
C R I S T I N A P I N N E R I

S A M P L E - E F F I C I E N T M O D E L - B A S E D
R E I N F O R C E M E N T L E A R N I N G

diss . eth no. 29436

S A M P L E - E F F I C I E N T M O D E L - B A S E D
R E I N F O R C E M E N T L E A R N I N G

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. Sc. ETH Zurich)

presented by

cristina pinneri

MSc., Polytechnic University of Turin

born on 23 January 1993

citizen of the Italian Republic

accepted on the recommendation of

Prof. Dr. Andreas Krause, ETH Zurich
Prof. Dr. Georg Martius, MPI-IS

Prof. Dr. Marc Toussaint, TU Berlin

2023

Cristina Pinneri: Sample-efficient model-based reinforcement learning,
©2023

A B S T R A C T

Reinforcement Learning (RL) is a powerful framework for decision
making and adaptive learning by interaction. Even though at its
core it consists of trial-and-error learning, it has become a critical
tool for research on Artificial Intelligence (AI). In the last decade,
RL algorithms have been able to master strategic games like Chess
and Go, and control a variety of robotic and industrial platforms,
from locomotion and manipulation to power plants, and even nu-
clear fusion reactors. By incorporating deep neural networks (NN)
as function approximators, “deep RL” reached the ability to handle
high-dimensional state and action spaces, and have in principle bet-
ter generalization across tasks, making RL solutions versatile and
promising. However, using deep neural networks comes with cer-
tain caveats. RL algorithms often face issues such as brittleness due
to overfitting and sensitivity to hyperparameters, which come on
top of the typical RL challenges, such as low sample efficiency, dif-
ficulty in handling sparse rewards, delayed credit assignment for
long-horizon tasks, sensitivity to reward function design. In this
dissertation, we present a series of novel contributions that address
some of the problems faced by RL, with the ultimate goal of improv-
ing its efficiency, robustness, and generalization for continuous con-
trol tasks. Specifically, we will present more robust approaches to
trajectory optimization, coupled with NN function approximation
for policy learning, model learning, and reward learning. In partic-
ular, the majority of this work is centered around zero-order opti-
mization for model-predictive control, which we demonstrate to be
more performing, robust, and reproducible than gradient-based tra-
jectory optimizers. Throughout this dissertation, we will show how
zero-order optimization can be used to efficiently solve tasks with
sparse rewards, how it can be used in the context of imitation learn-

v

ing, and how it can be exploited in conjunction with model learn-
ing for uncertainty propagation. Finally, we will present a method
to learn reward functions from scratch, in a purely self-supervised
fashion. Through extensive experiments in simulated environments,
our methods demonstrate significant improvements in learning ef-
ficiency and performance, reducing the required number of interac-
tions with the environment while still achieving near-optimal solu-
tions. This work aims to provide a viable approach to tackle part
of the challenges of deep RL, addressing the efficiency and robust-
ness of the learning process without relying on predefined expert
knowledge.

vi

S O M M A R I O

L’apprendimento per rinforzo, o reinforcement learning (RL), è un
insieme di tecniche per i processi decisionali e l’apprendimento
adattivo per mezzo di interazioni. Sebbene, nel suo nucleo, consista
nell’apprendimento per tentativi ed errori, RL è diventato uno stru-
mento fondamentale per la ricerca sull’intelligenza artificiale (AI).
Nell’ultimo decennio, gli algoritmi RL sono stati in grado di padro-
neggiare giochi strategici come gli scacchi e il Go, e di controllare
una varietà di piattaforme robotiche e industriali, dalla locomozio-
ne e manipolazione alle centrali elettriche e reattori nucleari Toka-
mak. Utilizzando reti neurali profonde come approssimatori uni-
versali di funzioni, l’appredimento rinforzato profondo (deep RL)
ha raggiunto la capacità di gestire spazi di stato e di azione ad alta
dimensione e, in linea di principio, di avere una migliore genera-
lizzazione tra i vari obiettivi, rendendo le soluzioni RL versatili e
promettenti. Tuttavia, l’utilizzo di reti neurali profonde comporta
alcune complicazioni. Gli algoritmi di RL devono spesso affrontare
problemi come la fragilità dovuta all’overfitting e l’estrema sensibili-
tà agli iperparametri, che si aggiungono alle sfide tipiche del RL, co-
me la bassa efficienza rispetto al numero di dati, la difficoltà nel ge-
stire segnali di rinforzo poco frequenti, il problema del delayed credit
assignment, la sensibilità al design della funzione di rinforzo (reward
function). In questa tesi presentiamo una serie di contributi origina-
li che affrontano alcuni dei problemi di RL, con l’obiettivo finale di
migliorarne l’efficienza, la robustezza e l’adattabilità per problemi
di controllo continuo. La nostra ricerca esplora vari aspetti di RL,
come l’uso di reti neurali per l’apprendimento di policy, di modelli
dinamici e di reward functions, insieme ad approcci più robusti per
l’ottimizzazione delle traiettorie. In particolare, la maggior parte di
questo lavoro è incentrata sull’ottimizzazione di ordine zero per il

vii

controllo predittivo con modelli, che abbiamo dimostrato essere più
performante, robusta e riproducibile degli ottimizzatori di traietto-
ria basati sui gradienti. Nel corso di questa tesi, mostreremo come
l’ottimizzazione di ordine zero possa essere utilizzata per risolvere
in modo efficiente compiti con segnali di rinforzo sparsi, come pos-
sa essere utilizzata nel contesto dell’apprendimento per imitazione
e come possa essere sfruttata insieme all’apprendimento del model-
lo per la propagazione dell’incertezza. Infine, presenteremo un me-
todo per imparare le reward functions da zero, in modo puramente
auto-supervisionato. Attraverso esperimenti in simulazione, i nostri
metodi dimostrano miglioramenti significativi nell’efficienza e nel-
le prestazioni, riducendo il numero di interazioni necessarie con
l’ambiente e ottenendo comunque soluzioni quasi ottimali. Questo
lavoro mira a fornire un valido approccio per affrontare parte delle
sfide del deep RL, migliorando l’efficienza e l’adattabilità del pro-
cesso di apprendimento senza fare affidamento su nozioni predefi-
nite.

viii

C O N T E N T S

1 introduction 1

1.1 Outline and Contributions 3

1.2 Additional Publications 5

1.3 Collaborators . 5

2 background 7

2.1 Reinforcement Learning 7

2.1.1 Dynamic Programming 12

2.1.2 Model-free RL 12

2.1.3 Model-based RL 15

2.2 Closing the Loop with Model Predictive Control . . . 16

2.2.1 Probabilistic Ensemble with Trajectory Sampling 17

2.3 Zero-order optimization 18

2.3.1 The Cross-Entropy Method 21

2.4 Supervised Actors . 23

3 the improved cross-entropy method 25

3.1 Introduction . 25

3.1.1 CEM for model-predictive control 27

3.2 Improved CEM – iCEM 28

3.2.1 Colored noise and correlations 28

3.2.2 CEM with memory 31

3.2.3 Smaller Improvements 32

3.3 Experiments . 33

3.3.1 Environments 33

3.3.2 Main results . 35

3.3.3 Ablation study 38

3.4 Related Work . 39

3.5 Conclusion . 41

ix

x contents

4 adaptive policy extraction 43

4.1 Introduction . 43

4.2 Related Work . 46

4.3 Methods . 47

4.3.1 Using a policy to inform the optimization . . 48

4.3.2 Off- and On-Policy Imitation Learning 48

4.3.3 Guided Policy Search 49

4.3.4 Adaptive auxiliary cost weighting 51

4.3.5 Putting the pieces together: APEX 54

4.4 Results . 54

4.4.1 Ablations . 57

4.5 Conclusions . 58

5 risk-averse zero-order trajectory optimization 63

5.1 Introduction . 63

5.2 Related Work . 65

5.3 Method . 67

5.3.1 Planning and Control 67

5.3.2 The Problem of Uncertainty Estimation 68

5.3.3 Learned Dynamics Model 68

5.3.4 Separation of Uncertainties 69

5.3.5 Implementing RAZER 72

5.4 Experiments . 72

5.4.1 Algorithmic Choices and Training Details . . 73

5.4.2 Risk-Averse Planning 74

5.5 Conclusion . 75

6 neural all-pairs shortest path for rl 77

6.1 Introduction . 78

6.1.1 Shortest Paths and RL 79

6.2 Related Work . 80

6.3 Background . 81

6.3.1 Hindsight Experience Replay 82

6.3.2 Dynamical Distances 82

6.4 Method . 83

contents xi

6.4.1 Off-policy Temporal Regression 83

6.4.2 Uncertainty with Counts 84

6.4.3 Local Connectivity and Triangular Loss 84

6.5 Algorithm Summary 86

6.6 Experiments . 86

6.6.1 Local Optima 90

6.6.2 Sample Efficiency 92

6.7 Conclusions . 93

7 conclusion 95

7.1 Summary . 95

7.2 Limitations and Future Work 97

a additional publications 101

a.1 Equivariant Data Augmentation 101

a.2 Pink noise for deep RL 103

b appendix to chapter 3 : icem 105

b.1 Performance results . 106

b.1.1 Budget selection 106

b.2 Hyper-parameters . 107

b.2.1 Choice of colored-noise exponent β 108

b.2.2 Sensitivity . 109

b.2.3 Hyperparameters for PlaNet 111

b.3 Ablation results . 112

b.4 Details on the iCEM improvements 114

b.4.1 Shift Initialization 114

b.4.2 Sampling Colored Noise 114

b.4.3 Adding the mean actions 114

b.5 Spectral characteristics of noise 115

c appendix to chapter 4 : apex 117

c.1 Performance Tables . 117

c.2 Ablation experiments 118

c.3 Expert and Policy Interplay 120

xii contents

d appendix to chapter 5 : razer 123

d.1 Additional Theory and Experiments 124

d.1.1 Extra environments 124

d.1.2 Risk-averse Planning 124

d.1.3 Probabilistic Safety Constraints 125

d.1.4 Active Learning for Model Improvement . . . 126

d.1.5 Planning with External Safety Constraints . . 127

d.2 Implementation Details 128

d.2.1 Model Learning 128

d.2.2 Controller Parameters 129

d.2.3 Timings . 129

d.2.4 Uncertainty Separation 130

d.2.5 Entropy vs. Variance as Uncertainty Measure-
ment . 132

d.2.6 Observation Space vs. Cost Space Uncertainty 132

d.3 Algorithm . 133

d.4 Environments Details 134

d.4.1 Computing State-Space Coverage 137

d.5 Application to Transfer Learning 137

e appendix to chapter 6 : n-apsp 141

e.1 Count Models . 141

e.1.1 Granularity . 142

e.1.2 Sensitivity analysis 144

e.2 Goal augmentation for Fetch Pick and Place 145

e.3 Implementation Details 145

e.3.1 Hyperparameters 145

e.3.2 Distance Learning 146

bibliography 161

1
I N T R O D U C T I O N

Mankind will possess incalculable advantages and extraordinary
control over human behavior when the scientific investigator will
be able to subject his fellow men to the same external analysis he
would employ for any natural object, and when the human mind
will contemplate itself not from within but from without.

Ivan Pavlov

While we are still far from understanding what originates thought
and critical reasoning in humans, there is evidence that human be-
havior is guided by learning through reinforcement. The history of
Reinforcement Learning (RL) dates back to the 20th century, when
B.F. Skinner and I. Pavlov conducted a series of experiments on
conditioning in animals [1, 2] to understand the mechanisms un-
derlying learning. The idea that, in animals, responses were rein-
forced by their consequences was already formalized by psycholo-
gist E. Thorndike as the “Law of Effect” [3]:

Responses that produce a satisfying effect in a particular situation
become more likely to occur again in that situation, and responses
that produce a discomforting effect become less likely to occur
again in that situation.

— Edward Thorndike

Thorndike’s law of effect postulates that animals do not reason,
but learn in a trial-and-error fashion by interacting with a physi-
cal environment until a successful outcome is obtained. This type
of decision-making strategy links rewards with actions in a retro-
spective way, and is opposed to the prospective view according to
which animals form field maps of their environment as a guidance
mechanism for learning, also called “cognitive maps” [4, 5].

1

2 introduction

There is a wealth of experimental evidence on the human brain
suggesting that there are multiple mechanisms for behavioral
choice [6], and that decision-making processes are both reflective
(prospective) and reflexive (retrospective), as we would expect. Re-
inforcement Learning theory also evolved in a similar way, now in-
cluding two main branches: model-free (reflexive) and model-based
(reflective) RL [7]. Model-free RL learns a reactive mapping be-
tween states and actions that increase the agent’s reward, without
any knowledge of the underlying physical principles of the envi-
ronment. Model-based RL instead learns an internal representation
of the world, which is used to learn the consequence of each ac-
tion. Similarly to model-based RL, another computational account
of prospective reasoning can be found in model-predictive control
(MPC), efficiently used in robotics and many industrial processes
[8, 9]. In MPC, a known model is used to iteratively optimize the
given reward over a certain planning horizon while incorporating
constraints and feedback from the environment. Given its planning
ahead component, MPC can also be seen as a form of reflective
decision-making.

In the course of this thesis, we will see how model-based and
model-free RL can be integrated with MPC-style iterative planning
to create control strategies that are more robust than their single
components. Model-free RL algorithms, for example, are able to
learn quickly from large amounts of data but are sensitive to the
training hyperparameters, do not generalize well, and lack a plan-
ning component, which can lead to suboptimal decision-making in
complex environments. On the other hand, model-based RL meth-
ods have the potential to be more flexible but often suffer from
biases related to model estimation, which can quickly compound
when used in an autoregressive fashion. Integrating model-based
RL with MPC can offer the best of both worlds, as MPC provides a
planning framework that can incorporate the learned model of the
world and optimize the agent’s actions over the planning horizon.
This can lead to more sample-efficient decision-making strategies
that can learn from experience, adapt to changing environments,

1.1 outline and contributions 3

and optimize their behavior over time while being reactive as well
as risk-averse.

1.1 outline and contributions

This dissertation is centered around sample-efficient model-based
strategies for control tasks. In particular:

• chapter 3 presents an improved zero-order optimization
method used in the context of model-predictive control that
we named iCEM. Our approach originates from an intuitive
consideration on the distribution generating the agent’s ac-
tions vs the optimized distribution. We show one order-of-
magnitude higher sample efficiency in a variety of control
tasks, ranging from a simulated humanoid stand-up to a hand
opening a door. This chapter is based on the paper Pinneri et
al. [10]:

“Sample-efficient zero-order trajectory optimization for
real-time planning”
Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan
Achterhold, Jörg Stückler, Michal Rolínek, Georg Martius
CoRL 2020: Conference on Robot Learning

• chapter 4 explores supervised policy learning to extract a
fast global policy imitating the powerful, yet local, iCEM op-
timizer. Since previous imitation learning methods are shown
to fail, we add an adaptive weighting term to learn robust poli-
cies. We call this adaptive policy extraction method APEX. We
compare our results with model-free RL policies and show
a considerable improvement over all the considered control
tasks. This chapter is based on Pinneri et al. [11]:

4 introduction

“Extracting strong policies for robotics tasks from zero-
order trajectory optimizers”
Cristina Pinneri*, Shambhuraj Sawant*, Sebastian Blaes,
Georg Martius
ICLR 2021: International Conference on Learning Representa-
tions
*equal contribution

• chapter 5 examines in detail the integration of the iCEM op-
timizer with learned models. Our contribution highlights that
the trajectory sampling technique used to estimate the final
cost is not fully exploiting the information coming from the
learned model. We propose a way to separate the aleatoric and
epistemic uncertainties and propagate them along the planning
horizon in a way that keeps the RL agent curious yet risk-
averse. This chapter is based on Vlastelica et al. [12]:

“Risk-averse zero-order trajectory optimization”
Marin Vlastelica*, Sebastian Blaes*, Cristina Pinneri, Georg
Martius
CoRL 2021: Conference on Robot Learning

• chapter 6 brings learning into another aspect of planning:
the reward (or cost) function. We take a self-supervised ap-
proach to automatically learn a notion of distance without
any domain knowledge, but only geometric considerations.
The learned cost can be used for either model-free or model-
based approaches. This chapter is based on Pinneri, Martius,
and Krause [13]:

“Neural all-pairs shortest path for reinforcement learn-
ing”
Cristina Pinneri, Georg Martius, Andreas Krause
NeurIPS 2022: Deep Reinforcement Learning Workshop

1.2 additional publications 5

1.2 additional publications

This dissertation also includes a couple of works that have been
done in collaboration with other researchers, and during research
internships. These works do not directly align with the main body
of the dissertation. As such, they are presented separately in ap-
pendix A, where a brief summary is provided, explaining their
connection to the broader context of this work. The mentioned pa-
pers are:

“Equivariant Data Augmentation from State Inputs for Gen-
eralization in Offline RL”
Cristina Pinneri, Sarah Bechtle, Markus Wulfmeier, Arunk-
umar Byravan, Will Whitney, Jingwei Zhang, Martin Ried-
miller
under submission

“Pink noise is all you need: colored noise exploration in
deep RL”
Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, Georg
Martius
ICLR 2023: International Conference on Learning Represenations

1.3 collaborators

This PhD thesis benefited from many fruitful collaborations. My
supervisors Georg Martius and Andreas Krause helped define the
main research directions of this work. The ideas presented in Chap-
ter 3 were developed with the help of Michal Rolínek. Sebastian
Blaes and Shambhuraj Sawant helped me with experimental re-
sults with ground truth dynamics. Jörg Stückler and Jan Achterhold
added the section with the PlaNet experiments. Chapter 4 is the out-
come of the joint effort with Shambhuraj Sawant. Together with him
and Sebastian Blaes, we developed the final heuristics for adaptive

6 introduction

policy learning. In Chapter 5, I proposed to use more information
from the ensemble’s distribution and integrate the model’s uncer-
tainty to estimate the final cost. This idea was further shaped by
Marin Vlastelica and Sebastian Blaes to extract the epistemic term
and use it as optimism in the face of uncertainty.

2
B A C K G R O U N D

This Chapter presents the basic tools and frameworks that will be
used in this dissertation. It starts with a section on the fundamentals
of reinforcement learning and model-predictive control, and then it
will lay the basis for the main backbone of this work, which is zero-
order trajectory optimization.

2.1 reinforcement learning

The fundamental idea of RL is to learn how to select actions that
maximize a reward signal over time. In order to do so, the decision
maker, or agent, interacts with an environment and collects rewards,
which it will use to learn a policy, i.e. a reactive mapping from per-
ceived states to future actions. The outcome of this process is a
trajectory that will lead the agent to its desired goal. The framework
used to describe this idea in mathematical terms is a Markov De-
cision Process, MDP in short. MDPs are a simplified abstraction of
the learning cycle, but have been proven to be widely applicable
[15–19]. MDPs are formally defined by a tuple M = ⟨S ,A,R,P , γ⟩,

Figure 1: The learning cycle represented as a Markov decision process [14].

7

8 background

where S is the set of states, A is the set of actions, R is the reward
function, P : S × A × S → [0, 1] is the transition probability, and
γ is the discount rate, representing the agent’s preference for im-
mediate rewards over delayed rewards. MDPs can be either finite
or infinite (depending on the number of states and actions), and
episodic or continuous, depending on whether the agent’s interac-
tion with the environment is divided into episodes with terminal
states, or if it continues indefinitely.

The basic property of an MPD is that the future state of the sys-
tem only depends on the information available at the current state,
which is also called Markov property. More specifically, the state and
the reward at the next time step t + 1, indicated by the random vari-
ables St+1 ∈ S and Rt+1 ∈ R ⊂ R respectively, are determined by
the state and the action taken at time t, namely the random vari-
ables St and At ∈ A. Several of these interactions between agent
and environment generate a trajectory τ:

S0, A0, R1, S1, A1, R2, S2, A2, . . .

The probability of transitioning from one state to another can be
either discrete or continuous depending on the nature of the MDP,
and it depends on the value of the random variables describing the
state and the action, namely St and At. From the Markov property,
we can derive the transition probability from the probability that
the random variables Rt+1 and St+1 take specific values s′ and r,
expressed as:

p(s′, r|s, a) := Pr{St+1 = s′, Rt+1 = r|St = s, At = a}

The transition probability P is then its marginalization over r:

p(s′|s, a) = ∑
r∈R

p(s′, r|s, a)

If we discard the transition model and only rely on observed transi-
tions, we talk about model-free RL; otherwise, if we learn the model
and use it to generate imaginary trajectories, we are in the realm of
model-based RL.

2.1 reinforcement learning 9

If we define the policy mapping as π : S → A, we can finally
express the posterior distribution of the trajectory τ induced by the
Markov property as:

pθ(τ) = p(s0, a0, r1, s1, a1, . . .) = δ(s0)
∞

∏
t=0

p(st+1, rt+1|st, at)πθ(at|st)

where θ parameterizes the policy and consequently the trajectory
distribution. The initial state distribution is instead expressed by
δ : S → [0, 1].

The optimal parameter θ⋆ is the one that maximizes the expected
cumulative reward over time, also called expected return. Mathemat-
ically:

θ⋆ = arg max
θ

Eτ∼p(τ)

∞

∑
t=0

γtr(st, at) (1)

In this case, we expressed the reward as a two-argument function
depending on both state and action, r : S × A → R, which gets
discounted with a discount rate γ ∈ [0, 1].

The many different ways to optimize the parameter θ, so that the
expected return is maximized, are at the core of RL research. The
majority of RL algorithms revolve around expressing the expected
return in different ways, so that the optimization process gets sim-
plified. In particular, depending on which variables we condition
the expected return, we obtain two important quantities in RL: the
state-value function vπ(s) (or simply V function) if we condition
on the state, and the action-value function qπ(s, a) (or Q function)
if we condition on both state and action. The state-value function
expresses the expected return when starting from state s and then
following a policy π, and it can be written as:

vπ(s) := Eτ∼p(τ)[
∞

∑
t=0

γtrt+1|s0 = s] (2)

where the reward function is rewritten as rt+1, since we follow the
convention that the reward at time step t+ 1 is determined by st and

10 background

at. The action-value function represents the expected return when
starting from state s, taking action a, and then following π:

qπ(s, a) := Eτ∼p(τ)[
∞

∑
t=0

γtrt+1|s0 = s, a0 = a] (3)

Naturally, this can be used to express vπ(s) as ∑a π(a|s)qπ(s, a).
One of the most important properties of the value functions in eq. 2

and 3 is that they can be rewritten in a recursive fashion, where the
value at state s depends on the average of the value for all possible
next states and actions, weighted by the probability of them oc-
curring, respectively p(s′, r|s, a) and π(a|s). This recursive formula-
tion that uses bootstrapped estimates of future values is commonly
known as Bellman equation. In particular, the Bellman equation for
vπ(s) is:

vπ(s) := Eτ∼p(τ)[
∞

∑
t=0

γtrt+1|s0 = s]

= ∑
a

π(a|s)∑
s′ ,r

p(s′, r|s, a)(r + γvπ(s′)) (4)

the full derivation can be found in [14]. Similarly, we can derive
the Bellman equation for the Q function knowing that vπ(s) =

∑a π(a|s)qπ(s, a) and the recursion in eq. 4:

qπ(s, a) = ∑
s′ ,r

p(s′, r|s, a)(r + γvπ(s′))

= ∑
s′ ,r

p(s′, r|s, a)(r + γ ∑
a′

π(a′|s′)qπ(s′, a′)) (5)

The purpose of a reinforcement learning agent acting under a
policy π is to maximize the expected return or, as we have seen,
the value vπ(s), for all s ∈ S . Therefore, value functions induce a
partial ordering over policies, for which a policy π′ is better over a
policy π if the associated value is higher:

π′ ≥ π ⇐⇒ vπ′(s) ≥ vπ(s) ∀s ∈ S

2.1 reinforcement learning 11

The policy (or policies) which is better or equal to all the others is
called the optimal policy. The optimal value functions also respect
the recursive relationships (eq. 4 & 5) which are now called Bellman
optimality equations:

v⋆(s) = max
a ∑

s′ ,r
p(s′, r|s, a)(r + γv⋆(s′)) (6)

q⋆(s, a) = ∑
s′ ,r

p(s′, r|s, a)(r + γ max
a′

q⋆(s′, a′)) (7)

In fig. 2 we show the different backup operations for the state-value
function done in eq. 4 and eq. 6 respectively.

(a) Backup diagram for vπ (b) Backup diagram for v⋆

Figure 2: Backup diagrams for the Bellman equations: expectation (a) vs
optimality (b) [14]

The optimal policy π⋆ can be derived acting greedily with respect
to v⋆, as the value function already contains all the future informa-
tion. In other words, the actions that appear best after a one-step
search on v⋆ are the optimal ones, and a policy that assigns a non-
zero probability to only these actions is the optimal policy. With the
optimal action-value function q⋆ this is even easier, as we do not
need to perform an exhaustive one-step search in the environment,
since all the information is already cached in q⋆(s, a).

12 background

2.1.1 Dynamic Programming

Dynamic Programming (DP) provides an efficient method for com-
puting the optimal values and policies for finite MDPs given com-
plete knowledge of the MDP. The most popular DP algorithms are
policy iteration and value iteration. In particular, generalized policy iter-
ation (GPI) is an iterative combination of both, which allows to con-
verge towards the optimal policy by iteratively refining the value
function estimates and improving the policy based on the updated
values.

Naturally, computing the optimal values can be challenging, be-
cause the computational complexity scales with the number of
states and actions, also known as curse of dimensionality. Moreover,
the transition model is not always known. To address the latter
challenge, alternative model-free solutions are necessary, which do
not require complete knowledge of the environment and force the
learner to rely on visited transitions (samples from the transition
model).

2.1.2 Model-free RL

Model-free methods can approach decision-making problems with
or without bootstrapping value function estimates. The first class of
solutions is called temporal difference (TD) learning, while the latter
falls under the umbrella of Monte Carlo (MC) methods. MC methods
estimate value functions and derive optimal policies by averaging
the returns of sampled episodes (sample estimate of eq. 4 or 5),
bypassing the need for a complete model of the environment. MC
methods also introduce concepts such as on-policy and off-policy
learning, which allow for greater flexibility and learning efficiency
in reinforcement learning applications. On-policy learning focuses
on evaluating and improving the policy currently being followed,
while off-policy learning allows the agent to converge to the optimal
policy using data collected from another policy.

2.1 reinforcement learning 13

In contrast to MC methods, TD learning can update the value
functions before the episode ends. This key distinction enables TD
learning to be more efficient in situations where episodes can be
long or even continuous. Similarly to MC methods, TD learning
also follows the idea of generalized policy iteration, updating the
approximate policy and the value function after every step in the
environment until they reach optimality. One of the most famous
TD algorithms is Q-learning [20], which updates the action-value
function in the following way:

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)]

As mentioned before, Q learning is a type of one-step TD or TD(0),
which updates the value function for the current state using the
reward received and the value function estimate of the next state.
However, TD learning can be extended to multi-step methods,
which combine the advantages of both MC and TD approaches.
One of the most popular multi-step TD methods is the n-step TD or
TD(n), which uses n-step returns to update the value function. By
varying the parameter n, the agent can control the degree of boot-
strapping and choose between a more MC-like or TD-like learning
process. Both MC and TD methods offer unique advantages in tack-
ling reinforcement learning problems, with MC methods providing
unbiased estimates of value functions and TD methods allowing
for faster learning via bootstrapping. In particular, the combination
of these methods with expressive function approximators such as
deep neural networks, can lead to powerful deep RL algorithms that
can tackle complex and high-dimensional problems. Deep RL algo-
rithms can be used to learn policies directly from raw sensor inputs,
such as images, and have been applied successfully in various do-
mains, including game playing, robotics, and natural language pro-
cessing [15, 17]. However, the use of function approximators also in-
troduces new challenges, such as instability, non-convergence, and
non-trivial generalization properties, which require careful algo-
rithm design and training techniques, such as experience replay,
target networks, and regularization.

14 background

2.1.2.1 Policy Search

Another approach to RL that is well-suited for high-dimensional
or continuous action spaces is policy search. Policy search algo-
rithms directly search for the optimal policy by optimizing a param-
eterized policy function π(a|s; θ) = πθ(a|s). This can be done us-
ing gradient-based optimization techniques or derivative-free meth-
ods such as evolutionary strategies or bayesian optimization. Pol-
icy search can be more sample-efficient than value-based methods,
as it only needs to evaluate the policy function at each iteration,
rather than computing a value function over the entire state space.
However, policy search can also be computationally expensive and
can suffer from local optima, especially in high-dimensional search
spaces. Deep neural networks have also been applied to represent
the policy function and have achieved state-of-the-art performance
in various domains [21–26]. The quantity that policy search meth-
ods aim to optimize is the return induced by the policy:

J(θ) = Es0∼δ(s0)
vπθ

(s0)

All the methods that optimize this objective via gradient ascent are
called policy gradient (PG) methods. The parameter updates take this
form:

θt+1 = θt + α∇̂J(θt)

where ∇̂J is an estimate of the gradient. The earliest description of
a PG method is provided by Williams with the REINFORCE algo-
rithm [27].

As vanilla PG methods often suffer from high variance in gradi-
ent estimates, which can lead to unstable and slow learning, several
techniques have been developed to address these issues. One ap-
proach is to use a value function, or a critic, to reduce the variance
in the policy gradient updates, often in the form of a baseline for
the expected return. Famous policy search algorithms of this kind
include Trust Region Policy Optimization (TRPO) [25], which uses
trust regions to ensure that policy updates do not deviate too far
from the current policy, and Proximal Policy Optimization (PPO)

2.1 reinforcement learning 15

[26], which uses a clipped surrogate objective to prevent the policy
from changing too quickly. Both methods make use of value func-
tion estimates as part of the objective function.

On the other side, algorithms that use both policy gradients and
value function estimates through bootstrapping, are at the basis of
actor-critic (AC) methods. The main difference with PG methods
is that the V and Q estimates are used as critics – i.e. to assess
the value of an action – and not as baselines [14, 28]. Prominent
examples of AC algorithms include the Deep Deterministic Policy
Gradient (DDPG) [22] and Soft Actor-Critic (SAC) [23].

2.1.3 Model-based RL

In the previous section, we discussed model-free RL approaches
that do not rely on explicit knowledge of the environment’s dy-
namics. Model-based RL, on the other hand, focuses on learning
an explicit model of the environment and using it for planning
and decision-making. By utilizing a learned model, model-based
RL methods can often achieve better sample efficiency than their
model-free counterparts.

There are two main components to model-based RL (MBRL):
learning the model and using the model for planning. The learn-
ing phase involves building a representation of the environment’s
dynamics, often referred to as the transition model. This model can
be learned using supervised learning techniques, such as neural
networks, Gaussian processes, or decision trees, to predict the next
state (and often reward) given the current state and action. The qual-
ity of the learned model is crucial, as inaccuracies in the model can
lead to suboptimal policies and poor performance.

Once the model is learned, the planning phase involves using
the model to find the best course of action for the agent. There are
several planning methods that can be used in conjunction with the
learned model, such as tree search algorithms (e.g., Monte Carlo
Tree Search [17]), optimization-based methods (e.g., model predic-
tive control or RL-based [29, 30]), and sampling-based methods

16 background

(e.g., rapidly-exploring random trees [31], zero-order trajectory sam-
pling [32]). These planning methods leverage the learned model to
explore possible future trajectories and select actions that maximize
the expected return.

A key challenge in MBRL is balancing the exploration and ex-
ploitation trade-off. The agent needs to explore the environment to
improve its model, but it also needs to exploit its current knowledge
to maximize rewards. Various exploration strategies have been pro-
posed to address this issue, such as optimistic exploration, where
the agent assumes that unexplored states hold higher rewards, or
information-theoretic approaches, where the agent seeks to max-
imize the information gained from each interaction with the envi-
ronment. In Chapter 5 we will consider this problem more in detail.

2.2 closing the loop with model predictive control

Model Predictive Control (MPC) is a well-established optimization-
based control technique that involves using an explicit model of the
system dynamics to predict the system’s behavior over a finite hori-
zon, in order to determine the control inputs that optimize a given
objective function [9, 33], possibly subjected to hard constraints on
state and control inputs. MPC relies on an accurate model of the
system dynamics and iteratively solves an optimization problem at
each time step to obtain an optimal control sequence. The first con-
trol input of this sequence is applied to the system, and the process
is repeated at the next time step, taking into account the updated
state of the system. Formally, the MPC problem can be defined as:

min
a0 ,...,aH−1

H−1

∑
t=0

c(st, at) + c(sH)

s. t. st+1 = f (st, at), t = 0, . . . , H − 1

amin ≤ at ≤ amax, t = 0, . . . , H − 1

(8)

2.2 closing the loop with model predictive control 17

where (st, at) are the state and control inputs1 at time t, H is the
prediction horizon, c(st, at) is the cost function, and f (st, at) repre-
sents the system dynamics. In this formulation, amin and amax repre-
sent the lower and upper bounds on the control inputs, respectively.
These constraints ensure that the control inputs are within feasible
limits, which is particularly important for real-world systems with
actuator limitations or safety requirements. This receding horizon ap-
proach enables the controller to adapt to changing conditions and
disturbances in real-time. MPC has been successfully applied in
various fields, including robotics [34, 35], automotive [36, 37], and
process control [8, 38]. However, standard MPC approaches often
rely on having differentiable or linear models and quadratic cost
functions, which can affect performance in highly uncertain or fast-
changing environments [39]. By integrating these approaches with
model-based learning algorithms, we can improve exploration, han-
dle model uncertainty, and adapt to diverse environments. Some
notable works in this area include PILCO [29], the information-
theoretic exploration method by Williams [40], and neural network
guided MPC [32, 41].

2.2.1 Probabilistic Ensemble with Trajectory Sampling

One notable approach that combines the strengths of MPC and
MBRL is the Probabilistic Ensembles with Trajectory Sampling
(PETS) algorithm [32]. PETS employs an ensemble of neural net-
works to model the dynamics of the environment, capturing both
the mean and uncertainty of the model’s predictions. The learned
environment model can be used to generate a set of trajectories by
applying various control sequences to the current state. The agent
then evaluates these trajectories according to the expected cumula-
tive reward and selects the one that maximizes it. This approach is
conceptually similar to the optimization problem solved in MPC.

1 To maintain consistency with the rest of the text, we use the variables s and a to
represent the system state and control action, respectively, instead of the traditional
variables x and u commonly used in control theory.

18 background

These probabilistic models enable PETS to perform uncertainty-
aware trajectory optimization, as the algorithm explicitly consid-
ers the uncertainty associated with model predictions when sam-
pling and evaluating trajectories. By doing so, PETS can effectively
balance exploration and exploitation, leading to improved perfor-
mance and sample efficiency in challenging environments.

While PETS provides a principled approach for incorporating
model uncertainty at the learning stage, in Chapter 5 we will
present a novel strategy that takes into account all the sources of
uncertainty also at the planning stage. In the next section, we will
discuss another method for optimizing control tasks in MBRL that
does not require explicit gradient information. This approach can
be particularly useful for systems with non-differentiable dynamics
or when the gradient computation is prohibitively expensive.

2.3 zero-order optimization

With a solid understanding of reinforcement learning, model-based
RL, and their connection to model predictive control and trajectory
sampling, we can now delve into zero-order trajectory optimization.
In the following section, we will present the fundamentals of this
optimization technique and its application in the context of trajec-
tory optimization.

Zero-order optimizers are a powerful class of optimization meth-
ods that solely rely on function evaluations, without the need for
higher-order information from the gradient or the Hessian. These
approaches are particularly suited for black-box optimization prob-
lems, as they only require iterative evaluations of the specified objec-
tive function. Moreover, they are not reliant on strong assumptions
like continuity or differentiability of the objective function.

Well-known examples of this type of black-box optimizers are
evolution strategies (ES), which belong to the family of evolutionary
algorithms (EA). These methods are population-based metaheuris-
tics that imitate some aspects of natural evolution mechanisms such
as mutation, recombination, and selection. In particular, evolution

2.3 zero-order optimization 19

strategies are designed to be used for continuous black-box opti-
mization and do not make use of crossover operators, which are
mainly adopted in the context of genetic algorithms (also a subset
of EA) which deal with sequences of discrete inputs [42]. Practical
implementations of ES look like a “trial and error” process and fol-
low a simple optimization procedure. Specifically, there is a fitness
function f : Rn → R to be optimized, which can be evaluated for
any input x. The goal is to find the best parameter θ⋆ through it-
erative sampling from pθ(x). This can be achieved in three main
steps:

1. generating a population of individuals, or candidate solutions,
{xi} sampled from pθ(x);

2. evaluating each of them according to their fitness f (xi);

3. selecting the fittest individuals and evolving them into the
population for the next iteration by updating the value of θ.

