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A B S T R A C T

Deep learning technologies are skyrocketing in popularity across a wide
range of domains, with groundbreaking accomplishments in fields such
as natural language processing, biology, healthcare and computer vision.
The remarkable success of neural networks makes machine-learning re-
searchers like myself highly excited by the potential impact of our work
on the future of science and technology. As a community, our goal should
be to provide scientists and engineers with a solid deep-learning toolbox
where convenient architectural choices and best training practices are
clearly outlined.
However, today, we are still far from an effective practice-oriented theory
of deep learning: state-of-the-art neural networks have complex modu-
lar designs, with components whose individual or combined effects on
performance are often not well understood. Moreover, when training a
network, best practices are often not well aligned with optimization theory.
In an attempt to bridge this gap, this thesis delves into the enigmatic
dynamics and effectiveness of adaptive momentum methods — state-of-
the-art solutions for training complex architectures such as Transformers.
Throughout this volume, we unravel their mechanisms through a rig-
orous analysis of acceleration and adaptive stepsizes on toy problems
as well as on modern architectures, including Multi-Layer Perceptrons
(MLPs) and Transformers, revealing the profound challenges faced when
optimizing these models. Leveraging the lessons learned from our study
of Adam, we provide new variants with provable curvature adaptation
properties and promising performance. In addition, our deepened un-
derstanding of the inner workings of adaptive methods gives us insights
for solving an old problem: efficient training of recurrent models, tam-
ing the issue of vanishing/exploding gradients and achieving state-of-
the-art performance on long-range reasoning tasks with an interpretable
architecture. Finally, as we probe the terrain of generalization through
better optimization, we propose novel noise injection schemes that can
be incorporated into adaptive methods and offer compelling strategies
to navigate intricate loss landscapes towards flat minima.
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E S T R AT T O

Le tecnologie di apprendimento profondo stanno raggiungendo una popo-
larità vertiginosa in un’ampia gamma di settori, con risultati rivoluzionari
nell’elaborazione del linguaggio naturale, la biologia, l’assistenza sani-
taria e la computer vision. Il notevole successo delle reti neurali rende
i ricercatori di apprendimento automatico come me molto entusiasti del
potenziale impatto del nostro lavoro sul futuro della scienza e della tec-
nologia. Come comunità, il nostro obiettivo dovrebbe essere quello di
fornire a scienziati e ingegneri una solida cassetta degli attrezzi per il
deep-learning, in cui le scelte architettoniche più convenienti e le migliori
pratiche di addestramento siano chiaramente delineate.
Tuttavia, oggi siamo ancora lontani da un’efficace teoria del deep learning:
le reti neurali di ultima generazione hanno design modulari complessi,
con componenti i cui effetti individuali o combinati sulle prestazioni
spesso non sono ben compresi. Inoltre, durante l’addestramento, molte
pratiche non si trovano ben allineate con la teoria dell’ottimizzazione.
Nel tentativo di colmare questa lacuna, questa tesi approfondisce le di-
namiche enigmatiche e l’efficacia dei metodi di ottimizazione adattivi
—- soluzioni all’avanguardia per l’addestramento di architetture comp-
lesse come i trasformatori. Nel corso del volume, sveliamo i loro mec-
canismi attraverso un’analisi rigorosa dell’accelerazione e dei passi adat-
tive su problemi semplificati e su architetture moderne, tra cui i per-
ceptron multistrato (MLP) e i trasformatori, rivelando le profonde sfide
da affrontare nell’ottimizzazione di questi modelli. Sfruttando le lezioni
apprese dallo studio di Adam, forniamo nuove varianti con proprietà
di adattamento alla curvatura dimostrabili e prestazioni promettenti. In-
oltre, la nostra comprensione approfondita del funzionamento interno
dei metodi adattativi ci offre spunti per risolvere un vecchio problema:
l’addestramento efficiente dei modelli ricorrenti. Infine, mentre sondi-
amo il terreno della generalizzazione attraverso una migliore ottimiz-
zazione, proponiamo nuovi schemi di iniezione del rumore che possono
essere incorporati nei metodi adattivi e che offrono strategie convincenti
per navigare in intricati paesaggi verso minimi piatti.
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1P R E FA C E A N D O U T L O O K

"An ideal thesis is like a circle. You are allowed
to choose one point: that is page 1."

– Will J. Merry

Back in 2018, after writing my Master’s thesis, I spent a month at the
MPI for Intelligent Systems in Tübingen. In between working on my
projects and moving around Airbnbs, I had the opportunity of meeting
Prof. Christian Lubich at the University of Tübingen — one of the most
prolific and influential researchers in numerical analysis today. While
our backgrounds and research interests differed, I was eager to chat with
him about the connections between geometric numerical integration and
accelerated optimizers for convex problems (the subject of my Master’s
thesis). Pretty soon in our discussion, our topic shifted to optimization
for deep learning, and in particular towards a specific adaptive stepsize
scheme for stochastic gradient descent — Adam (Kingma and Ba, 2014),
the method of choice today for training large neural networks such as
Transformers (Vaswani et al., 2017).

Let f : Rd → R be the loss associated with training a neural network (av-
eraged over data points), and consider updating model parameters x ∈
Rd iteratively using gradient estimates g(x) computed using a minibatch
of samples. The Adam update (without bias correction) is

xk+1 = xk −
η√

vk + ϵ
·mk

mk+1 = β1mk + (1− β1)g(xk)

vk+1 = β2vk + (1− β2)g(xk)
2

, (Adam)

where squares, square roots, multiplications, and divisions by vectors are
performed elementwise, and η, β1, β2, ϵ ∈ R≥0 are hyperparameters.

Prof. Lubich did not have prior knowledge of this method — after I wrote
it down, he stared at it in silence for a couple of minutes, trying to grasp the
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2 preface and outlook

essence behind this update rule and potential reasons for its success. His
curiosity, precision, and humbleness served as great inspirations for me
during my Ph.D. and motivated my investigations on this topic.

At the time of my meeting with Prof. Lubich, Adam had over 14k cita-
tions; today, it has almost 150k citations. While citation counts can be
misleading, the impact of Adam is indisputable: it made it possible, for
instance, to train large language models (OpenAI, 2023; Touvron et al.,
2023; Köpf et al., 2023), and offers practitioners a commendable blend of
speed and generalization performance while alleviating the necessity for
an extensive hyperparameters search. This in contrast to more theoreti-
cally principled approaches like vanilla stochastic gradient descent (SGD)
with momentum, which often demands heavy hyperparameter tuning in
modern applications. In addition, Adam stands out as one of the few
optimization algorithms capable of navigating the intricate landscapes1

inherent to attention-based Transformers (Vaswani et al., 2017).

While the Adam scheme builds upon a great deal of work on adaptive
methods (Ward et al., 2019; Tieleman and Hinton, 2012), its peculiar dy-
namics and extraordinary effectiveness continue to baffle researchers. Its
structure is often connected to approximations of the empirical Fischer in-
formation (Kunstner et al., 2019; Martens, 2020), which is related in some
settings to the Fisher information preconditioner and therefore to the
geometrically principled natural gradient descent update (Amari, 1998)
and its practical variant KFAC (Martens and Grosse, 2015). In turn, in
some special settings, Fisher information preconditioning coincides with
the Generalized Gauss-Newton (GGN) method (Martens, 2020), which
uses the neural network model Jacobian to adapt the SGD direction with
second-order information. Unfortunately, the approximate connection be-
tween Adam and second-order schemes cannot be leveraged quantita-
tively to derive rates: most results for Adam in the literature (Reddi et
al., 2018; Défossez et al., 2022; Shi and Li, 2021) provide guarantees that
show no sizable advantage over SGD.

1 Despite rigorous tuning efforts and incorporation of techniques like layer normalization (Ba et
al., 2016) and residual connections (He et al., 2016), SGD’s performance in training Transform-
ers is notably suboptimal, as indicated by findings in Xiong et al., 2020; Noci et al., 2022. In
contrast, well-initialized and normalized convolutional networks demonstrate excellent train-
ing results with both SGD and adaptive optimization methods. However, the rise of vision
Transformers (Dosovitskiy et al., 2020) in recent years has led to a pronounced increase in the
adoption of Adam as the preferred optimization choice also by the vision community.



preface and outlook 3

Motivated by the exceptional impact of Adam in the development of
deep learning and by its intriguing yet poorly understood mechanism —
which combines an adaptive coordinate-wise learning rate with momen-
tum — we (I will start now using the pluralis maiestatis) provide in this
thesis a thorough investigation of the dynamics of adaptive momentum
methods in the context of deep learning. Our discussion will be mostly
linear: starting from recent advancements in the theory of momentum
and acceleration — a crucial component of Adam — we will then dive
into a study of the dynamics of Adam in deep networks. After a theoret-
ical analysis resulting in new adaptive methods with strong theoretical
guarantees, we will discuss settings where training with stochastic gra-
dients and adaptive stepsizes is not enough: in particular, we will open
Pandora’s box of generalization and discuss how to boost test perfor-
mance in settings where simply minimizing the training loss does not
yield the desired accuracy. This thesis also covers an extremely challeng-
ing setting: training deep recurrent models for long sequential data. This
scenario is prototypical for an important lesson: on top of adaptive meth-
ods, efficient parametrization and normalization of deep networks are
crucial for performance.

While the Leitmotiv of this thesis is understanding and improving the
performance of adaptive optimizers in deep learning, the discussion will
often take detours into specific (yet needed) architecture investigations
and into detailed discussions of fundamental tools such as noise injection
and momentum, which are not specific to adaptive methods per se. Due
to the large number of papers discussed here, we will only focus on the
main ideas and, where possible, illustrate results using toy examples.

A sketch illustrating the structure of this work can be found in Figure 1.
What follows is a brief outline which connects together the twelve papers
discussed in this volume. For a complete list of papers produced during
my PhD, including those we left out of the discussion here, the reader
can check the last pages of this chapter.

We want to clarify that the purpose of this thesis is not to advocate for the
widespread adoption of adaptive methods in the context of deep learning. In-
stead, our primary objective is to delve into the reasons that contribute to
their effectiveness and to bring to light the complexities involved in opti-
mizing modern neural loss landscapes. As such, we would like the reader
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to consider adaptive methods as a lens for studying of the structure of
deep learning problems to reveal issues, and suggest improvements or
theoretically grounded variants.

1. In Chapter 2, we study momentum — a fundamental pillar of mod-
ern optimization theory and one of the two main components of
Adam (the second is the stepsize adaptation using

√
vk). Setting

β2 = 0 and renaming β := β1 in Adam, we indeed recover the
classical Heavy-ball algorithm by Polyak, 1964:xk+1 = xk − η ·mk

mk+1 = βmk + (1− β)g(xk)
. (HB)

In the convex deterministic setting, HB (more precisely, Nesterov’s
variant) leads to accelerated convergence compared to gradient de-
scent. While this result enjoys numerous proofs, derived over the
years after the celebrated work of Nesterov (Nesterov, 1983), the
nature of acceleration — from which we can learn a lot in deep
learning — is still subject of debate among researchers. A mod-
ern line of research, started with the seminal contribution of Su
et al., 2016, proposes to look at HB using ordinary differential
equations (ODEs). This perspective is extremely thought-provoking
since it allows to simplify and compress the accelerated conver-
gence proof of Nesterov’s method to just a few lines. Wibisono
et al., 2016 took this approach one step further and showed that
Nesterov’s ODE solution could be thought of as a stationary point
for the action of a specific Lagrangian. As such, Wibisono et al.,
2016 claim Nesterov’s method is optimal under some metric in the
space of curves. This thesis starts with a negative result in Sec-
tion 2.2 (based on our work in Zhang et al., 2021b, NeurIPS 2021),
where we show that, contrary to what is claimed in Wibisono et
al., 2016, Nesterov’s path is a often saddle point and not a min-
imizer in the space of curves. With this finding, our aim is not
to disincentivize the use of continuous-time models to understand
momentum but rather to set the record straight about tools we
are/are not allowed to use when studying acceleration. Indeed,
Section 2.3 (based on our work in Orvieto et al., 2019, UAI 2019),
shows that using stochastic differential equations as models for
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momentum reveals intriguing averaging properties and connects
acceleration to stable gradient amplification. Motivated by this suc-
cess, in Section 2.4 (based on our work in Orvieto and Lucchi,
2019b, NeurIPS 2019) we study the foundations of continuous-time
approximations of simple optimizers and find conditions under
which gradient-based methods are shadowed by their continuous-
time limit.

2. In Chapter 3, we dive into the second component of Adam: adap-
tive stepsizes. Setting β1 = 0 (no momentum) in Adam one re-
trieves the RMSprop (Tieleman and Hinton, 2012) update:xk+1 = xk −

η√
vk + ϵ

· gk

vk+1 = β2vk + (1− β2)g(xk)
2

. (RMSprop)

While momentum helps, this simplified version of Adam is already
very effective compared to SGD or HB in the context of deep learn-
ing, especially on Transformers (Vaswani et al., 2017).
To study the dynamics of RMSprop and understand its effective-
ness in complex landscapes, it is necessary first to analyze the archi-
tecture at hand under commonly used initialization schemes (He
et al., 2015).
In Section 3.2 (based on our work in Orvieto et al., 2022b, AISTATS
2022), we discuss the distribution of gradients at initialization in
multi-layer perceptrons (MLPs) and convolutional networks (CNNs).
We provide a detailed description of the landscape for Deep Neu-
ral Chains (i.e. deep MLPs with unit width) and show the power
of RMSprop in optimizing its weights. In particular, we highlight
that, without further tricks such as batch normalization (Ioffe and
Szegedy, 2015) or residual connections (He et al., 2016) optimizing
MLPs is a difficult task that SGD (with momentum) often cannot
solve — but Adam can. Next, in Section 3.3 (based on our work
in Noci et al., 2022, NeurIPS 2022), we perform a similar analy-
sis on Transformers (Dong et al., 2021) — state-of-the-art solutions
for both text analysis and synthesis (OpenAI, 2023; Touvron et al.,
2023) as well as image generation (Dosovitskiy et al., 2020). For the
first time in the literature, we precisely characterize signal prop-
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agation and representation rank collapse in this architecture. We
link the gained insights into the landscape structure of the atten-
tion mechanism and to the effectiveness of RMSprop and Adam
compared to SGD in this class of models.

3. While Adam is the workhorse of modern training pipelines, its ef-
fectiveness is enigmatic from a standard optimization theory view-
point. Indeed, it is well-known that vanilla Adam and RMSprop do
not converge2 under standard stepsize annealing in convex prob-
lems (Reddi et al., 2018). While this issue can be fixed with some
algorithmic modifications (increasing β parameters over time, mod-
ifying the rule for vk, etc.), such adjustments are known to lead to
suboptimal performance and to reduce adaptivity. Inspired by this
problem and by recent advancements in adapting the first ever in-
troduced adaptive stepsize (Polyak, 1987) to the machine learning
setting (Loizou et al., 2021), in Chapter 4 we introduce new op-
timizers with provable adaptivity features and strong theoretical
guarantees. In Section 4.1&4.2 (based on our work in Orvieto et al.,
2022c, NeurIPS 2022) we describe the main issues with the stochas-
tic Polyak stepsize and propose a variation which leads to conver-
gence without knowledge of the gradient Lipschitz constant (re-
quired by SGD in unbounded domains). In Section 4.3 (based on
our work in Orvieto and Xiao, 2023, ICML2023 HiLD Workshop),
we instead approach algorithm design from first principles and de-
rive a new method, NGN, which resembles the Polyak stepsize but
enjoys stronger convergence guarantees and performance — also
on deep learning tasks. This algorithm is currently the subject of
our investigation and of a future journal publication.

4. The landscape of some neural networks can be challenging even for
state-of-the-art optimizers like Adam. This is the case, for instance,
of recurrent models such as RNNs (Hopfield, 1982), LSTMs (Hochre-
iter and Schmidhuber, 1997b), and GRUs (Cho et al., 2014) that suf-
fer from the vanishing gradient problem due to backpropagation
through time (Pascanu et al., 2013). The issue of training RNNs ef-
ficiently on long sequential data resulted in an architecture shift:

2 This is arguably the main reason why many optimization researchers chose not to work on
Adam, or consider it a “bad” algorithm.
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namely, in the rise of attention-based models (Vaswani et al., 2017)
for sequence understanding. Unfortunately, while Transformers are
scalable in depth and width, the inductive bias of this architecture
and its squared complexity in the sequence length makes it inef-
fective for reasoning tasks comprising sequences of thousands of
tokens (Tay et al., 2020). In Section 5.3 (based on our work in Orvi-
eto et al., 2023c, ICML 2023 Oral), inspired by recent advancements
in state-space models (Gu et al., 2021), we revisit the RNN ar-
chitecture for long-range reasoning tasks and show how a smart
reparametrization and normalization of the recurrence, designed
to work well with Adam, can tame the vanishing gradient issue
and unlock fast training, leading to state-of-the-art results. Surpris-
ingly, a fundamental step in gaining scalability of our model was to
remove recurrent non-linearities. In Section 5.5 (based on our work
in Orvieto et al., 2023a, ICML 2023 HiLD Workshop), we elaborate
on this surprising finding and show that the modified linear RNN
model introduced in (Orvieto et al., 2023c) — the LRU — when
paired with token-wise MLPs can approximate any nonlinear dy-
namical system.

5. While in the last four chapters we focused on algorithmic and ar-
chitectural insights regarding optimization of complex training loss
landscapes with adaptive momentum methods, in Chapter 6, we
conclude the thesis by discussing the critical issue of generaliza-
tion. Indeed, in machine learning tasks, while finding local mini-
mizes often leads to vanishing training loss (Kawaguchi, 2016), one
is mainly interested in regions of the loss landscape that also yield
good generalization performance. While characterizing mathemat-
ically such regions is not easy; evidence shows that flat minimizes
often yield improved test performance (Jiang et al., 2019; Keskar
et al., 2016). Standard approaches known to boost generalization
through inducing flatness are, for instance, sharpness-aware min-
imization (Foret et al., 2020) (requires two gradient evaluations),
adversarial perturbations (Wu et al., 2020) (requires data Jacobian)
and label noise injection (Song et al., 2022). A general belief overar-
ching the literature on the topic of flat minimizes is that the (data
dependent) noise in SGD can shape its trajectory towards flat min-
ima (Simsekli et al., 2019) — a mechanism that can be amplified by
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inserting additional noise in the labels (HaoChen et al., 2021). The
question we ask in this chapter is “Can we find a data-independent
noise injection scheme which drives the dynamics to flat minima?”. In
Section 6.2 (based on our work in Lucchi et al., 2022, NeurIPS
2022), we show that, compared to vanilla Gaussian noise injec-
tion on the gradients, fractional noise injection (Mandelbrot and
Van Ness, 1968) leads to improved landscape exploration features.
In Section 6.3 (based on our work in Orvieto et al., 2022a, ICML
2022), we show how to leverage insights from fractional noise to
design new noise injection schemes capable of provably driving
convergence to flat minima. Last, in Section 6.4 (based on our work
in Orvieto et al., 2023b, AISTATS 2023), we discuss and solve the
challenges for successful noise injection in the context of deep learn-
ing.

To ease the reading process, at the beginning of each section we summa-
rize its content and main findings in a question/answer format:

Question : Which optimization tricks make RNNs trainable?

Answer (Orvieto et al., 2023c): Check Section 5.3!

We will use the bold font to highlight important keywords, and italic for
questions, new terminology, and remarks.

list of publications . In this paragraph, we list the 12 publica-
tions (10 conference + 2 workshops) discussed in this thesis (in the or-
der of discussion, with alphabetic list matching Figure 1). We then list 19

additional works (some of which are first-author publications at top ML
venues) that are not discussed in this volume in the interest of space:

A. Rethinking the Variational Interpretation of Nesterov’s Method
NeurIPS 2021 (Zhang et al., 2021b)
P. Zhang*, A. Orvieto*, Hadi Daneshmand

B. The Role of Memory in Stochastic Optimization
UAI 2019 (Orvieto et al., 2019)
A. Orvieto, J. Kohler, A. Lucchi
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C. Shadowing Properties of Optimization Algorithms
NeurIPS 2019 (Orvieto and Lucchi, 2019b)
A. Orvieto, A. Lucchi

D. Vanishing Curvature in Randomly Initialized Deep ReLU Networks
AISTATS 2022 (Orvieto et al., 2022b)
A. Orvieto*, J. Kohler*, D. Pavllo, T. Hofmann, A. Lucchi

E. Signal Propagation in Transformers: Theoretical Perspectives and the Role
of Rank Collapse
NeurIPS 2022 (Noci et al., 2022)
L. Noci*, S. Anagnostidis*, L. Biggio*, A. Orvieto*, S. Pal Singh*, A.
Lucchi

F. Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Vari-
ants and Convergence to Exact Solution
NeurIPS 2022 (Orvieto et al., 2022c)
A. Orvieto, S. Lacoste-Julien, N. Loizou

G. A New Adaptive Method for Minimizing Non-negative Losses
ICML 2023 HiLD Workshop (full paper in preparation)
(Orvieto and Xiao, 2023)
A. Orvieto, L.Xiao

H. Resurrecting Recurrent Neural Networks for Long Sequences
ICML 2023 Oral, (Orvieto et al., 2023c)
A. Orvieto, S. L Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pas-
canu, S. De

I. Universality of Linear RNNs Followed by Nonlinear Projections
ICML 2023 HiLD Workshop (full paper in preparation)
(Orvieto et al., 2023a)
A. Orvieto, S. De, C. Gulcehre, R. Pascanu, S. L Smith

J. On the Theoretical Properties of Noise Correlation in SGD
NeurIPS 2022 (Lucchi et al., 2022)
H. Kersting, A. Orvieto, F. Bach, F. Proske, A. Lucchi

K. Anticorrelated Noise Injection for Improved Generalization
ICML 2022 (Orvieto et al., 2022a)
A. Orvieto*, H. Kersting*, F. Proske, F. Bach, A. Lucchi
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L. Explicit Regularization in Overparametrized Models via Noise Injection
AISTATS 2023, (Orvieto et al., 2023b)
A. Orvieto*, A. Raj*, H. Kersting*, F. Bach

The 19 publications not discussed in this volume are listed next, in order
of appearence.

1. Continuous-time Models for Stochastic Optimization Algorithms
NeurIPS 2019 (Orvieto and Lucchi, 2019a)
A. Orvieto, A. Lucchi

2. Continuous-time Acceleration in Riemannian Optimization
AISTATS 2020 (Alimisis et al., 2020)
F. Alimisis, A. Orvieto, G. Becigneul, A. Lucchi

3. An Accelerated DFO Algorithm for Finite-sum Convex Functions
ICML 2020 (Chen et al., 2020b)
C. Yuwen, A. Orvieto, A. Lucchi

4. Two-Level K-FAC Preconditioning for deep learning
NeurIPS OPT Workshop 2020 (Tselepidis et al., 2020)
N. Tselepidis, J. Kohler, A. Orvieto

5. Learning explanations that are hard-to-vary
ICLR 2021 (Parascandolo et al., 2021)
G. Parascandolo*, A. Neitz*, A. Orvieto, L. Gresele, B. Schölkopf

6. Revisiting the Role of Symplectic Numerical Integration on Acceleration
and Stability in Convex Optimization
AISTATS 2021 (Zhang et al., 2021c)
P. Zhang, A. Orvieto, H. Daneshmand, R. Smith, T. Hofmann

7. Momentum Improves Optimization on Riemannian Manifolds
AISTATS 2021 (Alimisis et al., 2021)
F. Alimisis, A. Orvieto, G. Becigneul, A. Lucchi

8. On the Second-order Convergence of Random Search Methods
NeurIPS 2021 (Lucchi et al., 2021)
A. Lucchi*, A. Orvieto*, Adamos Solomou*
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9. Analysis of Pharmacological Modulation of Senescence in Human Epithe-
lial Stem Cells
Cellular and Molecular Medicine 2022 (Barbaro et al., 2022)
V. Barbaro, A. Orvieto, and many others.

10. Faster Single-loop Algorithms for Minimax without Strong Concavity
AISTATS 2022 (Yang et al., 2022)
J. Yang, A. Orvieto, A. Lucchi, N. He

11. Enhancing Unit-Tests for Invariance Discovery
ICML SCIS Workshop 2022 (De Bartolomeis et al., 2022)
P. De Bartolomeis, A. Orvieto, G. Parascandolo

12. Should you follow the gradient flow? Insights from Runge-Kutta Descent
ICML CTPML Workshop 2022 (Li and Orvieto, 2022)
X. Li, A. Orvieto

13. Batch-size Selection by Stochastic Optimal Control
NeurIPS HITY Workshop 2022 (Zhao et al., 2022)
J. Zhao, A. Lucchi, F. N. Proske, A. Orvieto, H. Kersting

14. First Exit Times of Ornstein-Uhlenbeck Processes in High Dimensions
Journal of Physics A 2023 (Kersting et al., 2023)
H. Kersting, A. Orvieto, F. Proske, A. Lucchi

15. Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning
CVPR 2023 (Kim et al., 2023)
S. Kim, L. Noci, A. Orvieto, T. Hofmann

16. On the Effectiveness of Randomized Signatures as Reservoir for Learning
Rough Dynamics
IJCNN 2023 (Compagnoni et al., 2023b)
E. Monzio Compagnoni, A. Scampicchio, L. Biggio, A. Orvieto, T.
Hofmann, J. Teichmann

17. An SDE for Modeling SAM: Theory and Insights
ICML 2023 (Compagnoni et al., 2023a)
E. Monzio Compagnoni, L. Biggio, A. Orvieto, H. Kersting, F. N.
Proske, A. Lucchi
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18. On the Advantage of Lion Compared to signSGD with Momentum
ICML HiLD Workshop 2023 (Noiato et al., 2023)
A. Noiato, L. Biggio, A. Orvieto

19. An Accelerated Lyapunov Function for Heavy-Ball on Convex Quadratics
Under Submission to Optimization Letters 2023 (Orvieto, 2023)
A. Orvieto
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Chapter 2 : Understanding Momentum Dynamics

• Pervasive in optimization for Deep Learning.

• In convex, acceleration. Mechanism unclear.

• Intriguing connections with Lagrangian mechanics.


Contributions: Study of Lagrangian with calculus of  
variations [A]. Analysis of momentum averaging and 
gradient amplification using SDEs [B]. Fundamental 
guarantees in ODE approximation of (momentum) 
optimizers [C].


Chapter 3 : Dynamics of Adam in Deep Networks

• Adam is the optimizer of choice for practitioners. 

• Only (standard) optimizer that works on transformers.

• Complex dynamics, connected to architecture.


Contributions: Signal propagation on MLPs, proof 
Adam can optimize challenging flat landscapes [D]. 
Signal propagation / rank collapse in transformers. 
Adam rescales gradients of queries/keys [E]. 

Chapter 4 : New Adaptive Methods

• Convergence/adaptivity of Adam poor convex setting.

• Tricks such as learning-rate warm-up needed.

• New research: revisiting Polyak Stepsizes (1987). 


Contributions: First convergent stochastic Polyak 
Stepsize, with relaxed assumptions [F]. Design of NGN: 
state-of-the-art rates, provable adaptivity, and 
exceptional performance. New family of methods [G].  

Sometimes, a good  
optimizer is not enough

Contributions: Properties of Fractional Brownian Noise 
[J]. Derivation on a cheap anticorrelated noise injection,  
drives dynamics to flat regions [K]. Further improvements 
make injection effective on deep nets [L].  

• Evidence: flat minimisers improve test loss.

• SGD noise and label noise drives to flatter minima.

• Data-independent noise to boost generalisation?


Chapter 6 : Generalization Boost with Noise Injection

Contributions: Upgrade of RNNs using optimization theory, 
signal propagation. Reparametrization of the recurrence: 
better stability and resolution. State-of-the-art on the long-
range arena with an interpretable model [H]. Theoretical 
understanding of universality of linear RNNs [I]. 

• Challenge in Deep Learning: long sequential data.

• Transformers: scalable but inference quadratic in seq. len.

• RNNs (LTSMs, GRU) not scalable, inference linear in seq. len.

Chapter 5 : Effect of Network Reparametrization

Figure 1: Thesis map. Citations follow the list provided in the introduction.
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The simplicities of natural laws arise through the complexities of the
language we use for their expression.

– Eugene Wigner.

As outlined in the introduction, in this chapter we study the first fun-
damental component of adaptive momentum methods — momentum.
We provide a discussion of this mechanism in simple settings and bring
to light interesting properties that can be used for the design and analy-
sis of (deep learning) optimizers. After our preliminaries in Section 2.1,
in Section 2.2, we discuss the variational interpretation of momentum —
i.e. we revisit its optimality on the space of curves. Next, in Section 2.3
we show how the behavior of accelerated momentum methods can be
linked to gradient amplification and polynomial averaging. Finally, in
Section 2.4, we discuss the fundamental properties of continuous-time
models of optimizers.

For a summary of the mathematical tools required in this chapter — i.e.
ordinary and stochastic differential equations, the reader can check Ap-
pendix A. Basic definitions and inequalities used in smooth convex opti-
mization can be also found in Appendix A.

2.1 continuous-time models of acceleration

Consider the problem of unconstrained convex optimization, i.e. to find

x∗ ∈ arg min
x∈Rd

f (x), (P)

for some lower bounded convex L-smooth1 loss f ∈ C1(Rd, R)2.

1 A differentiable function f : Rd → R is said to be L-smooth if it has L-Lipschitz gradients.
2 The family of C1(Rd , R) contains all continuously differentiable functions from Rd to R.

15
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nesterov’s acceleration. Nemirovskii and Yudin, 1983 showed
that no gradient-based optimizer can converge to a solution of (P) faster
than O(k−2), where k is the number of gradient evaluations3. While Gra-
dient Descent (GD) converges like O(k−1), the optimal rate O(k−2) is
achieved by the celebrated Nesterov’s Accelerated Gradient Descent (NAG)
method, proposed by Nesterov, 1983:

xk+1 = yk − η∇ f (yk) , with yk = xk +
k− 1
k + 2

(xk − xk−1). (NAG)

Despite its proven effectiveness and optimal convergence rate, the precise
intuition behind Nesterov’s method, and the core mechanism trigger-
ing its acceleration, continue to be enigmatic and actively researched,
as highlighted by studies from Allen-Zhu and Orecchia, 2017; Defazio,
2019; Ahn and Sra, 2022. The puzzling aspects include its counterintu-
itive “leap-ahead” extrapolation step and the utilization of past iteration
data, both of which remarkably enhance performance without a clear,
widely accepted theoretical explanation.

differential equations models . Towards understanding the ac-
celeration mechanism, Su et al., 2016 made an interesting observation: the
convergence rate gap between GD and NAG is retained in the continuous-
time limits (as the step-size η vanishes):

Ẋ +∇ f (X) = 0 (GD-ODE), Ẍ +
3
t

Ẋ +∇ f (X) = 0 (NAG-ODE),

where Ẋ := dX/dt denotes the time derivative (velocity) and Ẍ :=
d2X/dt2 the acceleration. Namely, we have that GD-ODE converges like
O(t−1) and NAG-ODE like O(t−2), where t > 0 is the time variable. This
seminal paper gave researchers a new tool to understand the nature of
accelerated optimizers through Bessel Functions (Su et al., 2016), and led
to the design of many novel fast and interpretable algorithms outside
the Euclidean setting (Wibisono et al., 2016; Wilson et al., 2019), in the
stochastic setting (Krichene et al., 2015; Xu et al., 2018) and also in the
manifold setting (Alimisis et al., 2020; Duruisseaux and Leok, 2021).

3 This lower bound holds for k < d hence it is only interesting in the high-dimensional setting.
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nesterov as solution to euler-lagrange equations . It is
easy to see that NAG-ODE can be recovered from Euler-Lagrange equa-
tions, starting from the time-dependent Lagrangian

L(X, Ẋ, t) = t3
(

1
2
∥Ẋ∥2 − f (X)

)
. (1)

Indeed, the Euler-Lagrange equation

d
dt

(
∂

∂Ẋ
L(X, Ẋ, t)

)
=

∂

∂X
L(X, Ẋ, t) (2)

reduces in this case to t3Ẍ + 3t2Ẋ + t3∇ f (X) = 0, which is equivalent
to NAG-ODE (assuming t > 0). In an influential paper, Wibisono et al.,
2016 generalized the derivation above to non-Euclidean spaces, where
the degree of separation between points x and y is measured by means
of the Bregman Divergence (Bregman, 1967) Dψ(x, y) = ψ(y) − ψ(x) −
⟨∇ψ(x), y− x⟩, where ψ : Rd → R is a strictly convex and continuously
differentiable function (see e.g. Chapter 1.3.2 in Amari, 2016). Namely,
they introduced the so-called Bregman Lagrangian:

Lα,β,γ(X, Ẋ, t) = eα(t)+γ(t)
(

Dψ(X + e−α(t)V, X)− eβ(t) f (X)
)

, (3)

where α, β, γ are continuously differentiable functions of time. The Euler-
Lagrange equations imply

Ẍ + (eα(t) − α̇(t))Ẋ + e2α(t)+β(t)
[
∇2ψ(X + e−α(t)Ẋ)

]−1
∇ f (X) = 0. (4)

The main result of Wibisono et al., 2016 is that, under the ideal-scaling
conditions β̇(t) ≤ eα(t) and γ̇(t) = eα(t), any solution to Eq. (4) converges
to a solution of (P) at the rate O(e−β(t)). Under the choice ψ(x) = 1

2∥x∥2
2,

we get back to the Euclidean metric Dψ(x, y) = 1
2∥x − y∥2

2. Choosing
α(t) = log(2/t), β(t) = γ(t) = 2 log(t), we recover the original La-
grangian in Eq. (1) and O(e−β(t)) = O(t−2), as derived in Su et al., 2016.

The formulation in Wibisono et al., 2016 has had a considerable impact
on the recent developments in the theory of accelerated methods. Indeed,
this approach can be used to design and analyze new accelerated algo-
rithms. For instance, Xu et al., 2018 used the Lagrangian mechanics for-
malism to derive a novel simplified variant of accelerated stochastic mir-
ror descent. Similarly, França et al., 2021, Muehlebach and Jordan, 2021
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used the dual Hamiltonian formalism to study the link between sym-
plectic integration of dissipative ODEs and acceleration. Due to its rising
importance in the field of optimization, the topic was also presented by
Prof. M. I. Jordan as a plenary lecture at the International Congress of Math-
ematicians in 2018 (Jordan, 2018), centered around the question “what is
the optimal way to optimize?”.
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2.2 failures of the variational perspective

The object of mathematics is the honor of the human spirit.
– Carl Gustav Jacob Jacobi

While the Lagrangian formalism has been inspiring for algorithm de-
sign and analysis, its precise implications for the geometry and the
path of accelerated solutions have not been examined in a mathemat-
ically rigorous way. In Jordan, 2018 it is hinted that, since Nesterov’s
method solves the Euler-Lagrange equations, it minimizes the action
functional

∫ t2
t1

Lα,β,γ(Y, Ẏ, t)dt over the space of curves by the minimum
action principle of classical mechanics (Arnol’d, 2013). This claim4 is inac-
curate. Indeed, the term minimum action principle is misleading5: solving
Euler-Lagrange only makes the action stationary (necessary condition:
vanishing first-order derivative), but does not guarantee minimality —
this only holds in physics for very special cases6, which do not include
even simple mechanical systems like the pendulum (proof in Section 36.2
of Gelfand and Fomin, 2000). Indeed, from a theoretical perspective, the
claim of (Wibisono et al., 2016) requires computing the second variation
along Nesterov’s path. Quite surprisingly, even though many papers are
dedicated to the variational formulation (Wibisono et al., 2016; Jordan,
2018; Casgrain, 2019; Duruisseaux and Leok, 2021), to the best of our
knowledge there is no work which provides an in-depth rigorous study
of the action relative to Bregman Lagrangian and that characterizes min-
imality of Nesterov in the space of curves.

Question: The variational perspective on Nesterov’s method by
Wibisono et al., 2016 suggests Nesterov’s path is optimal under some
metric on the space of trajectories. What are the implications of this?
How can we use this finding to learn how to design optimal methods?

4 From Jordan, 2018: “[...] we use standard calculus of variations to obtain a differential equation whose
solution is the path that optimizes the time-integrated Bregman Lagrangian”.

5 From Gelfand and Fomin, 2000: “The principle of least action is widely used [...]. However, in a
certain sense the principle is not quite true [...]. We shall henceforth replace the principle of least action
by the principle of stationary action. In other words, the actual trajectory of a given mechanical system
will not be required to minimize the action but only to cause its first variation to vanish.”

6 e.g. free particle in vanishing potentials, or t1 ≈ t2.
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Figure 2: Optimization of f (x) = x2/2 using NAG-ODE. Peturbations (vanishing at
extrema) are added to the NAG-ODE solution: depending on the perturbation
kind (i.e. direction in space of curves), the local behavior is either a max or a min.
Hence, Nesterov’s path can be a saddle point for the action (formally shown in
Section 2.2.2.1).

Answer (Zhang et al., 2021b): The result of Wibisono et al., 2016 is
unfortunately misleading. An in-depth analysis using tools from calcu-
lus of variations highlights that Nesterov’s path is a saddle point for
the action of its Lagrangian. We therefore suggest to take the narrative
of Wibisono et al., 2016 very carefully.

imprecise implications of the variational formulation.
Intrigued by the non-trivial open question of minimality of Nesterov’s
path and by the enigmatic geometry of accelerated flows, in this sec-
tion, we examine the properties of accelerated gradient methods from
the perspective of calculus of variations.

1. In Section 2.2.2 we study the minimality of classical Nesterov’s ODE
(damping 3/t) proposed by Su et al., 2016 on multidimensional
quadratic losses. By using Jacobi’s theory for the second variation
(summarized in Section 2.2.1), we find that Nesterov’s path is opti-
mal only if the integration interval [t1, t2] is small enough. In con-
trast, if t2 − t1 >

√
40/β (β is Lipschitz constant for the gradient),

Nesterov’s path is actually a saddle point for the action (see Fig. 2).

2. In Section 2.2.2.5 we extend the analysis to the µ-strongly convex
setting and thus consider a constant damping α. We show that, for
extremely overdamped Nesterov flows (α ≥ 2

√
β), i.e for highly

suboptimal parameter tuning (acceleration holds only for α ≈ 2
√

µ),
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Nesterov’s path is always a minimizer for the action.
In contrast, we show that for α < 2

√
β (acceleration setting), if

t2 − t1 > 2π/
√

4β− α, Nesterov’s path is again a saddle point.

3. In Section 2.2.3 we discuss the implications of our results for the
theory of accelerated methods and propose a few interesting direc-
tions for future research.

We start by recalling some definitions and results from calculus of vari-
ations, which we adapt from classical textbooks (Landau and Lifshitz,
1976; Arnol’d, 2013; Gelfand and Fomin, 2000).

2.2.1 Primer on Calculus of Variations

We work on the vector space of curves C1([t1, t2], Rd) with t1, t2 ∈ [0, ∞).
We equip this space with the standard norm ∥Y∥ = maxt1≤t≤t2 ∥Y(t)∥2 +
maxt1≤t≤t2 ∥Ẏ(t)∥2. Under this choice, for any regular Lagrangian L, the
action functional below is continuous:

J[Y] :=
∫ t2

t1

L(Y, Ẏ, t)dt. (5)

first variation. Let D be the linear subspace of continuously dif-
ferentiable displacements curves h such that h(t1) = h(t2) = 0. The cor-
responding increment of J at Y along h is defined as ∆J[Y; h] := J[Y +
h]− J[Y]. Suppose that we can write ∆J[Y; h] = φ[Y; h] + ϵ∥h∥, where φ

is linear in h and ϵ→ 0 as ∥h∥ → 0. Then, J is said to be differentiable at
Y and the linear functional δJ[Y; ·] : D → R such that δJ[Y; h] := φ[Y; h]
is called first variation of J at Y. It can be shown that, if J is differentiable
at Y, then its first variation at Y is unique.

extrema . J is said to have an extremum at Y if ∃δ > 0 such that,
∀h ∈ D with ∥h∥ ≤ δ, the sign of J[Y + h]− J[Y] is constant. A necessary
condition for J to have an extremum at Y is that

δJ[Y; h] = 0, for all h ∈ D. (6)

The most well-known results in calculus of variations follows by using
Taylor’s theorem on J[Y] =

∫ t2
t1

L(Y, Ẏ, t)dt:



22 understanding momentum with sdes

Theorem 2.2.1 (Euler-Lagrange equation). A necessary condition for the
curve Y ∈ C1([t1, t2], Rd) to be an extremum for J (w.r.t. D) is that it satisfies
the Euler-Lagrange equations (2).

It is crucial to note that Theorem 2.2.1 provides a necessary, but not suf-
ficient condition for an extremum — indeed, the next paragraph is com-
pletely dedicated to this.

second variation. Theorem 2.2.1 does not distinguish between ex-
trema (maxima or minima) and saddles. For this purpose, we need to
look at the second variation.
Suppose that the increment of J at Y can be written as

∆J[Y; h] = φ1[Y; h] + φ2[Y; h] + ϵ∥h∥2, (7)

where φ1 is linear in h, φ2 is quadratic in h and ϵ → 0 as ∥h∥ → 0. Then
J is said to be twice differentiable and the functional δ2 J[Y :, ·] : D → R s.t.
δ2 J[Y, h] := φ2[Y; h] is called the second variation of J at Y. Uniqueness of
second variation is proved in the same way as the first variation.

Theorem 2.2.2. A necessary condition for the curve Y ∈ C1([t1, t2], Rd) to
be a local minimum for J (w.r.t D) is that it satisfies δ2 J[Y; h] ≥ 0. For local
maxima, the sign is flipped.

jacobi equations . Recall that J[Y] =
∫ t2

t1
L(Y, Ẏ, t)dt. Using the no-

tation LYZ = ∂2L/(∂Y∂Z), the Taylor expansion for ∆J[Y; h] = J[Y + h]−
J[Y] if ∥h∥ → 0 converges to

∆J[Y; h] =
∫ t2

t1

(
LYh + LẎ ḣ

)
dt +

1
2

∫ t2

t1

(
LYYh2 + LẎẎ ḣ2 + 2LYẎhḣ

)
dt,

(8)

where the equality holds coordinate-wise.
Therefore, δJ[Y; h] =

∫ t2
t1

(
LYh + LẎ ḣ

)
dt and

δ2 J[Y; h] =
1
2

∫ t2

t1

(
LYYh2 + 2LYẎhḣ + LẎẎ ḣ2

)
dt

=
1
2

∫ t2

t1

(
LYY −

d
dt

LYẎ

)
h2dt +

1
2

∫ t2

t1

LẎẎ ḣ2dt

=
1
2

∫ t2

t1

(
Pḣ2 + Qh2

)
dt, (9)
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where

P = LẎẎ , Q = LYY −
d
dt

LYẎ , (10)

and the second equality follows from integration by parts since h van-
ishes at t1 and t2. Using this expression, it is possible to derive an easy
necessary (but not sufficient) condition for minimality.

Theorem 2.2.3 (Legendre’s necessary condition). A necessary condition for
the curve Y to be a minimum of J is that LẎẎ is positive semidefinite.

conjugate points . A crucial role in the behavior of δ2 J[Y; h] is
played by the shape of the solutions to Jacobi’s differential equation
d
dt (Pḣ) − Qh = 0. A point t ∈ (t1, t2) is said to be conjugate to point
t1 (w.r.t. J) if Jacobi’s equation admits a solution which vanishes at both
t1 and t but is not identically zero. We have the following crucial result.

Theorem 2.2.4 (Jacobi’s condition). Necessary and sufficient conditions for
Y to be a local minimum for J are: (1) Y satiesfies the Euler-Lagrange Equation;
(2) P positive definite; (3) (t1, t2) contains no points conjugate to t1.

2.2.2 Nesterov’s Path is a Saddle Point for the Action

This section is dedicated to the analysis of the action functional rela-
tive to Eq. (3). We start by a general abstract analysis in the convex
quadratic case in Section 2.2.2.1, and then present an intuitive analyti-
cal computation in Section 2.2.2.2. The non-quadratic case is discussed
in Section 2.2.2.4.

2.2.2.1 Solutions to Jacobi’s Equation

For the sake of clarity, we start by considering the Lagrangian in Eq. (1)
for the simple one-dimensional case f (x) = βx2/2. We have

Q = LYY −
d
dt

LYẎ = −βt3, P = LẎẎ = t3. (11)

Therefore, Jacobi’s equation for the action
∫ t2

t1
L(Y, Ẏ, t)dt with t1 > 0 is

d
dt
(t3ḣ)− βt3h = 0 =⇒ t3ḧ + 3t2ḣ + βt3h = 0 =⇒ ḧ +

3
t

ḣ + βh = 0,

(12)
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which is itself Nesterov’s ODE. Following the procedure outlined in The-
orem 2.2.2, we now study the solutions h such that h(t1) = 0. Any solu-
tion to Eq. (12) can be written as7

h(t) = C
Y1(

√
β t)

t
− C

Y1(
√

β t1) J1(
√

β t)
J1(

√
β t1) t

, (13)

where C > 0 specifies the initial velocity (see Fig. 3), Jα is the Bessel
function of the first kind and Yα is the Bessel function of the second
kind.

Jα(x) =
∞

∑
m=0

(−1)m

m! Γ(m + α + 1)

( x
2

)2m+α
, (14)

Yα(x) =
Jα(x) cos(απ)−J−α(x)

sin(απ)
. (15)

Points t > t1 conjugate to t1 satisfy h(t) = 0, which results in the identity
Y1(

√
β t)/Y1(

√
β t1) = J1(

√
β t)/J1(

√
β t1). Remarkably, this condi-

tion does not depend on C, but only on t1 and on the sharpness β. Let
us now fix these parameters and name Kβ,t1 = Y1(

√
β t1)/J1(

√
β t1).

Points conjugate to t1 then satisfy Y1(
√

β t) = Kβ,t1J1(
√

β t). Recall the
following expansions (Watson, 1995), also used by Su et al., 2016:

J1(x) =

√
2

πx

(
cos

(
x− 3π

4

)
+O

(
1
x

))
, (16)

Y1(x) =

√
2

πx

(
sin
(

x− 3π

4

)
+O

(
1
x

))
. (17)

Since J1 and Y1 asymptotically oscillate around zero and are out of
sync (π/2 difference in phase), for t big enough the condition Y1(

√
β t) =

Kβ,t1J1(
√

β t) is fulfilled. This condition is going to be satisfied for a
smaller value for t if β is increased, as confirmed by Figure 3.

Theorem 2.2.5 (Local optimality of Nesterov with vanishing damping).
Let f : Rd → R be a convex quadratic, and let X : R → Rd be a solution
to the ODE Ẍ + 3

t Ẋ +∇ f (X) = 0. For 0 < t1 < t2, consider the action
functional J[Y] =

∫ t2
t1

L(Y, Ẏ, t)dt, mapping Y ∈ C1([t1, t2], Rd), to a real
number. Then, if |t2 − t1| is small enough, there are no points conjugate to t1

7 All symbolic computations are checked in Maple/Mathematica.
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Figure 3: First conjugate point to t1 = 1, 4 for quadratics βx2/2, under the settings
of Section 2.2.2.1. For each value of β, six solutions h(t) to the Jacobi equa-
tion (each one has different velocity) are shown.

and Nesterov’s path minimizes J over all curves such that Y(t1) = X(t1) and
Y(t2) = X(t2). The length of the optimality interval |t2 − t1| shrinks as β, the
maximum eigenvalue of the Hessian of f , increases.

Proof. The argument presented in this section can be lifted to the mul-
tidimensional case. Indeed, since the dynamics in phase space is linear,
it’s geometry is invariant to rotations and we can therefore assume the
Hessian is diagonal. Next, Jacobi’s equation has to be solved coordinate-
wise, which leads to a logical AND between conjugacy conditions. By
the arguments above, the dominating condition is the one relative to the
maximum eigenvalue β.

The following corollary shows that Nesterov’s path actually becomes
suboptimal if the considered time interval is big enough. This is also
verified numerically in Figure 2.

Corollary 2.2.1 (Nesterov with vanishing damping is not globally opti-
mal). In the settings of Theorem 2.2.5, for |t2− t1| big enough, Nesterov’s path
becomes a saddle point for J.

Proof. Non-existence of conjugate points is necessary and sufficient for
minimality/maximality.

In the next subsection, we provide a constructive proof for Cor. 2.2.1,
which allows us to derive a concrete bound for |t2 − t1|. In particular,
we show in Prop. 2.2.1 that, for the case of vanishing damping 3/t, Nes-
terov’s path is always a saddle point for the action if |t2 − t1| >

√
40/β.

But first, we present two remarks.
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Figure 4: Dynamics of Nesterov’s method on two-dimensional quadratics.

optimality for the special case X (t2) = x∗ . Some readers
might have already realized that Jacobi’s equation Eq. (12) in the quadratic
potential case is itself the solution of Nesterov’s ODE. This means that,
if t1 ≈ 0, the first time conjugate to t1 is exactly when Nesterov’s path
reaches the minimizer. Hence — only in the one-dimensional case —
it is actually true that, if we do not consider arbitrary time intervals
but only the first interval before the solution first touches the optimizer,
Nesterov’s path always minimizes the action. Sadly, this strong and inter-
esting result is not valid in higher dimensions, since Nesterov’s path in
general never actually crosses the minimizer in finite time (see Figure 4):
the first crossing time in each direction depends on the sharpness in each
direction, hence by the time each coordinate reaches zero, we already
have a conjugate point.

remark on dropping boundary conditions . The results in this
section are formulated for the fixed boundaries case Y(t1) = X(t1) and
Y(t2) = X(t2), where X is the solution to Nesterov’s ODE. From an op-
timization viewpoint, this requirement seems strong. Ideally, we would
want X(t2) to be any point close to the minimizer (say inside an ϵ-ball). A
simple reasoning proves that Nesterov’s path can be a saddle point for
the action also in this case. By contradiction, assume Nesterov’s trajec-
tory minimizes the action among all curves that reach any point inside a
small ϵ-ball at time t2. Then, Nesterov’s path also minimizes the action
in the (smaller) space of curves that reach exactly X(t2). By Cor. 2.2.1,
this leads to a contradiction if t2 is big enough.
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Figure 5: Plot of Equation (19).

2.2.2.2 A constructive proof of Nesterov’s suboptimality

We now present a direct computation, to shed some light on the subopti-
mality of Nesterov’s path in the context of Theorem 2.2.5. In the setting
of Section 2.2.2.1, the second variation of J along γ is 1

2
∫ t2

t1
t3[ḣ(t)2 −

βh(t)2]dt, independent of γ. Consider now the finite-norm perturbation
(vanishing at boundary):

h̃ϵ,c(t) =


0 t ≤ c− ϵ or t ≥ c + ϵ

t−c+ϵ
ϵ t ∈ (c− ϵ, c)

c+ϵ−t
ϵ t ∈ (c, c + ϵ)

, (18)

for c ∈ (t1, t2) and ϵ < min(c− t1, t2 − c). This is a triangular function
with support (c− ϵ, c + ϵ) and height one. Let hϵ,c be a C1 modification
of h̃ϵ,c such that ∥h̃ϵ,c − hϵ,c∥ is negligible8. For any scaling factor σ > 0,

δ2 J(σ · hϵ,c) = −σ2

(
3βϵ4

10 + (βc2 − 3)ϵ2 − 3c2
)

c

3ϵ
. (19)

The denominator is always positive. Hence, we just need to study the
sign of the numerator, with respect to changes in ϵ > 0 and c > 0. Con-

8 Standard technique in calculus of variation, see e.g. proof of Legendre’s Thm (Gelfand and
Fomin, 2000).
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sider for now c fixed, then the zeros of the numerator are at (15− 5u±√
25u2 − 60u + 225)/(3β), with u := βc2. Since 25u2 − 60u + 225 > 0

for all u ≥ 0, the solution has two real roots. However, only one root
ϵ2∗(u, β) is admissible, since the smallest one is always negative9. As a
result, for fixed c > 0, δ2 J(σhϵ,c) changes sign only at ϵ2∗(u, β). Note that
ϵ2∗(u, β) is decreasing as a function of u and ϵ2∗(0, β) = 10/β as well
as limu→∞ ϵ2∗(u, β) = 3/β. Therefore, for any c, β > 0, we showed that
δ2 J(σhϵ,c) changes sign when ϵ∗ ∈ [

√
3/β,

√
10/β]. If choosing ϵ big is

allowed by the considered interval (hϵ,c has to vanish at t1, t2), then the
second variation is indefinite. This happens if |t2 − t1| > 2ϵ∗. By taking
σ→ 0, we get the following result.

Proposition 2.2.1 (Sufficient condition for saddle). The second variation
of the action of Nesterov’s Lagrangian (damping 3/t) on f (x) = βx2/2 is an
indefinite quadratic form for |t2 − t1| >

√
40/β. This result generalizes to

β-smooth multidimensional convex quadratics.

We remark that the inverse dependency on the square root of β is also
predicted by the general proof in Section 2.2.2.1, where the argument of
the Bessel functions is always t

√
β.

2.2.2.3 Unboundedness of the action for large integration intervals

In Prop. 2.2.1, we showed that for big enough integration intervals, Nes-
terov’s method with damping 3/t on f (x) = βx2/2 is saddle point for
the action. This suggests that the action is itself unbounded — both
from above and below. It is easy to show this formally.

Proposition 2.2.2 (Unboundedness of the action). Let L be Lagrangian
of Nesterov’s method with damping 3/t on a β-smooth convex quadratic and
J[Y] =

∫ t2
t1

L(Y, Ẏ, t)dt. Let a, b be two arbitrary vectors in Rd. There exists a se-
quence of curves (Yk)k∈N, with Yk ∈ C1([t1, t2], Rd) and Yk(t1) = a, Yk(t2) =

b for all k ∈ N, such that J[Yk]
k→ ∞. In addition, if |t2 − t1| >

√
40/β there

exists another sequence with the same properties diverging to −∞.

Proof. The proof is based on the computation performed for Prop. 2.2.1.
Crucially, note that for the quadratic loss function case we have δ2 J =
J. For the case a = b = 0, we showed that for any interval [t1, t2], by

9 If u > 0, then 15− 5u−
√

25u2 − 60u + 225 < 0.
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picking ϵ small enough, we have J(hϵ,c) = δ2 J(hϵ,c) > 0 (also illustrated
in the figure supporting the proof). Hence, J(σ · hϵ,c) → +∞ as σ →
∞. Same argument holds for −∞ in the large interval case. This proves
the assertion for a = b = 0. Note that the curves corresponding to the
diverging sequences can be modified to start/end at any a, b ∈ Rd at the
price of a bounded error in the action. This does not modify the behavior
in the limit; hence, the result follows.

2.2.2.4 Optimality of Nesterov with vanishing damping if curvature vanishes

Note that the bound on |t2 − t1| in Prop. 2.2.1 gets loose as β decreases.
This is also predicted by the argument with Bessel functions in Sec-
tion 2.2.2.1, and clear from the simulation in Fig. 3. As a result, as cur-
vature vanishes, Nesterov’s path becomes optimal for larger and larger
time intervals. This setting is well described by polynomial losses f (x) ∝
(x− x∗)p, with p > 2. As Nesterov’s path approaches the minimizer x∗,
the curvature vanishes; hence, for every β > 0 there exists a time interval
(t1, ∞) where the curvature along Nesterov’s path is less then β. This
suggest that, for losses with vanishing curvature at the solution, there
exists a time interval (t∗, ∞) where Nesterov’s path is actually a min-
imizer for the action. While this claim is intuitive, it is extremely hard
to prove formally since in this case the second variation of J depends on
the actual solution of Nesterov’s equations — for which no closed-form
formula is known in the polynomial case (Su et al., 2016).
However, we also note that the vanishing sharpness setting is only inter-
esting from a theoretical perspective. Hence, it is safe to claim that in the
machine learning setting Nesterov’s path is only optimal for small time
intervals, as shown in Theorem 2.2.5.

2.2.2.5 Analysis of the action under constant damping

In the µ-strongly convex case10, it is well known that a constant damp-
ing α = 2

√
µ yields acceleration compared to gradient descent11. This

10 Hessian eigenvalues lower bounded by µ > 0.
11 The corresponding rate is linear and depends on

√
µ/β, as opposed to µ/β (GD case).
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choice completely changes the geometry of Nesterov’s path and needs a
separate discussion. The corresponding Lagrangian is

Lα(Y, Ẏ, t) = eαt
(

1
2
∥Ẏ∥2 − f (Y)

)
. (20)

Again, we consider the quadratic function f (x) =
βx2

2 and examine Ja-
cobi’s ODE ḧ(t)+ αḣ(t)+ βh(t) = 0. We have to determine whether there
exists a non-trivial solution such that h(t1) = h(t2) = 0 and h(t) vanishes
also at a point t ∈ (t1, t2), the conjugate point.
For the critical damping case α = 2

√
β the general solution such that

h(t1) = 0 is

h(t) = Ce−
√

βt(t− t1). (21)

There is no non-trivial solution h that vanishes also at t ∈ (t1, t2) — no
conjugate points. The same holds for the overdamping case α > 2

√
β,

where the solution that vanishes at t1 is

h(t) = Ce−
αt
2

(
e

1
2

√
α2−4βt − e

1
2

√
α2−4β(2t1−t)

)
. (22)

For the underdamping case α < 2
√

β, the picture gets more similar to
the vanishing damping case (Section 2.2.2.1). The solution under h(t1) =
0 is

Ce−
αt
2

(
sin

(√
4β− α2

2
t

)
− tan

(√
4β− α2

2
t1

)
cos

(√
4β− α2

2
t

))
.

(23)

Hence all points t > t1 conjugate to t1 satisfy t = t1 + 2kπ/
√

4β− α2 for
k ∈N. Therefore for any t2 > t1 + 2π/

√
4β− α2 there exists a conjugate

point t ∈ (t1, t2).

Theorem 2.2.6 (Global optimality of overdamped Nesterov, suboptimal-
ity of accelerated Nesterov). Let f : Rd → R be a strongly convex quadratic,
and let X : R → Rd be a solution to the ODE Ẍ + αẊ +∇ f (X) = 0. For
0 ≤ t1 < t2, consider the action J[Y] =

∫ t2
t1

Lα(Y, Ẏ, t)dt. If α ≥ 2
√

β, where β

is the max. eigenvalue of the Hessian of f , then Nesterov’s path minimizes J over
all curves s.t. Y(t1) = X(t1) and Y(t2) = X(t2). Else (e.g. acceleration setting
α ≈ 2

√
µ), Nesterov’s path is optimal only for |t2 − t1| ≤ 2π/

√
4β− α2 and

otherwise is a saddle point.
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Proof. As for the proof of Theorem 2.2.5, the condition on conjugate
points has to hold for each eigendirection separately. We conclude by
noting that eigenvalues are in the range [µ, β].

For the underdamping case, we give a concrete example for α = β = 1,
to show the saddle point nature. Consider the finite-norm perturbation
h(t) = sin(kπ(t− t1)/(t1 − t2)), where k ∈N. Then,

δ2 J[γ](σh) = σ2e2t1

(
k2e−(t2−t1)π2(et2−t1 − 1)(2k2π2 − (t2 − t1)

2)

(t2 − t1)2(4k2π2 + (t2 − t1)2)

)
.

(24)

Hence, for any t2 − t1 >
√

2kπ, it holds that δ2 J[γ](σh) < 0.

extending claims to t2 = ∞ with Γ-convergence . From an
optimization viewpoint, the most interesting setting is to study the ac-
tion over the complete trajectory, i.e. to consider Y ∈ C1([t1, ∞), Rd)
such that Y(t1) = X(t1) and Y(∞) = x∗, a minimizer. Prop. 2.2.1 and
Theorem 2.2.6 show that the question of optimality in this case deserves
a discussion only in the extremely overdamped case α ≥ 2

√
β, where

minimality is guaranteed for any time interval. A careful study of the
infinite-time setting would require the theory of Γ-convergence (Braides
et al., 2002). The usual pipeline consists in defining a sequence of prob-
lems Jk, on intervals [t1, tk

2], with tk
2 → ∞ as k → ∞. Under the assump-

tion that each Jk admits a global minimizer (only true for the overdamped
case), one can study convergence of J∗k = min{Jk[Y] : Y ∈ C1([t1, tk

2], Rd)}
to J∗∞ = min{J∞(Y) : Y ∈ C1([t1, ∞), Rd)}. While existence of J∗∞ and J∞
is not trivial in general, for our setting the pipeline directly yields mini-
mality of overdamped Nesterov’s path until ∞.

2.2.3 Discussion of this Negative Result

In this section, we summarize the results of Section 2.2.2 & 2.2.2.5 and
discuss some implications that our analysis delivers on the geometry of
accelerated flows in the convex and strongly convex setting.
We summarize below the main high-level findings of our analysis:
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1. The optimality of Nesterov’s path for minimization of the action
corresponding to the Bregman Lagrangian is strictly linked to the
curvature around the minimizer reached by the flow.

2. As the maximal curvature β increases, it gets increasingly difficult
for accelerated flows to minimize the action over long integration
intervals: both the accelerated ODEs Ẍ + 3/tẊ +∇ f (X) = 0 and
Ẍ + 2

√
µẊ +∇ f (X) = 0 are optimal only for intervals of length

proportional to 1/
√

β.

3. If Nesterov’s path does not minimize the action, there does not
exist a “better” (through the eyes of the action) algorithm, as the
functional gets unbounded from below (Section 2.2.2.3).

4. This suboptimality is due precisely to the oscillations in the ac-
celerated paths. As long as each coordinate in parameter space de-
creases monotonically (as it is the case for gradient descent), Nes-
terov’s path is optimal. See also O’donoghue and Candes, 2015.

5. Hence, Nesterov’s method with very high damping α > 2
√

β

— which does not oscillate and hence does not lead to accelera-
tion (see Fig. 6) — minimizes the action.

In a nutshell, locally Nesterov’s method does indeed optimize a func-
tional over curves. However, this property breaks down precisely when
the geometry gets interesting — i.e. when the loss evolution is non-
monotonic. Since acceleration is a global phenomenon, i.e. is the cumu-
lative result of many consecutive oscillations (see Fig. 6), our results sug-
gest that the essence of acceleration cannot be possibly captured by the mini-
mization of the action relative to the Bregman Lagrangian.

non-uniqueness of the lagrangian. A possible reason for the
non-optimality of Nesterov’s path is, simply put — that we are not look-
ing at the right action functional. Indeed, there are many Lagrangians
that can generate Nesterov ODE. Let F(Y, t) be any function which does
not involve the velocity, then it is easy to see that the Lagrangian L is
equivalent to

L̃(Y, Ẏ, t) = L(Y, Ẏ, t) +
〈

Ẏ,
∂F
∂Y

(X, t)
〉
+

∂F
∂t

(X, t). (25)
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Figure 6: Optimization of potential f (x, y) = 0.02x2 + 0.0004y2, where 2e− 2 = β ≫
µ = 3e− 4. Non-monotonic trajectories (i.e. the accelerated curves) minimize
the action only for short time intervals. Simulation with Runge-Kutta 4 inte-
gration.

This simple fact opens up new possibilities for analyzing and interpret-
ing Nesterov’s method using different functionals — which perhaps have
both a more intuitive form and better properties.

higher order odes . On a similar note, it could be possible to con-
vexify the action functional by considering a logical OR between symmetric
ODEs, e.g ( d2

dt2 + α d
dt + β)( d2

dt2 − α d
dt + β)X = 0. Such tricks are often used

in the literature on dissipative systems (Szegleti and Márkus, 2020).

noether theorem . In physics, the variational framework is actu-
ally never used to claim the minimality of the solution to the equations
of motion. Its power relies almost completely in the celebrated Noether’s
Theorem (Noether, 1918), which laid the foundations for modern quan-
tum field theory by linking the symmetries in the Lagrangian (and of the
Hamiltonian) to the invariances in the dynamics. Crucially, for the appli-
cation of Noether’s Theorem, one only needs the ODE to yield a station-
ary point for the action (also saddle points work). Coincidentally, while
finalizing this manuscript, two preprints (Tanaka and Kunin, 2021; Głuch
and Urbanke, 2021) came out on some implications of Noether’s Theo-
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rem for optimization. However, we note that these works do not discuss
the direct link between Noether’s Theorem and acceleration, but instead
study the interaction between the symmetries in neural network land-
scapes and optimizers. While some preliminary implications of Noether’s
theorem for time-rescaling of accelerated flows are discussed in Wibisono
et al., 2016, we suspect that a more in-depth study could lead, in com-
bination with recent work on the Hamiltonian formalism (Diakonikolas
and Jordan, 2019), to substantial insights on the hidden invariances of
accelerated paths. We note that finding these invariances might not be
an easy task and requires dedicated work: indeed, even for simple lin-
ear damped harmonic oscillators (constant damping), invariance in the
dynamics can be quite complex (Choudhuri et al., 2008).



