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A B S T R A C T

Our brains are finite. This limitation entails that human decision-making
cannot be perfect. However, it may be optimal given its restrictions. In this
thesis, we consider resource limitations to study the brain and its behavior. In
the first project, we study how humans perceives the number of elements in a
set. In particular, we develop a model based on efficient coding given limited
resources. Based on this model, we investigate which is the computational
goal that underlies human perception. We find that human behavior is best
captured by a model that not only maximizes accuracy, but also economizes on
resources to represent the environment. In the second project, we investigate
how humans deal with time limitations in perception. In particular, we
investigate how humans estimate the number of elements in a set under limited
time. We find that a parsimonious model based on sequential-encoding and
Bayesian-decoding reproduces the variabilities and biases of human behavior.
This model better captures human behavior than a thermodynamically
inspired model of information processing constraints. In the third project,
we study a way in which the brain deals with representing a stimuli rich
world with finite resources by studying non-spatial attention. In particular,
we study the role of fluctuations in excitability states in the prefrontal
cortex. With a combination of neuroimaging and neurostimulation, we find
these fluctuations to be causally involved in the top-down control of non-
spatial attention. Finally, in the last project, we study a disorder related to
decision-making by studying obesity. In particular, we investigate how dietary
decision-making differs between individuals with and without obesity. We
find no difference in between groups when participants rate their willingness
to eat different food items. However, we observe differences in the influence of
different nutritional and non-nutritional attributes as well as overt attention
on food choices Altogether, this work shows the relevance of considering
resource limitations to understand behavior and the brain.
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R É S U M É

Nos cerveaux sont limités. Cette limitation implique que la prise de décision
humaine ne peut être parfaite. Cependant, elle peut être optimale compte
tenu de ses restrictions. Dans cette thèse, nous considérons les limitations
de ressources pour étudier le cerveau et son comportement. Dans le premier
projet, nous étudions comment les humains perçoivent le nombre d’éléments
dans un ensemble. En particulier, nous développons un modèle basé sur
un codage efficace compte tenu des ressources limitées. Sur la base de ce
modèle, nous cherchons à déterminer quel est l’objectif informationnel qui
sous-tend la perception humaine. Nous constatons que le comportement hu-
main est mieux saisi par un modèle qui non seulement maximise la précision,
mais aussi économise les ressources pour représenter l’environnement. Dans
le second projet, nous étudions la manière dont les humains prennent en
compte les limitations temporelles dans la perception. En particulier, nous
étudions comment les humains estiment le nombre d’éléments d’un ensemble
dans un temps limité. Nous constatons qu’un modèle parcimonieux basé
sur l’encodage séquentiel et le décodage bayésien reproduit les variabilités
et les biais du comportement humain. Ce modèle rend mieux compte du
comportement humain qu’un modèle d’inspiration thermodynamique des
contraintes du traitement de l’information. Dans le troisième projet, nous
étudions la manière dont le cerveau représente un monde riche en stimuli avec
des ressources limitées en étudiant l’attention non spatiale. En particulier,
nous étudions le rôle des fluctuations des états d’excitabilité dans le cortex
préfrontal. Grâce à une combinaison de neuroimagerie et de neurostimulation,
nous constatons que ces fluctuations sont impliquées de manière causale dans
le contrôle descendant de l’attention non spatiale. Enfin, dans le dernier
projet, nous étudions un trouble lié à la prise de décision en étudiant l’obésité.
En particulier, nous étudions comment la prise de décision alimentaire dif-
fère entre les individus avec et sans obésité. Nous ne constatons aucune
différence entre les groupes lorsque les participants évaluent leur volonté de
manger différents aliments. Cependant, nous observons des différences dans
l’influence de différents attributs nutritionnels et non nutritionnels ainsi que
de l’attention manifeste sur les choix alimentaires. Dans l’ensemble, ce travail
montre la pertinence de prendre en compte les limitations de ressources pour
comprendre le comportement et le cerveau.
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1
I N T R O D U C T I O N

1.1. General introduction

It is estimated that people read at a speed of 238 words per minute [1]. As
this manuscript contains 49 284 words, it will take 3 hours and 45 minutes for
the average reader to finish it. The reader may prefer to spend their time on
other activities. Therefore, as a writer I must limit the size of my thesis. This
leads to the following problem. How can I communicate the most information
while limiting the amount of text?

Fig 1.1. shows the numbers of occurrences of words in this manuscript
depending on their length. Notice that, with the exception of one and two
letter words, shorter words are used more often than longer words. This
relation has been found in many languages [2] and is known as Zipf’s law [3].
Although there is a debate about the origins of this law [4], one noticeable
explanation is efficiency [5]. By assigning shorter words to meanings that
are often used and longer words to meanings that are rarely used, we cause
shorter words to appear more often. This in turn reduces the length of texts
(and the number of syllables) and allows us to communicate more information
for a given length of text. In other words, we can do more with a limited
amount of resources. Throughout this thesis, this concept will be central and
we will refer to it as efficiency1.

The brain is our decision-making organ. Although it only weighs about
2% of our weight, it consumes 20% of our energy [6]. This means that if
our ancestors brains could make better decisions while using less energy
(i.e., if their brains were more efficient), they would experience a significant
increase in their energy budget which would likely increase their chance of

1 Here we define efficiency as doing more with a limited amount of resources compared to a
random or constant approach. Another definition of efficiency is doing the best possible
given the limited amount of resources. We will refer to this optimum as peak efficiency or
optimal efficiency.
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2 introduction

Figure 1.1: Occurrence of words in this manuscript depending on their length.
With the exception of one and two letter words, shorter words occur more often than
longer words. This relation is known as Zipf’s law [3].

survival [7]2. Following this reasoning, we can assume that our brains (and
our decision-making) are shaped by the principle of efficiency.

The efficiency of the brain can be first considered on a temporal scale. The
alertness of the brain varies over time. These changes in arousal are mediated
in part by the locus coeruleus (LC) and its noradrenalergic projections across
the brain [9]. Increases in LC activity (and thus arousal) correlate with
pupil dilation in isoluminant environments [10, 11]. When we are faced with
a difficult task, our pupil size (and thus arousal) increases [12–14]. This
effect is also found when we are in a stressful situation [15] and causes
an increase in neural metabolic demand [16]. Conversely, the LC activity
decreases during sleep [17], which is associated with a decrease in metabolic
activity [18, 19]. Financial incentives can provide additional evidence on the
variability of brain activity on a temporal scale. Participants have higher
performance on a perception task when they are financially incentivized
to respond accurately [20], which has been related to their pupil size [21].
Altogether, these reports indicate that the activity of the brain is not constant,

2 For simplicity we only mention metabolic limitations. Other limitations such as constraints
on wiring can be considered [8], however the conclusion remains the same: there is an
evolutionary pressure for the brain to be efficient
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but rather varies depending on needs of the individual. Therefore, the brain
decides when to spend more or less energy depending on the context: the
when of brain activity is efficient.

Secondly, we can consider what information is processed by the brain. We
live in environments with much more information than we could ever process.
Therefore, the brain must decide which information to process and which to
ignore. One of the mechanisms the brain uses to solve this problem is attention.
Attention consist in processing relevant information while ignoring irrelevant
information. Attention has been found across modalities, however it has been
mostly studies in the visual modality. Visual attention studies typically make
distinctions between overt and covert attention, and distinguish between
spatial and non-spatial attention [22]. Attention can be oriented by top-down
goal directed intentions, for instance to focus on the road while cycling, and
by bottom-up salient signals, for instance noticing an ice-cream shop on
the way. Rather than processing all stimuli equally, the brain decides which
computations are worth processing and which are not: the what of brain
activity is efficient 3.

Finally, we may consider how the brain processes information. One aspect
to consider is the code that the brain uses to represent information. Any
neural network will have a finite amount of noticeably distinct states. How
should the infinitely different stimulus states be mapped to a finite amount
of neural states? Considering the principles of efficiency, one can respond
that the stimulus states that occur more frequently should be assigned more
neural states than infrequent stimulus states (similarly to Zipf’s law). This
principle is known as efficient coding [24]4. It has been observed that low-
level perceptual systems follow this principle [25], for example orientation
perception. Cardinal orientations (i.e., horizontal and vertical) occur more
frequently in our environment than non-cardinal orientations. The tuning
curves of macaque V1 cells are tuned as predicted by efficient coding: more
cells have preferred firing rates for orientations that occur more commonly [25].
This is consistent with the "oblique effect" observed in behavior: people
perceive better horizontal and vertical orientations [26]. Interestingly, deep

3 Here I claim that attention is more efficient than considering all information equally. I do
not claim that attention achieves peak efficiency. In fact, it has recently been suggested that
the information gathering behavior of humans is suboptimal [23]. It is currently unknown
if a resource-rational model can explain these suboptimalities.

4 Efficient coding is a form of peak efficiency, as it can be proven that it is the most efficient
way of representing a stimulus. I do not make the same claim about arousal and attention,
which I simply consider as more efficient than a constant neural activity in the case of
arousal, or an equal consideration of all stimuli in the case of attention.
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neural networks trained on image recognition tasks [27] or on orientation
discrimination tasks [28] also exhibit this oblique effect, underlying the
importance of efficient coding.

Another aspect to consider is neural dynamics. It has been observed that
neural activity is rhythmic [29]. The frequency of this rhythmic neural
activity can vary and is typically studied between 1 and 100Hz. Researchers
have identified common frequency bands found in the brain. It has been
suggested that high frequencies correspond to local neural computations
and lower frequencies correspond to long range coordination [30]. Notably,
these frequencies bands are mostly conserved across species even if their
brain sizes are different [31]. The origins of these oscillations is subject to
a long debate: are they a mechanism of neural communication or simply
a by-product of neural computations [32]. Recently, it has been suggested
that these oscillations are consistent with efficient coding. Although it is
counterintuitive, as the principle of efficient coding favors reducing redundancy
and thus temporal correlations, Chalk et al. [33] found that when taking into
account synaptic delays, a network based on efficient coding has synchronous
activity. Interestingly, the performance of the network increases when an
optimal amount of noise is added (the idea that noise can be beneficial will
be discussed in chapter 2). These results suggest that neural oscillations may
be the result of efficient coding.

Considering how the brain processes information has been instrumental
in economics. Behavioral economists were puzzled by seemingly irrational
behavior. For instance, individuals preferring option A to B and B to C could
also prefer C to A. This violation of intransitivity contradicts traditional
economic models such as expected utility theory [34]. Simon [35, 36] proposed
the idea of "bounded rationality", according to which individuals are limited
in their capacities to process information and thus to make rational decisions.
This notion has been central to develop models that can explain seemingly
irrational behavior, in particular by assuming that the decision maker makes
efficient use of their limited capacity [37].

In this thesis, we will study the brain and decision-making by considering
the efficiency of the brain. In chapters 2 and 3, we will investigate how the
brain encodes numerosity by considering the how of neural efficiency. In
chapter 4, we will study the what of neural efficiency by investigating the
neural mechanisms of non-spatial attention. Finally, in chapter 5, we will
consider the what of neural efficiency to study a decision-making disorder by
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investigating the effect of attention in dietary decision-making and how it
influences differently individual with and without obesity.

The overarching goal of this thesis is to further our knowledge of brain and
behavior to better treat, diagnose and prevent behavior disorders, inspire
advances in artificial intelligence [38–40] and expand our knowledge of what
we are.

1.2. Chapter overview

1.2.1 Chapter 2

In chapter 2, we use the how of neural efficiency to study the representation
of numerosity. Humans (and other animals, including monkeys [41], rats [42],
pigeons [43], zebrafish [44] and bees [45]) have the ability to approximately
estimate the number of elements in a stimulus set without counting (e.g.,
dots on a screen or tones in an audio recording)5. This approximate number
system (ANS) obeys Weber’s law: the accuracy of discrimination between
two stimuli is proportional to the ratio between the two stimuli [47] (a
comment on the mechanisms of Weber’s law is presented in Appendix A).
It has been suggested that the existence of the ANS across species suggest
it provides a strong benefit for survival [48]. Many decisions involve the
notion of numerosity, for instance when foraging (one must decide which
areas contains more resources) and social interaction (one must know which
group is more numerous to predict which one would win in a fight). Notice
that these decisions can also provide an intuition of why the ANS follows
Weber’s law. Fighting two instead of one adversary makes a bigger difference
than fighting 31 instead of 30 adversaries, even though the difference in
adversaries is only one in both cases.

Our study formally investigates if the ANS is based on an efficient neural code.
Assuming a simple neural network, we derive formal rules that the neural
firing probabilities must follow in order to be efficient. These encoding rules
depend on the environmental distribution of numerosities and, importantly,
the goal of the decision maker. These goals could be maximizing accuracy (i.e.,
maximizing the number of correct discriminations in a binary choice task),
maximizing expected value (i.e., maximizing the number of elements chosen in

5 This ability has also been observed in deep neural networks trained for image recogni-
tion. In particular, researchers observed artificial neurons that responded to a preferred
numerosity [46].
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a binary choice task) or maximizing accuracy while economizing the resources
used to represent the environmental distribution of numerosities.

Our results indicate that the human ANS is best described by an efficient
coding scheme that follows the goal of maximizing accuracy while economizing
the number of resources used to represent the prior distribution. In addition,
we found that the human ANS adapts to new environments, which is consistent
as the goal of economizing resources to represent the prior allows for a rapid
adaptation. Importantly, this efficient coding model performs better than
logarithmic encoding [49], a previously proposed descriptive model of the
ANS.

1.2.2 Chapter 3

Similar to chapter 2, we also investigate the ANS in chapter 3. However,
instead of studying the ANS in a discrimination task, we focus on an estima-
tion task (i.e., reporting the number of dots seen on a screen). Previous work
investigating the numerosity estimates of participants have found that their
responses are variable and biased. We investigate if the variability and biases
in numerosity estimates can be explained by the how of neural efficiency,
by considering that the brain makes an efficient use of its limited resources.
As in chapter 2, we consider numerosity estimation as a two stage process.
First, a numerosity is encoded with noise into a representation. The longer
the exposure time of the stimulus, the lower the encoding noise. Then, the
decision-maker decodes this representation with Bayesian inference taking
into account the statistics of the environment. This parsimonious model
accurately predicts biases and variances observed in the human ANS. We
fit this model to human behavior data and compare the fits to a recently
proposed model that also consider resource limitation but using a framework
inspire by thermodynamics [50]. We find that our model better captures the
human ANS.

1.2.3 Chapter 4

In chapter 4, we investigate the what of the efficiency of the brain by studying
the mechanisms of non-spatial attention. Non-spatial attention refers to the
ability to enhance the representation of specific features (or objects). For
instance, when foraging fruit one may enhance their processing of color to
find even the hardest to find fruit, but may choose to enhance their processing
of motion when they suspect a predator is hiding behind a bush. In both
these examples, the individual decides which features to attend to: there is a
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top-down control of attention. Baldauf and Desimone found that the inferior
frontal junction (IFJ) plays a role in the top-down control of attention [51].
Participants were presented a stream of overlapping faces and houses that
came in and out of visibility at different frequencies. When participants were
instructed to attend to faces, the IFJ was tagged to the presentation frequency
of the faces. However, when attending to houses, the IFJ’s activity followed
the presentation frequency of houses. In addition, they observed an increase
in gamma synchrony between the IFJ and the sensory areas. These results
can be added to a list of finding that have observed neural synchronization
during attention task [52, 53]. The presence of neural synchronization in
cognitive tasks including non-spatial attention tasks has lead to the devel-
opment of the “communication through coherence” hypothesis [54], which
states that neural oscillations are synchronized fluctuations in excitability
states which provides windows of communication during which neurons can
communicate and windows during which communication will fail. Therefore,
neural oscillations are used by the brain to coordinate neural activity. This
contrasts with the view that neural oscillations are simply a by-product of
neural communication. To test these hypothesis, we must manipulate the
levels of neural synchronization, which can be done with non-invasive brain
stimulation [55, 56]. In our study, we test the causal role of neural oscilla-
tions in non-spatial attention. We develop a paradigm in which images of an
indoor or outdoor scene are presented with overlapping moving dots. The
participants must either attend to the content of the scene or to the direction
of the dots. Importantly, the stimuli are presented as a series coming in and
out of visibility (controlled by phase shuffling the images) with a period of
700ms. Our fMRI results indicate that the IFJ is involved in this non-spatial
attention task, as well as the parahippocampal place area (PPA) when the
participants attend to scenes and the middle temporal visual area (MT)
when they attend to motion. Our EEG results show that both frontal and
occipital regions are tagged by the presentation frequency and that there is a
delay between the activity in the IFJ and the sensory areas. Based on these
results, we non-invasively stimulate the IFJ using transcranial alternating
current stimulation (tACS), which has been shown to manipulate the cortical
excitability levels in an alternating manner, similar to a neural oscillation.
We use two stimulation conditions, either “in-phase” with the presentation
stimulus, using a delay 95ms based on our EEG results, or “out-of-phase”
with the presentation stimulus, using a delay of 445ms. We hypothesized that
if the synchrony of excitability states between the IFJ and sensory areas is a
mechanism of the top-down control of non-spatial attention, the “in-phase”
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condition would enhance performance and the “out-of-phase” condition would
decrease it. However, if these oscillations are not important, both conditions
would yield similar performance. We find that the performance on the task
when participants are asked to attend to the direction of the dots is higher in
the “in-phase” stimulation than the “out-of-phase” condition, thus showing
a mechanistic role of synchrony of excitability states between the IFJ and
sensory areas in non-spatial attention.

1.2.4 Chapter 5

In chapter 5, we apply our efficiency framework to study a disorder. We focus
on the what of neural efficiency, by studying how attention influences dietary
decision-making differently in individuals with and without obesity. Obesity
poses a large health [57], economic [58] and environmental [59] burden. It is
well know that dietary decision-making is different in obesity. For example,
individuals with obesity tend to eat larger meals than individuals without
obesity [60]. However, the role of attention in dietary decision-making in
obesity has not been studied.

Dietary decision-making is fundamentally multi-attribute. In order to consider
the choice between and apple and a cake, one may consider different nutritional
attributes (e.g., how much sugar is in the apple and the cake) and non-
nutritional attributes (e.g., the colorfulness of the apple and cake). These
attributes must be combined to construct a representation of value (or be
compared at the attribute level [61]). These attributes may be weighted
differently depending on the current goal of the decision maker [62]. This
weighting of attributes is reminiscent of the concept of non-spatial attention
discussed in the perceptual domain, where specific features are enhanced to
influence perception. FRMI studies have identifies areas of the brain involved
in influencing the weighting of attributes during valuation [63]. Although
these areas are distinct from the IFJ responsible for non-spatial attention,
these areas are also located in the dorsolateral prefrontal cortex, which suggest
weighting of attributes in the perceptual and valuation domain, although
distinct, may share some similarities.

Another aspect of attention in the valuation domain is overt attention. When
faced with a binary choice, people tend to choose the option that they looked
at longer [64, 65]. This suggests that the brain does not have the resources
to simultaneously process both options in an equal manner and is therefore
biased to choose the option that is considered more.



1.2 chapter overview 9

We study how different nutritional and non-nutritional attributes and gaze
influence dietary decision-making, and how these influences differ in obesity.
We find that dietary decision-making is influenced by many nutritional and
non-nutritional attributes, as well as the gaze of the participants. We find
no significant difference when participants are asked to rate their willing-
ness to eat different food items. However, we do find significant differences
when participants are asked to make a choice between different food items.
These differences allow us to accurately classify the BMI group of the par-
ticipants. Therefore, we find that the influence of different nutritional and
non-nutritional attributes and overt attention is different in individuals with
obesity. Further investigating these results could lead to a better treatment
and prevention of obesity.
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2.1. Abstract

Human decisions are based on finite information, which makes them inherently
imprecise. But what determines the degree of such imprecision? Here, we
develop an efficient coding framework for higher-level cognitive processes
in which information is represented by a finite number of discrete samples.
We characterize the sampling process that maximizes perceptual accuracy
or fitness under the often-adopted assumption that full adaptation to an
environmental distribution is possible, and show how the optimal process
differs when detailed information about the current contextual distribution is
costly. We tested this theory on a numerosity discrimination task, and found
that humans efficiently adapt to contextual distributions, but in the way
predicted by the model in which people must economize on environmental
information. Thus, understanding decision behavior requires that we account
for biological restrictions on information coding, challenging the often-adopted
assumption of precise prior knowledge in higher-level decision systems.

11
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2.2. Introduction

’We rarely know the statistics of the messages completely, and our knowledge
may change . . . what is redundant today was not necessarily redundant
yesterday.’ – Horace Barlow [66].

It has been suggested that the rules guiding behavior are not arbitrary, but
follow fundamental principles of acquiring information from environmental
regularities in order to make the best decisions. Moreover, these principles
should incorporate strategies of information coding in ways that minimize
the costs of inaccurate decisions given biological constraints on information
acquisition, an idea known as efficient coding [24, 67–69]. While early applica-
tions of efficient coding theory have primarily been to early stages of sensory
processing [70–72], it is worth considering whether similar principles may also
shape the structure of internal representations of higher-level concepts, such
as the perceptions of value that underlie economic decision making [73–75].
In this work, we contribute to the efficient coding framework applied to
cognition and behavior in several respects.

A first aspect concerns the range of possible internal representation schemes
that should be considered feasible, which determines the way in which greater
precision of discrimination in one part of the stimulus space requires less preci-
sion of discrimination elsewhere. Implementational architectures proposed in
previous work assume a population coding scheme in which different neurons
have distinct ’preferred’ stimuli [71, 72]. While this is clearly relevant for
some kinds of low-level sensory features such as orientation, it is not obvious
that this kind of internal representation is used in representing higher-level
concepts such as economic values. We instead develop an efficient coding
theory for a case in which an extensive magnitude (something that can be
described by a larger or smaller number) is represented by a set of processing
units that ’vote’ in favor of the magnitude being larger rather than small.
The internal representation therefore necessarily consists of a finite collection
of binary signals.

Our restriction to representations made up of binary signals is in conformity
with the observation that neural systems at many levels appear to transmit
information via discrete stochastic events [76, 77]. Moreover, cognitive models
with this general structure have been argued to be relevant for higher-order
decision problems such as value-based choice. For example, it has been
suggested that the perceived values of choice options are constructed by
acquiring samples of evidence from memory regarding the emotions evoked
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by the presented items [78]. Related accounts suggest that when a choice must
be made between alternative options, information is acquired via discrete
samples of information that can be represented as binary responses (e.g.,
’yes/no’ responses to queries) [79, 80]. The seminal decision by sampling (DbS)
theory [81] similarly posits an internal representation of magnitudes relevant
to a decision problem by tallies of the outcomes of a set of binary comparisons
between the current magnitude and alternative values sampled from memory.
The architecture that we assume for imprecise internal representations has
the general structure of proposals of these kinds; but we go beyond the
above-mentioned investigations, in analyzing what an efficient coding scheme
consistent with our general architecture would be like.

A second aspect concerns the objective for which the encoding system is
assumed to be optimized. Information maximization theories [70–72] assume
that the objective should be maximal mutual information between the true
stimulus magnitude and the internal representation. While this may be a
reasonable assumption in the case of early sensory processing, it is less
obvious in the case of circuits involved more directly in decision making, and
in the latter case an obvious alternative is to ask what kind of encoding
scheme will best serve to allow accurate decisions to be made. In the theory
that we develop here, our primary concern is with encoding schemes that
maximize a subject’s probability of giving a correct response to a binary
decision. However, we compare the coding rule that would be optimal from
this standpoint to one that would maximize mutual information, or to one
that would maximize the expected value of the chosen item.

Third, we extend our theory of efficient coding to consider not merely the
nature of an efficient coding system for a single environmental frequency
distribution assumed to be permanently relevant —so that there has been
ample time for the encoding rule to be optimally adapted to that distribution
of stimulus magnitudes —but also an efficient approach to adjusting the en-
coding as the environmental frequency distribution changes. Prior discussions
of efficient coding have often considered the optimal choice of an encoding rule
for a single environmental frequency distribution that is assumed to represent
a permanent feature of the natural environment [70, 71]. Such an approach
may make sense for a theory of neural coding in cortical regions involved in
early-stage processing of sensory stimuli, but is less obviously appropriate
for a theory of the processing of higher-level concepts such as economic
value, where the idea that there is a single permanently relevant frequency
distribution of magnitudes that may be encountered is doubtful.
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A key goal of our work is to test the relevance of these different possible
models of efficient coding in the case of numerosity discrimination. Judgments
of the comparative numerosity of two visual displays provide a test case of
particular interest given our objectives. On the one hand, a long literature
has argued that imprecision in numerosity judgments has a similar structure
to psychophysical phenomena in many low-level sensory domains [82, 83].
This makes it reasonable to ask whether efficient coding principles may
also be relevant in this domain. At the same time, numerosity is plainly a
more abstract feature of visual arrays than low-level properties such as local
luminosity, contrast, or orientation, and therefore can be computed only at a
later stage of processing. Moreover, processing of numerical magnitudes is a
crucial element of many higher-level cognitive processes, such as economic
decision making; and it is arguable that many rapid or intuitive judgments
about numerical quantities, even when numbers are presented symbolically,
are based on an ’approximate number system’ of the same kind as is used
in judgments of the numerosity of visual displays [82, 84]. It has further
been argued that imprecision in the internal representation of numerical
magnitudes may underly imprecision and biases in economic decisions [85,
86].

It is well-known that the precision of discrimination between nearby numbers
of items decreases in the case of larger numerosities, in approximately the
way predicted by Weber’s Law, and this is often argued to support a model of
imprecise coding based on a logarithmic transformation of the true number [82,
83]. However, while the precision of internal representations of numerical
magnitudes is arguably of great evolutionary relevance [48, 87], it is unclear
why a specifically logarithmic transformation of number information should
be of adaptive value, and also whether the same transformation is used
independent of context [47, 88]. Here, we report new experimental data
on numerosity discrimination by human participants, where we find that
our data are most consistent with an efficient coding theory for which the
performance measure is the frequency of correct comparative judgments, and
where people economize on the costs associated to learn about the statistics
of the environment.
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2.3. Results

A general efficient sampling framework

We consider a situation in which the objective magnitude of a stimulus with
respect to some feature can be represented by a quantity v. When the stimulus
is presented to an observer, it gives rise to an imprecise representation r in
the nervous system, on the basis of which the observer produces any required
response. The internal representation r can be stochastic, with given values
being produced with conditional probabilities p(r|v) that depend on the true
magnitude. Here, we are more specifically concerned with discrimination
experiments, in which two stimulus magnitudes v1 and v2 are presented,
and the subject must choose which of the two is greater. We suppose that
each magnitude vi has an internal representation ri, drawn independently
from a distribution p(ri|vi) that depends only on the true magnitude of that
individual stimulus. The observer’s choice must be based on a comparison of
r1 with r2.

One way in which the cognitive resources recruited to make accurate discrim-
inations may be limited is in the variety of distinct internal representations
that are possible. When the complexity of feasible internal representations is
limited, there will necessarily be errors in the identification of the greater
stimulus magnitude in some cases, even assuming an optimal decoding rule for
choosing the larger stimulus on the basis of r1 and r2. One can then consider
alternative encoding rules for mapping objective stimulus magnitudes to
feasible internal representations. The answer to this efficient coding problem
generally depends on the prior distribution f(v) from which the different
stimulus magnitudes vi are drawn. The resources required for more precise
internal representations of individual stimuli may be economized with respect
to either or both of two distinct cognitive costs. The first goal of this work is
to distinguish between these two types of efficiency concerns.

One question that we can ask is whether the observed behavioral responses
are consistent with the hypothesis that the conditional probabilities p(r|v)
are well-adapted to the particular frequency distribution of stimuli used in
the experiment, suggesting an efficient allocation of the limited encoding
neural resources. The assumption of full adaptation is typically adopted in
efficient coding formulations of early sensory systems [70, 89], and also more
recently in applications of efficient coding theories in value-based decisions [73–
75].
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There is also a second cost in which it may be important to economize on
cognitive resources. An efficient coding scheme in the sense described above
economizes on the resources used to represent each individual new stimulus
that is encountered; however, the encoding and decoding rules are assumed
to be precisely optimized for the specific distribution f(v) of stimuli that
characterizes the experimental situation. In practice, it will be necessary for a
decision maker to learn about this distribution in order to encode and decode
individual stimuli in an efficient way, on the basis of experience with a given
context. In this case, the relevant design problem should not be conceived as
choosing conditional probabilities p(r|v) once and for all, with knowledge of
the prior distribution f(v) from which v will be drawn. Instead, it should be
to choose a rule that specifies how the probabilities p(r|v) should adapt to the
distribution of stimuli that have been encountered in a given context. It then
becomes possible to consider how well a given learning rule economizes on the
degree of information about the distribution of magnitudes associated with
one’s current context that is required for a given level of average performance
across contexts. This issue is important not only to reduce the cognitive
resources required to implement the rule in a given context (by not having
to store or access so detailed a description of the prior distribution), but in
order to allow faster adaptation to a new context when the statistics of the
environment can change unpredictably [90].

Coding architecture

We now make the contrast between these two types of efficiency more concrete
by considering a specific architecture for internal representations of sensory
magnitudes. We suppose that the representation ri of a given stimulus will
consist of the output of a finite collection of n processing units, each of which
has only two possible output states (’high’ or ’low’ readings), as in the case
of a simple perceptron. The probability that each of the units will be in one
output state or the other can depend on the stimulus vi that is presented.
We further restrict the complexity of feasible encoding rules by supposing
that the probability of a given unit being in the ’high’ state must be given by
some function θ(vi) that is the same for each of the individual units, rather
than allowing the different units to coordinate in jointly representing the
situation in some more complex way. We argue that the existence of multiple
units operating in parallel effectively allows multiple repetitions of the same
’experiment’, but does not increase the complexity of the kind of test that
can be performed. Note that we do not assume any unavoidable degree of
stochasticity in the functioning of the individual units; it turns out that
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in our theory, it will be efficient for the units to be stochastic, but we do
not assume that precise, deterministic functioning would be infeasible. Our
resource limits are instead on the number of available units, the degree of
differentiation of their output states, and the degree to which it is possible
to differentiate the roles of distinct units.

Given such a mechanism, the internal representation ri of the magnitude
of an individual stimulus vi will be given by the collection of output states
of the n processing units. A specification of the function θ(v) then implies
conditional probabilities for each of the 2n possible representations. Given
our assumption of a symmetrical and parallel process, the number ki of
units in the ’high’ state will be a sufficient statistic, containing all of the
information about the true magnitude vi that can be extracted from the
internal representation. An optimal decoding rule will therefore be a function
only of ki, and we can equivalently treat ki (an integer between 0 and n) as
the internal representation of the quantity vi. The conditional probabilities
of different internal representations are then

p(ki|vi) =

(
n

k

)
θ(vi)

ki(1 − θ(vi))
n−ki (2.1)

The efficient coding problem for a given environment, specified by a particular
prior distribution f(v), will be to choose the encoding rule θ(v) so as to allow
an overall distribution of responses across trials that will be as accurate as
possible (according to criteria that we will elaborate further below). We can
further suppose that each of the individual processing units is a threshold
unit, that produces a ’high’ reading if and only if the value vi − ηi exceeds
some threshold τ , where ηi is a random term drawn independently on each
trial from some distribution fη (Figure 2.1). The encoding function θ(v)
can then be implemented by choosing an appropriate distribution fη. This
implementation requires that θ(v) be a non-decreasing function, as we shall
assume.

Limited cognitive resources

One measure of the cognitive resources required by such a system is the
number n of processing units that must produce an output each time an
individual stimulus vi is evaluated. We can consider the optimal choice of fη
in order to maximize, for instance, average accuracy of responses in a given
environment f(v), in the case of any bound n on the number of units that
can be used to represent each stimulus. But we can also consider the amount



18 efficient sampling and noisy decisions

Figure 2.1: Architecture of the sampling mechanism. Each processing unit receives
noisy versions of the input v, where the noisy signals are i.i.d. additive random signals
independent of v. The output of the neuron for each sample is ’high’ (one) reading if
v − η > τ and zero otherwise. The noisy percept of the input is simply the sum of the
outputs of each sample given by k.

of information about the distribution f(v) that must be used in order to
decide how to encode a given stimulus vi. If the system is to be able to adapt
to changing environments, it must determine the value of θ (the probability
of a ’high’ reading) as a function of both the current vi and information
about the distribution f , in a way that must now be understood to apply
across different potential contexts. This raises the issue of how precisely the
distribution f associated with the current context is represented for purposes
of such a calculation. A more precise representation of the prior (allowing
greater sensitivity to fine differences in priors) will presumably entail a greater
resource cost or very long adaptation periods.

We can quantify the precision with which the prior f is represented by
supposing that it is represented by a finite sample of m independent draws
ṽ1, . . . , ˜vm from the prior (or more precisely, from the set of previously
experienced values, an empirical distribution that should after sufficient
experience provide a good approximation to the true distribution). We further
assume that an independent sample of m previously experienced values is
used by each of the processing units (Figure 2.1). Each of the n individual
processing units is then in the ’high’ state with probability θ(vi; ṽ1, . . . , ˜vm).
The complete internal representation of the stimulus vi is then the collection
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of n independent realizations of this binary-valued random variable. We may
suppose that the resource cost of an internal representation of this kind is an
increasing function of both n and m.

This allows us to consider an efficient coding meta-problem in which for any
given values (n,m) the function θ(vi; ṽ1, . . . , ṽm) is chosen so as to maximize
some measure of average perceptual accuracy, where the average is now taken
not only over the entire distribution of possible vi occurring under a given
prior f(v), but over some range of different possible priors for which the
adaptive coding scheme is to be optimized. We wish to consider how each
of the two types of resource constraint (a finite bound on n as opposed to a
finite bound on m) affects the nature of the predicted imprecision in internal
representations, under the assumption of a coding scheme that is efficient
in this generalized sense, and then ask whether we can tell in practice how
tight each of the resource constraints appears to be.

Efficient sampling for a known prior distribution

We first consider efficient coding in the case that there is no relevant constraint
on the size of m, while n instead is bounded. In this case, we can assume that
each time an individual stimulus vi must be encoded, a large enough sample
of prior values is used to allow accurate recognition of the distribution f(v),
and the problem reduces to a choice of a function θ(v) that is optimal for
each possible prior f(v).

2.3.0.1 Maximizing mutual information

The nature of the resource-constrained problem to be optimized depends
on the performance measure that we use to determine the usefulness of a
given encoding scheme. A common assumption in the literature on efficient
coding has been that the encoding scheme maximizes the mutual information
between the true stimulus magnitude and its internal representation [71, 72,
74]. We start by characterizing the optimal θ(v) for a given prior distribution
f(v), according to this criterion. It can be shown that for large n, the mutual
information between θ and k (hence the mutual information between v and
k) is maximized if the prior distribution f̂ over θ is Jeffreys’ prior [91]

f̂(θ) =
1

π
√
θ(1 − θ)

(2.2)
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also known as the arcsine distribution. Hence, the mapping θ(v) induces a
prior distribution f̂ over θ given by the arcsine distribution (Figure 2.2a,
right panel). Based on this result, it can be shown that the optimal encoding
rule θ(v) that guarantees maximization of mutual information between the
random variable v and the noisy encoded percept k is given by (see Appendix
2.1)

θ(v) = [sin(
π

2F (v))]
2, (2.3)

where F (v) is the CDF of the prior distribution f(v).

2.3.0.2 Accuracy maximization for a known prior distribution

So far, we have derived the optimal encoding rule to maximize mutual
information. However, one may ask what the implications are of such a
theory for discrimination performance. This is important to investigate
given that achieving channel capacity does not necessarily imply that the
goals of the organism are also optimized [92]. Independent of information
maximization assumptions, here, we start from scratch and investigate what
are the necessary conditions for minimizing discrimination errors given the
resource-constrained problem considered here. We solve this problem for the
case of two alternative forced choice tasks, where the average probability of
error is given by (see Appendix 2.2)

E[error] =
x

Perror[θ(v1), θ(v2)]f̂(θ1)f̂(θ2)dθ1dθ2 (2.4)

where Perror[] represents the probability of erroneously choosing the alter-
native with the lowest value v given a noisy percept k (assuming that the
goal of the organism in any given trial is to choose the alternative with
the highest value). Here, we want to find the density function f̂(θ) that
guarantees the smallest average error (Equation 4). The solution to this
problem is (Appendix 2.2)

f̂(θ) =
1

π
√
θ(1 − θ)

(2.5)

which is exactly the same prior density function over θ that maximizes mutual
information (Equation 2). Crucially, please note that we have obtained this
expression based on minimizing the frequency of erroneous choices and not the
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Figure 2.2: Overview of our theory and differences in encoding rules. (a) Schematic
representation of our theory. Left: example prior distribution f (v) of values v encountered
in the environment. Right: Prior distribution in the encoder space (Equation 2) due
to optimal encoding (Equation 3). This optimal mapping determines the probability θ
of generating a ’high’ or ’low’ reading. The ex-ante distribution over θ that guarantees
maximization of mutual information is given by the arcsine distribution (Equation 2).
(b) Encoding rules θ(v) for different decision strategies under binary sampling coding:
accuracy maximization (blue), reward maximization (red), DbS (green dashed). (c) Mutual
information I(v, k) for the different encoding rules as a function of the number of samples
n. As expected I(v, k) increases with n, however the rule that results in the highest loss of
information is DbS. (d) Discriminability thresholds d (log-scaled for better visualization)
for the different encoding rules as a function of the input values v for the prior f (v)
given in panel a. (e) Graphical representation of the perceptual accuracy optimization
landscape. We plot the average probability of correct responses for the large-n limit using
as benchmark a Beta distribution with parameters a and b. The blue star shows the average
error probability assuming that f (θ) is the arcsine distribution (Equation 2), which is the
optimal solution when the prior distribution f in known. The blue open circle shows the
average error probability based on the encoding rule assumed in DbS, which is located near
the optimal solution. Please note that when formally solving this optimization problem,
we did not assume a priori that the solution is related to the beta distribution. We use the
beta distribution in this figure just as a benchmark for visualization. Detailed comparison
of performance for finite n samples is presented in Appendix 2.7.
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maximization of mutual information as a goal in itself. This provides a further
(and normative) justification for why maximizing mutual information under
this coding scheme is beneficial when the goal of the agent is to minimize
discrimination errors (i.e., maximize accuracy).

2.3.0.3 Optimal noise for a known prior distribution

Based on the coding architecture presented in Figure 2.1, the optimal encoding
function θ(v) can then be implemented by choice of an appropriate distribu-
tion fη. It can be shown that discrimination performance can be optimized
by finding the optimal noise distribution fη (Appendix 2.3) [93]

fη(v) =
π

2 sin[π(1 − F (τ − v))]f(τ − v) (2.6)

Remarkably, this result is independent of the number of samples n available
to encode the input variable, and generalizes to any prior distribution f

(recall that F is defined as its cumulative density function).

This result reveals three important aspects of neural function and decision
behavior: First, it makes explicit why a system that evolved to code infor-
mation using a coding scheme of the kind assumed in our framework must
be necessarily noisy. That is, we do not attribute the randomness of peoples’
responses to a particular set of stimuli or decision problem to unavoidable
randomness of the hardware used to process the information. Instead, the
relevant constraints are assumed to be the limited set of output states for each
neuron, the limited number of neurons, and the requirement that the neurons
operate in parallel (so that each one’s output state must be statistically
independent of the others, conditional on the input stimulus). Given these
constraints, we show that it is efficient for the operation of the neurons to be
random. Second, it shows how the nervous system may take advantage of
these noisy properties by reshaping its noise structure to optimize decision
behavior. Third, it shows that the noise structure can remain unchanged
irrespective of the amount of resources available to guide behavior (i.e., the
noise distribution fη does not depend on n, Equation 6). Please note how-
ever, that this minimalistic implementation does not directly imply that the
samples in our algorithmic formulation are necessarily drawn in this way.
We believe that this implementation provides a simple demonstration of the
consequences of limited resources in systems that encode information based
on discrete stochastic events [77]. Interestingly, it has been shown that this
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minimalistic formulation can be extended to more realistic population coding
specifications [94].

2.3.0.4 Efficient coding and the relation between environmental priors and
discrimination

The results presented above imply that this encoding framework imposes
limitations on the ability of capacity-limited systems to discriminate between
different values of the encoded variables. Moreover, we have shown that error
minimization in discrimination tasks implies a particular shape of the prior
distribution of the encoder (Equation 5) that is exactly the prior density that
maximizes mutual information between the input v and the encoded noisy
readings k (Equation 2, Figure 2.2a right panel). Does this imply a relation
between prior and discriminability over the space of the encoded variable?
Intuitively, following the efficient coding hypothesis, the relation should be
that lower discrimination thresholds should occur for ranges of stimuli that
occur more frequently in the environment or context.

Recently, it was shown that using an efficiency principle for encoding sensory
variables (e.g., with a heterogeneous population of noisy neurons [25]) it is
possible to obtain an explicit relationship between the statistical properties of
the environment and perceptual discriminability [25]. The theoretical relation
states that discriminability thresholds d should be inversely proportional
to the density of the prior distribution f(v). Here, we investigated whether
this particular relation also emerges in the efficient coding scheme that we
propose in this study.

