understanding and inner circles
denote the results of the global sensitivity analysis. Black dots denote S1 < 0.1. Red colors
indicate a positive correlation (e.g. an increase in ηicautc leads to an increase in precipita-
tion), and blue colors indicate a negative correlation (e.g., an increase in ηicautc leads to a
decrease in IWP). These correlations were estimated from the difference between the mean
for ηi > 1 and ηi < 1. Note that we define the SCRE in absolute amount, meaning that
more reflection of shortwave radiation translates to a stronger SCRE. The process labels
are explained in Table 3.1. The corresponding sensitivity analysis of the total effects (ST)
is displayed in Fig. B.2 in Appendix B.

that in comparison no other process has a significant influence. This is discomforting
since the divide between ice and precipitating snow crystals in the 2-moment scheme
is somewhat artificial and solely based on size. The contribution of cloud droplet
autoconversion seems to be more balanced with the other processes. This is also
a result of tuning, because in the 2-moment scheme in ECHAM-HAM ice crystal
autoconversion is massively increased to match tuning targets (see Table A1 in
Proske et al. (2022a)), mostly that of longwave cloud radiative effect. The large
sensitivity of CMPs to autoconversion has been documented before (Gettelman,
2015; White et al., 2017; Proske et al., 2022a), and accordingly it has been suggested
to remove the artificial threshold conversion between ice and snow (Morrison and
Milbrandt, 2015; White et al., 2017). This is the motivation behind repeating the
same PPE and sensitivity analysis using the P3 scheme, which removes the strict
divide between ice and snow crystals, allowing both to sediment, and thus has no
need for the process of autoconversion.

3.3.2 Sensitivity analysis with the P3 CMPs scheme

To eliminate the large influence of ice crystal autoconversion, we repeat the same
experiments and analysis with the P3 scheme that overcomes this somewhat artificial
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Figure 3.8: Same as Fig. 3.6, but for the P3 scheme. Acronyms for the processes are
explained in Table 3.1.

process and the divide between ice crystals and snow flakes. Indeed, Fig. 3.8 shows
that the influence on IWP is slightly more distributed between processes in the
P3 scheme. Without ice crystal autoconversion, self-collection of ice takes over
the dominating influence on IWP (with minor contributions from cloud droplet
nucleation and deposition), but the longwave cloud radiative effect is dominated by
nucleation in the cirrus regime. While the P3 scheme adds some sensitivities and
removes others, some of the added sensitivities again oppose physical understanding.
Interestingly, the influence of cloud droplet activation on LWP and thus shortwave
cloud radiative effect has changed sign in the P3 analysis. A decrease in LWP makes
sense in an aerosol limited regime, where increasing cloud droplet activation acts
the same as increasing aerosols/cloud condensation nuclei, leading to more but still
sufficiently large cloud droplets to initiate growth by the collision-coalescence process
leading to precipitation and thus decreasing LWP overall.

3.3.3 Simplifications in the 2M CMPs scheme

In the 2M scheme, eight processes do not have a significant influence on any global
mean variable. These processes, namely ice crystal accretion, secondary ice pro-
duction, self-collection of ice, ice crystal nucleation, sublimation of falling ice and
snow, riming, heterogeneous freezing and melting of sedimenting snow and ice, offer
themselves for simplification. At least for sublimation, riming and heterogeneous
freezing, the P3 scheme is also insensitive to them. The easiest and most drastic
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simplification is to remove a process or inhibit an effect entirely. This simplification
is successful only for heterogeneous freezing and secondary ice production (tests
removing other processes are not shown). Figure 3.9 shows that for all investigated
annual mean variables, removing heterogeneous freezing and secondary ice produc-
tion together (dark blue lines) causes deviations in the zonal means of mostly less
than 10% at all latitudes. At some latitudes, however, ICNC decreases up to 25%.
The fact that the other six processes are not simplifiable so drastically may indicate
that their sensitivities are negligible compared to the dominating processes but not
small enough to be removed entirely (which we investigate below and in Fig. 3.10)
or that their sensitivities over the investigated range (ηi between 0.5 and 2) are not a
good proxy for this drastic simplification. The next drastic simplification possibility
is to set the direct effect of a process on the CMP variables (which was multiplied
by ηi in the PPE) constant. This gives mostly satisfying results for the sublimation
of sedimenting ice and snow and self collection of ice (light blue line), except for
an underestimation of the IWP by roughly 10% to 20% and an underestimation of
CC. For melting, this simplification gives small deviations. For riming, ice crystal
accretion, ice crystal nucleation and melting, both of these simplification methods
result in large deviations, which is why we tried a height-resolved monthly zonal
mean climatology instead. The simplifications of riming in this manner introduces
overestimations of the LWP as well as underestimations of the LCRE (green line,
and yellow line for the riming simplification applied separately). Ice crystal accretion
gave large deviations, mostly in ICNC, LCRE and CC (magenta line). Lastly, for
ice crystal nucleation deviations are large, sometimes over 50% in the zonal mean.

From the results of the sensitivity analysis which indicated that the model is not
sensitive to these eight processes, the deviations upon simplification are surprising.
However, the PPE and sensitivity analysis compare all of the 12 investigated pro-
cesses, meaning that the eight processes we identified for simplification are merely
unimportant compared to the other processes but may not be unimportant overall.
To zoom in on the sensitivities to these eight processes only, we sampled from the
emulated PPE holding all other processes constant. The resulting sensitivity analysis
is presented in Fig. 3.10. Ice crystal accretion now stands out as influencing IWP,
riming as influencing LWP and ice crystal nucleation as influencing ICNC, LCRE,
and shortwave cloud radiative effect (SCRE). This explains why the simplifications of
these processes are difficult or unsuccessful in exactly those variables. Self-collection
of ice and sublimation have less influence on directly affected variables and are thus
easier to simplify. The model exhibits almost no sensitivity to heterogeneous freez-
ing, melting and secondary ice production, even when zooming in on the processes
like this, which explains why their simplification was successful even with the most
drastic approach.

3.3.4 Testing the simplifications in historical and possible
future scenarios

Whether one accepts the presented simplifications as viable depends on one’s mod-
eling purpose (Parker, 2009). However, no matter how accurate the simplifications
are in present climate, for using them in a global climate model, we need to evaluate
their performance in different climate states. We therefore conduct simulations with
the simplifications active in a PI climate, signified by decreased PI aerosol emis-
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Table 3.2: Comparison between the simplification simulations in terms of effect on aerosol
radiative forcing (five year mean, difference between present day (PD) and pre-industrial
(PI) aerosol states).

Simulation Net top of the atmo-
sphere radiation bal-
ance
Fnet (PD) (W m−2)

Aerosol radiative forc-
ing (W m−2):
Fnet (PD) - Fnet (PI)

Default 0.31 2.0
Remove hetfrz and sip 0.19 2.0
Constant subfis and sci -0.95 1.9
Climatology rime -0.20 2.1
Climatology icaccr -0.40 1.8
Climatology mlt 0.058 2.0

sions, and in a future warmed climate, implemented with increased SST simulations
(AMIP-future4K experiments, see Webb et al. (2017)). The simplification of ice crys-
tal nucleation was omitted from these experiments as its performance in present-day
conditions was already deemed insufficient in performance. Figures 3.9b and 3.9c
compare the results of these simulations to the ones conducted in PD conditions
(Fig. 3.9a). Without the simplifications (in the default simulations, black line), PI
aerosols lower the CDNC drastically mostly in the Northern Hemisphere, and lower
CC, LWP, ICNC, and subsequently LCRE as well. The simplified simulations mimic
these changes from the default simulation but keep the deviations that they exhibit in
PD conditions. Similarly, in the future simulations LWP and precipitation increase,
ICNC decreases and sign of the changes in IWP and CC varies with latitude. Again
the simplified simulations mimic these changes while keeping similar deviations from
the default simulations. These results confirm that the simplifications we derived
from PD simulations hold and can be used also in simulations of different climate
states.

How one interprets the results of the scheme characterisation as well as the re-
sulting simplifications depends on one’s modeling vision (Shackley, 2001; Sundberg,
2009). In performance aspects, one needs to evaluate whether the deviations that
the process simplifications cause are acceptable, and this depends on the model/pro-
jection purpose (Parker, 2009). If one wants to have a model that represents how
processes behave in the real atmosphere, the unimportance of secondary ice pro-
duction and heterogeneous freezing in the investigated model version is especially
troublesome. In principle, the successful simplifications could mean that these pro-
cesses are unimportant in the atmosphere. However, both are usually believed to
be important processes for ICNC (Kanji et al., 2017; Villanueva et al., 2021; Ko-
rolev and Leisner, 2020; Kärcher et al., 2022; Qu et al., 2022) and thus the model
behavior seems faulty. The insensitivity of ECHAM-HAM to heterogeneous freezing
(formulations) has been documented before (Hoose et al., 2008a; Dietlicher, 2018;
Dietlicher et al., 2019; Villanueva et al., 2021; Ickes et al., 2022) but never as clearly
as in the present study. Our hypothesis for this model behavior is a strong seeder
feeder mechanism (Roe, 2005; Seifert et al., 2009; Ansmann et al., 2009; Proske
et al., 2021) in the model, meaning that ice crystal sedimentation is supplying ice
crystals from cirrus clouds to lower levels so readily in the model that it renders
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heterogeneous freezing unimportant even as a threshold process. Of course despite
careful review we can also not exclude bugs as the reason for the discrepancy be-
tween model results and understanding. These questions warrant further studies,
where a creative and extended use of the emulated model response could be effective,
for example, to investigate the effect of heterogeneous freezing and secondary ice
production by scaling the response surface or reducing its dimensionality (as in Fig.
3.10). Additional tests have shown that for example, increasing the efficiency of
heterogeneous freezing by a factor larger than ηhetfrz = 2 allow it to influence global
ICNC significantly (tests with ηhetfrz = 5 not shown).

In terms of understanding the model it is interesting to note that only ice processes
have potential for simplification. Tapiador et al. (2019) state that given the nonlinear
chaotic nature of CMPs schemes it is “surprising that the microphysics produce
consistent results” and attribute this to them being “buffered systems” (Stevens and
Feingold, 2009), meaning that “if one of the processes in the MP is poorly modeled
the others may take the lead and compensate.” We have already mentioned the
redundancies in processes’ effects. It seems like these redundancies and buffering
play out more in the ice processes with some processes masking out the effects of
others. This implies that the warm phase CMPs are more balanced and urges us to
reevaluate the balance in the ice phase CMPs in the ECHAM6-HAM GCM.

3.4 Summary, conclusions and outlook
Using an emulated PPE of process efficiency in the CMPs in ECHAM-HAM, we
characterize and compare the 2M and P3 CMPs schemes and conduct sensitivity
analysis. In the 2M scheme, the model is sensitive to about half of the investi-
gated processes, with ice crystal autoconversion clearly dominating the ice phase
variables. The warm phase sensitivities are more balanced. Since the P3 scheme
removes the artificial divide between ice crystals and snow flakes, other processes
than ice autoconversion influence the global ice variables. Where sensitivities do not
match physical understanding, this is either due to other processes dominating the
sensitivity or adjustments to the perturbed processes in the model. For example,
in the global annual mean, the WBF process decreases ICNC, because it leads to
larger ice crystals that sediment more readily. In comparison to all other processes,
seven of the investigated processes offer themselves for simplification. However, the
sensitivity to some of these is masked in the total analysis and only revealed when
excluding more prominent processes from the emulated model response. Which
deviations from simplifications one can accept for the CMPs is dependent on the
intended use case of the model. In principle, insensitivity can be interpreted either as
the process being not important also in reality, or hinting at something being wrong
in the model. In the case of heterogeneous freezing and secondary ice production, to
which the model is the least sensitive, we think the latter is the case. In any case,
these results highlight the strength of our analysis: It allows us to highlight model
deficiencies and to identify simplifications.