2.3 understanding stochastic momentum with sdes 35

2.3 understanding stochastic momentum with sdes

Among all of the mathematical disciplines the theory of differential
equations is the most important... It furnishes the explanation of all
those elementary manifestations of nature which involve time.

– Sophus Lie.

Question: In Section 2.2, we showed that the variational perspective
on Nesterov’s method by Wibisono et al., 2016 cannot be used in the
current format to gain intuition. Does this mean that the continuous-
time perspective cannot possibly provide insights in the mechanisms
of acceleration and momentum?

Answer (Orvieto et al., 2019): The stochastic differential equation
model for momentum can be used to gain insights into its gradient av-
eraging and amplification features. In this section, we introduce a new
class of algorithms generalizing Heavy-ball (HB) to different gradient
memory mechanisms. We also show how the continous-time perspec-
tive can be leveraged to guide discrete-time analysis and to bring to
light interesting features of (stochastic) Nesterov’s method — which
we show can be viewed as a time-changed linear memory equation.

Already in his 1964 paper (Polyak, 1964), Polyak motivated momentum
as the discrete-time analogue of a second-order ODE:

Ẍ(t) + a(t)Ẋ(t) +∇ f (X(t)) = 0, (HB-ODE)

which can be written in phase-space asV̇(t) = −a(t)V(t)−∇ f (X(t))

Ẋ(t) = V(t)
. (HB-ODE-PS)

This connection can be made precise: Polyak momentum is indeed the
result of semi-implicit Euler integration (Zhang et al., 2021c).
If the viscosity parameter α = a(t) is time-independent, HB-ODE, with
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initial condition Ẋ(0) = 0 and X(0) = x0, can be cast into an integro-
differential equation12:

Ẋ(t) = −
∫ t

0
e−α·(t−s)∇ f (X(s))ds. (HB-ODE-INT)

2.3.1 Memory interpretation of Heavy-ball

Notice that the instantaneous update direction of HB-ODE-INT is a weighted
average of the past gradients, namely

Ẋ(t) = −
∫ t

0
w(s, t)∇ f (X(s))ds, (26)

with w(s, t) := eα(t−s). However, the weights do not integrate to one.
Indeed, for all t, we have

∫ t
0 w(s, t)ds = (1− e−αt)/α, which integrates to

1/α as t → ∞. As a result, in the constant gradient setting, the previous
sum is a biased estimator of the actual gradient. This fact suggests a
simple modification of HB-ODE-INT, for t > 0:

Ẋ(t) = − α

1− e−αt

∫ t

0
e−α·(t−s)∇ f (X(s))ds, (27)

which we write as Ẋ = − α
eαt−1

∫ t
0 eαs∇ f (X(s))ds. We note that this nor-

malization step follows exactly the same motivation as bias correction in
Adam (Kingma and Ba, 2014). If we define m(t) := eαt − 1, the previous
formula takes the form:

Ẋ(t) = −
∫ t

0

ṁ(s)
m(t)

∇ f (X(s))ds. (MG-ODE-INT)

This memory-gradient integro-differential equation (MG-ODE-INT) pro-
vides a generalization of HB-ODE-INT, with bias correction. The follow-
ing lemma is consequence of the fundamental theorem of calculus.

Lemma 2.3.1. For any m ∈ C1(R, R) s.t. m(0) = 0, MG-ODE-INT is nor-
malized :

∫ t
0

ṁ(s)
m(t) ds = 1, for all t > 0.

Proof. Since m(0) = 0,
∫ t

0 ṁ(s)ds = m(t).

12 Using the fundamental theorem of calculus and plugging in Ẋ(0) = 0.
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Figure 7: Illustration of the influence of past gradients on Ẋ(6) (i.e. the right hand side of
MG-ODE-INT with t = 5). The corresponding memory function can be found
in Tb. 1. The influence is computed as ṁ(s)/m(6). By Lemma 2.3.1, the area
under all curves is 1.

Based on Lemma 2.3.1, we will always set m(0) = 0. What other proper-
ties shall a general m(·) have? Requiring ṁ(s) ̸= 0 for all s ≥ 0 ensures
that there does not exist a time instant where the gradient is systemati-
cally discarded. Hence, since m(0) = 0, m(·) should be either monoton-
ically decreasing and negative or monotonically increasing and positive.
In the latter case, without loss of generality, we can flip its sign. This
motivates the following definition.

Definition 2.3.1. m ∈ C1(R+, R) is a memory function if it is non-negative,
strictly increasing and s.t. m(0) = 0.

For example, eαt − 1, from which we started our discussion, is a valid
memory function. Crucially, we note that ṁ(·) plays the important role of
controlling the speed at which we forget previously observed gradients.
For instance, let m(t) = t3; since ṁ(s) = 3s2, the system forgets past gra-
dients quadratically fast. In contrast, m(t) = eαt − 1 leads to exponential for-
getting. Some interesting memory functions are listed in Tb. 1, and their
respective influence on past gradients is depicted in Fig. 7. We point out
that, in the limit α → ∞, the weights w(s, t) = ṁ(s)

m(t) associated with ex-
ponential forgetting converge to a Dirac distribution δ(t− s). Hence, we
recover the Gradient Descent ODE (Mertikopoulos and Staudigl, 2018):
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Ẋ(t) = −∇ f (X(t)). For the sake of comparison, we will refer to this as
instantaneous forgetting.
Finally, notice that MG-ODE-INT can be written as a second order ODE.
Too see this, we just need to compute the second derivative. For t > 0 we
have that

Ẍ(t) =
ṁ(t)
m(t)2

∫ t

0
ṁ(s)∇ f (X(s))ds− ṁ(t)

m(t)
∇ f (X(t)). (28)

Plugging in the definition of Ẋ from the integro-differential equation, we
get the memory-gradient ODE:

Ẍ(t) +
ṁ(t)
m(t)

Ẋ(t) +
ṁ(t)
m(t)

∇ f (X(t)) = 0. (MG-ODE)

Forgetting Memory m ODE Coeff. ṁ/m

Decaying log(1 + t) 1/(t log(t + 1))

Constant t 1/t

Square-root t1.5 1.5/t

Linear t2 2/t

Quadratic t3 3/t

Exponential eαt − 1 αeαt/
(
eαt − 1

)
Super-exp etα − 1 αtα−1etα

/
(
etα − 1

)
Instantaneous − −

Table 1: Some examples of memory functions.

Equivalently, we can transform this second order ODE into a system
of two first order ODEs by introducing the variable V(t) := Ẋ(t) and
noting that V̇(t) = − ṁ(t)

m(t)V(t) − ṁ(t)
m(t)∇ f (X(t)). This is the phase-space

representation of MG-ODE, which we use in Section 2.3.2 to provide the
extension to the stochastic setting.

existence and uniqueness . Readers familiar with ODE theory
probably realized that, since by definition m(0) = 0, the question of ex-
istence and uniqueness of the solution to MG-ODE is not trivial. This is
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why we stressed its validity for t > 0 multiple times during the deriva-
tion. Indeed, it turns out that solutions may not exist globally on [0, ∞)
(see appendix of Orvieto et al., 2019 for a counterexample). Nevertheless,
if we allow to start integration from any ϵ > 0 and assume f (·) to be
L-smooth, standard ODE theory (see App. A) ensures that the sought
solution exists and is unique on [ϵ, ∞). Since ϵ can be made as small as
we like this apparent issue can be regarded as an artifact of the model.

2.3.2 Memory of Stochastic Gradients

In this section we introduce stochasticity in the MG-ODE model. As al-
ready mentioned in the introduction, at each step k, iterative stochastic
optimization methods have access to an estimate G(xk) of ∇ f (xk): the
so called stochastic gradient. This information is used and possibly com-
bined with previous gradient estimates G(x0), . . . ,G(xk−1), to compute a
new approximation xk+1 to the solution x∗. There are many ways to de-
sign G(k): the simplest (Robbins and Monro, 1951) is to take GMB(xk) :=
∇ fik

(xk), where ik ∈ {1, . . . , n} is a uniformly sampled datapoint. This
gradient estimator is trivially unbiased (conditioned on past iterates) and
we denote its covariance matrix at point x by Σ(x) = 1

n ∑n
i=1(∇ fi(x)−

∇ f (x))(∇ fi(x)−∇ f (x))⊤.
Following Krichene and Bartlett, 2017 we model stochasticity adding a
volatility term in MG-ODE:


dX(t) = V(t)dt

dV(t) = − ṁ(t)
m(t)

V(t)dt− ṁ(t)
m(t)

[∇ f (X(t))dt + σ(X(t))dB(t)]
,

(MG-SDE)
where σ(X(t)) ∈ Rd×d and {B(t)}t≥0 is a standard Brownian Motion.
For a primer on stochastic differential equations and Brownian Motion,
please check Appendix A. Notice that this system of equations reduces to
the phase-space representation of MG-ODE if σ(X(t)) is the null matrix.
The connection from σ(x) to the gradient estimator covariance matrix
Σ(x) can be made precise: Li et al., 2017 motivate the choice σ(x) =√

hΣ(x), where
√· denotes the principal square root and h is the dis-

cretization stepsize.
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The proof of existence and uniqueness to the solution of this SDE13 relies
on the same arguments made for MG-ODE, with one additional crucial
difference: Orvieto and Lucchi, 2019a showed that f (·) needs to addi-
tionally be three times continuously differentiable with bounded third
derivative (i.e. f ∈ C3

b (R
d, R)), in order for σ(·) to be Lipschitz continu-

ous. Hence, we will assume this regularity and refer the reader to Orvieto
and Lucchi, 2019a for further details.

2.3.3 Insights on Nesterov’s Method

Su et al., 2016 showed that the continuous-time limit of Nesterov’s Ac-
celerated Gradient (NAG) for convex functions is HB-ODE with time-
dependent viscosity 3/t: Ẍ(t) + 3

t Ẋ(t) +∇ f (X(t)) = 0, which we refer
to as Nesterov’s ODE (NAG-ODE in Section 2.2). Using Bessel functions,
the authors were able to provide a new insightful description and anal-
ysis of this mysterious method. In particular, they motivated how the
vanishing viscosity is essential for acceleration14. Indeed, the solution
to the equation above is s.t. f (X(t)) − f (x∗) ≤ O(1/t2); in contrast to
the solution to the GD-ODE Ẋ(t) = −∇ f (X(t)), which only achieves a
rate O(1/t).
A closer look at Tb. 1 reveals that the choice of viscosity 3/t is related to
MG-ODE with quadratic forgetting, that is Ẍ(t)+ 3

t Ẋ(t)+ 3
t∇ f (X(t)) =

0. However, in MG-SDE the gradient term is also pre-multiplied by 3/t.
Here we analyse the effects of this intriguing difference and its connec-
tion to acceleration.

gradient amplification leads to acceleration. A naïve way
to speed up the convergence of the GD-ODE Ẋ(t) = −∇ f (X(t)) is to
consider

Ẋ(t) = −t∇ f (X(t)). (29)

This can be seen by means of the Lyapunov function E(x, t) = t2( f (x)−
f (x∗)) + ∥x− x∗∥2. Using convexity of f (·), we have

Ė(X(t), t) = −t3∥∇ f (X(t))∥2 ≤ 0, (30)

13 See e.g. Theorem 5.2.1 in Øksendal, 2003, which gives sufficient conditions for (strong) exis-
tence and uniqueness.

14 Acceleration is not achieved for a viscosity of e.g. 2/t.
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and therefore the solution is s.t. f (X(t)) − f (x∗) ≤ O(1/t2). However,
the Euler discretization of this ODE is the gradient-descent-like recur-
sion xk+1 = xk − ηk∇ f (xk) — which is not accelerated. Indeed, gradient
amplification by a factor of t is effectively changing the Lipschitz constant
of the gradient field from L to kL. Therefore, each step is going to yield
a descent only if15 η ≤ 1

kL . This iteration dependent learning rate effec-
tively cancels out gradient amplification, which brings us back to the
standard convergence rate O(1/k). It is thus natural to ask:

“Is the mechanism of acceleration behind Nesterov’s ODE
related to a similar gradient amplification?”

It is easy to show that {XN(t), VN(t)}t≥0, the solution to Nesterov’s
SDE16, is s.t. the infinitesimal update direction VN(t) of the position
XN(t) can be written as

VN(t) = −
∫ t

0

s3

t3∇ f (X(s))ds + ζN(t), (31)

where ζN(t) is a random vector with E[ζN(t)] = 0 and

Var[ζN(t)] =
1
7

tσσ⊤. (32)

In contrast, the solution {Xm2(t), Vm2(t)})t≥0 of MG-SDE with quadratic
forgetting satisfies

Vm2(t) = −
∫ t

0

3s2

t3 ∇ f (X(s))ds + ζm2(t), (33)

where ζm2(t) is a random vector with E[ζm2(t)] = 0 but

Var[ζm2(t)] =
9
5t

σσ⊤. (34)

The reader might already have spotted an important difference in the
noise covariances. To make our connection to gradient amplification even
clearer, we consider the simpler setting of constant gradients: in this case,

15 See e.g. Bottou et al., 2018.
16 Nesterov’s SDE is defined, as for MG-SDE by augmenting the phase space representation

with a volatility term. The resulting system is then : dX(t) = V(t)dt; dV(t) = −3/tV(t)dt−
σ(X(t))dB(t).
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Figure 8: HB-SDE with α(t) = 3/t (i.e. Nesterov’s SDE) compared to MG-SDE with
quadratic forgetting. Setting as in Su et al., 2016: f (x) = 2× 10−2x2

1 + 5×
10−3x2

2 starting from X0 = (1, 1) and Ẋ(0) = (0, 0). Both systems are exposed
to the same noise volatility. Simulation using the Milstein scheme (Mil’shtejn,
1975) with stepsize 10−3.

we have VN(t) = − 1
4 t∇ f (X(t)) + ζN(t), Vm2(t) = −∇ f (X(t)) + ζm2(t).

That is, stochastic algorithms with increasing momentum (i.e. decreas-
ing viscosity, like the Nesterov’s SDE) are systematically amplifying the
gradients over time. Yet, at the same time they also linearly amplify
the noise variance. This argument can easily be extended to the non-
constant gradient case by noticing that E[Vm2(t)] is a weighted average
of gradients where the weights integrate to 1 for all t ≥ 0 (Lemma 2.3.1) .
In contrast, in E[VN(t)] these weights integrate to t/4. This behaviour is
illustrated in Fig. 8: While the Nesterov’s SDE is faster compared to MG-
SDE with m(t) = t3 at the beginning, it quickly becomes unstable be-
cause of the increasing noise in velocity and hence position. This gives
multiple insights on the behavior of Nesterov’s accelerated method for
convex functions, both in for deterministic and the stochastic gradients:

1. Deterministic gradients get linearly amplified overtime, which
counteracts the slow-down induced by the vanishing gradient prob-
lem around the solution. Interestingly Eq. (31) reveals that this am-
plification is not performed directly on the local gradient but on
past history, with cubic forgetting. It is this feature that makes dis-
cretization stable compared to the naïve Ẋ = −t∇ f (X(t)).
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2. Stochasticity corrupts the gradient amplification by an increasing
noise variance (see Eq. (31)), which makes Nesterov’s SDE unstable.
This finding is in line with Allen-Zhu, 2017.

Furthermore, our analysis also gives an intuition as to why a constant mo-
mentum cannot in general yield acceleration in the non-strongly convex
setting. Indeed, we saw already that HB-ODE-INT does not allow such
persistent amplification, but at most a constant amplification inversely
proportional to the (constant) viscosity.

time warping of linear memory. We show here that Nesterov’s
path has a strong link to — surprisingly — linear forgetting. Consider
speeding-up the linear forgetting ODE

Ẍ(t) +
2
t

Ẋ(t) +
2
t
∇ f (X(t)), (35)

by introducing the time change (see also App. A)

τ(t) = t2/8, (36)

and let Y(t) = X(τ(t)) be the accelerated solution to linear forgetting. By
the chain rule, we have

Ẏ(t) = τ̇(t)Ẋ(τ(t)) =⇒ Ÿ(t) = τ̈(t)Ẋ(τ(t)) + τ̇(t)2Ẍ(τ(t)). (37)

It can easily be verified that we recover Ÿ(t) + 3
t Ẏ(t) +∇ f (Y(t)). How-

ever, in the stochastic setting, the behaviour is still quite different: as
predicted by the theory, in Fig. 9 we see that — when gradients are large
— the trajectory of the two sample paths are almost identical (yet, no-
tice that Nesterov moves faster); however, as we approach the solution,
Nesterov diverges while linear forgetting stably proceeds towards the
minimizer along the Nesterov’s ODE path, but at a different speed, until
convergence to a neighborhood of the solution, as proved in Section 2.3.5.
In the appendix of Orvieto et al., 2019 we prove that there are no other
time changes which can cast MG-ODE into HB-ODE. This yields the fol-
lowing interesting conclusion: the only way to translate a memory system
into a momentum method is by using a time change τ(t) = O(t2).
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Figure 9: Nesterov’s ODE compared to MG-SDE with linear forgetting (i.e.
ṁ(t)/m(t) = 2/t). Same settings as Fig. 8.

2.3.4 Convergence Analysis in Continuous-time

In this section we first analyze convergence of MG-SDE under differ-
ent memory functions. Next, we use the Lyapunov analysis carried out
in continuous-time to derive an iterative discrete-time method that im-
plements polynomial forgetting and has strong last-iterate convergence
guarantees. We state a few assumptions:

(H0’) f ∈ C3
b (R

d, R), σ2∗ := supx ∥σ(x)σ(x)T∥s < ∞,

where C3
b (R

d, R) denotes the class of three times continuously differen-
tiable functions with bounded derivates up to the third order, and ∥ · ∥s
denotes the spectral norm. The definition of σ2∗ nicely decouples the mea-
sure of noise magnitude to the problem dimension d (which will then, of
course, appear explicitly in all our rates).

(H1’) f : Rd → R is L-smooth and there exist x∗ ∈ Rd s.t. for all x ∈ Rd,
⟨∇ f (x), x− x∗⟩ ≥ τ( f (x)− f (x∗)).

The last condition is known as weak-quasi-convexity and generalizes con-
vexity (convex functions are weakly-quasi-convex with constant 1 (Hardt
et al., 2018)). For background on smoothness and convexity, the reader
can check Appendix A.
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We start with a general result about the convergence of the memory SDE
(see Chapter 2) for arbitrary memory m(·) in the stochastic setting. We
will then specialize this result to polynomial forgetting.

Lemma 2.3.2 (Continuous-time Master Inequality). Assume (H0’) and (H1’)
hold. Let {X(t), V(t)}t≥0 be a solution to MG-SDE with memory m(·), define
λ(t) := −m(t)

∫ 1
m(t) dt (where

∫
denotes the antiderivative17) and r(t) :=

ṁ(t)
m(t)λ(t)2. If m(·) is such that ṙ(t) ≤ τλ(t) ṁ(t)

m(t) , then for any t > 0

E[ f (X(t))− f (x∗)]

≤ r(0)( f (x0)− f (x∗)) + 1
2∥x0 − x∗∥2

r(t)
+

dσ2∗
2

∫ t
0 λ(s)2 ( ṁ

m (s)
)2 ds

r(t)
.

Proof. The proof uses the following Lyapunov function, inspired from Su
et al., 2016:

E(x, v, t) = r(t)( f (x)− f (x∗)) +
1
2
∥x− x∗ + λ(t)v∥2.

Details can be found in in Appendix B.1.

Using this lemma, we can prove a last-iterate convergence result for the
memory SDE. The proof showcases simplicity and beauty when work-
ing with SDEs.

Theorem 2.3.1. Under the conditions of Lemma 2.3.2, let m(t) = tp, with
p ≥ 1 + 1

τ . Then, for any t > 0,

E[ f (X(t))− f (x∗)] ≤ (p− 1)2∥x0 − x∗∥2

2pt︸ ︷︷ ︸
rate of convergence to suboptimal sol.

+
p d σ2∗

2︸ ︷︷ ︸
suboptimality

.

Proof. Since p ̸= 1, we have λ(t) = −m(t)
∫ 1

m(t) dt = −tp ∫ 1
tp dt =

−tp
(

t1−p

1−p − C
)

. Let us choose C = 0, then λ(t) = t
p−1 and r(t) =

ṁ(t)
m(t)λ(t)2 =

p
t

t2

(p−1)2 =
pt

(p−1)2 . Thanks to the Lemma, we get a rate if

ṙ(t) ≤ τλ(t) ṁ(t)
m(t) ; that is, p

(p−1)2 ≤ τ t
p−1

p
t , which is true if and only if

p ≥ 1 + 1
τ . Plugging in h,m and r, we get the desired rate.

17 Equivalently, λ is such that λ̇(t) = ṁ(t)
m(t) λ(t)− 1.
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2.3.5 Convergence Analysis in Discrete-time

Reasoning in continuous-time is much easier compared to discrete-time.
Following insights from the continuous-time analysis, we derive in this
subsection a discrete version of MG-SDE and a corresponding rate.
We start from the algorithm below, a generalization of HB that builds a
sequence of iterates {xk}k∈N as well as moments {mk}k∈N starting from
m0 = 0 using the recursion

mk+1 = βk(xk − xk−1)− δkη∇ fik
(xk) (38)

xk+1 = xk + mk+1, (39)

where ik ∈ {1, . . . , n} is the index of a random data point sampled at
iteration k, βk is an iteration-dependent positive momentum parameter
and δk is a positive iteration-dependent discount on the learning rate η.
For each x ∈ Rd, the sample loss fik

(x) is a random variable with mean
zero and finite covariance matrix, which we call Σ(x).
We list below two important assumptions for our convergence guarantee

(H0) ς2∗ := supx∈Rd ∥Σ(x)∥s < ∞.

(H1) f : Rd → R is convex and L-smooth.

Note that, compared to the continuous-time setting, we have to assume
convexity and unfortunately cannot work with the weaker weak-quasi-
convexity assumption. We start with a rather abstract result inspired by
Ghadimi et al., 2015, which we will then use for algorithm design.

Lemma 2.3.3 (Discrete-time Master Inequality). Assume (H1) and (H0)
hold. Let {λk}k∈N be any sequence such that λk ≤ k for all k and define rk =

η(λk + 1). If βk = λk
λk+1+1 , δk = 1

λk+1+1 and η ≤ 1/L. Then we have for all
iterates {xk}k∈N given by Eq. (38) and (39) that

E[ f (xk)− f (x∗)] ≤ 2r0( f (x0)− f (x∗)) + 1
2∥x0 − x∗∥2

rk
+

dη2ς2∗(k + 1)
2rk

.

Proof. The proof is based on the following Lyapunov function inspired
by the continuous-time setting in Lemma 2.3.1.

Ek = rk( f (xk)− f (x∗)) +
1
2
∥xk+1 − x∗ + λkmk+1∥2. (40)

Details can be found in Appendix B.1.
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We now apply the lemma above to get an algorithm and a convergence
rate. In particular, we want to implement polynomial memory of past
gradients and still get the rate found in Theorem 2.3.1.

Theorem 2.3.2. Assume (H1) and (H0d) hold. Consider the following method

xk+1 = xk +
k

k + p
(xk − xk−1)−

p
k + p

η∇ fik
(xk),

with p ≥ 2 and η ≤ p−1
pL . We have

E[ f (xk)− f (x∗)]

≤ 2η(p− 1)( f (x0)− f (x∗)) + 1
2∥x0 − x∗∥2

η(k + p− 1)︸ ︷︷ ︸
rate of convergence to suboptimal sol.

+
d(p− 1)ης2∗

2︸ ︷︷ ︸
suboptimality

.

Moreover, the resulting update direction can be written as

xk+1 − xk = −η
k

∑
i=0

w(i, k)∇ f (xi),

with ∑k
i=0 w(i, k) = 1 and w(·, k) : {0, . . . , k} → R behaving like a (p− 1)-th

order polynomial, that is w(i, k) ∼ ip−1, for all k.

We present the proof to showcase exactly the point where we leverage
intuition from continuous-time. Note that, compared to the SDE setting,
here reasoning is more tedious (1 page of proof vs. 5 lines): sums are
often harder to work with, compared to integrals.
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Proof. In the context of Lemma 2.3.3, pick the continuous-time inspired
function λk = k

p−1 ≤ k (see λ(t) in Prop. 2.3.1). If rk = η(λk + 1) =

η
k+p−1

p−1 , βk = λk
λk+1+1 = k

k+p , δk = 1
λk+1+1 =

p−1
k+p , the iterates defined by

xk+1 = xk +
k

k + p
(xk − xk−1)−

p− 1
k + p

η∇ fik
(xk), (41)

are such that, under η ≤ 1/L (see fundamental lemma)

E[ f (xk)− f (x∗)]

≤ 2r0( f (x0)− f (x∗)) + 1
2∥x0 − x∗∥2

rk
+

dη2ς2∗(k + 1)
2rk

=
2η(p− 1)( f (x0)− f (x∗)) + p−1

2 ∥x0 − x∗∥2

η(k + p− 1)
+

d(p− 1)η2ς2∗(k + 1)
2η(k + p− 1)

≤ 2η(p− 1)( f (x0)− f (x∗)) + p−1
2 ∥x0 − x∗∥2

η(k + p− 1)
+

d(p− 1)ης2∗
2

(42)

where we also used the fact that p ≥ 2. Now we have to get back to the
algorithm defined in our statement, to do this we simply need η ← p

p−1 η

(hence the stability condition η ≤ p−1
pL ). The rate becomes

E[ f (xk)− f (x∗)] ≤ 2η(p− 1)2( f (x0)− f (x∗)) + p2

2 ∥x0 − x∗∥2

ηp(k + p− 1)
+

pdης2∗
2

.

(43)

To reveal the hidden averaging structure in the algorithm (after change
of variable η), let us first expand the iterates:

xk+1 − xk = −η
k−1

∑
j=0

 k

∏
h=j+1

h
h + p

 p
j + p

∇ f (xj)− η
p

k + p
∇ f (xk)

= −η
k

∑
j=0

w(j, k)∇ f (xj), (44)
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therefore, using some simple formulas 18 from number theory, its easy to
check that the weights behave polynomially and sum to 1:

k

∑
j=0

w(j, k) =
k−1

∑
j=0

 k

∏
h=j+1

h
h + p

 p
j + p

+
p

k + p

=
k−1

∑
j=0

(j + 1)(j + 2) · · ·���(j + p)
(k + 1)(k + 2) · · · (k + p)

p
���(j + p)

+
p

k + p

=
k−1

∑
j=0

(j + 1)(j + 2) · · ·���(j + p)
(k + 1)(k + 2) · · · (k + p)

p
���(j + p)

+
p

k + p

=
p

(k + 1)(k + 2) · · · (k + p)

k

∑
j=0

(j + 1)(j + 2) · · · (j + p− 1),

(45)

From the last formula, we see that indeed the weights behave like a (p−
1)-order polynomial. To see that the weights some to 1, notice that

k

∑
j=0

(j + 1)(j + 2) · · · (j + p− 1) =
(k + 1)(k + 2) · · · (k + p)

p
. (46)

18 The reader can check the formula in Wolphram Alpha®: http://tinyurl.com/y3quchcd
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2.4 shadowing of discrete trajectories

The precise definition of “hyperbolic” is a little complicated, and so we
defer it until next semester, but roughly speaking it means that the
dynamical system expands in some directions and contracts in others.

– Will J. Merry

As evident from Section 2.3, working in continuous time provides pro-
found insights and simplifies reasoning when analyzing gradient-based
methods. Therefore, it comes as no surprise that the relationship be-
tween continuous-time models and their discrete counterparts has be-
come a focal point of interest in the contemporary optimization liter-
ature (Li et al., 2017; Shi et al., 2019; Muehlebach and Jordan, 2020;
Muehlebach and Jordan, 2021; Zhang et al., 2021c). Specifically, much
research is focused on understanding the error resulting from the dis-
cretization of a gradient-based ODE into an optimizer. The conceptual
challenge is that without assuming heavy regularity (e.g. the system is
Hamiltonian, as in Benettin and Giorgilli, 1994; Hairer et al., 2003), the ap-
proximation error of any (even high-order) numerical integrator grows
exponentially19 as a function of the integration interval (Chow and Van
Vleck, 1994; Hairer et al., 2003). As a result, convergence rates derived
for ODEs can not be straightforwardly translated to algorithmic guar-
antees. While continuous-time is helpful to guide reasoning, obtaining
convergence guarantees for the discrete case often requires analyzing a
separate discrete-time Lyapunov function, which at times cannot be eas-
ily recovered from the one used for the continuous-time analysis (we
were lucky in Section 2.3, see instead Shi et al., 2021; Shi et al., 2019).

Question: Under which conditions optimization algorithms are well
approximated by their limiting continuous-time models?

19 The error between the numerical approximation and the actual trajectory with the same initial
conditions is, for a p-th order method, eCthp at time t with C ≫ 0.
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Answer (Orvieto and Lucchi, 2019b): Under strong convexity or near
well-conditioned saddles, models of gradient descent (with momen-
tum) are guaranteed to be faithful to algorithms: trajectories are uni-
formly close — one shadows the other. This finding empirically holds
true also on simple neural networks.

In this work, we study conditions on the loss function under which the
flow of an ODE model is shadowed by (i.e. is uniformly close20 to) the
iterates of an optimization algorithm. The key difference with previous
work, which makes our analysis possible, is that we allow the algorithm
— i.e. the shadow— to be initialized at a slightly perturbed point com-
pared to the ODE (see Fig. 14 for an illustration). We rely on tools from
numerical analysis (Hairer et al., 2003) as well as concepts from dynam-
ical systems (Brin and Stuck, 2002), where solutions to ODEs and iter-
ations of algorithm are viewed as the same object, namely maps in a
topological space (Brin and Stuck, 2002). Specifically, our analysis builds
on the theory of hyperbolic sets, which grew out of seminal works ny
Anosov (Anosov, 1967) and Smale (Smale, 1967) in the 1960’s and plays
a fundamental role in several branches of the area of dynamical systems
but has not yet been seen to have a relationship with optimization for
machine learning.
To the best of our knowledge, our work is the first to focus on a (Lya-
punov function independent) systematic and quantitative comparison
of ODEs and algorithms for optimization. Also, we believe the tools
we describe in this work can be used to advance our understanding of
related machine learning problems, perhaps to better characterize the
attractors of neural ordinary differential equations (Chen et al., 2018b).

2.4.1 Background on Pseudo-orbits and Shadowing

This section provides an overview of fundamental concepts in the theory
of dynamical systems, which we will use heavily in the rest of the section.
Many of the definitions and results used here are also included in the
background material (App A).

20 Formally defined in Sec. 2.4.1.
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Figure 10: Flow of the vector field g.

2.4.1.1 Differential equations and flows

Consider the autonomous differential equation ẏ = g(y). Every y repre-
sents a point in Rn and g : Rn → Rn is a vector field which, at any point,
prescribes the velocity of the solution y that passes through that point.
Formally, the curve y : R → Rn is a solution passing through y0 at time
0 if ẏ(t) = g(y(t)) for t ∈ R and y(0) = y0. We call this the solution
to the initial value problem (IVP) associated with g (starting at y0). The
following results can be found in Perko, 2013; Khalil, 2002.

Theorem 2.4.1. Assume g is Lipschitz continuous and Ck. The IVP has a
unique Ck+1 solution in R.

This fundamental theorem tells us that, if we integrate for t time units
from position y0, the final position y(t) is uniquely determined. There-
fore, we can define the family {φ

g
t }t∈R of maps — the flow of g — such

that φ
g
t (y0) is the solution at time t of the IVP. Intuitively, we can think of

φ
g
t (y0) as determining the location of a particle starting at y0 and moving

via the velocity field g for t seconds. Since the vector field is static, we
can move along the solution (in both directions) by iteratively applying
this map (or its inverse). This is formalized below.

Proposition 2.4.1. Assume g is Lipschitz continuous and Ck. For any t ∈ R,
φ

g
t ∈ Ck+1 and, for any t1, t2 ∈ R, φ

g
t1+t2

= φ
g
t1
◦ φ

g
t2

. In particular, φ
g
t is a

diffeomorphism21 with inverse φ
g
−t.

21 A C1 map with well-defined and C1 inverse.
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In a way, the flow allows us to exactly discretize the trajectory of an
ODE. Indeed, let us fix a stepsize h > 0; the associated time-h map φ

g
h

integrates the ODE ẏ = g(y) for h seconds starting from some y0, and
we can apply this map recursively to compute a sampled ODE solution.
In this section, we study how flows can approximate the iterations of
some optimization algorithm using the language of dynamical systems
and the concept of shadowing.

2.4.1.2 Dynamical systems and shadowing

A dynamical system on Rn is a map Ψ : Rn → Rn. For p ∈N, we define
Ψp = Ψ ◦ · · · ◦ Ψ (p times). If Ψ is invertible, then Ψ−p = Ψ−1 ◦ · · · ◦
Ψ−1 (p times). Since Ψp+m = Ψp ◦ Ψm, the powers of Ψ form a group
if Ψ is invertible, and a semigroup otherwise. We proceed with more
definitions.

Definition 2.4.1. A sequence (xk)
∞
k=0 is a (positive) orbit of Ψ if, for all k ∈N,

xk+1 = Ψ(xk).

For the rest of this subsection, the reader may think of Ψ as an optimiza-
tion algorithm (such as GD, which maps x to x − η∇ f (x) ) and of the
orbit (xk)

∞
k=0 as its iterates. Also, the reader may think of (yk)

∞
k=0 as the

sequence of points derived from the iterative application of φ
g
h , which is

itself a dynamical system, from some y0. The latter sequence represents
our ODE approximation of the algorithm Ψ. Our goal in this subsection
is to understand when a sequence (yk)

∞
k=0 is "close to" an orbit of Ψ. The

first notion of such similarity is local.

Definition 2.4.2. The sequence (yk)
∞
k=0 is a δ−pseudo-orbit of Ψ if, for all

k ∈N, ∥yk+1 −Ψ(yk)∥ ≤ δ.

If (yk)
∞
k=0 is locally similar to an orbit of Ψ (i.e. it is a pseudo-orbit of Ψ),

then we may hope that such similarity extends globally. This is captured
by the concept of shadowing.

Definition 2.4.3. A pseudo-orbit (yk)
∞
k=0 of Ψ is ϵ−shadowed if there exists

an orbit (xk)
∞
k=0 of Ψ such that, for all k ∈N, ∥xk − yk∥ ≤ ϵ.

It is crucial to notice that, as depicted in the figure above, we allow the
shadowing orbit (a.k.a. the shadow) to start at a perturbed point x0 ̸= y0.
A natural question is the following: which properties must Ψ have such that
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Figure 12: Illustration of the shadowing proof in Theorem 2.4.2.

a general pseudo-orbit is shadowed? A lot of research has been carried out
in the last decades on this topic (see e.g. Palmer, 2013; Lanford, 1985 for
a comprehensive survey).

shadowing for contractive/expanding maps .
A straight-forward sufficient condition is related to contraction. Ψ is said
to be uniformly contracting if there exists ρ < 1 (contraction factor) such
that for all x1, x2 ∈ Rn, ∥Ψ(x1)− Ψ(x2)∥ ≤ ρ∥x1 − x2∥. The next result
can be found in Hayes and Jackson, 2005.

Theorem 2.4.2. (Contraction map shadowing theorem) Assume Ψ is uniformly
contracting. For every ϵ > 0 there exists δ > 0 such that every δ−pseudo-orbit
(yk)

∞
k=0 of Ψ is ϵ−shadowed by the orbit (xk)

∞
k=0 of Ψ starting at x0 = y0, that

is xk := Ψk(x0). Moreover, δ ≤ (1− ρ)ϵ.
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The idea behind this result is simple: since all distances are contracted,
errors that are made along the pseudo-orbit vanish asymptotically. For
instructive purposes, we report the full proof.

Proof. We proceed by induction: the proposition is trivially true at k = 0,
since ∥x0 − y0∥ ≤ ϵ; next, we assume the proposition holds at k ∈N and
we show validity for k + 1. We have

∥xk+1 − yk+1∥
subadditivity
≤ ∥Ψ(xk)−Ψ(yk)∥+ ∥Ψ(yk)− yk+1∥

δ-pseudo-orbit
≤ ∥Ψ(xk)−Ψ(yk)∥+ δ

contraction
≤ ρ∥xk − yk∥+ δ

induction
≤ ρϵ + δ. (47)

Finally, since δ ≤ ϵ(1− ρ), ρϵ + δ = ϵ.

Next, assume Ψ is invertible. If Ψ is uniformly expanding (i.e. ρ > 1),
then Ψ−1 is uniformly contracting with contraction factor 1/ρ and we
can apply the same reasoning backwards: consider the pseudo-orbit
{y0, y1, · · · , yK} up to iteration K, and set xK = yK (before, we had
x0 = y0); then, apply the same reasoning as above using the map Ψ−1

and find the initial condition x0 = Ψ−K(yK). In App. B.2.1.2 we show
that this reasoning holds in the limit, i.e. that Ψ−K(yK) converges to a
suitable x0 to construct a shadowing orbit under δ ≤ (1− 1/ρ)ϵ (precise
statement in Thm. B.2.3).

shadowing in hyperbolic sets . In general, for machine learning
problems, the algorithm map Ψ can be a combination of the two cases
above: an example is the pathological contraction-expansion behavior of
Gradient Descent around a saddle point (Du et al., 2017). To illustrate
the shadowing properties of such systems, we shall start by taking Ψ
to be linear22, that is Ψ(x) = Ax for some A ∈ Rn×n. Ψ is called linear
hyperbolic if its spectrum σ(A) does not intersect the unit circle S1. If this
is the case, we call σs(A) the part of σ(A) inside S1 and σu(A) the part of

22 This case is restrictive, yet it includes the important cases of the dynamics of GD and HB
when f is a quadratic (which is the case in, for instance, least squares regression).
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σ(A) outside S1. The spectral decomposition theorem (see e.g. Corollary
4.56 in Irwin, 2001) ensures that Rn decomposes into two Ψ-invariant
closed subspaces (a.k.a the stable and unstable manifolds) in direct sum :
Rn = Es ⊕ Eu. We call Ψs and Ψu the restrictions of Ψ to these subspaces
and As and Au the corresponding matrix representations; the theorem
also ensures that σ(As) = σs(A) and σ(Au) = σu(A). Moreover, using
standard results in spectral theory (see e.g. App. 4 in Irwin, 2001) we can
equip Es and Eu with norms equivalent to the standard Euclidean norm
∥ · ∥ such that, w.r.t. the new norms, Ψu is uniformly expanding and Ψs
uniformly contracting. If A is symmetric, then it is diagonalizable and the
norms above can be taken to be Euclidean. To wrap up this paragraph
— we can think of a linear hyperbolic system as a map that allows us
to decouple its stable and unstable components consistently across Rn.
Therefore, a shadowing result directly follows from a combination of
Thm. 2.4.2 and B.2.3 (Hayes and Jackson, 2005).
An important further question is — whether the result above for lin-
ear maps can be generalized. From the classic theory of nonlinear sys-
tems (Khalil, 2002; Araújo and Viana, 2009), we know that in a neigh-
borhood of an hyperbolic point p for Ψ, that is DΨ(p) has no eigen-
values on S1, Ψ behaves like23 a linear system. Similarly, in the analysis
of optimization algorithms, it is often used that, near a saddle point,
an Hessian-smooth function can be approximated by a quadratic (Levy,
2016; Daneshmand et al., 2018; Ge et al., 2015). Hence, it should not be
surprising that pseudo-orbits of Ψ are shadowed in a neighborhood of an
hyperbolic point, if such set is Ψ-invariant (Lanford, 1985): this happens
for instance if p is a stable equilibrium point (see Khalil, 2002).
Starting from the reasoning above, the celebrated shadowing theorem, which
has its foundations in the work of Ansosov (Anosov, 1967) and was orig-
inally proved in Bowen, 1975, provides the strongest known result of this
line of research: near an hyperbolic set of Ψ, pseudo-orbits are shad-
owed. Informally, Λ ⊂ Rn is called hyperbolic if it is Ψ-invariant and
has clearly marked local directions of expansion and contraction which
make Ψ behave similarly to a linear hyperbolic system.We provide the
precise definition of hyperbolic set and the statement of the shadowing
theorem in App. B.2.1.1.

23 For a precise description of this similarity, we invite the reader to read on topological conjugacy
in (Araújo and Viana, 2009).
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Unfortunately, despite the ubiquity of hyperbolic sets, it is practically
infeasible to establish this property analytically (Aulbach and Colonius,
1996). Therefore, an important part of the literature (Coomes, Palmer, et
al., 1995; Sauer and Yorke, 1991; Chow and Van Vleck, 1994; Van Vleck,
1995) is concerned with the numerical verification of the existence of a
shadowing orbit a posteriori, i.e. given a particular pseudo-orbit.

2.4.2 Shadowing Gradient Descent

We assume some regularity on the objective function f : Rd → R which
we seek to minimize.

(H1) f ∈ C2(Rd, R) is coercive24, bounded from below and L-smooth
(∀a ∈ Rd, ∥∇2 f (a)∥ ≤ L).

In this chapter, we study the well-known continuous-time model for GD,
that is ẏ = ∇ f (y) (GD-ODE). Under (H1), Thm. 2.4.1 ensures that the
solution to GD-ODE exists and is unique. We denote by φGD

h the cor-
responding time-h map. We show that, under some additional assump-
tions, the orbit of φGD

h (which we indicate as (yk)
∞
k=0) is shadowed by an

orbit of the GD map with learning rate h: ΨGD
h .

Remark 2.4.1 (Bound on the ODE gradients). Under (H1) let Gy = {p :
p = ∥∇ f (y(t))∥, t ≥ 0} be the set of gradient magnitudes experienced along
the GD-ODE solution starting at any y0. It is easy to prove, using an argument
similar to Prop. 2.2 in Cabot et al., 2009, that coercivity implies sup Gy < ∞. A
similar argument holds for the iterates of Gradient Descent. Hence, for the rest
of this chapter it is safe to assume that gradients are bounded: ∥∇ f (y(t))∥ ≤ ℓ
for all t ≥ 0. For instance, if f is a quadratic centered at x∗, then we have
ℓ = L∥y0 − x∗∥.
The next result follows from the fact that GD implements the explicit
Euler method on GD-ODE.

Proposition 2.4.2. Assume (H1). (yk)
∞
k=0 is a δ-pseudo-orbit of ΨGD

h with
δ = ℓL

2 h2: ∀k ∈N,
∥yk+1 −ΨGD

h (yk)∥ ≤ δ.

24 f (x)→ ∞ as ∥x∥ → ∞.
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Proof. Thanks to Thm. 2.4.1, since the solution y of GD-ODE is a C2 curve,
we can write y(kh+ h) = φGD

h (y(kh)) = yk+1 using Taylor’s formula with
Lagrange’s Remainder in Banach spaces (see e.g. Thm 5.2. in Coleman,
2012) around time t = kh. Namely: y(kh + h) = y(kh)− ẏ(kh)h +R(2, h),
where R(2, ·) : R>0 → Rd is the approximation error as a function of h,
which can be bounded as follows:

∥R(2, h)∥ ≤ h2

2
sup

0≤λ≤1
∥ÿ(t + λh)∥

=
h2

2
sup

0≤λ≤1
∥∇2 f (y(t + λh))∇ f (y(t + λh))∥

≤ h2

2
sup

0≤λ≤1
∥∇2 f (y(t + λh))∥ sup

0≤λ≤1
∥∇ f (y(t + λh))∥

≤ h2

2
Lℓ. (48)

Since y(kh)− ẏ(kh)h = ΨGD
h (yk), ∥yk+1 −ΨGD

h (yk)∥ ≤ ℓL
2 h2.

2.4.2.1 Shadowing under strong convexity

As seen in Sec. 2.4.1.2, the last proposition provides the first step towards
a shadowing result. We also discussed that if, in addition, ΨGD

h is a con-
traction, we directly have shadowing (Thm. 2.4.1). Therefore, we start
with the following assumption that will be shown to imply contraction.

(H2) f is µ-strongly convex: for all a ∈ Rd, ∥∇2 f (a)∥ ≥ µ.

The next result follows from standard techniques in convex optimization
(see e.g. Jung, 2017).

Proposition 2.4.3. Assume (H1), (H2). If 0 < h ≤ 1
L , ΨGD

h is uniformly
contracting with ρ = 1− hµ.

We provide the proof in App. B.2.3 and sketch the idea using a quadratic
form: let f (x) = ⟨x, Hx⟩ with H symmetric s.t. µI ⪯ H ⪯ LI; if h ≤ 1

L
then (1− Lh) ≤ ∥I − hH∥ ≤ (1− µh). Prop. 2.4.3 follows: ∥ΨGD

h (x) −
ΨGD

h (y)∥ = ∥(I − hH)(x− y)∥ ≤ ∥I − hH∥∥x− y∥ ≤ ρ∥x− y∥.
The shadowing result for strongly convex functions is then a simple ap-
plication of Thm. 2.4.2.
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Figure 13: Orbit of ΨGD
h , φGD

h on a strongly convex quadratic. h = 0.2.

Theorem 2.4.3. Assume (H1), (H2) and let ϵ be the desired accuracy. Fix
0 < h ≤ min{ 2µϵ

Lℓ , 1
L}; the orbit (yk)

∞
k=0 of φGD

h is ϵ-shadowed by any orbit
(xk)

∞
k=0 of ΨGD

h with x0 such that ∥x0 − y0∥ ≤ ϵ.

Proof. From Thm. 2.4.2, we need (yk)
∞
k=0 to be a δ-pseudo-orbit of ΨGD

h
with δ ≤ (1 − ρ)ϵ. From Prop. 2.4.2 we know δ = ℓL

2 h2, while from
Prop. 2.4.3 we have ρ ≤ (1− hµ). Putting it all together, we get ℓL

2 h2 ≤
hµϵ, which holds if and only if h ≤ 2µϵ

Lℓ .

Notice that we can formulate the theorem in a dual way: namely, for
every learning rate we can bound the ODE approximation error (i.e.
find the shadowing radius).

Corollary 2.4.1. Assume (H1), (H2). If 0 < h ≤ 1
L , (yk)

∞
k=0 is ϵ-shadowed by

any orbit (xk)
∞
k=0 of ΨGD

h starting at x0 with ∥x0 − y0∥ ≤ ϵ, with ϵ = hℓL
2µ .

This result ensures that if the objective is smooth and strongly convex,
then GD-ODE is a theoretically sound approximation of GD. We validate
this in Fig. 13 by integrating GD-ODE analytically.

sharpness of the result. First, we note that the bound for δ in
Prop. 2.4.2 cannot be improved; indeed it coincides with the well-known
local truncation error of Euler’s method (Hairer and Wanner, 1996). Next,
pick f (x) = x2/2, x0 = 1 and h = 1/L = 1. For k ∈ N, gradients are
smaller than 1 for both GD-ODE and GD, hence ℓ = L = µ = 1. Our for-
mula for the global shadowing radius gives ϵ = hLℓ/(2µ) = 0.5, equal
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to the local error δ = ℓLh2/2 — i.e. as tight the well-established local
result. In fact, GD jumps to 0 in one iteration, while y(t) = e−t; hence
y(1)− x1 = 1/e ≈ 0.37 < 0.5. For smaller steps, like h = 0.1, our formula
predicts ϵ = 0.05 = 10δ. In simulation, we have maximum deviation at
k = 10, 0.02 = 4δ: only 2.5 times smaller than our prediction.

the convex case . If f is convex but not strongly convex, GD is non-
expanding and the error between xk and yk cannot be bounded by a
constant25 but grows slowly : in App. B.2.2.1 we show the error ϵk it is
upper bounded by δk = ℓLkh2/2 = O(kh2).

extension to stochastic gradients . We extend Thm. 2.4.3 to
account for perturbations: let ΨSGD

h (x) = x− h∇̃ f (x), where ∇̃ f (x) is a
stochastic gradient s.t. ∥∇̃ f (x)−∇ f (x)∥ ≤ R. Then, for ϵ big enough, we
can (proof in App. B.2.2.2) choose h ≤ 2(µϵ−R)

ℓL so that the orbit of φGD
h

(deterministic) is shadowed by the stochastic orbit of ΨSGD
h (x) starting

from x0 = y0. So, if the h is small enough, GD-ODE can be used to study
SGD. This result is well known from stochastic approximation (Kushner
and Yin, 2003).

2.4.2.2 Towards non-convexity: behaviour around local maxima and saddles

We first study the strong-concavity case and then combine it with strong-
convexity to assess the shadowing properties of GD around a saddle.

strong-concavity. In this case, it follows from the same argument
of Prop. 2.4.3 that GD is uniformly expanding with ρ = 1 + γh > 1, with
−γ := max(σ(H)) < 0. As mentioned in the background section (see
Thm. B.2.3 for the precise statement) this case is conceptually identical to
strong-convexity once we reverse the arrow of time (so that expansions
become contractions). We are allowed to make this step because, under
(H1) and if h ≤ 1

L , ΨGD
h is a diffeomorphism (see e.g. Lee et al., 2016,

Prop. 4.5). In particular, the backwards GD map (ΨGD
h )−1 is contracting

with factor 1/ρ. Consider now the initial part of an orbit of GD-ODE such
that the gradient norms are still bounded by ℓ and let yK = (φGD

h )K(y0)

25 This in line with the requirement of hyperbolicity in the shadowing theory: a convex function
might have zero curvature, hence the corresponding gradient system is going to have an
eigenvalue on the unit circle.
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be the last point of such orbit. It is easy to realize that (yk)
K
k=0 is a pseudo-

orbit, with reversed arrow of time, of (ΨGD
h )−1. Hence, Thm. 2.4.3 directly

ensures shadowing choosing xK = yK and xk = (ΨGD
h )k−K(yK). Crucially

— the initial condition of the shadow (xk)
K
k=0 we found are slightly26

perturbed: x0 = (ΨGD
h )−K(yK) ≊ y0. Notice that, if we instead start GD

from exactly x0 = y0, the iterates will diverge from the ODE trajectory,
since every error made along the pseudo-orbit is amplified. We show this
for the unstable direction of a saddle in Fig. 14.

quadratic saddles . As discussed in Sec. 2.4.1, if the space can be
split into stable (contracting) and unstable (expanding) invariant sub-
spaces (Rd = Es ⊕ Eu), then every pseudo-orbit is shadowed. This is
a particular case of the shadowing theorem for hyperbolic sets (Bowen,
1975). In particular, we saw that if ΨGD

h is linear hyperbolic such split-
ting exists and Es and Eu are the subspaces spanned by the stable and
unstable eigenvalues, respectively. It is easy to realize that ΨGD

h is lin-
ear if the objective is a quadratic; indeed f (x) = ⟨x, Hx⟩ is such that
ΨGD

h (x) = (I − hH)x. It is essential to note that hyperbolicity requires
H to have no eigenvalue at 0 — i.e. that the saddle has only directions
of strictly positive or strictly negative curvature. This splitting allows to
study shadowing on Es and Eu separately: for Es we can use the shad-
owing result for strong-convexity and for Eu the shadowing result for
strong-concavity, along with the computation of the initial condition for
the shadow in these subspaces. We summarize this result in the next theo-
rem, which we prove formally in App. B.2.2.3. To enhance understanding,
we illustrate the procedure of construction of a shadow in Fig. 14.

Proposition 2.4.4. Let f : Rd → R be quadratic centered at x∗ with Hessian
H with no eigenvalues in the interval (−γ, µ), for some µ, γ > 0. Assume the
orbit (yk)

∞
k=0 of φGD

h is s.t. (H1) holds up to iteration K. Let ϵ be the desired

tracking accuracy; if 0 < h ≤ min
{

µϵ
Lℓ , γϵ

2Lℓ , 1
L

}
, then (yk)

∞
k=0 is ϵ-shadowed

by an orbit (xk)
∞
k=0 of ΨGD

h up to iteration K.

general saddles . We take inspiration from the literature on the ap-
proximation of stiff ODEs near stationary points (Lubich et al., 1995;
Beyn, 1987; Larsson and Sanz-Serna, 1994) and use Banach fixed-point

26 Indeed, Thm. 2.4.3 applied backward in time from yK ensures that ∥(ΨGD
h )−K(yK)− x0∥ ≤ ϵ.
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Figure 14: Top: The orbit of GD is not a shadow: error blows up. Bottom: A few itera-
tions of the maps ΨGD

h and φGD
h with different initializations on a quadratic

saddle. GD-ODE was solved analytically and h = 0.2. On the bottom plot, the
coordinates of x0 are x0,1 = Ψ−7(y7,1) (expanding direction, need to reverse
time) and x0,2 = y0,2 (contracting direction).

theorem to generalize the result above to perturbed quadratic saddles
f + ϕ, where ϕ is required to be Lϕ-smooth with Lϕ ≤ O(min{γ, µ}).
This condition is intuitive, since ϕ effectively counteracts the contrac-
tion/expansion.

Theorem 2.4.4. Let f : Rd → R be a quadratic centered at x∗ with Hessian H
with no eigenvalues in the interval (−γ, µ), for some µ, γ > 0. Let g : Rd → R

be our objective function, of the form g(x) = f (x) + ϕ(x) with ϕ : Rd → R

a Lϕ−smooth perturbation such that ∇ϕ(x∗) = 0. Assume the orbit (yk)
∞
k=0

of φGD
h on g is s.t. (H1) (stated for g) holds, with gradients bounded by ℓ up to

iteration K. Assume 0 < h ≤ 1
L and let ϵ be the desired tracking accuracy, if

also

h ≤ ϵ
(
min

{ γ
2 , µ

}
− 4Lϕ

)
2ℓL

,
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then (yk)
∞
k=0 is ϵ-shadowed by a orbit (xk)

∞
k=0 of ΨGD

h on g up to iteration K.

The proof of this theorem is quite involved, hence is not reported in
this thesis; the interested reader can find it in the appendix of Orvieto
and Lucchi, 2019b. In the special case of strongly convex quadratics, the
theorem above recovers the shadowing condition of Cor. 2.4.1 up to a
factor 1/2 which is due to the different proof techniques.

gluing landscapes . The last result can be combined with Thm. 2.4.3
to capture the dynamics of GD-ODE where directions of negative curva-
ture are encountered during the early stage of training followed by a
strongly convex regions as we approach a local minimum (such as the
one in Fig. 15). Note that, since under (H1) the objective is C2, there
will be a few iterations in the "transition phase" (non-convex to convex)
where the curvature is very close to zero. These few iterations are not
captured by Thm. 2.4.3 and Thm. 2.4.4; indeed, the error behaviour in
Fig. 15 is pathological at k ≊ 10. Nonetheless, as we showed for the con-
vex case in Sec. 2.4.2.1, the approximation error during these iterations
only grows as O(kh). In the numerical analysis literature, the procedure
we just sketched was made precise in Chow and Van Vleck, 1994, who
proved that a gluing argument is successful if the number of unstable
directions on the ODE path is non-increasing.

2.4.3 Shadowing Heavy-ball

We now turn our attention to analyzing Heavy-ball whose continuous
representation is q̈+ αq̇+∇ f (q) = 0, where α is a positive number called
the viscosity parameter. Following Maddison et al., 2018, we introduce
the velocity variable p = q̇ and consider the dynamics of y = (q, p) (i.e.
in phase space).  ṗ = −αp−∇ f (q)

q̇ = p
. (HB-ODE)

Under (H1), we denote by φHB
α,h : R2d → R2d the corresponding joint

time-h map and by (yk)
∞
k=0 = ((pk, qk))

∞
k=0 its orbit (i.e. the sampled HB-

ODE trajectory). First, we show that a semi-implicit (Hairer et al., 2003)
integration of Eq. (HB-ODE) yields HB.
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Figure 15: Dynamics on the Hosaki function, h = 0.3 and lightly perturbed initial condi-
tion in the unstable subspace. ODE numerical simulation with Runge-Kutta
4 method Hairer et al., 2003.

Given a point xk = (vk, zk) in phase space, this integrator computes
(vk+1, zk+1) ≊ φHB

α,h (xk) asvk+1 = vk + h(−αvk −∇ f (zk))

zk+1 = zk + hvk+1

. (HB-PS)

Notice that vk+1 = (zk+1 − zk)/h and zk+1 = zk − (1− αh)(zk − zk−1)−
h2∇ f (zk), which is exactly one iteration of HB, with β = 1 − hα and
η = h2. We therefore have established a numerical link between HB and
HB-ODE, similar to the one presented in Shi et al., 2019. In the following,
we use ΨHB

α,h to denote the one step map in phase space defined by HB-PS.
Similarly to Remark 2.4.1, by Prop. 2.2 in Cabot et al., 2009, (H1) im-
plies that gradients are bounded by a constant ℓ. Hence, we can get an
analogue to Prop. 2.4.2 (see App. B.2.4 for the proof).

Proposition 2.4.5. Assume (H1) and let y0 = (0, z0). Then, (yk)
∞
k=0 is a

δ-pseudo-orbit of ΨHB
α,h with δ = ℓ(α + 1 + L)h2.

strong-convexity. The next step, as done for GD, would be to con-
sider strongly convex landscapes and derive a formula for the shadow-
ing radius (see Thm. 2.4.3). However — it is easy to realize that, in this
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Figure 16: Orbit of the space variable in ΨHB
h , φHB

h (sampled ODE solution) on a strongly
convex quadratic with h = 0.2 and α = 1 . Solution to HB-ODE was com-
puted analytically.

setting, HB is not uniformly contracting. Indeed, it notoriously is not a
descent method. Hence, it is unfortunately difficult to state an equivalent
of Thm. 2.4.3 using similar arguments. We believe that the reason behind
this difficulty lies at the very core of the acceleration phenomenon. In-
deed, as noted by Ghadimi et al., 2015, the current known bounds for
HB in the strongly convex setting might be loose due to the tediousness
of its analysis (Shi et al., 2021)— which is also reflected here. Hence, we
leave this theoretical investigation (as well as the connection to accelera-
tion and symplectic integration (Shi et al., 2019)) to future research, and
show instead experimental results in Sec. 2.4.4 and Fig. 16.

quadratics . In App. B.2.4.1 we show that, if f is quadratic, then ΨHB
α,h

is linear hyperbolic. Hence, as discussed in the introduction and thanks
to Prop. 2.4.5, there exists a norm27 under which we have shadowing,
and we can recover a result analogous to Prop. 2.4.4 and to its perturbed
variant. We show this empirically in Fig. 16 and compare with the GD
formula for the shadowing radius.

27 For GD, this was the Euclidean norm. For HB the norm we have to pick is different, since
(differently from GD) φHB

α,h (x) = Ax with A non-symmetric. The interested reader can find
more information in App. 4 of Irwin, 2001.
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2.4.4 Experiments on Neural Networks

Figure 17: Shadowing results under the sigmoid loss in MNIST (2 digits). We show 5
runs for the ODE and for the algorithm, with same (random) initialization.
ODEs are simulated with 4th-order Runge-Kutta: our implementation uses
4 back-propagations and an integrator-step of 0.1. When trying higher pre-
cisions, results do not change. Shown are also the strictly decreasing (since
we use full gradients) losses for each run the algorithms. The loss of the dis-
cretized ODEs are indistinguishible (because of shadowing) and are therefore
not shown. We invite the reader to compare the results (in particular, for high
λ) to the ones obtained in synthetic examples in Fig. 13 and 16.

We consider the problem of binary classification of digits 3 and 5 from
the MNIST data-set (LeCun, 1998). We take n = 10000 training examples
{(ai, li)}n

i=1, where ai ∈ Rd is the i-th image (in R785 adding a bias) and
li ∈ {−1, 1} is the corresponding label. We use the regularized sigmoid
loss (non-convex) f (x) = λ

2 ∥x∥2 + 1
n ∑n

i=1 ϕ(⟨ai, x⟩li), ϕ(t) = 1
1+et . Com-

pared to the cross-entropy loss (convex), this choice of f often leads to
better generalization (Shalev-Shwartz et al., 2011). For 2 different choices
of λ, using the full gradient, we simulate GD-ODE using fourth-order
Runge-Kutta (Hairer et al., 2003) (high-accuracy integration) and run GD
with learning rate h = 1, which yields a steady decrease in the loss. We
simulate HB-ODE and run HB under the same conditions, using α = 0.3
(to induce a significant momentum). In Fig. 17, we show the behaviour
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Figure 18: Approx. error under same setting of Fig. 17 for λ = 0.005. Experiment vali-
dates the linear dependency on h in Cor. 2.4.1.

of the approximation error, measured in percentage w.r.t. the discretized
ODE trajectory, until convergence (with accuracy around 95%). We make
a few comments on the results.

1. Heavy regularization (in green) increases the contractiveness of GD
around the solution, yielding a small approximation error (it con-
verges to zero) after a few iterations — exactly as in Fig. 13. For a
small λ (in magenta), the error between the trajectories is bounded
but is slower to converge to zero, since local errors tend not to be
corrected (cf. discussion for convex objectives in Sec. 2.4.2.1).

2. Locally, as we saw in Prop. 2.4.2, large gradients make the algo-
rithm deviate significantly from the ODE. Since regularization in-
creases the norm of the gradients experienced in early training, a
larger λ will cause the approximation error to grow rapidly at the
first iterations (when gradients are large). Indeed, Cor. 2.4.1 pre-
dicts that the shadowing radius is proportional28 to ℓ.

3. Since HB has momentum, we notice that indeed it converges faster
than GD (Sutskever et al., 2013). As expected, (see point 2) this has
a bad effect on the global shadowing radius, which is 5 times
bigger. On the other hand, the error from HB-ODE is also much
quicker to decay to zero when compared to GD.

28 Alternatively, looking at the formula ϵ = hLℓ
2µ in Cor. 2.4.1 and noting ℓ ≤ L∥x0 − x∗∥, we get

ϵ = O(L2/µ). Hence, regularization, which increases L and decreases µ by the same amount,
actually increases ϵ.
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Last in Fig. 18 we explore the effect of the shadowing radius ϵ on the
learning rate h and find a good match with the prediction of Cor. 2.4.1.
Indeed, the experiment confirms that such relation is linear: ϵ = O(h),
with no dependency on the number of iterations (as opposed to the classical
results discussed in the introduction).
All in all, we conclude from the experiments that the intuition developed
from our analysis can potentially explain the behaviour of the GD-ODE
and the HB-ODE approximation in simple machine learning problems.



3U N D E R S TA N D I N G A D A P T I V E M E T H O D S I N D E E P
N E T W O R K S

Ok, so, who is the most important author of the last twenty years?
Careful now, not the best; virtuosity is for the arrogant.

– Paolo Sorrentino, The Young Pope, 2016

In Chapter 2 we studied the first component of adaptive momentum
methods — i.e. momentum, from a continuous-time perspective. In this
chapter, we turn our attention to their second component: adaptive step-
sizes. As we already discussed in the introduction, Adam (Kingma and
Ba, 2014) and RMSprop (Tieleman and Hinton, 2012), as well as explic-
itly regularized variants such as AdamW (Loshchilov and Hutter, 2017),
are known to perform extremely well compared to SGD when training
attention models (Zhang et al., 2020b; Liu et al., 2019b; Wolf et al., 2020;
Brown et al., 2020; Biggio et al., 2021), generative models (Karras et al.,
2020) and RNNs (Hochreiter and Schmidhuber, 1997b). In this chapter,
we seek the precise reason for this success — with the hope of further
boosting performance and of guiding the design of the next generation
of optimizers (see next chapter). Our analysis will be performed in com-
bination with a study of the landscape and signal propagation of Multi-
layer Perceptrons (MLPs, Section 3.2) and Transformers (Section 3.3) at
initialization. While the sections on MLPs and Transformers are separate,
the findings are similar and highlight the power of Adam in adapting to
complex high-dimensional landscapes.

3.1 related works on the analysis of adam

Before diving into our contributions, in this section, we review some
related work on the analysis of adaptive stepsizes.