Remarkably, we obtain the following relation between discriminability thresh-
olds, prior distribution of input variables, and the number of limited samples
n (Appendix 2.4):

d =
1√

nπf(v)
(2.7)

∝ 1
f(v)

Interestingly, this relationship between prior distribution and discriminability
thresholds holds empirically across several sensory modalities (Appendix 2.4),
thus once again demonstrating that the efficient coding framework that we
propose here seems to incorporate the right kind of constraints to explain
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observed perceptual phenomena as consequences of optimal allocation of
finite capacity for internal representations.

2.3.0.5 Maximizing the expected size of the selected option (fitness maxi-
mization)

Until now, we have studied the case when the goal of the organism is to
minimize the number of mistakes in discrimination tasks. However, it is
important to consider the case when the goal of the organism is to maximize
fitness or expected reward [95]. For example, when spending the day foraging
fruit, one must make successive decisions about which tree has more fruits.
Fitness depends on the number of fruit collected which is not a linear function
of the number of accurate decisions, as each choice yields a different amount
of fruit.

Therefore, in the case of reward maximization, we are interested in minimizing
reward loss which is given by the following expression

E[v(chosen)] =
x

f(v1, v2)[P1(θ(v1), θ(v2))v1 +P2(θ(v1), θ(v2))v2]dv1dv2
(2.8)

where Pi(θ(v1), θ(v2)) is the probability of choosing option i when the input
values are v1 and v2. Thus, the goal is to find the encoding rule θ(v) which
guarantees that the amount of reward loss is as small as possible given our
proposed coding framework.

Here we show that the optimal encoding rule θ(v) that guarantees maximiza-
tion of expected value is given by

θ(v) = sin

[
π

2 · c
∫ v

−∞
f(ṽ)2/3dṽ

]2
, (2.9)

where c is a normalizing constant which guarantees that the expression
within the integral is a probability density function (Appendix 2.5). The first
observation based on this result is that the encoding rule for maximizing
fitness is different from the encoding rule that maximizes accuracy (compare
Equations 3 and 9), which leads to a slight loss of information transmission
(Figure 2.2c). Additionally, one can also obtain discriminability threshold
predictions for this new encoding rule. Assuming a right-skewed prior distri-
bution, which is often the case for various natural priors in the environment
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(e.g., like the one shown in Figure 2.2a), we find that discriminability for
small input values is lower for reward maximization compared to perceptual
maximization, however this pattern inverts for higher values (Figure 2.2d).
In other words, when we intend to maximize reward (given the shape of
our assumed prior, Figure 2.2a), the agent should allocate more resources to
higher values (compared to the perceptual case), however without completely
giving up sensitivity for lower values, as these values are still encountered
more often.

2.3.0.6 Efficient sampling with costs on acquiring prior knowledge

In the previous section, we obtained analytical solutions that approximately
characterize the optimal θ(v) in the limit as n is made sufficiently large. Note
however that we are always assuming that is finite, and that this constrains
the accuracy of the decision maker’s judgments, while m is instead unbounded
and hence no constraint.

The nature of the optimal function θ(vi; ṽ1, . . . , ṽm) is different, however,
when m is small. We argue that this scenario is particularly relevant when
full knowledge of the prior is not warranted given the costs vs benefits
of learning, for instance, when the system expects contextual changes to
occur often. In this case, as we will formally elaborate below, it ceases to
be efficient for θ to vary only gradually as a function of vi, rather than
moving abruptly from values near zero to values near one (Appendix 2.6).
In the large-m limiting case, the distributions of sample values (ṽ1, . . . , ṽm)
used by the different processing units will be nearly the same for each unit
(approximating the current true distribution f(v)). Then if θ were to take
only the values zero and one for different values of its arguments, the n units
would simply produce n copies of the same output (either zero or one) for
any given stimulus vi and distribution f(v). Hence only a very coarse degree
of differentiation among different stimulus magnitudes would be possible.
Having θ vary more gradually over the range of values of vi in the support
of f(v) instead makes the representation more informative. But when m

is small (e.g., because of costs vs benefits of accurately representing the
prior f), this kind of arbitrary randomization in the output of individual
processing units is no longer essential. There will already be considerable
variation in the outputs of the different units, even when the output of each
unit is a deterministic function of (ṽ1, . . . , ṽm), owing to the variability in the
sample of prior observations that is used to assess the nature of the current
environment. As we will show below, this variability will already serve to
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allow the collective output of the several units to differentiate between many
gradations in the magnitude of vi, rather than only being able to classify
it as ’small’ or ’large’ (because either all units are in the ’low’ or ’high’
states).

2.3.0.7 Robust optimality of decision by sampling

Because of the way in which sampling variability in the values (ṽ1, . . . , ṽm)
used to adapt each unit’s encoding rule to the current context can substitute
for the arbitrary randomization represented by the noise term ηi (see Figure
2.1), a sharp reduction in the value of m need not involve a great loss in
performance relative to what would be possible (for the same limit on n) if
m were allowed to be unboundedly large (Appendix 2.7). As an example,
consider the case in which m = 1, so that each unit j’s output state must
depend only on the value of the current stimulus vi and one randomly selected
draw ṽj from the prior distribution f(v). A possible decision rule that is
radically economical in this way is one that specifies that the unit will be in
the ’high’ state if and only if vi > ṽj . In this case, the internal representation
of a stimulus vi will be given by the number ki out of n independent draws
from the contextual distribution f(v) with the property that the contextual
draw is smaller than vi, as in the model of decision by sampling (DbS) [81].
However, it remains to be determined to what degree it might be beneficial
for a system to adopt such coding strategy.

In any given environment (characterized by a particular contextual distribu-
tion f(v) ), DbS will be equivalent to an encoding process with an architecture
of the kind shown in Figure 2.1, but in which the distribution fη = f(v)
(compare to the optimal noise distribution fη for the full prior adaptation
case in Equation 6). This makes θ(v) vary endogenously depending on the
contextual distribution f(v). And indeed, the way that θ(v) varies with the
contextual distribution under DbS is fairly similar to the way in which it
would be optimal for it to vary in the absence of any cost of precisely learning
and representing the contextual distribution. This result implies that θ(v)
will be a monotonic transformation of a function that increases more steeply
over those regions of the stimulus space where f(v) is higher, regardless of the
nature of the contextual distribution. We consider its performance in a given
environment, from the standpoint of each of the possible performance criteria
considered for the case of full prior adaptation (i.e., maximize accuracy or
fitness), and show that it differs from the optimal encoding rules under any
of those criteria (Figure 2.2b–d). In particular, here, we show that using the
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encoding rule employed in DbS results in considerable loss of information
compared to the full-prior adaptation solutions (Figure 2.2c). An additional
interesting observation is that for the strategy employed in DbS, the agent
appears to be more sensitive for extreme input values, at least for a wide
set of skewed distributions (e.g., for the prior distribution f(v) in Figure
2.2a, the discriminability thresholds are lower at the extremes of the support
of f(v)). In other words, agents appear to be more sensitive to salience in
the DbS rule. Despite these differences, here it is important to emphasize
that in general for all optimization objectives, the encoding rules will be
steeper for regions of the prior with higher density. However, mild changes in
the steepness of the curves will be represented in significant discriminability
differences between the different encoding rules across the support of the
prior distribution (Figure 2.2d).

While the predictions of DbS are not exactly the same as those of efficient
coding in the case of unbounded m, under any of the different objectives that
we consider, our numerical results show that it can achieve performance nearly
as high as that of the theoretically optimal encoding rule; hence radically
reducing the value of m does not have a large cost in terms of the accuracy
of the decisions that can be made using such an internal representation
(Appendix 2.7 and Figure 2.2e). Under the assumption that reducing either
m or n would serve to economize on scarce cognitive resources, we formally
prove that it might well be most efficient to use an algorithm with a very low
value of m (even m = 1, as assumed by DbS), while allowing n to be much
larger (Appendix 2.6, Appendix 2.7).

Crucially, here, it is essential to emphasize that the above-mentioned results
are derived for the case of a particular finite number of processing units
n (and a corresponding finite total number of samples from the contextual
distribution used to encode a given stimulus), and do not require that n must
be large (Appendix 2.6, Appendix 2.7).

2.3.0.8 Testing theories of numerosity discrimination

Our goal now is to compare back-to-back the resource-limited coding frame-
works elaborated above in a fundamental cognitive function for human
behavior: numerosity perception. We designed a set of experiments that
allowed us to test whether human participants would adapt their numerosity
encoding system to maximize fitness or accuracy rates via full prior adap-
tation as usually assumed in optimal models, or whether humans employ a
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’less optimal’ but more efficient strategy such as DbS, or the more established
logarithmic encoding model.

In Experiment 1, healthy volunteers (n = 7) took part in a two-alternative
forced choice numerosity task in which each participant completed ∼ 2400
trials across four consecutive days (Methods). On each trial, they were simul-
taneously presented with two clouds of dots and asked which one contained
more dots, and were given feedback on their reward and opportunity losses on
each trial (Figure 2.3a). Participants were either rewarded for their accuracy
(perceptual condition, where maximizing the amount of correct responses
is the optimal strategy) or the number of dots they selected (value con-
dition, where maximizing reward is the optimal strategy). Each condition
was tested for two consecutive days with the starting condition randomized
across participants. Crucially, we imposed a prior distribution f(v) with
a right-skewed quadratic shape (Figure 2.3b), whose parametrization al-
lowed tractable analytical solutions of the encoding rules θA(v), θR(v) and
θD(v), that correspond to the encoding rules for Accuracy maximization,
Reward maximization, and DbS, respectively (Figure 2.3e and Methods).
Qualitative predictions of behavioral performance indicate that the accuracy-
maximization model is the most accurate for trials with lower numerosities
(the most frequent ones), whereas the reward-maximization model outper-
forms the others for trials with larger numerosities (trials where the difference
in the number of dots in the clouds, and thus the potential reward, is the
largest, Figure 2.2d and Figure 2.3f). In contrast, the DbS strategy presents
markedly different performance predictions, in line with the discriminability
predictions of our formal analyses (Figure 2.2c,d).

In our modelling specification, the choice structure is identical for the three
different sampling models, differing only in the encoding rule θ(v) (Methods).
Therefore, answering the question of which encoding rule is the most favored
for each participant can be parsimoniously addressed using a latent-mixture
model, where each participant uses θA(v), θR(v) or θD(v) to guide their deci-
sions (Methods). Before fitting this model to the empirical data, we confirmed
the validity of our model selection approach through a validation procedure
using synthetic choice data (Figure 2.3d, Figure 2.3—figure supplement 1,
and Methods).

After we confirmed that we can reliably differentiate between our competing
encoding rules, the latent-mixture model was initially fitted to each condition
(perceptual or value) using a hierarchical Bayesian approach (Methods).
Surprisingly, we found that participants did not follow the accuracy or reward
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Figure 2.3: Experimental design, model simulations and recovery. (a) Schematic
task design of Experiments 1 and 2. After a fixation period (1–2 s) participants were
presented two clouds of dots (200 ms) and had to indicate which cloud contained the
most dots. Participants were rewarded for being accurate (perceptual condition) or for the
number of dots they selected (value condition) and were given feedback. In Experiment
2 participants collected on correctly answered trials a number of points equal to a fixed
amount (perceptual condition) or a number equal to the dots in the cloud they selected
(value condition) and had to reach a threshold of points on each run. (b) Empirical (grey
bars) and theoretical (purple line) distribution of the number of dots in the clouds of dots
presented across Experiments 1 and 2. (c) Distribution of the numerosity pairs selected
per trial. (d) Synthetic data preserving the trial set statistics and number of trials per
participant used in Experiment 1 was generated for each encoding rule (Accuracy (left),
Reward (middle), and DbS (right)) and then the latent-mixture model was fitted to
each generated dataset. The figures show that it is theoretically possible to recover each
generated encoding rule. (e) Encoding function θ(v) for the different sampling strategies
as a function of the input values v (i.e., the number of dots). (f) Qualitative predictions
of the three models (blue: Accuracy, red: Reward, green: Decision by Sampling) on trials
from Experiment 1 with n = 25. Performance of each model as a function of the sum of
the number of dots in both clouds (left), the absolute difference between the number of
dots in both clouds (middle) and the ratio of the number of dots in the most numerous
cloud over the less numerous cloud (right).
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optimization strategy in the respective experimental condition, but favored
the DbS strategy (proportion that DbS was deemed best in the perceptual
pDbSfavored = 0.86 and value pDbSfavored = 0.93 conditions, Figure 2.4).
Importantly, this population-level result also holds at the individual level:
DbS was strongly favored in 6 out of 7 participants in the perceptual condition,
and seven out of seven in the value condition (Figure 2.4—figure supplement 1).
These results are not likely to be affected by changes in performance over time,
as performance was stable across the four consecutive days (Figure 2.4—figure
supplement 2). Additionally, we investigated whether biases induced by
choice history effects may have influenced our results [96–98]. Therefore,
we incorporated both choice- and correctness-dependence history biases in
our models and fitted the models once again (Methods). We found similar
results to the history-free models (pDbSfavored = 0.87 in perceptual and
pDbSfavored = 0.93 in value conditions, Figure 2.4c). At the individual level,
DbS was again strongly favored in 6 out of 7 participants in the perceptual
condition, and 7 out of 7 in the value condition (Figure 2.4—figure supplement
1).

In order to investigate further the robustness of this effect, we introduced
a slight variation in the behavioral paradigm. In this new experiment (Ex-
periment 2), participants were given points on each trial and had to reach
a certain threshold in each run for it to be eligible for reward (Figure 2.3a
and Methods). This class of behavioral task is thought to be in some cases
more ecologically valid than trial-independent choice paradigms [99]. In this
new experiment, either a fixed amount of points for a correct trial was given
(perceptual condition) or an amount equal to the number of dots in the chosen
cloud if the response was correct (value condition). We recruited a new set
of participants (n = 6), who were tested on these two conditions, each for
two consecutive days with the starting condition randomized across partici-
pants (each participant completed ∼2,560 trials). The quantitative results
revealed once again that participants did not change their encoding strategy
depending on the goals of the task, with DbS being strongly favored for both
perceptual and value conditions (pDbSfavored = 0.999 and pDbSfavored = 0.91,
respectively; Figure 2.4a), and these results were confirmed at the individual
level where DbS was strongly favored in 6 out of 6 participants in both the
perceptual and value conditions (Figure 2.4—figure supplement 1). Once
again, we found that inclusion of choice history biases in this experiment
did not significantly affect our results both at the population and individual
levels. Population probability that DbS was deemed best in the perceptual
(pDbSfavored = 0.999) and value (pDbSfavored = 0.90) conditions (Figure
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Figure 2.4: Behavioral results. (a) Bars represent proportion of times an encoding
rule (Accuracy [A, blue], Reward [R, red], DbS [D, green]) was selected by the Bayesian
latent-mixture model based on the posterior estimates across participants. Each panel
shows the data grouped for each and across experiments and experimental conditions (see
titles on top of each panel). The results show that DbS was clearly the favored encoding
rule. The latent vector π posterior estimates are presented in Figure 2.4 - figure supplement
4. (b) Difference in LOO and WAIC between the best model (DbS (D) in all cases) and
the competing models: Accuracy (A), Reward (R) and Logarithmic (L) models. Each panel
shows the data grouped for each and across experimental conditions and experiments
(see titles on top of each panel). (c) Behavioral data (black, error bars represent SEM
across participants) and model predictions based on fits to the empirical data. Data and
model predictions are presented for both the perceptual (left panels) or value (right panels)
conditions, and excluding (top panels) or including (bottom panels) choice history effects.
Performance of data model predictions is presented as function of the sum of the number
of dots in both clouds (left), the absolute difference between the number of dots in both
clouds (middle) and the ratio of the number of dots in the most numerous cloud over the
less numerous cloud (right). Results reveal a remarkable overlap of the behavioral data and
predictions by DbS, thus confirming the quantitative results presented in panels a and b.
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2.4—figure supplement 1), and at the individual level DbS was strongly
favored in 6 out of 6 participants in the perceptual condition and 5 of 6 in
the value condition (Figure 2.4—figure supplement 1). Thus, Experiments 1
and 2 strongly suggest that our results are not driven by specific instructions
or characteristics of the behavioral task.

As a further robustness check, for each participant we grouped the data in
different ways across experiments (Experiments 1 and 2) and experimental
conditions (perceptual or value) and investigated which sampling model
was favored. We found that irrespective of how the data was grouped, DbS
was the model that was clearly deemed best at the population (Figure 2.4)
and individual level (Figure 2.4—figure supplement 3). Additionally, we
investigated whether these quantitative results specifically depended on our
choice of using a latent-mixture model. Therefore, we also fitted each model
independently and compared the quality of the model fits based on out-of-
sample cross-validation metrics (Methods). Once again, we found that the
DbS model was favored independently of experiment and conditions (Figure
2.4).

One possible reason why the two experimental conditions did not lead to
differences could be that, after doing one condition for two days, the partici-
pants did not adapt as easily to the new incentive rule. However, note that as
the participants did not know of the second condition before carrying it out,
they could not adopt a compromise between the two behavioral objectives.
Nevertheless, we fitted the latent-mixture model only to the first condition
that was carried out by each participant. We found once again that DbS was
the best model explaining the data, irrespective of condition and experimental
paradigm (Figure 2.4—figure supplement 7). Therefore, the fact that DbS is
favored in the results is not an artifact of carrying out two different conditions
in the same participants.

We also investigated whether the DbS model makes more accurate predic-
tions than the widely used logarithmic model of numerosity discrimination
tasks [49]. We found that DbS still made better out-of-sample predictions than
the log-model (Figure 2.4b, Figure 2.5f,g). Moreover, these results continued
to hold after taking into account possible choice history biases (Figure 2.4—fig-
ure supplement 4). In addition to these quantitative results, qualitatively we
also found that behavior closely matched the predictions of the DbS model
remarkably well (Figure 2.4c), based on virtually only one free parameter,
namely, the number of samples (resources) n. Together, these results provide
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compelling evidence that DbS is the most likely resource-constrained sampling
strategy used by participants in numerosity discrimination tasks.

Recent studies have also investigated behavior in tasks where perceptual
and preferential decisions have been investigated in paradigms with iden-
tical visual stimuli [101–103]. In these tasks, investigators have reported
differences in behavior, in particular in the reaction times of the responses,
possibly reflecting differences in behavioral strategies between perceptual
and value-based decisions. Therefore, we investigated whether this was the
case also in our data. We found that reaction times did not differ between
experimental conditions for any of the different performance assessments
considered here (Figure 2.4—figure supplement 5). This further supports
the idea that participants were in fact using the same sampling mechanism
irrespective of behavioral goals.

Here it is important to emphasize that all sampling models and the logarithmic
model of numerosity have the same degrees of freedom (performance is
determined by n in the sampling models and Weber’s fraction σ in the log
model, Methods). Therefore, qualitative and quantitative differences favoring
the DbS model cannot be explained by differences in model complexity. It
could also be argued that normal approximation of the binomial distributions
in the sampling decision models only holds for large enough n. However,
we find evidence that the large-n optimal solutions are also nearly optimal
for low n values (Appendix 2.7). Estimates of n in our data are in general
n ≈ 21 (Table 1) and we find that the large-n rule is nearly optimal already
for n = 15 (Appendix 2.7). Therefore the asymptotic approximations should
not greatly affect the conclusions of our work.
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Figure 2.5: Prior adaptation analyses. (a) Estimation of the shape parameter α
for the DbS model by grouping the data for each and across experimental conditions
and experiments. Error bars represent the 95% highest density interval of the posterior
estimate of α at the population level. The dashed line shows the theoretical value of α.
(b) Theoretical prior distribution f (v) in Experiments 1 and 2 (α = 2, purple) and 3
(α = 1, orange). The dashed line represents the value of α of our prior parametrization
that approximates the DbS and log discriminability models. (c) Posterior estimation of αt

(Equation 18) as a function of the number of trials t in each daily session for Experiments
1 and 2 (purple) and Experiment 3 (orange). The results reveal that, as expected, αt

reaches a lower asymptotic value δ. Error bars represent ± SD of 3000 simulated αt values
drawn from the posterior estimates of the HBM (see Materials and methods). (d) Model
fit to the first 150 and last 350 trials of each daily session. The α parameter was allowed
to vary between the first and last sets of daily trials and between Experiments 1–2 and
Experiment 3. In Experiment 3, α is lower in the last set of trials compared to the first set
of trials (PMCMC=0.013). In addition, α for the last trials is lower for Experiment 3 than
for Experiments 1–2 (PMCMC=0.006). This confirms that the results presented in panel c
are not artifacts of the adaptation parametrization assumed for α. Error bars represent
± SD of the posterior chains of the corresponding parameter. (*P<0.05, **P<0.01, and
***P<0.001).
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Figure 2.5:
(continued) (e) Behavioral data (black) and model fit predictions of the DbS (green) and
Log (yellow) models. Performance of each model as a function of the sum of the number
of dots in both clouds (left), the absolute difference between the number of dots in both
clouds (middle) and the ratio of the number of dots in the most numerous cloud over the
less numerous cloud (right). Error bars represent SEM (f) Difference in LOO and WAIC
between the best fitting DbS (D) and logarithmic encoding (Log) model. (g) Population
exceedance probabilities (xp, left) and protected exceedance probabilities (pxp, right) for
DbS (green) vs Log (yellow) of a Bayesian model selection analysis [100]: xpDbS = 0.99,
pxpDbS = 0.87. These results provide a clear indication that the adaptive DbS explains
the data better than the Log model.

Dynamics of adaptation

Up to now, fits and comparison across models have been done under the
assumption that the participants learned the prior distribution f(v) imposed
in our task. If participants are employing DbS, it is important to understand
the dynamical nature of adaptation in our task. Note that the shape of the
prior distribution is determined by the parameter α (Figure 2.5b, Equation
10 in Methods). First, we made sure based on model recovery analyses that
the DbS model could jointly and accurately recover both the shape parameter
α and the resource parameter n based on synthetic data (Figure 2.3—figure
supplement 2). Then we fitted this model to the empirical data and found
that the recovered value of the shape parameter α closely followed the value
of the empirical prior with a slight underestimation (Figure 2.5a). Next, we
investigated the dynamics of prior adaptation. To this end, we ran a new
experiment (Experiment 3, n = 7 new participants) in which we set the
shape parameter of the prior to a lower value compared to Experiments 1–2
(Figure 2.5b, Methods). We investigated the change of α over time by allowing
this parameter to change with trial experience (Equation 18, Methods) and
compared the evolution of α for Experiments 1 and 2 (empirical α = 2)
with Experiment 3 (empirical α = 1, Figure 2.5b). If participants show
prior adaptation in our numerosity discrimination task, we hypothesized
that the asymptotic value of α should be higher for Experiments 1–2 than
for Experiment 3. First, we found that for Experiments 1–2, the value of α
quickly reached an asymptotic value close to the target value (Figure 2.5c).
On the other hand, for Experiment 3 the value of α continued to decrease
during the experimental session, but slowly approaching its target value.
This seemingly slower adaptation to the shape of the prior in Experiment
3 might be explained by the following observation. The prior parametrized
with α = 1 in Experiment 3 is further away from an agent hypothesized to
have a natural numerosity discrimination based on a log scale (α = 2.58,
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Model
Experiment Condition History effects nAccuracy nReward nDbS

1 V not included 15.24 ± 3.09 17.54 ± 3.98 24.40 ± 5.16
2 V not included 22.48 ± 2.43 27.58 ± 3.81 35.40 ± 3.44
1 P not included 15.19 ± 3.99 17.84 ± 4.85 24.64 ± 6.59
2 P not included 20.99 ± 1.59 24.22 ± 1.93 33.54 ± 2.45
1 P/V not included 15.33 ± 3.41 17.25 ± 4.45 24.15 ± 5.75
2 P/V not included 21.30 ± 0.96 25.27 ± 1.99 33.90 ± 1.51

1/2 V not included 18.56 ± 2.04 22.05 ± 2.73 29.52 ± 3.25
1/2 P not included 17.91 ± 2.09 20.66 ± 2.59 28.62 ± 3.51
1/2 P/V not included 17.93 ± 1.87 21.03 ± 2.46 28.58 ± 3.04
1 V included 15.50 ± 3.13 17.50 ± 3.91 24.68 ± 5.08
2 V included 22.92 ± 2.37 28.07 ± 3.73 36.18 ± 2.91
1 P included 15.41 ± 3.81 17.96 ± 4.88 24.70 ± 6.62
2 P included 21.57 ± 1.71 24.88 ± 2.17 34.37 ± 2.93
1 P/V included 15.16 ± 3.55 17.43 ± 4.39 24.30 ± 5.94
2 P/V included 21.80 ± 0.92 25.81 ± 1.86 34.60 ± 1.40

1/2 V included 18.86 ± 2.07 22.48 ± 2.75 29.85 ± 3.17
1/2 P included 18.15 ± 2.17 21.11 ± 2.72 29.01 ± 3.47
1/2 P/V included 18.22 ± 1.93 21.34 ± 2.50 29.12 ± 3.12

Table 2.1: Resource parameter n fits. Fits of the resource parameter for the Accuracy,
Reward and Decision by Sampling (DbS) models combining data across experiments and
conditions (Perceptual (P) or Value (V)) either including or ignoring history effects. The
values represent the mean ± SD of the population mean of the number of resources. To fit
the same behavior data, the Reward and in particular the DbS models require a higher
number of resources than the Accuracy model, which is coherent with the fact that the
Accuracy model allocates its resources to maximize accuracy, therefore reducing the number
of resources needed to reach a given accuracy.

Methods), which is closer in value to the shape of the prior in Experiments 1
and 2 (α = 2). Irrespective of these considerations, the key result to confirm
our adaptation hypothesis is that the asymptotic value of α is lower for
Experiment 3 compared to Experiments 1 and 2 (PMCMC = 0.006).

In order to make sure that this result was not an artifact of the parametric
form of adaptation assumed here (Equation 18, Methods), we fitted the
DbS model to trials at the beginning and end of each experimental session
allowing α to be a free but fixed parameter in each set of trials. The results
of these new analyses are virtually identical to the results obtained with
the parametric form, in which α is smaller at the end of Experiment 3
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sessions relative to beginning of Experiments 1 and 2 (PMCMC = 0.0003),
beginning of Experiments 3 (PMCMC = 0.013) and end of Experiments 1
and 2 (PMCMC = 0.006, Figure 2.5d). In this model, we did not allow n

to freely change for each condition, and therefore a concern might be that
the results might be an artifact of changes in n, which could for example
change with the engagement of the participants across the session. Given
that we already demonstrated that both parameters n and α are identifiable,
we fitted the same model as in Figure 2.5d, however this time we allowed
n to be free parameter alongside α. We found that the results obtained in
Figure 2.5d remained virtually unchanged (Figure 2.5—figure supplement 3),
in addition to the result that the resource parameter n remained virtually
identical across the session (Figure 2.5—figure supplement 3).

We further investigated evidence for adaptation using an alternative quantita-
tive approach. First, we performed out-of-sample model comparisons based on
the following models: (i) the adaptive-α model, (ii) free-α model with α free
but non-adapting over time, and (iii) fixed-α model with α = 2. The results
of the out-of-sample predictions revealed that the best model was the free-α
model, followed closely by the adaptive-α model (∆LOO = 1.8) and then by
fixed-α model (∆LOO = 32.6). However, we did not interpret the apparent
small difference between the adaptive-α and the free-α models as evidence
for lack of adaptation, given that the more complex adaptive-α model will
be strongly penalized after adaptation is stable. That is, if adaptation is
occurring, then the adaptive-α only provides a better fit for the trials corre-
sponding to the adaptation period. After adaptation, the adaptive-α should
provide a similar fit than the free-α model, however with a larger complexity
that will be penalized by model comparison metrics. Therefore, to investigate
the presence of adaptation, we took a closer quantitative look at the evolu-
tion of the fits across trial experience. We computed the average trial-wise
predicted Log-Likelihood (by sampling from the hierarchical Bayesian model)
and compared the differences of this metric between the competing models
and the adaptive model. We hypothesized that if adaptation is taking place,
the adaptive-α model would have an advantage relative to the free-α model at
the beginning of the session, with these differences vanishing toward the end.
On the other hand, the fixed-α should roughly match the adaptive-α model at
the beginning and then become worse over time, but these differences should
stabilize after the end of the adaptation period. The results of these analyses
support our hypotheses (Figure 2.5—figure supplement 2), thus providing
further evidence of adaptation, highlighting the fact that the DbS model can
parsimoniously capture adaptation to contextual changes in a continuous
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and dynamical manner. Furthermore, we found that the DbS model again
provides more accurate qualitative and quantitative out-of-sample predictions
than the log model (Figure 2.5e,f).

2.4. Discussion

The brain is a metabolically expensive inference machine [7, 104, 105]. There-
fore, it has been suggested that evolutionary pressure has driven it to make
productive use of its limited resources by exploiting statistical regularities [24,
67, 70]. Here, we incorporate this important —often ignored —aspect in mod-
els of behavior by introducing a general framework of decision-making under
the constraints that the system: (i) encodes information based on binary
codes, (ii) has limited number of samples available to encode information,
and (iii) considers the costs of contextual adaptation.

Under the assumption that the organism has fully adapted to the statis-
tics in a given context, we show that the encoding rule that maximizes
mutual information is the same rule that maximizes decision accuracy in
two-alternative decision tasks. However, note that there is nothing privileged
about maximizing mutual information, as it does not mean that the goals
of the organism are necessarily achieved [92, 106]. In fact, we show that
if the goal of the organism is instead to maximize the expected value of
the chosen options, the system should not rely on maximizing information
transmission and must give up a small fraction of precision in information
coding. Here, we derived analytical solution for each of these optimization
objective criteria, emphasizing that these analytical solutions were derived
for the large-n limiting case. However, we have provided evidence that these
solutions continue to be more efficient relative to DbS for small values of
n, and more importantly, they remain nearly optimal even at relatively low
values of n, in the range of values that might be relevant to explain human
experimental data (Appendix 2.7).

Another key implication of our results is that we provide an alternative
explanation to the usual conception of noise as the main cause of behavioral
performance degradation, where noise is usually artificially added to models
of decision behavior to generate the desired variability [107, 108]. On the
contrary, our work makes it formally explicit why a system that evolved to
encode information based on binary codes must be necessarily noisy, also
revealing how the system could take advantage of its unavoidable noisy
properties [109] to optimize decision behavior [110]. Here, it is important to
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highlight that this conclusion is drawn from a purely homogeneous neural
circuit, in other words, a circuit in which all neurons have the same properties
(in our case, the same activation thresholds). This is not what is typically
observed, as neural circuits are typically very heterogeneous. However, in the
neural circuit that we consider here, it could mean that the firing thresholds
can vary across neurons [111], which could be used by the system to optimize
the required variability of binary neural codes. Interestingly, it has been
shown in recent work that stochastic discrete events also serve to optimize
information transmission in neural population coding [94, 112, 113]. Crucially,
in our work we provide a direct link of the necessity of noise for systems
that aim at optimizing decision behavior under our encoding and limited-
capacity assumptions, which can be seen as algorithmic specifications of
the more realistic population coding specifications mentioned above [94].
We argue that our results may provide a formal intuition for the apparent
necessity of noise for improving training and learning performance in artificial
neural networks [114, 115], and we speculate that an implementation of ’the
right’ noise distribution for a given environmental statistic could be seen as
a potential mechanism to improve performance in capacity-limited agents
generally speaking [116]. We acknowledge that based on the results of our
work, we cannot confirm whether this is the case for higher order neural
circuits, however, we leave it as an interesting theoretical formulation, which
could be addressed in future work.

Interestingly, our results could provide an alternative explanation of the recent
controversial finding that dynamics of a large proportion of LIP neurons likely
reflect binary (discrete) coding states to guide decision behavior [117, 118].
Based on this potential link between their work and ours, our theoretical
framework generates testable predictions that could be investigated in future
neurophysiological work. For instance, noise distribution in neural circuits
should dynamically adapt according to the prior distribution of inputs and
goals of the organism. Consequently, the rate of ’step-like’ coding in single
neurons should also be dynamically adjusted (perhaps optimally) to statistical
regularities and behavioral goals.

Our results are closely related to Decision by Sampling (DbS), which is an
influential account of decision behavior derived from principles of retrieval and
memory comparison by taking into account the regularities of the environment,
and also encodes information based on binary codes [81]. We show that DbS
represents a special case of our more general efficient sampling framework,
that uses a rule that is similar to (though not exactly like) the optimal
encoding rule that assumes full (or costless) adaptation to the prior statistics
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of the environment. In particular, we show that DbS might well be the most
efficient sampling algorithm, given that a reduction in the full representation
of the prior distribution might not come at a great loss in performance.
Interestingly, our experimental results (discussed in more detail below) also
provide support for the hypothesis that numerosity perception is efficient
in this particular way. Crucially, DbS automatically adjusts the encoding
in response to changes in the frequency distribution from which exemplars
are drawn in approximately the right way, while providing a simple answer
to the question of how such adaptation of the encoding rule to a changing
frequency distribution occurs, at a relatively low cost.

On a related line of work, Bhui and Gershman [119] develop a similar,
but different specification of DbS, in which they also consider only a finite
number of samples that can be drawn from the prior distribution to generate
a percept, and ask what kind of algorithm would be required to improve
coding efficiency. However, their implementation differs from ours in various
important ways (see Appendix 2.8 for a detailed discussion). One of the main
distinctions is that they consider the case in which only a finite number
of samples can be drawn from the prior and show that a variant of DbS
with kernel-smoothing is superior to its standard version. However, a key
difference to our implementation is that they allow the kernel-smoothed
quantity (computed by comparing the input v with a sample v̂ from the prior
distribution) to vary continuously between 0 and 1, rather than having to be
either 0 or 1 as in our implementation (Figure 2.1). Thus, they show that
coding efficiency can be improved by allowing a more flexible implementation
of the coding scheme for the case when the agent is allowed to draw few
samples from the prior distribution (Appendix 2.8). On the other hand, we
restrict our framework to a coding scheme that is only allowed to encode
information based on zeros or ones, where we show that coding efficiency can
be improved relative to DbS only under a more complete knowledge of the
prior distribution, where the optimal solutions can be formally derived in the
large-n limit. Nevertheless, we have shown that even under the operation of
few sampling units, the optimal rules will be still superior to the standard
DbS (if the agent has fully adapted to the statistics of the environment in a
given context), even when a few number of processing units are available to
generate decision relevant percepts.

We tested these resource-limited coding frameworks in non-symbolic numeros-
ity discrimination, a fundamental cognitive function for behavior in humans
and other animals, which may have emerged during evolution to support
fitness maximization [48]. Here, we find that the way in which the precision of
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numerosity discrimination varies with the size of the numbers being compared
is consistent with the hypothesis that the internal representations on the
basis of which comparisons are made are sample-based. In particular, we
find that the encoding rule varies depending on the frequency distribution of
values encountered in a given environment, and that this adaptation occurs
fairly quickly once the frequency distribution changes.

This adaptive character of the encoding rule differs, for example, from the
common hypothesis of a logarithmic encoding rule (independent of context),
which we show fits our data less well. Nonetheless, we can reject the hypothesis
of full optimality of the encoding rule for each distribution of values used in
our experiments, even after participants have had extensive experience with
a given distribution. Thus, a possible explanation of why DbS is the favored
model in our numerosity task is that accuracy and reward maximization
requires optimal adaptation of the noise distribution based on our imposed
prior, requiring complex neuroplastic changes to be implemented, which
are in turn metabolically costly [120]. Relying on samples from memory
might be less metabolically costly as these systems are plastic in short time
scales, and therefore a relatively simpler heuristic to implement allowing
more efficient adaptation. Here, it is important to emphasize, as it has
been discussed in the past [121, 122], that for decision-making systems
beyond the perceptual domain, the identity of the samples is unclear. We
hypothesize, that information samples derive from the interaction of memory
on current sensory evidence depending on the retrieval of relevant samples to
make predictions about the outcome of each option for a given behavioral
goal (therefore also depending on the encoding rule that optimizes a given
behavioral goal).

Interestingly, it was recently shown that in a reward learning task, a model
that estimates values based on memory samples from recent past experiences
can explain the data better than canonical incremental learning models [123].
Based on their and our findings, we conclude that sampling from memory is
an efficient mechanism for guiding choice behavior, as it allows quick learning
and generalization of environmental contexts based on recent experience
without significantly sacrificing behavioral performance. However, it should
be noted that relying on such mechanisms alone might be suboptimal from a
performance- and goal-based point of view, where neural calibration of optimal
strategies may require extensive experience, possibly via direct interactions
between sensory, memory and reward systems [124, 125].
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Taken together, our findings emphasize the need of studying optimal mod-
els, which serve as anchors to understand the brain’s computational goals
without ignoring the fact that biological systems are limited in their capacity
to process information. We addressed this by proposing a computational
problem, elaborating an algorithmic solution, and proposing a minimalistic
implementational architecture that solves the resource-constrained problem.
This is essential, as it helps to establish frameworks that allow comparing
behavior not only across different tasks and goals, but also across different
levels of description, for instance, from single cell operation to observed
behavior [126]. We argue that this approach is fundamental to provide bench-
marks for human performance that can lead to the discovery of alternative
heuristics [127, 128] that could appear to be in principle suboptimal, but
that might be in turn the optimal strategy to implement if one considers
cognitive limitations and costs of optimal adaptation. We conclude that the
understanding of brain function and behavior under a principled research
agenda, which takes into account decision mechanisms that are biologically
feasible, will be essential to accelerate the elucidation of the mechanisms
underlying human cognition.

2.5. Methods

Participants

The study tested young healthy volunteers with normal or corrected-to-normal
vision (total n = 20, age 19–36 years, nine females: n = 7 in Experiment
1, two females; n = 6 new participants in Experiment 2, three females; n
= 7 new participants in Experiment 3, four females). Participants were
randomly assigned to each experiment and no participant was excluded from
the analyses. Participants were instructed about all aspects of the experiment
and gave written informed consent. None of the participants suffered from
any neurological or psychological disorder or took medication that interfered
with participation in our study. Participants received monetary compensation
for their participation in the experiment partially related to behavioral
performance (see below). The experiments conformed to the Declaration of
Helsinki and the experimental protocol was approved by the Ethics Committee
of the Canton of Zurich (BASEC: 2018–00659).
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Experiment 1

Participants (n = 7) carried out a numerosity discrimination task for four
consecutive days for approximately one hour per day. Each daily session
consisted of a training run followed by 8 runs of 75 trials each. Thus, each
participant completed ∼2400 trials across the four days of experiment.

After a fixation period (1–1.5 s jittered), two clouds of dots (left and right)
were presented on the screen for 200 ms. Participants were asked to indicate
the side of the screen where they perceived more dots. Their response was
kept on the screen for 1 s followed by feedback consisting of the symbolic
number of dots in each cloud as well as the monetary gains and opportunity
losses of the trial depending on the experimental condition. In the value
condition, participants were explicitly informed that each dot in a cloud of dots
corresponded to 1 Swiss Franc (CHF). Participants were informed that they
would receive the amount in CHF corresponding to the total number of dots
on the chosen side. At the end of the experiment a random trial was selected
and they received the corresponding amount. In the accuracy condition,
participants were explicitly informed that they could receive a fixed reward
(15 Swiss Francs (CHF)) for each correct trial. This fixed amount was selected
such that it approximately matched the expected reward received in the
value condition (as tested in pilot experiments). At the end of the experiment,
a random trial was selected and they would receive this fixed amount if
they chose the cloud with more dots (i.e., the correct side). Each condition
lasted for two consecutive days with the starting condition randomized across
participants. Only after completing all four experiment days, participants
were compensated for their time with 20 CHF per hour, in addition to the
money obtained based on their decisions on each experimental day.

Experiment 2

Participants (n = 6) carried out a numerosity discrimination task in which
each of four daily sessions consisted of 16 runs of 40 trials each, thus each
participant completed ∼ 2560 trials. A key difference with respect to Experi-
ment 1 is that participants had to accumulate points based on their decisions
and had to reach a predetermined threshold on each run. The rules of point
accumulation depended on the experimental condition. In the perceptual
condition, a fixed amount of points was awarded if the participants chose
the cloud with more dots. In this condition, participants were instructed to
accumulate a number of points and reach a threshold given a limited number
of trials. Based on the results obtained in Experiment 1, the threshold corre-
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sponded to 85% of correct trials in a given run, however the participants were
unaware of this. If the participants reached this threshold, they were eligible
for a fixed reward (20 CHF) as described in Experiment 1. In the value
condition, the number of points received was equal to the number of dots
in the cloud, however, contrary to Experiment 1, points were only awarded
if the participant chose the cloud with the most dots. Participants had to
reach a threshold that was matched in the expected collection of points of
the perceptual condition. As in Experiment 1, each condition lasted for two
consecutive days with the starting condition randomized across participants.
Only after completing all the four days of the experiment, participants were
compensated for their time with 20 CHF per hour, in addition to the money
obtained based on their decisions on each experimental day.

Experiment 3

The design of Experiment 3 was similar to the value condition of Experiment
2 (n = 7 participants) and was carried out over three consecutive days. The
key difference between Experiment 3 and Experiments 1–2 was the shape
of the prior distribution f(v) that was used to draw the number of dots for
each cloud in each trial (see below).

