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Abstract
Josephson junctions (JJs) are an integral component in quantum computing, low
temperature electronics, and fundamental physics research. Hybrid superconductor-
semiconductor JJs in two-dimensional materials have recently emerged as a paradigm
for novel applications, harnessing gate-tunable supercurrents and strong spin-orbit
coupling in a scalable platform. In this thesis, we present a detailed study of planar JJs
in an InAs/Al heterostructure, when subjected to bias currents, microwave irradiation
and in-plane magnetic fields.

First, we investigate the stochastic dynamics of the superconducting-to-resistive tran-
sition of planar JJs and superconducting quantum interference devices (SQUIDs). We
find that dynamics at low temperature are dominated by quantum fluctuations in the
superconducting phase, which suppress the switching current to values less than half of
the critical current. Phase dynamics are altered in a SQUID, such that the switching
current of a JJ is more than doubled in a SQUID relative to being in isolation. Moderate
damping leads to phase di�usion at higher temperatures, with a transition temperature
that is tunable with gate voltages, magnetic fields and fluxes threading the SQUID.

In a second experiment, we perform tunnelling spectroscopy measurements on a pla-
nar JJ irradiated by a microwave signal. Replicas in the conductance spectrum are
shown to be consistent with photon assisted tunnelling (PAT) between the spectro-
scopic probe and Andreev bound states (ABSs) in the junction, rather than due to novel
light-matter coupling in the form of Floquet-Andreev states. By tuning the tunnel-
barrier transparency and Fermi energy with gate voltages, in addition to complementary
current-phase relation (CPR) measurements, signatures unique to PAT are identified.
Further, microwave-induced distortions to the CPR are shown to be consistent with a
non-equilibrium occupation of ABSs, without invoking Floquet states.

Finally, supercurrent and tunnelling spectroscopy measurements are performed on
planar JJs in an in-plane magnetic field. Phase shifts in the CPR are reported relative
to a phase reference, in devices with di�erent superconducting lead sizes to investigate
orbital e�ects. At low fields, we observe gate-dependent phase shifts of up to Ï0 = 0.5fi,
consistent with a Zeeman field coupling to highly-transmissive ABSs via Rashba spin-
orbit interaction. A distinct phase shift at larger fields is concomitant with a switching
current minimum and a closing and reopening of the superconducting gap. These sig-
natures of a phase transition, which might resemble a topological transition, scale with
the superconducting lead size indicating the crucial role of orbital e�ects in planar JJs.

Our results give a new baseline understanding of planar JJs in InAs/Al heterostruc-
tures, and elucidate the interplay of Zeeman, spin-orbit and orbital e�ects in magnetic
fields. This guides towards improved realisations of gate-tunable qubits, superconducting
electronics and novel states of matter in hybrid superconductor-semiconductor materials.
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Zusammenfassung
Josephson-Kontakte (engl. Josephson-junctions, JJ) sind ein wesentlicher Bestandteil
von Quantencomputern, in der Tieftemperaturelektronik und sind Gegenstand der
physikalischen Grundlagenforschung. Aktuelle Ergebnisse haben gezeigt, dass hybride
Supraleiter-Halbleiter JJs in zweidimensionalen Materialen eine vielversprechende und
skalierbare Plattform für zukünftige Anwendungen darstellen, insbesondere aufgrund
der starken Spin-Bahn Kopplung und weil der Suprastrom gesteuert werden kann.
Die vorliegende Arbeit stellt eine detaillierte Studie von planaren InAs/Al JJs in
Abhängigkeit von Bias-Strom, Mikrowellenstrahlung und Magnetfeld dar.

Zuerst untersuchen wir die stochastische Dynamik des Supraleiter-Normalleiter Über-
gangs planarer JJs und supraleitender Quanteninterferenzgeräte (engl. superconducting
quantum interference devices, SQUIDs). Es stellt sich heraus, dass Quantenfluktuatio-
nen in der supraleitenden Phase die Dynamik bei tiefen Temperaturen dominieren und
den Umschaltstrom auf weniger als den halben kritischen Strom reduzieren. Wird ein
JJ in ein SQUID integriert, ändert sich die Phasendynamik, wodurch sich der Umschalt-
strom im Vergleich zum isolierten JJ mehr als verdoppelt. Eine moderate Dämpfung
führt zu Phasendi�usion bei höheren Temperaturen. Die Übergangstemperatur hängt
von Gate-Spannung, Magnetfeld und magnetischem Fluss durch das SQUID ab.

Im zweiten Experiment führen wir Tunnelspektroskopie an einem planaren JJ bei
Bestrahlung mit Mikrowellen durch. Die Struktur des Tunnelspektrums deutet auf
Photonen-gestütztes Tunneln (engl. photon assisted tunnelling, PAT) zwischen der
Spektroskopie-Sonde und gebundenen Andreev Zuständen (engl. Andreev bound
states, ABS) hin, anstelle einer neuartigen Licht-Materie Kopplung in Form von
Floquet-Andreev Zuständen. Durch Steuerung der Transparenz der Tunnelbarriere und
der Fermi-Energie durch die Gate-Spannung, sowie mittels zusätzlicher Messungen der
Strom-Phasen-Beziehung (engl. current-phase relation, CPR), finden sich Merkmale
die eindeutig auf PAT hinweisen. Des Weiteren zeigen wir, dass Verzerrungen der
CPR durch Mikrowellenstrahlen als Folge einer Nichtgleichgewichtsbesetzung der ABS
verstanden werden können, ohne das Auftreten von Floquet-Zuständen.

Zuletzt Messen wir den Suprastrom und das Tunnelspektrum von planaren JJs unter
dem Einfluss eines Magnetfeldes parallel zur Probenebene. Um orbitale E�ekte zu un-
tersuchen, werden Phasenverschiebungen in der CPR bei Proben mit unterschiedlichen
Längen der supraleitenden Kontakte relativ zu einer absoluten Phasenreferenz gemessen.
Unter dem Einfluss kleiner Magnetfelder können Phasenverschiebungen in Abhängigkeit
der Gate-Spannung von bis zu Ï0 = 0.5fi beobachtet werden. Diese können durch den
Zeeman-E�ekt hochtransmissiver ABSs und Rashba Spin-Bahn-Kopplung erklärt wer-
den. Eine klare Verschiebung der Phase bei hohen Feldern tritt begleitend mit einem
Minimum im Umschaltstrom und dem Schliessen und erneuten Ö�nen der supraleitenden
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Energielücke auf. Diese Signaturen eines Phasenübergangs, welche einem topologischen
Übergang ähneln könnten, skalieren mit der Länge der supraleitenden Kontakte. Dies
unterstreicht die wichtige Rolle orbitaler E�ekte in planaren JJs.

Unsere Ergebnisse zeigen ein neues, grundlegendes Verständnis von planaren JJs in
InAs/Al Heterostrukturen auf und beleuchten das Zusammenspiel von Zeeman-E�ekt,
Spin-Bahn Kopplung und orbitalen E�ekten im Magnetfeld. Diese Erkenntnisse werden
zur Optimierung Gate-gesteuerter Qubits und supraleitender Elektronik, sowie zur Er-
forschung neuartiger Zustände in hybriden Supraleiter-Halbleiter Materialien beitragen.

Translated by Nele Harnack and Markus Ritter.
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1 Introduction

In 1962, Brian Josephson predicted that a dissipationless supercurrent can flow between
two superconductors separated by a thin insulating layer [1]. Such a Josephson junction
was experimentally realised the following year [2–4], demonstrating a current without
voltage bias. This prompted an explosion of activity over the following decades, where
Josephson junctions were applied to large-scale superconducting circuits [5–7], including
rapid single-flux-quantum logic [8, 9] and the Josephson field-e�ect transistor [10–13]; as
sensors for ultra-low magnetic fields [14–17] and weak electromagnetic radiation [18, 19];
as microwave receivers [20–22], mixers [23–25] and amplifiers [26–28]; and to define
the volt using fundamental constants [29–31]. Today, Josephson junctions are also at
the forefront of quantum computing in the form of superconducting qubits [32], with
implementations including flux qubits [33–35], fluxonium [36, 37], parity-protected
qubits [38–40] and the industry-leading transmon [41–43].

Superconductor-insulator-superconductor junctions, as originally proposed by Joseph-
son and realised in the years after, su�er from a lack of tunability. Supercurrents
can be tuned via magnetic fluxes in a superconducting quantum interference device
(SQUID) [44, 45], but flux control requires passing currents into cryogenic environments,
which can be detrimental for large-scale devices. An alternative is to replace the insula-
tor in the junction with a semiconductor, such that the dissipationless properties of the
superconductor are combined with the tunability of the semiconductor. These hybrid
materials were first realised in 1974 using thinned Si wafers [46], before signatures
of a gate-tunable supercurrent were shown in an InAs two-dimensional electron gas
in 1985 [47]. However, device performance was limited by material quality over the
next 30 years, until the advent of clean hybrid interfaces from in situ superconductor
deposition, first demonstrated in nanowires [48, 49] and then in two-dimensional electron
gases [50]. This fostered a wave of research into hybrid devices over the last decade,
leading to direct applications of hybrid junctions as gate-tunable transmons [51–58]
and magnetic-field-compatible qubits [57, 59–62], as well as promising approaches to
parity-protection [63–66].

High quality interfaces in hybrid materials also allow novel functionalities, due
to the presence of localised current-carrying states with discrete energies below the
superconducting gap: Andreev bound states [67]. These states open up new possibilities
for defining qubits, such as by occupying Andreev levels with electron pairs [68–72]
or single quasiparticles with di�erent spins [73–80]. Phase transitions can also emerge
in hybrid junctions, by coupling to ferromagnetic materials [81–86] or to an external
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1. Introduction

magnetic field [87–90]. The resulting shift in the ground state from 0 to fi-phase forms
the basis for a fi≠junction, which can be utilised in superconducting electronics [91–96].
The properties of hybrid junctions become richer with the inclusion of spin-orbit
coupling, which enables spin-dependent transport [73, 74, 97–100], non-reciprocal su-
percurrents [101–103] and anomalous phase shifts [104–109]. Hybrid junctions have also
been proposed as a platform for band engineering via light-matter coupling [110–114], or
to host topological phases [115–124] for fault-tolerant quantum computation [125–129].

In this context, a detailed study of hybrid Josephson junctions is required to under-
stand their properties, and ultimately establish their viability for technological applica-
tions. This thesis is a thorough investigation of Josephson junctions defined in a planar
InAs/Al heterostructure, and their response to bias currents, microwave irradiation and
large in-plane magnetic fields. The work presented in this thesis was performed in the
Alternative Qubits group at IBM Research Europe – Zurich. Growth of the material
used throughout this thesis was performed by the Advanced Semiconductor Quantum
Materials group at ETH Zurich. The thesis will be structured as follows:

In Chapter 2, we review the basic theoretical concepts which are crucial to under-
stand the results presented in this thesis. We begin by discussing the material properties
of semiconductors, superconductors and hybrid interfaces, before introducing Josephson
junctions and their response to a current bias, microwave drive and magnetic field. The
composition and characterisation of the InAs/Al heterostructure is described in Chap-
ter 3, along with the methods to fabricate devices and the measurement techniques used
to obtain the results presented in subsequent chapters. In Chapter 4, the dynamics
of the superconducting-to-resistive transition are investigated in planar Josephson junc-
tions under a current bias, showing that their switching current is very susceptible to
fluctuations in the superconducting phase. Chapter 5 extends the analysis of phase
dynamics to the case of a superconducting quantum interference device (SQUID), where
we demonstrate an increase in the switching current of junctions in a SQUID relative
to the same junction measured in isolation. In Chapter 6, we present tunnelling spec-
troscopy measurements on a planar Josephson junction under microwave irradiation,
and show that the conductance response is consistent with photon assisted tunnelling
in the spectroscopic probe rather than light-matter coupling to states in the junction.
In Chapter 7 we present phase shifts in planar Josephson junctions subjected to an
in-plane magnetic field, and describe them using the interplay of Zeeman, orbital and
spin-orbit e�ects. We summarise our results in Chapter 8 and propose future avenues
of research, both for the projects described in this thesis and the overall field of hybrid
Josephson junctions.
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2 Theoretical Background

The combined topics of Josephson junctions and superconductor-semiconductor materi-
als have been subject to a vast amount of research in the last 60 years. In this chapter, we
discuss the developments and discoveries which will prove key to the experimental results
presented in later chapters. We begin with a discussion of semiconductor and supercon-
ductor properties, in their constituent parts and then the rich physics which emerges
when they are brought together. We then look at the basic properties of Josephson
junctions, how they behave under a current bias, their interference e�ects in magnetic
fields and their response to irradiation with an electromagnetic field. To conclude the
chapter, we examine di�erent e�ects which emerge in hybrid Josephson junctions when
subject to large in-plane magnetic fields.

2.1. Semiconductors and Superconductors
In this section, we review the basic properties of semiconductor and superconductor
materials, in the context of the hybrid InAs/Al heterostructures used throughout this
thesis. We therefore focus our discussion of semiconductors on the specific topic of two-
dimensional electron gases (2DEGs) which form close to the surface of III-V materials.
We then give a basic introduction to superconductivity, before concluding the chapter
with a summary of the theory behind tunnelling spectroscopy techniques.

2.1.1. Two-Dimensional Electron Gases
A two-dimensional electron gas (2DEG) is an accumulation of electrons in a crystal
lattice which are free to move in two dimensions, but are confined in the third by
an electrostatic potential [130, 131]. A semiconductor heterostructure provides this
spatially-varying electrostatic potential using layers of di�erent material composition,
such that the conduction band energy changes between the layers [132]. A potential
well is formed, either at the surface of the material or at an interface within the het-
erostructure. For hybrid materials, where a superconductor is deposited on top of the
semiconductor surface, the 2DEG must be su�ciently close to the superconductor at the
surface to exhibit proximitised superconductivity (see Section 2.2). Therefore, the first
hybrid 2DEG platforms were realised in p-doped InAs [133, 134], where the 2DEG forms
at the semiconductor surface [see Fig. 2.1(a)]. Broken crystal periodicity at the surface
leaves atomic bonds to reconstruct or adsorb other atoms or molecules, which modifies
the electron structure at the surface. This is described by charged surface states within
the band gap of the semiconductor, which cause the valence and conduction bands to
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2. Theoretical Background

Figure 2.1. Schematics of band-bending in semiconductor heterostructures. a Sketch
of the conduction and valence band bending in p-doped InAs, forming an inversion layer at
the surface. b Sketch of the conduction band profile in an InGaAs/Al heterostructure, such
that a quantum well forms in the InAs. Figure inspired by [130] and [50].

bend leading to a inversion layer of accumulated electrons at the surface [135]. The elec-
tron mobility, which quantifies how the electron velocity depends on an applied electric
field, is limited by ionised impurity scattering and material roughness at the surface.
To achieve high mobility transport, where electrons might travel considerable distances
between scattering events, it is beneficial to form the 2DEG below the surface termina-
tion to separate the electrons from scattering sites. This can be done by engineering a
heterostructure consisting of materials with di�erent band gaps, such that a quantum
well forms in a low band gap material (e.g. InAs) when confined between two high band
gap materials (e.g. InGaAs) [see Fig. 2.1(b)]. This quantum well heterostructure allows
for higher mobility than the surface inversion layer. The semiconductor heterostructure
is designed such that the 2DEG is close to the surface for a strong proximity e�ect, but
separated from the surface for a high carrier mobility [50, 130, 136].

The dispersion relation of electrons in a 2DEG is typically approximated with a
parabolic relation, with an e�ective mass m

ú and g-factor g
ú which depend on the peri-

odic lattice potential [137]. The electrons move in an electric field E with a drift velocity
vD = µE , where the mobility µ = e·e/m

ú is characterised by the time ·e between scat-
tering events. The corresponding length scale is the mean free path le = vF·e, where
the Fermi velocity relates to the Fermi wavevector by vF = ~kF/m

ú. For a 2DEG with
two-fold spin degeneracy and no valley degeneracy, characteristic of III-V materials, the
Fermi wavevector depends on the electron sheet density as kF =

Ô
2fin. Transport over

length scales L π le is considered to be ballistic, free of scattering, whereas for L ∫ le

transport is di�usive. The phase coherence length lÏ, which characterises the length
scale over which phase information is lost in the semiconductor, is typically much longer
than le in 2DEGs with high mobility measured at low temperature [131].

In crystal lattices without inversion symmetry, spin-orbit interaction couples the mo-
mentum and spin of charge carriers [138]. In two-dimensional heterostructures, this
asymmetry can be present in both the bulk crystal [139–141] and the electrostatic con-
finement potential [142, 143], giving two spin-orbit contributions. In the case of electrons
in InAs in 2DEGs, as will be discussed in this thesis, the term arising from structural in-
version asymmetry in the confinement potential is dominant [50, 131, 138]. This Rashba
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spin-orbit coupling has the form [138]

HSO = –(ky‡x ≠ kx‡y), (2.1)

where the wavevector k is coupled to the spin ‡ in the transverse in-plane direction. The
strength of this interaction is parametrised by –, which is proportional to the electric
field in the confinement direction. A gate voltage applied to a device will therefore tune
–, due to both the external electric field and the density-dependent internal field.

2.1.2. Superconductivity
Superconductivity describes a state of matter which occurs in some materials at low tem-
perature, in which the electronic resistance of the material goes to zero [144]. Cooper
described this state in terms of pairs of electrons with opposite momenta, which are
coupled via an attractive interaction mediated by the lattice [145]. The preferential for-
mation of these Cooper pairs leads to their condensation into a many-body ground state,
until the binding energy for a pair goes to zero [146]. The ground state is therefore sepa-
rated from single-particle excitations by an energy gap, which suppresses the scattering
processes responsible for electrical resistance. The essential universal characteristic of
the superconducting ground state is a many-particle condensate wavefunction with an
amplitude and phase which maintain phase coherence over macroscopic distances [147].

A microscopic understanding comes from Bardeen-Cooper-Schrie�er (BCS) the-
ory [146], where the ground state is described by a many-particle, spin-singlet
wavefunction of electron pairs at (k ø, ≠k ¿) near the Fermi surface, occupied with
probability amplitude vk (and the corresponding value uk for unoccupied k). Solu-
tions for the probability amplitudes can be found using the Bogoliubov-de Gennes
equation [148] A

H0 �
�ú

H0

B A
uk
vk

B

= Ek

A
uk
vk

B

, (2.2)

where H0 is the single-electron Hamiltonian and the o�-diagonal energy term � pairs
uk and vk via the attractive scattering potential1. The superconductor is assumed to be
homogeneous, such that plane wave solutions can be taken for the position dependence.
In this case, uk and vk are given by

|vk|2 = 1
2

3
1 ≠ ‘k

Ek

4

|uk|2 = 1 ≠ |vk|2
(2.3)

with energy eigenvalues
Ek = (‘2

k + �ú�)1/2 (2.4)

as a function of the energy measured from the Fermi energy, ‘k.
The values of |vk|2 and |uk|2 are plotted as a function of ‘k in Fig. 2.2(a), and the

corresponding energy dispersion Ek in Fig. 2.2(b). The energy dispersion in a normal
1Note that here �ú corresponds to the complex conjugate of �.
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Figure 2.2. Fundamental characteristics of superconductors. a The probability |vk|2
(|uk|2) for an electron-like (hole-like) excitation of state k at energy ‘k. b Excitation spectrum
Ek of quasiparticles in a superconductor (blue-red line), alongside that of charges in a normal
metal (grey dashed line). No excitation states exist for Ek < �. c Density of states of a
superconductor (solid blue line) compared to the normal state (dashed grey line). Plotted
in semiconductor representation, such that quasiparticle states at Ek < 0 are occupied
(shading). Figure inspired by [147].

metal close to the Fermi energy is plotted as the grey dashed lines in Fig. 2.2(b), with
electrons (holes) corresponding to the line with positive (negative) gradient. First, we
see that the wavefunction described by (uk, vk) is predominantly hole-like for ‘k < 0
and predominantly electron-like for ‘k > 0: we therefore describe these wavefunctions
as Bogoliubov quasiparticles [148]. Second, the pair potential � represents the energy
gap from the Cooper pair condensate to quasiparticle excitations, and corresponds to
the binding energy of a Cooper pair. Finally, at finite temperature quasiparticles will be
excited to energies Ek, suppressing the energy gap such that

�(T )
�(0) ¥ 1.74

3
1 ≠ T

TC

41/2
, (2.5)

until �(T ) æ 0 at the critical temperature T = TC. This result gives

�(0) = 1.764kBTC. (2.6)

The characteristic length scale over which the pairing potential acts is characterised
by ›0 ≥ ~vF/� ≥ ~vF/kBTC, consistent with the Ginzburg-Landau coherence length
which describes the characteristic length for variations in the superconducting order
parameter [149].
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The density of states (DOS) DS in the superconducting state is readily calculated
from DSdE = DNd‘, since quasiparticle excitations are in one-to-one correspondence
with electronic excitations in the normal metal. This gives

DS

DN

= d‘

dE
= E

(E2 ≠ �2)1/2 (2.7)

for E > �, and 0 for E < � (E > 0, from Eq. 2.4). Equation 2.7 is plotted in Fig. 2.2(c)
using the semiconductor representation, where energies are shown as two bands: the
lower completely full at T = 0 and the upper completely empty, separated by a gap 2�.

2.1.3. Tunnelling Spectroscopy

The DOS in a material can be measured directly with a point contact geometry, where
a probe is isolated from the device of study by a narrow conducting region [150]. The
tunnel current between the two is described by [147]

I = A|T |2
ˆ Œ

≠Œ
D1(E ≠ eVSD)D2(E)[f(E ≠ eVSD) ≠ f(E)]dE, (2.8)

where VSD is the source-drain voltage applied to the probe, D1 (D2) is the DOS in the
probe (device) and f(E) is the probability distribution describing occupation of the state
at energy E. In the case where both probe and device are two-dimensional electronic
reservoirs, both D1 and D2 are independent of energy as T æ 0. Therefore, Eq. 2.8
gives INN = G0V , where G0 © (2e

2
/h)

q
Tn is the multichannel Landauer equation for

many conducting modes, each with transmission probability Tn [151, 152].
The semiconductor representation for the superconducting DOS is convenient to de-

scribe tunnelling processes between materials, since a potential di�erence simply adds an
energy shift. This means that transitions are horizontal in energy, assuming only elas-
tic processes, and multiple parallel conduction channels can be easily visualised. The
case of normal-superconductor tunnelling is depicted in Fig. 2.3(a). The di�erential
conductance is given by

GNS © dINS

dVSD

Ã D1

ˆ Œ

≠Œ
D2(E)ˆf(E ≠ eVSD)

ˆVSD

dE, (2.9)

which tends to
GNS Ã D2(eVSD) (2.10)

at low temperature since ˆf(E ≠ eVSD)/ˆVSD æ ”(E ≠ eVSD). The tunnel conductance
is therefore directly proportional to the superconducting DOS D2 in the device.

For a tunnelling probe with a superconducting DOS [Fig. 2.3(b)], D1 cannot be taken
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out of the integral so [153]

GSS Ã
ˆ Œ

≠Œ
D2(E)

I
ˆD1(E ≠ eV )

ˆV
[f(E) ≠ f(E ≠ eVSD)]

≠ D1(E ≠ eVSD)ˆf(E ≠ eVSD)
ˆVSD

J

dE

(2.11)

Ã D2 ú g. (2.12)

The conductance is therefore a convolution of the device DOS D2 with a known function
g, which is given by the DOS in the probe D1. In the case of a superconducting probe
at zero magnetic field (as in Chapters 6 and 7), D1 is assumed to be a superconducting
DOS with the same gap � as that of the device. This amounts to conductance features
shifted in eVSD by ±e�.

Figure 2.3. Sketch of tunnelling spectroscopy in the cases of a normal (N) or
superconducting (S) probe. a Density of states in the probe (D1) and the superconducting
device (D2), separated by a narrow insulating (I) barrier. A current can flow when a bias
voltage VSD = �/e is applied across the NIS junction. b Same as (a) for the case of an S
probe. In this case, a current can flow when VSD = 2�/e. Figure inspired by [147].
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2.2. Superconductor-Semiconductor Interface

2.2. Superconductor-Semiconductor Interface

We turn our attention to an interface between a superconductor (S) and normal semi-
conductor (N).

2.2.1. Andreev Reflection

Figure 2.4(a) depicts an electron in the N region at an energy E close to the Fermi energy
EF, incident on an NS interface. For energies below the superconducting gap, |E| < �,
there are no available states in the superconductor so the electron cannot propagate
into the S region. However, the electron can be transmitted as a Cooper pair in the
superconductor by taking an additional electron from the Fermi sea. In the normal
region, this corresponds to a hole with the same wavevector as the incident electron.
Since the trajectory of a hole is opposite to its wavevector [130], it retraces the path
of the incident electron. This retroreflection process is shown in Fig. 2.4(b). For an
s-wave superconductor, the Cooper pair must be spin singlet: the electron taken from
the Fermi sea must have opposite spin to the incident electron. This leaves a net spin
polarisation in the Fermi sea which is the same as that of the incident electron, so the
reflected hole has the same spin as that of the incident electron. Disorder, impurities or
a Fermi velocity mismatch lead to imperfect interfaces in real systems, such that spectral
reflections of the incident electron are also possible [see dashed arrow in Fig. 2.4(b)].

Figure 2.4. Schematic of Andreev reflection. a Interface between a normal metal (N)
and superconductor (S), in an energy-position representation. An incident electron in N, at
an energy E above the Fermi energy EF, is transferred to a Cooper pair in S by taking a
second electron from the Fermi sea, amounting to a reflected hole in N. b Andreev reflection
in position space. The reflected hole retraces the trajectory of the incident electron. An
imperfect interface can lead to spectral reflection of the incident electron (dashed arrow).

The electron-hole reflection process is referred to as Andreev reflection, after its for-
mulation by Andreev in 1964 in the context of the thermal conductivity close to NS
interfaces [67]. A model of the e�ect was first provided by Blonder, Tinkham and Klap-
wijk (BTK) [154], with a rigorous microscopic theory later given by Zaitsev [155] and
Arnold [156]. Figure 2.5(a) shows the model set-up, which considers plane-wave solutions
to Eq. 2.2. An electron (i) with wavevector +ke is incident on an imperfect NS interface,
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2. Theoretical Background

Figure 2.5. Blonder-Tinkham-Klapwijk formalism at a normal-superconductor (NS)
interface. a Schematic representation of an incident electron (i) and the possible final states
after interaction with the interface: Andreev reflected hole (a), specularly reflected electron
(b), transmitted electron (c) and transmitted hole (d). b Sketch of the Cooper pair density
F (x) across the NS boundary. Superconductivity is weakened in S by “ over a distance
›S from the interface. Superconductivity is transferred to the N region over a distance ›N

from the boundary, after a reduction “B depending on the interface quality. Figure inspired
by [130].

with the following outcomes: (a) Andreev reflection, giving a hole with wavevector +kh;
(b) specular reflection to an electron with ≠ke; (c) transmission of the electron, with
wavevector +k

Õ
e; (d) transmission of a hole with wavevector ≠k

Õ
h. The incident, reflected

and transmitted waves are described as

Âi(x) =
A

1
0

B

e
ikex

Ârefl.(x) = a

A
0
1

B

e
ikhx + b

A
1
0

B

e
≠ikex

Âtransm.(x) = c

A
u

v

B

e
ikÕ

ex + d

A
v

u

B

E
≠ikÕ

hx

(2.13)

with

~ke,h =
Ô

2mú[EF ± E]1/2 (2.14)

and

~k
Õ
e,h =

Ô
2mú

Ë
EF ± (E2 ≠ �2)1/2

È1/2
. (2.15)

The boundary conditions at the NS interface dictate that the wavefunction must be
continuous and the gradient of the wavefunctions must match, up to the momentum
absorbed by a scattering potential ~vF,SZ”(x), where vF,S is the Fermi velocity in the
superconductor and Z is a dimensionless parameter characterising the barrier height.
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Matching Eq. 2.13 to the boundary conditions gives the coe�cients

a = uv

—
(2.16)

b = (v2 ≠ u
2)(Z2

e↵
+ iZe↵)

—
(2.17)

c = u ≠ iZe↵

—
(2.18)

d = ivZe↵

—
, (2.19)

where — = u
2 +(u2 ≠v

2)Z2
e↵

and Ze↵ © [Z2 +(1≠r)2
/4r]1/2 accounts for a Fermi velocity

mismatch r © vF,N/vF,S between the semiconductor and superconductor [130, 157].
Scattering at the interface reduces the amplitude of Andreev reflection a, and results in
non-zero values for b and d. From Eq. 2.3, we see that the amplitude of Andreev reflection
depends on the quasipaticle energy. This is a crucial consideration for understanding
the proximity e�ect in the context of Andreev reflections [158].

2.2.2. Proximity E�ect
Up to this stage, we have considered a pair potential which is a step function: it is
zero in N and � in S. However, from Ginzburg-Landau theory we know that the order
parameter cannot abruptly fall to zero [149, 159]. In general, while the pair potential
can be discontinuous at the NS interface, the fraction of paired electrons must be con-
tinuous [158]. Additionally, from Eq. 2.14 the wavevector of the incident electron and
reflected hole is identical only at E = EF, otherwise there is an energy-dependent shift
in the wavevector given by kF,N(E/EF). This wavevector shift, in addition to disorder
in N, leads to dephasing of the electron-hole pair over a length scale ›N into the N
region [160, 161]. These correlated electrons and holes correspond to a finite Cooper
pair density F (x) in the normal region, which can be thought of as a leakage of Cooper
pairs into N [130, 162]. This e�ective superconducting pairing opens up a proximitised
superconducting gap �ú in the N region.

A theoretical treatment of the proximity e�ect was given by Kupriyanov [163] using
the quasi-classical Eilenberger equations [164]. The e�ect on the Cooper pair density
F (x) is shown schematically in Fig. 2.5(b) [130]. The Cooper pair density is non-zero
in the normal region over a distance ›N, and suppressed in the superconductor within
›S of the interface by an amount “ = flS›S/flN›N, which depends on the specific normal
state resistances fl in the superconductor and normal conductor. The barrier strength is
parametrised by

“B = 2
3

le

›N

e
Z

2
e↵

f
, (2.20)

where the scattering is averaged over incident angles. The connection to the BTK
analysis is clear: the proximity e�ect is strong when the potential barrier at the NS
interface is small, since the di�usion of Cooper pairs into the normal region is mediated
by Andreev reflections.
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Figure 2.6. Schematic representation of Andreev bound states (ABSs) in a
superconductor-normal-superconductor (SNS) junction, with a phase di�erence Ï

across the S contacts. a Trajectories of electron-hole reflections in an SNS junction with
perfect transmission, forming two independent ABSs corresponding to right- and left-moving
Cooper pairs. b Scattering in the N region allows the two trajectories to interact (dashed
lines), leading to hybridisation between the two states. Figure inspired by [79].

2.2.3. Andreev Bound States
We extend the treatment of Andreev reflections to consider a superconductor-normal
semiconductor-superconductor (SNS) junction, which is schematically shown in
Fig. 2.6(a). It was shown by de Gennes that a supercurrent could flow across an
SNS junction [165], and described in terms of Andreev reflections at the NS interfaces
defining the junction [166–169]. Repeated Andreev reflection gives electron and hole
wavefunctions which overlap on a common trajectory, since holes are retroreflected at
the interfaces. Confinement between the two NS interfaces leads to discrete energy states
below the superconducting gap, defined by the trajectories for which the quasiparticle
phase is 2fi-periodic for a round trip. The wavefunctions constructively interfere for
these trajectories, and destructively interfere for all others. The discrete energy states
are called Andreev bound states (ABSs).

An energy-dependent phase arccos(E/�) is accumulated on reflection at an NS inter-
face, since the Andreev reflection coe�cient a = v/u (Eq. 2.16 for Ze↵ æ 0) depends on
energy via Eq. 2.3 [147]. For junctions of finite length, carriers also accumulate a phase
proportional to their wavevector while traversing the normal region [76, 78, 130, 170].
For a ballistic junction, in which scattering in the normal region can be ignored, the
phase matching condition is given by

E

�
L

›N
= 2 arccos

3
E

�

4
û Ï ≠ 2fin, (2.21)

where Ï is the phase di�erence between the superconducting contacts. In the limit of
a short junction (L π ›N), the left side of the equation goes to zero and we obtain
solutions

E±(Ï) = ±� cos(Ï/2), (2.22)

with the two independent branches corresponding to right- and left-moving Cooper pair
transport mediated by the ABSs [see Fig. 2.6(a)]. In the presence of scattering, there is

12



2.2. Superconductor-Semiconductor Interface

Figure 2.7. Energy and current-phase relation (CPR) of Andreev bound states
(ABSs). a Energy EA of ABSs with di�erent transmissions · (colours), as a function
of phase di�erence Ï across the junction. b The CPR corresponding to the ABS energies in
(a), which has large amplitude and a pronounced forward skewness for · æ 1.

mixing between the two branches [171, 172], as depicted in Fig. 2.6(b). This gives the
energy solutions

EA = ±�
Ò

1 ≠ · sin2(Ï/2), (2.23)

where the transmission · © 1/(1 + 4Z
2
e↵

) parametrises the transparency of the NS
interfaces. Examples of Eq. 2.23 are plotted in Fig. 2.7(a) for di�erent transmission
values · . For larger · the bound state energy moves closer to zero for Ï ≥ fi (coloured
lines), until the limit of · = 1 where Eq. 2.22 is recovered (dashed grey line). From this
picture, it is clear how scattering for · < 1 lifts the degeneracy at Ï = fi and gives an
avoided crossing of 2�

Ô
1 ≠ · . Note that, while time-reversal symmetry is broken for a

phase di�erence Ï ”= (0, fi), ABSs in a short two-terminal junction are spin-degenerate
since their energies are in exact correspondence with transmission eigenvalues, which are
Kramer’s degenerate [173]. The energies EA therefore correspond to two-fold degenerate
levels, one spin up and one spin down.

At T = 0, only ABSs below the chemical potential contribute to the net supercurrent,
giving the relation

IA(Ï) © ≠2e

~
ˆEA

ˆÏ

= e�
2~

· sin Ï

EA(Ï)/� .
(2.24)

The supercurrent IA(Ï) carried by each ABS in Fig. 2.7(a) is plotted in Fig. 2.7(b).
For small transmission · the current-phase relation (CPR) is sinusoidal, but for large
· there is a pronounced forward skewness due to the higher-order Ï terms in Eq. 2.24.
The oscillation amplitude also increases for larger · . This is understood from the net
charge flow in an Andreev reflection process, which is doubled due to the retroreflected
hole with positive charge. This leads to an excess current relative to the expectation for
ohmic transport [154, 174–176].

13



2. Theoretical Background

Equations 2.23 and 2.24 were obtained for a single conducting channel forming in the
normal region. In the case of many conducting channels, their contributions are summed
to give the total supercurrent IS. At finite temperature, ABSs are occupied according
to a Fermi distribution function f(E) such that

IS =
ÿ

n

IA(·n)[1 ≠ 2f(EA,n)], (2.25)

where ABSs corresponding to each channel have an energy EA,n given by Eq. 2.23 with
a transmission ·n. The critical current IC is defined as the maximum value of IS(Ï). For
a tunnel junction, where ·n π 1, the critical current is given by IC = (fi�/2e)GN, where
GN © (2e

2
/h)

q
·n is the junction conductance in the normal state [151, 152, 177].

The concepts outlined in this section give the ingredients for understanding ABSs in
planar Josephson junctions. Regions of 2DEG covered by the superconductor are prox-
imitised via the proximity e�ect. The strength of the proximitised superconducting gap
depends on the quality of the material interface. An SNS junction is formed by selectively
removing a stripe of superconductor, to give a normal conducting region between two
superconducting contacts. Both the normal and superconducting regions of the junction
are formed in the 2DEG layer, meaning that the NS interfaces defining the junction are
clean and free of defects. This enables ABSs with high transmission, which carry a su-
percurrent across the junction with a non-sinusoidal current-phase relation. In general,
these junctions contain many conducting channels so the total measured current is a sum
over contributions from all modes, which have a distribution of transmissions [178, 179].
The ABSs couple the phases of the two superconducting leads, giving an overlap of their
wavefunctions. This coupling is described by the Josephson e�ect.

