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Fixing traffic in Zürich:
a data-driven control approach

A. Rimoldi, TBD ∗, . . .

October 6, 2023

Abstract

Perimeter control based on the Macroscopic Fundamental Diagram is a well
established paradigm in the field of urban traffic control. The optimization
problem aims at maximizing the flow in the city regions by bringing the
densities near the critical point of the MFD. Several algorithms have
been developed to solve this problem, most of them relying on model
based predictive control. These approaches work well both in congested
and uncongested settings, however they come at the cost of expensive
modeling efforts especially when dealing with large scale systems such
as a city. In order to solve this problem we apply a novel data driven
algorithm (DeePC) to a real scale simulation of the city of Zürich, we test
this algorithm against linear model predictive control (LMPC) obtaining
better performance with no modeling effort.

1 Introduction

Traffic congestion in cities is a major problem for many aspects of society, as cities
continue to grow infrastructural solutions become more and more unfeasible.
High traffic densities lead to great losses due to time and fuel inefficiencies, which
in turn causes economical, environmental and health related damages.
As the climate crisis worsen, a call is made upon the cities to become greener
and limit the unnecessary time spent in congested situations to a minimum.
A solution to this problem is represented by traffic control strategies, these
approaches can influence in very different ways the city for example by using
traffic lights, dynamical speed limits or connected and automated vehicles (CAVs)
as actuators.
In particular perimeter flow control has established itself as a valuable control
strategy to lower urban congestion. In this framework a city is divided in several
regions and the problem becomes to find the optimal flows between these areas
in order to achieve maximum flow.
The state of the art algorithm used to solve this problem is Liner Model Predictive
Control (LMPC) [1], the algorithm successfully solves the problem and its
capable of lowering travel time and emissions both in uncongested and congested
conditions. One limitations of model based control approaches is that the
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estimation of the model can be very expensive, both economically and time wise,
when dealing with large dynamical systems such as a city.
In this regard we apply a novel data-driven control algorithm, Data-Enabled
Predictive Control (DeePC) and in the process get rid of the model estimation
process and achieve new state of the art performances. The two algorithms are
evaluated against a No Control policy on a real-scale simulation of the city of
Zürich and compared with respect to: average time spent in the network, average
waiting time and various emissions metrics including CO2.
Contributions: The main contributions of the paper are four:

(i) Achieve a high precision road-to-road clustering on the city of Zürich;

(ii) Test perimeter control strategies on the largest simulation in the literature
to the best of our knowledge;

(iii) Test perimeter control strategies on existing simulated infrastructure;

(iv) Achieve new state of the art performance using DeePC while lowering
modelling costs.

Related work: Data-driven predictive control for LTI systems has been
studied in [2]. The regularizations terms used in the DeePC cost function have
been studied in [3]. Multiple approaches have been explored in the context of
urban traffic optimization, the classical approach would be to use model based
controllers, some examples of this can be seen in [1] [4] [5] [6]. On the side of data
driven solutions we have several different methodologies which can been seen in [7]
[8], most notably a distributed implementation of DeePC using CAVs to control
urban traffic [9].There also exists a data-driven MPC formulation [10]. Another
example of end-to-end data-driven solution is represented by reinforcement
learning which has attracted attention in the recent past in urban traffic control
applications [11] [12], these however lack interpretability and especially with deep
reinforcement learning can lead to a black box type approaches, DeePC improves
on this being a gray-box algorithm. The Macroscopic Fundamental Diagram
and its properties can be viewed in [13] [14] [15]. The clustering algorithm used
to obtain the regions in this paper is explained in detail in [16].

Organization: The remainder of the paper is organised as follows. Section 2
lays the general view of a city as a framework for the rest of the paper, the non
linear dynamics of traffic are also presented here. Later this section provides
basic definitions regarding behavioral systems, Willems fundamental lemma, the
DeePC algorithm, the Macroscopic Fundamental Diagram and the general form
of the optimization problem at hand. Section 3 is concerned with explaining
the Simulation setup we used to test the algorithm, this includes the clustering
procedure used to retrieve the regions, the estimated Macroscopic Fundamental
Diagrams extracted from the data, the choice of the actuators and the linear
model predictive control formulation used to as a comparison for DeePC. Section 4
we provide the results of the algortihms against a no control law baseline, we
confront the approaches on several metrics including average travel time, waiting
time, CO2 emissions amongst others. Section 5 provides a summary of the
main results and an outlook to future research directions. Appendix A provides
additional material such as the comparison of the clustering obtained at different
times of the simulations.

2



Notation: Standard mathematical notation is used. N and Z+ denote the
set of positive integer numbers and the set of non-negative integer numbers,
respectively. R, Rn and Rp×m denote the set of real numbers, the set of n-
dimensional vectors with real entries, and the set of p×m-dimensional matrices
with real entries, respectively. MT, imageM and kerM denote the transpose,
the image and the kernel of the matrix M ∈ Rp×m, respectively. Map, function,
and operator are used synonymously. A map f from X to Y is denoted by
f : X → Y ; (Y )X denotes the collection of all such maps. The restriction of
f : X → Y to a subset X ′ ⊂ X is denoted by f |X′ and is defined by f |X′(x) for
x ∈ X ′. If F ⊂ (Y )X , then F |X′ denotes {f |X′ : f ∈ F}.

2 Methodology

Let us consider a sequence of state observations x from a dynamical non-linear
system and a sequence of outputs y corresponding to the outputs, assume that
we have also a sequence of inputs u given to the system. In the past this variables
have been used to create models of the system such as the one later used in 3.5.
The classical state/space representation has proved effective and incredibly
useful in control applications, however it comes at the cost of having to perform
expensive system identification procedure to be used. For this reason we now
present a novel effective approach which allows us to control highly non-linear
systems in a data-driven fashion. Our dynamical system of choice are the traffic
flows in a city, as described in the following section.

2.1 The general view of a city

A city is nothing more then an aggregation of infrastructure and the only ones
that bear interests for us in this discussion are the roads and the intersections
between them. A city can often be partitioned in several areas based on simi-
larities in traffic density and overall population, we refer to these areas as the
regions throughout this work.
Each road belonging to a city region can be described by two quantities, the
traffic density ρroad and the traffic flow ϕroad.
By averaging the densities and outputs of the roads over the regions, we obtain
the regional densities ρ and flows ϕ, which can be identified as the output y and
underlying state x vectors in our optimization problem. The intersections can
act as the actuators of our system, to which we pass our input u in an attempt
to reach a desirable state.

More formally a city can be formalized of as a graph G = (V,E), where E is
a set of edges (roads) and V is a set of nodes (intersections), we assume it is
observed for a time interval [0, . . . , T ]. To each edge i ∈ E are associated two
local discrete functions, a density function ρi(t) and a flow function ϕi(t) defined
for every t ∈ [0, . . . , T ], note that not all these functions are necessarily known,
i.e, not all the streets in the network are necessarily monitored.
In the same way, not all the intersections of the network can be used as actuators
in our control problem as they might not be traffic lights ( ex. priority intersection
or may simply lack the infrastructure for the control). Therefore we select the
subset M ⊆ V with cardinality m of intersections suitable for control, for each
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element of M we specify a discrete input function ui(t), this function represents
the percentage of green time assigned to i-th element of M at time t, we define
the vector of the inputs as u(t) = (u1(t), u2(t), . . . , um(t)). We partition the
network into a set of regions R with cardinality n each composed by a subset of
edges Ei ⊂ E.
The partitioning should satisfy the following conditions:

• each regions ri ∈ R in the network should be homogeneous, i.e., the variance
of the means of the functions ρi(t) over the observation interval [0, . . . , T ]
for the edges in ri should be small [16];

• each region ri ∈ R should be locally connected, i.e., ri should have a unique
connected component.