Stimuli statistics and trial selection

For all experiments, we used the following parametric form of the prior
distribution

f(v) = c(1 − v)α (2.10)

initially defined in the interval [0,1] for mathematical tractability in the
analytical solution of the encoding rules θ(v) (see below), with α > 0 de-
termining the shape of the distribution, and c is a normalizing constant.
For Experiments 1 and 2 the shape parameter was set to α = 2, and for
Experiment 3 was set to α = 1. i.i.d. samples drawn from this distribution
were then multiplied by 50, added an offset of 5, and finally were rounded to
the closest integer (i.e., the numerosity values in our experiment ranged from
vmin = 5 to vmax = 55). The pairs of dots on each trial were determined
by sampling from a uniform density window in the CDF space (Equation
10 is its corresponding PDF). The pairs of dots in each trial were selected
with the conditions that, first, their distance in the CDF space was less than
a constant (0.25, 0.28 and 0.23 for Experiments 1, 2 and 3 respectively),
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and second, the number of dots in both clouds was different. Figure 2.3c
illustrates the probability that a pair of choice alternatives was selected for a
given trial in Experiments 1 and 2.

Power analyses and model recovery

Given that adaptation dynamics in sensory systems often require long-term
experience with novel prior distributions, we opted for maximizing the number
of trials for a relatively small number of participants per experiment, as it
is commonly done for this type of psychophysical experiments [129–131].
Note that based on the power analyses described below, we collected in total
∼45,000 trials across the three Experiments, which is above the average
number of trials typically collected in human studies.

In order to maximize statistical power in the differentiation of the competing
encoding rules, we generated 10,000 sets of experimental trials for each
encoding rule and selected the sets of trials with the highest discrimination
power (i.e., largest differences in Log-Likelihood) between the encoding
models. In these power analyses, we also investigated what was the minimum
number of trials that would allow accurate generative model selection at
the individual level. We found that ∼1000 trials per participant in each
experimental condition would be sufficient to predict accurately (P > 0.95)
the true generative model. Based on these analyses, we decided to collect
at least 1200 trials per participant and condition (perceptual and value) in
each of the three experiments. Model recovery analyses presented in Figure
2.3d illustrate the result of our power analyses (see also Figure 2.3—figure
supplement 1).

Apparatus

Eyetracking (EyeLink 1000 Plus) was used to check the participants’ fixation
during stimulus presentation. When participants blinked or moved their
gaze (more than 2° of visual angle) away from the fixation cross during the
stimulus presentation, the trial was canceled (only 212 out of 45,600 trials
were canceled, that is, <0.5% of the trials). Participants were informed when
a trial was canceled and were encouraged not to do so as they would not
receive any reward for this trial. A chinrest was used to keep the distance
between the participants and the screen constant (55 cm). The task was
run using Psychtoolbox Version 3.0.14 on Matlab 2018a. The diameter of
the dots varied between 0.42° and 1.45° of visual angle. The center of each
cloud was positioned 12.6° of visual angle horizontally from the fixation cross



46 efficient sampling and noisy decisions

and had a maximum diameter of 19.6° of visual angle. Following previous
numerosity experiments [132, 133], either the average dot size or the total
area covered by the dots was maintained constant in both clouds for each
trial. The color of each dot (white or black) was randomly selected for each
dot. Stimuli sets were different for each participant but identical between the
two conditions.

Encoding rules and model fits

The parametrization of the prior f(v) (Equation 10) allows tractable analyti-
cal solutions of the encoding rules θA(v), θR(v) and θD(v), that correspond to
Accuracy maximization, Reward maximization, and DbS, respectively:

θA(v) = sin
[π

2 (1 − (1 − v)α+1)
]2

(2.11)

θR(v) = sin
[π

2 (1 + (v− 1)((1 − v)α)2/3)
]2

(2.12)

θD(v) = 1 − (1 − v)α+1 (2.13)

Graphical representation of the respective encoding rules is shown in Figure
2.3e for Experiments 1 and 2. Given an encoding rule theta(v), we now define
the decision rule. The goal of the decision maker in our task is always to
decide which of two input values v1 and v2 is larger. Therefore, the agent
choses v1 if and only if the internal readings k1 > k2. Following the definitions
of expected value and variance of binomial variables, and approximating for
large n (see Appendix 2.2), the probability of choosing v1 is given by

Pchoosev1 ≈ Φ

 θ1 − θ2√
θ1(1−θ1)+θ2(1−θ2)

n

 (2.14)

where Φ() is the standard CDF, and θ1 and θ2 are the encoding rules for
the input values v1 and v2, respectively. Thus, the choice structure is the
same for all models, only differing in their encoding rule. The three models
generate different qualitative performance predictions for a given number of
samples n (Figure 2.3f).

Crucially, this probability decision rule (Equation 14) can be parsimoniously
extended to include potential side biases independent of the encoding process
as follows
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Pchoosev1 ≈ Φ

 θ1 − θ2√
θ1(1−θ1)+θ2(1−θ2)

n

+ β0

 (2.15)

where β0 is the bias term. This is the base model used in our work. We were
also interested in studying whether choice history effects [96, 98] may have
influence in our task, thus possibly affecting the conclusions that can be
drawn from the base model. Therefore, we extended this model to incorporate
the effect of decision learning and choices from the previous trial

Pchoosev1 ≈ Φ

 θ1 − θ2√
θ1(1−θ1)+θ2(1−θ2)

n

+ β0 + βLat−1rt−1 + βChat−1


(2.16)

where at−1 is the choice made on the previous trial (+1 for left choice and -1
for right choice) and rt−1 is the ’outcome learning’ on the previous trial (+1
for correct choice and -1 for incorrect choice). βL and βCh capture the effect
of decision learning and choice in the previous trial, respectively.

Given that the choice structure is the same for all three sampling models
considered here, we can naturally address the question of what decision rule
the participants favor via a latent-mixture model. We implemented this model
based on a hierarchical Bayesian modelling (HBM) approach. The base-rate
probabilities for the three different encoding rules at the population level
are represented by the vector π, so that πm is the probability of selecting
encoding rule model m. We initialize the model with an uninformative prior
given by

π ∼ Dirichlet(1m=1, 1m=2, 1m=3).

This base-rate is updated based on the empirical data, where we allow each
participant s to draw from each model categorically based on the updated
base-rate

ms ∼ Categorial(π),

where the encoding rule θ for model m is given by
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θm,s =


θA, m = 1
θR, m = 2
θD, m = 3

The selected rule was then fed into Equations 15 and 16 to determine the
probability of selecting a cloud of dots. The number of samples n was also esti-
mated within the same HBM with population mean µ and standard deviation
σ initialized based on uninformative priors with plausible ranges

µn ∼ Uniform(1, 1000)
σn ∼ Uniform(0.01, 1000)

allowing each participant s to draw from this population prior assuming that
n is normally distributed at the population level

ns ∼ Normal(µn,σn)

Similarly, the latent variables β in equations Equations 15 and 16 were
estimated by setting population mean µβ and standard deviation σβ initialized
based on uninformative priors

µβ ∼ Uniform(−10, 10)
σβ ∼ Uniform(0.01, 100)

allowing each participant s to draw from this population prior assuming that
β is normally distributed at the population level

βs ∼ Normal(µβ ,σβ)
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In all the results reported in Figure 2.3 and Figure 2.4, the value of the shape
parameter of the prior was set to its true value α = 2. The estimation of α in
Figure 2.5a was investigated with a similar hierarchical approach, allowing
each participant to sample from the normal population distribution with
uninformative priors over the population mean and standard deviation

µα ∼ Uniform(0.01, 20)
σα ∼ Uniform(0.0001, 100)

The choice rule of the standard logarithmic model of numerosity discrimina-
tion is given by

Pchoosev1 = Φ
(
log(v1) − log(v2)

σ
√

2

)
(2.17)

where σ is the internal noise in the logarithmic space. This model was extended
to incorporate bias and choice history effects in the same way as implemented
in the sampling models. Here, we emphasize that all sampling and log models
have the same degrees of freedom, where performance is mainly determined
by n in the sampling models and Weber’s fraction σ in the log model, and
biases are determined by parameters β. For all above-mentioned models, the
trial-by-trial likelihood of the observed choice (i.e., the data) given probability
of a decision was based on a Bernoulli process

yt,s ∼ Bernoulli(Pchoosev1)

where yt,s ∈ {0, 1} is the decision of each participant s in each trial t. In
order to allow for prior adaptation, the model fits presented in Figure 2.3 and
Figure 2.4 were fit starting after a fourth of the daily trials (corresponding
to 150 trials for Experiment 1 and 160 trials for Experiment 2) to allow for
prior adaptation and fixing the shape parameter to its true generative value
α = 2.

The dynamics of adaptation (Figure 2.5) were studied by allowing the shape
parameter α to evolve through trial experience using all trials collected on
each experiment day. This was studied using the following function
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αt = δ + ηe−t/τ (2.18)

where δ represents a possible target adaptation value of α, t is the trial
number, and η, τ determine the shape of the adaptation. Therefore, the
encoding rule of the DbS model also changed trial-to-trial

θt
D(v) = 1 − (1 − v)αt+1 (2.19)

Adaptation was tested based on the hypothesis that participants initially use
a logarithmic discrimination rule (Equation 17) (this strategy also allowed
improving identification of the adaptation dynamics). Therefore, Equation 18
was parametrized such that the initial value of the shape parameter (αt=0)
guaranteed that discriminability between the DbS and the logarithmic rule
was as close as possible. This was achieved by finding the value of α in the
DbS encoding rule (θD) that minimizes the following expression

T∑
t=1

[(
θD(v1,t) − θD(v2,t)√

θD(v1,t)(1 − θD(v1,t)) + θD(v2,t)(1 − θD(v2,t))

)
−

(log(v1,t) − log(v2,t))

]2 (2.20)

where v1,t and v2,t are the numerosity inputs for each trial t. This expression
was minimized based on all trials generated in Experiments 1–3 (note that
minimizing this expression does not require knowledge of the sensitivity levels
σ and n for the log and DbS models, respectively). We found that the shape
parameter value that minimizes Equation 20 is α = 2.58. Based on our prior
f(v) parametrization (Equation 10), this suggests that the initial prior is
more skewed than the priors used in Experiments 1–3 (Figure 2.5b). This is an
expected result given that log-normal priors, typically assumed in numerosity
tasks, are also highly skewed. We fitted the δ parameter independently
for Experiments 1–2 and Experiment 3 but kept the τ parameter shared
across all experiments. If adaptation is taking place, we hypothesized that the
asymptotic value δ of the shape parameter α should be larger for Experiments
1–2 compared to Experiment 3.

Posterior inference of the parameters in all the hierarchical models described
above was performed via the Gibbs sampler using the Markov Chain Monte
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Carlo (MCMC) technique implemented in JAGS. For each model, a total of
50,000 samples were drawn from an initial burn-in step and subsequently a
total of new 50,000 samples were drawn for each of three chains (samples for
each chain were generated based on a different random number generator
engine, and each with a different seed). We applied a thinning of 50 to this final
sample, thus resulting in a final set of 1000 samples for each chain (for a total
of 3000 pooling all three chains). We conducted Gelman–Rubin tests for each
parameter to confirm convergence of the chains. All latent variables in our
Bayesian models had R̂ < 1.05, which suggests that all three chains converged
to a target posterior distribution. We checked via visual inspection that the
posterior population level distributions of the final MCMC chains converged
to our assumed parametrizations. When evaluating different models, we are
interested in the model’s predictive accuracy for unobserved data, thus it
is important to choose a metric for model comparison that considers this
predictive aspect. Therefore, in order to perform model comparison, we used
a method for approximating leave-one-out cross-validation (LOO) that uses
samples from the full posterior [134]. These analyses were repeated using an
alternative Bayesian metric: the WAIC [134].
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Supplementary Figures

Figure 2.3 - figure supplement 1. Model recovery for α fixed. The latent-mixture
model was fitted to synthetic data obtained by simulating 10 times each encoding rule
on the trials from participants of Experiment 1. This also means that we used the same
number of trials per condition that each participant experienced in our experiments. Each
histogram shows the proportion (Prop) of the recovered encoding rule for synthetic data
from (a) the accuracy maximizing encoding rule θA, (b) the reward maximizing encoding
rule θR, and (c) decision by sampling θD . The latent mixture model can accurately recover
the underlying encoding rule. In this model the α parameter was set to 2.
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Figure 2.3 - figure supplement 2. Model recovery with both α and n as free
parameters. Synthetic data preserving the trial set statistics and number of trials per
participant used in Experiment 1 was generated 100 times for each encoding rule with
various values of α and n. A model for each encoding rule was fitted to the data using
maximum likelihood estimators with α and n as free parameters. The histograms represent
the proportion of best fitting models for data generated by (a) Accuracy, (b) Reward
and (c) DbS models. Results are shown for different simulated values of α (top: αsim = 1,
middle: αsim = 2 and bottom: αsim = 3) and n (left: nsim = 15, middle: nsim = 25 and
right: nsim = 35). While DbS is always well recovered, the Accuracy and Reward models
tend to be confounded with each other. (d) This same synthetic data were fitted with its
generating model with α and n as free parameters using maximum likelihood estimators.
Results are shown for different simulated values of α (first and second columns: αsim = 1,
third and fourth columns: αsim = 2 and fifth and sixth columns: αsim = 3) and n (top:
nsim = 35, middle: nsim = 25 and bottom: nsim = 15). Error bars represent ± SD of
the recovered parameter across simulations. The parameters are well recovered by the
respective generating model.
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Figure 2.3 - figure supplement 3. Discriminability differences between the
different encoding rules.

This figure illustrates the discriminability differences between the different
encoding rules considered in this study. Each dot represents the discrim-
inability value for a pair of numerosity values v1 and v2 presented on a
given trial to the participants in Experiment 1. For the sampling models, the
discriminability rule is defined as

θ(v1) − θ(v2)√
θ(v1)(1 − θ(v1)) + θ(v2)(1 − θ(v2))

,

where θ corresponds to the respective Accuracy maximizing (A), Reward max-
imizing (R) or Decision by Sampling (D) encoding rules. For the logarithmic
model (L) the discriminability rule is defined as

log(v1) − log(v2).

The color of each dot represents the log of the number of occurrences for the
pairs of input values v1 and v2. Note that the encoding values of the presented
numerosities are different depending on the encoding rule, which makes it
possible to identify the participants’ encoding strategy. Also note that for our
imposed prior distribution, the DbS encoding rule is similar to the logarithmic
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rule, which explains the smaller difference in the quantitative predictions
between these two models. Nevertheless, DbS was always the model that
provided the best quantitative and qualitative predictions irrespective of
incentivized goals.
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Figure 2.4 - figure supplement 1. Latent mixture model fits for each participant.
Individual level fit of the latent mixture model excluding (top) or including (bottom)
choice history effects for (a) Experiment 1 and (b) Experiment 2. The panels on the far
right shows the average fit for all the participants of the given experiment. DbS is strongly
favored for nearly all participants and clearly favored across participants, irrespective of
the experimental condition. Including choice and correctness information of previous trials
has minimal influence in the results of these analyses, which rules out the influence of
these effects on the decision rule used by the participants.



2.5 methods 57

Figure 2.4 - figure supplement 2. Performance across time. Behavioral performance
(mean ± SEM across participants) averaged over a moving window of 100 trials for (a)
Experiment 1, (b) Experiment 2 and (c) Experiment 3. Each daily session took place
between two dotted vertical lines. The performance of the participants is stable during
and between daily sessions. Therefore, the quantitative and qualitative results presented
in the main text are not likely to be influenced by changes in performance over time.
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Figure 2.4 - figure supplement 3. Individual level fit of the latent mixture
model combining data across experiments and experimental conditions. (a)
Individual level fit of the latent mixture model combining data across both experimental
conditions for Experiment 1 (top) and Experiment 2 (bottom). (b) Individual level fit
of the latent mixture model combining data across both experimental conditions and
both experiments. Each panel shows the results excluding (top) or including (bottom)
choice history effects. The panels labeled ’All participants’ show the average fit for all the
participants of the given experiment. DbS is strongly favored irrespective of incentivized
goals. Including the previous trial effects has minimal influence on these results.
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Figure 2.4 - figure supplement 4. Model comparison based on leave-one-out
cross-validation metrics. Quantitative comparison of the models including choice
and correctness effects of previous trials based on leave-one-out cross-validation metrics.
Difference in LOO and WAIC between the best model (DbS (D) in all cases) and the
competing models: Accuracy (A), Reward (R) and Logarithmic (L) models. Each panel
shows the data grouped for each and across experiments and experimental conditions (see
titles on top of each panel). Including the previous choice and correctness effects has only
little influence on the results (compare with Figure 2.4b in main text). The DbS model
provides the best fit to the behavioral data.
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Figure 2.4 - figure supplement 5. Reaction times are similar in the perceptual
and value conditions. Mean reaction times of participants in Experiments 1 and 2 in the
perceptual (red) and value (blue) condition. Error bars represent SEM across participants.
Reaction times are presented as a function of the sum of the number of dots in both clouds
(left), the absolute difference between the number of dots in both clouds (middle) and
the ratio of the number of dots in the most numerous cloud over the less numerous cloud
(right). Non-parametric ANOVA tests revealed no significant differences in any of these
behavioral assessments (all tests p>0.4).

Figure 2.4 - figure supplement 6. Behavior and model predictions as a function
of sum and difference in dots. (a) Average behavior in both conditions of Experiments
1 and 2 as a function of the sum of the number of dots in both clouds (Sum Ndots) and
the absolute difference between the number of dots in both clouds (Difference Ndots). The
data are binned as in Figure 2.4 but now expanded in two dimensions. (b) Predictions of
each encoding rule model fit with only n as a free parameter shown with the same scale as
in a. (c) Linear regression between the behavior for each combination of Sum Ndots and
Difference Ndots bins and the predictions of each model for the same bins. DbS captures
best the changes in behavior across bins of sum and absolute difference of the number of
dots in both clouds. This analysis should not be considered as a quantitative proof, but as
a qualitative inspection of the results presented in Figure 2.4.
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Figure 2.4 - figure supplement 7. Model fit for the first experimental condition
of each participant. Similar as in Figure 2.4a, bars represent proportion of times an
encoding rule (Accuracy [A, blue], Reward [R, red], DbS [D, green]) was selected by the
Bayesian latent-mixture model based on the posterior estimates across participants. Each
panel shows the data grouped for each experiment and experimental conditions (see titles
on top of each panel). The latent-mixture model was only fit to the first condition that
was carried out by each participant. As the participants did not know of the second
condition before carrying it out, they could not adopt compromise strategies between the
two objectives. Therefore, the fact that DbS is favored in the results is not an artifact of
carrying out two different conditions in the same participants.
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Figure 2.4 - figure supplement 8. Latent vector π posterior estimates. Bars
represent the posterior distribution of the latent vector π, with each bar representing an
encoding rule (Accuracy (A, blue), Reward (R, red), DbS (D, green)). Results are presented
for (a) all sessions and (b) only the first condition carried out by each participant. DbS is
consistently the most likely encoding rule.
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Figure 2.5 - figure supplement 1. Performance across trial experience. These
plots represent the performance of the participants as a function of the number of trials
they have experienced during the session. The performance of the participants (black,
shaded area represents ± SEM across participants) was averaged over a moving window of
21 trials and is shown for Experiment 1 (a) Experiment 2 (b) and Experiment 3 (c). The
blue line represents the performance predicted by the α-adaptation model using the same
moving window average. The model provides a good fit to average performance.

2.6. Appendix

Appendix 2.1: Infomax coding rule

We assume that the subjective perception of an environmental variable with
value v is determined by n independent samples of a binary random variable,
i.e. outcomes are either "high" (ones) or "low" (zeros) readings. Here, the
probability θ of a “high” reading is the same on each draw, but can depend
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Figure 2.5 - figure supplement 2. Quantitative and dynamical analysis of
adaptation over time. To further investigate the adaptation of the prior, we fit three
models of varying complexity to the data of Experiments 1, 2 and 3. The Fixed-α model
(blue) is defined with a fixed α = 2. The Free-α model (red) allows the α parameter to
vary across participants but is kept constant across time. The Adaptative-α corresponds
to the model presented in Figure 2.5 where the prior adapts as the participants gains
experience with the experimental distribution of dots. To allow a fair comparison with
the Free-α model, the δ parameter, corresponding to the asymptotic value of the prior,
was free to vary across participants. The log-likelihood of each model on each trial were
averaged over a moving window of 100 trials and the log-likelihood of the Adaptative-α
model was subtracted for comparison. Vertical dashed lines represent 1, 2 and 3 times
τ , where τ controls the rate of adaptation in the Adaptative-α model. The Adaptative-α
model provides a better fit for the first trials (until around 2τ), these trials correspond
to the adaptation period where the α parameter is changing in the Adaptative-α model
(see Figure 2.5). After this point the Adaptative-α and Free-α models provide a similar fit.
This is to be expected as the function controlling the decay of α reaches its asymptotic
value, leaving the two model virtually identical. The Fixed-α provides overall a worse fit,
except for the early trials.

on the input stimulus value, via the function θ(v). Additionally, we assume
that the input value v on a given trial is an independent draw from some
prior distribution f(v) in a given environment or context (with F (v) being
the corresponding cumulative distribution function). As we mentioned before,
the choice of θ (i.e. encoding of the input vale) depends on v. Now suppose
that the mapping θ(v) (the encoding rule) is chosen so as to maximize the
mutual information between the random variable v and the subjective value
representation k. The mutual information is computed under the assumption
that v is drawn from a particular prior distribution f(v), and θ(v) is assumed
to be optimized for this prior. The mutual information between v and k is
defined as

I(v, k) = H(k) −H(k|v), (2.21)
where the marginal entropy H(k) quantifies the uncertainty of the marginal
response distribution P (k), and H(k|v) is the average conditional entropy of
k given v. The output distribution is given by

P (k) =

∫
v∈V

P (k|v)f(v)dv, (2.22)
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Figure 2.5 - figure supplement 3. Model fits for the beginning and end of each
session without parametric assumptions. A model was fitted to the first 150 and
last 350 trials of each daily session. The prior parameter α and the number of neural
resources n were allowed to vary between the first and last sets of daily trials and between
Experiments 1–2 (purple) and Experiment 3 (orange). (a) Each bar represents the mean
value of the α parameter for a combination of experiments and set of daily trials. In
Experiment 3, α is lower in the last set of trials compared to the first set of trials. In
addition, the value of α for Experiment 3 is lower than for Experiments 1–2 in the last set
of daily trials. (b) Each bar represents the value of the neural resource parameter n for
a combination of experiments and set of daily trials. The neural resources parameter n
in Experiment 3 is larger than in Experiments 1–2. However, there is no change in the
neural resource parameter across the session. This suggests that the adaptation process
is not an artifact of changes in the neural resource parameter, which could for example
change with the engagement of the participants across the session. Significance between
parameters was computed by subtracting the chain with the largest mean to the other
one and measuring the proportion of values that fall below 0 (n.s. P > 0.05, *P<0.05,
**P<0.01, and ***P<0.001). Error bars represent ± SD of the posterior chains of the
corresponding parameter.

where f(v) is defined as the input density function. For the encoding frame-
work that we consider here which is given by the binomial channel, the
conditional probability mass function of the output given the input is

P (k|v) =
(
n

k

)
θ(v)k(1 − θ(v))n−k, k ∈ [0, 1, . . . ,n]. (2.23)
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Thus, we have all the ingredients to write the expression of the mutual
information

I(v, k) = H(k) −H(k|v)

= −
n∑

k=0
P (k)logP (k)

−

(
−
∫

v∈V
f(v)

n∑
k=0

P (k|v)logP (k|v) dv

)
(2.24)

We then seek to determine the encoding rule θ(v) that solves the optimization
problem

find C = max
{θ(v)}

I(v, k). (2.25)

It can be shown that for large n, the mutual information between θ and k

(hence the mutual information between v and k) is maximized if the prior
distribution over θ is the Jeffreys prior [91]

Beta(θ; 0.5, 0.5) = 1
π
√
θ(1 − θ)

, (2.26)

also known as the arcsine distribution. Hence, the mapping θ(v) induces a
prior distribution over θ given by the arcsine distribution. This means that
for each v, the encoding function θ(v) must be such that

F (v) =

∫ θ(v)

0

1

π
√
θ̃(1 − θ̃)

dθ̃

=
2
π

arcsin(
√
θ(v)). (2.27)

Solving for θ we finally obtain the optimal encoding rule

θ(v) =
[
sin
(π

2F (v)
)]2

. (2.28)
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Appendix 2.2: Accuracy maximization for a known prior distribution

Here we derive the optimal encoding rule when the criterion to be maximized
is the probability of a correct response in a binary comparison task, rather
than mutual information as in Appendix 2.1. As in Appendix 2.1, we assume
that the prior distribution f(x) from which stimuli are drawn is known, and
that the encoding rule is optimized for this particular distribution. (The
case in which we wish the encoding rule to be robust to variations in the
distribution from which stimuli are drawn is instead considered in Appendix
2.6.) Note that the objective assumed here corresponds to maximization of
expected reward in the case of a perceptual experiment in which a subject
must indicate which of two presented magnitudes is greater, and is rewarded
for the number of correct responses. (In Appendix 2.5, we instead consider the
encoding rule that would maximize expected reward if the subject’s reward
is proportional to the magnitude selected by their response.)

As above, we assume encoding by a binomial channel. The encoded value
(number of “high” readings) is given by k, which is consequently an integer
between 0 and n. This is a random variable with a binomial distribution with
expected value and variance given by

E
[
k

n
|θ
]
= θ Var

[
k

n
|θ
]
=
θ(1 − θ)

n
(2.29)

Suppose that the task of the decision maker is to decide which of two input
values v1 and v2 is larger. Assuming that v1 and v2 are encoded independently,
then the decision maker choses v1 if and only if the internal readings k1 > k2
(here we may suppose that the probability of choosing stimulus 1 is 0.5 in the
event that k1 = k2). Thus, the probability of choosing stimulus 1 is:

P
(
k1
n
>
k2
n

|v1, v2

)
+

1
2P
(
k1
n

=
k2
n

|v1, v2

)
. (2.30)

In the case of large n, we can use a normal approximation to the binomial
distribution to obtain(

k1
n

− k2
n

)
∼ N

(
θ1 − θ2, θ1(1 − θ1) + θ2(1 − θ2)

n

)
(2.31)

and hence the probability of choosing v1 is given by

Pchoose v1 ≈ Φ

 θ1 − θ2√
θ1(1−θ1)+θ2(1−θ2)

n

 , (2.32)
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where Φ(·) is the standard CDF. Thus the probability of an incorrect choice
(i.e. choosing the item with the lower value) is approximately

Perror ≈ Φ

− |θ1 − θ2|√
θ1(1−θ1)+θ2(1−θ2)

n

 (2.33)

Now, suppose that the encoding rule, together with the prior distribution
for v (the same for both inputs, that are independent draws from the prior
distribution) results in an ex-ante distribution for θ (same for both goods)
with density function f̂(θ). Then the probability of error is given by

Perror ≈ Φ

− |θ1 − θ2|√
θ1(1−θ1)+θ2(1−θ2)

n

 f̂(θ1)f̂(θ2) dθ1dθ2 (2.34)

Our goal is to evaluate Eq. 2.34 for any choice of the density f̂(θ). First, we
fix the value of θ1 and integrate over θ2:

1
0Φ

(
− |θ1 − θ2|√

θ1(1 − θ1) + θ2(1 − θ2)

√
n

)
f̂(θ2) dθ2

=θ1
0 Φ

(
− θ2 − θ1√

θ1(1 − θ1) + θ2(1 − θ2)

√
n

)
f̂(θ2) dθ2

+1
θ1 Φ

(
− θ1 − θ2√

θ1(1 − θ1) + θ2(1 − θ2)

√
n

)
f̂(θ2) dθ2 (2.35)

with θ2 = θ1 +
√

2nθ1(1 − θ1)z, the expression above then becomes

≈0
−θ1

√
n√

2θ1(1−θ1)

Φ(z)f̂(θ1)

[√
2θ1(1 − θ1)√

n

]
dz

+

(1−θ1)
√

n√
2θ1(1−θ1)

0 Φ(−z)f̂(θ1)

[√
2θ1(1 − θ1)√

n

]
dz

≈
[
2
∫ 0

−∞
Φ(z)dz

]
︸ ︷︷ ︸

>0

f̂(θ1)

√
2θ1(1 − θ1)√

n (2.36)
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Then we can integrate over θ1 to obtain:

Perror ≈ 2√
nπ

∫
f̂(θ1)

2
√
(θ1(1 − θ1)) dθ1. (2.37)

This problem can be solved using the method of Lagrange multipliers:∫ √
θ(1 − θ)f̂(θ)2dθ+ λ(

∫
f̂(θ) − 1)

=

∫
(
√
θ(1 − θ)f̂(θ)2 + λf̂(θ))dθ− λ

=

∫
L(θ, f̂ ,λ) dθ− λ (2.38)

We now calculate the gradient

∂L
∂f̂

= 2f̂
√
(θ(1 − θ)) + λ (2.39)

and then find the optimum for f̂ by setting

2f̂
√
(θ(1 − θ)) + λ = 0 (2.40)

then solving for f̂ to obtain

f̂ =
−λ

2
√
θ(1 − θ)

. (2.41)

Taken into consideration our optimization constraint, it can be shown
that ∫ 1

0

1√
θ(1 − θ)

=
1
π

and therefore this implies:
1
π
=

−λ
2

thus requiring:
−λ =

2
π

.

Replacing λ in Eq. 2.41 we finally obtain

f̂(θ) =
1

π
√
θ(1 − θ)

(2.26 revisited)
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Thus the optimal encoding rule is the same (at least in the large-n limit) in
this case as when we assume an objective of maximum mutual information
(the case considered in Appendix 2.1), though here we assume that the
objective is accurate performance of a specific discrimination task.
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Appendix 2.3: Optimal noise for a known prior distribution

Interestingly, we found that the fundamental principles of the theory in-
dependently developed in our work are directly linked to the concept of
suprathreshold stochastic resonance (SSR) discovered about two decades ago.
Briefly, SSR occurs in an array of n identical threshold non-linearities, each
of which is subject to independently sampled random additive noise (neurons
in main text). SSR should not be confused with the standard stochastic
resonance (SR) phenomenon. In SR, the amplitude of the input signal is
restricted to values smaller than the threshold for SR to occur. On the other
hand, in SSR random draws from the distribution of input values can exist
above threshold levels. Using the simplified implementational scheme pro-
posed in our work, it can be shown that mutual information I(v, k) can be
also optimized by finding the optimal noise distribution. This is important
as it provides a normative justification as for why sampling must be noisy in
capacity-limited systems. Actually, SSR was initially motivated as a model
of neural arrays such as those synapsing with hair cells in the inner ear, with
the direct application of establishing the mechanisms by which information
transmission can be optimized in the design of cochlear implants [135]. Our
goal in this subsection is to make evident the link between the novel the-
oretical implications of our work and the SSR phenomenon developed in
previous work [93, 135], which should further justify our argument of efficient
noisy sampling as a general framework for decision behavior, crucially, with
a parsimonious implementational nature.

Following our notation, each threshold device (we will call it from now on a
neuron) can be seen as the number of n resources available to encode an input
stimulus v. Here, we assume that each neuron produces a "high" reading if
and only if v+ η > τ , where η is i.i.d. random additive noise (independent
of v) following a distribution function fη, and τ is the minimum threshold
required to produce a "high" reading. If we define the noise CDF as Fη, then
the probability θ of the neuron giving a "high" reading in response to the
input signal v is given by

θ(v) = 1 − Fη(τ − v). (2.42)

It can be shown that the mutual information between the input v and the
number of "high" readings k for large n is given by [93]

I(v, k) ≈ 1
2 log2

(nπ
2e

)
−DKL[f(v)||fJ (v)], (2.43)
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where fJ is the Jeffreys prior (Eq. 2.26). Therefore, Jeffreys’ prior can also
be derived making it a function of the noise distribution fη

fJ (v) =
fη(τ − v)

π
√
Fη(τ − v)[1 − Fη(τ − v)]

. (2.44)

Given that the first term in Eq. 2.43 is always non-negative, a sufficient
condition for achieving channel capacity is given by

f(v) = fJ (v) ∀v. (2.45)

Typically, the nervous system of any organism has little influence on the
distribution of physical signals in the environment. However, it has the ability
to shape its internal signals to optimize information transfer. Therefore,
a parsimonious solution that the nervous system may adopt to adapt to
statistical regularities of environmental signals in a given context is to find
the optimal noise distribution f∗

η to achieve channel capacity. Note that this
is different from classical problems in communication theory where the goal
is usually to find the signal distribution that maximizes mutual information
for a channel. Solving Eq. 2.44 to find fη(v) one can find such optimal noise
distribution

f∗
η (v) =

π

2 sin[π(1 − F (τ − v))]f(τ − v). (2.46)

A further interesting consequence of this set of results is that the ratio
between the signal PDF f(v) and the noise PDF fη is

f(v)

fη(τ − v)
=

2
πsin[π(1 − F (v))]

. (2.47)

Using the definition given in Eq. 2.42 to make this expression a function of θ,
one finds the optimal PDF of the encoder

f∗(θ) =
1

π
√
θ(1 − θ)

, (2.48)

which is once again the arcsine distribution.
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Appendix 2.4 - Figure 2.1. Recently, it was shown that using an efficiency principle for
encoding sensory variables, based on population of noisy neurons, it was possible to obtain
an explicit relationship between the statistical properties of the environment (the prior)
and perceptual discriminability [25].The theoretical relation states that discriminability
should be inversely proportional to the density of the prior distribution. Interestingly,
this relationship holds across several sensory modalities such as (a) acoustic frequency,
(b) local orientation, (c) speed (figure adapted with permission from the authors [25]).
Here, we investigate whether this particular relation also emerges in our efficient sampling
framework.

Appendix 2.4: Efficient coding and the relation between environmental
priors and discrimination

We first show that we obtain a prediction of exactly the same kind from our
model of encoding using a binary channel, in the case that (i) we assume that
the encoding rule is optimized for a single environmental distribution, as in
the theory of [25, 71], and (ii) the objective that is maximized is either mutual
information (as in the theory of Ganguli and Simoncelli) or the probability
of an accurate binary comparison (as considered in Appendix 2.2).

Note that the expected value and variance of a binomial random variable are
given by

E [r|θ] = θ Var [r|θ] = θ(1 − θ)

n
, (2.49)
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where we let here r ≡ k/n. In Appendix 2.2, we show that if the objective is
accuracy maximization, an efficient binomial channel requires that

θ(v) =
[
sin
(π

2F (v)
)]2

.

Thus, replacing θ(v) in Eq. 2.49 implies the following relations

E [r|θ] = sin2(ω), Var [r|θ] = sin2(ω)cos2(ω)

n
, (2.50)

where we let here ω ≡ π
2F (v). Discrimination thresholds d in sensory percep-

tion are defined as the ratio between the precision of the representation and
the rate of change in the perceived stimulus

d ≡
√

Var [r|θ]
E [r|θ]′

. (2.51)

Substituting the expressions for expected value and variance in Eq. 2.50
results in

d =
1

2
√
nω′

=
1√

nπf(v)
. (2.52)

Thus under our theory, this implies

d ∝ 1
f(v)

. (2.53)

This is exactly the relationship derived and tested by [25].

Our model instead predicts a somewhat different relationship if the encoding
rule is required to be robust to alternative possible environmental frequency
distributions (the case further discussed in Appendix 2.6). In this case, the
robustly optimal encoding rule is DbS, which corresponds to θ(v) = F (v),
rather than the relation 2.53. Substituting this into Eqs. 2.49 and 2.51 yields
the prediction

d =

√
F (v)(1 − F (v))√

n
· 1
f(v)

. (2.54)

instead of Eq. 2.52.
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One interpretation of the experimental support for the relation 2.53 reviewed
by [25] could be that in the case of early sensory processing of the kind with
which they are concerned, perceptual processing is optimized for a particular
environmental frequency distribution (representing the long-run experience of
an organism or even of the species), so that the assumptions used in Appendix
2.2 are the empirically relevant ones. Even so, it is arguable that robustness
to changing contextual frequency distributions should be important in the
case of higher forms of cognition, so that one might expect prediction 2.54
to be more relevant for these cases; and indeed, our experimental results for
the case of numerosity discrimination are more consistent with Eq. 2.54 than
with 2.52.

One should also note that even in a case where Eq. 2.54 holds, if one measures
discrimination thresholds over a subset of the stimulus space, over which
there is non-trivial variation in f(v), but F (v) does not change very much
(because the prior distribution for which the encoding rule is optimized
assigns a great deal of probability to magnitudes both higher and lower than
those in the experimental data set), then relation (2.54) restricted to this
subset of the possible values for v will imply that the relation (2.53) should
approximately hold. This provides another possible interpretation of the fact
that the relation (2.53) holds fairly well in the data considered by [25].
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Appendix 2.5: Maximizing expected size of the selected item (fitness
maximization)

We now consider the optimal encoding rule under a different assumed objec-
tive, namely, maximizing the expected magnitude of the item selected by the
subject’s response (that is, the stimulus judged to be larger by the subject),
rather than maximizing the probability of a correct response as in Appendix
2.2. While in many perceptual experiments, maximizing the probability of a
correct response would correspond to maximization of the subject’s expected
reward (or at least maximization of a psychological reward to the subject,
who is given feedback about the correctness of responses but not about true
magnitudes), in many of the ecologically relevant cases in which accurate
discrimination of numerosity is useful to an organism [48, 87], the decision
maker’s reward depends on how much larger one number is than another,
and not simply their ordinal ranking. This would also be true of typical cases
in which internal representations of numerical magnitudes must be used in
economic decision making: the reward from choosing an investment with a
larger monetary payoff is proportional to the size of the payoff afforded by the
option that is chosen. Hence it is of interest to consider the optimal encoding
rule if we suppose that encoding is optimized to maximize performance in a
decision task with this kind of reward structure.

As in Appendix 2.1 and Appendix 2.2, we again consider the problem of
optimizing the encoding rule for a specific prior distribution f(v) for the
magnitudes that may be encountered, and we assume that it is only possible to
encode information via “high” or “low” readings. The optimization problem
that we need to solve is to find the optimal encoding function θ(v) that
guarantees a maximal expected value of the chosen outcome, for any given
prior distribution f(v). Thus the quantity that we seek to maximize is given
by

E[v(chosen)] =

∫ ∫
f(v1, v2) [P1(θ(v1), θ(v2))v1 +

P2(θ(v1), θ(v2))v2] dv1dv2

(2.55)

where Pi(θ1, θ2) is the probability of choosing option i when the encoded
values of the two options are θ1 and θ2 respectively.
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We begin by noting that for any pair of input values v1, v2, the integrand in
(2.55) can be written as

P1(θ(v1), θ(v2))v1 + P2(θ(v1), θ(v2))v2 (2.56)
= max(v1, v2) − P (error |θ(v1), θ(v2)) |v1 − v2|,

where I(A) is the indicator function (taking the value 1 if statement A is
true, and the value 0 otherwise), and P (error |θ1, θ2) is the probability of
choosing the lower-valued of the two options.