2.3. Macroscopic Phase in Josephson Junctions
In the previous section, we started from a microscopic model of Andreev reflection at
NS interfaces and arrived at equations for the total current carried by Andreev bound
states in an SNS junction. These equations describe a supercurrent flowing across the
device due to a di�erence in the superconducting phases of the islands, in the absence
of a voltage. This is called the Josephson e�ect [1]. While the exact formulation of the
supercurrent in Eq. 2.24 is specific to the microscopic model of an SNS junction, the
Josephson e�ect is general to a pair of superconducting electrodes coupled by a weak
link [177, 180]. In this section, we will discuss the Josephson e�ect in ideal Josephson
junctions and how it extends to a model of a physical device.

2.3.1. Josephson E�ect
The Josephson e�ect was originally based on a microscopic theoretical analysis of paired
electron transport between two superconducting electrodes through a thin insulating
barrier [1]. The result was that a current

IS = IC sin(Ï) (2.26)
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flows across the junction due to a di�erence in the superconducting phases of the two
electrodes, Ï. Equation 2.26 is referred to as the first Josephson equation. The critical
current, IC, quantifies the maximum supercurrent that can be sustained by the junction.
Notice that Eq. 2.26 is the same as Eq. 2.24 in the limit of small transmission coe�cient
· . Models describing the Josephson e�ect, and the dynamical properties of Josephson
junctions under a current bias, were derived in this low-transmission limit. Therefore, in
the absence of a complete model describing Josephson junctions with a non-sinusoidal
CPR, we use a Josephson junction with a sinusoidal CPR for the remainder of the
chapter and consider the results to have only a small numerical deviation compared to
a non-sinusoidal CPR (see Appendix B for an extended discussion).

The second Josephson equation is

dÏ

dt
= 2eV

~ , (2.27)

which describes a Josephson junction under a constant voltage bias V . The coupling
free energy stored in the junction is F =

´
ISV dt, which gives [147]

F (Ï) Ã ≠EJ cos(Ï) (2.28)

by combination of Eqs. 2.26 and 2.27, where EJ © ~IC/2e. The Josephson energy EJ

describes the strength with which the two superconducting contacts are coupled through
the weak link [181].

2.3.2. The RCSJ Model
Equation 2.26 describes a perfect Josephson junction: a non-linear inductor carrying a
dissipationless supercurrent. However, real devices typically have some dissipative and
charging elements which must be included [182]. To do so, we consider an ideal Josephson
junction shunted by a resistor and a capacitor [see Fig. 2.8(a)]; this representation is
referred to as the resistively and capacitively shunted junction (RCSJ) model. The
resistance R constitutes a dissipative current channel V/R which is dominant in the
finite voltage regime, for bias currents above IC. The shunt capacitance between the
two electrodes, C, gives a displacement current CdV/dt. In the presence of an external
bias current I, the total current is distributed over these three channels:

I = IC sin(Ï) + V

R
+ C

dV

dt
. (2.29)

Written in terms of the superconducting phase di�erence, Eq. 2.29 becomes

d2
Ï

d·2 + Q
≠1dÏ

d·
+ sin(Ï) ≠ I

IC
= 0, (2.30)

where · = ÊP0t is a dimensionless time parametrised by the plasma frequency

ÊP0 =
32eIC

~C

41/2
, (2.31)
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and the quality factor Q is defined by

Q = ÊP0RC. (2.32)

Equation 2.30 governs the dynamics of the superconducting phase di�erence in a
Josephson junction under a current bias. It is often described with analogy to the
equation of motion of a “phase particle” of mass (~/2e)2

C in an e�ective potential

U(Ï) = ≠EJ cos(Ï) ≠ (~I/2e)Ï, (2.33)

and subjected to a drag force (~/2e)2(1/R)dÏ/dt [see Fig. 2.8(b)]. In the supercon-
ducting state, the phase particle sits in a local minimum of the so-called washboard
potential (dÏ/dt = 0), oscillating with a natural frequency ÊP0. The damping factor,
proportional to Q

≠1, relates the oscillation energy (Ã ÊP0) to the energy dissipated
(Ã R

≠1) [183, 184]. In the following, we consider underdamped junctions, that is when
Q & 1.

On application of a bias current I, the potential tilts and the position of the local min-
imum shifts [see Fig. 2.8(b)]. When the bias current reaches the critical current, the tilt
of the potential is su�ciently large that there is no potential barrier to confine the phase
particle, which subsequently “rolls” down the potential landscape. This corresponds to
the finite voltage state, since dÏ/dt ”= 0. After a transition to the resistive state, reduc-
ing the bias current below IC is not su�cient to transition back to the superconducting
state for Q & 1. In the phase particle analogy, light damping is insu�cient to “retrap”
the phase in a local minimum because of the particle’s inertia. Complete retrapping
occurs when the bias current is lowered below IR ¥ 4IC/fiQ, where the dissipation over
one 2fi cycle reduces the phase particle energy to below that of the potential barrier.

2.3.3. Phase Escape by Fluctuations

The analysis above does not consider any fluctuations in the environment, neither from
coupling to a thermal bath nor quantum mechanical fluctuations due to a zero-point en-
ergy. The inclusion of these fluctuations allows a transition from the superconducting to
resistive state to occur for bias currents below the critical current. This is schematically
depicted in Fig. 2.8(b), showing escape of the phase particle by macroscopic quantum
tunnelling (MQT) and thermal activation (TA). When dissipation is large it is possible
for the junction to transition from the resistive to the superconducting state, referred
to as retrapping. In this regime, many escape events are required to turn the junction
resistive. This is referred to as phase di�usion (PD) [see Fig. 2.8(b)]. Since fluctuations
are stochastic in nature, switching events are probabilistic and occur according to a
switching probability distribution (SPD): the probability for a switch to occur at a given
bias current ISW, per unit current.

The SPD is dependent on the rate at which the DC current is increased, ‹. To obtain
an experimentally-independent description for the mechanisms of phase dynamics, we
must convert to an escape rate, �. This is done via a Kurkiärvi–Fulton–Dunkleberger
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2.3. Macroscopic Phase in Josephson Junctions

Figure 2.8. Resistively and Capacitively Shunted Josephson junction. a Schematic
representation of the capacitive, Josephson and resistive elements, under a bias current I.
b The washboard potential U(Ï), in which the phase variable (red circle) moves. A current
bias I results in a tilt of the potential. Mechanisms which allow the phase particle to escape
its local minimum are indicated for macroscopic quantum tunnelling (MQT) and thermal
activation (TA). Retrapping events in subsequent local minima result in phase di�usion
(PD).

(KFD) transformation using the equation [185, 186]

�(ISW) = SPD(ISW)‹
C

1 ≠
ˆ ISW

0
SPD(I)dI

D≠1
. (2.34)

The escape rate of a Josephson junction to the resistive state at a given DC bias
IDC = ISW follows the general dependence [187–189]

�(ISW, T ) = �(ISW, T )e≠�U(ISW,T )/kBT , (2.35)

where � is the attempt frequency and �U is the potential barrier height. Un-
der a reduced DC bias of “ = IDC/IC, the approximate barrier height is
�U = 2EJ

1
1 ≠ “2 ≠ “ cos≠1

“

2
.

In the case of MQT, Eq. 2.35 is adjusted to the analytical formula [189]

�Q = ÊP

2fi

Û
864fi�U

~ÊP

exp
3

≠7.2
3

1 + 0.87
Q

4 �U

~ÊP

4
, (2.36)

where ÊP = ÊP0
!
1 ≠ “

2"1/4 is the plasma frequency at “. The junction capacitance
C enters in the bare plasma frequency ÊP 0 (Eq. 2.31) and quantifies the size of phase
particle oscillations in the metastable state [190, 191].

For Q ∫ 1, we can use an analytical formula for the retrapping rate [189]

�R = ISW ≠ IR

IC
ÊP 0

Û
EJ

2fikBT
exp

A

≠
3

ISW ≠ IR

IC

42
EJQ

2

2kBT

B

, (2.37)
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where IR is the retrapping current. We measure intermediately damped junctions with
Q & 1, so this relation can only be considered as an approximation.

Equations 2.35–2.37 describe the phase escape mechanisms for underdamped Joseph-
son junctions, and will be used extensively in Chapters 4 and 5 to describe switching
current measurements of planar Josephson junctions.

2.4. Interference E�ects in Josephson Junctions
We have seen that the macroscopic phase is a defining characteristic of superconductors,
and directly leads to the Josephson e�ect outlined in the previous section. The macro-
scopic phase variable also has implications for interference e�ects in a magnetic field.
Since the superconducting wavefunction must be single valued, a closed path through
a superconductor must return the same value modulo 2fi. London considered the most
simple case of a superconducting loop [192], finding that a quantity called the fluxoid
satisfies

�
Õ = n�0, (2.38)

where n is an integer and �0 = h/2e is the magnetic flux quantum in a superconduc-
tor [193]. The fluxoid is defined as

�
Õ © � + m

ú

2e

˛
vs · ds, (2.39)

where the first term accounts for a flux threading the superconducting loop � ©
¸

A ·ds,
and the second considers the supercurrent velocity vs flowing in the loop. For a path
deeper in the superconductor than the penetration depth, where the supercurrent density
is zero, we have �

Õ = �. We apply this principle to circuits containing Josephson
junctions.

2.4.1. Fraunhofer Interference
Thus far, the Josephson junction phase Ï has been understood as the di�erence between
the macroscopic phases of the two superconducting contacts, i.e. Ï = �„. This is true
for a hypothetical point-like junction, but is not gauge-invariant in a finite-sized junction
due to a vector potential A threading the area between the contacts. We therefore define
the gauge-invariant phase di�erence as Ï © �„ ≠ (2fi/�0)

´
A · ds [147].

Consider a JJ of finite size in a perpendicular magnetic field B‹, such that a flux �

threads the area A of the junction [Fig. 2.9(a)]. The phase Ï varies linearly with distance
along each contact, due to the flux threading the junction. For a uniform current density,
the total current across the junction is

I(�)
I0

=
----
sin(fi�/�0)

fi�/�0

---- , (2.40)

as shown in Fig. 2.9(b). This Fraunhofer pattern is analogous to light passing through a
narrow rectangular slit. In the case of a non-uniform current density, or a non-rectangular
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2.4. Interference E�ects in Josephson Junctions

Figure 2.9. Fraunhofer interference in a Josephson junction of finite size. a Sketch
of a junction with area A, into which a flux � penetrates. b Modulation of the supercurrent
I flowing in the junction, relative to the maximum I0, as a function of flux � through the
junction area.

area, there is a distortion to the interference pattern and the result is a Fourier transform
of a more complex shape. Measurements of the interference pattern in a single JJ can be
used to infer properties of the junction shape or the supercurrent distribution [194, 195].
In planar JJs, screening by the superconducting leads has been shown to a�ect the
Fraunhofer pattern, since the external field is repelled from the leads and instead threads
the junction area. This flux focusing e�ect has been shown to increase the e�ective cross-
section of the junction, and a�ect the behaviour of JJs in an in-plane magnetic field [196].

2.4.2. Orbital E�ects

A similar interference e�ect results from a magnetic field below the superconducting
leads of a planar Josephson junction [120]. An in-plane magnetic field BÎ applied to
a planar junction threads a flux �Î in the area AÎ underneath the superconducting
leads [Fig. 2.10(a)], which leads to a position-dependent phase for Andreev reflection
processes between the 2DEG and the superconductor. The induced order parameter
in the 2DEG therefore varies along the length of the contact as �ú(y) = �e

iqy, where
q © (2fi/�0)BÎd. The length d is the distance between the 2DEG and superconductor,
including penetration of the magnetic field into the superconducting layers. The e�ective
induced superconducting gap in the 2DEG is given by the integral

�ú = 1
LSC

ˆ LSC

0
dy�e

iqy = �e
iqLSC/2sinc(qLSC/2), (2.41)

where LSC is the length of the superconducting contact.
This modulation in the superconducting gap is plotted in Fig. 2.10(b), and shows that

there is a complete suppression of the induced gap for BÎ = �0/(dLSC). This e�ect
has been observed in planar Josephson junctions as a non-monotonic modulation of the
supercurrent in an in-plane magnetic field [122, 197].
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2. Theoretical Background

Figure 2.10. Orbital e�ects in planar Josephson junctions. a Sketched cross-section of
the contact of a planar junction, with length LSC. A flux �Î threads the area AÎ bounded
by the superconductor (S) and the proximitised two-dimensional electron gas (2DEG). b
Modulations of the induced superconducting gap �ú in the 2DEG, relative to � in S, as a
function of �Î.

2.4.3. Superconducting Quantum Interference Device

The combination of flux quantisation and the Josephson e�ect is used to generate devices
which are extremely sensitive to magnetic fields: superconducting quantum interference
devices (SQUIDs). They consist of two Josephson elements connected with a supercon-
ducting loop, as shown in Fig. 2.11(a) for the case of two SNS junctions (labelled JJ1
and JJ2). Taking a closed path around the loop (dashed line), we obtain a relationship
between the junction phases and the flux � threading the loop

Ï2 ≠ Ï1 = 2fi
�

�0
. (2.42)

In general, the flux � threading the loop not only originates from the externally applied
flux �x, but also has contributions from screening currents in the loop and fluxes coupled
to the loop via a bias current [147]. For a lead inductance which is symmetric with
respect to the device, there is no contribution from the bias current. However, fluxes
from screening currents of �s = IsL, where L is the loop inductance, can be significant in
the case of superconducting films with large kinetic inductance [198] and large circulating
currents Is [153].

The total critical current through the SQUID is given by the sum of contributions
through JJ1 and JJ2, namely

I = I1 sin Ï1 + I2 sin Ï2, (2.43)

where Ii denotes the critical current of each Josephson junction. Combining Eqs. 2.42
and 2.43, we obtain a critical current for the SQUID of

I(�) = max
Ï1

[I1 sin(Ï1) + I2 sin(Ï1 + 2fi�/�0)] . (2.44)
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2.4. Interference E�ects in Josephson Junctions

Figure 2.11. Interference e�ects in a superconducting quantum interference device
(SQUID). a Sketch of a SQUID containing two Josephson junctions, JJ1 and JJ2, each
with a phase di�erence Ïi and critical current Ii (i œ {1, 2}). A flux � threads the area A

enclosed by the superconducting loop. b Oscillations in the current I through the SQUID
when I1 ∫ I2. Oscillations are due to a changing current through JJ2 as a function of
Ï2 Ã �, on a background corresponding to JJ1.

The maximum condition of Eq. 2.44 is reached at Ï1 © Ï
ú(�). This maximising phase

di�erence is calculated from the condition [199]

ˆI1(Ï1)
ˆÏ1

+ ˆI2(Ï1 + 2fi�/�0)
ˆÏ1

= 0. (2.45)

The maximising phase Ï
ú therefore depends not only on the relative size of the critical

currents in the junctions, but also their relative gradients [199].
In the case of a strongly asymmetric SQUID, where I1 ∫ I2, the maximising phase is

close to the critical phase of the reference junction, JJ1. If Ï
ú(�) is well localised to this

critical phase, then the phase across JJ2 is Ï2 ¥ 2fi�/�0. The SQUID supercurrent of
Eq. 2.44 then simplifies to

I(�) ¥ I1 + I2 cos
3

2fi
�

�0

4
, (2.46)

where I1 and I2 are the flux-dependent supercurrents given by Eq. 2.40, for JJ1 and JJ2
respectively. Equation 2.46 reveals that the current through an asymmetric SQUID has
a background contribution from JJ1 and is modulated by the flux-dependent current
through JJ2. This is plotted in Fig. 2.11(b) as the solid line, where the dashed line
corresponds to the modulation of JJ1 due to its finite size (see Fig. 2.9). In this instance,
the flux � directly corresponds to the phase di�erence Ï2 across JJ2.

By designing a SQUID with a large critical current asymmetry, and by limiting the
e�ect of screening currents, a direct correspondence can be made between the externally
applied magnetic field perpendicular to the device and the superconducting phase dif-
ference across the Josephson junction with small critical current: Ï2 ¥ 2fi(�/�0). After
subtracting the background current of the large junction, the result is the current-phase
relation of the small junction. This technique is used extensively in Chapters 5, 6 and 7.
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2.5. Josephson Junctions and Microwave Fields
In the previous sections, we have studied the response of Josephson junctions to a DC
source. In the following section, we consider how the behaviour of a Josephson junction
changes when subjected to an AC driving source. The supercurrent response is to form
constant-voltage Shapiro steps [200], while the coupling of quasiparticles to the driving
field generates replication of conductance features by photon assisted tunnelling [201].
We also investigate the possibility of light-matter coupling between irradiated photons
and the electronic wavefunctions, and the implications this might have for engineering
energy bands in condensed matter systems [111, 113].

2.5.1. Shapiro Steps
Consider a Josephson junction biased with a voltage signal V , which has a time-varying
component V1 of angular frequency Ê1 [147]

V = V0 + V1 cos Ê1t. (2.47)

From Eq. 2.27, we obtain a time-varying phase di�erence across the junction

Ï(t) = Ï0 + Ê0t + 2eV1
~Ê1

sin Ê1t (2.48)

where Ê0 © 2eV0/~. Inserting this time-dependent phase into Eq. 2.26 we have

IS = IC

ÿ

n

(≠1)n
Jn

52eV1
~Ê1

sin(Ï0 + Ê0t ≠ nÊ1t)
6

, (2.49)

where Jn(x) is an n
th-order Bessel function of the first kind [see Fig. 2.12(a)]. Due to

the oscillatory term, there is only a time-averaged component to the supercurrent when
Ê0 = nÊ1, or equivalently for DC bias values

Vn = n
~Ê1
2e

. (2.50)

A DC current only flows when the condition of Eq. 2.50 is met, and has an average value

|ÈISÍn| = IC

----Jn

32eV1
~Ê1

4---- . (2.51)

For increasing drive amplitude V1, there is a greater contribution from higher order terms
due to the shape of the Bessel function [see Fig. 2.12(a)].

In practice, the AC drive is never from an ideal voltage source, and in most cases
is closer to that of a current source due to a large source impedance compared with
the junction impedance [147]. Solutions are no longer analytical in this case and so
the system must be solved numerically. We gain a phenomenological understanding
by considering that an AC current in Eq. 2.33 is analogous to a time-varying tilt in
the washboard potential, such that at some times the phase particle is confined in a
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2.5. Josephson Junctions and Microwave Fields

Figure 2.12. Schematic representation of Shapiro steps. a Absolute amplitude of
Bessel functions |Jn(x)| from n = 0 to 5 (colours), as a function of AC drive amplitude V1.
b Sketch of Shapiro steps, at a drive power indicated by the grey dashed line in (a). Steps
in the current-voltage trace are shown in blue, with the corresponding peaks in di�erential
conductance G © dIS/dV0 drawn in red.

local minimum and at some times the confining barrier goes to zero [202]. For situations
satisfying Eq. 2.50, the oscillation period of the potential is synchronised with the motion
of the phase particle such that the phase moves through an integer number of local
minima, n, before being retrapped. Averaged over time, this corresponds to a voltage
drop across the junction which takes the form of steps. Figure 2.12(b) schematically
shows these Shapiro steps at a fixed V1 [grey dashed line in Fig. 2.12(a)], alongside the
di�erential conductance G © dIS/dV0 which has a peak at the transition of one step to
another.

In Josephson junctions where the insulating barrier is very large, the superconducting
wavefunctions of the two contacts are only very weakly coupled. In this case, a small
current can flow by stochastic tunnelling events, where the time between tunnelling
events is long compared with other timescales in the system. We therefore do not expect
time-correlated e�ects, meaning that a time-varying voltage signal cannot be directly
attributed to a time-varying phase di�erence across the junction [203–207]. Nevertheless,
interaction with the oscillating electromagnetic field can promote transport across the
junction by absorption or emission of photons, leading to a DC supercurrent [203]

IS =
Œÿ

n=≠Œ
J

2
n

32eV1
~Ê1

4
IS,0

3
V0 + n~Ê1

2e

4
(2.52)

where IS,0 is the DC supercurrent in absence of an AC drive. This is readily related to
a di�erential conductance

G © dIS

dV0

=
Œÿ

n=≠Œ
J

2
n

32eV1
~Ê1

4
G0

3
V0 + n~Ê1

2e

4
.

(2.53)

This process is schematically shown in Fig. 2.13(a), for a source-drain bias
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VSD = ≠~Ê1/(2e). This result has a similar form to that of quasiparticle trans-
port, obtained in the general case by Tien and Gordon [201] and described in the next
section.

Figure 2.13. Photon assisted tunnelling across a superconductor-insulator-
superconductor (SIS) junction. a Microwave-induced tunnelling of Cooper pairs across
an SIS junction, by absorption of a photon of energy ~Ê1. A current can flow at a bias
2eVSD = ±n~Ê1. b Microwave-induced tunnelling of quasiparticles across an SIS junction
at a bias eVSD = 2� ± n~Ê1. Single photon (bright orange) and multi-photon (pale orange)
processes are indicated in parallel.

2.5.2. Photon Assisted Tunnelling
Transport of quasiparticles across a Josephson junction is highly non-linear with voltage,
due to the sharp peak in the DOS at the superconducting gap edge. The contribution of
quasiparticle transport to the total current must take this into account, in addition to the
interaction of the quasiparticle DOS with an AC voltage across the junction electrodes.
The e�ect of this AC drive is to introduce a time-dependent shift in the relative energies
of the superconducting electrodes [201]. It is assumed that there is no e�ect of the
internal energy levels. This time-dependent shift enters the quantum mechanical phase
factor „(t) as

e
≠i„(t) = e

≠iEkt/~
e

≠i(eV1/~/Ê1) sin Ê1t, (2.54)

where the second term can be written in terms of a sum over Bessel functions. The total
quasiparticle current is then given by [208]

Iqp(V0) =
Œÿ

n=≠Œ
J

2
n

3
eV1
~Ê1

4
Iqp,0

3
V0 + n

~Ê1
e

4
, (2.55)
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where Iqp,0 is the non-linear quasiparticle current in the absence of irradiation. The
corresponding di�erential conductance is

G(V0) =
Œÿ

n=≠Œ
J

2
n

3
eV1
~Ê1

4
G0

3
V0 + n

~Ê1
e

4
. (2.56)

The e�ect of Eq 2.55 is to distribute the current flow corresponding to the alignment of
occupied and unoccupied states across a number of channels, with a weighting given by
the squared Bessel function [147]. These parallel current paths are schematically shown
in Fig. 2.13(b), where multiple quasiparticle current channels are possible by absorbing
n photons of energy ~Ê1. This can be interpreted as the quasiparticle level at energy
E e�ectively splitting into many levels at E ± n~Ê1, however this does not constitute
a modulation in the DOS, rather an e�ective expression of the parallel current paths.
Since the sum over squared Bessel functions is identically one, the quasiparticle current
is conserved independent of the AC drive strength V1. These quasiparticle tunnelling
events are referred to as photon assisted tunnelling and give rise to conductance peaks
o�set by ±n~Ê1. They are inelastic, stochastic processes which are not phase coherent
for charge transport across the junction.

2.5.3. Floquet States

The treatments for both Shapiro steps and photon assisted tunnelling do not consider
any change to the eigenstates of the system. However, an eigenstate change might arise
from coherent coupling to the electromagnetic field, giving rise to complex structures in
the energy spectrum [110, 209–215].

In general, solutions to the Schrödinger equation with a time-periodic potential can
be written in terms of time-periodic wavefunctions with associated quasi-energies ‘i,
analogously to Bloch wavefunctions for spatial periodicity [216–219]. These states, called
Floquet states, form a complete basis, with quasi-energies ‘i that are evenly separated

Figure 2.14. Schematic of bandgap engineering via light-matter coupling. a Discrete
electronic states separated by an energy gap ”. b Upon driving with an electromagnetic field
with frequency Ê1, coupling to the electronic states causes a shift in energy ~Ê1. c Interaction
between the branches leads to the opening of a new bandgap, which is proportional to the
amplitude of the electromagnetic field |E0|. Figure inspired by [113].
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by the drive photon energy ~Ê1. Consider discrete electronic states [see Fig. 2.14(a)]
subject to a time-varying potential. The driving field generates replicas in the energy
bands separated by the photon energy [see Fig. 2.14(b)], resulting in coherent avoided
crossings when the photon energy exceeds the energy separation between discrete states
[see Fig. 2.14(c)]. This could be used to manipulate bandstructures into complex non-
equilibrium phases [220].

The energy gap is proportional to the ratio of the driving field strength and the
frequency, meaning that large powers are needed to drive in the optical domain [111,
113, 221]. Relaxation and thermalisation of this out-of-equilibrium process puts a limit
on the timescales available, since many-body interactions ultimately lead to heating and
decoherence in the system [111, 112, 221–225]. Notably, a recent work explored the
tunnelling conductance of a planar Josephson junction under microwave irradiation, and
interpreted replicas of conductance features as evidence of Floquet-Andreev states stable
over long timescales [114].

2.6. Andreev Bound States in In-Plane Magnetic Fields

In contrast to superconducting tunnel junctions, the planar geometry of hybrid
superconductor-semiconductor junctions enables operation at large in-plane magnetic
fields. The introduction of a Zeeman energy term lifts the spin degeneracy of ABSs,
enabling each spin state to be individually addressed. For a semiconductor with strong
spin-orbit interaction, charge carriers in the normal region exhibit coupling between the
spin and momentum degrees of freedom, which can facilitate spin-dependent transport.
This section will examine the basic properties of ABSs in magnetic fields, and how
coupling to a Zeeman field can result in phase transitions and anomalous phase shifts
in the ground state.

2.6.1. 0 ≠ fi Phase Transitions

We investigate the behaviour of ABSs in a magnetic field, first in the absence of spin-orbit
interaction. Consider the ABS energy in a short Josephson junction (L π ›) at zero
magnetic field, given by Eq. 2.23. For N conducting channels, there are 4N ABSs: 2N

at positive energy and 2N at negative energy, with the factor of 2 from spin degeneracy.
From the symmetry of the Bogoliubov-de Gennes equation in the absence of a magnetic
field (Eq. 2.2), the time reversal operator acting on the Hamiltonian changes the sign of
the phase. Therefore, time-reversal symmetry gives En(Ï) = En(≠Ï). This is also the
case in the presence of a Zeeman field, in the absence of spin-orbit interaction [87, 226].
The ABS energies En(Ï) are given by the transmission eigenvalues, which are two-fold
degenerate in a two-terminal junction by Kramer’s degeneracy [see Fig. 2.6(a)].

In the presence of a magnetic field B, the Zeeman interaction couples the field to
the spin magnetic moment of electrons and holes traversing the junction [87, 177, 226,
227]. This introduces an additional energy term EZ = |gú

µBB|/2, where g
ú is the

e�ective g-factor and µB is the Bohr magneton, resulting in a spin-dependent shift to
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Figure 2.15. Andreev bound states (ABSs) for increasing Zeeman field ◊B, in the
absence of spin-orbit interaction. a Spin-degenerate ABSs at zero magnetic field. States
at positive (negative) energy are indicated by solid (dashed) lines. b, c A magnetic field of
◊B = 0.1 and fi/4, respectively, lifts the spin degeneracy into positive (blue) and negative
(red) spin states. d-f For ◊B > fi/2, the state at lowest energy (green arrow) shifts from
being at Ï = 0 to Ï = fi. In (f), states at negative energy have the same spin character.
Figure inspired by [87].

the wavevector. This gives di�erent phase-matching conditions for the di�erent spin
states, lifting the spin degeneracy. The analytical result for the ABS energies obtained
by [226] for a single channel is

Eø,±(Ï) = ±� cos
5

◊B

2 + arccos
3

±
Ò

1 ≠ · sin2(Ï/2)
46

E¿,±(Ï) = ±� cos
5
≠◊B

2 + arccos
3

±
Ò

1 ≠ · sin2(Ï/2)
46

,
(2.57)
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where the magnetic field strength is parametrised by an e�ective phase shift

◊B = |gú|µBBL

~vF
= fi

2
EZ

ETh

. (2.58)

Since ETh = fi~vF/(2L) is the Thouless energy for a ballistic system, the relative size
of the Zeeman and Thouless energies determine the size of the energy splitting. Further
details on the Zeeman splitting of ABSs are given in Appendix C.

Figures 2.15(a) and (b) show spin splitting of ABSs at moderate in-plane magnetic
fields. For large fields, the splitting of ABSs is su�cient for them to cross zero energy
[Fig. 2.15(c)], until the position of lowest energy (indicated by the green arrow) shifts
from Ï = 0 to Ï = fi [Fig. 2.15(d)]. This constitutes a phase transition which occurs
at ◊B = fi/2, or equivalently at EZ = ETh. For ◊B = fi, ABSs have completely moved
through each other and the ground state is a spin doublet rather than a spin singlet for
all values of Ï.

The supercurrent is proportional to the derivative of the energy with respect to phase,
meaning that it is proportional cos ◊B/2. A signature of the phase transition is therefore
the supercurrent going to a minimum at a certain magnetic field, and then increasing
for larger magnetic fields. The field at which this transition occurs is

B = fi

2
~vF

|gú|µBL
, (2.59)

which gives B & 9 T in the case of an InAs/Al heterostructure2 [124].

2.6.2. Anomalous Ï0-Shifts
We can understand the Zeeman e�ect at small magnetic fields in terms of the dispersion
relation of electrons in the normal region [87, 226, 228]. To do this, we make an analogy
between a short Josephson junction and a nanowire: both are quasi-one-dimensional,
with strong confinement in one direction (which we define to be along y). This con-
finement leads to subbands, which are schematically depicted in Fig. 2.16(a). In the
presence of a magnetic field, the spin-degeneracy of the bands is lifted. This is depicted
in Fig. 2.16(b), which is a zoom-in of the region close to the Fermi energy. The wavevec-
tors for the two spin states ‡ = ±1 (blue and red, respectively) are shifted in opposite
directions, which gives rise to the phase shift ◊B described in the previous section. Note
that the size of the wavevector shift is equal and opposite for k > 0 and k < 0, since the
Fermi velocity (given by the gradient of the dispersion relation at the Fermi energy) is
symmetric.

We now consider the case with Rashba spin-orbit coupling, by introducing an addi-
tional contribution to the Hamiltonian given by Eq. 2.1. The two terms of Eq. 2.1 give
rise to di�erent e�ects: the kx‡y term causes the subbands to split, so that they are
shifted in k [see dashed lines in Fig. 2.16(c)]; the ky‡x term couples the spin terms in
neighbouring subbands, such that they are mixed [solid lines in Fig. 2.16(c)] [228]. Due

2Assuming |gú| ≥ 10, vF ≥ 1 · 106 ms≠1 and L . 200 nm.
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2.6. Andreev Bound States in In-Plane Magnetic Fields

Figure 2.16. Influence of spin-orbit interaction on anomalous phase shifts. a
Schematic representation of the dispersion relation in the absence of spin-orbit interaction.
The Fermi energy EF is indicated as the horizontal line. b Zoom-in of the region around EF.
Application of a magnetic field causes spin up (down) bands to move down (up) in energy,
represented by the blue (red) dotted lines moving away from the zero-field case (black solid
line). The Fermi velocity is independent of spin, and symmetric around k = 0. c Schematic
representation of the dispersion relation in the presence of spin-orbit interaction, after spin
splitting (dashed lines) and band mixing (solid lines). d Application of a magnetic field
causes an energy shift (dotted lines) with respect to the zero field case (solid lines), as in
(c). However, the spin-dependent Fermi velocity vF,± gives di�erent spin-dependent changes
in wavevector. Figure inspired by [87].

to the band mixing, the Fermi velocity in a given momentum direction depends on the
spin texture (or equivalently, the Fermi velocity for a given spin texture is di�erent for
k > 0 and k < 0) [226]. This is evident in Fig. 2.16(d), which shows a zoom-in of
Fig. 2.16(c) close to the Fermi energy. In a magnetic field, the spin-dependent shift in
the wavevector is no longer symmetric with respect to k [dotted lines in Fig. 2.16(d)].
This gives an additional contribution to the wavevector shift, ±k–, and results in a phase
shift Ï æ Ï ≠ Ï0, where

Ï0 = ≠L

2 (k>
F,+ + k

<
F,+ + k

>
F,≠ + k

<
F,≠)

= EZL

A
1

~vF,≠
≠ 1

~vF,+

B

.
(2.60)

Note that the Ï0-shift is not present in a single mode system, since it is the mixing of
modes via the spin-orbit interaction which allows the phase shift.

The energy spectrum no longer satisfies En(Ï) ”= En(≠Ï) due to the interaction of
spin-orbit coupling and the external magnetic field. The energy minimum occurs at Ï0,
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2. Theoretical Background

and so the system is referred to as a Ï0-junction. The size of this phase shift is governed
by the strength of the spin-orbit interaction –, and gives the result [229]

Ï0 = 4–LEZ

(~vF)2 (2.61)

for a short ballistic junction. Anomalous phase shifts have been observed in hybrid
Josephson junctions [106, 108, 230], however measured values of the phase shift in planar
junctions [230] were much larger than predicted by Eq. 2.61.
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3 Material and Methods

3.1. Material

Hybrid superconductor-semiconductor materials are an excellent platform for studying
fundamental physics, and have applications in quantum computing [53, 61, 127], super-
conducting electronics [97, 99] and beyond. However, high quality material is crucial
for realising these promises [48]. For the semiconducting component, low scattering is
important to realise ballistic systems and large spin-orbit interaction is needed to resolve
spin-split phenomena [50, 136, 231, 232]. The superconductor must be thin to enable
superconductivity up to large in-plane magnetic fields [233], while hosting a clean super-
conducting gap free of unintentional sub-gap states [230, 234, 235]. An important factor
is the semiconductor-superconductor interface, which must be free of contamination and
defects to give a large, clean proximitised superconducting gap in the semiconductor
and a high transmission probability across a Josephson junction [49, 236–239]. The
following sections describe how these conditions are achieved in an InAs/Al heterostruc-
ture [50, 240].

3.1.1. Growth and Material Composition

Heterostructures were grown by molecular beam epitaxy (MBE), whereby crystalline
semiconductor layers are grown on a substrate in an ultra-high vacuum chamber, with
atomic-layer precision [130, 131]. Figure 3.1(a) shows a transmission electron microscopy
(TEM) image of the full heterostructure, alongside a schematic representation of the com-
position of each layer. The heterostructure consisted of a step-graded InAlAs bu�er on a
semi-insulating InP (001) substrate, onto which an In0.75Ga0.25As/InAs/In0.75Ga0.25As
quantum well was grown with a termination of two GaAs monolayers. The 8 nm InAs
layer hosted a two-dimensional electron gas (2DEG), buried 13.4 nm below the semicon-
ductor surface, as measured by TEM [see Fig. 3.1(b)]. A 15 nm layer of Al was deposited
onto the semiconductor surface, in situ without breaking vacuum in the growth chamber.
See Ref. [240] for full details on the material growth.

The 2DEG wavefunction is schematically drawn in Fig. 3.1(b), to show a finite overlap
into the superconductor. This overlap, facilitated by the small separation of the 2DEG
from the surface and the moderate confinement of the In0.75Ga0.25As, enables a strong
proximity e�ect [136, 230]. The in situ superconductor deposition also allowed for a high
quality semiconductor-superconductor interface, which was atomically sharp and free of
defects and impurities [see Fig. 3.1(c)]. Highly transparent interfaces are expected to
result in a proximitised gap which is free of sub-gap states [48, 49, 236, 237, 239].
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3. Material and Methods

Figure 3.1. Superconductor-semiconductor material. a Transmission electron mi-
croscopy (TEM) image of a characteristic wafer over the full layer stack, alongside a
schematic representation of the layer compositions. b Schematic zoom-in of the region clos-
est to the material surface, containing the quantum well and the superconductor. Materials
and measured thicknesses are labelled. A sketch of the expected semiconductor wavefunction
is drawn in light blue. c TEM image at the interface between the In0.75Ga0.25As and Al
layers. TEM images were taken by Filip Krizek. Figure adapted from Ref. [240].