By satisfying these conditions we obtain a partitioning in which each region ri
satisfies the conditions necessary to produce a low scatter Macroscopic Funda-
mental Diagram (MFD), therefore we can attach to each region ri its MFD Gi.
We now fix an instant t ∈ [0, . . . , T ] and consider the i-th region ri, we
can define the density function of the region ρi(t) as the mean of the local
densities ρroad(t) on Ei, the flow function of the region ϕi(t) can be de-
fined in the same way. We denote by ρ(t) the vector of the regional den-
sities at time t, i.e., ρ(t) = (ρ1(t), ρ2(t), . . . , ρn(t)) and in the same way
ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t)).
The optimal state of the network yref is defined as the state of highest possible
flow, that is, the point of maximum of the MFD, since we have that for every
region ri the regional flow ϕi(t) can be obtained as ϕi(t) = Gi(ρi(t)) we can
define the optimal state of the network in terms of the densities ρi(t), that is

yiref = arg max
ρi∈[0,1]

Gi(ρi) (1)

and yref = (y1ref , . . . , y
n
ref ).

2.2 Aggregated traffic dynamics for a partitioned city

Let us consider a city partitioned in R = {1, . . . , N} different regions, the details
on how to obtain such a clustering will be discussed later on. Let us now fix a
time t, for each region we consider the regional density ρi, this quantity can be
easily estimated in reality through the use of induction loop detectors. Density
is a well behaved function inside a homogeneous region and can act as a proxy
for the regional flow ϕi through the use of the MFD.
Consider also a control law u ∈ Rm, the choice of the input can be very different,
ranging from dynamical speed limits for roads, green times for traffic lights or
routings for CAVs. The entrances of this vector are not necessarily tied to a
specific region. One can decide to consider subvectors ui as inputs to a specific
region, this can be interesting to explore and leads to a distributed control
approach, however this line of thought is beyond the scope of this work and we
do not consider it here. We have that each input u(t) ∈ [

¯
u, ū] where the lower

limit
¯
u and upper limit ū depend on the nature of the input chosen.

The state of our dynamic system is then the column vector of the regional
densities ρ(t) := col({ρi(t)}i∈R) ∈ RN . At each time t a demand qij(t) is
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generated. It represents the number of vehicles that enter the traffic in region
i with destination in j normalized by the network length, this is an exogenous
variable of our problem as we have no control over it. Traffic demand is typically
represented by a non-linear function characterized by to peaks, it reaches a peak
during the early morning and in the evening as most people commute from
or to work. As it’s behaviour is known it can be forecasted fairly accurately
(some references here). We denote by qi(t) := col({qij(t)}j∈R) ∈ RN the column

vector of demands originated in i and by q(t) := col({qi(t)}i∈R) ∈ RN2

the total
demand of the city.
The dynamics of the density ρ can be formalized by the following non linear
equation

ρ(t+ 1) = f(ρ(t), q(t),u(t)) (2)

where f : RN → RN .
This trajectories can be approximated through modelling as the one later used
in 3.5, the approach of DeePC is however different, the trajectories are linearly
approximated starting from the data contained in the Hankel matrix. In order to
work the DeePC algorithm needs a reference trajectory, this trajectory represents
a desirable state towards which we wish to conduct our system. As we mentioned
before, one way to obtain this trajectory is to use the MFD, we now give a brief
explanation of this tool.

2.2.1 Macroscopic Fundamental Diagram

The need of an aggregate description for traffic dynamics is prompted by the fact
that existing models which use unaggregated information to predict valuable
information about the traffic work well in uncongested settings but turn out
to be quite unprecise in congested settings. Moreover these models often use
Origin-Destination (O-D) matrices which quickly become large for sufficiently
big populations this leads to a problem of scalability in these approaches.
The MFD quickly rose to popularity in the Traffic Engineering field after its
first conceptualization [13], it is based on two postulates: (i) The homogeneously
congested regions of a network exhibit a MFD relating production defined as the
product of the average flow and the network length, and accumulation defined as
product of the average density and the network length; (ii)The trip completion
rate is is proportional to the production.
It was later proved the existence of empirical MFDs [14] for various traffic
networks in the world, in particular Yokohama (Japan) and Zürich (Switzerland),
and show interesting statistical properties, for example its distribution seem to
follow a Chi-Square probability distribution.
The functional form of an MFD can be represented as a third degree polynomial 1,
it has a first phase of rather linear growth of the flow, this linear behaviour is due
to due low interactions between vehicles ,until a critical density ρmax is reached.
The critical value density is the point at which the flow reaches its maximum
point, which is also know as capacity ϕmax, all the density values greater than
this represent congested stated and have to be considered undesirable. In our
work the role of the MFD is to give us an empirical method to identify the
optimal state for each region, this state is uniquely identified by the average
density that leads to the maximum possible flow for each region.
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Figure 1: An Example of Macroscopic Fundamental Diagram

2.3 DeePC Formulation

2.3.1 Behavioural System Theory

Behavioural system theory is a powerful tool to describe a dynamical system
whenever one is not concerned with a particular system representation. It was
first introduced in [17] and it describes linear systems in terms of the subspace
of the signal space in which the trajectories of the system live. As opposed with
classical system theory, where a particular parametric representation, such as for
example the state-space model, is used to describe the input/output behaviour.

2.4 Discrete-time LTI dynamical systems

A dynamical system Σ is a triple Σ = (T ,W,B), where T is the time set, W is
the signal space, and B ⊆ (W)T is the behavior of the system. In this spirit, a

model class M is defined as a family of subsets of WT , i.e. M ⊆ 2W
T

, so that
a behaviors is a simply model of a dynamical system. By a convenient abuse
of notation, we also use interchangeably the terms “system” and “dynamical
system”. We also routinely identify systems with their behaviors. We exclusively
focus on discrete-time systems, with T = N and W = Rq.

2.4.1 Finite-dimensional LTI systems

A system B is linear if B is a linear subspace, time-invariant if B is shift-
invariant, i.e., στ−1(B) ⊆ B for all τ ∈ N, and complete if B is closed in the
topology of pointwise convergence [18, Proposition 4]. The result states, w ∈ B if
and only στw|L−τ+1 ∈ στB|L−τ+1 for every τ ∈ Z+ and L ∈ N such that τ ≤ L.
The model class of all complete LTI systems is denoted by L q. By a convenient
abuse of notation, we write B ∈ L q.