Substituting this last expression for the integrand in (2.55), we see that we
can equivalently write

E[v(chosen)] = E[max(v1, v2)]−∫ ∫
f(v1, v2)P (error |θ(v1), θ(v2)) |v1 − v2| dv1dv2,

(2.57)

where
E[max(v1, v2)] ≡

∫ ∫
f(v1, v2) max(v1, v2) dv1dv2 (2.58)

is a quantity which is independent of the encoding function θ(v). Hence choos-
ing θ(v) to maximize (2.55) is equivalent to choosing it to minimize

E[loss] =

∫ ∫
f(v1, v2)P (error |θ(v1), θ(v2)) |v1 − v2| dv1dv2. (2.59)

As previously specified, the probability of error given two internal noisy
readings k1 and k2 is given by

P (error) =
(
k1
n

− k2
n
> 0|v1, v2

)
(2.60)

≈ Φ

 θ1 − θ2√
θ1(1−θ1)+θ2(1−θ2)

n

 , (2.61)

where in this case we assume that v1 is the lower-valued option and v2 is the
higher-valued option on any given trial. This implies that P (error) is very
close to zero, except when |θ1 − θ2| = O(1/

√
n). In this case we have

P (error) ≈ Φ

(√
n

2
θ1 − θ2√
θ(1 − θ)

)
where θ ≡ θ1 + θ2

2 . (2.62)
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As in the case of accuracy maximization, here we assume that (v1, v2) are
independent draws from the same distribution of possible values f(v). Thus
f(v1, v2) = f(v1)f(v2). Then fixing v1 and integrating over all possible values
of v2 in Eq. 2.59, the expected loss is approximately

E[loss|v1] =

∫
f(v2)P (error|v2, v1)|v2 − v1| dv2 (2.63)

≈
∫
f(v2)Φ

(
−
√
n

2
|θ1 − θ2|√
θ1(1 − θ1)

)
|v2 − v1| dv2 (2.64)

≈ f(v1)

∫
Φ

(
−
√
n

2
θ′(v1)|v2 − v1|√

θ1(1 − θ1)

)
|v2 − v1| dv2 (2.65)

≈ f(v1)

∫ ∞

−∞
Φ(−|z|)

[√
2
n

θ1(1 − θ1)

θ′(v1)
|z|

][√
2
n

θ1(1 − θ1)

θ′(v1)

]
dz

(2.66)

≈ 4
n

f(v1)

θ′(v1)2 [θ1(1 − θ1)]

∫ ∞

0
Φ(−z)z dz︸ ︷︷ ︸

1/4

(2.67)

≈ 1
n

f(v1)

θ′(v1)2 [θ1(1 − θ1)] (2.68)

where in Eq. 2.66 we have applied the change of variable

z ≡ n

2
θ′(v1)

θ1(1 − θ1)
(v2 − v1) (2.69)

and in the integral of Eq. 2.67 we have used∫ ∞

0
Φ(−z)z dz = 1

2
[
(z2 − 1)Φ(−z) − zϕ(−z)

]∞
0 (2.70)

=
1
2

[
0 − (−1

2 )
]

(2.71)

=
1
4 (2.72)

where ϕ() is the standard normal PDF. Then integrating over v1, we have:

E[loss] = 1
n

∫
f(v1)2

θ′(v1)2 [θ1(1 − θ1)] dv1. (2.73)
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Thus we want to find the encoding rule θ(v) to minimize this integral given
the prior f(v). We now apply the change of variable θ(v) ≡ sin2(γ(v)), where
γ(v) is an increasing function with a range 0 ⩽ γ(v) ⩽ π

2 for all v. Then we
have

θ′(v) = 2 sin(γ(v)) cos(γ(v))γ′(v) (2.74)

= 2
√
θ(v)(1 − θ(v))γ′(v) (2.75)

and therefore we have

θ(v)(1 − θ(v))

θ′(v)
=

1
4

1
γ′(v)

. (2.76)

This allows us to rewrite Eq. 2.73 as follows

E[loss] = 1
n

∫
f(v)2

γ′(v)2 . (2.77)

Now the problem is to choose the function γ(v) to minimize E[loss] subject to
0 ⩽ γ(v) ⩽ π

2 . Equivalently, we can choose the function γ′(v) > 0 to minimize
E[loss] subject to

∫
γ′(v)dv ⩽ π

2 . Defining φ(v) ≡ γ′(v), the optimization
problem to solve is to choose the function φ(v) to

min
∫

f(v)2

φ(v)2 dv s.t.
∫
φ(v) dv ⩽

π

2 (2.78)

Due to FOC, it can be shown that

f(v)2

φ(v)3 = same for all v ⇒ φ(v) ∼ f(v)2/3. (2.79)

Note also that the constraint
∫
φ(v) ⩽ π

2 must hold with equality, thus
arriving at

γ(v) =
π

2

∫ v

−∞
f(ṽ)2/3 dṽ

∫ ∞

−∞
f(ṽ)2/3 dṽ. (2.80)

Therefore, we finally obtain the efficient encoding rule that maximizes the
expected magnitude of the selected item

θ(v) = sin
[
π

2

∫ v

−∞
f(ṽ)2/3 dṽ

∫ ∞

−∞
f(ṽ)2/3 dṽ

]2
(2.81)
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Appendix 2.6: Robust optimality of DbS among encoding rules with
m=1

Here we consider the nature of the optimal encoding function when the cost of
increasing the size of the sample of values from prior experience that are used
to adjust the encoding rule to the contextual distribution of stimulus values
is great enough to make it optimal to base the encoding of a new stimulus
magnitude v on a single sampled value ṽ from the contextual distribution.
(The conditions required for this to be the case are discussed further in
Appendix 2.7)

We assume that for each of the n independent processing units, the probability
of a "high" reading is given by θ(v, ṽj), where ṽj is the draw from the
contextual distribution by processor j, and θ(v, ṽ) is the same function for
each of the processing units. The {ṽj} for j = 1, 2, . . . ,n, are independent
draws from the contextual distribution f(v). We further assume that the
function θ(v, ṽ) satisfies certain regularity conditions. First, we assume that
θ is a piecewise continuous function. That is, we assume that the v − ṽ

plane can be divided into a countable number of connected regions, with
the boundaries between regions defined by continuous curves; and that the
function θ(v, ṽ) is continuous in the interior of any of these regions, though
it may be discontinuous at the boundaries between regions. And second,
we assume that θ(v, ṽ) is necessarily weakly increasing in v and weakly
decreasing in ṽ. The function is otherwise unrestricted.

For any prior distribution f(v) and any encoding function θ(v, ṽ), we can
compute the probability of an erroneous comparison when two stimulus
magnitudes v1, v2 are independently drawn from the distribution f(v), and
each of these stimuli is encoded using n additional independent draws {ṽj}
from the same distribution. Let this error probability be denoted Pn(θ; f).
We wish to find an encoding rule (for given n) that will make this error
probability as small as possible; however, the answer to this question will
depend on the prior distribution f(v). Hence we wish to find an encoding rule
that is robustly optimal, in the sense that it achieves the minimum possible
value for the upper bound

P̄error(θ) ≡ sup
f∈F

Pn(θ; f)

for the probability of an erroneous comparison. Here the class of possible
priors F to considered is the set of all possible probability distributions (over
values of v) that can be characterized by an integrable probability density
function f(v). (We exclude from consideration priors in which there is an
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atom of probability mass at some single magnitude v, since in that case there
would be a positive probability of a situation in which it is not clear which
response should be considered “correct”, so that Perror is not well-defined.)
Note that the criterion P̄error(θ) for ranking encoding rules is not without
content, since there exist encoding rules (including DbS) for which the upper
bound is less than 1/2 (the error probability in the case of a completely
uninformative internal representation).

Let us consider first the case in which there is some part of the diagonal line
along which ṽ = v which is not a boundary at which the function θ(v, ṽ) is
discontinuous. Then we can choose an open interval (vmin, vmax) such that
all values v, ṽ with the property that both v and ṽ lie within the interval
(vmin, vmax) are part of a single region on which θ(v, ṽ) is a continuous
function. Then let θmin be the greatest lower bound with the property that
θ(v, ṽ) ≥ θmin for all v, ṽ lying within the specified interval, and similarly
let θmax be the lowest upper bound such that θ(v, ṽ) ≤ θmax for all values
within the specified interval. Because of the continuity of θ(v, ṽ) on this
region, as the values vmin, vmax are chosen to be close enough to each other,
the bounds θmin, θmax can be made arbitrarily close to one another.

Now for any probabilities 0 ≤ θ ≤ θ′ ≤ 1, let Pmin(θ, θ′) be the quantity
defined in Eq. 2.30, when θ1 = θ and θ2 = θ′; that is, for any v1, v2 that
are not equal to one another, Pmin(θ, θ′) is the probability of an erroneous
comparison if the units representing the smaller magnitude each give a "high"
reading with probability θ and those representing the larger magnitude each
give a "high" reading with probability θ′. Then the probability of erroneous
choice Perror when f(v) is a distribution with support entirely within the
interval (vmin, vmax) is necessarily greater than or equal to the lower bound
Pmin(θmin, θmax). The reason is that for any v1, v2 in the support of f(v),
the probabilities

θi =

∫
θ(vi, ṽ)f(ṽ)dṽ

will necessarily lie within the bounds θmin ≤ θi ≤ θmax for both i = 1, 2.
Given these bounds, the most favorable case for accurate discrimination
between the two magnitudes will be to assign the largest possible probability
θmax to units being on in the representation of the larger magnitude, and
the smallest possible probability θmin to units being on in the representation
of the smaller magnitude. Since the lower bound Pmin(θmin, θmax) applies in
the case of any individual values v1, v2 drawn from the support of f(v), this
same quantity is also a lower bound for the average error rate integrating
over the prior distributions for v1 and v2.
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One can also show that as the two bounds θmin, θmax approach one another,
the lower bound Pmin(θmin, θmax) approaches 1/2, regardless of the common
value that θmin and θmax both approach. Hence it is possible to make
Pmin(θmin, θmax) arbitrarily close to 1/2, by choosing values for vmin, vmax

that are close enough to one another. It follows that for any bound Pmin less
than 1/2 (including values arbitrarily close to 1/2), we can choose a prior
distribution f(v) for which Perror is necessarily equal to Pmin or larger. It
follows that in the case of a function θ(v, ṽ) of this kind, the upper bound
P̄error(θ) is equal to 1/2.

In order to achieve an upper bound lower than 1/2, then, we must choose
a function θ(v, ṽ) that is discontinuous along the entire line v = ṽ. For any
such function, let us consider a value v∗ with the property that all points
(v, ṽ) near (v∗, v∗) with v > ṽ belong to one region on which θ is continuous,
and all points near (v∗, v∗) with v < ṽ belong to another region. Then under
the assumption of piecewise continuity, θ(v, ṽ) must approach some value
θ̄(v∗) as the values (v, ṽ) converge to (v∗, v∗) from within the region where
v > ṽ, and similarly θ(v, ṽ) must approach some value θ(v∗) as the values
(v, ṽ) converge to (v∗, v∗) from within the region where v < ṽ.

It must also be possible to choose values vmin < v∗ < vmax such that all
points (v, v) with vmin < v < vmax are points on the boundary between the
two regions on which θ is continuous. Given such values, we can then define
bounds θmin, θmax, θ̄min, and θ̄max, such that

θmin ≤ θ(v, ṽ) ≤ θmax

for all vmin < v < ṽ < vmax, and

θ̄min ≤ θ(v, ṽ) ≤ θ̄max

for all vmin < ṽ < v < vmax. Moreover, piecewise continuity of the function
θ(v, ṽ) implies that by choosing both vmin and vmax close enough to v∗ we
can make the bounds θmin, θmax arbitrarily close to θ(v∗), and make the
bounds θ̄min, θ̄max arbitrarily close to θ̄(v∗).

Next, for any set of four probabilities 0 ≤ θ ≤ θ′ ≤ 1 and 0 ≤ θ̄ ≤ θ̄′ ≤ 1, let
us define

P̂min(θ, θ′; θ̄, θ̄′) ≡ E[Pmin(θ(z1), θ′(z2)) |z1 < z2], (2.82)

where
θ(z) ≡ zθ̄ + (1 − z)θ, θ′(z) ≡ zθ̄′ + (1 − z)θ′, (2.83)
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and z1, z2 are two independent random variables, each distributed uniformly
on [0, 1]. Then if θ(v, ṽ) lies between the lower bound θ and upper bound θ′

whenever v < ṽ, and between the lower bound θ̄ and upper bound θ̄′ whenever
v > ṽ, then the probability θ of a processing unit representing the magnitude
v giving a "high" reading will lie between the bounds θ(z) ≤ θ ≤ θ′(z), where
z = F (v) is the quantile of v within the prior distribution. It follows that
in the case of any two magnitudes v1, v2 with v1 < v2, the probability of an
erroneous comparison will be bounded below by Pmin(θ(z1), θ′(z2)), where
zi = F (vi) for i = 1, 2, since the probability of a correct discrimination
will be maximized by making the units representing v1 give as few high
readings as possible and the units representing v2 give as many high readings
as possible. Integrating over all possible draws of v1, v2, one finds that the
quantity P̂min(θ, θ′; θ̄, θ̄′) defined in (2.82) is a lower bound for the overall
probability of an erroneous comparison, given that regardless of the prior
f(v), the quantiles z1, z2 will be two independent draws from the uniform
distribution on [0, 1].

Now consider again an encoding function θ(v, ṽ) of the kind discussed two
paragraphs above, and an interval of stimulus values (vmin, vmax) of the
kind discussed there. For any prior distribution f(v) with support entirely
contained within the interval (vmin, vmax), the probability of an erroneous
comparison is bounded below by

Pn(θ; f) ≥ P̂min(θmin, θmax; θ̄min, θ̄max),

where the function P̂min is defined in (2.82). Moreover, by choosing the values
vmin, vmax close enough to v∗, we can make this lower bound arbitrarily close
to P e(θ(v∗), θ̄(v∗)), where for any probabilities θ, θ̄ we define

P e(θ, θ̄) ≡ P̂min(θ, θ; θ̄, θ̄). (2.84)

Hence in the case of the encoding function considered, the upper bound
P̄error(θ) must be at least as large as P e(θ(v∗), θ̄(v∗)). We further observe
that the quantity P e(θ, θ̄) defined in (2.84) is just the probability of an
erroneous comparison in the case of an encoding rule according to which

θ(v, ṽ) = θ if v < ṽ,

θ(v, ṽ) = θ̄ if v > ṽ.

Note that in the case of such an encoding rule, the probability of an erroneous
comparison is the same for all prior distributions, since under this rule all
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that matters is the distribution of the quantile ranks of v and ṽ. It is moreover
clear that P e(θ, θ̄) is an increasing function of θ and a decreasing function
of θ̄. It thus achieves its minimum possible value if and only if θ = 0 and
θ̄ = 1, in which case it takes the value PDbS

error, the probability of erroneous
comparison in the case of decision by sampling (again, independent of the
prior distribution).

Thus in the case that there exists any magnitude v∗ for which θ(v∗) > 0,
θ̄(v∗) < 1, or both, there exist priors f(v) for which Pn(θ; f) must exceed
PDbS

error = P e(0, 1). Hence in order to minimize the upper bound P̄error(θ),
it must be the case that θ(v) = 0 and θ̄(v) = 1 for all v. But then our
assumption that the encoding rule θ(v, ṽ) is at least weakly increasing in v

and at least weakly decreasing in ṽ requires that

θ(v, ṽ) = 0 for all v < ṽ,

θ(v, ṽ) = 1 for all v > ṽ.

Thus the encoding rule must be the DbS rule, the unique rule for which
P̄error(θ) is no greater than PDbS

error.
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Appendix 2.7: Sufficient conditions for the optimality of DbS

Here we consider the general problem of choosing a value of m (the number
of samples from the contextual distribution f(v) to use in encoding any
individual stimulus) and an encoding rule θ(v; ṽ1, . . . , ṽm) to be used by each
of the n processing units that encode the magnitude of that single stimulus,
so as to minimize the compound objective

P̄error(θ) + K(m),

where P̄error is the upper bound on the probability of an erroneous comparison
under the encoding rule θ, and K(m) is the cost of using a sample of size
m when encoding each stimulus magnitude. The value of n is taken as fixed
at some finite value. (This too can be optimized subject to some cost of
additional processing units, but we omit formal analysis of this problem.) We
assume that K(m) is an increasing function of m, and can without loss of
generality assume the normalization K(0) = 0. In this optimization problem,
we assume that the only encoding functions θ to be considered are ones
that are piecewise continuous, at least weakly increasing in v, and weakly
decreasing in each of the ṽj .

For any value of m, let P ∗(m) be the minimum achievable value for P̄error(θ).
(Appendix 2.6 illustrates how this kind of problem can be solved, for the
case m = 1.) Then the optimal value of m will be the one that minimizes
P ∗(m) +K(m).

We can establish a lower bound for P ∗(m) that holds for any m:

P ∗(m) ≡ inf
θ(v;ṽ1,...,ṽm)

sup
f∈F

Pn(θ; f)

≥ sup
f∈F

inf
θ(v;ṽ1,...,ṽm)

Pn(θ; f)

= sup
f∈F

inf
θ(v)

Pn(θ; f) ≡ Pn. (2.85)

In the second line, we allow the function θ(v; ṽ1, . . . , ṽm) to be chosen after
a particular prior f(v) has already been selected, which cannot increase the
worst-case error probability. In the third line, we note that the only thing that
matters about the encoding function chosen in the second line is the mean
value of θ(v; ṽ1, . . . , ṽm) for each possible magnitude v, integrating over the
possible samples of size m that may be drawn from the specified prior; hence
we can more simply write the problem on the second line as one involving
a direct choice of a function θ(v), which may be different depending on the
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prior f(v) that has been chosen. The problem on the third line defines a
bound Pn that does not depend on m.

A set of sufficient conditions for m = 1 to be optimal is then given by the
assumptions that

(a) P ∗(0) > P ∗(1) +K(1), and

(b) P ∗(1) − P < K(2) −K(1).

Condition (a) implies that m = 0 will be inferior to m = 1: the cost of
a single sample is not so large as to outweigh the reduction in P̄error(θ)
that can be achieved using even one sample. Condition (b) implies that
m = 1 will be superior to any m′ > 1. The lower bound (2.85), together
with our monotonicity assumption regarding K(m), implies that for any
m′ > 1,

P ∗(1) − P ∗(m′) ≤ P ∗(1) − P < K(2) −K(1) ≤ K(m′) −K(1),

and hence that
P ∗(1) +K(1) < P ∗(m′) +K(m′).

While condition (b) is stronger than is needed for this conclusion, the sufficient
conditions stated in the previous paragraph have the advantage that we need
only consider optimal encoding rules for the cases m = 0 and m = 1, and the
efficient coding problem stated in definition (2.85), in order to verify that the
conditions are both satisfied. The efficient coding problem for the case m = 1
is treated in Appendix 2.6, where we show that P ∗(1) = PDbS

error < 1/2. Using
the calculations explained in Appendix 2.2, we can provide an analytical
approximation to this quantity in the limiting case of large n.

Equation 2.37 states that for any encoding rule θ(v) and any prior distribution
f(v), the value of Perror for any large enough value of n will approximately
equal

Pn(θ; f) ≈ 2√
nπ

∫
f̂(θ̃)2

√
θ̃(1 − θ̃) dθ̃, (2.37 revisited)

where f̂(θ) is the probability density function of the distribution of values
for θ(v) implied by the function θ(v) and the distribution f(v) of values for
v. In the case of DbS, the probability distribution over alternative internal
representations ki (and hence the probability of error) is the same as in the
case of an encoding rule θ(v) = F (v), so that equation 2.37 can be applied.
Furthermore, for any prior distribution f(v), the probability distribution
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of values for the quantile z = F (v) will be a uniform distribution over the
interval [0, 1], so that f̂(θ) = 1 for all θ. It follows that

PDbS,lim
error ≈ 2√

nπ

∫ √
θ̃(1 − θ̃) dθ̃ =

1
4

√
π

n
. (2.86)

In the case that m = 0, instead, the same function θ(v) must be used
regardless of the contextual distribution f(v). Under the assumption that
θ(v) is piecewise continuous, there must exist a magnitude v∗ such that θ(v)
is continuous over some interval (vmin, vmax) containing v∗ in its interior. Let
θmin, θmax be the greatest lower bound and least upper bound respectively,
such that

θmin ≤ θ(v) ≤ θmax

for all vmin < v < vmax. The continuity of θ(v) on this interval means that
by choosing both vmin and vmax close enough to v∗, we can make both θmin

and θmax arbitrarily close to θ(v∗).

By the same argument as in Appendix 2.6, for any prior distribution f(v)
with support entirely contained in the interval (vmin, vmax), the pair of
stimulus magnitudes v1, v2 will have to imply θmin ≤ θ(v1), θ(v2) ≤ θmax

with probability 1, and as a consequence the error probability Pn(θ; f) will
necessarily be greater than or equal to the lower bound Pmin(θmin, θmax).
By choosing both vmin and vmax close enough to v∗, we can make this lower
bound arbitrarily close to Pmin(θ(v∗), θ(v∗)) = 1/2. Hence for any encoding
rule θ(v) with m = 0, the upper bound P̄error(θ) cannot be lower than 1/2.
It follows that P ∗(0) = 1/2.

Given this, condition (a) can alternatively be expressed as

PDbS
error + K(1) < 1/2.

Note that if K(1) remains less than 1/2 no matter how large n is, this
condition will necessarily be satisfied for all large enough values of n, since
(2.86) implies that PDbS

error eventually becomes arbitrarily small, in the case of
large enough n. (On the other hand, the condition can easily be satisfied for
some range of smaller values of n, even if K(1) > 1/2 once n becomes very
large.)

In order to consider the conditions under which condition (b) will also be
satisfied, it is necessary to further analyze the efficient coding problem stated
in (2.85). We first observe that for any prior f(v) ∈ F and encoding rule
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θ(v), the encoding rule can always be expressed in the form θ(v) = φ(F (v)),
where φ(z) is a piecewise-continuous, weakly increasing function giving
the probability of a "high" reading as a function of the quantile z of the
stimulus magnitude in the prior distribution. We then note that when this
representation is used for the encoding function in problem 2.85, the error
probability Pn(θ; f) depends only on the function φ(z), in a way that is
independent of the prior f(v). Hence the inner minimization problem in Eq.
2.85 can equivalently be written as

inf
φ(z)

Pn(φ). (2.87)

This problem has a solution for the optimal φ(z) for any number of processing
units n, and an associated value, that is independent of the prior f(v). Hence
we can write the bound defined in (2.85) more simply as

Pn = inf
φ(z)

Pn(φ). (2.88)

Condition (b) will be satisfied as long as the bound defined in (2.88) is not too
much lower than PDbS

error. In fact, this bound can be a relatively large fraction
of PDbS

error. We consider the problem of the optimal choice of an encoding
function θ(v) for a known prior f(v) in Appendix 2.2 In the limiting case
of a sufficiently large n, substitution of equation 2.2 into 2.37 yields the
approximate solution

P lim
n ≈ 2√

nπ

1
π2

dθ̃√
θ̃(1 − θ̃)

=
2√
nπ3

. (2.89)

Thus as n is made large, the ratio P lim
n /PDbS,lim

error converges to the value

P lim/PDbS,lim
error = 8/π2 = 0.81. (2.90)

This means that increases in the sample size m above 1 cannot reduce P ∗(m)
by even 20 percent relative to P ∗(1), no matter how large the sample may
be, whereas P ∗(1) may be only a small fraction of P ∗(0) (as is necessarily
the case when n is large). This makes it quite possible for K(2)−K(1) to be
larger than PDbS

error − P while at the same time P ∗(0) − PDbS
error is larger than

K(1). In this case, the optimal sample size will be m = 1, and the optimal
encoding rule will be DbS.

While these analytical results for the asymptotic (large-n) case are useful, we
can also numerically estimate the size of the terms P ∗(0),P , and PDbS

error in
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the case of any finite value for n. We have derived an exact analytical value
for P ∗(0) = 1/2 above. The quantity PDbS

error can be computed through Monte
Carlo simulation for any value of n. (Note that this calculation depends only
on n, and is independent of the contextual distribution f(v); we need only to
calculate Pn(φ) for the function φ(z) = z.) The calculation of Pn for a given
finite value of n is instead more complex, since it requires us to optimize
Pn(φ) over the entire class of possible functions φ(z).

Our approach is to estimate the minimum achievable value of Pn(φ) by
finding the minimum achievable value over a flexible parametric family of
possible functions φ(z). We specify the function φ in terms of the implied
F̂ (θ), the CDF for values of θ(v). We let F̂ (θ) be implicitly defined by

[sin
(
(π/2)F̂ (θ)

)
]2 = g(θ), (2.91)

where g(θ) is a function of θ with the properties that g(0) = 0, g(1) = 1, as
required for F̂ (θ) to be the CDF of a probability distribution. More specifically,
we assume that g(θ) is a finite-order polynomial function consistent with
these properties, which require that it can be written in the form

g(θ) = θ [1 + (θ− 1) (g0 + g1θ+ . . .+ gpθ
p)] , (2.92)

where {g0, . . . , gp} are a set of parameters over which we optimize. Note that
for a large enough value of p, any smooth function can be well approximated
by a member of this family. At the same time, our choice of a parametric
family of functions has the virtue that the CDF that corresponds to the
optimal coding rule in the large-n limit belongs to this family (regardless of
the value of p), since this coding rule (equation 2.3) corresponds to the case
g0 = . . . = gp = 0 of equation 2.92.

We computed via numerical simulations the best encoder function assuming
g(θ) to be of order 5 (Eq. 2.92) for various finite values of n = [5, 10, 15, 20, 25,
30, 35, 40], and we define the expected error of this optimal encoder for a given
n to be P g

n (i.e., a lower bound for Pn within the family of functions defined by
g). Our goal is to compare this quantity to the asymptotic approximation P lim

n ,
in order to evaluate how accurate the asymptotic approximation is.

Additionally, we also compute the value PDbS
error for each finite value of n through

Monte Carlo simulation (please note that PDbS
error is different from the quantity

PDbS,lim
error defined in Eq. 2.86, that is only an asymptotic approximation for

large n). Then, we can compare PDbS
error to the value predicted by the asymptotic

approximations PDbS,lim
error and P lim

n .
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Appendix 2.7 - Figure 2.1. Performance of efficient coding rules.

Another quantity that is important to compute, in order to determine whether
DbS can be optimal when n is not too large, is the size of P ∗(0) relative to
the quantities computed above. Since P ∗(0) does not shrink as n increases, it
is obvious that P ∗(0) is much larger than the other quantities in the large-n
limit. But how much bigger is it when n is small? To investigate this, we
compute the value of the ratio P ∗(0)/P lim

n when n is small. This quantity is
given by

P ∗(0)
P lim

n

=

√
nπ3

4 (2.93)

In Appendix 2.7-Figure 2.1, all error quantities discussed above are nor-
malized relative to P lim

n . The black dashed lines in both panels represent
(P lim

n /P lim
n ) = 1. The ratio of the asymptotic approximation for PDbS,lim

error
relative to P lim

n is plotted with the red dashed lines, where (PDbS,lim
error /P lim

n ) ≈
1.23. Note that the sufficient conditions for DbS to be optimal can be stated
as

(a) K(1) < P ∗(0) − PDbS
error, and

(b) K(2) −K(1) > PDbS
error − Pn.

Therefore, Appendix 2.7-Figure 2.1 shows the numerical magnitudes of the
expressions on the right-hand side of both inequalities (normalized by the
value of P lim

n ). The most important result from the analyses presented in
this figure is that even for small values of n, the right-hand side of the first
inequality (see right panel) will be a much larger quantity than the right-hand
side of the second inequality (see left panel). Thus it can easily be the case
that K(1) and K(2) are such that both inequalities are satisfied: it is worth
increasing m from 0 to 1, but not worth increasing m to any value higher
than 1. In this case, the optimal sample size will be m = 1, and the optimal
encoding rule will be DbS.
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Additionally, we found that the computations of PDbS
error for each finite value of

n are slightly higher than P lim
n even for small n values (blue line in the left

panel), but quickly reach the asymptotic value PDbS,lim
error /P lim

n as n increases.
Thus, even for small values of n, the asymptotic approximation of optimal
performance for the case of complete prior knowledge is superior than DbS.
We also found that the computations of P g

n for each finite value of n cannot
reduce P lim

n by even 5 percent for small n values (orange line in the left panel).
Moreover, P g

n quickly reached the asymptotic value P lim
n , thus suggesting

that the asymptotic solution is virtually indistinguishable from the optimal
solution (at least based on the flexible family of g functions) also for finite
values of n, which crucially are in the range of the values found to explain
the data in the numerosity discrimination experiment of our study. Thus,
these results confirm that the asymptotic approximations used in our study
are not likely to influence the conclusions of the experimental data in our
work.
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Appendix 2.8: Relation to Bhui and Gershman, 2018

Bhui and Gershman [119] also argue that an efficient coding scheme can be
implemented by a version of DbS. However, both the efficient coding problem
that they consider, and the version of DbS that they consider, are different
than in our analysis, so that our results are not implied by theirs.

Like us, Bhui and Gershman consider encoding schemes in which the internal
representation r must take one of a finite number of values. However, their
efficient coding problem considers the class of all encoding rules that assign
one or another of N possible values of r to a given stimulus v. In their
discussion of the ideal efficient coding benchmark, they do not require r to
be the ensemble of output states of a set of n neurons, each of which must
use the same rule as the other units, and therefore consider a more flexible
family of possible encoding rules, as we explain in more detail below.

The encoding rule that solves our efficient coding problem is stochastic; even
under the assumption that the prior f(v) is known with perfect precision
(the case of unbounded m in the more general specification of our framework,
so that sampling error in estimation of this distribution from prior experience
is not an issue), we show that it is optimal for the probabilities p(k|v) not
to all equal either zero or one. The optimal rule within the more flexible
class considered by Bhui and Gershman is instead deterministic: each stimu-
lus magnitude v is assigned to exactly one category k with certainty. The
boundaries between the set of n+ 1 categories furthermore correspond to the
quantiles (1/(n+ 1), 2/(n+ 1), . . . ,n/(n+ 1)) of the prior distribution, so
that each category is used with equal frequency. Thus the optimal encoding
rule is given by a deterministic function y(v), a non-decreasing step function
that takes n+ 1 discrete values.

Bhui and Gershman show that when there is no bound on m, the number of
samples from prior experience that can be used to estimate the contextual
distribution — their optimal encoding rule for a given number of categories
N — can be implemented by a form of DbS. However, the DbS algorithm
that they describe is different than in our discussion. Bhui and Gershman
propose to implement the deterministic classification y(v) by computing the
fraction of the sampled values ṽ that are less than v. In the limiting case
of an infinite sample from the prior distribution, this fraction is equal to
F (v) with probability one, and y(v) is then determined by which of the
intervals [0, 1/N), [1/N , 2/N), . . . , [(N − 1)/N , 1] the quantile F (v) falls
within. Thus whereas in our discussion, DbS is an algorithm that allows
each of our units to compute its state using only a single sampled value ṽj ,
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the DbS algorithm proposed by Bhui and Gershman to implement efficient
coding is one in which a large number of sampled values are used to jointly
compute the output states of all of the units in a coordinated way.

Bhui and Gershman also consider the case in which only a finite number
of samples (ṽ1, . . . , ṽm) can be used to compute the representation ki of a
given stimulus magnitude vi, and ask what kind of rule is efficient in that
case. They show that in this case a variant of DbS with kernel-smoothing
is superior to the version based on the empirical quantile of vi (which now
involves sampling error). In this more general case, the variant DbS algorithms
considered by Bhui and Gershman make the representation ki of a given
stimulus probabilistic; but the class of probabilistic algorithms that they
consider remains different from the one that we discuss. In particular, they
continue to consider algorithms in which the category ki can be an arbitrary
function of vi and a single set of m sampled values that is used to compute
the complete representation; they do not impose the restriction that ki be
the number of units giving a "high" reading when the output state of each of
n individual processing units is computed independently using the same rule
(but an independent sample of values from prior experience in the case of
each unit).

The kernel-smoothing algorithms that they consider are based on a finite set
of m pairwise comparisons between the stimulus magnitude vi and particular
sampled values ṽj , the outcomes of which are then aggregated to obtain
the internal representation ki. However, they allow the quantity K(vi − ṽj)
computed by comparing vi to an individual sampled value to vary continuously
between 0 and 1, rather than having to equal either 0 or 1, as in our case
(where the state of an individual unit must be either "high" or "low"). The
quantities K(vi − ṽj) are able to be summed with perfect precision, before the
resulting sum is then discretized to produce a final representation that takes
one of only N possible values. Thus an assumption that only finite-precision
calculations are possible is made only at the stage where the final output of
the joint computation of the processors must be “read out”; the results of
the individual binary comparisons are assumed to be integrated with infinite
precision. In this respect, the algorithms considered by Bhui and Gershman
are not required to economize on processing resources in the same sense as
the class that we consider; the efficient coding problem for which they present
results is correspondingly different from the problem that we discuss for the
case in which m is finite.
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3.1. Abstract

The ability to rapidly estimate non-symbolic numerical quantities is a well-
conserved sense across species with clear evolutionary advantages. Despite
its importance, the rapid representation and estimation of numerosity is
surprisingly imprecise and biased. However, a formal explanation for this
seemingly irrational behavior remains unclear. We develop a unified norma-
tive theory of numerosity estimation that parsimoniously incorporates in
a single framework information processing constraints alongside Brownian
diffusion noise to capture the effects of exposure time of sensory estimations,
logarithmic encoding of numerosity representations, and optimal inference
via Bayesian decoding. We show that for a given allowable biological ca-
pacity constraint our model naturally endogenizes time perception during
noisy efficient encoding to predict the complete posterior distribution of nu-
merosity estimates. This model accurately predicts many features of human
numerosity estimation as a function of temporal exposure, indicating that
humans can rapidly and efficiently sample numerosity information over time.
Additionally, we demonstrate how our model fundamentally differs from
a thermodynamically-inspired formalization of bounded rationality, where
information processing is modeled as acting to shift away from default states.
The mechanism we propose is the likely origin of a variety of numerical
cognition patterns observed in humans and other animals.
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3.2. Introduction

The ability to rapidly represent and estimate non-symbolic numerical quanti-
ties is a fundamental cognitive function for behavior in humans and other
animals, which may have emerged during evolution to support fitness max-
imization [48]. Since the properties of numerosity estimation started to
be studied nearly a century ago, it has been commonly observed that the
representation and estimation of numerical quantities are imprecise and
biased [136]. Despite the importance of numerosity estimation for various
cognitive processes and ultimately survival, the questions remain: what are
the origins of the observed variability and biases in numerosity estimations?
Are these deviations efficient and predictable when organisms are urged to
rapidly estimate numerical quantities?

Extensive empirical research in the representation and estimation of non-
symbolic numerical quantities has consistently reported and studied various
features that characteristically emerge during numerosity estimation, includ-
ing: (i) subitizing small numbers [137]; (ii) overestimation of small numbers
(outside the subitization range) and underestimation of large numbers [138],
with especially biased estimates in the case of larger numbers [133]; (iii) a co-
efficient of variation that is approximately constant across all numerosities, a
property termed scalar variability [139]; and (iv) estimation acuity modulated
by duration of stimulus presentation and sensory reliability [140]. But do all
the above-mentioned behavioral patterns have a common origin?

Organisms do not have unlimited biological resources or unlimited time to
process sensory information from the environment, and neural computations
are metabolically expensive [141]. Thus, it has been suggested that the ob-
served variability and biases in our estimations of our sensory world emerge
from fundamental principles of acquiring information from environmental
regularities that should ultimately lead to developing efficient behavioral
strategies [37, 72, 73, 86, 142]. Here we argue that all the above-mentioned
behavioral features emerging during numerosity estimation have a common
origin: given biological constraints on information acquisition, numerosity
estimation emerges from a system that efficiently considers, first, prior knowl-
edge of the environment, second, information of the current numerosity being
evaluated, and third, the amount of time (or sensory reliability) available to
process such information.

We develop a unified normative model of numerosity estimation that parsi-
moniously incorporates information constraints together with long modeling
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traditions of human and animal psychophysical performance in psychology
and neuroscience: (i) Brownian diffusion noise to capture the effects of time
exposure of sensory information [143], (ii) logarithmic encoding of numerosity
representations [83], and (iii) optimal Bayesian decoding. As a result, we show
that for a given allowable biological capacity constraint, our model naturally
incorporates time (or sensory reliability) perception during noisy efficient
encoding to predict the corresponding posterior distribution of numerosity
estimates via optimal Bayesian decoding. Here we refer to our approach as
the "sequential-encoding/Bayesian-decoding" model, henceforth SEB.

We also consider a second well-known approach for studying bounded ra-
tionality inspired by principles of thermodynamics and statistical physics.
This family of models assumes that given a default state (e.g., a default
distribution over possible responses) and a sensory stimulus, the observer acts
in a way such that they attempt to shift from the default state to a new state
that matches as closely as possible the value of the sensory stimulus. Bounded
rationality comes into play in the case of acting when only a given amount
of change in information (energy invested) between the default and new
state can be afforded. This class of models has been used in a wide range of
applications [144–147], including recently to study how perceptual estimation
under limited time relates to cognitive capacity and action responses [50].
Here we refer to this class of models as the "thermodynamically inspired
model", henceforth TIM.

Here, we will formally demonstrate that the two approaches that we consider
here (SEB and TIM) are in fact classes of models with completely different
views on bounded rationality, which run the risk to be confused. On the
one hand, variability in the estimation responses in SEB is attributed to
sensing costs, which generate noisy sensory encoding. On the other hand, in
instantiations of TIM applied to sensory estimation, variability is generated
by acting costs during response selection. Crucially, here we demonstrate that
these two approaches applied to numerosity estimation lead to apparently
similar but distinguishable quantitative and qualitative predictions that are
identifiable and falsifiable. Our empirical tests applied to a large numeros-
ity estimation data set provide a clear indication humans can rapidly and
efficiently sample numerosity information over time via an efficient noisy
encoding and decoding process.
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3.3. Results

The presentation of our results is divided into three parts: First, we present our
sequential-encoding/Bayesian-decoding model (SEB) which parsimoniously
endogenizes perceptual exposure times in its likelihood function alongside
parameters of the prior distribution for a given biological capacity bound.
Second, we introduce the thermodynamically inspired model (TIM) applied
to sensory estimation, and compare it with the SEB model. Third, we apply
rigorous quantitative and qualitative model evaluations based on a large
publicly available human numerosity estimation dataset (n=400 participants
across four different experiments).

A Bayesian model of numerosity estimation

Extensive behavioral and physiological work studying the representation of
both non-symbolic and symbolic numerical quantities strongly suggests that
internal representations r can be assumed to be encoded by a quantity that
is proportional to the logarithm of the number n plus stimulus-independent
random error [83, 85, 133]. However, a key contribution of our work is to
formally study how these perceptual errors may depend on stimulus duration
t of the form

r ∼ N(logn, ν2(t)). (3.1)

We assume the prior distribution to be a log-normal distribution from which
the true numerosity n is drawn to be

p(logn) ∼ N(µ,σ2). (3.2)

While the distribution of various quantities in linguistics, economics, and
ecology appears to be well-described by log-normal distributions [148], others
have argued that power-law distributions approximately describe the empirical
frequency of numbers in natural environments [149, 150]. We note, however,
that the two-parameter family of possible log-normal prior distributions
includes as a limiting case the power-law distributions (Supplementary Note
3.1). If we consider a normalized prior of the form

p(n) ∝ exp
(
−α(logn) − γ(logn)2), (3.3)

for some parameters α, γ with γ ≥ 0. If γ > 0, this corresponds to a log-
normal prior, with µ = (1 − α)/(2γ), σ2 = 1/(2γ). If instead γ = 0 but
α > 0, this corresponds to a power-law prior

p(n) ∝ n−α. (3.4)
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Thus, our model allows for the possibility that encoding and decoding are
adapted to different priors that are learned for different contexts, rather than
a single process being used in all contexts.

A log-normal (or power-function) prior assumption implies that the poste-
rior distribution for n conditional on the noisy measurement r will be also
log-normal (Supplementary Note 3.1). Here we assume that the numerosity
estimate n̂ minimizes the MSE when stimuli are drawn from the prior distri-
bution. This implies that conditional on n, the estimate n̂ will be log-normally
distributed (Supplementary Note 3.1)

p(log n̂ | n) ∼ N(µ̂(n, t), σ̂2(t)), (3.5)

where µ̂(n, t) is an affine function of log n, and σ̂2(t) is independent of n.
However, both µ̂ and σ̂2 may depend on temporal numerosity processing t,
as we formally elaborate below.

Exposure time and precision of internal representations

We suppose now that the internal representation r consists of the sample
path of a Brownian motion zs over a time interval 0 ≤ s ≤ τ , starting from
an initial value z0 = 0. The drift m of the Brownian motion is assumed to
depend on n, while its instantaneous variance ω2 is independent of n; the
length of time τ for which the Brownian motion evolves is also independent
of n, but depends on the viewing time t. In assuming sensory evidence given
by a Brownian motion with a drift that depends on the stimulus, we follow a
long modeling tradition that includes the popular drift-diffusion model [143].
Models of this kind have been used since the late 60s to account quantitatively
for the way in which the accuracy of perceptual judgments is affected by
manipulations of viewing time [151].

More specifically, we assume that m is an affine transformation of the loga-
rithm of n,

m = ξ + ψ logn, (3.6)

where the parameters ξ and ψ may depend of the statistics of a particular
environment. We suppose that the choice of these coefficients is subject to a
"power constraint" which requires the average value of m2 to be within some
finite bound

E[m2] ≤ Ω2 < ∞. (3.7)

This bound on the amount of variation in the drift limits the precision with
which different stimuli can be perceived for any given τ . The value of τ is
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Figure 3.1: Overview of the SEB model. a) Schematic description of the SEB model. A
numerosity n is drawn from a stationary environment known by the observer. The observer
has a limited capacity C to represent the numerosity. The internal representation r is
a random draw from a Gaussian distribution, the mean of which depends on n but the
variance does not. The observer then infers the estimate n̂ based on the representation r and
the prior distribution of n as to minimize the MSE between the estimate and the numerosity.
b) Illustration of the predictions for an observer with a high (purple) or low (green) channel
capacity where n is drawn from a distribution with a high (left) or low (right) variance.
All curves exhibit overestimation for lower numerosities and underestimation for higher
numerosities. However, these biases are reduced in the case of high capacity. The crossover
point between under- and overestimation increases with the variance of the numerosity
distribution. c) Illustration of the coefficient of variation (i.e., SD[n̂]/E[n̂]) for different
capacities. The coefficient of variation is independent of the numerosity and decreases with
capacity, which is dependent on the viewing time t.



3.3 results 101

assumed to grow linearly with the viewing time, up to some finite bound
B,

τ = min(t, B), (3.8)

representing a constraint on the amount of evidence that can be maintained
in working memory. The latter bound constrains the degree to which precision
can be increased by further increases in viewing time.

Under the assumption that the particle position under Brownian motion is
normally distributed with its parameters evolving as a function of τ , one can
show that r is a draw from the distribution (Supplementary Note 3.2)

r ∼ N(m(n), ω2/τ ). (3.9)

This effectively states that r can be seen as the output of a Gaussian channel
with input m [152]; hence the problem of optimally choosing the function
m(n) is equivalent to an optimal encoding problem for a Gaussian channel.
The capacity C of such a channel is a quantitative upper bound on the
amount of information that can be transmitted regardless of the encoding
rule, which is equal to (Supplementary Note 3.3)

C =
1
2 log

(
1 + Ω2τ

ω2

)
. (3.10)

Note that in our model the channel capacity C grows as a logarithmic
function of τ because the correlation of successive increments in the encoding
by a Brownian motion prevents the information content from growing in
proportion to such increments.