The advantage of ES is that the convergence is not affected by the
properties of the black-box function f (x), they are easily paralleliz-
able, they have higher chances of escaping from local minima, and
most of them grow linearly with the dimensionality of the search
space. Furthermore, these algorithms are well-suited for problems
with highly non-linear functions or discrete optimization problems
– where gradients are unavailable, unreliable, or difficult to com-
pute. Different types of ES can be often distinguished based on the
parameterization of the distribution pθ(x) (step 1) and on how the
parameters are updated (step 3). Examples of renowned ES are:

random search The population is generated by sampling from
a hypersphere surrounding the current position. Then, it iter-
atively moves to better positions in the search space. It was
originally introduced by Anderson [44] and further analyzed
by L. A. Rastrigin [43, 45]. The latter is homonymous with
the Rastrigin function shown in Fig. 3, which is a non-convex
highly multimodal function easily optimizable by ES.

20 background

Figure 3: Visualization of the Rastrigin function [43]. It is used as a tradi-
tional benchmark for optimization algorithms such as Evolution-
ary Algorithms or higher-order methods.

cross-entropy method (cem) The population distribu-
tion pθ(x) is modeled as an n-dimensional isotropic
Gaussian distribution [46], where θ = (µ, σ) and
pθ(x) ∼ N (µ, σ2I) = µ + σN (0, I), with µ and σ ∈ Rn,
respectively representing the mean and the standard devia-
tion. The optimization cost grows as O(n) since we are only
estimating a diagonal covariance matrix.

covariance matrix adaptation (cma-es) The population
distribution is still a multivariate Gaussian, but a low-rank
approximation of the full covariance matrix is estimated [47].

natural evolution strategies (nes) In this case, the selec-
tion process does not consider only a subset of the candidate
solutions but the expected value over the entire population.
Moreover, the parameters are updated according to an estima-
tion of the natural gradient that uses the Fisher Information
matrix [48, 49].

In the next section, we will focus the discussion on the Cross-
Entropy Method and how it has been successfully used in the con-
text of model-predictive control.

2.3 zero-order optimization 21

2.3.1 The Cross-Entropy Method

The cross-entropy method (CEM) is a derivative-free optimization
technique that was originally introduced in Rubinstein [46] as an
adaptive importance sampling procedure for the estimation of rare-
event probabilities that makes use of the cross-entropy measure.
CEM can be seen as an Evolution Strategy which minimizes a cost/-
fitness function f (x) with f : Rn → R by finding a suitable “indi-
vidual” x. The individuals are sampled from a population/distribu-
tion and evaluated according to f (x). Then, they are sorted based
on this cost function and a fixed number of “elite” candidates is
selected.

This elite-set is going to determine the parameters of the popula-
tion for the next iteration. In the standard case, the population is
modeled with a Gaussian distribution with mean µ and diagonal
covariance matrix diag(σ2), where µ, σ ∈ Rn. By fitting µ and σ
to the elite-set, the sampling distribution concentrates around the x
with low cost. After several iterations of this selection procedure, an
x close to a local optimum, or even the global optimum, is found.

In the MPC setting, CEM is used at every timestep to optimize an
h-step planning problem on the action sequences. In Alg. 1 we show
the pseudocode of vanilla CEM as a trajectory optimizer for model-
predictive control. The parameters µt, σt now represent matrices in
Rd×h, with d dimensionality of the action space. In addition to the
standard iterations that are part of the CEM algorithm - here called
CEM-iterations (line 8–12 in Alg. 1) - we will also have an outer loop
which marks the temporal progression in the environment by exe-
cuting one action. Naturally, the next step considers the planning
problem one timestep later.

It is important to notice that the action sequences proposed by
the n× h Gaussian distributions are sampled independently along
n and h, and that the covariance matrix is still diagonal. In other
words, each action vector inside the planning sequence has the
same probability of being sampled, whether we are at the beginning
or the end of the sequence. The corresponding random process is

22 background

called white noise. This type of noise is generally used to describe
random disturbances with a very small correlation period, e.g. ther-
mal motion of electrons.

Algorithm 1: Cross-Entropy Method (CEM) for Trajectory
Optimization

1 Parameters:
2 N: number of samples; K: size of elite-set; h: horizon;
3 σinit: initial standard deviation; CEM-iterations: number

of iterations
4 for t = 0 to T−1 // loop over episode length

5 do
6 µ0 ← zeros in Rd×h

7 σ0 ← constant vector in Rd×h with values σinit
8 for i = 0 to CEM-iterations−1 do
9 samples← N samples from N (µt, diag(σ2

t))
10 costs← cost function f (x) for x in samples
11 elite-set← best K samples according to costs
12 µt, σt ← fit Gaussian distribution to elite-set

13 execute first action of mean sequence µt

Limitations

In the last section, we have seen that CEM can be used to gen-
erate action sequences for model-predictive control. However, the
random process behind action-plan sampling is similar to the one
generating thermal noise with zero correlations in time. Since ac-
tion plans do not generally behave like the elementary vibrations
of electrons, using i.i.d. Gaussians is not optimal for continuous
control tasks.

Additionally, due to the iterative nature of population-based op-
timizers, the total number of evaluated samples becomes extensive
which can lead to a slow run time depending on the computational
cost of f .

2.4 supervised actors 23

Moreover, CEM is a stateless optimizer, meaning that it has to be
queried again whenever we want the optimal action sequence from
a different input state, and it does not keep memory of previously
found solutions. Therefore, even if we have the benefits of a global
search process that uses population-based metaheuristics, the final
outcome is very local. The opposite happens with global policies
parameterized, e.g., by neural networks and trained following local
descent directions provided by the stochastic gradient.

In Chapter 3 and 4 we propose two possible solutions to these
problems, which can be combined and used for general control
tasks. In particular, Chapter 3 focuses on how to improve the CEM
optimizer itself, while in Chapter 4 we propose to combine zero
order optimization and policy learning to obtain a global solution.
To this purpose, the next sections will be devoted to explaining the
challenges of learning global policies.

2.4 supervised actors

In Section 2.1 we have seen how policies can be learned through
value and policy iteration, where the main learning signal is deter-
mined by the Bellman equations (standard model-free RL), or also
by direct policy search, where no value function is strictly needed
and the learner only takes gradient steps in the policy space.

The most successful RL algorithms are variations of the afore-
mentioned methods, and they have been able to solve many com-
plex continuous control tasks from states (e.g. joint positions and
velocities) as well as pixels (e.g. camera images) [15, 17, 22, 23, 50]

However, both off-policy and on-policy model-free RL algorithms
suffer from high sensitivity to their hyperparameters, need a lot
of finetuning, have poor sample efficiency, have very slow conver-
gence, and need strong exploration methods to tackle sparse re-
wards and find global optima. Moreover, they still have to deal with
the typical challenges associated with RL such as the exploitation-
exploration trade-off, delayed credit assignment, and generalization
out-of-distribution.

24 background

Nevertheless, other options are possible outside the realm of rein-
forcement learning, if we assume that the exploration problem has
been solved and we can already access high-quality training data.
For example, learning a policy can be also done through supervised
learning. In this case, the policy is the student while the labeled data
comes from a teacher or expert. This approach is also more common
in the context of offline RL, which can be reframed as a supervised
learning problem [51–53], where the end result is a policy, usually
conditioned on goal states [54, 55] or the reward function [51, 56].

One popular form of supervised learning in the context of se-
quential decision making is Imitation Learning (IL). In IL, the stu-
dent policy has access to a set of expert demonstrations

τi = (s0, a0, s1, a1, . . .)i ,

and it can directly learn how to imitate the teacher’s actions e.g. by
maximum likelihood estimation, also called Behavioral Cloning
(BC):

arg max
θ

E(s,a,g)∼D [log πθ(a|s)]

where D = {τ1, τ2, . . . }, and (s, a, g) ∈ S ,A respectively.
Alternatively, it can indirectly learn a policy by first extracting the

reward function, which is called Inverse Reinforcement Learning
(IRL) [57, 58].

In some cases, the policy has access to the expert at training time
and it can query its output actions for hindsight correction for ex-
ample [59, 60]. This is especially useful since a policy learned via
BC can often lead the agent outside of the state distribution of the
training data. This problem is called covariate shift or distribution
shift [61], which we will discuss more extensively in Chapter 4.

3
T H E I M P R O V E D
C R O S S - E N T R O P Y M E T H O D

Summary
In this chapter we will present our improved version of the Cross-Entropy
Method. As explained previously, zero-order optimizers can yield com-
pelling results even in high-dimensional control tasks and sparse-reward
environments. However, their sampling inefficiency prevents them from
being used for real-time planning and control. Therefore, we propose an
improved variant of the CEM algorithm for fast planning, with novel ad-
ditions including temporally-correlated actions and memory, requiring 2.7-
22× less samples and yielding a performance increase of 1.2-10× in high-
dimensional control problems.

3.1 introduction

Recent work in model-based reinforcement learning (MBRL) for
high-dimensional systems employs population-based algorithms as
trajectory optimizers [32, 41, 62–64]. Sampling-based methods have
also been used in the control community in scenarios when the cost
function is not differentiable [65]. The particular appeal of these
methods lies in a few but important factors: the possibility of op-
timizing black-box functions; lower sensitivity to hyperparameter
tuning and thus higher robustness; no requirement of gradient in-
formation; lower susceptibility to local optima. The Cross-Entropy
Method (CEM) [46] was introduced for the first time in the 1990s
as a stochastic, derivative-free, global optimization technique, but

This chapter is based on the paper “Sample-efficient zero-order trajectory optimization for
real-time planning”, Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achter-
hold, Jörg Stückler, Michal Rolínek, Georg Martius [10].

25

26 the improved cross-entropy method

it is just in recent years that it gained traction in the model-based
RL community. CEM for trajectory optimization is indeed a promis-
ing metaheuristics which has been shown to work well even with
learned models, producing comparable or higher performance than
model-free reinforcement learning methods, as shown in [32, 62,
63].

There is a problem, however, intrinsic to the nature of population-
based optimizers, which makes these methods so far unsuitable for
real-time planning and control, even in conjunction with a learned
model: the high computational price. Heuristics like CEM require
a large number of samples to minimize the objective function. This
creates severe limitations for its deployment in real-time control for
robotics, requiring a dramatic speed-up.

Our approach originates exactly from this question: is it possible
to do real-time planning with a zero order optimizer like CEM?
Our method proposes an enhancement of the original CEM for the
purpose of trajectory optimization in model-predictive control and
comprises various ways to address the inefficiency of sampling in
high-dimensional systems, including equipping CEM with memory
and generating time-correlated action sequences.

In this chapter we present iCEM: a faster, more sample-efficient
and higher performing version of the CEM algorithm that could po-
tentially bridge the gap between MBRL in simulation and real-time
robotics. We present a detailed examination of the key improve-
ments over CEM with an extensive ablation study. Finally, we test
the results on several hard continuous-control robotic tasks in the
MuJoCo simulator [66] such as Humanoid Standup, and manipula-
tion environments with sparse rewards like Fetch Pick&Place or
other manipulation environments with many degrees of freedom
like Door and Relocate. In the latter, we solve the task with 90%
success rate while using 13.7× less samples and get an average per-
formance improvement of 400% over the state-of-the-art CEM.

In order to study the algorithmic improvements without being bi-
ased by model errors, we perform all our ablations with the ground
truth dynamics. In addition to this, we report the performance

3.1 introduction 27

when used in combination with learned models from a reimple-
mentation of the PlaNet framework [63] (without requiring addi-
tional fine-tuning), showing a speed-up that potentially allows on-
line planning with iCEM, without a substantial loss on the overall
performance.

To the best of our knowledge, this is the first work that aims at
making CEM itself fast enough to be used for real-time robot plan-
ning and control. It can be integrated into any existing method that
uses the standard CEM or other zero order optimizers. The source
code can be found at https://github.com/martius-lab/iCEM.git.

3.1.1 CEM for model-predictive control: CEMMPC

In Chapter 2 we discussed how zero order optimizers can be used in
the context of model predictive control. In particular, there are some
common adaptations to employ when using the Cross-Entropy
Method. A typical modification [32, 62] shift-initializes the current
mean µt of the CEM distribution from the previously optimized
µt−1 (see B.4.1 in the Appendix). Another standard modification is
to use a momentum term [67] in the refitting of the distributions be-
tween the CEM-iterations (line 12 in Alg. 1). The reason is that only
a small elite-set is used to estimate many parameters of the sam-
pling distribution. A simple choice is µi+1

t = αµi
t + (1− α)µelite−seti

where α ∈ [0, 1] and i is the index of CEM-iterations. Actions are al-
ways limited such that the standard method uses truncated normal
distributions with suitably adapted bounds instead of unbounded
Gaussian distributions. In the rest of this chapter, we will refer to
this variant as CEMMPC.

In Chua et al. [32] (PETS method), in addition to the standard
improvements discussed above, the sampling distribution was trun-
cated. Instead of setting the truncation bounds to match the action
range, the truncation is always set to 2σ, and σ is adapted to be
not larger than 1

2 b where b is the minimum distance to the action
bounds. We refer to this method as CEMPETS.

https://github.com/martius-lab/iCEM.git

28 the improved cross-entropy method

3.2 improved cem – icem

In this section we thoroughly discuss several improvements to CEM
for the purpose of model-predictive control (MPC) and trajectory
optimization, with the goal to achieve strong performance already
with a low number of samples. This section is complemented by the
ablations in Sec. 3.3.3 and the sensitivity analysis in Sec. B.2.2.

3.2.1 Colored noise and correlations

The CEM action samples should ideally produce trajectories which
maximally explore the state space, especially if the rewards are
sparse. Let us consider a simple stochastic differential equation in
which the trajectory x is a direct integration of the stochastic actions
a:

d
dt

x(t) = a(t) (9)

In the case of Gaussian inputs, x(t) is a Brownian random walk,
which is commonly used to describe the trajectory of particles un-
der random perturbations. It comes as no surprise that coherent
trajectories (temporally correlated) cannot be generated by uncorre-
lated inputs, like the ones sampled in CEM.

It was witnessed many times in nature that animals revert to
different strategies, rather than plain Brownian exploration, when
they need to efficiently explore the space in search for food. In fact,
when prey is scarce, animals like sharks or other predatory species
produce trajectories which can be described by the so-called Lévy
walks [68]. Classically, Lévy walks exhibit velocities with long-term
correlations (being sampled from a power-law distribution), and
consequentially produce trajectories with higher variance than a
Brownian motion [69].

If we look at the action sequence as a time series, its correlation
structure is directly connected to the power spectral density (PSD)
as detailed in Sec. B.5 in the Appendix. The PSD is the squared
norm of the value of Fourier transform and intuitively quantifies

3.2 improved cem – icem 29

how much each frequency is occurring in the time series. The CEM
actions, being sampled independently along the planning horizon,
have a constant power spectral density (PSD), more commonly re-
ferred to as white-noise. How does the PSD of a time series with
non-zero correlations look like? For this purpose, we introduce gen-
eralized colored-noise for the actions a as the following PSD:

PSDa(f) ∝
1
f β

(10)

where f is the frequency and β is the colored-noise scaling exponent.
β = 0 corresponds to white noise, a value of β > 0 means that high
frequencies are less prominent than low ones. In signal processing
they are called colored noise with pink noise for β = 1, and Brownian
or red noise for β = 2, but any other exponent is possible.

How does the trajectory x(t) of Eq. 9 look when we use colored-
noise actions? Figure 4a shows three examples with the same action
variance – the larger the β, the larger the coherence and the larger
distances can be reached. This can be formalized by computing the
PSDx of the state-space trajectory (x). Using Eq. 9 and Eq. 10 we
find:

PSDx(f) = ∥F [x(t)](f)∥2 (∗)
=
∥F [a(t)](f)∥2

4π2 f 2 =
PSDa(f)

4π2 f 2 ∝
1

f β+2

(11)
where the equality (∗) results from the integration property of
Fourier transforms, which is F [d

dt x(t)] = i2π fF [x(t)]. As a result,
the PSD of x(t) is directly controlled by the choice of β – higher β
results in stronger low frequency components, as evident in Fig. 4a.

Let us consider now the effect of colored-noise in a robotic setting:
the Humanoid Standup task, see Fig. 8, included in the OpenAI
Gym [70] environments. Figure 4b displays the PSDa of different
action-noise processes together with the PSD of successful action-
sequences. Notice the log-log scale – a straight line corresponds to
a power-law decay as in Eq. 10. When using such a colored-noise
to sample action-sequences inside CEM (more details below), we
obtain a dramatically improved speed and performance. Consider-
ing the spectrum of the successful action sequences found by our

30 the improved cross-entropy method

(a) 1D random walks with colored noise

0 100 200 300 400 500
steps

100

0

100

200

300

sp
ac

e
(x

)

= 0 (white noise)
= 1 (pink noise)
= 2 (red noise)

(b) power spectral density of action

100 101

frequency [Hz]

10 5

10 4

10 3

10 2

PS
D

= 0
= 1
= 2
= 4

act: = 2
act: = 4

Figure 4: Colored random noise. (a) random walks with colored noise
of different temporal structure. (b) power spectrum of colored-
random action sequences for different β and of the chosen (and
successful) action-sequences of iCEM generated by differently col-
ored search noise (act:β = 2 and 4) for the Humanoid Standup

task. Successful action sequences are far from white-noise (β = 0).

3.2 improved cem – icem 31

proposed iCEM method (green lines in Fig. 4b) we see a clear pref-
erence of low frequencies as well as a sharp drop for the highest
frequency (corresponding to alternating actions at every step). Re-
gardless of whether we use β = 2 or β = 4, the action sequence
follows roughly β = 1.5 with an additional bump at 2-3 Hz. More
information on the choice of β can be found in Appendix B.2.1.

We introduce the colored-noise in CEM as a function of β which
creates correlated action sequences with a PSD as in (10). For sam-
pling, we use the efficient implementation of [71] based on Fast
Fourier Transform [72]. It relies on the fact that PSD of a time-series
can be directly modified in the frequency space. Indeed, if we want
to sample actions with a PSD as in (10), we have to apply the fol-
lowing transformation to the original white noise actions a(t):

a(t)=F−1
[

1
f β/2F [a(t)]

]
gives (12)

PSDa(f)=
∥∥∥∥ 1

f β/2F [a(t)](f)
∥∥∥∥2
=

1
f β

PSDa(f)∝
1
f β

(13)

The resulting sampling function, which we will call Cβ(d, h), returns
d (one for each action dimension) sequences of length h (horizon)
sampled from colored noise distribution with exponent β and with
zero mean and unit variance.

3.2.2 CEM with memory

In the standard CEM, once the inner loop is completed, the opti-
mized Gaussian distribution and the entirety of all the elite-sets
generated at each iteration get discarded. According to the parame-
ters used in Chua et al. [32], this amounts to an average of ∼ 55000

discarded actions per step. To increase efficiency, the following im-
provements reuse some of this information:

1. Keep elites: Storing the elite-set generated at each inner CEM-
iteration and adding a small fraction of them to the pool of the next
iteration, instead of discarding the elite-set in each CEM-iteration.

32 the improved cross-entropy method

2. Shift elites: Storing a small fraction of the elite-set of the last
CEM-iteration and add each a random action at the end to use it in
the next environment step.

The reason for not shifting the entire elite-set in both cases is that
it would shrink the variance of CEM drastically in the first CEM-
iteration because the last elites are quite likely dominating the new
samples and have small variance. We use a fraction of 0.3 in all
experiments.

3.2.3 Smaller Improvements

Executing the best action (best-a) The purpose of the original
CEM algorithm is to estimate an unknown probability distribution.
Using CEM as a trajectory optimizer detaches it from its original
purpose. In the MPC context we are interested in the best possi-
ble action to be executed. For this reason, we choose the first ac-
tion of the best seen action sequence, rather than executing the first
mean action, which was actually never evaluated. Consequently, we
add the mean to the samples of the last CEM-iteration to allow the
algorithm to still execute the mean action. For more details, see
Sec. B.4.3.
Clipping at the action boundaries (clip) Instead of sampling from
a truncated normal distribution, we sample from the unmodified
normal distribution (or colored-noise distribution) and clip the re-
sults to lie inside the permitted action interval. This allows to sam-
ple maximal actions more frequently.
Decay of population size (decay) One of the advantages of CEM
over the simplest Evolution Strategies is that the standard devia-
tion is not fixed during the optimization procedure, but adapts
according to the elite-set statistics. When we are close to an opti-
mum, the standard deviation will automatically decrease, narrow-
ing down the search and fine-tuning the solution. For this reason, it
is sufficient to sample fewer action sequences as the CEM-iterations
proceed. We introduce then an exponential decrease in popula-
tion size of a fixed factor γ. The population size of iteration i is

3.3 experiments 33

Ni = max(Nγ−i , 2K), where the max ensures that the population
size is at least double the size of the elite-set.

The final version of the algorithm is showed in Alg. 4. Hyper-
parameters are given in Sec. B.2 in the appendix. Except β we use
the same parameters for all settings. The planning horizon is 30.

3.3 experiments

The aim of the experiment section is to benchmark CEM-based
methods on hard high-dimensional robotic tasks that need long
horizon planning and study their behavior in the low-sampling
budget regime. The control tasks range from locomotion to manip-
ulation with observation-dimension ranging from 18 to 376, and
action-spaces up to 30 dimensions. We use the ground truth dy-
namics model given by the Mujoco simulator as well as learned
latent-dynamics models in the PlaNet [63] framework (details in
Appendix B.2.3).

3.3.1 Environments

First, we consider the following three challenging the environments
contained in OpenAI Gym [70]:

halfcheetah running (Gym v3) A half-cheetah agent
should maximize its velocity in the positive x-direction. In contrast
to the standard setting, we prohibit a rolling motion of the chee-
tah, commonly found by strong optimization schemes, by heavily
penalizing large angles of the root joint.

humanoid standup (Gym v2) A humanoid robot is initialized
in a laying position, see Fig. 8. The goal is to stand up without
falling, i. e.reaching as high as possible with the head.

fetch pick&place (sparse reward) (Gym v1) A robotic ma-
nipulator has to move a box, randomly placed on a table, to a ran-

34 the improved cross-entropy method

Algorithm 1: Proposed iCEM algorithm. Color brown is
iCEM and blue is CEMMPC and iCEM.

1 Parameters:
2 N: number of samples; h: planning horizon; d: action

dimension; K: size of elite-set; β: colored-noise exponent
3 CEM-iterations: number of iterations; γ: reduction factor

of samples; σinit: noise strength
4 for t = 0 to T−1 // loop over episode length

5 do
6 if t == 0 then
7 µ0 ← constant vector in Rd×h

8 else
9 µt ← shifted µt−1 (and repeat last time-step) // see

App. B.4.1

10 σt ← constant vector in Rd×h with values σinit
11 for i = 0 to CEM-iterations−1 do
12 Ni ← max(N · γ−i , 2 · K)
13 samples← N samples from N (µt, diag(σ2

t)) // only

CEM & CEMMPC

14 samples← Ni samples from clip(µt + Cβ(d, h)⊙ σ2
t)

// only iCEM, see Eq. 12

15 if i == 0 then
16 add fraction of shifted elite-sett−1 to samples
17 else
18 add fraction of elite-sett to samples

19 if i == last-iter then
20 add mean to samples

21 costs← cost function f (x) for x in samples
22 elite-sett ← best K samples according to costs
23 µt, σt ← fit Gaussian distribution to elite-sett with

momentum
24 execute action in first µt // only CEM and CEMMPC

25 execute first action of best elite sequence // only iCEM

3.3 experiments 35

domly selected target location. The agent is a Cartesian coordinate
robotic arm with a two finger gripper attached to its end effector.
The reward is only the negative Euclidean distance between box
and target location, so without moving the box there is no reward.

Furthermore, we test iCEM on three environments from the
DAPG project [73]. The basis of these environments is a simulated
24 degrees of freedom ShadowHand. Each environment requires
the agent to solve a single task:

door The task is to open a door by first pushing down the door
handle which releases the latch, enabling the agent to open the door
by pulling the handle. The reward (as in [73]) is the sum of the neg-
ative distance between palm and door handle, the openness of the
door and a quadratic penalty on the velocities. Additional rewards
are given for opening the door. The state space contains the relative
joint positions of the hand, the latch position, the absolute door,
palm and handle position, the relative position between palm and
handle and a flag indicating whether the door is open or not.

door (sparse reward) The same as Door except the reward
does not contain the distance from the palm to the handle, so with-
out opening the door there is no reward.

relocate In the relocate environment the task, see Fig. 8, is to
move a ball to a target location. To achieve the goal, the ball needs
to be lifted into the air. The reward signal is the negative distance
between palm and ball, ball and target and bounties for lifting up
the object and for when the object is close to the target. The state
space contains the relative joint positions of the hand and the pair-
wise relative positions of the palm, the ball, and the target.

3.3.2 Main results

We want to obtain a sample efficient CEM that can potentially be
used in real-time given a moderate model runtime. For this reason,

36 the improved cross-entropy method

Halfcheetah Running Humanoid Standup Fetch Pick&Place

102 103

budget (trajectories per step)

0

5

10
re

tu
rn

 (×
 1

00
0)

102 103

budget (trajectories per step)

0

200

400

re
tu

rn
 (×

 1
00

0)

102 103

budget (trajectories per step)

0.0

0.5

1.0

su
cc

es
s r

at
e

Door Door (sparse reward) Relocate

102 103

budget (trajectories per step)

0.0

0.5

1.0

su
cc

es
s r

at
e

102 103

budget (trajectories per step)

0.0

0.5

1.0

su
cc

es
s r

at
e

102 103

budget (trajectories per step)

0.0

0.5

1.0

su
cc

es
s r

at
e

iCEM CEMPETS CEMMPC CEM

Figure 5: Performance dependence on the planning budget. Notice the log-
scale on the x-axis.

we study how the performance degrades when decreasing the num-
ber of samples per time-step, in order to find a good compromise
between execution speed and desired outcome.

Figure 5 presents the performance of iCEM, CEMMPC, CEMPETS
and vanilla CEM for different budgets, where a budget is the total
number of trajectories per step. Budget is defined in a local sense for
maintaining consistency across different episode lengths. It clearly
demonstrates that iCEM is the only method to perform well even
with extremely low budgets. In addition, iCEM has consistently
higher performance than the baselines for all considered budgets,
see also Table 9.

To quantify the improvements, Table 1 compares iCEM with the
respective best baseline in each environment. We report the sample
efficiency factor based on the approximate budget needed to reach
90% of the best baseline performance (at budget 4000) and see that
iCEM is 2.7-21.9×more sample efficient. Similarly, we consider how
much higher performance iCEM has w.r.t. the best baseline for a
given budget (averaged over budgets < 1000) and find 120-1030%
of the best baseline performance.

3.3 experiments 37

Table 1: Sample efficiency and performance increase of iCEM w.r.t. the best
baseline. The first 4 columns consider the budget needed to reach
90% of the best baseline (dashed lines in Fig. 5). The last column is
the average improvement over the best baseline in the given budget
interval.

90% base- ∼ budget ∼ budget efficiency iCEM w.r.t. baseline

line@4000 iCEM baseline factor budgets %

Halfcheetah Running 7744 312 840 2.7 50–1000 120%

Humanoid Standup 378577 121 372 3.06 50–1000 128%

Fetch Pick&Place 0.87 185 1330 7.2 50–1000 243%

Door (sparse reward) 0.86 45 985 21.9 100–1000 1030%

Relocate 0.88 95 1300 13.7 100–1000 413%

Planning using learned dynamics models

In addition to planning in environments with given ground-truth
dynamics, we investigate the behavior of iCEM for planning using
learned dynamics models. For this, we train dynamics models from
pixel input on several DeepMind control suite tasks using PlaNet
[63]. The dynamics model is learned from pixels with training data
repeatedly collected with the respective planner. We compare the
performance of the entire training and planning process, see Fig. 6,
with (a) the CEM planner with budget 10000 and 10 CEM-iterations,
(b) iCEM with small budget (366) and 3 CEM-iterations, and (c) the
CEM planner with small budget (366) and 3 CEM-iterations. For all
planners but iCEM, we execute the mean action of the distribution.
We observe that iCEM with a budget of only 366 is not far behind
the extensive CEM (a). Moreover, iCEM is clearly better than the
baseline (c) with the same low budget for the Cheetah Run and
Walker Walk environments. Cup Catch is a challenging learning
task due to its sparse reward. Presumably, training progress largely
depends on observing successful rollouts early in training. On this
task, iCEM reaches similar performance to the other CEM methods.
We provide further details and results in the Appendix B.

38 the improved cross-entropy method

Cheetah Run Walker Walk Cup Catch

0 200 400 600 800 1000
episodes collected

0

250

500

750

1000

Cu
m

ul
at

iv
e

re
wa

rd

0 200 400 600 800 1000
episodes collected

0

250

500

750

1000

Cu
m

ul
at

iv
e

re
wa

rd

0 200 400 600 800 1000
episodes collected

0

250

500

750

1000

Cu
m

ul
at

iv
e

re
wa

rd

CEM extensive
CEM low budget
iCEM low budget

Figure 6: PlaNet performance using an extensive CEM variant (budget
10000) and two low-budget variants of CEM and iCEM (bud-
get 366). Shown is the mean and min/max-band cumulative re-
ward (three independent restarts) with average-smoothing over
50 episodes. iCEM outperforms the low-budget baseline on Chee-
tah Run and Walker Walk, and performs similarly on Cup

Catch.

Towards real-time control

With ground-truth models and CPU-parallelization, we reach close
to real-time performance for simple environments (HalfCheetah).
However, the most important scenario is the one with learned mod-
els: in the PlaNet approach we reach indeed real-time planning with
iCEM using our own PyTorch implementation, see Table 2.

3.3.3 Ablation study

To study the impact of each of our improvement individually, we
conducted ablations of iCEM (orange bars in Fig. 7) and additions
to CEMMPC (blue bars in Fig. 7) for some environments and bud-
gets, see Sec. B.3 for all combinations and more details.

Some components have bigger individual impact than others,
e.g. using colored noise consistently has a huge impact on the fi-
nal result followed by keep and shift elites and best-action execution.
However, the addition of all components together is necessary to
reach top performance. As expected, the impact of the different ad-
ditions becomes more relevant in the low-budget regime.

3.4 related work 39

Table 2: Runtimes for iCEM with different compute budgets using Mu-
joco simulator and the PlaNet models. Times are given in seconds
per env-step (total wall-clock time = time/step × episode length).
∗: Xeon® Gold 6154 CPU @ 3.00GHz, and ∗∗: Xeon® Gold 5220,
NVidia® Quadro RTX 6000.

Budget (trajectories per step)

Envs Threads 100 300 500 2000 dt

Halfcheetah Running
∗ 1 0.326 0.884 1.520 5.851

0.05

32 0.027 0.066 0.109 0.399

Humanoid Standup
∗ 1 2.745 8.811 13.259 47.469

0.015

32 0.163 0.456 0.719 2.79

Fetch Pick&Place
∗ 1 8.391 26.988 40.630 166.223

0.04

32 0.368 1.068 1.573 6.010

iCEM (366) CEM (10000) dt

PlaNet (PyTorch)∗∗ 0.044±0.003 0.18±0.031 0.04–0.08

3.4 related work

Many works on MBRL and motion planning show that it is pos-
sible to control systems without making use of gradient descent.
Indeed, Evolution Strategies (ES) [74] regained popularity for their
successful use in RL [49, 75, 76], making population-based meth-
ods an attractive alternative to policy gradient or as a supportive
guidance [77, 78]. Sampling-based techniques have also been used
for model-predictive control (MPC), like model predictive path in-
tegral (MPPI) control [64], with applications to aggressive driving
by using a GPU [79].

In particular, the Cross-Entropy Method (CEM) [46, 80, 81], thor-
oughly analyzed in [82], has been used both for direct policy op-
timization [83] and planning with learned models [32, 62], to im-
prove the performance of rapidly exploring random trees [84], with

40 the improved cross-entropy method

(a) halfcheetah (running) 100

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

2

5

re
tu

rn
 (×

 1
00

0)

(b) fetch pick and place (300)
CE

M M
PC

+
de

ca
y

+
ke

ep

+
sh

ift

+
be

st-
a

+
cli

p

+
co

lor

 iC
EM

 de

ca
y

 ke
ep

 sh

ift

 be
st-

a
 co

lor
 0.0

0.5

1.0

su
cc

es
s r

at
e

(c) relocate (300)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 7: Ablation studies. Blue bars show CEMMPC with each improve-
ment added separately. Yellow bars show iCEM with each fea-
tures removed separately. Feature names are listed in Sec. 3.2.

successful applications in many fields of science. Examples include
visual tracking [85], bioinformatics [86], and network reliability [87].

In Duan et al. [88] it is reported that CEM has similar perfor-
mance to standard trajectory optimizers like iLQG, as well as better
performance over the more sophisticated Covariance Matrix Adap-
tation ES (CMA-ES) [47], the latter being computationally more ex-
pensive since it computes the full covariance matrix, while actions
in CEM are sampled independently along the planning horizon, re-
quiring only a diagonal covariance matrix.

3.5 conclusion 41

The core focus of this chapter was to show that CEM can be func-
tional for real-time decision making. Recent works in this direction
propose a differentiable version of CEM [89] or to jointly use model
gradients together with the CEM search [78]. Wang and Ba [62] use
CEM on the policy parameters rather than in the action space. Nev-
ertheless, the whole procedure still depends on the speed of the
CEM optimization, making it the bottleneck for fast planning.

3.5 conclusion

In this chapter, we introduced iCEM: a sample-efficient improve-
ment of CEM intended for real-time planning. Most notably, we
introduced temporally correlated action sampling and memory for
previous trajectories. Sampling actions from a colored-noise distri-
bution introduces long-range dependencies that we would not have
with “thin-tailed” distributions, such as the Gaussian distribution.
The proposed additions were crucial for solving, for the first time,
complicated tasks in MBRL with very few samples, e.g., humanoid
stand-up or door opening (with sparse rewards) with only 45 trajec-
tories per step. With this budget, we managed to enter the real-time
regime, as shown in the experiments with learned models. In the
next chapter, we will see how to extract a global reactive policy
from the iCEM optimizer.

4
A D A P T I V E P O L I C Y
E X T R A C T I O N

Summary
Zero-order trajectory optimizers like iCEM have so far shown strong per-
formance for solving high-dimensional and continuous robotics tasks, how-
ever, their output is inherently local and they have zero generalization per-
formance. In this chapter, we propose a technique to jointly optimize the
trajectory with iCEM and distill a policy, which is essential for fast execu-
tion in real robotic systems. Our method builds upon standard approaches,
like guidance cost and dataset aggregation, and introduces a novel adap-
tive factor which prevents the optimizer from collapsing to the learner’s
behavior at the beginning of the training. The extracted policies reach un-
precedented performance on challenging tasks like making a humanoid
stand up and opening a door without reward shaping.

4.1 introduction

The general purpose of model-based and model-free reinforcement
learning (RL) is to optimize a trajectory or find a policy that is fast
and accurate enough to be deployed on real robotic systems.

Policies optimized by model-free RL algorithms achieve outstand-
ing results for many challenging domains [90, 91], however, in order
to converge to the final performance, they require a large number
of interactions with the environment and can hardly be used on
real robots, which have a limited lifespan. Moreover, real robotic
systems are high-dimensional and have a highly non-convex opti-

This chapter is based on the paper “Extracting strong policies for robotics tasks from zero-
order trajectory optimizers”, Cristina Pinneri*, Shambhuraj Sawant*, Sebastian Blaes,
Georg Martius [11].

43

44 adaptive policy extraction

mization landscape, which makes policy gradient methods prone
to converge to locally optimal solutions. In addition, model-free
RL methods only gather task-specific information, which inherently
limits their generalization performance to new situations.

On the other hand, recent advances in model-based RL show
that it is possible to match model-free performance by learning
uncertainty-aware system dynamics [29, 32, 92]. The learned model
can then be used within a model-predictive control framework for
trajectory optimization. Zero-order optimizers are gaining a lot of
traction in the model-based RL community [32, 62, 64] since they
can be used with any choice of model and cost function, and can
be surprisingly effective in finding high-performance solutions [93]
(close to a global optimum) in contrast to their gradient-based coun-
terparts, which are often highly dependent on hyperparameter tun-
ing [94]. One of the most popular optimizers is the Cross-Entropy
Method (CEM), originally introduced in the 90s by Rubinstein [46].