2.4.2 Kernel representations

Completeness of a discrete-time linear system B is equivalent to B being
closed in the topology of pointwise convergence [18, Proposition 4]. Every
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finite-dimensional LTI system B ∈ L q admits a kernel representation of the
form

B = kerR(σ), (3)

where the operator R(σ) is defined by the polynomial matrix R(z) = R0 +
R1z + . . . + Rℓz

ℓ, with Ri ∈ Rp×q for i ∈ ℓ, and the set kerR(σ) is defined
as {w : R(σ)w = 0}. Without loss of generality, we assume that kerR(σ) is
a minimal representation of B, i.e., p is as small as possible over all kernel
representations of B.

2.4.3 Integer invariants and complexity of an LTI system

The structure of a system B ∈ L q is characterized by a set of integer invari-
ants [18, Section 7], defined as

• the number of inputs m = q − row dimR,

• the number of outputs p = row dimR,

• the structure indices ℓi = deg rowiR for i ∈ p,

• the lag ℓ = maxi∈p{deg rowiR}, and

• the order n =
∑

i∈p deg rowiR,

where row dimR and deg rowiR are the number of rows and the degree of the
i-th row of R(z), respectively. Without loss of generality, we assume that
the structure indices are always ordered as ℓ1 ≤ . . . ≤ ℓp and we define ℓ0 = 0
and ℓp+1 =∞. With this convention, the time set N can be partitioned as
N = (ℓ0, ℓ1] ∪ · · · ∪ (ℓp, ℓp+1], so that, for any L ∈ N, there is kL ∈ p+ 1 such
that L ∈ (ℓkL−1, ℓkL

]. The integer invariants are intrinsic properties of a system,
as they do not depend on its representation [19, Proposition X.3]. Furthermore,
the complexity of a system B ∈ L q is uniquely specified by the number of inputs
m, the order n, and the lag of ℓ [20, Theorem 25]. The number of inputs m and
the structure indices ℓ1, . . . , ℓp they are in one-to-one correspondence with the
complexity c : L q → [0, 1]N of a system B ∈ L q [20, Theorem 25], defined as
c(L) = dim /qL for L ∈ N. Following [21], we identify the complexity of system
B ∈ L q with the triple c = (m, ℓ, n). The class of all systems B ∈ L q with
complexity k is denoted by L q,k. By a convenient abuse of notation, we also
write B ∈ L q,k.

2.4.4 Partitions

Given a permutation matrix Π ∈ Rq×q and an integer 0 < m < q, the map

(u, y) = Π−1w (4)

defines a partition of w(t) ∈ Rq into the variables u(t) ∈ Rm and y(t) ∈ Rq−m.
Any partition (4) induces the natural projections πu : w 7→ u and πy : w 7→ y.
The partition (4) is an input-output partition of B ∈ L q if (i) u is a free variable,
i.e., πu(B) = (Rm)N, (ii) m is the number of inputs of B, and (iii) y does
not anticipate u, i.e., for all L ∈ N and w, w̄ ∈ B, the condition {πuw(t) =
πuw̄(t) for t ∈ L} implies {πyw(t) = πyw̄(t) for t ∈ L}.
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2.4.5 State-space representation

Given an input-output partition (4), any finite-dimensional LTI system B ∈ L q

can be described by the equations

σx = Ax+Bu, y = Cx+Du, (5)

and admits a (minimal) input/state/output representation

B=
{
(u, y) ∈ (Rq)N : ∃x ∈ (Rn)N s.t. (5) holds

}
, (6)

where
[
A B
C D

]
∈ R(n+p)×(n+m) and n is the order of B.

2.4.6 Data-Driven behaviors Hankel, PE

The Hankel matrix is at the heart of the DeePC algorithm, it used as a non-
parametric model to describe the relationship between the inputs and the outputs
of the system and its standard form is defined as

Definition 1 (Hankel Matrix). Given a vector of signals η = (η(1), . . . , η(T ))
spanning the interval [1, T ] the Hankel Matrix of order L, HL(η) ∈ RL×T−L+1

is defined as follows

HL(η) =

η(1) . . . η(T − L+ 1)
...

. . .
...

η(L) . . . η(T )

 (7)

⌟

2.5 Time series and Hankel matrices

We use the terms time series and trajectory interchangeably. The set of time series
w = (w(1), . . . , w(T )) of length T ∈ N, with w(t) ∈ Rq for t ∈ T, is denoted by

(Rq)
T
. The set of infinite-length time series w = (w(1), w(2), . . .), with w(t) ∈ Rq

for t ∈ N, is denoted by (Rq)
N
.

2.5.1 The cut operator

Restricting time series over subintervals gives rise to the cut operator. Formally,
given a finite-length time series w ∈ (Rq)

T
and L ∈ T, the cut operator is defined

as
w|L = (w(1), . . . , w(L)) ∈ (Rq)

L
(8)

For infinite-length time series, the definition holds verbatim with w ∈ (Rq)
N

and L ∈ N. Applied to a set of time series W ⊆ (Rq)
T

or W ⊆ (Rq)
N
, the cut

operator acts on all time series, defining the restricted set W |L = {w|L : w ∈ W }.
By a convenient abuse of notation, we identify the trajectory (8) with the
corresponding vector (w(1), . . . , w(L)) ∈ RqL.
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2.5.2 The shift operator

Shifting elements of time series gives rise to the shift operator. Formally, given
w ∈ RqT and τ ∈ T, the shift operator is defined as

στ−1w = (w(τ), . . . , w(T )) ∈ Rq(T−τ+1). (9)

For infinite-length time series, the shift operator is defined as w 7→ στ−1w, with
στ−1w(t) = w(t+ τ − 1), for any τ ∈ N. Applied to a set of time series W ⊆ RqT

or W ⊆ (Rq)
N
, the shift operator acts on all time series in the set giving rise to

the shifted set στW = {στw : w ∈ W }.

2.5.3 Hankel matrices

The Hankel matrix of depth L ∈ T associated with the time series w ∈ RqT is
defined as

HL(w)=


w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)
...

...
. . .

...
w(L) w(L+ 1) · · · w(T )

.
In the DeePC algorithm however, a slightly different version of this matrix

is used, namely instead of η(t) being a scalar for all t ∈ [0, T ] we have a vector
of dimension r at each time point, η(t) ∈ Rr, this means that our signal now
belongs to RT×r and the structure of the resulting Hankel matrix can now
be more accurately described as being a Block Hankel matrix belonging to
HL(η) ∈ RLr×T−L+1.

HL(η) =



η1(1) . . . η1(T − L+ 1)
...

. . .
...

ηr(1) . . . ηr(T − L+ 1)
...

. . .
...

η1(L) . . . η1(T − L+ 1)
...

. . .
...

ηr(L) . . . ηr(T )


(10)

We now introduce two other important concepts, controllability and persistency
of excitation.

Definition 2 (Controllability). A system B ∈ L m+p is said to be controllable
if ∀T ∈ Z≥0, w

1 ∈ BT , w
2 ∈ B there exists w ∈ B and T ′ ∈ Z≥0 such that

wt = w1
t for 1 ≤ t ≤ T and wt = w2

t−T−T ′ for t > T +T ′. The set of controllable
systems is denoted as L m+p

c ⊆ L m+p ⌟

In other words a system is controllable if any two trajectory can be patched
together in finite time.

