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High Dynamic Range mmWave Massive MU-MIMO
with Householder Reflections
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Abstract—All-digital massive multiuser (MU) multiple-input
multiple-output (MIMO) at millimeter-wave (mmWave) frequen-
cies is a promising technology for next-generation wireless systems.
Low-resolution analog-to-digital converters (ADCs) can be utilized
to reduce the power consumption of all-digital basestation (BS)
designs. However, simultaneously transmitting user equipments
(UEs) with vastly different BS-side receive powers either drown
weak UEs in quantization noise or saturate the ADCs. To address
this issue, we propose high dynamic range (HDR) MIMO, a new
paradigm that enables simultaneous reception of strong and weak
UEs with low-resolution ADCs. HDR MIMO combines an adaptive
analog spatial transform with digital equalization: The spatial
transform focuses strong UEs on a subset of ADCs in order to
mitigate quantization and saturation artifacts; digital equalization
is then used for data detection. We demonstrate the efficacy of
HDR MIMO in a massive MU-MIMO mmWave scenario that
uses Householder reflections as spatial transform.

I. INTRODUCTION

Next-generation wireless systems are expected to combine
communication at millimeter-wave (mmWave) frequencies
with massive multiuser (MU) multiple-input multiple-output
(MIMO) technology [2]. While communication at mmWave
frequencies provides access to large, contiguous, and available
portions of the frequency spectrum, massive MU-MIMO
provides beamforming gains that combat the high path-loss at
mmWave frequencies and enables communication with multiple
user equipments (UEs) in the same time-frequency resource.

The deployment of all-digital massive MIMO basestations
(BSs), i.e., BSs where each antenna has a dedicated radio-
frequency (RF) chain and dedicated data converters, comes
at the cost of increased digital circuit complexity, power
consumption, and interconnect data rates [3], [4]. To alleviate
these drawbacks, one can use low-resolution analog-to-digital
converters (ADCs) in the uplink [5]. However, low-resolution
ADCs do not quantize high dynamic range signals properly.
In a scenario where one UE is significantly stronger than the
other UEs, weak UE signals either drown in quantization noise,
if the BS adjusts the ADC input gains to the strongest UE, or
the receive signals are distorted due to ADC saturation caused
by the strongest UE, if the BS adjusts the ADC input gains
to the weakest UEs. Since quantization and saturation effects
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are, in general, irreversible, digital equalization cannot fully
mitigate such distortions [6].

A. Contributions

We propose high dynamic range (HDR) MIMO, a new
paradigm that deals with receive signals of high dynamic
range in all-digital BS architectures that are equipped with
low-resolution ADCs. HDR MIMO utilizes one or multiple
adaptive analog spatial transforms that focus either the energy
of the strongest UE or the signal dimension with the highest
receive power on a pair of ADCs (for the in-phase and
quadrature components) per transform; digital equalization
is then used to detect the transmitted data of the strong UE
as well as of the weak UEs. For the adaptive analog spatial
transforms, we propose two distinct Householder reflections
(HRs): (i) strongest UE isolation (HR-ISO), which isolates
the energy of the strongest UE on dedicated ADCs, and
(ii) maximum power isolation (HR-MAX), which focuses the
signal dimension with the highest receive power on dedicated
ADCs. We demonstrate the efficacy of HDR MIMO by
simulating a mmWave massive MU-MIMO uplink system with
an all-digital BS that utilizes low-resolution ADCs and channel
vectors from a commercial ray tracer.

B. Related Work

Past work on interference or jammer mitigation has led to the
development of methods that perform spatial nulling of strong
signals; see, e.g., [7]–[10]. For example, spatial projection
onto the orthogonal subspace (POS, for short) of the jammer
channel has been proposed for jammer mitigation in [7], [8].
Since the content of the interference or jamming signal is
typically of no interest, it can be nulled and discarded. In
contrast, HDR MIMO assumes that all signal sources are of
interest and enables the simultaneous detection of weak and
strong received signals. Furthermore, if one is interested in
analyzing interferer or jammer signals in the context of jammer
mitigation, then HDR MIMO provides means to recover such
signals jointly with detecting the legitimate UE data.