Here we assume that the goal is to design a capacity-limited system that
minimizes the mean squared error (MSE) of the estimate n̂ when n is drawn
from a log-normal prior distribution. It is possible to show that in our
optimization problem, which assumes a channel with "power transmission"
constraint Ω2, the encoding noise ν in Eq. 3.1 is given by (see Supplementary
Note 3.2 for proof)

ν(t) =
1√
τ

ω

Ω
· σ. (3.11)

That is, encoding precision grows with viewing time t. Recall that σ is the
variance of the log-normal prior, and therefore the solution reveals that the
likelihood is independent of parameter µ of the log-normal prior distribution,
but depends on the second moment of this prior distribution and viewing
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time t. Defining R ≡ Ω/ω, the noise of numerosity encoding is given by
ν(t) = 1/G, where G = min(R

√
t/σ,B) and B a maximum biologically

allowed bound on sensory precision.

These results lead to the following predictions from our model: (i) E[n̂ | n] is
a concave function of n with overestimation for small numbers (when these
are not so small that the discreteness of available responses leads to nearly-
deterministic responses), but underestimation for large numbers (Fig. 3.1b
and Supplementary Note 3.2). (ii) The crossover point from overestimation
to underestimation changes as a function of the numerosity range, and in
each context, the concavity of E[n̂ | n] depends on the amount of resources
available to perform the numerosity estimation task. This prediction was
clearly confirmed in a previous empirical work [138]. (iii) Because of the
discreteness in the set of responses, there is predicted to be little variability
in responses in the case of low enough numbers, and the subitizing-like range
for small numbers becomes larger as the biological capacity C or the viewing
time t increases. (iv) For numbers beyond the subitizing-like range, based
on the properties of the log-normal distribution, it can be shown that the
coefficient of variation (Supplementary Note 3.1)

SD[n̂]

E[n̂] =
√
eσ̂2(t) − 1 (3.12)

does not depend on the input numerosity n, thus delivering the property of
scalar variability, irrespective of n [133], but here we show that this coefficient
will depend on time exposure t, with the predicted constant coefficient of
variation decreasing as t gets larger proportionally with

√
eσ̂2(t) − 1 (Fig.

3.1c).

A thermodynamically inspired model of bounded rationality

Here we briefly introduce a popular approach to studying systems with
bounded capacity across domains in human cognition and machine learning:
a thermodynamically inspired formalization where information processing
is modeled as changes from a default state, which come at some energetic
cost, that can be quantified by differences in free energy. This class of models
can be applied for the case where an observer intends to minimize some
form of expected loss (the case we study here for the case of estimation error
minimization), subject to information constraints [144]. More formally, let
q(n̂) be a default state (distribution) over possible responses n̂ in a given
environment or context. When presented with a stimulus n, the resource-
constrained observer attempts to transform the initial state q into a new
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state of possible responses p(n̂ | n). This transformation of states can be
modeled as the optimization of the free energy functional

F [p(n̂ | n)] := − E[L; n̂]︸ ︷︷ ︸
Expect. Loss

− 1
β
DKL (p(n̂ | n)∥q(n̂))︸ ︷︷ ︸

Constrained State Change

(3.13)

where L is a loss function, for instance, the squared error (n̂− n)2. The
second term is the Kullback-Leibler divergence between q and p(n̂ | n), where
β trades off the relative importance of changing from the default state q,
thus determining the resources that the observed invests in the estimation
task. The goal is to find the optimal distribution of responses

p∗(n̂ | n) := arg max
p(n̂|n)

F [p(n̂ | n)]. (3.14)

The optimal distribution of responses in this variational problem has an
analytical solution of the form

p∗(n̂ | n) ∝ q(n̂) exp (−βh(Ln(n̂)) , (3.15)

where h is a function of L and potentially other elements incorporated in the
expected loss function in Eq. 3.13.

TIM applied to numerosity estimation

A recent work applied a model from the TIM family to study a resource-
constrained model of human numerosity estimation [50]. This is also a for-
mulation of how the distribution of reported numerosity estimates n̂ of a
stimulus magnitude should vary depending on the true stimulus n. This can
be stated generally as the hypothesis that conditional on n the response
distribution p(n̂ | n) is the probability distribution over a set of possible
responses N that minimizes the mean squared error (MSE), subject to the
constraint

DKL (pn∥q) ≤ C(t) = min(Rt,B), (3.16)

where C(t) is a positive bound that depends on the amount of time t for
which the stimulus is presented. This formulation can be interpreted as a
model in which errors in the observer’s responses can be attributed to a "cost
of control" of the responses: it is difficult for the observer to give responses
different from the default state q, though their response distribution to the
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individual stimulus n is optimal given a constraint on the possible precision
of their responses.

Similar to our SEB model, in TIM it is assumed that perception extracts
information linearly in time at a rate R until an overall capacity bound B is
reached. The goal is to find the distribution of numerosity estimates p∗(n̂ | n)
that minimizes the mean squared error

MSE ≡
∑

n

q(n)
∑

n̂

p(n̂ | n)(n̂− n)2 (3.17)

under the constraint given in Eq. 3.16.

The optimization problem described above yields the following analytical
solution [50]

p∗(n̂ | n) ∝ q(n̂) exp
(
−βnq(n)(n− n̂)2) , (3.18)

where βn is chosen to satisfy the bound in Eq. 3.16. Note that this solution
has the familiar form obtained in Eq. 3.15 with L as the loss function
Ln = (n− n̂)2.

While this solution is usually linked to a bounded-rational Bayesian computa-
tion (given the observation that the default distribution q is multiplied by a
function of n given n̂), here we clarify that this solution does not correspond
to a Bayesian inference process with noisy sensory percepts. In fact, the
TIM formulation assumes that the perception of the sensory stimulus n is
noiseless, and all the variability observed during the estimation process is
related to the cost of acting accurately, that is, a cost in the precision of
response selection when shifting away from the default state. Note that this
is fundamentally different from the SEB model, in which all the estimation
variability is attributed to noisy sensory encoding.

General similarities and differences between SEB and TIM

We elaborated an illustrative example that allows the predictions of the two
models to be solved analytically, thus allowing us to understand the key
differences between the two models (Supplementary Note 3.4). These analyses
reveal some similarities between the predictions of the two models, however,
there are also notable differences. First, while both models predict that biases
decrease in general for larger viewing times, TIM implies a faster decrease
rate in such biases as t increases. Second, for a given input stimulus n, the
two models do not imply that var[n̂ | n] co-varies with the bias in the same
way. As t → 0, the Bayesian model implies that the variance forecasts should
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Figure 3.2: General similarities and differences between SEB and TIM. a)
Computation of the bias (E[n̂ | n] − n, left), standard deviation (SD[n̂ | n], middle), and
the coefficient of variation (CV = SD[n̂ | n]/E[n̂ | n], right) as a function of different time
exposures t for different numerosities n (color scale of the solid lines) in the SEB model.
b) Same as panel a, but this time computed for TIM. Differences between the two models
are particularly salient in the computation of the SD and the CV.

fall to zero; TIM implies that this is the case in which estimates should be
more variable: the variance of the prior distribution.

These analytical insights were studied over all possible responses in the contin-
uous space and do not directly apply to numerosity estimation. Therefore, we
conducted numerical analyses to study whether the same signatures emerge
in SEB and TIM when the solutions are restricted over the space of positive
integers. As expected, both models predict that biases decrease in general
for larger viewing times, and mirroring the results of the analytical solution,
TIM reveals a faster decrease in the bias rate as t increases (Fig. 3.2, left
panels). Moreover, as t → 0, SEB implies that the variance forecasts should
fall to zero, but this is not the case in TIM where the predicted variability of
estimates is clearly larger (Fig. 3.2, middle panels). Finally, the computation
of the coefficient of variation (CV[n̂] ≡ SD[n̂]/E[n̂]) reveals that in SEB this
metric is nearly identical for all numerosities n irrespective of time exposure
t, thus reflecting the scalar variability effect (Fig. 3.2a, right panel). In TIM,
however, the scalar variability phenomenon is absent irrespective of time
exposure t. These differences make the two models different and identifiable
and generate somewhat different qualitative predictions.
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Figure 3.3: The SEB model quantitatively outperforms the TIM model when
the prior parameters are fixed. a) Difference in AIC between the SEB continuous
model (green) and the TIM model (orange) or the SEB discrete (blue). The ∆AICs were
computed for each participant and summed. The error bars represent the 95% confidence
interval based on bootstrapping of the participants’ ∆AICs. The SEB continuous model
outperforms both the TIM model (experiment 1: (T (99) = 2.86, p < 0.01), experiment
2: (T (99) = 8.70, p < 0.001), experiment 3: (T (99) = 3.61, p < 0.001), experiment 4:
(T (99) = 5.79, p < 0.001)) and the SEB discrete model (experiment 1: (T (99) = 8.64, p <
0.001), experiment 2: (T (99) = 9.16, p < 0.001), experiment 3: (T (99) = 10.1, p < 0.001),
experiment 4: (T (99) = 6.69, p < 0.001)). b) Average lapse rate parameter per participant
for each model and experiment. The error bars represent the 95% confidence interval based
on bootstrapping of the participants’ lapse rate. The lapse rate of the SEB continuous
model is lower than the TIM model (experiment 1: (T (99) = 6.33, p < 0.001), experiment
2: (T (99) = 9.86, p < 0.001), experiment 3: (T (99) = 6.91, p < 0.001), experiment 4:
(T (99) = 5.75, p < 0.001)) and the SEB discrete model (experiment 1: (T (99) = 6.58, p <
0.001), experiment 2: (T (99) = 7.11, p < 0.001), experiment 3: (T (99) = 8.63, p < 0.001),
experiment 4: (T (99) = 6.80, p < 0.001)). These results indicate that less variability is
associated to lapses of attention in the SEB continuous model, which suggests a better fit
to behavior. c) Difference in AIC between the SEB continuous model and the TIM model
or the SEB discrete model for each numerosity. The error bars represent the 95% confidence
interval based on bootstrapping of the participants’ AICs. The SEB continuous model
outperforms the TIM model except for numerosities 3, 4 and 5 and the SEB discrete model
for all numerosities except numerosity 1. d) AIC differences between the SEB continuous
model and the TIM model (top) and the SEB discrete model (bottom) for all experiments
shown for different numerosities and levels of sensory evidence (stimulus presentation
duration or contrast). Duration values are assigned to Weber contrasts of experiment
4 for pooling purposes (40ms–10%, 80ms–20%, 160ms–40%, 320ms–80%, 640ms–160%).
The SEB continuous model outperforms the TIM and SEB discrete models for most
numerosities and levels of sensory evidence.
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SEB largely outperforms TIM applied to human numerosity estima-
tion

We now compare TIM with SEB models using the experimental data of a
pre-registered study provided in previous work [50] (see Methods). In brief,
on each trial, between 1 and 15 dots were flashed, followed by a noise mask.
The participants were then asked to type their estimation of how many dots
were displayed. There were three between-participant experiments (n=100
per experiment) that manipulated available stimulus information (variable
exposure time: t ∈ [40, 80, 160, 320, 640] ms) and different ways of controlling
non-numerical properties of the stimuli: the average dot size (experiment
1), surface density (experiment 2) or surface area (experiment 3) of the
dots.

To fully constrain inference solely to the normative solutions of stimulus
exposure derived above for both SEB and TIM, we fixed the prior distri-
bution before fitting the behavioral data to a prior equivalent of the form
1/nα power-law. It has previously been argued that the prior probability of
how often numerosities are encountered and represented roughly follows a
1/nα=2 power-law distribution [149, 150]. Thus, a priori, we choose α = 2,
following the same assumption adopted in previous work [50]. By fixing such
ecologically valid prior, we alleviate the critique of allowing an arbitrary
choice of prior and likelihood functions to fit inference models to the data,
as a consequence of which it is sometimes argued that their predictions are
potentially vacuous [153]. Nevertheless, it is well possible that each individual
has learned their own distribution during their lifespan [154, 155]. Therefore,
we also considered a more flexible class of models where we allowed the
parameters of the prior distribution to be free parameters alongside the
capacity constraint and capacity bound.

We considered two possible ways of inferring the numerosity estimates based
on the SEB approach (methods): (i) using the analytical solutions over the
continuous positive real line, and (ii) using discrete encoding and decoding
restricted to the positive integer numbers, thus similar in nature to the TIM
specification. Finally, we considered a guessing rate g in the model fits, which
assumes that on g proportion of trials, participants were distracted and
had no information about the number of dots in the display, meaning that
their estimate was effectively a random sample from their prior. Thus, both
numerosity estimation models SEB and TIM have exactly the same degrees
of freedom (the capacity constraint, capacity bound, and g), in addition to
the prior parameters in the flexible class of models.
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Figure 3.4: The SEB model quantitatively outperforms the TIM model when
the prior parameters are free. a) Difference in AIC between the SEB continuous
model (green) and the TIM model (orange) or the SEB discrete (blue). The ∆AICs were
computed for each participant and summed. Error bars represent the 95% confidence
interval based on bootstrapping of the participants’ ∆AICs. The SEB continuous model
outperforms both the TIM model (experiment 1: (T (99) = 5.57, p < 0.001), experiment
2: (T (99) = 10.40, p < 0.001), experiment 3: (T (99) = 6.29, p < 0.001), experiment 4:
(T (99) = 3.54, p < 0.001 and the SEB discrete model (experiment 1: (T (99) = 16.04, p <
0.001), experiment 2: (T (99) = 12.35, p < 0.001), experiment 3: (T (99) = 15.46, p < 0.001),
experiment 4: (T (99) = 11.83, p < 0.001)). b) Average lapse rate parameter per participant
for each model and experiment. Error bars represent the 95% confidence interval based
on bootstrapping of the participants’ lapse rate. The lapse rate of the SEB continuous
model is lower than the TIM model for experiment 2 (T (99) = 2.95, p < 0.01) and
experiment 3 (T (99) = 2.95, p < 0.01) but not for experiment 1 (T (99) = 0.34, p =
0.734) and experiment 4 (T (99) = 1.72, p = 0.088) and the SEB discrete model for
experiment 3 (T (99) = 2.118, p < 0.05) but not for the other experiments (experiment
1: (T (99) = 0.33, p = 0.743), experiment 2: (T (99) = 1.416, p = 0.160), experiment 4:
(T (99) = 1.33, p = 0.187)). c) Difference in AIC between the SEB continuous model
and the TIM model or the SEB discrete model for each numerosity. Error bars represent
the 95% confidence interval based on bootstrapping of the participants’ AICs. The SEB
continuous model outperforms the TIM model except for numerosities 1 to 5 and the
SEB discrete model for all numerosities. d) AIC differences between the SEB continuous
model and the TIM model (top) and the SEB discrete model (bottom) for all experiments
shown for different numerosities and levels of sensory evidence (stimulus presentation
duration or contrast). Duration values are assigned to Weber contrasts of experiment
4 for pooling purposes (40ms–10%, 80ms–20%, 160ms–40%, 320ms–80%, 640ms–160%).
The SEB continuous model outperforms the TIM and SEB discrete models for most
numerosities and levels of sensory evidence.
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Quantitative model comparison

For each experiment where stimulus presentation time t was manipulated, we
fit both types of model to the data of each participant (Methods). In parameter
recovery exercises we found that all model parameters are identifiable and
this is also confirmed by the weak relationship between parameters across
participants (Supplementary Fig. 3.1). We first examined the restricted
models where the prior is fixed 1/n2. For experiment 1, we found that the
difference in Akaike information criterion (AIC) favoured SEB, where the
continuous version of SEB had a clear advantage over TIM: ∆AIC=1472
[95%-CI 570-2553] in favor of SEB (paired t-test: T (99) = 2.86, p < 0.01. For
experiment 2 (dot density controlled), the difference in AIC is 5284 [95%-CI
4185-6690] in favor of SEB (T (99) = 8.70, p < 0.001). For experiment 3
(dot area controlled), the difference in AIC is 2316 [95%-CI 1218-3686] in
favor of SEB (T (99) = 3.61, p < 0.001, see Fig. 3.3a). In addition, the SEB
continuous model provided better fits than its discrete version (T (99) ≥
8.64, p < 0.001, d > 0.86 ∆ AIC≥ 997).

Previous theoretical and empirical work suggests that two ways in which the
amount of information available to process information can be studied are by
manipulating time exposure and also by changing stimulus contrast [72]. Thus,
we also considered this alternative way of manipulating sensory reliability,
which should affect the channel capacity transmission (see Eq. 3.10). To
test this, we analyzed data of a numerosity estimation experiment, where in
each trial the visual contrast of numerosity was manipulated at a constant
presentation time (n=100 participants, experiment 4, Methods). We found
that also in this experiment the SEB-continuous model fits the data better
than TIM (∆AIC = 5106; [95%-CI 3452-6880] (T (99) = 5.79, p < 0.001), Fig.
3.3a) and the discrete version of SEB (∆AIC = 1453; [95%-CI 1059-1907]
(T (99) = 6.69, p < 0.001)).

To make sure that the overall quantitative differences were not driven by a
few numerosities, we computed the difference in AIC for each numerosity
and each model. We found a significant interaction models*numerosity of the
∆AICs (F (28, 16758) = 7.84, p < 0.001) with post hoc tests revealing that
this effect was more pronounced for higher numerosities (SEB continuous
vs TIM: paired t-tests p < 0.001 for numerosities n > 5, Fig. 3.3b) and
also for n ∈ [1, 2] (paired t-tests p < 0.01). The relative advantage of the
TIM model for n ∈ [3, 4]) at large presentation times t might be explained
by the fact that smaller numerosities are close to the subitizing range and
therefore most of the posterior density mass is concentrated around the
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Figure 3.5: The SEB continuous model with free prior parameters qualitatively
explains behavior. a) Coefficient of variation (SD[n̂]/E[n̂]) of the behavior data (left)
and predicitons of the SEB model (middle) and TIM model (right) using a prior with
free parameters for different numerosities and stimulus presentation duration. Predictions
were performed by taking for each parameter the value with this highest density across
participants. Duration values are assigned to Weber contrasts of experiment 4 for pooling
purposes (40ms–10%, 80ms–20%, 160ms–40%, 320ms–80%, 640ms–160%). The TIM model
predicts a higher CV for lower numerosities. This feature is not present in the behavior
data nor the SEB predictions. b) Mean estimate (top), standard deviation (middle) and
absolute error (bottom) of the behavior data (left) and predictions of the SEB model
(middle) and TIM model (right). c) Posterior distribution of estimates to numerosities 4
(green), 9 (red) and 13 (blue) of the SEB (left) and the TIM (right) model for different
stimulation presentation duration (40ms (top), 160ms (middle), 640ms (bottom)). Behavior
of participants is shown as histograms. For visualization purposes, estimates above 20 are
not shown.
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input n, which is better explained by the TIM model as this model has a
tendency to subitize more strongly at small numerosities [50]. Interestingly,
for n ∈ [1, 2], the Bayesian model predicts noisier estimations (in particular
for smaller exposure times t) which are not supported by the TIM, with the
AICs favoring the former.

Additionally, we inspected the AIC differences split by both numerosity
and sensory evidence (time or contrast), finding a similar pattern, but the
differences were larger for small levels of sensory evidence. Thus, SEB appears
to be more sensitive to capturing behavior for stimuli generating higher noise
levels in the encoding operations.

Moreover, we compared the guessing rates g between the two kinds of models.
Guessing rates can capture unassigned variance in miss-specified models, thus
we conjectured that a relatively smaller value of g would provide further
evidence for better mechanistic fits captured by the best model. While the
guessing rates are overall small (suggesting that the amount of distractions
during task performance was minimal), we found that guessing rates were
systematically smaller in the SEB model (T (99) ≥ 5.75, p < 0.001, d > 0.58
for each experiment, Fig. 3.3b and Supplementary Table 3.1). Thus, while
the effects of distraction are estimated to be relatively small in both models,
our analyses provide a clear indication that potentially unassigned variance
due to distraction is lower in the SEB model relative to TIM.

We repeated the same set of analyses treating parameters of the log-normal
prior as free parameters. The results of these analyses mirrored the initial
analyses. That is, (i) we found that the SEB model fit the data better
than TIM in all four experiments (T (99) ≥ 3.54, p < 0.001), Fig. 3.4a),
(ii) the continuous version of SEB performed better in general than its
discretized version (Fig. 3.4a) and (iii) the guessing rates were significantly
smaller in the SEB model than the TIM model for experiments 2 and 3
(T (99) ≥ 2.95, p < 0.01 but not for experiments 1 and 4, Fig. 3.4b).

The next question to ask is whether the models with free prior parameters
outperformed the models with the prior fixed to 1/n2. We found that for each
model considered here, the models with free prior parameters outperformed
their corresponding version with fixed parameters (T (99) ≥ 5.62, p < 0.001,
Supplementary Table 3.2). Additionally, accounting for population variability
in the quantitative metrics between participants across all models considering
here, BMS reveals that the Bayesian model with free prior parameters is
clearly favored relative to all the other models for experiments 1, 2 and 3
(Pxp > 0.99 for each experiment) but equally favored to the TIM model with
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free prior parameters for experiment 4 (Pxp = 0.50). These results allow us
to conclude two important points. First, variability in the prior parameters of
the prior distribution is key to more accurately explaining human numerosity
estimations. Second, our results provide a clear indication that the effects
of temporal time exposure are better captured by the noisy encoding model
(SEB) relative to an action control-like model (TIM).

Qualitative predictions

We first examined the qualitative features of scalar variability in both data
and the predictions of the SEB continuous and the TIM models with free
prior parameters. For each numerosity value, we computed the coefficient of
variation (CV: SD[n̂]/E[n̂]). We found that the empirical data follows the
previously observed properties of scalar variability for numerosities greater
than 4 (i.e., a flat CV irrespective of numerosity and sensory evidence), with
a slight systematic increase of CV for smaller numbers (Fig. 3.5a left). This
relative CV increase for small numbers could be explained by the presence of
small lapse rates g which have a greater impact on the CV for small n. We
found that the SEB model accounts for these qualitative observations (Fig.
3.5a middle), however, the TIM model generates slightly different predictions
(Fig. 3.5a right).

We found that patterns of estimation biases and variability during numerosity
estimation as a function of sensory evidence were in general more closely
captured by the SEB relative to the TIM model (Fig. 3.5b top and middle
panels). As predicted by our analytical analyses (Supplementary Note 3.4)
the rate of increase in noise as a function of n is larger for the TIM model
relative to the SEB model, with the empirical data more closely agreeing with
the SEB model. Additionally, given that the TIM model generally requires
larger values of lapse rates g to explain variance, for small n it predicts larger
SDs relative to SEB and empirical data (with a similar pattern for the case
of the CV, (Fig. 3.5a). A point where the TIM model appears to do a better
job relative to the SEB model is for the absolute error estimations (Fig. 3.5b
bottom). Subitizing is more pronounced for low numbers in general, and this
reduces both biases and errors for n < 5. However, beyond the subitizing
range and for levels of noise that challenge sensory perception, the SEB
model does a better job at capturing all descriptive statistics. To visualize the
nature of these differences, the posterior distribution of estimates for both
models are shown in Fig. 3.5c for different numerosities and presentation
times.
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3.4. Discussion

We developed a model of efficient numerosity estimation based on Bayesian
inference that endogenizes the environmental distribution and the sensory
evidence (time or contrast) of the stimulus. Our theoretical and empirical tests
provide clear evidence that a model of Bayesian decoding of noisy internal
representations—which provides a normative explanation for the property of
scalar variability and can be parsimoniously connected to a theory of limited
informational capacity—provides a better account of numerosity estimation
data in humans relative to the alternative TIM model considered here. We
emphasize that both models: (i) are optimized for the same assumed objective
(minimizing the MSE of the estimates), (ii) can be compared under the same
assumption about the prior distribution, and (iii) have identical degrees
of freedom. Thus, qualitative and quantitative differences between the two
information-theoretical models cannot be explained by differences in model
complexity, but instead reflect differences in the mechanistic assumptions
of the numerosity processing operations. In particular, it is important to
note that assumptions about potential encoding and decoding operations are
explicitly stated in the Bayesian model. In contrast, these remain "hidden" in
the alternative TIM model.

One of our main goals in the development of our modeling framework was
to develop an encoding-decoding model incorporating various aspects of
human cognition with many antecedents in the literature, which include
Brownian motion during evidence processing over time [143] and logarithmic
internal representation of numerical quantities [83]. While our proposed
model accounts for key qualitative features of the human behavioral data
with minimal degrees of freedom, we do not claim that the log-encoding
model necessarily accounts for all aspects of numerosity estimation behavior.
Indeed, the encoding and decoding strategies that humans and other animals
use need not be the same in all contexts [156]. It is equally possible that
numerosity processing mechanisms depend on the task at hand, and draw
upon an ensemble of strategies that optimize performance under different
situations [157, 158]. For instance, in future work, it will be interesting to
investigate whether situations that involve explicit numerosity estimation vs
discrimination rely on similar or distinct encoding strategies and inference
processes.

We assumed that participants utilize a log-normal (or power-law) prior,
however, it is important to note that the numerosities presented to the
participants were drawn from a uniform distribution. We thus implicitly
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assumed that participants did not rapidly adapt their encoding operations,
which might be a reasonable assumption given that participants were not
exposed to the new prior for an extended period of time. However, in one
version of the model fits we allowed the parameters of the prior to be free
parameters, resulting in non-uniform distributions. A natural consequence of
our theory is that the SEB model parsimoniously endogenizes parameters
of the prior distribution in its encoding operations. A testable prediction is
that larger prior distribution ranges should lead to more noisy estimates and
therefore poorer discriminability for a given capacity bound. This prediction is
confirmed by a recent study where it is shown that human participants adapt
their numerosity sensitivity for different numerosity ranges, with important
implications for risk behaviour [159]. Thus two of the key predictions of our
theory hold: for a fixed capacity bound sensory reliability should change as a
function of (i) time exposure to the sensory stimulus as shown in this study,
and (ii) the range of the prior distribution [159].

Additionally, our model predicts that the crossover point from overestimation
to underestimation should change as a function of the numerosity range. In this
work, we only present data with a fixed range of 1 to 15, thus we cannot test
this prediction. However, a previous study using larger numerosity ranges (e.g.,
up to 30 or 100) found that the cross-over point is larger for wider numerosity
ranges, and crucially, the degree of over- and under-estimation depended
on the attentional resources dedicated to numerosity estimation [138]. This
result is again in line with the predictions of our model.

Taken together, our findings suggest the fruitfulness of studying optimal
models, which can serve as a departing point to understand the neuro-
computational mechanisms underlying human behaviour without ignoring
the fact that biological systems are limited in their capacity to process
information [28, 71, 160, 161]. This highlights that understanding behavior
in terms of its objectives while taking into account cognitive limitations,
alongside encoding, decoding, and inference processes is likely to be essential
to elucidate the mechanisms underlying human cognition.

3.5. Methods

Participants, data, and experiments

In this work we re-analyzed the data of experiments collected in previous
work [50]. In brief, on each trial, between 1 and 15 dots were flashed, followed
by a noise mask. The participants were then asked to type their guess of how
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many dots were displayed. The participants were recruited and carried out
the experiment online. There were three between-participant experiments
(n=110 per experiment) that manipulated available stimulus information
(variable exposure time: t ∈ [40, 80, 160, 320, 640] ms) and different ways
of controlling non-numerical properties of the stimuli: the average dot size
(experiment 1), surface density (experiment 2) or surface area (experiment 3)
of the dots.

We also studied a fourth experiment (n=110) in which time exposure t was
fixed across trials, but instead display contrast of the dot arrays was varied
from trial to trial (experiment 4). In this experiment, the colors of the dots
varied between the background (grey) and pitch black, by Weber contrasts of
10%, 20%, 40%, 80% and 160%, at a constant presentation time of t = 200
ms.

Each participant was presented with each combination of numerosity and
sensory evidence twice for a total of 150 trials per participant.

Models

Here we fit the two families of models described in the main text to the data
of each participant: (i) We fit the SEB model assuming a log-normal prior
with power parameter α = 2. We fit a continuous version of the model based
on the analytical solutions derived in Supplementary Notes 3.1-3.2, and a
discrete version of this model based on numerical simulations. (ii) Following
the procedures of previous work [50], we fit the TIM model assuming a power-
law prior with power parameter α = 2. For both families of models, we also
fit a version were the parameters of the log-normal prior were allowed to be
free parameters. We also note that analytical solutions in SEB were derived
in the continuous space due to mathematical tractability (Supplementary
Notes 3.1-3.3). Thus, in order to define the likelihood function of this model
in the integer space, we normalized the log probability of estimators (Eq.
3.27) in the integer range n ∈ [1, 2, 3, ..., 100]. Note that both SEB and TIM
have exactly the same degrees of freedom (R, B, and g), where g is a guessing
rate based on the probability of randomly drawing a value from the default
distribution.

Quantitative and qualitative analyses

Participants who completed less than 90% of the trials were excluded. Similar
to previous work [50] we selected the 100 best participants for each experiment.
In addition, trials in which the participant’s response was 10 times higher
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than the presented numerosity or the response time was superior to 10s were
excluded. This additional data cleaning leads to the rejection of 142 trials
out of 14,997 for experiment 1, 143 out of 14,993 for experiment 2, 172 out of
15,000 for experiment 3 and 187 out of 15,000 for experiment 4. Each model
was fit individually to each participant using the DEoptim package [162] in
the statistical language R [163] with a number of iterations set to 100. The
limits for the parameter search space were set to (0.1,200) for R, (0.1, 20) for
B and (0.0001, 0.5) for g. In the models where the prior was free, the search
space of the prior parameters was (-50,50) for µ and (0.1,100) for σ. Model
comparison was performed based on the Akaike information criterion (AIC).
Using other model comparison metrics such as the Bayesian information
criterion (BIC) does not change the conclusions of our work.

In Figs. 3.3- 3.4 and main text, we report the sum of the AIC difference
relative to the best model across participants for each experiment, and report
the 95% bootstrap confidence interval (95%-CI). We also computed two-sided
paired t-tests based on the AICs obtained for each participant between the
SEB and the TIM models. Likewise, we computed two-sided paired t-tests
based on the guess rate parameter g obtained from each participant in the SEB
model relative to the guess rates obtained in the TIM model. The qualitative
predictions were computed based on the value with the highest density
for each parameter at the population level. Each statistic was computed
separately for each experiment and then averaged across experiments.

Details regarding the theoretical derivations of the SEB model and the
analytical comparison between TIM and SEB models are given in detail in
Supplementary Notes 3.1-3.4.
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Supplementary Tables

Prior parameters Model Experiment R B g µ σ

Fixed

TIM

1 35.0 3.03 0.014
2 31.7 2.89 0.038
3 56.0 3.04 0.014
4 28.1 2.75 0.041

SEB
discrete

1 13.4 7.09 0.010
2 10.6 8.68 0.012
3 13.7 7.62 0.014
4 8.5 6.71 0.029

SEB
continuous

1 13.4 6.00 0.006
2 10.3 4.98 0.002
3 14.0 5.47 0.002
4 8.4 5.17 0.014

Free

TIM

1 21.9 1.89 0.009 0.78 1.38
2 20.1 1.73 0.010 1.35 1.74
3 27.0 1.96 0.010 -1.17 2.51
4 11.5 1.72 0.013 1.01 2.33

SEB
discrete

1 11.4 9.26 0.010 1.53 0.93
2 10.7 8.04 0.009 1.43 0.99
3 13.8 7.81 0.025 1.34 0.98
4 7.7 9.24 0.013 1.00 1.19

SEB
continuous

1 13.9 6.18 0.010 1.29 0.64
2 12.9 6.33 0.005 1.30 0.68
3 14.7 5.52 0.004 1.42 0.77
4 10.3 5.08 0.019 0.84 1.22

Supplementary Table 3.1. Parameter fits. Highest density of each parameter at the
population level for each model and experiment.
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Prior parameters Model Experiment 1 Experiment 2 Experiment 3 Experiment 4 All experiments
TIM 55 136 63 016 56 126 68 453 242 731

Fixed SEB discrete 54 660 59 113 55 318 64 796 233 887
SEB continuous 53 663 57 732 53 810 63 347 228 552

TIM 52 665 58 105 53 415 62 582 226 767
Free SEB discrete 52 536 55 954 52 427 62 247 223 165

SEB continuous 50 978 54 420 50 486 60 444 216 328

Supplementary Table 3.2. AIC of the model fit. The continuous version of SEB
has the lowest AIC when the prior parameters are either fixed or free, which indicates a
better fit to the behavioral data. In addition, the versions of the models with free prior
parameters have lower AIC than the versions with fixed prior parameters.
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Supplementary Figures

Supplementary Figure 3.1. Correlations of parameter fits. (a) Pearson correlation
of the parameter fits of the SEB continuous for each experiment with fixed (top) and free
(bottom) prior parameters. (b) Pearson correlation of the parameter fits of the TIM model
for each experiment with fixed (top) and free (bottom) prior parameters. The parameters
across participants are weekly correlated suggesting that they are identifiable as confirmed
in parameter recovery exercises.
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Supplementary Notes

Supplementary Note 3.1. General specification and derivation of the
logarithmic noisy encoding and Bayesian decoding model

The goal of this supplementary note is to introduce the noisy log-encoding
Bayesian model that was elaborated in more detail elsewhere [85]. Additionally,
we formalize the connection between the log-normal and power-law priors.
The definitions and derivations specified here will serve as a basis to specify
the information theoretical part of the model developed in Supplementary
Note 3.2.

In this model, we assume that a stimulus of numerosity n generates an
internal representation that is drawn from a distribution

r ∼ N(logn, ν2), (3.19)

where the noise parameter ν is independent of n. Here we assume that the
prior distribution from which the numerosity value n is drawn is given by a
log-normal distribution

logn ∼ N(logµ,σ2). (3.20)

As stated in the main text, this distribution is qualitatively similar to the
power-law distribution and also has many occurrences and applications in the
statistics of human behavior. It is also generally present in various biological
phenomena such as measures of length, area and weight of living organisms,
and also present in neurophysiological observations such as distribution of
firing rates across populations of neurons and intrinsic gain and synaptic
weight in neural systems [148].

Based on these two assumptions (Eqs. 3.19 and 3.20), it follows that the
distribution of logn conditional on the value of r will be a Gaussian distribu-
tion

logn | r ∼ N
(
µpost (r),σ2

post
)

. (3.21)

It follows that the conditional mean of logn is given by

µpost (r) = E[logn | r] = µ+ β · (r− µ), (3.22)

with the slope of this linear projection given by

β =
σ2

σ2 + ν2 . (3.23)
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And the conditional variance is given by

σ2
post =

σ2ν2

σ2 + ν2 . (3.24)

Here we consider the hypothesis that the participant’s numerosity estimate
minimizes the MSE. Thus, the rule that is optimal under this objective is
given where the estimate n̂ is defined by n̂ = E[n | r] for all r. It follows from
the properties of the log-normal distribution that the posterior mean is given
by

E[n | r] = exp
(
µpost + (1/2)σ2

post
)

. (3.25)
In this case, the Bayesian model predicts

log n̂(r) = log E[n | r] = µpost (r) + (1/2)σ2
post

= µ+ β · (r− µ) + (1/2)σ2
post

(3.26)

Given that r is a random variable, it follows that n̂(r) is also random variable.
Thus, log n̂ is normally distributed conditional on n

log n̂ ∼ N
(
µ̂(n), σ̂2) , (3.27)

with the mean and variance of this conditional distribution given by

µ̂(n) ≡ E[log n̂ | n] = µ+ β · (E[r | n] − µ) + (1/2)σ2
post

= µ+ β · (logn− µ) + (1/2)σ2
post

σ̂2 ≡ var(log n̂ | n) = β2 var(r | n)

= β2ν2 =
σ4ν2

(σ2 + ν2)2 .

(3.28)

It then follows from the properties of the log-normal distribution that the
expected value and variance of the numerosity estimators are given by

E[n̂ | n] = exp
(
µ̂(n) + (1/2)σ̂2) (3.29)

and
var[n̂ | n] =

[
exp

(
σ̂2)− 1

]
· exp

(
2µ̂(n) + σ̂2) . (3.30)

Finally, we can use the these equations to compute the ratio between the
standard deviation and the expected value of the posterior estimators, i.e.,
the coefficient of variation (Eq. 3.12 in main text)

SD[n̂ | n]
E[n̂ | n]

=
√
eσ̂2 − 1 > 0.
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This expression does not depend on n, and therefore the log-encoding
Bayesian model delivers the property of scalar variability discussed in the
main text.

Note that in these calculations, only the normalized prior p̃(n) ≡ p(n)/p(1)
matters, and in fact the Bayesian posteriors can be well-defined even in the
case of an improper prior (for which p̃(n) is well-defined, but there is no
value for p(1) such that the implied density function p(n) will integrate to 1).
All of the above calculations can be generalized to apply to any normalized
prior of the form

p̃(n) = exp
(
−α(logn) − γ(logn)2), (3.31)

for some parameters α, γ with γ ≥ 0. If γ > 0 , this corresponds to a log-
normal prior, with µ = (1 − α)/(2γ), σ2 = 1/(2γ). If instead γ = 0 but
α > 0, this corresponds to an improper power-law prior, p(n) ∼ n−α.

In this latter case, the posterior implied by an internal representation r is
again log-normal, as in equation (3.21), but now with parameters

µpost(r) = r + (1 − α)ν2, σ2
post = ν2

as limiting cases of equations (3.22) and (3.24). It then follows that the
Bayesian posterior mean estimate n̂(r) will be log-normally distributed condi-
tional on the true value of n, as in equation (3.27), but with parameters

µ̂(n) = logn + (
3
2 − α)ν2, σ̂2 = ν2

as limiting cases of the formulas given above. Hence the mean estimate will
be given by

E[n̂ |n] = An, where A ≡ exp
(
(2 − α)ν2) > 0, (3.32)

and the standard deviation of the estimates will again satisfy (3.12), with
the value of σ̂2 given above.

Thus even in the case of an improper prior of this kind, the optimal Bayesian
estimate n̂(r) is well-defined, and we can derive the predicted distribution
of n̂ conditional on n, as a function of the model parameters. All priors in
the family (3.31) imply that the distribution of estimates should satisfy the
property of scalar variability (3.12). In the case of a log-normal prior (γ > 0),
equation (3.29) implies that E[n̂ |n] will be a strictly concave function of n,
greater than n for all n below some critical value, and smaller than n for all
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n above the critical value. In the limiting case of a power-law prior (γ = 0),
instead, equation (3.32) implies that E[n̂ |n] should be proportional to n,
with either overestimation for all n (if α < 2) or underestimation for all n
(if α > 2). In the special case of a power law with α = 2, the model implies
that the optimal Bayesian estimate should be unbiased for all n.
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Supplementary Note 3.2. Logarithmic noisy encoding and Bayesian
decoding under limited informational capacity and temporal sensory
exposure

In this supplementary note we show that it is possible to formulate an efficient
coding model of numerosity estimation as developed in Supplementary Note
3.1, but in which encoding precision depends on stimulus viewing time
t.

Instead of assuming, as in Supplementary Note 3.1, that a stimulus of
numerosity n results in an internal representation r that is a single draw
from a probability distribution that depends on n, we suppose now that the
internal representation r instead consists of the sample path of a Brownian
motion zs over a time interval 0 ≤ s ≤ τ , starting from an initial value z0 = 0.
The drift m of the Brownian motion is assumed to depend on n, while its
instantaneous variance ω2 is independent of n; the length of time τ for which
the Brownian motion evolves is also independent of n, but depends on the
viewing time t. In assuming sensory evidence given by a Brownian motion
with a drift that depends on the stimulus, we follow a long modeling tradition
that includes the popular drift-diffusion model [143]. Models of this kind have
been used since Taylor, Lindsey and Forbes [151] to account quantitatively
for the way in which the accuracy of perceptual judgments is affected by
manipulations of viewing time.

More specifically, we assume that m is an affine transformation of the loga-
rithm of n,

m = ξ + ψ logn, (3.33)

where the parameters ξ and ψ may depend of the statistics of a particular
environment. We suppose that the choice of these coefficients is subject to a
“power constraint” which requires the average value of m2 to be within some
finite bound

E[m2] ≤ Ω2 < ∞. (3.34)

This bound on the amount of variation in the drift limits the precision with
which different stimuli can be discriminated, for any given τ . The value of τ
is assumed to grow linearly with the viewing time, up to some finite bound
B,

τ = min(t, B), (3.35)
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representing a constraint on the amount of evidence that can be maintained
in working memory. The latter bound constrains the degree to which precision
can be increased by further increases in viewing time, just as in the TIM
model.