It is important to note that we investigate the model as it is used. Many
factors in the model setup probably influence this analysis, for example the tuning
state (see Table B.1), the model time step (Gettelman et al., 2013; Barrett et
al., 2019; Zhu et al., 2021; Zarzycki, 2022), the ordering of processes (Donahue
and Caldwell, 2018), the resolution, of course the CMPs scheme choice but also
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the other schemes in the model that interact with the CMPs (Yang et al., 2022).
Thus, the sensitivity analysis results are not transferable to another model (version).
However, the comparison of the 2M and P3 scheme highlights that there is some
generality in the analysis, especially considering that the schemes have structural
differences as well, for example, sequential versus parallel operator splitting and the
subtimestepping in the P3 scheme. Also, our methodology lends itself as a tool to
compare different models, model versions or schemes and could thus help to elucidate
the aforementioned effects.

In this analysis we regard only global annual means. Proske et al. (2022a) have
investigated a PPE of only four CMP processes and shown that there a regional
or seasonal analysis gives sensitivities in line with the global analysis. As we add
onto their analysis, we do not expect regional effects to contradict our conclusions
and thus refrain from that analysis. An interesting addition to our work would be
the investigation of physically finer grained variables, such as a distinction between
mixed-phase and cirrus temperature ICNC (since total ICNC is dominated by cirrus
clouds, there is e.g., the possibility of a larger influence of heterogeneous freezing on
mixed-phase temperature clouds). Similarly, our analysis is based on annual mean
values, but variability in these values may exhibit different sensitivities to the same
processes.

We have chosen the range of our perturbations, ηi ∈ [0.5, 2], the same for all
processes in order to keep them comparable and investigate the effect of modifications
or simplifications. If one would like to cover the range of process rates, the uncertainty
of the processes or the effect of a specific simplification directly, one would need to
find meaningful ranges for each of the processes individually. For example, one could
argue that processes affecting the number concentrations would need to have larger
ranges than the ones affecting mass, as number concentrations of ice crystals range
several orders of magnitudes. This may make the ranges more meaningful and thus
aid the analysis, but would include a host of insufficiently constrained assumptions.
In our case the analysis is exploratory, to characterize the scheme as it is. Therefore
we choose to keep the perturbations the same for each process. We only include
the magnitudes of modifications in single processes afterward in testing the different
simplification possibilities. Similarly, for CMP processes that act sporadically with
process rates that vary by orders of magnitude, it may be more sensible to perturb
how often they occur instead of perturbing their magnitude. However, as we find
that the results of our simplifications are in line with our sensitivity analysis, we
conclude that our perturbations were one right exploratory tool.

This study presents the method of using a PPE and sensitivity analysis to explore
a model in a new light: we use the sensitivity analysis to characterize a model scheme
and explore possibilities for simplification. Our analysis highlights that one needs
to first understand the model and the parameterizations at hand. Only then one is
able to interpret process studies or improve parameterizations. Adjustments in the
model often have unexpected effects that conflict with physical understanding. For
example, the role of heterogeneous ice nucleation is an active study area (see e.g.,
Kärcher et al. (2022) and Maloney et al. (2022)), but our study suggests that more
detailed parameterizations are of no use in ECHAM-HAM until its insensitivity to
heterogeneous ice nucleation is explained.

In particular, the fact that we find processes that do not change the model’s
behavior in PD, PI or warming conditions, highlights that we have more processes in
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the model than we can constrain (Morrison et al., 2020). Depending on one’s model-
ing vision (Shackley, 2001; Sundberg, 2009) and the purpose of one’s model (Parker,
2009), one may interpret this finding and what to follow from it differently. Detailed
process representations may be needed for certain model purposes, but there is no
point in a scheme containing a large number of involved processes without utility,
which merely make the scheme complicated (Baartman et al., 2020). As Held (2005)
states, it is fruitless to elaborate details “in ways that have no practical consequences
or no hope of confronting data.” At the very least, scheme complexity and compli-
catedness need to be taken into account in model selection and development (Larsen
et al., 2016).

The need to understand model behavior is generating creative studies that elu-
cidate problematic model effects (Fiddes et al., 2022). This study adds a method
for this with exemplary characterisation of two CMPs schemes. The scheme charac-
terisation is helpful for model development. One may use it backwards, prescribing
ranges for output variables such as global mean CC, to generate possible process
ranges, that is, ηi. Thereby it could also be used for tuning the model, where one
may choose to extend the ranges of the PPE or extrapolate the emulator to widen
the phase space. To generalize the gained understanding, our analysis method can
be used to compare schemes and models, to investigate which model sensitivities are
robust.
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Abstract Aerosol particles influence cloud formation and properties. Hence cli-
mate models that aim for a physical representation of the climate system include
aerosol modules. In order to represent more and more processes and aerosol species,
their representation has grown increasingly detailed. However, depending on one’s
modeling purpose, the increased model complexity may not be beneficial, for ex-
ample because it hinders understanding of model behaviour. Hence we develop a
simplification in the form of a climatology of aerosol concentrations. In one ap-
proach, the climatology prescribes properties important for cloud droplet and ice
crystal formation, the gateways for aerosols to enter the model cloud microphysics
scheme. Another approach prescribes aerosol mass and number concentrations in
general. Both climatologies are derived from full ECHAM-HAM simulations and can
serve to replace the HAM aerosol module and thus drastically simplify the aerosol
treatment. The first simplification reduces computational model time by roughly
65%. However, the naive mean climatological treatment needs improvement to give
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results that are satisfyingly close to the full model. We find that mean CCN concen-
trations yield an underestimation of CDNC in the Southern Ocean, which we can
reduce by allowing only CCN at cloud base (which have experienced hygroscopic
growth in these conditions) to enter the climatology. This highlights the value of the
simplification approach in pointing to unexpected model behaviour and providing a
new perspective for its study and model development.

4.1 Introduction
Climate models are used both to understand the Earth system and to project its
changing behaviour. In building models, their representativeness and realism are
taken to be important indicators of model quality. In this view, the models’ scope has
historically expanded (Edwards, 2011) to include various Earth system compartments
and components, from land surface properties to atmospheric chemistry. Aerosol
particles are one such Earth system component that has started to be represented
in climate models since the late 1990s (CarbonBrief, 2018). Aerosol particles are
liquid or solid particles suspended in air, ranging from black carbon to sea salt or
bacteria. They are important for the climate system, both with direct effects, such
as by absorbing or scattering radiation, and indirect effects via their interaction with
clouds (Lohmann and Feichter, 2005; Storelvmo, 2017).

In particular, aerosols serve as cloud condensation nuclei (CCN) and ice nucleat-
ing particles (INPs) and thereby facilitate water phase changes in the atmosphere.
Small droplets have a high curvature, which increases their saturation vapor pressure
(Kelvin effect). Such high supersaturations are not reached in the atmosphere. Hence,
cloud droplets do not nucleate homogeneously. Instead, cloud droplets nucleate on
CCN. A hygroscopic aerosol particle takes up water when exposed to humid air (hy-
groscopic growth). As it grows, the CCN dissolves in the forming solution droplet and
thereby acts as a solvent to lower the droplets’ saturation vapour pressure (Raoult
effect). Köhler theory combines the Kelvin and Raoult effect, which results in an
equilibrium saturation pressure curve with a maximum at the so-called activation
radius (see Fig. 4.2). Once a CCN reaches this supersaturation and grows beyond
the activation radius, it will continue to grow even with decreased supersaturation,
and is hence termed an activated cloud droplet.

Similarly, the energy barrier associated with freezing is too high for cloud droplets
to freeze homogeneously in the atmosphere. Until −35 °C cloud droplets freeze only
heterogeneously on an INP, which serves to lower the energy barrier associated with
the freezing process (Murray et al., 2012; Lohmann et al., 2016; Kanji et al., 2017). At
lower temperatures, cloud droplets freeze homogeneously, without the aid of an INP.
The salts dissolved in smaller solution droplets lead to a freezing point depression.
Thus, solution droplets freeze homogeneously only at low temperatures or high
supersaturations with respect to ice. Alternatively, they can freeze heterogeneously
with the aid of an INP (Lohmann et al., 2016).

Thus aerosols influence cloud properties. For example, when aerosol particle
concentrations are higher, more cloud droplets form. Given the same amount of
liquid water in a cloud, they have a smaller size. This delays precipitation formation,
increasing cloud lifetime (Albrecht effect, Albrecht (1989) and Storelvmo (2017)).
However, clouds also influence aerosol particle concentrations, e.g. with precipitation
removing aerosol from the atmosphere via wet scavenging. These aerosol-cloud
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interactions are numerous, challenging to quantify and thus their resulting forcing
is associated with a large uncertainty (Boucher et al., 2013; Bellouin et al., 2020;
Bender, 2020). This is because the scales involved range from the interaction of
micrometer particles to effects on the global energy balance. Observations to quantify
these interactions at a global scale are inherently difficult (Quaas et al., 2020).
For climate modeling, the small scales involved require that the aerosol and cloud
microphysical processes are parameterized. These parameterizations are inherently
associated with underconstrained degrees of freedom and uncertainty. For example,
an intercomparison conducted by Fanourgakis et al. (2019) shows that there is
substantial disagreement in the CCN concentrations simulated by different global
models.

The climate modeling community has responded to the challenges of aerosol and
cloud microphysics (CMPs) research by expanding their models to account for an
increasing variety of processes and compounds. This approach is grounded in the
reductionist idea that a complex system can be decomposed into its parts, which
then all need to be represented. While this serves a representative vision of modeling,
the increasing model complexity can arguably be counterproductive for the heuristic
modeling vision, which employs models to generate understanding (see Sec. 1.3.3).

Thus the representative complexity paradigm in environmental modeling has
come under challenge. For example, Cox et al. (2006) developed a systematic ap-
proach to identify excess process complexity. By automatically replacing variables
with constants in the code, they generated many simplified model variants. Com-
paring their results, they identified redundancies or overparameterizations. This
approach has been successfully performed for example on wheat and soil models
(Cox et al., 2006; Crout et al., 2009; 2014). Working with the ECHAM-HAM CMPs
module, Proske et al. (2022a) have introduced an approach that varies process
efficiencies to test the models’ sensitivity to these processes and thereby identify
potential for simplification. Proske et al. (2023a) applied this method to 15 out of
17 processes in the CMPs module and were able to simplify 7 of them.