The use of analog transforms to perform spatial filtering for
systems with low-resolution BS designs has been proposed
in [9], [10] for jammer mitigation, and in [11] for strong
adjacent channel interference mitigation. In [9], the authors
propose HERMIT, which uses an adaptive analog transform to



remove most of the jammer’s energy prior to sampling by the
ADCs. In [10], the authors propose beam-slicing, a nonadaptive
analog transform that focuses the jammer energy onto few
ADCs. In [11], the authors propose a hybrid beamformer
with spatial filtering that adaptively mitigates interference. In
contrast to these methods, we propose the use of adaptive
analog spatial HRs that focus the energy of the strongest UE
or the signal dimension with the highest receive power onto a
subset of the available ADCs without discarding any signals,
which enables the simultaneous recovery of signals from strong
and weak UEs.

Modulo ADCs that rely on a concept known as unlimited
sampling [12], [13] have been proposed in [14] to develop
massive MIMO receiver architectures that are able to deal
with high dynamic range signals. However, unlimited sampling
requires specialized signal recovery techniques to reconstruct
the high dynamic range signals. Furthermore, existing modulo
ADC designs do not yet achieve the sampling rates required by
modern wireless systems. In contrast, our proposed methods
build upon conventional massive MIMO architectures with
standard automatic gain controllers (AGCs) and ADCs, which
can support the bandwidth of modern wireless systems and do
not need specialized signal recovery methods.

In MU communication, one of the challenges is the near-far
problem, i.e., if a UE is physically much closer to the BS
than another UE, then the BS-side receive power of the close
UE is often much stronger than that of the other UEs. Power
control at the UE side is typically used to confine the dynamic
range at the receiver side [15]–[18], reducing the necessity of
HDR MIMO. If, however, there exist UEs, rogue transmitters,
interferers, or jammers in the same or nearby frequency bands
that do not adhere to such power control mechanisms, then
HDR MIMO still enables reliable data transmission.

C. Notation

Upper case and lower case bold symbols denote matrices
and column vectors, respectively; uppercase calligraphic letters
denote sets. We use [a]i for the ith element of vector a,
[A](i,j) for the element in the ith row and jth column of A,
and aj for the jth column of A. The M ×M identity matrix
is IM and the M -dimensional unit vector is ei, where the
ith entry is one and the rest is zero. The superscripts (·)∗,
(·)T, and (·)H denote the complex conjugate, transpose, and
Hermitian transpose, respectively. A diagonal matrix with the
vector a on its main diagonal is diag(a). The Euclidean norm
of a is ‖a‖. The eigenvalue decomposition of a symmetric
matrix A ∈ CM×M is A = LΛLH =

∑M
m=1 λm`m`Hm,

where λm, m = 1, . . . ,M , are the eigenvalues, which are
sorted in descending order, and `m are the corresponding unit-
length eigenvectors. The operators <{a} and ={a} extract the
real and imaginary part of a ∈ C, respectively. The complex-
valued sign (or phase) of a ∈ C is sign(a) = a/|a|, which
we define to be 1 if a = 0. The floor function bac yields the
greatest integer less than or equal to a ∈ R. The expectation
operator is E[·]. We use j as the imaginary unit.

II. PREREQUISITES

A. System Model

We consider the uplink of a mmWave massive MU-MIMO
system with U single-antenna UEs transmitting data to an
all-digital BS with B antennas. We consider frequency-flat
channels with the following baseband input-output relation:

y = GDs + n. (1)

Here, y ∈ CB is the unquantized BS-side receive vector, G ∈
CB×U is the uplink channel matrix, D = diag(d1, . . . , dU ) ∈
RU×U is the power control matrix, s ∈ XU is the transmit
symbol vector with entries taken from a constellation X ,
and n ∈ CB models noise as an i.i.d. circularly-symmetric
complex Gaussian random vector with variance N0 per entry.
The constellation X is normalized so that E

[
|[s]u|2

]
= 1,

u = 1, . . . , U . We define the effective channel matrix as
H = GD. We assume that the columns of H are sorted
in descending order with respect to the column norms ‖hu‖,
u = 1, . . . , U . The matrices G and D are sorted accordingly.