69
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stochastic non-convex optimization approach to adam .
The first correct1 proof of convergence for (a modified variant of) Adam
in the stochastic nonconvex case was given by Reddi et al., 2018, under
a few assumptions (e.g. bounded gradients) in the framework of online
optimization. Perhaps the most recent simple, up-to-date, complete, and
elegant proof of convergence of Adam is the one recently given by Dé-
fossez et al., 2022, where the authors show that a rate O(log(k)/

√
k)

can be obtained in expectation with iterate averaging. The same rate
is also achieved by vanilla SGD (Ghadimi and Lan, 2013), which is
well-known to be asymptotically optimal for non-convex stochastic pro-
gramming with bounded variance (Arjevani et al., 2023), if one does not
rely on variance reduction (else, one can achieve slightly faster conver-
gence (Cutkosky and Orabona, 2019)). It is therefore clear that worst-case
first-order complexity bounds which can be derived using the standard
non-convex optimization methodology (at least for first-order stationary
points) are not yet able to explain the success of Adam in the context
of optimization of deep neural networks. Inspired by the issues above,
in Chapter 4, we will revisit the convergence of adaptive methods and
propose new stepsizes that have provable adaptive behavior.

geometry adaptation, noise rescaling , & other conjectures .
Some papers on Adam do not take the standard non-convex optimization
approach discussed above. Chronologically, the first was Balles and Hen-
nig, 2018, which “dissects” Adam highlighting a variance-dependent
preconditioning effect. This insight was taken one step further by Staib
et al., 2019, which shows how the variance-adaptation of Adam effec-
tively scales the gradient variance to be isotropic; the authors claim this
effect leads to fast escape from saddle points since all eigendirections be-
come equally affected by stochastic perturbations.
Other papers take instead a geometric approach and motivate how Adam
and RMSprop provide a cheap diagonal approximation of the empiri-
cal Fisher preconditioner, which is sometimes related to the Hessian
(Martens, 2020). As a result, Adam can be thought of as an approximate
Gauss-Newton method (Nocedal and Wright, 2006). While this interpre-
tation could in principle explain the performance of Adam, it was re-

1 Quite interestingly, the original proof by Kingma and Ba, 2014 contains a few mistakes due to
the problematic non-monotonic decrease of the effective stepsize.
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cently shown (Kunstner et al., 2019) that very often the RMSprop pre-
conditioner2 can be far from the true Hessian, which is instead provably
related to the non-empirical (a.k.a. true) Fisher. However, in Dauphin et
al., 2015, the authors show that RMSprop effectively regularizes the land-
scape, making it more “equilibrated” (well-conditioned).
Finally, Zhang et al., 2019c relate the success of adaptive methods to
an underlying gradient clipping effect: if big stochastic gradients are
observed, those are smoothed out. The authors are able to show that
clipped SGD, under quite uncommon assumptions on the cost function,
is able to slightly improve (by a constant factor) over the rate of SGD, in
some particular cases. While this does provide a quantitative improve-
ment on SGD, the result is arguably not strong enough to motivate the
success of adaptive methods in deep learning.

2 i.e. the diagonal matrix of per-dimension stepsizes, see Chapter 1.
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3.2 power of adam in deep mlps

You don’t understand anything until you learn it more than one way.
– Marvin Minsky.

Multi-layer perceptrons (MLPs) with nonlinear activations are the bedrock
upon which modern neural networks are constructed. It wasn’t until
2015, when He et al. revolutionized the field with their pioneering work
on initializing ReLU MLPs effectively (He et al., 2015), that training
deep neural networks became significantly more feasible. Prior to this
and to the advent of the Adam optimizer in 2014 (Kingma and Ba, 2014),
practitioners had to rely heavily on intricate strategies and techniques
to train neural networks effectively (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014). With the introduction of proper initializatin (He
et al., 2015) residual connections (He et al., 2016) and batch normal-
ization (Ioffe and Szegedy, 2015), a significant transformation occurred.
These innovations marked a turning point, enabling neural networks to
be successfully trained using the more traditional Stochastic Gradient
Descent (SGD) optimization method. The combination of residual con-
nections and batch normalization tackled issues such as vanishing gra-
dients, making the training process much more accessible and less re-
liant on advanced optimization techniques. Despite this, it’s important
to note that the advantage of the Adam optimizer persists in scenarios
where networks are exceptionally deep (Tan and Le, 2019). In such cases,
Adam can still offer benefits, streamlining the training process and con-
tributing to faster convergence. It is also worth mentioning that, years
ago, it was believed that Adam had at times worse generalization than
SGD Wilson et al., 2017. This issue was solved by the AdamW variant,
which correctly implements weight decay into the method (Loshchilov
and Hutter, 2017).

In this section, we investigate the factors contributing to the remarkable
success of the Adam optimization algorithm in effectively training deep
MLPs and convolutional networks (CNNs) faced with potentially sub-
optimal initialization or lack of normalization. As such, our investiga-
tion is in some sense retrospective, yet highlights interesting properties
of neural landscapes and intriguing features of adaptive methods.
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Question: Initialization is known to be crucial for unlocking train-
ing of deep multi-layer perceptions (MLPs) and Convolutional Net-
works (CNNs) (Glorot and Bengio, 2010; He et al., 2015) with SGD.
Which landscape features makes training with SGD challenging when
initialization is not correct? Is Adam able to train even in contexts
where no initialization can provide “nice” initialization landscapes?

Answer (Orvieto et al., 2022b): In deep MLPs and CNNs, suboptimal
initialization creates flat saddle points that pose a significant challenge
for SGD. Increasing the network width allows the design of specific ini-
tialization schemes (Glorot and Bengio, 2010; He et al., 2015) to solve
the issue. However, in the case of very deep models, the expectation
analysis of (Glorot and Bengio, 2010; He et al., 2015) becomes problem-
atic and again SGD fails to train effectively. Our study demonstrates
how Adam solves this challenge, enabling surprisingly rapid conver-
gence on such difficult initialization landscapes. In essence, our find-
ings provide theoretical support for the observation that training deep
networks without normalization favors an adaptive stepsize.

3.2.1 Notation and Background on Initialization

In our theoretical analysis, we consider the L2 loss associated with a
multilayer perceptron (MLP)

L(W) =
1

2n

n

∑
i=1
∥yi − BDLWL:1

ϕ Axi∥2
2,

WL:1
ϕ := WLDL−1WL−1 · · ·W2D1W1D0,

(49)

where xi ∈ Rdin , yi ∈ Rdout , A ∈ Rd×din ,B ∈ Rdout×d, and Wℓ ∈ Rd×d, ∀ℓ =
1, . . . , L . Dℓ is the diagonal matrix of activation gates w.r.t the non-
linearity ϕ at layer ℓ, which we consider to be either ϕ(x) = x (linear
networks) or ϕ(x) = max{x, 0} (ReLU networks).

Assumption 3.2.1 (Random initialization). Each entry of Wℓ (ℓ = 1, . . . , L)
is initialized i.i.d. with some distribution P symmetric around zero with vari-
ance σ2 < ∞ and fourth moment µ4 < ∞.
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For more than a decade, the standard choice of initialization variance was
σ2 = 1

3d (LeCun et al., 1998). Motivated by repeated observations of the
vanishing gradient problem, an improved initialization was suggested
by Glorot and Bengio, 2010 and He et al., 2015. The following theorem
summarizes the reasoning in He et al., 2015. We define the parameter
p = 1 for the linear case and p = 1/2 for the ReLU case

Proposition 3.2.1 (Glorot and Bengio, 2010, He et al., 2015). Under As-
sumption 3.2.1, Var(∂L(W)/∂Wℓ) scales as (pdσ2)L across all layers ℓ =
1, . . . , L. When initializing with σ2 = 1

3d (LeCun init.), this quantity vanishes
in depth. Instead, choosing σ2 = 1/d in the linear case (Xavier init.), and
σ2 = 2/d in the ReLU case (He init), stabilizes the variance.

Proof. Let aℓ+1 = Wℓhℓ be the preactivation of layer ℓ+ 1, hℓ = Dℓaℓ, the
activation at layer ℓ . At random initialization, clearly, the components of
h, a at each layer are identically distributed. Let aℓ+1, wℓ and hℓ represent
the random variables corresponding to each element in aℓ+1, Wℓ and hℓ

respectively. Since wℓ is zero mean, we have that Var[aℓ+1] = d ·Var[wℓ] ·
E[(hℓ)2]. Finally, since E[(hℓ)2] = pVar[aℓ], we end up with Var[aℓ+1] =
dσ2 p ·Var[aℓ], which yields Var[aℓ+1] = Var[aℓ] for σ2 = 1

dp .

For example, for the uniform initialization P = U [−τ, τ] we have σ2 =
τ2/3 and hence the “optimal” initialization range amounts to τ =

√
3/d

in the linear - and τ =
√

6/d in the ReLU case.

3.2.2 Adam on the Neural Chain

To illustrate an important shortcoming in the analyses of Glorot and
Bengio, 2010 and He et al., 2015, we consider a deep linear network of
unit width (henceforth called neural chain). While these networks are
utterly useless for practical applications, they are sufficient to exhibit
some critical properties of the loss landscape, that generalize to wider
nets (see next subsection) and can make us appreciate the power of adap-
tive methods such as Adam (Kingma and Ba, 2014).
In the neural chain case, if A = B = 1, Eq.(49) simplifies to

L(w) =
1

2n

n

∑
i=1

(yi − wL...w1xi)
2. (50)
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We consider each wi ∈ R to be drawn uniformly at random in [−τ, τ].

shortcomings of the expectation analysis . Prop. 3.2.1 sug-
gests that both forward pass and gradient remain stable in magnitude
when choosing τ =

√
3. While this is true in expectation, it is not the

case when initializing individual models, where the expected value be-
comes an increasingly atypical event (see Thm. 3.2.1) as the chain grows
in depth (L). Indeed, in Fig. 20 we see that all quantities vanish under
the “optimal” initialization. Perhaps the most intuitive indication for this
pathological behavior comes from writing down the population quanti-
ties for the absolute value of the input-output map.

Proposition 3.2.2 (Forward pass statistics chain). Consider the absolute
value of a forward pass on the chain, i.e. the random variable vτ,L := ∏L

k=1(τwk),

with wk
iid∼ U (0, 1]. Then,

E [vτ,L] =
(

τ
2
)L , E[v2

τ,L] =
(

τ2

3

)L
, E[v3

τ,L] =
(

τ3

4

)L
. (51)

Clearly, τ =
√

3 (Xavier init.) leads to (as L→ ∞)

E [vτ,L]→ 0, E
[
v2

τ,L

]
= 1, E[v3

τ,L]→ ∞.

The result follows directly from the moments of the uniform distribu-
tion. It might be tempting to conclude from Eq. (51) that picking τ = 2
instead of

√
3 solves the problem. Yet, this is not the case since then

E[v2
τ,L]→ ∞ and by Mallows inequality (Mallows and Richter, 1969) the

mean becomes an unreliable predictor for the median, as their difference
is bounded by one standard deviation (exploding). In fact, the above
proposition reveals that one cannot stabilize any pair of moments of
vτ,L simultaneously and hence in both cases τ =

√
3 and τ = 2, the

distribution of vτ,L becomes fat-tailed as L → ∞, which leads to slow
convergence of the central limit theorem3. As we show in Sec. 3.2.3, this
basic moment trade off prevails in wider nets (see Eq. (62)).

3 The speed of convergence in the CLT, as bounded by the Berry-Esseen inequality, is propor-
tional to E[|v|3].
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Figure 19: Density of the Erlang Distribution Erlang(L, 1).

better characterization through a median analysis . One
can go beyond the population analysis in order to better understand this
phenomenon. In the first step, we characterize the distribution of the
magnitude of the input-output map in log scale.

Lemma 3.2.1 (Distribution of chain input-output). In the setting of Prop. 3.2.2,

− ln(vτ,L) = z− L ln(τ), z ∼ Erlang(L, 1).

Hence Pr(− ln(vτ,L) ≤ ζ) = 1− e−ξ ∑L−1
k=0

ξk

k! , ξ := ζ + L ln τ.

Proof. Basic logarithm identities allow us to write

− ln(vτ,L) = − ln

(
L

∏
k=1

(τwk)

)
= −L ln(τ)−

L

∑
k=1

ln(wk). (52)

Clearly, − ln(wk)) is exponentially distribution with parameter 1.
Furthermore, if random variables Vk ∼ Exp(λ) are independent, then
∑L

k=1 Vk ∼ Erlang(L, λ) (Temme, 1996; Devroye, 2006). The CDF follows
from the properties of the Erlang distribution.

This lemma allows to characterize the median and provide an asymp-
totic4 bound on the forward pass norm.

Proposition 3.2.3 (Expectation is not predictive for input-output map
magnitude). We have

median [vτ,L] = eL ln(τ)−L̃,

4 In the context of asymptotic expansions, we write f ∼ g if limL→∞ f (L)/g(L) = 1.
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with L − 1
3 ≤ L̃ ≤ L − 1 + ln(2). Therefore, if τ = 2, median [vτ,L] → 0

while E [vτ,L] = 1 and E
[
v2

τ,L

]
→ ∞. For τ =

√
3, also median [vτ,L] → 0.

Yet, the median is stabilized for τ = e, since

lim
L→∞

(vτ,L)
1
L

a.s.
= τ/e,

which implies vτ,L ∼ exp (−L(1− ln τ)).

Proof. The moments follow from Prop. 3.2.2. For the median, we solve
Pr(− ln vτ,L ≤ ζ) = 1/2 for ζ, which by Lemma 3.2.1 is equivalent to solv-

ing 1− e−ξ ∑L−1
k=0

ξk

k! = 1/2 w.r.t. ξ := ζ + L ln τ. The solution, termed L̃, is
approximated with a Ramanujan formula (1913), as in Choi, 1994. Since
vτ,L = eL ln τ−z, then (vτ,L)

1
L = τe−z/L. We conclude with the strong law

of large numbers.

We now apply the idea behind the last result to analyze the first and
second order partial derivatives.

Theorem 3.2.1. Assume bounded data and wi ∼ U [−τ, τ], with fixed τ. For
each k, ℓ ≤ L we asymptotically (as L→ ∞) have almost surely that

∣∣∣∣ ∂Lchain(w)

∂wk

∣∣∣∣ ,
∣∣∣∣ ∂2Lchain(w)

∂wk∂wℓ ̸=k

∣∣∣∣ = O (e−(L−1)(1−ln τ)
)

,∣∣∣∣ ∂2Lchain(w)

∂wk∂wk

∣∣∣∣ = O (e−2(L−1)(1−ln τ)
)

.

In particular, as for vτ,L, all these quantities asymptotically vanish if τ < e and
explode if τ > e.
In the case of Xavier init. τ =

√
3, the Hessian vanishes in norm (hence eigen-

values vanish) and becomes hollow, i.e. diagonal elements become exponentially
smaller than off-diagonal elements.

The proof is presented in Appendix C.1 of this thesis. Empirical simula-
tions in Fig. 20 show that the result is very precise.
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Figure 20: Numerical verification of Theorem 3.2.1. Top: Gradient and Hessian entry
magnitudes for deep neural chains (no activations, Xavier init). Plotted is
mean and 95% confidence interval of 10 random seeds) Bottom: Eigenvalues
and log Hessian entry maginute at init. for L = 64.

implications on landscape and optimization. In narrow net-
works, our results show vanishing gradients and hollow Hessians with
positive and negative eigenvalues of decreasing magnitude. Hence, the
initialization landscape is a plateau that resembles a barely curved sad-
dle (see Fig. 21). As discussed next, this is particularly bad for optimiza-
tion with plain SGD but adaptive methods escape the plateau quickly
due to a notable curvature adaptation capability.
To illustrate this point, we consider a single datapoint (x, y) with x, y > 0
and study the gradient flow on a neural chain of depth L with initializa-
tion 0 < w1(0) = w2(0) = · · · = wL(0) := w0 ∈ R. The gradient

∇wiL(w) = x ∏
j ̸=i

wj

(
∏

r
wrx− y

)
(53)
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is invariant w.r.t. any permutation of the wi’s. Hence, each coordinate of
the gradient flow solution will satisfy

w1(t) = w2(t) = · · · = wL(t) =: w(t) (54)

and
w(t)→ w∗ = (y/x)1/L, as L→ ∞. (55)

Therefore, the gradient flow is

d
dt

w(t) = −w(t)2L−1x2 + w(t)L−1xy. (56)

To simplify this we can take the special case x = y (which leads to w∗ = 1)
and drop the first term (negative). Hence we get an upper bounding
solution (since w(t) is increasing) which explodes in finite time te (see
Fig. 21):

w(t) ≤ [(L− 2)(te − t)]−
1

L−2 , te = w2−L
0 /(L− 2). (57)

In this case, the upper bound for w(t) reaches w∗ = 1 at time

t∗ = te −
1

L− 2
(58)

which is exponential in the network depth L. This provides a proof for
the following proposition.

Proposition 3.2.4 (Slow convergence of Gradient Flow on the chain). On
neural chains, in the worst case, gradient flow takes exponential (in depth) time
to reach an ϵ-neighbour of the solution.

curvature adaptation of rmsprop. As can be seen in Figure 21,
RMSprop (Tieleman and Hinton, 2012) is able to optimize the neural
chain in a number of iterations independent of depth. This finding is
also observable in wider MLPs (Fig. 24) and deep convnets (Fig.25).
To provide some intuition around this phenomenon, we apply RMSprop
to the neural chain gradient flow approximation ẇ(t) = w(t)L−1. This
approximation is tight during the first steps of the optimizer if L is big.
The RMSprop flow solves ẇ(t) = w(t)L−1/

√
v(t), where v(t) is a low-

pass filter on the approximate square gradient w(t)2L−2. Since w(t)L−1 is
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Figure 21: Chain setting of Prop. 3.2.4. Fast convergence of RMSprop with β2 = 0.9 and
stepsize decay. For GD, η = 0.1 is used since bigger η leads to instability).
Plotted is also the loss corresponding to the integrated gradient w2L−1 +wL−1.
To discretize the bound, we use Euler discretization with equivalence ηk ≡ t.

increasing, v(t) is also increasing and the filter delay guarantees
√

v(t) ≤
w(t)L−1. It follows that ẇ(t) > 1 for t small, regardless of the network depth,
which allows RMSprop to quickly escape the flat plateau (see Figure 22).
In the vanishing curvature setting predicted by Thm. 3.2.1 and confirmed
in Fig.20 & 21 (leftmost plot), this speedup is not extremely surprising.
Many recent works report an improved curvature adaptation of adap-
tive methods compared to SGD (Dauphin et al., 2015; Kunstner et al.,
2019). For instance, Staib et al., 2019 recently showed that RMSprop is
provably faster than SGD around flat saddle points (see Section 5.2 of
their paper). This result, in combination with our findings on the flat-
ness of the initialization landscape, gives an explanation for the histor-
ical difficulties of training deep nets with SGD and for the success of
adaptive methods.

insights from the quadratic setting . Towards a motivation of
the results in Figure 22, consider optimizing a one-dimensional quadratic
with curvature λ. Unrolling the update of vk in RMSprop:

vk+1 = β2vk + (1− β2)γ
2w2

k+1

=⇒ vk = βk
2γ2w2

0 + (1− β2)
k

∑
j=0

β
k−j
2 γ2w2

k . (59)

Therefore, ignoring the negligible effect of ϵ, we have

wk −
η√
vk

γwk = wk −
η√

βk
2��γ

2w2
0 + (1− β2)∑k

j=0 β
k−j
2 ��γ

2w2
k
�γwk. (60)
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Figure 22: Dynamics of RMSprop and gradient descent on a 10-dimensional neural chain.
For RMSprop is able to optimize the loss, while GD can’t escape fast the ini-
tial saddle point, regardless of the magnitude of stepsize. We also show how
the adaptive stepsizes chosen by RMSprop effectively adapt to the maximum
hessian eigenvalue Λ.

Hence, the curvature γ influences the update of vk but does not influence
the update of wk.

effect of noise . While it is known that the inherent sampling noise
of SGD is anisotropic and in many settings aligned with negative curva-
ture (Daneshmand et al., 2018; Zhu et al., 2019; Li et al., 2020), the saddle
escape time still depends inversely on the magnitude of the smallest
eigenvalue (Daneshmand et al., 2018; Curtis and Robinson, 2019). As a
result, similar to gradient flow on the chain, SGD is unable to train
networks with vanishing gradients/curvature despite the presence of
inherent noise (see also Fig. 24 & 25). Another possibility is to directly
add noise to the updates (Du et al., 2017; Du et al., 2019). In addition,
in Fig. 63-64 (Appendix C.1), we provide evidence that noise can accel-
erate GD on the chain, but it is still orders of magnitude slower than
RMSprop, for any noise level and learning rate.
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3.2.3 Adam on wide MLPs

In analogy with Prop. 3.2.2 for the chain, we here show that also in the
general MLP case, different population quantities cannot be jointly sta-
bilized using standard i.i.d. initialization.

Proposition 3.2.5 (Forward pass statistics MLP). Let z = Ax. Let κ =
µ4/σ4 be the kurtosis (fourth standardized moment) of the initialization distri-
bution (see Assumption 3.2.1). Let p = 1 in the linear case and p = 1/2 in the
ReLU case. Then we have

E∥Wk:1
ϕ z∥2

2 = (dσ2 p)kE∥z∥2
2.E∥Wk:1

ϕ z∥4
2

E∥Wk:1
ϕ z∥4

4

 =
(

p2dσ4
)k

Qk

(
E∥z∥4

2

E∥z∥4
4

)
,

with Q :=

d + 2 κ−3+(1−p)(d+2)
p

3 κ−3p
p

 .

(61)

We do not present a proof for result in the appendix, since this would
require several pages of notation and technical calculations. The inter-
ested reader can check (Orvieto et al., 2022b) for a complete discussion.
We instead present a compelling empirical verification for this result in
Appendix C.1.4.
For deep linear nets of arbitrary width d and Gaussian initialization (κ =
3) the result above simplifies to

E∥WL:1Ax∥2
2 = (dσ2)LE∥Ax∥2

2,

E∥WL:1Ax∥4
2 =

(
dσ4
)L

(d + 2)L
E∥Ax∥4

2.
(62)

Hence, as for the neural chain (see Prop. (51)), picking the Xavier initial-

ization σ2 = 1
d stabilizes E∥WL:1Ax∥2

2, but E∥WL:1Ax∥4
2 =

(
d+2

d

)L
E∥Ax∥4

2
explodes unless d grows faster than L. This points to an important short-
coming of the initialization proposed in Glorot and Bengio, 2010 & He et
al., 2015, which — as we note next — is only guaranteed to prevent van-
ishing gradients and curvature in networks that are wider than deep.
The next result is verified empirically in Figure 23.



3.2 power of adam in deep mlps 83

0 50 100 150 200 250

10
15

10
12

10
9

10
6

10
3

10
0

ReLU MLPs, d = L , He init.
|gi| 
|Hi, i|
|Hi, j|

0 50 100 150 200 250

10
15

10
13

10
11

10
9

10
7

10
5

10
3

10
1

ReLU MLPs, d = L, He init.

|gi| 
|Hi, i|
|Hi, j|

Figure 23: Effect of width in ReLU MLPs: Gradient and curvature scaling on Fashion-
MNIST over depth. While quantities vanish on the left (d =

√
L), the right

shows stable magnitudes. Mean and 95% CI of 15 runs.

Theorem 3.2.2. The initialization in Glorot and Bengio, 2010 & He et al., 2015
is guaranteed to stabilize both the mean and the median of the squared forward
pass norm for d = Ω(L).

Proof. We carry out the proof for the Gaussian linear case, but the other
settings are conceptually equivalent. First, in the case σ2 = 1/d, we have

Var∥WL:1Ax∥2
2 = E∥WL:1Ax∥4

2 −
(

E∥WL:1Ax∥2
2

)2 Eq. (62)
=

(
d + 2

d

)L
− 1.

(63)
By Mallows inequality Mallows and Richter, 1969, the square root of this
quantity provides a upper bound on∣∣∣median

(
∥WL:1Ax∥2

2

)
−E∥WL:1Ax∥2

2

∣∣∣ . (64)

If we want to guarantee a non-vanishing median, say in [1− α, 1 + α], for

1 > α > 0, we need to have d s.t.
(

d+2
d

)L
− 1 ≤ α2, which implies

d ≥ 2
(α2+1)

1
L −1

. A Maclaurin’s series expansion gives

(α2 + 1)
1
L = 1 + ln(α2 + 1)/L +O(1/L2), (65)

which concludes the proof for large enough L.

Before discussing the regime d≪ L, we consolidate our core claim about
vanishing curvature by generalizing the results of Glorot and Bengio,
2010; He et al., 2015 to second-order derivatives.
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Theorem 3.2.3 (Gradient and Hessian in exp.). Under Ass. 3.2.1, the ex-

pected norm of any Hessian diag block E[∥ ∂2L(W)
∂Wk∂Wk

∥F] in linear nets scales as

O
(
(dσ2)L), while off-diag. blocks E[∥ ∂2L(W)

∂Wk∂Wℓ
∥F] and the gradient E[∥ ∂L(W)

∂Wk
∥F]

scale as O
(
(dσ2)

L
2

)
. In ReLU nets the scaling amounts to O

((
d
2 σ2
)L
)

and

O
((

d
2 σ2
) L

2
)

respectively.

This result is (to the best of our knowledge) the first to study the effects
of depth on second-order derivatives at random initialization. Its proof,
which mainly builds upon Prop. 3.2.5, and a sketch can be found in
the appendix. A simple application of Gershgorin’s theorem yields the
following bound on the eigenvalues.

Corollary 3.2.1. Under Assumption 3.2.1, the expected magnitude of the
largest eigenvalue λmax is upper bound as E[|λlinear

max |] ≤ Ld · O
(
(dσ2)

L
2

)
and E[|λReLU

max |] ≤ Ld · O
(
( d

2 σ2)
L
2

)
respectively.

Our results in this subsection can be compressed in the next theorem.

Theorem 3.2.4 (Main result). For d = Ω(L) the initialization in Glorot and
Bengio, 2010 & He et al., 2015 is guaranteed to stabilize both the gradient and
the Hessian with high probability. Instead, if d ≪ O(L), then both these
initializations can yield vanishing gradients/curvature almost surely.

The theorem above simply illustrates that there must be a transition in
behavior from the d = 1 case to the d = Ω(L) case. Arguably, the precise
characterization of this transition is of little theoretical interest — as the
fundamental insight is the existence of such transition. Empirically, we
observe that d =

√
L still yields vanishing gradients.

Our result, combined with the analysis of RMSprop in the vanishing
curvature regime in Section 3.2.2, justifies the performance observed in
deep networks in Figures 24 and 25: without additional tricks such as
residual connections (He et al., 2016) or batch normalization (Ioffe and
Szegedy, 2015), very deep networks of moderate width are not trainable
with SGD, but they are with RMSprop.
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Figure 24: (Top row) Training Fashion-MNIST (Xiao et al., 2017) on a narrow (32
hidden units per layer) 128 layer ReLU MLP with He init. Learning rates are
grid-searched (best is shown). Plotted are mean and 95% confidence interval of
10 random seeds. See the appendix in Orvieto et al., 2022b for hyperparameters
and test accuracy. Note that RMSProp successfully trains despite the fact that
both gradients and curvature vanished. Yet, as can be deduced from how gra-
dient norms evolve over time, SGD struggles to escape the flat plateau which
is not surprising given that the negative eigenvalues are very small. (Bottom
row) Training Fashion-MNIST on a wide (128 hidden units per layer) 128
layer ReLU MLP (He init.) Training accuracy and gradient magnitude over
epochs as well as eigenvalues at initialization. Increased width prevents van-
ishing and allows SGD to train.
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Figure 25: CIFAR-10 on a 500 layer convolutional network with He init. Test accuracy
and gradient norm over epochs as well as eigenvalue histogram at initializa-
tion. Plotted is mean and 95% confidence interval of 10 random seeds.
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3.3 power of adam in transformers

You look around. Your mind seeks,
makes harmonies, falls apart
in the perfume, expands
when the day wearies away.
There are silences in which one watches
in every fading human shadow
something divine let go.

– Eugenio Montale.

Since its first appearance in Vaswani et al., 2017, the Transformer architec-
ture — hinging on the ingenious attention mechanism — has brought a
revolution in the realm of Natural Language Processing (NLP), as known
e.g. from OpenAI, 2023. This architectural marvel has achieved remark-
able success across a spectrum of tasks, including text classification (Yang
et al., 2019), machine translation (Conneau et al., 2019), reading compre-
hension (Brown et al., 2020), and question answering (Raffel et al., 2020).
Recent endeavors have masterfully extended its applicability beyond the
confines of NLP. Remarkably, this groundbreaking architecture has seam-
lessly extended its influence into the domain of computer vision (Doso-
vitskiy et al., 2020), as well as other diverse domains (Baevski et al., 2020;
Huang et al., 2018; Biggio et al., 2021; Polu et al., 2022), further cementing
its popularity and impact.

Question: Evidence shows that SGD cannot successfully train deep
attention-based models, even after tricks such as normalization and
learning rate warm-up. State-of-the-art transformers are indeed trained
almost exclusively with Adam variants (Touvron et al., 2023). In Sec-
tion 3.2 we showed that, on vanilla MLPs and CNNs, SGD becomes
ineffective when width is substantially smaller than depth due to van-
ishing curvature. Is the poor performance of SGD in these settings re-
lated to similar issues? If not, what’s happening there?!
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Answer (Noci et al., 2022): The poor performance of SGD is rooted in
more fundamental properties of the Transformer architecture. Namely,
the landscape curvature at initialization is not isotropic: some direc-
tions are less curved than others. Through an in-depth analysis of sig-
nal propagation, we are able to precisely characterize this issue and
propose a fix that makes SGD work. While the heart of this section is
motivating the performance of Adam, part of the discussion is dedi-
cated to the rank collapse phenomenon, which makes deep transform-
ers hard to train in general. We propose a fix for this issue too.

The Transformer operates on inputs comprising a sequence of tokens. At
its core, it relies on stacked attention layers, which compute a measure
of relevance for the whole sequence by assigning token-wise importance
weights — obtained by matrix multiplication of the queries and keys, and
finally normalized with the softmax function. The output of an attention
layer is then a linear combination of the importance weights and the so-
called values. Then, the architecture includes fully-connected sub-layers,
residual connections (He et al., 2016), and layer normalization (LN) (Ba
et al., 2016), as illustrated in Fig. 26.

rank collapse . In the absence of residual connections, Dong et al.,
2021 proved that at initialization the rank of the sequence representa-
tion collapses doubly exponentially with depth, and both layer normal-
ization and fully connected layers can only partially alleviate the speed
of degeneracy. Under rank collapse, the model does not distinguish be-
tween representations of different tokens, which are perfectly aligned in
feature space at initialization. However, the precise implications of rank
collapse in Transformers are not fully understood.
In this chapter, we show that a high alignment of the tokens’ representa-
tions at initialization — corresponding to rank collapse in the extreme
case of perfect alignment — affects training by causing vanishingly
small gradients of the queries and keys’. This problem severely dimin-
ishes the capabilities of the model to learn meaningful attention weights
and is further exacerbated in very deep networks, where the rank defi-
ciency — and hence the vanishing gradient problem of the queries and
keys — affects several layers (see Fig. 27). In order to shed light on this
problem, we take inspiration from the flourishing literature on signal
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propagation in random networks and start our analysis by computing
the expected gradients of an attention layer with respect to the queries,
keys, and values, which leads to Theorem 3.3.1 on the vanishing gra-
dients for the queries and keys. From here, we pursue two different
directions.

We first investigate under which conditions rank collapse can be avoided
by studying the evolution of the input sequence in a Transformer at ini-
tialization. Our theory reveals that a depth-dependent scaling of the
residual branches, beyond stabilizing the norm of the activations at ini-
tialization, also approximately preserves the cosine of the angle between
tokens, hence stabilizing the rank of the propagating sequence. We show
that this holds even in the infinite-depth limit.

Secondly, we illustrate that there are factors, other than the average to-
kens’ correlation, that affect differently the gradient norm of the queries
and keys compared to the values. The propagating sequence’s squared
norm has a linear dependence in the values, while a cubic one in the
queries and keys, justifying the use of layer normalization and Adam.
We also highlight a different dependence on the embedding dimension
and the length of the input sequence, implying that the gradient norm
of a subset of parameters can potentially be of different orders of mag-
nitude, as empirically hinted by previous works (Liu et al., 2020a). Our
analysis brings to light fundamental issues in the signal propagation in
Transformers, opening the way for new, well-founded, and motivated
approaches to improve optimization in these models.

In this chapter, we are going to first study signal propagation and rank
collapse (Sections 3.3.2), and then discuss performance of Adam and
SGD in Section 3.3.3.

3.3.1 Notation and Background on Rank Collapse

The Transformer architecture stacks L attention blocks, as shown in Fig. 26.
Layer normalization is usually applied token-wise either after the resid-
ual connections or to the inputs of the self-attention and position-wise
feed-forward sub-layers, leading to the POST-LN (Vaswani et al., 2017)
and PRE-LN (Wang et al., 2019; Xiong et al., 2020) variants respectively.
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Formally, given an input sequence X ∈ Rn×dv , with n tokens of dimen-
sion dv, the single-head unmasked scaled dot-product self-attention5 is
defined as:

Sℓ := AℓXℓWV , (66)

with

Aℓ = softmax

(
1√
dk

XℓWQ
(

XℓWK
)⊤)

, (67)

where the softmax function is applied independently across each row,
and the superscript ℓ indexes the ℓ-th layer.
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Figure 26: A single Transformer block.

The matrices WQ, WK ∈ Rdv×dk and WV ∈ Rdv×dv are learnable parame-
ters, and each layer is initialized with an independent set of weights. In
the literature, the matrices XℓWQ, XℓWK , XℓWV are referred to as queries,
keys and values, respectively. The complete Transformer block, in the ab-
sence of layer normalization, can be written recursively as:

5 Our analysis also easily generalizes to the case of cross-attention.
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Zℓ = α1Sℓ + Xℓ (68)

Yℓ = σ(ZℓWF1 )WF2 (69)

Xℓ+1 = α2Yℓ + Zℓ, (70)

where the introduced α1, α2 parameters indicate the strength of the resid-
ual block, WF1 , WF2 ∈ Rdv×dv 6 are matrices of learnable parameters; we
set X0 := X, and σ : R → R is an activation function. In our case, σ is
the ReLU function, but we relax this assumption to the linear activation
from Section 3.3.2.2 on. At initialization, each weight is sampled indepen-
dently from a distribution with zero-mean and variance σ2

v = 1
dv

for the

values and feedforward weights7, and σ2
k = 1

dk
for the queries and keys.

This is the standard “Xavier” (Glorot and Bengio, 2010) or “He” (He et
al., 2015) initialization, commonly used in deep learning.

rank collapse in transformers . Dong et al., 2021 proved that
when the residual branches are omitted, the matrix of the tokens’ rep-
resentations Xℓ converges to a rank-1 matrix in which all the representa-
tions are the same and equal to a vector x ∈ Rdv , i.e. Xℓ → 1nx⊤, where
1dv is the vector with all ones in Rdv . One of our main contributions is to
provide an explanation of how rank collapse affects the gradients of a
Transformer at initialization.

vanishing gradient problem . Traditionally considered one of the
core issues that prevent successful training, the vanishing gradient prob-
lem has a long and rich history that dates back to before the populariza-
tion of deep learning (Hochreiter, 1991; Bengio et al., 1994). In its essence,
given a loss function L : Rn×dv → R, vanishing gradients occur when
the norm of the gradient of the loss L with respect to the parameters

of the network W — which we indicate as
∥∥∥ ∂L

∂W

∥∥∥ — is too small to pro-
vide enough backpropagating signal, thus hindering gradient-based opti-
mization methods. Despite extensive research toward understanding and

6 In practice, one commonly uses WF1 ∈ Rdv×dF , WF2 ∈ RdF×dv where dF = γdv , with γ ∈
{2, 4, 8}. Our results then hold up to a constant factor that depends on γ.

7 One should explicitly write the layer dependence WQ,ℓ , WK,ℓ , WV,ℓ , WF1,ℓ , WF2,ℓ . We at times
suppress the ℓ index to improve readability. In case σ is the ReLU function, we set WF,ℓ to
have variance 2

dv
.
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overcoming the problem (Glorot and Bengio, 2010; He et al., 2015; Zhang
et al., 2019b), a formal explanation of its role in relatively new architec-
tures such as Transformers is largely missing in the literature, with a few
exceptions (Xiong et al., 2020; Wang et al., 2022a; Huang et al., 2020). In
our work (Section 3.3.2.1), we show how vanishing gradient occurs in
conjunction with the rank collapse issue identified by Dong et al., 2021.

signal propagation in random networks at initialization.
After addressing the question on the effects of rank collapse, we take a
step back and rigorously analyze its causes by looking at how the proper-
ties of the input sequence X are lost/preserved as it propagates through
a randomly initialized Transformer. More specifically, we focus on two as-

pects of the propagating sequence: the expected Frobenius norm E

∥∥∥Xℓ
∥∥∥2

and the expected inner product between different tokens E⟨Xk, X′k⟩, with
k ̸= k′. The former is linked to studies on the initialization of neural net-
works at the edge of chaos (Poole et al., 2016; Schoenholz et al., 2016),
and vanishing/exploding gradients (Hanin, 2018). The latter quantity de-
scribes how the geometry of the feature space changes after applying a
Transformer block, and is related to the concept of dynamical isometry
(Saxe et al., 2013). To understand the evolution of the inner product, we
analyze the following measure of correlation (Nachum et al., 2021):

ρℓkk′ :=
E⟨Xℓ

k, Xℓ
k′ ⟩√

E
∥∥Xℓ

k

∥∥2
E
∥∥Xℓ

k′
∥∥2

. (71)

Note that ρℓkk′ = 1 if and only if the k-th and k′-th tokens are perfectly
aligned (cos θkk′ = 1). We stress that in our case — differently from the
aforementioned works — instead of analyzing the relationship between
two different data points, we study the relationship between tokens of
the same sequence.

3.3.2 Analysis of Signal Propagation

The goal of this section is twofold. In Lemma 3.3.1 and Theorem 3.3.1, we
provide an explanation of the possible cause of vanishingly small gradi-
ents for queries and keys at initialization, namely the high correlations
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between the tokens representations in Xℓ as the depth increases. In Sec-
tion 3.3.2.2, we show that the problem can be mitigated with an appro-
priate choice of the residual branch parameters α1 and α2 that inversely
scales with the depth of the network L. Under the proposed scaling, the
correlations are well behaved even in the infinite depth limit. Finally, in
Section 3.3.2.3 we analyze the scaling of the gradients with respect to
other network’s parameters, and in 3.3.3 we draw some connections be-
tween our findings and optimization of Transformers.

3.3.2.1 Vanishing Gradients for Queries and Keys under Rank Collapse

To investigate the problem of vanishing gradients in the attention lay-
ers, we make use of the framework of matrix calculus (Magnus and
Neudecker, 2019; Singh et al., 2021). In particular, we compare the ex-
pected Frobenius norm of the gradient of a self-attention layer with re-

spect to its parameters E

∥∥∥ ∂Sℓ

∂W

∥∥∥2

F
, where here W indicates one of the keys,

queries or values weight matrices. Due to the well-known difficulty of
computing expectations of the softmax (Daunizeau, 2017; Shekhovtsov
and Flach, 2018), throughout this manuscript, we make the simplifying
assumption that the softmax output is the uniform distribution at ini-
tialization, i.e. the n× n matrix containing 1

n in each entry.

Assumption 3.3.1 (Uniform attention). We assume that Aℓ = 1
n 1n×n,

where 1n×n is the matrix with all entries equal to 1. Crucially, in Ap-
pendix C.2, we formally show that this assumption holds almost surely
in the limit dk → ∞. There, we also experimentally show that even in
the more realistic case where dk = dv ≈ 512, the empirical simulations
provide a surprisingly faithful approximation of the theoretical insights
presented in this chapter.
We define the mean token x̄ℓ through its components x̄ℓi = 1

n ∑n
k=1 Xℓ

ki,
i ∈ [dv]. In the following theorem, we compute the expected gradients
of an attention layer at initialization and set the basis for our following
analysis. We provide the results only for the queries, as the case for the
keys is analogous.
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Lemma 3.3.1 (Gradient Norms). Let Xℓ be the representations of the input
sequence at the ℓ-th layer. Under the uniform-attention assumption, we have

E

∥∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥∥
2

F

= dvnE∥x̄ℓ∥2 ; (72)

E

∥∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥∥
2

F

=
σ2

v σ2
k dv

n2 ·E
[
∥Xℓ∥2

F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2
F

]
; (73)

E

∥∥∥∥∥ ∂Sℓ

∂Xℓ

∥∥∥∥∥
2

F

≤
8σ2

q σ2
k σ2

v dkdv

n
·E
∥∥∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤

∥∥∥2

F
+ 2d2

vσ2
v . (74)

We defer the precise study of the scaling of these quantities as a function
of n and dv, dk, to Section 3.3.2.3. At this stage, it is crucial to note that
1
n (X

ℓ)⊤Xℓ − x̄ℓ(x̄ℓ)⊤ is the centered empirical covariance matrix of the
tokens’ representations. It is easy to see that if Xℓ is a rank-1 matrix,
then all the rows of Xℓ are proportional to a fixed dv-dimensional vector,
and the empirical covariance matrix has all zero entries. Introducing a
differentiable loss function L : Rn×dv → R, we make the statement on
vanishing gradients more formal in the following theorem:

Theorem 3.3.1 (Vanishing gradients under rank collapse). Suppose that
the uniform-attention assumption holds. If additionally Xℓ for any l ∈ [L] has
rank-1, and there exists a vector x ∈ Rd such that Xℓ = 1nxT , then:

E

∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2

F
= 0, E

∥∥∥∥ ∂L
∂WK,ℓ

∥∥∥∥2

F
= 0, E

∥∥∥∥ ∂L
∂WV,ℓ

∥∥∥∥2

F
≫ 0, (75)

where the expectation is taken over the weight matrices. This implies that these
quantities are vanishing almost surely, due to the non-negativeness of the norm.

We provide in the appendix of this thesis (Appendix C.2) a numerical
verification of Lemma 3.3.1 and a sketch for the proof of Theorem 3.3.1.
For a complete discussion, we invite the reader to check Noci et al., 2022.
In light of Theorem 3.3.1, we can conclude that the issue of rank collapse
originally identified in Dong et al., 2021 corresponds to an initialization
in a region of vanishing gradient signal in the subspace of parameters
identified by the queries and keys. How can this affect training? One
may argue that if rank collapse does not happen in the very first layer,
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Figure 27: Evolution of the cosine of the angle between tokens for training POST-LN
Transformers of increasing depth, with the Adam optimizer, for the IWSLT’14
De-En translation task. Unless adequate residual scaling is used at initializa-
tion, increasing depth leads to an increase in the tokens’ alignment at initial-
ization, which can inhibit training.

then the corresponding gradients are non-zero and the rank of the sub-
sequent layers — affected by rank collapse — can be increased with the
first few steps of gradient descent. In practice, we show empirically in
Fig. 27 that escaping this pathological landscape is harder in deeper
nets where rank collapse persists across several layers.

In Section 3.3.3 we discuss the implications of the results above for train-
ing with adaptive methods such as Adam (Kingma and Ba, 2014). In the
next section, we show how scaling residual branches helps to avoid rank
collapse.
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3.3.2.2 Signal Propagation and Importance of Scaling the Residual Branches

We now turn our attention to the study of the influence of skip con-
nections in Transformers. Dong et al., 2021 showed that simply adding
this architectural trick prevents rank collapse. Somewhat surprisingly, we
show that while the claim holds for any finite depth, the average angle
between different tokens quickly increases with just a few layers, and as
L→ ∞ a Transformer can still lose rank unless the residual branches are
adequately initialized. As Dong et al., 2021 showed that layer normaliza-
tion does not avoid rank collapse, we omit it in our analysis. Firstly,
we introduce two lemmas on the propagation of inner products (Lemma
3.3.2) and the norm (Lemma 3.3.3) of the tokens’ representations.

Lemma 3.3.2 (Propagation of inner products). Let C(Xℓ) = ∑k,k′ ⟨Xℓ
k, Xℓ

k′ ⟩
and X the input sequence. Under the Assumption 3.3.1 and if σ is the linear
activation function, we have that:

E
[
C(XL)

]
= (α2

2 + 1)L(α2
1 + 1)LC(X). (76)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 =

α̃2
L with α̃1, α̃2 ∈ R independent of L, we have that:

lim
L→∞

E[C(XL)] = eα̃1+α̃2 C(X). (77)

Note that C(Xℓ) = n2
∥∥∥x̄ℓ
∥∥∥2

. The lemma on the propagation of the norm
is slightly more involved:

Lemma 3.3.3 (Propagation of the norm). Let XL be the representations of
the input sequence at the final layer. Under the assumptions of Lemma 3.3.2, we
have that:

E

∥∥∥XL
∥∥∥2

F
= n(α2

2 + 1)Lα2
1

L−1

∑
k=0

(α2
1 + 1)k ∥x̄∥2 + (α2

2 + 1)L||X||2F, (78)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 =

α̃2
L with α̃1, α̃2 ∈ R independent of L, we have that:

lim
L→∞

E

∥∥∥XL
∥∥∥2

F
= neα̃2 (eα̃1 − 1) ∥x̄∥2 + eα̃2 ||X||2F. (79)



96 understanding adaptive methods in deep networks

The previous Lemma provides theoretical justification that scaling the
residual branches by setting the alpha parameters to be O(1/

√
L) allows

both the norm of the propagating input and the inner products between
different tokens to be approximately preserved. Hence, the information
contained in the input is not lost, even in the infinite depth limit.

residual scaling preserves correlations . We now prove that
without the depth-dependent residual scaling (i.e. with α1 = α2 = 1)
the correlation between the tokens quickly increases, and reaches per-
fect alignment in the infinite depth limit. More specifically, our argument
shows that in this limit, the correlation between different tokens ρℓk,k′ as
in Eq. (71) converges to 1, implying rank collapse. Furthermore, we show
how setting the residual parameters α1 and α2 as dictated by Theorem
3.3.3, ensures that the correlation measure is dependent on the input in
a non-trivial way even at infinite depth. To this end, we introduce the
average correlation at layer ℓ:

ρℓ =
1

n(n− 1) ∑
k ̸=k′

ρℓkk′ . (80)

Note that ρℓ = 1 if and only if every pair of tokens is perfectly aligned.
We are now ready to formalize the influence of the 1/

√
L-scaling on the

correlation between tokens’ representations by stating Theorem 3.3.2.

Theorem 3.3.2 (Expected cosine similarity). Let the input tokens have the
same norm, i.e. ∥Xk∥ = ∥x∥ ∀k ∈ [n] for some x ∈ Rdv . Under the depth
scaling for the residual block parameters α2

1 = α̃1
L , α2

2 = α̃2
L with α̃1, α̃2 ∈ R

independent of L, we have that:

lim
L→∞

ρℓ =
neα̃1 C(X)

(n− 1)[(eα̃1 − 1)C(X) + n ∥X∥2
F]
− 1

n− 1
. (81)

On the other hand, if α1, α2 ̸= 0 are some constants independent of L, we have
that:

lim
L→∞

ρℓ = 1. (82)

The proof can be found in the Appendix of (Noci et al., 2022). Note
that under the 1/

√
L-scaling, the correlation term is one if and only if

C(X) = n ∥X∥2, which holds in the degenerate case where all the input
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Figure 28: Evolution of Correlation in Transformers with (dashed lines) and without
(solid lines) 1/

√
L-scaling for PRE-LN, POST-LN and without layer normal-

ization (No-LN).

tokens are perfectly aligned. In the appendix of Noci et al., 2022, we give
precise formulas for the expected correlations at any depth, showing that
ρℓ reaches values close to one even for relatively shallow networks when
the 1/

√
L-scaling is not adopted (see also Fig. 29 (left)). Additionally, in

Fig. 28, we empirically show that in the presence of the 1/
√

L-scaling,
layer normalization (either PRE or POST) does not significantly affect
the evolution of the correlations. On the other hand, without the residual
scaling, PRE-LN seems to alleviate the rate of increase of ρℓkk′ . It is intrigu-
ing that most deep Transformer models use this configuration (Brown et
al., 2020).
It is also worth noting that the 1/

√
L scaling for the residual branches

has been previously studied in the context of stabilization of residual net-
works (see Section 3.3.4), here we extend these results to Transformers
and provide new insights on its role in the context of rank preservation.
Finally, note that by setting α̃1, α̃2 = 0, we recover the so called "ReZero"
initialization (Bachlechner et al., 2021). In this context, the 1/

√
L scaling

extends this framework as it allows for wider range of values for α̃1, α̃2
while still guaranteeing stability.
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relu extension. We mention here that extending these results from
the linear activation to the ReLU case is known to be a hard problem,
due to the technical difficulty of propagating the inner products across
ReLU layers that are shared among the tokens (this is the case in the
position-wise feed-forward layers in Transformers). Exact formulas can
be found only in the case of one ReLU layer with Gaussian inputs in Cho
and Saul, 2009. However, in the context of rank collapse analyzed here,
the linear activation function provides a bound on the correlation with
respect to the ReLU case. In fact, correlations are exactly preserved in
expectation in the linear case, but increase in the ReLU case (for instance,
see the contraction argument in Nachum et al., 2021 below Equation (2)).
Hence, the perfect alignment (a.k.a rank collapse) that affects the linear
case affects the ReLU case as well (in which case the rank collapses even
faster with depth, as we show in the appendix of Noci et al., 2022).

3.3.2.3 Dependence on the Angle between Tokens and the Input Norm

In this section, we drop the superscript ℓ as it is obvious from context
and assume for simplicity that dk = dv. To gain a better intuition on the
factors that affect the gradients and provide additional insights, we study
the case in which every pair of distinct tokens are zero-mean Gaussian
random variables, correlated in the same way, i.e ρℓii′ = ρ for i ̸= i′ or
more precisely

E
[
Xi,jXi′ ,j′

]
=


0 j ̸= j′ (independent dimensions)

σ2
x i = i′, j = j′

ρσ2
x i ̸= i′, j = j′

. (83)

To see that this equation satisfies our definition of the correlation metric,
note that E[∥Xi∥2] = dσ2

x and E⟨Xi, Xi′ ⟩ = dσ2
x ρ, for i ̸= i′. Then, the

expected norm of the gradients for the values (Eq. (72)) simplifies to

E

∥∥∥∥ ∂S
∂WV

∥∥∥∥2

F
= σ2

x d2 (1 + ρ(n− 1)) . (84)
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By making the additional assumption that the norm and the correlation
propagate independently, the respective norm for the queries (Eq. (73))
— and symmetrically the keys — reduces to:

E

∥∥∥∥ ∂S
∂WQ

∥∥∥∥2

F
= σ6

x
(n− 1)

n
(1− ρ)2d(n + d). (85)

In the appendix of Noci et al., 2022 we provide a rigorous proof, that re-
lies on Isserlis theorem (Isserlis, 1918) to compute higher-order moments.
The above expressions reveal the different dependencies on four main
actors, that we inspect separately here. The gradients of the queries de-
pend via a cubic function on the variance of the input, σ2

x , compared
to a linear for the values. This provides an additional interpretation of
the successful use of layer normalization, as in Xiong et al., 2020, either
in the POST-LN or PRE-LN format, that standardizes the input variance
σ2

x to the value 1.
Next, we emphasize the dependence on the correlation between the to-
kens, also illustrated in Fig. 29. Importantly, note how the queries/keys
have opposite monotonic functional dependence with respect to ρ com-
pared to the values. As revealed by Theorem 3.3.2 and Fig. 29 (center), in-
appropriate scaling of the residual branches can already lead to this phe-
nomenon even in a relatively shallow network. Finally, Eq. (84) and (85)
reveal a different scaling in terms of the embedding size d and the sequence
length n due to the self-attention operation itself. We hope that the identi-
fication of the different dependencies in the gradients of the parameters
will inspire a new line of works aimed at solving some of the difficulties
in training Transformers.

3.3.3 Why Does Adam Work on Transformers?

The existence of the discrepancy in the magnitude of the gradients with
respect to the weights WQ, WK and WV , might explain the success of
adaptive optimization algorithms, as shown in Fig. 30, where we plot the
effective learning rate computed by Adam (Kingma and Ba, 2014) in a
toy encoder task: given a sequence of 20 numbers in the range 0− 9, we
predict the same tokens in the inverted order. We use an embedding layer
of size 16, initializes with variance 1, and sinusoidal positional encod-
ings to initially embed the input. We use a 5-layer POST-LN Transformer
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Figure 29: Effect of the residual scaling to the norm of the gradients of the network at
initialization with respect to some loss. From left to right: (a) the cosine of the
angle between tokens increases with depth. Note how larger values of α1, α2
imply a faster token alignment with depth (Theorem 3.3.2). Subplots (b) and
(c) show the gradients of the queries-keys and values parameters respectively
by increasing depth, compared to the norms of the first layer. Gradients for the
queries-keys diminish with depth, while the opposite happens for the values.
We use POST-LN to disentangle the effect of the variance of the input.

encoder model, with a single head attention operation and a two-layer
feed-forward layer with a ReLU nonlinearity. We use residual scaling, in
this case, equal to α1 = α2 = 1 — leading to moderate rank collapse and
hence vanishing gradients. We train using Adam with betas parameters
(0.9, 0.999), learning rate 0.01 and weight decay 0. Notice that the effec-
tive learning rate is increasingly larger (with depth) for the queries
compared to the values – as postulated by our theory – and this gap is
remarkably constant throughout training.
Hence, we conjecture that the success of adaptive methods in Transform-
ers’ training can be partially explained by the need to fix this unbalanced
gradient’s magnitude. To test this hypothesis, we propose a simple archi-
tectural modification, an inverse temperature scaling τ ∈ R inside the
softmax:

Sℓ
τ := softmax

(
τ√
dk

XℓWQ
(

XℓWK
)⊤)

XℓWV . (86)

A direct consequence of our analysis is that τ allows controlling the
magnitude of the gradients for the queries and keys’ parameters. In the
appendix of Noci et al., 2022, we detail how one can choose τ such that
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Figure 30: Adaptive learning rates computed by Adam in Transformers.

the magnitude of the gradients as derived in Equation (84) and (85) is
approximately matched at initialization:

τ2 ≈ dn(1 + ρ(n− 1))
σ4

x (1− ρ)2(n + d)(n− 1)
. (87)

We evaluate our proposal, consisting of residual scaling and the afore-
mentioned inverse temperature parameters, on the widely used IWSLT14

German-to-English (De-En) benchmark translation task. All details re-
garding the experimental setup and the choice of inverse temperature
used are provided in the Appendix. We train a Transformer encoder-
decoder of varying depth with stochastic gradient descent (SGD), af-
ter removing all normalization layers and adequately initializing the
residual connections. For our training with SGD, we avoid using any
learning rate warm-up, as commonly done for Adam, and instead use
a step-scheduler to decrease the learning rate at 40% and 80% of train-
ing. We compare against the following methods that make use of Adam;
POST-LN and PRE-LN refer to the aforementioned alternatives to apply
layer normalization. We also compare against other successful techniques
that rely on specific initializations to avoid layer normalization, such as
ReZero (Bachlechner et al., 2021) and T-Fixup (Zhang et al., 2019b). We
report the average BLEU score (Papineni et al., 2002) across 5 runs in
Fig. 31 and Table 2.
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Figure 31: BLEU scores by increasing the number of transformers blocks. ‘X’ Transformer
blocks implies in total ‘X’ encoder self-attention, ‘X’ decoder self-attention, and
‘X’ decoder cross-attention layers.

Our proposed method considerably improves training with SGD, keep-
ing up and in some cases surpassing any results achieved by the Adam
optimizer. We are also able to train deeper networks without the use
of layer normalization. We leave for future work to further investigate
modifications or alternatives to the self-attention operation.

Method (6L-Encoder / 6L-Decoder) BLEU ↑
SGD POST-LN 31.36

SGD res-scale 32.79

SGD temperature 35.69

Adam POST-LN (Vaswani et al., 2017) 35.39

Adam PRE-LN (Vaswani et al., 2017) 35.10

ReZero (Bachlechner et al., 2021) 34.55

T-Fixup (Zhang et al., 2019b) 35.59

Table 2: BLEU scores for the IWSLT14 German-to-English translation task. SGD res-
scale refers to the training of SGD without layer normalization and initialization
of the residual scaling a1 = a2 = 1√

L
. SGD temperature additionally employs

an inverse temperature inside the softmax.
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3.3.4 Discussion of Related Works

Our work builds upon the rich literature on forward and backward signal
propagation in random neural networks (Poole et al., 2016; Schoenholz
et al., 2016; Xiao et al., 2018; Pennington et al., 2017; Orvieto et al., 2022b;
Noci et al., 2021). The 1/

√
L scaling scheme has been investigated in the

literature for the stabilization of residual networks (Hanin and Rolnick,
2018; Arpit et al., 2019; Hayou et al., 2021).
Our work draws inspiration from a series of recent works studying the
rank of the representations of random feed-forward neural networks at
initialization (Daneshmand et al., 2020). In the context of Transformers,
Dong et al., 2021 has recently identified the rank collapse issue object of
study of the present work. Thanks to our analysis of the backward pass,
we are able to demonstrate that rank collapse in Transformer architec-
tures leads to vanishingly small gradients of queries and keys, thereby
preventing effective training and allowing us to complete the analysis of
Dong et al., 2021.
Among the architectural components in Transformers, layer normaliza-
tion is, arguably, one of the most important – and debated – ones (Chen
et al., 2018a; Wang et al., 2019; Nguyen et al., 2010; Xiong et al., 2020).
In the original architecture (Vaswani et al., 2017), layer normalization is
used to stabilize the forward pass by reducing the variance of the inputs
to the following sublayer. Our analysis of the forward pass shows that its
inclusion is not strictly necessary for the purpose of controlling the norm
of the representations. For a theoretical analysis of signal propagation in
the presence of layer norm, we refer the reader to Xiong et al., 2020.
Additionally, our theoretical study of the backward pass provides a rig-
orous explanation of the empirically observed discrepancy between the
magnitude of the gradients of the queries and the values, which Liu et
al., 2020a hypothesize to be one of the causes of the success of adaptive
methods in training Transformers (Liu et al., 2019b; Zhang et al., 2020b;
Huang et al., 2020).
Finally, properly rescaled residual connections have been found to be
beneficial for training Transformers by a number of recent research works
(Zhang et al., 2019b; Bachlechner et al., 2021; Wang et al., 2022a). How-
ever, none of these studies characterize the impact of skip connections on
rank propagation, while our analysis suggests a theoretically-grounded
way to stabilize it.
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“As a rule, when many options are available, man’s actions are guided
by the need to choose the best possible way. Human activity, indeed,
implicates solving (consciously or unconsciously) optimization prob-
lems. Moreover, many laws of nature are of a variational character,
even if it is inappropriate in this case to speak of the existence of a
purpose. ”

– Boris Polyak.

In Chapter 3, we discussed adaptive stepsizes in the context of deep
learning, showing their effectiveness in training complex neural networks
such as transformers. While our discussion involved heavy calculations,
the analysis of adaptive stepsizes was often empirical or driven by toy
examples. This necessity is due to the complexity of dealing with the
Adam update, a known issue in the literature (Dauphin et al., 2015).
Treasuring the lessons learned from the last chapter, in the next section
we revisit the foundations of adaptive methods and show interesting new
approaches for the design of novel — simpler — adaptive methods with
solid theoretical guarantees and strong empirical performance.

To do so, we go back to the stochastic optimization problem formulation:

min
x∈Rd

[
f (x) =

1
n

n

∑
i=1

fi(x)

]
, (88)

where each fi is lower bounded. We denote by X ∗ the non-empty set
of optimal points x∗ of equation (88). We set f ∗ := minx∈Rd f (x), and
f ∗i := minx∈Rd fi(x).
The most basic algorithm, Stochastic Gradient Descent (SGD), is

xk+1 = xk − γk∇ fSk (xk) (SGD)

where γk > 0 is the stepsize at iteration k, Sk ⊆ [n] a random subset of
datapoints (minibatch) with cardinality B sampled independently at each
iteration k, and ∇ fSk (x) := 1

B ∑i∈Sk
∇ fi(x) is the minibatch gradient.

105
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the ideal adaptive stepsizes . As it is clear at this point of the
thesis, a careful choice of γk is crucial for successful training (Bottou et
al., 2018; Goodfellow et al., 2016). Let us refresh the basics. The simplest
option is to pick γk to be constant, with its value inversely proportional to
the Lipschitz constant of the gradient. While this choice yields fast con-
vergence to the neighborhood of a minimizer, two main problems arise:
(a) the optimal γ depends on (often unknown) problem parameters —
hence often requires heavy tuning ; and (b) it cannot be guaranteed that
X ∗ is reached in the limit (Ghadimi and Lan, 2013; Gower et al., 2019;
Gower et al., 2021). A simple fix for the last problem is to allow polyno-
mially decreasing stepsizes (Nemirovski et al., 2009): this choice leads to
convergence to X ∗, but hurts the overall algorithm speed. Ideally, a the-
oretically grounded adaptive method should yield fast convergence to
X ∗ without knowledge of problem dependent parameters, such as the
gradient Lipshitz constant or the strong convexity constant. As a result,
the ideal adaptive method should require very little tuning by the user,
while matching or surpassing the performance of a fine-tuned γk. While
commonly used adaptive methods such as Adam and AdaGrad often
require less tuning than vanilla SGD in practice, the associated conver-
gence rates do not quantitatively showcase this advantage and often
rely on strong assumptions — e.g. that the iterates live on a bounded
domain, or that gradients are uniformly bounded in norm (Duchi et
al., 2011; Ward et al., 2019; Vaswani et al., 2020). While the above as-
sumptions are valid in the constrained setting, they are problematic for
problems defined in the whole Rd — where SGD enjoys the strongest
guarantees under limited assumptions.

a new promise : the stochastic polyak stepsizes . A promis-
ing new direction in the adaptive stepsizes literature is based on the
idea of Polyak stepsizes, introduced by Polyak, 1987 in the context of
deterministic convex optimization. Recently, Loizou et al., 2021 success-
fully adapted Polyak stepsizes to the stochastic setting. The algorithm
by Loizou et al., 2021 is named the Stochastic Polyak Stepsize — SPS:

γk = min

{
fSk (xk)− f ∗Sk

c∥∇ fSk (xk)∥2 , γb

}
, (SPSmax)
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where γb, c > 0 are problem-independent constants, fSk := 1
|Sk | ∑i∈Sk

fi,
and f ∗Sk

= minx∈Rd fSk (x). Loizou et al., 2021 provided convergence rates
matching fine-tuned SGD — yet crucially the algorithm does not require
knowledge of the unknown quantities such as the gradient Lipschitz
constant. The results especially shine in the overparameterized strongly
convex setting, where linear convergence to X ∗ is shown. This result
is especially important since, under the same assumption, no such rate
exists for AdaGrad (see e.g. (Vaswani et al., 2020) for the latest results)
or other adaptive stepsizes. Moreover, SPS was shown to work well on
deep learning problems (Loizou et al., 2021).

issues with sps . While the stochastic Polyak stepsize (SPS) (Loizou
et al., 2021) is a clear step forward in the literature, it has two main
drawbacks when it is used in non-over-parameterized regimes:

1. It requires a priori knowledge of the optimal mini-batch losses f ∗Sk
:=

minx∈Rd fSk (x), which are not easily available for big batch sizes or
regularized objectives.

2. It guarantees convergence only to a neighborhood of the solution,
and this cannot be improved by decreasing/increasing hyperpa-
rameters. In other words, SPS cannot be used to reach an arbitrar-
ily small neighborhood of the solution.

In this chapter, inspired by the shortcomings of SPS, we study in Sec-
tion 4.1 its dynamics and found concerning issues with its convergence
as the maximum stepsize bound γb decreases. While in Section 4.2 we
precisely solve the two issues above, we propose in Section 4.3 an im-
proved algorithm, NGN, which stems from different principles (Gauss-
Newton approximation) but is related to the Polyak stepsize yet pos-
sesses stronger theoretical guarantees and performance.

Since this chapter is heavy on convex smooth optimization, we recall
some basic definitions used throughout the chapter. A similar discussion
can also be found in Appendix A.