Despite their achievements, using zero-order methods for gen-
erating action sequences is time consuming in complex high-
dimensional environments, due to the extensive sampling, making
it hard to deploy them for real-time applications.

Extracting a policy from powerful zero-order optimizers like
CEM would bridge the gap between model-based RL in simulation
and real-time robotics. As of today, this is still an open challenge
[62].

We analyze this issue and showcase several approaches for policy
extraction from CEM. In particular, we will use the sample-efficient
modification of CEM (iCEM) presented in the previous chapter [93].
Throughout this chapter, we will call these optimizers “experts” as
they provide demonstration trajectories. To isolate the problem of
bringing the policy’s performance close to the expert’s one, we con-
sider the true simulation dynamics as our forward model.

Our contributions can be summarized as follows:

• pinpointing the issues that arise when trying to distill a policy
from a multimodal, stochastic teacher;

4.1 introduction 45

Figure 8: Environments and exemplary behaviors of the learned policy us-
ing APEX. From left to right: Fetch Pick&Place (sparse reward),
Door (sparse reward), and Humanoid Standup.

• introducing APEX, an Adaptive Policy EXtraction procedure
that integrates iCEM with DAgger and a novel adaptive vari-
ant of Guided Policy Search;

• our specific integration of methods produces an improving
adaptive teacher, with higher performance than the original
iCEM optimizer;

• obtaining strong policies for hard robotic tasks in simula-
tion (Humanoid Standup, Fetch Pick&Place, Door), where
model-free policies would usually just converge to local op-
tima.

Videos showing the performance of the extracted policies and
other information can be found at https://martius-lab.github.

io/APEX.

https://martius-lab.github.io/APEX
https://martius-lab.github.io/APEX

46 adaptive policy extraction

4.2 related work

Our objective is to extract high-performing policies from CEM ex-
perts that can operate with a few planning samples to make itera-
tive learning fast. Other kinds of zero-order optimizers have been
used to generate control sequences [64, 95] but they still have to
evaluate thousands of trajectories for each time step. Even simple
random shooting has been used as a trajectory optimizer to boot-
strap a model-free policy [41].

To train policies from optimal control solutions, it was shown that
the expert optimizers need to be guided towards the learning pol-
icy – known as guided policy search (GPS) [96, 97]. In our work,
the expert does not come from optimal control but is the stochastic
iCEM optimizer, which we will also refer to as teacher. We apply
GPS in a model model-predictive control setting, as done in Levine
and Koltun [96], Mordatch and Todorov [98], Mordatch et al. [99],
Zhang et al. [100], Kahn et al. [101], and Sun et al. [102] using local
trajectory optimization to generate a dataset for training a global
policy through imitation learning. These approaches alternate be-
tween training a policy and creating new data with a model-based
supervisor guided towards the learner, which was formalized in
Sun et al. [102]. Stochastic experts require particular guidance strate-
gies, such as an adaptive cost formulation that we propose here, to-
gether with expert warm-starting via distribution initialization and
additional samples from the policy. A simple form of warm-starting
was already done in Wang and Ba [62].

Recently, approaches like simple point-to-point supervised train-
ing such as Behavioral Cloning (BC), or Generative Adversarial Net-
work training (GAN) have been explored [62] for policy distillation
from CEM, but only largely sub-optimal policies could be extracted.
When the policy is used alone at test time and not in combination
with the MPC-CEM optimizer, its performance drops significantly,
becoming almost random for some environments. We argue that the
reason behind the difficulty in distilling a policy from CEM expert

4.3 methods 47

data is the multimodality of the CEM solution space and its inher-
ent stochasticity due to the sampling, which we address below.

Another possibility to train higher-performance policies from ex-
perts is DAgger [59], which is an on-policy method, asking the ex-
pert to relabel/correct policy actions. Nevertheless, as we will show
in the following sections, DAgger alone is not sufficient to extract
high-performing policies in our setting. To solve this problem, we
use a guiding cost in combination with DAgger. A combination of
GPS and DAgger-style relabeling was proposed in PLATO [101] to
create, however, unbiased training data from iLQG experts. Since
unguided DAgger is not appropriate with CEM, PLATO is not suc-
cessful in our setting either. The components of our algorithm will
be explained in the following sections.

4.3 methods

Trajectory optimization aims to find a suitable action sequence
a⃗t = (at, at+1, . . . , at+h) of horizon h that minimizes a cost function
f (⃗at, st), where st is the current state of the system. i. e.

a⃗ ⋆
t ← arg min

a⃗t

f (⃗at, st) . (14)

The cost function f encodes the task. Optimal control is obtained
if f is the trajectory cost until step h plus the cost-to-go under the
optimal policy for an infinite-horizon problem, evaluated at the last
state in the finite horizon trajectory. Typically, the cost-to-go is re-
placed by a proxy cost such as the distance to a target. In our case,
the cost f is given by the sum of negative environment rewards up
to the planning horizon.

To optimize Eq. 14, we use the improved CEM algorithm (iCEM)
[10] introduced in Chapter 3. We remind that this method makes
use of colored-noise and memory, and it generates correlated action
sequences with a non-flat frequency spectrum, differently from the
flat Gaussian noise of CEM. This, together with the memory addi-
tion, results in one order-of-magnitude sample reduction.

48 adaptive policy extraction

4.3.1 Using a policy to inform the optimization: iCEMπ

Unguided search for action sequences can be hard, in particular, if
the cost function has large flat regions (sparse rewards). Since we
aim at extracting a policy π(s), we can expect that after some ex-
amples the policy can be used to guide the search into the right
region. Thus, we warm-start the mean µ of the iCEM Gaussian
distribution with the policy actions. In particular, at time t = 0
where no prior information exists, the mean is initialized from
rolling out the trajectory with the policy until the planning horizon:
µ← (π(s0), π(s1), . . . π(sh)). Whenever the action for a new step is
computed, iCEM uses shift initialization of the mean, and only the
mean-action at the end of the horizon is initialized from the policy.
Since iCEM is sample-based we also provide it with samples from
the policy directly. More concretely, the actions performed by the
policy are added in the last iteration if iCEM. The policy-informed
iCEM algorithm is called iCEMπ and is shown in Alg. 4.

4.3.2 Off- and On-Policy Imitation Learning

How difficult is it to clone a policy from iCEMπ? Using a basic
off-policy method like Behavioral Cloning (BC), which simply does
point-to-point L2 loss minimization, does not work out-of-the-box.
This is because during test-time, the policy visits state-space regions
for which it never received any expert feedback, and it consequently
fails. This problem is also known as “covariate shift”. The perfor-
mance gap (difference in cost to go) between the expert and the
policy scales quadratically in time due to the covariate shift [59].

A classical way to address this problem is with on-policy imita-
tion learning. DAgger (Dataset Aggregation) by Ross, Gordon, and
Bagnell [60] is the most popular example. DAgger works by iter-
atively rolling out the current policy, querying the expert for the
correct actions (also called relabeling) on the states visited by the
policy, and training the policy on the aggregate dataset across all

4.3 methods 49

iterations. The covariate shift is alleviated by populating the data
with states visited by previous iterations of the policy.

Issues of stochastic teachers

Nevertheless, some problems arise when considering population-
based optimizers as experts, both for BC alone or in combination
with DAgger. The optimized action sequence of iCEM might con-
verge to different solutions every time it is asked to relabel the pol-
icy actions. Naturally, many actions can result in an equally high-
performing solution. As an example: in the Fetch Pick & Place task,
well before grasping the box, the action of opening or closing the
gripper can be arbitrary, as long as the action of opening the grip-
per is executed on time. To illustrate this problem, we analyze the
variance of the relabeled actions produced by the same expert on a
fixed state sequence. The variance is high, spanning over a third of
the action-space, as can be seen in Fig. 9a.

(a) iCEM (b) guided iCEMπ

0 10 20 30 40 50
steps

−1

0

1

ac
ti

on
s

(d
im

=
1)

policy π iCEM

0 10 20 30 40 50
steps

-1

0

1

ac
ti

on
s

(d
im

=
1)

policy π iCEMπ-GPS fixed λ

Figure 9: Variance of DAgger actions when relabeling 10 times the same
trajectory in case of unguided iCEM (a) vs. guided iCEMπ (b),
for the Fetch Pick&Place task. The action variance of iCEM is
considerably higher than the one of iCEMπ-GPS guided by the
shown policy (std-dev=0.30 vs 0.13). The policy π is trained from
a single expert rollout.

4.3.3 Guided Policy Search

To lift some of the aforementioned problems, the expert can be
guided by the current policy. For high-dimensional control tasks, in

50 adaptive policy extraction

addition to the high variance (Fig. 9a), zero-order optimizers may
also find multiple different solutions, leading to multi-modal train-
ing data. This prohibits successful policy extraction through super-
vised learning. To address these issues, the cost function f in Eq. 14

becomes the main cost J (task) plus a guidance cost to bias the opti-
mizer’s solution towards the policy:

a⃗ ⋆
t ← arg min

a⃗t

Jt (⃗at, st) + λDKL(πθ ||⃗at), (15)

which is also known as Guided Policy Search (GPS) [96]. When com-
peting solutions arise, the one closer to the policy is preferred, tack-
ling in this way the problem of multimodality and creating much
more consistent training data. As a remark, in our experiments, we
use deterministic policies which reduces the KL-divergence to a
squared difference between the actions.

In addition to Eq. 15, we further guide iCEM by warm-starting
it from the policy, as implemented in iCEMπ (Alg. 4). As a conse-
quence, both together lead to a reduced action variance, as seen in
Fig. 9b. For an illustrative state sequence, the standard deviation of
expert actions drops from σ = 0.30 without guidance to σ = 0.13.

The data for training the policy comes from the expert interacting
with the environment, that we call expert rollouts. When combining
GPS with DAgger we use the same cost-function (Eq. 15) for the
normal expert rollout and for asking the expert to perform action
relabeling. This contrasts with PLATO [101], designed for iLQG ex-
perts, where the guidance cost is only used for the expert rollouts.
Also, in PLATO the policy is not executed to collect new data, but re-
labeling of guided expert data is done using the unmodified cost to
collect optimal training data. For zero-order optimizers, unguided
solutions are not helpful as shown above. Without relabeling the
actual policy rollouts, we found PLATO not to work in our setting.

The hyperparameter λ in Eq. 15 is difficult to choose. It might
be adapted according to learning progress or other heuristics. How-
ever, when using the guided cost in iCEM other considerations have
to be made which lead to a simple adaptation scheme introduced
in the next section.

4.3 methods 51

4.3.4 Adaptive auxiliary cost weighting

The purpose of λ is to trade-off the potential loss in cost by staying
close to the policy. Generalizing Eq. 15, we can phrase the cost func-
tion f in Eq. 14 as the sum of the main cost J and a set of auxiliary
costs Caux

j :

a⃗ ⋆
t ← arg min

a⃗t

Jt (⃗at, st) + ∑
j

λjCaux
j (⃗at, st) (16)

Examples of auxiliary costs are the guidance cost as in Eq. 15 and
the action norm ∥⃗a∥ to prefer small action magnitudes. We follow
the philosophy that the auxiliary costs are subordinate and should
only bias the solutions without causing a large performance drop.
This leads to the idea that the auxiliary costs should never domi-
nate the optimization. Since the main costs might vary by orders
of magnitude, for instance, in sparse reward settings, we opt for a
formulation where the auxiliary costs can maximally lead to a fixed
fractional loss in performance.

As a motivating example, let us consider hard tasks that present
flat regions in the cost function: in this case, a non-zero λ can lead
to a failure of guided iCEM to find any good solution. How is that
possible? Let us consider the Fetch Pick & Place task as shown in
Fig. 8. When none of the sampled action-sequences moves the box
(which is quite likely in the first iCEM iteration) then all sequences
are equivalent under the main cost. Elites (Alg. 4 line 17) are only
selected based on the auxiliary costs resulting in a quick reduction
in sampling variance and preventing a good solution to be ever
found. To illustrate this phenomenon, Fig. 12 displays the sampling
distribution of iCEMπ throughout the optimization iterations (line
9 in Alg. 4). Using a fixed λ (iCEMπ-fixed λ) typically converges to
the policy action which is often unsuccessful in a new situation or
when the policy is still weak.

We propose the following adaptation of λj:

λj = cj
R(J)

R(Caux
j) + ϵ

(17)

52 adaptive policy extraction

where cj is the new hyperparameter, ϵ > 0 is a small regularization
to avoid amplifying tiny auxiliary costs, and R(C) represents the
cost-range of C in the elite set:

R(C) = max
elite-set

C− min
elite-set

C . (18)

This formulation ensures that λi is zero if the main cost J cannot
be improved by the preliminary elite-set (as in the example above).
When an actual improvement is possible and the cost landscape
is not flat (R(J) > 0), the auxiliary cost influences up to a fixed
fraction (cj) of the cost-range. The plot of the adaptive lambda is
shown in Fig. 10. Thus, the sampling distribution for the adaptive

Figure 10: Illustration of the adaptive λj parameter as a function of the
main cost range R(J) and auxiliary cost range R(Caux

j).

case will converge only if a good solution is found, as visualized in
Fig. 12a (iCEMπ-GPS adaptive λ) for one auxiliary cost being the
KL-term as in Eq. 15. The new hyperparameter c is easier to tune
than λ. We use the same c for all experiments, although the main
costs are 3 orders of magnitude apart.

Another aspect of the ratio in Eq. 17 is that, when none of the
elite sequences is close to the policy network, then the denomina-
tor of Eq. 17 is small, which heavily steers the sampling towards the
policy, however, only if the numerator is not zero (R(J) ̸= 0), i. e.a re-
ward signal from the environment is detected. In Fig. 11, we report

4.3 methods 53

how the adaptive λ parameter changes over time for a weak policy
(untrained neural network, low performance) and a medium policy
(partially trained, medium performance), in the Fetch Pick&Place

environment. In both runs, we fixed the goal and target locations.
In the case of a weak policy, no successful solution is found in the
first few time steps, meaning the min cost is the same as the max
cost among elites. Hence, λ is zero, allowing the optimizer to freely
explore without being hampered by the weak policy. In the case of
a better policy, a solution is found early on, possibly because of the
optimizer being guided by the policy. Thus λ becomes non-zero in
the second time step already.

Weak Policy Medium Policy

0 5 10 15 20 25 30
step

0.0000

0.0005

0.0010

0.0015

2.5

5.0

7.5

10.0

co
st

0 5 10 15 20 25 30
step

0.0000

0.0005

0.0010

0.0015

2.5

5.0

7.5

10.0

co
st

max
elite set cost min

elite set cost

Figure 11: Evolution of the adaptive λ parameter during planning. Left for
a weak, right for a medium policy. The light and dark orange
curves show the original min/max cost (J) among the elites. The
blue curves show how lambda changed due to the differences in
the original costs.

Teacher improvement

Another effect of adaptive guidance in combination with iCEMπ is
the improvement of the expert/teacher, which is not common nor
expected in standard imitation learning. The increased success-rate
is shown in Fig. 12b. As we can see from the plot, the guidance
alone is not sufficient to reach the original iCEM expert perfor-
mance: when the auxiliary cost becomes adaptive, the iCEM ben-
efits from the policy.

54 adaptive policy extraction

(a) iCEMπ-GPS with fixed λ (b) Success rate of iCEMπ-experts

1 2 3 4 5 6
CEM-iterations

−1.0

−0.5

0.0

0.5

1.0

ac
ti

on
va

lu
es

iCEMπ-GPS adaptive λ

iCEMπ-GPS fixed λ

expert action

policy

randomπ mediumπ
0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

iCEM

iCEMπ-GPS λ-adaptive

iCEMπ-GPS λ-fixed

Figure 12: Effect of adaptive λ throughout iCEMπ iterations and success
rate on the Fetch Pick&Place task. (a) The action sampling
distribution is shown over the iCEM-iterations (at a predefined
time-step) and one of the 4 action-dimensions when guiding
with a weak policy. Dashed lines indicate the action of the policy
and of a high compute-budget iCEM expert. Fixed λ shifts the
distribution too early, resulting in a collapse to the policy behav-
ior and failure to find a good solution. (b) Average success rate
of iCEMπ expert (low compute-budget with 45 samples) over
800 episodes.

4.3.5 Putting the pieces together: APEX

Our method, named Adaptive Policy EXtraction (APEX), uses adap-
tive policy-guided iCEMπ and DAgger using the same expert to
create data for successful training of policies in an iterative fashion.

The main steps are: create data from the guided expert, update
the policy, rollout the policy and relabel the actions using the same
expert (DAgger), add the relabeled data to the dataset, and update
the policy. This iterates until the desired performance is reached.
More details are found in the pseudo-code in Alg. 3.

4.4 results

Can strong policies be obtained from model-based planning and
imitation learning? By considering high-dimensional challenging
robotics environments, some of them with sparse rewards, we test

4.4 results 55

APEX and find that the answer is yes. In some cases, we consider-
ably improve the state-of-the-art currently held by model-free meth-
ods.

We perform our experiments on a selection of 4 environments,
listed below, which use the MuJoCo [66] physics engine:

humanoid standup (OpenAI Gym [70] v2) A humanoid robot
is initialized in a laying position. The goal is to stand-up without
falling, i. e.reaching as high as possible with the head. We use a task
horizon of 500.

fetch pick&place (sparse reward) (OpenAI Gym v1) A
robotic manipulator has to move a box, randomly placed on a table,
to a randomly selected target location. The reward is only the nega-
tive Euclidean distance between box and target location, so without
moving the box there is no reward.

door (sparse reward) (DAPG project [73]) A simulated 24

degrees of freedom ShadowHand has to open a door with a handle.
The reward is the sum of door opening, a quadratic penalty on the
velocities, and a bounty for opening the door (in contrast to [73]
where a guidance of the hand to the handle was used).

halfcheetah running (OpenAI Gym v3) A half-cheetah
agent should maximize its velocity in the positive x-direction. In
contrast to the standard setting, we prohibit a rolling motion of the
cheetah by heavily penalizing large absolute angles of the root joint.
In the standard setting, numeric instabilities in the simulator are
exploited by iCEM.

In Fig. 13, we compare APEX against several imitation learning
baselines: Behavioral Cloning (BC) (iCEM BC), DAgger (iCEM DAg-
ger), and BC from iCEMπ with guidance cost (fixed λ) and warm-
starting (iCEMπ-GPS). For reference, we also provide the perfor-
mance of SAC1 [23] as a model-free RL baseline, to get an idea of the
difficulty of the learning tasks. Note that we use partially sparse re-

1 We took the implementation from https://github.com/vitchyr/rlkit

https://github.com/vitchyr/rlkit

56 adaptive policy extraction

wards settings in Fetch Pick&Place (only box to goal reward) and
Door (sparse reward) (no hand-to-handle reward) which makes
them particularly challenging. However, for Fetch Pick&Place, a
specialized method for goal-reaching tasks using hindsight relabel-
ing (DDPG+HER) [103] can solve the task. In Humanoid Standup

the performance of SAC marks the behavior of just sitting. This is
a local optima and is hard to escape for gradient-based methods.
APEX manages to stand up but cannot balance for long, presum-
ably because there are many ways the robot can fall. Notably, the
Door (sparse reward) environment with its 24 DoF Shadow hand,
is solved by our method with a high success-rate.

Halfcheetah Running Humanoid Standup (500)

0 250 500 750 1000
iteration (n=1)

0

2

4

6

re
tu

rn
 (×

 1
00

0)

0 100 200 300
iteration (n=1)

0

25

50

75

100

re
tu

rn
 (×

 1
00

0)

Door (sparse reward) Fetch Pick&Place

0 100 200 300
iteration (n=10)

0.0

0.5

1.0

su
cc

es
s r

at
e

0 200 400 600
iteration (n=25)

0.0

0.5

1.0

su
cc

es
s r

at
e

APEX iCEM -GPS iCEM DAgger iCEM BC SAC

Figure 13: Policy performance on the test environments for APEX and base-
lines. SAC performance is provided for reference.

A very interesting effect of our approach is that the iCEMπ expert
working inside of APEX improves with the policy, as seen in Fig. 14.
When guided by a policy, the performance raises (dashed blue lines)
with the policy performance, even if the policies themselves are not
very strong yet. Together, APEX is able to shrink the gap between
expert and policy performance and yields strong results (see also
the illustrative behaviors in Fig. 8). The policy can achieve signifi-

4.4 results 57

Halfcheetah Running Fetch Pick&Place

0 500 1000 1500
iteration (n=1)

0

2

5

8
re

tu
rn

 (×
 1

00
0)

0 200 400 600
iteration (n=25)

0.0

0.5

1.0

su
cc

es
s r

at
e

APEX APEX Expert iCEM Expert SAC

Figure 14: Interplay between policy and expert. Policy performance (solid
line) and expert performances (dashed lines) on selected test en-
vironments for APEX. Due to warm-starting and adding policy
samples, experts improve with the policy. For low budgets this
effect is stronger, see Fig. 34.

cantly higher performance than iCEM especially in the low-budget
case in Halfcheetah Running, presented in Fig. 34 in Appendix
C.

4.4.1 Ablations

Are all components of APEX required? We perform several abla-
tions to investigate this question. Figure 15 shows the performance
when removing each individual component from APEX, as detailed
in Appendix C.2. Using the adaptive guidance cost instead of a fixed
λ is only important in the sparse reward environments, as expected.
In case of dense rewards, the λ adaptation does perform identically.
Removing warm-starting has a drastic effect in all environments.
APEX without DAgger is also much worse. Not adding policy sam-
ples to the optimization has an interesting effect: At first glance
the policy performance is higher, however, asymptotically the full
APEX is better or on par. The reason is shown in Fig. 16 where
we report the expert performance of APEX and APEX without pol-
icy samples. The expert in the latter case only marginally improves
upon the standard iCEM. Thus, the policy is limited to the iCEM
performance, whereas in APEX it can go beyond, see Fig. 14.

58 adaptive policy extraction

Halfcheetah Running Fetch Pick&Place Door (sparse reward)

0 500 1000 1500
iteration (n=1)

0

2

5

re
tu

rn
 (×

 1
00

0)

0 200 400 600
iteration (n=25)

0.0

0.5

1.0

su
cc

es
s r

at
e

0 100 200 300
iteration (n=10)

0.0

0.5

1.0

su
cc

es
s r

at
e

APEX
APEX w/o DAgger

APEX (-fixed)
APEX w/o warmstarting

APEX w/o policy samples

Figure 15: Ablation experiments. We remove different components of the
APEX algorithm, see legend. In case of Halfcheetah Running,
the performance for APEX with λ-fixed is not reported as it
matches that of APEX.

Halfcheetah Running Fetch Pick&Place

0 500 1000 1500
iteration (n=1)

0
2
4
6
8

re
tu

rn
 (×

 1
00

0)

0 200 400 600
iteration (n=25)

0.00

0.25

0.50

0.75

1.00

su
cc

es
s r

at
e

APEX Expert APEX w/o policy samples Expert iCEM Expert

Figure 16: The expert performance for APEX and APEX without adding
policy sample. As seen, the expert performance improves with
learnt policy as the added policy sample directs expert distribu-
tion towards a better solution space.

4.5 conclusions

We considered the problem of policy extraction from model-based
trajectory optimizers based on sampling like iCEM. Our method
(APEX) is able to extract strong policies for hard robotic tasks
which are especially challenging for model-free RL methods. This is
achieved by imitation learning from a guided iCEM expert, where
both policy and expert mutually propel themselves to higher per-
formances.

4.5 conclusions 59

With this work, we want to propose a promising stepping stone
towards learning high-performing policies for real robots, where
speed and minimal interaction with the system are more important
than asymptotic performance. Model-based RL methods are very
sample efficient [32, 62] in terms of actual environment interactions,
but are too slow to run in real-time yet. With the recently proposed
iCEM, the possibility for real-time planning became feasible but still
needs huge computational resources. Extracting high performing
policies is a promising route to success, where we provide here an
important ingredient.

Another route to real robot applications is to pretrain models and
policies in simulation and then adapt to the real system and extract
policies with APEX. Similarly, the sim-to-real transfer can be done
without learned models but using the ground-truth simulations as
done here to get a strong initialization for fine-tuning on the real
hardware. One might ask: why adopting a model-based planning
method if we are using only a simulator? Because planning with
population-based optimizers can produce nearly-optimal solutions
and the extracted policy (if able to match expert’s performance) can
beat model-free baselines like SAC, which can get stuck in local
minima in high-dimensional systems, as happened in the compli-
cated Humanoid Standup task.

This chapter, together with the first one, was focused on finding
more general and faster solutions for continuous control problems.
In the next chapter, we will analyze a different but very relevant as-
pect of model-based optimization: uncertainty propagation for risk-
averse planning.

60 adaptive policy extraction

Algorithm 2: Improved Cross-Entropy Method with
warm-starting and samples from policy π, denoted
as iCEMπ . Blue marks policy warm-starting and red
is adding policy samples.

Input: f (⃗a, s): cost function; π: policy; N: # of samples; h:
planning horizon; k: elite-set size;
β: colored-noise exponent; σinit: noise strength; iter: # of

iterations; γ: reduction factor.
1 τ ← ∅
2 for t = 0 to T−1 do
3 s ← get the current state from the environment
4 if t == 0 then
5 µ0 ← h-steps rollout of model with π starting from s
6 else
7 µt ← shifted µt−1 with last time-step action given by π

8 σt ← constant vector in Rd×h with values σinit
9 for i = 0 to iter−1 do
10 Ni ← max(N · γ−i , 2 · k)
11 samples← Ni samples from clip(µt + Cβ(d, h)⊙ σ2

t)
// with Cβ(d, h) colored-noise Normal distribution with
noise-exponent β and dimension (d, h)

12 add a fraction of the shifted/reused elite-set to
samples

13 if i == last-iter then
14 add µi to samples
15 add policy actions to samples // h-step rollout with

policy from current state s

16 costs← cost function f (⃗a, s) for a⃗ in samples
17 elite-sett ← best k samples according to costs
18 µt, σt ← fit Gaussian distribution to elite-sett with

momentum
19 a ← first action of best elite sequence
20 add (s, a) to τ

21 execute a

22 return τ // return the trajectory

4.5 conclusions 61

Algorithm 3: Adaptive Policy EXtraction procedure
(APEX)

Input: iCEMπ ; πθ : policy network; n: # rollouts per iteration
1 init θ randomly;
2 D ← ∅;
3 i← 1
4 while not converged do
5 f (⃗a, s) ← Jt (⃗a, st) + λ1DKL(πθ ||⃗a) + λ2∥⃗a∥ // see Eqns. 15,

16, and 17

6 τCEM ← n Rollout with iCEMπ(f (⃗a, s), πθ) // τ is the
resulting trajectory

7 add τCEM to D
8 θ ← train policy πθ on D
9 τπ ← Rollout with πθ

10 τDAgger ← relabel actions in τπ with iCEMπ(f (⃗a, s), πθ)
// DAgger

11 add τDAgger to D
12 θ ← train policy πθ on D
13 i ← i + 1 // one APEX iteration

14 return πθ

5
R I S K - AV E R S E Z E R O - O R D E R
T R A J E C T O RY
O P T I M I Z AT I O N

Summary
At the beginning of this dissertation, we discussed how zero-order trajec-
tory optimizers are well-suited for MPC and MBRL. One of the most pop-
ular applications in MBRL combines CEM with an ensemble of stochastic
neural networks incorporating epistemic and aleatoric uncertainty (PETS).
However, the receding horizon problem does not explicitly take into ac-
count the learned uncertainties, throwing away a lot of information. In this
chapter, we introduce a simple but effective method for managing risk in
zero-order trajectory optimization, balancing optimism in the face of epis-
temic uncertainty and pessimism in the face of aleatoric uncertainty. Var-
ious experiments indicate that the separation of uncertainties is essential
to perform well with data-driven MPC approaches in uncertain and safety-
critical control environments.

5.1 introduction

Data-driven approaches to sequential decision-making are becom-
ing increasingly popular [24, 104–106]. They hold the promise of re-
ducing the number of prior assumptions about the system that are
imposed by traditional approaches that are based on nominal mod-
els. Such approaches come in several different flavors [16]. Model-
free approaches attempt to extract closed-loop control policies di-
rectly from data, while model-based approaches rely on a learned

This chapter is based on the paper “Risk-averse zero-order trajectory optimization”,
Marin Vlastelica, Sebastian Blaes, Cristina Pinneri, Georg Martius [12].

63

64 risk-averse zero-order trajectory optimization

model of the dynamics to either generate novel data to extract a
policy or to be used in a model-predictive control fashion (MPC).
This work belongs to the latter line of work.

Model-based methods have several advantages over pure model-
free approaches. Firstly, humans tend to have a better intuition on
how to incorporate prior knowledge into a model rather than into
a policy or value function. Secondly, most model-free policies are
bounded to a specific task, while models are task-agnostic and can
be applied for optimizing arbitrary cost functions, given sufficient
exploration.

Nevertheless, learning models for control comes with certain
caveats. Traditional MPC methods require the model and cost func-
tion to permit a closed-form solution which restricts the function
class prohibitively. Alternatively, gradient-based iterative optimiza-
tion can be employed, which allows for a larger class of functions
but typically fails to yield satisfactory solutions for complicated
function approximators such as deep neural network models. In ad-
dition, calculating first-order or even second-order information for
trajectory optimization tends to be computationally costly, which
makes it hard to meet the time constraints of real-world settings.
This motivates the usage of zero-order methods, i.e gradient-free or
sample-based, such as the improved Cross-entropy Method (iCEM)
that do not rely on gradient information but are efficiently paral-
lelizable.

Many methods relying on a learned model and zero-order tra-
jectory optimizers have been proposed [32, 62, 64], but all share
the same problem: compounding of errors through auto-regressive
model prediction. This naturally brings us to the question of how
can we effectively manage model errors and uncertainty to be more
data-efficient and safe. Arguably, this is one of the main obstacles
to applying data-driven model-based methods to the real world,
e.g. to robotics settings.

In this chapter, we introduce a risk-averse zero-order trajectory
optimization method (RAZER) for managing errors and uncertainty
in zero-order MPC and test it on challenging scenarios (Fig. 17).

5.2 related work 65

(a) Noisy-FetchPickAndPlace (b) BridgeMaze

Figure 17: Environments considered for uncertainty-aware planning. Code
and videos are available at https://martius-lab.github.io/

RAZER/

We argue that it is essential to differentiate between the two types
of uncertainty in the model-predictive setting: the aleatoric uncer-
tainty arising from inherent noise in the system and epistemic un-
certainty arising from the lack of knowledge [107, 108]. We measure
these uncertainties by making use of probabilistic ensembles with
trajectory sampling similar to PETS [32]. Our contributions can be
summarized as follows: (i) a method for separation of uncertain-
ties in probabilistic ensembles (termed PETSUS); (ii) efficient use
of aleatoric and epistemic uncertainty in model-based zero-order
trajectory optimizers.

5.2 related work

uncertainty estimation In the typical model-based rein-
forcement learning (MBRL) setting, the true transition dynamics
function is modeled through an approximator. Impressive results
have been achieved by both parametric models [63, 109–111], such
as neural networks, and nonparametric models [112–115], such as
Gaussian Processes (GP). The latter inspired seminal work on the
incorporation of the dynamics model’s uncertainty for long-term
planning [115, 116]. However, their usability is limited to low-data,
low-dimensional regimes with smooth dynamics [117, 118], which

https://martius-lab.github.io/RAZER/
https://martius-lab.github.io/RAZER/

66 risk-averse zero-order trajectory optimization

is not ideal for robotics applications. Alternative parametric ap-
proaches include ensembling of deep neural networks, used both
in the MBRL community [32, 119], and outside [120, 121]. In par-
ticular, ensembles of probabilistic neural networks established state-
of-the-art results [32], but focus mainly on estimating the expected
cost and disregard the underlying uncertainties. In comparison, we
propose a treatment of the resulting uncertainties of the ensemble
model.

zero-order mpc The learned model can be used for policy
search like in PILCO [29, 115, 116, 122] or for online model-
predictive control (MPC) [32, 40, 123]. In this work, we do planning
in an MPC fashion and employ a zero-order method as a trajectory
optimizer, since they have shown to be less likely to get stuck in
local minima and make an explicit treatment of the uncertainty in
the cost possible. Specifically, we consider a sample-efficient imple-
mentation of the Cross-Entropy method [46, 81] introduced in [93]
and explained in detail in Chapter 3.

safe mpc Separating the sources of uncertainty is of particu-
lar importance for applications directly affecting humans’ safety, as
self-driving cars, elderly care systems, or in general any application
that involves a physical interaction between agents and humans.
Disentangling epistemic from aleatoric uncertainty allows for sepa-
rate optimization of the two, as they represent semantically differ-
ent objectives as per definition. Extensive research on uncertainty
decomposition has been done in the Bayesian setting and the con-
text of safe policy search [124–126], MPC planning [127–129], and
distributional RL [130, 131]. On the other hand, a state-of-the-art
baseline for ensemble learning like PETS [32], despite estimating
uncertainty, only optimizes for the expected cost during action eval-
uation. Our work aims at filling this gap by explicitly integrating the
propagated uncertainty information in the zero-order MPC planner.

5.3 method 67

5.3 method

Our approach concerns itself with the efficient usage of uncertain-
ties in zero-order trajectory optimization and is therefore generally
applicable to such optimizers. We are interested in modeling noisy
system dynamics st+1 = f (st, at, w(st, at)) where f is a nonlinear
function, st the observation vector, at applied control input and
w(st, at) a noise term sampled from an arbitrary distribution.

Consequently, in the absence of prior knowledge about the func-
tion f , the system needs to be modeled by a complex function ap-
proximator such as a neural network. Furthermore, we are inter-
ested in managing uncertainties based on our fitted model, which
is erroneous. To this end, we use stochastic ensembles of size K,
where the output of each model ϑk(st, at) are parameters of a nor-
mal distribution depending on input observation st and control
at. As a by-product, our auto-regressive model prediction based
on sequence of control inputs, indicated by the vector a⃗, becomes
a predictive distribution over trajectories τ = (s0, a0, s1, a1 . . .);
ψτ(st, a⃗) := p(τ|st, a⃗; θ) where θ denotes the parameters of the en-
semble. For convenience, from this point onward we will differenti-
ate between multiple usages of ψτ . We denote with:

• ψs
∆t the distribution p(st+∆t|st, a⃗t:t+∆t−1; θ) over states at

time step t + ∆t,

• ψϑ
∆t the distribution over the Gaussian parameter outputs

p(ϑt+∆t|st, a⃗t:t+∆t−1; θ) at time step t + ∆t of the planner.

5.3.1 Planning and Control

To validate our hypothesis that accounting for uncertainty in the en-
vironment and model prediction is essential to develop risk-averse
policies, we use the Cross-Entropy method with the improvements
presented in Chapter 3 (iCEM). Accordingly, at each time step t we
sample a finite number of control sequences a⃗ for a finite horizon
H, which we evaluate from the state st using an auto-regressive
forward model and the cost function. The sampling distribution is

68 risk-averse zero-order trajectory optimization

refitted in multiple rounds based on the best performing trajecto-
ries. After this optimization step, the first action of the mean of the
fitted Gaussian distribution is executed. Since this approach utilizes
a predictive model for a finite horizon at each time step, it naturally
falls into the category of MPC methods.

Although we use iCEM, our approach of managing uncertainty
can generically be applied to other zero-order trajectory optimizers
such as MPPI [40] by a modification of the trajectory cost function.

5.3.2 The Problem of Uncertainty Estimation

Since we have a stochastic model of the dynamics, at the model
prediction time step t we observe a distribution over potential out-
comes. Indeed, since our model outputs are parameters of a Gaus-
sian distribution, with auto-regressive predictions we end up with
a distribution over possible Gaussians for a certain time step t.

Given a sampled action sequence a and the initial state st we
observe a distribution over trajectories ψτ . To efficiently sample
from the trajectory distribution ψτ we use the technique introduced
by Chua et al. [32] (PETS) which involves prediction particles that
are sampled from the probabilistic models and randomly mixed
between ensemble members at each prediction step. In this way,
the sampled trajectories are used to perform a Monte Carlo esti-
mate of the expected trajectory cost Eτ∼ψτ [c(τ)]. However, this does
not take the properties of ψτ into account, which might be a high-
entropy distribution and may lead to very risky and unsafe behav-
ior. In this work, we alleviate this by looking at the properties of
ψτ , i.e. different kinds of uncertainties arising from the predictive
distribution.