In what follows, we consider a scenario in which the BS-side
receive power of the first UE is much stronger than that of
the other UEs. We model such a situation by assuming that all
UEs except for the first UE adhere to power control, which is
expressed through the per-UE gains d2, . . . , dU of the power
control matrix D (cf. Section IV-A for the details on the used
power control strategy). For the first UE, the gain d1 can be
expressed by the dynamic range ρ (in decibels) of the BS-side
receive power between the strongest and weakest UEs as

ρ = 10 log10

(
d2

1‖g1‖2

d2
U‖gU‖2

)
. (2)

As a result, the squared Euclidean norm of the strongest UE’s
channel vector h1 is ρ decibels larger than the squared norm
of the weakest UE’s channel vector hU . Here, h1 and hU

correspond to the first and last columns of the effective channel
matrix H, respectively.

To estimate the channel matrix H, we assume block fading
where the UEs transmit orthogonal pilots ST ∈ CU×K for the
duration of K ≥ U time slots. Each column of ST contains
the pilots of all UEs transmitted during one training time
slot. The (unquantized) receive vectors in the training phase
are modeled as YT = HST + NT , where each column in
the receive matrix YT ∈ CB×K and the noise matrix NT ∈
CB×K corresponds to one training time slot. We estimate the
effective channel matrix H using the least-squares estimator
Ĥ = YTSH

T

(
STSH

T

)−1
. In what follows, we define h = h1

as the channel vector associated with the first (strongest) UE
and ĥ as its estimate.

B. High Dynamic Range (HDR) MIMO Receiver

We now describe the HDR MIMO BS architecture depicted
in Fig. 1, which is able to deal with receive signals of high
dynamic range. In order to prevent weak UEs from drowning
in quantization noise or strong UEs from saturating all ADCs,
we introduce adaptive analog spatial transforms prior to the
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Fig. 1. HDR MIMO receiver architecture: The RF chains, adaptive analog
spatial transforms Fc, c = 1, . . . , C, AGCs, and ADCs are divided into C
antenna clusters. In a scenario in which the BS-side receive power of one
UE (highlighted in orange) is much stronger than that of the other UEs, each
adaptive analog spatial transform focuses the energy of the strongest UE on
a pair of AGCs and ADCs per cluster (highlighted in orange); this prevents
saturation of the remaining ADCs in the same cluster. The transmitted UE
data can then be recovered by a spatial equalizer.

AGCs and ADCs. We focus on linear transforms represented
by the matrices Fc ∈ CS×S , c = 1, . . . , C, where each
matrix operates on a cluster of S = B/C antennas with C
such antenna clusters in total.1 These adaptive analog spatial
transforms implement

ỹc = Fcyc, c = 1, . . . , C, (3)

where yc ∈ CS is the cth cluster of the receive vector y =[
yT

1 , . . . ,y
T
C

]T ∈ CB and ỹc ∈ CS is the corresponding
output of the adaptive analog spatial transform. The transformed
receive vector is, therefore,

ỹ = Fy, (4)

where ỹ =
[
ỹT

1 , . . . , ỹ
T
C

]T ∈ CB and F = diag(F1, . . . ,FC)
is a B ×B block diagonal matrix.

Note that if no structural constraints are imposed on the
clusters of the adaptive analog spatial transform matrix F,
then (4) would have to be computed as a matrix-vector
product consisting of B2/C complex-valued multiplications.
However, the specific structure of the per-cluster transforms Fc,
c = 1, . . . , C, proposed in Section III, enables simpler analog
hardware with fewer complex-valued multiplications.