Definition 4.0.1 (Strong Convexity / Convexity). The function f : Rd →
R, is called µ-strongly convex, if there exists µ > 0 such that ∀x, y ∈ Rd:

f (x) ≥ f (y) + ⟨∇ f (y), x− y⟩+ µ

2
∥x− y∥2 (89)
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for all x ∈ Rd. If inequality (89) holds with µ = 0 the function f is convex.

Lemma 4.0.1 (Gradient lower bound). Let f : Rd → R be µ-strongly convex
with minimizer at f ∗. Then, for all x ∈ Rd we have

2µ( f (x)− f (x∗)) ≤ ∥∇ f (x)∥2. (90)

Proof. From the definition of strong convexity,

f ∗ = inf
x∈Rd

f (x) ≥ f (y) + inf
x∈Rd

[
⟨∇ f (y), x− y⟩+ µ

2
∥x− y∥2

]
. (91)

The inf on the right-hand-side is computable, and it is achieved at x =
y− 1

µ∇ f (y). By direct substitution, we get

f ∗ ≤ f (y)− 1
µ
∥∇ f (y)∥2 +

µ

2
1
L2 ∥∇ f (y)∥2 =

1
2µ
∥∇ f (y)∥2. (92)

This proves the result.

Definition 4.0.2 (L-smooth). The function f : Rd → R, is L-smooth (with
L ≥ 0), if ∀x, y ∈ Rd:

∥∇ f (x)−∇ f (y)∥ ≤ L∥x− y∥, (93)

or equivalently (since Rd is a convex set):

f (x) ≤ f (y) + ⟨∇ f (y), x− y⟩+ L
2
∥x− y∥2. (94)

Lemma 4.0.2 (Gradient upper bound). Let f : Rd → R be L-smooth with
minimizer at f ∗. Then, for all x ∈ Rd we have

2L( f (x)− f (x∗)) ≥ ∥∇ f (x)∥2. (95)

Proof. The proof is very similar to that Lemma 4.0.1. Thanks to Eq. (94)

f ∗ = inf
x∈Rd

f (x) ≤ f (y) + inf
x∈Rd

[
⟨∇ f (y), x− y⟩+ L

2
∥x− y∥2

]
. (96)

The inf on the right-hand-side is computable, and it is achieved at x =
y− 1

L∇ f (y). Plugging in this value, the result follows.
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4.1 the stochastic polyak stepsize and its issues

In this section, we provide a concise overview of the results in Loizou
et al., 2021, and highlight the main assumptions and open questions.
To start, we remind the reader a definition

Definition 4.1.1 (Interpolation). The problem in Eq. (88) is said to be inter-
polated if there exists a problem solution x∗ ∈ X ∗ such that infx∈Rd fi(x) =
fi(x∗) for all i ∈ [n].

The degree of interpolation at batch size B can be quantified by the
following quantity, introduced by Loizou et al., 2021 and studied also
in Vaswani et al., 2020; D’Orazio et al., 2021: fix a batch size B, and let
S ⊆ [n] with |S| = B.

σ2
B := ES [ fS (x∗)− f ∗S ] = f (x∗)−ES [ f ∗S ]. (97)

It is easy to realize that as soon as the problem in Eq. (88) is interpolated,
then σ2

B = 0 for each B ≤ n. In addition, note that σ2
B is non-increasing as

a function of B.
The stepsize proposed by Loizou et al., 2021 is

γk = min

{
fSk (xk)− f ∗Sk

c∥∇ fSk (xk)∥2 , γb

}
, (SPSmax)

where γb, c > 0 are problem-independent constants, fSk := 1
|Sk | ∑i∈Sk

fi,
f ∗Sk

= minx∈Rd fSk (x).
The following lemma is the fundamental starting point for the analysis
in Loizou et al., 2021. It can be deduced by combining Lemma 4.0.2 with
Lemma 4.0.1.

Lemma 4.1.1. Let f (x) = 1
n ∑n

i=1 fi(x) where the functions fi are µi-strongly
convex and Li-smooth, then

1
2L
≤ 1

2Li
≤ fi(xk)− f ∗i
∥∇ fi(xk)∥2 ≤

1
2µi
≤ 1

2µ
, (98)

where f ∗i := infx fi(x), L = max{Li}n
i=1 and µ = min{µi}n

i=1. When each fi
is smooth but potentially nonconvex, the lower bound still holds true.
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Problem 1: in the non-interpolated setting, f∗Sk
is not computable. Cru-

cially the algorithm requires knowledge of f ∗Sk
for every realization of the

mini-batch Sk. In the non-regularized overparametrized setting (e.g. neu-
ral networks), fSk is often zero for every subset S (Zhang et al., 2021a).
However, this is not the only setting where f ∗S is computable: e.g., in the
regularized logistic loss with batch size 1, it is possible to recover a cheap
closed form expression for each f ∗i (Loizou et al., 2021). Unfortunately, if
the batch-size is bigger than 1 or the loss becomes more demanding (e.g.
cross-entropy), then no such closed-form computation is possible.
We now comment on the main result of Loizou et al., 2021.

Theorem 4.1.1 (Main result of Loizou et al., 2021). Let each fi be Li-smooth
convex functions. Then SGD with SPSmax, mini-batch size B, and c = 1, con-
verges as:

E
[

f (x̄K)− f (x∗)
]
≤ ∥x

0 − x∗∥2

α K
+

2γbσ2
B

α
, α = min

{
1

2cL
, γb

}
,

where x̄K = 1
K ∑K−1

k=0 xk and L = max{Li}n
i=1 is the maximum smoothness

constant. If in addition f is µ-strongly convex, then, for any c ≥ 1/2, SGD
with SPSmax converges as:

E∥xk − x∗∥2 ≤ (1− µα)k ∥x0 − x∗∥2 +
2γbσ2

B
µα

.

In the overparametrized setting, the result guarantees convergence to the
minimizer, without knowledge of the gradient Lipschitz constant (as
vanilla SGD would instead require) and without assuming bounded it-
erates — in contrast to Vaswani et al., 2020.
As soon as (1) a regularizer is applied to the loss (e.g. L2 penalty), or (2)
the number of datapoints gets comparable to the dimension, then the
problem is not interpolated and SPSmax only converges to a neighbor-
hood and it gets impractical to compute f ∗S . There is also a more sneaky
issue hidden in the rate, recently pointed out by Wang et al., 2023:

Problem 2: The interpolation error is non-vanishing. In Theorem 4.1.1,
suboptimality reached both in the convex and strongly-convex setting is

proportional to γb/α, where α = min
{

1
2cL , γb

}
. It follows that γb/α =

γb max {2cL, 1/γb} ≥ 1. Therefore, for instance in the convex setting, the
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error in the non-interpolated setting cannot be made, at least according to
the provided rate, smaller than 2σ2

B. This for instance means that simply
multiplying γk by a decay factor 1/

√
k cannot directly yield convergence

to f ∗ for σ2
B > 0.

Our first contribution in Loizou et al., 2021 is to show that this problem
is not an artifact of the analysis — SPS has a bias!

No interpolation Interpolation

Figure 32: Dynamics of SPSmax with decreasing multiplicative constant (SGD style)
compared with DecSPS. We compared both in the interpolated set-
ting (right) and in the non-interpolated setting (left). In the non-
interpolated setting, a simple multiplicative factor introduces a bias in the
final solution, as discussed in this section. We consider two dimensional
fi = 1

2 (x − x∗i )
⊤Hi(x − x∗i ), for i = 1, 2 and plot the contour lines of the

corresponding landscapes, as well as the average landscape ( f1 + f2)/2 we
seek to minimize. Solution is denoted with a gold star.

Counterexample for SPSmax convergence under vanishing decay factor. Con-
sider the following finite-sum setting: f (x) = 1

2 f1(x)+ 1
2 f2(x) with f1(x) =

a1
2 (x − 1)2, f2(x) = a2

2 (x + 1)2. To make the problem interesting, we
choose a1 = 2 and a2 = 1: this introduces asymmetry in the average
landscape with respect to the origin. During optimization, we sample
f1 and f2 independently and seek convergence to the unique minimizer
x∗ = a1−a2

a1+a2
= 1/3. The first thing we notice is that x∗ is not a stationary

point for the dynamics under SPS. Indeed note that since f ∗i = 0 for i =
1, 2 we have (assuming γb large enough): γk∇ fik

(x) = x−1
2ck

, if ik = 1, and
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γk∇ fik
(x) = x+1

2ck
if ik = 2. Crucially, note that this update is curvature-

independent. The expected update is Eik
[γk∇ fik

(x)] = x−1
4ck

+ x+1
4ck

= 1
2ck

x.
Hence, the iterates can only converge to x = 0 — because this is the only
fixed point for the update rule. The proof naturally extends to the multi-
dimensional setting, an illustration can be found in Fig. 32, where SPSmax
is also compared to DecSPS, the variation of SPS we propose in Orvieto
et al., 2022c to solve this issue.
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4.2 decsps : convergence to the exact solution

By concentrating on precision, one arrives at technique, but by con-
centrating on technique one does not arrive at precision.

– Bruno Walter.

Question: SPS (Loizou et al., 2021) is a promising algorithm — has
strong theory and compelling practical performance. However, two is-
sues that limit its application in practice. Are the issues related to ar-
tifacts in the analysis? Is it possible to improve the algorithm and its
convergence guarantees?

Answer (Orvieto et al., 2022c): The problems of SPS are rooted in the
algorithm design (as we showed in Section 4.1) — rates are tight. We
solve both issues by modifying the algorithm — introducing DecSPS.
Stay tuned for Section 4.3, where we design something even better!

The algorithm we study in this section is Decreasing SPS (DecSPS)

γk :=
1
ck

min

{
fSk (xk)− ℓ∗Sk

∥∇ fSk (xk)∥2 , ck−1γk−1

}
, (DecSPS)

for k ∈ N, where ck ̸= 0 for every k ∈ N. We set c−1 = c0 and γ−1 =
γb > 0 (stepsize bound, similar to Loizou et al., 2021), to get γ0 :=
1
c0
·min

{
fS0 (x0)−ℓ∗S0
∥∇ fS0 (xk)∥2 , c0γb

}
.

Note that (solving the first problem of SPS) in the update rule we use
a lower bound ℓ∗S ≤ f ∗S . This bound can be set to zero for most prob-
lems without reducing the method adaptivity as we discuss in the next
subsection. Due to this modification, we need to slightly modify our sub-
optimality measure, used for deriving our guarantees:

σ̂2
B := ESk [ fSk (x∗)− ℓ∗Sk

] = f (x∗)−ESk [ℓ
∗
Sk
]. (99)

It is easy to see by induction that DecSPS enjoys the following bounds.
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Lemma 4.2.1 (γk is decreasing). Let each fi be Li smooth and let (ck)
∞
k=0 be

any non-decreasing positive sequence of real numbers. For DecSPS, we have

min
{

1
2ck L

,
c0γb

ck

}
≤ γk ≤

c0γb
ck

, γk−1 ≤ γk. (100)

The proof can be found in Appendix D.

4.2.1 Convergence Under Bounded Iterates

The following result shows convergence for SGD with DecSPS.

Theorem 4.2.1. Consider SGD with DecSPS and let (ck)
∞
k=0 be any non-

decreasing sequence such that ck ≥ 1, ∀k ∈ N. Assume that each fi is convex
and Li smooth. We have:

E[ f (x̄K)− f (x∗)] ≤ 2cK−1 L̃D2

K
+

1
K

K−1

∑
k=0

σ̂2
B

ck
, (101)

where D2 := maxk∈[K−1] ∥xk − x∗∥2, L̃ := max
{

maxi{Li}, 1
2c0γb

}
and

x̄K = 1
K ∑K−1

k=0 xk.

If σ̂2
B = 0, then ck = 1 for all k ∈ N leads to a rate O( 1

K ), well known
from Loizou et al., 2021. If σ̂2

B > 0, as for the standard SGD analysis
under decreasing stepsizes, the choice ck = O(

√
k) leads to an optimal

asymptotic trade-off between the deterministic and the stochastic terms,
hence to the asymptotic rate O(1/

√
k) since ∑K−1

k=0
1√
k+1
≤ 2
√

K. More-
over, picking c0 = 1 minimizes the convergence speed for the determinis-
tic factor. Under the assumption that σ̂2

B ≪ L̃D2 (e.g. reasonable distance
initialization-solution and L > 1/γb), this factor is dominant compared
to the factor involving σ̂2

B. For this setting, the rate simplifies as follows.

Corollary 4.2.1. Under the setting of Thm. 4.2.1, for ck =
√

k + 1 (c−1 = c0)
we have

E[ f (x̄K)− f (x∗)] ≤ 2L̃D2 + 2σ̂2
B√

K
. (102)

Remark 4.2.1 (Beyond bounded iterates). The result above crucially relies
on the bounded iterates assumption: D2 < ∞. To the best of our knowledge,
if no further regularity is assumed, modern convergence results for adaptive
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methods (e.g. variants of AdaGrad) in convex stochastic programming require1

this assumption, or else require gradients to be globally bounded. To mention a
few: Duchi et al., 2011; Reddi et al., 2018; Ward et al., 2019; Défossez et al.,
2022; Vaswani et al., 2020. A simple algorithmic fix to this problem is adding a
cheap projection step onto a large bounded domain (Levy et al., 2018). We can of
course include this projection step in DecSPS, and the theorem above will hold
with no further modification. Yet we found this to be not necessary: the strong
guarantees of SPS in the strongly convex setting (Loizou et al., 2021) let us go
one step beyond: in Sec. 4.2.2 we show that, if each fi is strongly convex (e.g.
regularizer is added), then one can bound the iterates globally with probability
one, without knowledge of the gradient Lipschitz constant. To the best of our
knowledge, no such result exist for AdaGrad — except Traoré and Pauwels,
2021, for the deterministic case.

Remark 4.2.2 (Dependency on the problem dimension). In standard re-
sults for AdaGrad, a dependency on the problem dimension often appears (e.g.
Thm. 1 in Vaswani et al., 2020). This dependency follows from a bound on the
AdaGrad preconditioner that can be found e.g. in Thm. 4 in Levy et al., 2018. In
the SPS case no such dependency appears — specifically because the stepsize is
lower bounded by 1/(2ck L).

4.2.2 Removing the Bounded Iterates Assumption

We prove that under DecSPS the iterates live in a set of diameter Dmax
almost surely. This can be done assuming strong convexity of each fi.
The result uses this alternative definition of neighborhood:

σ̂2
B,max := max

S⊆[n],|S|=B
[ fS (x∗)− ℓ∗S ]. (103)

Note that trivially σ̂2
B,max < ∞ under the assumption that all fi are lower

bounded and n < ∞.

Proposition 4.2.1. Let each fi be µi-strongly convex and Li-smooth. The it-
erates of SGD with DecSPS with ck =

√
k + 1 (and c−1 = c0) are such that

∥xk − x∗∥2 ≤ D2
max almost surely ∀k ∈N, where

D2
max := max

{
∥x0 − x∗∥2,

2c0γbσ̂2
B,max

min
{ µ

2L , µγb
}} ,

1 Perhaps the only exception is the result of Xie et al., 2020a, where the authors work on a
different setting: i.e. they introduce the RUIG inequality.
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with µ = mini∈[n] µi and L = maxi∈[n] Li.

The proof relies on the variations of constants formula and an induc-
tion argument — it is provided in the appendix. We are now ready to
state the main theorem for the unconstrained setting, which follows from
Prop. 4.2.1 and Thm. 4.2.1.

Theorem 4.2.2. Consider SGD with the DecSPS stepsize for k ≥ 1 and γ0
defined at the beginning of this section. Let each fi be µi-strongly convex and
Li-smooth:

E[ f (x̄K)− f (x∗)] ≤ 2L̃D2
max + 2σ̂2

B√
K

. (104)

To the best of our knowledge, at the time of its publication, this was
the first rate for adaptive methods that showcases convergence to the
precise solution without knowledge of problem-dependent parameters
and without bounded gradients/domain assumptions.

Remark 4.2.3 (Strong Convexity). The careful reader might notice that, while
we assumed strong convexity, our rate is slower than the optimal O(1/K). This
is due to the adaptive nature of DecSPS. It is indeed notoriously hard to achieve a
convergence rate ofO(1/K) for adaptive methods in the strongly convex regime.
While further investigations will shed light on this interesting problem, we note
that the result we provide is somewhat unique in the literature: we are not aware
of any adaptive method that enjoys a similar convergence rate without either (a)
assuming bounded iterates/gradients or (b) assuming knowledge of the gradient
Lipschitz constant or the strong convexity constant.

Remark 4.2.4 (Comparison with Vanilla SGD). On a convex problem, the
non-asymptotic performance of SGD with a decreasing stepsize γk = η/

√
k

strongly depends on the choice of η. The optimizer might diverge if η is too big
for the problem at hand. Indeed, most bounds for SGD, under no access to the
gradient Lipschitz constant, display a dependency on the size of the domain and
rely on projections after each step. If one applies the method in the unconstrained
setting, such convergence rates technically do not hold, and tuning is sometimes
necessary to retrieve stability and good performance. Instead, for DecSPS, sim-
ply by adding a small regularizer, the method is guaranteed to converge at the
non-asymptotic rate we derived even in the unconstrained setting.
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4.2.3 Experiments in Convex Optimization

In this subsection, we present a few experiments comparing DecSPS with
SGD and adaptive methods. As we motivate in the main paper (Orvi-
eto et al., 2022c) leveraging a stability analysis, choosing DecSPS hyper-
parameters c0 = 1, γb = 10 yields consistent result – we fix these in
our experiments. For additional experiments and comparisons, please
check Orvieto et al., 2022c.
First, we compare the performance of DecSPS against the classical de-
creasing SGD stepsize η/

√
k + 1, which guarantees convergence to the

exact solution at the same asymptotic rate as DecSPS. We show that,
while the asymptotics are the same, DecSPS with hyperparameters c0 =
1, γb = 10 performs competitively to a fine-tuned η — where crucially
the optimal value of η depends on the problem. This behavior is shown
on all the considered datasets (three in the main paper, see Orvieto et al.,
2022c), and is reported in Figure 33 for the LIBSVM A1A dataset (Chang,
2011). We inspect the value of γk returned by DecSPS. Compared to the
vanilla SGD stepsize η/

√
k + 1, a crucial difference appears: γk decreases

faster than O(1/
√

k). This showcases that, while the factor
√

k + 1 can
be found in the formula of DecSPS2, the algorithm structure provides ad-
ditional adaptation to curvature. Next, in Figure 34 we compare DecSPS
with another adaptive coordinate-independent stepsize with strong theo-
retical guarantees: the norm version of AdaGrad (a.k.a. AdaGrad-Norm,
AdaNorm), which guarantees the exact solution at the same asymptotic
rate as DecSPS (Ward et al., 2019). AdaGrad-norm at each iteration up-
dates the scalar b2

k+1 = b2
k + ∥∇ fSk (xk)∥2 and then selects the next step

as xk+1 = xk − η
bk+1
∇ fi(xk). Hence, it has tuning parameters b0 and η. In

Fig. 34 we show that, on the Breast Cancer dataset, after fixing b0 = 0.1
as recommended in Ward et al., 2019 (see their Figure 3), tuning η cannot
quite match the performance of DecSPS.
Finally, in Figures 35 and 36 we compare DecSPS with tuned versions of
Adam (Kingma and Ba, 2014) and AMSgrad (the convergent version of
Adam) (Reddi et al., 2018). We show an advantage over both.

2 We pick ck = c0
√

k + 1, as suggested by Cor. 4.2.1
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Regularized A1A – SGD and DecSPS
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Figure 33: Performance of SGD compared with DecSPS, on the A1A Dataset (regulariza-
tion λ = 0.01).

Regularized Breast Cancer – AdaGrad-Norm and DecSPS
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Figure 34: Performance of AdaNorm compared with DecSPS on the Breast Cancer
Dataset (regularization λ = 1e− 1).
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Regularized A1A – DecSPS and Adam
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Figure 35: Performance of Adam (with fixed stepsize and no momentum) compared to
DecSPS on the A1A dataset (regularization λ = 0.01). Plotted is also the
average stepsize (each parameter evolves with a different stepsize).

Regularized Breast Cancer – DecSPS and AMSgrad
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Figure 36: Performance of AMSgrad (with sqrt decreasing stepsize and no momentum)
compared to DecSPS on the Breast Cancer dataset (regularization λ = 0.1),
respectively. Plotted is also the average stepsize (each parameter evolves with
a different stepsize).
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4.3 non-negative gauss-newton : a new approach

No great discovery was ever made without a bold guess.
– Isaac Newton.

If you are an optimization researcher, you will love the analysis of the
new algorithm presented here. If you are a practitioner, you will be im-
pressed by the empirical results.

Question: In Section 4.2 we modified the SPS update rule to solve
its bias problem and delivered a solid adaptive algorithm with desir-
able theoretical guarantees. The resulting method however is arguably
complicated, has two hyperparameters, and a bounded domain is-
sue (which can be solved assuming strong convexity). Can we develop
something simpler that is interpretable and has stronger guarantees?

Answer (Orvieto and Xiao, 2023): Starting from the assumption that
the loss over datapoints is non-negative, we can construct an adap-
tive method leveraging a novel Gauss-Newton-like approximation. The
resulting algorithm is cheap to implement (same complexity as SGD)
and is related to SPS — and has much stronger guarantees and perfor-
mance, also in the Deep Learning setting. We are extremely excited about
this method, and our current efforts are focused on testing performance on
state-of-the-art architectures.

Consider again, as usual in this chapter, the problem of minimizing the
average of a large number of loss functions: minx∈Rd f (x) := 1

N ∑N
i=1 fi(x),

where each fi : Rd → R is smooth but potentially non-convex. In ma-
chine learning applications each fi is the loss function associated with a
training example, and is usually non-negative.

In this section, we derive Non-negative Gauss-Newton (NGN), a novel
adaptive method that shows superior performance compared to SGD
both in theory and in practice. Specifically, by leveraging a Gauss-Newton
inspired approximation of non-negative losses, we propose the follow-
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ing adaptive stepsize on top of the stochastic gradient update xk+1 =
xk − γk∇ fik

(xk):

γk =
σ

1 + σ
2 fik (xk)

∥∇ fik
(xk)∥2 , (NGN-stochastic)

where ik ∈ {0, 1, . . . , N} is the datapoint sampled at iteration k and σ is
a regularization hyperparameter. This adaptive rule acts as an automatic
warmup-decay scheduler, which often has to be hand-picked in deep
learning practice (Loshchilov and Hutter, 2016).

4.3.1 Algorithm Derivation

Let each fi be differentiable and non-negative. We define

ri(x) :=
√

fi(x), (105)

and rewrite the loss as a sum of squares:

f (x) =
1
n

n

∑
i=1

r2
i (x). (106)

Consequently, we have

∇ fi(x) = 2ri(x)∇ri(x), and ∇ri(x) =
1

2
√

fi(x)
∇ fi(x). (107)

The Gauss-Newton update constructs the descent direction p as follows.
First, we approximate the loss function with the first-order Taylor expan-
sions of the ri’s around x:

f (x + p) =
1
n

n

∑
i=1

r2
i (x + p) ≈ 1

n

n

∑
i=1

(
ri(x) +∇ri(x)⊤p

)2
. (108)

Then p is set as the minimizer of the approximation together with a
regularization term

f̃σ(x + p) :=
1
n

n

∑
i=1

(
ri(x) +∇ri(x)⊤p

)2
+

1
2σ
|p∥2. (109)
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Since this is a quadratic function in p, the minimizer can be found by
setting ∇p f̃σ(x + p) = 0, i.e.,

0 = ∇p f̃σ(x + p) =
1
n

n

∑
i=1

2
(

ri(x) +∇ri(x)⊤p
)
∇ri(x) +

1
σ

p

=
2
n

n

∑
i=1

ri(x)∇ri(x) +

[
2
n

n

∑
i=1
∇ri(x)∇ri(x)⊤ +

1
σ

I

]
p.

(110)

Therefore p ∈ Rd needs to satisfy the normal equation[
1
n

n

∑
i=1
∇ri(x)∇ri(x)⊤ +

1
2σ

I

]
p = − 1

n

n

∑
i=1

ri(x)∇ri(x), (111)

which leads to

p = −
[

1
n

n

∑
i=1

1
2 fi(x)

∇ fi(x)∇ fi(x)⊤ +
1
σ

I

]−1

∇ f (x). (112)

To summarize, the regularized Gauss-Newton, or Levenberg-Marquardt,
method, is given by

xk+1 = xk − Gσ(xk)−1∇ f (xk), (113)

Gσ(x) =
1
σ

I +
1
n

n

∑
i=1

1
2 fi(x)

∇ fi(x)∇ fi(x)⊤.

general non-negative functions . Notice that we can apply the
same trick with any non-negative function f , regardless if it has a finite-
sum structure. In the general case, we have

xk+1 − xk = −
(

1
σ

I +
∇ f (xk)∇ f (xk)⊤

2 f (xk)

)−1

∇ f (xk) (114)

= − σ

1 + σ
2 f (xk)

∥∇ f (xk)∥2∇ f (xk). (115)

We call this method NGN: Non-negative Gauss-Newton, for optimiza-
tion without mini-batching. For short, we will refer to this as NGN-det.
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stochastic optimization. We can apply the reasoning above to
the function sampled at each iteration, i.e. the one-sample estimation of
Eq. (113). The resulting algorithm is NGN-stochastic, presented in the
introduction.

4.3.2 Basic Properties of NGN

We give below an overview of the properties of the NGN stepsizes, here
discussed in the deterministic setting but with direct application in the
stochastic case.

Non-negativity implies a stepsize range. For any f : Rd → R that is
L-smooth with minimum value f ∗, for all x ∈ Rd we have

2L( f (x)− f ∗) ≥ ∥∇ f (x)∥2. (116)

Note that, under our assumption f ∗ > 0, so — crucially — we also have

2L f (x) ≥ ∥∇ f (x)∥2. (117)

Or, more clearly, 0 ≤ ∥∇ f (x)∥2

2 f (x) ≤ L. This directly implies a range for γk:

γk ∈
[

σ

1 + σL
, σ

]
=

[
1

L + σ−1 , σ

]
. (118)

This property illustrates the behavior of NGN, as can also be observed in
our experiments: σ bounds the maximum achievable stepsize, but the al-
gorithm can adaptively choose to decrease the stepsize until 1/(L + σ−1)
if the landscape gets more challenging. On the theoretical side, the step-
size bounds above imply that NGN, in the worst case, cannot be asymp-
totically worse than gradient descent in deterministic optimization. As
we will see, however in the next section, the algorithm actually has a very
peculiar convergence guarantee in the convex setting: even for large val-
ues of σ, we are guaranteed to never diverge, see Figures 37, 38, and 40.

Curvature estimation. As it can already be concluded from the last sec-

tion, the term ∥∇ f (x)∥2

2 f (x) , which modulates the stepsize, is an approxi-
mate (conservative) curvature estimator. Indeed, simply taking f (x) =
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Figure 37: Two-dimensional positive semidefinite quadratic with minimum at f ∗ = 0,
performance and dynamics for different hyperparameters for the deterministic
variant of NGN (regularization σ) and GD (stepsize γ). As the hyperparame-
ter increases, GD diverges, while NGN does not due to its feedback mechanism:
the effective stepsize converges to 2/L. Combined with decreasing σ, NGN is
found convergent (see Thm. 4.3.1) in the stochastic setting for any hyperpa-
rameter values and no bounded gradient assumptions.
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Figure 38: Loss (normalized to reach zero), effective stepsize, and PCA projection of it-
erations (dynamics for biggest γ and σ are plotted) for the regularized Wine
dataset (Chang, 2011) (more datasets shown in the appendix). In the dynamics
plot, the circle denotes the starting point, the star the solution found at the last
iteration, and the square indicates the solution after one iteration.

λ(x − x∗)2/2 + c, we have ∥∇ f (x)∥2

2 f (x) ≥ λ. As a result, the method is al-
lowed the maximum stepsize σ on flat regions and decreases the stepsize
on sharp regions, as can also be observed in Figure 39.

Relation to the Polyak stepsize (Polyak, 1987) as SGD. The reader can
istantaneausly spot the resemblance between Eq. (115) and the Polyak

stepsize γk =
f (xk)− f ∗

∥∇ f (xk)∥ , where f ∗ = minx f (x). Indeed, recall the follow-

ing limit: any a ̸= 0 we have limσ→∞
σ

1+aσ = 1
a . Therefore, as σ → ∞,

NGN reduces to γk =
2 f (x)
∥∇ f (x)∥2 . The difference is that f ∗ is (conveniently)
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Figure 39: NGN update and corresponding function approximation on a few toy exam-
ples. The black dot denotes the algorithm’s initial position and the star the
position after one step. Compared to gradient descent with stepsize η = σ,
NGN is more conservative then GD if the landscape is sharp. Note that the
function approximation provided by NGN is always non-negative, as clear
from the algorithm derivation and the motivation.

not in the update rule. We show in Section 4.3.3 that this difference does
not hurt convergence in the interpolation setting. Moreover, as σ → 0
we get back to standard gradient descent with stepsize σ. As such, NGN
effectively interpolates between SGD and an f ∗-agnostic Polyak stepsize.

empirical verification of basic properties . In Figure 39 we
show the NGN function approximation leading to a stepsize γk aware
of the loss sharpness: the step is more conservative if the landscape
is sharp. In Figure 37, we test one prediction of our main theorem,
Thm 4.3.1. This theorem states that, in the case where f ∗ > 0, if σ (the
maximum allowed stepsize, see stepsize bounds) is big (bigger than
σ > 1/(2L) in the general convex case), then NGN does not lead to di-
vergence (as would SGD with stepsize σ) but instead we get convergence
to a quantity proportional to f ∗.

4.3.3 Convergence Results (you won’t believe these!)

We provide here convergence guarantees for stochastic NGN. We start
by defining x∗ := arg min f (x) and f ∗i := minx fi(x), and then define the
following two error quantities

∆int := E[ fi(x∗)− f ∗i ], ∆pos := E[ f ∗i ]. (119)

Here ∆pos measures how close is, on average, the individual datapoint
loss to the value zero, while ∆int measures interpolation. While for over-
parametrized models in deep learning one has ∆pos = ∆int = 0 (Vaswani
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et al., 2020), both the cases ∆pos = 0, ∆int > 0 and ∆pos > 0, ∆int = 0
are feasible in theory. We provide proofs for all the results below in the
appendix.

Theorem 4.3.1 (NGN, convex). Let f = 1
N ∑N

i=1 fi, where each fi : Rd → R

is non-negative, Li-smooth and convex. Let L = maxi∈[N] Li. Consider stochas-
tic gradient descent with batch size 1 and let ik be the data index sampled at
iteration k. For any value of σ > 0,NGN-stochastic leads to

E
[

f (x̄k)− f (x∗)
]

≤ E∥x0 − x∗∥2

ησK
+ 3σL · (1 + σL)∆int + σL ·max {0, 2σL− 1}∆pos,

where x̄K = 1
K ∑K−1

k=0 xk, ησ := 2σ
(1+2σL)2 . Decreasing σ, we get a rateO

(
ln(K)√

K

)
.

comment on the result. If ∆int = ∆pos = 0, then the result guar-
antees convergence to the solution for any value of σ. The best achievable
constant in the rate is achieved when knowing the Lipschitz constant, in-
deed minσ ησ, achieved at σ = 1/(2L). If ∆pos > 0, then for σ > 1/(2L)
we get error term — which does not come from gradient stochasticity
but is instead an effect of correcting divergence of the gradient update
for large stepsizes. We note that in this case our method behaves better
than SGD, which is divergent for large stepsizes. Finally, the interpo-
lation error term 2σ∆int results from gradient stochasticity in the non-
overparametrized setting.

comparison with related works . The error in Thm. 4.3.1 isO(σ),
meaning that as σ → 0 the error vanishes. This is not the case for adap-
tations of the Polyak scheme to the stochastic setting (Loizou et al., 2021;
Wang et al., 2023), where the error is O(1). To the best of our knowledge,
this is the first rate in the literature to a ball of arbitrary size around
the solution without knowledge of the smoothness constant.
As we will see in Section 4.3.4, stochastic NGN can also be applied suc-
cessfully in the nonconvex setting. In this setting, knowledge of the Lip-
schitz constant is required.

Theorem 4.3.2. Let f = 1
N ∑N

i=1 fi, where each fi : Rd → R is non-negative,
Li-smooth and potentially non-convex. Let L = maxi∈[N] Li. Consider stochas-



4.3 non-negative gauss-newton : a new approach 127

tic gradient descent with batch size 1 and let ik be the data index sampled at
iteration k. For σ ≤ 1

2L , NGN-stochastic leads to

E

[
1
K

K−1

∑
k=0
∥∇ f (xk)∥2

]
≤ 12 · E[ f (x0)− f ∗]

σK
+ 18σL∆2

noise,

where ∆2
noise = supx∈Rd E[∥∇ f (x)−∇ fi(x)∥2]. Decreasing σ, we get a rate

O
(

ln(K)√
K

)
.

4.3.4 Experiments in Deep Learning

First, in Figure 40, we showcase the convergence of NGN on a convex
problem with decreasing σ. The method converges faster than tuned
SGD. In particular, NGN is robust to initial overshooting.
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Figure 40: Performance of NGN and SGD with a decreasing stepsize (average over 5 iter-
ations) for linear regression on the Boston Dataset (Chang, 2011): 14 features
and 379 datapoints. Since the problem is strongly convex, we choose a stepsize
discount of 1/k (corresponding rate not presented in this thesis since currently
under investigation). The batch size is 8.

Next, we test convergence in the deep learning setting for a non-vanishing
σ. As the reader can observe in Figures 41 (CIFAR10 on ResNet18) and
Figure 42 (ImageNet on ResNet50), stochastic NGN, which has the same
runtime as SGD, has faster convergence — even after tuning or adding
momentum on top of SGD. In Figure 41 we also show that the effective
stepsize γk has an interesting warm-up/decay behavior, similar to those
based on heuristics and hand-tuning in deep learning practice. Finally, in
Figure 42 we also show that NGN is competitive with AdamW (Loshchilov
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and Hutter, 2017), the de-facto optimizer used by practitioners e.g. when
training large language models (Brown et al., 2020). We note that, in con-
trast to AdamW, our optimizer enjoys stronger theoretical guarantees
such as convergence to a ball around the solution for every hyperparam-
eter value (cf. Défossez et al., 2022).

Figure 41: Training CIFAR10 on a ResNet18 (11M parameters). Shown is the train-
ing loss for SGD (without momentum, in green) with stepsize γ =
[0.01, 0.03, 0.1, 0.3, 1] and NGN-stoch with σ = [0.1, 0.3, 1, 3, 10] (in red).
No scheduling is used for γ and σ, and the batch size for each method is
128 (NGN-stoch is the mini-batch version of NGN-stochastic). Highlighed are
the best hyperparameter options, γ = 0.03, σ = 3.
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Figure 42: Training Imagenet on a ResNet50 (23M parameters). Shown is the training
loss for SGD (with momentum), AdamW (Loshchilov and Hutter, 2017) and
NGN-stoch. Piecewise constant scheduling is used for η and σ, the regularizer
strength is 1e− 4 and the batch size is 128.
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And I enter the fields and roomy chambers of memory, where are the
treasures of countless images, imported into it from all manner of
things by the senses. There is treasured up whatsoever likewise we
think, either by enlarging or diminishing, or by varying in any way
whatever those things which the sense has arrived at; yea, and what-
ever else has been entrusted to it and stored up, which oblivion has not
yet engulfed and buried.

– St. Augustine

Throughout this thesis, we have demonstrated the effectiveness of adap-
tive momentum methods in training complex loss landscapes. In Chap-
ter 3, we presented how the Adam optimizer handles both flat saddle
points at initialization of deep unnormalized MLPs and challenging non-
isotropic curvatures within the transformer architecture. In Chapter 4, we
introduced NGN, a novel stepsize which enables automatic learning rate
warm-up, facilitating training in scenarios where the gradient Lipschitz
constant undergoes changes along the optimizer trajectory.
Based on our discussion, it appears that the key factor for successful
training lies in the design of the optimizer. In this chapter, we want to
showcase that sometimes a good optimizer is not enough — careful
parametrization and normalization of the model is crucial — in chal-
lenging settings such as training deep Recurrent Neural Networks (RNNs)
to state-of-the-art performance in long-range reasoning tasks.
The contribution presented in this chapter is, as opposed to the previous
chapters, not a new optimizer or a novel analysis, but instead a new inter-
pretable architecture for sequence modeling (Orvieto et al., 2023c, Oral at
ICML2023). Our motivation for revisiting the old optimization problem
of training recurrent models (Bengio et al., 1994) — which leads to van-
ishing/expoding gradients (Pascanu et al., 2013) — is a well-known issue
with transformers: inference and memory complexity scales quadrati-
cally with the sequence length.

129
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The structure of this chapter is as follows: in Section 5.1 we give addi-
tional motivation and summarize of the takeaways of our work; in Sec-
tion 5.2 we provide a review of RNNs as well as of recently introduced
sequence-to-sequence models like S4 (Gu et al., 2021). In Section 5.3, fol-
lowing Orvieto et al., 2023c we show how to design performant deep
RNNs, and expand on interesting optimization issues in Section 5.4. Last,
in Section 5.5 we present our latest work (Orvieto et al., 2023a) on univer-
sal approximation properties of the architecture studied in this Chapter.

Question: The attention mechanism, pervasive in modern deep learn-
ing due also to its high scalability, has provided incredible advances.
For tasks that require reasoning along thousands or millions of to-
kens (e.g. music generation, protein structure prediction, biological
signal processing), a direct implementation of attention becomes in-
tractable (complexity quadratic in the sequence length). On the other
hand, RNNs are not easy to scale and suffer from fundamental training
issues such as vanishing/exploding gradients. However, inference and
memory complexities for RNNs are lower than attention: proportional
only to the sequence length.
Can a modern take on the fundamental issues of RNNs lead to a new
architecture capable of dealing with challenging sequential data?

Answer (Orvieto et al., 2023c): It is possible to successfully train deep
RNNs. Yet, in combination with an adaptive optimizer, fundamental
architectural modifications (which do not lead to a change in model ex-
pressivity) are needed. We start from a vanilla stack of tanh RNNs and
provide a sequence of theory-inspired steps towards the LRU, a mod-
ern recurrent mechanism that avoids vanishing/exploding gradients
and reaches state-of-the-art on the long-range arena (Tay et al., 2020).
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5.1 motivation and main steps

Recurrent neural networks (RNNs) have played a central role since the
early days of deep learning, and are a natural choice when modelling
sequential data (McCulloch and Pitts, 1943; Hopfield, 1982; Rumelhart
et al., 1985; Elman, 1990). However, while these networks have strong
theoretical properties, such as Turing completeness (Kilian and Siegel-
mann, 1996; Chung and Siegelmann, 2021), they can be hard to train in
practice. In particular, RNNs suffer from the vanishing and exploding
gradient problem (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al.,
2013), which makes it difficult to learn the long-range dependencies in
the data. Several techniques were developed that attempt to mitigate this
issue, including orthogonal/unitary RNNs (Arjovsky et al., 2016; Hel-
frich et al., 2018), and gating mechanisms such as long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997b) and gated recurrent
units (GRUs) (Cho et al., 2014). Nonetheless, these models are still slow
to optimize due to the inherently sequential nature of their computation
(Kalchbrenner et al., 2016), and are therefore hard to scale.

In recent years, Transformers (Vaswani et al., 2017) have gained increas-
ing prominence for sequence modelling tasks, achieving remarkable suc-
cess in a wide range of applications (Brown et al., 2020; Dosovitskiy et al.,
2020; Jumper et al., 2021). Compared to RNNs, attention layers are easier
to scale and parallelize during training, and crucially they do not suffer
from the vanishing gradient problem, since the interaction between any
two tokens in the sequence is modeled by direct edges in the network.
A key issue with attention layers however is that their computation and
memory costs scale quadratically as O(L2) for sequence length L. Trans-
formers can therefore be expensive to deploy on long sequences. RNNs,
which scale linearly with the sequence length, are faster than transform-
ers at inference even for modest sequence lengths (Liu et al., 2019a).

Motivated by these problems, Gu et al., 2021 recently introduced the S4
model, a carefully designed deep state-space model (SSM) that achieves
remarkable performance on tasks from the Long Range Arena (LRA)
(Tay et al., 2020), a benchmark explicitly designed to require very long-
ranged reasoning. The S4 layer and its variants (DSS, S4D, Liquid S4,
S5, etc) (Gupta et al., 2022a; Gu et al., 2022a; Hasani et al., 2022; Smith
et al., 2022) overcome the O(L2) bottleneck of attention layers by model-
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ing interactions between tokens sequentially using a hidden state. These
models are therefore very efficient at inference time as we can simply un-
roll the recurrent layer like an RNN. Futhermore, since SSMs are linear in
the temporal dimension, they are easily parallelizable during training, in
contrast to the slow sequential nature of training nonlinear RNNs. This
makes them very computationally efficient on long sequences.
While the S4 model is equivalent to an RNN during inference, it has
a number of unique characteristics during training. For example, S4

is parameterized as a discretization of a latent continuous-time system
of differential equations, and it uses specific initializations of the state
matrices motivated from the theory of polynomial projections (Gu et al.,
2020). While these characteristics might seem to motivate the impressive
performance of these models, later works (Gu et al., 2022a; Smith et al.,
2022; Gupta et al., 2022a; Gupta et al., 2022b) have suggested that the
specific initialization used by S4 is often not crucial for performance, and
that the discretization rules which achieve best performance may not
be the most accurate in theory (Smith et al., 2022). It is therefore unclear
what these unique characteristics of deep SSMs are doing mechanistically,
and how they can be simplified.
Motivated by the striking similarities between RNNs and deep SSMs, and
in an attempt to better understand the underlying mechanism driving
the performance of these models, we study the power and limitations
of RNNs when used as core components of deep architectures for long-
range reasoning. Our main goal is to answer the question:

“Can we match the performance and efficiency
of deep continuous-time SSMs using deep RNNs?”

We give a positive answer to this question. We show that the performance
boost provided by deep SSMs like S4 can also be achieved via a series
of small changes to a vanilla deep RNN. With these changes, we can
recover the performance and efficiency of deep SSMs on the Long Range
Arena (LRA) benchmark (Tay et al., 2020). We call this new RNN model
the Linear Recurrent Unit (or LRU for short).

main steps . We outline here the main steps needed to design perfor-
mant and efficient RNN models. While some of these observations ap-
pear in prior works (see the related work section in the appendix of Orvi-
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Figure 43: Left: Our final architecture is a stack of Linear Recurrent Units (LRU), with
nonlinear projections in between, and also uses skip connections and normal-
ization layers like batch/layer normalization. We expand on model details in
the Appendix of Orvieto et al., 2023c. We use the same architecture struc-
ture (Norm-Recurrence-GLU-Skip) for every variant of recurrent module in
our study (tanh dense, linear dense, etc..). Right: Summary of performance
for each of the main steps outlined in the introduction to design LRUs start-
ing from tanh RNNs. We show the average performance on the Long Range
Arena (LRA) across 3 seeds at each step, and also provide the average perfor-
mance of deep SSMs. For all LRA tasks, the LRU matches the performance of
deep SSMs like S4/S4D/S5. Detailed results in Sec. 5.3.

eto et al., 2023c), we provide novel perspectives and careful ablations
leading to new insights. Each step presented in this chapter unveils a
specific property of recurrent networks, and showcases the challenges
and best practices in training deep RNNs.

• Linear Recurrences. When replacing SSM layers in a deep architecture
with vanilla RNN layers using tanh or ReLU activations, the perfor-
mance on Long Range Arena (LRA) drops significantly. Surprisingly,
in Sec. 5.3.1 we find that simply removing the nonlinearities in the re-
currence of the RNN (i.e., using linear recurrences) gives a substantial
boost in test accuracy. We motivate this effect in Sec. 5.5 by showing
that stacking linear RNN layers and nonlinear MLP blocks (Fig.43) can
model complex nonlinear sequence-to-sequence maps without requir-
ing nonlinearities in the recurrence. While dropping the nonlinearity
does not harm expressivity, it leads to several advantages, from the
ability to directly control how quickly the gradients might vanish or
explode, to allowing us to parallelize training. Our findings also mo-
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tivate the success of deep SSMs, where the recurrence is also linear.

• Complex Diagonal Recurrent Matrices. Dense linear RNN layers can
be reparameterized to a complex diagonal form without affecting the
expressivity of the network or the features at initialization (Sec. 5.3.1
and Sec. 5.5). Diagonal linear RNN layers additionally allow for a
highly parallelizable unrolling of the recurrence using parallel scans
to substantially improve training speeds (Martin and Cundy, 2017).
We validate that these observations, which have been leveraged by
prior SSMs (Gupta et al., 2022a; Smith et al., 2022), also provide im-
portant efficiency improvements for linear RNN layers.

• Stable Exponential Parameterization. In Sec. 5.3.3 we show that us-
ing an exponential parameterization for the diagonal recurrent matrix
has important benefits. Crucially, this enables us to easily enforce sta-
bility during training, which in turn allows us to modify the initializa-
tion distribution to facilitate long-range reasoning and improve perfor-
mance. Our results indicate that rather than the specific deterministic
initializations used by several recent SSMs, it is the eigenvalue distri-
bution of the recurrent layer at initialization that determines whether
or not the model can capture long-range reasoning.

• Normalization. In Sec. 5.3.4 we show that normalizing the hidden
activations on the forward pass is important when learning tasks
with very long-range dependencies. With this final modification, our
RNNs can match the performance of deep SSMs on all tasks in the
LRA benchmark. Connecting back to state-space models, we show in
Sec. 5.6 how our normalization scheme can be linked to the discretiza-
tion structure in S4.

We summarize the deep Linear Recurrent Unit (LRU) architecture used
in this chapter, and the effect of each of the above steps on performance
in Fig.43. We emphasize that the main purpose of our work is not to sur-
pass the performance of S4-based models, but rather to demonstrate that
simple RNNs can also achieve strong performance on long range reason-
ing tasks when properly initialized and parameterized. We believe the
insights derived in this chapter can be useful to design future architec-
tures, and to simplify existing ones.
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5.2 a primer on rnns and the s4 block

In this section, we compare the key architectural components (RNNs
and SSMs) studied in this work, and also describe our methodology and
experimental setup. For a more thorough discussion including related
architectures, we refer the reader to our related work section in Orvieto
et al., 2023c. We give an overview of the main architectural components
considered in this chapter, focusing on the major differences between
Vanilla RNNs and recent S4-like deep SSMs (Gu et al., 2021; Gu et al.,
2022a; Gupta et al., 2022a; Smith et al., 2022).

vanilla rnn recap. Let (u1, u2, . . . , uL) be an Hin-dimensional in-
put tokens sequence, which can be thought of as either the result of in-
termediate layer computations (which keep the sequential structure) or
as the initial input. An RNN layer with N-dimensional hidden state com-
putes a sequence of Hout-dimensional outputs (y1, y2, . . . , yL) through
a recurrent computation1 using learnable parameters A ∈ RN×N , B ∈
RN×Hin , C ∈ RHout×N , D ∈ RHout×Hin :

xk = σ(Axk−1 + Buk), yk = Cxk + Duk, (120)

starting from x0 = 0 ∈ RN . σ here denotes a nonlinearity, often chosen
to be a tanh or sigmoid activation. If σ is the identity function, then we
say the RNN layer is linear.

s4-like recurrent layer . We present a simplified2 version of the
S4 recurrence introduced in Gu et al., 2021. The input (u0, u1, . . . , uL−1)
is now seen as the result of sampling a latent continuous-time signal
uct : R≥0 → RHin at multiples of a stepsize ∆ > 0: i.e. uct(∆k) := uk for all
k ∈ 0, . . . , L− 1. The output sequence (y0, y1, . . . , yL−1) is then sampled,

1 We do not use bias parameters as they can be incorporated into the MLP blocks preceding
and following the RNN block. Classical RNNs also included a nonlinearity on the output
yk = σout(Cxk + b) with D = 0. Having D ̸= 0 basically introduces a skip connection, and the
σout can be thought of as part of the MLP following the RNN.

2 This version is most similar to S5 (Smith et al., 2022), but is here presented for ease of reason-
ing for a single discretization parameter ∆, shared across input dimensions. See our related
works in Orvieto et al., 2023c for details.
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again with stepsize ∆, from the signal yct : R≥0 → RHout computed by the
following continuous-time state-space model, initialized at xct(0) = 0:

d
dt

xct(t) = Ãxct(t) + B̃uct(t),

yct(t) = Re
[
C̃xct(t)

]
+ D̃uct(t), (121)

where Re(p) denotes the real part of a complex-valued vector p, Ã =
diag(ã) with ã ∈ CN , B̃ ∈ CN×Hin , C̃ ∈ CHout×N and D̃ ∈ RHout×Hin .
Aside from the use of continuous time, the most striking differences com-
pared to Eq.(120) are (a) the computation on the right-hand-side is linear
in the hidden state and the input, and (b) most parameters are complex
valued, with Ã diagonal. While B̃, C̃, D̃ follow complex random or uni-
form initialization, the transition matrix Ã is structured, i.e., initialized
deterministically through HiPPO theory (Gu et al., 2020) in diagonal form.
Common choices (Gu et al., 2022a) are ãn = − 1

2 + iπn (S4D-Lin) and

ãn = − 1
2 + i N

π

(
N

n+1 − 1
)

(S4D-Inv), for n = 1, 2, . . . , N.
For training and inference, the continuous-time system in Eq.(121) is
discretized at stepsize ∆ using the Zero-Order-Hold (ZOH) or Bilinear
method. The ZOH method gives

xk = Axk−1 + Buk, yk = Cxk + Duk, (122)

where x−1 = 0, A = exp(∆Ã), B = (A − I)Ã−1B̃, C = C̃ and D = D̃,
and exp denotes the matrix exponential. Under the assumption that uct is
constant in between timestamps (which can be thought of as a modeling
assumption), this numerical integration is exact (Jacquot, 2019). Moreover,
note that all these discretization operations can be quickly performed
element-wise since Ã is diagonal.

key differences . We now highlight some of the most important dif-
ferences between RNNs and SSMs:

• Since Eq.(122) is linear, it can be efficiently parallelized until k =
L− 1 using parallel scans (Martin and Cundy, 2017; Smith et al., 2022),
unlike a nonlinear RNN where the computation has to be performed
sequentially.

• While Eq.(122) is similar to the linear RNN computation, we note that
(a) A and B are parameterized in a peculiar way prescribed by dis-
cretization, and (b) these matrices share parameters (e.g. ∆ affects
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both A and B). These differences are critical as in SSMs learning is
performed on the continuous-time parameters Ã, B̃, C̃, D̃, ∆; hence pa-
rameterization choices directly affect optimization.

• Unlike RNNs, most SSMs use complex-valued diagonal recurrent ma-
trices that are initialized deterministically using HiPPO theory. The
literature attributes much of the success of SSMs to the specific initial-
ized used (Gu et al., 2021; Gupta et al., 2022a; Gu et al., 2022b).

The points above motivate our investigation. We consider the same ar-
chitecture as Gu et al., 2021; Gu et al., 2022a and Smith et al., 2022, but
replace the SSM layer in the recurrent core by an RNN. We then study
which steps need to be taken to gradually retrieve S4-like performance
on LRA (Tay et al., 2020) tasks. The effectiveness of each of our steps
is supported by empirical evidence and theoretical considerations, and
leads to the architecture shown in Fig.43.

experimental setup. We consider the Long Range Arena bench-
mark (Tay et al., 2020), a set of tasks designed to test the ability of models
to do long-range sequence modelling (we use coloured images instead of
grayscale images for the sequential CIFAR-10 classification task). Trans-
formers fail to perform well on most of these tasks, while deep SSMs
have shown remarkable performance on these tasks (Gu et al., 2021; Dao
et al., 2022). This makes it an appropriate benchmark to explore the long-
range modelling capabilities of deep RNNs.

For all experiments, we use a network of 6 layers with residual connec-
tions and layer/batch normalization (Ioffe and Szegedy, 2015; Ba et al.,
2016) similar to Gu et al., 2021 (see Fig.43). We replace SSM layers with
RNN layers with roughly the same number of parameters, building up
to our LRU in a sequence of steps (see Sec. 5.3). All experiments are
repeated three times, and we report the mean and standard error. We
train using the AdamW optimizer (Loshchilov and Hutter, 2017), using
a smaller learning rate and no weight decay on the recurrent parameters,
as suggested by Steil, 2004; Gu et al., 2021. We tune hyperparameters
such as learning rates for all models on a logarithmic grid for best accu-
racy. See the appendix of this thesis for more details.
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Recurrence sCIFAR ListOps Text Retrieval

RNN-ReLU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1)

RNN-Tanh 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2)

RNN-Lin 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1)

Table 3: The effect of removing the nonlinearity from the recurrent unit on test accuracy
(Sec. 5.3.1). We show results only for the sCIFAR, ListOps, Text and Retrieval,
as these models did not exceed random guessing on PathFinder/PathX (further
improvements in Tb.4&5). Performance of deep SSMs shown in Tb.5.

5.3 how to design trainable deep rnns

In this section, we discuss the fundamental steps needed for designing
RNNs to reach the impressive performance of deep SSMs on the LRA
benchmark. We present these steps, already outlined in the introduction,
in logical order, and support each claim with experimental evidence and
theoretical considerations (discussed further in section Sec. 5.4).
We consider the architecture of Fig.43, where the recurrent computation
is gradually modified starting from a vanilla RNN. We start by showcas-
ing the advantage of using linear recurrences in Sec. 5.3.1; then, in the
same section, we show how to speed-up training and inference without
affecting expressivity or the initialization distribution. In Sec. 5.3.3, we
discuss how (and why) changing the parameterization and initialization
distribution enables us to make the RNN stable and improve long-range
modeling. In Sec. 5.3.4, we finalize the LRU architecture by proposing a
normalization strategy for the hidden activations that results in a close
match in performance with SSMs.

5.3.1 Linear RNN Layers are Performant

One of the main findings of our work is that linear RNN layers can be
surprisingly expressive when coupled with nonlinear MLPs or GLUs
(Dauphin et al., 2017), outperforming tuned nonlinear RNN variants.
In Tb.3, we show that simply removing3 the nonlinearity, and therefore
computing the next state as xk = Axk−1 + Buk, is able to improve test

3 All other settings in the recurrent block match the Vanilla RNN Haiku module (Hennigan
et al., 2020). All matrices have Glorot initialization (Glorot and Bengio, 2010). The overall
architecture is as in Fig.43, with the LRU block replaced by an RNN.
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accuracy on most LRA tasks. While the boost provided by vanilla linear
RNN blocks leads to performance which is still far behind S4 on some
tasks (sCIFAR, PathFinder and PathX), this first finding motivates us to
drop nonlinearities in the recurrence for the rest of this chapter. In later
sections, we leverage the linearity of the recurrence to significantly speed
up training as well as derive principled initialization and normalization
principles to learn long-range dependencies. We note that, on the Text
and Retrieval tasks, performance using vanilla RNNs already matches
performance of deep SSMs (see Tb.5 for the performance of S4/S4D/S5).

The empirical result in Tb.3 is surprising, since recurrent nonlinearities
are believed to be a key component for the success of RNNs — both in
theory and in practice (Siegelmann, 2012; Pascanu et al., 2013; Erichson
et al., 2021). Indeed, a strong property of single-layer sigmoidal and tanh
RNNs is Turing completeness, which cannot be achieved by the linear
variant (Stogin et al., 2020; Chung and Siegelmann, 2021). However, the
architecture we use (Fig.43) is deeper than a standard RNN and includes
nonlinearies, placed position-wise after each RNN block. In Sec. 5.5, we
investigate how the expressivity and trainability of deep models is af-
fected by recurrent nonlinearities. We prove that linear RNNs interleaved
with position-wise multi-layer perceptrons (MLPs) can approximate arbi-
trarily well any sufficiently regular nonlinear sequence-to-sequence map.
The main idea behind our result is to see recurrent layers as compression
algorithms that can faithfully store information about the input sequence
into an inner state, before it is processed by the highly expressive MLP.

complex diagonalization. We now show that we can significantly
speed up training and inference for deep linear RNNs without losing per-
formance by using complex-valued diagonal recurrent matrices. While
the idea of diagonalizing linear systems for computational efficiency is a
dominating feature of all deep SSMs, following the introduction of DSS
by Gupta et al., 2022a, in this section we construct our diagonalized ver-
sion to exactly match the initialization spectrum of the Glorot-initialized
deep linear RNN in Tb.3. Our main purpose with this approach is to
disentangle the effects of initialization and diagonalization on performance.

We start by recalling some useful linear algebra elements, and then pro-
ceed in Sec. 5.3.2 with a discussion on how to diagonalize the recurrence
while preserving the eigenvalue spectrum at initialization.
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Figure 44: (First, Second, Third plots) Eigenvalues of A ∈ RN×N following Glorot ini-
tialization: each entry of A is sampled independently from a Gaussian (mean
0, variance 1/N). The eigenvalues are complex (A is not symmetric) and are
represented on the complex plane. The black circle is the unit disk. The limit
behavior (uniform initialization) is predicted by Thm. 5.3.1. (Fourth plot)
Eigenvalues of a diagonal matrix A with entries sampled using Lemma 5.3.1.
For rmin = 0, rmax = 1, the distribution coincides with Glorot init. in the
limit.

The recurrence xk = Axk−1 + Buk can be unrolled easily using the as-
sumption that x−1 = 0 ∈ RN :

xk =
k−1

∑
j=0

AjBuk−j. (123)

effects of diagonalization. Exponentiations of the matrix A in
the equation above are the source of the well-known vanishing/explod-
ing gradient issue in RNNs (Bengio et al., 1994; Pascanu et al., 2013).
While in nonlinear RNNs the state xk is forced to live on the compact
image of the activation function, the hidden-state of our linear variant
can potentially explode or vanish exponentially as k increases. This phe-
nomenon can be better understood by leveraging an eigenvalue (a.k.a. spec-
tral) analysis: up to an arbitrarily small perturbation of the entries, every
matrix A ∈ RN×N is diagonalizable4 (Axler, 1997), i.e. one can write
A = PΛP−1, where P ∈ CN×N is an invertible matrix and

Λ = diag(λ1, λ2, . . . , λN) ∈ CN×N . (124)

Unlike the symmetric setting where eigenvalues and eigenvectors are
real, in the non-symmetric case5 one has to allow for complex entries to

4 In other words, the set of non-diagonalizable matrices has measure zero, see e.g. Zhinan, 2002

for a proof idea.
5 Take e.g. A = ((0, 1)(−1, 0)). The solution to the standard eigenvalue equation gives λ = ±i,

where i is the imaginary unit.
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achieve full equivalence. Plugging the decomposition A = PΛP−1 into
Eq.(123) and multiplying both sides by P−1, we get

x̄k =
k−1

∑
j=0

Λj B̄uk−j, (125)

where x̄k := P−1xk, B̄ := P−1B. The output can then be computed as
yk = Re[C̄x̄k] + Duk ∈ RH , where C̄ = CP−1, and we take the real part
of C̄x̄k. Therefore, instead of learning (A, B, C, D), one can equivalently
learn (Λ, B̄, C̄, D), where Λ, B̄, C̄ are complex valued, and Λ is diagonal.
For additional insights on the effectiveness of complex numbers in this
setting, the reader is invited to check Section 5.5.

stability. Since x̄k = ∑k−1
j=0 Λj B̄uk−j, the norm of component j of x̄ at

timestamp k evolves such that |xk,j| = O(|x̄k,j|) = O(|λj|k). Therefore, a
sufficient condition to ensure stability (i.e. xk does not explode) is there-
fore to require |λj| < 1 for all j (Gu et al., 2021).

5.3.2 Efficient Learning the Diagonalized Space

Learning recurrent linear systems in diagonal form provides substantial
computational speedups both for training and inference. For example, in
our implementation of sCIFAR, we found diagonal linear RNNs to be
∼8 times faster to train than a dense RNN with ReLUs, matching the
speed of our implementations of S4D and S5. The main reasons for this
computational benefit are that (a) taking powers of diagonal matrices is
trivial (speeding up both training (see also Li et al., 2018) and inference),
while exponentiating dense matrices is computationally expensive, and
(b) while nonlinear recurrences must be computed sequentially, unrolling
a linear recurrence can be parallelized using associative scans, resulting
in faster training (Smith et al., 2022) (App. E.1).

equivalent initialization. To disentangle the benefits of diago-
nal linear systems from the role of initialization, we seek an initializa-
tion for the diagonal system which keeps the eigenvalue spectrum of the
recurrence unchanged when comparing our diagonal system with the
dense linear RNN in Sec. 5.3.1, where A followed Glorot initialization.
We use a classical result from random matrix theory (Ginibre, 1965):



142 solving a challenge : designing trainable deep rnns

Theorem 5.3.1 (Strong circular law). Let µN be the empirical spectral mea-
sure of AN ∈ RN×N , with i.i.d. Gaussian entries, each with zero mean and
variance 1/N. Then, µN converges weakly almost surely as N → ∞ to the
uniform probability measure on {|z| ≤ 1} ⊆ C.

The theorem above (used also by Rajan and Abbott, 2006), illustrated in
Fig.44, shows that under Glorot initialization the spectrum of a dense
matrix A is de-facto sampled from the unit disk in C. This result mo-
tivates the strong performance of linear RNNs in Sec. 5.3.1, since it
implies Glorot initialization provides an approximately stable initializa-
tion. Theorem 5.3.1 allows us to identify an equivalent spectral initial-
ization for the diagonal system, which matches exactly for the large
width limit: Λ should be diagonal with entries sampled uniformly on
the unit disk. Using the definition of exponential of a complex number:
exp(−ν + iθ) := e−ν(cos(θ) + i sin(θ)), we adopt a simple scheme for
sampling on a ring in between circles with radii rmin and rmax in C:

Lemma 5.3.1. Let u1, u2 be independent uniform random variables on the in-
terval [0, 1]. Let 0 ≤ rmin ≤ rmax ≤ 1. Compute

ν = −1
2

log
(

u1(r2
max − r2

min) + r2
min

)
, and θ = 2πu2,

then, exp(−ν + iθ) is uniformly distributed on the ring in C between circles of
radii rmin and rmax.

We recover the spectrum of Glorot-initialization (in the limit of infinite
width) by setting rmin = 0 and rmax = 1 (we will explore tuning these
hyper-parameters in Sec. 5.3.3). Tb.4 (first two rows) shows the results
of learning deep linear RNNs in complex diagonal form,6 where each
diagonal entry of Λ is initialized uniformly on the unit disk in C using
Lemma 5.3.1 with [rmin, rmax] = [0, 1]. In our experiments, B̄, C̄ (which we
rename for convenience back to B and C) follow Glorot initialization for
both real and imaginary parts (parameterized separately), with halved
variance in each component to preserve lengths on the input-output pro-
jections (Glorot and Bengio, 2010). Finally, after the SSM computation,
only the real part is kept (as in Gupta et al., 2022a; Gu et al., 2022a).

6 To avoid issues with backpropagation on complex variables, each complex parameter in the
network is stored and learned as a pair of floats encoding the real and imaginary parts.
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Surprisingly, our results in Tb.4 show that diagonalizing the recurrence
improves accuracy on tasks like ListOps and sCIFAR. More importantly,
it drastically reduces training and inference time on all LRA tasks (see
Tb.8 in Sec. E.1 for training speed comparisons), making the RNN just as
fast to train as deep SSMs like S4D and S5.