For aerosol modules, various process sensitivity studies have been reported, but
without a direct tie to model simplifications (see e.g. Schutgens and Stier (2014)
for an extensive aerosol pathway analysis). Instead, aerosol module simplifications
tend to be more drastic. For example, Liu et al. (2012) and Ghan et al. (2012)
reduced the number of modes in their aerosol module MAM (part of CAM5) from 7
to 3 modes while still achieving satisfying performance in model results. Similarly,
Zhu et al. (2022) developed a parameterization of dry effective aerosol radius based
on the mass of two species. This allowed them to use only a one moment (mass)
prognostic representation and deduce the zeroth moment (number) at negligible
computational expense. Furthermore, Ghan et al. (2013) developed a one dimensional
model with physical aerosol and cloud processes included to aid in the exploration
of how parameter uncertainty travels through to ACI uncertainty. Stevens et al.
(2017) developed a plume climatology of anthropogenic aerosol based on the model-
and observation derived MACv2 climatology. Their climatological representation
MACv2-SP was analytically based and consisted of only 9 plumes, but gave good
agreements to the full MACv2 climatology. They highlight its use case in comparing
aerosol responses in different models. Also, Fiedler et al. (2019a) applied this fast
MACv2-SP climatology in a scenario investigation. Presently, Weiss et al. (2023)
are developing a simplified version of the HAM module, called HAMlite, by reducing
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aerosol tracers and imposing fixed aerosol composition. Number concentrations
are still computed prognostically, but the predefined species composition allows to
pre-compute radiative properties. This allows the scheme to be used in convection-
resolving model simulations.

The process of model simplification may seem counter-intuitive at first: we are
used to taking model expanse and complexity as a sign for model quality. Yet any
simplification sacrifices the representative depth of a model. However, the representa-
tiveness of a given model is but one goal of model development. Other goals include
predictive capability and the generation of understanding (see Sec. 1.3.3). The mod-
eling visions of Sec. 1.3.3 may indicate conflicting avenues for model development
goals. On the one hand, model complexity is encompassed by the representative vi-
sion. On the other hand, it makes models and their results more difficult to interpret
and thus it harms the heuristic vision of model use for generating understanding.
This conflict is what we aim to address with our simplification work.

One might object that simplifications may appear harmful even for the model’s
ability to supply understanding. For example, if one is interested in the process
of aerosol particle coagulation, a model using a CCN climatology would not seem
to be of much use. However, the simplification of one model part allows for easier
investigation of other model parts, in our example e.g. cloud droplet coagulation.
Also, a simplification of the process under study may help understanding, e.g. in
identifying which factors influence a process and by enabling clearer sensitivity
studies. When unsatisfying simplification results guide the scientific exploration, the
model itself is pointing the developer towards the important processes or behaviour
that shape the model response. Thus, attempts at drastic simplifications may open
up new perspectives on the model understanding and development problem.

We develop a climatology of a) CCN that serves as the connection between the
aerosol particles and the CMPs and b) aerosol mass and number concentrations.
Both climatologies in combination with a pre-existing climatology of aerosol ra-
diative effects can replace the aerosol module HAM. Such a top-down approach, of
investigating how the model reacts to changes in aerosols, may be more effective than
a tedious bottom-up approach of elaborating all possible processes, as Stevens et al.
(2017) argue as well. Using the climatology allows to isolate remaining processes
and their effects and study associated uncertainties. The climatology we develop
and test is based on full-HAM model output. We demonstrate that this approach
works in principle and discuss which features are required in the climatology. This
gauges the possibilities for the use of an observation-based climatology in the future,
which would satisfy both the representative and the heuristic vision while avoiding
representative complexity. Most importantly, as we demonstrate, the development
of the climatology already opens up new avenues for understanding.

Our approach departs from the representative approach that has dominated
Earth system model development and fueled an ever increasing model complexity.
To be clear, our simplifications do not attempt to judge any process as unimportant
in reality. Rather, the model is our object of study. Where our findings deviate
from physical understanding, this difference needs to be investigated and offers an
avenue for model development. While our simplifications sacrifice representativeness
for interpretability, the development for more comprehensive models may continue
alongside, creating a model family of various complexity, where one may choose a
configuration based on a given study’s purpose. At the same time, our approach also
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Figure 4.1: Flowchart illustrating our investigation of the different climatology versions.

satisfies the predictive vision of model development. In our simplification attempts
we strive for equifinality (Beven, 2006; Beven and Freer, 2001), meaning that the
simplified model produces results similar enough to the full model for the purpose
at hand, thereby providing equal predictive quality. Because the CCN climatology
allows to replace the whole aerosol module HAM, it incurs large reductions in the
model’s run time. This may be used to save costs, run more or longer simulations,
detail other processes, or increase the model’s resolution.

The approach and results of this study are outlined in Fig. 4.1. The following
section describes the aerosol climate model ECHAM-HAM, the process implementa-
tions relevant to this study and the two CCN/aerosol climatology implementations
(Sec. 4.2). In the presentation and discussion of results in Sec. 4.3, we describe the
effects of both climatologies. We also detail the investigative process that co-evolved
with the development of the climatology, highlighting how the approach of simplifica-
tion generates model understanding. Section 4.4 discusses this approach and points
out possible use cases of the CCN climatology.

4.2 Methods
This study employs the aerosol-climate model ECHAM6.3-HAM2.3 (Neubauer et al.
(2019) and Tegen et al. (2019), ECHAM-HAM hereafter), in the same configuration
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Figure 4.2: Illustration of the points where aerosols influence cloud microphysics in the
model and where hence the AEROclim and CCN/INPclim approaches are applied. Both
climatologies are derived from a full HAM default simulation, which diagnoses monthly
mean tracer diagnostics or potential CCN (and the other variables indicated in the illus-
tration), respectively. Note that CCN/INPclim can be used only with the Lin & Leaitch
(act-ll) and not with the Abdul-Razzak & Ghan activation scheme (act-arg). fracdust/bc,act

is the fraction of dust/black carbon in activated aerosol, fracdust,ins is the fraction of dust
in the insoluble coarse and accumulation mode, rdust,wet is the wet radius of dust, nsol is
the number concentration of soluble aerosol and rsol,wet is its wet radius. The CCN and
INP climatology plots are illustrative, for one month and level (the climatologies really are
four dimensional, resolved in space and time (in the form of monthly means)).

as in Proske et al. (2022a). Its aerosol module HAM was implemented by Stier et al.
(2005) (updated to HAM2 by Zhang et al. (2012)) using the 7 mode aerosol module
M7 from Vignati et al. (2004). Aerosols of varying composition are grouped into
7 lognormal size distribution modes, which are distinguished by size and solubility
(see Fig. 4.2). Various process treatments are included in HAM, for example con-
densation or coagulation moving particles between modes. Hygroscopic growth of
aerosol particles is implemented using Köhler theory with a prescribed hygroscopic-
ity parameter for each substance, following Petters and Kreidenweis (2007) (Zhang
et al., 2012). The 2-moment CMPs scheme prognostically computes ice crystal and
cloud droplet mass and number and diagnoses rain and snow mass concentrations
(Lohmann et al., 2007). For a detailed description of the included cloud micro-
physical processes see Chapter 3. As in the real atmosphere, in ECHAM-HAM the
aerosols influence CMPs by serving as CCN or INPs in cloud droplet activation and
ice crystal nucleation. There are two cloud droplet activation parameterizations
implemented into ECHAM-HAM (see Table C.1 for their separate tunings).

Lin & Leaitch cloud droplet activation

The cloud droplet activation following Lin and Leaitch (1997) (act-ll in the following)
was implemented into ECHAM-HAM by Lohmann et al. (2007) (see Fig. 1.2). It
empirically relates the number of nucleated cloud droplets, CDNCact, to the aerosol
number concentration and updraft:

CDNCact = 0.1× 1010 ·
(

Na · w
w + 2.3× 10−10 m4/s ·Na

)1.27

(4.1)

Here, for Na ECHAM uses the number concentration of aerosols particles with wet
radii > 0.03 µm1. Thus Na first needs to be derived from the soluble aerosol size
distributions in HAM (see Fig. 4.2). The updraft w is calculated from the mean
updraft, the turbulent kinetic energy and contributions from the convective available
potential energy (see Lohmann et al. (2007) for details).

Equation 4.1 is an empirical relationship derived in Lin and Leaitch (1997).
They used aerosol and cloud droplet measurements from a field study in the North

1Note that this is different from the 0.035 µm cut-off radius that is stated in Lohmann et al.
(2007), which Lohmann et al. (2008) changed to 0.03 µm to accomodate tuning constraints. This
cutoff refers to stratiform clouds. For detrained convective clouds, the cutoff is radii > 0.02 µm
(introduced as 0.025 µm in Lohmann (2008)).
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Atlantic2 to evaluate two cloud droplet activation parameterizations, of Ghan (Ghan
et al., 1993; Ghan et al., 1995) and Abdul-Razzak (Abdul-Razzak et al., 1998). Both
parameterizations were found to underestimate measured CDNC, but if one used
the maximal updraft as input, both were able to predict the maximum measured
CDNC well. Thus Lin and Leaitch (1997) proposed to use these parameterizations
to calculate the maximum CDNC and gave an empirical relationship to compute the
mean CDNC. In their ECHAM-HAM implementation, Lohmann et al. (2007) used
this empirical relationship in combination with the Ghan parameterization because
the Abdul-Razzak formulation relied on supersaturations which may be unrealistic
at the model grid scale (personal communication Ulrike Lohmann).

Abdul-Razzak & Ghan cloud droplet activation

The Abdul-Razzak & Ghan cloud droplet activation parameterization (act-arg in the
following, introduced in Stier (2016) and Lohmann and Neubauer (2018) (see Tegen
et al. (2019))) is explicitly based on Köhler theory. In HAM, each of the seven modes
has a different composition. Thus, Köhler coefficients need to be computed for each
soluble mode separately (using Abdul-Razzak et al. (1998, Eq. 5) and Abdul-Razzak
and Ghan (2000, Eq. 3 and 4); the nucleation mode is excluded from activation).
From these coefficients and the updraft velocity, a maximum supersaturation is
calculated. This is translated to an activation radius for each mode via the mode
radius and its corresponding critical supersaturation (Abdul-Razzak and Ghan, 2000,
Eq. 12). Subsequently, all aerosols larger than the critical radius are activated into
potential activated cloud droplets (CDNCact) for each mode.

Activated cloud droplets enter the cloud microphysics

Whether the potentially activated cloud droplets calculated in one of the previous
parameterizations actually produce new cloud droplets is determined in the CMPs
module. For all cloud bases at liquid or mixed-phase cloud conditions, it evaluates
whether CDNCact exceeds the present CDNC. If this is the case, the CDNC at cloud
base and throughout all cloud levels above is set to CDNCact that was calculated for
the cloud base. This approach resembles the adiabatic ascent of an air parcel with
cloud droplet activation occuring mainly at cloud base.