For any fixed value of τ , the final position zτ of the Brownian motion at time
τ is a sufficient statistic for the information contained in the sample path
about the value of n. Hence Bayesian decoding of the information contained
in the sample path will yield the same result as if the internal representation is
assumed simply to be the scalar random variable zτ , with distribution

zτ ∼ N(m(n)τ , ω2τ ). (3.36)

Alternatively, we may suppose that the internal representation of n is given
by the scalar random variable r ≡ zτ /τ , which contains the same information
as the variable zτ . Under this representation of the sensory evidence, r is a
draw from a distribution

r ∼ N(m(n), ω2/τ ). (3.37)

Equation (3.37) effectively states that r is the output of a Gaussian channel
with input m [152]; hence the problem of optimally choosing the function
m(n) is equivalent to an optimal encoding problem for a Gaussian channel.
The capacity C of such a channel is a quantitative upper bound on the
amount of information that can be transmitted regardless of the encoding
rule, which is equal to

C =
1
2 log

(
1 + Ω2t

ω2

)
, (3.38)

an increasing function of Ω/ω as well as of t. Here we suppose that the goal
is to design a system that minimizes the mean squared error of the estimate
n̂ when n is drawn from a log-normal prior distribution (Eq. 3.20).

logn ∼ N(logµ,σ2).

Note that the estimate n̂ depends on rn. We re-express rn as a function of
the transformed variable r̃n ≡ (rn − ξ) /ψ, thus we can equivalently treat r̃n

as the internal representation, and it follows that r̃n ∼ N(logn,ω2/(tψ2)).
Following the definitions provided in Supplementary Note 3.1, it follows that
we have a noisy log-encoding with variance ν2 = ω2/(tψ2). It then follows
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that the MSE in the case of any encoding rule is given by Eq. 3.26, and the
MSE associated with this rule will be given by

MSE = exp
(
2µ+ 2σ2) ·

[
1 − exp

(
−(1 − β)σ2)] . (3.39)

Recall that β is a decreasing function of ν (Eq. 3.23), and therefore in order
to make the MSE as small as possible it is desirible to make ν as small as
possible. Given that ν2 = ω2/(tψ2) is follows that we would like to make ψ
as large as possible, consistent with the power constraint in Eq. 3.34. Thus,
for the case of the log-normal prior the power constraint becomes

(ξ + ψµ)2 + ψ2σ2 ≤ Ω2. (3.40)

The maximum value of ψ consistent with this constraint is achieved when

ξ = −ψµ, ψ =
Ω
σ

. (3.41)

In this case the encoding noise is given by

ν =
ω

Ω
√
t
σ. (3.42)

Defining R ≡ Ω/ω, we can define the encoding noise of numerosity estima-
tion

ν(t) = 1/G, (3.43)

where
G = min(R

√
t/σ,B), (3.44)

with B a maximum biologically allowed bound on sensory precision (similar
to the assumption of the TIM model).

The precision of numerosity encoding is given by ν(t) = 1/G, where G =
min(R

√
t/σ,B) and B a maximum biologically allowed bound on sensory

precision.
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Supplementary Note 3.3. Recapitulation of the Gaussian channel capacity
derivation

For convenience to the reader, the goal of this supplementary note is to
recapitulate the derivation of the Gaussian channel capacity presented in
Cover and Thomas [152] based on the notation used in our work, thus
clarifying the connection to the solution of our SEB model under capacity
constraints derived in Supplementary Note 3.2.

Suppose that Y is the output of a channel with input X + Z, where X is
the signal and Z the noise. We assume the noise is drawn from a Gaussian
distribution with variance ω2/t and mean 0.

The goal is to find the maximum achievable channel capacity C by maximizing
the mutual information I(X;Y ) for a given power constraint Ω2

C = max
f (x):EX2≤Ω2

I(X;Y ) (3.45)

It can be shown that

I(X;Y ) = h(Y ) − h(Y | X)

= h(Y ) − h(X + Z | X)

= h(Y ) − h(Z | X)

= h(Y ) − h(Z),

(3.46)

where in general h(X) is defined as the entropy of the channel X. Here, we
will use two results. First, the entropy of a Gaussian channel, say channel for
Z with given variance ω2, is given by

h(Z) =
1
2 log 2πeω2/t. (3.47)

Second,

EY 2 = E(X + Z)2 = EX2 + 2EXEZ +EZ2 = Ω2 + ω2/t, (3.48)

given that X and Z are independent and EZ = 0. This means that the
entropy of Y is bounded by

h(Y ) ≤ 1
2 log 2πe(Ω2 + ω2/t). (3.49)
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Thus, replacing Eqs. 3.47 and 3.49 in Eq. 3.46 gives

I(X;Y ) = h(Y ) − h(Z)

≤ 1
2 log 2πe(Ω2 + ω2/t) − 1

2 log 2πeω2/t

=
1
2 log

(
1 + Ω2t

ω2

)
.

(3.50)
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Supplementary Note 3.4. Comparison between the family TIM and SEB
models

In this supplementary note, we compare the kind of information theoretical
model that does not incorporate Bayesian inference (the TIM model defined in
the main text), and the general family of Bayesian encoding-decoding models.
This illustrative comparison is not directly applicable to our numerosity
estimations, but can be solved analytically and is instructive. Nevertheless,
we provide numerical simulations that are applicable to numerosity estimation
in the main text which confirm the main predictions presented in this note
(see Fig. 3.2 in main text).

Illustrative comparison between the family of TIM and SEB mod-
els

In this illustrative example, the two models can be solved analytically, thus
allowing to highlight the commonalities and differences between both models
in an intuitive manner.

The TIM model proposes a method to infer how the distribution of estimates
n̂ should vary depending on the true stimulus magnitude n. The goal is to
find the response distribution p(n̂|n) that minimizes the mean squared error
(MSE)

MSE ≡
∫

N
p(n̂ | n)(n̂− n)2dn̂ (3.51)

subject to the constraint that (Eq. 3.16 in main text)

DKL (pn∥q) ≤ C(t)

where pn is the distribution of possible responses conditional on n, q is the
"prior" distribution, DKL (p∥q) is the Kullback-Leibler divergence, and C(t)
is a positive bound that depends on the amount of time t for which the
stimulus is presented.

The TIM model can be developed further by specifying that q is given by
the prior distribution from which n is expected to be drawn, and that C(t)
increases linearly with time, i.e., that C(t) = c · t for some c > 0, up to
some finite bound B. Assuming that the prior is known, the model thus has
only a single free parameter (the value of c) to predict the distribution of
responses, as a function of both n and t, for all values of t below some upper
bound.
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We compare the predictions of this kind of model to the alternative Bayesian
model, according to which (i) estimates are based on a noisy internal rep-
resentation r of the stimulus magnitude n, which consists of a sequence
of independent draws of a signal, the distribution of which depends on n,
and with the number of draws in the sequence growing with t; and (ii)
given the noisy internal representation, the participant’s estimate is given
by n̂(r) = E[n | r]: Note that the computation of this last conditional ex-
pectation must be relative to a particular prior distribution from which n

is expected to be drawn. Given the distribution of possible samples r for
each n and t, we can use the assumed response rule to derive a predicted
distribution of responses n̂ for any specification of (n, t).

We make the Bayesian model example more specific by assuming that r is
the cumulative value at time t of a Brownian motion that starts from the
initial value r = 0, with a drift m(r) that depends on the stimulus and an
instantaneous variance ω2 that is independent of the stimulus. If we further
assume that m(n) = µ · n for some µ > 0; then the model’s predictions
depend only on a single parameter, the value of γ ≡ µ/ω; again assuming
that the prior is known. We thus have two one-parameter models, each of
which makes precise predictions for the distribution pt(n̂ | n) for any n and
t. Thus, in each model, the single free parameter determines how rapidly the
precision of estimates should improve with increasing viewing time.

In this example, we suppose that the prior distribution for n is Gaussian,
and let it be given by N(0,σ2). Here, we economize in notation by assuming
that the prior mean is zero; the formulas that follow hold regardless of this,
but n should be understood as the stimulus magnitude relative to the prior
mean, and n̂ as the response relative to the prior mean.

In the case of the Bayesian model, the information contained in the noisy
internal representation is equivalent to that for a model in which the available
information is a noisy measurement, r ∼ N(n, (γ2t)−1), the precision of which
grows linearly with t. The optimal Bayesian estimate is then n̂(r) = ϕt · r,
where

ϕt ≡ σ2

σ2 + (γ2t)−1 . (3.52)

From this, it follows that the conditional distribution of responses for any
time t will be given by

n̂ | n, t ∼ N
(
ϕtn,ϕt (1 − ϕt) σ

2) . (3.53)
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For the TIM model instead: the first order conditions for minimization of Eq.
3.17 subject to Eq. 3.16 require that

(n̂− n)2 + θn,t ln p(n̂ | n)
q(n̂)

= kn,t. (3.54)

for all n̂, where θn,t is the Lagrange multiplier associated with the capacity
constraint given in Eq. 3.16 for given choices of n and t, and kn,t is a constant
of integration. This equation can be solved for p(n̂|n) for each n̂, given values
for kn,t and θn,t. We choose kn,t so as to imply a PDF p(n̂|n) that integrates
to 1. We see that the resulting distribution for n̂ is Gaussian

n̂ | n, t ∼ N
(
ϕn,t, (1 − ϕn,t) σ

2) , (3.55)

where the bias coefficient ϕn,t corresponds to

ϕn,t =
2σ2

θn,t + 2σ2 . (3.56)

The value of θn,t is chosen so as to imply that the constraint given in Eq. 3.16
holds with equality. Computing the KL divergence, we see that this holds if
and only if

Γ (ϕn,t) + ϕ2
n,t
n2

σ2 = 2C(t), (3.57)

where
Γ(ϕ) ≡ − ln(1 − ϕ) − ϕ (3.58)

for any 0 < ϕ < 1.

For any n, we note that Γ(ϕ) is a continuous, monotonically increasing
function of ϕ, approaching 0 as ϕ → 0 and becoming unboundedly large
as ϕ → 1. Hence, for any n and any C(t) > 0, equation 3.57 has a unique
solution satisfying 0 < ϕn,t < 1. We further observe that for a fixed value of
n, increasing C(t) increases the value of ϕn,t; and for a fixed C(t), increasing
the value of |n| increases the value of ϕn,t.

Based on these analytical solutions, these results reveal some important
similarities between the predictions of the TIM and the Bayesian models: for
large enough t and allowing C(t) to grow as function of t, then both models
imply

1. E[n̂ | n] → n, and

2. var[n̂ | n] → 0.
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Nonetheless, there are also several notable differences in the predictions of
the two models. Here we provide a detailed explanation of these differences
which were already mentioned in the main text:

1. The quantitative dependence of estimation bias on viewing time. While
both models predict that ϕn,t should increase from 0 (for t = 0) to 1
(as t → ∞), they do not imply the same rate of increase in ϕn,t as t
increases. The Bayesian model implies that

ϕt

1 − ϕt
= σ2γ2t, (3.59)

for any n. Hence for small t, ϕt ∼ t, while for large t, (1 − ϕ)−1 ∼ t.
Instead, if in the TIM model we assume that C(t) = c · t for all t, then
for any n ̸= 0, one can show that the solution to Eq. 3.57 satisfies
ϕn,t ∼ t1/2 for small t, while (1 −ϕ)−1 ∼ e2ct for large t. Thus regardless
of the parameters γ and c for the two models, we see that the TIM
model implies faster growth of ϕn,t as t increases, both for sufficiently
small values of t and for sufficiently large values of t.

2. The relationship between estimation bias and the variability of estimates.
Again fixing some single value of n ̸= 0, and considering the implied
distribution of estimates for different viewing times, we see that the two
models do not imply that var[n̂|n, t] co-varies with the bias in the same
way. The TIM model implies that the variance falls monotonically with
increases in ϕn,t (and hence that the variance falls monotonically with
time, for any n). The Bayesian model instead implies that increases
in ϕt first increase variance (while ϕ remains below 1/2), and then
reduce variance again (once ϕt > 1/2). The difference in predictions
is especially stark in the case of small viewing time. As t → 0, the
Bayesian model implies that the variance should fall to zero (estimates
are based on the expected value of the prior), while the TIM model
implies that this is the case in which estimates should be most variable
(estimates are simply samples from the prior distribution, regardless of
the value of n).

There are other differences between the two models that we do not highlight
here as they are not strictly relevant to the discussion of this article.

Taken together, we developed an example in which analytical analyses allowed
us to examine commonalities and differences between the two models. While
the exact predictions of these differences do not hold for the specific applica-
tion of the numerosity estimation models developed for the TIM model and
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the noisy log-encoding Bayesian model (see Supplementary Notes 3.1 and
3.2), these general differences make the two numerosity models identifiable,
and thus generate different qualitative predictions. In particular, the two
differences highlighted above cause the TIM model not to provide a general
account of the scalar variability principle. That is, the ratio between variabil-
ity and expected value estimations grows more rapidly in the TIM model
relative to the log-encoding Bayesian model.
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4.1. Abstract

Non-spatial attention is a fundamental cognitive mechanism allowing organ-
isms to orient the focus of conscious awareness toward sensory information
that is relevant to a behavioral goal while shifting it away from irrelevant
stimuli. It has been suggested that attention is regulated by the ongoing
phase of slow excitability fluctuations of neural activity in the prefrontal
cortex, a hypothesis that has been challenged with no consensus. Here, we
developed a behavioral and non-invasive stimulation paradigm aiming at
modulating slow excitability fluctuations of the inferior frontal junction, and
show that non-spatial attention can selectively be modulated as a function
of the ongoing phase of exogenously modulated excitability states of this
brain structure. These results demonstrate that non-spatial attention relies
on ongoing prefrontal excitability states, which are likely regulated by slow
oscillatory dynamics, that orchestrate goal-oriented behavior.

* These authors contributed equally to this work
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4.2. Introduction

Is that a predator behind the bush? Is it moving to the left or to the
right? When part of these spatially overlapping sensory features are more
relevant to guide behavior than others, activity in sensory areas representing
properties of the attended features are enhanced [164]. This cognitive process
is known as non-spatial attention, allowing organisms to orient the focus
of conscious awareness toward sensory information that is relevant to a
behavioral goal while shifting it away from irrelevant stimuli. Non-spatial
attention is commonly subdivided into feature-based attention, focusing on
one single feature (such as a direction of motion, color or orientation) and
object-based attention in which a participant has to attend a combination of
features (such as an object or a scenery). There is consensus that this process
is not an intrinsic property of sensory areas but relies on long-range functional
interactions with prefrontal structures. While a large body of work implicates
the inferior frontal junction (IFJ) as a key source of control signals for both
forms of top-down non-spatial attention [51, 165, 166], the causal mechanisms
of top-down regulation of attentional control remain unclear.

Based on behavioral observations that attentional performance fluctuates
over time, rhythmic control has been proposed as a candidate mechanism
of attentional regulation [167–169]. Supporting this notion, a study showed
that temporal dynamics of attentional behavior closely resemble the spectral
features of ongoing oscillatory brain activity in prefrontal structures [170].
Therefore, it was hypothesized that relatively slow and periodic neuronal
excitability fluctuations might shape attention and overt behavior. However,
the conclusions from many of these studies have been called into question,
by suggesting that previously reported rhythmic variations of attentional be-
havior might be artifacts of the analysis approaches [171]. Moreover, whether
ongoing excitability states within prefrontal structures are causally involved
in regulating non-spatial attention, remains unknown.

Here, we attempt to reconcile some of these concerns using a behavioral
paradigm coupled with a non-invasive brain stimulation protocol aiming
at modulating, with high temporal precision, excitability fluctuations in
the IFJ during non-spatial attention in the intact human brain. Here, it
is important to emphasize that in our work we do not study the role of
endogenous oscillatory fluctuations, but instead study the causal involvement
of ongoing excitability states likely driven by slow rhythmic fluctuations
(which in our case are exogenously controlled) on top-down attention. It is
important to highlight that the causal involvement of prefrontal structures
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during non-spatial attention has been demonstrated in previous landmark
studies using transcranial magnetic stimulation (TMS) [165]. However, TMS
induces only transient disruptions of neural functioning leaving the role
of top-down control through slow fluctuations of the excitability state in
prefrontal structures unresolved.

Figure 4.1. fMRI and EEG paradigm, Experiments 1 and 2. a) Example display
of one trial. After the attentional cue, a sequence of four to seven compound stimuli is
presented following a sinusoidal rhythm through time at 1.43 Hz. Participants respond with
a button press, only taking the last motion/scene stimulus into account. If motion was cued
participants press left for leftward motion and right for rightward motion, if scenes were
cued they press left for indoor and right for outdoor scenes. b) fMRI results, Experiment
1. Attention to motion and scenes vs no-attention show that the inferior frontal junction
(IFJ) activates bilaterally. A contrast of attention to motion vs scenes shows that the area
associated with motion perception, the middle temporal complex (MT+), activates. The
inverse contrast shows that the area sensitive to scene recognition, the parahippocampal
place area (PPA), activates. Images were thresholded at Z > 2.6 and whole-brain cluster
corrected, P < 0.05. c) Behavioral results, Experiment 1. Participants use the motion
evidence when cued to pay attention to motion (orange) and the scene evidence when cued
for scene (blue) and crucially ignore the irrelevant sensory feature. Error bars denote ±
SEM.
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Figure 4.1:
(continued) d) Standardized coefficients of a multifactor logistic regression of task per-
formance as a function of evidence levels show that the participants are significantly
influenced by the cued evidence (cue = motion βRFX = 11.0, PMCMC < 0.001, cue =
scene βRFX = 19.0, PMCMC < 0.001) and not distracted by the irrelevant sensory feature.
The standardized effect represents the expected value of the corresponding posterior beta
estimate divided by its standard deviation. e) EEG results, Experiment 2. The dWPLI
between the EEG data during the four first periods of the visual stimulus and the 1.43 Hz
visual signal is computed. The dWPLI values show that a wide area of the visual cortex gets
tagged to the frequency of the visual stimulation. f) The statistical difference in dWPLI
between the attention and the no-attention task at the sensor level. Starred electrodes
represent significant electrodes (cluster corrected at P < 0.01). g) Event-related potential
for the first four periods of the visual stimulus of an example participant at the source
(left) levels and sensor (right level). The source level signal corresponds to an IFJ voxel
and the sensor level signal is shown for the frontal cluster left of electrodes with a higher
debiased weighted phase lag index (dWPLI) during the attention vs no-attention task (see
panel f). h) The dWPLI between the beamformed signals of each voxel and the visual
stimulus was computed for attention vs no-attention. Maps show the statistical difference
between the two attention conditions revealing the left IFJ to be tagged to the degree of
stimulus visibility during attention trials (whole-brain cluster corrected at P < 0.01). i)
dWPLI values of the IFJ cluster in panel g. j) The activation delay after visual stimulus
presentation was larger for prefrontal vs visual cortex (VC) T (18) = 5.06, P < 0.001.
Error bars denote ± SEM. k) and j) Task performance and standardized coefficients of a
multifactor logistic regression of task performance in Experiment 2 replicate the effects
observed in Experiment 1 (see panels l and d).

4.3. Results

Spatial and dynamic characterization for the modulation of non-spatial
attention

We designed a behavioral paradigm with the primary goal of inducing a
tagged oscillation in the IFJ during non-spatial attention, which would allow
us to implement a closed-loop-like simulation protocol to modulate ongoing
IFJ excitability states. Participants viewed two spatially overlapping sensory
stimuli: (i) a cloud of dots from which a proportion was moving coherently
to the left or right side of the screen and (ii) images of indoor or outdoor
scenes. A series of stimuli went in and out of “phase coherence” in a sinusoidal
manner (at 1.43 Hz) so that they were modulated in visibility over time while
assuring that changes in luminance and spectral power remained constant
(Figure 1a, Methods). In each trial, participants were cued to attend one
of the two sensory features. At the end of each stimuli stream, participants
were asked to indicate whether the last observed cloud of dots was mainly
moving to the left or right (motion cue), or whether the last observed scene
was indoor or outdoor (scene cue). The level of sensory evidence in the
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last stimulus was randomly chosen from one of four predefined levels, thus,
allowing us to modulate task difficulty trial-by-trial, where the smaller the
sensory evidence the more difficult the trial (Methods). First, we made use
of both fMRI (Experiment 1) and high-density EEG (Experiment 2) to
investigate and validate both the spatial and dynamic involvement of the
IFJ in our non-spatial attention task. Crucially, we implemented a control
“no-attention” task that contained identical visual input as the non-spatial
attention task, but where the stream of fluctuating sensory information was
behaviorally irrelevant (Supplementary Figure 4.1, Methods).

In Experiment 1, we found that the bilateral IFJ was the most active brain
area in the attention task compared to the no-attention task for each sensory
modality (peak Zmotion = 5.9, Zscene = 6.1, P < 0.001, P < 0.05 cluster
corrected, Figure 1b), with a high degree of overlap across the two sensory
modalities (conjunction analysis Z > 2.6, P < 0.05 cluster corrected, Figure
1b). The contrast of attention to motion vs scene showed that the bilateral
middle temporal complex (MT+) was selectively active during motion-cued
trials (peak Z = 5.7, P < 0.001, P < 0.05 cluster corrected, Figure 1b),
and this result was accompanied by significant psychometric performance
for motion evidence (βRFX = 11.0, PMCMC < 0.001, Figure 1c, d), but not
for scene evidence (βRFX = 0.1, PMCMC = 0.11). On the other hand, the
parahippocampal place area (PPA) was more active during scene cue trials
(peak Z = 4.6, P < 0.05 cluster corrected, Figure 1b), and this result was
accompanied by significant psychometric performance for scene evidence
(βRFX = 19.0, PMCMC < 0.001, Figure 1c, d), but not for motion evidence
(βRFX = 1.2, PMCMC = 0.45). As a sanity check, we show the main effects of
the task (i.e., without contrasting attentive vs non-attentive states) and find
that most of the visual cortex is active both when paying attention to motion
and scenes (Supplementary Figure 4.2a), thus suggesting the specificity of
top-down control involving the fonto-parietal network which prominently
engages the IFJ (Figure 1b).

Next, we investigated whether the IFJ was indeed rhythmically tagged to the
stimulus visibility, and if so, would this be more prominent during attention vs
no-attention. First, we show raw dWPLI values, without contrasting attentive
vs non-attentive states, and find, as expected, that most of the visual cortex
gets entrained to the frequency of the visual input, Figure 2e. Scalp EEG
analyses revealed clusters where the phase consistency between EEG signals
and the tagged signal was higher in the attention vs no-attention condition
(Tmax = 4.81, PMCMC < 0.001, P < 0.01 whole-brain cluster corrected,
Figure 1f). Performing the same analyses at the source level, we found that
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the most prominent significant cluster was located at the level of the left IFJ
(Tmax = 5.51, PMCMC < 0.001, P < 0.01 cluster corrected, Figure 1h, i). To
estimate the latency of sensory responses in the IFJ during the attention
task, we extracted the relative phase between the frequency-tagged response
and the stimulus on the screen. The average phase lag of the IFJ was 150
ms which was shifted by about 50 ms in comparison to early sensory areas
(T (18) = 5.06, P < 0.001, Figure 1j), likely related to synaptic delays between
areas, and roughly following previous reports [51]. At the behavioral level,
these results were accompanied by a significant impact of motion-evidence
on performance when motion was cued (βRFX = 0.38, PMCMC < 0.001,
Figure 1k, l), but not for scene evidence (βRFX = −0.08, PMCMC = 0.08).
Conversely, when scene was cued, psychometric performance was significant
for scene evidence (βRFX = 2.36, PMCMC < 0.001, Figure 1k, l), but not
for motion evidence (βRFX = 0.12, PMCMC = 0.09). Taken together, our set
of neuroimaging results confirm that the IFJ gets tagged to the rhythmic
stimulus presentation in our non-spatial attention task.

Additionally, we investigated whether some of the above-mentioned differences
in top-down attentional control by the IFJ could be related to stronger
oculomotor engagement in our task. Analyses of eye tracking data show that
there is no significant difference between the number of microsaccades in
either the motion, scene, or no-attention condition, therefore differences in eye
movements can not explain the differences in brain activity (Supplementary
Figure 4.2b). These results confirm the involvement of the IFJ during non-
spatial attention in our task and the selectivity of sensory areas for each
relevant feature.

Exogenous slow fluctuations modulation of IFJ top-down control

Having established rhythmic IFJ engagement during non-spatial attention in
our task, the fundamental question we ask now is whether the slow fluctuations
of the excitability state exogenously induced in the IFJ are causally related to
top-down control. A key feature of our behavioral paradigm is that it allows
us to predict latencies at which neural excitability for sensory processing is
high. We hypothesized that boosting periods of predicted high excitability
states in the IFJ would promote perceptual discriminability performance for
the cued sensory feature. Conversely, downregulating periods of predicted
high excitability states would hinder behavioral performance (Figure 2b). To
test this hypothesis, we employed transcranial alternating current stimulation
(tACS), a technique that has the potential to establish a causal link between
oscillatory patterns—modulated or induced [56, 172–176]—at the targeted
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brain structure and the resulting behavior. We applied tACS targeting the
IFJ bilaterally using a ring electrode configuration to increase the focality of
the induced electric fields (Figure 2a, Supplementary Figure 4.4, Methods).
We applied 5% EMLA cream under the stimulation electrodes, allowing us
to reduce somatosensory effects, increase stimulation intensities (up to 4
mA peak-to-peak, Methods), and thereby increase the chances of oscillatory
neuromodulation. tACS was applied at the same sensory tagging frequency
(1.43 Hz), but crucially, the presentation of sensory stimuli was precisely
synchronized to the tACS waveform in one of two ways in each trial: first,
the peak of anodal stimulation of the center electrode (defined as the peak of
the waveform) coincides with periods of high sensory excitability (“in-phase”
condition, while considering the delays estimated in the EEG experiment,
Methods), which we expect to result in attentional improvements because
anodal stimulation is thought to increase the excitability states of the targeted
cortical structure [177]. Second, the peak of cathodal stimulation of the center
electrode (which we define as the trough of the waveform) coincides with
periods of high sensory excitability (“out-of-phase” condition), which should
result in attentional hindering by reducing the cortical excitability states of
the IFJ [177] (Figure 2b, Supplementary Figure 4.3).

In one of two lab visits, participants received “in-phase” tACS for one of
the two sensory cues (attend to motion or scene, Experiment 3a) and re-
ceived “out-of-phase” for the other sensory cue. The stimulation conditions
were switched for each sensory cue in the second lab visit (Experiment 3b,
Methods). We first investigated whether, during the “stimulation on” trials,
in-phase stimulation improved behavioral performance relative to out-of-
phase stimulation. In line with our hypothesis, we found that, across different
sessions, in-phase stimulation improved sensory discrimination performance
when motion was cued (interaction sensory evidence*stimulation-condition
βRFX = 2.8, PMCMC = 0.004, Figure 2e), however, we did not find a signifi-
cant effect when scenes were cued (βRFX = 1.3, PMCMC = 0.086). Post hoc
analyses revealed that discrimination performance improved in the hypoth-
esized direction for motion discrimination at the highest levels of difficulty
(paired samples Wilcoxon test P = 0.0014 and P = 0.013 for levels 1
and 2, respectively, Figure 2d) and for scene discrimination at the highest
level of evidence (P = 0.018). We employed the same multi-factor regres-
sion to investigate whether stimulation exerted influences on the distractor
(non-cued) sensory feature. We found no effect of stimulation in either task
(PMCMC > 0.16 in both tasks, Figure 2e). This indicates that modulations
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Figure 4.2. Temporal alignment of tACS over the IFJ modulates sensory
perception, Experiment 3. a) Two concentric electrode pairs are placed over the left
and right IFJ reaching relatively focused peak electric fields ∼ 0.5 V/m (see Supplementary
Figure 4.4). b) The tACS current follows a sinusoidal function applied either "in-phase"
relative to the visual tagging response, or "out-of-phase" with a phase lag of 180° relative
to the visual tagging response. c) The percentage of correct trials at different difficulty
levels shows that participants use the cued sensory evidence and ignore the irrelevant ones.
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Figure 4.2:
(continued) d) Participants perform better in the "in-phase" tACS condition compared
to "out-of-phase" when they are cued to pay attention to motion mostly at the hardest
difficulty levels (paired samples Wilcoxon test P = 0.0014 and P = 0.013 for levels 1 and
2, respectively) and for scene discrimination at the highest level of evidence (P = 0.018).
e) A linear mixed-effects model reveals that in the motion trials (besides the main effect
of motion evidence, βRFX = 10.6, PMCMC < 0.001) there is a significant interaction effect
between motion evidence and stimulation condition (βRFX = 2.8, PMCMC = 0.004), with
no effect of the irrelevant sensory feature. In scene trials only the main effect of scene is
significant (βRFX = 13.7, PMCMC < 0.001). The standardized effect represents the expected
value of the corresponding posterior beta estimate divided by its standard deviation. f)
Computational modeling analysis based on the DDM reveals that tACS-induced behavioral
modulations when motion is cued are specifically related to enhancing the rate of sensory
evidence (βRFX = 2.6, PMCMC = 0.0018) while leaving all other parameters unaffected. g)
A moving window analysis shows that the effect of the stimulation is online. The grey shaded
area indicates the windows for which stimulation was turned on. Shaded areas around the
lines indicate ± 1 SD of the posterior estimate of the interaction evidence*stimulation.
The black bar at the top indicates P < 0.05 cluster corrected effects. h) We find that
for motion-cued trials (left), out-of-phase stimulation significantly hinders performance
(P < 0.05 cluster corrected). For scene-cued trials (right), in-phase stimulation improves
performance marginally (P < 0.05 uncorrected).

of ongoing IFJ fluctuations induced by our stimulation protocol exclusively
affect attention to the relevant (cued) sensory feature.

Dynamic evolution of IFJ top-down control modulations

The previous analyses were carried out during “stimulation on” periods,
but do not allow interpreting: (i) whether these effects emerge exclusively
during online stimulation; (ii) how they temporally evolve; and (iii) how these
compare to periods without stimulation. To investigate this, we analyzed
the temporal evolution of the in-phase vs out-of-phase stimulation effects
(initially across sessions, Methods). When motion was cued, we found that
the stimulation-induced attentional modulations emerged exclusively during
the “stimulation on” periods and vanished immediately after the stimulation
was switched off (P < 0.05 cluster corrected, Figure 2g), and in the correct
direction but not significant when attention to scenes was cued. While these
analyses reveal the robustness of the effects (when motion is cued and despite
potential behavioral variability across sessions), these results do not allow us
to conclude whether the stimulation-induced across-session modulations are
driven by the in-phase, out-of-phase stimulation, or both. To investigate this,
we analyzed the evolution of the stimulation effects within a single stimulation
session relative to baseline periods of no stimulation (Methods). We found
that out-of-phase stimulation robustly hindered discrimination performance
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exclusively during “stimulation on” periods when motion was cued (P < 0.05
cluster corrected, Figure 2h), but this effect was not significant during in-
phase stimulation (P > 0.05 cluster corrected, Figure 2h), and once again,
these effects vanished immediately after the stimulation was switched off.
Crucially, the interaction motion evidence*stimulation-condition was robustly
significant in the hypothesized direction exclusively during the “stimulation
on” periods (P < 0.05 cluster corrected, Figure 2h). When scenes were cued,
in-phase stimulation significantly improved attentional performance only for a
short time at the beginning of “simulation on” periods (P < 0.05 uncorrected,
Figure 2h). Once again, these effects were not present for the distractor feature
(Supplementary Figure 4.5). Thus, aligning periods of high excitability states
in the IFJ with electric fields modulates non-spatial attentional behavior,
with these effects being robust for motion perception.

Behavioral modulations of top-down control specifically affect sensory
information processing

While our brain stimulation protocol appears to induce robust attentional
influences in motion discrimination performance, these results do not clarify
whether these behavioral modulations are indeed specific to boosting the
perception of sensory evidence. We employed the drift-diffusion model (DDM),
a well-established mathematical model of human choices that allows the
possibility of disentangling how the manipulation of IFJ excitability states
affects latent variables corresponding to distinct components of the decision
process (Methods).

If it is true that IFJ excitability modulations specifically affect the degree of
efficiency at which sensory areas accumulate sensory evidence, then we would
expect in-phase stimulation to enhance the drift sensory rate latent variable.
In line with our hypothesis, we found that in-phase stimulation during motion-
cued trials boosted the rate of sensory evidence accumulation (interaction
sensory evidence*stimulation condition βRFX = 2.6, PMCMC = 0.0018, Figure
2f), while leaving all other latent variables unaffected (βRFX < 1.3, PMCMC >

0.09).

Crucially, we investigated whether some of the above-mentioned differences
in the modulation of top-down attentional control were related to our non-
invasive brain stimulation intervention inducing oculomotor modulations.
Analyses of eye tracking data show that there is no significant difference
between the number of microsaccades in the different brain stimulation
conditions (Supplementary Figure 4.2b). Together, our oculomotor and
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Figure 4.3. Phase-dependent influence of IFJ-tACS, but not Cz-tACS on non-
spatial attention, Experiments 4 and 5. a) In this experiment, we introduced six
stimulation delay conditions. The phase delays between the electrical and visual stimulation
are evenly spaced out over one period of stimulation. We fit a sinusoidal function to the
modulation of feature based attention as a function of phase delay, the amplitude of this
function is the parameter of interest. b) In experiment 4 the centre of the electrodes is
placed over the inferior frontal junction.
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Figure 4.3: (continued) c) Since amplitude is a positive metric, we investigate its significance
level by randomly shuffling all stimulation delay labels within participants and comparing
the resulting distribution of estimated amplitudes with the estimated amplitude of the
sinusoidal fit of the original data. We find that the amplitude of the fit of the original data
is larger than 98.7% of the amplitudes of the generated distribution for motion trials and
for scene trials this was 99.3%. d) The Z-scores of the empirical amplitudes as compared to
the distribution of amplitudes expected to be found by chance is 2.2 for motion trials and
2.4 for scene trials. e) In experiment 5 the centre of the electrodes is placed on the location
of the Cz electrode of the 10-20 EEG coordinate system. f) The control experiment shows
that stimulating the motor cortex leads to no significant modulation of feature based
attention to either motion or scenes (the empirical amplitudes are larger than 74% and
63% of the generated distribution of amplitudes, respectively). Therefore the effects of
stimulation can not be contributed to the stimulation of an unrelated cortex or peripheral
nerves. g) The Z-scores of the control experiment are 0.6 and 0.3 for respectively motion
and scenes. h) Graph of the sinusoidal function of performance vs stimulation delay, with
the estimated population-level parameters represented as a line, the shaded area indicates
± SD. The dots represent the individual data for each participant per stimulation delay
condition after being aligned for individually estimated phase delays and intersects. The
vertical green and red bars indicate the time windows of best and worst performance,
respectively. i) Psychometric curves of the highest performance phase delay (green) and
worst performance phase delay (red).

modeling analyses provide evidence that stimulation-induced attentional
improvements are specifically related to boosting the degree of efficiency at
which sensory areas accumulate sensory evidence [178, 179].

Non-invasive phase-dependent control of non-spatial attention

The next question we asked is whether the stimulation-induced attentional
modulations necessarily require sensory tagging of the IFJ to rhythmic
sensory manipulations. Additionally, we reasoned that the relatively weak
effect for scenes in experiment 3 might be due to the multidimensional and
non-local nature of the scene stimuli. In other words, because there is a larger
activation area for scene recognition (Figure 1b) it might be harder to find
the optimal timing of the stimulation if there is some degree of variability in
the reaction of the cortical responses to sensory tagging across participants
during the presentation of more complex sensory stimuli. To study these
issues, we performed a new experiment (Experiment 4), where in each trial we
presented a single stimulus that went in and out of “phase coherence” (Figure
3a, Methods). An additional feature in Experiment 4 is that we did not
only stimulate in-phase or out-of-phase (as in Experiment 3) but tACS was
applied at 6 different delays relative to the presentation of the sensory stimulus
(Figure 3a). This allowed us to investigate whether non-spatial attentional
modulations would fluctuate as a function of the phase of the tACS-induced
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electric field. We found that the ongoing phase of the tACS signal induced
significant modulations of behavioral performance when motion was cued
(zA = 2.2, P = 0.013, permutation tests, Figure 3c,d, Methods). This effect
was smaller in overall effect-size terms but robustly significant when scene
was cued (zA = 2.4, P = 0.008 permutation tests, Figure 3c,d). The results of
this experiment allow us to conclude that, first, continuous rhythmic sensory
tagging is not necessary for inducing IFJ excitability modulations; second,
non-spatial attention is related to excitability states of the IFJ which can be
modulated as a function of exogenously applied electric fields.

Non-invasive phase-dependent modulations are likely not related to
transcutaneous stimulation of peripheral nerves

Crucially, we conducted a new experiment (Experiment 5) to test whether
the effects of tACS on non-spatial attention observed in Experiment 4 are
(i) specific to the IFJ, (ii) are not due to our tailored design to induce a
generalized oscillatory sensory tagging in the brain, (iii) are not due by
transcutaneous stimulation of peripheral nerves [175, 180], and (iv) are not
related to potential marginal influences of the electric field potentially reaching
sensory areas. We identified (based on our neuroimaging data experiments)
and stimulated a different brain structure to the IFJ that was in principle
not related to non-spatial attention. The cortical area that we selected as
the control target was the vertex (Cz location of the 10-20 EEG coordinate
system, Figure 3e; a structure that is typically used as an active control site
in non-invasive brain stimulation investigations studying higher cognitive
functions [181]). All other experimental parameters were equal to those of
experiment 4.

First, we confirmed that the electric fields in this active control condition
do not greatly influence the IFJ, PPA, and V5. We found that the electric
fields are virtually ineffective in these cortical areas (< 0.1 V/m for all voxels
in the regions of interest, Supplementary Figure 4.4). Second, in the tACS-
behavioral experiment, we found no significant modulations of behavioral
performance as a function of the phase of the tACS-induced electric field
for motion (zA = 0.6, P = 0.28 permutation tests) nor for scenes (zA = 0.3,
P = 0.37 permutation tests). Thus, this active control experiment suggests
that the modulatory effects of tACS on non-spatial attention observed in
experiment 4 are indeed related to the stimulation of the IFJ and not due to
the above-mentioned alternative explanations.
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4.4. Discussion

Taken together, we developed a behavioral paradigm alongside a closed-
loop non-invasive brain stimulation protocol that allowed us to predict and
modulate with high temporal precision the IFJ excitability states during
a non-spatial attention task. When the IFJ was predicted to be in a high
excitability state, modulating it with tACS resulted in non-spatial attentional
performance alterations. These effects were robust for motion evidence and
replicated in a second experiment in which attentional modulations did
not require a steady IFJ sensory tagging. While in general, the effects for
scenes were in the hypothesized direction, they were not significant in the
experiment with fixed in- and out-of-phase timings as identified for a different
population sample in the EEG experiment. However, in experiment 4 we
show significant modulation of attention to scenes, it could be that the
variety of stimulation timings in experiment 4 makes it less sensitive to inter-
individual differences. Given that sensory evidence for scenes is not exactly
a unidimensional sensory feature that engages various features and a large
portion of the ventral visual stream (contrary to motion perception), our
stimulation protocol used in experiment 3 might require more specific sensory
features to be more effective. Alternatively, future experiments aiming at
modulating more complex sensory stimuli might profit from an individualized
approach, for example by first performing an EEG experiment and estimating
optimal timings of the stimulation per participant. As another option, based
on the observation that most stimulation-induced effects in our study were in
the hypothesized direction, it is tempting to speculate that increasing electric
fields in the target area may result in more effective neural modulations and
consequently more effective behavioral influences [174, 182]. In the control
experiment we showed that the behavioral changes due to tACS are specific
to the stimulation of the IFJ.

Our results show that the IFJ is causally involved in top-down non-spatial
attention, which raises the question how the IFJ is connected anatomically and
functionally. It has been shown with maps of probabilistic connectivities [183]
that the IFJ has a high connection probability with both the fusiform face
area (FFA) and the PPA, areas that are involved in high level non-spatial
attention [51]. Furthermore, the authors show that the coherence between
these areas increases in the tagging frequency as well as in high-gamma
frequencies when attention to houses (PPA) and attention to faces (FFA) is
exerted.
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Temporal manipulations of sensory evidence in recent behavioral and neu-
roimaging studies led researchers to hypothesize that slow periodic neuronal
excitability fluctuations in prefrontal structures shape the temporal dynamics
of attention [167–170]. However, this hypothesis was questioned in a recent
study suggesting that evidence for attentional rhythmic control is far from
definitive due to statistical weaknesses in the analysis approaches [171]. While
in our work we do not study the role of endogenous fluctuations but control
them exogenously, our paradigm and results provide evidence that prefrontal
excitability states are causally related to guide top-down attention. Here, we
acknowledge that with our paradigm we cannot distinguish between mod-
ulating pure oscillatory neural activity or modulation of phasic activity on
top of the exogenously controlled oscillation. However, irrespective of this
consideration, our results support the theory that non-spatial attention relies
on ongoing prefrontal excitability states which are likely regulated by slow
oscillatory dynamics that guide goal-oriented behavior. Following up on our
predator example, our findings entail that if the direction of the predator’s
movement behind the bush is the relevant feature, high excitability states in
prefrontal structures regulating top-down attention would promote correct
discrimination of the predator’s direction of movement.