5.3.3 Benefits of Stable Exponential Parameterization

In Sec. 5.3.1 we showed that moving to complex diagonal recurrences im-
proved performance and is computationally efficient. However we also
found that learning the diagonal model can be more unstable than learn-
ing the dense model in some experiments. To learn long-range dependen-
cies and avoid vanishing gradients, eigenvalues in the recurrence need to
have magnitude close to 1 (Gu et al., 2022b; Gupta et al., 2022a); however,
these large eigenvalues may also make the system unstable during train-
ing. In this section, we show the benefits of a stable parameterization of
the RNN, and of tuning rmin and rmax (see Lemma 5.3.1).

easier optimization with exponential parameterization.
Lemma 5.3.1 suggests a natural parameterization of the diagonalized
RNN as Λ = diag(exp(−ν + iθ)) with ν ∈ RN and θ ∈ RN as the
learnable parameters (instead of the real and imaginary parts of Λ). As
we explain in Sec. 5.4, this choice decouples eigenvalue magnitude and
oscillation frequency, making optimization with Adam easier. The pos-
itive effects of this exponential parametrization, which resembles some
features of ZOH discretization (see Sec. 5.2 and Sec. 5.6) can be observed
in the third row of Tb.4. Notably, the performance on PathFinder rises
above random chance for the first time.

enforcing stability. An important benefit of the exponential pa-
rameterization is that it makes it simple to enforce stability on the eigen-
values. To see this, note that at initialization, |λj| = | exp(−νj)| ≤ 1 since
νj > 0. Therefore, to preserve stability during training, we can use an
exponential or another positive nonlinearity:

λj := exp(− exp(νlog
j ) + iθj), (126)
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where νlog ∈ RN is the parameter we optimize, and we set ν
log
j := log(ν)

at initialization. Note that a similar idea is used in deep SSMs (Gu et al.,
2021) in the context of discretization. We choose an exponential nonlin-
earity over a simple ReLU nonlinearity to increase granularity around
|λ| = 1, achieved at νlog = −∞ (while |λ| = 0 is achieved at νlog = ∞).
Stable parameterization helps on most LRA tasks. In the fourth row of
Tb.4, we show its effects on sCIFAR, ListOps and Pathfinder. We observe
the most drastic improvement on Pathfinder, one of the harder tasks in
LRA, where performance now reaches above 93%.
The benefits of the stable parameterization becomes more apparent when
we explore the idea of initializing the eigenvalues of Λ on a ring closer
to the unit disk (increasing rmin closer to 1 in Lemma 5.3.1) to bias the
network towards long range interactions and avoid vanishing gradients.
As discussed in detail in Gu et al., 2022b; Gupta et al., 2022a, for tasks
requiring consideration of interactions between distant tokens, eigenval-
ues in the recurrence need to have magnitude close to 1. Otherwise, as
clear from the diagonal version of Eq.(123), when taking powers of eigen-
values close to the origin, the signal from past tokens quickly dies out.
However, as we show in Orvieto et al., 2023c, without enforcing stability
performance starts to degrade as we increase rmax past 0.9 in the sCIFAR
task. With stability enforced, we can increase rmax up to 0.99 and improve
performance. We see similar benefits on the other tasks where we sweep
different values of rmin and rmax.
Finally, note that while we explore changing the magnitude of the eigen-
values of Λ in this section, in Sec. 5.3.4 we also show the benefits of
initializing the eigenvalues to have a small phase to learn more global
patterns, which is useful on very long-range reasoning tasks (e.g. PathX).

5.3.4 Additional Considerations for Long-range Tasks

Up to this point, our model did not succeed on PathX, the hardest dataset
in the LRA benchmark, with a sequence length of 16k tokens. In this sec-
tion, we discuss two final modifications which improve our model’s abil-
ity to learn very long-range dependencies, and finalize our LRU model.

normalization. In Sec. 5.3.3, we initialized the eigenvalues of Λ
close to the unit disk for better performance on long-range tasks. How-
ever, we observed that as we moved rmin and rmax closer to 1, the train-
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sCIFAR ListOps Pathfinder

Dense A 72.2 (0.2) 50.4 (0.2) %

Λ Real + Im 86.5 (0.1) 58.8 (0.3) %

Λ Exp 85.4 (0.7) 60.5 (0.3) 65.4 (9.0)

Λ Stable Exp 87.2 (0.4) 59.4 (0.3) 93.5 (0.5)

+ Ring Init 88.1 (0.0) 59.4 (0.3) 94.4 (0.3)

Table 4: Test accuracy of linear diagonal complex RNNs under different parametrizations
of the transition matrix (see Sec. 5.3.1). These results improve on the results
in Tb.3, and showcase the advantage of an exponential (polar) representation
for Λ. Ring Init denotes a changed initialization where rmin and rmax are tuned.
Performance on the Text and Retrieval tasks is not shown as linear RNNs already
match the performance of S4 (c.f. Tb.3 with Tb.5).

ing loss also started to blow up at initialization (see Fig.45). In this sec-
tion, we first present a result explaining this phenomenon, before deriv-
ing a practical normalization scheme for the hidden activations to tackle
this problem and further improve performance.

Theorem 5.3.2 (Forward-pass blow-up). Let Λ be diagonal with eigenvalues
sampled uniformly on the ring in C between circles of radii rmin < rmax < 1.
Under constant or white-noise input and Glorot input projection, the squared
norm of the state xk converges as k→ ∞ to:

E[∥x∞∥2
2] =

1
r2

max − r2
min

log

(
1− r2

min
1− r2

max

)
E[∥Bu∥2

2].

This result (related to similar propositions for Echo-State Networks Couil-
let et al., 2016) has the following intuitive form if rmin = rmax = r: if we
initialize ρ-close to the unit disk, the forward pass blows up by a fac-
tor 1/ρ (since the contributions from previous states will take longer to
decay). Let ϵ = r2

max − r2
min and ρ = 1− r2

max, then:

lim
ϵ→0

E[∥x∞∥2
2]

E[∥Bu∥2
2]

= lim
ϵ→0

[
1
ϵ

log
(

1 +
ϵ

ρ

)]
=

1
ρ
=

1
1− r2 . (127)

Towards the derivation of an effective normalization scheme for the for-
ward pass, we present a simplified derivation of the 1/ρ gain formula
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sCIFAR ListOps Text Retrieval Pathfinder PathX

LRU 89.0 60.2 89.4 89.9 95.1 94.2

S4 91.1 59.6 86.8 90.9 94.2 96.4

S4D 89.9 60.5 86.2 89.5 93.1 91.9

S5 90.1 62.2 89.3 91.4 95.3 98.6

Table 5: Performance of the final LRU architecture after adding γ normalization to the
diagonal RNN with stable exponential parameterization and initialization on the
ring (see Sec. 5.3.4). For PathX, we additionally use a smaller eigenvalue phase
at initialization. We sweep rmin, rmax and learning rate. We report results from
the S4/S4D and S5 papers for comparison. The LRU reaches similar performance
to deep SSMs on all LRA tasks..

for the one-dimensional setting under white-noise input7: let Λ = λ ∈ C,
and B = 1. Let p∗ denote the conjugate of p ∈ C, we have that |p|2 =
p∗p and in expectation over the input, using Eq.(123) and the fact that
E[uk−iuk−j] = 0 for i ̸= j:

E|xk|2 = E

( k−1

∑
i=0

λiuk−i

)( k−1

∑
j=0

λjuk−j

)∗ (128)

=
k−1

∑
i,j=0

λi(λj)∗E[uk−iuk−j] =
k−1

∑
i=0
|λ|2i ∞→ 1

1− |λ|2 .

Since the formula above holds for every Euclidean direction in our re-
currence (Λ is diagonal), we add a normalization parameter that is ini-
tialized element-wise. Note as λ approaches 1, (1− |λ|2) approaches 0,
making further adaptations of this parameter via SGD hard. We there-
fore use normalization parameter γlog ∈ RN , initialized element-wise as
γ

log
i ← log(

√
1− |λi|2),8 and modify the recurrence as:

xk = Λxk−1 + exp(γlog)⊙ (Buk), (129)

where ⊙ denotes the element-wise product. The γ parameter enables the

7 We use the random input assumption for our normalization scheme as we found it to work
well in practice.

8 We also tried setting γi to
√

1− |λi |2 in each training iteration, and found it to work similarly
to a trainable γ.



5.3 how to design trainable deep rnns 147

RNN to adaptively scale the input for each eigendirection. This consis-
tently improves performance on tasks that benefit from initializing close
to the unit disk, such as sCIFAR and Pathfinder, as shown in Tb.5.

reducing eigenvalue phase at initialization. We have Λ =
diag(exp(− exp(νlog) + θ)), where νlog ∈ RN is the vector of log eigen-
value magnitudes and θ ∈ RN the vector of eigenvalue phases. While νlog

encodes the distance to the origin, θ is the angle from the vector 1 + 0i.
For long sequences, initializing θ ∼ [0, 2π] uniformly implies that most
state entries will exhibit a large number of oscillations at initialization
(see upper panel in Fig. 46). Equivalently, in this setting, most state di-
mensions are the result of convolutions9 capturing an average of local
oscillation patterns. This behavior is independent from the ability of cap-
turing long-range dependencies (controlled by νlog), but pertains to the
nature of the information stored by the RNN. Therefore, initializing Λ
with uniform phase on long sequence data inherently biases the network
towards learning spurious features in the input sequence. The model can-
not recover from this suboptimal initialization. Indeed we observe that,
for our best model so far on PathX, the training loss after a few iterations
converges to a suboptimal minimizer with random chance test perfor-
mance (see Fig.45). To fix this issue, we found it sufficient to restrict the
range of θ to a thin slice around 0, biasing the model towards learning
global features. Since the optimal values of θ are small, we parameterize
the phase logarithmically: θ = exp(θlog), where θlog is optimized.

Restricting the range of the phase at initialization to be [0, π/10], our
model achieved 94.2% on PathX, aligning with state-of-the-art deep SSMs.
We did not explore using a smaller phase at initialization for the other
LRA tasks, although we believe this might further improve performance
here as well. Note that both γ normalization and restricting the eigen-
value phase at initialization were crucial to solving PathX. We were un-
able to learn when using restricted phase at initialization without also
introducing γ normalization.

With all the components of Sec. 5.3 taken together, we name this new
model the Linear Recurrent Unit (or LRU for short). It provides a flexi-
ble, interpretable, and theoretically principled framework for initializing

9 See Gu et al., 2022a for a discussion of kernel perspectives.
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and learning deep RNNs efficiently, and it matches performance and ef-
ficiency of deep SSMs across all the LRA tasks, as shown in Tb.5.
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Figure 45: Effect of normalization and using a small phase at initialization on the PathX
task. Without normalization, the model presents higher loss values at initial-
ization and quickly converges to a suboptimal value, where train and test ac-
curacy are both at random chance. Adding normalization helps: the train loss
is lower at initialization, and the optimizer is able to escape the suboptimal
region and train accuracy also increases. Interestingly, this model still fails to
generalize. Finally, reducing initialization phase (tuning the range of θ) dra-
matically improves convergence on the training set, while also generalizing to
the test set.
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Figure 46: Evolution of x ∈ R3 under input u = (1, 0, 0, . . . , 0) ∈ R16k . Plotted in
different colors are the 3 components of x. Λ has parameters νj = 5e−5 and
θj sampled uniformly in [0, 2π] or [0, π/50]. For short sequences, such as
L = 1024 (PathFinder), [0, 2π] produces kernels with an acceptable number
of oscillations: information about u0 is recalled only a few times in the state
history. For large L (PathX), the range of the imaginary part at initialization
has to be smaller to obtain a similar effect.
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5.4 optimization of deep rnns

In this subsection we back-up some of our claims about optimization of
linear RNNs in Section 5.3 with experimental findings on toy examples.
Our purpose is to confirm validity of our intuition in the absence of
architecture-dependent confounders: i.e on vanilla RNNs with one layer.

Recurrent nonlinearities slow gradient descent. In Section 5.3 and Sec-
tion 5.5 we showed how linear RNNs can be used as elementary re-
current blocks for the purpose of modeling nonlinear dynamics when
stacked in deep architectures. Similarly, the results in Li et al., 2022a in-
dicate that, to achieve S4 performance, one can equivalently replace the
recurrent core with a collection of convolutions parametrized by filters.
While a single-layer level, a (dense) RNNs (Eq.120) with tanh or sigmoid
activation can express convolutions with filters (Wang et al., 2022b), the
results in Tb. 3 (and Fig. 1(a) in Wang et al., 2022b) indicate an advan-
tage on test accuracy from dropping such nonlinearities in the recur-
rence — i.e. of making the RNN linear. Motivated by this, in Fig. 47

we consider the problem of learning a single one-dimensional convolu-
tion kernel with a single layer RNN, and compare performance of linear
and tanh activations. The sequence length in this problem was 100, and
our data consists in 32 input-output one-dimensional trajectories, where
the output is the result of a convolution with the kernel of elements
hk := 1

10 exp(−0.015 · k) cos(0.04 · k)2, which induces moderate-length
dependencies in the data (see bump in the kernel in Figure 47 at k = 70).
The 32 input sequences are generated sampling random a, c parameters
on a range and have form sin(0.05 · a · k) cos(0.05 · c · k)2. Outputs are
generated by convolving each input by h. Learning is performed using
Adam (Kingma and Ba, 2014) with standard β1, β2 parameters.
Already on this simple task, linear RNNs outperform the tanh variant
even after careful tuning of the stepsize. While the input-output map the
system had to approximate is linear (i.e. a convolution), this result still
indicates that on deep architectures, where the MLPs interleaving RNNs
can quickly perform position-wise nonlinearities lifting the function ap-
proximation class (see Section 5.5), linear RNNs are preferrable.

Exponential Parameterization makes the landscape axis-aligned. Our
experimental results in Section 5.3.3 indicate that linear RNN cores can
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be more effectively learned under exponential parameterization of the
eiganvalues: λ = exp(−ν + iθ). To understand the reason behind this
phenomenon, we go back at the classical (hard) problem of learning pow-
ers (Bengio et al., 1994), crucially linked with linear RNN models (see
Eq. (123)). For a specific planted solution

λ∗ = λ∗r + iλ∗i = exp(−ν∗ + iθ∗), (130)

we consider the problem of minimizing the loss L(λ̂) = 1
2 |λ̂k − (λ∗)k|2,

where k = 100 and λ̂ is generated from two real parameters following
standard ( real + imaginary) or exponential parameterization. Note that
in this paragraph λ∗ ∈ C denotes the solution, not the complex conjugate
of λ. In Fig. 48, we show that as the target phase θ∗ approaches π/2 (i.e.
λ∗ gets close to the imaginary axis), standard parameterization slows
down learning, as the corresponding landscape gets non-axis-aligned
— a feature that does not match well the inner workings of the Adam
optimizer10, which is a diagonal preconditioner (Kingma and Ba, 2014).
Instead, under exponential parameterization, the effects of phase and
magnitude parameters on the powers of λ are more efficiently decouped:
for example, while the real part of λk is simply exp(−kν) using exponen-

tial parameterization, if standard parameterization is used, ℜ
[
λk
]

is a
function of both λr and λi. We noticed that the performance difference
gets most pronounced when the system has to learn how to “turn”: i.e.
the initialization magnitude is correct, but the position on the complex
plane is not (this is the precise setting for Figure 48): while for stan-
dard parameterization changing the phase θ∗ requires a careful balance
between real and imaginary components, for exponential parameteriza-
tion gradients are fully aligned with the phase parameter. This makes
the learning more flexible, a feature which we observed necessary in our
experiments on the Long Range Arena, see Section 5.3.3 and Tb.4.

10 For this problem, vanilla gradient descent cannot be effectively used as the landscape is highly
non-convex, with challenging curvature vanishing as |λ| approaces 0.
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Figure 47: Learning with Adam a one-dimensional convolution with a length-100 ker-
nel using a single-layer RNNs with linear or tanh recurrent activations and
100-dimensional hidden state. Initialization is performed using Glorot on all
quantities for both options. For all learning rates in our grid, the linear variant
is faster to converge.
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Figure 48: Exponential parametrization helps when learning a single complex eigenvalue
λ∗ = exp(−ν∗+ iθ∗), exponentiated 100 times. As λ∗ gets close to the purely
imaginary setting θ∗ = π/2, the geometry of the loss landscape under stan-
dard real+imaginary parametrization becomes suboptimal for the Adam opti-
mizer, which works best in the axis-aligned setting (exponential parametriza-
tion). In the plot, the square denotes initialization , while the star denotes the
solution after 500 iterations.
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5.5 universality of linear rnns + nonlinear projections

For millennia under the name of logic, logic itself and the doctrine
of knowledge have been confused: representing is confused with repre-
senting (with the represented as such), thinking with thinking (with
meaningful sense and proposition), knowing with knowledge (with ev-
ident and grounded truth).

– Edmund Husserl.

In this section, based on our recent paper (Orvieto et al., 2023a), we elabo-
rate on a surprising finding of Section 5.3: recurrent nonlinearities are not
necessary for performance — linear recurrences are enough. We show
here that a family of sequence models based on recurrent linear lay-
ers (including S4, S5 and the LRU) interleaved with position-wise multi-
layer perceptrons (MLPs) can approximate arbitrarily well any suffi-
ciently regular nonlinear sequence-to-sequence map. The main idea be-
hind our result is to see recurrent layers as compression algorithms that
can faithfully store information about the input sequence into an inner
state, before it is processed by the highly expressive MLP.

5.5.1 Background and Notation

Consider length-L sequences of real M-dimensional inputs: (ui)
L
i=1 ∈

RM×L. A nonlinear causal sequence-to-sequence map produces a sequence
of real Mout-dimensional outputs (yi)

L
i=1 as

yk = Tk[(ui)
k
i=1], (131)

where Tk : RM×k → RMout is a nonlinear map. Here, we consider an
approximation of this map using deep networks with linear diagonal
RNNs interleaved with position-wise MLPs (see Fig. 49).

related works . The approximation properties of deep neural net-
works with ReLU activations are well studied. While recent advances
concern the effect of depth (Lu et al., 2017), the study by Pinkus, 1999,
as well as previous works (Funahashi, 1989; Hornik et al., 1989; Hornik,
1991), already established the power of neural networks with a single hid-
den layer, which can approximate arbitrary continuous nonlinear maps
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Figure 49: Linear RNN + position-wise MLP on flattened MNIST (LeCun, 1998) digits.
The role of the linear RNN is to compress (if possible) and store the input
sequence into the hidden state: from xL ∈ CN one can recover past tokens us-
ing a linear transformation. As the state size N increases, the reconstructions
becomes more and more faithful. The MLP (same for all tokens) takes this rep-
resentation as input, and is able to produce any output sequence of the form of
eq.(131).

on compacts as the size of the hidden layer grows to infinity. This result
can be also used in the context of nonlinear RNN approximation of dy-
namical systems (e.g. in neuroscience), where the state can be seen as part
of an MLP (see e.g. Hanson and Raginsky, 2020): compared to Eq. (125)
we have xk = σ(Axk−1 + Buk), where σ is is a nonlinearity. Meanwhile
linear RNNs, where xk = Axk−1 + Buk, have often been considered of
minor interest, equivalent in approximation power to convolutions (Li
et al., 2022b). However, we focus on a restricted scenario of dealing with
finite length sequences, and show that, when sufficiently wide, the linear
RNN does not form a bottleneck, and the architecture maintains universal-
ity through the application of the pointwise MLP, as done in recent SSMs
achieving state-of-the-art results (Gu et al., 2021; Smith et al., 2022; Orvi-
eto et al., 2023c). We give a detailed overview in the appendix of Orvieto
et al., 2023a.

our proof strategy. Let us start again from Eq. (123):

xk =
k−1

∑
j=0

ΛjBuk−j. (132)

One linear RNN+MLP layer therefore computes the sequence (yk)
L
k=1

as yk = ϕ
(

∑k−1
j=0 ΛjBuk−j

)
, where ϕ : CN → RM is a nonlinear map
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parameterized by an MLP. Under some assumptions, we show in this
section that ∑k−1

j=0 ΛjBuk−j captures all information about the input up
to step k. As a result, ϕ can effectively parametrize any regular enough
nonlinear sequence-to-sequence map from past inputs to outputs:

ϕ

k−1

∑
j=0

ΛjBuk−j

 !
= Tk((ui)

k
i=1). (133)

5.5.2 RNNs Perform Compression

We start with a simple one-dimensional example. Let M = 1 and B =
(1, 1, . . . , 1)⊤ ∈ RN×M. Then, Eq. (123) can be written as a matrix multi-
plication, recalling Λ = diag(λ1, . . . , λN), with λi ∈ C:

xk =


λk−1

1 λk−2
1 · · · λ1 1

λk−1
2 λk−2

2 · · · λ2 1
...

...
. . .

...
...

λk−1
N λk−2

N · · · λN 1




u1

u2
...

uk

 = Vku1:k. (134)

vandermonde pseudoinversion. As long as N ≥ k, we can hope
to recover u1:k by pseudoinversion of the Vandermonde matrix Vk:

u1:k = V+
k xk. (135)

Indeed, note that at the boundary setting N = k (number of equations
= number of unknowns), the matrix VN is invertible since det(VN) =

∏1≤i<j≤N(λi − λj) ̸= 0 with probability one under e.g. uniform on the
complex unit disk initialization (proposed in Orvieto et al., 2023c, see
Lemma 5.3.1).

reconstruction of the timestamp. Given a generic x ∈ CN ,
how do we know the length of the vector u1:k to reconstruct? Fortunately,
architectures such as S4, S5 and LRU include an encoding layer before
the linear RNN. Let us consider an embedding such that uk is mapped
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to (1, uk) for all k. Let B = ((1, 0, 0, . . . , 0), (0, 1, 1, . . . , 1))⊤, we get xk =(
∑k−1

i=0 λi
0, x̃k

)
, where x̃k follows Eq. (134). To reconstruct k from x̃k,

xk,0 =
k−1

∑
i=0

λi
0 =

λk
0 − 1

λ0 − 1
=⇒ k = logλ0

(xk,0(λ0 − 1) + 1). (136)

taming ill-conditioning with complex numbers .
From the Vandermonde determinant formula, it is clear that Vk is likely
ill-conditioned under random initialization, which makes it hard to im-
plement the inversion in practice. However, while if Λ is real the con-
dition number of Vk grows exponentially with N (Gautschi and Inglese,
1987), in the complex case it is possible to make the condition number
of Vk exactly 1 by e.g. choosing the Nth-roots of unity as eigenvalues
of Λ (Gautschi, 1975; Córdova et al., 1990). This fact provides a precise
justification for the use of complex numbers in the recurrent compu-
tation. We explore this topic experimentally in the appendix of Orvieto
et al., 2023a, where we also show performance increase in reconstruction
of MNIST digits (LeCun, 1998) when we move initialization close to the
boundary of the unit disk (see Fig. 50), as observed in practice in all re-
cent works on state-space models (Gu et al., 2021; Gupta et al., 2022b;
Smith et al., 2022; Orvieto et al., 2023c). We note that the discussion
here opens up interesting directions for future investigations, such as the
derivation of an optimal Λ for reconstruction using the Vandermonde
inverse. For the time being, from our experiments (see e.g. Fig. 50), we
conclude that a setting which safely leads to perfect reconstruction with-
out ill-conditioning is, empirically, N ≫ L with initialization of Λ close
to the unit disk.

role of sparseness . While the set (V+
k )L

k=1 is numerically stable
only for N considerably larger than L, we note that it is not surprising
that, in order to memorize a sequence of L (one-dimensional) inputs one
needs a hidden state which is at least as big as L. From an information
theory perspective, one can only have N < L if the set of inputs is a
structured subset of RL – i.e. only if the input can be compressed. Is it
useful to note that, in the setting of the last subsection, the role of the
RNN has mainly been ensuring no information is lost: the final hidden
state provides a direct copy of the inputs, with no further reasoning.
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Figure 50: Reconstruction of MNIST digits from the final linear RNN hidden state. For
rmin = 0 (left hand side), the Vandermonde is ill-conditioned (see appendix
in Orvieto et al., 2023a) and hence only the recent past (ie lower half of the
image) can be reconstructed. For rmin = 0.99 we can reconstruct the whole
image.

Towards fixing this, leveraging ideas from sparse coding, compressed
sensing (Candes et al., 2006), and echo state networks (Jaeger and Haas,
2004), we introduce the following assumption.

Assumption 5.5.1. Consider a proper collection of ordered basis matrices (ψi)P
i=1,

with ψi ∈ RM×L for all i = 1, 2, · · · , P. Let u = (u:,1, u:,2, · · · , u:,L) ∈
RM×L, be a sample sequence from the input sequence distribution. For any
k ∈ {1, 2, . . . , L} one can always write u:,1:k = ∑P

i=1 αu,k
i ψi

:,1:k, where ψi
:,1:k are

the first k columns of ψi, and (αu,k
i )P

i=1 is a sequence of real numbers. We do
not assume such decomposition is unique, nor we assume we have access to the
basis functions.

The idea behind leveraging this is representation is that one can assume
P≪ L, and reduce the task of estimating u from x, to the task of estimat-
ing α from x. In formulas, since for every k ∈ N, u1:k = Ψk · αu1:k , with
Ψk ∈ Rk×P and αu1:k ∈ RP, we have

x̃k = Vku1:k = Vk ·Ψk︸ ︷︷ ︸
Ωk

·αu1:k , (137)
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where Ωk ∈ C(N−1)×P. Under the assumption that Ωk has column rank
greater than row rank, i.e., need N > P + 1, we are able to solve the
system for αu1:k . As before, since xk,0, the first coordinate of xk, can be
used to recover k, the procedure above gives a unique way to recover
an arbitrary-length signal u sparse in the basis Ψ, through a simple
operation on the linear RNN output.

Ψ can also be learned. One does not need to assume a specific Ψ
a priori: as long as we have input sparsity, one can guarantee approxima-
tion with a linear operator Ω+

k on the state xk, which can be learned and
may be task-dependent. Note that even if the input is strictly-speaking
not sparse, not all information might be relevant for prediction. In a way,
sparsity mathematically quantifies the belief that the information content
relevant in a certain task has fewer bits than the original signal.

sparseness improves conditioning . In the last section, we dis-
cussed ill-conditioning of Vk. We show with a simulation in the appendix
of Orvieto et al., 2023a that if P ≪ L then for the matrix Ωk we have
no computational issues when calculating its pseudo-inverse (reconstruc-
tion map is “easy”).

multidimensional setting . We provide a discussion for the mul-
tidimensional setting in the appendix of Orvieto et al., 2023a.

5.5.3 Role of the MLP

In the last paragraphs, we showed how linear recurrences can be used as
compression algorithms, with guarantees of perfect reconstruction under
suitable assumptions on the RNN size and information content in the
input. Mathematically, in the settings described in the last subsection,

there exists a function γ such that xk
γ→ ((ui)

k
i=1, k) for all k = 1, 2, . . . , L.

Then, intuitively, since we can perfectly reconstruct the input sequence
from xk, we can let the MLP parametrize any nonlinear function on this
subsequence, indexed by k. In formulas:

yk = Tk[(ui)
k
i=1] = T̄((ui)

k
i=1, k) = T̄(γ(xk)) = ϕ(xk). (138)
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We can then let ϕ be parametrized by an MLP. Indeed, as it is well known,
as the MLP size grows, it can approximate arbitrary nonlinear map on
compact sets (in our case, T̄ ◦ γ). To make the argument behind Eq. (138)
precise, we need the following assumption.

Assumption 5.5.2. The input sequences (ui)
L
i=1 live on a compact set U ⊂

RM×L. The maps Tk : RM×k → RM, producing the output sequence (yi)
L
i=1

as yk = Tk[(ui)
k
i=1], are continuous on U.

We can then summarize the findings of this chapter in an informal way
as follows. A proof can be found in Orvieto et al., 2023a.

Theorem 5.5.1 (Informal). Assume finite-length sequence data is generated
from a sequence-to-sequence model such that Assumption (5.5.2) holds. Con-
sider a randomly initialized linear recurrent network of size N, with N large
enough depending on the sparseness of the input set (see Assumption (5.5.1)
and discussion on initialization). Then, there exists a wide enough MLP which,
if applied pointwise to the RNN hidden states, leads to perfect reconstruction of
the system’s output.

We provide a numerical validation of our claim on a nonlinear controlled
Lotka-Volterra system in Figure 51. As clear from the results, the MLP
was able to translate the input tokens representations into the correct
values of the output sequence.

Current research. Our current research objective is to provide a non-
asymptotic version of the theorem above (potentially in the deep setting),
as well as more thorough experimental evaluations, addressing more pre-
cisely potential limitations and issues such as bad conditioning.

5.6 insights on s4 and variants

We believe our ablations in Sec. 5.3 explain the underlying mechanisms
driving the success of deep SSMs. To conclude the chapter, we inspect
in detail the main similarities and differences between our LRU model
and diagonal SSMs, and elaborate a few insights. As in Sec. 5.2, to avoid
technicalities, we provide a simplified discussion capturing the main fea-
tures of models stemming from the original S4 paper.
As detailed in Sec. 5.2, diagonal SSMs (DSS, S4D, S5) are instantiated
and parameterized through the discretization of a latent continuous-
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Figure 51: (Left) example input-output trajectories (dashed are inputs, solid are
outputs) as well as (right) validation performance in predicting outputs
from unseen input sequences (dashed is ground truth).

time model ẋct(t) = Ãxct(t) + B̃uct(t), where A = diag(ã) is initialized
with complex entries, often guided by HiPPO theory (Gu et al., 2020).
Zero-Order-Hold (ZOH) discretization with stepsize ∆ leads to the recur-
rence xk = exp(∆Ã)xk−1 + (exp(∆Ã)− I)Ã−1B̃uk. This formula, while
arguably complex compared to our Eq.(129), relates to it as outlined in
the following paragraphs.

Matrix exponentials make training easier. The exponential in the ZOH
formula arises from the integration of ẋct(t) = Ãxct(t), obtaining xct(∆k) =
exp(∆Ã)xct(∆(k− 1)). To enforce stability, in models inspired by S4 the
real part of A is often fed into a positive nonlinearity, as we also do in
Sec. 5.3.3. From our results in Sec. 5.3.3 we claim that the power of ex-
ponential parameterization is not necessarily attributable to accurate
integration (which is not present in our system), but is more fundamen-
tally rooted in a magnitude-phase decoupling on the recurrence (which
makes training with Adam easier, see Fig.48), as well as in the overall
advantage of learning in diagonalized space (see Tb.4). We also note that
stabilizing the recurrence by adding a nonlinearity in parameter gener-
ation was beneficial also in our experiments, although this is not pre-
scribed by the theory underlying S4.

Structured initialization is not necessary. While Gu et al., 2022a; Gupta
et al., 2022b; Smith et al., 2022 also discuss initializations for A deviating
from the HiPPO structure (see Sec. 5.2), to the best of our knowledge we
are the first to show that simple uniform initialization on a slice of the
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unit disk, combined with proper normalization, is able to also solve the
hardest task in LRA: PathX.11 We also show (Tb.4) that uniform initial-
ization on the disk, which is simply the diagonalized version of Glorot
initialization (Thm. 5.3.1), is sufficient to achieve performance close to
more complex deep state-space models on the remaining LRA tasks.
Our results ultimately suggest that HiPPO theory, while fundamental
for the development of this field, should not be thought of as the main
source of S4’s success.

Discretization changes the initialization spectrum. For simplicity, we
restrict our attention to S4D-Lin, for which A = diag(ã) with ãn = − 1

2 +
iπn, yielding a diagonal transition matrix with elements (i.e. eigenval-
ues) initialized at exp(−∆/2+ iπ∆n). Under typical choices, such as ∆ =
1e−3 and N = 128, the SSM eigenvalues have magnitude exp(−∆/2) ≈
0.9995, and phase θ = π∆n

∼∈ [0, π/8]; i.e. initialization is performed on
a ring12 close to the unit circle in C, with restricted phase connected to
the eigenvalues magnitude. As is clear from the results in Sec. 5.3.3 and
Sec. 5.3.4, linking the eigenvalues phase and magnitude is not neces-
sary to achieve good performance: indeed, as it can be seen in Tb.5, test
accuracy on the Long Range Arena (except PathX) can be recovered by
using a more natural magnitude-independent initialization on the com-
plete ring. As we discussed in Sec. 5.3.4, changing the initialization phase
to a small range around 0 can be motivated by first principles, yet is only
needed for extremely long sequences: this modification is already hard-
coded in S4, where choosing a small ∆ also shrinks the phase.13 However,
our results clearly show that connecting real and imaginary parts during
training through the ∆ parameter is not necessary to achieve good per-
formance, even on PathX.

Discretization performs normalization. The most striking visual differ-
ence between our model and ZOH-discretized S4 recurrence is in the

11 Among the models in Gu et al., 2022a, only S4D-inv and S4D-LegS (options heavily inspired
by the HiPPO theory) perform beyond random guessing on PathX. In S5, the skew-symmetric
component of the HiPPO matrix is used for initialization.

12 For all diagonal SSMs, ∆ is actually a vector initialized in the range [∆min, ∆max]. This inter-
val can be directly mapped through the exponential map to a ring in complex space (see
Lemma 5.3.1).

13 This is a useful effect of having a latent continuous-time model: choosing eigenvalues close to
the unit circle (i.e. small ∆) changes the oscillation frequencies in the discretized system.
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matrix multiplier for uk: (exp(∆Ã) − I)Ã−1B̃. After conducting experi-
ments on S4D, we found that simply replacing this multiplier with its
first-order expansion in ∆, i.e. ∆B̃, achieves very similar performance,
despite being much simpler and not being a valid second order integra-
tion scheme. For input dimension H = 1 and unit B ∈ RN×1 (to keep
reasoning simple), the corresponding recurrence is

xk = exp(∆ã) + ∆1Nuk. (139)

Elementwise unrolling of this recurrence without a ∆ factor in front of u
yields

|xk,i| ≤
k−1

∑
j=0
| exp(∆ãi)|juk−j,i

∞→ O(∆−1), (140)

We conclude that including a ∆ multiplier on B implicitly scales the
recurrence to normalize the activations, similar to our γ normalization.

Parameter sharing is not necessary. As a result of discretization, the
∆ parameter multiplying both Ã and B̃ couples the recurrence formula
with the input projection during training. In our S4 ablations, we found
that decoupling these as two separate parameters, while keeping the
same initialization to normalize the hidden activations (see last para-
graph), does not decrease performance, suggesting that the ODE dis-
cretization viewpoint (which induces parameter sharing) is not necessary
to achieve S4 performance.

From this discussion, we conclude that the success of (diagonal) state-
space models is attributable to the use of linear recurrences and complex
diagonal exponential matrices, combined with the normalization and ini-
tialization induced by discretization. On the other hand, other artifacts
of discretization such as parameter sharing or the continuous-time inter-
pretation do not necessarily contribute to performance.
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I N J E C T I O N

Art arises when from a multiplicity of empirical notions a single uni-
versal judgment is produced that embraces all things similar to one
another. For experience is limited to judging that a certain medicine is
suitable for Callia stricken with a certain disease and for many others
taken individually, but to judge that a certain medicine is suitable for
all those considered a single species is reserved for art.
Art is knowledge of the universal.

– Aristotle.

So far in this thesis, we have focused on algorithmic and architectural in-
sights regarding optimization of complex training loss landscapes. How-
ever, the ultimate goal of an optimizer is not solely to find local mini-
mizers that yield vanishing training loss but rather to identify model pa-
rameters that result in good test-set (generalization) performance (Vap-
nik, 1999) — beyond memorization (Arpit et al., 2017). While characteriz-
ing good minimizers mathematically poses a significant challenge, recent
literature has presented compelling evidence suggesting that flat min-
ima (e.g., with small Hessian eigenvalues) often exhibit superior test per-
formance compared to other minimizers (Hochreiter and Schmidhuber,
1997a; Keskar et al., 2016; Smith and Le, 2017; Jiang et al., 2019; Xie et
al., 2020b). Intuitively (perhaps näively), flat minima should generalize
better since they are more robust to loss landscape perturbations.
A prevailing belief in the literature is that the data-dependent noise in-
herent in stochastic gradient descent (SGD) can drive its trajectory to-
wards flat minima. This mechanism can be further amplified by intro-
ducing additional noise in the labels (Hochreiter, 1991). In this chap-
ter, our aim is not to study the link between flatness and generaliza-
tion (still a subject of debate among researchers, see e.g, discussion
in Andriushchenko et al., 2023 or the counterexamples in Dinh et al.,
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2017) — we take this as an assumption1; instead, the question we aim
to address is whether it is possible to devise a data-independent noise
injection scheme (i.e., could also be used in deterministic optimization)
capable of guiding the optimization dynamics toward flat minima. Our
question is then

Which injected noise structure can help
gradient-based methods find flat minima?

The structure of this chapter unfolds as follows: after our background
section (Section 6.1), in Section 6.2, we explore injection of fractional
noise, inspired by the concept of fractional Brownian motion (Mandel-
brot and Van Ness, 1968). We demonstrate how this approach offers im-
proved landscape exploration compared to the conventional Gaussian
noise injection on the gradients. Drawing on the insights from the prop-
erties of fractional noise, in Section 6.3, we present a novel anticorre-
lated noise injection scheme, Anti-PGD, designed to provably drive the
convergence towards flat minima. Leveraging the lessons learned from
fractional noise, this scheme hold promise in enhancing the generaliza-
tion performance of deep learning models. In the same section, we give
evidence that simply injecting uncorrelated Gaussian noise is generally
not a good strategy. Lastly, in Section 6.4, we tackle the challenges as-
sociated with successful noise injection in the context of deep learning.
By addressing these obstacles, we pave the way for more effective noise
injection strategies and a deeper understanding of the interplay between
flat minima and the success of deep learning models.

Even though the central theme of this thesis revolves around the explo-
ration of adaptive methods, in this last chapter, we will solely focus on
plain SGD. Our forthcoming research endeavors will concentrate on in-
tegrating noise injection with adaptive methods. In particular, we aim to
investigate the unique and not fully comprehended generalization char-
acteristics exhibited by optimizers like Adam (refer to Figure 52 for in-
triguing observations).

1 and find good evidence supporting this claim in our experiments in the next sections.
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Figure 52: Gradient Descent, Stochastic Gradient Descent, and RMSprop (i.e. Adam
without momentum) on a matrix sensing problem. All methods have the same
initialization and use the largest stable learning rate with warmup-cosine an-
nealing scheduler. Plotted are the dynamics of the mean and standard devi-
ation of train error, test error, and Hessian trace (5 runs). Plotted is also
the landscape slice passing through the minimizes of the 3 methods. SGD be-
haves better than GD at test time, and converges to a flatter minimum. Even
more interestingly here RMSprop generalizes better that both GD and SGD.
However, this effect completely depends on the choice of scheduler. For a con-
stant stepsize, RMSprop is always suboptimal. The behavior of RMSprop on
this problem is not capture by current theory and will be subject of further
investigations.

6.1 background on flatness and generalization

The generalization performance of deep models heavily depends on the
choice of optimizer (Wilson et al., 2017; Zhang et al., 2019a; Chen et al.,
2020a), and on hyperparameters such as batch size (Shallue et al., 2019;
Smith et al., 2020), learning rate schedule (Jastrzebski et al., 2017; Got-
mare et al., 2018; Loshchilov and Hutter, 2016), gradient clipping (Zhang
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et al., 2019c; Zhang et al., 2020a) and weight decay (Zhang et al., 2018;
Loshchilov and Hutter, 2017). To this day, a thorough theoretical char-
acterization of the effect of most of these choices on generalization is
missing even for plain SGD. A core fundamental question in this di-
rection concerns the so-called implicit bias of vanilla SGD. In brief, it
was observed that, while there exist global minimizers which generalize
poorly (Zhang et al., 2021a; Liu et al., 2020b), SGD often converges to
“good minima” (Soudry et al., 2018; Gunasekar et al., 2017; Neyshabur
et al., 2017b; Liu et al., 2021). This feature is often linked to the observed
flatness of the loss landscape around the SGD solution (Hochreiter and
Schmidhuber, 1997a; Keskar et al., 2016; Chaudhari et al., 2019; Jiang et
al., 2019). On the theory side, recent works (Xie et al., 2020b; Simsekli
et al., 2019) motivate how the noise structure in SGD can indeed bias
the dynamics towards such flat minimizers2. Specifically, a few months
ago, Wu et al., 2022 showed formally that the Frobenius norm of the loss
Hessian at the SGD solution is upper-bounded by a model-independent
quantity determined by the batch size and the learning rate, and that
if SGD gets close to a sharper region, then it escapes exponentially fast.
This phenomenon is linked to the edge-of-stability observation in full-
batch gradient descent (Cohen et al., 2020): the sharpness (maximum
Hessian eigenvalue) of the solution found by full-batch gradient descent
is empirically inversely proportional to the used learning rate.

sharpness-aware minimization. Arguably the most successful
“trick” that can be incorporated in SGD to bias minima selection is the
one provided by the Sharpness-aware-minimization (SAM) algorithm
(Foret et al., 2020). Mathematically, SAM proposes to update SGD with
gradients from the loss

f̃ (x) = max
∥ϵ∥p≤ρ

f (x + ϵ). (141)

For p = 2, this can be linked to the ascent-descent update x ← x −
η∇ f (x + ρ∇L(x)/∥∇ f (x)∥). While careful tuning of SAM can boost the
test performance of SGD by a few percentage points, the connection be-
tween the actual update rule and the regularized loss L̃ is only approxi-
mate (Wen et al., 2022), and suggests further research is needed.

2 Strong correlation between flatness and generalization can be seen e.g. in Figure 52 and
in Orvieto et al., 2022a; Orvieto et al., 2023b.
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a result linking flatness and generalization. While an in-
depth look at the theory linking flatness with generalization is out of
the scope of this thesis (the reader can check (Dinh et al., 2017) for an
in-depth discussion), we like to provide at least one theoretical result
on this relation, belonging to the PAC-Bayesian literature. PAC-Bayes
bounds can be interpreted as bounds on the average loss over a posterior
distribution Q. These bounds connect to the curvature of the loss through
the concept of expected sharpness — related to the trace of the Hessian.

Theorem 6.1.1 (Neyshabur et al., 2017a; Tsuzuku et al., 2020). Let Q(x|x∗)
be any distribution over the parameters, centered at the solution x∗ found by a
gradient-based method. For any non-negative real number λ, with probability at
least 1− δ one has

ftrue(Q(x|x∗)) ≤ f (x∗) +
λ

2M
+

1
λ

ln
(

1
δ

)
+ f (Q(x|x∗))− f (x∗)︸ ︷︷ ︸

expected sharpness

+
1
λ

KL[Q(x|x∗)||P(x)],

where ftrue is the generalization loss; f (Q) := Ex∼Q f (x) and ftrue(Q) :=
Ex∼Q ftrue(x); P is a distribution over parameters; and KL denotes the Kullback-
Leibler divergence.

For a proof, see Tsuzuku et al., 2020. In the setting of this theorem, by
picking Q to be Gaussian with variance s2, one obtains the following
approximation of the expected sharpness

f (Q(x|x∗), x∗)− f (x∗) ≈ s2

2
Tr(∇2 f (x∗)). (142)

This simple connection motivates us to design methods biased to mini-
mizers where the trace of the Hessian is small.
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6.2 fractional perturbed gradient descent

Now, as Mandelbrot points out, Nature has played a joke on the math-
ematicians. The 19th-century mathematicians may not have been lack-
ing in imagination, but Nature was not. The same pathological struc-
tures that the mathematicians invented to break loose from 19th-century
naturalism turn out to be inherent in familiar objects all around us.

– Freeman Dyson

Question: The problem of finding flat minimizers is inherently linked
to the issue of landscape exploration. Which noise structure enables
SGD to explore a greater portion of the landscape?

Answer (Lucchi et al., 2022): Fractional Brownian noise has provably
better space-filling properties than regular Gaussian noise. When in-
jected on the gradient update, this property translates to enhanced ex-
ploration. In the next section, we show how to use these insights to
design an efficient algorithm.

Fractional Brownian motion (fBM) is a generalization of Brownian mo-
tion where the increments of the stochastic process need not be inde-
pendent. This family of Gaussian processes was developed for some hy-
drological modelling by Kolmogorov, 1940. Hurst, 1956 later studied the
long term water flow characteristics of the Nile River that was affected by
long periods of drought. In such a scenario, the self similarity of the pro-
cess is related to a long term dependence in the water levels. Since then,
fBM has also found applications in financial modeling (Øksendal, 2003).
We now give a formal definition of fBM, and discuss its main properties.

Definition 6.2.1. Fractional Brownian motion (fBM) is a centered Gaussian
process (BH(t))t∈[0,T] for T > 0 with covariance function

E[BH(t)BH(s)] = 1
2 (|t|2H + |s|2H − |t− s|2H),

where H ∈ (0, 1) is called the Hurst parameter.

Hence, fBM is a generalization of Brownian motion, which is recovered
for H = 1

2 . If H > 1
2 , then the increments are positively correlated, while
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Figure 53: Discretized path of fBM in one dimension (left) and two dimensions (right) for

different Hurst parameters. We observe that low values of H yield stochastic
processes that explore the space in a denser way that is less “biased” by the
direction of the first few perturbations. This can in fact be formalized through
the concept of Hausdorff dimension which is given by d = 2 − H for all
H ∈ (0, 1).

they are negatively correlated if H < 1
2 . For H ̸= 1

2 , the increments of
fBM are not independent, although they are stationary, with variance

E(|BH(t)− BH(s)|2) = |t− s|2H . (143)

A crucial property of negatively correlated increments is their ability to
fill in the space, as illustrated in Fig. 53.
For injection of standard (multidimensional) Brownian motion Bt (i.e. for
Hurst parameter H = 1/2), the discretization of the perturbed gradient
flow SDE dXt = −∇ f (X)dt + σdBt leads to

xk+1 = xk − η∇ f (xk) + σ[Bη(k+1) − Bη(k))], (144)

with step size η > 0. This method is called perturbed gradient descent
(PGD) (Jin et al., 2021). Here, by instead discretizing the fractional SDE
dXt = −∇ f (X)dt + σdBH

t for any H ∈ (0, 1), we obtain a generalized
version of PGD, which we call fractional PGD (fPGD):

xk+1 = xk − η∇ f (xk) + σ[BH
η(k+1) − BH

η(k))], (145)

which is equal to PGD if H = 1/2. The parameter H determines the cor-
relation of noise in fPGD: anticorrelated noise for H ∈ (0, 1/2), positively
correlated noise for H ∈ (1/2, 1), and uncorrelated (independent) noise
for H = 1/2. Importantly – since BH

t converges to a white-noise process
(in distribution) as H → 0; see Lemma 4.1 by Borovkov et al., 2017.
We test the ability of fPGD to escape local minima and explore the land-
scape. To this end, we consider the Styblinski–Tang function in two di-
mensions. The result in Figure 54 confirms our intuition.
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Figure 54: Exploration performance of fPGD on the Styblinski-Tang function f (x, y) =
1
2

(
x4 − 16x2 + 5x + y4 − 16y2 + 5y

)
. Right: empirical distribution of

fPGD for different H after 104 steps. Left: empirical distribution after all
105 steps. We can see that a small H deals better with this challenging escape
task.

comment on the result. Our intuition is also supported by many
mathematical results confirming that fractional Brownian motion with
low Hurst parameter H fills the space more densely. This behavior
comes from the fact that the graph of the fBM has a Hausdorff dimen-
sion and box-counting dimension given by d = 2− H. The latter implies
that N(1/n) ≈ Cnd for large n, where N(ε) denotes the number of boxes
with side length ε, which is needed to cover the graph of the fBM. There-
fore, the graph of a (1-dimensional) fBM behaves like a 2−dimensional
smooth manifold for small H. See Schroeder, 1991. The above claim about
the Hausdorff dimension and the box-filling dimension of fBM is proved
by Wu and Xiao, 2007a. Further related articles are Ayache and Xiao, 2005

and Wu and Xiao, 2007b.
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6.3 finding flat minima with anti-pgd

The validity of all the Inductive Methods depends on the assumption
that every event, or the beginning of every phenomenon, must have
some cause; some antecedent, upon the existence of which it is invari-
ably and unconditionally consequent.

– John Stuart Mill

While fGN leads to desirable properties, unfortunately, its simulation in
high dimensions is computationally expensive (Dieker, 2004). In this sec-
tion, we address this issue and design a new cheap anticorrelated method
capable of promoting flatness and empirically boosting generalization.

Question: Fractional Gaussian noise with a small Hurst parameter
leads to greater landscape exploration than simple uncorrelated Gaus-
sian noise injection. Can we use this lesson to design a cheap noise
injection scheme? What would be the effect on flatness?

Answer (Orvieto et al., 2022a): Maximally anticorrelated noise injec-
tion (H → 0) can be implemented in a cheap way, and provably drives
gradient descent to flat minima enhancing generalization. In the next
section, we further modify the algorithm presented here and improve
its performance on wide neural networks.

Gradient descent (GD) iteratively optimizes the loss f (x) by computing a
sequence of solution approximation {xk}K−1

k=0 where xk+1 = xk− η∇ f (xk)
with step size (a.k.a. learning rate) η > 0. Perturbed gradient descent
(PGD) simply adds an i.i.d. perturbation to each step, i.e.

xk+1 = xk − η∇ f (xk) + ξk+1, (146)

where {ξk}K−1
k=0 is a set of centered i.i.d. random variables with variance

σ2 I. Similarly, we define anticorrelated perturbed gradient descent (Anti-
PGD) as

xk+1 = xk − η∇ f (xk) + (ξk+1 − ξk). (147)



172 improving generalization with noise injection

In other words, Anti-PGD replaces the i.i.d. perturbations {ξk}K−1
k=0 in

PGD with their increments {ξk+1 − ξk}K−1
k=0 . The name Anti-PGD comes

from the fact that consecutive perturbations are anticorrelated:

E
[
(ξk+1 − ξk)(ξk − ξk−1)

⊤
]

2σ2
(iid)
= −Cov (ξ0)

2σ2 = −1
2

I. (148)

6.3.1 Regularization in Anti-PGD

While Anti-PGD is defined as a modification of PGD, it can alternatively
be viewed as a regularization (smoothing) of the loss landscape L. To see
this, note that, after a change of variables wk := xk − ξk, the Anti-PGD
step becomes

wk+1 = wk − η∇ f (wk + ξk). (149)

The corresponding loss f (· + ξk) can, in expectation, be regarded as a
smoothed version of the original f . To see in which direction the gradi-
ents of this loss (and thus Anti-PGD) are biased, we perform a Taylor
expansion of ∂i f (·) around wk:

wk+1,i = wk,i − η∂i f (wk)− η ∑
j

∂2
ij f (wk)ξk,j

− η

2 ∑
j,r

∂3
ijr f (wk)ξk,jξk,r︸ ︷︷ ︸

= η
2 ∂i ∑j,r ∂2

jr f (wk)ξk,jξk,r

+O(η∥ξk∥3), (150)

where the term under the brace is due to Clairaut’s theorem (assuming
that f has continuous fourth-order partial derivatives). By exploiting that
ξk has mean zero and covariance σ2 I, we can express the conditional
expectation of each step as

E [wk+1|wk] = wk − η∇ f̃ (wk) + O
(

ηE[∥ξk∥3]
)

, (151)

where the modified loss L̃ is given by

f̃ (x) := f (x) +
σ2

2
Tr(∇2 f (x)), (152)
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where Tr(A) denotes the trace of a square matrix A. The conditional
mean, Eq. (151), highlights the motivation for Anti-PGD: When expressed
in terms of the variable wk, Anti-PGD in expectation (modulo the im-
pact of the third moment of the noise) takes steps in the direction of a
loss which is regularized by adding the trace of the Hessian. The higher
the noise variance σ2, the stronger is the influence of the (trace of the)
Hessian on Anti-PGD. This is related to how stochastic gradient noise
smoothes the loss in standard SGD (Kleinberg et al., 2018), with the dif-
ference that, here, we inject artificial noise that explicitly regularizes the
trace of the Hessian.
In the next theorem, we analyze the case where the noise ξk follows a
symmetric Bernoulli distribution. We find that, indeed, Anti-PGD (on av-
erage) minimizes the regularized loss f̃ – in the sense that the regularized
gradient converges.

Theorem 6.3.1 (Convergence of the regularized gradients). Let f : Rd →
R be lower bounded with continuous fourth-order partial derivatives and β-
Lipschitz continuous third-order partial derivatives, for some constant β > 0.
Consider the iterates {wk}K−1

n=0 computed by Anti-PGD as in Eq. (149), where
for each n the noise coordinate ξk,i follows a symmetric centered Bernoulli distri-
bution with variance σ2 (i.e., σ and −σ have probability 1/2). If we set ϵ > 0
small enough such that η = Θ(ϵ/σ2) < 1

β and let N = Ω(σ2ϵ−2), then it
holds true that

E

[
1
K

K−1

∑
n=0
∥∇ f̃ (wk)∥2

]
≤ O(ϵ) + O(σ3). (153)

By minimizing the trace of the Hessian, Anti-PGD is expected also to re-
duce the PAC-Bayes bound from Thm. 6.1.1. In fact, the reasoning behind
the bound in Thm. 6.1.1 has motivated researchers to find an explicit link
between stochastic gradient noise and the trace of the Hessian at the
solution found by SGD. Empirically, these quantities have a high corre-
lation in many settings (Yao et al., 2020; Smith et al., 2021): usually, the
lower the trace (i.e., the flatter the minima), the higher is the test accu-
racy. Similar bounds involving the trace of the Hessian are also discussed
by Dziugaite and Roy, 2018; Wang et al., 2018.

comparison with label noise . Instead of perturbing x as in PGD,
label-noise methods perturb labels before computing the gradient. If we
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Figure 55: Effect of uncorrelated (PGD) and anticorrelated (Anti-PGD) noise injection
on learning with gradient descent. Experiments are conducted on three non-
convex machine learning problems with increasing complexity. These exper-
iments are inspired by recent literature on label noise Blanc et al., 2020;
HaoChen et al., 2021. Shown is the mean and standard deviation over sev-
eral runs (5 for the first two problems, 3 for the last). Findings are robust to
hyperparameter tuning. In the ResNet18 experiments, the high dimensional-
ity makes it hard to evaluate metrics under noise injection – since we converge
to a neighborhood with big (dimension dependent) radius. Hence, we evalu-
ate the accuracy and the Hessian trace after stopping noise injection, to allow
exact convergence to the nearest minimizer. Note that, while SGD can tem-
porarily be better than Anti-PGD in test performance for a small number of
iterations, Anti-PGD ultimately outperforms SGD in test performance for all
experiments.
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denote Φx(z(i)) as the output of our model for input z(i), the label-noise
update in the full-batch setting with squared loss is xk+1 = xk− η∇ f̄ (xk),
with

f̄ (w) =
1
2

M

∑
i=1

[
Φx(z(i))− y(i) + ξk+1

]2
, (154)

for a set of random perturbations {ξk}K−1
n=0 . It is instructive to compare

the label-noise loss f̄ with the Anti-PGD loss f (· + ξk) from Eq. (149).
The above formula gives the gradient as

∇ f̄ (x) = ∇ f (x) +
M

∑
i=1
∇Φx(z(i))ξk+1. (155)

Hence, while label noise was observed to yield an improvement in terms
of generalization (Blanc et al., 2020; HaoChen et al., 2021; Damian et al.,
2021), its effect (in general) is highly dependent on the model and on
the data. Instead, the noise injection we propose is both data and model
independent, as can be seen from the regularization in Eq. (151).

connection to landscape smoothing . Eq. (152) shows that Anti-
PGD amounts to optimizing a regularized loss, which we can also inter-
pret as a smoothing of the original objective function. Smoothing is of
course not a new concept in the field of optimization as it is often used
to regularize non-differentiable functions in order to compute approxi-
mate derivatives (Nesterov and Spokoiny, 2017), or to obtain faster rates
of convergence (Lin et al., 2018). In the context of deep learning, noise
injection (or even stochastic gradient noise) is often linked to smooth-
ing (Kleinberg et al., 2018; Stich and Harshvardhan, 2021; Bisla et al.,
2022). As we saw in Eq. (149), anticorrelated noise injection is equivalent
to smoothing after a change of variables – this property was crucial in
deriving the trace regularizer. We are not aware of any similar explicit
regularization result in the smoothing literature (most work focuses on
the resulting landscape properties and convergence guarantees). Even
though Anti-PGD is linked to smoothing, it is much more convenient to
analyze:∇ f (x+ ξ) follows a data-dependent distribution that is complex
to characterize. Instead, in Anti-PGD, the smoothing effect comes from
adding — this is a linear operation — anticorrelated random variables.
This is very convenient and will be leveraged in the proof for the next
result, Thm. 6.3.2.



176 improving generalization with noise injection

6.3.2 Behavior of Anti-PGD in Widening Valleys

We have seen above that Anti-PGD acts as a regularizer on the trace
of the Hessian. In this section, we will analyze the dynamics of Anti-
PGD in more detail on the “widening valley” – the simplest possible loss
landscape with a changing trace of the Hessian. We demonstrate with
experiments that Anti-PGD successfully finds flat minima in this model,
prove this behaviour theoretically.
The widening valley is defined as the loss function

f (u, v) = 1
2 v2∥u∥2, x := (u, v), (156)

where ∥ · ∥ is the Euclidean norm, v ∈ R, and u ∈ Rd (x ∈ Rd+1); see
Fig. 56. The gradient and Hessian of L are given by

∇ f (u, v) =

[
v2 · u
∥u∥2v

]
, ∇2 f (u, v) =

[
v2 Id 2vu

2vu⊤ ∥u∥

]
. (157)

The trace of the Hessian is thus

Tr(∇2 f (u, v)) = dv2 + ∥u∥2. (158)

We consider L as a suitable problem to analyze the dynamics of GD and
Anti-PGD as it has a relatively simple structure consisting of a valley of
minima with monotonously changing flatness (as measured by the trace
of the Hessian): All (u, v) with v = 0 are minima, but we also require
∥u∥ to be minimized as well to get a small trace of the Hessian.
The widening valley can also be seen as a simplified local model of the
landscape close to a minimizer. Indeed, Draxler et al., 2018 showed that
minimizers in neural networks are often connected by a path where the
loss is exactly zero: no jumping is required for an optimizer to gradually
increase the solution flatness. While these valleys are not straight in gen-
eral and the flatness might not change monotonously, our straight valley
serves as a first simplified model.

empirical demonstration. When optimizing the widening val-
ley (Eq. (156)), GD will get stuck in any of the global minima (u, v = 0),
regardless of their flatness. In particular, if the dimension d ≫ 1, the
path of GD will be biased towards making v small and not optimizing
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Figure 56: (Left) Illustration of the widening valley loss L, Eq. (156). A valley of min-
ima with loss f (u, v) = 0 for all (u, v) with v = 0; the smaller ∥u∥, the
flatter the minimum. GD gets stuck where it first touches this valley. PGD
diverges to sharp regions (with high ∥u∥). Anti-PGD converges to a flat min-
imum (with small ∥u∥). (Right) Simulation of the considered algorithms on
the widening valley. After convergence of GD (black star), we start injecting
uncorrelated and anticorrelated noise. We choose η = 0.01, and σ = 0.005 –
yet the findings generalize to all sets of stable parameters. The observed behav-
ior is supported by Thm. 6.3.2. The plot looks similar for both Gaussian and
Bernoulli noise injection.

u (since the direction along v is the most curved). As a result, the final
Hessian trace will be ∥u0∥2. Improving this by injecting noise is challeng-
ing: when adding stochastic perturbations, one has to balance perturbing
v away from zero – to get a gradient to reduce ∥u∥ – while preventing
∥u∥ from growing too much.
We find empirically that Anti-PGD succeeds to do this and moves to flat
parts of the valley, while PGD does not; see Fig. 56. This means that
Anti-PGD converges to flat parts of the valley, while PGD diverges to
sharper regions; see Fig. 57.

theoretical analysis . The following theorem proves what we em-
pirically demonstrated in the last subsection.

Theorem 6.3.2 (Widening Valley). Let f : Rd+1 → R be the widening
valley loss from Eq. (156). We start optimizing from a point x0 = (u0, 0),
where ∥x0∥2 = D ≫ 1 (e.g. the solution found by gradient descent), around
which we consider the domain Dα := {(u, v) ∈ Rd+1 : ∥u∥2 ∈ (αD, D/α)}
for some fixed α ∈ (0, 1). We want to compare the long-term stochastic dy-
namics of PGD and Anti-PGD, as defined in Eqs. (146) and (147), in terms
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Figure 57: Numerical illustration and verification of Thm. 6.3.2. Performance of
PGD (left) and Anti-PGD (right) on the widening valley in Eq. (156). The
setting and the notation is as described in Thm. 6.3.2, and the simulation con-
firms the result: that is, Anti-PGD effectively decreases ∥u∥2 below αD, where
for this plot we consider α = 0.25, η = α/D and d = 100. Instead, the high
problem dimensionality d ≥ 2/α2 = 32 increases ∥u∥2 for standard PGD,
which gets bigger than D/α.

of where they exit Dα. As a noise model, we assume that the i.i.d. perturba-
tions ξk are distributed according to a symmetric centered Bernoulli distribution
(i.e., σ and −σ have probability 1/2) whose variance σ2 is upper bounded by
σ2 ∈

(
0, min

{
α3D

2 , D
8α

}]
. As a step size, we set η = α

2D which, for both meth-
ods, leads to stable dynamics inside of Dα. We find that (on average) PGD and
Anti-PGD exit through different sides of Dα:

1. In high dimensions, PGD diverges away from zero. If d ≥ 2
α2 , then it

holds for any admissible σ2 that

lim
n→∞

E
[
∥uk∥2

]
≥ D/α, (159)

where uk are the first d coordinates of xk computed by PGD as in Eq. (146).

2. Independently of dimensions, Anti-PGD converges to zero. For any
d ∈N, if we choose any admissible σ2 such that σ2 ≤ αD

2d , then

lim
n→∞

E
[
∥uk∥2

]
≤ αD, (160)
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where uk are the first d coordinates of xk, computed by Anti-PGD as in
Eq. (147).

As expected, this theorem implies that, as n→ ∞, Anti-PGD reduces the
trace of Hessian while PGD increases it.

Corollary 6.3.1. In the same setting as Thm. 6.3.2, let

η =
α

2D
, σ2 ∈

(
0, min

{
α3D

2 , D
8α , αD

2d

}]
, d ≥ 2

α2 .

If α≪ 1, then

lim
k→∞

E[Tr(∇2 f (xanti
k )))] ≤ 16αD ≪ E[Tr(∇2 f (x0)))]

lim
k→∞

E[Tr(∇2 f (xun
k )))] ≥ D/α ≫ E[Tr(∇2 f (x0)))],

where xun
k = (uk, vk) and xanti

k = (uk, vk) are the weights returned by the
algorithm Anti-PGD and PGD respectively.
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6.4 noise injection in the width limit

No one shall expel us from the Paradise that Cantor has created.
– David Hilbert.

In the last section, we showed that anticorrelated noise injection can be
related to landscape smoothing. This connection, resulting in regulariza-
tion with the trace of the Hessian, only holds in expectation. While this is
enough to boost generalization in small models, the regularizer variance
blows up as the network grows in width. In this section, we address this
problem and produce an improved variant of Anti-PGD: L-GRASP.

Question: Anti-PGD was found to be effective, both in theory and in
practice, in promoting flatness during optimization. Can we provide a
better characterization of the regularization provided by this method?
How does stochasticity affect regularization quality?

Answer (Orvieto et al., 2023b): The regularization provided by An-
tiPGD is related in simple settings to theoretically principled ap-
proaches such as Lasso and Nuclear Norm penalties. As the neural
network grows in width, regularization is highly affected by noise. In
this section, we show how to overcome this problem by slightly modi-
fying the noise injection scheme.

Let us increase the level of precision in our analysis and consider here
a loss criterion over n datapoints L : Rn → R, as well as a predictor
Φ : Rm → Rn with parameters x. We aim to minimize

f (x) = L(Φ(x)) (161)

with respect to the learnable parameters x ∈ Rm. As can be seen in the
example below, this formulation is very general, and we prove it to be
very powerful for analysis in this section.

Example 6.4.1 (ReLU networks). Consider input data Z ∈ Rn×d0 , with
L(φ) = 1

2n∥Y⊤ − φ∥2
F for output data Y ∈ Rn×dM and φ ∈ RdM×n. For a

ReLU network, x = (W1, W2, . . . , WM) with Wi ∈ Rdi×di−1 , we have

Φ(WM, . . . , W1) = WM(WM−1 . . . (W1Z⊤)+ . . . )+. (162)
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6.4.1 Statistical Properties of Noise Injection

In Section 6.3, we showed that the Anti-PGD iteration is equivalent, af-
ter a change of variables, to the following update: xk+1 = xk − η∇ f (xk +
σξk), which we can write in our setting as

xk+1 = xk − η∇L(Φ(x + σξk)), (GRASP)

where for each k, ξk is sampled independently from a d dimensional
standard Gaussian and σ > 0 controls the noise variance. For reference
and to avoid confusion with Perturbed Gradient Descent (PGD, xk+1 =
xk − η∇ f (x) + σξk, see Xie et al., 2020b), we call this method GRadient
Argument Stochastic Perturbation (GRASP).
It is clear that L(Φ(x + σξk)) is a stochastic object. This motivates us to
study its statistical properties. Let us define

fσ(x) = E
[
L(Φ(x + σξ))

]
. (163)

We have the following result, which is proved in full generality in the
appendix of Orvieto et al., 2023b.