Ice crystal nucleation in ECHAM-HAM

In ECHAM-HAM, ice nucleation mechanisms are parameterized as follows:

• Heterogeneous freezing at mixed-phase temperatures (0 °C > T >
−35 °C) was introduced in Lohmann and Diehl (2006) and distinguishes two
types of heterogeneous freezing, which are considered to be important in the
atmosphere: Dust from the coarse and accumulation insoluble modes aids in

2The field study was the North Atlantic Regional Experiment in 1993. Lin and Leaitch (1997)
used data from 14 flights in and around stratus clouds over the Bay of Fundy and the Gulf of Maine
in August and September. This illustrates the mismatch in complexity between the 28 tracer HAM
module and the 15 processes in the CMPs module that are connected through a parameterization
that is based on data sampled in a constrained timeframe and location. The 2.3× 10−10 m4/s
factor is empirically based and was transmitted via personal communication from Richard Leaitch
to Ulrike Lohmann.
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contact nucleation (Lohmann and Diehl (2006) and Hoose et al. (2008a),
following Young (1974), Cotton et al. (1986), and Levkov et al. (1995b)). Its
number concentration is multiplied with an efficiency factor that accounts for
the species specific temperature dependent INP efficiency. For this factor, the
dust is assumed to be composed of montmorillonite (values given in Hoose et al.
(2008a, Table 1)). Both mineral dust and hydrophilic black carbon participate
in immersion freezing (Lohmann and Diehl (2006) and Hoose et al. (2008a)
following Diehl and Wurzler (2004)). For their number concentration, the
soluble accumulation and coarse mode of both species are used (Lohmann
and Neubauer, 2018). In practice, the fraction derived from dividing their
activated concentration by the activated CCN number concentration, is used
in the parameterization. Again, this is multiplied by an efficiency to mirror
the temperature dependent INP ability of the individual species. Again, for
the mineral dust, montmorillonite composition is assumed.

• Homogeneous freezing of cloud droplets at cirrus temperatures (T <
−35 °C) is realised simply by converting all clouds droplets to ice crystals at
these temperatures.

• Homogeneous freezing of solution droplets at cirrus temperatures
(T < −35 °C) was introduced in Kärcher and Lohmann (2002b) and Lohmann
and Kärcher (2002). It uses the soluble aerosol number concentration and ra-
dius from HAM as input. Since homogeneous ice nucleation may take place at
high supersaturations with respect to ice, it solves for the competition between
updraft creating supersaturation and crystal growth depleting it. Heteroge-
neous freezing of solution droplets at cirrus temperatures (T < −35 °C) has
been implemented into ECHAM-HAM previously (Lohmann et al., 2008), but
is not used in this study.

4.2.1 The aerosol/CCN climatology

CCN/INP climatology (CCN/INPclim)

To create the aerosol cloud climatology that enters act-ll, the number of potential
CCN is diagnosed from a full HAM simulation. In this way, only one CCN concen-
tration instead of all HAM tracers needs to be saved, while the activation that takes
into account updraft can still take place (see Fig. 4.2). This total number is thus
independent of the aerosol composition. Apart from the CCN concentration, the
soluble aerosol particle concentrations (without a cutoff radius) as well as their mode
radii are supplied to the homogeneous freezing of solution droplets. The particle
concentration is determined from the potentially available CCN that is also used as
input to act-ll. This introduces a deviation from the default setup, where the entire
Aitken, accumulation and coarse soluble modes are used, without any lower limit for
their radii. In processing the output from the default setup, the maximum of the
monthly mean CCN over all conditions and those at cloud base was used to create
the monthly mean, 3D resolved climatology (CCN/INPclim-cloudbase), i.e.

MAX(MEAN(CCNall),MEAN(CCNat cloudbase)).

This is because the cloud base condition (which for cloud droplet activation is
restricted to T > −35 °C) leads to an underestimation of CCN at cirrus temperatures
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and thus for the homogeneous freezing of solution droplets. Hence our climatology
uses the maximum of the mean CCN concentration over all conditions and the mean
cloud base CCN concentration.

Since the CMPs scheme uses CCN only at cloud base for activation, CCN/INP-
clim-cloudbase represents cloud droplet activation conditions in the model more
specifically. The cloud base condition is the relevant one because in the current
implementation activation is limited to cloud base and the enhanced CDNC is taken
to be the same at higher cloud levels (see Fig. 4.2). Using only the mean CCN
concentration (CCNall) was also tested (CCN/INPclim-mean). In fact, investigating
the difference between CCN/INPclim-mean and -cloudbase allowed us to formulate
the more appropriate conditions for a CCN climatology (see Sec. 4.3.3).

The treatment of heterogeneous contact freezing of CDs requires the fraction of
insoluble dust aerosol as well as its radius as input. They are also diagnosed from
the full HAM simulation. For immersion freezing, the fraction of dust and black
carbon aerosol of the activated aerosol is used. These quantities are used as 3D
monthly mean fields in the climatology.

Aerosol climatology (AEROclim)

Act-arg requires detailed composition as well as number concentrations for each
mode. Hence, to be able to use the parameterization in its present form, all these
properties needed to be prescribed and using the CCN/INPclim approach does not
work for act-arg. In the implementation, we opted for a pragmatic approach: in
the default simulation, all aerosol tracers (mass and number for each mode and
species) were diagnosed as monthly means. In the climatology simulations these
were prescribed and all processes that would change the tracers’ concentrations were
deactivated. AEROclim can of course also be used for act-ll.

Note that AEROclim supplies monthly mean aerosol concentrations, which are
used to compute aerosol properties online. In the case of non-linear computations,
the quantities computed from monthly means will not be equal to the monthly mean
of those quantities. Thus one can expect deviations between CCN/INPclim (which
uses mean quantities) and AEROclim (which computes these quantities from the
mean).

Aerosol radiation climatology

Aerosol particles’ effects on climate are not limited to clouds, but they also exhibit a
radiative effect on their own. Thus, when we replace HAM with CCN/INPclim, the
radiative aerosol effect requires a special treatment as well. Different versions of a
climatological treatment of aerosol radiative properties have been implemented into
ECHAM-HAM already. For AEROclim, radiative properties can be computed online
from the supplied aerosol concentrations. For CCN/INPclim, we use the Max Planck
Institute Aerosol Climatology (MAC-v1) developed by Kinne et al. (2013), which
is based on both photometer observations and model data (ARclim). Alternatively,
for sensitivity tests we also use a setup with no aerosol radiative effect (NoAR).
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4.2.2 Historical and future simulations

To test whether the simplifications that we derive from present-day (PD) simulations
(run for 2003 or 2003-2012) impede the model’s ability to simulate different climate
states, we perform sensitivity simulations with each of the simplifications in pre-
industrial (PI) and possible future conditions. Again we keep the applied condition
changes simple: for PI simulations we merely use PI aerosol emissions (ACCMIP
data (Lamarque et al., 2010), from 1850, 1870, or 1900 as data was available),
but everything else (greenhouse gas concentration, SST and sea ice) for the year
2003. Similarly, to represent a warmed climate state, we add a spatially resolved
increase of SSTs that amounts to 4 K in the ice-free ocean mean (as in the AMIP-
future4K experiments, see Webb et al. (2017)) to allow for cloud responses to warming.
Again the simulation setup was left unchanged apart from the prescribed SSTs and
simulations were run for the year 2003.

4.3 Results and discussion
Applying CCN/INPclim to replace HAM yields surprisingly equifinal results to a full
ECHAM-HAMMOZ simulation. Figure 4.4 shows that the climatology causes some
positive deviations in cloud droplet number concentration (CDNC) between −30 °N
and 30 °N in the liquid cloud regime, as well as at around 50 °N in the mixed-phase
cloud regime. At −50 °N, CDNC is underestimated by CCN/INPclim-cloudbase in
both temperature regimes. While these deviations are larger than the inter-annual
variation of the default simulation, they are small in relative terms, remaining roughly
< 25%. The deviations in CDNC translate to deviations in the liquid water path
(LWP), which are even smaller in relative terms. In the ice phase, CCN/INPclim-
cloudbase causes significant yet small positive deviations in the mixed-phase ice
crystal number concentration (ICNC), restricted to the northern hemisphere. In
the cirrus regime, CCN/INPclim-cloudbase leads to increases in ICNC at roughly
10 °N and 10 °S of the equator. These changes in ICNC result from a combination of
the CCN/INPclim-cloudbase modifications in aerosols supplied to CCN activation,
INPs and homogeneous freezing of solution droplets (see Sec. 4.3.2). The ice number
changes do not translate to significant ice mass changes (see ice water path, IWP),
except for the positive deviation at roughly 10 °S. This in turn causes a positive
deviation in longwave cloud radiative effect (LCRE).

Whether the deviations between the full aerosol scheme and the climatology are
judged to be acceptable depends on one’s modeling purpose. CCN/INPclim offers
large savings in computational time. Figure 4.3 illustrates that HAM takes up more
than 40% of the computational time (excluding writing output). In comparison, the
2-moment CMPs scheme takes up roughly 10% and the transformations between the
spectral and cartesian grid take up about 5%. In AEROclim aerosol concentrations
are prescribed and excluded from advection, but still HAM needs to compute aerosol
properties from the concentrations. Thus the simulation takes longer than CCN/IN-
Pclim. However, there is room for additional time savings: some properties like the
wet radius are updated multiple times in the HAM routines, which may be reduced
since processes affecting the wet radius are deactivated in AEROclim. In addition,
some properties may be pre-computed with the frequency of the climatological in-
put, similar to how Weiss et al. (2023) treat aerosol radiative processes. The single
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Figure 4.3: Relative computing time associated with the most expensive model parts,
compared between a default and a CCN/INPclim model run (15 days, without writing
output). The M7 aerosol microphysics are highlighted as part of the HAM aerosol module.
Wet deposition is the most expensive single process and is called both in the stratiform and
the convective cloud microphysics. Tracer advection handles both 28 aerosol and 2 cloud
microphysics tracers and is divided here accordingly. In the case of CCN/INPclim and
AEROclim the CMP tracer advection is not shared with HAM and thus the overhead is
attributed solely to the CMP tracer advection timing, making it appear larger. grid names
the transformations between the spectral and cartesian grid coordinates. For AEROclim,
some HAM property computations are still executed, based on prescribed aerosol concen-
trations.

most expensive process related to aerosol treatment is the wet deposition, which is
called twice, in the stratiform and the convective CMPs scheme. Thus, switching
the wet deposition scheme from the more complex scheme of Croft et al. (2010)
(size-dependent in-cloud and below-cloud scavenging) to a simpler scheme would
enable large time savings of up to 20 %. Running the model with CCN/INPclim
instead of HAM reduces the simulation time by 65 % (not shown, simulations for 15
months and including the writing of output with our standard requirements).

For predictive purposes, the large savings in computational expenses may out-
weigh the deviations in cloud particle concentrations. In fact, these may be minimized
with further development of the climatology and tuning of the model, which we have
not attempted. For our purpose of understanding model behaviour, CCN/INPclim-
cloudbase results are deemed sufficiently similar to the default simulation to allow
for a comparison. In particular, its development towards achieving such similarity
opened up new perspectives (see Sec. 4.3.3).

4.3.1 Effect of the radiation climatology

Replacing HAM requires not only a new treatment of cloud active aerosols, but also
replacing their radiative effects. In ECHAM, one can choose between interactive
HAM aerosols (default), or climatologically prescribed aerosol radiative effects (AR-
clim, used in CCN/INPclim-cloudbase case), or no aerosol radiative effect (ARclim0).
To be able to judge the effect of the radiative climatology separately, Figure 4.4 com-
pares the full HAM simulation with two that use HAM while treating only radiation
climatologically. In terms of cloud variables, the ARclim and ARclim0 results re-



Results and discussion 97

0

2

4

C
D

N
C

li
q
.