The step-graded metamorphic bu�er compensated the lattice mismatch between the
InP and InAs, and was designed such that dislocations due to strain relaxations oc-
curred deep in the heterostructure, far from the 2DEG [see Fig. 3.1(a)]. This enabled
an InAs layer mostly free from dislocations, reducing the density of scattering sites
for charge carriers in the 2DEG and thereby facilitating a high electron mobility. In
InAs quantum wells, spin-orbit coupling of Rashba-type is dominant due to the strong
structural inversion asymmetry of the confining potential [138]. Measurements of the
spin-orbit coupling strength in similar heterostructures [50, 136, 232] have found values
of – = 50≠≠300 meVÅ, depending on the electron sheet density.

The GaAs capping layers provided a barrier for In di�usion into the superconducting
layer, while also being an etch stop for the Al etch. The impact of these interlayers
on the crystal structure of the deposited Al, and on the semiconducting and induced-
superconducting properties of the material, is discussed in detail in Ref. [240]. The Al
layer was made su�ciently thin to be resilient to large in-plane magnetic fields, while
being thick enough for the film to remain continuous and superconducting after device
fabrication.
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3.1. Material

3.1.2. Material Characterisation
The material quality was evaluated by measuring its semiconducting and superconduct-
ing properties. Measurements of a gated Hall bar [Fig. 3.2(a)], performed at a base
temperature of T = 20 mK, give the resistivity flXX © (VXX/I)(W/L) and flXY © VXY/I

as a function of perpendicular magnetic field B‹ [Fig. 3.2(b)], for di�erent gate voltages
VG applied to a gate covering the semiconducting region. The electron sheet density n

and mobility µ are given by [131]

n = 1
|e|dflXY/dB‹|B‹=0

µ = dflXY/dB‹|B‹=0
flXX(B‹ = 0) , (3.1)

with the result shown in Fig. 3.2(c) as a function of VG.

Figure 3.2. Characterisation of semiconducting properties. a Schematic of a gated
Hall bar device, where the Al (blue) was removed to expose the InAs (pink) to an elec-
trostatic Au gate (yellow). A current I is sourced to one contact, and the voltages VXX

and VXY are measured as a function of the magnetic field perpendicular to the device,
B‹ (see inset schematic). b Resistivities flXX © (W/L)(VXX/I) (green) and flXY © VXY/I

(yellow), respectively parallel and perpendicular to the current flow, as a function of B‹ for
VG = ≠2.09 V. c Electron sheet density n and mobility µ as a function of gate voltage VG,
calculated from (b) using Eqs. 3.1. d Electron mean free path le and Fermi velocity vF as
a function of gate voltage VG, calculated from values in (c). Measurements were performed
at T = 20 mK.
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3. Material and Methods

A peak mobility of 18000 cm2
/Vs at an electron sheet density of 8 ·1011 cm≠2 gives an

electron mean free path of le & 260 nm. The reduced mobility for higher VG is attributed
to increased surface scattering, since the electron distribution is shifted closer to the
material surface [231, 241, 242]. Occupation of the second subband is expected for larger
electron sheet densities n & 1.2 cm≠2, where the mobility begins to saturate [136, 231].
Since le > 100 nm across the full range of sheet density n [Fig. 3.2(d)], Josephson
junctions with length L shorter than this were in the quasi-ballistic limit [130]. The
Fermi velocity vF was calculated to be ≥ 1 · 106 ms≠1 [Fig. 3.2(d)]. Measurements
in similar material have shown a phase coherence length exceeding lÏ ≥ 1 µm at low
temperatures [50, 243].

Measurements of the superconducting film in a Hall bar geometry gave a critical tem-
perature of TC ¥ 1.3 K and a critical in-plane magnetic field of BÎ,C ¥ 1.1 T, consistent
with a superconducting gap of � ¥ 180 µeV. The measured normal state resistance
per unit square was R⇤ ¥ 1.5 ⌦. Since the Al film was thin, it had a considerable
kinetic inductance LK which generates a flux �K = LKI for a current I through the
superconducting film. The kinetic inductance per unit square is estimated to be [198]

LK,⇤ = h

2fi2
R⇤
� ¥ 1.7 pH. (3.2)

Beyond independent characterisation of the semiconducting and superconducting com-
ponents, a planar Josephson junction [Fig. 3.3(a)] was used to evaluate the quality of
the semiconductor-superconductor interface. The di�erential resistance R © VAC/IAC

was measured as a function of a DC current bias IDC, for di�erent temperatures T .
Figure 3.3(b) shows R for T = 20 mK (blue line), with a clear transition from the su-
perconducting to the resistive state at the switching current ISW. For IDC > ISW, there
were peaks in the di�erential resistance corresponding to multiple Andreev reflections
(MAR) [244–246]. The voltage drop across the junction VDC is calculated by numerical
integration of R(IDC), and is plotted as the red line. For large IDC, VDC = IDCRN where
RN is the normal state resistance. The extrapolation of VDC at high current bias (grey
dashed line) intersects the horizontal axis at a finite current Iexc.: the excess current due
to Andreev reflections at the superconductor-semiconductor interfaces [154].

The product of the switching current with the normal state resistance gives a value of
ISWRN = 305 µV at base temperature T = 20 mK, which decreases to zero as T æ TC

[see Fig. 3.3(c)]. Figure 3.3(d) shows the product Iexc.RN, which has a low-temperature
value of 550 µV. Traces of the di�erential resistance are shown in Fig. 3.3(e), where the
MAR peaks identified in Fig. 3.3(b) change with temperature (grey dashed lines).

The voltage at which MAR peaks occur is indicative of the induced superconducting
gap, by the relation VSD = 2�ú

/ne [244–246]. We identify peaks at 383, 183 and 118 µV
for n = 1, 2, 3 respectively, corresponding to an induced gap of �ú ¥ 180 µeV [240].
This is close to the gap in the Al film, implying a strong proximity e�ect. The ICRN

product is proportional to the proximitised superconducting gap, since it describes the
energy of the overlaping superconducting wavefunctions (Ã IC) across multiple conduct-
ing channels (Ã R

≠1
N

) [181]. In the ballistic limit, ICRN = fi�ú
/e ¥ 565 µV for a clean
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3.1. Material

Figure 3.3. Characterisation using a planar Josephson junction a Schematic of the
planar junction, where the Al (blue) was removed in a narrow stripe to expose the InAs
(pink) to an electrostatic Au gate (yellow). A current IDC + IAC is sourced to one contact,
and the di�erential voltage VAC is measured. b Di�erential resistance R © VAC/IAC at
T = 20 mK as a function of IDC (blue, left axis). The voltage drop VDC (red, right axis)
is calculated by integrating the R(IDC) curve. The switching current ISW, excess current
Iexc. and multiple Andreev reflection peaks are indicated. c The switching current-normal
state resistance product ISWRN as a function of temperature. d The excess current-normal
state resistance product Iexc.RN as a function of temperature. Due to distortions in the high
bias data at large temperatures, data points for T > 1.25 K are removed. e Di�erential
resistance R as a function of IDC for di�erent temperatures [colours, defined in (c)]. Each
curve is o�set by 50 ⌦ for visibility. Peaks corresponding to multiple Andreev reflections are
indicated by the grey dashed lines. Figure is adapted from [240], using data measured by
D.Z.H.
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superconductor (le ∫ ›) [247] and ICRN = fi�ú
/2e ¥ 280 µV for a dirty superconduc-

tor (le . ›) [248]. The switching current is indicative of IC (although smaller, due to
stochastic phase fluctuations), and gives a value ISWRN = 305 µV which is between the
dirty and clean limits. The excess current is sensitive to the transparency of the super-
conducting interfaces, since it involves many Andreev reflection processes [154, 174–176].
Therefore, the large measured excess current relative to �ú implies a highly transparent
interface.

While these techniques are only approximate in their evaluation of the superconductor-
semiconductor interface, all point towards a large induced superconducting gap in the
InAs with highly transparent interfaces for quasi-ballistic transport between the super-
conducting contacts. This is a strong indication of excellent quality material, and gives
results which are comparable to those found in literature [230, 249].

3.2. Fabrication Process

The heterostructure was grown uniformly across a 2 inch wafer, which was diced into
5x5 mm chips such that each chip was fabricated independently. Design patterns were
transferred to the chip by electron-beam lithography. The chip was covered with an
electron-sensitive polymer resist, which becomes soluble in a developing solvent on ex-
posure to a focused electron beam, thereby exposing the material underneath. The
exposed material can then be selectively etched, or contacted via metal deposition. De-
vice fabrication consisted of four lithography steps: defining a mesa structure; defining
the superconductor etch; and two lithography steps to pattern metallic gate electrodes.
These fabrication steps are depicted in Fig. 3.4 and are described in the following sec-
tions. A detailed process flow is described in Appendix A.

Mesa Etch

The first fabrication step was to isolate large mesa structures, onto which each device
was patterned [see Fig. 3.4(b)]. Each device was therefore isolated from its neighbours,
since the InP substrate was insulating at cryogenic temperatures < 4 K. This etch
step was done by selectively removing the top Al layer with Transene Al etchant –
Type D (“Transene D”), before etching & 350 nm into the III-V heterostructure using
a chemical wet etch (220 : 55 : 3 : 3 solution of H2O : C6H8O7 : H3PO4 : H2O2). It was
important to etch deep into the heterostructure, since parallel conduction was observed
between neighbouring devices if the etch depth was not su�ciently large. This was only
observed after deposition of a dielectric layer; while the source of this parallel conduction
is unknown, it is presumed to originate from a conducting layer of charges trapped at
the interface of the dielectric and the top-most layer of the etched heterostructure. Etch
depths were measured with a profilometer on every chip, to account for fluctuations in
the etch rate. The III-V etch was isotropic, meaning that etching was lateral as well as
vertical. This left portions of Al overhanging the mesa edge, which were removed with
an additional Al etch.
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3.2. Fabrication Process

Aluminium Etch

The second step was to pattern the superconducting structures on top of the mesa [see
Fig. 3.4(c)]. This was done by selective etching of the Al with chemical etchant Transene
D at 50¶C for 4 s. Etching was performed at high temperature to accelerate the etch
rate, and was seen to result in smoother feature edges and leave fewer residues. Feature
sizes expanded relative to the design dimensions due to the isotropic wet etch, but this
was limited to the thickness of the Al film by careful optimisation of the exposure,
development and etching processes. As a result, Josephson junctions were ≥ 20 nm
longer than the designed length. Lengths reported throughout this thesis correspond to
the designed length.

Dielectric Deposition

A dielectric layer of Al2O3 (3 nm) and HfO2 (15 nm) was deposited across the chip by
atomic layer deposition [see Fig. 3.4(d)], to isolate the device structure from metallic
gates (deposited in a later step). These depositions were performed at . 120¶C, since
higher temperatures were shown to degrade the material. In addition, exposure of the
Al surface to a plasma-induced deposition resulted in thickening of the native Al oxide,
sometimes leading to portions of the Al film being resistive at low temperature. A
thermally-induced Al2O3 deposition was introduced to alleviate this issue.

Metallic Gates

Gate electrodes were defined on top of the dielectric layer by evaporation and lift-o� [see
Fig. 3.4(e)]. Fine gate features were defined in a first step consisting of 5 nm Ti and
20 nm Au. A comparatively large resist thickness of 250 nm and an aggressive resist
stripping process in heated dimethyl sulfoxide (DMSO) was used so that gate features
could be defined with & 50 nm separation.

A second deposition of Ti (10 nm) and Al (420 nm) connected the gates on top of the
mesa structures to bonding pads, which were defined in the same step [see Fig. 3.4(f)].
The exact composition and thickness of the second layer varied between experiments
presented here (in some cases both Al and Au were used), but no impact on device
performance was observed provided that the metal was su�ciently thick to overcome
the step height to the top of the mesa.

Wire Bonding

After fabrication, 5x5 mm chips were glued to a QDevil daughter board using baked
resist. Wire bonds of Al were used between Au pads on the daughter board and bonding
pads on the chip using wedge bonding. The daughter board was screwed to a Al block,
with electrical contact to all 50 pins such that they were shorted together. The Al block
was connected to the ground of the wire-bonding machine throughout bonding to limit
electrostatic discharge; this procedure improved the device yield.
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Figure 3.4. Fabrication process, from heterostructure to devices. a Schematic rep-
resentation of the material after growth, before fabrication (not to scale). The III-V semi-
conductor (pink) contains the two-dimensional electron gas (2DEG), with epitaxial Al (blue)
on the surface. b The first lithographic step defines areas to etch into the layer stack. An
etch depth of ≥ 350 nm defines mesa structures, onto which devices will be fabricated. c
Aluminium etch of features on top of mesa structure. d Deposition of dielectric layers by
atomic layer deposition: 3 nm of Al2O3 (purple) and 15 nm of HfO2 (light blue). e Inner
gate structures of Au (yellow) are defined on top of the mesa in the third lithography step,
above the patterned Al. f The final lithography step defines the outer gates: a thick Al layer
(grey) which connects the inner gates to bonding pads far from the device.

38



3.3. Measurement Setup

3.3. Measurement Setup
Measurements performed in this thesis were carried out in the same cryogenic setup. This
section provides details on the dilution refrigerator and setup for electronic measurements
which are relevant for results presented in later chapters.

3.3.1. Dilution Refrigerator
Measurements were performed in a dilution refrigerator with a base temperature be-
low 10 mK. Samples were positioned in a bottom-loading mechanism, for fast sample
exchange with a cycle time of < 24 hours. In experiments where microwave (MW) irra-
diation was applied to a sample, a room temperature MW source provided a continuous-
wave signal to the sample space via a coaxial line with 47 dB attenuation, terminated
in an antenna positioned approximately 1 cm from the chip surface. Samples were un-
shielded in the loading environment, due to the requirement of applying large global
magnetic fields.

Magnetic fields were applied using a three-axis vector magnet, with field directions
nominally oriented perpendicular to the device (B‹) and in the plane of the device
(BÎ, Bt). Global magnetic fields were generated by currents sourced to a three-axis
vector magnet. For large magnetic fields (> 30 mT), currents were sourced by an
AMI 430 Power Supply. For small magnetic fields, where careful tuning was required,
currents were sourced using the current output of either a Yokogawa GS200 or a Keysight
Precision Source-Measure Unit.

3.3.2. Electronic Measurements
Measurements were performed at low frequency (< 1 kHz) using room-temperature elec-
tronics. Low-impedance contacts in the epitaxial Al connected the device to resistive
phosphor-bronze twisted-pair looms in the dilution refrigerator. Low-pass filters were
installed on the mixing chamber plate, consisting of RC- and fi≠filters for low (cuto�
frequency fco = 65 kHz) and high (fco = 225 MHz) frequency noise, respectively. Addi-
tional RC-filters (fco = 130 kHz) were installed on a QDevil mother board, onto which
the daughter board holding the sample was loaded. The measured resistance of each line
was found to be 2.9 k⌦, consistent with the filter resistances. In all measurements, static
voltages were applied to gates from a QDevil Digital to Analogue Converter (DAC) via
low-pass RC filters with R = 10 k⌦ and C = 1 µF (fco = 16 Hz).

3.4. Measurement Methods
Measurements presented in this thesis can be divided into two categories: current-biased
and voltage-biased measurements. In the first, currents were sourced to the sample and
a voltage di�erence across two terminals was measured. The primary purpose of this
technique was to measure a switch between voltage states of the device: low voltage in
the superconducting state and high voltage in the resistive state. The bias current at
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which this transition occurred is called the switching current, and was used to infer the
phase escape dynamics (Chapters 4 and 5) and current-phase relation (Chapters 6 and 7)
of planar Josephson junctions. The second measurement approach involved applying a
voltage bias across two contacts and measuring the resulting current flow. This technique
was used to measure the tunnelling conductance through a quantum point contact close
to a planar junction, to infer the density of states in the region close to the probe.

3.4.1. Current-Biased Measurements
First characterisation measurements were performed using lock-in amplifier techniques.
A current I = IAC + IDC was sourced to the device, using a Stanford Research SR860
lock-in amplifier and a QDevil DAC for the AC and DC components respectively. An AC
voltage, with a typical frequency between 100 and 400 Hz, was applied from the lock-in
amplifier via a large resistor in series with the device (& 100 M⌦), such that IAC . 10 nA.
A DC voltage was applied from the DAC to the same contact, via a series resistor with
a much larger resistance than that of the device. The value of this bias resistance was
chosen based on the desired current flowing through the device (e.g. 1 V outputted from
the DAC through a 1 M⌦ bias resistor gave a 1 µA current). The di�erential voltage
VAC across the device was measured in a four-terminal configuration via a home-made
di�erential voltage amplifier with gain 1000, detected by the same lock-in amplifier as
the AC current source. The di�erential resistance was given by R © VAC/IAC.

While lock-in amplifier techniques were e�ective at measuring the switching current
and properties in the resistive state of the device, they were ine�cient for collecting
switching current statistics and were not appropriate for measuring small modulations
in large switching currents. Therefore, an alternative approach was used for most of the
switching current results presented in this thesis.

The switching current was measured e�ciently by using current ramps with fast rep-
etition rates and voltage triggers to detect a transition to the resistive state. Currents
were sourced by symmetrically biasing the device, such that the device potential was not
significantly raised with respect to the ground of the electrostatic gates. This prevented
e�ective gating due to a large current bias. A sawtooth voltage bias was applied to the
device from two synchronised channels of a Keysight 33600 Waveform Generator, with
opposite sign for the two channels. The repetition rate of the sawtooth signal was be-
tween 133 Hz and 798 Hz for measurements of the switching statistics (Chapters 4 and
5), such that the ramp rate was constant for varying voltage amplitude. The repetition
rate for measurements of the current-phase relation (Chapters 6 and 7) was 133 Hz, and
reported switching current values were averaged between 16 and 32 times to account for
broad switching current distributions. Waveforms were applied to the device via bias
resistors at the source and drain contacts. For devices containing an Al constriction,
bias currents of ≥ 40 µA were obtained using bias resistors of 163 k⌦. The voltage drop
across the device was measured in a four-terminal configuration, via a di�erential voltage
amplifier with gain 1000 and a further amplification stage provided by the internal gain
of a Stanford Research SR860 lock-in amplifier, and ultimately detected at a Keysight
DSOX2024A oscilloscope. The oscilloscope measured the time needed for the voltage
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across the device to exceed a threshold < 15% of the maximum voltage in the resistive
state. This threshold was chosen to be su�ciently low that it was representative of the
switch to the resistive state, but su�ciently high to be insensitive to fluctuations in the
measured voltage in the superconducting state. The time was readily converted to a
current, since the oscilloscope was synchronised to the output of the waveform genera-
tor. The switching currents obtained via this method were reliable when the transition
from the superconducting to resistive state was sharp. However, for large temperatures
or in-plane magnetic fields, where superconductivity was suppressed in the device, a
finite resistance was measured below the transition to the fully resistive state. Thus, the
voltage exceeded the measurement threshold for bias currents di�erent to the switching
current. For this reason, switching current measurements at temperatures T & 1 K or
in-plane magnetic fields BÎ & 1 T are excluded from reported results.

In devices containing a tunnelling probe, both contacts at the probe were floated such
that no current flowed there during current-biased measurements. Global gates were set
to negative values, such that regions of InAs surrounding the superconducting loop were
depleted and that transport was confined to regions below the Al, where the e�ect of
the gates was screened.

3.4.2. Voltage-Biased Measurements
Measurements of the di�erential conductance were performed with standard lock-in am-
plifier techniques. An AC voltage VAC = 3 µV was applied to the contact of the su-
perconducting probe with frequency 311 Hz from a Stanford Research SR860 lock-in
amplifier, in addition to a variable DC source-drain voltage VSD from a DAC. The AC
current I1 and DC current ISD flowing through the probe to ground was measured via
a current-to-voltage (I-V) converter with gain 1 · 108 and bandwidth 10 kHz. The dif-
ferential voltage across the tunnel barrier V1 was measured at a lock-in amplifier, via
a di�erential amplifier with 1000 gain, to give the di�erential conductance G © I1/V1.
Measurements were performed in the tunnelling regime, where G π G0 = 2e2

/h. A
constant bias o�set of < 50 µV was subtracted from all datasets, due to a DC o�set at
the I-V converter.
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4 Phase Dynamics in Planar Josephson
Junctions Part I: Single Junctions

Planar Josephson junctions (JJs) carry a gate-tunable supercurrent due to a phase dif-
ference across the superconducting contacts. Voltage control of dissipationless super-
currents means that they are less susceptible to heating and crosstalk [57], presenting
significant advantages for tunable superconducting qubits [53–55, 250] and low temper-
ature electronics [91, 99]. An important property of a Josephson junction is its critical
current: the maximum supercurrent that can flow through the junction before it transi-
tions to the resistive state. The critical current relates to the macroscopic properties of
a JJ as a circuit element, and gives insights into the behaviour of microscopic current-
carrying states. To utilise planar JJs e�ectively in superconducting circuits, and to
understand the physics which govern their behaviour, it is crucial to have reliable mea-
surements of the critical current. In this chapter, we investigate the transition from the
superconducting to resistive state of planar Josephson junctions under a current bias,
and the mechanisms which influence this transition. The text and figures of this chapter
were adapted from Ref. [251].

This chapter is adapted from the following publication:
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SQUIDs
D. Z. Haxell, E. Cheah, F. Krizek, R. Schott, M. F. Ritter, M. Hinderling,
C. Bruder, W. Wegscheider, H. Riel, and F. Nichele
Physical Review Letters 130, 087002 (2023).

Author contributions: F.N. conceived the experiment. E.C., F.K., R.S., and
W.W. performed the material synthesis and characterisation. D.Z.H. designed the
samples, F.N. gave support. D.Z.H. fabricated the samples, M.F.R. provided advice and
support. F.N. and D.Z.H. performed the measurements. D.Z.H. analysed the data, C.B.
provided theoretical support on the appropriate formulae and F.N. contributed to the
Monte Carlo script. D.Z.H. and F.N. analysed and interpreted the data, with contributions
from all authors. F.N. and D.Z.H. wrote the manuscript, with contributions from all authors.

This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/).
© 2023 American Physical Society

43

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.087002
https://creativecommons.org/licenses/by/4.0/


4. Phase Dynamics in Planar Josephson Junctions Part I: Single Junctions

4.1. Device and Initial Characterisation

Figure 4.1(a) shows a micrograph of the device under study. It consists of a supercon-
ducting quantum interference device (SQUID), two gate-tunable planar JJs (JJ1 and
JJ2) embedded in a superconducting loop, all defined in an InAs quantum well (pink)
covered by a thin layer of in-situ-deposited Al (blue) [50]. Gate voltages VG1 and VG2
allowed tuning of JJ1 and JJ2, respectively. The gate voltage VGlobal was kept constant
at ≠600 mV to prevent parallel conduction in the semiconductor. The design was op-
timised to reach a critical current in JJ1 (IC,1) that was much larger than the critical
current in JJ2 (IC,2) [122, 153]. This was achieved by changing the lateral extent of the
Al electrodes (5 µm in JJ1 vs. 1.6 µm in JJ2) and their separation (50 nm in JJ1 vs.
100 nm in JJ2).

Figure 4.1. Characterisation measurements of device under study. a False-coloured
electron micrograph of the device under study and measurement configuration. The InAs is
highlighted in pink and the Al in blue. Gates are drawn on the image and highlighted in yellow.
b Di�erential resistance R as a function of B‹ and IDC obtained with VG1 = ≠180 mV
and VG2 = ≠140 mV. The amplitude of the switching current oscillations, �I, is marked.
c Di�erential resistance of JJ1 in isolation, with VG1 = ≠180 mV and VG2 = ≠450 mV.
Large fluctuations close to B‹ = 0 are marked with an arrow. d Di�erential resistance of
JJ2 in isolation, with VG1 = ≠550 mV and VG2 = ≠140 mV. The peak at B‹ = 0 is less
than half �I/2 in (b).
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4.2. Phase Dynamics of JJ1

We first present switching currents obtained with low-frequency lock-in techniques,
similar to previous work [109, 122, 153]. A source-drain current IDC was swept over
timescales of seconds, while the SQUID di�erential resistance R was recorded. Fig-
ure 4.1(b) shows R as a function of out-of-plane magnetic field B‹ with VG1 = ≠180 mV
and VG2 = ≠140 mV, where IC,1 and IC,2 were independently maximised. The SQUID
switching current I had a periodicity of 350 µT, corresponding to a flux h/2e threading
the loop. The amplitude of the SQUID oscillations, �I, reveals the switching current
of JJ2 as I2 = �I/2 = 350 nA, while the mean value gives the switching current of
JJ1, I1 = 850 nA. Figure 4.1(c) shows R when JJ2 is closed and with JJ1 in the gate
configuration of Fig. 4.1(b). The Fraunhofer interference pattern emerges [234], with a
maximum of I1 matching the mean switching current of Fig. 4.1(b). Furthermore, large
switching current fluctuations were present at B‹ = 0 (black arrow). Figure 4.1(d) shows
similar measurements performed with IDC flowing in JJ2 only. Surprisingly, the maxi-
mum of I2 is 120 nA; a significant di�erence with the 350 nA deduced from Fig. 4.1(b).

Both the fluctuations in Fig. 4.1(c) and the switching current enhancement in
Fig. 4.1(b) with respect to Fig. 4.1(d) are manifestations of the phase dynamics in our
devices. Therefore, we evaluate the phase escape mechanisms in JJ1 and JJ2 separately
(this Chapter), and in the SQUID loop formed by their combination (Chapter 5). To
capture the stochastic characteristics of phase escape, we modulate the input current
with a sawtooth function using a ramp rate ‹ = 240 µAs≠1 and monitor the voltage
across the SQUID with an oscilloscope. This technique allows us to record the switching
current ISW for 10,000 switching events in approximately ten minutes, and produce
the switching probability distribution (SPD), that is the probability for a switch to
occur per unit of input current. Similar techniques were used for detailed studies of
conventional [182, 185, 190, 252] and hybrid JJs [253–257], metallic nanowires [258–260]
and SQUIDs [261–265].

4.2. Phase Dynamics of JJ1

We first investigate the phase dynamics of JJ1. The top-gate voltage was set to
VG1 = ≠180 mV, and VG2 = ≠450 mV such that JJ2 was fully depleted [identical
configuration to Fig. 4.1(c)].

4.2.1. Temperature Dependence

Figure 4.2(a) shows the SPDs of JJ1, measured at various mixing chamber temper-
atures T . The corresponding escape rates �, computed using a KFD transformation
(Eq. 2.34) [185, 186], are shown in Fig. 4.2(b).

Figures 4.2(c) and (d) show the mean value of the SPDs in JJ1 (IM,1) and the standard
deviation (‡1), respectively, both as a function of T . For T < 400 mK, ‡1 is constant
and large, and � increases exponentially with ISW, indicating that macroscopic quantum
tunnelling (MQT) dominates the phase dynamics. For higher T , ‡1 decreases as T

increases, signalling the crossover to phase di�usion (PD), where escape and retrapping
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4. Phase Dynamics in Planar Josephson Junctions Part I: Single Junctions

Figure 4.2. Temperature dependence of stochastic phase escape mechanisms in
JJ1. a Switching probability distributions (SPDs) for JJ1 for various temperatures. Colors
are defined in (c) and are consistent throughout the chapter. b Escape rate � of JJ1,
obtained from the data in (a) using Eq. (2.34). c Mean switching current ISW of SPDs as
a function of temperature (circles) together with a fit to a Monte Carlo simulation (line).
Transition temperature T

ú is indicated by a vertical line, dividing a regime of macroscopic
quantum tunnelling (blue shading) and phase di�usion. d Standard deviation ‡1 of SPDs,
as a function of temperature.

events have similar probabilities to occur, so that many escape events are required to
transition to the resistive state. The temperature T

ú ≥ 0.55 K marks the crossover
between a regime dominated by MQT and one dominated by PD. Regimes with ‡1
increasing with T , which indicate thermal activation (TA), were not observed. The
width of the low-temperature SPD, expressed as ‡/I1 = 0.058, is particularly large
and results in pronounced switching current fluctuations, as seen in the measurements
of Fig. 4.1(c) (black arrow). Broad SPDs at low T , together with the absence of an
intermediate TA regime, which is unusual in conventional JJs [266], indicate a large
critical current IC,1 and a small capacitance C for JJ1. Finally, the relevance of PD,
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4.2. Phase Dynamics of JJ1

together with measuring a finite resistance at IDC = 0 for T > 1 K, which is well below
the critical temperature TC of the Al, indicates moderate damping.

4.2.2. Monte Carlo Simulation

The temperature dependence of IM,1 and ‡1 is well captured by a Monte Carlo simulation
of the phase dynamics [grey line in Figs. 4.2(c, d)] [267], an approach previously adopted
for the study of moderately damped JJs [268, 269]. While this model was developed for
tunnelling JJs with sinusoidal current-phase relation and large quality factor Q, in the
absence of a more complete theory, we tentatively apply it to our devices and consider
the results to be of qualitative nature.

The Monte Carlo simulation consists of a simulated junction with critical current IC,
capacitance C and zero-temperature quality factor Q0 as input parameters. These are
used to calculate the rates for escape �Q and retrapping �R, using Eqs. 2.36 and 2.37
respectively. As the DC bias current is increased, the simulated junction stochastically
switches between the superconducting (0) and resistive (1) states according to the relative
escape and retrapping rates. The junction is said to be resistive when the state, averaged
over a window of current, exceeds 0.1. This process is performed 20,000 times and the
generated ISW values are combined into an SPD.

The capacitance C and the zero-temperature critical current IC,1 of JJ1 are first ob-
tained by comparing the low-temperature data to a model of MQT (Eq. 2.36), obtaining
IC = 3 µA and C = 1 fF . The impact of a thermal bath at low temperature is neglected,
since �Q ∫ �T for low temperatures at the mixing chamber. We use the Bardeen for-
mula for the temperature dependence of IC(T ) = IC(1 ≠ T

2
/T

2
C

)3/2, with TC = 1.18 K

from experimental results. Since Q Ã I
1/2
C

, we use Q(T ) = Q0(1 ≠ T
2
/T

2
C

)3/4. We use
the low-temperature fit result and the assumed temperature dependence to simulate the
full dataset. The quality factor Q0 is determined by comparing the full temperature
dependence to the Monte Carlo simulation, obtaining Q0 = 7.

In a simple model as used here, the quality factor of the junction is described by
Q = RCÊP. For IC = 3 µA and C = 1 fF we get a resistance of R = 2.33 k⌦, much
larger than the normal state resistance at low frequency of RN,1 = 150 ⌦. We therefore
conclude that damping at high frequency is relevant in the case of these junctions, giving
a complex frequency-dependent relationship between the quality factor Q and the shunt
impedance. For Q ∫ 1, we can relate the quality factor to the ratio of critical and
retrapping currents: Q = 4IC/fiIR. For JJ1, IR = 600 nA giving Q = 6.4, close to the
fit value.

We show in Figs. 4.3(a-c) the relevant rates in the system for the fit parameters for JJ1:
IC = 3 µA, C = 1 fF and Q0 = 7. Each panel corresponds to a di�erent temperature:
T = 20 mK, T = 500 mK and T = 800 mK, respectively. The interplay between �Q and
�R determines the phase escape regime: �Q ∫ �R in the MQT regime, whereas the
reverse is true for phase di�usion. These highlight the change in the dominant regime
from MQT to PD on increasing T . Figures 4.3(d) and (e) show the SPDs and escape rates
for JJ1, respectively. The experimental data (circles) are fitted well by the simulated
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4. Phase Dynamics in Planar Josephson Junctions Part I: Single Junctions

curve (lines). Deviation at high temperatures between the fit and the data is explained
by the simple model used for the temperature dependence. Despite this, we capture the
characteristic trend in the data.

As expected, JJ1 is moderately damped and has a small intrinsic capacitance, leading
to a large plasma frequency. The estimated IC,1 is 2.5 times higher than IM,1, indicating
that moderate input currents already result in a high switching probability.

Figure 4.3. Monte Carlo simulation of JJ1. a-c Simulated escape rates for T = 20 mK,
500 mK and 800 mK respectively, for the fit parameters of JJ1. Bias-current ramp-rate
�I, MQT escape rate �Q, retrapping rate �R and thermal escape rate �T are compared
across the bias range I. The green dot indicates �I = �Q, at which point escape events
are measurable. d SPDs of JJ1: Experimental data (points) compared with Monte Carlo
simulation (lines) for temperatures 20 mK to 1 K. The temperature is indicated by the
colour. e Escape rates corresponding to the SPDs in (d).
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4.2. Phase Dynamics of JJ1

4.2.3. Understanding the Phase Escape Regimes
To understand the phase escape regimes in more detail, we can look again at Figs. 4.3(a–
c). The ramp rate �I(I) = ‹/I defines the lowest frequencies at which an escape event can
be measured, for a given bias current I. The point at which this intersects the escape
rate gives the lowest bias current IIE at which an escape event is measurable. Since
quantum tunnelling is the dominant escape mechanism, we define IIE as the current at
which �I = �Q, marked in Figs. 4.3(a–c) with the green dot. The retrapping rate �R is
large for low bias currents but quickly decreases with an increase in I.

At the lowest temperature, escape by quantum tunnelling dominates. This is clear
since �Q ∫ �R for I > IIE. No retrapping of the phase occurs: a single escape event is
su�cient to transition to the resistive state. At T = 500 mK, �Q . �R close to IIE. For
these low bias currents, the retrapping probability is high so the probability of escape
in the junction is reduced relative to quantum tunnelling alone. However, �Q ∫ �R at
larger bias so escape occurs unhindered by phase di�usion. The standard deviation is
approximately constant in the MQT regime for small increases in temperature, since the
size of fluctuations is given by the plasma frequency ÊP (Eq. 2.36) which has a weak
temperature dependence. As the temperature increases, the e�ect of retrapping becomes
more significant. At the high temperature of 800 mK, phase di�usion is dominant
since �Q π �R across the range of escape currents. The standard deviation decreases
with temperature in the PD regime since retrapping has a high probability for low I,
truncating the SPD [see Fig. 4.3(c)].

The transition temperature T
ú between MQT and PD regimes is experimentally de-

fined as the inflection point of the standard deviation as a function of temperature. This
is the point at which the retrapping rate �R becomes dominant above MQT escape �Q.
We can specify this further as the temperature at which the escape, retrapping and ramp
rates are equal, T

ú
IER

. This is similar to the definition in Ref. [267]. The trend of IM,1
with temperature changes at T

ú, which suggests that our definition of T
ú is appropriate

as a measure of the transition between MQT and PD regimes.

4.2.4. Absence of Thermal Activation
With the fit parameters, we estimate EJ/EC = 73 at T = 20 mK. This situation is
very di�erent from conventional metallic Josephson junction, where strong suppression
of ISW from IC requires EJ/EC Æ 1 [270–272]. Due to the small C and large IC, we
estimate that the transition from MQT to TA would occur for T & TC so that, in the
entire PD regime, phase escape takes place via MQT. We can see this by comparing
Eqs. 2.35 and 2.36, to obtain an e�ective temperature of quantum tunnelling escape,

kBTQ = ~ÊP

7.2(1 + 0.87/Q) . (4.1)

At low temperature, TQ ¥ 3 K for JJ1. This exemplifies the large scale of quantum
fluctuations relative to thermal excitations. The temperature at which TQ < T for the
parameters of JJ1 is approximately 1 K: thermal activation is not significant up to the
critical temperature.
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4. Phase Dynamics in Planar Josephson Junctions Part I: Single Junctions

4.2.5. Small Intrinsic Capacitance
The capacitance C = 1 fF obtained in the Monte Carlo simulation is consistent with the
geometrical capacitance of JJ1, calculated as the coplanar capacitance between epitaxial
Al electrodes and given by the formula [273]:

C = ‘0‘rW

fi
ln

5
≠2

3
— + 1
— ≠ 1

46
, (4.2)

where — = 4
Ò

1 ≠ L2
(L+2LSC)2 . We use the dielectric constant ‘r = 12.3 of InAs at high fre-

quency. The geometrical parameters of the junction are: lateral extent of JJ electrodes,
W = 5 µm; separation of JJ electrodes, L = 40 nm; and length of superconducting leads,
LSC = 250 nm. This gives C = 1.4 fF. The calculation does not consider the e�ect of the
top gate electrode, which is grounded via a low-impedance terminal. It therefore acts as
a screening layer for the electric field between the two junction electrodes. This reduces
the capacitance, up to a factor of two for complete screening of half of the field between
the Al electrodes. The presence of JJ2 in the SQUID loop contributes an additional
shunt capacitance of C2 = 0.2 fF, for junction parameters W2 = 1.6 µm, L2 = 100 nm
and LSC,2 = 250 nm. Screening of the field by the electrostatic gates may reduce this
by up to a factor of two. The contribution of JJ2 to the capacitance of JJ1 is therefore
small, and does not modify the main conclusions.