5.3.3 Learned Dynamics Model

We learn a dynamics model fθ that approximates the true system
dynamics st+1 = f (st, at, w(st, at)). As a model class, we use an
ensemble of neural networks with stochastic outputs as in Chua

5.3 method 69

et al. [32]. Each model k, parameterizes a multivariate Gaussian
distribution with diagonal covariance,

f k
θ (st, at) = N (st+1; st + µk

θ(st, at), Σk
θ(st, at))

where µk
θ(·, ·) and Σk

θ(·, ·) are model functions outputting the re-
spective parameters.

Iteratively, while interacting with the environment, we collect a
dataset of transitions D and train each model k in the ensemble by
the following negative log-likelihood loss on the Gaussian outputs:

L(θ, k) = Est ,at ,st+1∼D
[
− logN (st+1; st + µk

θ(st, at), Σk
θ(st, at))

]
(19)

In addition, we use several regularization terms to make the model
training more stable. We provide more details on this in App. D.2.

5.3.4 Separation of Uncertainties

In the realm of parametric estimators, two uncertainties are of par-
ticular interest. Aleatoric uncertainty is the kind that is irreducible
and results from inherent noise of the system, e.g. sensor noises in
robots. On the other hand, we have epistemic uncertainty resulting
from lack of data or knowledge, which is reducible. This begs the
question, how can we separate these uncertainties given an auto-
regressive dynamics model fθ? The way that we efficiently sample
from ψτ is by mixing sampled prediction particles, according to the
sampling procedure TS1 from Chua et al. [32], and by additionally
propagating the Gaussian mean along the planning horizon H. This
process is illustrated by the red and yellow lines in Fig. 18. We call
this propagation method PETSUS, standing for Probabilistic Ensem-
bles with Trajectory Sampling and Uncertainty Separation.

Aleatoric uncertainty

Simple model prediction disagreement is not a good measure for
aleatoric uncertainty since it can be entangled with epistemic un-

70 risk-averse zero-order trajectory optimization

at+h
st+h

NN

st
at

H

h=1 h=H

mean

particle

K

K K

Figure 18: Probabilistic Ensembles with Trajectory Sampling and Uncer-
tainty Separation (PETSUS)

certainty. Given how we model the system dynamics, we measure
aleatoric uncertainty as entropy of the predicted normal distribu-
tions across ensemble members. More concretely, given a sampled
particle state at planning step t + ∆t, s̃k

t+∆t, we define the estimated
aleatoric uncertainty for an ensemble member associated to particle
k at time step t + ∆t:

Ak
∆t(s|s̃k

t+∆t, at+∆t) = Hs∼ψs
∆t,k

(s) (20)

Where ψs
∆t,k is the output distribution of ensemble model k after

applying the action sequence a⃗ up to time step t + ∆t. The quantity
of interest for us is the expected aleatoric uncertainty for time slice
t + ∆t:

A∆t =
K
∑
k=0

Ak
∆t(s|s̃k

t+∆t, at+∆t) (21)

Intuitively, since we only have access to the ensemble for sampling,
we take a time-slice in the sampled trajectories from ψτ and com-
pute the output entropies. Moreover, since we assume a Gaussian
1-step predictive distribution, this is an expectation over differential
Gaussian entropy, which can be computed in closed form.

5.3 method 71

In this work, we use the variance Σ in place of the entropy of the
Gaussian distribution, which scales linearly with log |Σ|. Therefore,
the expected particle variance for time slice t + 1 of the prediction
horizon is:

VarAt+1 =
1
K

K

∑
k=1

Σk
θ(s̃t, at) (22)

Note that Σk
θ(s̃t, at) outputs the covariance of the prediction for the

following time step t + 1. In the following, we use entropy of Gaus-
sian and variance interchangeably as uncertainty estimates.

Epistemic uncertainty

For estimating the epistemic uncertainty, one would be tempted
to look at the disagreement between ensemble models in parame-
ter space Var[θ], but this is not completely satisfying, since neural
networks tend to be over-parametrized and variance within the en-
semble still may exist albeit the optimum has been reached by all
ensemble models. An alternative would be to calculate the Fisher
information metric I := Var[∇θ logL(st+1|st, at)] where L denotes
the likelihood function, but this tends to be expensive to compute.

Therefore, we consider the predictive entropy over the Gaussian
parameters ϑ at time step t + ∆t as our measure for the epistemic
uncertainty:

E(st, a⃗t:t+∆t−1) = Hψϑ
∆t
(ϑ | st, a⃗t:t+∆t−1) (23)

This quantity is 0 given perfect predictions of the model. Note that,
because of auto-regressive predictions of a nonlinear model, this is
a very difficult object to handle. Nevertheless, since our predictive
distribution p(s|st, at; ϑ) is parametrized by model output, we may
utilize disagreement in ϑt to approximate E. To get correct estima-
tions, we need to propagate mean predictions s̄ in addition to the
particles as illustrated as the yellow lines in Fig. 18. We quantify
epistemic uncertainty as ensemble disagreement at time step t:

VarE(st+1) = Vare[µk
θ(s̄t, at)] + Vare[Σk

θ(s̄t, at)] (24)

where Vare is the empirical variance over the k = 1 . . . K ensembles.

72 risk-averse zero-order trajectory optimization

5.3.5 Implementing Risk-Averse ZERo-Order Trajectory Optimization
(RAZER)

We assume the task definition is provided by the cost c(st, a⃗). For
trajectory optimization, we start from a state st and predict with an
action sequence a⃗ the future development of the trajectory τ. Along
this trajectory, we want to compute a single cost term which is con-
veniently defined as the expected cost of all particles s̃ summed over
the planning horizon H:

c(st, a⃗) =
H

∑
∆t=1

1
K

K

∑
k=1

c(s̃k
t+∆t, at+∆t). (25)

The optimizer, in our case iCEM, will optimize the action sequence
a⃗ to minimize the cost in a probabilistic sense, i.e. p(⃗a | s) ∝
exp(−β c(s, a⃗)) where β reflects the strength of the optimizer (the
higher the more likely it finds the global optimum).

To make the planner uncertainty-aware, we need to make sure it
avoids unpredictable parts of the state space by making them less
likely. Using the aleatoric uncertainty provided by PETSUS (Eq. 22),
we define the aleatoric penalty as

cA(st, a⃗) = wA ·
H

∑
∆t=1

√
VarAt+∆t, (26)

where wA > 0 is a weighting constant. The larger the aleatoric
uncertainty, the higher the cost.

To guide the exploration to states where the model has epistemic
uncertainty (Eq. 24), we use an epistemic bonus:

cE(st, a⃗) = −wE ·
H

∑
∆t=1

√
VarEt+∆t, (27)

where wE > 0 is a weighting constant.

5.4 experiments

We study our uncertainty-aware planner in 2 continuous state and
action space environments and compare to naively optimizing the

5.4 experiments 73

particle-based estimate of the expected cost similarly to Chua et
al. [32]. Two additional environments are considered in the Ap-
pendix D. We start by giving a description of the environments.

bridgemaze This toy environment (see Fig. 17b) was specifi-
cally designed to study the different aspects of uncertainty inde-
pendently. The agent (blue cube) starts on the left platform and has
to reach the goal platform on the right. To reach the goal platform,
the agent has to move over one of three bridges without falling into
the lava. The upper bridge is safeguarded by walls; hence, it is the
safest path to the goal but also the longest. The lower bridge has
no walls and therefore is more dangerous for an unskilled agent to
cross but the path is shorter. The middle bridge is the shortest path
to the goal. However, randomly appearing strong winds perpendic-
ular to the bridge might cause the agent to fall off the bridge with
some probability, making this bridge dangerous.

noisy-fetchpickandplace Based on the FetchPickAndPlace-
v1 gym environment. Additive action noise is applied to the gripper
so that its grip on the box might become tighter or looser. The noise
is applied for x-positions < 0.8 which is illustrated in Fig. 17a by a
blue line causing the agent to drop the box with high probability if
it tries to lift the box too early.

5.4.1 Algorithmic Choices and Training Details

For model-predictive planning we use the iCEM implementation
described in Chapter 3 [93]. Further details about hyperparameters
can be found in Appendix B.2. For planning, we use the same ar-
chitecture for the ensemble of probabilistic models, both in RAZER
and in PETS. The only difference is that in RAZER we also forward
propagate the mean state predictions in addition to the sampled
state predictions. Further details can be found in Appendix D.2.1.

74 risk-averse zero-order trajectory optimization

0.0
PETS

0.05 0.12 0.14 0.16

Aleatoric Penalty

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

(a) BridgeMaze success depending on
wA for 50 runs.

0.1 0.5 1.0 2.0 5.0
Gripper Noise

0.0

0.1

0.2

0.3

0.4

0.5

Dr
op

pi
ng

 R
at

e

RAZER PETS

(b) Dropping rate in Noisy-
FetchPickAndPlace for 100 runs.

Figure 19: Risk-averse planning in the face of aleatoric uncertainty yields
higher success rates in noisy environments. For (b) we use
ground truth models and a fixed aleatoric penalty weight wA.

5.4.2 Risk-Averse Planning

Once a good model is learned, it can be used for safe planning.
What differentiates RAZER from PETS is that it makes explicit use
of uncertainty estimates while in the latter uncertainties only enter
planning by taking the mean over the particle costs and not differ-
entiating between different sources of uncertainty.

bridgemaze Figure 19a shows the success rate of PETS and
RAZER in the BridgeMaze. In both cases, we use the same model
that was trained from data collected during a training run with
wE = 0.05. Hence, the model saw enough training data from all
parts of the state space. The noise in the environment is tuned such
that there is a chance to cross the bridge without falling. While in
Fig. 37b PETS avoided this path because of an overestimation of the
state’s value due to a lack of training data and sometimes sees a
chance to cross the bridge. However, these attempts are very likely
to fail because of stronger winds that occur randomly, resulting in
a success rate of only 58%. RAZER does not rely on sampling for
the aleatoric part and can thus avoid risk. With a higher penalty
constant the success rate increases up to 96% but only as long as
the agent is willing to take a risk at all. For large values of wA the

5.5 conclusion 75

agent becomes so conservative that it only moves slowly (decreas-
ing reward in Fig. 19a).

fetchpickandplace In this environment, a 7-DoF robot arm
should bring the box to a target position – starting and target posi-
tions are at the opposite sides of the table. The shortest path is to
lift the box and move in a straight line to the target. However, with
noise applied to the gripper action, there is a certain probability to
drop the box along the way. When penalizing aleatoric uncertainty,
this is avoided and also fewer trajectory samples are “wasted” in
high-entropic regions, as presented in Fig. 17a. Figure 19b shows
the number of times the box is dropped on the table depending on
the aleatoric penalty. RAZER adopts a cautious behavior, preferring
to slide the box on the table and lifting it only in the area with-
out action noise, maintaining a dropping rate lower than 20%, even
when considerable noise is applied.

5.5 conclusion

In this chapter, we have provided a methodology to separate uncer-
tainties in stochastic ensemble models (PETSUS) which can be used
as a tool to build risk-averse model-based planners (RAZER). This
type of risk-averseness can be achieved by a simple modification
of the cost function in form of uncertainty penalties in zero-order
trajectory optimizers. Furthermore, the separation of uncertainties
allows us to do active exploration via the epistemic bonus which
favours better generalization of the learned model. Further details
on this part can be found in App. D.

While in this chapter we analyzed possible ways to deal with
long-horizon predictions and uncertainty propagation for auto-
regressive models, in the next one we will present a method to
learn informative cost functions, in order to shorten the planning
horizon and not rely on inaccurate predictions.

6
N E U R A L A L L - PA I R S
S H O RT E S T PAT H F O R
R E I N F O R C E M E N T
L E A R N I N G

Summary
In the course of this dissertation, we have used the improved CEM as a
trajectory optimizer for receding-horizon control problems. Thanks to the
long-horizon sampling with colored noise, we were able to find plausible
paths to the goal even with sparse cost functions. However, if the planning
horizon needs to be reduced for computational constraints, it becomes es-
sential to have a more informative cost function. This trade-off between the
accuracy given by planning over long horizons and the information coming
from the cost function has led us to propose a self-supervised method for
learning distances from scratch, which can be used as a cost function for
model-based RL, or reshaped as a reward for model-free RL. In this chapter,
we propose a method that learns neural all-pairs shortest paths, which we use
to learn goal-conditioned policies, requiring zero domain-specific knowl-
edge. In particular, our approach includes both a self-supervised signal
from the temporal distance between state pairs of an episode, and a metric-
based regularizer that leverages the triangle inequality for additional con-
nectivity information between state triples. This dynamical distance is fully
self-supervised, compatible with off-policy learning, and robust to local
minima.

This chapter is based on the paper “Neural all-pairs shortest path for reinforcement learn-
ing”, Cristina Pinneri, Georg Martius, Andreas Krause [13].

77

78 neural all-pairs shortest path for rl

6.1 introduction

Teaching an AI agent to autonomously and efficiently reach goals
is still an open problem in the reinforcement learning (RL) com-
munity. One of the bottlenecks is correctly specifying a learning
signal: an intuitive choice would be a binary reward indicating
whether the goal is reached or not, but this kind of signal does
not provide enough feedback to the learner, as it would require
extensive exploration before receiving any information. As an alter-
native, hand-crafted reward shaping is often employed on top of
the “true” sparse reward - such as the Euclidean distance to the
goal [132, 133] - but that might lead to reward hacking, a widely
observed phenomenon in which the agent optimizes for the local
optima introduced by the shaped reward instead of the real sparse
objective, generating unintended behaviors [134].

Instead of imposing brittle heuristic shaping, recent research
shows that learning dynamical distances is a valid alternative [135].
The purpose of these functions is to learn all-pairs shortest path dis-
tances (APSP). One of the first works in this direction was presented
in the 90s by Kaelbling [136] and utilizes a Q-learning agent to con-
struct a goal-conditioned action-value function d(s, a, g), drawing de
facto the first connection between RL and the APSP problem, based
on the Floyd-Warshall algorithm [137].

However, Kaelbling [136] demonstrate the method in a low di-
mensional tabular setting, where all the goals were known in ad-
vance. Recent works [135, 138] propose extensions including func-
tion approximation, but are constrained to on-policy learning. We
propose a method that learns a dynamical distance function with
function approximation, off-policy, without any reinforcement sig-
nal, employing only a self-supervised signal from the actual num-
ber of time steps separating state pairs, and a second loss inspired
by the triangle inequality, as in the all-pairs shortest path algorithm.

6.1 introduction 79

6.1.1 Shortest Paths and RL

The problem of learning dynamical distances is closely related to
the one of learning value functions in RL. The Q-learning algorithm
itself can be seen as a generalization of a single-source shortest path
problem (SSSP) for directed graphs, in the context of decision mak-
ing. The negative Q-function −Qπ(s, π(s)) represents the shortest
path distance under the policy π. The dynamic programming (DP)
equation underlying Q-learning is the Bellman update [139], while
the one for single-source shortest path is provided by the Dijkstra’s
algorithm [140] or by other variations like the Bellman-Ford algo-
rithm [141], depending on the input graph class. However, the na-
ture of these recursive equations can still be traced to the Bellman’s
optimality principle [142].

Goal-conditioned Q-functions [143] generalize distance learning
for a multi-goal setting, as they are defined over pairs of states and
desired goals. This is similar to the all-pairs shortest path problem
(APSP), which computes the shortest path between any two ver-
tices in a graph. However, the DP equations behind these problems
are different. Goal-conditioned Q-learning is typically based on the
temporal difference update, where the only bootstrapped value is
the estimate of the Q-function. Dedicated algorithms for the solu-
tion of the APSP problem are built on different DP principles.

The Floyd-Warshall algorithm [137] for APSP, for example, finds
shortest paths by iteratively enforcing the triangle inequality be-
tween state triples: the shortest path between state si and sk is cast
in terms of relaxations, such that the distances are initialized by over-
estimation, and are updated as

d(si , sk) := min
j

[
d(si , sj) + d(sj, sk)

]
.

O(N3) relaxations are needed for the algorithm to converge, where
N is the number of vertices in the graph. Kaelbling [136] propose

80 neural all-pairs shortest path for rl

a RL connection to the Floyd-Warshall algorithm that also includes
actions, formalized as

d(si , ai , sk) := min
j

[
d(si , ai , sj) + min

a′
d(sj, a′, sk)

]
.

Differently from a temporal difference update, this equation makes
use of available estimates of d(si , ai , sj) as well. Several other works
[136, 138, 144] adapt the Floyd-Warshall algorithm to RL, with re-
sults mainly in the tabular setting or for on-policy learning. These
methods rely on having accessibility to the ground truth cost be-
tween state pairs. Our approach lifts this impractical assumption
and learns distances in a self-supervised fashion. Moreover, since
we are in a reinforcement learning setting, we can let the agent
decide which paths to increase depending on their reachability, in
a bottom-up approach, rather than initializing all the distances to
infinity as in the Floyd-Warshall algorithm.

To summarize, in this chapter we present a way to learn dynami-
cal distances and goal-conditioned policies off-policy, and in a fully
self-supervised way, employing:

• a novel off-policy correction term for distances learned via
temporal regression, and a corrective bootstrapping loss in-
spired by the Floyd-Warshall algorithm on graphs, adapted to
RL.

• a general method to learn dynamical distance functions from
scratch, that can be used as part of a goal-conditioned RL al-
gorithm, or as a cost for model-based RL, and that, differently
from previous work, successfully deals with local minima (cre-
ated e.g. by obstacles) without explicitly encoding any type of
information in the distance function.

6.2 related work

Dealing with environments with sparse reinforcement signals com-
plicates long-term credit assignment, as it introduces higher vari-
ance in Monte Carlo (MC) learning and higher bias in Temporal

6.3 background 81

Difference (TD) updates [145]. Many techniques are focused on ac-
celerating learning by “densifying” the reward signal with auxiliary
functions while not affecting the optimal policy of the underlying
sparse problem [132, 146, 147]. Alternatively, other kinds of auxil-
iary reward functions can be used to facilitate exploration accord-
ing to different strategies as curiosity [148], prediction error [149],
information gain [150], or predicting state reachability [151]. On
the other side there are methods like Hindsight Experience Replay
(HER) [103] that do not try to solve the exploration problem, but
introduce auxiliary rewards based on the distance to the achieved
goal rather than to the desired one. As done in HER, we also employ
goal-conditioned value functions [143].

Our approach, however, is based on dynamical distances, which
are functions expressing the distance between state pairs based
on some notion of functional similarity. In the literature, dynami-
cal distances have been learned via direct regression using tempo-
ral regression [135], in the form of goal-conditioned policies [152],
via Q-learning by relabeling goals [153, 154], or goal-directed Q-
learning with negative transition mining [155]. We extend the on-
policy temporal regression presented in Hartikainen et al. [135] to
be suited for off-policy learning, while simultaneously learning a
goal-conditioned policy that uses the learned dynamical distance
as a negative reward. Differently from other methods [151, 153], we
do not explicitly perform graph search. We instead make use of a
term that expresses whether two states were ever part of the same
trajectory. At training time, we only check if the edge (s, a, s′) has
ever been visited or not. In practice, we use locality sensitive hash-
ing [156], which allows for generalization based on angular distance
similarity between states.

6.3 background

We consider the problem of an agent attempting to solve a goal-
reaching task. The goal reaching Markov Decision Process (MDP)
[103, 143] is defined by the tuple (S ,A, G , r, γ, ρ0, ρg), where the

82 neural all-pairs shortest path for rl

state, action and goal spaces are indicated by S ,A, G ∈ R. In our
case, the goal space G can be an arbitrary subset of the state space.
The initial state s0 is sampled from the distribution ρ0, while the
goal is sampled from ρg. Our aim is to learn a stochastic policy
π : S × G → Λ(A) that maximizes the expected discounted return

Eτ∼ρτ ,sg∼ρg

[T−1

∑
t=0

γtr(st, at, sg)
]

6.3.1 Hindsight Experience Replay

Let us now consider the particular case in which the reward func-
tion is sparse, i.e. the indicator function r(st, at, g) = −I{st ̸= g}.
This assumption complicates the credit assignment problem and
becomes a bottleneck for sample efficiency. To overcome this issue,
Andrychowicz et al. [103] introduce Hindsight Experience Replay
(HER). The main idea of HER is to relabel past failed trajectories
with the indicator function mentioned above, where the goal g is
the one that was actually achieved, rather than the desired one.

Although success signals are generally more frequent while us-
ing HER, they remain binary, and thus hold little information. In
this work we build upon the relabeling framework introduced in
HER, but we propose to compute rewards from a more informative
learned dynamical distance. Our distance, however, is not tied to
the goal sampling procedure presented in HER, and can be used
with any relabeling scheme or goal-conditioned RL algorithm as a
shaped reward.

6.3.2 Dynamical Distances

We learn a distance function that predicts the expected number
of timesteps along the shortest path between two states. This is
learned via a self-supervision signal given by the empirical distance
between states of a rollout, as done in Hartikainen et al. [135], which

6.4 method 83

we extend to an off-policy setting. In the original paper, the distance
dπ

θ is associated with a policy π, which gives rise to the training loss:

Lπ
d (θ) =

1
2

E τ∼ρπ

i∼[0,T]
j∼[i,T]

[(
dπ

θ (si , sj)− (j− i)
)2], (temporal regression)

where the empirical distance between the states (j − i) is relative
to the policy π. The complete dynamical distance learning (DDL)
algorithm uses dπ

θ (s, sg) as a negative reward to optimize the policy
π and it is guaranteed to converge to the optimal policy π∗. How-
ever, it requires on-policy data collection, which bottlenecks the ef-
ficiency of the pipeline. Moreover, it also requires a small amount
of goal proposals to be used during on-policy training, selected by
a human operator from the last visited goals. In practice, the user
is shown a batch of achieved goals and has to select the ”best” one,
which will be used to train the policy π.

6.4 method

6.4.1 Off-policy Temporal Regression

To overcome the on-policy bottleneck, and achieve better sample
efficiency with off-policy data, we propose to condition the dynam-
ical distance on the action value and learn the function dθ(si , ai , sj)
from a replay buffer by minimizing the following loss:

Ld(θ) = E τ∼ρπ

i∼[0,T]
j∼[i,T]

[(
dθ(si , ai , sj)−min

[
(j− i), dθold (si , ai , sj) + U[dθold (si , ai , sj)]

])2
]

,

(28)

where θold are previous distance estimates from a frozen network,
updated at a slower frequency for stability reasons, and U[·] can
indicate any measure of uncertainty associated to the network given
the input (si , ai , sj).

Like this, we can train dθ from suboptimal off-policy trajectories,
as the supervision signal is the minimum value between the upper

84 neural all-pairs shortest path for rl

bound of the true distance, given by the empirical distance (j− i),
and a frozen estimate of the dynamical distance.

Intuitively, thanks to the generalization capabilities of powerful
approximators such as neural networks, dθold may provide reason-
able lower distance estimates, which can be used as a target in the
loss, rather than some temporal overestimate (j − i) coming from
suboptimal trajectories at the beginning of training. We explain in
further detail our choice of uncertainty measure in Sec. 6.4.2.

6.4.2 Uncertainty with Counts

We introduce an uncertainty term in Eq. 28 so that the min operator
discards distance estimates with high uncertainty, and it starts to
consider proposals from the distance network otherwise. Our for-
mulation of the uncertainty term is inspired by a recent work on
pessimistic initialisation of Q-functions by [157] with count models.
We adopt the same model based on locality-sensitive hashing (LSH)
[156], but we are not bound to any particular counting scheme. We
define the count model as N(si , ai) and use it to pessimistically ini-
tialise the distance in the following way:

U[dθ(si , ai , sj)]
def
=

C
(1 + N(si , ai))M for the temporal loss (29)

where M, C > 0 are hyperparameters. This penalty term polyno-
mially decays with the number of counts, so that the distance gets
updated with the off-policy estimate dθ(si , ai , sj) only if that state-
action combination has been seen enough times. This pessimistic
term is also used to avoid the trivial zero solution of Eq. 28.

6.4.3 Local Connectivity and Triangular Loss

When the goal is not part of the replay buffer and we are in the pres-
ence of obstacles, the learned distance underestimates the shortest
path to the goal. Let us consider the example in Fig. 20. In this case,
the initial states distribution ρ0 samples the starting points from

6.4 method 85

Figure 20: 2D point-mass example. The goal has never been visited. Only
the intermediate state is present in the replay buffer. The length
of the arrows indicates the distance value between state pairs.

the lower left room. On the other hand, the goals are always sam-
pled from the upper right room. Unless the agent sees a sufficient
amount of paths that lead to the goal, it will not be able to learn the
correct shortest path distance.

Contrary to the Floyd-Warshall algorithm, where all the distances
are initialized with infinity and then “relaxed” with the triangle
inequality, we consider an alternative approach and start with un-
derestimates caused by the off-policy temporal regression, which
we artificially increase whenever we sample another point in the
buffer that is connected to the goal. In order to express this con-
nectivity information, we employ the count based term already in-
troduced in the previous section to estimate uncertainty. The count
term N(si , ai , sg) then indicates how many times in total the goal sg
was reached from state si after taking the first action ai.

For instance, let us consider the case in which the goal sg was
never reached from state si, but there is a path in the buffer D from
an intermediate state sj to the goal state sg (Fig. 20). In this case, we
increase the value of dθ(si , ai , sg) as:

d⋆θ (si , ai , sg) = dθ(si , ai , sj) + dθ(sj, aj, sg) (30)

The distance d⋆θ (si , ai , sg) is then a penalized hypotenuse, that will
converge to the true shortest path distance and thus mitigate local
minima.

86 neural all-pairs shortest path for rl

6.5 algorithm summary

The final formulation for the loss comprises the sum of these two
terms (from Eq. 28 and 30):

Ltemporal(θ) = E
τ∼D

i∼[0,T]
j∼[i,T]

[(
dθ(si , ai , sj)−min[(j− i), dθold (si , ai , sj) + U[dθold]

)2
]

(31a)

Ltriangular(θ) = E sg∼Dlast
(si ,ai)∼µ(sg)
(sj ,aj)∼µ(sg)

[(
dθ(si , ai , sg)− (dθold (si , ai , sj) + dθold (sj , aj , sg))

)2]

(31b)

where µ(sg) = {(s, a)|(s, a) ∈ Dlast ∧ N(s, a, sg) = 0} and µ(sg) = D \ µ(sg)

where Dlast is the replay buffer containing the most recently col-
lected rollouts. Notice that in the triangular loss we can either in-
crease or decrease the value of the hypotenuse. In one case the hy-
potenuse is penalized, in the other one it is regularized (relaxed,
as in Floyd-Warshall) because a better path was found. Moreover,
in this loss, sg always indicates the desired goal of the trajectory
which si is sampled from. Thus, we are only correcting the paths
that should have led to the goal. We underline that this procedure
does not search for the (sj, aj) tuple minimizing the triangle inequal-
ity, it purely samples (sj, aj) from the points actually present in the
replay buffer D.

6.6 experiments

Our method is tested on 4 environments illustrated in Fig. 21:

2d navigation A point mass in two dimensions has to navigate a
playground with internal walls to reach a goal. In the setting
we present, using the Euclidean goal-distance as a heuristic
cost would fail the task because of the presence of local optima
created by the walls.

6.6 experiments 87

Algorithm 4: Proposed Neural-APSP algorithm.
Input :D: empty replay buffer; Dlast: replay buffer of most

recently collected rollouts; θ: distance network parameter;
θold: distance target network parameter; I: training
iterations

Output : goal-conditioned policy π, distance network dθ

1 for i = 0 to I−1 // loop over training iterations
2 do
3 Dlast ← COLLECT DATA WITH POLICY π

4 UPDATE COUNT MODELS with data from Dlast
5 Train TemporalLoss:
6 sample episode from buffer D
7 sample two indices i and j, with j > i
8 fit distance network with input (si , ai , sj) and label

min[j− i, dθold
+ U] // Eq. 31a

9 UPDATE TARGET NETWORK
10 Train TriangularLoss:
11 sample si from trajectory τ in Dlast and set sg to desired

goal state of τ

12 sample sj from full replay buffer D
13 if N(si , ai , sg) == 0 and N(sj , aj , sg) > 0 then // path

present from sj but not si

14 compute new hypotenuse d⋆(si , ai , sg) using the
sampled sj // Eq. 30

15 else
16 do nothing

17 fit distance network with input (si , ai , sg) and label
d⋆(si , ai , sg) // Eq. 31b

18 Train Policy π:
19 sample episodes from the replay buffer D
20 relabel with HER and reward given by negative distance
21 train π with SAC on relabeled data

22 D ← D ∪Dlast

88 neural all-pairs shortest path for rl

(a) Fetch Reach
(with and with-
out Wall)

(b) Fetch Pick and
Place
(with and with-
out Wall)

(c) Point Maze (d) D’Claw

Figure 21: MuJoCo Environments

3d reaching task A 7DoF robot arm has to reach a goal. In the
Fetch Reach Wall variation, the robot arm is initialized in
one half of the table while the goal is placed on the other half,
on the ground, with a wall separating the table in two halves.

3d manipulation task A 7DoF robot arm has to fetch, pick and
place a box to a target location (fpp in short). The goal can be
sampled either above or on the table with 50% probability. In
the Fetch Pick and Place With Wall (fpp wall), the box
is always placed on one half of the table, and the goal in the
other, so the the only solution is lifting it.

claw manipulation [158] A 9-DOF “claw”-like robot is re-
quired to turn a valve to various positions. The state space
includes the positions of each joint of each claw (3 joints on
3 claws) and embeds the current angle of the valve in Carte-
sian coordinate (θ → (sin θ, cos θ)). The robot is controlled via
joint angle control. The goal space consists only of the claw an-
gle, which is sampled uniformly from the unit circle.

For all the baselines and ablations we use HER [103] while learning
a policy with Soft Actor Critic [159], while for the Fetch Pick and

Place environment we use HER combined with DDPG [22] due
to better empirical performance. All the methods make use of the

6.6 experiments 89

Fetch Reach Fetch Reach Wall Claw Turn

Point Maze FPP FPP Wall

Ours+HER Off-policy DDL+HER DDL+HER Sparse+HER

Figure 22: Performance degradation of Sparse+HER. When more explo-
ration is needed or the environment presents non-trivial reacha-
bility properties, HER struggles to find a solution. Our method
is either comparable to the best baseline/ablation, or better. The
quantity presented in the plots is the rolling mean of the max-
imum reward or the success rate at evaluation time, averaged
over 10 seeds. For the Fetch Pick and Place task we augment
the goal space to include the end effector position as well. The
dotted darker line is the original HER performance without aug-
mentation.

future strategy presented in Andrychowicz et al. [103], each of them
with the best k selected by grid search. The parameters used in the
experiments are reported in the appendix. We consider 4 kinds of
reward coupled with HER:

sparse+her (baseline) Standard binary reward with hindsight
relabeling of the buffer with the default SAC hyperparame-
ters.

ddl+her (baseline) We use the original HER relabeling
scheme, and rewards given by the negative temporal loss (on-
policy). This method is slightly different from [135] as it does

90 neural all-pairs shortest path for rl

DDL Ours

Figure 23: Heatmap of the Q function estimate (negative sign) for the
Point Maze environment, learned by using DDL+HER (left)
and Ours+HER (right).

not make use of the original ”user preferences” to propose
goals.

off-policy ddl+her (ablation) We augment DDL+HER by
introducing the off-policy temporal regression loss term of
Sec. 6.4.1.

ours+her Our complete method, neural APSP, including the off-
policy temporal regression loss (Eq. 31a) and the bootstrapped
triangular loss (Eq. 31b), as described in Algorithm 4.

6.6.1 Local Optima

The results in Fig. 22 show how our method is robust even when
we consider environments with obstacles or goals that are hard to
reach. The off-policy temporal loss can find shortcuts as suggested
by the function approximator, and introducing the triangular loss
further improves performance In particular, the Fetch Pick and

Place task is an eloquent example. In this case we opt to augment
the goal space to also consider the end effector position: the goal is
to have both box and gripper at the target state. This simple addi-
tion already improves the sample efficiency of Sparse+HER by an
order of magnitude. However, we can also notice how Sparse+HER
quickly reaches a 50% success rate, equivalent to reaching all the

6.6 experiments 91

(a) Negative Distance to Goal (b) Triangular Loss Effect

Figure 24: Fetch Pick and Place task. Our method is able to reach the goal
at a faster rate as it avoids the local minima of placing the end ef-
fector in between the target in the air and the box on the ground.
The dashed black line indicates the minimum negative distance
required to solve the task. The dotted dark green line is the orig-
inal HER performance [103] without goal augmentation.

goals placed on the table, but cannot generalize so easily to the
goals in the air. In fact, given the augmented goal state, it often
reaches a suboptimal solution by placing the end effector in be-
tween the current box position and its target position. While our
method takes more time to catch up, it eventually overtakes both
baselines. In Fig. 24b we show the effect of the triangular loss for
the Fetch Pick and Place task. Specifically, the rates at which the
distances to the goal get increased (merging rate) or regularized
(relaxations rate) for every batch.

In the Fetch Pick and Place with Wall task, it is even more
clear that the triangular loss consistently helps avoiding local min-
ima. The robot arm is able to lift the box and bring it to the other
side in most cases, without the need to specify an auxiliary reward
to avoid the wall. The rates at which the hypotenuse gets penal-
ized/merged or regularized/relaxed are presented in Fig. 26. We
also show two illustrative frames from Sparse+HER and Ours+HER,
that show the local minima where the baselines tend to get stuck
(Fig. 25).

92 neural all-pairs shortest path for rl

Sparse+HER Ours+HER

Figure 25: Frames of trajectories produced by a goal-conditioned policy
learned from Sparse+HER vs Ours+HER. The additional wall in-
troduces further exploration difficulties in the Fetch Pick and

Place task.

6.6.2 Sample Efficiency

Being off-policy, our method can make better use of the transitions
present in the replay buffer. In Fig. 27 we see how, even if all meth-
ods are trained with a fixed exploration noise and a max-entropy
policy, only our approach is able to consistently explore the goal
distribution (top right room). In the specific example of the Point

Maze, Off-Policy DDL+HER fails to solve the task on its own as
it underestimates the distance to the goal. In Fig. 23 we represent
the Q-function learned by SAC for DDL+HER, and for Ours+HER.
The maximum value of the Q-function (its negative value, in the
plot) is not centered around the goal for DDL+HER. We presume
this might be due to estimation errors induced by the (off-policy)
exploration noise.

We also achieve better sample efficiency for the Fetch Pick and

Place task. As shown in Fig. 24a, we manage to get a maximum
reward above the threshold after circa 11k rollouts, employing 45%
less samples than DDL+HER, and achieving the same performance
of Sparse+HER with less than half of the rollouts. In the variant
With Wall, the efficiency gain is 5x higher.

6.7 conclusions 93

Figure 26: Triangular loss effect for the Fetch Pick and Place With Wall

task. Our learned distance helps the optimizer to avoid the local
minima created by the wall. The merging rate of the hypotenuse
into the catheti sum is the same as in the case without wall
(Fig. 24b), namely, at most 30% of the training batch gets penal-
ized. However, the rate at which the hypotenuse gets corrected –
the relaxations rate – has non-zero values also later in training.

Sparse+HER DDL+HER Off-Policy DDL+HER Ours+HER

Figure 27: State coverage of Point Maze obtained with each method.
Sparse+HER is only able to explore the lower room and parts
of the adjacent one. All the methods are provided with either
ϵ = 0.1 or ϵ = 0.3 exploration, depending on which performs
better.

6.7 conclusions

Learning distances or reward functions in a self-supervised fashion
is a generally difficult problem, as it relies on bootstrapped esti-
mates, which can produce strongly biased and high-variance solu-

94 neural all-pairs shortest path for rl

tions. Solving it, leads to increased sample efficiency during learn-
ing which is highly relevant for reinforcement learning applied to
real robotic tasks. In addition, learning the distance function does
not require any domain knowledge nor expert demonstrations and
is thus of general interest for goal-conditioned tasks. The proposed
neural APSP algorithm shows promising empirical results which
indicate that learning these distances, and the corresponding goal-
conditioned policies, is not only possible, but also robust to local
optima and sample efficient.