(m
−

2
) ×1010

0.0

2.5

5.0

C
D

N
C

m
x
p
T

(m
−

2
)

×1010

0.5

1.0

IC
N

C
m

x
p
T

(m
−

2
) ×108

0.5

1.0

1.5

IC
N

C
co

ld
(m

−
2
) ×109

−1

0

1

∆
C

D
N

C
li
q
.

(m
−

2
)

×1010

0

1

∆
C

D
N

C
m

x
p
T

(m
−

2
) ×1010

0

2

∆
IC

N
C

m
x
p
T

(m
−

2
) ×107

default

default ARclim

default NoAR

CCN/INPclim-cloudbase with ARclim

CCN/INPclim-cloudbase from default ARclim

CCN/INPclim-cloudbase from default NoAR

0

2

4

6

∆
IC

N
C

co
ld

(m
−

2
)

×108

0

50

L
W

P
li
q
.

(g
m
−

2
)

0

50

100

L
W

P
m

x
p
T

(g
m
−

2
)

2.5

5.0

IW
P

m
x
p
T

(g
m
−

2
)

5

10

IW
P

co
ld

(g
m
−

2
)

0

10

∆
L
W

P
li
q
.

(g
m
−

2
)

−5

0

5

10

∆
L
W

P
m

x
p
T

(g
m
−

2
)

−0.5

0.0

0.5

∆
IW

P
m

x
p
T

(g
m
−

2
)

default

default ARclim

default NoAR

CCN/INPclim-cloudbase with ARclim

CCN/INPclim-cloudbase from default ARclim

CCN/INPclim-cloudbase from default NoAR

0

2

∆
IW

P
co

ld
(g

m
−

2
)

−100

0

F
n
et

(W
m
−

2
)

−50

0

S
C

R
E

(W
m
−

2
)

0

20

L
C

R
E

(W
m
−

2
)

60

80

C
C

(%
)

−50 0 50

Latitude (°N)

−5

0

∆
F

n
et

(W
m
−

2
)

−50 0 50

Latitude (°N)

−10

−5

0

∆
S
C

R
E

(W
m
−

2
)

−50 0 50

Latitude (°N)

−2

0

2

∆
L

C
R

E
(W

m
−

2
)

default

default ARclim

default NoAR

CCN/INPclim-cloudbase with ARclim

CCN/INPclim-cloudbase from default ARclim

CCN/INPclim-cloudbase from default NoAR

−50 0 50

Latitude (°N)

−5

0

5

∆
C

C
(%

)

Figure 4.4: Zonal annual means, highlighting the effect of using a climatology for radiation.
Uneven rows show absolute values for default simulations, and even rows show the deviations
to the default simulation. All simulations are for the year 2003, and the grey shading
indicates the maximum deviation from the 2003 default simulation in annual means between
2003 and 2012. The CCN/INPclim-cloudbase was either derived from a full HAM simulation
(CCN/INPclim-cloudbase ARclim3) or from default simulations that in turn used an aerosol
radiative climatology (CCN/INPclim-cloudbase from default ARclim or NoAR), where then
the same radiative aerosol treatment was employed for the CCN/INPclim simulation.
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main within or close to inter-annual variability. Only for ICNC at mixed-phase
temperatures, there is a large positive deviation at around 30 °N. The northern
mid-latitudes are influenced by high concentrations of Saharan dust aerosol, which
is radiatively active. The temperature changes induced by a change in the aerosol
radiative climatology may influence heterogeneous freezing, because that is temper-
ature dependent. Also, note that the ICNC at mixed-phase temperature is orders
of magnitude smaller than the other hydrometeor concentrations, which are less
affected by ARclim (in Fig. 4.4 for cold ICNC and both CDNCs the dark blue line
remains within inter-annual variability). We thus do not expect the radiative treat-
ment of aerosols to impact the performance of the aerosol cloud climatology. This is
mostly the case: CCN/INPclim-cloudbase simulations with the climatologies derived
from the three different radiative treatment simulations give only slightly different
results for cloud properties. The most pronounced difference arises from using the
CCN/INPclim-cloudbase climatology without radiative treatment of aerosols (light
green in Fig. 4.4), which exhibits an increase in CDNC and LWP at around 30 °N
and in turn increases the magnitude of the shortwave cloud radiative effect (SCRE).
Also, in this simulation ICNC at cirrus temperatures is decreased at latitudes around
30 °N compared to the other CCN/INPclim-cloudbase simulations. Similarly as for
heterogeneous freezing, the missing radiative effect of dust aerosols may induce local
temperature perturbations and thus turbulent kinetic energy changes, to which the
homogeneous freezing of solution droplets is particularly sensitive (Kuebbeler et al.,
2012). In the CCN/INPclim-cloudbase configuration, the model may be deprived
of some regulating feedbacks to these temperature changes, leading to larger differ-
ences between the radiatively different variants of CCN/INPclim than in the default
variants.

To sum up, the radiative aerosol climatology does not yield much difference
in zonal mean cloud variables compared to the full HAM, but the combination of
CCN/INPclim-cloudbase with ARclim enhances the differences. Thus, getting a
perfect climatology for both CMPs and radiation requires developing both together.
However, the climatological treatment of aerosol radiative effects does not affect the
main observations in the CCN/INPclim-cloudbase case. This eases our interpreta-
tion of CCN/INPclim-cloudbase and allows for a fair evaluation of CCN/INPclim-
cloudbase against the default.

4.3.2 Separate effects of the CCN/INP climatology

To test and illustrate the effect of CCN/INPclim-cloudbase on the various ways in
which aerosol particles seed cloud particles, we conducted simulations in which each
of the INP, CCN and solution droplet effects was set to 0 separately (for details on
the processes see Fig. 4.2).

Disabling heterogeneous freezing by setting INP concentrations to zero (0 INP in
Fig. 4.5) decreases mixed-phase ICNC and increases CDNC in mid-latitudes. This
is particularly pronounced at 30 °N, where high concentrations of ice-nucleating
Saharan dust particles are prevalent. The confined and overall small effect of het-
erogeneous freezing of cloud droplets on the hydrological cycle agrees with what
previous studies have found for ECHAM (Hoose et al. (2008a), Dietlicher (2018), Di-
etlicher et al. (2019), Villanueva et al. (2021), Ickes et al. (2022), Ickes et al. (2023a),
and Chadzelek (2023), see also Chapter 3). The division by temperature regimes
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Figure 4.5: As Fig. 4.4, but for the CCN/INPclim-cloudbase sensitivity simulations where
parts of the climatology were set to 0.
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highlights that this effect is hidden in the global mean ICNC, since this quantity
is dominated by cirrus ICNC (hence the insensitivity to heterogeneous freezing in
Chapter 3).

Aerosol particle concentrations in the model are also used to derive solution
droplet concentrations, where solution droplets freeze homogeneously in the cir-
rus regime. Accordingly, when we set these to zero in the climatology (0 SD in
Fig. 4.5), cirrus ICNC decrease dramatically. Other cloud particle concentrations
are unaffected by this change.

On the contrary, supplying zero aerosol particle concentration for cloud droplet
activation (0 CCN in Fig. 4.5) dramatically affects all mass and number particle
concentrations, decreasing both water and ice. This test illustrates the functioning of
our CCN/INPclim-cloudbase climatology. However, one may wonder why significant
water and ice mass mixing ratios are retained even without any CCN. This highlights
the role of the CDNC minimum value in ECHAM, which serves to enforce a minimal
number concentration in order to avoid unrealistically large cloud droplets. Note
that the total water (sum of water vapour, liquid and ice water mixing ratios) is
conserved and that condensation is calculated from a saturation adjustment approach,
i.e. cloud liquid water is also formed in the absence of CCN. In clouds with liquid
water content, that minimum CDNC is dynamically calculated in our setup (see
Sec. 2.2). Thus, the liquid water mass is distributed over a small number of cloud
droplets instead of being reduced to zero.

4.3.3 CCN/INPclim development

The difference between the two approaches to generate CCN/INPclim (CCN/INPclim-
mean and CCN/INPclim-cloudbase) illustrates how the development of simplifica-
tions may force us to question and update our model understanding (illustrated
in Fig. 4.1). Figure 4.6 shows that the results of the two approaches deviate most
for Southern Ocean (SO) CDNC. This is strongly underestimated when employing
CCN/INPclim-mean. Representing liquid clouds in the SO is a particularly common
challenge for climate models in general (Bodas-Salcedo et al., 2016; Kay et al., 2016;
McCluskey et al., 2023), but it is not obvious why the mean climatology would
deviate so strongly from the default simulation.

Investigating this difference further, Figure C.3 shows that indeed this deviation is
restricted to the SO (by this term we mean latitudes between −40 ° N and −80 ° N in
the following). The underlying potential CCN concentrations show an overestimation
of CCN by CCN/INPclim-cloudbase in the SO, compared to the default. While
both CCN and CDNC have strong seasonal differences in the SO, the relative
differences with CCN/INPclim-mean or -cloudbase do not. These results indicate
that CDNC in the SO can only be achieved with a monthly CCN climatology that
overestimates CCN concentrations relative to the mean, regardless of season or
baseline concentration. It is clear that the activation of CCN into cloud droplets is a
process where large concentrations are important, because these have the potential
to raise CDNC (because activated CCN can only raise CDNC if their concentration
is higher than the pre-existing CDNC). However, it is not a priori clear why the CCN
difference is especially large in the SO, leading to large differences in CDNC there.
To understand this behaviour, we have conducted various sensitivity simulations that
help to exclude some hypotheses (see Appendix C.2 and Fig. C.1). These sensitivity
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Figure 4.6: Zonal annual means, highlighting the effect of the different climatology
variants. Uneven rows show absolute values for default simulations, and even rows show
the deviations to the default simulation. AEROclim act-arg is shown in terms of difference
to the default act-arg simulation. All values are annual means for the years 2003-2012,
and the grey shading indicates the maximum deviation from the 2003 default simulation
in annual means between 2003 and 2012. The climatologies were derived from the 10 year
default simulations.
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simulations helped us to exclude interactions with the CMPs or other feedbacks
and influences as the source of the SO bias. They clearly point to the prescribed
CCN themselves being the reason for the CDNC discrepancy. In parallel, we had
developed AEROclim, which prescribed aerosol rather than CCN concentrations (see
Sec. 4.3.4). Using AEROclim with act-ll alleviated a SO discrepancy similarly to
CCN/INPclim-cloudbase. This reinforced the idea that the bias in the SO does not
stem from the use of a monthly climatology per se, but that the prescribed CCN
values must be at fault.

The key to the SO bias proved to be the question: “why do cloud base conditions
lead to higher CCN concentrations”? In clouds, the humidity is larger than outside of
clouds. For soluble aerosol particles, increased humidity implies hygroscopic growth.
Whether aerosols have experienced hygroscopic growth is relevant for act-ll, because
it relies on the wet aerosol radius to estimate the concentration of CCN (see Fig. 4.2).
Indeed, Fig. C.2 shows that diagnosing CCN over all conditions implies a smaller wet
radius than diagnosing it only at cloud bases. Hence, diagnosed CCN concentrations
are smaller. This effect is especially pronounced in the SO. This can be explained
by the larger relative humidity over oceans in general, as well as by the aerosol
species composition. As stated above, the SO aerosol is dominated by sulfate and
sea salt, which are much more hygroscopic than other aerosol species such as mineral
dust (Lohmann et al., 2016). In the AEROclim case, the change in wet radii due to
hygroscopic growth and the size cut-off are performed in online calculations. Thus,
online computed CCN concentrations take cloud base conditions into account. In
sum, in order to use a CCN climatology for act-ll, hygroscopic growth of particles
needs to be taken into account (as in AEROclim), or CCN need to be diagnosed at
cloud base conditions already (as in CCN/INPclim-cloudbase).