Definition 3 (Persistently Exciting). Let L, T ∈ Z≥0 such that T ≥ L. The
signal u = col(u1, . . . , uT ) ∈ RTm is persistently exciting of order L if the Hankel
matrix

HL(u) =

u1 . . . uT−L+1

...
. . .

...
uL . . . uT

 (11)
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has full rank, in other words when

rank(HL(u)) = LTm (12)

⌟

The notion of persistency of excitation is crucial importance in system identi-
fication and adaptive control, it describes an input signal which is sufficiently
rich and long as to excite the system yielding an output sequence which is
representative of the system behaviour.
The condition 12 stated in the above definition can be thought of in the fol-
lowing way, the signal u is persistently exciting if there exist no non-trivial
linear relations of order L among the components u(t),i.e., if they are linearly
independent, let us put in more formal terms this description. Assume that a
response η = (η(1), η(2), . . . , η(T )) ∈ BT of a linear time-invariant system is
observed, for some L, 1 ≤ L ≤ T , consider the ’windows’ of length L given by

[η(1), . . . , η(L)]

[η(2), . . . , η(L+ 1)]

...

[η(T − L+ 1), . . . , η(T )]

The question that we are trying to answer, that is, how can we be sure that
an observed signal contains enough information to give us good model of the
observed system, can be reformulated as
Under which conditions do these windows span the whole space of all possible
windows of length L which the system is able to produce?
It is clear that these windows correspond to the columns in the Hankel matrix
HL(η), let RB := {n ∈ Rm+p | n

⊥

(σ)B = 0} be the module of annihilators of
B and define Rλ

B := {n ∈ RB | each element of n is of degree less than λ}.
Since η ∈ BT we have that any n ∈ RL−1

B is such that n

⊥

HL(η) = 0, therefore

the left kernel of HL(η) contains the vectors generated by RL−1
B .

The question now is When does the left kernel contain all the annihilators?
That is, when do we have

leftkernel(HL(η)) = RL−1
B

or equivalently,
colspan(HL(η)) = BL

We now present a result known in behavioural system theory as The Funda-
mental Lemma, it has first been proved in [22] and it states

Lemma 1 (Fundamental Lemma of BT (Theorem 1, [22]). Let us consider a
controllable system B ∈ L m+p

c . Let T, t ∈ Z>0, and w = col(u,y) ∈ BT . Then
if u is persistently exciting of order t+ n(B) we have

colspan(H (w)) = Bt

For the proof of this result see the A.
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2.5.4 The Optimization Problem

Let us start by denoting the behaviour of the traffic system at hand as B ∈ L m+p

where m and p are respectively the number of inputs and the number of outputs,
let n(B) be the minimal representation of the system, which in this case will be
equal to the number of regions in our network.
The cost function c in this framework will then be a discrete function, dependent
on the regional density ρ, the input to our system u and the optimal trajectory
yref .

c(t) = c(ρ(t),u(t),yref ), (13)

given a time horizon N we can now formalize the optimization problem as

argmin
u

N−1∑
k=0

c(ρ(k),u(k),yref )

subject to u(k) ∈ U k ∈ {0, . . . , N − 1} (14)

d(k) ∈ D k ∈ {0, . . . , N − 1}
(15)

where U,D are two subsets respectively of Rm and Rp.
One can now choose to solve this problem with various tools, if one would like
to use DeePC to solve this general optimization problem the formulation would
be the following.
Let T, Tini, N ∈ Z>0 be such that T ≥ (m + 1)(Tini + N + n(B)) − 1. Let
ud = col(u(1), . . . , u(T )) ∈ RTm be a sequence of T random input ratios applied
to B, and yd = col(ρ(1), . . . , ρ(T )) ∈ RTp be the corresponding output, by taking
ud random at each step we ensure that the input to be persistently exciting.
Next we partition the data in past data and future data, formally(

Up

Uf

)
:= HTini+N (ud),

(
Yp

Yf

)
:= HTini+N (yd), (16)

where Upand Uf consists respectively of the first Tini and the last N block rows
of HTini+N (ud) (similarly for Yp and Yf ).
Once we have the Hankel matrix we can start controlling the system directly,
define the cost function as

c(y(t), u(t)) =

N−1∑
k=0

||y(k)− ȳ||2 + ||u(k)− ū||2 (17)

where ȳ = yref is the optimal trajectory given by the maximum point of the
MFD of each region, and ū is the desired value in input set U.
Let the system B progress of Tini steps in order to collect the initial trajectory
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wini = col(uini, yini), then at each decision time t solve the quadratic problem

argmin
u

=

N−1∑
k=0

||y(k)− yref ||2Q + ||u(k)− ū||2R + λg||g||1 + λ1||(I −Π)g||1

subject to


Up

Uf

Yp

Yf

 g =


uini

yini
u
y


u(k) ∈ U k ∈ {0, . . . , N − 1}
y(k) ∈ D k ∈ {0, . . . , N − 1}

(18)

where we have U = [umin, umax] and D = [dmin, dmax] ⊆ [0, 1], and Π is the

matrix given by Π =

Up

Yp

Uf

† Up

Yp

Uf

.
3 Simulations Framework

3.1 Problem specific to the city of Zurich

The city of Zürich is a highly functional social, economical and financial center
which attracts thousands of people, the metropolitan area now counts more
than one million and half people and it is the area with the highest Human
Development Index (HDI) in Switzerland, closely followed by Geneva.
The city is embedded in a web of highways, the Autobahn A3 and A4 being two
of the most prominent, which bring traffic flows from the surrounding area in
and out the city.
This high social and economical development comes at the cost of having high
traffic densities and congestion, especially during the morning and evening peaks
when most of the people commute from home to work and viceversa. According
to [23] Zürich has been the 51-th most congested city in the world, with an
average time of 21 minutes to cover 10 kilometers at an average speed of 24
km/h, this impacts the city in various ways, the most significant health concerns
being the air pollution and the increase probability of accidents happening.
Amid the climate crisis its also important to consider that congestion leads to
unnecessary CO2 emissions which could be avoided by having a higher traffic
flow. Since major structural changes would be extremely expensive and impact
historical architecture especially near the city center, the problem calls for a
different solution, this solution can come in the form of control algorithms that
use traffic lights, dynamic speed limits or other actuators to influence the city
traffic flow and ensure that it stays near the maximum possible achievable.

3.2 Mesoscopic Simulation Setup

To show that DeePC is a feasible option when controlling large traffic networks
we backtested the algorithm against the state of the art LMPC. We carried out
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our tests on an highly detailed SUMO [24] simulation of the city of Zürich, the
simulation has been developed by Lukas Ambühl at Transcality [25], the network
itself counts 6917 nodes, of which more than 800 are traffic lights, connected by
14566 edges.