The large leads of the device might also contribute to the shunt capacitance. Their
geometrical capacitance, calculated with Eq. 4.2, is approximately 3 fF. This value is
likely decreased by the presence of the large gate electrodes between them. This analysis
does not consider shunt capacitances present in the bonding pads and in the wiring of
the dilution refrigerator. The extent to which shunt capacitances contribute to the
plasma frequency is an open question, investigated in [274–276]. The interpretation of a
planar Josephson junction with a small capacitance C is supported by the result of an
analytical fit to Eq. 2.36, a Monte Carlo simulation of the temperature dependence, a
consideration of the geometrical capacitance of the junction and a comparison to values
previously reported in literature [109, 254].

4.3. Gate and Magnetic Field Dependence of Phase Dynamics
The phase escape dynamics in JJ1 are investigated as a function of top-gate voltage VG1
and an in-plane magnetic field BÎ.

4.3.1. Dependence on Top Gate Voltage
We tune the phase dynamics of JJ1 with a gate voltage VG1. We measure SPDs for JJ1
as a function of temperature at gate voltages spanning the range of critical currents.
In Figs. 4.4(a, b) we plot the mean and standard deviation of SPDs, respectively. As
VG1 is tuned to more negative values, the transition temperature T

ú decreases until
VG1 = ≠400 mV, where JJ1 is fully phase di�usive at the lowest temperature in the
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Figure 4.4. Gate voltage dependence of phase escape processes. a Mean switching
current IM,1 of switching probability distributions (SPDs) of JJ1 as a function of temperature.
Measured for di�erent gate voltages VG1, as indicated by the color. The decrease in transition
temperature T

ú with VG1 is indicated by the arrow. b Standard deviation ‡1 of SPDs of JJ1
as a function of temperature, for di�erent gate voltages VG1. The decrease in T

ú with VG1
is indicated by the arrow.

measurement. This transition is clear from both the mean switching current IM,1 and
standard deviation ‡1. At VG1 = ≠320 mV, ‡1 at T = 20 mK is 50 nA, reduced relative
to 65 nA at VG1 = ≠180 mV. Additionally, ‡1 is not constant with temperature even
down to the lowest measured value of T . Finally, the kink in IM,1 and the inflection
point in ‡1 occur at T

ú ¥ 0.4 K. These features all indicate a stronger relevance of PD,
such that it is present at 20 mK and becomes dominant at a lower temperature: T

ú is
decreased.

The resistance in the normal state increased for more negative VG1. The action of
VG1 therefore changes both the critical current and the normal state resistance, which
changes the quality factor Q. The change in both quantities determines the transition
to the PD regime. We assume that the capacitance stays constant as a function of gate
voltage, since it appears to be dominated by the geometry of the superconducting leads.

4.3.2. Dependence on In-Plane Magnetic Field

We additionally tune the phase dynamics of JJ1 using an in-plane magnetic field BÎ,
applied perpendicular to the direction of current flow. We measure SPDs for JJ1 as
a function of temperature at di�erent magnetic fields, until the switching current is
fully suppressed. In Figs. 4.5(a, b) we plot the mean and standard deviation of SPDs,
respectively. For larger BÎ, the mean switching current IM,1 is reduced for all values of
temperature, and the standard deviation ‡1 at T = 20 mK decreases and is not constant
with temperature. Additionally, both the kink in IM,1 and the inflection point of ‡1 move
to lower temperatures. These all indicate that the transition temperature T

ú decreases
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Figure 4.5. Magnetic field dependence of phase escape processes. a Mean switching
current IM,1 of switching probability distributions (SPDs) of JJ1 as a function of temperature.
Measured for di�erent in-plane magnetic fields BÎ, as indicated by the colour. The decrease
in transition temperature T

ú with BÎ is indicated by the arrow. b Standard deviation ‡1 of
SPDs of JJ1 as a function of temperature, for di�erent in-plane magnetic fields BÎ. The
decrease in T

ú with BÎ is indicated by the arrow.

as BÎ increases, until JJ1 is fully di�usive for BÎ & 300 mT.
An in-plane magnetic field applied to the junction suppresses the supercurrent flowing

across it, by suppression of the superconducting gap in the thin Al [147] and by orbital
e�ects underneath the superconducting leads [120, 122, 197]. It does not change the
normal state resistance of the junction, unlike a gate voltage. We therefore interpret
the decrease in transition temperature T

ú to a change in the critical current, for con-
stant normal state resistance and capacitance. The suppression of switching current for
BÎ & 500 mT, far below the critical in-plane field of approximately 1 T, suggests that
orbital e�ects were the dominant cause of critical current suppression in JJ1.

4.4. Dependence on Device Geometry
The phase escape dynamics are investigated in three additional JJs, with a di�erent
geometry to JJ1: one with a smaller junction width and length (JJ2), and two where
the geometry of the superconducting leads is altered (JJ3 and JJ4).

4.4.1. Phase Dynamics of JJ2
Measurements of the switching statistics were also performed in JJ2. Figure 4.6(a) shows
the SPDs for JJ2 at di�erent mixing chamber temperatures T , with the corresponding
escape rates � in Fig. 4.6(b). The SPDs were almost fully symmetric with respect to
bias current, and the escape rates deviated from an exponential. The mean IM,2 and
standard deviation ‡2 of the SPDs are shown in Figs. 4.6(c, d), respectively, and are
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Figure 4.6. Temperature dependence of stochastic phase escape processes in JJ2.
a Switching probability distributions (SPDs) for JJ2 for various temperatures. Colours are
defined in (c). b Escape rate � of JJ2, obtained from the data in (a) using Eq. (2.34).
c Mean switching current ISW of SPDs for JJ2 as a function of temperature. d Standard
deviation ‡2 of SPDs for JJ2, as a function of temperature.

notably di�erent to those of JJ1. The mean switching currents are much smaller, and
decrease gradually with increasing temperature without a kink [see Fig. 4.2(c)]. The
standard deviation ‡2 is smaller by a factor of more than 10 compared with ‡1, and does
not saturate for T æ 0. These results indicate that, while MQT is the dominant phase
escape mechanism in JJ2, large dissipation results in a significant retrapping probability
and places JJ2 in the PD regime down to base temperature. The small IC,2 likely sets
Q0 ≥ 1, which is outside the range of validity of our Monte Carlo simulations.

The critical current of JJ2 is expected to have a much smaller critical current than JJ1,
from the designed junction dimensions. The reduction of the critical current increases
the susceptibility of JJ2 to phase di�usion relative to JJ1: the barrier height is reduced,
meaning that escape events can occur for bias currents a small fraction of the critical
current, and damping is increased so the probability for retrapping is high.
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By changing the geometry of JJ2 compared with JJ1, the phase escape dynamics
changed dramatically. The modifications to the geometry altered the critical current
of the junction, in a similar way to a gate voltage (Fig. 4.4) or in-plane magnetic field
(Fig. 4.5). They are also expected to impact the capacitance: based on Eq. 4.2, the
geometrical capacitance of JJ2 is estimated to be approximately 0.2 fF. This would act
to increase the plasma frequency, and therefore increase quantum fluctuations in the
macroscopic phase. The phase dynamics of JJ2 will be revisited in Chapter 5, where
JJ2 is measured in parallel with JJ1 in a SQUID configuration.

4.4.2. Changing the Superconducting Leads
We further investigate the influence of device geometry on phase escape dynamics using
JJ3 and JJ4, which are schematically shown in Figs. 4.7(a) and (b) respectively. The
former, JJ3, consisted of two large superconducting leads separated by a stripe of exposed
semiconductor of length L = 50 nm and width W = 3.5 µm. In contrast to JJ1 and JJ2,
where the superconducting leads extended 250 nm away from the junction region, the
leads of JJ3 were semi-infinite. The junction region of JJ4 was similar to that of JJ1: the
junction had length L = 50 nm and width W = 5 µm, and the superconducting leads
were 250 nm long. However, a metallic island was deposited on top of the insulating
dielectric layer such that it had a large overlap with the Al contacts on either side of
the junction. This was designed to give a large parallel-plate capacitance Cpp between
each Al contact and the Au island, such that there would be a total shunt capacitance

Figure 4.7. Schematic representation of Josephson junctions with di�erent designs
of the superconducting leads. a Schematic of JJ3, similar to JJ1 except with large
superconducting leads. The Al (blue) is removed to expose the InAs (pink) only in a small
rectangular section, which defines the junction region. The gate over the junction region is
not drawn, to more clearly show the junction shape. b Schematic of JJ4, similar to JJ1 with
the addition of a large Au island (yellow) overlapping the left and right contacts. Since the
Au is isolated from the Al leads, it acts as a shunt capacitance for the junction. Gates in the
junction region are not drawn, to more clearly show the junction shape.
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Cs = Cpp/2 ¥ 1 pF. The exposed semiconducting regions in JJ3 and JJ4 were controlled
with electrostatic gates, to control the switching current and, in the case of JJ4, deplete
the semiconductor around the junction. These gates are not drawn in Fig. 4.7, so that
the junction shape is clearly visible for each device.

Switching current measurements were performed on JJ3, at a top-gate voltage
VG = 150 mV where the switching current was maximum. Figures 4.8(a) and (b)
respectively show the SPDs and escape rates, as a function of mixing chamber tempera-
ture T . For low temperatures, the standard deviation [Fig. 4.8(d)] had an approximately
constant value of ‡ = 4.2 nA. For T > 250 mK, ‡ decreased with temperature until a
minimum of 2 nA at T = 600 mK, after which ‡ increased with increasing temperature.

Figure 4.8. Temperature dependence of stochastic phase escape processes in JJ3.
a Switching probability distributions (SPDs) for JJ3, similar to JJ1 with thick Al leads, for
various temperatures. Colours are defined in (c). b Escape rate � of JJ3, obtained from the
data in (a) using Eq. (2.34). c Mean switching current ISW of SPDs for JJ3 as a function
of temperature. d Standard deviation ‡2 of SPDs for JJ3, as a function of temperature.
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The temperature dependence of ‡ suggests that JJ3 was in the MQT regime for
T < 200 mK and was phase di�usive for T > 200 mK up to approximately 600 mK. For
T > 600 mK, the increasing ‡ with T implies the onset of TA processes. The small ‡ in
the MQT regime, relative to JJ1, is indicative of small quantum fluctuations, i.e. smaller
plasma frequency, due to a larger capacitance and smaller critical current. This is
supported by the onset of TA, which was not observed in JJ1 or JJ2, since the cross-
over temperature given by Eq. 4.1 is reduced [277]. A fit to � at T = 20 mK in the
MQT regime (Eq. 2.36) returns a critical current of IC = 0.84 µA and a capacitance of
C = 43 fF, consistent with this interpretation. We estimate that the quality factor at
low temperature is Q0 ≥ 1.5, which is outside the range of validity of our Monte Carlo

Figure 4.9. Temperature dependence of stochastic phase escape processes in JJ4.
a Switching probability distributions (SPDs) for JJ4 for various temperatures. Colours are
defined in (c). b Escape rate � obtained from the data in (a) using Eq. (2.34). c Mean
switching current ISW of SPDs as a function of temperature. d Standard deviation ‡2 of
SPDs as a function of temperature.
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simulations.
Switching current measurements performed on JJ4 are summarised in Fig. 4.9, for zero

top-gate voltage. For temperatures T . 0.7 K, the SPDs had a regular shape with nega-
tive skewness [Fig. 4.9(a)] and the escape rates had a pure exponential form [Fig. 4.9(b)].
For large temperatures T & 0.7 K, the SPDs and escape rates were distorted. The de-
pendence of IM on temperature was similar to that of JJ3 [see Fig. 4.9(c)], although
gave much larger values. This could be explained by the larger width W of JJ4 relative
to JJ3, and fabrication di�erences between the devices. In contrast, ‡ for JJ4 is qualita-
tively di�erent from that of JJ3 [see Fig. 4.9(d)]. At low temperature, ‡ ¥ 17 nA up to
T ≥ 0.15 K, after which it increased with temperature up to a maximum of ‡ = 28 nA
at T = 0.7 K. For T > 0.7 K, ‡ decreased sharply with temperature.

The temperature dependence of ‡ implies that JJ4 was in the MQT regime for low
temperature, and experienced TA processes for T & 0.15 K. Phase di�usion did not
become significant until T & 0.7 K. This shows that JJ4 was in a qualitatively di�erent
regime to the other measured JJs, since a transition from MQT to TA escape was
observed at much lower temperatures than the PD regime. The inclusion of a large
metallic island connecting the two superconducting leads resulted in a dramatic change
in the phase escape dynamics.

This is consistent with an increase in the e�ective capacitance of the junction, which
suppresses quantum fluctuations such that the cross-over temperature to thermal activa-
tion is much lower. However, the standard deviation at low temperature was much larger
in JJ4 than JJ3, and a fit to �(T = 0.02 K) in the MQT regime (Eq. 2.36) returned a
critical current of IC ≥ 2.9 µA and a capacitance of C ≥ 10 fF. The fitted capacitance is
much smaller than the estimated shunt capacitance Cs ≥ 1 pF, based on the overlap area
of 200 (µm)2 on each side of the junction. Since the metallic island overlaps with the
leads more than 1 µm from the junction, a more sophisticated model might be needed
to account for shunt impedances in the circuit far from the junction [275]. This analysis
is beyond the scope of this work.

4.5. Conclusions
In conclusion, we have shown that macroscopic quantum tunnelling (MQT) and phase
di�usion (PD) are the most relevant phase escape regimes in planar Josephson junctions
(JJs) in InAs/Al heterostructures; contrary to conventional metallic JJs, no indication of
thermal activation (TA) is observed. Characteristic experimental features are reproduced
with a Monte Carlo simulation of the phase dynamics, revealing that the low-temperature
mean switching current IM is a small fraction of the critical current IC, even though the
Josephson energy EJ is significantly larger than the charging energy EC. In JJs with
small IC, the suppression of IM is strong enough that PD dominates at low temperature.
The transition temperature T

ú between MQT and PD regimes could be tuned using
a gate voltage and an in-plane magnetic field, via tuning of the critical current and
the normal state resistance. The phase escape dynamics are significantly altered by
changing the junction environment. Increasing the superconducting lead dimensions
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results in a reduction in switching current fluctuations in the MQT regime, due to
a larger capacitance. Further, the inclusion of a shunt capacitor promotes TA phase
escape, such that the TA regime occurs at lower temperatures than the onset of PD.

With both in situ tuning of device parameters, and alterations to the device design,
we have investigated how the phase escape mechanisms in planar JJs depend on three
macroscopic junction properties: critical current, normal state resistance and capaci-
tance. Our results indicate that phase dynamics significantly a�ect the switching current
of hybrid devices, and guide towards the realisation of improved quantum architectures.

Future studies could extend the analytical escape rate equations used here to account
for a non-sinusoidal current-phase relation, relevant for hybrid JJs containing highly
transmissive Andreev bound states. The influence of shunt capacitances on phase es-
cape dynamics could also be investigated further, to understand the impact of large
capacitances on suppressing quantum fluctuations and promoting TA processes.
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5 Phase Dynamics in Planar Josephson
Junctions Part II: SQUIDs

Superconducting quantum interference devices (SQUIDs) are realised by embedding a
Josephson junction (JJ) in a superconducting loop, such that the phase di�erence be-
tween the superconducting contacts of the JJ is related to the total flux through the loop.
Their sensitivity to magnetic fields enables SQUIDs to be used for delicate magnetom-
etry and sensing [17], and they allow phase biasing to probe novel material properties
such as topological transitions [120, 122, 123]. When using a SQUID to probe an in-
dividual JJ, it is particularly important to understand e�ects arising from the coupled
system. This chapter investigates the stochastic behaviour of a SQUID composed of JJ1
and JJ2 (introduced in Chapter 4), connected via a superconducting loop, and how the
phase escape dynamics in the SQUID relate to those of the individual JJs outlined in
the previous chapter. The text and figures of this chapter are adapted from Ref. [251].

This chapter is adapted from the following publication:

Measurements of Phase Dynamics in Planar Josephson Junctions and
SQUIDs
D. Z. Haxell, E. Cheah, F. Krizek, R. Schott, M. F. Ritter, M. Hinderling,
C. Bruder, W. Wegscheider, H. Riel, and F. Nichele
Physical Review Letters 130, 087002 (2023).

Author contributions: F.N. conceived the experiment. E.C., F.K., R.S., and
W.W. performed the material synthesis and characterisation. D.Z.H. designed the
samples, F.N. gave support. D.Z.H. fabricated the samples, M.F.R. provided advice and
support. F.N. and D.Z.H. performed the measurements. D.Z.H. analysed the data, C.B.
provided theoretical support on the appropriate formulae and F.N. contributed to the
Monte Carlo script. D.Z.H. and F.N. analysed and interpreted the data, with contributions
from all authors. F.N. and D.Z.H. wrote the manuscript, with contributions from all authors.

This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/).
© 2023 American Physical Society
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5.1. Measuring JJ1 and JJ2 in a SQUID
We present the phase dynamics when both JJ1 and JJ2 are activated.

5.1.1. Temperature Dependence
Figures 5.1(a) and (b) show the mean, IM,S, and standard deviation, ‡S, of each SPD
obtained in the gate configuration VG1 = ≠180 mV and VG2 = ≠140 mV [the same as
Fig. 4.1(b)] as a function of B‹ and T . Each SPD was obtained by recording 5,000
switching events. In Fig. 5.1(a), SQUID oscillations are clearly captured by IM,S. In
Fig. 5.1(b), the curves at low T have a large ‡S, independent of B‹. As T increases
further, ‡S is modulated by B‹ and ultimately becomes small and independent of B‹.
In Fig. 5.2(a) we compare IM,2 [squares, as in Fig. 4.6(c)] to the half-amplitude of the
oscillations in IM,S (circles). In the absence of phase fluctuations, the two quantities
would coincide. Instead, we find a significant discrepancy, highlighted by green shading,
which is large at low T and vanishes above T

ú of JJ1. By tuning T
ú via VG1, we confirm

that the enhancement of �IM,S/2 with respect to IM,2 was always correlated to T
ú in

JJ1 [see the full dataset in Appendix E]. The mean value of IM,S matched IM,1 [see
Fig. 5.3(a)] and the mean of ‡S, È‡SÍ, was similar to ‡1 [Fig. 5.2(b)].

Figure 5.1. Phase escape in a superconducting quantum interference device
(SQUID). Mean IM,S a and standard deviation ‡S b of the SPDs in the SQUID config-
uration as a function of B‹, for temperatures between 20 and 800 mK.
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Figure 5.2. Comparison between phase escape of single JJs and a SQUID. a Mean
switching current of JJ2 as a function of T , derived from the SQUID oscillations (circles) and
measured with JJ2 in isolation (squares). The solid line is �IM,S/2 obtained from a Monte
Carlo simulation fitted to the experimental results. b Standard deviation of the SPD in JJ1
measured in isolation (squares) together with the mean of ‡S from Fig. 5.1(b) (circles) as a
function of temperature. The solid line is the result of the Monte Carlo simulation presented
in (a). c SQUID critical current obtained by fitting the SPDs for T = 20 mK to an MQT
escape rate. d Colour map of fitted standard deviation ‡S, with transition temperature T

ú

marked by a dashed line.

The results presented in Figs. 5.1 and 5.2 are intuitively understood by considering
phase-locking by the loop inductance. For JJ2 alone, phase escape is more likely at
moderate currents compared to JJ1. Coupling JJ2 to JJ1 e�ectively realises a new JJ
with higher Josephson energy and similar phase dynamics to JJ1, so that the dominant
switching mechanism is MQT and, consequently, the suppression of IM is reduced. How-
ever, protection of IM,2 is maintained while JJ1 stays in the MQT regime (T < T

ú),
where phase uncertainty is less than in the PD regime.

Consistent with this interpretation, phase dynamics in the asymmetric SQUID con-
figuration are well described by a Monte Carlo simulation of a fictitious JJ with a field-
dependent critical current IC,S(B‹), and with C and Q as derived for JJ1. The sole fit
parameter was IC,S for T = 20 mK, which is shown in Fig. 5.2(c) as a function of B‹ (cir-
cles). The curve is consistent with the presence of highly-transmissive Andreev bound
states (ABSs), resulting in a forward-skewed current-phase relation [153, 171]. Also for
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the SQUID, the critical current IC,S and mean switching current IM,S [Fig. 5.1(a)] di�er
by a factor of approximately 2.5. After obtaining IC,S(B‹) for T = 20 mK, the entire
dataset of Figs. 5.1(a) and (b) was simulated without free parameters. We show the sim-
ulated half-amplitude �IM,S/2 and the mean of ‡S as grey lines in Figs. 5.2(a) and (b)
respectively. Despite the simplicity of our model, experimental results are reproduced to
a large extent. Figure 5.2(d) shows a colour map of the simulated standard deviation,
‡S(B‹, T ), with T

ú indicated by a dashed line and marking the crossover between MQT
and PD. The phase dynamics are completely described by MQT and PD for low and
high T , respectively. For intermediate T , the phase escape mechanism periodically varies
between MQT and PD as a function of B‹.

5.1.2. Monte Carlo Model

Figure 5.1 shows the switching probability in the SQUID configuration, as a function
of B‹ and T . From IM,S and ‡S as a function of B‹ we extract �IM,S/2 and È‡SÍ. In
Fig. 5.3, we plot the remaining extracted parameters ÈIM,SÍ and �‡S (circles) with the
corresponding results for the Monte Carlo simulation (lines). Figure 5.3(a) shows the
field-averaged value of the oscillations in IM,S (circles) compared with IM,1, the mean
switching current for JJ1 (squares). The two align across all temperatures, confirming
that JJ1 dominates the average SQUID behaviour.

The SQUID results are compared with the Monte Carlo simulation (grey lines in
Figs. 5.2 and 5.3). The fit parameter IC,S is obtained from the low-temperature data.
Since the SQUID is in the MQT regime, we fit the escape rate at each value of B‹ with
Eq. 2.36 using a fixed C = 1 fF and Q0 = 7 from JJ1. The skewness of IC,S indicates
that highly transmissive modes are present in the junction. To capture this skewness,
we consider a JJ with many modes N of equal transmission ·̄ :

IC,S = IC,1 + IN
sin(Ï)

Ò
1 ≠ ·̄ sin2(Ï/2)

, (5.1)

with IC,1 = 3 µA, IN = 480 nA and e�ective transmission ·̄ = 0.77 [orange line in
Fig. 5.2(c)]. This gives �IC,S/2 = 650 nA. The mean value of IC,S at T = 20 mK is
given by the solid line in Fig. 5.3(a). We use the low-temperature result to simulate the
full dataset by varying IC,1 and I0 with a Bardeen dependence, as in Chapter 4.

The Monte Carlo simulation (grey line) follows the data at low temperatures, but
some deviations emerge above T = 600 mK when the junction is almost completely
phase di�usive [see Figs. 5.2(a) and 5.3(a)]. The escape rates are particularly sensitive
to the damping Q in this regime, so deviations between simulations and experiment at
high temperature might be accounted for with a more complex temperature dependence.

We observe a strong magnetic-field-dependence of the standard deviation in the
SQUID, which is characterised by �‡S in Fig. 5.3(b). Close to the transition tempera-
ture T

ú ¥ 0.55 K, �‡S is more than 35 nA. Both at low and high temperature, ‡S is
almost constant across magnetic field. However, oscillations in the simulated ‡S were
observed at low temperature, hence the larger simulated �‡S.
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Figure 5.3. Monte Carlo simulation of the SQUID. a Average value of IM,S across
B‹ (circles), as a function of temperature (as indicated by the colour), compared with the
mean switching current of JJ1 in isolation IM,1 (squares) and a fit obtained by Monte Carlo
simulation (grey curve). b Di�erence between the maximal and minimal ‡S across B‹, �‡S

(circles), which indicates the size of the field-dependence in ‡S at a given temperature. This
is compared with a Monte Carlo simulation (grey line), which reproduces the trend.

The above analysis gave the results IC,1 = 3 µA and IC,2 = 650 nA. We can further
quantify the properties of JJ1 and JJ2 by considering their ICRN product [181]. This
gives IC,1 · RN,1 = 3 µA · 150 ⌦ = 450 µV and IC,2 · RN,2 = 650 nA · 540 ⌦ = 350 µV,
for JJ1 and JJ2 respectively. The expected ICRN product is fi�/e in the clean limit, or
fi�/2e in the dirty limit (le < ›). For a superconducting gap of � = 180 µeV, this gives
ICRN = 565 µV or 283 µV, respectively. Hence, both JJ1 and JJ2 are in an intermediate
regime between the clean and dirty limits, with JJ2 closer to the dirty limit than JJ1.

5.2. Gate and Flux Control of Phase Dynamics
In the following, we discuss how the phase escape dynamics vary as IC,1 and IC,2 are
tuned with gate voltages.

5.2.1. Top-Gate Dependence of JJ2
In an asymmetric SQUID (IC,1 ∫ IC,2), the amplitude of oscillations as a function of B‹
is an indication of the current flowing through the small junction. We use Eq. 2.46 to
extract the critical current of JJ2 in the asymmetric SQUID, as a function of gate voltage
VG2. We measure SQUID oscillations at T = 20 mK and fixed VG1 = ≠180 mV, with
di�erent VG2 [see Fig. 5.4(a)]. The SQUID is always in the MQT regime, independent
of VG2, and the asymmetry is large. For each VG2, we extract �IM,S/2. We extract the
critical current IC,S by fitting each SPD with Eq. 2.36 in the MQT regime, with fixed
capacitance C and quality factor Q0 defined by JJ1. The result is shown in Fig. 5.4(b),
from which we extract IC,2 = �IC,S/2.

63



5. Phase Dynamics in Planar Josephson Junctions Part II: SQUIDs

Figure 5.4. Dependence on the gate voltage of JJ2. a Mean switching current IM,S as
a function of B‹, taken at T = 20 mK for di�erent values of the JJ2 gate voltage, VG2. The
oscillation amplitude �IM,S/2 gives the switching current of JJ2 in the SQUID, as indicated
by the arrow for VG2 = ≠100 mV. b Critical current IC,S, obtained from the curves in (a)
by fitting SPDs in the MQT regime. The oscillation amplitude IC,2 = �IC,S/2 gives the
critical current of JJ2 as a function of VG2, as indicated by the arrow for VG2 = ≠100 mV.

Figure 5.5. Summary of switching current suppression. Switching currents of JJ2
as a function of VG2 when measured in isolation (squares) and in the SQUID configuration
(circles), together with the critical current derived from Monte Carlo simulations (diamonds).
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Figure 5.5(a) summarises results for JJ2 as VG2 was varied. When JJ2 was mea-
sured in isolation, switching currents IM,2 were small and PD was the dominant regime
throughout the accessible range of VG2. We highlight this condition with grey shading.
When the SQUID was formed, the switching current of JJ2 deduced from the SQUID
oscillations (�IC,S/2) was significantly higher than when JJ2 was measured in isolation.
We highlight this situation with green shading. For VG2 < 300 mV JJ2 was resistive, if
measured in isolation, presumably due to EJ/EC ¥ 1 [270–272], but SQUID oscillations
were still observed. Finally, the IC,2 obtained by fitting the SPDs in the SQUID with
the Monte Carlo simulation [as in Fig. 5.2(e)] is highlighted in yellow.

5.2.2. Top-Gate Dependence of JJ1
The regime of the SQUID is dominated by JJ1, the large IC component, so we can
change the SQUID behaviour by varying VG1. Decreasing IC,1 via VG1 made the SQUID
more symmetric and shifted JJ1 towards a regime of PD (see Fig. 4.4). Figure 5.6
shows ‡S for decreasing values of VG1. For VG1 = ≠300 mV and ≠350 mV [Figs. 5.6(a)
and (b), respectively] escape dynamics varied between MQT (blue shading) and PD
already at base temperature, with ‡S oscillating between 10 and 60 nA within one
SQUID oscillation. For VG1 = ≠375 mV [Fig. 5.6(c)] PD dominated at low T , although
modulations in ‡S persisted. The full dataset is shown in Appendix E.

Figure 5.6. Flux-dependent phase escape regimes. Standard deviation of switching
probability distributions measured in the SQUID configuration for three values of VG1. Blue
shading highlights macroscopic quantum tunnelling regimes.
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5.3. Conclusions
In conclusion, we have shown that embedding a Josephson junction (JJ) in an asym-
metric SQUID modifies the phase escape dynamics. Thus, the mean switching current
IM may significantly vary when a junction is measured in isolation or in a SQUID,
by a factor of approximately 2.5 in the present case. This result resolves the discrep-
ancy in switching current measurements introduced at the beginning of Chapter 4. The
dominant phase escape mechanism is further tuned via temperature, gate voltages and
fluxes threading the SQUID. This intricate physics is relevant for realising gate-tunable
quantum devices and investigating topological phenomena, where hybrid JJs with phase
control are widespread.

In this chapter, we have assumed that the phase particle moves in an e�ective one-
dimensional potential, which is a good approximation for strongly asymmetric SQUIDs.
However, future work might consider escape mechanisms in two-dimensional phase space,
where the phase can follow a complex trajectory through the potential landscape. A
full quantum treatment of phase escape in a two-dimensional potential might facilitate
accurate modelling of the data shown in Fig. 5.6.
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6 Spectroscopy of Andreev Bound States
Part I: Photon Assisted Tunnelling

The supercurrent is a macroscopic property of a Josephson junction. It is composed of
the sum over individual contributions from all transverse modes, each corresponding to a
sub-gap state with properties depending on the mode transmission. To understand these
microscopic states, and to relate their properties to potential applications, it is necessary
to use spectroscopic methods which probe the states more directly. One approach is
tunnelling spectroscopy, where a probe is weakly coupled to a Josephson junction via a
potential barrier, and the tunnel current through the barrier is used to infer the density
of states in the junction [278, 279]. This chapter explores the tunnelling spectroscopy
method in the context of a device under microwave irradiation, and outlines an approach
to distinguish interactions of the microwave field with the tunnel probe from signatures
of novel Floquet-Andreev states in the Josephson junction. The text and figures of this
chapter are adapted from Ref. [280].

This chapter is adapted from the following publication:

Microwave-Induced Conductance Replicas in Hybrid Josephson Junc-
tions without Floquet–Andreev States
D. Z. Haxell, M. Coraiola, D. Sabonis, M. Hinderling, S. C. ten Kate, E. Cheah,
F. Krizek, R. Schott, W. Wegscheider, W. Belzig, J. C. Cuevas, F. Nichele
Nature Communications 14, 6798 (2023).

Author contributions: F.N. conceived the experiment. E.C., F.K., R.S., and
W.W. performed the material synthesis and characterisation. D.Z.H. designed the samples,
F.N. gave input. D.Z.H. fabricated the samples, M.C. provided fabrication assistance.
D.Z.H. performed the experiments, M.C. and F.N. provided support. D.Z.H. analysed the
data, W.B. and J.C.C. provided theoretical support. J.C.C. analysed the non-thermal
distribution in the current-phase relation. D.Z.H., D.S., W.B., J.C.C. and F.N. interpreted
the data, with contributions from all authors. D.Z.H. wrote the manuscript with input from
D.S. and F.N., and with contributions from all authors.

This article is licensed under a Creative Commons Attribution 4.0 International
License (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/).
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6.1. Device and Measurement Concept

6.1.1. Photon Assisted Tunnelling and Floquet-Andreev States

An attempt to realise light-matter coupling was recently pursued using an alu-
minium/graphene SNS junction under microwave (MW) irradiation [114]. Andreev
bound states (ABSs) with energy EA were measured with tunnelling spectroscopy via
a superconducting lead, as shown by the density of states (DOS) schematic in the
top panel of Fig. 6.1(a). A current (yellow) flowed between a superconducting probe
and an SNS junction, when occupied (red) and unoccupied (grey) states were aligned
in energy by a source-drain bias VSD. Without microwave irradiation, this gave a
di�erential conductance qualitatively similar to the blue curve in Fig. 6.1(b), with peaks
corresponding to ABSs at VSD = ±(� + EA)/e.

Figure 6.1. Conductance signatures of Floquet-Andreev states and photon assisted
tunnelling. a Schematic representation of density of states (DOS) and tunnelling spec-
troscopy into a superconducting-semiconducting-superconducting (SNS) junction using a su-
perconducting probe (top). Andreev bound states (ABSs) are present in the DOS of the SNS
junction at energies ±EA. A current (yellow) flows when the source-drain voltage VSD aligns
occupied (red) to unoccupied (grey) states. In a Floquet-Andreev scenario (middle), replicas
of Andreev peaks shifted by the photon energy hf emerge in the DOS of the SNS junctions,
giving rise to additional tunnelling resonances. Floquet-Andreev states are represented as
replicas of Andreev peaks shifted by hf . In a photon assisted tunnelling scenario (bottom),
absorption of a photon (green) induces tunnelling into an ABSs for eVSD = EA ≠ hf . b
Schematic representation of tunnelling conductance measured in the absence (blue) and pres-
ence (green) of microwave irradiation. c Squared Bessel function |Jn(x)|2 for n œ [≠5, 5]
(colours). The sum

q
n |Jn(x)|2 (grey dashed line) is constant for the range of x where

Jn>5(x) is small.
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Under microwave irradiation with frequency f , replicas of ABSs and the supercon-
ducting gap edge, separated in voltage bias by hf/e, were observed in the conductance
spectrum, with h being the Planck constant. These were interpreted in Ref. [114] as sig-
natures of steady Floquet-Andreev states (FASs) in the junction at energies EA ± nhf ,
as schematically shown in the middle panel of Fig. 6.1(a). Alternatively, photon assisted
tunnelling (PAT) [201, 204, 206, 207, 219, 281–283] can promote tunnelling across the
barrier by absorption or emission of photons (green) with energy hf . The bottom panel
of Fig. 6.1(a) depicts an example of electron tunnelling into an ABS assisted by absorp-
tion of a photon. Both FASs and PAT give, at least qualitatively, conductance curves
as shown in the bottom panel of Fig. 6.1(b), with peaks at VSD = (� + EA ± nhf)/e,
where n is an integer. Conductance replicas arising from both PAT and FASs follow
a squared-Bessel-function dependence on power, schematically depicted in Fig. 6.1(c).
The sum over squared Bessel functions is identically constant [see grey dashed line in
Fig. 6.1(c), which is constant for the range of x where Jn>5(x) is small]. Therefore, the
sum of conductance replicas is expected to be constant for both PAT and FASs. Dis-
tinguishing the generation of FASs from PAT, which was not considered in Ref. [114], is
crucial for the realisation of light-matter band engineering in nanoscale hybrid devices.