7
C O N C L U S I O N

7.1 summary

Throughout this dissertation, we presented a series of methods
aimed at overcoming some of the challenges of RL, with a focus on
improving online sample efficiency, having more robust solutions,
and learning distance functions that can reduce the planning hori-
zon without sacrificing performance. Each chapter revolved around
a different aspect of efficiency and robustness, specifically:

icem Chapter 3 presented iCEM and showed how zero-order op-
timizers can be better adapted for continuous control. The
way in which the solution space is explored is more reliable
and “far-sighted” than the myopic look-ahead given by the
gradient vector. Our proposed algorithm introduces tempo-
rally correlated noise to account for the complexity of the ac-
tion sequences along the planning horizon, and it reduces the
amount of wasted samples by keeping memory of the elite
set and by better propagating information inter– and intra–
iterations. Adding all the improvements together, led to a per-
formance increase of 120-1000% and a sample efficiency in-
crease of 270-2200%. iCEM was also integrated into the model-
based control library mbrl-lib1 by Meta AI.

apex Chapter 4 was motivated by the research question: can we
distill the behavior of a powerful zero-order optimizer like
iCEM into a single neural network? And if so, how does
the performance compare with policies learned via model-
free RL? Considering iCEM as the expert, we looked at the

1 https://github.com/facebookresearch/mbrl-lib
95

96 conclusion

problem through the lens of imitation learning. Our results
indicated that a simple combination of existing methods, like
DAgger [59] or GPS [97], is not sufficient to correctly imitate
a stochastic and multimodal expert like iCEM. With APEX,
we proposed an adaptive method that modifies the expert to
follow the student policy without the risk of prematurely col-
lapsing to its behavior, achieving much better results than a
strong model-free baseline like SAC [23].

razer Chapter 5 analyzed another important aspect of model-
based RL with zero-order planners which was only par-
tially investigated in previous work: using neural networks
to model aleatoric and epistemic uncertainty and balancing
them accordingly during planning. In particular, we argued
that the planner should be pessimistic in the face of aleatoric
uncertainty – for risk-averse behavior – and optimistic in the
face of epistemic uncertainty – for active learning.

n-apsp In Chapter 6 we explored another aspect that improves the
flexibility and efficiency of model-based approaches: NN func-
tion approximation for distance learning. Usually, in model-
predictive control, the optimization problem considers the
sum of the costs up to a fixed horizon. Attaching a termi-
nal value function to the receding-horizon cost can give more
feedback to the planner and eventually even drastically re-
duce the planning horizon [95, 160]. With our work on neural-
APSP, we propose a way to learn this value in a fully self-
supervised way. In our experimental evaluation, the distance
is reshaped as a reward and used in a model-free fashion
(no planning), proving that we can effectively learn domain-
specific information in a distance function without the need
for reward engineering.

7.2 limitations and future work 97

7.2 limitations and future work

The results and contributions of this dissertation pave the way for
many exciting avenues of future research.

For iCEM presented in Chapter 3, there are several possible im-
provements, intended to further increase the sample efficiency of
such zero-order trajectory optimizers. In fact, while iCEM produces
nearly-optimal action plans, it cannot be run in real-time for high-
dimensional systems. One possibility could be to consider an adap-
tive planning horizon that varies depending on factors such as dis-
tance to the goal or uncertainty in the cost/model. This would al-
low the algorithm to focus the computational power on more rele-
vant time steps of the optimization process. Additionally, one could
investigate a dynamic population size based on the population vari-
ance, where a smaller variance would lead to fewer samples, and
vice-versa. This adaptive sampling strategy may result in better per-
formance and faster convergence.

The adaptive policy extraction proposed in Chapter 4 is still lim-
ited by the speed of the online sampling procedure of the iCEM
expert. Assuming that this limitation is overcome, there is an addi-
tional bottleneck to consider: the efficiency of the relabeling proce-
dure. Future work could address this issue by developing more ad-
vanced data aggregation techniques to prioritize informative sam-
ples for relabeling – e. g., considering uncertainty-aware queries
as in [161] – thereby reducing the overall number of interactions re-
quired with the expert and the environment. Another direction is to
integrate back reinforcement learning and consider methods from
offline RL, which gained a lot of traction in recent years [162, 163].
Offline RL allows training the policy also from sub-optimal data,
fully offline, without any need to query the agent that generated
the data, therefore improving efficiency.

In Chapter 5, we introduced ensemble disagreement as an explo-
ration strategy for active learning in model-based RL. It could be in-
teresting to investigate other possibilities for structured exploration
with dynamical models. For instance, incorporating graph neural

98 conclusion

networks [164, 165] or other forms of structured models could en-
able agents to capture relational information and facilitate graph-
based exploration strategies. Alternatively, other structural proper-
ties of the dynamical model can be leveraged for active learning.
For example, equivariance-guided exploration, as briefly discussed
in Appendix A, could help the RL agent identify patterns and sym-
metries, allowing it to prioritize exploration in areas of the state-
action space that are expected to confirm or deny the presence of
model equivariance.

Finally, extending the self-supervised distance learning approach
in Chapter 6 to the offline setting could result in a more compre-
hensive and versatile framework for distance learning. Although
various techniques for learning cost functions from scratch exist,
most are limited to the online off-policy setting or require exten-
sive domain-specific knowledge. Developing a robust and efficient
framework for learning distances from logged data could open new
possibilities for leveraging the vast amounts of available offline data
for real-world applications. In addition to this, neural-APSP could
be extended to consider pixel inputs as well, in order to be used
for vision-based robotic applications. As our method consists of
mainly two architectural components, a neural network for the dis-
tance function and a count model based on hashing, it could be in
principle extended to image-based tasks as both of these elements
have shown impressive results when learning from down-sampled
images as well [135, 157].

A C K N O W L E D G E M E N T S

I would like to begin by expressing my deepest gratitude to all those
who have supported and encouraged me throughout the course of my
doctoral research. The intellectual and professional growth I have ex-
perienced has been both challenging and rewarding in ways I could
not have anticipated. My sincerest thanks go to my supervisors, Georg
Martius and Andreas Krause, for their constant guidance, patience, and
mentorship. Your expertise and commitment to my development as a
researcher have been instrumental in the successful completion of this
dissertation. I also express my gratitude to Marc Toussaint for being
part of the defense committee.My appreciation also goes to the Max
Planck ETH Center for Learning Systems (CLS) and the German Fed-
eral Ministry of Education and Research (BMBF) for the financial sup-
port that made this research possible.

To my fellow researchers and friends at the Autonomous Learning
Group, thank you for the intellectual camaraderie, the stimulating de-
bates, the barbecues in the forest, the pizza parties, and the shared
laughter. You have made this journey enjoyable and memorable, and
I could not have asked for a better group of colleagues. In particular,
I wanna thank all the incredible women in the AL group, your pres-
ence has been a vital part in creating an encouraging and inspiring
environment.

I would also like to thank the people that made my internships two
remarkable experiences. To Roberto Calandra, for always being ready
to discuss research despite the timezone and the parental leave. Heart-
felt thanks also to Martin Riedmiller and the Control Team and other
researchers at Deepmind. My experience in London was so great also
thanks to your support and enthusiasm. In particular, thanks to Oliver,
Vitaly, Abbas, Nicholas for the football matches, the sailing trip and
the jam sessions. Moreover, I wanna thank Sarah for being an inspiring

99

100 acknowledgements

friend and researcher, Mohak for being the coolest intern, and Federico
for the great discussions on virtually any topic and the time together.

Doing a PhD also means going through the most defining years of
our lives at a personal level, so I feel compelled to thank all those
who have been there, whether through a kind word, a much-needed
late-night discussion, or a shared moment of respite. In particular, I
wanna thank Ahmad for the infinite kindness and the conversations
on late-stage capitalism, Dominik for the unstoppable enthusiasm and
the many Feierabende that helped us through the PhD, Michal for the
deep conversations and the hike with my mom. I also wanna thank
Giambattista for pushing me to think big and aim high, Sergey for the
delightful discussions in art museums, Maggie for the friendship we
developed painting after painting, and Marco for being an incredibly
rare combination of wit and empathy.
Finally, a loving thought to my flatmates: Sabrina, Gigi, (Viola!) and
Marie, my late twenties would have been dull and unmemorable with-
out your friendship, you are simply the best.

Last but not least, I am deeply thankful to my family for their unwa-
vering love and belief in me. To my parents, Antonella and Pasquale,
for being there, always, and trying their best to support me. And to
my sister, Aurora, I hope you know how much you and your support
mean to me. Lastly, I wanna thank those who cannot hear my words:
my nonna Caterina for having been like a second mother to me, and
my dog Toby for being the most reliable and reproducible source of
emotional support, which I learned to be two non trivial qualities in
the world of deep learning.

With a touch of humor, I conclude with the words of Douglas Adams,
"I may not have gone where I intended to go, but I think I have ended
up where I needed to be". I dedicate this work to the unpredictable and
serendipitous nature of academic research, and to all those who have
joined me along the way.

A
A D D I T I O N A L
P U B L I C AT I O N S

a.1 equivariant data augmentation from state inputs

for generalization in offline rl

Figure 28: (a) EDAS framework. (b) Generalization performance on the
Point Mass and Planar Reacher environments in the DeepMind
Control Suite.

During my research internship at Deepmind, I investigated another
possible way to improve data efficiency, this time in the context of
offline Reinforcement Learning. Offline RL has the potential to en-
able learning policies from previously collected data, without the
need for extensive online interactions. However, generalization to

This section is based on the paper “Equivariant data Augmentation from state inputs
for generalization in offline RL”, Cristina Pinneri, Sarah Bechtle, Markus Wulfmeier,
Arunkumar Byravan, Will Whitney, Jingwei Zhang, Martin Riedmiller.

101

102 additional publications

unseen situations remains a major challenge. In this paper, we pro-
pose an Equivariant Data Augmentation approach from State in-
puts (EDAS) that leverages the structure of the underlying system
to expand the dataset in a principled way. By first learning a dy-
namical model, our method identifies and exploits inherent invari-
ances, leading to improved generalization performance. In partic-
ular, we learn the bounds of the equivariant transformation distri-
bution (translation) using a combination of equivariance loss and
entropy regularization, which allows us to handle partial symme-
tries and represent systems with invariances only in specific parts of
their domains. Experiments on the DMControl Suite [166] demon-
strate the effectiveness of our approach, with the learned policy
showing comparable performance on both training and test goals.
This framework is flexible, potentially adaptable to various group
transformations and environments, and can be extended to handle
imperfect models in noisy settings. Additionally, it opens up the
possibility to use the equivariance prediction error to guide explo-
ration during the model learning process and check whether the
system is invariant to certain types of transformations or not.

A.2 pink noise for deep rl 103

a.2 pink noise is all you need : colored noise explo-
ration in deep rl

White noise Pink noise OU noise

Figure 29: Trajectories of pure noise agents on a bounded integrator en-
vironment. Pink noise (center) provides a balance of local and
global exploration, and covers the state space more uniformly
than the other two.

This paper explores more in detail the benefits of using colored-
noise exploration (Sec. 3.2.1) in deep reinforcement learning. In off-
policy deep reinforcement learning with continuous action spaces,
exploration is often implemented by injecting action noise into
the action selection process. Popular algorithms based on stochas-
tic policies, such as SAC or MPO, inject white noise by sampling
actions from uncorrelated Gaussian distributions. In many tasks,
however, white noise does not provide sufficient exploration, and
temporally correlated noise is used instead. A common choice is
Ornstein-Uhlenbeck (OU) noise, which is closely related to Brow-
nian motion (red noise). Both red noise and white noise belong to
the broad family of colored noise. In this work, we perform a compre-
hensive experimental evaluation on MPO and SAC to explore the
effectiveness of other colors of noise as action noise. We find that
pink noise, which is halfway between white and red noise, signif-
icantly outperforms white noise, OU noise, and other alternatives
on a wide range of environments. Thus, we recommend it as the
default choice for action noise in continuous control.

This section is based on the paper “Pink noise is all you need: colored noise exploration in
deep RL”, Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, Georg Martius [167].

B
A P P E N D I X T O C H A P T E R 3 :
I C E M

In this supplementary material we detail the performances of iCEM
with both ground truth and learned models, and discuss the hy-
perparameter selection with a sensitivity analysis. We present the
ablation figures for all the environments and 3 fixed budgets. We
conclude with an analysis stressing the relation between time-
correlated action sequences and their power spectrum. Some videos
of iCEM in action can be found at https://martius-lab.github.

io/iCEM/.

Index
b.1 Performance results 106

b.1.1 Budget selection 106

b.2 Hyper-parameters 107
b.2.1 Choice of colored-noise exponent β . . 108

b.2.2 Sensitivity 109

b.2.3 Hyperparameters for PlaNet 111

b.3 Ablation results 112
b.4 Details on the iCEM improvements 114

b.4.1 Shift Initialization 114

b.4.2 Sampling Colored Noise 114

b.4.3 Adding the mean actions 114

b.5 Spectral characteristics of noise 115

105

https://martius-lab.github.io/iCEM/
https://martius-lab.github.io/iCEM/

106 appendix to chapter 3 : icem

b.1 performance results

Table 3 shows the performance values for a selection of budgets in
all environments. The values are reported for 50 independent runs
(and 100 for Fetch Pick&Place) in the case of the ground-truth en-
vironments. For the PlaNet experiments we report the statistics for
3 independent training runs with 10 evaluation rollouts each. Note
that for the success rate the variance is defined by the rate itself
(Bernoulli distribution). Table 3 is complemented by Fig. 30, which
shows the additional PlaNet experiments with Reacher Easy, Fin-
ger Spin and Cartpole Swingup.

Table 3: Performances for all environments for a selection of budgets. We
report the cumulative reward (marked with 1) and the success rate
(marked with 2).
Envs Budget 100 Budget 300 Budget 500

iCEM CEMMPC iCEM CEMMPC iCEM CEMMPC

Halfcheetah Running
1 5236±167 699±120 7633±250 3682±119 8756±255 5059±179

Humanoid Standup
1 368k±12k 155 k±488 411k±5k 163 k±495 416k±1.8k 164 k±158

Fetch Pick&Place
2 0.81 0.29 0.95 0.64 0.96 0.75

Door
2 1.0 1.0 1.0 1.0 1.0 1.0

Door (sparse reward)2 0.96 0.0 0.96 0.0 0.98 0.0

Relocate
2 0.9 0.0 1.0 0.22 1.0 0.62

iCEM (366) plain CEM (366) plain CEM (10000)

PlaNet Cheetah run
1

589.49±49.45 419.04±11.04 685.17±18.89

PlaNet Cup catch
1

938.3±37.79 667.83±445.3 963.33±24.42

PlaNet Walker walk
1

846.37±71.46 711.17±119.36 954.21±31.91

PlaNet Reacher Easy
1 926.07±194.17 783.07±352.69 693.6±423.51

PlaNet Finger Spin
1

523.43±35.07 523.43±29.46 667.37±190.71

PlaNet Cartpole Swingup
1

772.32±52.33 761.51±41.36 800.05±47.9

b.1.1 Budget selection

Table 4 gives different budgets used for evaluating iCEM perfor-
mance and the corresponding internal optimizer settings. Note that
the number of CEM-iterations and the number of initial trajectories
N depends on the overall budget and, due to the decay γ = 1.25,

B.2 hyper-parameters 107

Reacher Easy Finger Spin Cartpole Swingup

0 200 400 600 800 1000
episodes collected

0

250

500

750

1000

Cu
m

ul
at

iv
e

re
wa

rd

0 200 400 600 800 1000
episodes collected

0

200

400

600

800

Cu
m

ul
at

iv
e

re
wa

rd

0 200 400 600 800 1000
episodes collected

0

250

500

750

1000

Cu
m

ul
at

iv
e

re
wa

rd

CEM extensive
CEM low budget
iCEM low budget

Figure 30: Additional PlaNet experiments. For details, see Fig. 6.

there are more CEM-iterations possible for iCEM while keeping the
same budget.

Table 4: Budget-dependent internal optimizer settings (notation: CEM-
iterations / N).

Budgets

50 70 100 150 200 250 300 400 500 1000 2000 4000

iCEM 2 / 25 2 / 40 3 / 40 3 / 60 4 / 65 4 / 85 4 / 100 5 / 120 5 / 150 6 / 270 8 / 480 10 / 900

CEM 2 / 25 2 / 35 2 / 50 2 / 75 3 / 66 3 / 83 3 / 100 4 / 100 4 / 125 4 / 250 6 / 333 8 / 500

b.2 hyper-parameters

Zero order optimization requires minimal hyperparameter tuning
in comparison to gradient descent methods, to the extent that it is
used itself to tune the hyperparameters of deep networks [168].

The main parameters in CEM, aside from the length of the plan-
ning horizon h and the number of trajectories (determined by pop-
ulation size N and number of CEM-iterations), are: the size of the
elite-set K, the initial standard deviation σinit and the α-momentum.

To these, iCEM adds the colored-noise exponent β, the decay fac-
tor γ, and the fraction of reused elites ξ. We unified the values of
α, K, σinit, γ, and ξ for all the presented tasks, see Table 5.

For experiments with the ground truth model we use an horizon
of 30 and for the PlaNet experiments we use the horizon of 12 to
be consistent with the original PlaNet paper. All the other parame-

108 appendix to chapter 3 : icem

ters are fixed to the same values for all the environments, with the
exception of the noise-exponent β, as reported in Table 6.

The environment episode length (standard for these environ-
ments) are given in Table 7.

Table 5: Fixed Hyperparameters used for all experiments.

elites initial std. momentum decay fraction reused elites

K σinit α γ ξ

iCEM 10 0.5 0.1 1.25 0.3

CEM 10 0.5 – 1.0 0

Table 6: Env-dependent Hyperparameter choices.

iCEM/CEM with ground truth iCEM with PlaNet

horizon h 30 12

colored-noise exponent β

0.25 Halfcheetah Running

2.0 Humanoid Standup

2.5 Door

2.5 Door (sparse reward)

3.0 Fetch Pick&Place

3.5 Relocate

0.25 Cheetah run

0.25 Cartpole Swingup

2.5 Walker walk

2.5 Cup Catch

2.5 Reacher Easy

2.5 Finger Spin

initial std. σinit

0.5 Cheetah run

0.5 Walker walk

0.5 Cup Catch

0.5 Reacher Easy

1.0 Finger Spin

1.0 Cartpole Swingup

b.2.1 Choice of colored-noise exponent β

The choice of the β is intuitive and directly related to the nature
of each task. For some tasks, the robotic system requires high-

B.2 hyper-parameters 109

Table 7: Environment settings. These are the standard settings for the envi-
ronments. For PlaNet the numbers come from the custom action
repeat used in [63].

iCEM/CEM with ground truth iCEM with PlaNet

Episode length 1000 Halfcheetah Running

1000 Humanoid Standup

200 Door

200 Door (sparse reward)

50 Fetch Pick&Place

200 Relocate

250 Cheetah run

125 Cartpole Swingup

500 Walker walk

250 Cup Catch

250 Reacher Easy

500 Finger Spin

frequency control: in Halfcheetah Running, for example, it is im-
portant to switch actions at a very fast rate, suggesting to select
a very low β value. On the other hand, there are many environ-
ments where the preferred action sequences are smoother, indicat-
ing a more dominant presence of lower-frequencies: for example,
manipulation environments as Fetch Pick&Place and Relocate

will require a higher β.
The same holds for the Humanoid Standup task, as we saw in

Fig. 4b, which prefers a non-flat spectral density with a predomi-
nance of lower frequencies, reason why feeding actions drawn from
a Gaussian distribution would inevitably translate in a "waste" of
energy. By picking a β in the right range, we avoid this and conse-
quently make the whole optimization procedure more efficient.

Aside from this, providing a precise value for β is not critical.
Environments that require a high-frequency control need a low β
otherwise a value around 2–4 seems adequate, as shown in the sen-
sitivity plot in Fig. 32.

b.2.2 Sensitivity

If the number of trajectories is high enough, there is little sensitiv-
ity to the other parameters, as shown in Fig. 31 and Fig. 32. This

110 appendix to chapter 3 : icem

(a) horizon h (b) initial standard dev.

20 40 60 80
planning horizon

200

300

400
re

tu
rn

 (×
 1

00
0)

iCEM (300)
iCEM (100)
CEMMPC (300)

0.2 0.4 0.6 0.8 1.0
init

0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 31: Sensitivity to hyper-parameters of iCEM. (a) horizon h in Hu-
manoid Standup and in (b) the initial standard deviation for
Fetch Pick&Place. See Fig. 32 for the sensitivity to β.

means that for very low budgets – the ones relevant for real-time
planning – selecting the right parameters becomes more important.
We can the measure the impact of every parameter by comparing
the first (low budget) and last column (higher budget) of Fig. 33.
As the number of samples increases, adding features does not have
significant consequences on the final performance.

However, selecting the colored-noise exponent β in the right
range, can still have a significant effect depending on the specific
task, even for higher budgets. For example, it is important to not
use high values of β for high-frequency control tasks like Halfchee-
tah Running. On the other hand, using higher β on the Humanoid

Standup is fundamental when the provided budget is low (100). In
fact, as illustrated in Fig. 32b, it is crucial to increase β to any value
above 2, in order to not sample uncorrelated action sequences.

Besides that, iCEM shows lower sensitivity with respect to the
initial standard deviation of the sampling distribution. As an exam-
ple, we report the effect of σinit on the success rate of the Fetch

Pick&Place task in Fig. 31c: CEMMPC prefers a narrower range for
σinit between 0.4 and 0.6, in contrast to iCEM, for which any value
above 0.2 yields similar results.

Another relevant observation is the effect of the planning horizon
length h for the Humanoid Standup in Fig. 31a: even in the low-
budget case, iCEM can better exploit longer action sequences by
generating samples with higher correlations in time.

B.2 hyper-parameters 111

(a) Halfcheetah Running (b) Humanoid Standup

0 1 2 3 4
colored noise ()

0

2

5

8

re
tu

rn
 (×

 1
00

0)

0 2 4 6 8 10
colored noise ()

200

300

400

re
tu

rn
 (×

 1
00

0)

iCEM (300)
iCEM (100)
CEMMPC (300)

(c) Fetch Pick&Place (d) Relocate

0 2 4 6 8 10
colored noise ()

0.0

0.5

1.0

su
cc

es
s r

at
e

0 2 4 6 8 10
colored noise ()

0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 32: Sensitivity to the colored noise exponent β of iCEM.

b.2.3 Hyperparameters for PlaNet

We reimplemented PlaNet [63] in PyTorch to conduct our experi-
ments and borrow all algorithmic details and hyperparameter set-
tings from the original paper. As in [63], for every training run,
we collect 5 initial rollouts from the respective environment by ran-
domly sampling from its action space. After every 100th training
step, we extend the training set by collecting an additional rollout
using the planner, but add a Gaussian distributed exploration noise
ϵ ∼ N (0, I · 0.32) to each action. After every 1000th training step,
we additionally collect a test rollout for evaluation (which is not
added to the training set) using the planner without exploration
noise, yielding the results in Fig. 6. Results for additional environ-
ments are depicted in Fig. 30. For both train and test collections
the planner is identical within each experiment, being either "CEM
extensive", "CEM low budget", or "iCEM low budget" (see Table 8

for details). For each experiment configuration we report results on
3 independent training runs. After training each model for 100k

112 appendix to chapter 3 : icem

steps, we collect 10 evaluation rollouts (without exploration noise)
per training run (i.e., 30 in total) and report the results in table 3.

Table 8: PlaNet CEM details

CEM- initial elites clip best decay reuse shift shift

iterations candidates action action elites means elites

CEM extensive 10 1000 100 yes no 1.0 no no no

CEM low budget 3 122 10 yes no 1.0 no no no

iCEM low budget 3 150 10 yes yes 1.25 yes yes yes

budget mean as momentum initial std. colored-noise exponent

sample α σinit β

CEM extensive 10000 no 0 1.0 0

CEM low budget 366 no 0 1.0 0

iCEM low budget 366 yes 0.1 see table 6 see table 6

b.3 ablation results

In Fig. 33 the ablations and additions are shown for all environ-
ments and a selection of budgets. As we use the same hyperparam-
eters for all experiments, see Sec. B.2, in some environments a few
of the ablated versions perform slightly better but overall our final
version has the best performance. As seen in Fig. 33, not all com-
ponents are equally helpful in the different environments as each
environment poses different challenges. For instance, in Humanoid

Standup the optimizer can get easily stuck in a local optimum cor-
responding to a sitting posture. Keeping balance in a standing po-
sition is also not trivial since small errors can lead to unrecoverable
states. In the Fetch Pick&Place environment, on the other hand,
the initial exploration is critical since the agent receives a meaning-
ful reward only if it is moving the box. Then colored noise and keep
elites and shifting elites is most important.

B.3 ablation results 113

Budget 100 Budget 300 Budget 500

Halfcheetah Running

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

5

10

re
tu

rn
 (×

 1
00

0)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

5

10

re
tu

rn
 (×

 1
00

0)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

5

10

re
tu

rn
 (×

 1
00

0)

Humanoid Standup

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

200

400

re
tu

rn
 (×

 1
00

0)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

200

400

re
tu

rn
 (×

 1
00

0)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0

200

400

re
tu

rn
 (×

 1
00

0)
Fetch Pick&Place

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0
su

cc
es

s r
at

e

Door

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

Door (sparse reward)

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

Relocate

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

CE
M M

PC
+

de
ca

y
+

ke
ep

+

sh
ift

+

be
st-

a
+

cli
p

+

co
lor

 iC

EM

 de
ca

y
 ke

ep

 sh
ift

 be

st-
a

 co
lor

 0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 33: Ablation studies

114 appendix to chapter 3 : icem

b.4 details on the icem improvements

b.4.1 Shift Initialization

The shift-initialization of the mean µt−1(·, j + 1) of the sampling
distribution, as mentioned in Sec. 3.1.1 and used in Alg. 4 line 9 is
as follows:

µt(·, j) = µt−1(·, j + 1) for 1 ≤ j ≤ h− 1 (32)

µt(·, h) = µt−1(·, h) (33)

where the parenthesis denote index-access: (action dimension, hori-
zon timestep). Note, that in the CEMPETS method Eq. 33 is µt(·, h) =
0⃗.

b.4.2 Sampling Colored Noise

To sample action sequences with a specific power spectrum we use
the efficient implementation of [71], which can be found as a python
package at https://github.com/felixpatzelt/colorednoise.

b.4.3 Adding the mean actions

As the dimensionality of the action space increases, it gets more and
more difficult to sample an action sequence closer to the mean of
the distribution. Nevertheless, executing the mean might be benefi-
cial for many tasks which require “clean” action sequences like, for
example, manipulation, object-reaching, or any linear trajectory in
the state-space. Adding the mean to the samples fixes this problem
and closes the gap with the original CEM, allowing the algorithm
to pick either the mean or the best sampled action.

However, we noticed an unexpected performance degradation
when adding the mean in every CEM-iteration, presumably due
to the effect of quicker narrowing down the variance along CEM-
iterations. Adding the mean just at the last iteration prevents this

https://github.com/felixpatzelt/colorednoise

B.5 spectral characteristics of noise 115

bias and has advantageous effects. If the mean survives the last it-
eration and becomes part of the elite-set, it will be automatically
shifted to the successive time step.

b.5 spectral characteristics of noise

We can achieve more efficient exploration by choosing different
kinds of action noise, which in turn affects the type of correla-
tions between actions at different time steps. We can notice this
by writing down the auto-correlation function which, according
to the Wiener-Khinchin theorem, can be expressed as the inverse
Fourier transform of the power spectral density of the control in-
put: C(τ) = F−1[PSDa(f)]. If the power spectral density follows
the inverse power law of Eq. (10), and we apply a scale transfor-
mation in the time domain τ → τ′ = sτ, then, from the frequency
scaling property of the Fourier transforms:

C(sτ) = F−1
[

1
s

PSDa

(
f
s

)]
= F−1

[
1
s

sβPSDa(f)
]

using Eq. (10)

= sβ−1F−1[PSDa(f)]

= sβ−1C(τ)

From this self-referential formula we can understand to which de-
gree the actions lose similarity with a copy of themselves at a differ-
ent point in time, as detailed in [169].

In particular, white noise is a memory-less process and does not
produce any correlations at different times.

C
A P P E N D I X T O C H A P T E R 4 :
A P E X

The following material includes performance tables, wall-clock
times for the proposed method per iteration, and extended abla-
tion experiments to understand the performance of policy extrac-
tion and the expert. Lastly, we will also present the interplay be-
tween policy and expert as in Fig. 14 but for lower budgets.

Index
c.1 Performance Tables 117
c.2 Ablation experiments 118
c.3 Expert and Policy Interplay 120

c.1 performance tables

We report the performance numbers for our experiments in Tab. 9,
while the expert/teacher settings are indicated in Tab. 10, and pol-
icy settings are in Tab. 11. Wall-clock times are in Tab. 12.

117

118 appendix to chapter 4 : apex

Table 9: Performances for all environments for APEX and APEX policy. En-
viroments are abbreviated for space reasons: HC-Run: Halfchee-
tah Running, Hum-Up: Humanoid Standup, and FPP: Fetch

Pick&Place. We report the cumulative reward (marked with 1)
and the success rate (marked with 2). SAC and iCEM baseline per-
formances are provided for reference. For an explanation about the
budget, see [93].

APEX

Envs (budget 45) (budget 100) (budget 300) SAC

Expert Policy Expert Policy Expert Policy

HC-Run1
5556±241 4847±665 7202±510 5596±779 9310±437 6218±1337 6352

Hum-Up1
149.0k±9.6k 73.5k±11.9k 173.7k±13.4k 80.5k±14.1k 207.3k±4.5k 88.7k±12.3k 48.4k

FPP2
0.893 0.0311 0.947 0.770 − − 0.034

Door
2

1.0 0.99 − − − − 0.02

iCEM

Envs (budget 45) (budget 100) (budget 300)

HC-Run1
3488±119 5235.9±167 7632.54±250

Hum-Up1
146.3k±13.7k 182.2k±12.5k 202.4k±51.6k

FPP2
0.67 0.81 −

Door
2

1.0 − −

c.2 ablation experiments

In order to understand which components of APEX are affecting
the performance of the policy extraction and the expert, several
ablations were carried out. The results of this ablation studies are
shown in Fig. 15 and Fig. 16. In the following, the implementation
details of the different ablation studies are discussed.

APEX (λ-fixed): Instead of using the adaptive scheme for λj that
were proposed in Eq. 17, its value is set to a constant value, with a
value chosen to work well in the respective environment.

APEX w/o DAgger: Instead of using DAgger for policy extract-
ing, plain behavioral cloning is used. In DAgger, states visited by
the policy are relabeled with actions from the expert and added in
addition to the expert data to the training dataset of the policy. In
our ablation, only the data from the expert is added to the training

C.2 ablation experiments 119

Table 10: Expert settings for the considered methods (The values for col-
ored noise exponent for different environments are taken from
[93])

elites Initial std. Momentum Decay Fraction reused Guidance scaling Horizon

K σinit α γ elites ζ constant c h

iCEM 10 0.5 0.1 1.25 0.3 − 30

iCEMπ 10 0.5 0.1 1.25 0.3 − 30

APEX 10 0.5 0.1 1.25 0.3 0.025 30

Warm Add Policy # rollouts per

Start Sample iteration n

iCEM False False −
iCEMπ/ True True 1 (Halfcheetah Running, Humanoid Standup)

APEX 10 (Door), 25 (Fetch Pick&Place)

Table 11: Policy settings for iCEMπ and APEX

layers Size Activation fn l1 reg. l2 reg. Optimizer Learning rate

3 128 ReLu 1e-6 1e-5 Adam 5e-4

Batch size Iterations # latest rollouts used for training

1024 1000 50 (Halfcheetah Running), 100 (Humanoid Standup)

150 · 25 (Fetch Pick&Place), 100 · 10 (Door)

dataset of the policy. In case of DAgger, the policy gets twice the
amount of data as in the case of behavioral cloning because in each
iteration data from the expert and relabeled data from the policy is
added to the dataset. In both cases, the same number of gradient-
steps are performed during training of the policy.

APEX w/o warmstarting: Instead of initializing the means of all
action dimensions along the planning horizon with the actions from
the policy at the beginning of each rollout, means along action di-
mensions and the planning horizon are initialized with zero. After
each planning step, the mean of action t is not initialized with the
action from the policy but repeats the last action at time-step t− 1.

120 appendix to chapter 4 : apex

Table 12: Wall-clock times for APEX per iteration. Reference machine for
wall clock-times is an Intel Xeon Gold 6154 CPU @ 3.00GHz using
32 Cores for parallel simulation models. All times are in minutes.

Wall-clock times per iteration (in min.)

Env Budget Expert-only DAgger-only Training Total

Halfcheetah Running 45 1.8 2.0 1.4 5.6

100 2.3 2.5 1.4 6.5

300 4.0 4.2 1.5 10.1

Humanoid Standup 45 1.7 2.5 0.9 5.3

300 5.6 6.9 0.9 13.8

Fetch Pick&Place 45 7.8 8.7 3.2 20.0

(25 rollouts) 100 12.2 13.5 3.5 29.5

Door (10 rollouts) 45 9.7 11.2 3.9 25.1

APEX w/o policy samples: No additional sample trajectory with
actions from the policy is added to the other samples during plan-
ning (see Alg. 4). To clarify in the full version with policy samples
one of the random samples is overwritten to keep N samples.

c.3 expert and policy interplay

In Fig. 34 we report the performance of the policy and the experts,
for different compute budgets. As discussed in the main paper, it
is interesting to note that the expert inside APEX improves with
the policy. The can lead to a higher policy performance than the
original iCEM with the same compute budget.

C.3 expert and policy interplay 121

Halfcheetah Running Halfcheetah Running Halfcheetah Running

(budget 45) (budget 100) (budget 300)

0 500 1000 1500
iteration (n=1)

0

2

5

8

re
tu

rn
 (×

 1
00

0)

0 500 1000 1500
iteration (n=1)

0

2

5

8

re
tu

rn
 (×

 1
00

0)

0 500 1000 1500
iteration (n=1)

0

5

10

re
tu

rn
 (×

 1
00

0)

Fetch Pick&Place Fetch Pick&Place

(budget 45) (budget 100)

0 200 400 600 800
iteration (n=25)

0.0

0.5

1.0

su
cc

es
s r

at
e

0 200 400 600
iteration (n=25)

0.0

0.5

1.0

su
cc

es
s r

at
e

APEX APEX Expert iCEM Expert SAC
Figure 34: Same as Fig. 14 but for different compute-budgets: 45, 100 (nor-

mal), 300. Notice, that in the case of low and normal budgets
in Halfcheetah Running the policy outperforms the iCEM ex-
pert. In Fetch Pick&Place the policies are able to match the
iCEM performance.

D
A P P E N D I X T O C H A P T E R 5 :
R A Z E R

In this supplementary material, we provide additional details for
RAZER. For the sake of completeness, we will report some addi-
tional theory and experiments present in the published paper [12]
and carried out mainly by my collaborators (Sec. 1.3). We also pro-
vide videos that showcase the risk-averse behavior of RAZER at
https://sites.google.com/view/razer-traj-opt.

Index
d.1 Additional Theory and Experiments 124

d.1.1 Extra environments 124

d.1.2 Risk-averse Planning 124

d.1.3 Probabilistic Safety Constraints 125

d.1.4 Active Learning for Model Improvement 126

d.1.5 Planning with External Safety Con-
straints 127

d.2 Implementation Details 128
d.2.1 Model Learning 128

d.2.2 Controller Parameters 129

d.2.3 Timings 129

d.2.4 Uncertainty Separation 130

d.2.5 Entropy vs. Variance as Uncertainty
Measurement 132

d.2.6 Observation Space vs. Cost Space Un-
certainty 132

d.3 Algorithm . 133
123

https://sites.google.com/view/razer-traj-opt

124 appendix to chapter 5 : razer

d.4 Environments Details 134
d.4.1 Computing State-Space Coverage . . . 137

d.5 Application to Transfer Learning 137

d.1 additional theory and experiments

d.1.1 Extra environments

We consider two additional environments:
Noisy-HalfCheetah This environment is based on HalfCheetah-v3

from the OpenAI Gym toolkit. We introduce aleatoric uncertainty
to the system by adding Gaussian noise ξ ∼ N (µ, σ2) to the actions
when the forward velocity is above 6. The action noise translates
into a non-Gaussian and potentially very complicated state space
noise distribution that makes the control problem very challenging.

Solo8-LeanOverObject In this robotic environment, the task of a
quadrupedal robot [170] is to stand up and lean forward to reach a
target position (purple markers need to reach green dots in Fig. 35)
without hitting an object visualized by the red cube representing the
unsafe zone. The robot starts in a laying position as shown in the
inset of Fig. 35. As in the Noisy-HalfCheetah environment, Gaussian
action noise is applied to mimic real-world perturbances.

d.1.2 Risk-averse Planning

noisy-halfcheetah How does RAZER perform on the Noisy-
HalfCheetah environment when models are learned from scratch?
Without aleatoric penalty, the planner is optimistic. Risky situations
are only detected if a failing particle is sampled. Thus, the noise is
mostly neglected and the robot increases its velocity, gets destabi-
lized, and ends up slower than with the aleatoric penalty (Fig. 36a).