C. Analog-to-Digital Conversion

As we will show in Section III, the adaptive analog spatial
transform ensures that only a subset of its outputs contains
strong signals. One can then utilize the AGCs (cf. Fig. 1) to
individually adjust the input gains for each pair of ADCs with
the goal of minimizing saturation and quantization artifacts. In
order to model such ADC artifacts, we follow [9], [10] and
apply a uniform midrise quantizer to each entry of the real
and imaginary parts of the transformed receive vector ỹ in (4).
The scalar function Q(·) that models each ADC is given by

Q(x) =

{
∆b x∆c+ ∆

2 , if |x| ≤ ∆2q−1,
∆
2 (2q − 1) x

|x| , if |x| > ∆2q−1,
(5)

1In practice, the number S of antennas per cluster should not be too large
as implementing large analog spatial transforms is challenging [19].

where ∆ is the quantizer’s step size and q is the number of
quantization bits. The distortions introduced by this model are
then taken into account by the spatial equalizer (cf. Fig. 1).

To design the spatial equalizer, we employ Bussgang’s
decomposition [20], where the effect of the quantizer on a
real-valued zero-mean random variable (RV) x is modeled as

Q(x) = γx+ d, (6)

with the so-called Bussgang gain

γ =
E[Q(x)x]

E[x2]
. (7)

In (6), the choice of γ as in (7) ensures that the distortion d
is uncorrelated with x and is zero mean with variance

D = E
[
d2
]

= E
[
Q(x)2

]
− γ2 E

[
x2
]
. (8)

In order to minimize the distortion caused by saturation and
quantization, one can either pick an optimal step size ∆ while
fixing the input variance or pick an optimal input variance
while fixing the step size. We force the variance of the input x
to one and select an optimal step size ∆ that minimizes the
mean squared error (MSE) between the quantizer’s output Q(x)
and its input x [21]. To enforce unit variance at the inputs of all
ADCs, we need to adjust the AGC settings, which we model
by a diagonal gain control matrix Ω = diag(ω1, . . . , ωB) with

ωb =

√
2

[Cỹ] (b,b)

, b = 1, . . . , B. (9)

Here, the covariance matrix Cỹ is given by

Cỹ = E
[
ỹỹH

]
= FE

[
yyH

]
FH = FCyFH. (10)

By multiplying the gain control matrix Ω to the transformed
receive vector ỹ, the entries of Ωỹ have unit variance per real
dimension. The resulting AGC and ADC model is

r = Q(ỹ) = Q(<{Ωỹ}) + jQ(={Ωỹ}) . (11)

By applying Bussgang’s decomposition (6) individually to each
entry of (11), we obtain the following linearized input-output
relation:

r = Q(<{Ωỹ}) + jQ(={Ωỹ}) (12)
= γ<{Ωỹ}+ dr + j(γ={Ωỹ}+ dj) (13)
= γΩ(<{ỹ}+ j={ỹ}) + d = γΩỹ + d. (14)

Here, we define d = dr+jdj , where dr and dj are the real and
imaginary parts of the distortions caused by Q(ỹ), respectively.

D. Spatial Equalization

The linearized input-output relation in (14) can now be used
to design a linear minimum mean squared error (LMMSE)-
type equalizer, which generates estimates for the transmitted
symbols as ŝ = Wr. In the equalization step, we do not
assume perfect knowledge of the channel matrix. Therefore,



using the estimate Ĥ of the channel matrix H, we define our
LMMSE-type equalization matrix as

W =
1

γ
ĤHFHΩ

(
ΩFĤĤHFHΩ

+N0ΩFFHΩ +
2D

γ2
IB

)−1

, (15)

where we approximate the distortion covariance matrix as

Cd = E
[
ddH

]
≈ 2D IB , (16)

with D from (8).

III. ADAPTIVE ANALOG SPATIAL TRANSFORMS

We are now ready to describe the specifics of suitable
adaptive analog spatial transforms Fc, c = 1, . . . , C, which
we use to focus strong receive signals onto a subset of the
ADCs. Specifically, we present two HR matrices designed
for different purposes: HR-ISO, which isolates the energy of
the strongest UE on dedicated ADCs, and HR-MAX, which
isolates the signal dimension with the highest receive power
on dedicated ADCs.

A. Householder Reflections

An HR is carried out by multiplying a vector by a matrix Qv

that reflects the vector with respect to a subspace described by
its normal vector v [22], [23].