Theorem 6.4.1. Denote by DΦ(x) ∈ Rn×m the Jacobian (matrix of first-order
derivatives) of Φ, and D2Φ(x) ∈ Rn×m×m the tensor of second-order deriva-
tives. Assume for simplicity of exposition that L and Φ are three times differen-
tiable functions with bounded third derivatives. In the appendix of Orvieto et al.,
2023b, we discuss the case of functions where this is satisfied only piece-wise (to
cover ReLU activations). We have

fσ(x) = L(Φ(x)) +
σ2

2
DL(Φ(x))D2Φ(x)[I]

+
σ2

2
D2L(Φ(x))

[
DΦ(x)DΦ(x)⊤

]
+ O(σ3).

Where, for φ ∈ Rn, DL(φ) ∈ R1×n is the row-vector of first-order partial
derivatives, and D2L(φ) ∈ Rn×n the matrix of second-order partial deriva-
tives, with the notation D2L(φ)[M] = ∑n

a,b=1 D2L(φ)ab Mab ∈ R. Similarly,
the operation D2Φ(x)[M] ∈ Rn is defined at coordinate j as D2Φ(x)[M]j =

∑m
a,b=1 D2Φ(x)jab Mab.
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Proof sketch. The Taylor expansion of Φ at w can be written:

Φ(x + σξ) = Φ(x) + σDΦ(x)ξ + σ2

2 D2Φ(x)[ξξ⊤] + O(σ3∥ξ∥3),

We also need a Taylor expansion of L around Φ(x):

L(Φ(x) + ∆) = L(Φ(x)) + DL(Φ(x))∆ + 1
2 D2L(Φ(x))[∆∆⊤] + O(∥∆∥3).

(164)

To compute an expansion of fσ, as defined in Eq. (163), we compose the
two expansions and get, with the choice

∆ = σDΦ(x)ξ +
σ2

2
D2Φ(x)[ξξ⊤] + O(σ3∥ξ∥3). (165)

the following result

L(Φ(x + σξ)) = L
(
Φ(x) + σDΦ(x)ξ + σ2

2 D2Φ(x)[ξξ⊤] + O(σ3∥ξ∥3)
)

= L(Φ(x)) + DL(Φ(x))
(
σDΦ(x)ξ + σ2

2 D2Φ(x)[ξξ⊤]

+ O(σ3∥ξ∥3)
)
+ 1

2 D2L(Φ(x))
[
σDΦ(x)ξ(σDΦ(x)ξ)⊤

+ O(σ3∥ξ∥3)
]
+ O(σ3∥ξ∥3).

(166)

Taking expectations, using E[ξ] = 0 and E[ξξ⊤] = I, we conclude.

6.4.2 Simplified result and theoretical implications under overparametrization.

In several situations, we obtain an asymptotically equivalent cost func-
tion f (eff)

σ (x), defined as

f (eff)
σ (x) = f (x) +

σ2

2
D2L(Φ(x))

[
DΦ(x)DΦ(x)⊤

]
, (167)

in the sense that finding a minimizer of fσ(x) = E
[
L(Φ(x + σξ))

]
is

essentially equivalent to finding a minimizer of f (eff)
σ (w) as σ → 0. In

other words, in practical settings the term σ2

2 DL(Φ(w))D2Φ(w)[I] in The-
orem 6.4.1 has no impact.
One simple sufficient condition for the term σ2

2 DL(Φ(w))D2Φ(w)[I] to
have no impact is that D2Φ(w)[I] = 0 for all w ∈ Rm. This is satisfied for
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certain models such as neural networks, where the second-order deriva-
tives have no cross-product terms, or equivalently when Tr(Φj(x)) = 0
for all j = 1, . . . , m; this is e.g. the case when the ReLU activation is used. For
a more rigorous discussion, please refer to Orvieto et al., 2023b.
The following results shows that the order of approximation between f
and fσ is of order σ2, while the one between fσ and f (eff)

σ is of order σ3.
The proof can be found in Orvieto et al., 2023b.

Theorem 6.4.2. Assume that (a) L is three-times continuously differentiable
with uniformly bounded third derivatives, (b) There exists a finite number of
open convex sets {Ωi, i = 1, . . . , M} with

⋃
i∈I Ωi = Rm such that Φ restricted

to each Ωi is three-times continuously differentiable with uniformly bounded
third derivatives. Then, there exist constants C and C′ (independent of w) such
that

∀x ∈ Rm, | fσ(x)− f (x)| ≤ C(1 + ∥x∥2)σ2,

while
∀x ∈ Rm, | fσ(x)− f (eff)

σ (x)| ≤ C′σ3.

A more general condition is related to overparametrization –when the
model is sufficiently rich to lead to the minimizer of L– and we make a
formal statement below with simplified assumptions.

Theorem 6.4.3. In the setting of Theorem 6.4.2 additionally assume that (a) L
is strongly convex with uniformly bounded second and third derivatives, with
unique global minimizer φ∗, (b) there exists a (non-unique) x∗ ∈ Rm such
that Φ(x∗) = φ∗ (overparametrization condition), and that (c) there exist
minimizers xσ∗ and xσ,(eff)

∗ of fσ and f (eff)
σ that lie in a compact set Ω ⊂ Rm.

Then, if xσ∗ is a minimizer of fσ, and xσ,(eff)
∗ is a minimizer of f (eff)

σ , we have

∥Φ(xσ
∗ )− φ∗∥2

2 = O(σ2), ∥Φ(xσ,(eff)
∗ )−Φ(xσ

∗ )∥2
2 = O(σ3).

Note that (a) we characterize the prediction function Φ taken at the var-
ious minimizers to test asymptotic equivalence (but it is not possible to
characterize a distance between parameters because in overparametrized
models, Φ cannot be injective), and (b) when σ tends to zero the min-
imizer should converge to the interpolator Φ(w) = φ∗ with minimal
D2L(Φ(w))

[
DΦ(w)DΦ(w)⊤

]
.
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6.4.3 Explicit Regularization by Noise Injection

We here use the result of Theorem 6.4.1 to precisely characterize the min-
imizers found by gradient descent with noise injection, i.e.

xk+1 = xk − η∇L(Φ(x + σξk)). (168)

on some simple yet insightful neural network models.

diagonal linear networks . Following Woodworth et al., 2020;
Vaskevicius et al., 2019; Pesme et al., 2021, we consider diagonal net-
works. All of the three mentioned works achieve implicit sparsity reg-
ularization of SGD under sufficiently small initialization of the model
parameter. Here we show that noise injection in the model also induces
an ℓ1-regularization in the problem. The main advantage we have over
the discussed work is that our approach is applicable to more complex
models as we show below.
We consider x = (w1, w2) ∈ R2d, and Φ(x) = Z(w1 ◦ w1 − w2 ◦ w2) for
data Z ∈ Rn×d, L(φ) = 1

2n∥y− φ∥2
2. When the model is overparametrized,

that is Z has rank n, we can apply Theorem 6.4.3, and we then get an
equivalent risk:

f (eff)
σ (x) =

1
2n
∥y− Z(w1 ◦ w1 − w2 ◦ w2)∥2

2 (169)

+ 2σ2 diag(Z⊤Z/n)⊤(w1 ◦ w1 + w2 ◦ w2), (170)

which is exactly the Lasso once considering β = w1 ◦ w1 − w2 ◦ w2, that
is, minimizing

1
2n∥y− Xβ∥2

2 + 2σ2 diag(X⊤X/n)⊤|β|. (171)

linear networks with two layers . Following Baldi and Hornik,
1995; Arora et al., 2019; Saxe et al., 2019; Gidel et al., 2019, we con-
sider x = (W1, W2), with W1 ∈ Rd1×d0 and W2 ∈ Rd2×d1 , and Φ(w) =
W2W1X⊤ with input data Z ∈ Rn×d0 . We consider the square loss for
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simplicity, that is, L(φ) = 1
2n∥Y⊤ − φ∥2

F for a response Y ∈ Rn×d2 and
φ ∈ Rd2×n. Applying Thm. 6.4.3 we get

f (eff)
σ (W1, W2)

=
1

2n
∥Y⊤ −W2W1X⊤∥2

F +
σ2

2n
[
d2∥W1X⊤∥2

F + ∥W2∥2
F · ∥X∥2

F
]
. (172)

Given the matrix M = W2W1 ∈ Rd2×d0 , we can optimize 1
2
[
d2∥W1X⊤∥2

F +
∥W2∥2

F · ∥X∥2
F
]

with respect to compatible matrices W1 and W2, leading to
the penalty

√
d2∥X∥F · ∥MX⊤∥∗, where ∥ · ∥∗ is the nuclear norm (sum

of singular values), which favors low-rank matrices. Thus, minimizing

f (eff)
σ above is equivalent to minimizing 1

2n∥Y⊤−MX⊤∥2
F +

σ2

n
√

d2∥X∥F ·
∥MX⊤∥∗. We thus obtain a nuclear norm penalty.

6.4.4 Successful Noise Injection in Deep Learning

Let us start with two-layers linear networks. Refreshing the notation, we
consider W1 ∈ Rd1×d0 and W2 ∈ Rd2×d1 , and Φ(W1, W2) = W2W1Z⊤

with input data Z ∈ Rn×d0 . We consider L(φ) = 1
2n∥Y⊤ − φ∥2

F for Y ∈
Rn×d2 , the matrix of labels (we allow multi-dimensional outputs).
We consider the overparametrized limit d1 → +∞ using initialization
with random 3 weights of order (W1)ij ∼ 1√

d1d0
, and (W2)ij ∼ 1√

d2d1
.

That is, ∥W1∥2
F and ∥W2∥2

F not exploding as d1 grows.

exploding variance of high-order terms . For Gaussian per-
turbations E1 and E2 we have the explicit expansion:

Φ(w + σξ) = (W2 + σE2)(W1 + σE1)Z⊤

= W2W1Z⊤ + σ(W2E1 + E2W1)Z⊤ + σ2E2E1Z⊤. (173)

Taking expectations and using that E1, E2 have zero mean and are inde-
pendent with elementwise unit variance, we get

E
[
∥Φ(w + σξ)∥2

F
]

= ∥Φ(w)∥2
F + σ2[∥W2∥2

F∥X∥2
F + d2∥W1X⊤∥2

F
]
+ σ4d2d1∥X∥2

F. (174)

3 Similar results hold for Glorot initialization Glorot and Bengio, 2010.
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We can now compute fσ as:

fσ(W1, W2)

= f (W1, W2) +
σ2

2n
[
∥W2∥2

F∥X∥2
F + d2∥XW⊤1 ∥2

F
]
+

σ4

2n
d1d2∥X∥2

F. (175)

We recover exactly Equation (172), that highlights a nuclear norm regu-
larization, but we have an extra term σ4

2n d2d1∥X∥2
F, which is of superior

order in σ, but problematic when d1 → +∞.
Note that σ2

2n∥W2∥2
F∥X∥2

F scales as σ2

n ∥X∥2
F, while the term σ2

n d2∥XW⊤1 ∥2
F

scales as d2
σ2

n ∥X∥2
F, with thus no explosion in d1. However, the term

σ4

2n d2d1∥X∥2
F explodes when d1 goes to infinity.

layer-wise perturbations solve the problem . A simple solu-
tion to the problem outlined in the last paragraph – first suggested by
Prof. Francid Bach – is to inject noise only in specific layers before taking
the gradient, randomizing the layer choice over iterations and adjusting σ

properly. Indeed, in the context of the previous paragraph, the expansion
of the network map becomes

Φ(w + σξ) = (W2 + σẼ2)(W1 + σẼ1)Z⊤

= W2W1Z⊤ + σ(W2Ẽ1) + Ẽ2W1)Z⊤ + σ2Ẽ2Ẽ1Z⊤, (176)

with Ẽ1 = c · E1, Ẽ2 = (1− c) · E2, where c has Bernoulli distribution (1
with probability 1/2 and 0 otherwise) and again E1, E2 have zero mean
and are independent with elementwise unit variance. Therefore, the prob-
lematic term

σ2Ẽ2Ẽ1Z⊤ = 0 (177)

with probability one.
Note however that to obtain the same regularization effect as Equa-
tion 172, we need to adapt σ. Indeed, from Eq. 176 we get

E
[
∥Φ(w + σξ)∥2

F
]

=
1
2

(
∥Φ(w)∥2

F + σ2∥W2∥2
F∥X∥2

F

)
+

1
2

(
∥Φ(w)∥2

F + σ2d2∥W1X⊤∥2
F

)
= ∥Φ(w)∥2

F +
σ2

2
[
∥W2∥2

F∥X∥2
F + d2∥W1X⊤∥2

F
]
. (178)
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f f

Figure 58: Numerical illustration of exploding higher-order terms (see Eq. (175)) on a
linear network with 1 hidden layer of dimension d1. If noise with standard
deviation σ is added to all weights (left), then the regularized loss fσ explodes
as d1 → ∞ due to the variance term σ4d2d1∥X∥4

F . Instead, perturbing W1

and W2 in alternation (right) with standard deviation
√

2σ (see Eq. (178))
provides mathematically the same expected regularization but avoids the vari-
ance term and therefore provides a much more reliable regularization, as clear
also from the experimental section. Runs are repeated 100 times, shown is the
average.

Therefore, to obtain the same regularization effect of Equation 172 we
need the rescaling σ →

√
2σ. We test the effect of this rescaling empiri-

cally in the next subsection and in Figure 58.

We call the noise-injection method resulting from this idea Layerwise
Gradient Argument Stochastic Perturbation (L-GRASP). Before testing
its performance in the next subsection, we summarize the algorithms
discussed in this chapter in Table 6.

Algorithm Rule Regularization

GD xk+1 = xk − η∇ f (xk) e.g. Soudry et al., 2018

PGD xk+1 = xk − η∇ f (xk) + σξk e.g. Xie et al., 2020b

Anti-PGD xk+1 = xk − η∇ f (xk) + σ(ξk − ξk−1) Sec. 6.3

GRASP xk+1 = xk − η∇ f (xk + σξk) Sec. 6.4

L-GRASP xk+1 = xk − η∇ f (xk + σξk,pk
) Sec. 6.4

pk randomly picked layer at iteration k

Table 6: Summary of Algorithms analyzed and compared in this chapter.
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Figure 59: (Left and central panel) MLP with 1 hidden layer (300 neurons) and linear
activations on synthetic data (see the Appendix in Orvieto et al., 2023b for a
full description). Only L-GRASP takes us close to a minimizer for the regular-
ized loss f (eff)

σ (see Eq. (172)). For all methods, the learning rate is set to 0.1.
(Right) Test accuracy for an MLP on FMNIST (2 Hidden Layers with 5000
neurons each). Comparison of perturbation effects on GRASP and L-GRASP:
σ is properly scaled in L-GRASP – i.e. the reported σ refers to the regulariza-
tion effect.

6.4.5 Empirical Performance of GRASP and L-GRASP

The goal of this section is to provide experimental evidence to back-up
the results of this section (Section 6.4). In particular, we compare gradi-
ent descent (GD) with the perturbed variants GRASP and L-GRASP (see
Tb. 6). As seen in Section 6.4.4, GRASP and L-GRASP (with adapted σ)
minimize a similar regularized loss, in expectation. However, as the de-
gree of overparametrization (e.g., number of parameters) increases, the
theory suggests that L-GRASP is preferable.

minimization of the regularized loss . For a start, we con-
sider a one hidden layer network with linear activations and 300 hid-
den neurons on a randomly generated sparse4 synthetic regression data
set with inputs in R10 and outputs in R. In Figure 59 (left and central
panels), we show the dynamics of the iterates of GD, GRASP, and L-

GRASP on the original loss f and regularized loss f (eff)
σ derived in this

section (Eq.172). As the theory predicts, the correct regularization in the
strongly overparametrized setting is only achievable with L-GRAPS. As
discussed above, to keep the same explicit regularization, the variance of

4 We consider 40 data points sampled from a Gaussian in 10 dimensions. The solution is sparse
and is planted as the result of a linear prediction from the first two dimensions.
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the noise in the layer-wise approach is doubled compared to the vanilla
approach. This depth scaling is adopted for all further experiments.

effect of tuning . The findings of the last paragraph are reported
for one specific value of σ. We test the influence of σ on a slightly more
complex model: an MLP with 2 hidden layers (5000 neurons each) and
ReLU activations on Fashion MNIST (Xiao et al., 2017) (classification).
Given that the data is relatively easy to fit, we train on a subset of
1024 data points — to induce heavy overparametrization. We run full-
batch gradient descent with learning rate 0.005, and plot the test accu-
racy evolution (computed using 10K data points) for different values
of σ. Figure 59 (Right Panel) shows that, for this wide model, L-GRASP
induces an effective regularization that is able to increase the test ac-
curacy. This is in contrast GRASP. A similar result also holds true for
CIFAR10 (Krizhevsky, Hinton, et al., 2009) on ResNet18 (see Figure 61).

deep mlps . Next, we test how the findings carry over to deeper net-
works. In the same data setting as the last paragraph, we now consider a
ReLU MLP with 5 hidden layers and either 1000 (narrow) or 5000 (wide)
hidden neurons. In Figure 60 we test our methods (σ = 0.05) against
full-batch GD, with a step size of 0.005 in the narrow setting and 0.001
in the wide setting. As can be seen, again L-GRASP yields the best ac-
curacy result — specifically in the wide setting. This is also reflected in
the size of the regularizer (trace of Hessian), which is minimized by the
best-performing method in terms of test error.

deep residual networks . To conclude, we test noise injection (layer-
wise or in all layers simultaneously) on a ResNet18 (around 11M param-
eters) (He et al., 2016) with batch normalization. We use for this the basi-
line SGD configuration in the popular repository https://github.com/

kuangliu/pytorch-cifar. On this baseline, which reaches around 94.4%
test accuracy, we simply add noise5 injection at every step. In Figure 61

we tested different noise injection standard deviations σ and plotted the
mean and standard error of the mean (3 runs) for the final test accuracy
and Hessian trace after 150 epochs. We stopped noise injection at epoch

5 Here by “layers” we mean each network parameter group. That is, noise is also injected in the
batch-norm parameters.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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135 to allow the networks to converge and use cosine annealing, batch-
size 128 and learning rate of 0.01 in all methods. The results clearly show
that injecting noise in all parameters (GRASP) is able to only regularize
the objective and improve test accuracy for very small σ, but for σ > 0.1
it hurts performance. Instead, injecting layer-wise noise (L-GRASP) pro-
vides a much more consistent regularization and is able to improve test
performance by +0.3%, which is a sizable margin given the strong SGD
baseline. The poor performance of standard noise injection is predicted
by the theory in Section 6.4.4, which explains the sharp increase of the
Hessian trace (for SGD + noise) observed in the second panel at σ = 0.1.
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Figure 60: MLP with 5 hidden Layers and ReLU activations on a subset of Fashion
MNIST. The hidden layers each have 1000 neurons (narrow, left panels) or
5000 neurons (wide, right panels). The results show that L-GRASP results
in improved regularization (plotted is also the trace of the Hessian, computed
with PyHessian (Yao et al., 2020)) and test accuracy.

Figure 61: Final Test accuracy (left) and Hessian trace (right) for SGD on a CIFAR10
ResNet18 with batch normalization. Both plots show mean and standard error
of the mean (3 runs). SGD is plotted at σ = 1e − 3 instead of σ = 0 for
better visualization. Layer-wise noise injection is able to boost performance by
explicit regularization with a high σ. Instead, for such high σ, injecting noise
simultaneously in all parameters results in instabilities. We remind that the
total noise injection variance is normalized in the two methods.





7C O N C L U S I O N

Then your charitable speeches may find vent; then you may remember
and pity the toil and the struggle and the failure; then you may give
due honour to the work achieved; then you may find extenuation for
errors, and may consent to bury them.

– George Eliot (Mary Anne Evans).

In this thesis, I summarized a subset of the works produced with the
help of many collaborators during my Ph.D. at ETH Zurich. Along this
journey, I had the privilege of engaging with exceptional individuals —
it was a wonderful and exciting experience.

While the topics of my investigations were never static due to my curios-
ity and to the rapidly changing literature landscape, my obsession always
has been understanding the mysterious performance of the state-of-the-
art adaptive optimizers for deep learning — bridging the gap between
theory and practice. While Adam (Kingma and Ba, 2014) might not be the
most theoretically grounded or mathematically beautiful method, it revo-
lutionized deep learning, and I humbly believe its analysis deserves more
attention in the optimization community. Despite its complex nature and
lack of convergence, we can learn a lot from Adam about successful op-
timization of nonconvex functions and about the intricate structure of
deep learning problems.

To this day, a theoretically principled method to optimize transformers re-
mains to be discovered. Despite our dedicated efforts in Chapter 3, it is to
be recognized that Adam remains the most straightforward and widely
used choice among practitioners. As such, my primary goal throughout
this volume has been to ignite the reader’s enthusiasm for its intrigu-
ing dynamics. I hope to have conveyed in Chapter 3 that Adam does
indeed solve some concrete challenges faced when optimizing deep mod-
els. Nonetheless, I also demonstrated that improvements upon adaptive
optimizers are possible: in Chapter 4, I gave details of a new method
with unprecedented convergence guarantees and solid performance. In

193



194 conclusion

Chapter 5, I described how to design new neural networks in symbiosis
with optimizers (i.e. changing parametrization), yielding state-of-the-art
performance on long-range reasoning tasks. In Chapter 6, I reported our
findings on improving test performance by incorporation of noise injec-
tion.

Above all, it is important to remind ourselves that we live in exciting
times, both for AI and optimization. This year we have seen the rise
of powerful language models (OpenAI, 2023; Touvron et al., 2023) and
increasing interest in the derivation of scaling laws (Hoffmann et al., 2022;
Bachmann et al., 2023). While all the works cited above use the AdamW
optimizer (Loshchilov and Hutter, 2017), we also witnessed this year a
rising effort in designing new — better — optimizers such as Lion (Chen
et al., 2023) and Sophia (Liu et al., 2023). Moreover an ICML Outstanding
Paper award was given in 2023 to a new adaptive method: D-adaptation
(Defazio and Mishchenko, 2023).

I will be lucky to continue to work on these exciting topics for the next
few years in Tübingen, hoping to directly contribute to making the de-
sign and training of neural networks more accessible to scientists and
engineers.
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It is remarkable that a science which began with the consideration
of games of chance should have become the most important object of
human knowledge. The most important questions of life are indeed, for
the most part, really only problems of probability.

– Pierre Simon Laplace.

We review here the theory of differential equations and convex/smooth
optimization. We assume the reader to be familiar with basic analysis and
measure-theoretic probability1. We start with some results in the theory
of Ordinary Differential Equations (ODEs), which we will use heavily
in chapters 2 and 6. We give an introduction to stochastic differential
equations (SDEs) and, in particular, we present Itô’s lemma, which is the
workhorse in chapter 2. We conclude this chapter with a review of some
basic definitions in the field of smooth optimization (Nesterov, 2018),
which we are going to use throughout the thesis.

a.1 ordinary differential equations

Most of the definitions and results in this section are reported from Monti,
2010, Coleman, 2012, and Königsberger, 2013.

a.1.1 General Theory

In this chapter, we indicate as Cr(X ; Rd) the family of functions taking
values in Rd which are r times continuously differentiable in x ∈ X , with
X ⊆ Rd an open set.

1 As introductory textbooks on these topics, we recommend Coleman, 2012 and Durrett, 2010.
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Consider the Cauchy problem (CP) in the joint time-space set Ω ⊆ Rd+1,
where x ∈ Rd and t ∈ R:ẋ = g(t, x)

x(t0) = x0, (CP)

where g(t, x) ∈ C(Ω, Rd). We define now the concept of solution to the
CP.

Definition A.1.1. (Solution to the CP) A function x ∈ C1(I, Rd) is called a
solution to the CP if

1. I ∈ R is an interval s.t x0 ∈ I;

2. (t, x(t)) ∈ Ω for all t ∈ I;

3. ẋ = g(t, x) for all t ∈ I;

4. x(t0) = x0.

As a consequence of the fundamental theorem of calculus, any solution
of the CP in I can be written as

x(t) = x0 +
∫ t

t0

g(τ, x(τ))dτ.

To guarantee the existence of a solution, we are going to assume some
regularity of g.

Definition A.1.2 (Local Lipschitz condition). Let Ω ⊆ Rd+1 be an open set.
We say that a function g ∈ C(Ω, Rd) is locally Lipschitz with respect to x if for
any compact set K ⊂ Ω there exists a constant LK > 0 such that

∀(t, x1), (t, x2) ∈ K, ||g(t, x1)− g(t, x2)|| ≤ LK ||x1 − x2||.

If g has some additional regularity, the local Lipschitzianity is easy to
verify.

Proposition A.1.1. Let g ∈ C(Ω, Rd) be continuously differentiable with re-
spect to x, uniformly in t. g has the local Lipschitz property in x.

The following is a direct consequence of Banach fixed point theorem.
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Theorem A.1.1 (Picard–Lindelöf). Let Ω ⊆ Rd+1 be an open set, (t0, x) ∈ Ω
and let g ∈ C(Ω, Rd) satisfy the local Lipschitz property in x. Then, there exists
δ > 0 such that the solution to the CP exists unique in I = (t0 − δ, t0 + δ),
and x ∈ C(I; Rd).

Example A.1.1. (Counterexample for Picard–Lindelöf) Take the Cauchy prob-
lem

ẋ = x1/3, x(a) = 0.

x1/3 is continuous but not locally Lipschitz at the starting condition. The solu-
tions2 are

x(t) = ±
(

2
3
(t− a)

)3/2
, a > 0.

Now, by “gluing” together the intervals I from the Picard–Lindelöf theo-
rem, one has the following result.

Theorem A.1.2 (Existence in the large). Let I = (a0, b0), with −∞ ≤ a0 <
b0 ≤ ∞. Let g ∈ C(Ω, Rd), with Ω = I ×Rd, be locally Lipschitz with respect
to. x and assume additionally that for any compact K ⊂ I there exists a constant
C such that, for all x ∈ Rd and t ∈ K

||g(t, x)|| ≤ C(1 + ||x||).

Then, the CP with (t0, x0) ∈ Ω has a unique global solution in I.

Notice that we have here a new condition to verify, which goes under the
name of linear growth.

Example A.1.2 (Counterexample for existence in the large). Take the Cauchy
problem

ẋ = x2, x(0) = 1.

x2 is locally Lipschitz but clearly not linearly growing. The unique solution is
x(t) = 1/(1− t) and explodes in finite time3 at the boundary of the domain
where linear growth holds.

We conclude this section stating a very useful property.

Theorem A.1.3. If g(t, x) ∈ Ck(Ω, Rd), then any solution x(t) of the CP is
at least Ck+1(R, Rd).

2 Source : Wikipedia, Picard–Lindelöf theorem. Visited June 4th, 2023

3 one can show that in these situations, the solution always has to explode in finite time at the
boundary. This result is known as the continuation criterion.
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a.1.2 Flow of a Vector Field

Let us now consider functions g : Rd → Rd that do not have an explicit
dependency on time. The CP in this case is:ẋ = g(x)

x(t0) = x0

.

In this case, we say the CP is autonomous.

Definition A.1.3 (Global Lipschitz condition). We say that a vector field
g ∈ C(Rd, Rd) is globally Lipschitz if there exists a constant L > 0 such that

∀x1, x2 ∈ Rd, ||g(x1)− g(x2)|| ≤ L||x1 − x2||.

It is clear that any globally Lischitz vector field is also locally Lipschitz.
In addition, if the Lipschitzianity is global, linear growth is automatically
satisfied in R.

Lemma A.1.1 (Linear Growth). Let g ∈ C(Rd, Rd) be globally Lipschitz.
Then g grows at most linearly, i.e there exists C > 0 such that for every x ∈ Rd

||g(x)|| ≤ C(1 + ||x||).

Proof. We use first global Lipschitzianity and then the reverse triangle
inequality,

L||x|| ≥ ||g(x)− g(0)||
≥ |∥g(x)∥ − ∥g(0)∥|
≥ ∥g(x)∥ − ∥g(0)∥

hence, ||g(x)|| ≤ max{g(0), L}(1 + ||x||).

Using this Lemma and Theorem A.1.2, we immediately get the following
result.
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Corollary A.1.1 (Global existence and uniqueness). Let g ∈ C(Rd, Rd) be
Lipschitz continuous. Then, the autonomous CP has a unique global solution in
R for any initial condition.

This corollary motivates the definition of flow.

Definition A.1.4 (Flow). The flow of a globally Lipschitz vector field g(x) ∈
C(Rd; Rd) is the mapping Φ : R × Rd → Rd defined as Φ(t, x0) = x(t),
where x(t) ∈ C1(R; Rd) is the solution to the autonomous CP. Moreover, for
any t ∈ R, we define the mapping Φt : Rd → Rd by Φt(x0) := Φ(t, x0).

One can also write

Φ(t, x0) = x(t) = x0 +
∫ t

0
g(x(τ))dτ.

For some additional insights on the topology of the flow of autonomous
differential equations, one can check Asimov, 1993. The following prop-
erties follow immediately from Corollary A.1.1 and A.1.3.

Proposition A.1.2. Let Φ be the flow of a globally Lipschitz vector field g(x) ∈
C1(Rd; Rd)

1. Φ ∈ C1(Rd+1; Rd). In particular Φt ∈ C1(Rd; Rd), for all t;

2. Φ0(x0) = Φ(0, x0) = x0. Hence Φ0 is the identity;

3. The flow has the group property Φt+s = Φt ◦ Φs for all t, s ∈ R. In
particular Φt is invertible and has inverse Φ−t.

Corollary A.1.2. Fix a time step ∆t > 0, Φ∆t is a diffeomorphism of Rd.

Proof. Just notice that because of the previous proposition, Φ∆t and its
inverse Φ−∆t are of class C1(Rd; Rd).

To conclude, we denote with Jx[ f (x)] ∈ Rm×n the Jacobian matrix of
a function f : Rm → Rn evaluated at x ∈ Rm. We have the following
theorem.

Theorem A.1.4 (Properties of the flow). Let Φ be the flow of a globally
Lipschitz vector field g(x) ∈ C1(Rd; Rd). Fix a time step ∆t > 0, Φ∆t is a
diffeomorphism of Rd and maps sets of measure 0 to sets of measure 0. Moreover,
Jx[Φ∆t(x)] = φ(∆t), where φ is the solution of the variational equations (VE)

dφ(t)
dt

= Jx [g(Φt(x))] φ(t), φ(0) = I. (VE)
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a.2 stochastic calculus

Most of basic definitions and results here can be found in Chapters 1, 2

and 5 in Mao, 2007, and in Oksendal, 2003.

a.2.1 Probability Spaces

We start with the definition of measurable space.

Definition A.2.1 (Measurable space). Let Ω be any set. A σ-algebra on Ω is
a family F of subsets of Ω such that

1. ∅ ∈ F ;

2. A ∈ F ⇒ Ω/A ∈ F ;

3. {Ai}i>1 ⊆ F ⇒ ∪∞
i=1 Ai ∈ F .

(Ω,F ) is called a measurable space.

We say F̂ is a sub-σ-algebra of F if (Ω, F̂ ) is a measurable space and
F̂ ⊂ F . We can specify a probability for each measurable event (i.e. each
element of F ).

Definition A.2.2 (Probability space). A probability measure P on the mea-
surable space (Ω,F ) is a function F → [0, 1] such that

1. P(Ω) = 1;

2. For any {Ai}i>1 ⊆ F with Ai ∩ Aj = ∅ if i ̸= j, P
(
∪∞

i=1 Ai
)
=

∑∞
i=1 P(Ai).

(Ω,F , P) is called a probability space.

We now complete this space.

Definition A.2.3. Let (Ω,F , P) be a probability space. The σ−algebra

F ∗ := {A ⊆ Ω : ∃B, C ∈ F such that B ⊆ A ⊆ C, P(B) = P(C)}

is called the completion of F .
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We can easily induce the probability measure from (Ω,F , P) to (Ω,F ∗, P)
by setting P(A) = P(B) = P(C) in the setting of the definition above.
The probability space (Ω,F ∗, P) is called complete. From now on we al-
ways assume (Ω,F , P) to be complete.

Definition A.2.4 (Random variable). Let (Ω,F , P) be a probability space. A
function X : Ω→ Rd×m is called a (F -measurable) random variable if for each
component Xij : Ω→ R

{ω : Xij(ω) ≤ a} ∈ F for all a ∈ R.

One can deepen their understanding of random variables by elaborating
on the following quote by Gian-Carlo Rota:

"A random variable is neither random nor variable".

Let C be a family of subsets of Ω and σ(C) be the smallest σ-algebra on
Ω which contains C. Let Ω = Rd×m and C be the famility of all open
sets of Rd×m, the Borel σ-algebra on Rd×m is Bd×m := σ(C). If a random
variable is defined over (Rd×m,Bd×m) we say this is a Borel-measurable
function.
Next, notice that a random variable X : Ω→ Rd×m induces a probability
measure νX on (Rd×m,Bd×m). νX is called the distribution of X. What’s
more we can do this the other way around: a random variable X induces
a σ-algebra σ(X), which is assumed to be the smallest possible, on Ω.
We now proceed with a definition.

Definition A.2.5 (Absolute continuity). Let (Ω,F , P) be a probability space
and X : Ω → Rd×m be a random variable with distribution νX . Let µd×m

denote the Lebesgue measure on Rd×m. νX is called absolutely continuous with
respect to µd×m (νX ≪ µd×m) if for any A ∈ Bd×m, µd×m(A) = 0 ⇒
νX(A) = 0.

We have this very important theorem.

Theorem A.2.1 (Radon–Nikodym derivative). Let (Ω,F , P) be a probabil-
ity space and X : Ω→ Rd×m be a matrix valued random variable with distribu-
tion νX ≪ µd×m, then there exists a measurable function f : Rd×m → [0, ∞)
such that for any A ∈ Bd×m,

νX(A) =
∫

A
f dµd×m.
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f is called the probability density of X or the Radon–Nikodym derivative of the
measure dνX with respect to. dµd×m, f =: dνX

dµd×m .

Let X : Ω → Rd×m be absolutely continuous with density f . The expec-
tation is a matrix of Lebesgue integrals (dx := dµd×m)

E [X] :=



∫
Rd×m x11 f (x)dx

∫
Rd×m x12 f (x)dx . . .

∫
Rd×m x1m f (x)dx∫

Rd×m x21 f (x)dx
∫

Rd×m x22 f (x)dx . . .
...

...
...

. . .
...∫

Rd×m xd1 f (x)dx . . . . . .
∫

Rd×m xdm f (x)dx

 .

Moreover, if X : Ω→ Rd we can define its covariance matrix like

Var[X] := E[(X−E[X])(X−E[X])⊤].

Next, we define the normal distribution, also called Gaussian distribu-
tion.

Definition A.2.6 (Normal distribution). Let (Ω,F , P) be a probability space.
The random variable X : Ω → Rd has normal distribution if it is absolutely
continuous and there exists a vector µ ∈ Rd and a matrix Σ ∈ Rd×d such that
the density can be written as

f (x) =
1√

det(2πΣ)
exp

(
1
2
(x− µ)⊤Σ−1(x− µ)

)
.

We will write fact as X ∼ N (µ, Σ).

If µ is the null vector and Σ = I (the identity matrix) we call the distribu-
tion standard normal. We end this subsection listing 3 useful properties of
a random variable X having normal distribution X ∼ N (µ, Σ).

1. E [X] = µ;

2. Var[X] = Σ;

3. For any matrix A ∈ Rm×d vector w ∈ Rm, AX + w is an F -
adapted random variable taking values in Rm and distribution
N (Aµ + w, AΣA⊤);

We end this subsection with the definition of independence.
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Definition A.2.7 (Independence). Let (Ω,F , P) be a probability space and
I be an index set. A collection of sub-σ-algebras {Fi : i ∈ I} is said to be
independent if for every possible choice of indices i1, ..., ik ∈ I,

P(Ai1 ∩ ...∩ Aik
) = P(Ai1 ) · · ·P(Aik

),

Holds for all Ai1 ∈ Fi1 , ..., Aik
∈ Fik

.

Moreover, a family of random variables {Xi : i ∈ I} is said to be inde-
pendent if the corresponding family of induced sub-σ-algebras are inde-
pendent.

Proposition A.2.1 (Correlation and independence). Let X1 and X2 be two
independent real valued random variables. Then, E[XY] = E[X]E[Y]. More-
over, if X and Y have normal distribution, the converse is also true.

a.2.2 Brownian Motion

We start with a very general definition.

Definition A.2.8 (Stochastic process). Let (Ω,F , P) be a probability space.
A stochastic process {X(t)}a≤t≤b in Rd×m with 0 ≤ a ≤ b ≤ ∞ is a family of
F -measurable random variables taking values in Rd×m.

As of right now, concepts of time and information flow are not well de-
fined. For this, we need an additional definition.

Definition A.2.9 (Filtration). Let (Ω,F , P) be a probability space. A filtra-
tion is a family {F (t)}t≥0 of increasing4 sub-σ-algebras of F . A filtration is
called right-continuous if F (t) = ∪s>tF (s). Moreover, a filtration is said to
satisfy the usual conditions if F is complete, {F (t)}t≥0 is right-continuous
and F (0) contains all sets of measure 0. We call (Ω,F , {F (t)}t≥0, P) a fil-
tered probability space.

A stochastic process {X(t)}a≤t≤b is called F (t)-adapted if, for every t ∈
[a, b], X(t) is F (t)-measurable.
We now proceed with the definition of a Brownian motion.

Definition A.2.10 (Brownian Motion). Let (Ω,F , P) be a probability space.
A (standard) one dimensional Brownian motion is a real-valued continuous pro-
cess {B(t)}t≥0 with the following properties:

4 We mean that if t ≤ s then Ft ⊆ Fs .
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1. B(0) = 0 a.s.;

2. for 0 ≤ s ≤ t < ∞, B(t)− B(s) ∼ N (0, t− s);

3. for each sequence 0 ≤ t0 ≤ t1,≤ t2... ≤ tk ≤ ∞, the increments B(ti)−
B(ti−1) are independent for each i ∈ [k].

It is simple to see that B(t) induces a filtration (called the natural filtra-
tion) on (Ω,F , P), defined as

FB(t) = σ(B(s) : 0 ≤ s ≤ t).

Proposition A.2.2. Let (Ω,F , P) be a probability space and B(t) a Brownian
Motion on this space. Then, for each 0 ≤ s ≤ t ≤ ∞, B(t)− B(s) is indepen-
dent of F (s). Hence, B(t) is a Markov (memoryless) process.

Moreover, it turns out that FB(t) can be modified to satisfy the usual
conditions while keeping B(t) adapted.
The definition of d-dimensional Brownian Motion is straightforward.

Definition A.2.11. A d-dimensional process B(t) = (B1(t), · · · Bd(t)) is called
a d-dimensional Brownian Motion if the Bi(t) are one-dimensional independent
Brownian motions.

Again, we can easily build a filtered probability space for a d-dimensional
Brownian motion using the product space.
Since in this thesis we mainly deal with Brownian motions in calcula-
tions (except in Ch. 6 where we consider the Fractional Brownian Motion
but do no perform heavy computations), we always implicitly assume
(Ω,F , {F (t)}t≥0, P) is built from the natural filtration and satisfies the
usual conditions.

a.2.3 Stochastic Integration

Let (Ω,F , {F (t)}t≥0, P) be a complete filtered probability space, we call
Lp([a, b], Rd), with p > 0, the family of Rd-valued F (t)-adapted pro-
cesses { f (t)}a≤t≤b such that

∫ b

a
∥ f (t)∥pdt ≤ ∞.
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Moreover, we denote by Mp([a, b], Rd), with p > 0, the family of Rd-

valued processes { f (t)}a≤t≤b in L([a, b], Rd) such that E
[∫ b

a ∥ f (t)∥pdt
]
≤

∞. The same definition holds for matrix-valued functions using the Frobe-
nius norm. We first define the Itô integral on the family M0([a, b], R),
which we define below.

Definition A.2.12 (Simple process). A R-valued F (t)- adapted processes
{g(t)}a≤t≤b is in M0([a, b], Rd) if there esists a deterministic partition a =
t0 < t1 < ... < tk = b and a set of random variables {ξi}k

i=1 such that ξi, for
each i ∈ [k], is F (t)-measurable and

g(t) = ξ01[t0,t1](t) +
k−1

∑
i=1

ξi1[ti ,ti+1](t),

where 1 is the indicator function.

One can easily see thatM0([a, b], R) ⊂M2([a, b], R). We first define the
Itô integral on this family of simple functions.

Definition A.2.13. Let g ∈ M0([a, b], R), we define

∫ b

a
g(t)dB(t) :=

k−1

∑
i=

ξi(B(ti+1)− B(ti)).

Remark A.2.1. Notice that the just defined stochastic integral is a random
variable with expectation 0, because ξi and (B(ti+1)− B(ti)) are independent,
and (B(ti+1) − B(ti)) has mean zero. In particular, we like to point out that
using ξi+1 in the previous definition would change the properties of this integral
completely.

Next, one has to find a way to extend this definition toM2([a, b], R). The
next lemma will bring a connection.

Lemma A.2.1. For any f ∈ M2([a, b], R) there exist a sequence {gn} of
simple processes such that

lim
n→∞

E

[∫ b

a
∥ f (t)− gn(t)∥2dt

]
= 0.

We are ready to define now the Itô integral inM2([a, b], R).



206 mathematical prerequisites

Definition A.2.14 (1 dimensional Itô integral). Let f ∈ M2([a, b], R) and
{gn} a sequence of simple processes such that

lim
n→∞

E

[∫ b

a
∥ f (t)− gn(t)∥2dt

]
= 0.

The Itô integral of f with respect to. {B(t)} is defined by

∫ b

a
f (t)dB(t) := lim

n→∞

∫ b

a
gn(t)dB(t),

where by “lim” we mean
∫ b

a f (t)dB(t) is the random variable C such that

lim
n→∞

E

[∥∥∥∥C−
∫ b

a
gn(t)dB(t)

∥∥∥∥2
]
= 0.

It turns out this definition is independent of the sequence {gn}. The ex-
tension to multiple dimensions is the same as done in standard analysis.

Definition A.2.15 (Multidimensional Itô integral). Let f ∈ M2([a, b], Rd×m).
Then the Itô integral

∫ b
a f (t)dB(t) with respect to. the m- dimensional Brown-

ian motion {B(t)} is a random vector C where each component Ci is defined
with a simple matrix multiplication-like rule:

Ci :=
m

∑
j=0

∫ b

a
fi,j(t)dBj(t).

We end this subsection with a collection of important properties.

Theorem A.2.2. Let f ∈ M2([a, b], Rd×m) and t ≤ ∞. Then,

1. E
[∫ t

0 f (s)dB(s)
]
= 0;

2. E

[∥∥∥∫ t
0 f (s)dB(s)

∥∥∥2
]
= E

[∫ t
0 ∥ f (s)∥2ds

]
.

The last property is also called Itô isometry.
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a.2.4 Itô’s Lemma and Dynkin’s Formula

Let us indicate as ∂x f (x, t) the d-dimensional vector of partial derivatives
of a scalar function f : Rd × [0, ∞)→ R with respect to each component
of x. Moreover, we indicate as ∂xx f (x, t) the d× d-matrix of partial deriva-
tives of each component of ∂x f (x, t) with respect to each component of
x.
Let (Ω,F , {F (t)}t≥0, P) be a filtered probability space and {h(t)}a≤t≤b
taking values in Rd be a F -adapted stochastic process in this space. We

will write h ∈ Lp
(

R+, Rd
)

, with p > 0, if h ∈ Lp
(
[0, T], Rd

)
for ev-

ery T > 0. Same definition holds for matrix valued functions using the
Frobenius norm.

Definition A.2.16. A d-dimensional Itô process is an Rd-valued continuous
F (t)-adapted process of the form

X(t) = x0 +
∫ t

0
f (s)ds +

∫ t

0
σ(s)dB(s),

with b(t) ∈ L1
(

R+, Rd
)

and σ(t) ∈ L2
(

R+, Rd×m
)

. We shall say that
X(t) has the stochastic differential

dX(t) = f (t)dt + g(t)dB(t).

We are ready now to show Itô’s formula, which appeared for the first
time in Itô, 1944.

Theorem A.2.3. (Itô’s lemma) Let X(t) be an Itô process with stochastic dif-
ferential dX(t) = f (t)dt + g(t)dB(t). Let E (x, t) be twice continuously dif-
ferentiable in x and continuously differentiable in t, taking values in R. Then,
E(X(t), t) is again an Itô process with stochastic differential

dE(X(t), t) = ∂tE(X(t), t))dt + ⟨∂xE(X(t), t), f (t)⟩dt+
1
2

Tr
(

∂xxE(X(t), t) σ(t)σ(t)⊤
)

dt + ⟨Ex(x(t), t), σ(t)⟩dB(t)

Which we sometimes quickly write as

dE = ∂tEdt + ⟨∂xE , dX⟩+ 1
2

Tr
(

∂xxE σσ⊤
)

dt.
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Following Section 3.7.3 in Geering et al., 2011 and Chapter 4 of Mao,
2007, in the setting of Itô’s lemma we can define Itô diffusion differential
operator A as

A (·) = ∂t(·) + ⟨∂x(·), b(t)⟩+ 1
2

Tr
(

∂xx(·) σ(t)σ(t)⊤
)

. (179)

It is then clear that, thanks to Itô’s lemma,

dE(X(t), t) = A E(X(t), t)dt + ⟨Ex(x(t), t), σ(t)⟩dB(t).

Remark A.2.2. Sometimes, in applied research (see e.g. Krichene and Bartlett,
2017, He et al., 2018 and Mertikopoulos and Staudigl, 2018) A E(X(t), t)dt is
denoted as E[dE(X(t), t)], using E[dB] := 0. In this thesis, we will use the
precise notation.

For more information on A and the connection to parabolic PDEs, one
can check Chapter 3 of Stroock and Varadhan, 2007.
By Definition A.2.16, we know that, at any time t > 0,

E(X(t), t) = E(x0, 0) +
∫ t

0
A E(X(t), t)dt +

∫ t

0
⟨Ex(x(t), t), σ(t)⟩dB(t).

Taking the expectation, since ⟨Ex(x(t), t), σ(t)⟩ ∈ M2([0, T], R) by Defi-
nition A.2.16, the stochastic integral vanishes using Theorem A.2.2, and
we have

E[E(X(t), t)]− E(x0, 0) = E

[∫ t

0
A E(X(t), t)dt

]
.

This result can be generalized for stopping times and is known as Dynkin’s
formula (Dynkin, 1965).
It is often useful to find an upper bound to the function E[E(X(t), t)].
One way to find it, which is indeed very useful, is to integrate an upper
bound of the diffusion operator.

Definition A.2.17. u(E(X, t)) is called an upper bound on A E(X, t) if for
any X ∈ Rd and any t > 0

A E(X, t) ≤ u(E(X, t)).

We have the following lemma, following directly from Dynkin formula.
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Lemma A.2.2. Let u(E(X, t)) be an upper bound on A E(X, t), then

E[E(X(t), t)]− E(x0, 0) ≤ E

[∫ t

0
u(E(X(t), t))dt

]
.

a.2.5 Stochastic Differential Equations

Stochastic Differential Equations (SDEs) are equations of the form

dX(t) = b(X(t), t)dt + σ(X(t), t)dB(t).

Notice that this is different from what we wrote in Theorem A.2.3, since
X(t) also appears on the right hand side. Hence, we need to define what
does it mean that X(t) solves an SDE.

Definition A.2.18 (Solution to an SDE). Let X(t) be stochastic process de-
fined for 0 ≤ t ≤ T, taking values in Rd and deterministic initial condition
X(0) = x0. Let b(X(t), t) and σ(X(t), t) be Borel measurable, X(t) is called a
solution to the corresponding SDE if

1. X(t) is continuous and F (t)-adapted;

2. b(X(t), t) ∈ L1
(
[0, T], Rd

)
;

3. σ(X(t), t) ∈ L2
(
[0, T], Rd×m

)
;

4. For every t ∈ [0, T]

X(t) = x0 +
∫ t

0
b(X(t), t)dt +

∫ t

0
σ(X(t), t)dB(t) a.s.

Moreover, the solution X(t) is said to be unique if any other solution X∗(t) is
such that

P {X(t) = X∗(t), for all − τ ≤ t ≤ T} = 1.

Notice that the solution to a SDE is an Itô process, and we are allowed
to use Theorem A.2.3. The following theorem gives a sufficient condition
on b(X(t), t) and σ(X(t), t) for the existence of a solution to the corre-
sponding SDE. This is the analogue of Theorem A.1.2.
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Theorem A.2.4. Assume that there exist two positive constants K̄ and K such
that

1. (Global Lipschitz condition) for all x, y ∈ Rd and t ∈ [0, T]

max{||b(x, t)− b(y, t)||, ||σ(x, t)− σ(y, t)||} ≤ K̄||x− y||2;

2. (Linear growth condition) for all x ∈ Rd and t ∈ [0, T]

max{||b(x, t)||, ||σ(x, t)||} ≤ K(1 + ||x||).

Then, there exists a unique solution X to the corresponding SDE , and X ∈
M2([0, T], Rd).

In Mao, 2007, these two conditions are written a bit differently, but they
are completely equivalent to ours. Here we write them in this way to
match the ones given for ODEs and to avoid confusing the reader.
Next, we discuss simulation of SDEs.

Definition A.2.19 (The Euler–Maruyama simulation). The Euler–Maruyama
discretization method for discretization an SDE on the interval [0, T] works as
follows :

1. fix a stepsize ∆t,

2. Initialize x̂0 = x0,

3. solve the following equation recursively with the use of a random number
generator, until ∆t(k + 1) ≥ T :

x̂k+1 = x̂k + ∆t b(x̂k, k∆t) +
√

∆t σ(x̂k, k∆t)Zk, Zk ∼ N (0, I).
(180)

It is well a well-known fact that the Euler-Maruyama discretization ap-
proaches the true process uniformly in the limit ∆t→ 0.
To end this subsection, we are going to see what happens to an SDE if
we define a different time variable φ(t) using a positive nonincreasing
function η(t). We define φ(t) =

∫ t
0 η(s)ds. The following theorem can be

found in Øksendal, 1990.
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Theorem A.2.5 (Time change). Let X(t) be the solution to

dX(t) = b(X(t)) + σ(X(t))dB(t).

Then, for any t > 0, X(t) has the same distribution as Y
(

φ(t)−1), where Y(t)
is the solution to

dY(t) = η(t)b(X(t))dt +
√

η(t)σ(X(t))dB(t).

Example A.2.1. Take for instance η(t) = 1/t, then φ(t) = log(t). This means
the solution to

dY(t) =
1
t

b(X(t))dt +
1√

t
σ(X(t))dB(t)

is such that Y(et) = X(t) in distribution, for every t. This means, Y(t) is the
same process, but exponentially slowed down.

a.3 optimization on smooth functions

In this section, we are going to study some of the properties of the func-
tion classes used by the optimization community. Most of the proposi-
tions and results below can be found in Nesterov, 2013.
In this subsection, f is a function defined in an open set X ⊆ Rd, taking
values in R. We denote by C p(X , R) the family of functions from X to R

that are p-times continuously differentiable.

a.3.1 Smoothness and Convexity

We start from a basic definition.

Definition A.3.1 (Smoothness). f ∈ C p(X , R) is L-smooth of order p if

∀x, y ∈ X , ||∇p f (x)−∇p f (y)|| ≤ L||x− y||.

As a special case, if p = 1, we will call the function L-smooth (or just
smooth). Smoothness is very powerful when combined with convexity.
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Definition A.3.2 (Convexity). f ∈ C1(X , R) is called convex5 if

∀x, y ∈ X , f (y) ≥ f (x) + ⟨∇ f (x), y− x⟩.
Most of the times, we will use this inequality in reversed form, for the
particular case y = x∗, where x∗ is a global minimum of f :

∀x ∈ X , ⟨∇ f (x), x− x∗⟩ ≥ f (x)− f (x∗).

Here is also an equivalent definition.

Theorem A.3.1. f ∈ C1(X , R) is convex if and only if

∀x, y ∈ X , ⟨∇ f (x)−∇ f (y), x− y⟩ ≥ 0.

We recall a useful property un convex functions in the next theorem.

Theorem A.3.2 (Jensen inequality). Let g : [a, b] → R be a Lebesgue-
integrable function, and let f : R→ R be a convex function. Then

f
(

1
b− a

∫ b

a
g(t)dt

)
≤ 1

b− a

∫ b

a
f (g(t))dt.

Smoothness has several consequences.

Proposition A.3.1. Let f ∈ C1(X , R) be smooth, the following are equivalent:

∀x, y ∈ X , ⟨∇ f (x)−∇ f (y), x− y⟩ ≤ L∥x− y∥2; (181)

∀x ∈ X ,
L
2
||x||2 − f (x) is convex; (182)

∀x, y ∈ X , f (y) ≤ f (x) + ⟨∇ f (y), x− y⟩+ L
2
∥x− y∥2. (183)

On the other hand, some conditions imply (are sufficient for) smooth-
ness.

Proposition A.3.2. Let f ∈ C1(X , R). Define the following properties:

∀x, y ∈ X , f (y) ≥ f (x) + ⟨∇ f (x), y− x⟩+ 1
2L
∥∇ f (y)−∇ f (x)∥2;

(184)

∀x, y ∈ X , ⟨∇ f (x)−∇ f (y), x− y⟩ ≥ 1
L
∥∇ f (x)−∇ f (y)∥2. (185)

We have that Equation (184) is sufficient for Equation (185) and Equation (185)
is sufficient for smoothness.

5 This definition can be extended to general functions using the concept of subgradient.
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Proposition A.3.3. Let f ∈ C1(X , R) be convex, then Eq. (184), Eq. (185),
Eq. (181), Eq. (182) and Eq. (183) are equivalent.

Proposition A.3.4. f ∈ C2(X , R) is smooth if and only if ∇2 f ⪯ LI.

Proposition A.3.5. f ∈ C2(X , R) is convex if and only if ∇2 f ⪰ 0.

Let M be any square matrix, we have

M ⪯ αI ⇒ max(Spec(M)) ≤ α;

M ⪰ αI ⇒ min(Spec(M)) ≥ α.

Hence, Propositions A.3.5 and A.3.4 can be easily converted into state-
ments involving the eigenvalues of ∇2 f .
One can require the landscape to be sufficiently curved or, equivalently,
the gradients to be sufficiently big away from the optimum.

Definition A.3.3 (Strong convexity, µ-SC). f ∈ C1(X , R) is said to be
strongly convex (µ-SC) if there exist µ > 0 such that

∀x, y ∈ X , f (y) ≥ f (x) + ⟨∇ f (x), y− x⟩+ µ

2
||y− x||2.

One can give some alternative definitions of strong convexity.

Proposition A.3.6. The following conditions are all equivalent to strong con-
vexity:

∀x ∈ X , f (x)− µ

2
||x||2 is convex; (186)

∀x, y ∈ X , ⟨∇ f (x)−∇ f (y), x− y⟩ ≥ µ||x− y||2. (187)

It is trivial to see that a strongly convex function can have just one global
minimizer, which we denote by x∗. Also, strong convexity implies the
following properties.

Proposition A.3.7. Let f ∈ C1(X , R) be µ-SC, then

∀x ∈ X ,
1
2
||∇ f (x)||2 ≥ µ( f (x)− f (x∗)); (188)

∀x, y ∈ X , ||∇ f (x)−∇ f (y)|| ≥ µ||x− y||; (189)

∀x, y ∈ X , f (y) ≤ f (x) + ⟨∇ f (x), y− x⟩+ 1
2µ
∥∇ f (y)−∇ f (x)∥2;

(190)

∀x, y ∈ X , ⟨∇ f (x)−∇ f (y), x− y⟩ ≤ 1
µ
||∇ f (x)−∇ f (y)||2. (191)
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Condition Equation (188) is also called Polyak-Łojasiewicz (PŁ) inequal-
ity. We are going to work more on this condition in the next subsection.

Proposition A.3.8. f ∈ C2(X , R) is µ-SC if and only if ∇2 f ⪰ µI.

Again, this proposition can be easily translated into statements involving
the eigenvalues of ∇2 f .



BA P P E N D I X T O C H A P T E R 2

These motions were such as to satisfy me, after frequently repeated
observation, that they arose neither from currents in the fluid, nor
from its gradual evaporation, but belonged to the particle itself.

– Robert Brown.

We start with a recap of some results and notation outlined in Chapter A,
applied to the Memory SDE studied in Section 2.3.

b.1 proofs for section 2 .3

We first review some tools in stochastic analysis and then provide proofs
for the two theorems presented in this section.

b.1.1 Stochastic Calculus for the Memory SDE

Consider the memory SDE


dX(t) = V(t)dt

dV(t) = − ṁ(t)
m(t)

V(t)dt− ṁ(t)
m(t)
∇ f (X(t))dt− ṁ(t)

m(t)
σ(X(t), t)dB(t)

.

We can rewrite this in vector notation (0d×d is the d× d of all zeros)(
dX(t)

dV(t)

)

=

 V(t)

− ṁ(t)
m(t)V(t)− ṁ(t)

m(t)∇ f (X(t))

 dt +

0d×d 0d×d

0d×d − ṁ(t)
m(t)σ(X(t), t)

 dB(t)

= b(X(t), V(t), t)dt + ξ(X(t), V(t), t)dB(t), (192)

215
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where {B(t)}t≥0 is a d-dimensional Brownian Motion. We write the right-
hand-side for simplicity as b(t)dt + ξ(t)dt.
Let E : Rd ×Rd ×R → R be twice continuously differentiable jointly
in the first two variables (indicated as x and v) and continuously differ-
entiable in the last (which we indicate as t). Then, by Itô’s lemma (Mao,
2007), the stochastic process {E(X(t), V(t), t)}t≥0 satisfies the following
SDE:

dE(X(t), V(t), t) = ∂tE(X(t), V(t), t))dt + ⟨∂(x,v)E(X(t), V(t), t), b(t)⟩dt

+ ⟨∂(x,v)E(X(t), V(t), t), ξ(t)dB(t)⟩

+
1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)E(X(t), V(t), t)

)
dt.

where ∂(x,v) is the partial derivative with respect to (x, v) and ∂2
(x,v) the

matrix of second derivatives with respect to (x, v). Notice that, in the de-
terministic case ξ(t) = 0, the equation reduces to standard differentiation
using the chain rule:

dE(X(t), V(t), t)
dt

= ∂tE(X(t), V(t)t)) + ⟨∂(x,v)E(X(t), V(t), t), b(t)⟩.

The Itô diffusion differential operator A associated with Eq. (192) :

A (·) = ∂t(·) + ⟨∂(x,v)(·), b(t)⟩+ 1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)(·)

)
.

It is then clear that, thanks to Itô’s lemma (see also Eq. (179) in Chap-
ter A),

dE(X(t), V(t), t) = A E(X(t), V(t), t)dt+ ⟨∂(x,v)E(X(t), V(t), t), ξ(t)dB(t)⟩.
The Itô diffusion differential operator generalizes the concept of deriva-
tive: in fact, with a slight abuse of notation:

E [dE(X(t), V(t), t)]
dt

= A E(X(t), V(t), t).

Moreover, by the definition of the solution to an SDE (see Mao, 2007), we
know that at any time t > 0,

E(X(t), V(t), t)

= E(x0, v0, 0) +
∫ t

0
A E(X(s), V(s), s)ds +

∫ t

0
∂xE(X(s), V(s), s)⊤σ(s)dB(s).
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Taking the expectation the stochastic integral vanishes1 and we have

E[E(X(t), V(t), t)]− E(x0, 0) = E

[∫ t

0
A E(X(s), V(s), s)ds

]
.

This result is known as Dynkin’s formula and generalizes the fundamen-
tal theorem of calculus to the stochastic setting.
The next fundamental lemma can also be found in Krichene and Bartlett,
2017, and we will make heavy use of it in our proofs.

Lemma B.1.1. Consider two symmetric d−dimensional square matrices P and
Q. We have

Tr(PQ) ≤ d · ∥P∥s · ∥Q∥s,

where ∥ · ∥s denotes the spectral norm.

Proof. Let Pj and Qj be the j-th row(column) of P and Q, respectively.

Tr(PQ) =
d

∑
j=1

P⊤j Qj ≤
d

∑
j=1
∥Pj∥ · ∥Qj∥ ≤

d

∑
j=1
∥P∥s · ∥Q∥s = d · ∥P∥s · ∥Q∥s,

where we first used the Cauchy-Schwarz inequality, and then the follow-
ing inequality:

∥A∥s = sup
∥z∥≤1

∥Az∥ ≥ ∥Aej∥ = ∥Aj∥,

where ej is the j-th vector of the canonical basis of Rd.

b.1.2 Proofs of Convergence for Memory Systems

Proof of Lemma 2.3.2. Consider the following Lyapunov function, inspired
from Su et al., 2016:

E(x, v, t) = r(t)( f (x)− f (x∗)) +
1
2
∥x− x∗ + λ(t)v∥2,

where r : R → R and λ : R → R are two differentiable functions which
we will fix during the proof. First, we find a bound on the infinitesimal
diffusion generator of the stochastic process {E(X(t), V(t), t)}t≥0. Ideally,

1 see e.g. Thm. 1.5.8 in Mao, 2007
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we want this bound to be independent of the dynamics (i.e the solution
{(X(t), V(t))}t≥0) of the problem, so that we can integrate it and get a
rate.

By Itô’s lemma, we know that

A E(X(t), V(t), t) = ∂tE(X(t), V(t), t))dt

+ ⟨∂(x,v)E(X(t), V(t), t), b(t)⟩dt

+
1
2

Tr
(

ξ(t)ξ(t)⊤∂2
xE(X(t), V(t), t)

)
dt.

Plugging in the SDE definition and the definition of E ,

A E(X(t), V(t), t)

= ṙ(t)( f (X− f (x∗))dt + 2⟨X− x∗ + λ(t)V, λ̇(t)V⟩dt

+ r(t)⟨∇ f (X), V⟩dt + ⟨X− x∗ + λ(t)V, V⟩dt

+ λ(t)
〈

X− x∗ + λ(t)V,− ṁ(t)
m(t)

V − ṁ(t)
m(t)

∇ f (X)

〉
dt

+
1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)E(X(t), V(t), t)

)
dt.

Next, we group some terms together,

A E(X(t), V(t), t) = ṙ(t)( f (X)− f (x∗))dt− λ(t)
ṁ(t)
m(t)

⟨∇ f (X), X− x∗⟩dt

+

(
λ̇(t) + 1− λ(t)

ṁ(t)
m(t)

)
⟨X− x∗ + λ(t)V, V⟩ dt

+

(
r(t)− λ(t)2 ṁ(t)

m(t)

)
⟨∇ f (X), V⟩ dt

+
1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)E(X(t), V(t), t)

)
dt.
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Using (H1’) (τ-weak quasi-convexity), we conclude

A E(X(t), V(t), t) ≤
(

ṙ(t)− τλ(t)
ṁ(t)
m(t)

)
( f (X)− f (x∗))dt

+

(
λ̇(t) + 1− λ(t)

ṁ(t)
m(t)

)
⟨X− x∗ + λ(t)V, V⟩ dt

+

(
r(t)− λ(t)2 ṁ(t)

m(t)

)
⟨∇ f (X), V⟩ dt

+
1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)E(X(t), V(t), t)

)
dt.

Under the hypotheses of this lemma, since λ̇(t) = ṁ(t)
m(t)λ(t) − 1 if and

only if λ(t) = −m(t)
∫ 1

m(t) dt, we are left with

A E(X(t), V(t), t) ≤ 1
2

Tr
(

ξ(t)ξ(t)⊤∂2
(x,v)E(X(t), V(t), t)

)
dt

=
d
2

(
ṁ(t)
m(t)

)2
Tr
(

σ(t)σ(t)⊤∂2
vE(X(t), V(t), t)

)
dt

≤ d
2

(
ṁ(t)
m(t)

)2
∥σ(t)σ(t)⊤∥s∥∂2

vE(X(t), V(t), t)∥sdt

≤ d
2

σ2
∗λ(t)2

(
ṁ(t)
m(t)

)2
dt,

where in the first inequality we used Lemma B.1.1 and the definition of
σ2∗ in (H0’) (see Sec. 2.3). Finally, by Dynkin’s formula

E[E(X(t), V(t), t)]− E(x0, 0) ≤ dσ2∗
2

∫ t

0
λ(s)2

(
ṁ

m
(s)
)2

ds;

therefore

r(t)E[ f (X(t))− f (x∗)] + E

[
1
2
∥X(t)− x∗ + λ(t)V∥2

]
≤ r(0)( f (x0)− f (x∗)) +

1
2
∥x0 − x∗∥2 +

dσ2∗
2

∫ t

0
λ(s)2

(
ṁ

m
(s)
)2

ds,



220 appendix to chapter 2

which implies

r(t)E[ f (X)− f (x∗)]

≤ r(0)( f (x0)− f (x∗)) +
1
2
∥x0 − x∗∥2 +

dσ2∗
2

∫ t

0
λ(s)2

(
ṁ

m
(s)
)2

ds.