D.1 additional theory and experiments 125

Figure 35: Solo8-LeanOverObject

d.1.3 Probabilistic Safety Constraints

When applying data-driven control algorithms to real systems,
safety is of utmost importance. In the realm of zero-order optimiza-
tion, safety constraints can be easily introduced by putting an in-
finite cost on constraint-violating trajectories. Nevertheless, we are
dealing with erroneous stochastic nonlinear models which lead to
nontrivial predictive distributions of future states, based on the con-
trol sequence a⃗. For this reason, we want to control the risk of vio-
lating the safety constraints that we, as practitioners, are willing to
tolerate. If we denote the observation space as S, given a violation
set C ⊂ S, we define the probability of the control sequence a⃗ to
enter the violation set at time t + ∆t as:

p(s ∈ C | st, a⃗) =
∫

s∈C
ψs

∆t(s | st, a⃗).

In practice, it is hard to compute this integral efficiently, since our
distribution ψs

∆t is nontrivial as a result of nonlinear propagation
of uncertainty. Furthermore, the violation set C might not have the
structure necessary to allow an efficient solution to the integral, in
which case one needs to resort to Monte Carlo estimation.

126 appendix to chapter 5 : razer

To simplify computation and gain speed, we consider box vio-
lation sets resulting in each dimension of s being constrained to
be outside of [a, b] ∈ {a, b | a, b ∈ R2, a < b}. By performing mo-
ment matching by a Gaussian in each time-slice ψs

∆t, the probability
of ending up in state s at time step t + ∆t is given by integrating
N (s; µt+∆t, Σt+∆t), where µ and Σ are estimated by Monte Carlo
sampling. If we further assume a diagonal covariance Σ, this in-
tegral can be deconstructed into d univariate Gaussian integrals,
which can be computed fast and in closed form. Hence, the proba-
bility of a constraint violation happening at time step t is defined
by:

p(s ∈ C | st, a⃗) =
d

∏
i=0

∫
s∈C
N (si; µi

t+∆t, σi
t+∆t) (34)

We integrate this into the planning method by adding:

cS(st, a⃗) = wS ·
H

∑
∆t=1

q
p(ŝt+∆t ∈ C) > δ

y
(35)

where J·K is Iverson bracket. and wS is either a large penalty cmax
or 0 to disable safety. An alternative for implementing safety con-
straints into CEM is by changing the ranking function [171]. The
overall algorithm used in a model-predictive control fashion is out-
lined in sec. D.3.

d.1.4 Active Learning for Model Improvement

If model uncertainties are used for risk-averse planning, they are
only meaningful if the model has the right training data. Only from
good data can the parameters of the approximate noise model be
learned correctly. In case of too little data, the agent might avoid
parts of the state space due to an overestimation of the model un-
certainties. On the other hand, the agent might enter unsafe regions
for which the uncertainties are underestimated. By adding the epis-
temic bonus to our domain-specific cost, the planner can actively
seek states with high epistemic uncertainty, i. e.for which no or only
little training data exists.

D.1 additional theory and experiments 127

Figure 19a shows this active data gathering process for the Bridge-
Maze environment. PETS finds one particular solution to the prob-
lem of reaching the goal platform. It chooses the path over the safer,
lower bridge rather than the dangerous middle path and the longer
path via the upper bridge (Fig. 37b). Once, one solution is found,
the model overfits to it without exploring any other parts of the
state space. This is also reflected in the plateauing of the red curve
in Fig. 37a.

In comparison, RAZER actively explores larger and larger parts
of the state space with an increasing weight of the epistemic bonus
(Fig. 37a). RAZER not only finds the easy solution found by PETS
but also extensively explores other parts of the state space (Fig. 37c).
To not get stuck at the middle bridge during exploration due to
the inherent noise, it is important to separate between epistemic
and aleatoric uncertainties. Only the former should be used for ex-
ploration. With enough data, our model can correctly capture the
uncertainties of these states resulting in the epistemic uncertainty
approaching zero.

d.1.5 Planning with External Safety Constraints

noisy-halfcheetah : We consider a safety constraint on the
height of the body above ground simulating a narrow passage. Fig-
ure 36b shows the number of safety violations. Note that PETS has
the same penalty cost for hard violations.

solo8-leanoverobject : In this experiment, the robot has to
move to two target points with its front and rear of the trunk while
avoiding entering a specified rectangular area (fragile object). The
front feet are fixed. To track the points, the robot has to lean forward,
such that it can lose balance due to noisy actions. In contrast to
PETS, RAZER successfully manages to satisfy the safety constraints
almost always as shown in Fig. 38. However, satisfying the safety
constraint comes with the cost of reduced tracking accuracy.

128 appendix to chapter 5 : razer

d.2 implementation details

d.2.1 Model Learning

Parameters used for model learning in the BridgeMaze experiments:

Table 13: Model parameters for BridgeMaze
Ensemble parameters

Name Value

num_layers 6

size 400

activation silu

ensemble_size (n) 5

output_activation None

l1_reg 0

weight_initializer truncated_normal

bias_initializer 0

use_spectral_normalization False

Stochastic NN parameters

Name Value

var_clipping_low -10.0

var_clipping_high 4

state_dependent_var True

regularize_automatic_var_scaling False

Remaining parameters

Name Value

lr 0.002

grad_norm 2.0

batch_size 512

weight_decay 1e−5

use_input_normalization True

use_output_normalization False

epochs 25

predict_deltas True

train_epochs_only_with_latest_data False

iterations 0

optimizer Adam

propagation_method TS1

sampling_method sample

We bound the predicted log variance by applying (as in Chua et al.
[32, see Appendix A.1])

logvar = max_logvar - softplus(max_logvar - logvar)

logvar = min_logvar + softplus(logvar - min_logvar)

to the output of the network that predicts the log variance, logvar.
In principle, we could differentiate through this bound to automat-
ically adjust the bounds max_logvar and min_logvar. However, we
decided to not make these parameters learnable.

D.2 implementation details 129

Parameters used for model learning in the Noisy-HalfCheetah en-
vironment (only differences to BridgeMaze environment):

Table 14: Model parameters for Noisy-HalfCheetah
Ensemble parameters

Name Value

num_layers 4

size 200

Stochastic NN parameters

Name Value

var_clipping_low -6.0

state_dependent_var True

Remaining parameters

Name Value

lr 0.0002

grad_norm None

batch_size 256

weight_decay 3e−5

epochs 50

d.2.2 Controller Parameters

Parameters used in the iCEM controller. For an explanation of the
different parameters, we refer the reader to Chapter 3 and Ap-
pendix B.2.

d.2.3 Timings

While our code is not tuned for speed specifically, in this section we
provide some timings for a single step in the environment (hyper-
parameters are set as specified in App. D.2.1 and App. D.2.2, with
num_simulated_trajectories = 128 and op_iterations = 3) in Table 18.

130 appendix to chapter 5 : razer

Table 15: Controller parameters, BridgeMaze environment.
Action sampler parameters

Name Value

alpha 0.1

colored_noise true

elite_size 10

execute_best_elite true

finetune_first_action false

fraction_elites_reused 0.3

init_std 0.5

keep_previous_elites true

noise_beta 2.0

opt_iterations 3

relative_init true

shift_elites_over_time true

use_mean_actions true

Remaining parameters

Name Value

cost_along_trajectory sum

delta 0.0

factor_decrease_num 1

horizon 30

num_simulated_trajectories 128

d.2.4 Uncertainty Separation

In our method, we separate the epistemic uncertainty, denoted as
E and aleatoric uncertainty, denoted as A, the details of which are
explained in Sec. 5.3 with the resulting costs that arise. Since we
are using a variant of the CEM algorithm that needs to sort the
sampled action sequences a⃗ according to their cost, the cost of an
action sequence is a single floating point number.

The stochastic NN ensemble that we are using samples trajecto-
ries from the predictive distribution ψτ for each action sequence a⃗.
In addition, our variant (PETSUS), also propagates the mean pre-

D.2 implementation details 131

Table 16: Controller parameters, Noisy-HalfCheetah environment (only dif-
ference to BridgeMaze environment).

Action sampler parameters

Name Value

noise_beta 0.25

opt_iterations 4

Remaining parameters

Name Value

num_simulated_trajectories 120

Table 17: Controller parameters, Solo8-LeanOverObject environment (only
difference to BridgeMaze environment).

Action sampler parameters

Name Value

init_std 0.3

noise_beta 3.0

diction s̄t for each ensemble member for an action sequence a⃗. The
auto-regressive prediction follows a recursive relation:

[s̄t+1, Σt+1] = ϑ(s̄t, at)

We make use of this in order to estimate the epistemic uncertainty
E. At each time point of the predicted sequence of observations,
we take the empirical variance of the outputted Gaussian parame-
ters ϑ(s̄t, at), predicted from the previous mean prediction s̄t and
control at, across the ensembles for that time slice in the predicted
trajectories. This is then summed up across horizon H to obtain the
epistemic bonus for action sequence a⃗.

Fig. 39 shows that scaling wE results in better state-coverage. This
is of particular interest if we want to learn models that are able
to generalize to different task settings, e. g.when changing the cost
function. While the naive PETS algorithm overfits the model to the

132 appendix to chapter 5 : razer

Table 18: Timings per one environment step in ms. We measured the tim-
ings on a system with 1 GeForce GTX 1050 Ti, an Intel Core i7-
6800K and 31GB of memory.

Environment Timing [ms]

BridgeMaze 0.25

Noisy-HalfCheetah 0.14

task at hand, RAZER learns a truly task-agnostic model and is able
to reap the benefits of model-based approaches to control.

For the aleatoric penalty we rely on the actual predictions of the
covariance Σ(st, at) and average them across the time slice, follow-
ing with the sum across horizon H. Alternatively to this, we also
use the entropy of the Gaussian as the A uncertainty measurement.
In Sec. D.2.5 we argue how these terms are interchangeable.

Note that, for the safety term ideally we want to use the full dis-
tribution ψτ and separation in aleatoric and epistemic uncertainty
is neither required nor desirable.

d.2.5 Entropy vs. Variance as Uncertainty Measurement

We use entropy of Gaussian and variance interchangeably as uncer-
tainty estimates. We have found that utilizing the variance directly
causes RAZER to be much more risk-averse, which can be explained
by the variance not being suppressed by the log term in the entropy.
Moreover, using the variance directly is much more interpretable
and easier to tune because it is of the same scale as the observation
space.

d.2.6 Observation Space vs. Cost Space Uncertainty

A natural question to ask when attempting to make efficient use of
uncertainties in MPC is where to measure these uncertainties. As

D.3 algorithm 133

an alternative to observation space uncertainties, one could mea-
sure uncertainty in cost space. Here we argue why this is not a
reasonable thing to do for each of the individual cost terms.

epistemic bonus Since we operate under the desiderata that
the benefit of model-based methods is in task-agnosticism, we
should not measure epistemic uncertainty in the cost space, since
this would decouple the task definition through the cost from the
observation space and would lead to learning models that are not
task-agnostic.

aleatoric penalty This is perhaps the most questionable case
for using observation space uncertainty instead of cost space un-
certainty. Nevertheless, we assume that high-aleatoric uncertainty
translates to control difficulty, and we want to avoid parts of the
observation space that are difficult to control. Moreover, the uncer-
tainty measurements become completely invalidated in the case of
a task switch, which plays against the task-agnosticism desiderata.

safety penalty Safety is something that is enforced by infus-
ing the algorithm with prior knowledge through a set of constraints
which mostly manifest themselves as subsets of the observation
space S or action space A.

d.3 algorithm

In Algo. 5 we provide an overview of the CEM algorithm that we
utilize for implementing RAZER. Concretely, we use an improved
sample efficient version of CEM as proposed by Pinneri et al. [93]
that involves shift-initialization of the distribution mean, sampling
time-correlated noise and further improvements.

134 appendix to chapter 5 : razer

Algorithm 5: RAZER: Risk-aware and safe CEM-MPC

1 Parameters:
2 N: number of samples; P: Number of particles, H:

planning horizon; wA, wE, wS CEM-iterations
3 for t = 1 to T // loop over episode length

4 do
5 for i = 1 to CEM-iterations do
6 (samplesp)

P
p=1 ← N samples from CEM(µi

t, Σi
t),

with P particles per sample
7 c, cA, cE, cS ← compute cost functions over particles
8 ctot = c + cA + cE + cS // compute total cost

9 elite-sett ← best K samples according to total cost
10 µi+1

t , Σi+1
t ← fit Gaussian distribution to elite-sett

11 execute first action of best elite sequence
12 shift-initialize µ1

t+1

d.4 environments details

All environments are based on the MuJoCo physics engine [66]. The
Noisy-Halfcheetah and Noisy-FetchPickAndPlace environments
are based on HalfCheetah-v3 and FetchPickAndPlace-v1, respectively.

bridgemaze We designed the BridgeMaze environment to show
the different aspects of uncertainty, namely the epistemic and
aleatoric uncertainty, in isolation. The agent is a simple cube with
only a free joint attached to it. The state-space

s = [s0, s1, s2, a, b, c, d, vs0 , vs1 , vs2]

is 10-dimensional, consisting of 3 positional (s0 to s2), 4 rotational (a
to d) and 3 velocity-based (vs0 to vs2), agent-centric coordinates. The
action-space a = [τs0 , τs1] is 2-dimensional. The torque τ applied to
the agent in s0- and s1-direction.

D.4 environments details 135

The task in the environment is to reach a goal platform at s⋆0 ≥ 12

by crossing one of three bridges that go over deadly lava.
The domain reward is defined as

rt(st , at , st+1) =

|(s0)t − s⋆0 | − |(s0)t+1 − s⋆0 |, if (s2)t+1 ≥ –1.5

0,
if (s0)t+1 ≥ s⋆0 and
(s2)t+1 ≥ –1.5

−1, otherwise

(36)

where s⋆0 is the x-coordinate of the goal state. Intuitively, the agent
is guided by the negative distance to the target. The reward is zero
once the agent goes beyond the imaginary finish line delimited at
s⋆0 = 12. If the agent falls into the lava (s2 < –1.5), it will get a
reward of – 1 until the end of the episode. We define the cost for
planning as ct(st, at, st+1) = −rt(st, at, st+1).

We designed the environments such that the agent is able to ac-
celerate fast and also comes to a full stop relatively fast if no torque
is applied. This makes the control problem and the task of learning
the model relatively easy.

Noise is added in form of an external force in s1-direction in-
jected through the xfrc_applied attribute of the model. The sign
of the force, as well as the force amplitude, sampled from fext ∈
U (0, f max

ext), are randomly changing every 5 simulation steps. The
external force is added only if –8 ≤ s0 ≤ 8 and –3.6 ≤ s1 ≤ 3.6 (area
of the middle bridge). Otherwise the external force is zero.

noisy-halfcheetah We utilize a modified HalfCheetah envi-
ronment where we apply a normally distributed noise term ξ ∼
N (µ, Σ) to the simulator state in the case when the velocity of the
cheetah is greater than 6. More concretely, let st denote the simu-
lator state at time step t, then the modified state is calculated as
follows:

s′t = st + ξt (37)

In our case, Σ is a diagonal covariance matrix with the diagonal
terms equal to 0.2. In addition, for the safety experiments with the
Noisy-HalfCheetah we create a virtual ceiling at height h = 0.3. In
the case that the body height crosses this threshold, the agent incurs

136 appendix to chapter 5 : razer

a large penalty. When the safety-constraint is violated, we don’t end
the episode.

noisy-fetchpickandplace We modified the original
FetchPickAndPlace-v1 environment to show the effect of the
aleatoric penalty on the CEM action plan. Given the difficulty of
the task, we performed the experiments without the learned model,
using instead an ensemble of noisy ground truth dynamics. In
this way, we could more easily understand the role of the aleatoric
uncertainty during planning.

The noise term ξ ∼ N (µ, Σ) is applied to the action controlling
the gripper state: a positive additive noise forces the robot to open
the grip with a force proportional to the noise magnitude. This
noise is applied to all the ground truth models of the ensemble,
and to the environment as well.

In particular, the box position is centered at y-coordinate –1.5
while the target is at y = 2.0. The gripper state is noisy until y =
1.67, right before the target.

solo8-leanoverobject The state space of the this environ-
ment is 47-dimensional. It contains the absolute position, rotation,
velocity and angular velocity of the robot as well as the positions
and velocities of all the joints. In addition, the state contains the po-
sitions of the end-effectors and of the sites at the front and back of
the robot. The actions space is 8-dimensional and controls the rela-
tive position of the joints. We fixed the two front legs of the robot
with a soft-constraint to the ground to prevent the robot from un-
controllable jumping. We apply Gaussian noise to the action with a
mean of 0 and a diagonal covariance matrix with the diagonal ele-
ments all being 0.3. The noise is uniformly applied over the entire
state-action-space.

The experiments for the Solo8-LeanOverObject environment use
the ground truth model during planning. The same noise were ap-
plied in the ’mental’ as well as the ’real’ environment.

D.5 application to transfer learning 137

d.4.1 Computing State-Space Coverage

For computing the state coverage in Fig. 37a we divided the contin-
ues state-space in 50 equally spaced bins in the range –20 ≤ s0 ≤ 20

and –10 ≤ s1 ≤ 15. The state space-coverage is the fractions between
states visited at least once and the total number of states.

d.5 application to transfer learning

In this work we have demonstrated that an approach such as PETS
[32] to data-driven MPC that relies on zero-order trajectory opti-
mization of the expected cost is not enough to manage uncertain
environments and safety constraints. These problems need to be
addressed when dealing with sim-to-real. The separation of uncer-
tainties allows us to effectively manage epistemic uncertainty in the
real system, which is important for improving the model once dis-
tribution shift to the real system happens. This can be done in a
way of combining the epistemic bonus and probabilistic safety con-
straints, such that the policy explores parts of the state space where
there is knowledge to be obtained while avoiding high-cost regions
as a consequence of the incurred safety and aleatoric penalties.

In comparison to standard approaches for sim-to-real which in-
volve domain randomization at training time, this approach incurs
lower computational overhead and relies on learning on the real
system.

138 appendix to chapter 5 : razer

RAZER@5% RAZER@20% RAZER@50% PETS

0 25 50 75 100 125 150
Training Iterations

0

2

4

Av
g.

 V
el

oc
ity

(a) With aleatoric penalty (10

runs).

0 25 50 75 100 125 150
Training Iteration

0

20

40

60

80

100

Sa
fe

ty
 V

io
la

tio
ns

(b) With safety constraints.

0.05 0.2 0.5 1.0
PETS

0

200

400

600

800

Av
g.

 S
af

et
y

Vi
ol

at
io

ns
 p

er
 R

un

(c) With safety con-
straints.

Figure 36: Noisy-HalfCheetah environment (task lengths 300 steps) with
learned models. At 150 iterations we have seen only 45k points.
(a) Performance under noisy actions. By applying the aleatoric
penalty, RAZER can navigate the uncertainties better – leading
to higher returns faster. (b) Safety violations above a certain body
height (simulating a low ceiling) for different values of δ. In (c)
the number of violations is averaged over the last 50 iterations
(summed over 10 rollouts).

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Co

ve
ra

ge

0.0 (PETS) 0.005 0.01 0.05

(a) State space exploration
over time depending on
epistemic bonus (wE).

(b) State space coverage
with wE = 0.

(c) State space coverage
with wE = 0.05.

Figure 37: Active learning setting: The epistemic bonus allows RAZER to
seek states for which no or only little training data exists (a,c).
Means and standard deviations for (a) were computed over 5

runs. PETS overfits to a particular solution (b). In (b) and (c), the
brightness of the dots is proportional to the time when they were
first encountered.

D.5 application to transfer learning 139

0.01 0.95 1.0
PETS

Delta

0

20

40

60

80

100

120

Sa
fe

ty
 V

io
la

tio
ns

0.01 0.95 1.0
PETS

Delta

20

40

60

80

100

120

Tr
ac

ki
ng

 E
rro

r

Figure 38: Safe planning vs. task-oriented planning in the Solo8-
LeanOverObject environment with noisy actions. Left: number of
safety violations for different values of δ (Eq. 35). Right: enforc-
ing safety constraints causes slight reduction in tracking accu-
racy due to the fixed planning budget and the competing objec-
tives of task and safety costs.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Co

ve
ra

ge

0.0 (PETS) 0.005 0.01 0.05

Figure 39: Exploration over time.

E
A P P E N D I X T O C H A P T E R 6 :
N - A P S P

In this supplementary material, we provide some insights regarding
the count models used to discretize the space, and the hyperparam-
eters used to train the goal-conditioned Q-functions, distances, and
policies.

Index
e.1 Count Models 141

e.1.1 Granularity 142

e.1.2 Sensitivity analysis 144

e.2 Goal augmentation for Fetch Pick and Place . . 145
e.3 Implementation Details 145

e.3.1 Hyperparameters 145

e.3.2 Distance Learning 146

e.1 count models

Our approach makes use of Locality Sensitive Hashing (LSH) to
map high-dimensional, continuous inputs to discrete hash codes.
The idea behind LHS is to hash states according to a certain similar-
ity metrics. Our LHS algorithm of choice is a variation of SimHash
[172], which uses angular distance between states as a similarity

141

142 appendix to chapter 6 : n-apsp

metrics. The mapping function first projects the input (dim: n) to a
lower dimensional space (dim: k):

ϕ(s) =

⌊
Mg(s) + v

σ

⌉

where g(s) is an optional preprocessing function, which in our case
is equal to the identity mapping, M ∈ Rk,n is a matrix with entries
drawn from an i.i.d. standard Gaussian N (0, 1) and v ∈ Rk is a
random vector with uniform entries in the interval [0, σ), where σ
is a task-dependent constant. SimHash takes the sign of the ran-
dom projection, while we round it up to the next integer as in [173].
This better reflects similarity under the Euclidean distance rather
than angular distance and the probability of a collision (two inputs
having the same hash) depends on their Euclidean distance.

Once we have computed the mapping ϕ(·), we use it inside the
Count-Min Sketch algorithm. Count-Min Sketch is designed to sup-
port memory-efficient counting without introducing too many over-
counts. It maintains a separate count nj for each hash function ϕj
defined as ϕj(s) = ϕ(s) % pj, where pj is a large prime number.
Our implementation follows the one of Tang et al. [156] in the static
hashing variant1. As in their paper, we consider j = 6 “buckets”
equal to [999931, 999953, 999959, 999961, 999979, 999983], which we
keep fixed for all the experiments. The number of counts is then
minj=[1,6] nj(ϕj(s)).

e.1.1 Granularity

In Fig. 40 we show the effect of the dimension k on the granularity
of the state space counting. The count model N(s, a) was previously
updated with the (s, a) transitions from a set of 2000 trajectories
collected with Ours+HER policy, which amounts to 200k transitions.

1 https://github.com/openai/EPG/blob/master/epg/exploration.py

https://github.com/openai/EPG/blob/master/epg/exploration.py

E.1 count models 143

Algorithm 6: Count models update
Input :Dlast: replay buffer of most recently collected

rollouts; n: input dimension, k: hashing dimension;
σ: random vector interval range; I: training
iterations

Output : single-state count model N(s, a), state-pair count
model N(s, a, s′)

1 Initialize random matrix M ∈ Rn,k with entries from the
standard Gaussian distribution N (0, 1)

2 Initialize random vector v ∈ Rk with entries from uniform
distribution on the interval [0, σ)

3 for i = 0 to I−1 // loop over training iterations

4 do
5 for (s, a) in Dlast // update N(s, a)

6 do
7 increase counts for (s, a)

8 for τ in Dlast // update N(s, a, s′)

9 do
10 increase counts for all possible triples (si , ai , sj) ∈ τ,

with j > i // O
(
len(τ)2) triples

144 appendix to chapter 6 : n-apsp

k = 32 k = 64 k = 128 k = 256

5 0 5
x coordinate

y
co

or
di

na
te

counts for (s,a) tuples

0

2500

5000

7500

10000

12500

15000

17500

20000

heatmap of counts (x,y)

5 0 5
x coordinate

y
co

or
di

na
te

counts for (s,a) tuples

0

20

40

60

80

100

120

heatmap of counts (x,y)

5 0 5
x coordinate

y
co

or
di

na
te

counts for (s,a) tuples

0

2

4

6

8

10

12

14

heatmap of counts (x,y)

Figure 40: Granularity of the single-state count model N(s, a) for the Point

Maze environment depending on the dimension of the hash key
k. Every plot represents the number of estimated counts of any
input (s, a) where s = (x, y, vx = 0, vy = 0) and a = (0, 0), given
that the count model previously visited a dataset of 200k points
(trajectories obtained with Ours + HER).

e.1.2 Sensitivity analysis

As we can see from Fig. 41a, the performance on the Point Maze
drops as we increase the scale at which the uncertainty decays (ex-
ponent M). At iteration 0, when no point has been visited, the count
term is zero and the corresponding uncertainty is equal to its maxi-
mum value, which is the value of C. Then, for a fixed C, the higher
the exponent M is, the faster the uncertainty decays with the counts
and, consequently, the performance. This is because in the Point
Maze environment we observe the "wormhole" phenomenon, also
documented in [153], where the distance estimates are overly opti-
mistic and do not take into account the presence of obstacles. As a
result the agent thinks that it can go through them in order to reach
a goal on the other side.

In this case, having a stronger uncertainty for the distance esti-
mate is better, as confirmed in Fig. 41b, where we plot the success
rate vs. the amount of counts necessary to have 1 unit of uncertainty.
The plot shows how the performance increases with the number of
counts, suggesting that a very pessimistic count model is a better
choice for the Point Maze. The values we used for all of our experi-
ments are C = 400 and M = 2.

E.2 goal augmentation for fetch pick and place 145

(a) Grouped by the numerator C. (b) Ordered by the count needed to
have uncertainty = 1 timestep

Figure 41: Sensitivity analysis of the parameters regulating the decay of the
count-based uncertainty U[·] = C

(1+N(·))M .

e.2 goal augmentation for fetch pick and place

In Fig. 42b we report the Fetch Pick and Place performance with-
out the additional goal for the end effector which we used in the
final experiments (Fig. 22). The reported value is in line with the
results presented in the original HER paper [103]. Augmenting the
goal space with an extra goal position for the end effector, equal to
the one for the box, increases the sample efficiency of a ∼ 10x factor
without introducing any explicit reward shaping.

e.3 implementation details

e.3.1 Hyperparameters

All the networks (Q-functions, policies, distances) use the Adam
optimizer. All the task horizons are equal to 50 time steps, apart
from the 100 time steps used for the Point Maze task. Table 19

contains the parameters used for DDPG and SAC, together with the
best k value for HER relabeling. Differently from the other methods,
the best k for Ours+HER is lower; in fact, only 20% of the data
(k = 0.25) gets relabeled with the achieved goal. We believe that this

146 appendix to chapter 6 : n-apsp

(a) Fetch Pick and Place (b) Fetch Pick and Place without extra goal

Ours+HER Off-policy DDL+HER DDL+HER Sparse+HER

Figure 42: Performance comparison on the Fetch Pick and Place task
with and without additional goal for the end effector. The dark
green dotted line of the left plot is the same as the solid green
line of the right plot.

is due to the effect of the triangular loss: the distance to the desired
goal better reflects the true shortest path and it is more informative
than the distance to the achieved goal. In Table 20 we report the
architecture and training parameters for the distance network, and
the chosen hashing key k for every environment.

e.3.2 Distance Learning

The temporal loss in eq. 31a is trained on states belonging to the
same trajectory. The rollouts are chosen randomly from the buffer,
then we use a very basic procedure to sample the tuples (si , ai , sj).
The index i is sampled uniformly from 0 to T− 1, while the index j
is sampled uniformly from i + 1 to T − 1.

E.3 implementation details 147

Parameter Value

Episode Length 50

Batch Size 256

Updates per Episode 100

Replay Buffer Size 5e105

Learning Rate 0.001

Discount Factor γ 0.98

Polyak Averaging 0.95

Action Noise (DDPG) 0.2

Action L2 penalty (DDPG) 1

Random ϵ-Exploration 0.3

Q-Target Clipping (Sparse+HER) [-50,0]

Q-Target Clipping (others) [-1275,0]

Policy Network 3 × 256

Q-Function Network 3 × 256

Activation Function ReLU

Weight Initialization Xavier Uniform

Normalize Input Yes

HER Replay Strategy Future

HER Replay-k see right table

Environment Method HER-k

Point Maze Ours+HER 0.25

DDL+HER 4

Off-Policy DDL+HER 4

Sparse+HER None

Fetch Reach Ours+HER 4

DDL+HER 4

Off-Policy DDL+HER 4

Sparse+HER 4

Fetch Reach Ours+HER 4

With Wall DDL+HER 4

Off-Policy DDL+HER 4

Sparse+HER 4

Fetch Pick Ours+HER 4

And Place DDL+HER 4

Off-Policy DDL+HER 4

Sparse+HER 4

Fetch Pick Ours+HER 4

And Place DDL+HER 8

with Wall Off-Policy DDL+HER 8

Sparse+HER 4

Claw Ours+HER 0

DDL+HER 4

Off-Policy DDL+HER 4

Sparse+HER 4

Table 19: SAC & DDPG hyperparameters and best-k (HER) for each envi-
ronment (grid search over {0, 0.25, 1, 4, 8}).

148 appendix to chapter 6 : n-apsp

Parameter Value

Distance Network 3 × 256

Distance Network (DDL) 2 × 256

Distance Network (DDL) 3 × 256 (Fetch Envs)

Batch Size 256

Updates per Episode 100

Replay Buffer Size 1e106

Replay Buffer Size (DDL) 1e105

Learning Rate 0.0003

Environment k for k for σ

for N(s, a) for N(s, a, s′)

Point Maze 64 32 20

Fetch Reach 128 128 0.3

(With Wall)

Fetch Pick 32 64 0.3

And Place

Claw 32 64 0.3

Table 20: (left) Parameters for the distance network used in Ours+Her,
DDL+HER, Off-Policy DDL + HER. (right) Chosen dimension of
the hash state key for the presented environments. Left column is
for the single state count model used in the temporal loss, while
the right column is for the double state model used in the trian-
gular loss.

L I S T O F F I G U R E S

chapter 2

Figure 1 The learning cycle represented as a Markov
decision process [14]. 7

Figure 2 Backup diagrams for the Bellman equations 11

Figure 3 Visualization of the Rastrigin function [43].
It is used as a traditional benchmark for op-
timization algorithms such as Evolutionary
Algorithms or higher-order methods. 20

chapter 3

Figure 4 Colored random noise. (a) random walks
with colored noise of different temporal
structure. (b) power spectrum of colored-
random action sequences for different β
and of the chosen (and successful) action-
sequences of iCEM generated by differently
colored search noise (act:β = 2 and 4) for the
Humanoid Standup task. Successful action
sequences are far from white-noise (β = 0). . 30

Figure 5 Performance dependence on the planning
budget. Notice the log-scale on the x-axis. . . 36

149

150 List of Figures

Figure 6 PlaNet performance using an extensive CEM
variant (budget 10000) and two low-budget
variants of CEM and iCEM (budget 366).
Shown is the mean and min/max-band cu-
mulative reward (three independent restarts)
with average-smoothing over 50 episodes.
iCEM outperforms the low-budget baseline
on Cheetah Run and Walker Walk, and
performs similarly on Cup Catch. 38

Figure 7 Ablation studies. Blue bars show CEMMPC
with each improvement added separately.
Yellow bars show iCEM with each features
removed separately. Feature names are listed
in Sec. 3.2. 40

chapter 4

Figure 8 Environments and exemplary behaviors of
the learned policy using APEX. From left
to right: Fetch Pick&Place (sparse re-
ward), Door (sparse reward), and Hu-
manoid Standup. 45

Figure 9 Variance of DAgger actions when relabeling
10 times the same trajectory in case of un-
guided iCEM (a) vs. guided iCEMπ (b), for
the Fetch Pick&Place task. The action vari-
ance of iCEM is considerably higher than the
one of iCEMπ-GPS guided by the shown pol-
icy (std-dev=0.30 vs 0.13). The policy π is
trained from a single expert rollout. 49

Figure 10 Illustration of the adaptive λj parameter as
a function of the main cost range R(J) and
auxiliary cost range R(Caux

j). 52

List of Figures 151

Figure 11 Evolution of the adaptive λ parameter dur-
ing planning. Left for a weak, right for a
medium policy. The light and dark orange
curves show the original min/max cost (J)
among the elites. The blue curves show how
lambda changed due to the differences in the
original costs. 53

Figure 12 Effect of adaptive λ throughout iCEMπ it-
erations and success rate on the Fetch

Pick&Place task. (a) The action sam-
pling distribution is shown over the iCEM-
iterations (at a predefined time-step) and one
of the 4 action-dimensions when guiding
with a weak policy. Dashed lines indicate the
action of the policy and of a high compute-
budget iCEM expert. Fixed λ shifts the distri-
bution too early, resulting in a collapse to the
policy behavior and failure to find a good so-
lution. (b) Average success rate of iCEMπ ex-
pert (low compute-budget with 45 samples)
over 800 episodes. 54

Figure 13 Policy performance on the test environments
for APEX and baselines. SAC performance is
provided for reference. 56

Figure 14 Interplay between policy and expert. Policy
performance (solid line) and expert perfor-
mances (dashed lines) on selected test envi-
ronments for APEX. Due to warm-starting
and adding policy samples, experts improve
with the policy. For low budgets this effect is
stronger, see Fig. 34. 57

152 List of Figures

Figure 15 Ablation experiments. We remove different
components of the APEX algorithm, see leg-
end. In case of Halfcheetah Running, the
performance for APEX with λ-fixed is not re-
ported as it matches that of APEX. 58

Figure 16 The expert performance for APEX and APEX
without adding policy sample. As seen, the
expert performance improves with learnt
policy as the added policy sample directs
expert distribution towards a better solution
space. 58

chapter 5

Figure 17 Environments considered for uncertainty-
aware planning. Code and videos are avail-
able at https://martius-lab.github.io/

RAZER/ . 65

Figure 18 Probabilistic Ensembles with Trajectory Sam-
pling and Uncertainty Separation (PETSUS) 70

Figure 19 Risk-averse planning in the face of aleatoric
uncertainty yields higher success rates in
noisy environments. For (b) we use ground
truth models and a fixed aleatoric penalty
weight wA. 74

chapter 6

Figure 20 2D point-mass example. The goal has never
been visited. Only the intermediate state is
present in the replay buffer. The length of the
arrows indicates the distance value between
state pairs. 85

Figure 21 MuJoCo Environments 88

https://martius-lab.github.io/RAZER/
https://martius-lab.github.io/RAZER/

List of Figures 153

Figure 22 Performance degradation of Sparse+HER . . 89

Figure 23 Heatmap of the Q function estimate (neg-
ative sign) for the Point Maze environ-
ment, learned by using DDL+HER (left) and
Ours+HER (right). 90

Figure 24 Fetch Pick and Place task. Our method is
able to reach the goal at a faster rate as it
avoids the local minima of placing the end
effector in between the target in the air and
the box on the ground. The dashed black line
indicates the minimum negative distance re-
quired to solve the task. The dotted dark
green line is the original HER performance
[103] without goal augmentation. 91

Figure 25 Frames of trajectories produced by a
goal-conditioned policy learned from
Sparse+HER vs Ours+HER. The addi-
tional wall introduces further exploration
difficulties in the Fetch Pick and Place task. 92

Figure 26 Triangular loss effect for the Fetch Pick and

Place With Wall task. Our learned dis-
tance helps the optimizer to avoid the local
minima created by the wall. The merging rate
of the hypotenuse into the catheti sum is the
same as in the case without wall (Fig. 24b),
namely, at most 30% of the training batch
gets penalized. However, the rate at which
the hypotenuse gets corrected – the relax-
ations rate – has non-zero values also later in
training. 93

154 List of Figures

Figure 27 State coverage of Point Maze obtained with
each method. Sparse+HER is only able to ex-
plore the lower room and parts of the adja-
cent one. All the methods are provided with
either ϵ = 0.1 or ϵ = 0.3 exploration, de-
pending on which performs better. 93

appendix a

Figure 28 (a) EDAS framework. (b) Generalization
performance on the Point Mass and Pla-
nar Reacher environments in the DeepMind
Control Suite. 101

Figure 29 Trajectories of pure noise agents on a
bounded integrator environment. Pink noise
(center) provides a balance of local and
global exploration, and covers the state space
more uniformly than the other two. 103

appendix b

Figure 30 Additional PlaNet experiments. For details,
see Fig. 6. 107

Figure 31 Sensitivity to hyper-parameters of iCEM. (a)
horizon h in Humanoid Standup and in
(b) the initial standard deviation for Fetch

Pick&Place. See Fig. 32 for the sensitivity
to β. 110

Figure 32 Sensitivity to the colored noise exponent β of
iCEM. 111

Figure 33 Ablation studies 113

List of Figures 155

appendix c

Figure 34 Same as Fig. 14 but for different compute-
budgets: 45, 100 (normal), 300. Notice,
that in the case of low and normal bud-
gets in Halfcheetah Running the pol-
icy outperforms the iCEM expert. In Fetch

Pick&Place the policies are able to match
the iCEM performance. 121

appendix d

Figure 35 Solo8-LeanOverObject 125

Figure 36 Noisy-HalfCheetah environment (task lengths
300 steps) with learned models. At 150 iter-
ations we have seen only 45k points. (a) Per-
formance under noisy actions. By applying
the aleatoric penalty, RAZER can navigate
the uncertainties better – leading to higher
returns faster. (b) Safety violations above a
certain body height (simulating a low ceil-
ing) for different values of δ. In (c) the num-
ber of violations is averaged over the last 50

iterations (summed over 10 rollouts). 138

Figure 37 Active learning setting: The epistemic bonus
allows RAZER to seek states for which no
or only little training data exists (a,c). Means
and standard deviations for (a) were com-
puted over 5 runs. PETS overfits to a particu-
lar solution (b). In (b) and (c), the brightness
of the dots is proportional to the time when
they were first encountered. 138

156 List of Figures

Figure 38 Safe planning vs. task-oriented planning in
the Solo8-LeanOverObject environment with
noisy actions. Left: number of safety viola-
tions for different values of δ (Eq. 35). Right:
enforcing safety constraints causes slight re-
duction in tracking accuracy due to the fixed
planning budget and the competing objec-
tives of task and safety costs. 139

Figure 39 Exploration over time. 139

appendix e

Figure 40 Granularity of the single-state count model
N(s, a) for the Point Maze environment de-
pending on the dimension of the hash key
k. Every plot represents the number of esti-
mated counts of any input (s, a) where s =
(x, y, vx = 0, vy = 0) and a = (0, 0), given
that the count model previously visited a
dataset of 200k points (trajectories obtained
with Ours + HER). 144

Figure 41 Sensitivity analysis of the parameters regu-
lating the decay of the count-based uncer-
tainty U[·] = C

(1+N(·))M 145

Figure 42 Performance comparison on the Fetch Pick

and Place task with and without additional
goal for the end effector. The dark green dot-
ted line of the left plot is the same as the solid
green line of the right plot. 146

L I S T O F TA B L E S

chapter 3

Table 1 Sample efficiency and performance increase
of iCEM w.r.t. the best baseline. The first
4 columns consider the budget needed to
reach 90% of the best baseline (dashed lines
in Fig. 5). The last column is the average im-
provement over the best baseline in the given
budget interval. 37

Table 2 Runtimes for iCEM with different compute
budgets using Mujoco simulator and the
PlaNet models. Times are given in sec-
onds per env-step (total wall-clock time =
time/step × episode length). ∗: Xeon® Gold
6154 CPU @ 3.00GHz, and ∗∗: Xeon® Gold
5220, NVidia® Quadro RTX 6000. 39

appendix b

Table 3 Performances for all environments for a se-
lection of budgets. We report the cumulative
reward (marked with 1) and the success rate
(marked with 2). 106

Table 4 Budget-dependent internal optimizer set-
tings (notation: CEM-iterations / N). 107

Table 5 Fixed Hyperparameters used for all experi-
ments. 108

Table 6 Env-dependent Hyperparameter choices. . . 108

157

158 List of Tables

Table 7 Environment settings. These are the stan-
dard settings for the environments. For
PlaNet the numbers come from the custom
action repeat used in [63]. 109

Table 8 PlaNet CEM details 112

appendix c

Table 9 Performances for all environments for APEX
and APEX policy 118

Table 10 Expert settings for the considered methods
(The values for colored noise exponent for
different environments are taken from [93]) . 119

Table 11 Policy settings for iCEMπ and APEX 119

Table 12 Wall-clock times for APEX per iteration. Ref-
erence machine for wall clock-times is an In-
tel Xeon Gold 6154 CPU @ 3.00GHz using
32 Cores for parallel simulation models. All
times are in minutes. 120

appendix d

Table 13 Model parameters for BridgeMaze 128

Table 14 Model parameters for Noisy-HalfCheetah . . . 129

Table 15 Controller parameters, BridgeMaze environ-
ment. 130

Table 16 Controller parameters, Noisy-HalfCheetah
environment (only difference to BridgeMaze
environment). 131

Table 17 Controller parameters, Solo8-
LeanOverObject environment (only dif-
ference to BridgeMaze environment). 131

List of Tables 159

Table 18 Timings per one environment step in ms. We
measured the timings on a system with 1

GeForce GTX 1050 Ti, an Intel Core i7-6800K
and 31GB of memory. 132

appendix e

Table 19 SAC & DDPG hyperparameters and best-
k (HER) for each environment (grid search
over {0, 0.25, 1, 4, 8}). 147

Table 20 (left) Parameters for the distance network
used in Ours+Her, DDL+HER, Off-Policy
DDL + HER. (right) Chosen dimension of
the hash state key for the presented en-
vironments. Left column is for the single
state count model used in the temporal loss,
while the right column is for the double state
model used in the triangular loss. 148

B I B L I O G R A P H Y

[1] Burrhus Frederic Skinner. Science and human behavior. New
York: The Macmillan Company, 1953. url: https://doi.
org/10.1002/sce.37303805120.