Definition 1. Let v ∈ CM be a nonzero vector. Then, the HR
matrix Qv is defined as follows:

Qv = IM − 2
vvH

‖v‖2
. (17)

HR matrices are (i) unitary so that the statistics of an i.i.d
Gaussian random vector remain unaffected and (ii) Hermitian
symmetric, i.e., QH

vQv = QvQv = IM .
By replacing Fc in (3) with Qvc

as in (17), we obtain a
transformed receive vector in the cth antenna cluster as

ỹc = Qvc
yc = yc − 2

vcv
H
c

‖vc‖2
yc, (18)

where vc ∈ CS . This operation requires only one inner-product
calculation

(
vH
c /‖vc‖

)
yc followed by subtracting a scaled

version of vc/‖vc‖ from yc. Thus, the number of real- and
complex-valued multiplications required to transform all C
antenna clusters decreases from B2/C to only 2B+C, which
can be implemented more efficiently, e.g., using analog multipli-
cation circuitry originally developed for beamforming [24]. We
reiterate that the statistics of the noise vector n in (1) remain
unaffected by (18) since the matrices Qvc

, c = 1, . . . , C, are
unitary. Suitable choices for the vector vc are discussed next.

B. Strongest UE Isolation (HR-ISO)

As the first choice for the HR matrix, we wish to isolate the
energy of the strongest UE on the ith output of the adaptive
analog spatial transform. To this end, we need the following
result; the proof is given in Appendix A.

Lemma 1. Let a ∈ CM be a nonzero vector. Then, the vector

v̂ = a + ‖a‖ sign([a]i)ei (19)

is a solution of the following optimization problem:

v̂ ∈ arg max
ṽ∈CM

|eH
i Qṽa|2. (20)

We can use Lemma 1 to isolate the energy of the strongest
UE on the first pair of AGCs/ADCs of each antenna cluster
by setting i = 1 and a = ĥc, which corresponds to solving

v̂HR−ISO
c ∈ arg max

ṽc∈CS

|eH
1 Qṽc ĥc|2, (21)

where ĥc =
[
[ĥ](c−1)S+1, . . . , [ĥ]cS

]T
∈ CS is the estimated

channel vector associated with the cth cluster of the strongest
UE. According to Lemma 1, a vector that solves (21) is

v̂HR−ISO
c = ĥc + ‖ĥc‖sign([ĥc]1)e1. (22)

Therefore, the HR matrix that focuses the energy of the
strongest UE on the first per-cluster AGCs and ADCs
is Qv̂HR−ISO

c
. Note that v̂HR−ISO

c is the standard HR vector
used for QR decompositions applied to ĥc [23, Sec. 5.2.1].

C. Maximum Power Isolation (HR-MAX)

As the second choice for the HR matrix, we wish to isolate
the signal dimension with the highest receive power per antenna
cluster on the ith output of the adaptive analog spatial transform.
To this end, we need the following result; the proof is given
in Appendix B.

Lemma 2. Let a ∈ CM be a zero-mean random vector with
covariance matrix Ca = E

[
aaH

]
. Furthermore, let `1 be the

eigenvector associated with the largest eigenvalue λ1 of the
covariance matrix Ca. Then, the vector

v̂ = `1 + sign([`1]i)ei (23)

is a solution of the following optimization problem:

v̂ ∈ arg max
ṽ∈CM

E
[
|eH

i Qṽa|2
]
. (24)

We can now use Lemma 2 to isolate the signal dimension
with the highest receive power of antenna cluster c on the
first pair of AGCs/ADCs by setting i = 1 and a = yc with
Ca = Cyc

= E
[
ycy

H
c

]
, which corresponds to solving

v̂HR−MAX
c ∈ arg max

ṽc∈CS

E
[
|eH

1 Qṽcyc|2
]
. (25)

According to Lemma 2, a vector that solves (25) is

v̂HR−MAX
c = `1 + sign([`1]1)e1, (26)



where `1 is the eigenvector associated with the largest eigen-
value λ1 of the covariance matrix Cyc . Therefore, the HR
matrix that focuses the signal dimension with the highest
receive power on the first per-cluster pair of AGCs and ADCs
is Qv̂HR−MAX

c
.