Figure 2: The Simulation Network

SUMO is a microscopic simulation framework, however for a network of this scale
a microscopic simulation would be too computationally expensive, therefore we
chose to use the mesoscopic model provided by SUMO, the model used by SUMO
is known as the Eissfeldt model and it is described in detail in [26]. The trips
and the routing in the simulation are produced from a probability distribution
which has been chosen to reflect as closely as possible the distribution of the
traffic in Zürich for the modelled periods.
The types of vehicles modeled are cars, delivery vans, trucks and busses. The
traffic lights are realistically modeled following a cycle composed of various phases
which depends on the topological structure of the traffic light, for example in
3 we can observed one of the intersections used as actuator in the simulation,
the intersection represented is the one between Rämistrasse and the QuaiBrücke.
The period of the cycle of this traffic light is of 48 seconds, it has nine phases
which are listed below in tuples (phase, duration).
For each of this actuators we pass as an input u the ratio between green time
and the total cyscle duration u = green time

cycle period .
The letters follow a specific code where g is used for a green lane light, G is

a green lane light with priority, y is an orange light and r is used for a red light.
We can notice that each cycle is formed by 3 subcycles where the main green
phase has duration 11, the transition phase has duration 3 and the totally red
phase has duration 2; this structure is common with slight variations to all the
traffic lights used for the control and will be important later on.
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Figure 3: One of the Controlled Intersections

1 : (rrrrrrGGGG, 11.0)

2 : (rrrrrryyyy, 3.0)

3 : (rrrrrrrrrr, 2.0)

4 : (GGGGrrrrrr, 11.0)

5 : (yyyyrrrrrr, 3.0)

6 : (rrrrrrrrrr, 2.0)

7 : (rrrrGGrrGG, 11.0)

8 : (rrrryyrryy, 3.0)

9 : (rrrrrrrrrr, 2.0)

We now look deeper into the choice of the actuators used in the simulation.

3.2.1 Actuators selection

One of the drawbacks of using DeePC as controller is the fact that the dimension
of the Hankel matrix H scales both with the dimension of the input m and the
one of the output p. In our case the dimension of the output does not represent a
problem, as the partitioning of the city decreases the number of outputs from the
number of roads in the network to the number of regions considered. One could
chose to do the same for the actuators, clustering the traffic lights by region
of belonging, however in doing so one would looses of the great advantages of
DeePC which is the granularity of the control.
There is also one other more practical aspect that must be considered when
choosing the actuators, in a real city the infrastructure needed to a control a
traffic light often takes substantial space, therefore it happens that this red lights
are often several hundred meters inside a region, instead than on the border,
where there is enough space to house them.
In order to have a fair comparison with the city current control, which is explored
in [27], we chose to use as actuators the intersections that the city of Zürich
is using. These intersections come with the benefit that are positions on high
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volume traffic flows which determine a big portion of the traffic demand during
the peaks.

Figure 4: Positions of the actuators

3.3 Clustering and MFD

3.3.1 Region Partitioning Retrieval

The algorithm used in this work has been devised by N. Geroliminis and M.
Saeedmanesh in [16], the main idea is to construct a similarity measure between
the edges of the network by constructing a ”Snake” for each edge and then
confronting the snakes one by one. The Snakes are constructed in the following
way, to each edge is associated it’s average density over taken over the chosen
period of observation, a snake is started at each edge as an ordered list initially
containing only the first edge. In a recursion loop, the neighbouring edges of the
snake are checked to find the one with the average density closest to the average
density of the whole Snake, this edge it’s then added to the snake, this ensures
that the overall variance of the densities in the snake is at each step minimal,
the neighbours of the snake are defined as the edges of the network, currently
not in the snake, that share one node with at least one edge of the snake.
Once all the snakes have been computed, a similarity matrix W can be con-
structed by using the following metric, for each pair of edges i, j ∈ E we consider
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the snake starting at i and j which we will call respectively Si and Sj . Next
starting at length k = 2, we count the number of common edges in the subsnakes
of length k Sk

i , S
k
j until the full length of the snakes l is reached, in this way

the edges that appear sooner in the snake will be counted more times and will
therefore have a greater impact on the similarity of the two snakes.
This metric leads to clusters which have low variance in their average densities,
meaning that their are homogeneous and so satisfy one of the conditions to have
a low scatter MFD, moreover it encourages clusters to have an high connectivity
so that disconnected edges are less likely and it is able to detect the direction of
the flows in traffic.
Note that the choice of the snake length l is an important factor especially when
dealing with large networks, fixing a number l which is less then the cardinality
of E has two main benefits: in the first place it lowers greatly the computational
cost of constructing the snakes and later of the computation of the similarity
metric; most importantly it leads indirectly to more compact and connected
clusters, this is due to how the metric is constructed, fixing l means that all
the edges that are far enough from the starting edge will have automatically
similarity equal to 0 as the snakes will not have common parts.
This algorithm is a very powerful tool to discover homogeneous regions in net-
works, however it comes at the cost of being computationally demanding when
dealing with large networks, the main source of this cost is the computation of
the successive intersections between the snakes Si, Sj .
To deal with this problem we made a slight modification to the way in which
the metric is being computed, instead of computing the intersection between Sk

i

and Sk
j for each k until l is reached, we fixed a number of steps s ≤ ⌊l/s⌋ and

compute the intersection between the sublists Sk×s
i , Sk×s

j .
This has the effect of reducing the computational cost of computing one en-
trance of W , we also took advantage of the fact that the similarity matrix is a
symmetric matrix, leading us to compute only the upper triangular part of W .
This modification comes at the cost of having less connected clusters, especially
near the borders between two regions, and the loss of this information is greater
as s grows. To compensate for this, we devised an automatic post-processing
procedure which helps to restore the network connectivity iteratively.
In the last step of the paper [16] the clustering is retrieved by using Symmetric
Non-negative Matrix Factorization (SNMF), we chose to use Spectral Clustering
instead as we tested it different clustering algorithms such as: SNMF, OPTICS,
DBSCAN, Agglomerative Clustering; and it yielded the best results in terms of
cluster connectivity and accuracy.
In figure 5 we ran the algorithm on small SUMO simulation, with a 5x5 grid
structure on which the vehicles trips have been defined only on the 3x5 right
side, in this way we obtained two clearly defined regions, the left one (purple)
characterized by an average traffic density of 0 and the right one (yellow) with a
traffic density greater than 0.

3.3.2 The Post-processing Procedure

The goal of the procedure is to restore the connectivity of the regions, so that
we don’t have multiple connected components for a given cluster, it is based on
a simple assumption : since the traffic density is locally spatially correlated, the
probability of an edge i to belong to cluster k is dependent on how many of its
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Figure 5: The Clustering obtained on a grid 5x5 with two clearly divided regions.

neighbouring edges belong to k.
This leads to the following algorithm:

Algorithm 1 Post-Processing Procedure

1: procedure Procedure
2: maxiter ∈ N

3: k ← 0
4: while k < maxiter do
5: for i ∈ E do
6: label(i)← most frequent label in Neighbours(i)

7: k ← k + 1

If maxiter is large enough the effect of the procedure is to shrink the isolated
clusters of edges until they merge smoothly with the surrounding area, and
clearly defines the boarders in the areas where the two regions encounter.