The methodologies developed in this work and the possibility of enhancing
non-spatial attention may have important implications in disorders associated
with the dysregulation of top-down control. For instance, lack of success in
dietary behavior has been linked to reduced prefrontal top-down control of
brain structures specialized in reward processing [63]. Failure to reduce the
fear associated with traumatic experiences appears to be rooted in ineffective
suppression of intrusive memories due to a lack of prefrontal top-down control
over the hippocampus [184]. However, the brain-behavior relations in these
examples remain purely correlative, and whether these functions depend on
top-down control remains unknown. While the effects that we observed in
our study appear to be effective during the stimulation periods, it has been
recently shown that repeated application of tACS can have lasting beneficial
effects [185]. The possibility of selectively modulating top-down control
opens the door to understanding the mechanisms of attention in higher-level
cognition, and to develop targeted therapies in disorders associated with
top-down control dysregulation.
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4.5. Methods

Participants

The study tested 142 healthy young volunteers: n = 20 participants took part
in the fMRI study, Experiment 1 (mean age 25.6 years; range 21-36 years; 7
males); n = 23 in the EEG study, Experiment 2 (mean age 25.5 years; range
19-33 years; 7 males); n = 37 in the first tACS, Experiment 3 (mean age
25.8 years; range 18-40 years; 22 males); n = 37 in the second tACS study,
Experiment 4 (mean age 24.3 years; range 18-35 years; 19 males); n = 25 in
the third tACS study, Experiment 5 (mean age 25.1 years; range 19-36 years;
14 males). All participants had normal or corrected to-normal vision. Partici-
pants were instructed about all aspects of the experiment and gave written
informed consent. None of the participants suffered from any neurological or
psychological disorder or took medication that interfered with participation
in our study. Participants received monetary compensation of 20 CHF/h for
their participation in the experiment, in addition, they received 5 CHF/h
if they got a mean performance score of 70% or higher. The experiments
conformed to the Declaration of Helsinki and the experimental protocol was
approved by the Ethics Committee of the Canton of Zurich.

Stimuli

To create a behavioral task in which it is necessary to employ non-spatial
attention we created stimuli consisting of pictures and moving white dots
spatially overlaid at the fovea. The visibility of these compound stimuli is
dynamically modulated to follow a sinusoidal function, creating an oppor-
tunity for the visual cortices to entrain to the frequency of visual input. To
make sure that the behavioral results are not contaminated by low-level
confounds such as stimulus luminance or frequency spectra, we controlled
the visibility of the stimuli using a phase-scrambling technique to preserve
low-level image properties [186]. In brief, each image was Fourier-transformed,
revealing pixel-by-pixel amplitude and phase information. A sequence of
images is then generated by performing the inverse Fourier transform on
a combination of the original amplitude spectrum with a modified phase
spectrum. By changing the phase spectrum, we can control the recognizability
of the image, while containing identical amplitude spectra and luminance
to the original image. The phase consistency could range from 0.25 (almost
no picture visibility) to 0.7 (the original picture is almost fully visible). The
pictures represented either indoor or outdoor sceneries and were normalized
to match mean luminance (SHINE toolbox, PsychToolbox). On top of the
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pictures we presented 30 moving white dots, the direction of the average
motion was either left or right. However, a percentage of the dots moved in
a random direction; motion coherence ranged from 0.4 (almost no average
direction) to 0.9 (clear average direction). The dots are shown in a circular
aperture of 12°, centered at the fovea. Each dot covered 0.1° × 0.1° of the
visual angle and moved at 12° per second. The complete movie was sampled
at the monitor’s vertical refresh rate of 60 Hz. To synchronize the visual
stimuli with the EEG recordings and tACS, two custom-built photosensitive
triggers were placed on the sides of the monitor. This method was used in
Experiment 2 to synchronize the EEG with the visual stimulation and in
Experiments 3 and 4 to synchronize the visual stimulation with the electrical
stimulation.

Behavioral paradigm

The behavioral paradigm is depicted in Figure 1a. During a trial participants
first see a fixation cross, afterwards, we present a cue indicating to the
participants whether they should pay attention to the motion or to the scene
in the upcoming trial. Next, a sequence of four to seven compound stimuli (a
scenery overlaid with moving dots) is presented. After the last compound
stimulus disappears from the screen the participant should respond with a
button press, only taking the last motion/scene into account. If the cue was
scene the participant should press the left arrow key if the last scenery was
indoor and right if it was outdoor. If the cue was motion the participant should
press left for leftward motion and right for rightward motion. The participants
have a maximum of 3 seconds to respond, if they fail to respond within this
time the trial is automatically incorrect. Participants are instructed to be
as fast and as accurate as possible. They were rewarded with an additional
5 CHF/hour for accuracies over 70%. Before starting the experiment the
participants take part in a training session of 64 trials starting easy and
increasing in difficulty level.

In the fMRI and EEG experiments, the first 64 trials consisted of the "no-
attention" version of the task (Supplementary Figure 4.1). They were in-
structed to pay attention to the fixation cross and to press when the fixation
cross changed orientation. The participants carried out this task with 86% and
89% accuracy for fMRI and EEG respectively, suggesting participant engage-
ment in this task. The information presented on the screen was nearly identical
to the information in the non-spatial attention task, with the exceptions of
the words such as "Left" and "Right" which were replaced with nonsense
text, and the fixation cross which was visible at all times and occasionally
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rotated. This task was carried out before the participants were instructed
about the non-spatial attention task, to avoid that they would pay attention
to the visual stimulation other than the fixation cross (Supplementary Figure
4.1).

Eye-tracking measurements were acquired during all Experiments in this
study to control for visual engagement during task performance (EyeLink
1000 Plus, SR Research, Ottawa, Ontario, Canada).

fMRI (Experiment 1)

fMRI acquisition

The fMRI data were acquired using a 3T Philips Ingenia with the visual
stimuli being presented on an LCD monitor placed behind the participant.
Participants looked at the stimuli using a mirror that was attached to the
head-coil. Echo planar imaging (EPI)-blood oxygen level-dependent (BOLD)
data were collected with a slice angle of 20° relative to the anterior–posterior
commissure line, flip angle (FA) = 85°, echo time (TE) = 35 ms, repetition
time (TR) = 2500 ms, 40 transversal slices (0 mm gap), and a 2.75 x 2.75 x 3.30
mm3 voxel size (FOV = 222.75 x 222.75 x 128 mm3). Subject-specific high def-
inition structural T1 images were acquired through a magnetization-prepared
rapid gradient echo (MPRAGE) sequence with the following parameters: FA
= 8°, TE = 3.6 ms, TR = 7.7 ms and a 1 x 1 x 1 mm3 voxel size (FOV =
240 x 240 x 160 mm3).

fMRI analyses

Analysis and pre-processing of the data was performed in FSL’s Analysis Tool
FEAT v6.0.0, this included a BET brain extraction, slice timing correction,
motion correction using MCFLIRT, a Gaussian spatial smoothing with a
full width at half maximum (FWHM) of 5 mm, and a high pass temporal
filtering with a cut-off of 100 s. Images were then spatially normalized
using FLIRT (FMRIB’s Linear Image Registration Tool) registering the
low-resolution functional images to the high-resolution structural image and
then using FNIRT (FMRIB’s Nonlinear Image Registration Tool) the images
were warped onto the reference brain in the Montreal Neurological Institute
(MNI) coordinate space.

First level analysis was performed with FILM (FMRIB’s Improved Linear
Model) based on general linear modelling (GLM) with the canonical hemody-
namic response function (HRF) as its base function. Explanatory variables
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included in the analysis of the attention task performance are attention
to scene, attention to motion, response to scene, and response to motion.
A contrast was defined for attention to scene vs attention to motion. For
the passive viewing analysis, the explanatory variables were visual stimulus
presentation and button presses. Group-level analysis was performed using
FLAME (FMRIB’s Local Analysis of Mixed Effects Tool). Contrasts were
defined for attention to scene vs visual stimulus presentation and attention
to motion vs visual stimulus presentation. Z-statistic images were thresh-
olded at Z > 2.6 and a cluster correction was applied at a threshold of
P < 0.05.

EEG (Experiment 2)

EEG acquisition and preprocessing

EEG was acquired at 500 Hz using a high-density net (128 Channels Geodesic
Sensor Net, Magstim EGI, Eugene, USA). EEG data preprocessing and
analysis were performed using the Fieldtrip toolbox ( [187], Donders Institute
for Brain, Cognition and Behaviour, Radboud University, the Netherlands) in
MATLAB (R2019b, MathWorks inc., Natick, USA). Line noise was removed
using a discrete Fourier transform filter. The data were re-referenced to a
common average reference and epoched into 0 to 2.8 s trials to include the
first four tagging cycles of each trial. Bad channels and noisy trials were
removed based on visual inspection.

To quantify the neural entrainment to the visual stimulation, we computed
the debiased weighted phase lag index (dWPLI) [188] at 1.43 Hz between the
sensor data and the imposed visibility sine wave tagging with a frequency
of 1.43 Hz. We used the dWPLI as it is a phase-synchronization index that
is robust to sample-size bias and spurious connectivity driven by volume
conduction. This computation was performed separately for the attention
and no-attention tasks and the comparison is shown in Figure 1f.

To localize which neural structures were entrained by the visual stimulation,
source reconstruction was performed using linearly constrained minimum
variance beamforming [189]. This analysis estimates the time series in each
dimension for each voxel in the brain by computing spatial filters based
on the location of the sensors. To reduce the dimensionality, single value
decomposition was used to compute the projection with the largest variance
for each voxel. To quantify the entrainment to the visual stimulation, a similar
approach to the sensor-level analysis was used. The dWPLI at 1.43 Hz was
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computed for each voxel between the time series of the projection with the
largest variance and an artificial signal of a sine wave with a frequency of
1.43 Hz corresponding to the visual stimulation. The source reconstruction
and dWPLI computation were performed for data from the attention and
no-attention tasks separately. We identified for each subject the voxel with
the highest dWPLI near the IFJ and near the visual cortex in the attention
task. The time series of these voxels for one example participant is shown
in Figure 1e. To compute the delay between the visual stimulation and the
neural oscillations, the source time series were band-pass filtered using a
FIR filter with a cut-off of 1.43 ± 0.01 Hz. We then measured the latency
of the third peak of the time series and subtracted 700 ms*2.5 = 1.750
ms which corresponds to the third peak of the visual stimulation. These
delays are presented in Figure 1j and were used to determine the timing
of the electrical stimulation in Experiment 3 (Supplementary Figure 4.3).
Prior to source analysis, the data were low-pass filtered at 20 Hz using a
two-pass hamming filter. The data were in addition high-pass filtered at
0.3 Hz with a Butterworth filter for the visualization in Figure 1e. In this
Experiment, 4 participants were excluded due to excessive noise in the EEG
recordings.

EEG statistical analyses

The sensor dWPLI values were compared between the attention and no-
attention tasks. Cluster correction was performed by generating Markov chain
Monte Carlo simulations with 5,000 permutations to determine the multiple
comparison cluster correction at P < 0.05 based on the null distribution of
clusters thresholded at P < 0.01.

A similar approach was used for the source-level statistics. The computed
dWPLIs for each voxel were compared between the attention and no-attention
tasks. Cluster correction was performed by generating Markov chain Monte
Carlo simulations with 5,000 permutations to determine the P < 0.05 thresh-
old of the null distribution of clusters of voxels thresholded at P < 0.01.

Brain stimulation (Experiments 3-5)

tACS application

For the application of tACS, we used a current stimulator (DC-stimulator,
neuroConn) with a manual stimulation protocol controlled by MATLAB.
We used two concentric ring electrodes (active electrode diameter 2 cm,
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return electrode inner diameter 7.5 cm, outer diameter 10 cm). Following
the visual sensory tagging of our behavioral paradigm, tACS was applied
at a frequency of 1.43 Hz (period 0.7 s). The amplitude was determined
for every participant individually with custom-written code. The maximum
current used was 4 mA peak-to-peak. At the beginning and at the end of each
stimulation block the current was ramped up and down over the first and
last 10 s, respectively. As a baseline condition, we applied sham stimulation,
for which we ramped up the current to its maximum amplitude over 10 s,
before turning it off again. The tACS was applied continuously during the
stimulation block and precisely synchronized with the visual stimuli using two
photosensitive triggers attached to the monitor and custom-written code in
MATLAB which was synchronized with the computer controlling the visual
input and behavioral output of our participants.

The concentric ring electrodes are placed on the scalp of the participant with
the centers over the left and right IFJ. The location on the scalp that is
nearest to the left and right IFJ was estimated for test participants using
a structural T1 MRI scan and neuronavigation. The average IFJ location
converged in all cases into channels 117 and 128 of a EGI Geodesic 128-
channel EEG cap, which was used to find the IFJ location in preparation for
the tACS experiments for all participants. A topical anesthetic (EMLA cream
5%) is used to numb the skin under the active electrodes. This procedure
reduces the skin sensations induced by transcranial stimulation which makes
the stimulation more comfortable.

Electric field predictions

To investigate the strength of tACS exposure during the experiment, an in
silico model was developed. Electromagnetic (EM) simulations were executed
to predict electric field (E-field) exposures within the brain and the target
region, namely the IFJ. The EM simulations were performed using the
Sim4Life (ZMT Zurich Med Tech AG, Zurich, Switzerland) platform for
computational life-science investigations, using the detailed anatomical MIDA
head model [190]. The model distinguishes 37 tissue classes, of which the
electric conductivities were assigned according to the IT’IS Low Frequency
Database V4.1 [191]. The analysis pipeline consisted of the following steps:
(i) the creation of electrode models and their placement on the skin of
the MIDA (Virtual Population, IT’IS Foundation, Zurich) head model; (ii)
identification of the anatomical target region and positioning of the electrodes;
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(iii) execution of the EM simulations; and (iv) estimation of the predicted
E-field distributions within the IFJ and the rest of the brain.

The target region (IFJ) in the MIDA model was identified by registering
the MIDA’s brain T1 images with the open-access Brainnetome Atlas [192]
using FSL v5.0 FLIRT, by importing the transformed atlas in Sim4Life,
and aligning it with the MIDA model. The atlas defines 246 brain areas,
including left and right IFJ, which were applied as masks to the MIDA model
(Supplementary Figure 4.4a, b). While the stimulation target and positioning
of electrodes were selected during a brain mapping procedure and defined in
MNI space, in addition to coregistration of the MIDA with the Brainnetome
atlas, we developed a pipeline aimed at identifying the MNI coordinates in the
MIDA brain. For this pipeline, first, the MIDA brain mask was normalized to
MNI space, in which the IFJ area (MNI left IFJ = -54, 12, 34 mm, MNI right
IFJ = 54, 12, 34 mm) and electrode coordinates (MNI left electrode = -60,
12, 38 mm, MNI right electrode = 60, 12, 38 mm) were identified. After that,
14 x 14 x 14 mm masks were drawn around the locations of the targets and
electrodes. Finally, the normalized MIDA brain together with the new masks
was coregistered with the initial MIDA brain and imported into Sim4Life. At
the end of this procedure, we compared the location of the target defined
in the MNI space and the IFJ determined with the Brainnetome atlas, and
concluded that these targets have the same positioning in the MIDA brain
(Supplementary Figure 4.4b). This pipeline was implemented with the SPM12
toolbox in MATLAB R2019a.

The electrode geometries were created in Sim4Life using the constructive
geometry functionality in Sim4Life. Two cylindrical electrodes were created
with radius = 1 cm and were placed above the left and right IFJ, with two
surrounding ring electrodes (inner radius = 4 cm, outer = 5 cm, Supplemen-
tary Figure 4.4a). Two sensor boxes were placed around the central electrodes
to evaluate the current and normalize the E-field distribution to the total
current.

EM simulations were executed using Sim4Life’s rectilinear version of the
‘Electro Ohmic Quasi-Static’ finite element method (FEM) solver [193]. The
model geometry was discretized with a grid resolution between 0.5 and
0.75 mm — identified through a convergence analysis — with the highest
refinement near the electrodes. An EM simulation was executed for each
electrode, by assigning Dirichlet (voltage) boundary conditions of +1V to
the central electrode and -1V to the ring electrode, while assigning the
other electrodes to Perfect Electric Conductor (PEC). The total E-field was
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calculated using the superposition principle considering that the two currents
are in-phase (i.e., same frequency), and the focality and intensity of the
stimulation were extracted on the target region.

Additionally, we ran a simulation for experiment 5 placing the centre electrode
on the Cz location of the MIDA model surrounded with the ring electrode,
using the same computational parameters as for the previous simulations.
The results of this model demonstrate that the E-field within the target
and control regions was minimal and could not lead to activation of these
areas even under 4 mA peak-to-peak stimulation: right and left IFJ (mean=
0.04, sd = 0.01, P99 = 0.07), PPA (mean= 0.008, sd = 0.002, P99 = 0.01)
and MT/V5 (mean= 0.007, sd = 0.001, P99 = 0.01; Supplementary Figure
4.4e,f).

Experiment 3: In-phase vs out-of-phase stimulation

In Experiment 3, two stimulation conditions were used, in-phase and out-of-
phase stimulation. During in-phase stimulation, the visibility of the stimulus
precedes the voltage over the electrodes by 95 ± 18 ms, see Supplementary
Figure 4.3. During out-of-phase stimulation timing of the voltage over the
electrodes is shifted by 180° (350 ms).

The tACS experiment consists of two sessions, each with 320 trials. In each
session, either all motion trials are stimulated in-phase and all scene tri-
als are stimulated out-of-phase or vice versa. For half of the participants,
pseudo-randomly chosen, the first session consisted of the in-phase stimula-
tion condition for trials in which scene is cued, and out-of-phase stimulation
for trials in which motion is cued. For these participants, the second session
consisted of in-phase stimulation for motion trials and out-of-phase stimu-
lation for scene trials. For the second half of the participants, the order of
the stimulation conditions was reversed. A single session is divided into four
blocks. Only in blocks two and three stimulation is turned on. Blocks one
and four consisted of sham stimulation. In half of the trials of blocks one and
four, the participant is cued after the visual stimulus has disappeared, thus
making the participant pay attention to both the scene and motion during
stimulus presentation. Participants with discrimination performance < 55%
in block one (suggesting nearly random choice selection and therefore poor
engagement) were excluded from the data analyses, resulting in the exclusion
of 4 participants.
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Experiment 4: tACS phase-dependent effects

In the phase-dependent effects tACS experiment, we make use of six stimu-
lation delays spaced out evenly over the period of a single visual stimulus
period. To maximize statistical power over the 6 different conditions (which
are in turn divided into the 4 sensory evidence levels used in Experiment
3), the experimental session consisted of the continuous application of tACS.
The stimulation delays were pseudo-randomly assigned on a trial-to-trial
basis. Thus, this experiment allows us to study the relationship between
the ongoing phase of the tACS stimulation relative to the presentation of
the visual stimulus. Details regarding the statistical analyses are described
in the next section. Participants with discrimination performance < 55%
in block one (suggesting nearly random choice selection and therefore poor
engagement) were excluded from the data analyses, resulting in the exclusion
of 5 participants.

Experiment 5: control stimulation location

We placed the center of the electrodes over the Cz location of the 10-20
EEG coordinate system, therefore stimulating the motor cortex. All other
experimental parameters were equal to those of experiment 4. Participants
with discrimination performance < 55% in block one (suggesting nearly
random choice selection and therefore poor engagement) were excluded from
the data analyses, resulting in the exclusion of 3 participants.

Eye tracking

Eyetracking (EyeLink 1000 Plus) was used to check the participants’ eye
movement during stimulus presentation. A chinrest was used to keep the
distance between the participants and the screen constant (55 cm). Extrac-
tion of microsaccade data was analyzed using the widely adopted approach
described by Engbert and Kleigl [194]. We focused on the combination of
saccades and microsaccades (saccades < 1 degree of visual angle) occurring
within the first four tagging cycles of each trial (the first 2.8 seconds of
stimulus presentation).

Behavioral analysis and statistics

Mixed-effects model of sensory discrimination behavior

A logistic mixed model was implemented to investigate the effect of stimulation
(in-phase or out-of-phase) on the participant’s sensory discrimination as a
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function of both the cued and the distractor sensory evidence. Trials in which
the participant is cued to pay attention to motion, the motion evidence is the
main explanatory variable, while scene evidence is a distractor that should
be ignored and vice versa. The log-odds for making the left or right decision
is given by

β̄ = β0 + β1 ∗ Motion + β2 ∗ Scene + β3 ∗ Stim
+ β4 ∗ Motion ∗ Stim + β5 ∗ Scene ∗ Stim,

(4.1)

where the probability of selecting "right" and explaining the participant’s (s)
response yi,s ∈ 0, 1 (with y = 0: left, y = 1: right) in trial i is given by

θi,s = 1/
(

1 + e−β̄
)

yi,s ∼ Bernoulli(θi,s).
(4.2)

A positive interaction effect between stimulation and sensory evidence (motion
or scene) indicates that the corresponding sensory information influences
participant’s behavior more strongly in the in-phase stimulation condition
compared to out-of-phase.

Dynamic evolution analyses of stimulation effects

To study how the stimulation influenced task performance over time, a
moving window analysis of tACS influences on behavior was performed
with a window length of 90 trials. For each window, a logistic mixed-effects
model similar to the one described above was fitted to the behavioral choice
data. In the corresponding figures, we report the standardized interaction
evidence*stimulation with the error denoting the ± values of 1 SD. The
interaction effects were cluster corrected at P < 0.05 by constructing a null
distribution of cluster sizes, based on shuffling the labels of the stimulation
phase data within participants.

Computational model

Our brain stimulation protocol appears to induce attentional influences in
sensory discrimination performance. However, these results do not clarify
whether these behavioral modulations are indeed specific to boosting the
perception of sensory evidence. A way to clarify this would be to combine
tACS during neuroimaging, however, due to technical and safety aspects, we
were not able to apply current intensities above 2 mA peak-to-peak, while
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in our behavioral studies we applied currents of up to 4 mA peak-to-peak.
Therefore it was not possible to combine tACS and fMRI with the protocol
developed here. Nevertheless, this question can be tackled with the use of
computational models.

We analyzed the influence of tACS on the discriminability of the cued sensory
feature with a prominent mathematical model of two-alternative decisions,
the drift-diffusion model (DDM), which incorporates both observed choices
and reaction times (RT) to decompose the decision process into distinct
latent variables corresponding to distinct aspects of the choice process: (i)
the efficiency of sensory evidence accumulation, known as the drift rate (δ);
(ii) any bias in the choice process (β); (iii) the amount of evidence required
to make a decision, known as the decision threshold (α); and (iv) the delay
in the onset of evidence accumulation, the non-decision time (τ).

The decision-making model implemented here is based on a simple one-
dimensional Wiener process: a dynamical system where the state of evidence
X(t) at time t evolves via the stochastic equation dX(t)

dt ∼ Normal
(
δ,σ2)

where δ represents the quality of information processing defined as δ = kE,
where E represents the sensory evidence level (i.e., the stimulus visibility
in our task) and k a variable that linearly scales the evidence. For initial
conditions, where β represents an initial bias in the process, it is assumed that
the system makes a decision ζ (left or right) at time t whenever X(t) >= α

(right) or X(t) < 0 (left). In addition, we accounted for visual processing
and corticomuscular response delays via the non-decision time parameter
τ (the RT in each trial is defined as RT= t+ τ). The goal is to find the
Wiener distribution, Wiener(δ,α, τ ,β), that best explains the distribution
of empirical choices y(ζ, RT). To this end, we implement a hierarchical
Bayesian model where each individual data point yi,s(ζ, RT) follows a Wiener
distribution

yi,s ∼ Wiener(δ,α, τ ,β), (4.3)

with indices s for subjects (s = 1, . . . ,Nsubjects) and i for trials
(i = 1, . . . ,Ntrials).

Given that in our study we use a hierarchical Bayesian data analysis frame-
work, this allows the convenient possibility of studying the effects of a given
tACS stimulation condition (e.g., in-phase stimulation) on a latent variable
during a baseline condition (e.g., the drift-rate modulator k during out-of-
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phase stimulation or baseline trials). Thus, we study the (potential) relative
change of a given latent variable θ ∈ {k,α, τ ,β} as follows

θs,i = θbase,s + βθ
s ∗Di, (4.4)

where D ∈ {1, 0} denotes whether the modulator condition (e.g., in-phase
stimulation in our example) was present (D = 1) or not (D = 0) in each
trial i. The subscript s denotes that the effect is participant-specific which is
modeled as a random-effects factor under the assumption that it is drawn
from population distributions θbase,s ∼ N(θbase,σbase) and βθ

s ∼ N(βθ,σθ)
where θbase,βθ and σbase,σθ determine the mean and the standard deviation
of the population distributions, respectively.

Sinusoidal model (Experiments 4 and 5)

The aim of Experiments 4 and 5 is to study whether the ongoing tACS phase
relative to a single stimulus presentation modulates non-spatial attention
behavior. We synchronized the ongoing tACS peak at six equally spaced
phase delays over the period of one full stimulation period (Figure 3a). To
study the influence of the delays in a parsimonious parametric model, first,
we performed a separate logistic regression for each participant and each
stimulation delay condition as follows:

θi = 1/
(

1 + e−(βs,d+Ei∗δs,d)
)

yi ∼ Bernoulli(θi),
(4.5)

where yi ∈ {0, 1} denotes the trial-to-trial choices in each trial i as a function
of Ei, which denotes the amount of motion evidence in the trials in which
motion was cued and the amount of scene evidence in those trials scene was
cued. βs,d is a subject (s) and stimulation delay (d) specific bias term, and
δs,d corresponds to a subject and stimulation delay specific slope. Next, we fit
a sinusoidal function through the slope parameters of the logistic regression
as a function stimulation delay:

µs,d(τd) = βs +As sin
(2πτs,d

6 + ϕs

)
δs,d ∼ N(µs,d,σd),

(4.6)

where δs,d is the population distribution of the subject-specific psychometric
slopes for each stimulation delay (d) obtained in Eq. 4.5, and τs,d the timing
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of the different tACS phase delays. βs represents the subject (s) specific offset
of the sinusoidal function with amplitude As. Parameter ϕs determines the
phase shift which was parameterized as a von Misses distribution

ϕs ∼ exp(κ cos(x− ϕ))

2πI0(κ)
, (4.7)

initialized with a flat prior, that is κ = 0, where I0 is the modified Bessel
function of the first kind of order 0.

Here it is important to emphasize that the key parameter determining
a tACS phase-delay modulation is the population level estimate of the
sinusoidal amplitude, which is estimated departing from an exponential prior
distribution

As ∼ λe−λA > 0, (4.8)

with a conservative prior by setting λ = 4. However, we found that our
results are largely insensitive to the selection of this prior. Please note
that this conservative prior promotes smaller amplitudes, as psychometric
slopes larger than 1 are unlikely. Given that this parameter is by definition
positive, the significance of the expected amplitude at the population level
E[A] was determined by comparing this value to a null distribution of
amplitude expected values E[A]rand, based on shuffling the labels of the
stimulation phase data within participants and repeating 5,000 times the
procedure described in Eqs. 6-8 to estimate each E[A]rand. To compare the
effects of tACS across conditions, we obtained a standardized estimate of
the amplitude modulation effect zA. Assuming that the null distribution
of amplitude expected values E[A]rand approximates a normal distribution,
we define the standardized estimate of the amplitude modulation effect zA

as
zA =

√
2 erf−1(2P − 1), (4.9)

where P is the proportion of samples of the null distribution smaller than
E[A], and erf−1(x) is the inverse of the error function erf(x)

erf(x) = 2√
π

∫ x

0
e−t2

dt. (4.10)

Statistical inference

All mixed-effects models in this study had varying subject-specific latent
variables unless otherwise specified in each model description. Posterior
inference of the parameters in the hierarchical models was performed via the
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Gibbs sampler using the Markov Chain Monte Carlo (MCMC) technique
implemented in JAGS, assuming flat priors for all population-level parameters
(unless otherwise specified). For each model, a total of 100,000 samples were
drawn from an initial burn-in step and subsequently, a total of new 100,000
samples were drawn with three chains (each chain was derived based on a
different random number generator engine, and each with a different seed).
We applied a thinning of 100 to this final sample, thus resulting in a final
set of 1,000 samples for each parameter. We conducted Gelman–Rubin tests
for each parameter to confirm the convergence of the chains. All latent
variables in our Bayesian models had R̂ < 1.05, which suggests that all
three chains converged to a target posterior distribution. We checked via
visual inspection that the posterior population-level distributions of the
final MCMC chains converged to our assumed parametrizations. For all
random effects reported here, the reported value corresponds to the mean
of the standardized posterior distribution, and the “P-values” reported for
these regressions are not frequentist P-values but instead directly quantify
the probability of the reported effect differing from zero (PMCMC). They
were computed using the posterior population distributions estimated for
each parameter and represent the portion of the density functions that lies
above/below 0 (depending on the direction of the effect). The standardized
effects of the hierarchical mixed-effects models reported in the main text
were obtained by dividing the expected value of the corresponding posterior
beta estimate by its standard deviation.
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Supplementary Figure 4.1. Control "no-attention" task in Experiments 1 and
2. To study brain activity purely evoked by the visual input, without the influence of
attention, in the fMRI and EEG experiments participants first carried out a version of the
task without non-spatial attention. They were instructed to pay attention to the fixation
cross and to press a button when the fixation cross made a 45° orientation shift. These
orientation shifts would happen at random intervals, uniformly distributed between 5 and
30 seconds. The visual information on the screen was identical to the non-spatial attention
task, with the exception that all text was replaced by nonsense text and the fixation cross
was visible at all times.

Supplementary Figure 4.2. Wide activations of the visual cortex and microsac-
cade analysis. a) Using fMRI without contrasting attentive vs. unattentive states we
find a wide activation of the visual cortex, both when participants are cued for motion
and for scenes. b) Analysis of the eye tracking data shows no significant differences in
the number of microsaccades per stimulus presentation in which motion or scenes were
cued, or in unattentive states. There are also no significant differences in microsaccades
per stimulus for in-phase or out-of-phase stimulated trials (All pairwise combinations of
paired t-tests P > 0.4).
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Supplementary Figure 4.3. Visual stimulus and transcranial electrical stimula-
tion timing. Based on the results obtained in our EEG experiment, we found that the
visual cortex (VC) and the IFJ get entrained to the visual stimulation. The delay between
visual stimulation and the response in the visual cortex was about 100 ms and 150 ms for
the IFJ. Using photosensitive triggers on the monitor we could record the exact timing of
the visual stimulation and compare it to the ongoing electrical stimulation. The timing of
the trough of in-phase stimulation (mean = 95 ms after the trough of visual stimulation,
SD = 9) is represented in green and out-of-phase (mean = 445 ms after the trough of
visual stimulation, SD = 15) in red. By timing the tACS waveform a few ms before the
tagged slow rhythmic fluctuations in visual and prefrontal areas, we hypothesized that we
could maximize the influence of the stimulation on behavior.
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Supplementary Figure 4.4. tACS electric field predictions and coregistration
procedure. a) Model geometry with the identified IFJ (in white) and the stimulation
electrodes (round in yellow and ring in blue) above the target. The contour of the electrodes
is highlighted in black. The identification of the IFJ in the MIDA was done by coregistering
the MIDA with the Brainnetome atlas. b) The IFJ segmented from the atlas (in white) and
target electrode (in blue) displayed together with the cortical target (in yellow) identified
in the MNI space. c) Left: absolute E-field distribution on the cortical surface for an input
current of 4 mA (peak-to-peak). Right: Surface views of the total E-field magnitude (top
view) and of the normal E-field component to the cortex (bottom view) which is considered
to be the principally relevant E-field component coupling with the electrophysiology of
pyramidal neurons. d) Boxplots represent the distribution of the E-field in each voxel
within the IFJ (0.24 ± 0.06), PPA (0.028 ± 0.008), and MT+ (0.013 ± 0.004). These results
indicate that the relevant sensory areas in this study were not affected by the application of
our tACS protocol. Moreover, the fact that influences of our tACS protocol on non-spatial
attention were larger in motion relative to scenes cannot be explained by differences in
E-field strength as these are negligible in both sensory areas. e) In the control experiment
(Experiment 5) the electrodes are placed on the Cz location of the 10-20 EEG coordinate
system, therefore stimulating the motor cortex. f) Same as in d but for the electrical fields
as produced in the control experiment. The distributions of the E-field is within the IFJ
(0.04 ± 0.01), PPA (0.008 ± 0.002), MT+ (0.007 ± 0.002).
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Supplementary Figure 4.5. The tACS-induced behavioral changes in sensory
discrimination of the cued feature are not likely to be influenced by behaviorally-
induced effects in the irrelevant feature. a Participants are not distracted by uncued
evidence irrespective of the stimulation phase. When participants are cued to motion, scene
evidence does not influence their decisions and when cued to scenes motion evidence does
not influence their decisions. b A moving window analysis shows that there is no significant
effect of the stimulation on distraction through time. The grey shaded area indicates the
windows for which stimulation was turned on. Shaded areas around the lines indicate
± 1 SD of the posterior estimate of the interaction evidence*stimulation. c Comparing
in-phase and out-of-phase stimulation against baseline performance we find that for trials
in which motion is cued neither in-phase nor out-of-phase distraction levels differ from
baseline (P < 0.05 uncorrected). For scene trials at certain time point participants are
significantly distracted by motion evidence. The negative sign of this effect indicates that
participants tend to choose outdoor (right button) when motion evidence is towards the
left and indoor (left button) when motion evidence is towards the right.
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5.1. Abstract

There is growing evidence that obesity is associated with alterations in dietary
decision-making. However, a comprehensive description of these alterations
is lacking. We develop models of dietary decision-making based on the
idea that the value of food items depends on the sum of their nutritional
and non-nutritional attributes. We find that participants are influenced by
many nutritional and non-nutritional attributes when asked to rate their
willingess to eat a snack or to make a choice between two snacks. We find that
participants are influenced by their beliefs about the nutritional attributes
rather than the true attribute values. We also repeat previous findings that
overt attention has an influence on choice. We compared the behavior of
participants with and without obesity, and found they nutritional and non-
nutritional attributes had similar influence on their willingess to eat ratings.
However, we found differences in the influence of these attributes and overt
attention on the choices of the participants. This allowed our models to classify
with an AUC-ROC of 0.8 the BMI group of individuals based on their choices.
Importantly, these models are easy to interpret, and can indicate which
choices and which attributes carry information about BMI group.

169
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5.2. Introduction

What makes a food item valuable? A possible response is that the value of a
food item stems from its nutritional attributes. For instance, someone who
likes sugar and fat may prefer to eat a piece of cake over a carrot. Healthiness
can also be considered a nutritional attribute and may also play a role in the
valuation process. Our decision maker choosing between a piece of cake and a
carrot may weight healthiness more than sugar and fat, and reconsider their
choice. In addition to the nutritional attributes, food items may be given
value based on their non-nutritional attributes. For instance, consider two
cakes made with the same ingredients. If one of these cakes is well decorated,
you will likely prefer to eat it over a cake that is not. Therefore, we can
consider that food valuation is a process that depends on the weighing of
different nutritional and non-nutritional attributes.

Previous studies have investigated how nutritional attributes influence value.
These studies typically correlate nutritional attributes of food items with
the willingness to pay for these items. The results point to the influence
of calories, [195], fat, carbohydrate, sugar, protein, sodium, vitamins [196]
and the combination of fat and carbohydrate [197]. Some studies investigate
if the food item valuation is rather influenced by the participants’ belief
about the content of nutritional attributes or their true content, with mixed
results [195, 196]. There has also been a focus on studying the different effects
of healthiness and tastiness ratings on food choice [63, 198, 199]. However,
with the exception of the price of the item, these studies typically do not
consider non-nutritional attributes.

In comparison to nutritional attributes, the influence of non-nutritional at-
tributes on the valuation process has been less studied. This gap is unjustified,
as non-nutritional attributes such as price [200], color [201] and texture [202]
can influence taste perception. Lee and Hare [203] found that in addition
to healthiness and tastiness, appearance and texture influence valuation.
Consumer behavior research has been interested in the influence of packaging
of the items, and has found that packaging shape and color influence the
consumers willingness to pay for an item [204]. Altogether, the valuation of
food items depends on nutritional and non-nutritional attributes.

Another line of research has considered the role of attention in decision-
making. When faced with a choice, our brains may not be able to process all
options equally. It has been suggested that the gaze dynamics (i.e., which
items the participant looks at), which can be measured by eye-tracking, can
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reveal where the participant pays attention and therefore which options are
considered at a given time. Following this approach, it has been found that
participants tend to choose more the items that they look at longer [64, 65].
This effect has been found for non-dietary goods, but also for food items.
Considering these attentional mechanisms may help to understand dietary
decision-making.

Understanding dietary decision-making is relevant to understand disorders in
which dietary decision-making is altered, for example obesity. It has become
clear that dietary decision-making is altered in obesity [60]. However, it is
still unclear which decision-making processes are altered. Several studies have
investigated these alterations. For example, no difference has been found
between liking and wanting milkshakes between individuals with and without
obesity [205]. However, the effect of the combination of fat and carbohydrate
on willingness to pay for a food item has been observed in healthy participants
but not in individuals with obesity [206]. Numerous studies have investigated
differences in attention to food items in obesity [207–213]. A meta-analysis
concluded that individuals with obesity had no attentional bias to food
images as measured by eye-tracking metrics [214]. However, to the best of
our knowledge, there has been no study investigating the role of attention in
decision-making in obesity.

The goals of this study are to investigate the influence of nutritional and
non-nutritional attributes on dietary decision-making, while taking into
account the effects of attention, and to investigate if there are difference
between individuals with and without obesity. We study two aspects of
decision-making, the estimation of value by asking participants to rate their
willingness to eat an item at the end of the experiment, and the choice
of participants by asking them to choose between two items. We also ask
participants to rate the nutritional content of these items, to see if their
valuation is based on their beliefs about the nutritional content or the true
nutritional content.

5.3. Results

We recruited 25 patients referred for obesity treatment and 25 lean controls
(Figure 5.1a). To limit the potential confound of nutrition literacy, each
participant carried out a nutrition course before taking part in the experiment
(see Methods). During the lab visit, the participants carried out three tasks.
In a first task (Figure 5.1b), they were asked to rate how much they would like
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to eat different snack items at the end of the experiment. We refer to these
ratings as subjective value (SV) ratings. In a second task (Figure 5.1c), they
were asked to estimate nutritional attributes (fat content, protein content,
added sugar content and healthiness) of the snack items. In the last task
(Figure 5.1d), the participants were shown on each trial two food items, and
had to select the one they wanted to eat. This task was fully incentivized, as
participants were informed that they would receive one of the chosen items
at the end of the experiment.

The snack items were easy to consume items from the two leading supermar-
kets in Switzerland and selected to have large variance in their attributes and
low correlation between attributes (see Methods and Supplementary Figure
5.1). The pictures of the snack items presented to the participants contained
a plate with one portion of the item and the packaging of the item in the
background to clarify the nature of the item.

Figure 5.1. Study overview. a) Outline of the study. 25 patients with obesity and 25
lean individuals were recruited. Each participant completed a nutrition course before the
lab visit. During the visit, they carried out three tasks. b) In the valuation task, they
rated how much they were wanted to eat different snacks at the end of the experiment.
c) In a second task, they estimated the fat content, protein content, added sugar content
and healthiness of the snacks. d) In the choice task, they choose on each trial the snack
they wanted to eat between two alternatives. e). The Spearman correlation between the
attribute ratings and the objective values were all positive for the group with (yellow,
t(24) > 13.78, p < 0.001) and without (blue, t(24) > 18.15, p < 0.001) obesity, indicating
both groups had knowledge about these attributes. An ANOVA indicated no significant
difference between the groups for all attributes (F (1, 48) = 3.63, p = 0.063) nor specific
attributes (F (3, 144) = 2.14, p = 0.097), indicating that there is not significant difference
in knowledge about the attributes across groups.
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Participants have good knowledge of the nutritional attributes

We first wanted to check if the participants had a good knowledge of the
nutritional attributes. To quantify this knowledge, we computed the Spearman
correlation between their attribute ratings and the objective per portion
attribute values (Figure 5.1e). The Nutri-Score [215] was used as an objective
measure of healthiness. These correlation values were positive, indicating that
the participants had some knowledge about the attributes of these snacks. We
also check if there were difference in knowledge about the attributes between
groups. An ANOVA showed no significant difference between the groups
for all correlations (F (1, 48) = 3.63, p = 0.063) nor between the groups for
specific attributes (F (3, 144) = 2.14, p = 0.097), which suggests that the
differences between groups presented below are not driven by differences in
nutrition literacy.

Subjective attribute ratings better explain SV ratings than objective attributes
values

Having established that there were no significant difference in the knowledge
of nutritional attributes between groups, we next investigated the responses
of the participants to the valuation task. In particular, we fit the subjective
value ratings of the participants with a hierarchical linear regression (see
Methods). We compared the fit of the individual attribute ratings to the fit of
objective attribute values per portion or density (as the Nutri-Score is only a
density measure and not defined per portion, it was used in both attribute per
portion and attribute density models). We compared the goodness of fit of
these models with the leave-one-out information criterion (LOOIC) [134]. We
found that subjective attribute ratings provided a better fit than objective per
portion (∆LOOIC = 830) and density (∆LOOIC = 775) attributes (Figure
5.2a). Notice that the participants carried out the subjective value rating
task before the attribute rating task, therefore they were not influenced
to used their attribute ratings for their subjective value estimation by the
experiment structure. This indicates that participants base their SV ratings
on their beliefs of the nutritional attributes rather than the true nutritional
attributes.