IV. SIMULATION RESULTS

We now demonstrate the efficacy of HDR MIMO in a
mmWave massive MU-MIMO scenario where one UE has
significantly stronger BS-side receive power than the other UEs.

A. Simulation Details

We consider an uplink scenario in which U = 32 single-
antenna UEs transmit data to a BS with B = 256 antennas
arranged as a uniform linear array (ULA) with half-wavelength
antenna spacing. The BS is at a height of 25 m and the
UEs at 1.5m; both the BS and the UEs are equipped with
omnidirectional antennas. The system operates at a carrier
frequency of 60 GHz and a bandwidth of 40 MHz. The UEs
transmit 16-QAM symbols. We limit the BS-side receive power
between the weakest and the second strongest UE by 6 dB using
the power control scheme in [25, Sec. II-B], which determines
the per-UE gains du, u = 2, . . . , U . In this scheme, strong
UEs that exceed the dynamic range limit have to transmit with
lower power while weak UEs transmit at their original power.
We use mmWave channel vectors generated with Remcom’s
Wireless InSite [1] for 30 351 UE positions in an area of
150 m× 200 m. For every channel realization, we select U UE
channel vectors uniformly at random. We define the median
receive signal-to-noise ratio (MSNR) as follows:

MSNR =
Umedian

{
‖hu‖2, u = 1, . . . , U

}
BN0

. (27)

The covariance matrix Cy used in (10) for the AGC matrix Ω
and in (25) for solving HR-MAX is estimated as follows:
Cy ≈ 1

K YTYH
T . Here, the received matrix YT is obtained

during pilot-based training (cf. Section II-A), where we use
orthogonal pilot sequences of length K = U taken from a
properly scaled Hadamard matrix.

B. Baseline Algorithms

We compare the proposed HDR MIMO methods HR-ISO and
HR-MAX to three baselines. The first baseline is called “Perfect”
and considers the same simulation setup as for HDR MIMO, but
uses a receiver with infinite-resolution ADCs. Therefore, it does
not require any spatial transform. The second baseline is called
“WSU” (short for “without strongest UE”) and considers a
different simulation setup in which all UEs are power-controlled
to a dynamic range of 6 dB and no spatial transform is used.
The third baseline is called “None” and assumes the same
simulation setup as for the HDR MIMO methods but without
any spatial transform. Thus, we have F = IB for all baselines.

C. Simulation Results

We evaluate the performance of HDR MIMO and the
baseline algorithms in terms of uncoded bit error rate (BER).We
vary three parameters from our system: the dynamic range
ρ = {10 dB, 20 dB, 30 dB} from (2), the number of ADC
quantization bits q = {3, 4, 5} from (5), and the number of
antenna clusters C ={8, 16, 32} from (3). When varying one
of these parameters, we fix all of the others to ρ = 30 dB,
q = 3 bit, and C = 32 antenna clusters.

In Fig. 2, we show results varying the dynamic range ρ.
We observe that “Perfect,” which has infinite ADC resolution,
outperforms all of the other presented methods which utilize
3-bit ADC resolution. As we increase the dynamic range ρ, the
MSNR gap between “WSU” and the proposed HDR MIMO
methods (HR-ISO and HR-MAX) increases. However, even
with a 1000× stronger BS-side receive power between the
weakest and strongest UEs, our proposed methods maintain
an MSNR gap of only 1 dB at 0.1% BER between the HDR
MIMO methods and “WSU”. Furthermore, the proposed HDR
MIMO methods demonstrate significant performance gains
compared to "None," especially for scenarios in which the
BS-side receive power of the strongest UE far exceeds that
of the other UEs (see Fig. 2(c)). Hence, the benefits of HDR
MIMO are more pronounced with increasing BS-side receive
power of the strongest UE.