3.4 The Center of Zürich

The center of Zürich is a small diamond shape area 6 which is covers the Old
city of Zürich (Die Altstadt) and it is an area of critical importance for the
municipality which means to protect it from extreme congestion situations. Given
Our partitioning however this area falls in two distinct homogeneous region and
therefore doesn’t satisfy the first postulate to exhibit a well behaved low-scatter
MFD.
To address this problem we decided to split this area into two additional regions
of the network defined by the intersection between the area defined as ”the center”
by the municipality and the respective region of belonging in our clustering.
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Figure 6: The City Center

3.4.1 Macroscopic Fundamental Diagram Retrieval

The Data used to estimate the empirical Macroscopic Diagram of the regions in
the simulation has been collected in a similar fashion as the ones used during the
clustering, that is the evening peak model. There are however some differences,
the first one being that in order to have a well defined curve that reaches zero
flow at maximum possible density, the scaling factor of the traffic must be
appropriate, meaning that there must be enough vehicles to send the system into
a grid-lock state or close to it, in our case we chose a scale factor of 2, indicating
twice the default traffic of the simulation.
We chose to collect the edge-wise density ρi(t) and flow ϕi(t) data for each i ∈ V
every 3 seconds giving us a total of 7200 data points, such granularity is not
needed in order to have a well defined MFD, however since it is a one time
process we chose to have highly precise data.
After this collection the data has been averaged based on the clustering obtained
at the previous step, that is we averaged the data over the regions and built
the vectors of regional densities and flow ρ(t),ϕ(t). Then we used a 4-th degree
polynomial to estimate the functional form of the MFD by least square, we then
constructed the piecewise approximation needed by the Model Predictive Control
linear model. In the toy example of the result section we produced synthetical
MFDs as downpointing parabolas by randomly choosing the vertices, the MFDs
used in the example can be seen in 7.
As can bee seen in 8 some of the regions were not completely saturated, these
are the external regions of the city on which the distribution of the traffic is
comparatively low, however this does not impact the position of the critical
density point.
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Figure 7: The MFDs used in the Toy Example
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Figure 8: MFDs recovered from the Zürich SUMO Simulation

3.5 MPC formulation for comparison

To have a comparison of the results of DeePC we also implement a Model
Predictive Control approach, there exist several MPC formulations to solve the
traffic optimization problem both linear and non-linear, however in practice
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non-linear formulations are avoided due to their higher computational cost.
The state-of-the art in practice is represented by the Linear Model Predictive
Control (LMPC) first devised in [1].

Consider a urban network partitioned in a set R of homogeneous regions
with well defined MFDs. The index i ∈ R = {1, . . . , N} denotes one region in
the system with MFD Gi, ni(t) denotes the total accumulation (the number of
vehicles) in the region i at time t, and nij(t) denotes the number of vehicles
currently in i and with destination j ∈ R at time t.
Let Ri ⊆ R denote the subset of neighbouring region of i, meaning the regions
that can be directly reached from i. The discrete relation between flow and
accumulation can be described by the following first order difference equations

nij(k + 1) = nij(k) + Tp

(
qij(k)−

∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj

)
(19)

nii(k + 1) = nij(k) + Tp

(
qij(k)−Mii(k)−

∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj

)
(20)

where i, j ∈ R, i ≠ j; k = 0, . . . , T is the discrete time index. The exogenous
variables qij(k) denote the uncontrollable traffic demand generated inside region
i with destination j.
The variables Mh

ij(k) denote the transfer flows from region i to region j which
pass through region h while Mii(k) is the internal trip completion rate.We assume
that for each region there exists a production MFD between the accumulation
ni(k) and the total production Pi(ni(k)), which describes the performance of a
system in an aggregated way. The transfer flows Mh

ij(k) and internal completion
rate Mii(k) are calculated according to the corresponding production MFD of
the region and the accumulation nij(k) as follows

Mh
ii(k) = θhii

nii(k)

ni(k)

Pi(ni(k))

Li
(21)

Mh
ij(k) = uih(h)θ

h
ij

nij(k)

ni(k)

Pi(ni(k))

Li
(22)

where Li is the average trip length in region i and the parameters θii(k), θ
h
ij(k)

represent the route choice of the driver and are assumed to be exogenous variables.
The control variables uih(k), i ∈ R, h ∈ Ri denote the fraction of the flow that is
allowed to transfer from region i to region h, therefore are physically constrained
between 0 and 1,

0 ≤ uih(k) ≤ 1, i ∈ R, h ∈ Ri (23)

Note that these equations allow drivers to choose any arbitrary sequence of
regions as their route and their path can cross region boundaries multiple times.
The dynamics presented int his section lead however to a non-linear model. We
now take some steps to linearize the model.

3.5.1 Linearizing the model

We start by denoting the accumulation proportion as αii := nii(k)/ni(k) and
αij(k) = nij(k)/ni(k), i ∈ R, j ∈ Ri, this quantities can be estimated in real
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time by using the extended Kalman filter or maximum likelihood estimation, in
our setting however this is not needed. We introduce the decision variables

fii(k) = uii(k)Gi(ni(k))θii(k)αii(k) (24)

fih(k) = uih(k)Gi(ni(k))
∑
j∈R

θhij(k)αij(k) (25)

∀ i, j ∈ R, h ∈ Ri

In 24 the variables θii(k), θ
h
ij(k), αii(k), αij(k) are considered time varying ex-

ogenous signals and as result the non-linearity of the problem comes from the
product of the decision variables uih(k) with the MFD functions.
To overcome this problem, the MFDs of the regions are approximated with
a piecewise affine (PWA) functions Gi(ni(k)) that form a convex set. Each
MFD can be approximated with l = 1, . . . , Ni affine functions, and we denote by
Gl

i(ni(k)) each affine function l.
In conclusion, the control variable are bounded uih(k) ∈ [0, 1],∀i ∈ R and the
MFDs can be approximated by PWA functions, as a result the constraint define
a convex set.

3.5.2 LMPC Optimization Problem

By adding all the states nij and nii for each region i, we get a linear model that
does not consider OD data,but only aggregated demands at the regional level.
In this case the derived linear problem can be solved online as follows, given an
optimization horizion Np

arg max
fii(k),fih(k)

kp+Np−1∑
k=kp

∑
i∈R

Li[fiik + fih(k)]

subject to ni(k + 1) = ni(k) + Tp

(
qi(k)− fii(k)−

∑
h∈Ri

fih(k) +
∑
h∈Ri

fhi(k)
)

0 ≤ fii(k) ≤ θii(k)αii(k)G
l
i(ni(k))

0 ≤ fih(k) ≤ Gl
i(ni(k))

∑
j∈R

θhii(k)αij(k)

0 ≤ ni(k) ≤ ni,max

k = kp, kp + 1, . . . , kp +Np − 1

∀i, j ∈ R, h ∈ Ri, l = 1, . . . , Ni

where the objective function aims at maximizing the total production of the
system. All constraint of this problem are linear, and as a consequence, the
computational requirements are rather low even for networks with a great number
of regions and a long prediction horizon.

3.6 Mapping to the actuators

In order to use the LMPC in the simulation setting we need to make a further
step in modelling. The formulation presented above uses as input variables uij

the fraction of the flow allowed to transfer from region i to region j. Since the
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uij are constrained physically to the interval [0, 1] we can also interpret them as
the green time to cycle duration ratio used as input to the simulation. Caution
must be taken however, by interpreting this way we must be sure that each
variable is mapped to the correct actuator, that is, to the traffic lights which
control the flow direction between i and j.
The mapping between the LMPC inputs and the actuators has been constructed
by confronting the routing matrix retrieved by the simulation with the flow
studies conducted by the traffic engineers of Zürich.