6.1.2. Device with Gate-Tunable Tunnelling Barrier
Figure 6.2(a) shows a false-coloured micrograph of the device, which consisted of a planar
SQUID containing a planar Al/InAs/Al junction and an Al constriction, all defined in
the epitaxial Al (blue). The Al constriction was designed to limit the switching current
of the metal arm, while being significantly larger than that of the SNS junction. This
configuration allowed for a stable phase drop across the SNS of Ï = 2fi(�/�0), where �

is the flux threading the SQUID and �0 = h/2e is the superconducting flux quantum.
The Al loop was connected to two low-impedance superconducting leads, which allowed
switching current measurements. A superconducting tunnelling probe with gate-tunable
transparency was integrated close to the SNS junction, allowing for spectroscopy into
the normal region. Two gates controlled the transparency of the tunnelling probe by
the gate voltage VT. A zoom-in close to the tunnelling probe, obtained prior to gate
deposition, is shown in Fig. 6.2(b), where tunnelling gates are shown schematically. The
SNS junction was controlled by a top gate, which was set to VTG = ≠0.8 V unless
otherwise stated. An additional gate was kept to VProbe = 0 for the whole experiment.
Microwave signals were applied via an attenuated coaxial line terminated in an antenna
configuration and placed approximately 1 cm away from the chip surface.

Figure 6.2(c) shows the di�erential conductance G © I1/V1 of the tunnelling probe as
a function of VT and VSD, as the gate-tunable probe transitioned from the open to the
tunnelling regime [top and bottom part of Fig. 6.2(c), respectively]. The open regime
was characterised by a zero-bias conductance peak, which represents a supercurrent
flowing through the tunnelling probe (green dashed line), and several finite bias features,
which indicate multiple Andreev reflections (blue dashed line). The tunnelling regime
displayed pronounced features at a voltage 2�/e = 380 µV (white arrow), consistent
with the superconducting gap � = 190 µeV of Al [249]. Figure 6.2(d) shows G at low
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Figure 6.2. Device under study and tunnelling spectroscopy of sub-gap states. a
False-coloured electron micrograph of a device identical to that under study, composed of
InAs (pink) and Al (blue) and controlled via electrostatic gates (yellow). b Zoom-in of
the tunnelling junction before gate deposition. The gates controlling the tunnelling barrier
transparency are drawn in yellow. c Di�erential conductance G of the tunnelling probe
as a function of bias VSD and gate voltage VT. Conductance features associated with the
supercurrent (SC, green), multiple Andreev reflections (MAR, light blue) and Andreev bound
states (ABSs, red) are indicated by dashed arrows. The transport gap is indicated as 2�/e
(white arrow). d Tunnelling spectroscopy of sub-gap states at VT = ≠2.11 V, as a function
of perpendicular magnetic field B‹. Conductance features as defined in (c) are indicated by
coloured lines.

barrier transparency (VT = ≠2.11 V), as a function of perpendicular magnetic field B‹
and voltage bias VSD. Several finite bias conductance peaks are evident in Fig. 6.2(d)
(red dashed lines). In addition to some highly transmissive ABSs present within the
superconducting gap of the SNS junction, additional features may result from multiple
Andreev reflections, disorder in the tunnelling barrier and sub-gap states in the DOS of
the superconducting probe [284].
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6.2. Conductance Replicas Under Microwave Irradiation
6.2.1. Emergence of Conductance Replicas
The e�ect of microwave irradiation on the tunnelling conductance G for B‹ = 0 is
summarised in Figs. 6.3 and 6.4. The top rows show G measured with the probe in
the tunnelling regime (VT = ≠2.11 V), where conductance features at finite bias are
associated with the DOS in the SNS junction. A remnant of the supercurrent is visible
in these plots by saturating the colourscale and zooming in close to zero bias, as we
show in the bottom row of Figs. 6.3(a-c) and 6.4(a–c). Figure 6.3(a) shows G with-
out microwave irradiation, while Figs. 6.3(b, c) and 6.4(b, c) show G as a function of
microwave source power P at frequencies fi = {4.65, 7.40, 9.20, 12.65} GHz. Similar
plots, obtained in a more open regime (VT = ≠2.08 V), are plotted in Figs. 6.3(d–f) and
6.4(d-f). In these plots, the supercurrent flowing through the tunnelling probe is clearly
visible. For each frequency, conductance features at both zero and finite bias split into
replicas as P increased. Crucially, all conductance features split at the same power (see
blue arrows) and evolved in an identical fashion as a function of P as VSD = (hf/e)–,
where – = –0 · 10P/20. This was true for each frequency investigated. An exemplary fit
to the data of Fig. 6.3(c), which yields –0 = 3.0, is plotted as the dotted blue line. Spac-
ing between conductance replicas is indicated by green dashed lines, and is measured
as hfi/e and hfi/2e for finite and zero bias features, respectively. While performing
this analysis, it is important to distinguish conductance peaks that exclusively appear
under microwave irradiation, to those already present without irradiation and that are
caused by sample-specific features such as multiple Andreev reflections or sub-gap states
in the superconducting probe [see red arrows in Figs. 6.3(a) and (d)]. Selected linecuts
of Figs. 6.3(b, c) and 6.4(b, c) are presented in Fig. 6.5(a), after subtraction of a slowly
varying background, together with a periodic grid with spacing hfi/e. Figure 6.5(b) sum-
marises the spacing between conductance replicas as a function of microwave frequency,
which also includes additional frequencies, another VTG value and a second device (see
Appendix F). Conductance replicas at finite bias are indicated by circles and depend on
frequency as �VSD = hf/e (dashed line). Supercurrent replicas are indicated as squares
and follow the dependence �VSD = hf/2e (dashed-dotted line).

6.2.2. Dependence on Top-Gate Voltage
An example of conductance replicas at VTG = ≠1.4 V is shown in Fig. 6.5(c). Blue lines
indicate a coupling strength –0 = 3.0, identical to that in Figs. 6.3(c, f). Decreasing
the top-gate voltage from VTG = ≠0.8 V to VTG = ≠1.4 V is expected to reduce
the Fermi velocity by ≥ 25% (see Section 6.6 for more details). In a model of FASs,
– is proportional to the Fermi velocity [114], and therefore, assuming that all other
parameters in the system stay the same, – is predicted to decrease by the same factor in
Fig. 6.5(c) relative to Figs. 6.3(c, f) (yellow lines). However, there is no observed change
in – as a function of VTG, consistent with conductance replicas induced by PAT in the
tunnel barrier and incompatible with FASs generated in the SNS junction.

71



6. Spectroscopy of Andreev Bound States Part I: Photon Assisted Tunnelling

Figure 6.3. Tunnelling conductance under microwave irradiation of frequency
f1 = 4.65 GHz and f2 = 7.40 GHz. a Conductance at VT = ≠2.11 V with no microwave
signal applied (top). Red arrows indicate sample-specific features present without irradiation.
Zoom-in close to zero bias highlights remnant superuccrent (bottom). b, c Conductance
at VT = ≠2.11 V for irradiation frequencies f3 and f4 as a function of microwave source
power P and VSD (top), with corresponding zoom-ins close to zero bias to highlight remnant
supercurrent (bottom). The onset of splitting in conductance features is indicated by blue
arrows. Blue dotted lines indicate the power dependence of split-conductance features at
low bias, and dashed lines indicate the same power dependence shifted to high bias. Periodic
replication of conductance features is indicated by green dashed lines. d As (a) but for
VT = ≠2.08 V. e, f As (b, c) but for VT = ≠2.08 V. Blue dotted lines indicate the power
dependence of split-conductance features at low bias.
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Figure 6.4. Tunnelling conductance under microwave irradiation of frequency
f3 = 9.20 GHz and f4 = 12.65 GHz. a Conductance at VT = ≠2.11 V with no microwave
signal applied (top). Red arrows indicate sample-specific features present without irradiation.
Zoom-in close to zero bias highlights remnant superuccrent (bottom). b, c Conductance
at VT = ≠2.11 V for irradiation frequencies f3 and f4 as a function of microwave source
power P and VSD (top), with corresponding zoom-ins close to zero bias to highlight remnant
supercurrent (bottom). The onset of splitting in conductance features is indicated by blue
arrows. Blue dotted lines indicate the power dependence of split-conductance features at
low bias, and dashed lines indicate the same power dependence shifted to high bias. Periodic
replication of conductance features is indicated by green dashed lines. d As (a) but for
VT = ≠2.08 V. e, f As (b, c) but for VT = ≠2.08 V. Blue dotted lines indicate the power
dependence of split-conductance features at low bias.
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Figure 6.5. Frequency and power dependence of conductance replicas. a Linecuts
of conductance from Figs. 6.3 and 6.4, after subtraction of a slowly varying background,
successively o�set by 0.05 G0. Dashed lines mark the expected peak positions. Linecuts
are taken at P = 1.5, 4.5, 4, and 4.5 dBm, respectively. b Spacing of conductance repli-
cas measured at finite (circles) and close to zero (squares) bias. Dashed and dotted lines
respectively represent the equations �VSD = hf/e and �VSD = hf/2e. Filled and empty
grey markers refer to additional data collected on the same device and on a second device,
respectively (see Appendix F). c Conductance at a top-gate voltage VTG = ≠1.4 V, as a
function of microwave source power for irradiation frequency f2 = 7.20 GHz. Blue lines
indicate a microwave coupling strength of –0 = 3.0, identical to Figs. 6.3(c, f). Yellow lines
indicate a coupling strength –0 = 2.25, reduced by 25% with respect to Figs. 6.3(c, f). Blue
(yellow) lines show the expectation for photon assisted tunnelling (Floquet-Andreev states).
d Conductance of the first seven replicas in Fig. 6.4(b), taken at constant bias VSD (circles),
alongside the simulated conductance from a photon assisted tunnelling model (lines, see
Figs. 6.7–6.10). Inset shows the sum S of conductance features in Fig. 6.4(b) over positive
(blue) and negative (grey) bias. Data is shown for the range of powers where all conductance
replicas are within the measured bias range.
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6.2.3. Power Dependence of Conductance Replicas

Finally, we present the power dependence of conductance replicas shown in Figs. 6.3 and
6.4. Linecuts of Fig. 6.4(b) are shown in Fig. 6.5(d), for n = 7 replicas (coloured circles).
Their power dependence is modelled by a theory for PAT (lines) [201, 219], in which
the conductance scales as a squared Bessel function G Ã |Jn(–)|2. This is similar to the
theory used in Ref. [114], which follows the same dependence. The PAT model takes two
input parameters: the low-power conductance [Fig. 6.3(d)] and –0, which is calculated
from the low-bias conductance replicas (see Figs. 6.7–6.9). With no free parameters, a
good agreement with the data is obtained up to P ¥ 10 dBm, corresponding to – ¥ 8.
This demonstrates that high bias conductance features are explained by PAT, with an
identical coupling strength to the microwave field as those at low bias (see Section 6.5 for
more details). The sum over conductance features S is constant for the range of powers
where conductance replicas remain within the measured range of bias VSD [see inset of
Fig. 6.5(d)]. This is consistent with conservation of the tunnel current, and stems from
the result that squared Bessel functions sum to unity. Hence, the sum rule argument
cannot be used to distinguish between PAT and FA interpretations.

6.2.4. Phase Dependence and Avoided Crossings

Similar to Ref. [114], we observed phase modulation of replicas originating from
ABSs with energy EA = �

Ò
1 ≠ ·̄ sin2(Ï/2), where ·̄ is the e�ective junction trans-

mission [171]. Figures 6.6(a–c) show the tunnelling conductance as a function of
perpendicular magnetic field B‹ measured under microwave irradiation of frequency
f = 9.20 GHz and applied power P = ≠5, 0 and 5 dBm, respectively. Replicas of
phase-dependent ABS features are indicated by green dashed lines, which describe
ABSs with transmission ·̄ = 0.84. When P was increased, more replicas appeared in
the spectrum [Fig. 6.6(b)] until replicas originating from positive and negative bias
overlapped [Fig. 6.6(c)]. No avoided crossing was observed for overlapping conductance
features, in disagreement with predictions for FASs [110, 113, 285].

6.2.5. Discussion on the Origins of Conductance Replicas

Measurements presented in Figs. 6.3, 6.4 and 6.5 demonstrate that conductance repli-
cas originating from the supercurrent and from finite bias features (superconducting
gap edge and ABSs) have identical coupling strength to the applied microwave field.
Conductance replicas in the supercurrent are readily interpreted as Shapiro steps [147],
which only occur by photon absorption or emission in the tunnel barrier. Furthermore,
all conductance replicas can be described by a PAT model up to large irradiation powers
and the coupling strength was shown to be independent of top-gate voltage VTG, incom-
patible with FASs. Finally, overlapping conductance features at large microwave powers
showed no avoided crossings, contrary to predictions for FASs. We therefore conclude
that finite bias replicas originate from PAT of electrons through the tunnelling barrier,
and are not a manifestation of replicas in the DOS of the SNS junction.
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6.3. Microwave-Induced Distortions to the Current-Phase
Relation

After demonstrating that spectral replicas at high bias are caused by PAT in the tun-
nelling junction used to perform spectroscopy, we investigate how ABSs in the SNS
junction couple to the applied electromagnetic field. These experiments probe the macro-
scopic superconducting state and do not rely on the microscopic processes taking place
within the tunnelling probe, which was left floating. In particular, each occupied ABS
in the SNS carries a supercurrent I = ≠(2e/~)[ˆEA(Ï)/ˆÏ]. The total supercurrent
flowing in the SNS is obtained by summing the contributions of each ABS [153]. Fig-
ure 6.6(d) shows the CPR of the SNS junction as a function of microwave power. For
P < ≠20 dBm, we observed a forward-skewed CPR, which indicates the presence of
highly-transmissive ABSs [107, 153, 171], consistent with the spectrum in Fig. 6.2(d).

Increasing the applied microwave power, both the amplitude and skewness of the
CPR decreased. This behaviour is described by an adiabatic theory of ABSs with a
time-varying phase „(t) = Ï + 2– cos(2fift), where the electromagnetic field strength
is – = eVMW/hf [286, 287]. In this framework, the adiabatic current is given by
Iad. =

q
n J0(2n–)In(Ï), where J0 is a Bessel function of the first kind and In(Ï) are

the experimentally-determined harmonics of the CPR at equilibrium [286]. A fit with
– as the sole free parameter describes the data well (solid lines), with fitted values of
– shown in Fig. 6.6(e). At P = 0 dBm we extract –0 = 0.6, significantly smaller than
–0 = 2.5 obtained for f3 = 9.20 GHz from Fig. 6.4(c) (see Section 6.5). This indicates
that the coupling strength of the microwave field to the ABSs in the SNS junction, which
is the parameter controlling the formation of FASs, is much smaller than that extracted
from spectral replicas. This discrepancy is fully consistent with a PAT origin of spectral
replicas, not linked to processes taking place in the SNS junction.

The adiabatic theory describes the data well up to an applied power of P ≥ 5 dBm,
corresponding to – ≥ 0.6. For larger P , the adiabatic model still captures the CPR enve-
lope, but does not account for dips in the CPR appearing at specific values of B‹ [arrows
in Fig. 6.6(d)]. Supercurrent dips are explained by non-equilibrium ABS occupation due
to absorption or emission of microwave photons [286, 288, 289]. Transitions occur when
an integer multiple of the photon energy hf matches the separation between two ABSs
or between an ABS and the continuum. Once a transition occurs across the gap, the
newly occupied ABS contributes to the total supercurrent with opposite sign with re-
spect to the ground state, resulting in a dip in the CPR. Dips are resolved in the CPR
for – > 0.6, consistent with a model of non-equilibrium ABS distribution in a JJ con-
taining highly-transmissive modes (see Section 6.7). Therefore, the dominant e�ects on
the CPR in our devices are an adiabatic modulation of the phase and a non-equilibrium
distribution function of ABS occupation, up to – & 1. It is possible that supercurrent
signatures of FASs would emerge for larger microwave powers, but conductance features
would be masked by the much stronger PAT e�ects.
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Figure 6.6. Phase-dependent measurements under microwave irradiation. a Tun-
nelling conductance as a function of perpendicular magnetic field B‹ for microwave irradi-
ation with frequency f = 9.20 GHz and power P = ≠5 dBm. Green dashed lines mark
bound state replicas with e�ective transmission ·̄ = 0.84. b, c Same as (a) for P = 0 dBm
and P = 5 dBm, respectively. d Current-phase relation as a function of microwave power
(circles) fitted with an adiabatic theory (lines). Traces are successively o�set by 2.05 µA.
Deviations of the data from the adiabatic theory at high power are marked with arrows. e
Microwave field strength – obtained from the adiabatic theory fit presented in (d).
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6.4. Conclusions
In summary, conductance replicas were realised in a hybrid Josephson junction with
highly transmissive ABSs under microwave irradiation. Conductance replicas also
obeyed a sum rule, consistent with both FAS and PAT interpretations. By performing
additional tests, conductance replicas in our devices were shown to be inconsistent with
FASs and instead caused by PAT, an e�ect not considered in Ref. [114]. First, the
power dependence of conductance replicas was identical to that of Shapiro steps in the
tunnelling junction, whereas a di�erence is expected for FASs. Second, the coupling
strength – associated with conductance replicas was significantly larger than that
associated with ABSs in the SNS junction and measured via switching currents, but
should be equal in the case of FASs. Third, the coupling strength was independent on
the Fermi velocity, inconsistent with the linear dependence predicted for FASs. Fourth,
conductance replicas brought to zero energy crossed each other, while anti-crossing is
expected for FASs.

Complementary measurements of the current-phase relation of the Josephson junction
are consistent with an interaction between ABSs and the microwave field mediated by the
superconducting phase di�erence, without the need to invoke FASs. The weak coupling
of the microwave field to ABSs is presumably due to the use of an o�-chip microwave
antenna, which predominantly interacts with the device via the large leads. Future work
can engineer more e�cient coupling schemes, for example by applying local microwave
signals via gate electrodes [76], enabling stronger interaction with ABSs while limiting
heating in the setup.

Our results show that caution should be used to attribute replicas in the tunnelling
conductance to the presence of Floquet states in hybrid Josephson junctions. However,
the techniques outlined here constitute a baseline to evaluate the e�ect of light-matter
interaction in nanoscale devices, as they give distinct signatures for FASs and PAT, and
can be applied in generic cases.
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6.5. Supporting Information: Modelling of Conductance
Replicas by Photon Assisted Tunnelling

6.5.1. Microwave Field Strength from Shapiro Steps

The conductance of replicas appearing under microwave irradiation depends on the ap-
plied power P . We first consider the power dependence of Shapiro steps close to VSD = 0
[see blue dotted lines in Figs. 6.3(c, f)]. Conductance peaks occurred when the source-
drain bias VSD was equal to the Josephson voltage VJ = nhf/2e, where n is an integer
denoting the order of the Shapiro step. The conductance of the n

th Shapiro step is pro-
portional to the n

th-order Bessel function of the first kind, Jn(2eVMW/hf), where VMW

is the amplitude of the oscillating voltage due to the applied microwave signal. This
corresponds to the most likely number of photons absorbed in the system. This scales
linearly with n, such that there is an almost exact correspondence between VMW and
the VSD at which the highest conductance peak occurs. The applied microwave signal is
given as a power P in units of dBm. We therefore express the oscillating voltage at the
sample as VMW = V0 · 10P/20, where V0 contains the output voltage, device-antenna cou-
pling and coaxial line attenuation of 47 dB. In dimensionless units, the coupling strength
to the microwave field is therefore defined as – © eVMW/hf = (e/hf)V0 · 10P/20.

Figure 6.7. Microwave field strength from Shapiro steps. Conductance of Figs. 6.3(b, c)
and 6.4(b, c), plotted as a function of microwave field strength VMW/V0 = 10P/20. Shapiro
steps at VSD = nhf/2e are indicated by the coloured bars. Blue dashed lines indicate V0, as
calculated from a fit.
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Figure 6.8. Extracting the microwave coupling strength from the Shapiro steps.
Linecuts of conductance in Fig. 6.7 at bias values corresponding to the n = 0, 1, 2 order
Shapiro steps (circles). Fit to the conductance (lines) to obtain the parameter V0.

The Shapiro steps in the closed regime [Figs. 6.3(b, c) and 6.4(b, c)] are plotted
in Fig. 6.7 as a function of microwave field strength VMW/V0. The emergence of the
n
th Shapiro step scales linearly with VMW as indicated by the blue dashed lines, the

gradient of which is given by V0. Linecuts of the n = 0, 1, and 2 Shapiro steps are
plotted in Fig. 6.8 as the purple, green and red circles, respectively. The plotted data is
sampled from the raw data at intervals �VMW/V0 = 0.02, to have a regular separation
of datapoints. Due to the weak coupling between the probe and device, the conductance
of the n

th Shapiro step, Gn(VMW) © G(VSD = nhf/2e, VMW), is fitted with a squared
Bessel function of the form [147, 201, 206, 207, 219]

Gn(VMW) = Gn(VMW = 0)
5
Jn

3 2e
hf

VMW

462
= Gn(VMW = 0)

5
Jn

3 2e
hf

V0 · 10P/20
462

,
(6.1)

with Gn(VMW = 0) the conductance at bias VSD = nhf/2e with no microwaves applied.
The fit with the free parameter V0 returns V0 = {64, 91, 96, 87} µV and is plotted as the
lines in Fig. 6.8 for frequencies f1 to f4, respectively. The corresponding dimensionless
microwave field strengths are –0 = {3.3, 3.0, 2.5, 1.7}.
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6.5.2. Modelling of Photon Assisted Tunnelling Data
Figures 6.9(a–d) show the conductance maps of Figs. 6.3(b, c) and 6.4(b, c) plotted as a
function of microwave field strength VMW/V0. Conductance replicas emerge linearly with
increasing microwave field strength. The experimental data is simulated using a model
for photon assisted tunnelling, based on the coupling parameters V0 obtained from the
Shapiro steps (see Fig. 6.8). The n

th-order conductance replicas are expected to scale
as a squared Bessel function [147, 201, 206, 207, 219]

Gn

3
VMW, VSD + n

hf

e

4
= G

3
VMW = 0, VSD + n

hf

e

4 5
Jn

3
eVMW

hf

462
. (6.2)

Using the experimentally measured conductance with no applied microwaves,
G(VMW = 0, VSD), the conductance at each VMW was calculated by summing the
contributions from N replicas

G(VMW, VSD) =
Nÿ

n=≠N

Gn (VMW, VSD) , (6.3)

where N = (1 mV) · e/hf was chosen to consider conductance replicas emerging across
the full range of measured source-drain bias. The simulated conductance is plotted in
Figs. 6.9(e–h) as a function of microwave field strength VMW/V0, using the values of
V0 obtained from the Shapiro steps at each frequency. The replication of conductance
features is well described by the simulation, up to the highest measured microwave field,
in terms of the number of replicas, their dependence on microwave field strength and
the absolute value of their conductance. Some discrepancy at large VMW/V0 can be
attributed to a background conductance in the measurement data, potentially due to
device heating which is not accounted for in the simulation.

Figure 6.10 shows the conductance of replica peaks at fixed bias VSD as a function of ap-
plied power P , up to the seventh replica (circles, replica number indicated by the colour).
Data is plotted for frequencies f1 = 4.65 GHz, f2 = 7.40 GHz and f4 = 12.65 GHz, since
the equivalent data for f3 = 9.20 GHz is plotted in Fig. 6.5(c). The simulated conduc-
tance at the same bias is plotted as the shaded lines, and matches the data for low and
intermediate powers P . 10 dBm. Data is plotted for P & ≠20 dBm to better highlight
the power dependence, since only small changes in conductance were observed in the
range ≠40 dBm < P . ≠20 dBm.
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Figure 6.9. Experimental and simulated conductance replicas as a function of mi-
crowave field strength. a–d Di�erential conductance of Figs. 6.3(b, c) and 6.4(b, c),
plotted as a function of microwave field strength VMW/V0 = 10P/20. e–h Simulated con-
ductance features as a function of microwave field strength, using the coupling parameters V0
obtained in Fig. 6.8 and the measured conductance in the absence of microwave irradiation.
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Figure 6.10. Power dependence of conductance replicas. Conductance of the first
seven replica peaks in Figs. 6.3(b, c) and 6.4(c) (circles), respectively. Colours denote the
order n of the replica. Plotted alongside simulated conductance from Fig. 6.9 (lines), as a
function of applied microwave power P .

6.5.3. Removal of Background Conductance

The conductance maps in Figs. 6.3 and 6.4 show the complete response of the system to
a microwave drive of increasing power. Figure 6.11 shows a slowly-varying background
conductance Gbg, obtained by averaging the conductance trace at each power P over a
bias window of 70 µV. Dashed lines show the dependence of high conductance features
on power P , with the relation VMW = V0 · 10P/20 for values of V0 calculated from the
Shapiro steps (see Fig. 6.8).

Conductance replicas were isolated by subtracting the slowly-varying background,
G ≠ Gbg (see Fig. 6.12). The linecuts in Fig. 6.5(a) were taken at powers P = 1.5,
4.5, 4 and 4.5 dBm from Fig. 6.12 respectively, such that multiple conductance replicas
were visible. The separation between conductance features �VSD shown in Fig. 6.5(b)
was calculated by taking the average conductance peak separation across the full power
range displayed in Fig. 6.12.
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Figure 6.11. Slowly-varying background of conductance data. Power dependence of
Figs. 6.3 and 6.4, averaged at each power across a bias voltage window Vwindow = 70 µV.
Dashed lines indicate the power dependence of high conductance features.

Figure 6.12. Bias spectroscopy after the removal of a slowly-varying background.
Power dependence of Figs. 6.3 and 6.4, with the averaged background removed G ≠ Gbg.
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The background conductance contained features from the complex ABS spectrum
at low power. Multiple high-conductance lines were visible, in both the background
conductance and the di�erence, due to replication of di�erent features in the low-
power conductance map. Such conductance features could include sub-gap ABSs at
VSD = ±(� + EA)/e and the superconducting gap at VSD = 2�/e.

6.5.4. Sum Rule for Conductance Replicas

Reference [114] described the importance of a sum rule for conductance replicas to sup-
port their interpretation of Floquet-Andreev states emerging under microwave irradia-
tion. The sum rule brought forward in Ref. [114] states that the sum of conductance over
source-drain bias should be constant as a function of power, independent of the emer-
gence of conductance replicas. This is expressed by the equation S =

´ ±Œ
0 (dI/dV )dV ,

which is equivalent to a numerical integral of the experimental data. We applied the
same technique to the results shown in Figs. 6.3(b, c) and 6.4(b, c) [see Fig. 6.13, data of
Fig. 6.13(c) also plotted in inset of Fig. 6.5(c)]. The sum S was calculated for each value
of applied power P by numerical integration of the di�erential conductance G © dI/dV

over positive (negative) bias values, indicated by the coloured (grey) circles (left axis).

Figure 6.13. Sum of conductance replicas under microwave irradiation of di�erent
frequencies. (Left axis) Sum of conductance over bias, S, as a function of power P for
the data in Figs. 6.3(b, c) and 6.4(b, c), respectively. Frequencies fi correspond to those of
Figs. 6.3 and 6.4, where colours are defined. Coloured (grey) circles correspond to a sum
over positive (negative) bias, VSD > 0 (VSD < 0). (Right axis) Dashed lines indicate the
power dependence of conductance replicas, identical to Fig. 6.11.
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Dashed lines in Fig. 6.13 indicate the power dependence of high conductance features,
as a function of bias VSD (right axis). The power dependence is identical to those shown
in Fig. 6.11. The sum S was approximately constant as a function of power up to
P ¥ 5 dBm. For P ' 5 dBm, high conductance features were outside of the measure-
ment range ≠490 µV < VSD < 490 µV. The change in S was therefore consistent with
conductance replicas exiting the measurement range, such that they were not included
in S. The constant S at low power is consistent with our conclusion that PAT was the
dominant mechanism for conductance replicas, since it represents conservation of the
number of states in the tunnel barrier and the junction. Equivalently, using Eq. 6.2 we
see that S Ã

q
n |Jn(x)|2 which is constant for a sum over all n. Hence, the total tunnel

current through the barrier is constant as a function of power.

6.5.5. Microwave Coupling Strength from High-Bias Conductance
The coupling strength to the microwave field was calculated from the Shapiro steps in
Figs. 6.7 and 6.8. We complement these values with calculations of the coupling strength
directly from conductance features at high source-drain bias VSD. First, the background
conductance (see Fig. 6.11) was fitted with a Gaussian function for each value of power
P , or equivalently each value of microwave field amplitude VMW. Thus, values for the
conductance peak position Vp(VMW) and standard deviation ‡(VMW) were obtained as
a function of VMW. Then, the conductance peak position was fitted with a linear curve
to obtain V0. The values Vp(VMW) included in the fit were weighted by the standard
deviations ‡(VMW). This method produced a value of V0 for each microwave frequency
f , along with an error ”V0 describing the uncertainty of the coupling strength to describe
the data given the standard deviation ‡. The obtained values are displayed in Table 6.1.
The standard deviation of the conductance peak was 60 < ‡ < 75 µV for all datasets.

f (GHz) 4.65 7.20 9.40 12.65
V0 (µV) 83.7 ± 0.4 97.6 ± 1.5 99.5 ± 1.7 100.6 ± 2.9

–0 4.35 ± 0.02 3.19 ± 0.05 2.62 ± 0.04 1.92 ± 0.06

Table 6.1. Microwave coupling strength obtained from high-bias conductance repli-
cas at VTG = ≠0.8 V.

6.6. Supporting Information: Gate Dependence of Microwave
Coupling Strength

Replicas in the conductance spectrum shown in Figs. 6.3 and 6.4 were obtained at
VTG = ≠0.8 V. Here we show measurements on the same device at VTG = ≠1.4 V.
Figure 6.14 shows bias spectroscopy as a function of applied microwave power, for
tunnel-gate voltages VT = ≠2.1 V. On increasing applied microwave power, conduc-
tance replicas emerged at high bias with separation �VSD = hf/e. Measurements were
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performed for di�erent values of VT (see Appendix E), and conductance replicas at high
and low bias were seen in all cases. The mean separation of low and high bias replicas
are displayed as filled grey squares and circles in Fig. 6.5(b), respectively. The bias
separation of conductance replicas was consistent with �VSD = hf/q, where q is the
charge tunnelling across the barrier. Concurrent replicas in low and high bias features
indicated PAT as the dominant mechanism.

Figure 6.14. Power dependence at VTG = ≠1.4 V and VT = ≠2.1 V. Con-
ductance G as a function of source-drain bias VSD and power P , for frequencies
f = {2.80, 3.90, 4.65, 7.40, 9.20, 12.65} GHz. Mean separation of replicated conduc-
tance features is shown in the Fig. 6.5(b) (full grey circles). Power dependence of conduc-
tance replicas obtained for VTG = ≠0.8 V (blue lines, identical to Fig. 6.11) is plotted in
(c–f), alongside the expectation for a 25% decrease in coupling strength due to smaller Fermi
velocity (yellow lines).
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The coupling strength to the microwave field is calculated for this VTG value from
conductance features at high source-drain bias in Fig. 6.14, using the same procedure as
outlined in the previous section. The obtained values are displayed in Table 6.2. As for
the data taken at VTG = ≠0.8 V, the standard deviation of the conductance peak was
60 < ‡ < 75 µV for all datasets.

f (GHz) 4.65 7.20 9.40 12.65
V0 (µV) 80.6 ± 2.3 100.2 ± 2.6 99.1 ± 2.7 96.0 ± 2.3

–0 4.19 ± 0.12 3.27 ± 0.08 2.60 ± 0.07 1.84 ± 0.04
�–0 ≠0.16 ± 0.12 0.08 ± 0.09 ≠0.02 ± 0.08 0.08 ± 0.07

Table 6.2. Microwave coupling strength obtained from high-bias conductance repli-
cas at VTG = ≠1.4 V.

The values for –0 at VTG = ≠1.4 V show remarkable agreement with those at ≠0.8 V
[see blue lines in Figs. 6.14(c–f)]. The change in coupling strength as a result of the more
negative VTG is quantified by �–0 © –0(VTG = ≠0.8) ≠ –0(VTG = ≠1.4), displayed as
the final row in Table 6.2. Uncertainties are calculated from the sum over variances of
each –0 value. These results show that the change in coupling strength as a result of
the more negative gate voltage was at most 4%.

The carrier density in the SNS junction is expected to change as a function of VTG.
The maximum switching current I0 of Device 1 is plotted in Fig. 6.15(a) as a function of
VTG. Data points corresponding to VTG = ≠0.8 V and ≠1.4 V are indicated by dashed
lines, and show that I0 at VTG = ≠1.4 V was ≥ 25% the value at VTG = ≠0.8 V. The
change in maximum switching current was �I0 ¥ 0.8 µA. At VTG = ≠0.8 V, I0 reached
a peak after a linear increase from the most negative VTG values. We associate this linear
regime to the trend in electron mobility µ for increasing occupation of the first subband
in the semiconductor. Gated Hall bar measurements in the same material are shown in
Fig. 6.15(b). The density n and mobility µ are plotted as a function of the gate voltage
VG. The gate lever arm was di�erent in the Hall bar and SNS junction due to di�erent
fabrication processes for each chip. Therefore, we estimate the change in density from
the range of single subband occupation, where the mobility µ increased linearly with n.
The carrier density at peak µ was compared to that where the mobility was 25% above
its lowest measured value. This was chosen to approximately correspond to the I0 value
at VTG = ≠1.4 V relative to VTG = ≠0.8 V. This gave an approximate change in carrier
density of �n ¥ 0.5 · 1012 cm≠2, or �n/n ¥ 0.5. We therefore estimate a 25% decrease
in the Fermi velocity for VTG = ≠1.4 V relative to VTG = ≠0.8 V. While this value is
an approximation, the large change in I0 is indicative of an appreciable change in the
carrier density.

From the theory of Floquet-Andreev states [114], a 25% decrease in the Fermi velocity
would correspond to a 25% decrease in the microwave coupling strength –0. This is
plotted as the yellow lines in Figs. 6.14(c–f), and does not match the experimental result.
To be consistent with a Floquet-Andreev interpretation, calculated values of �–0 imply
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a change in the Fermi velocity of less that 4%, incompatible with switching current and
Hall bar measurements, or an alternative mechanism which almost exactly compensates
for the change in carrier density. In contrast, no gate dependence is expected in the PAT
interpretation. This further supports PAT as the dominant mechanism for conductance
replicas.

Figure 6.15. Estimating the change in carrier density as a function of VTG. a
Maximum switching current I0 in Device 1 as a function of top-gate voltage VTG. Data
points at VTG = ≠0.8 V and ≠1.4 V are indicated by dashed lines, corresponding to a
di�erence �I0 ¥ 0.8 µA. b Measurements of a gated Hall bar in the same material. Carrier
density n (blue, left axis) and mobility µ (orange, right axis) are plotted as a function of
the global gate voltage VG. Dashed lines indicate the estimated change in carrier density as
�n ¥ 0.5 · 1012 cm≠2.

6.7. Supporting Information: Modelling Distortions to the
Current-Phase Relation

6.7.1. Switching Current of the Planar SQUID
The switching current of the planar SQUID is shown in Fig. 6.16(a), for increasing
microwave power P . At low power (purple circles), oscillations with a period of
BPeriod ¥ 200 µT and peak-to-peak amplitude of 2 µA were observed, on top of a
constant background of 36 µA. For increasing applied power, the amplitude of the
oscillations decreased and their shape was distorted, while the background switching
current decreased and developed a pronounced minimum close to B‹ = 0. The decrease
in the switching current of the constriction under microwave irradiation is assigned
to pair-breaking in the Al by photon absorption, which may also account for the
enhanced switching current suppression close to B‹ = 0 by quasiparticle generation in
the constriction and the superconducting leads [290].