Proof of Lemma 2.3.3. Consider the Lyapunov function inspired by the
continuous-time setting in Lemma 2.3.1.

Ek = rk( f (xk)− f (x∗)) +
1
2
∥xk+1 − x∗ + λkmk+1∥2. (193)

First, notice that

xk+1 − x∗ + λk+1mk+1
(39)
= xk − x∗ + (1 + λk+1)mk+1

(38)
= xk − x∗ + (1 + λk+1)(βkmk − δkη∇ fik

(xk))

= xk − x∗ + λkmk − η∇ fik
(xk)),

where in the last line we chose λk = (λk+1 + 1)βk and δk = 1
λk+1 .

Consider ζk := ∇ fik
(xk)−∇ f (xk), then

E
[
∥xk+1 − x∗ + λk+1mk+1∥2

]
= E

[
∥xk − x∗ + λkmk − η∇ f (xk)) + ηζk∥2

]
= E

[
∥xk − x∗ + λkmk∥2

]
+ E

[
∥η∇ f (xk) + ηζk∥2

]
− 2ηE [⟨∇ f (xk), xk − x∗ + λkmk⟩]

= E
[
∥xk − x∗ + λkmk∥2

]
+ η2E

[
∥∇ f (xk)∥2

]
+ η2E

[
∥ζk∥2

]
− 2ηE [⟨∇ f (xk), xk − x∗⟩]− 2ηλkE [⟨ f (xk), mk⟩] .

Since f (·) is convex and smooth, it follows from Thm. 2.1.5 in Nesterov
et al., 2018 that

1
L
∥∇ f (xk)∥2 ≤ ⟨xk − x∗,∇ f (xk)⟩,

f (xk)− f (x∗) +
1

2L
∥∇ f (xk)∥2 ≤ ⟨xk − x∗,∇ f (xk)⟩,

f (xk)− f (xk−1) ≤ ⟨xk − xk−1,∇ f (xk))⟩
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for all xk. Next, notice that ζk is a random variable with mean 0 and we
denote its covariance by Σ(xk) ≥ 0. Moreover,

E
[
∥ζk∥2

]
= E

[
Tr(ζkζ⊤k )

]
= Tr(E

[
ζkζ⊤k

]
) = Tr(Σ(xk)) ≤ d∥Σ(xk)∥s = dς2

∗.

Let us assume k ≥ 1, then

E
[
∥xk+1 − x∗ + λk+1mk+1∥2

]
= E

[
∥xk − x∗ + λkmk∥2

]
+ η2E

[
∥∇ f (xk)∥2

]
+ dη2ς2

∗

− 2ηE [⟨∇ f (xk), xk − x∗⟩]− 2ηλkE [⟨∇ f (xk), xk − xk−1⟩]
≤ E

[
∥xk − x∗ + λkmk∥2

]
+ η2E

[
∥∇ f (xk)∥2

]
+ dη2ς2

∗

− 2ηE

[
f (xk)− f (x∗) +

1
2L
∥∇ f (xk)∥2

]
− 2ηλkE [ f (xk)− f (xk−1)]

≤ E
[
∥xk − x∗ + λkmk∥2

]
+ η

(
η − 1

L

)
E
[
∥∇ f (xk)∥2

]
+ dη2ς2

∗

− 2η(1 + λk)E [ f (xk)− f (x∗)] + 2ηλkE [ f (xk−1)− f (x∗)] .

Then, let η ≤ 1/L, note that E [ f (xk)− f (x∗)] ≥ 0, ∀k and assume λk ≤
λk−1 + 1. As a result, we have

E

[
η(1 + λk)( f (xk)− f (x∗)) +

1
2
∥xk+1 − x∗ + λk+1mk+1∥2

]
≤ E

[
η(1 + λk−1)( f (xk−1)− f (x∗)) +

1
2
∥xk − x∗ + λkmk∥2

]
+

dη2ς2∗
2

.

From this we immediately get, choosing k = 0 and dropping the first
term, an important inequality,

E

[
1
2
∥x1 − x∗ + λ1m1∥2

]
≤ η(1 + λ0)( f (x0)− f (x∗)) +

1
2
∥x0 − x∗∥2 +

dη2ς2∗
2

, (194)

where we used the fact that m0 = 0.
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Recalling the definition of our Lyapunov function in Eq. (193) and choos-

ing rk := 1 + λk, the last inequality reads as E[Ek − Ek−1] ≤ dη2

2 ς2∗ for
k ≥ 1. Summing over k = 1, · · · , K

K

∑
k=1

E

[
η(1 + λk)( f (xk)− f (x∗)) +

1
2
∥xk+1 − x∗ + λk+1mk+1∥2

]

≤
K

∑
k=1

E

[
η(1 + λk−1)( f (xk−1)− f (x∗)) +

1
2
∥xk − x∗ + λkmk∥2

]
+

dη2ς2∗K
2

.

Simplifying the sum, we get

E

[
η(1 + λK)( f (xK)− f (x∗)) +

1
2
∥xK+1 − x∗ + λK+1mK+1∥2

]
≤ E

[
η(1 + λ0)( f (x0)− f (x∗)) +

1
2
∥x1 − x∗ + λkm1∥2

]
+

dη2ς2∗K
2

.

dropping the second term in the first expectation (positive), we get (using
also Eq. (194))

E [ f (xK)− f (x∗)]

≤
E
[
η(1 + λ0)( f (x0)− f (x∗)) + 1

2∥x1 − x∗ + λkm1∥2
]

η(1 + λK)
+

dη2ς2∗K
2η(1 + λK)

≤ 2η(1 + λ0)( f (x0)− f (x∗)) + 1
2∥x0 − x∗∥2

η(1 + λK)
+

dη2ς2∗(1 + K)
2η(1 + λK)

.

b.2 proofs and additional material for section 2 .4

In Section 2.4 we work in Rd with the Euclidean norm ∥ · ∥. If A is a
matrix, ∥A∥ denotes its supremum norm: ∥A∥ = sup∥y∥=1 ∥Ay∥. We
denote by Cr(Rn, Rm) the family of r-times continuously differentiable
functions from Rn to Rm. We denote by Dg ∈ Rm×n the Jacobian (matrix
of partial derivatives) of g : Rn → Rm; if m = 1 then we denote its
gradient by ∇g. If the dimensions are clear, we write Cr. We seek to
minimize f : Rd → R. We list below some assumptions we will refer to.
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Figure 62: (From Wikipedia) The cat map stretches the unit square and how its pieces
are rearranged. The cat map is Anosov. Shown are the directions of the global
splitting Rn = Es ⊕ Eu.

(H1) f ∈ C2(Rd, R) is coercive2, bounded from below and L-smooth
(∀a ∈ Rd, ∥∇2 f (a)∥ ≤ L).

(H2) f is µ-strongly-convex: for all a ∈ Rd, ∥∇2 f (a)∥ ≥ µ.

b.2.1 Hyperbolic Sets

We state here some useful details on shadowing for the interested reader.
Also, we propose a simple proof of the expansion map shadowing theo-
rem based on Ombach, 1993.

b.2.1.1 Shadowing near Hyperbolic Sets

We first provide the definitions and results needed to state the shadowing
theorem (Anosov, 1967) precisely. Our discussion is based on Lanford,
1985. Let Ψ : Rn → Rn be a diffeomorphism.

Definition B.2.1. We say x ∈ Rn is an hyperbolic point for Ψ if there exist
a splitting Rn = Es(x)⊕ Eu(x) in linear subspaces such that

∥D(Ψk(x))ξ∥ ≤ cλk∥ξ∥ for all ξ ∈ Es(x) and for all k ∈N,

∥D(Ψ−k(x))ξ∥ ≤ cλk∥ξ∥ for all ξ ∈ Eu(x) and for all k ∈N,

where λ and c can be taken to depend only on x, not on ξ ∈ Eu(x).

2 f (x)→ ∞ as ∥x∥ → ∞
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Remark B.2.1. It can be showed that, if x is hyperbolic for Ψ, then also Ψ(x)
and Ψ−1(x) are hyperbolic points. Moreover, using the chain rule, we have

Es(Ψ(x)) = DΨ(x)Es(x) and Eu(Ψ(x)) = DΨ(x)Eu(x).

Definition B.2.2. A compact set Λ ⊂ Rn is said to be an hyperbolic set for Ψ
if it is invariant for Ψ (i.e. Ψ(Λ) = Λ), each x ∈ Λ is hyperbolic and c, λ (see
Def. B.2.1) can be taken to be independent of x. If the entire space is hyperbolic,
then Ψ is called an Anosov diffeomorphism (from Anosov, 1967).

We now state the main result in the literature, originally proved in Bowen,
1975, which essentially tells us that pseudo-orbits sufficiently near an
hyperbolic set are shadowed.

Theorem B.2.1 (Shadowing theorem). Let Λ be an hyperbolic set for Ψ, and
let ϵ > 0. Then there exists δ > 0 such that, for every δ-pseudo-orbit (yk)

∞
k=0

with ∥yk −Λ∥ ≤ δ for all k, there is x0 such that

∥yk −Ψk(x0)∥ ≤ ϵ for all k ∈N.

Furthermore, if ϵ is small enough, x0 is unique.

example . The most famous example of an Anosov diffeomorphism
is Arnold’s cat map (Brin and Stuck, 2002) on the torus T2, which can be
thought of as the quotient space R2/Z2. Shown in Fig. 62, details in Brin
and Stuck, 2002.

b.2.1.2 Expansion Map Shadowing Theorem

First, we remind to the reader an important result in analysis.

Theorem B.2.2 (Banach fixed-point theorem). Let (Z, d) be a non-empty
complete metric space with a contraction mapping T : Z → Z. Then T admits
a unique fixed-point z∗ ∈ Z (i.e. T(z∗) = z∗). Furthermore, z∗ can be found
as follows: start with an arbitrary element z0 in Z and iteratively apply T; z∗ is
the limit of this sequence.

We recall that Ψ is said to be uniformly expanding if there exists ρ > 1
(expansion factor) such that for all x1, x2 ∈ Rn, ∥Ψ(x1)−Ψ(x2)∥ ≥ ρ∥x1 −
x2∥. The next result is adapted from Prop. 1 in Ombach, 1993.
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Theorem B.2.3 (Expansion map shadowing theorem). If Ψ is uniformly
expanding, then for every ϵ > 0 there exists δ > 0 such that every δ−pseudo-
orbit (yk)

∞
k=0 of Ψ is ϵ−shadowed by the orbit (xk)

∞
k=0 of Ψ starting at x0 =

limk→∞ Ψ−k(yk), that is xk := Ψk(x0). Moreover,

δ ≤
(

1− 1
ρ

)
ϵ. (195)

Proof. Fix ϵ > 0 and define δ = (1− 1/ρ)ϵ. Let (yk)
∞
k=0 be a δ-pseudo-

orbit of Ψ and extend it to negative iterations: y−k := Ψ−k(y0). We call
the resulting sequence y = (yk)k∈Z. We consider the set Z of sequences
which are pointwise close to y:

Z = {z : z = (zk)k∈Z, ∥zk − yk∥ ≤ ϵ for all k ∈ Z}.
We endow Z with the supremum metric d, defined as follows:

d(z, w) = sup
k∈Z

∥zk − wk∥.

It is easy to show that (Z, d) is complete. Next, we define an operator T
on sequences in Z, such that

[T(z)]k = Ψ−1(zk+1) for all k ∈ Z.

Notice that, if T(x) = x, then (xk)
∞
k=0 is an orbit of Ψ. If, in addition

x ∈ Z, then by definition we have that (xk)
∞
k=0 shadows (yk)

∞
k=0. We

clearly want to apply Thm. B.2.2, and we need to verify that

1. T(Z) ⊆ Z. This follows from the fact that Ψ−1 is a contraction with
contraction factor 1/ρ, similarly to the contraction map shadowing
theorem (see Thm. 2.4.2). Let z ∈ Z, for all k ∈ Z

∥Ψ−1(zk+1)− yk∥
≤ ∥Ψ−1(zk+1)−Ψ−1(yk+1)∥+ ∥Ψ−1(yk+1)− yk∥

δ-pseudo-orbit
≤ ∥Ψ−1(zk+1)−Ψ−1(yk+1)∥+ δ

contraction
≤ 1

ρ
∥(zk+1)− yk+1∥+ δ

z∈Z
≤ 1

ρ
ϵ + δ = ϵ.
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2. T is itself a contraction in (Z, d), since

d(T(z), T(w)) = sup
k∈Z

∥Ψ−1(zk+1)−Ψ−1(wk+1)∥

≤ 1
ρ

sup
k∈Z

∥zk+1 − wk+1∥

≤ 1
ρ

d(z, w).

The statement of the expansion map shadowing theorem follows then
directly from the Banach fixed-point theorem applied to T, which is a
contraction on (Z, d).

b.2.2 Shadowing in Optimization

We present here the proofs of some results we claim in the thesis section.

b.2.2.1 Non-expanding maps (i.e. the convex setting)

Proposition B.2.1. If Ψ is uniformly non-expanding, then for δ−pseudo-orbit
(yk)

∞
k=0 of Ψ is such that the orbit (xk)

∞
k=0 of Ψ starting at x0 = y0, satisfies

∥xk − yk∥ ≤ δk for all k.

Proof. The proposition is trivially true at k = 0; next, we assume the
proposition holds at k ∈N and we show validity for k + 1. We have

∥xk+1 − yk+1∥
subadditivity
≤ ∥Ψ(xk)−Ψ(yk)∥+ ∥Ψ(yk)− yk+1∥

δ-pseudo-orbit
≤ ∥Ψ(xk)−Ψ(yk)∥+ δ

non-expansion
≤ ∥xk − yk∥+ δ

induction
≤ kδ + δ = (k + 1)δ.

The GD map on a convex function is non-expanding, hence this result
bounds the GD-ODE approximation, which grows slowly as a function
of the number of iterations.
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b.2.2.2 Perturbed Contracting Maps

Proposition B.2.2. Assume Ψ is uniformly contracting with contraction factor
ρ. Let Ψ̃ be the perturbed dynamical system, that is Ψ̃(x) = Ψ(x) + ζ where
∥ζ∥ ≤ D. Let (yk)

∞
k=0 be a δ−pseudo-orbit of Ψ and we denote by (x̃k)

∞
k=0 the

orbit of of Ψ̃ starting at x̃0 = y0, that is x̃k := Ψ̃k(x̃0). We have ϵ-shadowing
under

δ ≤ (1− ρ)ϵ− D.

Proof. Again as in Thm. 2.4.2, we proceed by induction: the proposition
is trivially true at k = 0, since ∥x̃0 − y0∥ ≤ ϵ; next, we assume the propo-
sition holds at k ∈N and we show validity for k + 1. We have

∥x̃k+1 − yk+1∥
subadditivity
≤ ∥Ψ(x̃k) + ζ −Ψ(yk)∥+ ∥Ψ(yk)− yk+1∥

δ-pseudo-orbit
≤ ∥Ψ(x̃k)−Ψ(yk)∥+ D + δ

contraction
≤ ρ∥x̃k − yk∥+ D + δ

induction
≤ ρϵ + D + δ.

Since δ ≤ (1− ρ)ϵ− D, ρϵ + δ + D = ϵ.

In the setting of shadowing GD, ρ = 1− µh (Prop. 2.4.3), δ = ℓLh2

2 , and
D = h∥∇ f (x)− ∇̃ f (x)∥ ≤ Rh which gives the consistency equation

ℓLh2

2
≤ (1− ρ)ϵ− D ≤ µhϵ− Rh =⇒ h ≤ 2(ϵµ− R)

ℓL
.

b.2.2.3 Hyperbolic Maps (Quadratic Saddle Setting)

We prove the result for GD. This can be generalized to HB. A more pow-
erful proof technique — which can tackle the effect of perturbations —
can be found in the appendix of Orvieto and Lucchi, 2019b.

Proposition B.2.3 (restated Prop. 2.4.4). Let f be quadratic with Hessian H
which has no eigenvalues in the interval (−γ, µ), for some µ, γ > 0. Assume
the orbit (yk)

∞
k=0 of φGD

h is such that (H1) holds up to iteration K. Let ϵ be
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the desired tracking accuracy; if 0 < h ≤ min
{

µϵ
Lℓ , γϵ

2Lℓ , 1
L

}
, then (yk)

∞
k=0 is

ϵ-shadowed by a orbit (xk)
∞
k=0 of ΨGD

h up to iteration K.

Proof. From Prop. 2.4.2 and thanks to the hypothesis, we know (yk)
K
k=0 is

a partial δ-pseudo-orbit of ΨGD
h with δ = ℓL

2 h2. By the triangle inequality,
this property is preserved when projecting both sequences on a subspace.
We project the sequences (the orbit and the pseudo-orbit) onto the sta-
ble and unstable subspaces (Es and Eu) of H. Since these are invariant
(they are eigenspaces), shadowing in each space implies shadowing in
the whole Rd (Ombach, 1993). On the stable subspace we require, by the
same argument of Thm. 2.4.3, δ ≤ µhϵ which gives the condition h ≤ 2ϵµ

ℓL .
On the unstable space, reversing the arrow of time (see discussion in the

thesis) and by Thm. B.2.3, we require δ ≤
(

1− 1
1+γh

)
ϵ = γh

1+γh ϵ. Since

γ ≤ L and h ≤ 1
L , we have γh ≤ 1; which implies3 γh

2 ϵ ≤ γh
1+γh ϵ. An

easier but stronger sufficient condition is therefore δ ≤ γh
2 ϵ. Therefore,

shadowing in the unstable subspace requires ℓL
2 h2 ≤ γh

2 ϵ =⇒ h ≤ γϵ
ℓL .

All in all, since we have to consider both manifold together, by subaddi-
tivity of the norm we actually need to require a radius of ϵ/2.

b.2.3 Under Strong Convexity GD is a Contraction

The result below is used in the shadowing proof.

Proposition B.2.4 (restated Prop. 2.4.3). Assume (H1), (H2). For all h ≤ 1
L ,

ΨGD
h is uniformly contracting with ρ = 1− hµ.

Proof. The general proof idea comes from Carrillo et al., 2006. For any
x1, x2 ∈ Rd we want to compute

∥ΨGD
h (x1)−ΨGD

h (x2)∥ = ∥x1 − x2 − h(∇ f (x1)−∇ f (x2))∥.
Let w : [0, 1] → Rd be the straight line which connects x2 to x1, that
is w(r) = (1 − r)x2 + rx1. It is clear that w′(r) = x1 − x2 and, by the
fundamental theorem of calculus (FTC),

∇ f (x1)−∇ f (x2) =
∫ 1

0

d(∇ f (w(r)))
dr

dr =
(∫ 1

0
∇2 f (w(r))dr

)
(x1− x2).

3
x

1+x ≤ x
2 for 0 ≤ x ≤ 1.
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It is of chief importance to notice that, in general, we can only use the FTC if
f ∈ C2(Rd, R): requiring the objective to be just twice differentiable is not
sufficient; indeed, if the integrand is not continuous, the integral will not
in general be differentiable : as a result, the Hessian would be undefined
at certain points. Next, notice that, since clearly H̄ :=

∫ 1
0 ∇2 f (w(r))dr

satisfies µI ≤ H̄ ≤ LI, we get

∥ΨGD
h (x1)−ΨGD

h (x2)∥ = ∥(I − hH̄)(x1 − x2)∥
≤ ∥I − hH̄∥∥x1 − x2∥ ≤ (1− hµ)∥x1 − x2∥,

where we used that H̄ is symmetric (matrix norm is the biggest eigen-
value) and h ≤ 1

L .

b.2.4 Heavy-ball Local Approximation Error

We first need a lemma.

Lemma B.2.1. Assume (H1). Let (p, q) be the solution to HB-ODE starting
from p(0) = 0 and from any q ∈ Rd, for all t ≥ 0, we have

∥p(t)∥ ≤ ℓ/α,

∥ ṗ(t)∥ ≤ 2ℓ,

∥ p̈(t)∥ ≤ 2(α + L)ℓ.

Proof. Let S(t) = eαt p(t), then Ṡ = αeαt p(t) + eαt(−αp(t)−∇ f (p(t))) =
−eαt∇ f (p(t)). Hence, since p(0) = 0, eαt p(t) =

∫ t
0 eαs∇ f (p(s))ds. There-

fore

∥p(t)∥ =
∥∥∥∥e−αt

∫ t

0
eαs∇ f (p(s))ds

∥∥∥∥ ≤ e−αt
∫ t

0
eαs∥∇ f (p(s))∥ds

≤ e−αt
∫ t

0
eαsℓds =

1− e−αt

α
ℓ ≤ ℓ

α
.

Using this, we can bound the acceleration

∥ ṗ(t)∥ = ∥ − αp(t)−∇ f (p(t))∥ ≤ α∥p(t)∥+ ∥∇ f (p(t))∥ ≤ 2ℓ

and the jerk
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∥ p̈(t)∥ =
∥∥∥∥−α ṗ(t)− d

dt
∇ f (p(t))

∥∥∥∥ ≤ 2αℓ+ ∥∇2 f (p(t))∥∥ ṗ(t)∥ = 2(α+ L)ℓ.

We proceed with the proof of the proposition.

Proposition B.2.5 (restated Prop. 2.4.5). Assume (H1). The discretized HB-
ODE solution (starting with zero velocity) (yk)

∞
k=0 is a δ-pseudo-orbit of ΨHB

α,h
with δ = ℓ(α + 1 + L)h2:

∥yk+1 −ΨHB
α,h(yk)∥ ≤ δ, for all x ∈ Rd.

Proof. Thanks to Thm. 2.4.1, since the solution y = (p, q) of HB-ODE is a
C2 curve, we can write (p(kh+ h), q(kh+ h)) = y(kh+ h) = φGD

h (y(kh)) =
yk+1 using Taylor’s theorem with Lagrange’s Remainder in Banach spaces
(as in the proof of Thm. 2.4.2) around time t = kh:

p(kh + h) = p(kh) + hṗ(kh) +Rp(2, h)

= p(kh) + h(−αp(kh)−∇ f (q(kh))) +Rp(2, h)

= (1− hα)pk −∇ f (qk) +Rp(2, h) (196)

and

q(kh) = q(hk + h) + hq̇(hk + h) +Rq(2, h)

= q(hk + h) + hp(kh + h) +Rq(2, h). (197)

where

∥Rp(2, h)∥ ≤ h2

2
sup

0≤λ≤1
∥ p̈(t + λh)∥

Lemma B.2.1
≤ h2(α + L)ℓ

and

∥Rq(2, h)∥ ≤ h2

2
sup

0≤λ≤1
∥q̈(t + λh)∥

=
h2

2
sup

0≤λ≤1
∥ ṗ(t + λh)∥ ≤ ∥

Lemma B.2.1
≤ = h2ℓ.
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Without the residuals, Eq. (196) and (197) are the exact equations of the
integrator ΨHB

α,h (HB-PS in thesis chapter). Hence, for all yk = (pk, qk) in
the pseudo orbit (which we require to start at p(0) = 0), by the triangle
inequality,

∥ΨHB
α,h (pk, qk)− φHB

α,h (pk, qk)∥ ≤ ∥Rq(2, h)∥+ ∥Rp(2, h)∥ ≤ ℓ(α+ 1+ L)h2.

b.2.4.1 Heavy-ball on a quadratic is linear hyperbolic

We want to study hyperbolicity of the map ΨHB
α,h in phase space (v, z).

This map was defined in HB-PS, we report it below:vk+1 = vk + h(−αvk −∇ f (zk))

zk+1 = zk + hvk+1

, (198)

Theorem B.2.4. Let f : Rd → R be an L-smooth quadratic with Hessian H.

Assume H does not have the eigenvalue zero. If h ≤
√

2
L and α is such that

(1− hα) =: β ∈ [0, 1), then ΨHB
α,h is linear hyperbolic in phase space.

Proof. If ∇ f (x) = H(zk − z∗), by adding and subtracting z∗ from both
sides in the second equation, we can write this as a linear system(

zk+1 − z∗

vk+1

)
= A

(
zk − z∗

vk

)
,

where

A =

(
I − h2H βhI

−hH βI

)
and β = 1− αh.

We assume H has no eigenvalue at zero, and we seek to know if A has
eigenvalues on the unit circle S1. If there are no such eigenvalues, then
Heavy-ball is hyperbolic.
To find the eigenvalues of this matrix we consider solving the following
eigenvalue problem: for some ξv, ξx ∈ Rd and q ∈ R, we require that

A

(
ξx

ξv

)
= q

(
ξx

ξv

)
.



232 appendix to chapter 2

To start, notice that this implies −hHyk = (q− β)ξv. Therefore, assuming
q ̸= β, the position and velocity part of the eigenvector are linked: ξv =
hH
β−q yk. Hence, we get (I − h2H)yk +

h2 βH
β−q ξx = qξx. Therefore, we need

((β− q)I − (β− q)h2H + h2βH− q(β− q))ξx = 0. Hence, ξx needs to be
an eigenvector of H, relative to some eigenvalue λ which satisfies

β− q− (β− q)h2λ + h2βλ− q(β− q) = 0

=⇒ β− q−���βh2λ + qh2λ +���h2βλ− βq + q2 = 0,

which results in the simple quadratic equation

q2 − (β + 1− h2λ)q + β = 0. (199)

A similar equation was derived in Kulakova et al., 2018. This is the equa-
tion we have to study for hyperbolicity. We have to show that, under
some assumptions on h, λ, β, the solution p never has norm 1.
Case with complex roots. If the roots of Eq. (199) are complex conjugates,
p, p̄, then

q2 − (β + 1− h2λ)q + β = (q− p)(q− p̄).

Hence, β = |p|2. Therefore, if β ∈ [0, 1), so are the moduli of the complex
roots.
Case with real roots. We consider the more general equation x2 + bx +
c = 0. It’s easy to realize that, if the roots are real, then a necessary
conditions for those to lie on the unit circle is c = −1± b. Indeed,

|xsol1| = 1 or |xsol2| = 1 ⇐⇒ |− b±
√

b2 − 4c| = 2

⇐⇒ b2 + (b2 − 4c)± 2b
√

b2 − 4c = 4

⇐⇒ b2 − 2c− 2 = ±b
√

b2 − 4c

=⇒ b4 + 4c2 + 4− 4b2c− 4b2 + 8c = b2(b2 − 4c)

⇐⇒ c2 + 2c + 1− b2 = 0

⇐⇒ c =
−2±

√
4− 4(1− b2)

2
⇐⇒ c = −1± b.

in our case, b = −β − 1 + h2λ and c = 1. Therefore, we have to check
that the following conditions are never fulfilled.
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1. −1 − β − 1 + h2λ = β. This implies h2 =
β+2

λ . If λ < 0, since

β ∈ [0, 1), the equation is never true. Else, it is true if h =
√

β+2
λ .

But, since |λ| ≤ L, if we assume h ≤
√

2
L , the equation is never

satisfied.

2. −1 − (−β − 1 + h2λ) = β. This is verified only if λ = 0, which
cannot happen under our assumptions.
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Truth is much too complicated to allow anything but approximations.
– John von Neumann.

We provide here support for our analysis of Transformers in Section 3.2.
Due to space constraints, certain proofs have been omitted. For a com-
prehensive discussion, we recommend referring to Orvieto et al., 2022b.

c.1 proofs and validations for section 3 .2

c.1.1 Proof Theorem 3.2.1 (Neural Chains)

Proof. We focus on the derivatives with respect to the parameters w1 and
w2 since the argument can be repeated for any parameter wi. Denote by
w the vector (w1, w2, · · · , wL). The derivatives of the chain loss are

|∇w1L(w)| = |ywL · · ·w2x− (wL)2 · · · (w2)22(w1)x|

|∇2
w1,w2L(w)| = |ywL · · ·w3x− 2(wL)2 · · · (w3)2w2w1x|

and ∣∣∣∇2
w1,w1L(w)

∣∣∣ = ∣∣∣(wL)2...(w2)2x
∣∣∣

It can be seen that the gradient as well as the Hessian off-diagonals scale
similarly in depth. Let us first consider these two. Clearly,

|∇w1L(w)| ≤ |ywL...w2x|+ |(wL)2...(w2)2w1x|
≤ 2 ·max{|ywL...w2x|, |(wL)2...(w2)2w1x|}

For the first term in the max, we note that ln
(

∏L
k=2 |wk|

)
= ∑L

k=2 ln(|wk|)
and since |wk| ∼ U [0, τ], we have E

[
ln(|wk|)

]
= ln(τ) − 1. Thus, the

strong law of large numbers yields that with probability one

235
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L

∏
k=2
|wk| → exp ((L− 1) (ln (τ)− 1)) (200)

For the second term, we have ln
(

w1 ∏L
k=2(w

k)2
)
= ln(w1)+∑L

k=2 ln((wk)2)

and E
[
ln((wk)2)

]
= 2 (ln(τ)− 1). Thus, the strong law of large numbers

yields that with probability one ln
(

w1 ∏L
k=2(w

k)2
)
→ (2L− 1) (ln(τ)− 1).

Hence

w1
L

∏
k=2

(wk)2 → exp ((2L− 1) (ln (τ)− 1)). (201)

For large L, Eq.(200) clearly dominates Eq.(201), which proves the first
statement. The second statement follows similarly to Eq. (201).

c.1.2 Proof of Theorem 3.2.3 (General MLP)

We consider the loss

Lx,y(W) =
1
2
∥y− BDLWL:1

ϕ Ax∥2.

c.1.2.1 Gradient Analysis

As in Allen-Zhu et al., 2019, by noting B̃ := BDL and z = Ax we get

∂L
∂Wk = Wk+1:L

ϕ B̃⊤[B̃WL:1
ϕ z− y]z⊤W1:k−1

= Wk+1:L
ϕ B̃⊤B̃WL:1

ϕ zz⊤W1:k−1︸ ︷︷ ︸
∂L1

k

−Wk+1:L
ϕ B̃⊤yz⊤W1:k−1︸ ︷︷ ︸

∂L2
k

,

with Wk+1:L
ϕ :=

(
WL:k+1

ϕ

)⊤
. By the triangle inequality, we have∥∥∥∥ ∂L

∂Wk

∥∥∥∥
F
≤ ∥∂L1

k∥F + ∥∂L2
k∥F,

therefore we can bound each term individually. Let Ep[·] be the p-th
power of E[·].
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Proposition C.1.1 (Bounding gradients with forward passes). We have

E∥∂L1
k∥F ≤ E1/2

[
∥B̃WL:k+1

ϕ ∥2
2

]
E1/4

[
∥B̃WL:1

ϕ z∥4
2

]
E1/4

[
∥Wk−1:1

ϕ z∥4
2

]
;

E∥∂L2
k∥F ≤ E

[
∥y⊤B̃WL:k+1

ϕ ∥2
2

]
E
[
∥Wk−1:1

ϕ z∥2
2

]
.

Proof. The bounds follow from submultiplicativity of Frobenius norm
and Cauchy-Schwarz inequality — applied possibly twice.

E∥∂L1
k∥F = E∥Wk+1:L

ϕ B̃⊤B̃WL:1
ϕ zz⊤W1:k−1

ϕ ∥F

≤ E
[
∥Wk+1:L

ϕ B̃⊤∥F∥B̃WL:1
ϕ z∥F∥z⊤W1:k−1

ϕ ∥F

]
= E

[
∥B̃WL:k+1

ϕ ∥F∥B̃WL:1
ϕ z∥F∥Wk−1:1

ϕ z∥F

]
≤ E1/2

[
∥B̃WL:k+1

ϕ ∥2
F

]
E1/2

[
∥B̃WL:1

ϕ z∥2
F∥Wk−1:1

ϕ z∥2
F

]
≤ E1/2

[
∥B̃WL:k+1

ϕ ∥2
F

]
E1/4

[
∥B̃WL:1

ϕ z∥4
F

]
E1/4

[
∥Wk−1:1

ϕ z∥4
F

]
.

E∥∂L2
k∥F = E∥Wk+1:L

ϕ B̃⊤yz⊤W1:k−1
ϕ ∥F

≤ E
[
∥Wk+1:L

ϕ B̃⊤y∥F∥z⊤W1:k−1
ϕ ∥F

]
≤ E1/2

[
∥Wk+1:L

ϕ B̃⊤y∥2
F

]
E1/2

[
∥z⊤W1:k−1

ϕ ∥2
F

]
= E1/2

[
∥y⊤B̃WL:k+1

ϕ ∥2
F

]
E1/2

[
∥Wk−1:1

ϕ z∥2
F

]
.

We conclude by noting that the Frobenius norm is the 2-norm for vectors.

Proposition C.1.2 (Bounding gradients with forward passes, wide net).
As d→ ∞,

E∥∂L1
k∥F ≲ (pσ2d)

2L−1
2 ,

E∥∂L2
k∥F ≲ (pσ2d)

L−1
2 ,
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where “≲” denotes “asymptotically less of equal than a multiple of” (same as
O). Hence, we have

E

∥∥∥∥ ∂L
∂Wk

∥∥∥∥
F
≲ (pσ2d)

L−1
2 if (pσ2d) ≤ 1 (vanishing-stable regime).

E

∥∥∥∥ ∂L
∂Wk

∥∥∥∥
F
≲ (pσ2d)

2L−1
2 if (pσ2d) ≥ 1 (exploding regime).

Proof. Please check Orvieto et al., 2022b.

c.1.2.2 Hessian Analysis

The Hessian of a linear DNN can be split into two block matrices, where
each block has a Kronecker product structure. We can apply the product
rule to the gradient and consider Wℓ and Wℓ⊤ (ℓ > k) as two distinct
matrices: the block (k, ℓ) of the Hessian matrix is:

∂2L
∂Wk∂Wℓ︸ ︷︷ ︸

Hkℓ
1

+
∂2L

∂Wk∂Wℓ⊤︸ ︷︷ ︸
Hkℓ

2

∂(Wℓ⊤)
∂Wℓ︸ ︷︷ ︸

T

,

where T is the matrix transpose tensor. Recall that

∂L
∂Wk = Wk+1:L

ϕ B̃⊤[B̃WL:1
ϕ z− y]z⊤W1:k−1.

By using the simple rule ∂EWF
∂W = F⊤ ⊗ E, we get

Hkℓ
1 = Wk−1:1

ϕ zz⊤W1:ℓ−1
ϕ ⊗ Wk+1:L

ϕ B̃⊤B̃WL:ℓ+1
ϕ

and

Hkℓ
2 = Wk−1:1

ϕ z
(

z⊤W1:L
ϕ B̃⊤ − y⊤

)
B̃WL:ℓ+1

ϕ ⊗Wk+1:ℓ−1
ϕ

= Wk−1:1
ϕ zz⊤W1:L

ϕ B̃⊤B̃WL:ℓ+1
ϕ ⊗Wk+1:ℓ−1

ϕ︸ ︷︷ ︸
Hkℓ

21

−Wk−1:1
ϕ zy⊤B̃WL:ℓ+1

ϕ ⊗Wk+1:ℓ−1
ϕ︸ ︷︷ ︸

Hkℓ
22

,

Note that if instead k = ℓ, Hkk = Hkk
1 .
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Proposition C.1.3 (Bounding the Hessian with forward passes). It is pos-
sible to bound the Hessian with statistics only on the forward pass.

Proof. We simply apply the Cauchy-Schwarz inequality twice for each
term, using also the Frobenius norm formula for the Kronecker product
and norm submultiplicativity.

E∥Hkℓ
1 ∥F

= E

∥∥∥Wk−1:1
ϕ zz⊤W1:ℓ−1

ϕ ⊗ Wk+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥
F

≤ E1/2
∥∥∥Wk−1:1

ϕ zz⊤W1:ℓ−1
ϕ

∥∥∥2

F
E1/2

∥∥∥Wk+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F

≤ E1/4
∥∥∥Wk−1:1

ϕ z
∥∥∥4

F
E1/4

∥∥∥Wℓ−1:1
ϕ z

∥∥∥4

F
E1/4

∥∥∥B̃WL:ℓ+1
ϕ

∥∥∥4

F
E1/4

∥∥∥B̃WL:k+1
ϕ

∥∥∥4

F
.

Moreover,

E∥Hkℓ
22∥F

≤ E1/2
∥∥∥Wk−1:1

ϕ zy⊤B̃WL:ℓ+1
ϕ

∥∥∥2

F
E1/2

∥∥∥Wk+1:ℓ−1
ϕ

∥∥∥2

F

≤ E1/4
∥∥∥Wk−1:1

ϕ z
∥∥∥4

F
E1/4

∥∥∥y⊤B̃WL:ℓ+1
ϕ

∥∥∥4

F
E1/2

∥∥∥Wℓ−1:k+1
ϕ

∥∥∥2

F
.

Finally,

E∥Hkℓ
21∥F

≤ E1/2
∥∥∥Wk−1:1

ϕ zz⊤W1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F
E1/2

∥∥∥Wk+1:ℓ−1
ϕ

∥∥∥2

F

≤ E1/4
∥∥∥Wk−1:1

ϕ zz⊤W1:ℓ
ϕ Wℓ+1:L

ϕ B̃⊤B̃WL:ℓ+1
ϕ

∥∥∥2

F
E1/4

∥∥∥Wℓ−1:k+1
ϕ

∥∥∥2

F
.

Note that the last term is not simplified completely, but unfortunately a
simple iterated Cauchy-Schwarz splitting would lead to quantities with
high exponents (eighth moment). Hence, we need to take a more complex
approach. First, we split between terms which do not share weights.

E

[∥∥∥Wk−1:1
ϕ zz⊤W1:ℓ

ϕ

∥∥∥2

F

∥∥∥Wℓ+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F

]
.

Using the law of total expectation, the last expression becomes

E

[
E

[ ∥∥∥Wk−1:1
ϕ zz⊤W1:ℓ

ϕ

∥∥∥
F

∥∥∥Wℓ+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F

∣∣∣∣ Fℓ

] ]
,
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where Fℓ is the information until layer ℓ. It is easy to realize (check Orvi-
eto et al., 2022b) that fixing the preactivation a separate integration of the
second term in the product. In particular, the expression becomes

E
[∥∥∥Wk−1:1

ϕ zz⊤W1:ℓ
ϕ

∥∥∥
F

]
· E

[ ∥∥∥Wℓ+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F

∣∣∣∣ Fℓ

]
.

As usual, we drop the filtration notation and plug this back into the
expression for E∥Hkℓ

21∥F:

E∥Hkℓ
21∥F

≤ E1/2
∥∥∥Wk−1:1

ϕ zz⊤W1:ℓ
ϕ

∥∥∥2

F
E1/2

∥∥∥Wℓ+1:L
ϕ B̃⊤B̃WL:ℓ+1

ϕ

∥∥∥2

F
E1/2

∥∥∥Wℓ−1:k+1
ϕ

∥∥∥2

F

≤ E1/4
∥∥∥Wk−1:1

ϕ z
∥∥∥4

F
E1/4

∥∥∥Wℓ:1
ϕ z
∥∥∥4

F
+ E1/2

∥∥∥B̃WL:ℓ+1
ϕ

∥∥∥4

F
E1/2

∥∥∥Wℓ−1:k+1
ϕ

∥∥∥2

F
.

Proposition C.1.4 (Bounding Hessians with forward passes, wide net).
As d→ ∞, for k ̸= ℓ

E∥Hkℓ∥F ≲ (pσ2d)
L−2

2 + (pσ2d)L−1,

E∥Hkk∥F ≲ (pσ2d)L−1,

where “≲” denotes “asymptotically less of equal than a multiple of” (same as
O). Hence, we have

E∥Hkℓ∥F ≲ (pσ2d)
L−2

2 , E∥Hkk∥F ≲ (pσ2d)L−1 if (pσ2d) ≤ 1.

E∥Hkℓ∥F ≲ (pσ2d)L−1, E∥Hkk∥F ≲ (pσ2d)L−1 if (pσ2d) ≥ 1.

Proof. Follows from the triangle inequality. The only element left to bound
is the transpose tensor T, which however has only polynomial Frobenius
norm in d and L.

c.1.3 Behaviour of RMSprop on Neural Chains

We empirically study the behavior of RMSprop on the chain loss with
one data point (x, y) = (1, 1):

Lchain(w) =
1
2
(1− wLwL−1 · · ·w1)

2.
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While this cost function is very simple, it showcases the adaptiveness
of RMSprop in an extremely clean and concrete way and gave us the
opportunity for an in-depth analysis in Chapter 3. In this appendix, we
consider L = 10 and initialize each weight to wi(0) ∼ U [−0.2, 0.2], to in-
duce vanishing gradients (order 10−8) and curvature (order order 10−7),
as it can be seen from Figure 63 and is predicted by Theorem 3.2.1 and
Corollary 3.2.1. This initialization is close to w = 0, which is clearly a
saddle point because all partial derivatives vanish, but there exist direc-
tions of both increases and decreases: increasing all wi simultaneously to
ϵ > 0 makes the loss decrease, while increasing half (i.e. five) of them to
ϵ and decreasing the other half to −ϵ makes the loss increase.
We show results comparing gradient descent (GD) and RMSprop ((Tiele-
man and Hinton, 2012) for 3 different noise injection levels. Results are
shown in Figure 63: while perturbed GD is slow to escape the saddle for
any noise injection level and any stepsize, RMSprop is able to adapt to
curvature and quickly escapes the saddle. This result validates the claim
presented in Prop. 3.2.4 of this thesis. In addition, Figure 64 shows that, if
the initialization is such that the gradients at initialization are bigger, i.e.
wi(0) ∼ U [−1, 1], then the performance of perturbed gradient descent
get can get closer to the one of RMSprop.

Notation. We denote by v(t) the exponential moving average (with pa-
rameter β2 = 0.9) of the squared gradients at iteration t and by Λ(t)
the maximum Hessian eigenvalue at iteration t. Recall that RMSprop up-
dates the weights as

w(t + 1) = w(t)− η√
v(t)
∇L(w(t)),

v(t + 1) = β2v(t) + (1− β2)∇L(w(t))⊙2,

where L(w(t))⊙2 is the elementwise square of L(w(t)).
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Initalization: wi ∈ U [−0.2, 0.2], ∀i

Figure 63: Optimization of a ten-dimensional chain, wi(0) ∼ U [−0.2, 0.2]. Injected
is an isotropic Gaussian noise of standard deviations 0.05, 0.1, 0.5. While
moderate noise helps GD (blue), no choice of stepsize is able to provide
a performance comparable to RMSprop, which escapes after less than
100 iterations. Notably, the effective RMSprop stepsize matches the in-
verse curvature and is robust to noise. For additional runs, please check
the appendix of Orvieto et al., 2022b.
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Initalization: wi ∈ U [−1, 1], ∀i

Figure 64: Here we instead consider wi(0) ∼ U [−1, 1], which induces less
curvature-gradient vanishing compared to Fig. 63. If the initial gradi-
ent norm is high, Perturbed gradient descent gets now closer in perfor-
mance to RMSprop. However, the gradient/Hessian norm at initializa-
tion has a considerable variance, which makes the performance less pre-
dictable compared to Fig. 63. This fact also makes the curvature adap-
tation feature of RMSprop less apparent. For additional runs, please
check the appendix of Orvieto et al., 2022b.
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c.1.4 Numerical Verification for Proposition 3.2.5

In Figure 65 we provide a numerical verification for Proposition 3.2.5. We
do not present the proof for this proposition in this thesis since it would
require several pages of notation and calculations. The interested reader
can find the complete discussion in the appendix of Orvieto et al., 2022b.
We recall the statement:
Let z = Ax. Let κ = µ4/σ4 be the kurtosis (fourth standardized mo-
ment) of the initialization distribution for each weight entry (see Assump-
tion 3.2.1). Let p = 1 in the linear case and p = 1/2 in the ReLU case.
Then we have

E∥Wk:1
ϕ z∥2

2 = (dσ2 p)kE∥z∥2
2.E∥Wk:1

ϕ z∥4
2

E∥Wk:1
ϕ z∥4

4

 =
(

p2dσ4
)k

Qk

(
E∥z∥4

2

E∥z∥4
4

)
,

with Q :=

d + 2 κ−3+(1−p)(d+2)
p

3 κ−3p
p

 .

In Figure 65 we provide an empirical verification of the formulas above.
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Figure 65: Numerical validation of Proposition 3.2.5 using the classical stabilizing
initializations (Glorot and Bengio, 2010; He et al., 2015). The variance of
the weights is set to 1/

√
d for linear nets and 2/

√
d for ReLU nets (here,

we used d = 3, 10). We consider a random Gaussian input and initializa-
tion of the weights with either Gaussian or uniform distribution. The
theory matches the experiment (empirical mean denoted as Ê — 1e5
runs for d = 10, 1e7 runs for d = 3). The results for the two initial-
izations are similar, yet Gaussian case explodes a bit faster due to the
effect of the kurtosis, which for the Gaussian is 3 while for the uniform
is 3− 6

5 . The formula in Prop. 3.2.5 also perfectly predicts this tiny shift
in the population quantities, confirming the correctness of our calculations.



246 appendix to chapter 3

c.2 proofs and validations for section 3 .3

We provide here support for our analysis of Transformers in Section 3.3.
Due to space constraints, certain proofs have been omitted. For a com-
prehensive discussion, we recommend referring to (Noci et al., 2022).

c.2.1 Attention is Uniform at Initialization

Here, we empirically test the accuracy and limitations of the uniform-
attention assumption.
For the empirical verification of Assumption 3.3.1 in the forward pass
analysis, we plot the density of the norm of the representations for only-
encoder Transformers of increasing depth. The results are shown in Fig
66. Note that when the standard deviation of the input is set to 1/

√
d,

then the uniform-attention assumption provide an excellent approxima-
tion to the common Xavier-initialization. On the contrary, we observe a
deviation when the standard deviation of the input is increased. Also,
note how as the depth increases, the distribution becomes more heavy-
tailed. This heavy-tailedness was recently formally shown for standard
MLPs with and without ReLU activation (Noci et al., 2021; Zavatone-Veth
and Pehlevan, 2021).
For the verification of the assumption in the backward pass, we addition-
ally show in Fig. 67 how the norm of the gradients w.r.t queries and keys
depends on the hidden dimension, the sequence length, the input corre-
lation and the input variance. Ground-truth gradients are calculated with
automatic differentiation, and they are compared with our theoretical
results based on Assumption 3.3.1. As shown in Fig.67, our theoretical
predictions show a very good agreement with the true gradients. Again,
we notice that the smaller the values of the input standard deviation the
tighter the agreement of the theory with the simulations. Intuitively, a
higher input variance causes the argument of the softmax to have a large
range of values. This in turn causes a deviation from the uniform dis-
tribution (i.e. maximum entropy), towards the distribution of minimum
entropy (a Delta Dirac, corresponding to attending to only one token).
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Figure 66: Density plots for
∥∥Xℓ

∥∥2
F for Transformers of depths L from 1 to 10. The input

X contains i.i.d Gaussian entries, simulating an embedding layer. We set d :=
dv = dq = 30. The empirical mean at L = 10 is highlighted in a vertical
dashed red line, while the theoretical mean (Lemma 3.3.3) is a dashed blue line.
The densities are estimated by sampling 1000 times the weights of the network.
(Top): we adopt the uniform-attention. The standard deviation of the input is
set to 1/

√
d. (Center): Same, but removing the uniform-attention assumption.

(Bottom): We remove the uniform-attention assumption, and set the standard
deviation of the input to 1.
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Figure 67: Empirical comparison of our theoretical findings. We sample, as aforemen-
tioned, the tokens according to a zero-mean Gaussian distribution, while vary-
ing the hidden dimension, sequence length, input correlation and input vari-
ance. Results are averaged over 20 runs.



C.2 proofs and validations for section 3 .3 249

c.2.2 Verification of the Gradient Analysis

Finally, in Figures 68 we show the dependence of the norm of the gradi-
ents for the keys and values based on the parameters of the architecture
and the task-specific parameters. The bottom panel illustrates the true
dependence and the top panel the one expected by the theory based on
our assumptions. In short, the main takeaways are the following.

• As the correlation between the tokens increases (x-axis in the global
plot), the norm of the gradients of the queries quickly diminishes
compared to the one of the values.

• The dependence on the variance of the input σ2
x is different (y-axis

in the global plot), being linear for the values and cubic for the
queries. This highlights the importance of a stabilized forward pass
and provides another explanation regarding the successful use of
layer norm in Transformers.

• The dependence on n (x-axis in each subplot) and d (y-axis in each
subplot) is more complicated, also being a function of the correla-
tion ρ (compare the first column where ρ = 0 to the rest).
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Figure 68: Validation of Equations (84) and (85). Plotted is the Log ratio of the norm
of the gradients for the queries compared to those of the values for varying
values of embedding dimension, sequence length, cosine of the tokens angle
and standard deviation.
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c.2.3 Proof of Theorem 3.3.1 (Vanishing Gradients)

Before starting the proof, it is interesting to note that, even though the
gradients of queries and keys vanish in the rank collapse regime (i.e.∥∥∥X⊤X− nx̄x̄⊤

∥∥∥ = 0), the gradient with respect to the values and the
input does not (see Theorem 3.3.1). From this simple remark, we can con-
clude that, even in the rank collapse regime, information still propagates
in the backward pass. In Section 3.3.3, we show that even if gradients ef-
fectively propagate, the phenomenon studied in this theorem still greatly
affects training.

Proof. By using the chain rule and the fact that for two matrixes A, B we
have that ∥AB∥2

F ≤ ∥A∥2
F ∥B∥2

F, we can upper bound the gradient as:∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2

F

≤
L−1

∏
i=ℓ+1

∥∥∥∥∥ ∂Xi+1

∂Xi
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2

F

∥∥∥∥ ∂L
∂XL

∥∥∥∥2

F
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∏
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2
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
∥∥∥∥∥ ∂α1Sℓ
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2

F

+

∥∥∥∥∥ ∂Xℓ

∂WQ,ℓ
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2

F︸ ︷︷ ︸
=0

 ,

where we recall that Zℓ = α1Sℓ + Xℓ and in the last step we have used
that Xℓ does not depend on WQ,ℓ, hence the gradient vanishes. By taking
expectation and using the tower property, we have that:

E
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≤ E
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=:G(Xℓ)
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2

F

 ,
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where the expectations are taken with respect to Xℓ for the outer one
and conditioning on Xℓ for inner one. Indeed, the first three terms only
depend on the network values after Xℓ. Now, a repeated application of
the tower property in G(Xℓ), together with the results on the gradients
of Lemma 3.3.1, easily shows that G(Xℓ) stays bounded under our hy-
pothesis. To see this one can also simply note that, since the softmax and
its derivatives are almost surely bounded, the boundedness of G(Xℓ) is
implied by an analogous statement for a vanilla linear MLP (i.e removing
the softmax). In this setting, the random variable inside the expectation
in G(Xℓ) is a finite linear combination of Gaussian products — which
has bounded expectation.
All in all, we have that

E

∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2

F
≤ E

BXℓ

∥∥∥∥∥ ∂α1Sℓ

∂WQ,ℓ

∥∥∥∥∥
2

F

 ,

where BXℓ is an almost-surely-bounded function of Xℓ. Hence, to show

that E

∥∥∥ ∂L
∂WQ,ℓ

∥∥∥2

F
= 0, we now just need to show that:

E

∥∥∥∥∥ ∂α1Sℓ

∂WQ,ℓ
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2

F

= 0

under the rank-1 hypothesis for Xℓ. Let Xℓ
1, . . . Xℓ

n ∈ Rdv be the represen-
tations for the n tokens. Under the rank-1 assumption, each token can be
written as a multiple of a single vector x ∈ Rdv , and hence there exists
a1, . . . , an ∈ R such that X1 = a1x, . . . , Xn = anx. From Lemma 3.3.1, we
know that:

E
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∂WQ
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F
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k d2

n2 ·E
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The mean token simplifies to x̄l = x
n ∑k ak and hence

(
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)
ij

=

1
n2 (∑k ak)

2xixj. Similarly,
(
(Xℓ)⊤Xℓ

)
ij
= ∑k a2

k xixj. If furthermore all the

coefficients ai are the same (which corresponds to the rank collapse as-

sumption Xℓ = 1nxT analyzed here), then it is easy to see that
(
(Xℓ)⊤Xℓ

)
ij
−

n
(

x̄ℓ(x̄ℓ)⊤
)

ij
= 0 ∀i, j and hence ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2

F = 0.
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c.2.4 Making SGD trainable via Softmax Tempering

The theory devised in Section 3.3.2.3 postulates that a different magni-
tude between the gradients of the queries/keys and the values should
likely be observed. Here, we propose a simple remedy that consists in in-
troducing an inverse temperature scaling τ inside the softmax that mod-
ifies the attention operation to

Sℓ
τ := softmax

(
τ√
dk

XℓWQ
(

XℓWK
)⊤)

XℓWV .

By computing the gradients of the queries/keys as in Section 3.3.2.3,
Equation 85 becomes:

E

∥∥∥∥ ∂Sτ

∂WQ

∥∥∥∥2

F
= τ2σ6

x
(n− 1)

n
(1− ρ)2d(n + d). (202)

Hence, the norm of gradients of the queries/keys scales linearly with τ.
On the contrary, the temperature scaling inside the Softmax will not af-
fect the gradients with respect to the values due to the fact that the Soft-
max normalizes the activations (see Lemma A.1 in Wang et al., 2022a).
Hence τ can be heuristically chosen such that the magnitude of the gra-
dients approximately matches:

E

∥∥∥∥ ∂Sτ

∂WQ

∥∥∥∥2

F

!
= E

∥∥∥∥ ∂Sτ

∂WV

∥∥∥∥2

F
⇐⇒ τ2 ≈ dn(1 + ρ(n− 1))

σ4
x (1− ρ)2(n + d)(n− 1)

.

We stress that this requires a constant correlation ρ. In practice, this can
be estimated as the mean correlation across all pairs of tokens (as we do
in the computation of the correlations in Figure 27). Furthermore, both ρ

and the variance σ2
x change across layers as our analysis in Section 3.3.2.2

predicts. Hence in practice a different temperature per layer should be
adopted. Finally, note that in practice both ρ and σ2

x change during train-
ing, and is hard to study their the dynamics under SGD. We leave the
time evolution of ρ and τ as an exciting future direction. Also, the value
of n is set to be the average number of tokens per sentence. In this work,
we set τ to a fixed value according to our analysis at initialization.
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c.2.5 Experimental Details

translation task . We now describe the experimental setup regard-
ing the translation task on the IWSLT’14 De-En dataset. Using the ideas
detailed in the previous section, we choose a temperature value of τfinal =
8.5 to match the gradient norms of the values and queries as in Equa-
tions. (84) and (85). Doing so, we assume a constant small correlation
between tokens (also empirically verified in Fig. 69) and set the sequence
length n to the average found in our training dataset. Due to instabilities
in training, we use warm-up on this temperature value. In short:

τ = τfinal ·max(1,
step

stepswarmup
),

with ‘stepswarmup = 1000’ and ‘step’ the current training step.
We base our implementation on fairseq (Ott et al., 2019). For the hyper-
parameter configuration, we mostly rely on the extensive search already
done in fairseq (Ott et al., 2019) and Liu et al., 2020a. The final used pa-
rameters are exhibited in Table 7. For the final evaluation, we use the
best-performing model on the left-out validation set. We apply weight
decay as in Loshchilov and Hutter, 2017 for both SGD and Adam.
Finally, in Figure 69 we display the evolution of correlations, residual
scaling, and norm of the activations, with depth, for our best trained
model. The residual scaling α1, α2 are trainable parameters. This enables
them to weight differently the residual branches if deemed necessary.
Although these values increase during training, the correlation between
the tokens does not significantly increase, which as implied by our main
results, allows efficient propagation of the gradients. The norm of the
propagated forward signal tends to slightly increase with depth.



C.2 proofs and validations for section 3 .3 255

0 50000 100000 150000 200000 250000

0.10

0.15

0.20

0.25

Cosine angle with depth

0 50000 100000 150000 200000 250000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Residual scaling values with depth

0 50000 100000 150000 200000 250000

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Variance of the activations 2
x  with depth

1

2

3

4

5

6

Depth

Training steps
Figure 69: Evolution of the cosine of the angles, the trained residual α1, α2 and the acti-

vation norm throughout our training.

Hyperparameters Value

Max tokens 4096

Label smoothing 0.1

clip-norm 0.0

General Dropout 0.3

Attention Dropout 0.1

ReLU Dropout 0.1

Hidden size 512

FFN inner hidden size 2048

Attention Heads 4

A
da

m

Learning rate 7ϵ−4

Learning rate scheduler inverse sqrt

Warm-up updates 6000

Warm-up init learning rate 1e-7

Adam (β1, β2) (0.9, 0.98)

Training updates 100K

Weight decay 0.0001

SG
D

Learning rate 2ϵ−2

Learning rate scheduler step

Step scheduler γ 0.1

Step scheduler update steps [100K, 200K]

Training updates 250K

Weight decay 0.001

Table 7: Hyperparameters for the IWSLT’14 De-En translation task (Figure 27, 31).
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The precision of naming takes away from the uniqueness of seeing.
– Pierre Bonnard.

d.1 proofs for section 4 .2

Here we study Decreasing SPS (DecSPS), which combines stepsize de-
crease with the adaptiveness of SPS.

γk :=
1
ck

min

{
fSk (xk)− ℓ∗Sk

∥∇ fSk (xk)∥2 , ck−1γk−1

}
, (DecSPS)

for k ≥ 0, where we set c−1 = c0 and γ−1 = γb (stepsize bound, similar
to Loizou et al., 2021), to get

γ0 :=
1
c0
·min

{
fSk (xk)− ℓ∗Sk

∥∇ fSk (xk)∥2 , c0γb

}
.

d.1.1 Proof of Lemma 4.2.1 (DecSPS Bounds)

Proof. First, note that γk is trivially non-increasing since γk ≤ ck−1γk−1/ck.
Next, we prove the bounds on γk.
For k = 0, we can directly use Lemma 4.0.2:

γb ≥ γ0 =
1
c0
·min

{
fSk (xk)− ℓ∗Sk

∥∇ fSk (xk)∥2 , c0γb

}
≥ min

{
1

2c0L
, γb

}
.

Next, we proceed by induction: we assume the proposition holds for γk:

min
{

1
2ck L

,
c0γb

ck

}
≤ γk ≤

c0γb
ck

.

257
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Then, we have : γk+1 = 1
ck+1

min
{

fSk+1 (xk+1)− f ∗Sk+1
∥∇ fSk+1 (xk+1)∥2 , ι

}
, where

ι := ckγk ∈
[

min
{

1
2L

, c0γb

}
, c0γb

]
by the induction hypothesis. This bound directly implies that the propo-
sition holds true for γk+1, since again by Lemma 4.0.2 we have

fSk+1
(xk+1)− f ∗Sk+1

∥∇ fSk+1
(xk+1)∥2 ≥

1
2L

.

This concludes the induction step.

d.1.2 Proof of Theorem 4.2.1 (DecSPS, Convex)

Remark D.1.1 (Why was this challenging?). The fundamental problem to-
wards a proof for DecSPS is that the error to control due to gradient stochasticity
does not come from the term γ2

k∥∇ f (xk)∥2 in the expansion of ∥xk − x∗∥2, as
instead is usual for SGD with decreasing stepsizes. Instead, the error comes from
the inner product term γk⟨∇ f (xk), xk − x∗⟩. Hence, the error is proportional
to γk, and not γ2. As a result, the usual Robbins-Monro conditions (Robbins
and Monro, 1951) do not yield convergence. A similar problem is discussed for
AdaGrad in Ward et al., 2019.

Proof. Note that from the definition we have that γk ≤ 1
ck
· fSk (xk)−ℓ∗Sk
∥∇ fSk (xk)∥2 .

Multiplying by γk and rearranging terms we get the fundamental in-
equality

γ2
k∥∇ fSk (xk)∥2 ≤ γk

ck
[ fSk (xk)− ℓ∗Sk

]. (203)

Using the definition of DecSPS and convexity we get

∥xk+1 − x∗∥2

= ∥xk − γk∇ fSk (xk)− x∗∥2

(203)
≤ ∥xk − x∗∥2 − 2γk⟨∇ fSk (xk), xk − x∗⟩+ γk

ck
( fSk (xk)− ℓ∗Sk

).
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Next, using convexity,

∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − 2γk[ fSk (xk)− fSk (x∗)] +
γk
ck

[ fSk (xk)− fSk (x∗) + fSk (x∗)− ℓ∗Sk
]

= ∥xk − x∗∥2 − 2γk[ fSk (xk)− fSk (x∗)] +
γk
ck

[ fSk (xk)− fSk (x∗)] +
γk
ck

[ fSk (x∗)− ℓ∗Sk
]

= ∥xk − x∗∥2 −
(

2− 1
ck

)
γk[ fSk (xk)− fSk (x∗)] +

γk
ck

[ fSk (x∗)− ℓ∗Sk
].

Let us divide everything by γk > 0.

∥xk+1 − x∗∥2

γk
≤ ∥x

k − x∗∥2

γk
−
(

2− 1
ck

)
[ fSk (xk)− fSk (x∗)]+

1
ck
[ fSk (x∗)− ℓ∗Sk

].

Since by hypothesis ck ≥ 1 for all k ∈ N, we have
(

2− 1
ck

)
≥ 1 and

therefore

fSk (xk)− fSk (x∗) ≤ ∥x
k − x∗∥2

γk
− ∥x

k+1 − x∗∥2

γk
+

1
ck
[ fSk (x∗)− ℓ∗Sk

].

Next, summing from k = 0 to K− 1:

K−1

∑
k=0

fSk (xk)− fSk (x∗)

≤
K−1

∑
k=0

∥xk − x∗∥2

γk
−

K−1

∑
k=0

∥xk+1 − x∗∥2

γk
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

].
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And therefore

K−1

∑
k=0

fSk (xk)− fSk (x∗)

≤
K−1

∑
k=0

∥xk − x∗∥2

γk
−

K−1

∑
k=0

∥xk+1 − x∗∥2

γk
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

]

≤ ∥x
0 − x∗∥2

γ0
+

K−1

∑
k=1

∥xk − x∗∥2

γk
−

K−2

∑
k=0

∥xk+1 − x∗∥2

γk
− ∥x

K − x∗∥2

γK−2
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

]

≤ ∥x
0 − x∗∥2

γ0
+

K−2

∑
k=0

∥xk+1 − x∗∥2

γk+1
−

K−2

∑
k=0

∥xk+1 − x∗∥2

γk
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

]

≤ ∥x
0 − x∗∥2

γ0
+

K−2

∑
k=0

(
1

γk+1
− 1

γk

)
∥xk+1 − x∗∥2 +

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

]

≤ D2

[
1

γ0
+

K−2

∑
k=0

(
1

γk+1
− 1

γk

)]
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

]

≤ D2

γK−1
+

K−1

∑
k=0

1
ck
[ fSk (x∗)− ℓ∗Sk

].

Remark D.1.2 (Where did we use the modified SPS definition?). In the
last steps above, we are able to collect D2 because

(
1

γk+1
− 1

γk

)
≥ 0. This is

guaranteed by the new SPS definition (DecSPS), along with the fact that ck is
increasing. Note that one could not perform this step under the original SPS
update rule of Loizou et al., 2021.

Thanks to Lemma 4.2.1, we have:

γk ≥ min
{

1
2ck L

,
c0γb

ck

}
.