[2] Ivan Pavlov. «Conditioned reflexes: An investigation of the
physiological activity of the cerebral cortex.» In: Oxford Uni-
versity Press (1927). url: https://doi.org/10.1002/sce.
37303805120.

[3] Edward Lee Thorndike. Animal intelligence; experimental stud-
ies. New York: The Macmillan Company, 1911, p. 324. url:
https://doi.org/10.5962/bhl.title.55072.

[4] John O. Keefe and Lynn Nadel. The hippocampus as a cognitive
map. Oxford University Press, 1978. url: https://doi.org/
10.1093/acprof:oso/9780199210862.003.0006.

[5] Edward C. Tolman. «Cognitive maps in rats and men.» In:
Psychological review 55.4 (1948), p. 189. url: https://doi.
org/10.1037/h0061626.

[6] Ray J. Dolan and Peter Dayan. «Goals and Habits in the
Brain.» In: Neuron 80.2 (2013), pp. 312–325. issn: 0896-6273.
url: https://doi.org/10.1016/j.neuron.2013.09.007.

[7] Nathaniel D. Daw, Yael Niv, and Peter Dayan. «Uncertainty-
based competition between prefrontal and dorsolateral stri-
atal systems for behavioral control.» In: Nature neuroscience
8.12 (2005), pp. 1704–1711. url: https://doi.org/10.1038/
nn1560.

[8] S. Joe Qin and Thomas A. Badgwell. «A survey of industrial
model predictive control technology.» In: Control Engineering
Practice 11.7 (2003), pp. 733–764. issn: 0967-0661. url: https:
//doi.org/10.1016/S0967-0661(02)00186-7.

161

https://doi.org/10.1002/sce.37303805120
https://doi.org/10.1002/sce.37303805120
https://doi.org/10.1002/sce.37303805120
https://doi.org/10.1002/sce.37303805120
https://doi.org/10.5962/bhl.title.55072
https://doi.org/10.1093/acprof:oso/9780199210862.003.0006
https://doi.org/10.1093/acprof:oso/9780199210862.003.0006
https://doi.org/10.1037/h0061626
https://doi.org/10.1037/h0061626
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1038/nn1560
https://doi.org/10.1038/nn1560
https://doi.org/10.1016/S0967-0661(02)00186-7
https://doi.org/10.1016/S0967-0661(02)00186-7

162 bibliography

[9] Eduardo F. Camacho and Carlos Bordons Alba. Model predic-
tive control. Advanced Textbooks in Control and Signal Pro-
cessing. Springer, 1999. doi: https://doi.org/10.1007/978-
1-4471-3398-8.

[10] Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan
Achterhold, Joerg Stueckler, Michal Rolínek, and Georg Mar-
tius. «Sample-efficient Cross-Entropy Method for Real-time
Planning.» In: Conference on Robot Learning (CoRL). 2020. doi:
https://doi.org/10.48550/arXiv.2008.06389.

[11] Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, and
Georg Martius. «Extracting strong policies for robotics tasks
from zero-order trajectory optimizers.» In: International Con-
ference on Learning Representations (ICLR). 2021. url: https:
//openreview.net/pdf?id=Nc3TJqbcl3.

[12] Marin Vlastelica, Sebastian Blaes, Cristina Pinneri, and
Georg Martius. «Risk-averse zero-order trajectory optimiza-
tion.» In: Conference on Robot Learning (CoRL). 2021. url:
https://openreview.net/pdf?id=WqUl7sNkDre.

[13] Cristina Pinneri, Georg Martius, and Andreas Krause. «Neu-
ral all-pairs shortest path for reinforcement learning.» In:
Deep Reinforcement Learning Workshop at the International Con-
ference on Neural Information Processing Systems (NeurIPS).
2022. url: https://openreview.net/pdf?id=w3jZFKGLrJ.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement learn-
ing: An introduction. Adaptive computation and machine
learning. MIT press, 2018. url: http://incompleteideas.
net/book/RLbook2020.pdf.

[15] Volodymyr Mnih et al. «Human-level control through deep
reinforcement learning.» In: Nature 518.7540 (2015), pp. 529–
533. url: https://doi.org/10.1038/nature14236.

[16] Jens Kober, J Andrew Bagnell, and Jan Peters. «Reinforce-
ment learning in robotics: A survey.» In: The International
Journal of Robotics Research 32.11 (2013), pp. 1238–1274. url:
https://doi.org/10.1177/0278364913495721.

https://doi.org/https://doi.org/10.1007/978-1-4471-3398-8
https://doi.org/https://doi.org/10.1007/978-1-4471-3398-8
https://doi.org/https://doi.org/10.48550/arXiv.2008.06389
https://openreview.net/pdf?id=Nc3TJqbcl3
https://openreview.net/pdf?id=Nc3TJqbcl3
https://openreview.net/pdf?id=WqUl7sNkDre
https://openreview.net/pdf?id=w3jZFKGLrJ
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://doi.org/10.1038/nature14236
https://doi.org/10.1177/0278364913495721

bibliography 163

[17] David Silver et al. «Mastering the game of Go with deep
neural networks and tree search.» In: Nature 529.7587 (2016),
pp. 484–489. url: https://doi.org/10.1038/nature16961.

[18] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Sny-
der, and Martin Takác. «Reinforcement learning for solving
the vehicle routing problem.» In: International Conference on
Neural Information Processing Systems (NeurIPS). Vol. 31. 2018.
url: https://dl.acm.org/doi/10.5555/3327546.3327651.

[19] Ning Liu, Ying Liu, Brent Logan, Zhiyuan Xu, Jian Tang,
and Yanzhi Wang. «Learning the dynamic treatment regimes
from medical registry data through Deep Q-network.» In:
Scientific Reports 9.1 (2019), p. 1495. url: https://doi.org/
10.1038/s41598-018-37142-0.

[20] Christopher Watkins and Peter Dayan. «Q-learning.» In: Ma-
chine learning 8 (1992), pp. 279–292. url: https://doi.org/
10.1007/BF00992698.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. «Asynchronous methods for deep
reinforcement learning.» In: International Conference on Ma-
chine Learning (ICML). 2016, pp. 1928–1937. url: https://dl.
acm.org/doi/10.5555/3045390.3045594.

[22] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. «Continuous control with deep reinforce-
ment learning.» In: International Conference on Learning Rep-
resentations (ICLR). 2016. url: https://doi.org/10.48550/
arXiv.1509.02971.

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. «Soft Actor-Critic: Off-policy maximum entropy
Deep Reinforcement Learning with a stochastic actor.» In:
International Conference on Machine Learning (ICML). 2018,
pp. 1856–1865. url: https://doi.org/10.48550/arXiv.
1801.01290.

https://doi.org/10.1038/nature16961
https://dl.acm.org/doi/10.5555/3327546.3327651
https://doi.org/10.1038/s41598-018-37142-0
https://doi.org/10.1038/s41598-018-37142-0
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://dl.acm.org/doi/10.5555/3045390.3045594
https://dl.acm.org/doi/10.5555/3045390.3045594
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290

164 bibliography

[24] Julian Schrittwieser et al. «Mastering Atari, Go, chess and
shogi by planning with a learned model.» In: Nature 588.7839

(2020), pp. 604–609. url: https://doi.org/10.1038/s41586-
020-03051-4.

[25] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor-
dan, and Philipp Moritz. «Trust region policy optimization.»
In: International Conference on Machine Learning (ICML). 2015,
pp. 1889–1897. url: https://dl.acm.org/doi/10.5555/
3045118.3045319.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. «Proximal policy optimization algo-
rithms.» In: 2017. url: http://arxiv.org/abs/1707.06347.

[27] Ronald J. Williams. «Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning.» In: Ma-
chine Learning 8.3 (1992), pp. 229–256. url: https://doi.
org/10.1007/BF00992696.

[28] Yanwei Jia and Xun Yu Zhou. «Policy gradient and Actor-
Critic learning in continuous time and space: Theory and al-
gorithms.» In: Journal of Machine Learning Research 23.1 (2022).
issn: 1532-4435. url: https : / / www . jmlr . org / papers /

volume23/21-1387/21-1387.pdf.

[29] Marc Peter Deisenroth and Carl Edward Rasmussen.
«PILCO: A model-based and data-efficient approach to pol-
icy search.» In: International Conference on Machine Learning
(ICML). 2011, 465–472. url: http://www.icml-2011.org/
papers/323_icmlpaper.pdf.

[30] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
«When to trust your model: Model-based policy optimiza-
tion.» In: vol. 32. 2019. url: https://dl.acm.org/doi/10.
5555/3454287.3455409.

[31] Steven M. LaValle. «Rapidly-exploring random trees : a new
tool for path planning.» In: The annual research report (1998).

https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://dl.acm.org/doi/10.5555/3045118.3045319
https://dl.acm.org/doi/10.5555/3045118.3045319
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://www.jmlr.org/papers/volume23/21-1387/21-1387.pdf
https://www.jmlr.org/papers/volume23/21-1387/21-1387.pdf
http://www.icml-2011.org/papers/323_icmlpaper.pdf
http://www.icml-2011.org/papers/323_icmlpaper.pdf
https://dl.acm.org/doi/10.5555/3454287.3455409
https://dl.acm.org/doi/10.5555/3454287.3455409

bibliography 165

[32] Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. «Deep reinforcement learning in a handful of
trials using probabilistic dynamics models.» In: International
Conference on Neural Information Processing Systems (NeurIPS).
2018, pp. 4754–4765. url: https://dl.acm.org/doi/10.
5555/3327345.3327385.

[33] Carlos E. García, David M. Prett, and Manfred Morari.
«Model predictive control: Theory and practice—A survey.»
In: Automatica 25.3 (1989), pp. 335–348. issn: 0005-1098. url:
https://doi.org/10.1016/0005-1098(89)90002-2.

[34] Cunjia Liu, Wen-Hua Chen, and John Andrews. «Tracking
control of small-scale helicopters using explicit nonlinear
MPC augmented with disturbance observers.» In: Control
Engineering Practice 20 (Mar. 2012), pp. 258–268. url: https:
//doi.org/10.1016/j.conengprac.2011.10.015.

[35] Moses Bangura and Robert Mahony. «Real-time model pre-
dictive control for quadrotors.» In: IFAC Proceedings Volumes
47.3 (2014), pp. 11773–11780. url: https://doi.org/10.
3182/20140824-6-ZA-1003.00203.

[36] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric
Tseng, and Davor Hrovat. «Predictive active steering con-
trol for autonomous vehicle systems.» In: IEEE Transactions
on Control Systems Technology 15.3 (2007), pp. 566–580. url:
https://doi.org/10.1109/TCST.2007.894653.

[37] Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan
Asgari, and Davor Hrovat. «MPC-based approach to active
steering for autonomous vehicle systems.» In: International
Journal of Vehicle Autonomous Systems 3.2-4 (2005), pp. 265–
291. url: https : / / dx . doi . org / 10 . 1504 / IJVAS . 2005 .

008237.

[38] J.M. Maciejowski. Predictive control with constraints. Vol. 39.
Harlow, UK: Prentice-Hall, Pearson Education Limited, Jan.
2003. url: https : / / books . google . it / books ? id = HV \
_Y58c7KiwC.

https://dl.acm.org/doi/10.5555/3327345.3327385
https://dl.acm.org/doi/10.5555/3327345.3327385
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/j.conengprac.2011.10.015
https://doi.org/10.1016/j.conengprac.2011.10.015
https://doi.org/10.3182/20140824-6-ZA-1003.00203
https://doi.org/10.3182/20140824-6-ZA-1003.00203
https://doi.org/10.1109/TCST.2007.894653
https://dx.doi.org/10.1504/IJVAS.2005.008237
https://dx.doi.org/10.1504/IJVAS.2005.008237
https://books.google.it/books?id=HV_Y58c7KiwC
https://books.google.it/books?id=HV_Y58c7KiwC

166 bibliography

[39] David Q. Mayne, James B. Rawlings, Christopher V. Rao, and
Pierre O.M. Scokaert. «Constrained model predictive control:
Stability and optimality.» In: Automatica 36.6 (2000), pp. 789–
814. issn: 0005-1098. url: https://doi.org/10.1016/S0005-
1098(99)00214-9.

[40] Grady Williams, Nolan Wagener, Brian Goldfain, Paul
Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. «Information theoretic MPC for model-based re-
inforcement learning.» In: International Conference on Robotics
and Automation (ICRA). IEEE. 2017, pp. 1714–1721. url:
https://doi.org/10.1109/ICRA.2017.7989202.

[41] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and
Sergey Levine. «Neural Network Dynamics for Model-
Based Deep Reinforcement Learning with Model-Free Fine-
Tuning.» In: International Conference on Robotics and Automa-
tion (ICRA). Brisbane, Australia: IEEE Press, 2018, 7559–7566.
url: https://doi.org/10.1109/ICRA.2018.8463189.

[42] John H. Holland. Adaptation in Natural and Artificial Systems.
Cambridge, MA, USA: MIT Press, 1975. url: https://doi.
org/10.1137/1018105.

[43] L.A. Rastrigin. «Random search in problems of optimization,
identification and training of control systems.» In: Journal of
Cybernetics 3.3 (1973), pp. 93–103. url: https://doi.org/10.
1080/01969727308546050.

[44] R. L. Anderson. «Recent Advances in Finding Best Operat-
ing Conditions.» In: Journal of the American Statistical Associ-
ation 48.264 (1953), pp. 789–798. url: https://doi.org/10.
1080/01621459.1953.10501200.

[45] L.A. Rastrigin. «Extremal control by the method of random
scanning.» In: Automation and Remote Control. Vol. 21. 1960,
pp. 891–896.

https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1109/ICRA.2017.7989202
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1137/1018105
https://doi.org/10.1137/1018105
https://doi.org/10.1080/01969727308546050
https://doi.org/10.1080/01969727308546050
https://doi.org/10.1080/01621459.1953.10501200
https://doi.org/10.1080/01621459.1953.10501200

bibliography 167

[46] Reuven Rubinstein. «The Cross-Entropy Method for Combi-
natorial and Continuous Optimization.» In: Methodology And
Computing in Applied Probability 1.2 (1999), pp. 127–190. url:
https://doi.org/10.1023/A:1010091220143.

[47] N. Hansen and A. Ostermeier. «Adapting arbitrary normal
mutation distributions in evolution strategies: the covariance
matrix adaptation.» In: International Conference on Evolution-
ary Computation (ECTA). 1996, pp. 312–317. url: https://
doi.org/10.1109/ICEC.1996.542381.

[48] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan
Peters, and Jürgen Schmidhuber. «Natural evolution strate-
gies.» In: The Journal of Machine Learning Research 15.1 (2014),
pp. 949–980. url: https : / / dl . acm . org / doi / 10 . 5555 /

2627435.2638566.

[49] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and
Ilya Sutskever. «Evolution strategies as a scalable alterna-
tive to reinforcement learning.» In: ArXiv preprint (2017). url:
https://doi.org/10.48550/arXiv.1703.03864.

[50] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal
Piot, Mohammad Azar, and David Silver. «Rainbow: Com-
bining Improvements in Deep Reinforcement Learning.» In:
AAAI Conference on Artificial Intelligence. 2017. url: https:
//dl.acm.org/doi/10.5555/3504035.3504428.

[51] Aviral Kumar, Xue Bin Peng, and Sergey Levine. «Reward-
Conditioned Policies.» In: ArXiv preprint (2019). url: https:
//doi.org/10.48550/arXiv.1912.13465.

[52] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srini-
vas, and Igor Mordatch. «Decision Transformer: Rein-
forcement Learning via Sequence Modeling.» In: Interna-
tional Conference on Neural Information Processing Systems
(NeurIPS). Vol. 34. 2021, pp. 15084–15097. url: https : / /

https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1109/ICEC.1996.542381
https://dl.acm.org/doi/10.5555/2627435.2638566
https://dl.acm.org/doi/10.5555/2627435.2638566
https://doi.org/10.48550/arXiv.1703.03864
https://dl.acm.org/doi/10.5555/3504035.3504428
https://dl.acm.org/doi/10.5555/3504035.3504428
https://doi.org/10.48550/arXiv.1912.13465
https://doi.org/10.48550/arXiv.1912.13465
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf

168 bibliography

proceedings.neurips.cc/paper_files/paper/2021/file/

7f489f642a0ddb10272b5c31057f0663-Paper.pdf.

[53] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mari-
ano Phielipp. «Goal-conditioned Imitation Learning.» In:
Advances in Neural Information Processing Systems. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett. Vol. 32. 2019. url: https : / /

proceedings.neurips.cc/paper_files/paper/2019/file/

c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf.

[54] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen
Koltun, and Alexey Dosovitskiy. «End-to-end driving via
conditional imitation learning.» In: International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 4693–4700.
url: https://doi.org/10.1109/ICRA.2018.8460487.

[55] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu,
Coline Manon Devin, Benjamin Eysenbach, and Sergey
Levine. «Learning to Reach Goals via Iterated Supervised
Learning.» In: International Conference on Learning Representa-
tions (ICLR). 2021. url: https://openreview.net/forum?id=
rALA0Xo6yNJ.

[56] Juergen Schmidhuber. «Reinforcement Learning Upside
Down: Don’t Predict Rewards–Just Map Them to Actions.»
In: 2019. url: https://doi.org/10.48550/arXiv.1912.
02875.

[57] Andrew Y. Ng, Stuart Russell, et al. «Algorithms for inverse
reinforcement learning.» In: International Conference on Ma-
chine Learning (ICML). Vol. 1. 2000, p. 2. url: https://ai.
stanford.edu/~ang/papers/icml00-irl.pdf.

[58] Pieter Abbeel and Andrew Y Ng. «Apprenticeship learning
via inverse reinforcement learning.» In: International confer-
ence on Machine Learning (ICML). 2004, p. 1. url: https://
doi.org/10.1145/1015330.1015430.

https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://doi.org/10.1109/ICRA.2018.8460487
https://openreview.net/forum?id=rALA0Xo6yNJ
https://openreview.net/forum?id=rALA0Xo6yNJ
https://doi.org/10.48550/arXiv.1912.02875
https://doi.org/10.48550/arXiv.1912.02875
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430

bibliography 169

[59] Stéphane Ross and Drew Bagnell. «Efficient reductions for
imitation learning.» In: International Conference on Artificial
Intelligence and Statistics. 2010, pp. 661–668. url: https://
proceedings.mlr.press/v9/ross10a.html.

[60] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell.
«A Reduction of Imitation Learning and Structured Predic-
tion to No-Regret Online Learning.» In: International Confer-
ence on Artificial Intelligence and Statistics. 2010. url: https:
//proceedings.mlr.press/v15/ross11a.html.

[61] Dean A. Pomerleau. «ALVINN: An Autonomous Land Ve-
hicle In a Neural Network.» In: International Conference on
Neural Information Processing Systems (NeurIPS). Vol. 1. 1988.
url: https://proceedings.neurips.cc/paper/1988/file/
812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

[62] Tingwu Wang and Jimmy Ba. «Exploring model-based
planning with policy networks.» In: International Conference
on Learning Representations (ICLR). 2020. url: https : / /

openreview.net/forum?id=H1exf64KwH.

[63] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. «Learn-
ing Latent Dynamics for Planning from Pixels.» In: Interna-
tional Conference on Machine Learning (ICML). 2019, pp. 2555–
2565. url: https://doi.org/10.48550/arXiv.1811.04551.

[64] Grady Williams, Andrew Aldrich, and Evangelos
Theodorou. «Model predictive path integral control us-
ing covariance variable importance sampling.» In: ArXiv
preprint abs/1509.01149 (2015). url: https://doi.org/10.
48550/arXiv.1509.01149.

[65] Arthur Richards and Jonathan P. How. «Robust variable
horizon model predictive control for vehicle maneuvering.»
In: International Journal of Robust and Nonlinear Control 16.7
(2006), pp. 333–351. url: https://doi.org/10.1002/rnc.
1059.

https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://openreview.net/forum?id=H1exf64KwH
https://openreview.net/forum?id=H1exf64KwH
https://doi.org/10.48550/arXiv.1811.04551
https://doi.org/10.48550/arXiv.1509.01149
https://doi.org/10.48550/arXiv.1509.01149
https://doi.org/10.1002/rnc.1059
https://doi.org/10.1002/rnc.1059

170 bibliography

[66] Emanuel Todorov, Tom Erez, and Yuval Tassa. «Mujoco: A
physics engine for model-based control.» In: International
Conference on Intelligent Robots and Systems (IROS). 2012,
pp. 5026–5033. url: https://doi.org/10.1109/IROS.2012.
6386109.

[67] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and
Reuven Y Rubinstein. «A tutorial on the cross-entropy
method.» In: Annals of operations research 134.1 (2005), pp. 19–
67. url: https://doi.org/10.1007/s10479-005-5724-z.

[68] Nicolas Humphries et al. «Environmental context explains
Lévy and Brownian movement patterns of marine preda-
tors.» In: Nature 465 (2010), pp. 1066–9. url: https://doi.
org/10.1038/nature09116.

[69] Michael F. Shlesinger, Joseph Klafter, and Y. M. Wong. «Ran-
dom walks with infinite spatial and temporal moments.»
In: Journal of Statistical Physics 27 (3 1982), pp. 499–512. url:
https://doi.org/10.1007/BF01011089.

[70] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
«OpenAI Gym.» In: ArXiv preprint (2016). url: https://doi.
org/10.48550/arXiv.1606.01540.

[71] J. Timmer and M. Koenig. «On generating power law noise.»
In: Astronomy and Astrophysics 300 (1995), pp. 707–710. url:
https://ui.adsabs.harvard.edu/abs/1995A&A...300.

.707T.

[72] William T Cochran, James W Cooley, David L Favin, Howard
D Helms, Reginald A Kaenel, William W Lang, George C
Maling, David E Nelson, Charles M Rader, and Peter D
Welch. «What is the fast Fourier transform?» In: Proceedings
of the IEEE 55.10 (1967), pp. 1664–1674. url: https://doi.
org/10.1109/PROC.1967.5957.

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1038/nature09116
https://doi.org/10.1038/nature09116
https://doi.org/10.1007/BF01011089
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T
https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T
https://doi.org/10.1109/PROC.1967.5957
https://doi.org/10.1109/PROC.1967.5957

bibliography 171

[73] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. «Learning Complex Dexterous Manipulation with
Deep Reinforcement Learning and Demonstrations.» In:
Robotics: Science and Systems (RSS). 2018. url: https://doi.
org/10.48550/arXiv.1709.10087.

[74] I. Rechenberg. «Evolutionsstrategie: Optimierung technis-
cher Systeme nach Prinzipien der biologischen Evolution.»
PhD thesis. TU Berlin, 1971. url: https : / / doi . org / 10 .

1002/fedr.19750860506.

[75] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani,
Richard Turner, and Adrian Weller. «Structured evolution
with compact architectures for scalable policy optimization.»
In: International Conference on Machine Learning (ICML). 2018,
pp. 970–978. url: https://doi.org/10.48550/arXiv.1804.
02395.

[76] Horia Mania, Aurelia Guy, and Benjamin Recht. «Simple ran-
dom search of static linear policies is competitive for rein-
forcement learning.» In: International Conference on Neural In-
formation Processing Systems (NeurIPS). 2018, pp. 1800–1809.
url: https : / / proceedings . neurips . cc / paper _ files /

paper / 2018 / file / 7634ea65a4e6d9041cfd3f7de18e334a -

Paper.pdf.

[77] Shauharda Khadka and Kagan Tumer. «Evolution-guided
policy gradient in reinforcement learning.» In: International
Conference on Neural Information Processing Systems (NeurIPS).
2018, pp. 1188–1200. url: https://dl.acm.org/doi/10.
5555/3326943.3327053.

[78] Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti.
«Model-predictive control via cross-entropy and gradient-
based optimization.» In: Conference on Learning for Dynamics
and Control Learning (L4DC). Ed. by Alexandre M. Bayen, Ali
Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin Recht,
Claire Tomlin, and Melanie Zeilinger. Vol. 120. PMLR, 2020,

https://doi.org/10.48550/arXiv.1709.10087
https://doi.org/10.48550/arXiv.1709.10087
https://doi.org/10.1002/fedr.19750860506
https://doi.org/10.1002/fedr.19750860506
https://doi.org/10.48550/arXiv.1804.02395
https://doi.org/10.48550/arXiv.1804.02395
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://dl.acm.org/doi/10.5555/3326943.3327053
https://dl.acm.org/doi/10.5555/3326943.3327053

172 bibliography

pp. 277–286. url: https://doi.org/10.48550/arXiv.2004.
08763.

[79] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg,
and Evangelos Theodorou. «Aggressive driving with model
predictive path integral control.» In: International Conference
on Robotics and Automation (ICRA) (2016), pp. 1433–1440. url:
https://doi.org/10.1109/ICRA.2016.7487277.

[80] Reuven Y. Rubinstein and Dirk P. Kroese. The cross en-
tropy method: A unified approach to combinatorial optimization,
Monte-Carlo simulation and machine learning. Berlin, Heidel-
berg: Springer, 2004. url: https://doi.org/10.1007/978-
1-4757-4321-0.

[81] Zdravko Botev, Dirk Kroese, Reuven Rubinstein, and Pierre
L’Ecuyer. «The Cross-Entropy method for optimization
(Chapter 3).» In: Handbook of Statistics. Vol. 31. Elsevier, 2013,
pp. 35–59. url: https://doi.org/10.1016/B978-0-444-
53859-8.00003-5.

[82] L. Margolin. «On the convergence of the cross-entropy
method.» In: Annals of Operations Research 134 (2005),
pp. 201–214. url: https://doi.org/10.1007/s10479-005-
5731-0.

[83] Aloïs Pourchot and Olivier Sigaud. «CEM-RL: Combin-
ing evolutionary and gradient-based methods for policy
search.» In: International Conference on Learning Representa-
tions (ICLR). 2018. url: https://doi.org/10.48550/arXiv.
1810.01222.

[84] Marin Kobilarov. «Cross-entropy motion planning.» In: Inter-
national Journal of Robotic Research (IJRR) 31 (2012), pp. 855–
871. url: https://doi.org/10.1177/0278364912444543.

[85] L. Čehovin, M. Kristan, and A. Leonardis. «An adaptive
coupled-layer visual model for robust visual tracking.»
In: International Conference on Computer Vision (ICCV). 2011,
pp. 1363–1370. url: https://doi.org/10.1109/ICCV.2011.
6126390.

https://doi.org/10.48550/arXiv.2004.08763
https://doi.org/10.48550/arXiv.2004.08763
https://doi.org/10.1109/ICRA.2016.7487277
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1016/B978-0-444-53859-8.00003-5
https://doi.org/10.1016/B978-0-444-53859-8.00003-5
https://doi.org/10.1007/s10479-005-5731-0
https://doi.org/10.1007/s10479-005-5731-0
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.1177/0278364912444543
https://doi.org/10.1109/ICCV.2011.6126390
https://doi.org/10.1109/ICCV.2011.6126390

bibliography 173

[86] Shili Lin and Jie Ding. «Integration of ranked lists via cross-
entropy Monte Carlo with applications to mRNA and mi-
croRNA studies.» In: Biometrics 65 (2008), pp. 9–18. url:
https://doi.org/10.1111/j.1541-0420.2008.01044.x.

[87] Kin-Ping Hui, Nigel Bean, Miro Kraetzl, and Dirk P. Kroese.
«The cross-entropy method for network reliability estima-
tion.» In: Annals of Operations Research 134 (2005), pp. 101–
118. url: https://doi.org/10.1007/s10479-005-5726-x.

[88] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and
Pieter Abbeel. «Benchmarking deep reinforcement learning
for continuous control.» In: International Conference on Ma-
chine Learning (ICML). 2016. url: https : / / doi . org / 10 .

48550/arXiv.1604.06778.

[89] Brandon Amos and Denis Yarats. «The differentiable cross-
entropy method.» In: International Conference on Machine
Learning (ICML). 2020. url: https://doi.org/10.48550/
arXiv.1909.12830.

[90] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon,
Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang,
SM Eslami, et al. «Emergence of locomotion behaviours in
rich environments.» In: ArXiv preprint (2017). url: https :

//doi.org/10.48550/arXiv.1707.02286.

[91] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,
Matthias Plappert, Glenn Powell, Alex Ray, et al. «Learn-
ing dexterous in-hand manipulation.» In: The International
Journal of Robotics Research 39.1 (2020), pp. 3–20. url: https:
//doi.org/10.1177/0278364919887447.

[92] Yilun Du, Toru Lin, and Igor Mordatch. «Model based plan-
ning with energy based models.» In: Conference on Robot
Learning (CoRL). 2019. url: https://doi.org/10.48550/
arXiv.1909.06878.

https://doi.org/10.1111/j.1541-0420.2008.01044.x
https://doi.org/10.1007/s10479-005-5726-x
https://doi.org/10.48550/arXiv.1604.06778
https://doi.org/10.48550/arXiv.1604.06778
https://doi.org/10.48550/arXiv.1909.12830
https://doi.org/10.48550/arXiv.1909.12830
https://doi.org/10.48550/arXiv.1707.02286
https://doi.org/10.48550/arXiv.1707.02286
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://doi.org/10.48550/arXiv.1909.06878
https://doi.org/10.48550/arXiv.1909.06878

174 bibliography

[93] Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan
Achterhold, Joerg Stueckler, Michal Rolinek, and Georg Mar-
tius. «Sample-efficient cross-entropy method for real-time
planning.» In: Conference on Robot Learning (CoRL). 2020. doi:
https://doi.org/10.48550/arXiv.2008.06389.

[94] Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. «Deep reinforce-
ment learning that matters.» In: Conference On Artificial Intel-
ligence (AAAI) (2018). url: https://doi.org/10.1609/aaai.
v32i1.11694.

[95] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade,
Emanuel Todorov, and Igor Mordatch. «Plan online, learn
offline: Efficient learning and exploration via model-based
control.» In: International Conference on Learning Representa-
tions (ICLR). 2019. url: https://openreview.net/forum?id=
Byey7n05FQ.

[96] Sergey Levine and Vladlen Koltun. «Guided policy search.»
In: International Conference on Machine Learning (ICML). 2013.
url: https://proceedings.mlr.press/v28/levine13.html.

[97] Sergey Levine and Pieter Abbeel. «Learning neural network
policies with guided policy search under unknown dynam-
ics.» In: International Conference on Neural Information Process-
ing Systems (NeurIPS. Ed. by Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger. 2014,
pp. 1071–1079. url: http://papers.nips.cc/paper/5444-
learning-neural-network-policies-with-guided-policy-

search-under-unknown-dynamics.pdf.

[98] Igor Mordatch and Emanuel Todorov. «Combining the bene-
fits of function approximation and trajectory optimization.»
In: Robotics: Science and Systems. 2014. url: http://dx.doi.
org/10.15607/RSS.2014.X.052.