4.3.4 AEROclim

AEROclim alleviates the SO bias, but instead, zonal mean CDNC and LWP values
are rather overestimated with AEROclim. For act-arg, AEROclim overestimates
CDNC by about a third in the Northern Hemisphere, between 25 °N and 75 °N. This
bias may be subjected to similar tests as the ones we have performed for the SO bias
above to elucidate its underlying cause. In particular, one would need to investigate
the error that is introduced with AEROclim, where aerosol quantities such as the
radius are computed from monthly mean concentrations using nonlinear relations.

4.3.5 CCN climatologies in different climate states

Figure 4.7 illustrates the performance of the climatologically simplified model with
respect to the full HAM default. The different climate states manifest themselves e.g.
in a decrease in northern hemisphere CDNC and LWP for the pre-industrial simula-
tion. Regardless of these differences in the default simulations, the change induced
by the simplification is similar for these different climate states. The overestimation
of CDNC and LWP in the northern hemisphere decreases in pre-industrial climate.
We attribute this to the decrease in absolute numbers that is present in the default
simulation, Also, the role of minimum CDNC is bound to be more prominent in PI
conditions and the minimum condition is present in both the full HAM and simplified
model version. In the predictive vision, simulations in varying climate states serve
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Figure 4.7: As Fig. 4.6, but comparing the different variants of the aerosol/CCN clima-
tology for different climatological states. There are three default simulations (present-day,
pre-industrial and plus 4 K conditions, as described in Sec. 4.2.2) in the uneven rows. The
differences in the even rows are with respect to the respective climatological default state.
See Fig. C.4 for the AEROclim simulations, and Fig. C.5 for a direct comparison of the
differences between climate states.
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Table 4.1: Comparison between the simplification simulations in terms of effect on aerosol
radiative forcing (ARF) and climate sensitivity, computed from 10-year means. ARF is the
difference between present day (PD) and pre-industrial (PI) radiation balances (Fnet (PD)
- Fnet (PI)). The climate sensitivity λ = ∆Tsfc

−(Fnet,FUT−Fnet,PD) is computed from the change
in surface temperature ∆Tsfc. All other quantities (first four columns) are given for the
PD simulation. Fnet is the net top of the atmosphere radiation balance. Cloud droplet
number concentration (CDNC) and liquid water path (LWP) are vertically integrated. The
simulations were conducted as detailed in Sec. 4.2.2, with the default simulations from the
respective climate state providing the climatological input to the sensitivity simulations
(the 10-year mean of CCN/INclim or AEROclim was used). Fig. 4.7 and C.4 and C.5 in
Appendix C.3 show the simulation results in more detail.

Simulation Fnet

(W m−2)
CDNC
(W m−2)

LWP
(W m−2)

SCRE
(W m−2)

ARF
(W m−2)

λ
(K m2 W−1)

default act-ll 0.57 2.5 82 -49 -1.7 0.47
CCN/INclim-mean 0.25 2.1 80 -48 -1.9 0.44
CCN/INclim-
cloudbase

-2.0 2.6 86 -50 -2.3 0.47

AEROclim act-ll -1.7 2.7 88 -52 -2.0 0.45
default act-arg 0.18 3.3 82 -50 -1.9 0.46
AEROclim act-arg -2.5 3.7 91 -54 -1.9 0.46

to infer the reaction of the climate system to such changes. Table 4.1 summarizes
the aerosol radiative forcing (ARF) and climate sensitivity (λ) as two key quantities
of interest in this regard (see e.g. Bellouin et al. (2020)). λ is well preserved by
the simplifications. ARF exhibits differences of up to ≈ 35%, which are still small
compared for example to the probability distribution of ARF presented in Bellouin
et al. (2020). This is despite a strong mismatch between default and simplified
model in the radiation balance at the top of the atmosphere in all climate states (see
Fig. 4.7). Since the CCN climatologies are a drastic simplification, some mismatch
is to be expected. As Table 4.1 shows, this mismatch is only to some part due to
changes in CDNC, LWP and subsequently SCRE. Comparing to Fig. 4.4, it becomes
clear that the climatology of the aerosol radiative effect adds to the discrepancy in
radiative balance as well. However, the fact that the mismatch between full HAM
and CCN/INPclim is consistent between climate states suggests that on the one
hand, it could likely be alleviated by tuning the CCN/INPclim model or improving
the radiation climatology. On the other hand, differences between climate states are
not affected by the mismatch, and thus the ability of the model to serve in studies of
climate change (sensitivity) is preserved in principle. Of course, if one’s objective is
to study the changes induced by changing aerosol concentrations in detail, a detailed
aerosol model will probably suit that purpose better.

4.4 Summary, conclusions and outlook
We have simplified the aerosol module HAM by using it to generate a climatology.
The climatology then serves as input to the interfaces from aerosols to CMPs. We
have developed two versions of the climatology, one that prescribes CCN and INPs
and can only be used for the empirical Lin & Leaitch cloud droplet activation
scheme, and one that prescribes aerosol mass and number concentrations that can
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also be used with the Köhler theory based Abdul-Razzak & Ghan scheme. For both
versions we could develop a climatology that globally gives promising results for our
purpose of studying clouds. Regarding the simplifications fitness’ for simulations in
a different climate, Fig. 4.7, C.4 and C.5 in Appendix C.3 show that the use of the
climatologies inflicts no structural error in different climate states. The differences
induced by the simplifications in relation to the default are mostly within inter-
annual variability of each other in different climates. At the same time, differences
between default simulations for different climates are large, confirming that they
can serve as test cases. Table 4.1 shows that the simplifications preserve estimates
of climate sensitivity, but exhibit differences in aerosol radiative forcing of up to
≈ 35% (for CCN/INPclim). The fact that we do not achieve equifinality in present
day conditions and aerosol forcing highlights that the full complexity of the aerosol
scheme has merit in the sense that it is not fully replaceable in a naively simple
way. However, the climatologies and the tuning of the results to the default model
can certainly be improved (see the present day radiative forcing in Table 4.1). We
did not tune the simplification variants on purpose, to facilitate a clear comparison.
Thus, this work demonstrates that such drastic simplifications of aerosol treatment
are possible.

The simplifications result in large computing time savings of roughly 65%. This
suggests the use of the climatologies in settings where computational time is limited
as e.g. for long climate simulations, high resolution simulations or large ensembles.
We have also claimed that simplifications can enhance the interpretability of a given
model. An explicit aerosol treatment may be necessary for example for studies of
their health impacts and air pollution. In our case, our interest lies in studying the
modeled clouds and their properties. Thus, for this purpose it is a strength of our
simplifications that they allow us to isolate and investigate only the cloud response
to aerosols and not the feedback response of aerosols.

In addition, we have gained knowledge on which features of such a climatology are
important. In terms of CDNC, results similar to the default could only be obtained
with climatologies that take into account hygroscopic growth at cloud base conditions,
which implies higher CCN concentrations. The CCN/INPclim gives satisfying results
only when using CCN concentrations at cloud base to generate it. The mean CCN
over all conditions at all times is smaller and results in a large underestimation
of CDNC in the SO. With sensitivity experiments we have excluded various cloud
feedbacks and related factors as reasons for this behaviour. This lead us to conclude
that in the SO CCN vary with cloud base conditions. We can explain this with
hygroscopic growth, which increases the wet radius of aerosols in more humid cloud
conditions and hence leads to higher CCN concentrations at cloud base with the
act-ll scheme. This finding has important implications for the general simplification
of using a CCN climatology. Either, one would need to take hygroscopic growth
on top of the prescribed CCN (as AEROclim) into account, or use a climatology
that is derived from cloudy conditions already (as CCN/INPclim-cloudbase). The
difficulty we had in interpreting the CCN/INPclim-mean model behaviour points to
another strength of the simplifications. While developing simplifications the models
forces us to look at parts that are important to the model itself. Instead of being
guided by our a priori believes (which in our case pointed towards time variability or
precipitation feedbacks), simplifications thus allow for a change of perspective that
may provide fresh insights.
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More aerosol climatologies for use in climate models have been developed previ-
ously. It is important to stress that our climatologies are not meant to be generally
applicable. Rather, we propose the process of simplification as a way to gain a new
perspective on model behaviour and the simplified model as an explorative tool for
further study. This distinguishes our climatologies from the MACv2SP climatology
developed by Stevens et al. (2017). Their climatology is analytical, which enhances
its flexibility, the clearness of its assumptions and the possibilities for porting it to
different models. Our climatology is meant for use in ECHAM with the goal of
making its model results equifinal to the default ECHAM-HAM configuration. As
such, not the single realisation of our climatology is important, but we have rather
developed the model code to easily derive and employ new climatologies. This allows
the kind of sensitivity studies we used to investigate the SO behaviour, which can be
helpful in adapting to new model versions and investigating their differences. Fur-
ther, MACv2SP is restricted to anthropogenic aerosols and prescribes a change to
CDNC directly. We take into account all of HAM’s (soluble) aerosols. We specifically
prescribe either aerosol or potential CCN that enter the cloud droplet activation
schemes online and thus keep e.g. the updraft dependence.

4.4.1 Outlook

Our climatologies are explorative and meant to aid understanding. However, the
results are encouraging to the idea that for the purpose of studying clouds, the full
aerosol module HAM is replaceable with a climatology. This opens the door to
use observationally developed climatologies in the same setup. In this way, repre-
sentative complexity could be replaced with a representative climatology. In fact,
an observation-based CCN climatology may be more representative than the full
HAM model itself, as the latter is known to exclude e.g. aerosol species such as
nitrate, whose effect would be present in observations. Such observation-based CCN
climatologies already exist. For example, Choudhury and Tesche (2022) derived one
from the lidar on the satellite CALIPSO. Importantly, our study shows that the use
of mean CCN climatologies will not suffice. An additional treatment of hygroscopic
growth is needed, especially in the SO. To this end, one approach to be tested is
to apply the difference between CCN/INclim-cloudbase and CCN/INclim-mean to
scale and adapt an observation-based climatology for use in ECHAM-HAM.

Alternatively, one may modify CCN/INclim-cloudbase to tune it towards obser-
vations, to test ECHAM-HAM sensitivities towards this more representative CCN
climatology. Note that observation-based climatologies limit research to present day
aerosol conditions. In addition, using them for act-arg would require more detailed
information than potential CCN concentrations on the side of the climatologies.
Other model-derived CCN climatologies (as e.g. from Costa-Surós et al. (2020))
could address these concerns and may be used where their origin is thought to be
superior to ECHAM-HAM-derived ones in epistemic terms. Also, by using these
climatologies as input for the act-ll configuration, one could further elucidate the
sensitivity of ECHAM towards CCN. Similarly, the simplified model version may be
compared to the single moment CMPs scheme that is available for ECHAM, where
CDNC is prescribed, to spotlight the role of activation in the model.