4 Results

4.1 Numerical Simulation

Our initial conjecture was that DeePC could work well in highly non linear
setting such as a traffic system, this is an advantage of using the Hankel matrix as
a model which, when constructed correctly, can approximate well the non-linear
trajectories of the system. To test this conjecture we first compared DeePC and
LMPC on a simple numerical simulation similar to the one in [1]. This numerical
simulation is not supported by a framework such as SUMO behind it, instead
the data are produced by the following model

nij(k + 1) = nij(k) + Tp

(
qij(k)−

∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj

)
Mh

ii(k) = θhii
nii(k)

ni(k)

Pi(ni(k))

Li

Mh
ij(k) = uih(k)θ

h
ij

nij(k)

ni(k)

Pi(ni(k))

Li

nii(k + 1) = nij(k) + Tp

(
qij(k)−Mii(k)−

∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj

)
where all the quantities are defined in the same way as in 2.2.

We consider a network composed of 6 regions and fully connected, meaning that
the graph representing the network is a fully connected graph and each region can
be reached by all others. We further assume that the drivers follow the shortest
route policy, this assumption combined with a fully connected network lead to
a simple structure for the routing tensor Θ = {θhij}ijh, the routing tensor is
structured in the following way: each matrix θi·· contains the number of vehicles
currently in region i, its rows j contain the fraction of vehicles with destination j
and the columns h contain the fraction of these vehicles passing through region
h. Thus our assumption leads to a routing vector in which every matrix θi·· is an
identity matrix, as each destination region can be reached from all others and by
taking the shortest route we don’t need to cross a third region h. The simulation
is a ”day” composed on 480 timesteps. The MFDs are randomly generated
and represented in 7. The demand is similarly random generated, we chose
to randomly select a peak time for each region inside an interval [Tstart, Tend]
so that all the regions peaked around the same time but not exactly overlap
with each other, the demand has been modeled as a simple piecewise continuous
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functions of this form,

qij(t) =


ci t ≤ T i

start

ait+ bi T i
start < t ≤ T i

peak

−ait+ (ci − aiT
i
end) T i

peak < t ≤ T i
end

ci t > T i
end
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Figure 9: The Demands Originated in Region 1

4.1.1 Results of The Numerical Example

Below we show the results of the DeePC and LMPC algorithm applied in the
numerical simulation setting, in two different conditions, an uncongested setting
and a congested one in which region 0 experiences a grid lock situation if not
managed. We consider in both cases an horizon Np = 3 and for DeePC we
select the two parameters λini and λg based on a one dimensional error study
conducted on both parameters
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(c) LMPC Uncongested Np = 10
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As can be seen, in both cases the performance of LMPC improve with a
greater time horizon. Now we show the results of the error study that lead to the
choice of the parameters for DeePC, the error measure used is the Mean Square
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Error between the accumulation and the critical accumulation point defined by
the MFD.
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Based on this study we can see that the Error has minimum points at
λg = 0.1013 and λ1 = 7.178, to understand the effects of the parameters we fix
the length of the initial trajectory Tini = 2 and the time horizon N = 1, then
we apply this two parameters to the DeePC algorithm we present three cases
(λg, λ1) = {(0.1013, 0), (0, 7.128), (0.1013, 7.128)}
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This shows that the selection of the tuning of the parameters, together with
the Hankel matrix construction, can affect the results significantly, however once
the parameters have been found the algorithm can handle the non-linearity in
our system in both cases with small time horizon N = 1.

4.2 Zürich Simulation

4.2.1 Results of the Clustering

Below we show the clustering obtained on the city of Zürich using the Snake
Algorithm and the Post-Processing procedure.

4.2.2 The Regions of Zürich

The following partitioning of the city of Zürich has been obtained on the evening
traffic demand peak modeled in [25] and on which later we will deploy our
control algorithms, the observation period is 6 hours long, starting at 15:00 PM
ending at 21:00 PM, various number of clusters have been tried, we choose 6
as final number of cluster as it shows clearly the main areas recognized by the
municipality of city of Zürich.
The difference between the clustering taken on the simulation of the morn-
ing peak can be seen in A. In Figure 14 we can see the clustering without
any post-processing, the areas of Wiedikon (red), Üetliberg (purple),Enge (yel-
low),Universität - Züriberg (blue), Oerlikon-Affoltern-Seebach (green), Dietikon-
Opfikon (black).

26



Figure 14: The Clustering of Zürich during the evening peak, no Post-Processing

Figure 15: The Clustering of Zürich after 20 iterations of the Procedure
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Figure 16: The Clustering of Zürich after 50 iterations of the Procedure

Figure 17: The Clustering of Zürich with the center added.
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4.2.3 Results of the Control

Thanks to the encouraging results obtained on the numerical simulation, we
now proceed at comparing the two algorithms on the real scale simulation of
Zürich. We compare the algortihms using various metrics metrics obtained as
an average over all the vehicles that appeared in the simulation. The travel time
metric is useful as it summarises the performance of the algorithm as it is highly
correlated with all the other metrics, in particular the fuel consumption and the
waiting time.
Both the algorithms have a time horizon of N = 4 which corresponds to 288
seconds of simulation time, the parameters used for the DeePC algorithm are
(λg, λ1) = (1, 1) without additional tuning performed. We again consider two
cases, an uncongested situation in which the density of the regions remains quite
low and a congested situation in which the central regions of the city are near
grid lock.

Model Comparison Uncongested Setting

DeePC LMPC NoControl

Travel Time (min) 26.5 28.1 29.1
Waiting Time (min) 13.9 15.3 16.1
CO Emitted (kg) 0.179 0.194 0.203
CO2 Emitted (kg) 4.348 4.599 4.745
HC Emitted (kg) 0.00091 0.00099 0.001035
PMx Emitted (kg) 0.000093 0.000096 0.0001032
NOx Emitted (kg) 0.00185 0,00197 0.00203

Model Comparison Congested Setting

DeePC LMPC NoControl

Travel Time (min) 84.0 85.1 86.8
Waiting Time (min) 59.2 59.7 60.7
CO Emitted (kg) 0.698 0.705 0.719
CO2 Emitted (kg) 13.239 13.414 13.680
HC Emitted (kg) 0.003487 0.003526 0.003596
PMx Emitted (kg) 0.000310 0.000314 0.000320
NOx Emitted (kg) 0.00589 0.00597 0.00609

In particular in the uncongested simulation 167703 vehicles were produced
resulting in a total of 44,989 hours spent waiting and 795,904 kilograms of CO2
emitted. Using LMPC the hours spent waiting were 42,894 and the CO2 emitted
has been 772,456 kilograms resulting in 2,095 hours and 23,448 kilograms of CO2
saved, respectively an improvement of 4,6% and 2,9% with respect to NoControl.
DeePC beated both NoControl and LMPC resulting in 39,103 hours spent wait-
ing and 730,182 kilograms emitted, saving 5,886 hours and 65, 722 kilograms
of CO2, respectively an improvement of 13, 0% and 8, 2% with respect to
NoControl.
In the congested setting the total of vehicles produced has been 207,178 a 25%
increase with respect the uncongested case, it resulted in 209,701 hours spent
waiting and 2,834,343 kilograms of CO2 emitted. Under the LMPC control the
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simulation resulted in 206,920 hours spent waiting and 2,785,689 kilograms of
CO2, that is 2,781 hours and 48,654 kilograms of CO2 saved, respectively an
improvement of 1,3% and 1,7% improvement with respect to NoControl.
DeePC beated both NoControl and LMPC resulting in 205,278 hours spent
waiting and 2,750,937 kilograms of CO2 emitted, that is 4,423 hours and 83, 406
kilograms of CO2 saved, respectively an improvement of 2, 1% and 2, 9% with
respect to NoControl.