[99] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran
Popovic, and Emanuel V. Todorov. «Interactive control of
diverse complex characters with neural networks.» In: In-

https://doi.org/https://doi.org/10.48550/arXiv.2008.06389
https://doi.org/10.1609/aaai.v32i1.11694
https://doi.org/10.1609/aaai.v32i1.11694
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=Byey7n05FQ
https://proceedings.mlr.press/v28/levine13.html
http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
http://dx.doi.org/10.15607/RSS.2014.X.052
http://dx.doi.org/10.15607/RSS.2014.X.052

bibliography 175

ternational Conference on Neural Information Processing Sys-
tems (NeurIPS). 2015, pp. 3132–3140. url: https : / /

proceedings.neurips.cc/paper_files/paper/2015/file/

2612aa892d962d6f8056b195ca6e550d-Paper.pdf.

[100] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter
Abbeel. «Learning deep control policies for autonomous
aerial vehicles with MPC-guided policy search.» In: Inter-
national Conference on Robotics and Automation (ICRA). 2016,
pp. 528–535. url: https://doi.org/10.1109/ICRA.2016.
7487175.

[101] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter
Abbeel. «Plato: Policy learning using adaptive trajectory op-
timization.» In: International Conference on Robotics and Au-
tomation (ICRA). 2017. url: https://doi.org/10.1109/ICRA.
2017.7989379.

[102] Wen Sun, Geoffrey J. Gordon, Byron Boots, and J. Andrew
Bagnell. «Dual policy iteration.» In: International Conference
on Neural Information Processing Systems (NeurIPS). 2018. url:
https://doi.org/10.48550/arXiv.1805.10755.

[103] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schnei-
der, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin,
Pieter Abbeel, and Wojciech Zaremba. «Hindsight Experi-
ence Replay.» In: International Conference on Neural Informa-
tion Processing Systems (NeurIPS). Vol. 30. 2017, pp. 5048–
5058. url: https://proceedings.neurips.cc/paper/2017/
file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf.

[104] Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang,
Jie Tan, and Vikas Sindhwani. «Data efficient reinforcement
learning for legged robots.» In: Conference on Robot Learning
(CoRL) (2019). url: https://doi.org/10.48550/arXiv.1907.
03613.

[105] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. «Imitation learning: A survey of learning

https://proceedings.neurips.cc/paper_files/paper/2015/file/2612aa892d962d6f8056b195ca6e550d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2612aa892d962d6f8056b195ca6e550d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2612aa892d962d6f8056b195ca6e550d-Paper.pdf
https://doi.org/10.1109/ICRA.2016.7487175
https://doi.org/10.1109/ICRA.2016.7487175
https://doi.org/10.1109/ICRA.2017.7989379
https://doi.org/10.1109/ICRA.2017.7989379
https://doi.org/10.48550/arXiv.1805.10755
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://doi.org/10.48550/arXiv.1907.03613
https://doi.org/10.48550/arXiv.1907.03613

176 bibliography

methods.» In: ACM Computing Surveys (CSUR) 50.2 (2017),
pp. 1–35. url: https://doi.org/10.1145/3054912.

[106] Athanasios S Polydoros and Lazaros Nalpantidis. «Survey
of model-based reinforcement learning: Applications on
robotics.» In: Journal of Intelligent & Robotic Systems 86.2
(2017), pp. 153–173. url: https://doi.org/10.1007/s10846-
017-0468-y.

[107] Stephen C. Hora. «Aleatory and epistemic uncertainty in
probability elicitation with an example from hazardous
waste management.» In: Reliability Engineering & System
Safety 54.2 (1996), pp. 217–223. url: https://doi.org/10.
1016/S0951-8320(96)00077-4.

[108] Armen Der Kiureghian and Ove Ditlevsen. «Aleatory or
epistemic? Does it matter?» In: Structural Safety. Risk Ac-
ceptance and Risk Communication 31.2 (2009), pp. 105–112.
issn: 0167-4730. url: https : / / doi . org / 10 . 1016 / j .

strusafe.2008.06.020.

[109] Ian Lenz, Ross A Knepper, and Ashutosh Saxena.
«DeepMPC: Learning deep latent features for model pre-
dictive control.» In: Robotics: Science and Systems. 2015. url:
https://doi.org/10.15607/RSS.2015.XI.012.

[110] Justin Fu, Sergey Levine, and Pieter Abbeel. «One-shot learn-
ing of manipulation skills with online dynamics adaptation
and neural network priors.» In: International Conference on In-
telligent Robots and Systems (IROS). 2016, pp. 4019–4026. url:
https://doi.org/10.1109/IROS.2016.7759592.

[111] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen.
«Improving PILCO with Bayesian neural network dynamics
models.» In: Data-Efficient Machine Learning Workshop at the
International Conference of Machine Learning (ICML). Vol. 4. 34.
2016, p. 25. url: http://www.cs.ox.ac.uk/people/yarin.
gal/website/PDFs/DeepPILCO.pdf.

https://doi.org/10.1145/3054912
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1016/S0951-8320(96)00077-4
https://doi.org/10.1016/S0951-8320(96)00077-4
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.15607/RSS.2015.XI.012
https://doi.org/10.1109/IROS.2016.7759592
http://www.cs.ox.ac.uk/people/yarin.gal/website/PDFs/DeepPILCO.pdf
http://www.cs.ox.ac.uk/people/yarin.gal/website/PDFs/DeepPILCO.pdf

bibliography 177

[112] Juš Kocijan, Roderick Murray-Smith, Carl E. Rasmussen,
and Agathe Girard. «Gaussian process model based pre-
dictive control.» In: American control conference. Vol. 3. 2004,
pp. 2214–2219. url: https://doi.org/10.23919/ACC.2004.
1383790.

[113] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. «Lo-
cal gaussian process regression for real time online model
learning and control.» In: International Conference on Neural
Information Processing Systems (NeurIPS). 2008, pp. 1193–1200.
url: https : / / proceedings . neurips . cc / paper _ files /

paper / 2008 / file / 01161aaa0b6d1345dd8fe4e481144d84 -

Paper.pdf.

[114] Alexandra Grancharova, Juš Kocijan, and Tor A Johansen.
«Explicit stochastic predictive control of combustion plants
based on Gaussian process models.» In: Automatica 44.6
(2008), pp. 1621–1631. url: https://doi.org/10.1016/j.
automatica.2008.04.002.

[115] Marc Peter Deisenroth, Dieter Fox, and Carl E. Rasmussen.
«Gaussian processes for data-efficient learning in robotics
and control.» In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 37.2 (2013), pp. 408–423. url: https://
doi.org/10.1109/TPAMI.2013.218.

[116] Sanket Kamthe and Marc Deisenroth. «Data-efficient rein-
forcement learning with probabilistic model predictive con-
trol.» In: International Conference on Artificial Intelligence and
Statistics. 2018, pp. 1701–1710. url: https://doi.org/10.
48550/arXiv.1706.06491.

[117] Carl E. Rasmussen and Malte Kuss. «Gaussian Processes in
Reinforcement Learning.» In: International Conference on Neu-
ral Information Processing Systems (NeurIPS). 2003. url: https:
// proceedings. neurips. cc/ paper_files/ paper/ 2003/

file/7993e11204b215b27694b6f139e34ce8-Paper.pdf.

https://doi.org/10.23919/ACC.2004.1383790
https://doi.org/10.23919/ACC.2004.1383790
https://proceedings.neurips.cc/paper_files/paper/2008/file/01161aaa0b6d1345dd8fe4e481144d84-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/01161aaa0b6d1345dd8fe4e481144d84-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/01161aaa0b6d1345dd8fe4e481144d84-Paper.pdf
https://doi.org/10.1016/j.automatica.2008.04.002
https://doi.org/10.1016/j.automatica.2008.04.002
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.48550/arXiv.1706.06491
https://doi.org/10.48550/arXiv.1706.06491
https://proceedings.neurips.cc/paper_files/paper/2003/file/7993e11204b215b27694b6f139e34ce8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/7993e11204b215b27694b6f139e34ce8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/7993e11204b215b27694b6f139e34ce8-Paper.pdf

178 bibliography

[118] Carl E. Rasmussen and Christopher K.I. Williams. Gaussian
Processes for Machine Learning. Adaptive Computation and
Machine Learning. Cambridge, MA, USA: MIT Press, 2006.
url: https://doi.org/10.1007/978-3-540-28650-9_4.

[119] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar,
and Pieter Abbeel. «Model-ensemble trust-region policy op-
timization.» In: International Conference on Learning Represen-
tations (ICLR). 2018. url: https://openreview.net/forum?
id=SJJinbWRZ.

[120] Ian Osband, Charles Blundell, Alexander Pritzel, and Ben-
jamin Van Roy. «Deep exploration via bootstrapped DQN.»
In: International Conference on Neural Information Processing
Systems (NeurIPS). 2016, 4033–4041. url: https : / / arxiv .

org/pdf/1602.04621.pdf.

[121] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. «Simple and scalable predictive uncertainty es-
timation using deep ensembles.» In: International Confer-
ence on Neural Information Processing Systems (NeurIPS). 2017,
6405–6416. url: https://proceedings.neurips.cc/paper/
2017 / file / 9ef2ed4b7fd2c810847ffa5fa85bce38 - Paper .

pdf.

[122] Sebastian Curi, Felix Berkenkamp, and Andreas Krause. «Ef-
ficient model-based reinforcement learning through opti-
mistic policy search and planning.» In: International Confer-
ence on Neural Information Processing Systems (NeurIPS). 2020.
url: https : / / proceedings . neurips . cc / paper _ files /

paper / 2020 / file / a36b598abb934e4528412e5a2127b931 -

Paper.pdf.

[123] Manfred Morari and Jay H Lee. «Model predictive control:
past, present and future.» In: Computers & Chemical Engineer-
ing 23.4-5 (1999), pp. 667–682. url: https://doi.org/10.
1016/S0098-1354(98)00301-9.

https://doi.org/10.1007/978-3-540-28650-9_4
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=SJJinbWRZ
https://arxiv.org/pdf/1602.04621.pdf
https://arxiv.org/pdf/1602.04621.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a36b598abb934e4528412e5a2127b931-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a36b598abb934e4528412e5a2127b931-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a36b598abb934e4528412e5a2127b931-Paper.pdf
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1016/S0098-1354(98)00301-9

bibliography 179

[124] Oliver Mihatsch and Ralph Neuneier. «Risk-sensitive rein-
forcement learning.» In: Machine learning 49.2 (2002), pp. 267–
290. url: https://doi.org/10.1023/A:1017940631555.

[125] Javier Garcıa and Fernando Fernández. «A comprehensive
survey on safe reinforcement learning.» In: Journal of Machine
Learning Research 16.1 (2015), pp. 1437–1480. url: https://
www.jmlr.org/papers/volume16/ailon15a/ailon15a.pdf.

[126] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale
Doshi-Velez, and Steffen Udluft. «Decomposition of un-
certainty in Bayesian deep learning for efficient and risk-
sensitive learning.» In: International Conference on Machine
Learning (ICML). 2018, pp. 1184–1193. url: https : / / doi .

org/10.48550/arXiv.1710.07283.

[127] Ermano Arruda, Michael J. Mathew, Marek Kopicki, M. Mis-
try, M. Azad, and J. Wyatt. «Uncertainty averse pushing with
model predictive path integral control.» In: International Con-
ference on Humanoid Robotics (Humanoids) (2017), pp. 497–502.
url: https://doi.org/10.1109/HUMANOIDS.2017.8246918.

[128] Keuntaek Lee, Gabriel Nakajima An, Viacheslav Zakharov,
and Evangelos A. Theodorou. «Perceptual attention-based
predictive control.» In: Conference on Robot Learning (CoRL).
Vol. 100. 2020, pp. 220–232. url: http://proceedings.mlr.
press/v100/lee20b.html.

[129] Ian Abraham, Ankur Handa, Nathan Ratliff, Kendall
Lowrey, Todd D. Murphey, and Dieter Fox. «Model-based
generalization under parameter uncertainty using path inte-
gral control.» In: Robotics and Automation Letters 5.2 (2020),
pp. 2864 –2871. url: https://doi.org/10.1109/LRA.2020.
2972836.

[130] William R. Clements, Benoit-Marie Robaglia, Bastien Van
Delft, Reda Bahi Slaoui, and Sébastien Toth. «Estimating risk
and uncertainty in deep reinforcement learning.» In: Work-
shop on Uncertainty & Robustness in Deep Learning at the In-

https://doi.org/10.1023/A:1017940631555
https://www.jmlr.org/papers/volume16/ailon15a/ailon15a.pdf
https://www.jmlr.org/papers/volume16/ailon15a/ailon15a.pdf
https://doi.org/10.48550/arXiv.1710.07283
https://doi.org/10.48550/arXiv.1710.07283
https://doi.org/10.1109/HUMANOIDS.2017.8246918
http://proceedings.mlr.press/v100/lee20b.html
http://proceedings.mlr.press/v100/lee20b.html
https://doi.org/10.1109/LRA.2020.2972836
https://doi.org/10.1109/LRA.2020.2972836

180 bibliography

ternational Conference on Machine Learning (ICML) (2020). url:
https://doi.org/10.48550/arXiv.1905.09638.

[131] Jianyi Zhang and P. Weng. «Safe distributional reinforce-
ment learning.» In: nternational Conference on Distributed Ar-
tificial Intelligence (DAI). 2021. url: https://doi.org/10.
1007/978-3-030-94662-3_8.

[132] Andrew Y Ng, Daishi Harada, and Stuart Russell. «Policy
invariance under reward transformations: Theory and appli-
cation to reward shaping.» In: International Conference on Ma-
chine Learning (ICML). Vol. 99. 1999, pp. 278–287. url: https:
//people.eecs.berkeley.edu/~russell/papers/icml99-

shaping.pdf.

[133] Ashique Rupam Mahmood, Dmytro Korenkevych, Brent
Komer, and James Bergstra. «Setting up a reinforcement
learning task with a real-world robot.» In: nternational Confer-
ence on Intelligent Robots and Systems (IROS) (2018), pp. 4635–
4640. url: https://doi.org/10.1109/IROS.2018.8593894.

[134] Alexander Pan, Kush Bhatia, and Jacob Steinhardt. «The ef-
fects of reward misspecification: Mapping and mitigating
misaligned models.» In: International Conference on Learning
Representations (ICLR). 2022. url: https://openreview.net/
forum?id=JYtwGwIL7ye.

[135] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja,
and Sergey Levine. «Dynamical distance learning for semi-
supervised and unsupervised skill discovery.» In: Interna-
tional Conference on Learning Representations (ICLR) (2020).
url: https://doi.org/10.48550/arXiv.1907.08225.

[136] Leslie Pack Kaelbling. «Learning to achieve goals.» In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). 1993.
url: https://people.csail.mit.edu/lpk/papers/ijcai93.
ps.

[137] Robert W. Floyd. «Algorithm 97: Shortest path.» In: Commu-
nications of the Association for Computing Machinery 5.6 (1962),
p. 345. url: https://doi.org/10.1145/367766.368168.

https://doi.org/10.48550/arXiv.1905.09638
https://doi.org/10.1007/978-3-030-94662-3_8
https://doi.org/10.1007/978-3-030-94662-3_8
https://people.eecs.berkeley.edu/~russell/papers/icml99-shaping.pdf
https://people.eecs.berkeley.edu/~russell/papers/icml99-shaping.pdf
https://people.eecs.berkeley.edu/~russell/papers/icml99-shaping.pdf
https://doi.org/10.1109/IROS.2018.8593894
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=JYtwGwIL7ye
https://doi.org/10.48550/arXiv.1907.08225
https://people.csail.mit.edu/lpk/papers/ijcai93.ps
https://people.csail.mit.edu/lpk/papers/ijcai93.ps
https://doi.org/10.1145/367766.368168

bibliography 181

[138] Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar.
«Sub-goal trees: A framework for goal-based reinforcement
learning.» In: International Conference on Machine Learning
(ICML). Vol. 119. 2020, pp. 5020–5030. url: https : / /

proceedings.mlr.press/v119/jurgenson20a.html.

[139] Richard Bellman. «Dynamic Programming.» In: Science
153.3731 (1966), pp. 34–37. url: https://doi.org/10.1126/
science.153.3731.34.

[140] Edsger W. Dijkstra. «A note on two problems in connexion
with graphs.» In: Numerische Mathematik 1 (1959), pp. 269–
271. url: https://doi.org/10.1145/3544585.3544600.

[141] Richard Bellman. «On a routing problem.» In: Quarterly of
applied mathematics 16.1 (1958), pp. 87–90. url: https://doi.
org/10.1090/qam/102435.

[142] Moshe Sniedovich. «Dijkstra’s algorithm revisited: the dy-
namic programming connexion.» In: Control and Cybernetics
35 (2006), pp. 599–620. url: http://matwbn.icm.edu.pl/
ksiazki/cc/cc35/cc3536.pdf.

[143] Tom Schaul, Daniel Horgan, Karol Gregor, and David Sil-
ver. «Universal Value Function Approximators.» In: Interna-
tional Conference on Machine Learning (ICML). Vol. 37. 2015,
pp. 1312–1320. url: https://proceedings.mlr.press/v37/
schaul15.html.

[144] Vikas Dhiman, Shurjo Banerjee, Jeffrey Mark Siskind, and Ja-
son J. Corso. «Floyd-Warshall reinforcement learning: Learn-
ing from past experiences to reach new goals.» In: ArXiv
preprint (2018). url: https://doi.org/10.48550/arXiv.
1809.09318.

[145] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich,
Thomas Unterthiner, Johannes Brandstetter, and Sepp
Hochreiter. «Rudder: Return decomposition for delayed re-
wards.» In: International Conference on Neural Information
Processing Systems (NeurIPS) 32 (2019). url: https : / /

https://proceedings.mlr.press/v119/jurgenson20a.html
https://proceedings.mlr.press/v119/jurgenson20a.html
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1090/qam/102435
https://doi.org/10.1090/qam/102435
http://matwbn.icm.edu.pl/ksiazki/cc/cc35/cc3536.pdf
http://matwbn.icm.edu.pl/ksiazki/cc/cc35/cc3536.pdf
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
https://doi.org/10.48550/arXiv.1809.09318
https://doi.org/10.48550/arXiv.1809.09318
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf

182 bibliography

proceedings.neurips.cc/paper_files/paper/2019/file/

16105fb9cc614fc29e1bda00dab60d41-Paper.pdf.

[146] Marek Grzes and Daniel Kudenko. «Plan-based reward
shaping for reinforcement learning.» In: International IEEE
Conference Intelligent Systems. Vol. 2. 2008, pp. 10–22. url:
https://doi.org/10.1109/IS.2008.4670492.

[147] Jette Randløv and Preben Alstrøm. «Learning to drive a bi-
cycle using reinforcement learning and shaping.» In: Inter-
national Conference on Machine Learning (ICML). Vol. 98. 1998,
pp. 463–471. url: https : / / dl . acm . org / doi / 10 . 5555 /

645527.757766.

[148] Jürgen Schmidhuber. «A possibility for implementing cu-
riosity and boredom in model-building neural controllers.»
In: International Conference on Simulation of Adaptive Behav-
ior. 1991, pp. 222–227. url: https://doi.org/10.7551/
mitpress/3115.003.0030.

[149] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor
Darrell. «Curiosity-driven exploration by self-supervised
prediction.» In: International Conference on Machine Learning
(ICML). 2017, pp. 2778–2787. url: https://doi.org/10.
1109/CVPRW.2017.70.

[150] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip
De Turck, and Pieter Abbeel. «Vime: Variational information
maximizing exploration.» In: International Conference on Neu-
ral Information Processing Systems (NeurIPS) 29 (2016). url:
https : / / proceedings . neurips . cc / paper / 2016 / file /

abd815286ba1007abfbb8415b83ae2cf-Paper.pdf.

[151] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
«Semi-parametric topological memory for navigation.» In: In-
ternational Conference on Learning Representations (ICLR). 2018.
url: https://openreview.net/forum?id=SygwwGbRW.

https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://doi.org/10.1109/IS.2008.4670492
https://dl.acm.org/doi/10.5555/645527.757766
https://dl.acm.org/doi/10.5555/645527.757766
https://doi.org/10.7551/mitpress/3115.003.0030
https://doi.org/10.7551/mitpress/3115.003.0030
https://doi.org/10.1109/CVPRW.2017.70
https://doi.org/10.1109/CVPRW.2017.70
https://proceedings.neurips.cc/paper/2016/file/abd815286ba1007abfbb8415b83ae2cf-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/abd815286ba1007abfbb8415b83ae2cf-Paper.pdf
https://openreview.net/forum?id=SygwwGbRW

bibliography 183

[152] Dibya Ghosh, Abhishek Gupta, and Sergey Levine. «Learn-
ing actionable representations with goal conditioned poli-
cies.» In: International Conference on Learning Representations
(ICLR). 2019. url: https : / / openreview . net / forum ? id =

Hye9lnCct7.

[153] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine.
«Search on the Replay Buffer: Bridging Planning and Re-
inforcement Learning.» In: 32 (2019). Ed. by H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett. url: https : / / proceedings .

neurips . cc / paper _ files / paper / 2019 / file /

5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf.

[154] Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost To-
bias Springenberg, and Martin Riedmiller. «Self-supervised
learning of image embedding for continuous control.» In:
ArXiv preprint (2019). url: https://doi.org/10.48550/
arXiv.1901.00943.

[155] Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Ben-
jamin Eysenbach, Chelsea Finn, and Sergey Levine. «Model-
based visual planning with self-supervised functional dis-
tances.» In: International Conference on Learning Representa-
tions (ICLR). 2021. url: https://openreview.net/forum?
id=UcoXdfrORC.

[156] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke,
Xi Chen, Yan Duan, John Schulman, Filip De Turck, and
Pieter Abbeel. «#Exploration: A study of count-based ex-
ploration for deep reinforcement learning.» In: International
Conference on Neural Information Processing Systems (NeurIPS).
2017, pp. 2753–2762. url: https://proceedings.neurips.
cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-

Abstract.html.

[157] Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon
Whiteson. «Optimistic Exploration even with a Pessimistic
Initialisation.» In: International Conference on Learning Rep-

https://openreview.net/forum?id=Hye9lnCct7
https://openreview.net/forum?id=Hye9lnCct7
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://doi.org/10.48550/arXiv.1901.00943
https://doi.org/10.48550/arXiv.1901.00943
https://openreview.net/forum?id=UcoXdfrORC
https://openreview.net/forum?id=UcoXdfrORC
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html

184 bibliography

resentations (ICLR). 2020. url: https :/ /openreview .net /

forum?id=r1xGP6VYwH.

[158] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte,
Abhishek Gupta, Sergey Levine, and Vikash Kumar. «Robel:
Robotics benchmarks for learning with low-cost robots.» In:
Conference on Robot learning (CoRL). 2020, pp. 1300–1313. url:
https://doi.org/10.48550/arXiv.1909.11639.

[159] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey
Levine. «Soft Actor-Critic: Off-policy maximum entropy
Deep Reinforcement Learning with a stochastic actor.» In:
International Conference on Machine Learning (ICML). 2018,
pp. 1856–1865. url: https://doi.org/10.48550/arXiv.
1801.01290.

[160] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez,
and Emanuel Todorov. «Value function approximation and
model predictive control.» In: Symposium on adaptive dy-
namic programming and reinforcement learning (ADPRL). 2013,
pp. 100–107. url: https : / / homes . cs . washington . edu /

~todorov/papers/ZhongADPRL13.pdf.

[161] Yuchen Cui, David Isele, Scott Niekum, and Kikuo Fu-
jimura. «Uncertainty-aware data aggregation for deep imi-
tation learning.» In: International Conference on Robotics and
Automation (ICRA) (2019), pp. 761–767. url: http://arxiv.
org/abs/1905.02780.

[162] Ziyu Wang et al. «Critic regularized regression.» In: In-
ternational Conference on Neural Information Processing Sys-
tems (NeurIPS). Vol. 33. 2020, pp. 7768–7778. url: https :

/ / proceedings . neurips . cc / paper / 2020 / file /

588cb956d6bbe67078f29f8de420a13d-Paper.pdf.

[163] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. «Conservative q-learning for offline reinforcement
learning.» In: International Conference on Neural Information
Processing Systems (NeurIPS). Vol. 33. 2020, pp. 1179–1191.

https://openreview.net/forum?id=r1xGP6VYwH
https://openreview.net/forum?id=r1xGP6VYwH
https://doi.org/10.48550/arXiv.1909.11639
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
https://homes.cs.washington.edu/~todorov/papers/ZhongADPRL13.pdf
https://homes.cs.washington.edu/~todorov/papers/ZhongADPRL13.pdf
http://arxiv.org/abs/1905.02780
http://arxiv.org/abs/1905.02780
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf

bibliography 185

url: https://proceedings.neurips.cc/paper/2020/file/
0d2b2061826a5df3221116a5085a6052-Paper.pdf.

[164] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. «Graph neural networks: A review of
methods and applications.» In: AI Open 1 (2020), pp. 57–81.
issn: 2666-6510. url: https://doi.org/10.1016/j.aiopen.
2021.01.001.

[165] Cansu Sancaktar, Sebastian Blaes, and Georg Martius. «Cu-
rious exploration via structured world models yields zero-
shot object manipulation.» In: International Conference on Neu-
ral Information Processing Systems (NeurIPS). 2022. url: https:
//openreview.net/forum?id=NnuYZ1el24C.

[166] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi
Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap,
Nicolas Heess, and Yuval Tassa. «dm_control: Software and
tasks for continuous control.» In: Software Impacts 6 (2020),
p. 100022. url: https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

[167] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and
Georg Martius. «Pink noise is all you need: Colored noise
exploration in Deep RL.» In: International Conference on Learn-
ing Representations (ICLR). Vol. 10. 2023, p. 2. url: https :

//openreview.net/pdf?id=hQ9V5QN27eS.

[168] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. «Practi-
cal Bayesian optimization of machine learning algorithms.»
In: International Conference on Neural Information Process-
ing Systems (NeurIPS). 2012, 2951–2959. url: https : / /

papers . nips . cc / paper _ files / paper / 2012 / file /

05311655a15b75fab86956663e1819cd-Paper.pdf.

[169] Ruben Fossion, E. Landa, P. Stránský, Victor Velazquez, Juan
Carlos Lopez Vieyra, I. Garduño, D. García, and Alejan-
dro Frank. «Scale invariance as a symmetry in physical
and biological systems: Listening to photons, bubbles and

https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://openreview.net/forum?id=NnuYZ1el24C
https://openreview.net/forum?id=NnuYZ1el24C
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://openreview.net/pdf?id=hQ9V5QN27eS
https://openreview.net/pdf?id=hQ9V5QN27eS
https://papers.nips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://papers.nips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://papers.nips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf

186 bibliography

heartbeats.» In: AIP Conference Proceedings 1323 (Dec. 2010),
pp. 74–90. url: https://doi.org/10.1063/1.3537868.

[170] Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian
Viereck, Manuel Wüthrich, Maximilien Naveau, Vincent
Berenz, Steve Heim, Felix Widmaier, Thomas Flayols, et al.
«An open torque-controlled modular robot architecture for
legged locomotion research.» In: Robotics and Automation Let-
ters 5.2 (2020), pp. 3650–3657. url: http://dx.doi.org/10.
1109/LRA.2020.2976639.

[171] Min Wen and Ufuk Topcu. «Constrained cross-entropy
method for safe reinforcement learning.» In: International
Conference on Neural Information Processing Systems (NeurIPS).
Vol. 31. 2018. url: https : / / proceedings . neurips . cc /

paper / 2018 / file / 34ffeb359a192eb8174b6854643cc046 -

Paper.pdf.

[172] Moses Charikar. «Similarity estimation techniques from
rounding algorithms.» In: ACM Symposium on Theory of Com-
puting (STOC). 2002. url: https : / / doi . org / 10 . 1145 /

509907.509965.

[173] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni. «Locality-sensitive hashing scheme based on p-
stable distributions.» In: Symposium on Computational Geom-
etry (SCG). 2004. url: https://doi.org/10.1145/997817.
997857.

https://doi.org/10.1063/1.3537868
http://dx.doi.org/10.1109/LRA.2020.2976639
http://dx.doi.org/10.1109/LRA.2020.2976639
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857

C U R R I C U L U M V I TA E

personal data

Name Cristina Pinneri
Date of Birth January 23, 1993

Place of Birth Reggio Calabria, Italy
Citizen of Italy

education

2018 – Today PhD Student at the Max Planck ETH Center
for Learning Systems
Tübingen, Germany
Zürich, Switzerland

2016 – 2017 MSc. - Master Degree in Nanotechnologies
for ICT’s
Polytechnic University of Turin, Italy

2014 – 2016 MSc. - International Master Degree in
Physics of Complex Systems
Polytechnic University of Turin, Italy
International School for Advanced Studies
(SISSA), Italy
International Center for Theoretical Physics
(ICTP), Italy
Université Pierre et Marie Curie (UPMC),
France

2011 – 2014 Diploma - Superior Graduate School in
Physics
Scuola Superiore di Catania1 (SSC)
Summa Cum Laude

2005 – 2015 MA.2 - Master Degree in Piano
Conservatory of Reggio Calabria, Italy

2011 – 2014 BSc. - Bachelor in Physics
University of Catania, Italy
Summa cum laude

experience

2022 Research Intership at Google Deepmind
London, UK

2021 Research Intership at Meta AI
San Francisco, US

2021 Teaching assistant for Introduction to Ma-
chine Learning
ETH, Zurich

2020 Teaching assistant for Probabilistic Artifi-
cial Intelligence
ETH, Zurich

1 The Scuola Superiore di Catania (SSC) is a special structure for higher education
of the University of Catania, characterized by selective admission tests and strict
performance requirements. It was instituted to develop the skills of young students,
through additional classes and beforehand research initiation. Every student at SSC
is a student at the University of Catania at the same time. Among other requirements,
a SSC student has to have the highest marks in all disciplines and has to defend an
additional final project thesis.
See also http://www.scuolasuperiorecatania.it

2 Qualification received by "Higher Education Institutions for Fine Arts, Music and Dance
- AFAM"

http://www.scuolasuperiorecatania.it/?lang=en
http://www.scuolasuperiorecatania.it

publications

2022 Pinneri, C. and Martius, G., and Krause, A.,
Neural all-pairs shortest path for Reinforce-
ment Learning, In: NeurIPS 2022 Workshop
on DeepRL (NeurIPS DeepRL 2022)

2022 Eberhard, O. and Hollenstein, J. and Pinneri,
C. and Martius, G., Pink Noise Is All You
Need: Colored Noise Exploration in Deep Re-
inforcement Learning, In: Proc. of the Inter-
national Conference on Learning Representations
(ICLR 2023)

2021 Vlastelica, M. and Blaes, S. and Pinneri, C.
and Martius, G., Risk-Averse Zero-Order Tra-
jectory Optimization, In: Proc. of the Confer-
ence on Robot Learning (CoRL 2021)

2021 Pinneri, C. et al., Extracting Strong Policies
for Robotics Tasks from zero-order trajectory
optimizers, In: Proc. of International Conference
on Learning Representations (ICLR 2021)

2020 Pinneri, C. et al., Sample-efficient Cross-
Entropy Method for Real-time Planning In:
Proc. of the Conference on Robot Learning (CoRL
2020)

2018 Pinneri, C. and Martius, G., Systematic self-
exploration of behaviors for robots in a dy-
namical systems framework In: Proc. Artificial
Life XI, (ALife 2018)

awards and other activities

2018 Participation in Machine Learning Summer
School, UAM, Madrid

2017 Selected as one of the 100 Future Makers of
2017 by BCG company, Milan

2017 Participation in Pre-Doc Summer School on
Learning Systems, ETH, Zurich

2016 Participation in Spring School on Physics of
Complex Systems, ICTP, Trieste

2014 Participation in Winter School on Quantitative
Systems Biology, ICTP, Trieste

2011 National Italian Prize “Scafati” for Poetry
and Prose – First Classificate with the short
story “I fiori di Mashid”

2010 Regional Qualification at Olympiads of Phi-
losophy

2007, 2008 Double National Qualification at Olympiads
of Astronomy

2006 Third Place at Regional Competition of Fig-
ure Skating, Calabria, Italy

computer skills

python, pytorch, matlab, jax, C, fortran,
NetLogo, R, LATEX, GnuPlot

languages

Italian Mothertongue
English Proficient

German Intermediate
French Basic

Spanish Basic

	Sammelmappe1
	PhD_Thesis_Cristina (1) 1
	PhD_Thesis_Cristina (1) 2
	PhD_Thesis_Cristina (1) 3

	PhD_Thesis_Cristina_Pinneri
	Abstract
	Sommario
	Contents
	1 Introduction
	1.1 Outline and Contributions
	1.2 Additional Publications
	1.3 Collaborators

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Dynamic Programming
	2.1.2 Model-free RL
	2.1.3 Model-based RL

	2.2 Closing the Loop with Model Predictive Control
	2.2.1 Probabilistic Ensemble with Trajectory Sampling

	2.3 Zero-order optimization
	2.3.1 The Cross-Entropy Method

	2.4 Supervised Actors

	3 The Improved Cross-Entropy method
	3.1 Introduction
	3.1.1 CEM for model-predictive control

	3.2 Improved CEM – iCEM
	3.2.1 Colored noise and correlations
	3.2.2 CEM with memory
	3.2.3 Smaller Improvements

	3.3 Experiments
	3.3.1 Environments
	3.3.2 Main results
	3.3.3 Ablation study

	3.4 Related Work
	3.5 Conclusion

	4 Adaptive Policy Extraction
	4.1 Introduction
	4.2 Related Work
	4.3 Methods
	4.3.1 Using a policy to inform the optimization
	4.3.2 Off- and On-Policy Imitation Learning
	4.3.3 Guided Policy Search
	4.3.4 Adaptive auxiliary cost weighting
	4.3.5 Putting the pieces together: APEX

	4.4 Results
	4.4.1 Ablations

	4.5 Conclusions

	5 Risk-Averse Zero-Order Trajectory Optimization
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Planning and Control
	5.3.2 The Problem of Uncertainty Estimation
	5.3.3 Learned Dynamics Model
	5.3.4 Separation of Uncertainties
	5.3.5 Implementing RAZER

	5.4 Experiments
	5.4.1 Algorithmic Choices and Training Details
	5.4.2 Risk-Averse Planning

	5.5 Conclusion

	6 Neural all-pairs shortest path for RL
	6.1 Introduction
	6.1.1 Shortest Paths and RL

	6.2 Related Work
	6.3 Background
	6.3.1 Hindsight Experience Replay
	6.3.2 Dynamical Distances

	6.4 Method
	6.4.1 Off-policy Temporal Regression
	6.4.2 Uncertainty with Counts
	6.4.3 Local Connectivity and Triangular Loss

	6.5 Algorithm Summary
	6.6 Experiments
	6.6.1 Local Optima
	6.6.2 Sample Efficiency

	6.7 Conclusions

	7 Conclusion
	7.1 Summary
	7.2 Limitations and Future Work
	Acknowledgements

	A Additional Publications
	A.1 Equivariant Data Augmentation
	A.2 Pink noise for deep RL

	B Appendix to Chapter 3: iCEM
	B.1 Performance results
	B.1.1 Budget selection

	B.2 Hyper-parameters
	B.2.1 Choice of colored-noise exponent math:[beta]
	B.2.2 Sensitivity
	B.2.3 Hyperparameters for PlaNet

	B.3 Ablation results
	B.4 Details on the iCEM improvements
	B.4.1 Shift Initialization
	B.4.2 Sampling Colored Noise
	B.4.3 Adding the mean actions

	B.5 Spectral characteristics of noise

	C Appendix to Chapter 4: APEX
	C.1 Performance Tables
	C.2 Ablation experiments
	C.3 Expert and Policy Interplay

	D Appendix to Chapter 5: RAZER
	D.1 Additional Theory and Experiments
	D.1.1 Extra environments
	D.1.2 Risk-averse Planning
	D.1.3 Probabilistic Safety Constraints
	D.1.4 Active Learning for Model Improvement
	D.1.5 Planning with External Safety Constraints

	D.2 Implementation Details
	D.2.1 Model Learning
	D.2.2 Controller Parameters
	D.2.3 Timings
	D.2.4 Uncertainty Separation
	D.2.5 Entropy vs. Variance as Uncertainty Measurement
	D.2.6 Observation Space vs. Cost Space Uncertainty

	D.3 Algorithm
	D.4 Environments Details
	D.4.1 Computing State-Space Coverage

	D.5 Application to Transfer Learning

	E Appendix to Chapter 6: N-APSP
	E.1 Count Models
	E.1.1 Granularity
	E.1.2 Sensitivity analysis

	E.2 Goal augmentation for Fetch Pick and Place
	E.3 Implementation Details
	E.3.1 Hyperparameters
	E.3.2 Distance Learning

	List of Figures
	List of Tables

	Bibliography
	Curriculum Vitae