Of course our developed climatologies can be improved upon or made more
sophisticated. For example, allowing for wet scavenging with a relaxation back to
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the climatology as it was implemented by Costa-Surós et al. (2020) in their ICON
Large Eddy Simulations, would enable a reaction of CCN concentrations to cloud
behaviour. However, the climatology is engineered to provide adequate results in
CDNC, and not to give a best estimate of CCN concentrations (CCN/INPclim-mean
would for example be more apt for at least providing the model’s best estimate).
Hence, in its present form, also a direct comparison of CCN/INPclim-cloudbase to
observational CCN concentrations, for example to judge the model performance,
would go against its purpose. Just as MACv2SP, our parameterization is meant
to be a reference climatology for the effect of CCN on clouds, and “not a reference
aerosol climatology” (Stevens et al., 2017).

Instead, the simplified modules allow for an easier comparison between models
by eliminating differences in details. For example, cloud microphysical schemes may
be compared more easily between two models using the same CCN climatology. Our
implementation of the climatologies also enables easily devised sensitivity studies,
for example using a different time resolution for the climatologies. In particular,
AEROclim opens up many possibilities for sensitivity experiments, for example by
setting single prescribed variables to 0. Thus our approach also has potential for
model development. It highlights what variables or features are important for model
performance, and can serve to detect unintended behaviour or mistakes in the code.
Importantly, it shows the benefit for understanding in simplification, calling into
question the representative complexity paradigm that has dominated climate model
development.

Code and data availability The ECHAM-HAMMOZ model is freely available to
the scientific community under the HAMMOZ Software License Agreement, which
defines the conditions under which the model can be used. The specific version of
the code used for this study is archived in the ECHAM-HAMMOZ SVN repository
at /root/echam6-hammoz/tags/papers/2023/Proske_et_al_2023_ACPD. More
information can be found on the HAMMOZ website (https://redmine.hammoz.
ethz.ch/projects/hammoz, last access: 22 November 2023). Analysis and plot-
ting scripts are archived at https://doi.org/10.5281/zenodo.10171426 (Proske et
al., 2023f). Generated data is archived at https://doi.org/10.5281/zenodo.10184958
and https://doi.org/10.5281/zenodo.10183962 (Proske et al., 2023d; Proske et al.,
2023e).
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5
Conclusions and outlook

5.1 Summary and conclusions
The starting point for this work is the detailed representation of aerosol and cloud
microphysics that has accumulated in the global aerosol climate model ECHAM-
HAM. The scheme complexity hinders model understanding, which is why we set out
to find simplifications for the cloud microphysics and aerosol representation. Simpli-
fied models are easier to apply and perform sensitivity tests with since they enable
time savings and are easier to manipulate. Besides, fewer components, processes or
parameters ease understanding of the remaining model parts. Importantly, as we
demonstrate, the process of developing simplifications already generates understand-
ing of model behaviour.

For CMPs, we approached the quest for simplification bottom-up. In Chapter
2 we developed a methodology in which we perturb the effect that single processes
have on the model state. Running many model variants with differently perturbed
processes, we created a perturbed parameter ensemble (PPE). From the PPE, we
built a surrogate model that allowed us to generate an even greater number of model
simulations, which enabled us to perform quantitative sensitivity analysis on the PPE.
Chapter 2 applies this methodology to four selected CMP processes. It demonstrates
that this methodology can help us to, on the one hand, identify processes that the
model is sensitive to. The model performance may benefit from improvements in
these processes’ representation. On the other hand the methodology enables us to
identify processes that the model is not sensitive to. These processes are the ones
that could be simplified or even completely neglected.

Chapter 3 applies the methodology to the whole CMP scheme, perturbing 15
processes. We identified 8 processes that the model is insensitive to and that thus
could be simplified. Furthermore, we proposed and tested simplifications that set
these processes’ effects either to a constant value or to a climatology. Importantly,
we found that the simplifications that we derived hold in past and future climates.
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Thus, the simplified model remains useful for climate model applications of simulating
different climate states.

In Chapter 4 we have turned towards a more drastic, top-down approach. We are
interested in the behaviour of clouds in the model. The aerosol module provides input
to the CMPs in the form of CCN and INP concentrations. In order to simplify the
aerosol treatment, we have thus developed a climatological treatment of this interface.
The climatologies either supply potential CCN and INP concentrations, which serve
as input to the Lin & Leaitch cloud droplet activation scheme, or prescribe aerosol
mass and number concentrations, which can enter both the Lin & Leaitch as well
as the Abdul-Razzak & Ghan activation schemes. Overall, both climatologies give
satisfying results in terms of cloud variables. One exception is in the Southern Ocean,
where we find that CDNC concentrations are underestimated with a mean CCN
climatology. Our investigation shows that the CCN climatology needs to include
some treatment of aerosol hygroscopic growth in order to alleviate this bias. The
other exception is an overestimation of CDNC in the Northern Hemisphere with
the aerosol climatology using the Abdul-Razzak & Ghan activation scheme, which
remains open for further investigation. Since they replace the whole HAM scheme,
these simplifications enable large computational time savings.

Together, the chapters demonstrate that there is ample room for simplification in
the aerosol and cloud microphysics treatment in ECHAM-HAM. This can be taken
as evidence of redundancy in model formulations. Hence our work questions the
approach of the representative vision, which seeks to “meet complexity in nature with
model complexity” and where “redundancy in model detail is assumed to be a very
long way off” (Shackley et al., 1998). Our approach adds to a range of recent work
that studies model sensitivities and process simplifications and thus systematically
questions model complexity (Cox et al., 2006; Crout et al., 2009; Gibbons et al.,
2010; Tarsitano et al., 2011; Crout et al., 2014; Hieronymus et al., 2022). This work
provides a new perspective onto model development: it calls to caution against the
practiced call for greater model detail in response to model shortcomings. Instead,
one may question whether new or more detailed parameterizations are really needed
for one’s modeling purpose. Studying the model at hand may provide more efficient
ways to improve a model’s adequacy for its purpose than simply adding more and
more detail. At the very least, implementing new parameterization schemes should
go hand in hand with comprehensive parameter sensitivity testing (Smalley et al.,
2022).

Of course, for any given model the results of such simplifications depend on
the model setup and scheme choice (White et al., 2017). On the first glance, this
may seem to render our results less useful. In fact, the model employed in this
study, ECHAM, is in the process of being replaced by its successor ICON (Zängl
et al., 2015; Salzmann et al., 2022). However, ICON shares ECHAM dependencies.
Most importantly, the value of our results lies not in exactly quantified model
sensitivities, but rather in the broad-ranging conceptual implications, as detailed
above and below. Thus they will remain valuable also in future model versions. In
particular, the move to higher resolution modeling renders the processes that still
need to be parameterized, such as aerosols and CMPs, even more important (Sullivan
et al., 2022). Here the conclusion from our study remains valuable: climate model
schemes contain redundancies and have room for simplifications that can enable us
to understand the models better.
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One outcome of our work is to expose the conflict between the representative
and heuristic modeling visions. The representative vision assumes greater repre-
sentational depth will make better models (and e.g. help to reduce uncertainty),
while the heuristic vision uses models to generate understanding (see Sec. 1.3.2).
Foremost, our work aimed at enhanced model understanding and thus served the
heuristic vision. Importantly for the predictive vision, the results of our simplified
model versions stay satisfyingly equifinal in global scale cloud variables. Thus the
simplifications do no harm from the perspective of the predictive vision. However,
the readiness to simplify is strongly related to the balance between the heuristic
and representative visions. We question the expansive modeling paradigm that
has historically dominated climate model development (see Fig. 1.2) and is deeply
engrained in our modeling culture (see Sec. 1.2.3).

We demonstrate how the process of developing simplifications already helps in
generating understanding of model behaviour. In this process, the model points the
developer to which features are important. This gives a different perspective with
much potential for model development and scientific insight. As Crout et al. (2014)
state, in simplification “the aim should not be to simply find a simpler model and use
it, but to use the identification of redundant variables as a means to challenge and
improve the formulation used in the model.” The new perspective, seeing what does
and does not work in a simplified version, triggers a chain of checks and reasoning that
is at the very root of the scientific methodology. This work demonstrates this power
of simplifications to provide understanding of model behaviour: In Chapter 2 we
found that ice crystal autoconversion dominates model sensitivities. This is troubling
since the representation of ice crystal autoconversion may be seen as a violation of
the physical representation ideal that is central to the idea of parameterizations
(see Sec. 1.1.2). It is artificial in the sense that division between the categories of
snow flakes and ice crystals exists only in the model. Thus, the sensitivity study has
pointed us to a model behaviour that is unintended. Similarly, in the extensive CMP
scheme study in Chapter 3, we found that the model is insensitive to some processes
like the heterogeneous freezing of ice crystals or secondary ice production, while
these processes are thought to be important for ice production in the atmosphere
(see Sec. 3.3.4). Finally, the climatology that we derive for the Lin & Leaitch cloud
droplet activation scheme only gave satisfying results for CDNC in the Southern
Ocean when taking hygroscopic growth at cloud base conditions into account. With
a simple mean climatology of CCN the CDNC was underestimated in the Southern
Ocean. This implies that the naive replacement of the aerosol scheme with a purely
observational CCN concentration is not viable. It requires online hygroscopic growth
treatment (as in AEROclim), highlighting the critical role of that process.

5.2 Outlook
Fittingly, the points where we have derived understanding offer avenues for future
work:

• Large importance of ice crystal autoconversion – As detailed in Chapter
2 and above, the large sensitivity of the model to this artificial process is
troubling. It highlights that due to the “balance of approximations” (Lambert
and Boer, 2001; Parker, 2009) and non-linearities, unphysical parts of the model
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may exert a disproportionally large influence. For ice crystal autoconversion
the P3 CMP scheme offers relief. However, the tuning factor for ice crystal
autoconversion which uses and exacerbates the processes’ role in the model,
is not the only “minor-looking treatment” (Kawai et al., 2022) in the model.
Future sensitivity studies looking at other tuning factors, thresholds and alike
could quantify their impact. As Hieronymus et al. (2022) suspect, “artificial
parameters [. . . ] might render some artificial assumptions more influential
than the precise model physics.” This quantification of their impact could in
turn help to hedge model uncertainties as well as guide model development.
For such a study, our PPE and sensitivity analysis method could be readily
employed.

• Unimportance of some CMP processes – In Chapter 3 we have shown that
heterogeneous freezing and secondary ice production have a negligible impact
on global cloud variables in ECHAM-HAM, which goes against experimental
understanding. Unless they dramatically enhance these processes’ effectiveness,
new parameterization formulations will not help to alleviate this problem.
Our hypothesis is that other processes in the model dominate the balance of
processes. For example, heterogeneous freezing of cloud droplets is thought
to be important as a threshold process that supplies the first ice crystals that
are needed to initiate a cloud phase transition. Our hypothesis is that in
the model the sedimentation of ice crystals from above already supplies those
crystals, rendering heterogeneous freezing unimportant. This hypothesis has
been and is being explored in a number of projects (Chadzelek, 2023; Ickes et al.,
2023a). In particular, the question of which processes drive ice crystal number
concentrations in ECHAM-HAM will be explored in the FOR-ICE (Ickes et
al., 2023b) project. In this model intercomparison project, switches for all
processes that can supply ice crystals to the model, are being implemented.
Running the model for all possible combinations of switches allows to use the
factorial method (Montgomery, 2017), which attributes the importance of each
process for ICNC, similarly to our approach in Chapter 2 and 3.