The CPR of the SNS junction was obtained by subtracting the switching current of the
constriction, as shown in Fig. 6.16(b) for P = ≠40 dBm (purple circles). The switching
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Figure 6.16. Current-phase relation under microwave irradiation at f = 9.20 GHz.
a Switching current I of the planar SQUID as a function of B‹, as a function of power
P . b CPR data at P = ≠40 dBm, after subtraction of background current corresponding
to Al constriction (circles). Equilibrium current Ieq determined from harmonics In up to
tenth order (orange line). Fit to CPR using Eq. 6.5 (green dashed line), giving an e�ective
transmission of ·̄ = 0.84. c Harmonics In sin(nÏ) extracted from the CPR up to the tenth
order. Colours are defined in (d). d Absolute amplitude |In| of the harmonics plotted in (c).

current of the constriction was found by a polynomial fit to the data across six full
periods, such that the resulting CPR amplitude was over all periods and the integral of
the CPR was zero over a full period. The microwave field did not a�ect the switching
current at this low power, so the CPR is considered to be at equilibrium. We described
the data by extracting the harmonics up to the 10th order, using the equation
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Ieq =
ÿ

n

In sin(nÏ), (6.4)

where In = (1/fi)
´ 2fi

0 Ieq sin(nÏ)dÏ.
The equilibrium supercurrent is plotted as the orange line in Fig. 6.16(b), composed of

the harmonics in Fig. 6.16(c) with amplitudes |In| plotted in Fig. 6.16(d). The presence of
n > 1 terms, which gives the forward skewness of the CPR, is indicative of the presence
of highly transmissive ABSs in the junction [107, 153, 171]. Since these ABSs carry
the supercurrent, the CPR is described in terms of the ABS properties. However, the
junction contained many modes, each with a distinct transmission · , which all contribute
to the supercurrent. It was not feasible to assign a transparency to each individual mode,
so we instead considered a junction where all modes have an equal e�ective transmission
·̄ . This describes the macroscopic properties of the junction, but does not capture details
of the individual microscopic states. The CPR was then described by

IABS = IN
·̄ sin(Ï)

EA(Ï)/� , (6.5)

where EA = �
Ò

1 ≠ ·̄ sin2(Ï/2) is the ABS energy and IN = (e/2~)N̄�, where N̄ is the
e�ective number of modes in the junction. A fit to the low power data gave ·̄ = 0.84
[green dashed line in Fig. 6.16(b)], consistent with the presence of highly transmissive
modes observed in tunnelling spectroscopy [see Fig. 6.2(d)].

6.7.2. Adiabatic Theory of the Current-Phase Relation under Microwave
Irradiation

We use an adiabatic theory of an SNS junction under microwave irradiation to describe
the CPR under increasing applied power [286, 287, 291]. A monochromatic drive at
frequency f generates a time-varying voltage V (t) = VMW sin(2fift), resulting in a time-
varying phase across the SNS junction of Ï(t) = Ï0 +2– cos(2fift). The electromagnetic
field strength is described by the parameter – = eVMW/hf . In the adiabatic approxima-
tion, the stationary phase at equilibrium (Eq. 6.4) is replaced by the time-varying phase
Ï(t). No excitation of ABSs is considered in this model. The resulting CPR is

Iad. =
ÿ

n

InJ0(2n–) sin(nÏ), (6.6)

where J0 is a zero-order Bessel function of the first kind and In are the harmonic coe�-
cients obtained for the equilibrium CPR. The CPR traces under microwave irradiation
were therefore fitted with – as a single free parameter, using the In shown in Fig. 6.16(d).
The results of the fit are shown in Fig. 6.6(e).
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6.7.3. Non-Thermal ABS Occupation
Analysis in the following subsection, Section 6.7.3, was performed by Juan Carlos Cuevas

with input from D.Z.H.

At large applied microwave power, the measured CPR deviated from the fitted curve
obtained from the adiabatic model. At some values of the perpendicular magnetic field
B‹, corresponding to certain phase values Ï, the measured switching current was closer
to zero than expected from the adiabatic model. This is interpreted as a non-thermal
occupation of ABSs in the SNS junction, due to excitations driven by the microwave
field. A microwave photon can induce a transition when the excitation energy 2EA is
an integer multiple of the photon energy hf . Since EA depends on the phase di�erence
Ï, absorption is expected only at specific Ï for a given frequency f . This is schemati-
cally shown in Fig. 6.17(a), for the case of · = 0.84. The current carried by an excited
ABS is equal and opposite to that in the ground state, resulting in a suppression in the
average measured current. For large drive powers, multi-photon processes are possible,
and transitions can occur into or out of ABSs from the quasiparticle continuum. Exci-
tation is most likely to occur close to Ï = fi, since this is where 2EA is smallest. This
is particularly true for highly transmissive ABSs, where the separation of the ABS from
the superconducting gap edge can be large. To describe the impact of these di�erent
microwave-induced transitions on the CPR, we employed the theory of Refs. [286, 288].
This theory, which is based on non-equilibrium Green’s functions techniques, describes
the CPR of a single channel superconducting point contact for arbitrary junction trans-
parency (·) and strength of the coupling between the microwave field and the Josephson
current (– = eVMW/hf). Figure 6.17(b) shows the simulated CPR for microwave irra-
diation of hf = 0.19�, corresponding to a frequency of 9.20 GHz, for increasing – up
to 1. The full model (solid lines) deviates from the adiabatic theory (dashed lines) for
– & 0.6, consistent with the experimental observation.

The simulated CPR considers transitions in a single mode of transmission · = 0.84,
equal to the e�ective transmission of the junction. However, this does not consider
the many modes present in the junction. Figure 6.17(c) shows a distribution of
transmissions in an SNS junction with a disordered interface, following the relation
fl(·) = 1/(fi·

3/2Ô
1 ≠ ·) [179]. The transmission distribution was chosen to give a CPR

at equilibrium which matched the experimental result. The evolution of the CPR under
microwave irradiation is shown in Fig. 6.17(d). The suppression in switching current is
less pronounced than in the single mode case, but occurs across a wider range of Ï. The
experimental data shows strong suppression across a wide range of Ï, suggesting that
the SNS junction is between the two extremes outlined in Fig. 6.17. This is consistent
with a junction containing many modes, some of which have a high transmission.
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Figure 6.17. Non-thermal occupation of Andreev bound states (ABSs). a ABS
spectrum for transmission · = 0.84. Transitions (green) from occupied (grey) to unoccupied
(red) states can occur close to Ï = fi by absorption of microwave photons with energy hf .
b Normalised current-phase relation for transmission · = 0.84 under increasing microwave
field amplitude –. Deviations of exact model (solid line) from adiabatic theory (dashed
lines) occur at some values of Ï due to non-thermal occupation. c Distribution of channel
transmissions for a planar Josephson junction with a disordered interface. The transmission
distribution follows the equation in inset [179]. d Normalised current-phase relation for a
junction modelled with a disordered interface, under increasing microwave field amplitude –

[colour defined in (b)]. Simulations presented in panels (b) and (d) were performed by Juan
Carlos Cuevas.
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7 Spectroscopy of Andreev Bound States
Part II: Anomalous Phase Shifts

Josephson junctions (JJs) defined in hybrid superconductor-semiconductor materials
gain additional functionalities due to the interplay between spin-orbit interaction and
external magnetic fields. Tunnelling spectroscopy experiments of planar InAs/Al JJs
have revealed the onset of zero-energy states at large in-plane magnetic fields [122, 123],
and more refined devices [292] have since shown zero-energy states accompanied by clo-
sure and reopening of the superconducting gap, consistent with a topological transition.
Supercurrent measurements in superconducting quantum interference devices (SQUIDs)
demonstrated gate-tunable phase shifts in small magnetic fields [109], as well as large
phase jumps at larger fields [124] accompanied by a minimum in the supercurrent am-
plitude, also consistent with a topological transition [120]. However, several questions
remain on the behaviour of planar JJs subject to in-plane magnetic fields. For instance,
Ref. [109] reported anomalous phase shifts at small magnetic fields which were consider-
ably larger than theoretical expectations [229]. Additionally, orbital e�ects can resemble
the behaviour expected from a topological transition [120, 293]: a magnetic flux thread-
ing the cross-section underneath the superconducting leads can produce non-monotonic
switching currents [122, 197] together with closure and reopening of the induced super-
conducting gap.

In this chapter, we address these questions by presenting a comprehensive investigation
of planar SQUIDs subject to in-plane magnetic fields, using a device which allowed
simultaneous measurements of the Andreev bound state (ABS) spectrum of a planar
JJ and its current-phase relation (CPR), including anomalous phase shifts relative to
an absolute phase reference. The text and figures from this chapter have been adapted
from Ref. [294].
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7.1. Device and Measurement Setup

7.1. Device and Measurement Setup

7.1.1. Devices

Experiments were performed on six devices. Figure 7.1(a) shows a false-coloured scan-
ning electron micrograph of Device 1, the principal device under study, which consisted of
a planar SQUID, defined in the epitaxial Al (blue), containing a superconductor-normal
semiconductor-superconductor (SNS) JJ and a narrow Al constriction. The SNS junc-
tion had length L = 80 nm, width W = 2.5 µm and Al leads of length LSC = 250 nm1.
The constriction had a width Wcons. = 130 nm, chosen to limit the switching current
of the planar SQUID, while still being much larger than that of the SNS junction. The
constriction was 500 nm long, to clearly define the narrow region of the Al, for both
improved control in fabrication and consistency in average switching currents. The CPR
of the Al constriction is expected to be a sawtooth shape, with a maximum supercurrent
at a well defined phase [199]. This asymmetric configuration, and sharp constriction
CPR, resulted in a phase drop across the SNS junction of Ï ¥ 2fi(�/�0), where a flux
� = AB‹ threaded the area A = 10.2 (µm)2 enclosed by the SQUID loop (�0 = h/2e
is the superconducting flux quantum). Data was periodic with a perpendicular field
BPeriod = 200 µT. Di�erently from previous work [109, 122, 124, 153], where two InAs
JJs were used, the Al constriction cannot introduce anomalous phase shifts in an in-plane
magnetic field due to the absence of spin-orbit and orbital e�ects. A superconducting
probe was integrated close to one end of the SNS junction, comprising a contact of
epitaxial Al separated from the SNS junction by a tunnel barrier defined in the InAs.
The transparency of the tunnel barrier was controlled by the gate voltages VT,L and
VT,R, applied to the left and right tunnel gates respectively. The carrier density in the
SNS junction was controlled via a top-gate voltage VTG. An additional gate was kept
at VProbe = 0 throughout. Devices 2 to 5 were similar to Device 1 except for LSC

2,
resulting in di�erent orbital coupling to in-plane magnetic fields [see Fig. 7.1(b)]. Each
measurement presented here was acquired in parallel with measurements of a Reference
Device fabricated on the same chip, which consisted of an asymmetric SQUID with two
Al constrictions of di�erent widths [see Fig. 7.1(c)].The oscillation periods of Devices
1 to 5 and the reference device were similar (all within 9 µT, corresponding to 5% of
BPeriod). Parallel conduction in the InAs surrounding Reference Devices was prevented
by setting a global gate to VGlobal = ≠3 V, such that the switching current in the Ref-
erence Device was independent of VGlobal. Further, no VGlobal-dependent phase shifts
were observed in the Reference Device at elevated in-plane magnetic fields, showing the
absence of spin–orbit e�ects.

1Device 1 was identical to the device presented in Chapter 6.
2Devices 2, 3 and 4 did not have a tunnel probe, so only supercurrent measurements were possible. See

Section 7.8 for more details.
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Figure 7.1. Device under study and Reference Device. a False-coloured scanning elec-
tron micrograph (SEM) of Device 1, the planar superconducting quantum interference device
(SQUID), consisting of InAs (pink) and Al (blue). Exposed InAs regions were controlled via
electrostatic gates (yellow). b Schematic zoom-in of the Josephson junction region (top),
with junction length L = 80 nm and superconducting lead length LSC = 250 nm indicated.
The purple dashed line indicates the position of a schematic cross-section (bottom). An
in-plane magnetic field BÎ generates a flux �Î between the superconducting leads and the
proximitised two-dimensional electron gas (2DEG), with area AÎ = LSCd. c False-coloured
SEM of the Reference Device, prior to gate deposition, consisting of two Al constrictions
embedded in a superconducting loop. A global gate VGlobal is indicated schematically (yel-
low).

98



7.1. Device and Measurement Setup

7.1.2. Measurement Techniques

Switching currents I were measured using fast current ramps and voltage triggers. A
ramped current IDC was injected into the SQUID loop while monitoring the voltage V2
across the device with an oscilloscope. The switching current was defined as the value
of IDC at which V2 exceeded a threshold. Particular care was taken to inject the current
IDC by symmetrically biasing the measurement circuit, to prevent significant voltage
build-up between SQUID and gates. Each CPR data point shown here was obtained
by averaging over 32 data points measured with IDC > 0 and 32 with IDC < 0. This
procedure allowed us to improve the experimental accuracy, limit the e�ect of the broad
switching current distributions typical of planar devices (see Chapters 4 and 5), and to
cancel trivial phase shifts originating from the kinetic inductance of the loop [235]. The
CPR of the SNS junction was obtained by subtracting the switching current of the Al
constriction IAl from that of the SQUID loop, which had a value between 30 and 45 µA
for all devices. Tunnelling conductance measurements were performed by low-frequency
lock-in techniques. A voltage bias VSD + VAC was sourced at the tunnelling probe and
the resulting AC current I1 and voltage V1 gave the di�erential conductance G © I1/V1.
Global magnetic fields were applied via a three-axis vector magnet, nominally along the
directions B‹, BÎ and Bt as indicated in Fig. 7.1(a). Further details on the procedures
used to accurately align the chip to the external magnetic field are presented in the
Supporting Information (Section 7.8).

7.1.3. Reference Device

A Reference Device was used to calibrate the position of zero perpendicular magnetic
field. An example of the switching current of the Reference Device, Iref., is shown
in Fig. 7.2(a) as a function of perpendicular magnetic field B‹. The asymmetry in
width of the Al constrictions gave an asymmetric SQUID behaviour, with a large av-
erage switching current ÈIref.Í = 40 µA (green dashed line) for the wide constriction
(Wcons. = 130 nm) and a small modulation Iref. ≠ ÈIref.Í corresponding to the narrow
constriction (Wcons. = 100 nm). The position where Iref. ≠ ÈIref.Í = 0 was taken to be
the perpendicular field at which no magnetic flux threaded the loop, B0 (marked by
the triangle). The flux dependence of the switching current deviates from the expected
sawtooth pattern, which is attributed to an appreciable kinetic inductance in the loop
relative to the inductance of the narrow constriction, and the comparable gradients of
the CPR for the narrow and wide constrictions (see Eq. 2.45). While this a�ects the
flux dependence of Iref., the trend in B0 is una�ected and so is a reliable indicator for
zero perpendicular magnetic field.

Figure 7.2(b) shows the maximum switching current of the wide and narrow constric-
tion as a function of in-plane magnetic field BÎ (green and blue circles, respectively).
At BÎ = 0, the switching current was suppressed relative to that at a small in-plane
field. This suppression is attributed to a reduced superconducting gap at BÎ = 0, due
to large quasiparticle populations which were unable to relax into the superconducting
leads [290, 295]. At a small magnetic field the number of relaxation channels would
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Figure 7.2. Characterisation of the Reference Device. a Current-phase relation of Ref-
erence Device Iref. before (left) and after (right) subtraction of average ÈIref.Í (indicated by
green dashed line). Amplitude of oscillations �Iref. is indicated by the blue arrow. Perpen-
dicular field B‹ at which Iref. ≠ ÈIref.Í = 0, B0, is indicated by the black triangle. b Average
switching current of Reference Device ÈIref.Í (green, left axis) and half the oscillation ampli-
tude �Iref./2 (blue, right axis) as a function of in-plane magnetic field BÎ. c Perpendicular
field o�set B0 as a function of in-plane magnetic field BÎ (left axis), and normalized to the
oscillation period BPeriod (right axis). Values in (b) and (c) are plotted for positive (negative)
current bias IDC as full (empty) markers.

increase, partially alleviating the gap suppression and giving an increased switching cur-
rent. This e�ect was observed for both in-plane and perpendicular magnetic fields. For
BÎ > 0.9 T, a large reduction was observed in the switching current of both constrictions,
presumably caused by some portion of the superconducting loop becoming resistive. For
this reason, no further studies were performed in this regime.
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The perpendicular magnetic field o�set B0 of the Reference Device as a function of
in-plane magnetic field BÎ is shown in Fig. 7.2(c). A weak “S”-shaped dependence of B0
persisted after accurate alignment of the external magnetic field. We speculate that the
residual trend in B0 originated from flux focusing [234] or a non-linearity of the vector
magnet. Flux-focusing e�ects in the Reference Device for in-plane fields directed along
the junction axis, BÎ, were consistent with those measured in all devices.

7.2. Phase Shifts in the Current-Phase Relation
Figure 7.3 shows the CPR of Device 1 at VTG = 0 (blue line, left axis) and Reference
Device (grey line, right axis), both at BÎ = 0.1 T. We highlight the maximum switching
current �I/2 and a B‹-field shift B0, which was measured where the CPR crossed zero
with positive slope (circle and triangle for Device 1 and Reference Device, respectively).

Figure 7.3. Current-phase relation of Device 1 and Reference Device. Switching
current I of Device 1 as a function of perpendicular magnetic field B‹ (blue) at VTG = 0
and BÎ = 0.1 T, after removing a background of IAl = 37 µA. Switching current of the
Reference Device Iref. (grey) at the same BÎ, after subtracting the average ÈIref.Í. The
zero-current position for Device 1 (Reference Device) is indicated by the circle (triangle).

Figures 7.4(a) and (b) show �I/2 and B0, respectively, as a function of BÎ and for var-
ious values of VTG. Black triangles in Fig. 7.4(b) represent magnetic field shifts measured
in the Reference Device. In Fig. 7.4(a) we plot È�I/2Í, that is the maximum supercur-
rent �I/2 averaged over positive and negative IDC. We observe a non-monotonous
dependence of È�I/2Í as a function of BÎ, with minima at BÎ = ±|B�

Î | = ±0.6 T

(see turquoise arrows). The magnetic field shift B0 in Fig. 7.4(b) shows two distinc-
tive trends. For |BÎ| . 0.4 T , B0 shows a gate-dependent deviation with respect to
the Reference Device (orange shaded area). For simplicity, we define this as a Type A
shift. These phase shifts were larger for VTG = 0 (purple) than for VTG = ≠1.6 V
(red). For |BÎ| & 0.4 T we observe a more pronounced shift (green shading), without
any measurable gate voltage dependence. We define this as a Type B shift.
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Figure 7.4. Current-biased measurements in an in-plane magnetic field BÎ. a Av-
eraged half-amplitude of a SQUID oscillation È�I/2Í as a function of in-plane magnetic
field BÎ, for di�erent top gate voltages VTG (colours). A minimum in È�I/2Í occurred
at BÎ = B

�
Î (turquoise arrows). b Shift in perpendicular magnetic field B0 of Device 1

(circles) and Reference Device (triangles), as a function of BÎ. Deviation of Device 1 from
the Reference Device is highlighted in orange for |BÎ| . 0.4 T and green for |BÎ| & 0.4 T.

7.2.1. Type A Shifts
We first examine Type A shifts in more detail. Figure 7.5(a) shows �B0, that is B0 as
in Fig. 7.4(b) after subtraction of the data at VTG = ≠1.6 V, which is the most negative
top-gate voltage and follows the trend of the Reference Device for |BÎ| Æ 0.4 T. At each
gate voltage, the field shift (circles) was approximately linear in BÎ, as highlighted by
the linear fits (solid lines). The slope — extracted from the linear fits increased for more
positive VTG. Remarkably, no significant Type A phase shift was observed for in-plane
fields Bt applied along the transverse direction, as shown in Fig. 7.5(b). The lack of
Type A shifts as a function of Bt implies a direction-dependent coupling to the external
field, with a coupling strength indicated by —.
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Figure 7.5. Current-biased measurements in an in-plane magnetic field. a Perpendic-
ular field shift �B0 for small BÎ for each VTG (circles), with a linear fit (lines) of gradient
—. Data is plotted relative to VTG = ≠1.6 V. b Perpendicular field shift �B0 for in-plane
fields Bt applied along the transverse direction.

7.2.2. Magnetic Fields in the Transverse Direction
Figure 7.6 shows the complete dependence of switching currents in Devices 1 and 4 on
magnetic fields Bt applied along the transverse direction. No minimum and increase in
the switching current was observed [Figs. 7.6(a) and (d)], nor was there an associated
phase jump [Figs. 7.6(b) and (e)], up to the largest value of Bt for which oscillations
in the switching current were observed. This shows that Type B shifts were absent for
in-plane fields applied in the transverse direction. The small di�erence between B0 for
Device 1 and the Reference Device, measured for the same applied Bt, is attributed to
di�erent flux focusing e�ects between the two devices. Figures 7.6(c) and (f) show �B0,
the field shift relative to the most negative top-gate voltage which followed the trend of
the Reference Device (VTG = ≠1.6 V for Device 1, VTG = 0.2 V for Device 4). No gate-
dependent shift was observed for Device 1 [see also Fig. 7.5(b)], however a linear gate-
dependent trend was present for Device 4. The maximum shift was �B0/BPeriod = 0.1
for Bt = 0.8 T, a factor of 5 smaller than the equivalent shift in BÎ [see Figs. 7.5(a) and
7.10(a) for comparison]. We therefore attribute this gate-dependent shift in Device 4 to
stray in-plane fields, or to an additional direction-dependent coupling in devices with
narrow superconducting leads (LSC = 180 nm).
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Figure 7.6. Switching current measurements in a transverse in-plane magnetic field
Bt. a, d Half-amplitude of switching current oscillations, È�I/2Í, for di�erent top-gate
voltages VTG, as a function of in-plane magnetic field Bt in Devices 1 and 4, respectively.
No oscillations in switching current were observed for values of Bt outside of the presented
range. b, e Perpendicular field o�set B0 of switching current oscillations as a function of
Bt, for Devices 1 and 4. The field o�set normalised to the oscillation period, B0/BPeriod,
is plotted on the right axis. Data points for each Device (Reference Device) correspond to
circles (triangles). The B0 for Device 1 and the Reference Device do not align, due to the
di�erent level of flux focusing in the two devices. c, f Perpendicular field o�set B0 plotted
with respect to that for the most negative top-gate voltage which followed the Reference
Device, VTG = ≠1.6 V (VTG = 0.2 V) for Device 1 (Device 4).

7.2.3. Type B Shifts

We now turn our attention to Type B shifts, highlighted as the green shading in
Fig. 7.4(b). To clarify the phase shift we plot the CPR at a single top-gate voltage,
VTG = ≠1 V, as a function of in-plane magnetic field BÎ (see Fig. 7.7). Each CPR
trace is normalised to its maximum switching current I0, and the perpendicular field
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B‹ is plotted with respect to the value of B0 in the Reference Device at that in-plane
field [see Figs. 7.2(c) and 7.4(b)]. This reference is indicated by the vertical dashed line
at B‹ = 0. For increasing BÎ, the position of I = 0 shifted to positive values of B‹.
Notably, at BÎ = ±B

�
Î , where the supercurrent was at a minimum [see Fig. 7.4(a)], the

shift was approximately half a SQUID period, corresponding to a phase shift of ≥ ±fi.
At BÎ = 0.9 T, the magnetic field shift accumulated in Device 1 moved towards zero, or
equivalently towards �B0/BPeriod = 1 as shown in Fig. 7.4(b).

Figure 7.7. Current-phase relation (CPR) for increasing in-plane magnetic field BÎ.
Currents I are normalized to the maximum switching current I0 at each BÎ. CPR traces are
o�set by the perpendicular field o�set B0 of the Reference Device at the corresponding in-
plane field BÎ. The shift in B‹ of the zero-current position is indicated by the green shading,
between the two grey dashed lines. Data points where the switching current was significantly
lower than its neighbours were removed, since they correspond to early switching events in
the device by stochastic fluctuations. Each trace is o�set by 3 µA to improve visibility.

7.3. Investigation of Orbital E�ects
We now present CPR data obtained from Devices 2, 3 and 4, where LSC was 400,
350 and 180 nm, respectively. Switching currents È�I/2Í are shown in Figs. 7.8(a, c)
for Devices 2 and 3 respectively, with field shifts B0 in Figs. 7.8(b, d) for each device
(coloured markers) alongside those of a Reference Device measured in parallel (black
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Figure 7.8. Switching current and perpendicular magnetic field shift for Device 2 and
3. a Average oscillation amplitude È�I/2Í of Device 2: a planar superconducting quantum
interference device (SQUID) with a superconducting lead length of LSC = 400 nm, as a
function of in-plane magnetic field BÎ for di�erent top-gate voltages VTG (colours). Minima
in the oscillation amplitude, B

�
Î , are marked with the blue arrows. b Shift in perpendicular

magnetic field, B0, of Device 2 (circles) and the Reference Device (triangles), as a function
of BÎ. Deviation of Device 2 from the Reference Device is highlighted in orange for small
BÎ and green for large BÎ. c, d The same as (a, b) for Device 3, which has LSC = 350 nm.

Figure 7.9. Switching current and perpendicular magnetic field shift for Device 4.
The same as 7.8(a, b) for Device 4, which has LSC = 180 nm.
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triangles). Figure 7.9 shows È�I/2Í and B0 for Device 4. Devices 2, 3 and 4 showed a
qualitatively similar behaviour to Device 1, despite having B

�
Î = 0.4 T, B

�
Î = 0.4 T and

B
�
Î = 0.8 T, respectively.
We repeated the analysis on Type A phase shifts presented in Fig. 7.5(a) on the data of

Figs. 7.8(b, d) and Fig. 7.9(b), and show the extracted — in Fig. 7.10(a) (see Supporting
Information, Section 7.12 for more details). As each device operated in a di�erent range
of VTG, we compare them by plotting — as a function of �VTG, the top-gate voltage
relative to the most negative value at which oscillations were observed. Despite some
scattering for small �VTG, where data analysis was intricate due to the small switching
current, we note that — follows a similar trend for all devices. In particular, — increases
with �VTG and does not depend on LSC. Figure 7.10(b) shows B

�
Î as a function of

the inverse superconducting lead length 1/LSC. The data (blue circles) followed a linear
trend, fitted by B

�
Î = (�0/d)/LSC (orange line) describing one flux quantum threading

an area LSCd. The result of d = 15 nm agrees with the separation of Al and InAs layers,
indicating a crucial role of orbital e�ects in inducing Type B phase shifts.

Figure 7.10. Summary of magnetic field shifts for devices with varying LSC. a
Gradient — of Type A phase shifts at small BÎ, for Devices 1–4 (circles, squares, triangles and
diamonds respectively), plotted against the change in top-gate voltage �VTG with respect
to the minimum value. b In-plane magnetic field where the supercurrent is minimum, B

�
Î ,

as a function of inverse superconducting lead length 1/LSC (blue circles), with a linear fit
B

�
Î = (�0/d)/LSC (orange line) giving d = 15 nm.

7.4. Tunnelling Spectroscopy around Reentrant Field
We now complement CPR measurements with spectroscopic data obtained on Device 1.
Figure 7.11 presents a series of di�erential conductance maps as a function of B‹ and
VSD, for increasing values of BÎ. All data were obtained at VTG = ≠1 V (data at
more values of VTG, and in a device with larger LSC, are reported in the Supporting
Information, Section 7.11).
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Figure 7.11. Tunnelling spectroscopy of Andreev bound states as a function of in-
plane magnetic field BÎ. Di�erential conductance G through the tunnelling probe, as a
function of source-drain bias voltage VSD and perpendicular magnetic field B‹, for increasing
values of BÎ. Measurements were taken at a top-gate voltage of VTG = ≠1 V, with tunnel-
barrier voltages (VT,L, VT,R) = (≠1.495, ≠1.65) V.

As the tunnelling probe used a superconducting lead, the di�erential conductance G at
BÎ = 0 indicates the density of states in the junction up to a bias shift of ±e�. Further
conductance peaks at zero and high bias are attributed to a residual supercurrent and
multiple Andreev reflections through the tunnelling probe, respectively. For BÎ Ø 0.2 T,
a finite density of states at the Fermi level was induced in the lead facing the tunnelling
probe, resulting in a direct mapping of the density of states in the junction [234].

For BÎ Æ 0.2 T [Figs. 7.11(a) and (b)], the conductance demonstrates a conventional
spectrum containing multiple ABSs, some of which have transmission approaching unity,
and an induced superconducting gap of approximately 180 µeV. For BÎ = 0.4 T, phase-
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dependent conductance features approached zero energy, resulting in a significant de-
crease of the superconducting gap [Fig. 7.11(c)]. For BÎ = B

�
Î = 0.6 T [Fig. 7.11(d)],

conductance features oscillated close to VSD = 0 with no clear separation between states
at positive and negative bias. As BÎ was further increased, a gap reopened in the ABS
spectrum, with discrete states around zero energy. Finally, the gap closed for BÎ Ø 1 T.
Conductance features close to VSD = 0 in Fig. 7.11(e) were reminiscent of zero-bias peaks
reported for similar devices at high in-plane magnetic fields and understood in terms on
topological states [122, 123]. However, zero-bias features of Fig. 7.11(e) were not robust
to small changes in the top-gate voltage VTG or tunnel-gate voltage VT (see Supporting
Information, Section 7.10).

7.5. Tunnelling Spectroscopy of Type A Shifts
The analysis described in this section, and plotted in Fig. 7.12(i), was performed by

Marco Coraiola with input from D.Z.H. Measurements were performed by D.Z.H.

Figure 7.12 compares spectroscopic maps obtained at BÎ = 0.2 T (a–d) and 0.4 T
(e–h), for multiple values of VTG. The value of B‹ at which the ABS energy was closest
to the gap was found for each value of VTG, as indicated by the blue circles. This was
determined as the B‹ value where the gradient ˆG/ˆB‹ was zero, at a fixed bias VSD and
averaged over multiple periods. Blue dashed lines indicate the minimum energy position
at VTG = ≠1.4 V, which is defined as B‹ = 0 in Fig. 7.12(d). For both BÎ = 0.2 T
and 0.4 T, a clear deviation of the ABS spectrum took place as a function of VTG. The
shift in perpendicular field �B0 measured from the ABS spectrum is summarised in
Fig. 7.12(i) as a function of VTG for BÎ = 0.2 T (blue) and BÎ = 0.4 T (orange). The
Type A shift �B0 obtained from the CPR is plotted on the same axis (squares, dashed
lines) and shows remarkable agreement.
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Figure 7.12. Top-gate dependence of the energy minimum at a finite in-plane mag-
netic field BÎ. a-d Di�erential conductance G as a function of bias VSD and perpendicular
magnetic field B‹, at an in-plane magnetic field of BÎ = 0.2 T. Spectroscopy was performed
at a top-gate voltage of VTG = {0, ≠0.8, ≠1, ≠1.4} V, respectively. The blue dashed line
indicates the energy minimum at VTG = ≠1.4 V. Blue markers show the shift of the energy
minimum as a function of VTG relative to VTG = ≠1.4 V. e-h Bias-dependent spectroscopy
as in (a-d) at an in-plane magnetic field of BÎ = 0.4 T. i Shift in perpendicular mag-
netic field �B0 relative to VTG = ≠1.4 V, at an in-plane magnetic field of BÎ = 0.2 T
(blue) and BÎ = 0.4 T (orange), obtained from tunnelling spectroscopy (circles, solid lines)
and current-phase relation (CPR) measurements (squares, dashed lines). The phase shift
Ï0/2fi © �B0/BPeriod is plotted on the right axis. Extraction of the phase shifts from
tunnelling spectroscopy [plotted as the circles in (i)] was performed by Marco Coraiola.
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7.6. Discussion

After demonstrating that two types of anomalous phase shifts occur in hybrid SQUIDs
in in-plane magnetic fields, we now discuss their origin. Type A phase shifts, which were
approximately linear in BÎ and depended on VTG [Fig. 7.5(a)], are associated with spin-
orbit-induced anomalous phase shifts [87, 229, 296–298], as recently reported in similar
devices [109]. Since phase shifts were much more pronounced for in-plane fields aligned
perpendicular to the current flow direction (BÎ) than parallel to it (Bt) [Fig. 7.5(b)],
and were stronger for higher electron density (more positive VTG [136, 232]), we conclude
that spin-orbit interaction in our samples is predominantly of Rashba type.

Type A phase shifts reported here, which are of similar size to those in Ref. [109],
are considerably larger than theoretical predictions [229]. Reference [109] proposed that
observed phase shifts could be explained by the contribution of several low-transmission
modes. However, we show that Type A shifts in the CPR matched those from tunnelling
spectroscopy, where conductance features at both high and low bias showed a phase shift.
Since conductance features at low bias correspond to ABSs with high transmission, we
conclude that highly transmissive modes participate in the overall phase shift despite
their large Fermi velocity. While this result does not resolve the discrepancy between
theoretical predictions and experiments [109], it rules out di�usive modes with small
Fermi velocities as the dominant cause of Type A phase shifts.

Type B phase shifts were concomitant with a reentrant supercurrrent and a closure
and reopening of the superconducting gap, independent of top-gate voltage VTG. At
BÎ = ±B

�
Î , where the supercurrent was at a minimum and the proximitised supercon-

ducting gap was suppressed, the phase shift was approximately ±fi. For |BÎ| > B
�
Î , a

gap reopened in the ABS spectrum and the phase shift increased to above 2fi. A phase
shift occurring with a supercurrent minimum and gap closure indicates a 0≠fi transition
at BÎ = B

�
Î , where the minimum ABS energy moves from Ï ¥ 0 to Ï ¥ fi due to cou-

pling of the magnetic and superconducting orders by Zeeman interaction [87, 299, 300].
All experimental signatures of Type B shifts were shown to depend on the length LSC,
consistent with a flux quantum threading an area LSCd underneath the superconducting
leads. The experimentally obtained value of d = 15 nm agrees with the separation be-
tween the Al and InAs layers (13.4 nm), up to some flux penetration into each layer. We
therefore conclude that orbital e�ects strongly contributed to inducing Type B phase
shifts. Type B shifts were observed for in-plane fields BÎ < 1 T, much lower than the val-
ues B0≠fi & 9 T expected for InAs/Al heterostructures [124]. We explain this by orbital
e�ects, which were responsible for the induced gap suppression, forcing ABSs to move
closer in energy. This enabled ABSs to cross even with small Zeeman splitting. The
phase shift extended over a range of in-plane fields since the junction contained many
ABSs with di�erent transmissions, which therefore require di�erent Zeeman energies to
cross. Previous work reported similar phase shifts [124], where a fi jump in the junction
phase was accompanied by a minimum in the switching current. However, phase shifts
depended on the top-gate voltage, unlike the Type B shifts reported here. This result
shows that orbital e�ects alone are not su�cient to explain the results of Ref. [124].
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7.7. Conclusions
In conclusion, measurements of the current-phase relation (CPR) and Andreev bound
state (ABS) spectrum in hybrid quantum interference devices showed phase shifts with
two distinct characters, referred to as Types A and B.

Type A phase shifts are attributed to coupling of the external magnetic field with an
internal Rashba spin-orbit field, resulting in a Ï0-junction. Highly transmissive ABSs
were shown to make a significant contribution to the phase shift, which was much larger
than expected for a single ballistic channel. The discrepancy might be due to the pres-
ence of many transverse modes, which future studies could investigate by varying the
junction width or using electrostatic gating, either in a split-gate [301] or multi-gate [195]
geometry. The influence of spin-orbit coupling on Ï0-shifts could be further investigated
by measuring junctions with di�erent lengths, and comparing results with theoretical
expectations [229, 298].

Type B shifts were consistent with a 0 ≠ fi transition, where orbital e�ects in the
superconducting leads played a critical role. This suggests that the geometry of the su-
perconducting leads, and their impact on orbital e�ects, is a key ingredient for realising
fi-junctions for superconducting electronics [92, 93] or in interpreting signatures of topo-
logical superconductivity [120]. Future studies could implement spectroscopic probes on
both ends of the junction to investigate the e�ect of magnetic vector potentials on ABS
properties [302], and establish how the superconducting gap changes across the device
using non-local spectroscopy techniques [292].

Non-reciprocal transport was not observed in this work. One challenge in resolving
distortions to the CPR, or small changes in the direction-dependent supercurrent, was
the removal of a large background switching current corresponding to the Al constriction,
which had a weak dependence on perpendicular magnetic field. Future measurements
could partially alleviate this issue by fabricating Al constrictions with smaller switching
currents (≥ 10 µA rather than ≥ 40 µA), performing careful independent measurements
of the Al constriction and using local flux control to mitigate field-dependent quasipar-
ticle thermalisation e�ects in the Al constriction.
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7.8. Supporting Information: Measurement Techniques
In this section, we describe in detail the measurement techniques used to extract the
current-phase relation and to align the magnetic field to be in the plane of the device
chip.