In Fig. 3, we show results varying the number of quantization
bits q. In Fig. 3(a), we observe a similar behavior as in Fig. 2,
where “Perfect” outperforms all of the other presented methods
due to its infinite ADC resolution. As we increase the number of
quantization bits q, the MSNR gap between “Perfect,” “WSU,”
“None,” and the proposed HDR MIMO methods decreases,
almost closing the MSNR gap in Fig. 3(c). This observation
indicates that the benefits of HDR MIMO are less pronounced
if the ADC resolution increases. Although with 5-bit ADCs
the HDR MIMO methods approach a nearly equivalent BER
compared to the use of infinite-resolution ADCs, it also presents
a smaller advantage when compared to “None.” Thus, HDR
MIMO is suitable for systems with low-resolution ADCs.

In Fig. 4, we show results varying the number of antenna
clusters C, and observe a similar behavior as the one from
Fig. 2 and Fig. 3(a), where “Perfect” outperforms all of the
other presented methods due to its infinite ADC resolution. As
we increase the number of antenna clusters C, the MSNR gap
between “WSU” and the HDR MIMO methods also increases.
However, even when we have four times as many antenna
clusters as in Fig. 4(a), we can still maintain a relatively small
MSNR gap of only 1 dB at 0.1% BER between the HDR MIMO
methods and “WSU” (Fig. 4(c)). Furthermore, the HDR MIMO
methods demonstrate significant performance gains compared
to "None," especially in scenarios with fewer antenna clusters,
as shown in Fig. 4(a). Hence, the benefit of HDR MIMO
improves with fewer antenna clusters (which is equivalent to
more antennas per cluster), even though it is disadvantageous
for hardware implementation [19].

Finally, we compare the BER performance between the two
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Fig. 2. Uncoded BER of HDR MIMO and baselines when varying the dynamic range ρ. In these results, q = 3 bit and C = 32 clusters.
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(c) q = 5

Fig. 3. Uncoded BER of HDR MIMO and baselines when varying the number of quantization bits q. In these results, ρ = 30 dB and C = 32 clusters.
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(b) C = 16
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Fig. 4. Uncoded BER of HDR MIMO and baselines when varying the number of antenna clusters C. In these results, ρ = 30 dB and q = 3 bit.

adaptive analog spatial transforms: HR-ISO and HR-MAX. In
Figs. 2, 3, and 4, we find that the BER is nearly identical.
In conclusion, both HDR MIMO methods are beneficial in
systems featuring high dynamic range UEs and low-resolution
ADCs. However, from a complexity perspective, HR-ISO is
the preferable option as it does not require the calculation of
the covariance matrix Cyc

and an eigenvalue decomposition.

V. CONCLUSIONS

We have proposed HDR MIMO, a novel approach that
consists of an adaptive analog spatial transform which enables
one to focus the energy of the strongest UE or the signal
dimension with the highest receive power on a few ADCs in
order to mitigate saturation and quantization artifacts caused

by high dynamic range UEs in systems with low-resolution
ADCs. Simulation results have shown that HDR MIMO greatly
outperforms systems without spatial transforms. Furthermore,
we have shown that (i) as the strongest UE BS-side receive
power increases and (ii) as the quantization resolution decreases,
the more pronounced the benefits of HDR MIMO become.
Besides that, we have shown that, although transforming large
antenna clusters is favorable, small analog spatial transforms
that are more hardware friendly only slightly deteriorate the
effectiveness of HDR MIMO.



APPENDIX A
PROOF OF LEMMA 1

The objective function of (20) is bounded by

|eH
i Qṽa|2

(a)

≤ ‖ei‖2‖Qṽa‖2 (b)
= ‖a‖2. (28)

Here, (a) follows from the Cauchy–Schwarz inequality and
(b) from the fact that Qṽ is unitary. We now show that the
HR matrix Qv̂ with the vector v̂ from (19) achieves the
upper bound in (28) with equality. To this end, notice that
the Cauchy–Schwarz inequality holds with equality if and only
if ei and Qv̂a are collinear, i.e., if αei = Qv̂a holds for some
α ∈ C. From (17), it follows that

αei = a− 2
v̂v̂H

‖v̂‖2
a. (29)

From (29), after some algebraic manipulations, we arrive at

v̂ =
(a− αei) ‖v̂‖2

2v̂Ha
, (30)

where we assume that v̂Ha 6= 0, i.e., v̂ and a are not orthogonal.
By inserting v̂ from (30) into (29), the following must hold:

αei = a− 2
(a− αei)(a− αei)

Ha

‖a− αei‖2
. (31)

Since the factor ‖v̂‖2/(2v̂Ha) from (30) cancels out, its
specific choice does not matter (assuming that it is nonzero).
Therefore, we assume ‖v̂‖2/(2v̂Ha) = 1 in what follows.