Below the graphs representing the time series of the flow and density for some
of the regions under the optimization algorithms can be seen, the time series
presented have been smoothed by using a Moving Average filter of order 10 .
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5 Conclusion

Data-Driven Predictive Control is a suitable approach for optimizing traffic flows
in cities, the algorithm beats the state of the art Linear Model Predictive Control
in terms of average travel time and emissions.
The better performance of DeePC are explained by the absence of the interme-
diate mapping between the outputs of the algorithm and the actuators of the
simulation.
This mapping is a phase of modelling needed for LMPC and results in multiple
actuators being assigned the same input as they control the same flow, for DeePC
this step is not needed, resulting in a personalized input for each actuator and a
more granular control. The reduction of the improvement in the congested case
is due to the fact that when approaching grid-lock both the algorithms have less
effective choices to better the situation.
Moreover the implementation and deployment of DeePC is much cheaper and
less time expensive as most of the modelling steps are not required, yielding
better results even in highly non-linear settings as already confirmed empirically
by the relevant literature. We’ve also presented the first attempt at controlling a
simulation of the entire city of Zürich resulting in a highly detailed road-by-road
clustering which closely resembles the areas used by the municipality. Further
research directions include attempting to ease the computational cost of DeePC
which for large input spaces becomes a bottleneck of the procedure, a way to do
this would be to devise a distributed version of the algorithm or iteratively ap-
proximate the inputs. Finally another research direction remain to be discussed,
how to retrieve persistently exciting data from a city without impacting the lives
of its inhabitants. A possibly highly effective way to tackle this would be to
retrieve the data from a realistic simulation, as the one used in this setting and
the fine tune the algorithm in the real case. Another possible avenue would be
to sacrify the randomness of the input used in the Hankel matrix construction
and instead using sinusoidal inputs which shouldn’t affect the traffic dynamics
too radically, more work is needed in order decide which is the best approach.
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A Appendix

A.1 Fundamental lemma of behavioural system theory

the Fundamental lemma sits at the heart of behavioural system theory, it was
first proved by J.C. Willems in [22], it replaces the need of a model or system
identification process and allowas any trajectory of a controllable LTI system to
be constructed using a finite number of data samples generated by a persistently
exciting input signal. In a sense, the Hankel matrix itself is itself a non-parametric
predictive model based on raw data. it allows on to implicitly estimated the state
of an LTI system, predict its future behaviour and design optimal feedforward
control inputs. Below we give the proof of this cardinal result

Fundamental Lemma of BT. We only need to prove that

leftkernel(HL(η)) = RL−1
B

The inclusion RL
B ⊆ leftkernel(HL(η) is obvious. Consider the reverse inclusion

leftkernel(HL(η) ⊆ RL
B. Assume by contrary, that

0 ̸= r⊤ = [r⊤0 , r
⊤
1 , . . . , r

⊤
L−1] ∈ leftkernel(HL(boldsymbolη))

but r(ξ) = r0 + r1 + · · · + rL−1ξ
L−1 /∈ RL−1

B . Consider now HL+n(B)(η),

obviously we have that leftkernel(HL+n(B)(η)) contains R
L+n(B)−1
B +R, with

R ⊂ Rm+p[ξ] being the linear span of

R = span{r⊤(ξ), ξr⊤(ξ), . . . , ξn(B)r⊤(ξ)}

Now recall that

dim(R
L+n(B)−1
B ) = (L+ n(B))p(B)− n(B)

Clearly dim(R) = n(B) + 1, we now shoe that the persistency of excitation

assumption implies R ∩R
L+n(B)
B ̸= {0}, then

dim(R
L+n(B)−1
B +R) = (L+ n(B))p(B) + 1

But the persistency of excitation implies

rank(HL+n(B)(η) ≥ (L+ n(B))m(B)

Hence

dim(R
L+n(B)−1
B +R) = (L+ n(B))p(B) + 1

≤ dim(leftkernel(HL+n(B)(η)))

≤ (L+ n(B))p(B)

Therefore R∩R
L+n(B)
B ̸= {0} Consequently there exists a linear combination of

r⊤(ξ), ξr⊤(ξ), . . . , ξn(B)r⊤(ξ)

that is contained in R
L+n(B)
B . In terms of the minimal kernel representation

K( d
dt )w = 0 of B, this means that there is 0 ̸= f ∈ R[ξ], such that fr = FK,
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for some 0 ̸= F ∈ R1×rowdim(K)[ξ]. if deg(f) ≥ 1, then ther is λ′ ∈ C, such that
f(λ′) = 0, hence F (λ′)K(λ′) = 0. Now we use the fact that K(σ)η = 0 of B is
a minimal kernel representation of a controllable behaviour if and only if K(λ)
has full row rank for all λ ∈ C. Hence controllability implies F (λ′) = 0. This
implies that each element of F have a common root λ′. Cancel this common
factor. Proceed until deg(f) = 0. But then r = FK. This contradicts the initial
assumption r⊤ /∈ RL−1

B . Hence leftkernel(HL(η)) ⊆ RL−1
B .

A.2 More details on the obtained clustering

The snake clustering algorithm has the nice property of being able to identify
the direction of the flows in a traffic system, this is important as MFD based
approaches are sensible to this directionality. To understand why consider a
simple intersection between two roads 20 in which only one side of the intersection
is experiencing congestion.

Figure 20: One sided congested

If we consider the MFD of the whole intersection, we would find that the
effect of the average density of the congested an uncongested side balance out,
giving us a wrongly positive leaning view of the situation by looking at the
resulting MFD. This can be accounted for in different ways, one is using a
dynamical MFD which modifies it’s shape as the day developes. Another is
to use different partitioning based the time of the day, which accounts for the
different directionalities of these flows, the snake clustering algortihm offers the
possibilities of finding such clusters. Below we compare the clusters obtained
during the morning and evening simulated peaks in demand to appreciated the
differences between them
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Figure 21: The Clustering of Zürich during the evening peak

Figure 22: The Clustering of Zürich during the morning peak

As we can see while most of the outer regions remain the same the areas
of Oerlikon and Wiedikon tend to change substantially, it appears that in the
morning peak a consistent part of the traffic flows is coming from the Oerlikon
and converging in the northern part of Zürich before entering the city. This
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has a clear reflection in the real case as during the morning many commuters
move from the outern parts of Zürich towards the cities working areas such as
Wiedikon.
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