7.8.1. Extracting the Current-Phase Relation
An example of the switching current of Device 1 is shown in Fig. 7.13(a) (circles), as
a function of perpendicular magnetic field B‹. A slowly-varying background is asso-
ciated with the switching current of the Al constriction, which had a large switching
current of I ¥ 37 µA. A weak dependence of the background switching current on
B‹ is consistent with a change in the number and distribution of quasiparticle relax-
ation channels, as described in Section 7.1.3 [290, 295]. To remove this background,
the data was fitted with a polynomial function over four complete periods, each defined
by BPeriod © �0/A = 200 µT where �0 = h/2e is the superconducting magnetic flux
quantum and A = 10.2 (µm)2 is the area enclosed by the superconducting loop. This
background contribution is shown as the dashed line in Fig. 7.13(a). The SQUID switch-
ing current after removing the background is plotted as the circles in Fig. 7.13(b), at
BÎ = 0 for di�erent top-gate voltages VTG [denoted by colour, defined in Fig. 7.13(c)].
The data showed a large forward skewness, consistent with the presence of highly trans-
missive ABSs in the junction [171].

The CPR of an SNS junction containing N modes is described by

I(Ï) = ≠2e
~

Nÿ

n=1

ˆEA,n(Ï)
ˆÏ

, (7.1)

where EA,n = �

Ò
1 ≠ ·n sin2(Ï/2) is the energy of the n

th ABS with transmission ·n,
� is the superconducting gap and Ï is the phase di�erence across the SNS junction.
The total supercurrent is a sum over the contributions of each ABS in the junction. The
junctions studied in this work all had a large width W = 2.5 µm, and therefore contained
many transverse conducting modes. Since detailed knowledge about individual modes
is missing, we instead consider an e�ective transmission ·̄ to describe the properties
of the CPR: the transmission which would reproduce the CPR in a junction where all
modes have identical transmission. With the application of an in-plane magnetic field,
the CPR is expected to obtain a phase shift Ï0 [87]. Accounting for these considerations,
we obtain the equation

I(Ï) = IN
·̄ sin(Ï ≠ Ï0)

EA(Ï ≠ Ï0)/� , (7.2)

where IN = (e/2~)N̄� and N̄ is the e�ective number of modes in the junction. The
phase di�erence across the junction is related to the perpendicular magnetic field by
Ï = 2fi(B‹ · A/�0). The switching current as a function of perpendicular magnetic field
is therefore fitted using Eq. 7.2 obtaining three parameters: IN, ·̄ and Ï0 © 2fi(B0·A/�0).
The maximum switching current I0 is obtained as the maximum of I(Ï) from the fit.
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Figure 7.13. Method to extract the current-phase relation from switching current
measurements. a Switching current I of Device 1 as a function of perpendicular magnetic
field B‹. Data (circles) is fitted with a polynomial (dashed line) to extract the background
switching current corresponding to the Al constriction. b Switching current after background
extraction, as a function of perpendicular magnetic field B‹ for di�erent top-gate voltages
VTG [colours, defined in (c)]. Data (circles) is fitted with a formula for the current-phase
relation of Andreev bound states (line). Each trace is o�set by 1 µA. c, d Results of
the fits presented in (b): maximum switching current I0 and transmission ·̄ , for (c) and
(d) respectively. Results for positive (negative) applied current IDC plotted as full (empty)
markers.
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The fits to the data in Fig. 7.13(b) are shown as the solid lines, with the maximum
switching current I0 and e�ective transmission ·̄ plotted in Figs. 7.13(c) and (d), re-
spectively. The maximum switching current decreased as a function of top-gate voltage
VTG, until no oscillations were visible at VTG < ≠1.6 V. The e�ective transmission did
not change appreciably across this range, indicating the presence of highly transmissive
ABSs across the full gate range. Results are plotted for positive (IDC > 0) and nega-
tive (IDC < 0) bias current directions, as the full and empty markers respectively. An
apparent discrepancy between the e�ective transmissions at VTG = ≠1.6 V for IDC > 0
and IDC < 0 is attributed to slight di�erences in the CPR shape arising from the back-
ground current subtraction, which is particularly sensitive for small switching current
modulations at very negative VTG.

At a given in-plane magnetic field BÎ, the CPR of the SQUID was found by measuring
the switching current as a function of perpendicular field B‹, which was swept multiple
times across a small range such that it was stable. The switching current was measured
for positive and negative currents, before changing the top-gate voltage VTG. Once the
switching current had been collected for all top-gate voltages, BÎ was ramped to the
next value. The in-plane field was always swept away from BÎ = 0, such that sweeps
in the positive and negative BÎ directions began at BÎ = 0. As such, all measurements
are relative to the values obtained at zero in-plane field in that field sweep. Since fitting
with Eq. 7.2 always returned values for Ï0 in the range [≠fi, fi], results at a given
in-plane field were shifted by integer multiples of the oscillation period BPeriod such
that B0 values followed a monotonic trend. The magnetic field BÎ was swept multiple
times, from ≠1 T to 1 T, before measurements were taken to minimise hysteresis e�ects.
Nevertheless, some hysteresis was observed at BÎ = 0, where flux focusing e�ects were
most prevalent. Hence, results for BÎ > 0 and BÎ < 0 were combined such that current-
averaged B0 features were symmetric for |BÎ| Ø 0.1 T. The results of Figs. 7.4, 7.8
and 7.9 were plotted following this procedure. An identical procedure was followed for
in-plane magnetic fields applied transverse to the junction axis, Bt.

7.8.2. Devices with Varying Superconducting Lead Length
Measurements were performed on devices with varying superconducting lead length
LSC (see Figs. 7.8 and 7.9). Devices consisted of a superconducting loop identical to
that of Device 1, other than the length of the superconducting leads which had values
LSC = 400 nm, 350 nm and 180 nm for Devices 2–4 respectively. These devices did not
have a tunnel probe proximal to the SNS junction, so only current-biased measurements
were possible. Each device had two gates: a top-gate VTG identical to that of Device 1
to tune the charge density in the SNS junction; and a global gate covering the exposed
InAs regions around the junction and superconducting loop. The global gate was set to
VGlobal < ≠1.5 V throughout the experiment, such that the exposed InAs was depleted
everywhere other than in the junction region.

Switching current measurements were performed for increasing in-plane magnetic field
BÎ. At each value of BÎ, the switching current was first measured across a wide range of
B‹ at the most positive top-gate voltage. After subtracting a slowly varying background
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Figure 7.14. Method to extract the current-phase relation from Devices 2-4. a
Switching current I of Device 2 as a function of perpendicular magnetic field B‹, across a
wide range of ±6 mT. Data (blue solid line) is fitted with an envelope function (red dashed
line) of a Fraunhofer interference pattern. b Switching current as a function of perpendicular
magnetic field B‹, after subtracting the background corresponding to the Al constriction.
The background is determined from VTG = ≠0.6 V (red circles), where the planar junction
is considered to be completely closed since no oscillations in switching current were observed.
Data at di�erent top-gate voltages (circles) are fitted with a formula for the current-phase
relation of Andreev bound states (line), at each top-gate voltage VTG denoted by the colour
[defined in (c)]. The fit incorporates the results obtained for the envelope in (a). Each trace
is o�set by 1 µA. c, d Results of the fit presented in (b): maximum switching current I0 and
transmission ·̄ , for (c) and (d) respectively. Results for positive (negative) applied current
IDC plotted as full (empty) markers.
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corresponding to the Al constriction, a recognisable Fraunhofer interference pattern was
observed [Fig. 7.14(a), blue line]. In Devices 2 and 3, where the superconducting leads
were large, flux focusing e�ects were strong. This caused a minimum in the Fraun-
hofer interference pattern at relatively small perpendicular fields B‹. It was therefore
important to consider the envelope of switching current oscillations due to Fraunhofer
interference. This was extracted from the data by filtering out the high frequency oscil-
latory component, and fitting the result with the following equation

I
(env)(B‹) = I

(env)
0

-----sinc

A
B‹ ≠ B

(env)
0

Bmin.

B----- . (7.3)

There were three free parameters: the maximum current I
(env)
0 , the perpendicular field

at which the current was maximum B
(env)
0 and the perpendicular field at which the first

minimum occurred Bmin.. The result of this fit for the data in Fig. 7.14(a) is shown as the
dashed red line. The in-plane field was aligned such that the maximum of the Fraunhofer
pattern was close to B‹ = 0 for each value of in-plane field. This was di�erent in each
device, due to flux-focusing e�ects, so a di�erent alignment was needed for each device.
As such, a Reference Device was measured with each field alignment, to make a direct
comparison.

At a given in-plane magnetic field, the switching current was measured as a function of
perpendicular magnetic field B‹ for di�erent top-gate voltages VTG. The most negative
top-gate voltage was chosen such that no oscillations were visible, where the SNS junction
was assumed to be completely closed. The bias current therefore only flowed through
the Al constriction, giving a direct evaluation of the switching current of the constriction
as a function of B‹. This background switching current was subtracted from the data at
other VTG, to obtain the current-phase relation at each top-gate voltage [see Fig. 7.14(b)].
The data (circles) for each VTG [colours, defined in (c)] was fitted with Eq. 7.2, adjusted
to account for the envelope given by Eq. 7.3, resulting in

I(B‹) = I
(env)
0

-----sinc

A
B‹ ≠ B

(env)
0

Bmin.

B----- ·
·̄ sin

Ë
2fi

(B‹≠B0)A
�0

È

EA

Ë
2fi

(B‹≠B0)A
�0

È
/�

. (7.4)

Equation 7.4 takes the fixed parameters B
(env)
0 and Bmin. obtained from an independent

dataset fitted with Eq. 7.3. There are therefore only three free parameters, as in Eq. 7.2:
I

(env)
0 , ·̄ and B0. As for Device 1, I0 is calculated as the maximum I(B‹). The fit

to the data in Fig. 7.14(b) is shown as the coloured lines, with the results for I0 and
·̄ in (c) and (d) respectively [positive (negative) bias currents are indicated by the full
(empty) markers]. This procedure was applied to every switching current measurement
for Devices 2–4, to obtain the values shown in Figs. 7.8 and 7.9. Measurements for
positive and negative BÎ were combined using the same method as for Device 1, as
described above.
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7.8.3. Tunnelling Spectroscopy as a Function of BÎ

Measurements presented in Fig. 7.11 show conductance maps as a function of B‹, for
increasing in-plane magnetic field BÎ. Conductance features at high source-drain bias
which change as a function of B‹ are attributed to ABSs. In addition to ABSs, we can
attribute some features in the conductance spectrum to multiple Andreev reflections
or to disorder in the tunnelling barrier and sub-gap states in the density of states of
the tunnelling probe [284]. For tunnelling spectroscopy measurements at an in-plane
magnetic field, a first calibration measurement was performed at each in-plane field
by sweeping the perpendicular field B‹ across a range of more than ±3 mT. The
position of B‹ ¥ 0 was determined from spectroscopic features, including the size of
the superconducting gap, the shape and peak conductance of high-bias features, and the
sharpness of spectral lines. Then, each spectroscopic map was taken across more than 5
oscillation periods. In all measurements, spectral features were consistent over the full
range.

7.9. Supporting Information: Transverse Magnetic Field
Current-biased measurements for in-plane magnetic fields aligned perpendicular to the
junction axis (Bt) are supported by tunnelling spectroscopy (see Fig. 7.15). Measure-
ments were taken with an identical gate voltage configuration to those in Fig. 7.11. For
small values of Bt, superconductivity in the tunnel probe was quickly softened such that
conductance features occurred at low bias VSD [Figs. 7.15(a, b)]. Conductance features
were periodic with perpendicular magnetic field B‹, but with a weak dependence con-
sistent with the small switching currents observed in Fig. 7.6. Conductance features did
not resemble those of ABSs described by EA = �

Ò
1 ≠ · sin2(Ï/2) , instead forming a

complex network and crossing VSD = 0 in many places [Figs. 7.15(c, d)]. This became
more pronounced at larger Bt [Figs. 7.15(e, f)] until the superconducting gap was largely
suppressed and conductance features changed very little with B‹ [Figs. 7.15(g, h)].

No reopening of the superconducting gap was observed in these spectroscopic maps,
up to large in-plane fields well beyond the value at which no oscillations in the switching
current were visible. Conductance features are not well described by a simple model of
ballistic ABSs in a short junction, instead showing crossings and interactions at high
and low bias. These results indicate the absence of a phase transition, since there was
no reopening of the superconducting gap. This is consistent with the lack of orbital
e�ects for in-plane fields applied perpendicular to the junction axis. More sophisticated
modelling of ABSs would be required to understand the conductance features in detail,
which is beyond the scope of this work.
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Figure 7.15. Tunnelling spectroscopy as a function of transverse in-plane magnetic
field Bt. Di�erential conductance G as a function of source-drain bias voltage VSD and
perpendicular magnetic field B‹, for di�erent values of in-plane magnetic field Bt. Measure-
ments were taken at VTG = ≠1 V, in an identical gate configuration as that of Fig. 7.11.

7.10. Supporting Information: Zero-Bias Peak in Tunnelling
Spectroscopy

Tunnelling spectroscopy measurements at large in-plane fields BÎ ¥ 0.8 T showed a peak
in the di�erential conductance G close to zero source-drain bias VSD [see Fig. 7.11(e)].
In measurements of similar devices, a zero-bias peak (ZBP) has been associated with
the emergence of a topological phase [122, 123]. Here, we show additional data of the
ZBP observed in Fig. 7.11(e) and comment on its origin.
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Figure 7.16. Dependence of zero-bias conductance peak of in-plane magnetic field.
Di�erential conductance G as a function of source-drain bias VSD and perpendicular magnetic
field B‹, for di�erent in-plane magnetic fields BÎ. The gate configuration was identical to
that of Fig. 7.11, with VTG = ≠1 V.

Figure 7.16 shows the conductance G as a function of perpendicular magnetic field
B‹, for in-plane magnetic fields BÎ > 0.6 T (i.e. after the closure of the superconducting
gap at BÎ = 0.6 T). Conductance maps show periodic lobe-like features: each map is
plotted such that the centre of a lobe is aligned to B‹ = 0. The top-gate voltage was
set to VTG = ≠1 V, identical to that in Fig. 7.11. A high-conductance feature is visible
close to VSD = 0 in many maps, but does not appear robustly for all in-plane fields and
is rarely well separated from conductance features at higher source-drain bias.

To test the robustness of this ZBP, the magnetic field was fixed to BÎ = 0.8 T
and B‹ = 0, then the top-gate was varied from VTG = ≠0.92 V to VTG = ≠1.05 V
[Fig. 7.17(a)]. Conductance features moved close to VSD = 0 as a function of VTG, but
were not stable at VSD = 0 for more than a few millivolts. Figures. 7.17(b-d) show the
di�erential conductance as a function of perpendicular field B‹, at top-gate voltages
o�set from VTG = ≠1 V by ≠”V , where ”V = 0, 21 mV and 34 mV for (b-d) respec-
tively. The conductance spectrum changed appreciably, and a high-conductance feature
is evident in Fig. 7.17(b) but not in the others. Note also that the regime of Fig. 7.11(e)
was not recovered in Fig. 7.17(b), despite the identical gate and field configuration.

Figure 7.18 shows the di�erential conductance G as a function of tunnel-barrier gate
voltage, in the symmetric (VT) and asymmetric (VT,asymm.) configurations. The asym-
metric configuration is defined such that (VT,L, VT,R) © (VT,asymm., VT,asymm. ≠ 16 µV).
High-conductance features were dependent on the tunnel gate voltage, and moved across
the low-bias region.
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Figure 7.17. Dependence of zero-bias conductance peak on top-gate voltage. a
Di�erential conductance as a function of top-gate voltage VTG, at BÎ = 0.8 T and B‹ = 0.
b-d Conductance maps as a function of perpendicular field B‹, at BÎ = 0.8 T. The top-gate
voltage was set to VTG ≠ ”V , where VTG = ≠1 V and ”V = 0, 21 and 34 mV for (i–k)
respectively.

Figure 7.18. Dependence of zero-bias conductance peak on tunnel barrier voltages. a
Di�erential conductance as a function of bias VSD and tunnel-gate voltage VT, at BÎ = 0.8 T
and B‹ = 0. The top-gate voltage was set to VTG = ≠1 V. High conductance features are
tuned by VT across the full bias range. b Same as (a), with the tunnel-gate voltage set to
an asymmetric configuration (VT,L, VT,R) © (VT,asymm., VT,asymm. ≠ 16 µV).
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Zero-bias peaks were shown to be sensitive to in-plane magnetic fields BÎ and the
top-gate voltage VTG, and tunnel-barrier-dependent conductance features were shown to
move close to VSD = 0. These results suggest that ZBPs were most likely due to ABSs
coalescing close to zero energy, rather than being topological in origin. This is despite
the gap closure and opening, shown in Fig. 7.11 and associated with orbital e�ects in the
superconducting leads. This result suggests that additional levels of caution are needed
in interpreting ZBPs as indicative of a topological transition, even in the presence of
gap closure and reopening. We note that the top-gate voltage VTG = ≠1 V was chosen
to have good visibility of conductance features at low BÎ, to be in a regime of single-
subband occupation (based on supercurrent measurements) and to match a value used
in supercurrent measurements (see Figs. 7.4 and 7.5). It was not chosen based on the
observation of a ZBP; the emergence of a ZBP after gap closure and reopening was by
coincidence rather than by fine-tuning of VTG.

7.11. Supporting Information: Type B Shifts

In this section we present additional tunnelling spectroscopy measurements performed as
a function of in-plane magnetic field BÎ. First, we show measurements of Device 1 taken
at di�erent gate voltages to that presented in Section 7.4, namely VTG = ≠0.6 V and
VTG = ≠1.4 V. The induced superconducting gap closed at the same in-plane magnetic
field BÎ = B

�
Î = 0.6 T, independent of gate voltage. Second, we present measurements

of Device 5, which was identical to Device 1 other than the length of the superconducting
leads LSC = 400 nm. Gap closure and reopening was observed at BÎ = 0.4 T, consistent
with supercurrent measurements on a similar device shown in Section 7.3.

7.11.1. Tunnelling Spectroscopy for Di�erent Top-Gate Voltages

Figures 7.19 and 7.20 show tunnelling spectroscopy maps for increasing in-plane mag-
netic field BÎ, at top-gate voltages of VTG = ≠0.6 V and VTG = ≠1.4 V respectively.
The tunnel-barrier gates were adjusted to be in the tunnelling regime, so were set to
VT = ≠2.46 V and (VT,L, VT,R) = (≠1.835, ≠1.805) V for Figs. 7.19 and 7.20 respec-
tively. At VTG = ≠0.6 V, many more conductance features were present relative to
VTG = ≠1 V [Fig. 7.19(a) compared with Fig. 7.11(a)], consistent with more modes
present in the junction. In contrast, only few modes were visible at VTG = ≠1.4 V
[Fig. 7.20(a)]. No B‹-dependent conductance features were observed for top-gate volt-
ages VTG < ≠1.4 V. For increasing in-plane magnetic field BÎ, superconductivity in the
tunnel probe was suppressed [Figs. 7.19(b) and 7.20(b)] and B‹-dependent conductance
features moved closer to VSD = 0 [Figs. 7.19(c) and 7.20(c)]. At BÎ = 0.6 T, the su-
perconducting gap was suppressed at both top-gate voltages and conductance features
had very weak B‹-dependence close to VSD = 0 [Figs. 7.19(d) and 7.20(d)]. For larger
in-plane fields, some phase-dependence appeared to recover although this was di�cult to
distinguish due to the poor visibility of conductance features corresponding to individual
ABSs [Figs. 7.19(e, f) and 7.20(e, f)].
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Figure 7.19. Tunnelling spectroscopy of Device 1 at VTG = ≠0.6 V. Di�erential
conductance G as a function of source-drain bias VSD and perpendicular magnetic field
B‹, for di�erent values of in-plane magnetic field BÎ. Taken at a top-gate voltage of
VTG = ≠0.6 V and tunnel-gate voltage VT = ≠2.46 V.

The superconducting gap was suppressed at BÎ = 0.6 T at all measured top-gate
voltages. This is consistent with current-biased measurements [see Fig. 7.4(a)], where
the minimum in the switching current occurred at BÎ = 0.6 T independent of top-gate
voltage VTG. These results suggest that the cause of gap closure is independent of the
properties of the normal region of the junction. Since orbital e�ects depend only on the
properties of the superconducting leads, these findings are consistent with gap closure
induced by orbital e�ects.
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Figure 7.20. Tunnelling spectroscopy of Device 1 at VTG = ≠1.4 V. Di�erential
conductance G as a function of source-drain bias VSD and perpendicular magnetic field
B‹, for di�erent values of in-plane magnetic field BÎ. Taken at a top-gate voltage of
VTG = ≠1.4 V and tunnel-gate voltages (VT,L, VT,R) = (≠1.835, ≠1.805) V.

7.11.2. Tunnelling Spectroscopy in Device 5

Tunnelling spectroscopy was performed in an additional device, which was identical to
Device 1 in all aspects other than the length of the superconducting leads LSC = 400 nm.
The superconducting loop in this device, Device 5, was identical to that of Device 2
[Figs. 7.11(a, b)], where the switching current was measured. Conductance maps for
di�erent values of in-plane magnetic field BÎ are shown in Figs. 7.21 and 7.22, for
VTG = 0.8 V and VTG = 0.2 V respectively. These gate voltages correspond to the
situation of a large [Fig. 7.21(a)] or small [Fig. 7.22(a)] number of modes, similar to
Figs. 7.19 and 7.20 for Device 1. On increasing BÎ, the superconducting gap in the tunnel
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Figure 7.21. Tunnelling spectroscopy of Device 5 at VTG = 0.8 V. Di�erential conduc-
tance G of Device 5, which was identical to Device 1 other than the superconducting lead
length, which was LSC = 400 nm. Conductance maps for di�erent in-plane magnetic fields
BÎ, taken at a top-gate voltage VTG = 0.8 V.
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Figure 7.22. Tunnelling spectroscopy of Device 5 at VTG = 0.2 V. Di�erential con-
ductance G of Device 5 at di�erent in-plane magnetic fields BÎ, for VTG = 0.2 V.
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probe was softened [Figs. 7.21(b) and 7.22(b)] and conductance features moved closer
to VSD = 0 [Figs. 7.21(c, d) and 7.22(c, d)] until the gap between conductance features
was closed at BÎ = 0.4 T [Figs. 7.21(e) and 7.22(e)]. For larger BÎ, the gap between
conductance features reopened and there was a stronger B‹-dependence [Figs. 7.21(f, g)
and 7.22(f, g)]. At BÎ = 0.7 T, the gap closed again and superconducting features were
suppressed [Figs. 7.21(h) and 7.22(h)].

Closure of the superconducting gap was shown to occur at BÎ = 0.4 T in Device 5,
for two top-gate voltages. This is consistent with the minimum in the switching current
of Device 2, which had an identical SQUID loop, Al constriction and SNS junction.
Tunnelling spectroscopy showed a reopening of the gap between conductance features
at larger in-plane fields, where a reentrant supercurrent was measured in current-biased
experiments. The closure of the superconducting gap and minimum in the switching cur-
rent both occurred at BÎ ¥ 0.4 T, the expected in-plane field at which one flux quantum
threads the area underneath the superconducting leads. This supports the conclusion
that gap closure in these devices was induced by orbital e�ects in the superconducting
leads.

7.12. Supporting Information: Type A Shifts

7.12.1. Type A Phase Shifts in the Current-Phase Relation

Gate-dependent Type A phase shifts were observed in all devices, for in-plane fields
|BÎ| . |B�

Î |, where B
�
Î is the field at which the supercurrent was minimum. The results

for Devices 1–4 are summarised in Figs. 7.23 and 7.24. The perpendicular field o�set
relative to the most negative gate voltage, �B0, was linear with in-plane field BÎ with
steeper gradient — for more positive top-gate voltage VTG [Fig. 7.23, colours defined
in Fig. 7.24]. The data (circles) are fitted with a linear curve (lines) to extract the
gradient —, which is plotted in Fig. 7.24 (filled circles) for Devices 1–4. The maximum
switching current I0 at BÎ = 0 is also plotted as a function of top-gate voltage VTG

(empty squares). The trend of — with VTG is similar to that of the maximum switching
current I0.

At the maximum VTG, where I0 was large, the gradient was — & 100 µT/T for all
devices independent of the superconducting lead length LSC. The size of the gradient
— is compared with the switching current at BÎ = 0, which is linked to the electron
sheet density in the junction; at lower densities there are fewer transverse modes to
carry the supercurrent [249]. The maximum switching current can therefore be used
to compare density regimes in the di�erent devices, despite that the gate voltages di�er
between devices due to local disorder, inhomogeneous material properties and fabrication
imperfections. For decreasing VTG, the carrier density decreases causing both I0 and —

to decrease [Fig. 7.24]. This follows a trend consistent with that of Refs. [136, 232],
which directly measured the spin-orbit coupling strength as a function of carrier density
in similar InAs quantum wells.
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Figure 7.23. Type A phase shifts in Devices 1-4. Perpendicular field o�set �B0 rela-
tive to the most negative top-gate voltage, as a function of in-plane magnetic field BÎ for
di�erent top-gate voltages VTG [indicated by the colour, defined in Fig. 7.24], for Devices
1-4 respectively. Data (circles) is fitted with a linear curve at each VTG (lines), giving the
gradient —.

7.12.2. Phase Shifts due to Loop Inductance
Switching current measurements were performed by applying large bias currents to the
SQUID device. Since the epitaxial Al was very thin, the superconducting film had an
appreciable kinetic inductance LK, which generates a flux �K = LK(Icons. ≠ ISNS)/2,
where Icons. and ISNS are the currents flowing in the Al constriction and SNS junction,
respectively. The kinetic inductance of the loop is estimated as LK = N⇤L⇤,K ¥ 66 pH,
where N⇤ = 38 is the number of squares in the superconducting loop and L⇤,K ¥ 1.7 pH
is the kinetic inductance per square calculated from Eq. 3.2. [198]. This gives a shift
of �BKin. ¥ 110 µT, for typical currents (Icons. ≠ ISNS) in the SQUID loop. The mea-
sured shift �BKin. between positive and negative currents is shown in Fig. 7.25. No
top-gate dependence was observed, so points were averaged over all top-gate voltages.
The field shift �BKin. increased for increasing magnitude of in-plane magnetic field,
consistent with an increasing kinetic inductance due to quasiparticle generation in the
superconducting loop. The values of �BKin. in Fig. 7.25 are consistent with the field
shift estimated from the kinetic inductance LK.
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Figure 7.24. Comparing the size of Type A phase shifts to the maximum switching
current. Gradient — extracted from Fig. 7.23 plotted as a function of top-gate voltage (filled
circles, left axis). The maximum switching current as a function of top-gate voltage is also
plotted for each Device (empty squares, right axis).

Figure 7.25. Phase shifts due to kinetic inductance. Shift in perpendicular field between
current-phase relation traces measured with positive and negative bias currents, �BKin..
Points are plotted as an average over all top-gate voltages VTG, with errorbars indicating
the standard deviation of all VTG values.
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8 Conclusions and Outlook

In this thesis, we have presented a detailed study of planar Josephson junctions (JJs)
in an InAs/Al heterostructure containing highly transmissive Andreev bound states
(ABSs). Here, we summarise the main findings and outline avenues of research to be
explored in the future.

In Chapters 4 and 5 we studied the phase dynamics of planar JJs, in isolation
and in a superconducting quantum interference device (SQUID). We found that the
switching current from the superconducting to resistive state was strongly a�ected
by phase fluctuations, such that switching events occurred at bias currents much
lower than the critical current (Section 4.2). The relative dominance of macroscopic
quantum tunnelling and phase di�usion was tuned via gate voltages and magnetic
fields (Section 4.3), and changes to the device geometry gave rise to thermal activation
processes (Section 4.4). The e�ect of large phase fluctuations on a small JJ was partially
alleviated by incorporating it into an asymmetric SQUID, leading to an increase in the
switching current of the small junction by more than a factor of two (Section 5.1). The
phase escape dynamics were further tuned via a magnetic flux threading the super-
conducting loop (Section 5.2). The remarkable discrepancy between the switching and
critical currents in these devices has significant implications for understanding device
performance (Section 3.1.2) and inferring the properties of ABSs. The e�ect of large
shunt capacitances on phase dynamics could be studied in future experiments, to further
understand the phase escape mechanisms and to guide towards optimised device designs.

In Chapter 6 we presented tunnelling spectroscopy measurements on a planar JJ, and
investigated the conductance response to microwave irradiation. Replicas in the
conductance spectrum were shown to originate from photon assisted tunnelling (PAT)
between the probe and the junction density of states (Section 6.2). In addition, the
current-phase relation (CPR) showed distortions for large microwave field amplitudes,
consistent with a non-thermal occupation of ABSs (Section 6.3). Careful tests of the
microwave coupling strength, using gate-tunability and supercurrent measurements,
showed that PAT was the dominant mechanism for conductance replicas and ruled
out interpretations of Floquet-Andreev states in our devices. We demonstrated that
the emergence of conductance replicas under microwave irradiation is not su�cient to
claim a change in the eigenstates of the junction due to light-matter coupling (i.e. the
emergence of Floquet-Andreev states). More e�cient microwave coupling schemes,
such as via fast signals to gate electrodes, could enable the emergence of Floquet
states at large drive powers. Signatures of Floquet states should depend on the Fermi
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energy in the system and lead to avoided crossings in the energy spectrum, and future
experiments might control the polarisation of the electromagnetic radiation. The
techniques employed here can be readily implemented to generic systems where Floquet
states might occur, to distinguish them from e�ects arising due to PAT.

In Chapter 7, we reported phase shifts in planar JJs subjected to large
in-plane magnetic fields. Gate-dependent phase shifts emerged in the CPR for
fields directed perpendicular to the current flow (Section 7.2), consistent with a
Ï0-junction with Rashba spin-orbit coupling. Phase shifts in the ABS spectrum
matched those of the CPR (Section 7.5), implying that ABSs with high transmission
make a significant contribution to Ï0-shifts. Distinct phase shifts at larger magnetic
fields were concomitant to a minimum in the switching current (Section 7.2) and
depended on the superconducting lead length (Section 7.3), suggesting an orbital origin.
Tunnelling spectroscopy revealed closure and reopening of the superconducting gap
correlated to the phase shift and switching current minimum (Section 7.4), mimicking
signatures of a topological transition. Our results show the importance of orbital e�ects
in planar devices, and their interplay with Zeeman and spin-orbit e�ects. We have
established a new baseline understanding of InAs/Al JJs subject to in-plane magnetic
fields, which guides towards a more complete understanding of anomalous phase shifts
and topological transitions in planar JJs. Further experiments could investigate the
dependence of Ï0-shifts on the number and transmission distribution of ABSs, by
varying the junction width and length. By implementing spectroscopic probes on both
ends of the JJ, future studies could establish the influence of magnetic vector potentials
on phase shifts [302], identify non-local e�ects [292] or relate non-reciprocal currents to
asymmetries in the ABS spectrum [101, 103, 303].

This thesis presented a thorough investigation of planar JJs, giving an improved under-
standing towards gate-tunable qubits, superconducting circuit elements and novel An-
dreev bandstructures. In addition to the specific proposals made for each experiment, we
also comment on these areas of interest in hybrid superconductor-semiconductor devices.
For qubit technologies, device manipulation must be performed with high energy resolu-
tion on fast timescales. This is possible with radio frequency techniques [304, 305], which
have recently been integrated with planar JJs in low-loss architectures [301, 306–
308]. This is a crucial step towards realising advanced gate-tunable qubits. In super-
conducting electronics, tunable Ï0-junctions as those in Chapter 7 require large in-plane
magnetic fields, which could be detrimental to complex superconducting circuits. A pos-
sible solution is the Andreev molecule [309–316]: two coupled JJs which produce a
large, tunable Ï0-shift at zero magnetic field [317, 318]. Finally, an exciting opportunity
to generate complex Andreev energies is to move beyond two-terminal JJs to multi-
terminal devices, which are expected to exhibit large spin-splitting at zero magnetic
field [319, 320], ground state parity transitions [319, 320] and topological phases of mat-
ter [321–325].
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A Full Fabrication Process

Here we give a detailed description of the fabrication process, from receiving the wafer to
loading devices into the dilution refrigerator. Fabrication was performed in the Binnig
and Rohrer Nanotechnology Center.

A.1. Chip Preparation
Material heterostructures were grown on 2 inch wafers, and stored in vacuum or an
Ar atmosphere until ready to be processed. Devices were patterned on 5 ◊ 5 (mm)2

chips, to conserve material and to be compatible with the measurement sample space.
Straight edges and precise dimensions were necessary for good alignment in subsequent
lithography steps, so material was diced to the appropriate size.

The wafer was protected with optical resist before dicing. A 1 µm thick layer of
MicroChemicals AZ 1512 positive photoresist was spin coated on the chip at a speed of
4000 rpm for 40 s. The resist was hardened by baking on a hot plate at 110¶C for 60 s.

The material was diced into 5 (mm)2 pieces. Those closest to the wafer centre were
preferentially chosen. Before beginning chip fabrication, the photoresist was stripped by
rinsing in solvents. Chips were first rinsed on a cleanroom towel before transferring to a
beaker, to avoid contamination from InP dust. Chips were rinsed first in acetone for 2
minutes to remove organic residues, then in isopropanol (IPA) for 2 minutes as a more
gentle clean and to prevent residues from drying acetone. The chip was dried with a
nitrogen gun.

A.2. Lithography Step I: Mesa Etch
The first lithography step was to define mesa structures onto which the devices will be
patterned, by etching into the III-V material. The etch must be su�ciently deep that
there is no parallel conduction between devices. Alignment markers are also defined in
this step.

Device structures are patterned with electron beam lithography, using a positive poly-
methyl methacrylate (PMMA) resist. A single layer of AllResist-Positive (AR-P) 672.03
resist was spin-coated at 6000 rpm to give a 100 nm thick film covering the chip. The
resist was hardened by baking at 120¶C for ≥ 5 minutes.

The exposed chip was developed using a mixture of Methyl Isobuthyl Ketone (MIBK)
and IPA, in a ratio of 1:2. After developing for 70 s with some agitation, the chip was
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rinsed in IPA for 30 s to stop the development. The chip was then dried with a nitrogen
gun. Small residues of resist were removed after development by exposing the chip to
an oxygen plasma with 200 W of power, for 30 s.

The first step of the etching process was to remove the top Al layer, which was done
using a 25 s etch in Transene D Al etchant at 40¶C. The etch was stopped by rinsing in
hot deionised (DI) water for 10 s, and then cold DI water for ≥ 1 minute.

The second step was to etch the III-V, which was done with a H2O : C6H8O7 : H3PO4 :
H2O2 solution with the concentration ratio 220 : 55 : 3 : 3. Importantly, this step was
performed at room temperature, using a magnetic stirrer. An etch of approximately
9 minutes gave an etch depth of ≥ 350 nm into the III-V heterostructure, which was
measured for each chip using a profilometer. Shallower etch depths were shown to give
parallel conduction between devices in some cases, after deposition of the dielectric layer.

The III-V etch was approximately isotropic, meaning that there was lateral etching
underneath the predefined areas. For high quality Al films, some portion of the Al film
remained continuous over the mesa edge. This could prevent a uniform coverage of the
dielectric layer, such that the gate layers might be connected to the Al layers in some
spots. The overhanging Al was therefore etched in Transene D Al etchant, for 25 s at
40¶C.

Finally, the PMMA resist was stripped by rinsing in acetone and IPA for 2 minutes
each.

A.3. Lithography Step II: Aluminium Etch
The second lithography step was to define the superconducting features of the device, by
selectively etching the Al on top of the mesa structures. This defines the superconducting
loop, probe contacts and junction regions. As such, it is the most sensitive step in the
process.