In order to determine the optimal value of α, we first assume
that a 6= αei. By rearranging terms in (31), we obtain the
following necessary optimality condition

‖a− αei‖2 = 2(a− αei)
Ha, (32)

which can be simplified to

|α|2 = ‖a‖2 − α∗[a]i + α[a]∗i . (33)

This equation has two solutions α̂ = ±‖a‖ sign([a]i). By
inserting α̂ into (31), both the left and right sides are equal,
proving that the two solutions are indeed solutions to (31). For
reasons given below, we pick the solution

α̂ = −‖a‖ sign([a]i). (34)

Let us now inspect the two excluded cases v̂Ha = 0 and
a = αei. If v̂Ha = 0, then the vectors v̂ and a are orthogonal.
With (19), this implies that

(a + ‖a‖ sign([a]i)ei)
Ha = ‖a‖2 + ‖a‖|[a]i| = 0, (35)

which is impossible as the vector a was assumed to be nonzero;
this is the reason why we picked the solution in (34). If a = αei,
then according to (19), v̂ = 2αei. By plugging this vector
into (20), the bound in (28) is achieved with equality.

In summary, by combining (30) and (34), we see that a
vector v̂ that maximizes (20) is given by (19). �

APPENDIX B
PROOF OF LEMMA 2

With the covariance matrix Ca, we can rewrite the optimiza-
tion problem in (24) as

v̂ ∈ arg max
ṽ∈CM

eH
i QṽCaQṽei. (36)

We can now bound the objective of (36) as follows:

max
ṽ∈CM

eH
i QṽCaQṽei

(c)

≤ max
z,‖z‖=1

zHCaz
(d)
= λ1. (37)

Here, (c) holds as Qṽei is a specific unit-norm vector and
taking the maximum over arbitrary unit-norm vectors z ∈
CM bounds the objective. The equality (d) follows from the
definition of the spectral norm, which is equal to the largest
eigenvalue λ1 of the covariance matrix Ca of a [26, Ex. 5.6.6].
We now show that the HR matrix Qv̂ with v̂ from (23) achieves
the upper bound in (37) with equality.

We start by rewriting (36) as follows:

v̂ ∈ arg max
ṽ∈CM

M∑
m=1

λm
∣∣eH

i Qṽ`m
∣∣2 . (38)

Here, the expression
∣∣eH

i Qṽ`1

∣∣2 with ṽ = v̂ from (23) is
bounded by

|eH
i Qv̂`1|2

(e)

≤ ‖ei‖2‖Qv̂`1‖2
(f)
= 1, (39)

where (e) follows from the Cauchy–Schwarz inequality and (f)
from the fact that Qv̂ is unitary. From Lemma 1, we know that
using v̂ from (23) leads to equality in (e), i.e., |eH

i Qv̂`1|2 = 1.
This conclusion together with the objective from (38) leads to

λ1 |eH
i Qv̂`1|2︸ ︷︷ ︸

1

+

M∑
m=2

λm
∣∣eH

i Qv̂`m
∣∣2︸ ︷︷ ︸

≥0

≥ λ1, (40)

since the eigenvalues λm, m = 2, . . . ,M are nonnegative.
By combining (37) and (40), we conclude that the objective
function in (38) is both lower and upper bounded by λ1. Thus,
with v̂ from (23), we have that

M∑
m=1

λm
∣∣eH

i Qv̂`m
∣∣2 = λ1

∣∣eH
i Qv̂`1

∣∣2 = λ1, (41)

which completes the proof. �
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