Hence,
1

γk
≤ ck ·max

{
2L,

1
c0γb

}
. (204)

Let us call L̃ = max
{

L, 1
2c0γb

}
. By combining Eq. (204) with the bound

above and dividing by K we get:

1
K

K−1

∑
k=0

fSk (xk)− fSk (x∗) ≤ 2cK−1 L̃D2

K
+

1
K

K−1

∑
k=0

[ fSk (x∗)− ℓ∗Sk
]

ck
,
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We conclude by taking the expectation and using Jensen’s inequality as
follows:

E
[

f (x̄K)− f (x∗)
]

Jensen
≤ 1

K

K−1

∑
k=0

E
[

f (xk)− f (x∗)
]
≤ 2cK−1 L̃D2

K
+

1
K

K−1

∑
k=0

σ̂2
B,max

ck
.

where σ̂2
B is as defined in Eq. (103).

Remark D.1.3 (Second term does not depend on γb). Note that, in the
convergence rate, the second term does not depend on γb while the first does.
This is different from the original SPS result (Loizou et al., 2021), and due to
the different proof technique: specifically, we divide by γk early in the proof —
and not at the end. To point to the exact source of this difference, we invite the
reader to inspect Equation 24 in the appendix1 of Loizou et al., 2021: the last
term there is proportional to γb/α, where α is a lower bound on the SPS and γb
is an upper bound. In our proof approach, these terms — which bound the same
quantity — effectively cancel out (because we divide by γk earlier in the proof),
at the price of having D2 in the first term.

d.1.3 Proof of Proposition 4.2.1 (Domain Bound)

We need the following lemma. An illustration of the result can be found
in Fig. 70.

Lemma D.1.1. Let zk+1 = Akzk + εk with Ak = (1− a/
√

k + 1) and εk =
b/
√

k + 1. If z0 > 0, 0 < a ≤ 1, b > 0, then zk ≤ max{z0, b/a} for all k ≥ 0.

Proof. Simple to prove by induction. The base case is trivial, since z0 ≤
max{z0, b/a}. Let us now assume the proposition holds true for zk (that
is, zk ≤ max{z0, b/a}) , we want to show it holds true for k + 1. We have

zk+1 =

(
1− a√

k + 1

)
zk +

b√
k + 1

.

If b/a = max{z0, b/a}, then we get, by induction

zk+1 ≤
(

1− a√
k + 1

)
b
a
+

b√
k + 1

=
b
a
= max{z0, b/a}.

1 http://proceedings.mlr.press/v130/loizou21a/loizou21a-supp.pdf

http://proceedings.mlr.press/v130/loizou21a/loizou21a-supp.pdf
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Figure 70: Numerical Verification of Lemma D.1.1. Bound in the lemma is indicated with
dashed line.

Else, if z0 = max{z0, b/a}, then by induction

zk+1 ≤
(

1− a√
k + 1

)
z0 +

b√
k + 1

= z0− az0 − b√
k + 1

≤ z0 = max{z0, b/a},

where the last inequality holds because az0− b > 0 and a is positive. This
completes the proof.

Proof. Using the SPS definition we directly get

∥xk+1 − x∗∥2 = ∥xk − γk∇ fSk (xk)− x∗∥2

= ∥xk − x∗∥2 − 2γk⟨∇ fSk (xk), xk − x∗⟩+ γ2
k∥∇ fSk (xk)∥2

≤ ∥xk − x∗∥2 − 2γk⟨∇ fSk (xk), xk − x∗⟩+ γk
ck

( fSk (xk)− ℓ∗Sk
),

(205)

where (as always) we used the fact that since from the definition γk :=
1
ck
·min

{
fSk (xk)−ℓ∗Sk
∥∇ fSk (xk)∥2 , ck−1γk−1

}
, then γk ≤ 1

ck
· fSk (xk)−ℓ∗Sk
∥∇ fSk (xk)∥2 and we have

γ2
k∥∇ fSk (xk)∥2 ≤ 1

ck
[ fSk (xk)− ℓ∗Sk

].
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Now recall that, if each fi is µi-strongly convex then for any x, y ∈ Rd we
have, setting µ = mini µi

−⟨∇ fSk (x), x− y⟩ ≤ −µ

2
∥x− y∥2 − fSk (x) + fSk (y).

For y = x∗ and x = xk, this implies

−⟨∇ fSk (xk), xk − x∗⟩ ≤ −µ

2
∥xk − x∗∥2 − fSk (xk) + fSk (x∗).

Adding and subtracting ℓ∗Sk
to the RHS of the inequality above, we get

−⟨∇ fSk (xk), xk− x∗⟩ ≤ −µ

2
∥xk− x∗∥2− ( fSk (xk)− ℓ∗Sk

)+ ( fSk (x∗)− ℓ∗Sk
).

Since γk > 0, we can substitute this inequality in Equation (205) and get

∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 +
γk
ck

( fSk (xk)− ℓ∗Sk
)

−µγk∥xk − x∗∥2 − 2γk( fSk (xk)− ℓ∗Sk
) + 2γk( fSk (x∗)− ℓ∗Sk

)︸ ︷︷ ︸
≤−2γk⟨∇ fSk (xk),xk−x∗⟩

.

Rearranging a few terms we get

∥xk+1 − x∗∥2

≤ (1− µγk)∥xk − x∗∥2 +
γk
ck

( fSk (xk)− ℓ∗Sk
)

− 2γk( fSk (xk)− ℓ∗Sk
) + 2γk( fSk (x∗)− ℓ∗Sk

)

≤ (1− µγk)∥xk − x∗∥2 −
(

2− 1
ck

)
γk( fSk (xk)− ℓ∗Sk

) + 2γk( fSk (x∗)− ℓ∗Sk
).

Since we assumed ck ≥ 1/2 for all k ∈N, we can drop the term

−
(

2− 1
ck

)
γk[ fSk (xk)− f ∗Sk

], since also f ∗Sk
≥ ℓ∗Sk

. Hence, we get the fol-
lowing bound:

∥xk+1 − x∗∥2 ≤ (1− µγk)∥xk − x∗∥2 + 2γk( fSk (x∗)− ℓ∗Sk
)

≤ (1− µγk) ∥xk − x∗∥2 +
2c0γb

ck
( fSk (x∗)− ℓ∗Sk

)

≤ (1− µγk) ∥xk − x∗∥2 +
2c0γbσ̂2

B,max

ck
,



264 appendix to chapter 4

where we used the inequality min
{

1
2ck L , c0γb

ck

}
≤ γk ≤ c0γb

ck
(Lemma 4.2.1).

Now we seek an upper bound for the contraction factor. Under ck =√
k + 1, using again Lemma 4.2.1 we have, since c0 = 1,

1− µγk ≥ 1− min
{ µ

2L , µγb
}

√
k + 1

.

Now have all ingredients to bound the iterates: the result follows from
Lemma D.1.1 using a = min

{ µ
2L , µγb

}
and b = 2c0γbσ̂2

B,max. So, we get

∥xk+1 − x∗∥2 ≤ max

{
∥x0 − x∗∥2,

2c0γbσ̂2
B,max

min
{ µ

2L , µγb
}} , for all k ≥ 0.

This completes the proof.

d.2 proofs for section 4 .3

Let f = 1
N ∑N

i=1 fi, where each fi : Rd → R is non-negative, Li-smooth
and convex. Let L = maxi∈[N] Li. Consider stochastic gradient descent
with batch size 1 and let ik be the data index sampled at iteration k. For
any value of σ > 0, the stepsize we consider is

γk =
σ

1 +
σ

2 fik
(xk)

∥∇ fik
(xk)∥2

(NGN-stochastic)

d.2.1 Fondamental NGN Properties

We are ready to prove the first useful property of the NGN stepsize.

Lemma D.2.1 (Stepsize bounds). Let each fi : Rd → R be non-negative,
differentiable and L-smooth. Consider γk as in Eq. (NGN-stochastic), we have

γk ∈
[

σ

1 + σL
, σ

]
=

[
1

L + σ−1 , σ

]
.
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Proof. Recall again that for a smooth function 2L( fik
(x)− f ∗ik

) ≥ ∥∇ fik
(x)∥2

(Lemma 4.0.2). Since we assumed each fik
is non-negative we also have

2L fik
(x) ≥ ∥∇ fik

(x)∥2. All in all,

0 ≤ ∥∇ fik
(x)∥2

2 fik
(x)

≤ L.

This directly implies a stepsize range above.

Further, the NGN stepsize definition provides a useful equality.

Lemma D.2.2 (Fundamental Equality). Consider γk as in Eq. (NGN-stochastic).
One has

γk∥∇ fik
(x)∥2 = 2

(
σ− γk

σ

)
fik
(x).

Proof. The definition of our stepsize implies(
1 +

σ

2 fik
(x)
∥∇ fik

(x)∥2
)

γk = σ.

Which one can write as
σ

2 fik
(x)
∥∇ fik

(x)∥2γk = σ− γk.

This proves the result.

Lemma D.2.3 (Fundamental inequality). Let each fi : Rd → R be non-
negative, L-smooth and convex. Consider γk as in Eq. (NGN-stochastic), we
have

γ2
k∥∇ fik

(xk)∥2

≤
(

4σL
1 + 2σL

)
γk[ fik

(xk)− f ∗ik
] +

2σ2L
1 + σL

·max
{

0,
2σL− 1
2σL + 1

}
· f ∗ik

.

For σ ≤ 1/(2L) or f ∗ik
= 0 for all k we have no interpolation error.

Proof. Lemma 4.0.2&D.2.2 imply the following relations:

γ2
k∥∇ fik

(xk)∥2 ≤ 2Lγ2
k( fik

(x)− f ∗ik
)

γ2
k∥∇ fik

(xk)∥2 = 2γk

(
σ− γk

σ

)
fik
(xk)
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This implies that for any δ ∈ (−∞, 1] we have

(1− δ)γ2
k∥∇ fik

(xk)∥2 ≤ 2(1− δ)Lγ2
k( fik

(x)− f ∗ik
)

δγ2
k∥∇ fik

(xk)∥2 = 2δγk

(
σ− γk

σ

)
fik
(xk).

Summing the two inequalities above, we get

γ2
k∥∇ fik

(xk)∥2 ≤ 2δγk

(
σ− γk

σ

)
fik
(xk) + 2(1− δ)Lγ2

k( fik
(xk)− f ∗ik

).

After collecting a few terms,

γ2
k∥∇ fik

(xk)∥2

≤ 2γk

[
δ

(
σ− γk

σ

)
+ (1− δ)Lγk

]
︸ ︷︷ ︸

A(δ)

[ fik
(xk)− f ∗ik

] + 2γkδ

(
σ− γk

σ

)
︸ ︷︷ ︸

B(δ)

f ∗ik
.

We would now want to choose δ, which minimizes A(δ) and B(δ) simul-
taneously. It turns out that a convenient choice is

δ =
2σL− 1
2σL + 1

Note that since 2σL > 0, δ is a real number in the range [−1, 1] (which
is a valid subset of [−∞, 1]). We provide a paragraph after the proof
justifying this choice. We have

A(δ) =
2σL− 1
2σL + 1

(
1− γk

σ

)
+

2Lγk
2σL + 1

=
2σL− 1
2σL + 1

− 2σL− 1
2σL + 1

γk
σ

+
2Lγk

2σL + 1

=
2σL− 1
2σL + 1

+
γk

(2σL + 1)σ

≤ 2σL
2σL + 1

,

where in the last line we used the property γk ≤ σ. The bound becomes:

γ2
k∥∇ fik

(xk)∥2

≤
(

4σL
1 + 2σL

)
γk[ fik

(xk)− f ∗ik
] + 2γk

(
2σL− 1
2σL + 1

)(
σ− γk

σ

)
f ∗ik

.

To bound the second term, the error term, we have two cases:
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• If σ ≤ 1/(2L) then δ = 2σL−1
2σL+1 is negative, and we have

2γk

(
2σL− 1
2σL + 1

)(
σ− γk

σ

)
f ∗ik
≤ 0,

since the worst case is γk = σ.

• Otherwise, δ > 0 and we can proceed as follows, using the fact that

γk ∈
[

σ
1+σL , σ

]
2γk

(
2σL− 1
2σL + 1

)(
σ− γk

σ

)
f ∗ik
≤ 2σ

(
2σL− 1
2σL + 1

)(
σ− σ

1+σL
σ

)
f ∗ik

= 2σ

(
2σL− 1
2σL + 1

)(
σL

1 + σL

)
f ∗ik

=
2σ2L

1 + σL

(
2σL− 1
2σL + 1

)
f ∗ik

,

All in all, considering both cases, we get the following upper bound for
the error term:

2σ2L
1 + σL

·max
{

0,
2σL− 1
2σL + 1

}
· f ∗ik

.

This concludes the proof.

Remark D.2.1 (On the choice of δ in Lemma D.2.3). In the context of the
proof of Lemma D.2.3, let us assume we want to find δ such that A(δ) ≤ α.
That implies

δ

(
σ− γk

σ

)
+ (1− δ)Lγk ≤ α

⇐⇒ δσ + [(1− δ)Lσ− δ] γk ≤ ασ

⇐⇒ [(1− δ)Lσ− δ] γk ≤ (α− δ)σ

⇐⇒ [(1− δ)Lσ− δ] ≤ (α− δ)
σ

γk
.

For α ≥ δ, the right-hand side is positive. Further, note that σ
γk
∈ [1, 1 + σL].

So if we like the inequality to hold for every value of γ we need (worst case
analysis)

[(1− δ)Lσ− δ] ≤ (α− δ) ⇐⇒ (1− δ)Lσ ≤ α ⇐⇒ δ ≥ 1− α

Lσ
.
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Since α ≥ δ we also need

α ≥ 1− α

Lσ
⇐⇒ Lσα ≥ Lσ− α ⇐⇒ α ≥ σL

1 + σL
= 1− 1

1 + σL
The bound becomes

γ2
k∥∇ fik

(xk)∥2 ≤ 2αγk[ fik
(xk)− f ∗ik

] + 2γkδ

(
σ− γk

σ

)
︸ ︷︷ ︸

B(δ)

f ∗ik
.

For the sake of minimizing the first term in the bound, it would make sense to
use α = σL

1+σL . However, under this condition we get that δ ≥ σL
1+σL as well.

This is not ideal since we want B(δ), the error factor, to vanish for small γ. To
do this, we need to slightly increase the value of α to allow δ to get negative for
small values of y = Lσ. Note that for δ to be (potentially) negative we need

1− α

σL
≤ 0 ⇐⇒ α ≥ Lσ.

Hence, if we want to keep α < 1 (needed for proofs), we can only have this
condition for σ ≤ 1/L — i.e. the case where we know convergence holds. To this
end, let us consider

1 > α =
2σL

1 + 2σL
=

σL
1/2 + σL

≥ σL
1 + σL

.

Using this α, we get

δ ≥ 1− α

Lσ
= 1− 2

1 + 2σL
=

2σL− 1
2σL + 1

.

Note that if σ ≤ 1
2L then the minimum allowed δ is negative. Let us pick for δ

its minimum allowed value.

d.2.2 Proof of Theorem 4.3.1 (NGN, Convex)

By assumption, each fi is convex and L-smooth. Expanding the squared
distance and using convexity, we get:

∥xk+1 − x∗∥2 = ∥(xk+1 − xk) + (xk − x∗)∥2

= ∥xk − x∗∥2 + 2⟨xk − x∗, xk+1 − xk⟩+ ∥xk+1 − xk∥2

= ∥xk − x∗∥2 − 2γk⟨xk − x∗,∇ fik
(xk)⟩+ γ2

k∥∇ fik
(xk)∥2

≤ ∥xk − x∗∥2 − 2γk[ fik
(xk)− fik

(x∗)] + γ2
k∥∇ fik

(xk)∥2.
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We now make use of Lemma D.2.3:

∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − 2γk[ fik
(xk)− fik

(x∗)]

+

(
4σL

1 + 2σL

)
γk[ fik

(xk)− f ∗ik
] +

2σ2L
1 + σL

·max
{

0,
2σL− 1
2σL + 1

}
f ∗ik

.

Note that taking the expectation conditional on xk at this point (as done
in the classical SGD proof) is not feasible: indeed, the variable fik

(xk)−
fik
(x∗), which would have expectation f (xk)− f (x∗), is correlated with

γk — meaning that we would need to consider the expectation of the
product γk( fik

(xk)− fik
(x∗)).

The analysis of Loizou (Loizou et al., 2021) in the context of SPS consists
in writing fik

(xk)− fik
(x∗) = [ fik

(xk)− f ∗ik
]− [ fik

(x∗)− f ∗ik
], where both

terms within brackets are positive and therefore one can use the step-
size bounds before taking the expectation. This is a smart approach for
a quick computation; however it introduces a bias term E[γk( fik

(x∗) −
f ∗ik
)] ≤ σ[ f (x∗) − Ei f ∗i ] = O(σ). It is instead desirable, if the method

allows, to have error terms only of the kind O(σ2), so that one can guar-
antee later in the proof that, as σ → 0, the method converges to the
problem solution.
To this end, we write γk = ρ + ϵk, where both γ and ϵk are non-negative
and α is deterministic. For intuition, the reader can think of ρ as a step-
size lower bound such that ideally ρ = O(σ) and ξk = O(σ2) for all
realizations of γk— we will be more precise in the next lines:

∥xk+1 − x∗∥2 − ∥xk − x∗∥2

≤ −2ρ[ fik
(xk)− fik

(x∗)]− 2ϵk[ fik
(xk)− fik

(x∗)]

+

(
4σL

1 + 2σL

)
γk[ fik

(xk)− f ∗ik
] + O(σ2) f ∗ik

,

where we wrote the last factor simply as O(σ2) for brevity but will plug
in the correct expression at the end of the proof.
At this point, we write fik

(xk)− fik
(x∗) = [ fik

(xk)− f ∗ik
]− [ fik

(x∗)− f ∗ik
]

only for the second term in the bound above. Our purpose, is to make the
resulting term −2ϵk[ fik

(xk) − f ∗ik
] (negative) dominant compared to the



270 appendix to chapter 4

third term in the bound above (positive). In formulas, since the bound
on the distance update ∥xk+1 − x∗∥2 − ∥xk − x∗∥2 becomes

− 2ρ[ fik
(xk)− fik

(x∗)]

− 2
(

ϵk −
2σLγk

1 + 2σL

)
[ fik

(xk)− f ∗ik
] + 2ϵk[ fik

(x∗)− f ∗ik
] + O(σ2) f ∗ik

,

we require ϵk − 2σL
1+2σL γk ≥ 0. Note that ϵk = γk − ρ. Therefore, we need(

1− 2σL
1 + 2σL

)
γk ≥ ρ =⇒ γk ≥ (1 + 2σL)ρ.

Since γk ≥ σ
1+σL thanks to Lemma D.2.1, we have that a sufficient condi-

tion is
ρ ≤ σ

(1 + 2σL)(1 + σL)
.

Let us then pick ρ equal to this upper bound. Our bound on the distance
update simplifies as

− 2σ

(1 + 2σL)(1 + σL)
[ fik

(xk)− fik
(x∗)] + 2ϵk[ fik

(x∗)− f ∗ik
] + O(σ2) f ∗ik

.

We now get to the interesting part: what is the order of ϵk under our
choice for ρ?

ϵk = γk − ρ ≤ σ− σ

(1 + 2σL)(1 + σL)
=

σ(1 + 2σL)(1 + σL)− σ

(1 + 2σL)(1 + σL)
.

Simplifying the bound, we get the desired result: ϵk = O(σ2). Indeed,

ϵk ≤
3Lσ2 + 2L2σ3

(1 + 2σL)(1 + σL)
= Lσ2 3 + 2Lσ

(1 + 2σL)(1 + σL)
≤ 3Lσ2

1 + 2σL
.

All in all, our bound becomes

∥xk+1 − x∗∥2 − ∥xk − x∗∥2

≤ −T0(σ)[ fik
(xk)− fik

(x∗)] + T1(σ
2)[ fik

(x∗)− f ∗ik
] + T2(σ

2) f ∗ik
, (206)

with T0(σ) =
2σ

(1+2σL)(1+σL) , T1(σ
2) = 6Lσ2

1+2σL , and finally T2(σ
2) = 2σ2 L

1+σL ·
max

{
0, 2σL−1

2σL+1

}
.
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We are finally ready to take the conditional expectation with respect to k:

Ek∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − T0(σ)[ f (xk)− f (x∗)]

+ T1(σ
2)Ek[ fik

(x∗)− f ∗ik
] + T2(σ

2)Ek[ f ∗ik
].

Let us call Ek the expected error at step k:

E(σ2) := T1(σ
2)Ek[ fik

(x∗)− f ∗ik
] + T2(σ

2)Ek[ f ∗ik
]

≤ T1(σ
2)∆int + T2(σ

2)∆pos,

where ∆int := Ek[ fik
(x∗)− f ∗ik

] and ∆pos := Ek[ f ∗ik
]. Therefore we get the

compact formula

Ek∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −T0(σ)[ f (xk)− f (x∗)] + E(σ2)

Taking the expectation again and using the tower property

E∥xk+1 − x∗∥2 − E∥xk − x∗∥2 ≤ −T0(σ)E[ f (xk)− f (x∗)] + E(σ2)

Finally, averaging over iterations,

1
K

K−1

∑
k=0

E∥xk+1− x∗∥2−E∥xk− x∗∥2 ≤ −T0(σ)

K

K−1

∑
k=0

E[ f (xk)− f (x∗)]+E(σ2).

Using linearity of expectation

1
K

E∥xK− x∗∥2− 1
K

E∥x0− x∗∥2 ≤ −T0(σ)E

[
K−1

∑
k=0

1
K

f (xk)− f (x∗)

]
+E(σ2).

and therefore

E

[
1
K

K−1

∑
k=0

f (xk)− f (x∗)

]
≤ 1

T0(σ)K
E∥x0 − x∗∥2 +

E(σ2)

T0(σ)
.

Finally, by Jensen’s inequality,

E
[

f (x̄k)− f (x∗)
]
≤ 1

T0(σ)K
E∥x0 − x∗∥2 +

E(σ2)

T0(σ)
,



272 appendix to chapter 4

where x̄K = 1
K ∑K−1

k=0 xk. Finally, recall that E(σ2) = T1(σ
2)∆int +T2(σ

2)∆pos

with T0(σ) =
2σ

(1+2σL)(1+σL) , T1(σ
2) = 6Lσ2

1+2σL , and finally T2(σ
2) = 2σ2 L

1+σL ·
max

{
0, 2σL−1

2σL+1

}
. Therefore we can write

E
[

f (x̄k)− f (x∗)
]
≤ (1 + 2σL)2

2σK
E∥x0 − x∗∥2

+ 3σL(1 + σL)∆int + σL ·max {0, 2σL− 1}∆pos.

This concludes the proof.

d.2.3 Proof of Theorem 4.3.2 (NGN, Nonconvex)

The proof deviates significantly from the one for stochastic Polyak step-
sizes by Loizou et al., 2021. We start with the classic expansion based on
gradient smoothness

f (xk+1)− f (xk) ≤ ⟨∇ f (xk), xk+1 − xk⟩+ L
2
∥xk+1 − xk∥2

= −γk⟨∇ f (xk),∇ fik
(xk)⟩+ Lγ2

k
2
∥∇ fik

(xk)∥2

≤ −γk⟨∇ f (xk),∇ fik
(xk)⟩+ Lσ2

2
∥∇ fik

(xk)∥2.

We would like to take the conditional expectation with respect to xk. Yet,
this is not easy since γk and ∇ fik

(xk) are correlated. Note however that
we can write, given the bound in Lemma D.2.2,

γk =
σ

σL + 1
+

σ2L
σL + 1

ξik
,

where ξik
∈ [0, 1] is a random variable. When ξik

= 1 then γk = σ, when
ξik

= 1 then γk = σ
σL+1 . This model for γk covers its complete range

and makes one property explicit : γk = O(σ) with variation range O(σ2).
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As such, as σ → 0 the stepsize becomes deterministic, and the update
reduces to SGD with constant stepsize. Leveraging this representation:

− γk⟨∇ f (xk),∇ fik
(xk)

= − σ

σL + 1
⟨∇ f (xk),∇ fik

(xk)⟩ − σ2L
σL + 1

ξik
⟨∇ f (xk),∇ fik

(xk)⟩

≤ − σ

σL + 1
⟨∇ f (xk),∇ fik

(xk)⟩+ σ2L
σL + 1

∣∣ξik

∣∣ · ∣∣∣⟨∇ f (xk),∇ fik
(xk)⟩

∣∣∣
≤ − σ

σL + 1
⟨∇ f (xk),∇ fik

(xk)⟩+ σ2L
σL + 1

∣∣∣⟨∇ f (xk),∇ fik
(xk)⟩

∣∣∣ .

Therefore

− Ek[γk⟨∇ f (xk),∇ fik
(xk)⟩]

≤ − σ

σL + 1
∥∇ f (xk)∥2 +

σ2L
σL + 1

Ek

∣∣∣⟨∇ f (xk),∇ fik
(xk)⟩

∣∣∣ .

The first term in the bound is O(σ) and directly helps convergence, while
the last term is an error O(σ2). Next, recall the basic inequality:

|⟨a, b⟩| ≤ 1
2
∥a∥2 +

1
2
∥b∥2 +

1
2
∥a− b∥2.

Applied to our setting, using the assumption ζ2 = supx∈Rd Ei∥∇ f (x)−
∇ fi(x)∥2 < ∞, we get

2Ek

∣∣∣⟨∇ f (xk),∇ fik
(xk)⟩

∣∣∣
≤ ∥∇ f (xk)∥2 + Ek∥∇ fik

(xk)∥2 + Ek∥∇ f (xk)−∇ fik
(xk)∥2

≤ ∥∇ f (xk)∥2 + Ek∥∇ fik
(xk)∥2 + ζ2

≤ 2∥∇ f (xk)∥2 + 2ζ2

Therefore, we get the compact inequality

− Ek[γk⟨∇ f (xk),∇ fik
(xk)⟩]

≤ − σ

σL + 1
∥∇ f (xk)∥2 +

σ2L
σL + 1

(
∥∇ f (xk)∥2 + ζ2

)
≤ −σ

(
1− σL
1 + σL

)
∥∇ f (xk)∥2 +

σ2L
σL + 1

ζ2,
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that we can insert back in the original expansion to get

Ek[ f (xk+1)]− f (xk)

≤ −Ek[γk⟨∇ f (xk),∇ fik
(xk)⟩] + Lσ2

2
Ek∥∇ fik

(xk)∥2

≤
[
−σ

(
1− σL
1 + σL

)
+

Lσ2

2

]
∥∇ f (xk)∥2 +

(
σ2L

σL + 1
+

σ2L
2

)
ζ2.

We therefore need

−σ

(
1− σL
1 + σL

)
+

Lσ2

2
= −σ

(
1− σL
1 + σL

− σL
2

)
≤ 0

The function 1−σL
1+σL − σL

2 is monotonically decreasing as σL > 0 increases.
For σL = 0 it is 1 and reaches value zero at −3/2 +

√
17/2 ≊ 0.56. For

σL = 0.5, one gets 1−σL
1+σL − σL

2 = 0.5
1.5 − 0.25 = 1/12. Therefore, for σ ≤ 1

2L ,

we get −σ
(

1−σL
1+σL

)
+ Lσ2

2 ≤ − σ
12 .

Next, for the noise term, note that σ2 L
σL+1 + σ2 L

2 ≤ 3σ2 L
2 . All in all, for

σ ≤ 1
2L , we get:

Ek[ f (xk+1)]− f (xk) ≤ − σ

12
∥∇ f (xk)∥2 +

3σ2L
2

ζ2,

Or, more conveniently:

∥∇ f (xk)∥2 ≤ −12
σ
[Ek[ f (xk+1)]− f (xk)] + 18σLζ2,

After taking the expectation using the tower property, we get

E∥∇ f (xk)∥2 ≤ −12
σ
[E[ f (xk+1)]− E[ f (xk)]] + 18σLζ2,
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Summing over iterations and telescoping the sum, after adding and sub-
tracting f ∗ we get

1
K

K−1

∑
k=0

E∥∇ f (xk)∥2 ≤ − 12
σK

K−1

∑
k=0

E[ f (xk+1)] +
12
σK

K−1

∑
k=0

E[ f (xk)] + 18σLζ2

≤ − 12
σK

E[ f (xK)] +
12
σK

E[ f (x0)] + 18σLζ2

≤ − 12
σK

E[ f (xK)− f ∗] +
12
σK

E[ f (x0)− f ∗] + 18σLζ2

≤ 12
σK

E[ f (x0)− f ∗] + 18σLζ2.

This concludes the proof.

d.2.4 Increasing regularization for convergence

Let us now consider the setting σk → 0, which can be considered increas-
ing regularization (i.e. getting more similar to a vanilla SGD update). Re-
call that indeed that the algorithm we propose stems from the following
approximation:

f̃σ(x + p) :=
1
n

n

∑
i=1

(
ri(x) +∇ri(x)⊤p

)2
+

1
2σ
|p∥2.

In this section, we analyse NGN with decreasing σk, i.e.

γk =
σk

1 +
σk

2 fik
(xk)

∥∇ fik
(xk)∥2

(NGN-stochastic-dec)

For a general time-dependent σ, all local inequalities hold. In particular,
the following three lemmata hold with no additional proof required.

Lemma D.2.4 (Stepsize bounds, time dependent). Let each fi : Rd → R

be non-negative, differentiable and L-smooth.
Consider γk as in NGN-stochastic-dec, we have

γk ∈
[

σk
1 + σk L

, σ

]
=

[
1

L + σ−1
k

, σk

]
.
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Lemma D.2.5 (Fundamental Equality, time dependent). Consider γk as in
NGN-stochastic-dec. One has

γk∥∇ fik
(x)∥2 = 2

(
σk − γk

σk

)
fik
(x).

Lemma D.2.6 (Fundamental inequality, time dependent). Let each fi :
Rd → R be non-negative, L-smooth and convex.
Consider γk as in NGN-stochastic-dec, we have

γ2
k∥∇ fik

(xk)∥2

≤
(

4σk L
1 + 2σk L

)
γk[ fik

(xk)− f ∗ik
] +

2σ2
k L

1 + σk L
·max

{
0,

2σk L− 1
2σk L + 1

}
· f ∗ik

.

We present proof for the convex setting. The nonconvex is very similar
and uses the same techniques; therefore, we omit it.

Theorem D.2.1 (NGN, convex, decreasing σ). Let f = 1
N ∑N

i=1 fi, where
each fi : Rd → R is non-negative, Li-smooth and convex. Let L = maxi∈[N] Li.
Consider stochastic gradient descent with batch size 1 and let ik be the data
index sampled at iteration k. For any value of σ0 > 0, NGN-stochastic-dec with
σk = σ0/

√
k + 1 leads to the following rate: for K ≥ 2,

E[ f (x̄K)− f (x∗)] ≤ C1∥x0 − x∗∥2
√

K− 1
+

C1C2 ln(K + 1)√
K− 1

= O
(

ln(K)√
K

)
.

where x̄K = ∑K−1
k=0 pk,Kxk with pk,K = σk

∑K−1
k=0 σk

and

C1 =
(1 + 2σ0L)(1 + σ0L)

4σ0
, C2 =

[
6∆int + 2 max {0, 2σ0L− 1}∆pos

]
Lσ2

0 .

Proof. Using Lemma D.2.4,D.2.5&D.2.6 and following the same exact steps
as in Theorem 4.3.1, we arrive at

∥xk+1 − x∗∥2 − ∥xk − x∗∥2

≤ −T0(σk)[ fik
(xk)− fik

(x∗)] + T1(σ
2
k )[ fik

(x∗)− f ∗ik
] + T2(σ

2
k ) f ∗ik

,
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with

T0(σk) =
2σk

(1 + 2σk L)(1 + σk L)
,

T1(σ
2
k ) =

6Lσ2
k

1 + 2σk L
,

T2(σ
2
k ) =

2σ2
k L

1 + σk L
·max

{
0,

2σk L− 1
2σk L + 1

}
.

Taking the expectation, we get the compact formula

T0(σk)E[ f (xk)− f (x∗)] ≤ −E
[
∥xk+1 − x∗∥2 − ∥xk − x∗∥2

]
+ E(σ2

k ),

where Ek is the expected error at step k:

E(σ2
k ) := T1(σ

2
k )E[ fik

(x∗)− f ∗ik
] + T2(σ

2
k )E[ f ∗ik

]

≤ T1(σ
2
k )∆int + T2(σ

2
k )∆pos,

where ∆int := E[ fi(x∗)− f ∗i ] and ∆pos := E[ f ∗i ].
Following standard techniques (Garrigos and Gower, 2023), summing
over k and using telescopic cancellation gives

K−1

∑
k=0

T0(σk)E[ f (xk)− f (x∗)] ≤ ∥x0 − x∗∥2 +
K−1

∑
k=0

E(σ2
k ),

Let us now construct a pointwise lower bound T̃0(σk) to T0(σk), using
the fact that σ is decreasing:

T0(σk) =
2σk

(1 + 2σk L)(1 + σk L)
≥ 2σk

(1 + 2σ0L)(1 + σ0L)
=: T̃0(σk).

We have

K−1

∑
k=0

T̃0(σk)E[ f (xk)− f (x∗)] ≤ ∥x0 − x∗∥2 +
K−1

∑
k=0

E(σ2
k ),

Let us divide everything by ∑K−1
k=0 T̃0(σk):

K−1

∑
k=0

(
T̃0(σk)

∑K−1
k=0 T̃0(σk)

)
E[ f (xk)− f (x∗)] ≤ ∥x

0 − x∗∥2

∑K−1
k=0 T̃0(σk)

+
∑K−1

k=0 E(σ2
k )

∑K−1
k=0 T̃0(σk)

.
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Using an integral bound, we have, for K ≥ 2

K−1

∑
k=0

1√
k + 1

≥
∫ K

1

1√
t
dt = 2(

√
K− 1).

Therefore, we have that

K−1

∑
k=0

T̃0(σk) =
K−1

∑
k=0

2σk
(1 + 2σ0L)(1 + σ0L)

=
2σ0

(1 + 2σ0L)(1 + σ0L)

K−1

∑
k=0

1√
k + 1

≥ 4σ0(
√

K− 1)
(1 + 2σ0L)(1 + σ0L)

.

Note also that (
T̃0(σk)

∑K−1
k=0 T̃0(σk)

)
=

σk

∑K−1
k=0 σk

=: pk,K ,

where pk,K as a function of k is a probability distribution over the interval
[0, K− 1].
We are left with bounding ∑K−1

k=0 Ek. Since σk is decreasing, we have the
following bounds:

T1(σ
2
k ) =

6Lσ2
k

1 + 2σk L
≤ 6Lσ2

k ,

T2(σ
2
k ) =

2σ2
k L

1 + σk L
·max

{
0,

2σk L− 1
2σk L + 1

}
≤ 2σ2

k L ·max {0, 2σ0L− 1} .

We next use a standard bound2 on the K-th Harmonic number HK .

K−1

∑
k=0

1
k + 1

= 1 +
1
2
+

1
3
+ · · ·+ 1

K
= HK ≤ ln(K + 1).

Therefore,

K−1

∑
k=0

T1(σ
2
k ) ≤ 6L

K−1

∑
k=0

σ2
k = 6Lσ2

0

K−1

∑
k=0

1
k + 1

≤ 6Lσ2
0 ln(K + 1).

2 See e.g. https://www.cs.umd.edu/class/spring2016/cmsc351-0101/harmonic.pdf

https://www.cs.umd.edu/class/spring2016/cmsc351-0101/harmonic.pdf
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and

K−1

∑
k=0

T2(σ
2
k ) ≤ 2L ·max {0, 2σ0L− 1}

K−1

∑
k=0

σ2
k

≤ 2L ·max {0, 2σ0L− 1} σ2
0 ln(K + 1).

All in all, we have

K−1

∑
k=0

E(σ2
k ) ≤ ∆int

K−1

∑
k=0

T1(σ
2
k ) + ∆pos

K−1

∑
k=0

T2(σ
2
k )

≤
[
6∆int + 2 max {0, 2σ0L− 1}∆pos

]
Lσ2

0 ln(K + 1).

Plugging everything back into the bound, we have, for K ≥ 2

K−1

∑
k=0

pk,KE[ f (xk)− f (x∗)] ≤ C1∥x0 − x∗∥2
√

K− 1
+

C1C2 ln(K + 1)√
K− 1

.

with

C1 =
(1 + 2σ0L)(1 + σ0L)

4σ0
, C2 =

[
6∆int + 2 max {0, 2σ0L− 1}∆pos

]
Lσ2

0 .

To conclude, let x̄K = ∑K−1
k=0 pk,Kxk. Jensen’s inequality implies

f (x̄K) = f

(
K−1

∑
k=0

pk,Kxk

)
≤

K−1

∑
k=0

pk,K f (xk).

This concludes the proof.
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After all, time is not a temporal space, but an ordering.

– Ludwig Wittgenstein.

e.1 training speedups

In Tb.8, we show training speed comparisons of the LRU with a regular
RNN with tanh activations, as well as with the S4D and S5 models. As
we elaborate in Orvieto et al., 2023c, for the LRU, we closely followed the
optimal model sizes of the S5 model. Consequently, we also see similar
training speeds as the S5 model on all tasks.

Model sCIFAR ListOps Text Retrieval Pathfinder PathX

Tanh RNN 2.0 1.1 0.5 0.5 2.1 0.14

LRU 15.9 (8x) 2.1 (1.9x) 14.7 (29x) 5.7 (11.4x) 15.5 (7.4x) 2.4 (17x)

S5 (our repr.) 15.9 2.2 14.4 5.7 15.6 2.3

S4D (our repr.) 13.5 2.2 10.6 3.0 24.5 2.6

Table 8: Speeds (steps/sec) during training on a A100 GPU. We also show the speedup
of the LRU over the tanh RNN for each task. The batch size used for each task is
specified in Orvieto et al., 2023c. We compare with our reproduction of S4D/S5.

e.2 parallel unrolling of linear recurrences

We provide here a quick example to give an idea of the inner workings
of parallel scans. The example is similar to the one presented in Smith
et al., 2022. Consider the computation of 4th hidden state of the linear
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recurrent model xk = Axk−1 + Buk, i.e. x3. We have, starting as usual
from x−1 = 0,

x0 = Bu0,

x1 = ABu0 + Bu1,

x2 = A2Bu0 + ABu1 + Bu2,

x3 = A3Bu0 + A2Bu1 + ABu2 + Bu3.

Note that, starting from the sequence of projected inputs Bu0, Bu1, Bu2,
to compute x3 sequentially we need three consecutive steps: x0 → x1, x1 →
x2 and x2 → x3. If however we have access to parallel compute, we can
reduce the number of steps — in this setting, we can make it in just two
steps.
Consider tuples (A, Bu0), (A, Bu1), (A, Bu2), (A, Bu3) and the operation
⊙ such that (a, b) ⊙ (a′, b′) = (aa′, a′b + b′). Below, in Figure 71, we il-
lustrate how we can reduce the number of steps from 3 to 2 using the
⊙ operation. Of course, for longer sequences, the number of operations
decreases drastically. In particular, we note that this type of paralleliza-
tion is particularly effective in the case where A is diagonal (as proposed
in this work as well as in Smith et al., 2022), so that no dense matrix
multiplication is needed.

28

Important Advantage : linear dynamics can be parallelized
Linear RNN : xk = Axk−1 + Buk, x−1 = 0

⟹
x2 = A2Bu0 + ABu1 + Bu2
x3 = A3Bu0 + A2Bu1 + ABu2 + Bu3

x1 = ABu0 + Bu1
x0 = Bu0

(A4, A3Bu0 + A2Bu1 + ABu2 + Bu3)

(A, Bu0)
(A, Bu1)
(A, Bu2)
(A, Bu3)

Example of parallelization for  (exponential gains on long seq.) x3

(A2, ABu0 + Bu1)

(A2, ABu2 + Bu3)

Arrow computation: 
(a, b) ⊙ (a′ , b′ ) = (a′ a, a′ b + b′ )

jax.lax.associative_scan

Still matrix multiplications, can we do better? Yes! After diagonalization.

Also used in some SSMs

Processor 1

Processor 2

Figure 71: Example of parallel scans on a short sequence.

e.3 experimental details

We consider the standard S4 architecture of Gu et al., 2021 and replace
the S4 layers with RNN layers or with S5 (Smith et al., 2022) or S4D (Gu
et al., 2022a) layers for our baselines. We give an overview of the architec-
ture used in Fig.43. The input is first encoded into H features, followed
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by a stack of residual blocks. For all our experiments, we use networks
with a depth of 6 residual blocks. Each residual block consists of identity
skip connection, and the residual path containing a normalization layer
(in our case, we always use batch normalization in our experiments),
followed by the RNN/SSM block. While using the “post-norm” option
of adding the normalization layer after the skip and residual branches
typically improves performance, we stick to this design due to this archi-
tecture being more scalable in general (De and Smith, 2020).
Each RNN/SSM block first contains the recurrent layer as described in
Eqs.(120) and (122) in Section 5.2. This is followed by a mixing layer.
For all experiments except PathX, we use the GLU activation function
(Dauphin et al., 2017) with dropout as the mixing layer, similar to Gu
et al., 2021. For PathX, we instead use a GLU activation function without
one additional linear transform; the same as used by Smith et al., 2022

for their experiments.
We use bidirectional models for our experiments on PathFinder and
PathX, using a similar setup as Gu et al., 2021, and use unidirectional
models for the rest of our experiments. We use AdamW as our opti-
mizer (Loshchilov and Hutter, 2017). We use warmup for the learning
rate, where we start from a value of 10−7 and increase the learning rate
linearly up a specified value for the first 10% of training. This is followed
by cosine annealing for the rest of training down to a value of 10−7. We
used a smaller learning rate for the RNN/SSM parameters in the recur-
rent computation (i.e. A (or Λ) and B). When using normalization in our
RNNs, we also used a smaller learning rate on the normalization param-
eter γ. For our S5 and S4D baselines, we used a smaller learning rate for
the discretization step size ∆. This smaller learning rate was determined
by multiplying the base learning rate by a factor < 1 (See Tb.9 for the
learning rate factor used for each task). We use weight decay for all pa-
rameters except the RNN/SSM parameters A and B (and γ and ∆ when
applicable).
All experiments were carried out on accelerated hardware A100 GPUs.

hyperparameters . For our S5 (Smith et al., 2022) baseline, we tuned
the model dimension H and state dimension N. These values were then
used for our final LRU configuration without re-tuning. For the S5 base-
line, we additionally tuned the number of blocks (denoted P in Smith
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Task Depth H N Iterations Batch size LR factor Dropout

sCIFAR 6 512 384 180k 50 0.25 0.1

ListOps 6 128 256 80k 32 0.5 0.0

Text 6 256 192 50k 32 0.1 0.1

Retrieval 6 128 256 100k 64 0.5 0.1

PathFinder 6 192 256 500k 64 0.25 0.0

PathX 6 128 256 250k 32 0.25 0.0

Table 9: List of all the hyperparameters used for each task for the LRU model. Weight
decay is set to 0.05 for all tasks.

et al., 2022) as well as the initialization scheme. For our S4D Gu et al.,
2022a baseline, we used the same model dimension H as used for our S5

baseline, and additionally tuned the state dimension N and the initializa-
tion scheme. For the LRU, we tuned the initialization scheme (set by rmin
and rmax). Thus, our S4D and S5 baselines were afforded a similar tun-
ing budget as the LRU (arguably, a larger tuning budget than the LRU).
This explains why some of the numbers for our baselines are superior to
the values reported in the original papers on the same tasks. For all our
experiments, we tuned the base learning rate on a logarithmic grid of 2

to choose the optimal learning rate. We present the hyperparameters we
used for each LRU experiment in Tb.9. We also note that the number of
parameters in the architectures above is similar.

stability. Common hyperparameters such as model width, model
depth, and the learning rate, were no more sensitive for the LRU than
for our S4/S4D/S5 baselines. The main hyperparameters specific to the
LRU are the rmin and rmax hyperparameters governing the initialization
scheme. We found that these could simply be set to default values of
rmin = 0 and rmax = 1 for most tasks, but needed to be tuned to achieve
strong performance on Pathfinder and PathX, the two most challenging
tasks in the LRA benchmark.
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Everything should be made as simple as possible, but not simpler.
– Albert Einstein.

In this appendix, we provide the full proof concerning the behavior of
Anti-PGD on widening valleys — our toy landscape. This is perhaps
the most unconventional proof of this thesis. In the interest of space,
all the other proofs for this chapter can be found in the corresponding
papers (Lucchi et al., 2022; Orvieto et al., 2022a; Orvieto et al., 2023b).

f.1 proof of theorem 6 .3 .2

To prove Theorem 6.3.2, we first need some preliminary preparation; in
doing so, we will also provide some intuition for the reader. The main
proof follows afterwards, in Section F.1.2.
Consider the problem of minimizing the cost function

L(u, v) =
1
2

v2∥u∥2,

where ∥ · ∥ is the Euclidean norm, v ∈ R, and u ∈ Rd. To minimize the
loss, we use PGD or Anti-PGD (see Table 6). Note that any point where
v = 0 or ∥u∥2 = 0 minimizes the loss (see Fig. 56). By the considera-
tions in the section above, we want to find a solution (u, v) where ∥u∥ is
small (i.e. a solution with low curvature). We show that, while standard
noise injection does not necessarily induce this bias on the dynamics, in-
jection of anticorrelated noise does. This show that anticorrelated noise
effectively minimizes the trace of the Hessian:

Tr(∇2L(u, v)) = dv2 + ∥u∥2.

285
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preliminary considerations . Let us start by writing down the
update in discrete-time. Recall that the gradient is (v2u, ∥u∥2v), hence:

uk+1 = (1− ηv2
k) · uk + εu

k (207)

vk+1 = (1− η∥uk∥2) · vk + εv
k (208)

where εu
k ∈ Rd and εv

k ∈ R are the noise variables.

1. For stability (in the noiseless setting), we need η ≤ 2
max{v2

k ,∥uk∥2} .

2. Starting from a big ∥u∥ and any v, under noiseless GD, since d≫ 1,
we converge to (u0, 0), with ∥u0∥ := D ≫ 1.

The key to the proof of effectiveness of anticorrelated noise, compared to
uncorrelated noise, relies on the following observation:

Empirical Observation: for the widening valley L(u, v) = 1
2 v2∥u∥2, if

we only perturb the v coordinate with any noise then we get to a wide
minimum.

Why? Intuition behind the proof. Well, of course this is the case! If one
knows is advance which direction to move in order to pick up a signal,
then les jeux sont faits (since I did this while interning with Francis Bach
in France). The problem is that in order to perturb this direction — we
need to perturb all directions, and this leads to “getting lost” if the noise
is not controlled (i.e. does not have an attraction force to the origin). This
also motivates why the effect gets more intense as the dimension d in-
creases: there is a lot of bias added, which drives us away from good
minima.

Plan: To show the result, we follow the following procedure:

1. Starting from (u0, 0), we start injecting noise and want to reach
(ũ, ṽ) such that ∥ũ∥2 = αD and 0 < α < 1. We want to show here a
difference in behavior under different noise correlation.

2. We proceed by contradiction: starting from (ũ, ṽ), we assume that
∥uk∥2 ≥ αD for all k ≥ 0 (α ∈ (0, 1)). Under injection of anti-
correlated noise, we show that this leads to a contradiction — i.e.
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that the dynamics substantially decreases the trace of the Hessian:
∥u∞∥2 < αD (worst-case upper bound). Crucially, we also show
that the hypothesis does not lead to any contradiction under stan-
dard noise injection — i.e. without anticorrelation we do not signifi-
cantly decrease the trace of the Hessian. More specifically, we show
that limn→∞ E

[
∥un∥2] ≥ D/α under uncorrelated noise injection

(worst-case lower bound).

3. To simplify the computations, assume that coordinate-wise the noise
is a result of a Bernoulli(1/2) perturbation (ξk)i ∈ {−σ, σ}. The in-
jected noise is then either εk = ξk or εk = ξk − ξk−1, for PGD and
Anti-PGD respectively.

f.1.1 Some Useful Lemmata

This section is pretty technical, hence the reader can skip the proof on a
first read. The meaning behind the bounds we derive and a numerical verifica-
tion can be found in Figure 72.
We start by recalling the variation of constants formula, which we will
heavily use along the proof.

Lemma F.1.1 (Variations of constants formula). Let w ∈ Rd evolve with
time-varying linear dynamics wk+1 = Akwk + εk, where Ak ∈ Rd×d and
εk ∈ Rd for all k. Then, with the convention that ∏k

j=k+1 Aj = 1,

wk+1 =

 k

∏
j=0

Aj

w0 +
k

∑
i=0

 k

∏
j=i+1

Aj

 εi.

Proof. For k = 1 we get w1 = A0w0 + ε0. The induction step yields

wk+1 = Ak

k−1

∏
j=0

Aj

w0 +
k−1

∑
i=0

 k−1

∏
j=i+1

Aj

 εi

+ εk

=

 k

∏
j=0

Aj

w0 +
k−1

∑
i=0

 k

∏
j=i+1

Aj

 εi +

 k

∏
j=k+1

Aj

 εk

=

 k

∏
j=0

Aj

w0 +
k

∑
i=0

 k

∏
j=i+1

Aj

 εi.
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This completes the proof of the variations of constants formula.

We extend this formula to the anticorrelated case, where εk has some
additional structure.

Corollary F.1.1 (Anticorrelated variations of constants formula). Under
the same setting of Lemma F.1.1, if there exist a family of vectors {ξk} such that
ε0 = ξ0 and εk = ξk − ξk−1, then

wk+1 =

 k

∏
j=0

Aj

w0 + ξk +
k−1

∑
i=0

(Ai+1 − I)

 k

∏
j=i+2

Aj

 ξi.

Proof. We have, by direct computation:

wk+1 =

 k

∏
j=0

Aj

w0 +

 k

∏
j=1

Aj

 ξ0 +
k

∑
i=1

 k

∏
j=i+1

Aj

 ξi −
k

∑
i=1

 k

∏
j=i+1

Aj

 ξi−1

=

 k

∏
j=0

Aj

w0 +

 k

∏
j=1

Aj

 ξ0 +
k−1

∑
i=1

 k

∏
j=i+1

Aj

 ξi + ξk −
k−1

∑
i=0

 k

∏
j=i+2

Aj

 ξi

=

 k

∏
j=0

Aj

w0 + ξk +
k−1

∑
i=0

 k

∏
j=i+1

Aj

 ξi −
k−1

∑
i=0

 k

∏
j=i+2

Aj

 ξi

=

 k

∏
j=0

Aj

w0 + ξk +
k−1

∑
i=0

 k

∏
j=i+1

Aj

−
 k

∏
j=i+2

Aj

 ξi.

This concludes the proof.

Remark F.1.1. If Ai = I for all i, then the last summand is zero. This showcases
the effect of anticorrelation: noise cancellation under noise accumulation.

expectation quantities under deterministic ρk Using the
variation of constants formula, we can write the dynamics of the second
moment of stochastic linear time-varying dynamical systems, with either
standard or anticorrelated noise.

Proposition F.1.1 (An Itô-like formula). Let w ∈ Rd evolve with time-
varying linear dynamics wk+1 = Akwk + εk, where Ak ∈ Rd×d and εk ∈ Rd

for all k. Let {ξk} be a family of uncorrelated zero-mean d-dimensional random
variables with variance E[∥ξk∥2] = dσ2 (dependency on the dimension because
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additivity of squared norm). Consider ε0 = ξ0 and εk = ξk − ξk−1 for all
k ≥ 1. Further, assume that Ak = ρk I for all k (i.e. Ak is a multiple of the
identity), with ρk ∈ R a deterministic quantity. Then, with the convention that
∏k

j=k+1 Aj = 1, we have

E[∥wk+1∥2] =

 k

∏
j=0

ρ2
j

 ∥w0∥2 +

1 +
k−1

∑
i=0

(1− ρi+1)
2

k

∏
j=i+2

ρ2
j

 dσ2.

Instead, if εk = ξk for all k (standard noise injection) we have

E[∥wk+1∥2] =

 k

∏
j=0

ρ2
j

 ∥w0∥2 +
k

∑
i=0

 k

∏
j=i+1

ρ2
j

 dσ2.

Proof. Using independence of the {ξk} family, we obtain for the anticor-
related case:

E[w⊤k+1wk+1] =

 k

∏
j=0

ρj

2

∥w0∥2 + E[∥ξk∥2]

+
k−1

∑
i=0

(ρi+1 − 1)2

 k

∏
j=i+2

ρj

2

E[∥ξi∥2]

=

 k

∏
j=0

ρj

2

∥w0∥2 + σ2 +
k−1

∑
i=0

(ρi+1 − 1)2

 k

∏
j=i+2

ρ2
j

 σ2,

where we used the fact that the ξk are not correlated. The case εk = ξk is
similar and therefore left to the reader.

Corollary F.1.2. In the setting of Proposition F.1.1, assume ρj = ρ ∈ (0, 1) is
constant for all j. If ε0 = ξ0 and εk = ξk − ξk−1 for all k ≥ 1 then

E[∥wk+1∥2] = ρ2(k+1)∥w0∥2 +

(
1 +

(1− ρ)2(1− ρ2(k+1))

1− ρ2

)
dσ2

∞−→ 2
1 + ρ

dσ2.
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Instead, if εk = ξk for all k (standard noise injection) we have

E[∥wk+1∥2] = ρ2(k+1)∥w0∥2 +
1− ρ2(k+1)

1− ρ2 dσ2 ∞−→ 1
1− ρ2 dσ2.

Proof. Simple application of the formula for geometric series. Numerical
verification in Figure 72.

Remark F.1.2. Note that the corollary has a clear interpretation: if ρ is be-
tween zero and one, we experience striking difference between uncorrelated and
anticorrelated noise. If ρ increases, the total accumulated anticorrelated noise de-
creases.1 This trend is reversed for normal noise injection: as ρ→ 1 the total ac-
cumulated variance explodes. Numerical verification can be found in Figure 72.

dealing with potential stochasticity in the ρk . For the
proof in the next subsection, we must deal with stochastic ρk, which are
only specified up to an interval.

Proposition F.1.2 (Limit bound on second moment for anticorrelated
noise). Let w ∈ Rd evolve with time-varying linear dynamics wk+1 = Akwk +
εk, where Ak ∈ Rd×d and εk ∈ Rd for all k. Let {ξk} be a family of uncorrelated
zero-mean d-dimensional random variables with variance E[∥ξk∥2] = dσ2 (de-
pendency on the dimension because additivity of squared norm). Consider ε0 =
ξ0 and εk = ξk − ξk−1 for all k ≥ 1. Further, assume that Ak = ρk I for all
k (i.e. Ak is a multiple of the identity) and that ρk ∈ [0, 1] for all k. Assume
that the probability of ρk < 1 is non-zero, i.e. that ρk ̸= 1 with non-vanishing
probability. Then, we have

lim
k→∞

E[∥wk+1∥2] ≤ 2dσ2.

Proof. The proof is based on an induction argument, starting from the
equation in Proposition F.1.1:

E[∥wk+1∥2] =

 k

∏
j=0

ρ2
j

 ∥w0∥2 +

1 +
k−1

∑
i=0

(1− ρi+1)
2

k

∏
j=i+2

ρ2
j

 dσ2.

1
2

1+ρ is a decreasing function or ρ, while 1/(1− ρ2) is increasing.



F.1 proof of theorem 6 .3 .2 291

Figure 72: Numerical verification of our final result that we will use in the proof, i.e.
Corollary F.1.2 (first and second panel) and Proposition F.1.2 (last panel).
Dashed lines indicate our predicted value (in expectation) by the theory. In
the right-most plot, we sample ρk at each iteration uniformly on an interval.



292 appendix to chapter 6

First, note that by assumption on ρk the first term vanishes as k→ ∞. We
just have to deal with the second term. Specifically, we want to show that
for whatever sequence ρk ∈ (0, 1) we have

νk =
k−1

∑
i=0

(1− ρi+1)
2

 k

∏
j=i+2

ρ2
j

 ≤ 1, ∀k ≥ 0.

A fundamental observation, is that the term can be written in a recursive
form. Indeed,

νk =
k−1

∑
i=0

(1− ρi+1)
2

 k

∏
j=i+2

ρ2
j


=

k−2

∑
i=0

(1− ρi+1)
2

 k

∏
j=i+2

ρ2
j

+ (1− ρk)
2

= ρk

k−2

∑
i=0

(1− ρi+1)
2

 k−1

∏
j=i+2

ρ2
j

+ (1− ρk)
2

= ρ2
kνk−1 + (1− ρk)

2,

where the second equality follows from the fact that, as previously noted,
our notation implies ∏k

j=k+1 ρ2
k = 1, for all k. Let us now proceed again

by induction to show that vk ∈ (0, 1) for all k ≥ 0. Note that trivially
v0 = 0. Let’s proceed with the inductive step:

νk = ρ2
kνk−1 + (1− ρk)

2 = (νk−1 + 1)ρ2
k − 2ρk + 1.

This quantity is less then one if and only if

(νk−1 + 1)ρ2
k ≤ 2ρk.

Note that this is satisfied since νk−1 + 1 ≤ 2, and ρ2
k ≤ ρk since ρk ∈ (0, 1).

The result follows.

A numerical verification of this result can be found in Figure 72.
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Figure 73: The sketch illustrates the intuition behind the result in Theorem 6.3.2.

f.1.2 Proof of the Main Result

Using the results from the last subsection, we are now ready to show the
main theorem for optimization of the widening valley.

Proof of Theorem 6.3.2. As above, we denote the perturbations by εk; i.e.,
εk = ξk for PGD and εk = ξk+1− ξk for Anti-PGD. Let us start by inspect-
ing the equation

uk+1 = (1− ηv2
k) · uk + εu

k ,

where εu
k ∈ Rd is the projection of the noise εk to the first d coordinates.

It is clear that the optimal strategy of making ∥w∥ small is to increase
|v|, so to sample nearby points and pick up the gradient. The greater
v is in norm, the better. We can increase the norm of v by heavy noise
injection (second equation). However, too much noise also increases εu

k ,
which acts adversarially to the decrease of ∥w∥ (error accumulation in-
creases the Euclidean norm in expectation).

choice of stepsize and operating region. We start by moti-
vating the choice of stepsize η = α

2D . Starting from the point (u0, 0)
with ∥u0∥2 = D > 0, we consider the operating landscape region αD <
∥uk∥2 < D/α, with α ∈ (0, 1). We want to show that while standard
noise injection makes the process exit the region from the right (D/α

side, see Figure 73), anticorrelated noise injection makes the process exit
the region from the left (αD side). In this region, named Dα, the maxi-
mal allowed learning rate is η ≤ 2

maxDα {v2,∥u∥2} . Since v stays small (we
are going to check this later in great detail), we select the stepsize η ≤
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1
2 maxDα ∥u∥2 = α

2D — which guarantees stability in expectaction, i.e. with-
out noise injection (even allowing for some slack).

lower bound for uncorrelated noise (εk = ξ k ) . For this case,
we have to show that standard noise injection cannot possibly work for
reaching αD, therefore we have to put ourselves in the best case scenario
for PGD: that is, we have to provide an uniform upper bound for vk un-
der the second equation (i.e. the equation for v) and show that this is not
enough for a substantial decrease in ∥u∥. In the next paragraph (anticor-
related noise), we instead have to put ourselves in the worst case scenario
— i.e. a lower bound for |v|— and show that this is still enough for anti-
correlated noise to yield a substantial decrease in ∥u∥.
To start, let us then look at the second equation:

vk+1 = (1− η∥uk∥2) · vk + εv
k,

where εv
k is the (d + 1)-th component of εk. Since we start from v0 = 0,

the equation is completely dominated by noise, and is strongly mean
reverting (i.e. v is effectively bounded). Indeed, since η = α

2D and ∥uk∥2 ∈
(αD, D/α) by assumption, we have

|vk+1| ≤ max
{

1− α2

2
,

1
2

}
· |vk|+ σ =

(
1− α2

2

)
|vk|+ σ.

where we used the fact that |εv
k| = σ and that α2 ∈ (0, 1). By induction,

the last inequality yields that, starting from v0 = 0, we have

|vk| ≤ vmax :=
2σ

α2 , ∀k ≥ 0.

Hence, we found the “best case scenario” for the w equation: |vk| =
2σ
α2 , for all k. This gives w the best decrease rate possible.2 However, we
need to check this value vmax is such that the equation for w is indeed
stable (we promised this to the reader in the last paragraph). We recall
that this equation is wk+1 = (1− ηv2

k) ·wk + εu
k . Let us require (1− ηv2

k) ∈
(0, 1), for this we need 1/v2

max > η = α
2D . Therefore, we need

1
v2

max
=

α4

4σ2 ≥ η =
α

2D
=⇒ σ2 ≤ α3D/2.

2 Note that noise injection in u is independent of v, therefore to minimize ∥u∥ we need the
shrinking factor to be as large as possible. We note that using this bound is precise: with
probability one we are in the best scenario (we are finding a lower bound).
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This is guaranteed by assumption. To proceed, we substitute vmax into
the first equation to get

uk+1 = (1− η
4σ2

α4 ) · uk + εu
k =

α3D− 2σ2

α3D
uk + εu

k .

Let us call ρ :=
(

α3D−2σ2

α3D

)
∈ (0, 1) the (best case) shrinking factor. Since

εu
i is zero-mean, computing the expected value of ∥uk∥2 leads to the

following limit by Corollary F.1.2:

lim
k→∞

E[∥uk∥2] =
dσ2

1− ρ2 =
dD2α6

2Dα3 − 2σ2 .

where we assumed σ2 strictly positive. Note that this limit is a monoton-
ically increasing function of σ2 ∈ (0, Dα3/2). Hence, we get

lim
k→∞

E[∥uk∥2] ∈
(

dDα3

2
, dDα3

)
. (209)

Remark F.1.3 (Phase transition). Note that, for σ exactly 0, the limit is instead
∥u0∥2 = D. Instead, for any small noise the process will grow up until at least
dDα2/2. This might seem weird at first — but recall that there is an interaction
between noise scale and our best-case scenario bound for v: they both depend on
σ. This causes a cancellation effect and a transition in behavior at σ = 0.

Last, we need to show that this lower bound on limk→∞ E[∥uk∥2] coin-
cides with (or is bigger than) the right boundary of the operating region
in Figure 73. To do this we set:

dDα3

2
≥ D

α
=⇒ d ≥ 2

α4 .

This concludes the proof of Eq. (159).

upper bound for anticorrelated noise (εk = ξ k − ξ k−1 ) . We
consider anticorrelated noise injection (ξk)i ∈ {−σ, σ}, and εk = (εu

k , εv
k) =

ξk − ξk−1. Again, let us first look at the second equation:

vk+1 = (1− η∥uk∥2) · vk + εv
k.
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Since by hypothesis η = α
2D and αD ≤ ∥uk∥2 ≤ D/α, we have (1 −

η∥uk∥2) ∈
(

1− α2

2 , 1
2

)
. Clearly, we have that, for any k ≥ 1 v2

k , is non-
zero with a non-vanishing probability. For (noiseless) stability, we also
need an upper bound on |vk|. An easy (yet absolutely not tight) upper
bound is the following:

|vk+1| ≤
1
2
|vk|+ 2σεv

k. (210)

where we simply used the absolute value subadditivity and the fact that
|εv

k| ≤ |ξk|+ |ξk−1| = 2σ. Note that the equation directly yields by induc-
tion |vk| ≤ 4σ for all k ≥ 0.
Let us now deal with the equation for w.

uk+1 = (1− ηv2
k) · uk + εu

k

For this equation, we would want all the coefficients ρk := 1− ηv2
k to be

between 0 and 1 — i.e. we need to check that v is indeed not too big.
Since |vk| ≤ 4σ for all k ≥ 0, we have the requirement 1− α

2D 16σ2 > 0,
which implies σ2 ≤ D

8α — that satisfies our hypothesis.
So, to sum it up, we are in operating regime of Proposition F.1.2: anti-
correlated noise, ρk < 1 with non-vanishing probability and ρk always
between 0 and 1. Hence, we get that

lim
k→∞

E[∥uk∥2] ≤ 2σ2d.

Hence, for σ2 small enough, the value αD is reached. This directly implies
the missing Eq. (160). The proof is thereby complete.

f.1.3 Proof of Corollary 6.3.1

Proof. Recall from Eq. (158) that Tr(∇2L(u, v)) = dv2 + ∥u∥2.
For the first two inequalities in the corollary, recall from Eq. (210) of the
proof of Theorem 6.3.2 that |vn| ≤ 4σ for all n, almost surely. The first
two inequalities in the Corollary follow now by Eq. (160).
For the last two inequalities in the Corollary, we lower bound the trace
by ∥u∥2 and make use of Eq. (159).
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