A 100 nm film of PMMA AR-P 672.03 resist was spin-coated at a rate of 6000 rpm,
and then baked at 120¶C for 5 minutes. As for the first lithography step, structures were
patterned in the resist using electron beam lithography.

After exposure, the PMMA was developed in an MIBK:IPA solution (ratio 1:2) for
60 s, before being rinsed in IPA for 30 s and dried with a nitrogen gun. Small portions
of resist were removed by exposing the chip to an oxygen plasma of 100 W power for
3 s.

The Al was etched in Transene D Al etchant at 50¶C, for an etch time of 4 s. The
chip was immediately rinsed in hot DI water for 10 s and cold DI water for ≥ 1 minute.
The PMMA resist was stripped in acetone and IPA, for 2 minutes each, before drying
with a nitrogen gun.

After drying the chip, it was immediately transferred to the atomic layer deposition
(ALD) machine for deposition of the dielectric layer. The chip was exposed to air for
less than 2 minutes, to limit the potential contamination of the surface III-V layer in
the junction region.

A first dielectric layer of Al2O3 was deposited using thermal ALD, at a temperature
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of 110¶C. A 30 cycle deposition gave a layer thickness of approximately 3 nm. The
thermal ALD step was used to limit the exposure of the thin Al film to an oxygen
plasma (in earlier steps, sensitive regions were covered with resist, unlike for the dielectric
deposition), since this was shown to degrade the superconducting properties of the film
by thickening the surface oxide of the Al film.

A second dielectric layer of HfO2 was deposited using plasma ALD, at a temperature
of 120¶C. A typical deposition of 150 cycles gave a dielectric thickness of 15–17 nm. The
total deposition time was approximately one hour.

Before continuing with chip fabrication, test devices were imaged using a scanning
electron microscope (SEM). A successful etch gave Al features which were ≥ 10 nm
constricted relative to the design, consistent with an isotropic etch of the 10 nm film.
Hence, fabricated Josephson junctions had a length which was ≥ 20 nm longer than that
of the design. Reported junction dimensions were taken from the design values.

A.4. Lithography Step III: Inner Gate Deposition

The third lithography step was to define fine gate features on top of the dielectric layer.
To allow high resolution of patterned features, thin resist and metallic layers were used.

A double layer of resist was used for this step. The resist AR-P 669.04 was spin-coated
at a rate of 6000 rpm to give a nominally 200 nm layer coating the chip. This was baked
on a hot plate set to 120¶C for 5 minutes. A second resist layer of AR-P 672.02 was
then spin-coated on top, at a rate of 6000 rpm to give a 50 nm thick top layer.

After features were written into the resist using exposure to the electron beam, the
resist was developed in a MIBK:IPA (1:2 ratio) mixture for 60 s. The development was
stopped by rinsing in IPA for 30 s. After drying with the nitrogen gun, the chip was
exposed to an oxygen plasma at 200 W for 15 s to remove excess resist.

Metallic layers of Ti (5 nm) and Au (20 nm) were deposited onto the developed chip
using electron beam evaporation. After the metal deposition, the resist was "lifted-o�"
by placing the chip into an already-hot beaker of dimethylsulfoxide (DMSO) solvent at
120¶C. The chip was left in the beaker for at least 10 minutes. After this time, the
chip was repeatedly sprayed with acetone and IPA to remove any residual gold flakes.
This procedure of spraying with acetone and IPA was repeated up to 4 times. Without
letting the chip dry, it was then thoroughly rinsed in acetone and IPA, for 2 minutes
each.

A.5. Lithography Step IV: Outer Gate Deposition

The final lithography step consisted of depositing thick metal gate leads to connect the
fine gate features on top of the mesa plateau to bonding pads far from the device, which
were defined in the same step.

A thick double layer resist was used. The first layer of methylacrylate (MA) resist
AR-P 617.08 was spin-coated at 300 rpm to give a nominally 586 nm thick layer. This
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was baked at 120¶C for 5 minutes. The second layer consisted of AR-P 672.03 resist,
spin-coated at 6000 rpm to be 100 nm thick.

After exposure, the chip was developed in an MIBK:IPA (1:2 ratio) mixture for 120 s,
before rinsing in IPA for 60 s and drying with a nitrogen gun. Exposure to an oxygen
plasma of 200 W for 30 s was used to remove residual resist.

Thick metallic layers were deposited across the chip using an electron beam evaporator.
A 10 nm adhesion layer of Ti was deposited first, and then a > 400 nm layer of Al. As
for the inner gate step, lift-o� of the resist was done by rinsing the chip in DMSO at
120¶C for > 10 minutes, before repeatedly spraying with acetone and IPA. The chip was
not dried until all metallic flakes had been removed, which typically required multiple
solvent rinsing steps.

Before preparing the chip for measurement, test devices were imaged in the SEM.
Potential failure of the gate deposition step could be identified at this stage, before
measurement of devices. Successful processing resulted in fine gate features separated
by & 40 nm.

A.6. Wire Bonding
Finally, the chip was prepared for measurement by gluing to a QDevil printed circuit
board (PCB) and making wire bond connections between the PCB pads and the bonding
pads on the device. Bonding pads were & 100 ◊ 100 (µm)2.

The chip was glued to the PCB using PMMA resist. A droplet of resist was placed in
the centre of the sample space, and then the PCB was placed on a hot plate at 110¶C.
As the resist began to harden, the chip was placed onto the resist such that it was fixed
in place.

The PCB was connected to a large Al block, such that all electrical pads were con-
nected together. During bonding, the Al block was also connected to the ground of the
bonding machine, to limit static discharge. Bonds were made first to the PCB, and then
to the device.

Bonds were made to multiple devices. Typically, two pads on the PCB were also
bonded together to measure the line resistance and to confirm good electrical contact
after loading into the dilution refrigerator. An additional bond was often made to the
cavity of the PCB (the metallic region onto which the device was glued) or onto the
frame of Al at the edge of the chip. The line connected to this bond was left grounded
during all experiments. After bonding, the PCB was transferred to the measurement
system and loaded into the dilution refrigerator as soon as possible.

136



B Potential Barrier in Junctions with
Large Transparency

Theoretical analysis presented in this section was done by Clemens Müller. D.Z.H.

performed the fitting of the non-sinusoidal potential, outlined in the final paragraph.

Throughout this work, analysis of phase escape has been based on equations derived
for Josephson junctions with a sinusoidal current-phase relation (CPR). However, the
presence of highly transmissive modes in the planar Josephson junctions measured here
give a non-sinusoidal CPR. In the absence of a theory for phase escape in junctions
with a non-sinusoidal CPR, the existing theory was used. In this section, we address
di�erences between the washboard potential in the two cases and justify the use of a
sinusoidal theory for phase escape.

A Josephson junction with a non-sinusoidal CPR can be modelled as a junction con-
taining N modes with identical e�ective transmission · (see Eq. 6.5). This equation can
be integrated to arrive at the potential energy, which under a current bias Ib gives

U(Ï) = ≠2
Ô

2I0
Ò

2 ≠ ·(1 ≠ cos Ï) ≠ IbÏ (B.1)

as the form of the washboard potential in reduced units. The potential barrier can be
found analytically in this case, and gives the result

�U(Ib) = 1
·

[IC
Ò

B≠ ≠ 8(· ≠ 2) ≠ IC

Ò
≠B+ ≠ 8(· ≠ 2)+

+Ib· arccos(B≠/8·) ≠ Ib· arccos(≠B+/8·)],
(B.2)

where IC = I0· and

A =
Ò

16I
4
C

+ 8I
2
b
I

2
C

(· ≠ 2) + I
4
b
·2, (B.3)

B± = 2·

1
A ± I

2
b·

2
/I

2
C. (B.4)

The general dependence of the potential barrier used in the sinusoidal formalism is

�U(Ib) = 2IC

3
1 ≠ Ib

IC

4n

, (B.5)

with n = 3/2.
To evaluate how the bias-dependence of the non-sinusoidal potential, we fit Eq. B.2

with Eq. B.5 for di�erent values of · . The fit took two free variables in Eq. B.5: IC and
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n. For a fixed I0, the fitted and exact result for IC were identical. The values of n were
1.5 for · ≥ 0, and increased to 1.54 for · æ 1. This demonstrates that the dependence
on the potential barrier is almost identical in the sinusoidal and non-sinusoidal case,
where the critical current is defined as the maximum value of the CPR. However, this
approach does not account for di�erences in the shape of the potential, which could give
rise to di�erences in the equation for macroscopic quantum tunnelling.
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C Andreev Bound States in Zeeman
Fields

In this section, we extend on the discussion in Section 2.6.1 describing Andreev bound
states (ABSs) in magnetic fields.

As discussed in Section 2.6.1, a magnetic field B introduces a Zeeman energy term
EZ = |gú

µBB|/2 which couples to the spin of charge carriers in the junction. For charge
carriers at energies close to the Fermi level, |E| π EF, we consider a linear dispersion
relation. Hence, a spin-dependent shift in the wavevector is proportional to EZ; for spin
‡ = ±1, k

>
± = kF +(E ±EZ)/(~vF) for k > 0 and k

<
± = ≠kF ≠ (E ±EZ)/(~vF) for k < 0.

As we saw in Section 2.2, energy solutions for ABSs consist of two branches, one with
k > 0 and one with k < 0, which couple in the presence of normal scattering. This
is illustrated in Fig. C.1 as the solid (dashed) black lines for · = 0.9 (· = 1). Since
k

> ”= k
<, a round trip of a junction with length L results in a phase shift between the

two branches given by

◊B = |gú|µBBL

~vF
= fi

2
EZ

ETh

, (C.1)

where ETh = fi~vF/(2L) is the Thouless energy for a ballistic system. This phase shift
is illustrated with the blue dashed lines Fig. C.1(a), for ‡ = +1. The two branches still
intersect at Ï = fi, but at lower energy such that ABSs with ‡ = +1 are shifted down
in energy. This is illustrated by the solid blue line in Fig. C.1(a), which is the case for
normal scattering. The phase shift is reversed for ‡ = ≠1, so ABSs move up in energy
[see Fig. C.1(b)].

This spin-splitting was shown in Fig. 2.15, ultimately resulting in a phase transition
from an energy minimum at Ï = 0 to Ï = fi. In the absence of spin-orbit interaction,
a transition can occur for a magnetic field applied in an arbitrary direction since the
spin is well defined with respect to the field direction. Rashba spin-orbit interaction
introduces a preferential direction, such that the external magnetic field couples to the
spin via the Rashba term Eq. 2.1. The spin is no longer a good quantum number since
spin states are mixed by the spin-orbit interaction. In this case, a 0 ≠ fi transition can
lead to a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, in which Cooper pairs have a
nonzero momentum and a spatially non-uniform pairing potential [100, 299, 300]. These
transitions also have implications for topological phases in planar Josephson junctions,
where it has been proposed that a topological transition would occur for non-degenerate
zero-energy solutions [120]. The junction would be topological for the values of Ï between
crossings, at fields much lower than given by Eq. 2.59. It was subsequently shown that
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Figure C.1. Spin-splitting of Andreev bound states (ABSs) in a Zeeman field B. a
Energy of a ‡ = +1 ABS at B = 0 (black solid lines) and B > 0 (blue solid lines). Dashed
lines indicate the · = 1 case for reference. The wavevector shift k

>
+ relative to k

> at zero
field (and the symmetric shift for k

<
+) gives a phase shift of 2◊B, resulting in a decrease in

the ABS energy. b Same as (a) for ‡ = ≠1, resulting in an increase in the ABS energy. The
ABSs are plotted with Eq. 2.57 for · = 0.9 and ◊B = 0.2fi.

for junctions where the length of the superconducting leads is smaller than the coherence
length, a phase transition of this type would not necessarily signal a topological phase
transition, which instead would sensitively depend on the chemical potential [326].
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D.1. Characterisation of JJ1 and JJ2

Initial characterisation was performed by standard lock-in techniques. An AC current of
IAC = 2 nA was applied to the source contact of the SQUID device, with a frequency of
233 Hz. The four-terminal di�erential voltage VAC across the SQUID was measured at
this frequency, via a di�erential voltage amplifier with 1000 times gain. The di�erential
resistance R = VAC/IAC was measured as a function of the applied DC current IDC.

In addition to the B‹-dependent measurements presented in Fig. 4.1, we show
temperature- and gate-dependent measurements of JJ1 and JJ2. In Figs. D.1(a) and
(b), for JJ1 and JJ2 respectively, we show the di�erential resistance R as a function
of IDC, swept from negative to positive currents. The colour denotes the temperature,
which ranges from 20 mK to 1.6 K, at which point both JJs are fully resistive. We
o�set the vertical axis by 200 ⌦ between each temperature trace, to highlight the
zero-resistance state at low bias currents.

As we increase IDC from ≠2 µA, each junction undergoes a transition from the re-
sistive to superconducting state at the retrapping current IR. At positive bias, the
superconducting-to-resistive transition occurs at the switching current ISW. The di�er-
ence between the two, most notable in JJ1, indicates the underdamped JJ behaviour.
At high temperatures the superconducting state softens, leading to a finite resistance
at bias values below ISW. This is expected from phase di�usive JJs at high tempera-
tures, but makes determination of ISW less reliable; hence we do not present SPDs at
temperatures T > 1 K, where this e�ect is significant.

Figures D.1(c) and (d) show the gate dependence of the di�erential resistance R across
JJ1 and JJ2, respectively. The normal state resistances for JJ1 and JJ2 are RN ,1 = 150 ⌦
and RN ,2 = 540 ⌦, respectively. At a small negative gate voltage, the switching current
reaches its maximum. The peak occurs at VG1 = ≠180 mV for JJ1 and VG2 = ≠140 mV
for JJ2. These define the operating points for each junction in Figs. 4.1, 4.2 and 4.6.
Each JJ can be tuned to the completely resistive state with su�ciently negative gate
voltages, as seen in Figs. D.1(c) and (d) for JJ1 and JJ2 respectively. To measure a
single junction in isolation, we apply VG < ≠400 mV to the other junction so that no
supercurrent flows there, as in Figs. 4.1, 4.2 and 4.6. In Fig. D.1(c), we observe large
fluctuations in the switching current for VG1 > ≠200 mV. This is indicative of large
quantum fluctuations when the critical current is large.
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Figure D.1. Characterisation of JJ1 and JJ2. a Current-biased measurement of di�er-
ential resistance R of JJ1 with an applied bias of IDC, in the positive sweep direction. b
Same as (a) for JJ2. c Di�erential resistance R of JJ1 as a function of gate voltage VG1.
The junction goes from fully open to fully closed in the gate voltage range. d Same as (c)
for JJ2. Note that the colour scale in (c) and (d) is saturated to highlight the normal state
resistance RN close to zero gate voltage.
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D.2. Additional Insights on Phase Escape Dynamics

We now consider the impact of temperature on the switching current in the macroscopic
quantum tunnelling (MQT) regime. In Fig. D.2 we calculate the switching probability
distribution (SPD) as a function of temperature using the same fit parameters as Fig. 4.3,
but considering only MQT escape without the presence of phase di�usion (PD) (�R = 0).
This is instructive to see the impact of the temperature dependence of IC and Q on
SPDs at low T . In particular, we see that the mean switching current IM,1 decreases
with increasing temperature [Fig. D.2(a)]. This is due to the low TC of Al, which causes
a change in IC even at the lowest temperature of our experiment. This is evident in
Fig. D.2(b) (dashed line). The experimental data for IM,1 (squares) aligns with the
simulated result for MQT in the absence of PD (solid line) up to T ≥ T

ú. This is
indicative of the dominance of MQT over PD up to T ≥ T

ú in the experimental data. In

Figure D.2. Monte Carlo simulations with only macroscopic quantum tunnelling
(MQT). a Switching probability distributions (SPDs) obtained from a Monte Carlo simula-
tion considering only escape by quantum tunnelling (MQT), as a function of temperature.
Calculated using the parameters IC = 3 µA, C = 1 fF and Q0 = 7. b Temperature de-
pendence of critical current IC,1 (dashed line), JJ1 switching current IM,1 (squares) and
MQT-only fit (solid line). c Temperature dependence of standard deviation in JJ1 (squares)
and MQT-only fit (line).
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Fig. D.2(c) we show the experimental standard deviation ‡1 (squares) and the modelled
standard deviation in the case of pure MQT (line). The slight temperature dependence
of the fit result is due to the temperature dependence of Q, again a consequence of the
low TC in Al.

Further to the standard deviation, as shown in Fig. 4.2(d), the skewness of SPDs is
indicative of the phase escape mechanism. Phase escape unhindered by retrapping leads
to a negative skewness close to -1 [255]. On entering the PD regime, the SPDs become
more symmetric and the skewness tends towards zero. This is shown in Figs. D.3(a-c),
where SPDs of JJ1 are plotted on a linear scale for T = 20 mK, 550 mK and 900 mK
respectively. The trend in skewness is consistent with the interpretation above. At low
temperature the SPD has large negative skewness, indicating that no phase di�usion is
present. At higher temperatures, the SPDs are more symmetric with a skewness of zero
at T = 900 mK. The skewness of JJ1 as a function of temperature (circles) is plotted
in Fig. D.3(d), alongside the Monte Carlo fit result (grey line). Both the data and the
Monte Carlo fit are negative at low temperature, and increase towards zero for higher
temperatures where phase di�usion becomes dominant.

Figure D.3. Investigation of the skewness of switching probability distributions
(SPDs). a Switching probability distribution (SPD) of JJ1 at T = 20 mK, plotted on
a linear scale. Large negative skewness, consistent with a lack of phase di�usion at low
temperature. b SPD at T = 550 mK, where skewness is positive. c Symmetric SPD at
T = 900 mK. d Skewness of SPDs (circles) as a function of temperature, as indicated by
the colour. This is compared with the result from the Monte Carlo fit (grey curve).
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Complete datasets for Chapter 5 are presented, for di�erent top-gate voltages applied to
JJ1. The standard deviation as a function of flux is plotted for each regime in Fig. 5.6.

For VG1 = ≠300 mV, the SQUID undergoes direct transitions between macroscopic
quantum tunnelling (MQT) and phase di�usion (PD) depending on B‹. The full dataset
is shown in Fig. E.1 for 20 mK to 900 mK: the mean switching current IM,S in (a), the
standard deviation in (b) and the oscillation amplitude �IM,S/2 in (c). The enhancement
in switching current at low temperatures is again observed, where quantum tunnelling is
dominant. We also observe the characteristic kink in �IM,S/2, in this case at T ¥ 0.52 K
concomitant with the lower transition temperature to the phase di�usive regime.

At T = 20 mK, we observe a large variation in the standard deviation ‡S depending
on the field B‹. At the maximum of IM,S (diamond), ‡S is large at low temperature.
This is consistent with quantum tunnelling as the dominant mechanism of phase escape.
Instead, ‡S = 20 nA at the minimum (triangle), indicating that phase di�usive e�ects are
strong. The traces in ‡S at these field values are shown in Fig. E.1(d) by their respective
markers. The large di�erence in ‡S is evident at low temperatures, as indicated by the
blue shading, where the external magnetic field determines the extent of phase di�usion
in the SQUID. On increasing T towards the transition temperature, the di�erence in ‡S

reduces until the SQUID is fully phase-di�usive at all values of B‹.
Figures E.2 and E.3 show the datasets for VG1 = ≠350 mV and VG1 = ≠375 mV,

respectively. While still asymmetric for VG1 = ≠350 mV, the critical current of JJ1 is
no longer much larger than that of JJ2. The much lower critical current of JJ1 means that
quantum tunnelling is only dominant close to the maximum of the SQUID oscillations.
This is highlighted in Fig. E.2(b). At the minima, the SQUID is fully phase di�usive
with ‡S < 5 nA. The oscillation amplitude �IM,S/2 in Fig. E.2(c) shows a kink at
T ¥ 0.42 K, which is consistent with the average transition temperature between MQT
and PD regimes. Figure E.2(d) shows ‡S at flux values corresponding to the maximum
(diamonds) and minimum (triangles) of the IM,S oscillations. The divergence for T < T

ú

is evident, as in Fig. E.1(d). We note that at some values of B‹ in the low-temperature
curve the switching current went above the signal amplitude, artificially truncating the
SPD and rendering its standard deviation unphysical: these points have been removed
from the trace. On further decrease in VG1 to ≠375 mV, the SQUID is almost symmetric.
In this case, a magnetic-field dependence is still observable in the standard deviation
[see Fig. E.3(b)] but the SQUID is phase di�usive at T = 20 mK for all values of B‹.
The corresponding oscillation amplitude, while no longer representative of the switching
current of JJ2, again shows the kink in �IM,S/2 at the low transition temperature of
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T ¥ 0.35 K. Figure E.3(d) shows ‡S at the maxima (diamonds) and minima (triangles)
of IM,S, and while some divergence emerges for T < T

ú, phase di�usion is dominant for
all values of B‹ .

Figure E.1. Switching current measurements at VG1 = ≠300 mV and VG2 = ≠140 mV.
a Mean switching current IM,S for the SQUID configuration as a function of B‹. Field traces
are taken at temperatures ranging from 20 mK up to 900 mK. The maximum (diamond)
and minimum (triangle) of the IM,S oscillations are marked. b Standard deviation ‡S in
this SQUID configuration, for temperatures 20 mK to 900 mK. c Oscillation amplitude of
IM,S, �IM,S/2 as a function of temperature. A kink in �IM,S/2 occurs at the transition
temperature of T

ú ¥ 0.52 K. d Standard deviation ‡S at values of B‹ corresponding to
the IM,S maximum (diamonds) and minimum (triangles) respectively. The large di�erence
at T < T

ú is indicated.
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Figure E.2. Switching current measurements at VG1 = ≠350 mV and VG2 = ≠140 mV.
a Mean switching current IM,S for the SQUID configuration as a function of B‹. Field traces
are taken at temperatures ranging from 20 mK up to 900 mK. The maximum (diamond)
and minimum (triangle) of the IM,S oscillations are marked. b Standard deviation ‡S in
this SQUID configuration, for temperatures 20 mK to 900 mK. c Oscillation amplitude of
IM,S, �IM,S/2 as a function of temperature. A kink in �IM,S/2 occurs at the transition
temperature of T

ú ¥ 0.42 K. d Standard deviation ‡S at values of B‹ corresponding to
the IM,S maximum (diamonds) and minimum (triangles) respectively. The large di�erence
at T < T

ú is indicated.
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Figure E.3. Switching current measurements at VG1 = ≠375 mV and VG2 = ≠140 mV.
a Mean switching current IM,S for the SQUID configuration as a function of B‹. Field traces
are taken at temperatures ranging from 20 mK up to 900 mK. The maximum (diamond)
and minimum (triangle) of the IM,S oscillations are marked. b Standard deviation ‡S in
this SQUID configuration, for temperatures 20 mK to 900 mK. c Oscillation amplitude of
IM,S, �IM,S/2 as a function of temperature. A kink in �IM,S/2 occurs at the transition
temperature of T

ú ¥ 0.35 K. d Standard deviation ‡S at values of B‹ corresponding to
the IM,S maximum (diamonds) and minimum (triangles) respectively. The large di�erence
at T < T

ú is indicated.
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F.1. Further Data on Conductance Replicas

F.1.1. Frequency Dependence of Conductance Response

The microwave response of the device was first investigated as a function of microwave
(MW) irradiation with frequency f , in the low barrier transparency regime (VT =
≠2.11 V). Figure F.1 shows the di�erential conductance G as a function of source-drain
bias VSD for increasing frequency from 500 MHz to 12.7 GHz, with an applied power
P = 20 dBm. The conductance was una�ected by the applied signal for frequencies up
to 1.8 GHz. At frequencies f > 1.8 GHz, the conductance was altered by the applied
microwaves and in some cases we observed a non-zero conductance at VSD = 0. The
conductance response to irradiation frequency was non-monotonic, suggesting that the
coupling strength of the antenna to the device was frequency-dependent. This was due
to the method of applying microwaves by an exposed antenna within the sample space.
The results shown in Figs. 6.3, 6.4 and 6.5 were measured at frequencies labelled by the
coloured markers. These frequencies were chosen where the response of the conductance
was strongest based on Fig. F.1, such that a full power dependence was possible.

Replication of conductance features were evident at both positive and negative bias.
These followed a linear dependence on frequency, as highlighted by the white dashed

Figure F.1. Frequency dependence of conductance G as a function of source-drain
bias VSD, at a fixed microwave power P = 20 dBm. Conductance replicas are schemat-
ically indicated by the dashed white lines, �VSD = nhf/e. Frequencies shown in Figs.6.3,
6.4 and 6.5 are indicated by coloured markers.
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lines at positive bias. Conductance replicas follow the relation VSD = nhf/e, where n is
an integer. Hence, the separation of conductance replicas of �VSD = hf/e was consistent
across a wide frequency range.

F.1.2. Spectroscopy at an In-Plane Magnetic Field
Results shown so far were performed at an in-plane magnetic field BÎ = 0. Both the
Josephson junction and the probe were in the superconducting state (S), meaning that
tunnelling across the insulating barrier (I) corresponded to an SIS geometry [as shown in
Fig. 6.1(a)]. At an in-plane magnetic field of BÎ = 0.2 T, superconductivity in the probe
was suppressed such that there was a finite density of states within the superconducting
gap of the probe. The di�erential conductance G therefore showed features at bias values
proportional to the density of states in the Josephson junction.

Figure F.2 shows bias spectroscopy at an in-plane magnetic field of BÎ = 0.2 T as
a function of power P , for di�erent frequencies f of applied radiation. The device
configuration was identical to the open regime [VT = ≠2.08 V, as in Figs. 6.3(a-c)
and 6.4(a-c)]. The conductance G as a function of source-drain voltage VSD shows a
superconducting gap at low bias. Conductance values increased to a maximum close to
|VSD| = 200 µV. A small conductance peak was visible at VSD = 0, from a small residual
supercurrent which flowed across the tunnel barrier despite the softened superconducting
gap in the probe. On increasing microwave power P , replicas in conductance features
emerged at both high and low bias. High-bias conductance replicas had separation
�VSD = hf/e. Furthermore, the power dependence was similar to that at BÎ = 0.

Conductance replicas were present under microwave irradiation when superconduc-
tivity was suppressed in the probe. This is consistent with photon assisted tunnelling
(PAT) into Andreev bound states (ABSs) of charges in the probe at the Fermi energy.
While the probe was not truly normal, PAT signatures also occur in superconductor-
insulator-normal junctions [327, 328]. Since high bias conductance replicas are present
both in the case of PAT and Floquet-Andreev states, using a normal density of states
to probe the junction does not allow the two mechanisms to be distinguished.
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Figure F.2. Conductance replicas for an elevated in-plane magnetic field. Power
dependence of conductance G as a function of bias VSD, at an in-plane magnetic field
BÎ = 0.2 T for di�erent irradiation frequencies f = {4.65, 7.40, 9.20, 12.65} GHz.

F.1.3. B‹-Dependence in Spectroscopy
Selected conductance maps as a function of perpendicular magnetic field B‹ are shown
in Figs. 6.6(a-c). The full dataset is shown in Fig. F.3, for no applied microwaves
[Fig. F.3(a)] and applied powers ranging from P = ≠10 dBm [Fig. F.3(b)] to P = 10 dBm
[Fig. F.3(f)]. Some conductance features were periodic in B‹; these corresponded to
ABSs in the SNS junction, which were dependent on the phase di�erence across the
junction. Field-independent features corresponded to the superconducting gap edge
at VSD = 2�/e, and conductance resonances in the tunnelling probe. For increasing
microwave power, additional field-periodic features appeared in the conductance map.
The magnitude of the conductance at a given bias decreased, as it was distributed
across more conductance peaks. This is consistent with current conservation in the PAT
process.
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Figure F.3. Conductance as a function of perpendicular magnetic field B‹. a Conduc-
tance G as a function of B‹ with no microwave field applied.b-f Conductance G as a function
of B‹ under microwave irradiation at frequency f = 9.20 GHz. Applied microwave powers
of P = {≠10, ≠5, 0, 5, 10} dBmdÏ, respectively. Same gate configuration as Fig. 6.6.

F.2. Results for VTG = ≠1.4 V

A complete set of data is presented for a top-gate voltage VTG = ≠1.4 V, for di�erent
tunnel gate voltages VT. These data sets are complementary to Fig. 6.14.
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Figure F.4. Power dependence at VTG = ≠1.4 V and VT = ≠2.06 V. Con-
ductance G as a function of source-drain bias VSD and power P , for frequencies
f = {2.80, 3.90, 4.65, 7.40, 9.20, 12.65} GHz. Mean separation of replicated supercur-
rent features is shown in Fig. 6.5(b) (full grey squares).
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Figure F.5. Same as F.4 for VT = ≠2.08 V.
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Figure F.6. Same as F.4 for VT = ≠2.12 V.

F.3. Conductance Replicas in a Second Device

Measurements were performed on a second device, fabricated on the same chip and litho-
graphically similar to the first except for the width of the SNS junction, which was 500 nm
rather than 2.5 µm for Device 1. Measurements are shown for tunnel gate voltages
VT = ≠0.768 V a top gate voltage VTG = 0 V, kept constant throughout the measure-
ments. Figure F.7 shows the frequency response of Device 2 to microwave irradiation at
an applied power of P = 20 dBm. The frequency response was similar to that of Device 1
[see Fig. D.1], showing conductance replicas with separation �VSD = hf/e indicated by
the white dashed lines. Frequencies f = 4.70 GHz, 6.85 GHz, 9.45 GHz and 11.90 GHz
are indicated by the coloured markers, where many replicas are evident. Figure F.8 shows
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the conductance response to microwave irradiation at these frequencies, for increasing
microwave power P . Conductance replicas emerged with separation �VSD = hf/e,
shown as empty grey circles in Fig. 6.5(b). Figure F.9 shows the conductance as a func-
tion of perpendicular magnetic field B‹, for increasing microwave power. Field-periodic
conductance features were replicated, with more replicas emerging for increasing applied
power.

Figure F.10 shows the di�erential conductance as a function of applied power when
the transparency of the tunnel barrier was significantly reduced, by setting tunnel gate
voltages to (VT,L, VT,R) = (≠0.911, ≠0.875) V. Conductance replicas emerge up to
large applied powers, as in Fig. F.8.

Figure F.7. Frequency dependence of conductance G as a function of source-drain
bias VSD in Device 2, at fixed power P = 20 dBm. Conductance replicas are schematically
indicated by the dashed white line, �VSD = hf/e. Coloured markers indicate the frequencies
used in Figs. F.8 and F.9.
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Figure F.8. Conductance of Device 2 as a function of applied microwave power P ,
for frequencies f = {4.70, 6.85, 9.45, 11.90} GHz in (a-d) respectively.
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Figure F.9. Conductance of Device 2 as a function of perpendicular magnetic field
B‹ for di�erent frequencies f and powers P . a-d B‹ dependence of conductance
response at P = 0 dBm for frequencies f = {4.70, 6.85, 9.45, 11.90} GHz, respectively.
e-h Same as (a-d) for P = 5 dBm. i-l Same as (a-d) for P = 10 dBm. m-p Same as (a-d)
for P = 15 dBm.

Figure F.10. Conductance replicas in Device 2 at low tunnel-barrier transparency
(VT,L, VT,R) = (≠0.911, ≠0.875) V, for frequencies 9.45 GHz and 11.90 GHz in (a, b)
respectively.
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G.1. Type A Phase Shifts in the Current-Phase Relation
Gate-dependent phase shifts in the current-phase relation (CPR) were compared with
tunnelling spectroscopy, at BÎ = 0.2 T and 0.4 T [see Fig. 7.12]. The CPR traces at
these in-plane fields are plotted in Figs. G.1 and G.2 respectively, alongside the Reference
Device at that BÎ. Comparing the two values of BÎ, the amplitude and skewness of the
CPR trace at each VTG was reduced for BÎ = 0.4 T compared with BÎ = 0.2 T. For
a given BÎ, there was good alignment between the Reference Device and the CPR of
the junction at VTG = ≠1.6 V (B‹ = 0, vertical grey dashed line). When the top-gate
voltage was set to more positive values, the phase shift between the junction CPR and
the Reference increased [orange shaded area]. This phase shift was larger for BÎ = 0.4 T
[Fig. G.2(b)] than BÎ = 0.2 T [Fig. G.1(b)].

Type B phase shifts were also observed in devices with di�erent superconducting lead
length, LSC. Figure G.3 shows the switching current I as a function of perpendicu-
lar magnetic field B‹ and top-gate voltage VTG for Devices 3 [Figs. G.3(a, b)] and 4
[Figs. G.3(c-f)], after subtracting the background current corresponding to the Al con-
striction. Measurements were performed at a finite in-plane field BÎ, such that a gate
dependent shift was observed. For positive in-plane fields [BÎ > 0, Figs. G.3(a, c, e)],
the zero-current position shifts to more positive B‹. This is reversed on reversal of BÎ
[Figs. G.3(b, d, f)]. The maximum switching current I0 and perpendicular field shift
�B0 of the data in Fig. G.3 is extracted by performing a fit to Eq. 7.2 at each VTG [see
Fig. G.4]. Full (empty) markers indicate positive (negative) BÎ, while the color denotes
the size of BÎ: blue for |BÎ| = 0.3 T and yellow for |BÎ| = 0.5 T. For the most negative
top-gate voltages, where I0 . 20 nA, the fit did not reliably converge so these data
points have been removed. Data in Figs. G.4(c, d) are plotted with respect to the most
negative VTG at which a reliable fit was obtained. The shift �B0 increased in magnitude
for more positive VTG, and was symmetric with respect to reversal of BÎ. The shift �B0
for Device 4 was larger for |BÎ| = 0.5 T, for all VTG.
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G. Additional Data for Chapter 7

Figure G.1. Summary of Type A phase shifts at BÎ = 0.2 T. a Switching current of the
Reference Device at BÎ = 0.2 T, plotted such that the zero-current position is at B‹ = 0
(indicated by the dashed grey line). b Current-phase relation of Device 1 at BÎ = 0.2 T, for
di�erent top-gate voltages VTG (indicated by the colours). Traces are plotted relative to the
Reference Device. A gate-dependent phase shift is indicated by deviation of the zero-current
positions (star markers) from the Reference Device (dashed grey line).
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G.1. Type A Phase Shifts in the Current-Phase Relation

Figure G.2. Summary of Type A phase shifts at BÎ = 0.4 T. a Switching current of the
Reference Device at BÎ = 0.4 T, plotted such that the zero-current position is at B‹ = 0
(indicated by the dashed grey line). b Current-phase relation of Device 1 at BÎ = 0.4 T, for
di�erent top-gate voltages VTG (indicated by the colours). Traces are plotted relative to the
Reference Device. A gate-dependent phase shift is indicated by deviation of the zero-current
positions (star markers) from the Reference Device (dashed grey line).
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G. Additional Data for Chapter 7

Figure G.3. Type A phase shifts as a function of gate voltage. a, b Switching
current I of Device 3, after subtraction of a constant background corresponding to the Al
constriction, as a function of perpendicular magnetic field B‹ and top-gate voltage VTG,
for BÎ = 0.3 T and BÎ = ≠0.3 T respectively. A gate-dependent shift in the zero-current
position is indicated by the dashed line. c, d Same as (a, b) for Device 4. (e, f) Same as
(c, d) for a larger in-plane field magnitude of |BÎ| = 0.5 T.
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G.1. Type A Phase Shifts in the Current-Phase Relation

Figure G.4. Analysis of gate-dependent Type A phase shifts. a, b Switching current
obtained by fitting the data in Fig. G.3, for Devices 3 and 4 respectively. Positive (negative)
in-plane fields BÎ are indicated by the full (empty) circles, with blue (yellow) colour indicating
the in-plane field magnitude of |BÎ| = 0.3 T (|BÎ| = 0.5 T). c, d Perpendicular field o�set
B0, relative to that of the most negative top-gate voltage at which oscillations were observed.
This corresponds to VTG = ≠0.25 V and VTG = ≠0.15 V, for Devices 3 and 4 respectively.
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