• Aerosol climatology – We have explained the SO bias in CDNC to stem
from a missing consideration of hygroscopic growth at high humidity cloud
conditions with the mean climatology. The aerosol climatology similarly leads
to an overestimation of CDNC in the Northern Hemisphere when using the
AR&G activation scheme. We propose a similar investigation of possible
processes or feedbacks leading to that behaviour as we conducted for the SO
bias in Sec. 4.3.3. Since the Northern Hemisphere bias is smaller with the L&L
scheme, here the problem likely lies not in the prescribed CCN concentrations
themselves but rather in the interaction with the AR&G activation scheme.

• Observation based CCN climatology – The code developments we have
implemented for Chapter 4 open up the possibility to use an observation-based
CCN climatology instead of the model-derived one. Our results highlight that
some treatment of hygroscopic growth is required, so any mean climatology
would require adaptions. The use of an observation-based climatology would
also only be possible for climate states for which observations exist, limiting its
usefulness for the study of climate change. However, at least for present day
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simulations, supplying an observation-based CCN climatology is an avenue to
lead out of the complexity paradigm created by the combination of reductionism
and representative goals.

• Evaluate simplified model variants – We have constructed various sets
of simplified model variants and have evaluated their performance in past
and future climates both for the CMP process representations in Chapter
3 and for the climatological simplifications in Chapter 4. For the latter, a
thorough investigation of model state and important climate change metrics
such as the equilibrium climate sensitivity will be conducted as part of the
FORCeS project. The CCN/INclim-cloudbase model variant will take part
in the FORCeS intercomparison. For this, we perform historical and time-
evolution simulations, both with the default full HAM setup and the simplified
model version. With other models that will perform the same set of simulations
these will form the basis for extended evaluations.





A
Assessing the potential for
simplification in global climate
model cloud microphysics

A.1 Tuning

Table A.1: Tuning parameters that differ between this study and the reference of Neubauer
et al. (2019). γr is the scaling factor for the stratiform rain formation rate by autoconversion.
γs is a scaling factor for the stratiform snow formation rate by autoconversion. With the
changes described in Sec. 2.2.1 the tuning parameter of the maximum cloud droplet radius,
rCDNC, replaces the previous minimum cloud droplet number concentration, CDNCmin. The
tuning parameter for immediate autoconversion of detrained ICNC, γd, is newly introduced.

Parameter ECHAM-HAM this study Reference
γr 5 10.6
γs 600 900
rCDNC 15× 10−6 m –
CDNCmin – 40× 10−6 m−3

γd 5 –
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A.2 PPE results for more variables

Figure A.1: Visualisation of the multi-dimensional response surfaces of the emulated
PPEs for multiple variables. Each process is a dimension, and the colorbars denote the
global annual mean values. In principle, each surface could be displayed by a full matrix
plot as in Fig. 2.7 and 2.8, but here only the panels that include the dominating process
are shown (autoconversion, except for CDNC in the last row, where riming is the dominant
process).
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A.3 Total sensitivity index

Figure A.2: Same as Fig. 2.11 but for the total sensitivity indices.
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Figure A.3: Same as Fig. 2.12 but for the total sensitivity indices.
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A.4 Validation of the spherical harmonics sensitivity
analysis

Figure A.4: Validation of the emulated angular amplitude spectrum of degree l = 6 for
the LWP.

The validation of the spherical harmonics emulation was carried out as described
in Sec. 2.2.4. Larger uncertainties in the emulation were apparent for almost all
variables and degrees l (see Fig. A.4 for an example) than for that of the global
mean values. However, some emulations were also found to be defaulting, meaning
that they predicted a similar output value for the whole phase space (see Fig. A.5
and A.6 for an example). As this behaviour points to a missing signal in the input,
these points were excluded from further analysis, if the following two criteria were
not fulfilled (excluding the emulated outliers that are marked red e.g. in Fig. 2.4):

• The uncertainty in the prediction is smaller than the spread of the variable,
i.e. the smallest error bar in Fig. A.4d) is smaller than 0.9∆Ysim.

• The predictions are significantly different from each other, i.e. there is one
pair of predictions whose error bars do not overlap.
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Figure A.5: Same as Fig. 2.7 but for the LWP spherical expansion angular amplitude
spectrum of degree l = 3. In this case, the emulator was found to be defaulting and
therefore failed the validation and was not included in the subsequent sensitivity analysis.
The points enclosed by black circles denote the PPE member results used to train the
emulator.
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Figure A.6: Validation of the emulated angular amplitude spectrum of degree l = 3 for
the LWP (see Fig. A.5), which failed because of diagnosed defaulting.





B
Addressing complexity in global
aerosol climate model cloud
microphysics

B.1 Tuning

Table B.1: Tuning parameters for the P3 scheme that differ between this study and
the reference of Dietlicher et al. (2019). γr is the scaling factor for the stratiform rain
formation rate by autoconversion. γsci is the scaling factor for the self-collection of ice. For
the 2M scheme the tuning was the same as described in Table A.1.

Parameter ECHAM-HAM (P3) this study Reference
γr 3.25 8
γsci 7 5
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B.2 Simplifications: climatologies
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Figure B.1: Zonal mean climatologies that were prescribed for the simplification experi-
ments for (a) riming, (b) ice crystal accretion, (c) melting, and (d) ice crystal nucleation.
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B.3 Total sensitivity indices
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C
Developing a climatological
simplification of aerosols to enter the
cloud microphysics of a global
climate model

C.1 Tuning

Table C.1: Tuning parameters for the L&L scheme that differ with respect to the ECHAM-
HAM model version used in Chapters 2 and 3 (see Tables A.1 and B.1). The latter’s tuning
is used for the AR&G scheme. γr is the scaling factor for the stratiform rain formation
rate by autoconversion. γs is a scaling factor for the stratiform snow formation rate by
autoconversion.

Parameter L&L this study Reference and AR&G this study
γr 3.25 5
γs 900 600

C.2 Sensitivity simulations to elucidate the SO-bias
To understand the SO-bias in CDNC exhibited by CCN/INclim-mean (see Sec. 4.3.3),
we conducted various sensitivity simulations:

• Aerosol species emissions – The SO aerosol composition is dominated by
sea salt and sulfate, where in the Northern Hemisphere dust and black or
brown carbon are more important. Sea salt and DMS emissions (with DMS
being a precursor for sulfate) are highly dependent on wind speed, which might
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Figure C.3: Seasonal mean maps of potential stratiform CCN concentrations (top two
rows) and CDNC concentrations (bottom two rows), in absolute terms for the default
simulation (left most column) and relative deviations for the different climatologies. The
right most column shows the absolute zonal means. Note that for potential CCN, the
default is hidden behind the CCN/INPclim-mean line.
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lead to high variability, making the climatological representation less suited
for the SO. We tested this hypothesis by prescribing a fixed wind speed in the
emission computations. This approach changes the default CDNC as expected,
but the bias in the SO remains. As an extreme test, we turned off DMS and
sea salt emissions separately (not shown) and together. This reduces CDNC
both in the default and the CCN/INPclim-mean case. Turning off both DMS
and SS, the difference between the full HAM and climatology simulation in
the SO disappears, but CDNC are small in the full HAM simulation to begin
with. Turning both emission types off separately does nothing to alleviate the
SO bias.

• Nudging – By nudging pressure, vorticity and divergence we can test whether
feedbacks from the cloud behaviour to the dynamics of the model are contribut-
ing to the discrepancy. Since the SO discrepancy remains in the nudged case,
we can exclude these types of feedbacks as a reason for it.

• CDNCmin – To avoid unphysical situations, climate model code employs
thresholds and other “minor-looking treatments” (Kawai et al., 2022). One of
these is the CDNC minimum that serves to avoid situations where the model
calculates a cloud with too few, too large cloud droplets. In our ECHAM-HAM
configuration, the minimum is calculated dynamically from the in-cloud water
content and a set droplet radius (see Sec. 2.2.1). CCN concentrations below
the CDNC minimum threshold value are never effective in promoting cloud
droplet formation. However, they do enter into the CCN/INPclim climatology
and may thus artificially lower effective values. We tested the effect of this
threshold for the CCN climatology by allowing only CCN larger than the
minimum to enter the climatology. Since the sensitivity simulation preserves
the SO bias we can exclude CDNCmin as the reason for the SO discrepancy.

• Fixed updraft – As illustrated in Fig. 4.2, both the potential CCN and the
local updraft enter the calculation of activated cloud droplets. This updraft
could be affected by dynamical feedbacks to a CCN perturbation. Thus we
conducted simulations where we put the value of the updraft that is used in
the activation calculation to a constant value. This of course deteriorates the
performance in the default simulation, but since it does not reduce the SO bias
from CCN/INPclim-mean, we can exclude the updraft hypothesis as well.

• Convective cloud formation – The CCN/INPclim prescribes CCN not only
for stratiform but also for convective clouds. Cloud droplets that formed in
convective clouds may enter stratiform clouds by detrainment. To test the
effect of detrainment we inhibited convective cloud formation. This of course
changes the default simulation, but again it does little to reduce the SO CDNC
bias.

• Mixed-phase ice phase influence – In the SO we expect different cloud
phase distributions and cloud properties than in the Northern Hemisphere
(Mülmenstädt et al., 2015), with e.g. lower ice crystal number concentrations
in the SO (see Fig. 4.4). The difference in cloud phases could explain differing
reactions of the clouds to changes in CCN and cloud droplet formation. We
tested this hypothesis in a simulation where all mixed-phase clouds were forced
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to remain liquid by inhibiting heterogeneous cloud droplet freezing as well
as ice crystal sedimentation. The resulting simulations show neither a better
CCN/INPclim-mean performance in the SO in terms of CDNC, nor a worse
performance in the Northern Hemisphere. Hence we can exclude the ice phase
as a reason for the SO discrepancy.

• CMPs processes – Other CMPs processes might lead to feedbacks that
enhance the CDNC discrepancy in the SO. We tested this hypothesis by turning
off both the ice phase influence (as above), and the processes of cloud droplet
autoconversion, riming and cloud droplet accretion. Hence in this simulation
all processes leading to liquid precipitation formation or influencing cloud
droplet number concentrations (except nucleation) were inhibited (see Fig. 3.2).
Removing the CDNC sink processes greatly enhances CDNC as expected.
However, the underestimation of CDNC in the SO by CCN/INPclim-mean
remains.
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C.3 Simplification performance in different climate
states (PD, PI and FUT simulations)
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Figure C.4: As Fig. 4.7, but for the act-arg scheme default and AEROclim simulations.
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Figure C.5: As Fig. 4.7, but comparing the aerosol radiative forcing and difference
between SST + 4 K and present conditions (as described in Sec. 4.2.2) between the default
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Acronyms

CC cloud cover

CCN cloud condensation nuclei

CDNC cloud droplet number concentration

CMP cloud microphysical

CMPs cloud microphysics

ICNC ice crystal number concentration

IWP ice water path

LCRE longwave cloud radiative effect

LWP liquid water path

PPE perturbed parameter ensemble

Prcp precipitation

S1 first direct effect sensitivity index

ST total effect sensitivity index
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136 Acronyms

SCRE shortwave cloud radiative effect

SO Southern Ocean
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