SV ratings are best explained by nutritional and non-nutritional attributes

In order to further investigate the role of nutritional and non-nutritional
attributes in value estimation, we tried to improve the fit of the model
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further by including objective attributes values (either per portion or density)
for which no ratings were collected (carbohydrate, sugar, salt, fiber, energy
and price), the weight of the portion and low-level image attributes (image
colorfulness, entropy, variance and saturation, see Methods). These attributes
improved the model fits, with the density attributes providing a better fit
than the per portion attributes (∆LOOIC = 55). Finally, following previous
reports [197, 205], we included the interaction of carbohydrate and fat density
which improved the model further (∆LOOIC = 114). This model provided the
best fit in both groups separately (Supplementary Figure 5.2). Importantly,
the LOOIC metric accounts for model complexity. Therefore, these results
cannot be explained by lack of penalization of model complexity and indicate
that participants base their SV ratings on many different nutritional and
non-nutritional attributes.

No significant difference between groups in the influence of nutritional and
non-nutritional attributes on SV ratings

We next investigate how these different nutritional and non-nutritional at-
tributes influence SV ratings for each group. This is captured by the weights
of the linear regression (Figure 5.2a). The nutritional attribute with the
highest influence was the healthiness ratings (PMCMC < 0.001, d = 4.59
and PMCMC < 0.001, d = 7.02 in the groups with and without obesity,
respectively), and the non-nutritional attribute with the highest influence
was image colorfulness (i.e., a metric that correlates with human report of
image colorfulness, PMCMC < 0.001, d = 5.32 and PMCMC < 0.001, d = 4.05
in the groups with and without obesity, respectively). Importantly, we find
no significant difference in weights between the two groups, indicating that
nutritional and non-nutritional attributes influence SV ratings in a similar
way in individuals with and without obesity.

SV ratings but also other attributes influence choice

We continued our investigation by looking at the choices of the participants
in the choice task. Our first approach was to fit the choices of the participants
with a hierarchical logistic regression (see Methods). We first compared a
model considering only the SV ratings to multi-attribute models considering
SV ratings and nutritional attributes. If the participants only relied on their
SV ratings to guide their choices, we would expect the model considering
only SV to have the best LOOIC. However, we found that models considering
SV and nutritional attributes outperformed the models considering only SV
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Figure 5.2. Model comparison and model parameters Each panel shows the dif-
ference in LOOIC between models (left) and the regression weights of the best fitting
model (right). a) Model fits of SV ratings with hierarchical linear regressions. Attribute
ratings explain SV ratings better than objective attribute values. The best fit is obtained
by combining attribute ratings, attributes values per density for which not ratings were
collected, portion weight, low-level image attributes and the interaction of fat and carbohy-
drate per density. In the lean group, we observed a positive influence of healthiness rating,
energy density, portion weight, image colorfulness and interaction of fat and carbohydrate
density, as well as a negative influence of image entropy and image variance. In the group
with obesity, we observed a positive influence of healthiness rating, portion weight, image
colorfulness and a negative influence of image entropy and image variance.
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Figure 5.2:
(continued) b) Model fits of choices with hierarchical multi-attribute logistic regressions.
Models combining SV ratings and attribute ratings provided a better fit than models
combining SV ratings and objective attribute values. The model fit was obtained by
combining SV ratings, attribute ratings, objective attributes per portion for which no
ratings were collected, low-level image attributes and relative gaze of the participants.
Choices were positively influenced in the lean group by SV ratings, health ratings, energy
per portion and relative gaze, as well as a negative effect of added sugar rating, image
colorfulness and image saturation. In the group with obesity, we observed a positive
influence of SV ratings, healthiness ratings, carbohydrate per portion and relative gaze,
as well as a negative influence of added sugar rating, sugar per portion, portion weight
and image entropy. We observed differences in weights between groups in the influence of
carbohydrate, sugar and energy per portion, image colorfulness and entropy, and relative
gaze. c) Models fits of choices with a DDM. We observe a similar pattern of model goodness
of fit, however the best model considers the attribute density of the attributes for which
no ratings were collected. This lead to some changes in the significance compared to
the logistic regression. In the lean group, in addition to the effects found in the logistic
regression, we observed a positive effect of portion weight and price per density and did not
observe a significantly negative effect of added sugar rating. In addition, we did not observe
significant differences between the groups in sugar and energy density, but we did observe
differences in portion weight and price density. Significant stars indicate significance levels
of a Bayesian two-tailed t-test (*PMCMC < 0.05/2, **PMCMC < 0.01/2, ***PMCMC <
0.001/2, non-significance is not indicated).

ratings (∆LOOIC > 502, Figure 5.2b), which indicates that the participants
do not only rely on their SV ratings to guide their choice, but are also
influenced by other attributes.

Choices are better explained by subjective attribute ratings than objective
attributes values

We next investigated if participants based their choices on their belief about
the nutritional attributes or the true nutritional attributes. Mirroring the
results of the SV ratings models, we found that a model considering attributes
ratings outperformed the models considering true attribute values (∆LOOIC
> 90). In addition, the model could be further improved by adding the
attributes for which no ratings were collected and low-level image attributes
(∆LOOIC = 450 and ∆LOOIC = 467 for per portion and density attributes,
respectively). Including the interaction of fat and carbohydrate did not
improve the model (∆LOOIC = -9). To investigate the effect of attention
on choice, we added the relative gaze (i.e., how much time the participant
looked at the left item relative to the right item (see Methods)) as a regressor,
which led to the best fitting model (∆LOOIC = 869). These results indicate
that, as SV ratings, the choices of participants are based on the participants
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beliefs about the attributes rather than the true attributes, that these choices
are influences by many nutritional and non-nutritional attributes and the
relative gaze of the participants.

Nutritonal and non-nutritional attributes influence choice differently in indi-
viduals with and without obesity

We then investigated the weights of the logistic regression. We report these
weights in (Figure 5.2b). The SV ratings had the highest effect on choice
(PMCMC < 0.001, d = 9.24 and PMCMC < 0.001, d = 9.23 for individuals
with and without obesity, respectively), indicating that choices are strongly
driven by SV estimates. However, as described above, the nutritional and
non-nutritional attributes also have an influence, showing that participants
incorporate additional information that was not considered during the SV
ratings task.

Contrasting with the results of the SV ratings, we do find differences in
attribute weights between the two groups, which indicates that individuals
with obesity are influenced differently by these attributes. The nutritional
attribute with the largest difference between groups was carbohydrate per
portion, which had a higher influence on choice in the group with obesity than
the group without (PMCMC = 0.001, d = -3.10). We also found significant
differences in the influence of sugar per portion (PMCMC = 0.012, d = 2.25)
and energy per portion (PMCMC = 0.007, d = 2.44). We also observed
differences in the influence of non-nutritional attributes, in particular image
colorfulness (PMCMC = 0.003, d = -2.69) and image entropy (i.e., how much
variation there is in pixel values, PMCMC = 0.019, d = 2.18).

Accounting for reaction times leads does not change the main results of the
logistic regression

It has been suggested that response times (RTs) carry meaningful information
about the decision process. A popular modal to account for RTs is the drift-
diffusion model (DDM) [143, 216]. The DDM assumes that evidence for one
item versus the other is accumulated over time until a bound is reached
which causes the decision maker to choose the corresponding option. The
rate of the evidence accumulation depends on the product of the difference
in attribute values and the corresponding weights that are fit, in contrast to
the logistic regression where the difference in attributes and weights directly
influence the choice probability. This change allows the DDM to not only
account for the choices but also the RTs of the participants.
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We investigated if accounting for RTs would change our results. We repeated
our analysis of the choices of participants using a DDM. The best fitting
model considered the same attributes than the logistic regression, however
the attributes for which no ratings were collected were considered by density
instead of per portion (Figure 5.2c). The weights of the DDM were mostly
similar to the ones of the logistic regression (Figure 5.2c) and the differences
can likely be explained by switching between using attributes values for which
no ratings were collected per portion or density. Overall, besides the change
from per portion to density values, accounting for RTs does not change
the main results of the logistic regression. Models considering attribute
ratings instead of attribute true values provide a better fit, participants base
their choice on many nutritional and non-nutritional attributes, and these
attributes affect differently individuals with and without obesity.

Eye-tracking reveals difference influence of overt attention on choice

In both the logistic model and DDM, we considered the influence of gaze.
There are two approaches to include gaze. Gaze can be considered to have an
additive effect (i.e., there is a bias towards the item that is looked at longer,
in which case a regressor is simply added to the model) or a multiplicative
effect (i.e., gaze influences how the other attributes influence choice, in which
case a discount factor is used to model how much the attributes of the fixated
item influence choice compared to the attributes of the unfixated item).
Previous reports have shown that a multiplicative model better captures
human behavior than an additive model [217]. We tried both approaches. In
the logistic regression, only the additive model reached convergence. In the
DDM, the additive model outperformed the multiplicative model (∆LOOIC
= 93). Therefore, our results are not consistent with the literature. However,
notice that typically these models do not contain as many regressors, which
could explain this discrepancy. Nevertheless, we investigated the effect of
gaze based on the additive approach. We found that the relative gaze had
a positive influence on choice (PMCMC < 0.001, d = 9.14 and PMCMC

< 0.001, d = 7.45 for individuals with and without obesity, respectively)
in the logistic regression, consistent with previous reports of a correlation
between looking at an item and choosing the item [64, 65]. In addition, the
gaze affected differently individuals with and without obesity (PMCMC =
0.009, d = -2.40), with individuals with obesity having a higher correlation
between looking at the items and choosing them. This results indicates that
not only do the influence of nutritional and non-nutritional attributes on



5.3 results 179

choice differs in individuals with obesity, but also the effect of overt attention
on choice.

Figure 5.3. Model predictions. a) Receiver operating characteristic (ROC) curve of
the linear model explaining SV ratings (left), logistic model explaining choices (middle)
and DDM model explaining choices (right). Shaded areas represent standard deviation
computed by bootstrapping across leave-two-out permutations. The grey dashed line
represent a random model. The model explaining SV ratings does not predict accurately
the BMI group of the participants. However, the models explaining choices do perform
above chance level. b) Average difference in log-likelihood (∆LL) over trial number for
participant without (left) and with obesity (right). Positive values represent a model belief
that the participant is lean, and negative values represent a belief that the participant has
obesity. The difference in ∆LL between the groups increases with trial number, indicating
that the model increases its prediction confidence. c) Evolution of ∆LL for an example
participant with obesity. On trial number 89, the participant chose a bread roll over
tortilla chips, which increased the model’s belief that this participant does not have obesity.
On trial 115, the participant chose vanilla custard instead of fruit yogurt, increasing
the model’s belief that this participant has obesity. AUC-ROC: area under the receiver
operating characteristic curve.

Choices but not SV ratings predict the BMI group of participants

As we have used simple multi-attribute models, they can easily be interpreted
(e.g., identifying that the influence of colorfulness on choice is different between
individuals with and without obesity). Therefore, if the models could predict
the BMI group of the participants, we could not only use them to classify an
individual, but also to identify which factors of this individual are more similar
to individuals with or without obesity. With this in mind, we investigated if
our models could accurately classify the BMI group of participants based on
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their responses. To this end, we conducted a leave-two-out cross validation
approach, where we fit the model on the data excluding one participant from
each group. Using our hierarchical framework, we derived the population
weights for each group. We then used these estimates to compute for each
trial the log-likelihood that the left-out participants have obesity (LLo(p, t),
where p corresponds to the participant number and t is the trial number)
and the LL that the participants are lean (LLl(p, t)), given their responses.
We can then compute the belief that the participant p is lean given their
responses on trial t:

δLL(p, t) = LLl(p, t) −LLo(p, t) (5.1)

If δLL(p, t) is positive, this indicates that the model believes the response on
trial t of participant p to be more consistent with a lean than an obese BMI,
and the opposite if the value is negative. The higher the value, the more
confident is the model. To decide how the participant should be classified
after completing T trials, we can sum:

∆LL(p,T ) =
T∑

t=1
δLL(p, t) (5.2)

If we set T to the total number of trials Tmax, then ∆LL(p,Tmax) captures
our belief about the BMI group of the participant after completing all trials.
If this value is positive, the model believes that this participant has a lean
BMI and the opposite if the value is negative. We may choose to bias our
model towards classifying participants as belonging to a lean or obese BMI
group, for example by requiring the threshold to be classified as lean to be
2 instead of 0. Changing this bias influences the sensitivity (true positive
rate) and the specificity (true negative rate). Depending on the goal, it may
be useful to bias the model one direction or the other. However, in our case
we are simply interested in the predictive performance of the model. To
measure the predictive performance of the model, we measure the AUC-ROC
metric, which captures performance for different levels of trade-off between
sensitivity and specificity. The AUC-ROC metric takes a value of 1 for a
perfect classification and 0.5 for a chance-level classification.

The model explaining the SV ratings of the participants was unable to distin-
guish between groups (AUC-ROC = 0.42, Figure 5.3a). This was unsurprising,
as we did not find any difference in the weights of the model explaining SV
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ratings. However, the models explaining the choices correctly classified in-
dividual with and without obesity (AUC-ROC = 0.80 for both the logistic
and the DDM model). Figure 5.3b illustrates how the predictions of the
logistic model evolve over trial number for each group. As the number of
trials increases, the difference in classification likelihood between the groups
increases, indicating the that model increases its confidence. After around 50
trials, the two curves are clearly distinguishable, suggesting that the model
has already correctly classified individuals. An advantage of our approach
is the ability to identify which choices changed the beliefs of the classifier.
As an example, we show in Figure 5.3c the time course of the predictions
of the logistic model for a single participant and highlights which choices
changed the belief of the model. For example, on trial 115, the participant
chose vanilla custard over a fruit yogurt, increasing the model’s belief that
this participant has obesity. Taken together, these results clearly indicate
that choices carry information about the BMI group of the participants, but
the SV ratings do not.

5.4. Discussion

Our main result is that choices, but not SV ratings, are different between par-
ticipants with and without obesity. These choices are influenced by SV ratings,
nutritional and non-nutritional attributes, and overt attention (as captured
by the relative gaze). We built a classifier based on our multi-attribute model,
which can not only predict the BMI group of participants, but is also easily
interpretable, in terms of which choices and which attributes weight on the
prediction. We achieved an AUC-ROC of 0.80, which is surprising given the
simplicity of ours models and paradigm. This accuracy may be improved by
adding more participants, more food items or more attributes (see discussion
below). One may also use more sophisticated machine learning methods
such as neural networks, however their downside is that they are not easily
interpretable, therefore understanding which attributes are responsible for
the differences between groups is difficult to understand. Additional work is
needed, but overall, a classifier could be used in the future by clinicians to
follow the behavior phenotype of their patients throughout a treatment or
to identify individuals susceptible to develop obesity. For this application,
building interpretable models as we have done will be valuable.

We observed that both groups do not only base their choices on their SV
ratings, but are in addition influenced by other nutritional and non-nutritional
attributes. This result is reminiscent of preference reversals observed in risky
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choice [218]. Participants are willing to bid more for risky gambles, but
choose low-risk gambles in a choice task. This result can be explained by
changes in attention to different attributes between auction and choice tasks
as revealed by eye-tracking [219, 220]. One may speculate that a similar
process is at play to explain difference between SV rating and choice in our
study. Although eye-tracking cannot be used to disentangle the attention
to different attributes in our food choice task, our computation models can.
For instance, they indicate a positive influence of image colorfulness during
SV rating but a negative influence of image colorfulness during choice in the
lean group. This suggests that the context of the task changed the attention
of participants to colorfulness. We cannot rule out the possibility that the
participants changed their preference between the rating phase and the choice
phase, which could be expected as participants become more hungry. Future
studies could collect SV ratings after choices to control for this. However,
it has been suggested that participant change their ratings based on their
choice [221], which makes disentangling the effect of hunger a challenging
question.

A result of this work is that participants base their dietary valuation on
their beliefs about the nutritional attributes for fat, protein, added sugar
content and healthiness rather than the true values of these attributes. This
is consistent with a previous report showing that a model considering ratings
for fat, carbohydrate, sugar, protein, sodium and vitamins [196] performed
better than a model considering the true values of these attributes. However,
the opposite was shown in the case of calories [195]. It is unclear if calories
weight differently on valuation than other attributes, or if this difference
is simply due to difference methodologies or difference in the study group.
Further investigating the difference between calories and other nutritional
attributes could be a line of work for future research.

We found an influence of low-level image attributes in dietary decision-making.
These could be due to a link between flavor and low-level image attributes
in the food items (e.g., chocolate flavored items are less colorful than fruit
flavored items). Another view is that low-level image attributes directly
influence the participants’ valuation. For instance, it is known that color can
influence the perception and preference of foods [222]. Future studies could
manipulate these low-level image attributes to understand their effect on
valuation. We also observed difference between the groups in the influence
of these low-level image attributes in choices. Intriguingly, obesity has been
associated with deficits in visual cortical function [223]. Future studies could
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investigate if these deficits are linked to differences in the influence of low-level
image attributes during choice.

Consistent with previous reports [64, 65], participants chose more often the
items that they looked at longer. This effect was larger in participants with
obesity, as if they were ignoring more the option that they are not looking at.
This could be linked to the cognitive deficits observed in obesity, in particular
in working memory [224, 225]. Future eye-tracking studies could investigate
this question. The underlying causality of this effect is also unclear. Although
it has been shown by manipulating attention that participants tend to choose
items that they look at longer [226], therefore suggesting that this is effect is
not driven by participants looking longer at the item they want to choose, it
is unknown if this effect is also driving the difference between participants
with and without obesity.

We decided to model subjective value ratings and choice with a linear and
logistic regression respectively. In doing so, we implicitly assumed that the
value is constructed from a linear combination of nutritional (and non-
nutrientional) attributes. With the exception of fat and carbohydrate, we
did not investigate the interaction of attributes. However, the enthusiasm for
cooking and eating complex foods in modern societies suggests that food is
more than the sum of its attributes. In addition, seminal food science work
has shown that attributes have a quadratic effect on pleasure [227, 228]. For
instance, sweetness increases liking until a certain point after which further
increase causes a decrease in liking. In addition, food choices can also be
influenced by the decision-maker’s beliefs about the social and environmental
impacts of the foods [229] as well as social norms [230, 231]. This complexity
is ignored by our current model and could be the subject of future work.
Different solutions have been proposed to deal with this complexity. One
approach is to use large-scale crowd-sourced data to identify which attributes
are meaningful for choice [232]. Another approach suggests that the brain
does not combine attributes to construct value but rather compares options
to previously memorized experiences [233]. Overall, a better understanding
of how the brain processes value will likely improve our understanding of
obesity [234, 235].

Many studies investigate dietary decision-making as a way to understand value
based decision-making [74, 122, 236–238]. Similar to our study, a common
paradigm is to ask participants to rate their willingness to eat different items,
and then to ask them to choose between two items which one they want to
consume. It has previously been shown that choices can be better explained
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by adding attribute ratings in addition to the subjective value ratings, such
as taste, healthiness, texture and appearance [203]. Our results echo these
findings and indicate that simply adding objective attribute can significantly
improve the fit of choice data. In addition, our results indicate that the
Nutri-Score [215] can be used as a proxy for healthiness ratings. Together,
these results suggests that future decision-making studies could add objective
attributes to improve their model fits and thus their ability to test their
hypotheses.

Our study does not provide any knowledge about the causality of the effects.
For instance, does obesity cause individuals to choose more the item that
they look at longer, or is this caused by a factor of obesity? Although age
and gender were similar across groups, we cannot exclude that our results
are linked to another factor which is correlated to obesity. Longitudinal
studies are necessary to answer these questions. Our study is also limited by
the fact that is does not tackle the questions of hunger and blood nutrient
levels. Although participants were instructed to not eat before the study, it is
unknown if both groups reacted similarly to fasting and had the same level of
hunger and blood nutrients. Finally, a common limitation of dietary decision
making studies is that it is unclear if these results are dependent of the food
item set or cultural preferences. Reproducing these results in another country
would improve the their generalizability.

It has been suggested that psychiatric disorders can be better understood
by phenotyping human behavior through computational modeling [239]. We
believe a similar approach is possible for obesity [240] and that the presented
work for is a step in this direction. Future studies could combine this behavior
phenotyping with neural imaging data [241] to further identify the latent
parameters associated with obesity. Understanding these latent parameters
could help tailor the prevention and treatment of obesity.

5.5. Methods

Participants

We recruited 25 patients (17 females, 42.9 years old ± 12.1, BMI 38.3
± 4.7 (mean±SD)) who were referred for a clinical obesity intervention
and 25 lean controls (16 females, 41.4 years old ± 13.4, BMI 21.9 ± 2.4
(mean±SD)). We excluded participants who did not fit MRI inclusion criteria
(e.g., claustrophobia). One participant could not carry out the task as they
did not fit comfortably in the MRI scanner, so another participant was
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recruited to replace them. All participants provided informed consent before
participating in the study and were compensated with 100CHF for their
participation. The study conformed with the declaration of Helsinki and was
approved by the ethics committee of the Bern canton.

Stimuli

The stimulus set consisted of 64 pictures of food items. The pictures con-
tained one portion of the item on a plate and the package of the item in
the background. The portion size was based on the package information
when available. To select the food item set, we identified 272 food items
from the two leading supermarkets in Switzerland that we considered could
be eaten as a snack. We selected a subset of 64 food items that minimized
correlations between fat, protein and sugar content and the Nutri-Score. For
each participant, we replaced the items that they did not know or could not
eat due to dietary restrictions which a similar item for which we had images.
This lead to the replacement of an average of 3.2 images for 6 patients and 1.2
images for 5 controls. Nutritional attributes were collected using the package
information when available and from Open Food Facts (ch.openfoodfacts.org)
when necessary. The Nutri-Score was computed using an online calculator (si-
monetthomas.github.io/CalculateurNutriscore/index.html) using the general
category for all items. We used the numerical values from -15 to 40 instead
of the 5 letter categories for a more refined description of healthiness. We
multiplied these values by -1 for the results presented in Figure 5.1 and Sup-
plementary Figure 5.1, such that positive values reflected higher healthiness to
be consistent with the participants’ ratings. We extracted the image entropy
and variance in R with the glcm package [242] and the image saturation
with the magick package [243]. Image colorfulness was computed with the
efficient colorfulness computation proposed by Hasler and Süsstrunk [244].
We chose to limit our analysis to these low-level image attributes as they
had a relatively low correlation between each other (Supplementary Figure
5.1).

Behavioral paradigm

To reduce the potential inter-individual differences in nutrition literacy, all
participants completed an online nutrition course which lasted about 25min
before visiting the lab. To minimize the difference in hunger level we asked
participants not to eat 4 hours before coming to the experiment. Prior to
the tasks, the participants were shown all images of food items and asked
to report items that they did not know or could not eat due to dietary
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restrictions. They were informed that all question referred to the portion size
that was presented on the plate in the image. The behavior paradigms were
run using Pschychtoolbox [245–247] on Matlab 2019a (Mathworks, Natick,
MA, USA).

Valuation task

The valuation task was performed in the MRI scanner. On each trial, the
participants were shown an image for 3s. They were then asked to answer the
question "Wie gerne würden Sie dieses Lebensmittel am Ende des Experiments
essen?" ("How much would you like to eat this food at the end of the
experiment?") by moving a cursor on a response bar going from "gar nicht"
("not at all") to "sehr gerne" ("very much"). They could move the curse left
or right using two different buttons and confirm their response with a third
button. The initial position of the cursor was randomized on each trial. The
participants had no explicit time limit to respond but were asked to answer
faster than 5s on average. Their response was then shown on the screen for
0.5s. The intertrial interval was drawn from a gamma distribution with shape
parameter 6 and scale parameter 1 and truncated between 2 and 15s. The
participants completed 8 runs of 16 trials each, thus each item was rated
twice.

Attribute-rating task

The attribute-rating task was performed outside the MRI scanner. The
participants were asked to rate the items based on their fat content ("Wie hoch
ist der Fettgehalt dieses Lebensmittels?"), their protein content ("Wie hoch ist
der Proteingehalt (Eiweissgehalt) dieses Lebensmittels?"), their added sugar
content ("Wie hoch ist der zugesetzte Zuckergehalt dieses Lebensmittels?")
and their healthiness ("Wie gesund schätzen Sie dieses Lebensmittel ein?").
On each trial, the item was presented for 3s. The participants were then
asked to rate the items by moving a cursor on a response bar from going from
"sehr niedrig" ("very low") to "sehr hoch" ("very high") or "sehr ungesund"
("very unhealthy") to "sehr gesund" ("very healthy") in the case of health
ratings. The initial position of the cursor was randomized on each trial. The
participants could use a mouse to move the cursor and a left click to respond.
The participant had no time limit to respond. Their response was shown
on the screen for 0.5s, followed by an intertrial interval jittered between 0.5
and 1s. The participants rated the different attributes one after the other
in a random order. For each attribute rating, the images were presented
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in a random order. In both the attribute-rating task and the choice task,
the participants sat about 70cm from a 24inch monitor (Philips brilliance
240b).

Choice task

The choice task was performed outside the MRI scanner. On each trial, two
food items were displayed simultaneously, one on the left and one on the
right side of the screen. The participants were asked to choose the item they
wanted to eat at the end of the experiment. To incentivize them to respond
truly, they were informed that one trial would be randomly selected at the
end of the experiment and that they would receive the item they chose on that
trial. There were given a time limit of 5s to respond and could respond using
the left and right arrow keys of the keyboard. In total the participants missed
the response deadline 69 times. Their response was kept on the screen for 1s.
The task had an intertrial interval jittered between 0.75 and 1.25s.

To select the items pairs presented in the choices we computed the average
SV rating of each item based on the ratings of the valuation task and the SV
difference of each item pair. We divided the SV difference in 4 levels (0%-5%,
5%-10%, 10%-15% and 15%-20% of the length of the rating scale). The trials
were fully counterbalanced across these differences in subjective value levels
as well as the location of the higher SV option (left or right).

Eye-tracking

Eye-tracking data was collected for 20 participants in the group with obesity
(14 females, 49.7 years old ± 13.2, BMI 37.6 ± 4.6 (mean±SD)) and the group
without obesity (12 females, 36.0 years old ± 9.5, BMI 21.9 ± 2.6 (mean±SD))
using the Tobii Pro Nano (Tobii Pro AB, Stockholm, Sweden) and the Titta
toolbox [248]. The eye-tracker was calibrated for each participant using 5
calibration points. We considered that the participant was looking at a given
item if his gaze was more than 5cm towards that item compared to the center
of the screen. Trials in which the gaze contained missing values were removed
(31 trials from participants without obesity and 2 trials from participants
with obesity).
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Behavioral analysis and statistics

Model description

The weights (including the intercept) of the linear regression, logistic regres-
sion and DDM were all fit hierarchically. Each participant level parameter
was drawn from a group distribution. The group distribution mean was
specified with a normal prior with mean 0 and precision 0.1 and standard
deviation was specified with a uniform distribution from 0.0001 to 100. The
precision of the normal distribution was chosen to regularize the parameter
estimates, thus addressing issues of multiple comparisons [249, 250]. In the
linear regression, we specified for each group the standard deviation of the
error between the model fits and the data with a uniform distribution from
0.0001 to 100. This parameter was share by both groups in the leave-two-out
analysis. In the DDM, the bias, non-decision time and boundary separation
were fit hierarchically. The group level bias means were specified with uniform
priors from 0.01 to 0.99 and standard deviations specified with uniform priors
from 0.01 to 1, the group level non-decision time means were specified with
uniform priors from 0.01 to 1 and standard deviations specified with uniform
priors from 0.01 to 1, and the group level boundary separation time means
were specified with uniform priors from 0.01 to 5 and standard deviations
specified with a uniform prior from 0.01 to 10. To improve the stability of
the DDM, the drift rates were drawn from a distribution with a standard
deviation specified for each group with a uniform prior between 0.1 and 5.
This parameter was shared by both groups in the leave-two-out analysis. The
drift rates means were computed by multiplying the attribute weights with
the attributes values (without an intercept). All attributes were z-scored for
each participant individually, therefore we assumed that the participants did
not share the same representation of the rating scale. In all models containing
information about the gaze, the gaze attributes only affected the parameters
from the participants that had eye-tracking data collected.

Statistical inference

Posterior inference of the parameters in the hierarchical models was per-
formed via the Gibbs sampler using the Markov Chain Monte Carlo (MCMC)
technique implemented in JAGS [251] using the runjags [252] and rjags pack-
ages [253]. The chains were run with a minimum burn-in parameter of 4 000
(the first 4 000 samples were ignored to ensure that the starting sample did
not influence the results). A minimum of 10 000 samples were then drawn,
however only 1 in 5 samples were kept for the final inferences, reducing
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the auto-correlation of the samples. This computation was done for three
independent chains (using difference random number generators and different
starting samples). We conducted Gelman–Rubin tests for each parameter to
confirm the convergence of the chains. All latent variables in our Bayesian
models had R̂<1.05, which suggests that all three chains converged to a target
posterior distribution. We checked via visual inspection that the posterior
population-level distributions of the final MCMC chains converged to our
assumed parametrizations. For all random effects reported here, the reported
value corresponds to the mean of the standardized posterior distribution,
and the “P-values” reported for these regressions are not frequentist P-values
but instead directly quantify the probability of the reported effect differing
from zero (PMCMC). They were computed using the posterior population
distributions estimated for each parameter and represent the portion of the
density functions that lies above/below 0 (depending on the direction of the
effect).

Data and code Availability

Data and code will be made openly available upon manuscript acceptance.
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Supplementary Figure 5.1. Correlation of attributes. Pearson correlation of all
objective attributes considered in this study. For consistency with the main text, The
Nutri-Score values are multiplied by -1, such that higher scores indicate more healthiness.
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Supplementary Figure 5.2: Model comparison for each group. a) Model fits of
SV ratings with linear regressions for the group without (left) and with obesity (right).
The best model is the same in both groups, as presented in the main text. b) Model fits
of choices with logistic regressions for the group without (left) and with obesity (right).
The best models have the same level of complexity in both groups, but the attributes per
portion perform better in the group without obesity (∆LOOIC = 22) and the attribute
density perform better in the group with obesity (∆LOOIC = 0.75). c) Model fits of choices
with a DDM for the group without (left) and with obesity (right). Similar to the logistic
regression, the best models have the same level of complexity in both groups, but the
attributes per portion perform better in the group without obesity (∆LOOIC = 12) and
the attribute density perform better in the group with obesity (∆LOOIC = 34).





6
G E N E R A L D I S C U S S I O N

6.1. Chapter discussion

6.1.1 Chapter 2

In chapter 2, we followed the framework proposed by Marr [126] to study
the brain. According to this framework, the brain should be studied at
different levels: the computational level (i.e., the goals of the organisms),
which correspond in our case to the three different goals of the decision-maker
we tested, the algorithmic level (i.e., the algorithms used by the organisms),
which correspond in our case to efficient coding, and the implementation level
(i.e., how is the algorithm implemented in the brain), which correspond in our
case to the perceptron. Our study highlights the importance of considering
all these levels and how the principle of efficiency can help constrain the
investigator search space. This led to a surprising result, the neural code
for numerosity does not simply follow a maximizing accuracy or fitness goal,
but rather seems to have evolved to maximize accuracy while economizing
on the number of samples used to represent the prior. This goal has the
benefit of increasing the ability of the decision maker to adapt to new
environments.

The idea of perceptual adaptation is not new. For example, we adapt our
luminosity perception to darker environments [254]. This process, known
as dark adaptation, is carried out in part by synaptic adaptation of retinal
neurons. Our results support previous evidence that a similar adaptation
also takes place for higher-level percepts [255, 256] such as numerosity [257]
and that this adaptation is taken into account at the computational level.
Adaptability is relevant for economic decisions. For instance, it has been
shown that people adapt their willingness to pay for food items [85] and
their risk seeking behavior [159] after being presented with adaptation trials.
These results have both been linked to principles of efficiency and interrogate
on the relationship between numerosity and value perception.

Value (or expected utility) is a magnitude, as is numerosity. Value and
numerosities may share similar environmental priors. For example, the prices
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in a supermarket follow a power-law distribution [81], with cheaper prices
occurring more frequently. As previously mentioned, there is an ecological
intuition of why the ANS should follow Weber’s law, fighting against two
instead of one individual makes more of a difference than fighting 31 instead
of 30, even if the difference in number of individuals in only one in both
cases. However, it is unclear why value perception should follow Weber’s law.
You may be willing to use a coupon to save a franc when buying cheese but
might consider it too much effort when doing a large purchase such as a bike.
This behavior is irrational, as in each case the franc saved is the same [258].
This bias could be due to implication of numerosity perception in such
value decision-making tasks. Khaw et al. [85] explored the relation between
numerosity perception and value further. They explained the variability and
risk aversion when choosing between gambles by imprecisions in numerical
perception. Neural evidence supporting this hypothesis was found. Individuals
with less precise neural magnitude representation as measured by fMRI
behaved with more variability and risk aversion when choosing between
gambles [259].

An open question is the neural basis of numerosity perception. In our work,
we assumed that numerosity was encoded by the average activity of a group
of neurons, instead of a population code in which each neuron is tuned to
a preferred numerosity. However, there has been some evidence for neurons
that respond to a preferred numerosity [83, 84, 260]. It is unclear if these
two systems coexist or if we captured in our work principles that were also
present in the preferred numerosity code. Importantly, work identifying value
representation in the brain is consistent with a neural code based on the
average population activity. For instance, fMRI studies typically find that
the activity of the vmPFC correlates with the value of the options in a
value-based task [261]. Therefore, these two coding schemes may coexist, but
apply to different modalities.

6.1.2 Chapter 3

In chapter 3, we found that a sequential encoding and Bayesian decoding
model better explains numerosity perception than a thermodynamically
inspired model. Notice that both models consider resource limitations, however
they do so in a different way. In the SEB model, variability is the results of
noise at the encoding level (similar to [262]). The decision-maker decodes
this noisy representation optimally (without noise). Whereas in the TIM, the
decision-maker pays a cost to move from a default state to a state that carries
information about the environment. The decision-maker then samples from
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the distribution represented by this new state, so variability is considered
at the action level. Therefore, variability is considered at opposing ends
of the perception process by these models. One could argue that, as noise
if found throughout the brain [8], it should be considered at both stages
of the model. The presented models could easily incorporate an additional
noise term, however this would reduce their parsimonicity. Future research
could investigate a parsimouous model that considers noise throughout the
perception process, which may lead to a better understanding of human
behavior.

Both models predict that given unlimited resources, the decision-maker should
be perfectly precise. However, they make different predictions about the
opposite extreme. If the exposure time was a Dirac delta (i.e., infinitely small),
the SEB model would simply perceive the average of the prior distribution
whereas the TIM model would sample from the prior distribution. Therefore,
these models have opposite views on how people behave when they do not
have any information: is their educated guess consistent or variable? These
different views have important implications for human behavior, especially
given the previously discussed relationship between value and numerosity.
Consider the following scenario. Every day, you walk in front of an auction
house, and you are given the chance to place an bid on a piece of art. You
are not an art expert, so you cannot estimate the true value of these pieces
of art. How do you behave? Do you consider that each piece of art has an
average value and place a bid only if it’s below a certain value? Or do you
sample each day from your prior for value of pieces of art and decide to place
a bid if your sample is above the proposed price. This second approach would
predict that if the auction house shows you the same piece of art enough days
in a row, you will eventually place any arbitrarily high bid within the prior
range, whereas the first approach would predict that this marketing strategy
would fail. In other words, the TIM model allows for more extreme behaviors.
This discussion underlines an important aspect, there are multiple ways to
consider resource limitations [263]. Even if the differences between models
seem relatively small, they can be important to study. One major challenge
to implement resource rational models is to correctly identify the resource
limitations. One of the proposed approaches is to ground these limitations in
information theory [264], as we have done in our work.

Notice that no matter the stimulus duration, the coefficients of variation are
mostly constant for all numerosities in the behavior data (Figure 3.5). Based
on this observation, we would expect numerosity discriminations to follow
Weber’s law, even if stimuli are presented for a short duration. This contrasts
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with work that has found that rats violate Weber’s law for sound perception
if the duration of the stimuli is limited [47] (see Appendix A). This second
view would also predict that discrimination involving larger numerosities
would be faster than discrimination involving smaller numerosities. However,
the opposite is typically found [265, 266]. As our model incorporates time,
it could be well suited to be adapted for a discrimiation task. It could
further be adapted to incorporate a continuous magnitude, such as sound
intensity, and could be used to compare how time affects numerosity and
sound discrimination differently. In chapter 2, we suggested that numerosity
perception can be modelled by a different coding architecture than low-level
sensory systems (i.e., an average population activity code instead of an
individual neural tuning code), while keeping similar principles. Future work
could investigate if this difference explains why different sensory systems
behave differently when stimulus duration is limited.

6.1.3 Chapter 4

In chapter 4, we uncovered a mechanism of top-down control of non-spatial
attention. In particular, we found that the top-down control of non-spatial
attention relied on the fluctuation in excitability states of the IFJ which was
manipulated to be more or less synchronous to the activity in sensory areas.
Importantly, these fluctuations are not an endogenous neural oscillation, but
were externally manipulated by our task and stimulation protocol. This result
indicates that the communication through coherence hypothesis does not only
apply to endogenous oscillations but is a more general principle. Therefore,
our protocol provides a new tool to non-invasively stimulate the brain based
on the communication through coherence hypothesis. Future work could test
the relevance of different frequency bands by tuning the frequency of the
task and stimulation. If stimulation at specific frequencies band have higher
than expected performance, this would indicate that the brain is tuned to
these specific frequency bands, which would likely correspond to endogenous
oscillations. Given that neural oscillations have been implicated in many
cognitive tasks [102, 267, 268], future work could apply our stimulation pro-
tocol to test the causality of fluctuations of excitability states, and eventually
the causality of endogenous neural oscillations. Importantly, differences in
neural oscillations have also been observe in cognitive disorders [269–271].
Therefore, non-invasive brain stimulation (based on our stimulation protocol
or a traditional protocol) could be used as a therapeutic tool. It has already
been shown that tACS can increase working memory capabilities in older
adults [269–271]. We have discussed that neural oscillations are compatible
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with an efficient coding scheme. However, these results have only been shown
for oscillations in the gamma frequency band. Neural oscillations are typically
found in different frequency bands and these oscillations have been shown to
interact across frequencies, an observation termed cross-frequency coupling.
It has been suggested that this cross-frequency coupling allows the brain to
coordinate its activity to communicate efficiently [272]. However, this work
has not been in connected to efficient coding mechanisms. Future modeling
work could aim to bridge this gap.

6.1.4 Chapter 5

In chapter 5, we applied our framework to study a disorder related to decision-
making, obesity. We found differences between individuals with and without
obesity in the influence on choice of different attributes and of gaze. The
influence of these attributes on choice may be similar to the process of
non-spatial attention discussed in chapter 4. Future research could aim to
stimulate individuals with obesity in a similar way than the methods employed
in chapter 4 to enhance or disrupt the influence of different attributes in the
valuation process to make them similar to the influence in the healthy group.
If the influence of different attributes in the valuation process is an underlying
cause of obesity, this approach could serve as a treatment. We observed that
individuals with obesity were more likely to choose the item that they looked
at longer. The causality of this effect remains unclear, but it could be tested in
future experiments, for example by varying the presentation time of different
items. Importantly, if individuals with obesity are more likely to choose items
that they look at longer, they may be more susceptible to marketing strategies
that show items to potential customers. If this hypothesis is true, policy
makers should consider regulating the marketing strategies. For example,
the Chilean government passed a food labeling law requiring among other
provisions that items high in calories, sugar, sodium and fat be marked with a
warning label and banning advertisement of these products to children. This
has led to a decrease in high-sugar beverage consumption [273], suggesting
that regulation may be a valid approach to reduce the obesogenicity of our
environment.

6.2. General discussion

In this thesis, we separated the when, the what and the how of neural
efficiency. However, this separation is arbitrary and multiple aspects may be
considered simultaneously. For instance, pupil size correlates with variability
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in perceptual decision-making [274]. It has also been found that numerosity
estimation biases increase when participants are required to do a distractor
task [138]. These results indicate that arousal and attention can change the
amount of resources used in the encoding-decoding process. In other words,
the when and the what of neural efficiency can interact with the how of
neural efficiency. A different line of work is investigating how arousal and
attention are related [275]. Together, this suggests that the multiple aspects of
efficiency can be considered together to build a more complete understanding
of the brain. Throughout this thesis, we have discussed how the principle of
efficiency can help build models of the brain and decision-making. We have
applied these principles to study numerosity perception, non-spatial attention
and obesity. This thesis has demonstrated that incorporating the principle of
efficiency in our models is a promising approach to better understand the
brain and decision-making and could help better understand decision-making
disorders, inspire developments in artificial intelligence and provide a better
understanding of what we are.

Considering neural efficiency principles has already inspired advances in
artificial intelligence. For example, attention mechanisms have been included
in neural networks [276]. Instead of considering all input data equally, a
network with attention will focus more on specific parts of the data. This is
particularly relevant for tasks in which the input and output have sequential
structures, such as translation, object recognition and image caption gen-
eration. Including attention improves the performance in these tasks [277–
279] and can also lead to increases computational efficiency [280] and inter-
pretability [281]. Another example of work in machine intelligence inspired by
efficiency principle of the brain is neuromorphic computing. Neuromorphic
computing aims to design brain inspired hardware. The goal is to improve
the energy efficiency of hardware to improve the energy efficient of artificial
intelligence, which is currently one of its main limitations [282].

Understanding how the brain makes efficient use of its limited resources can
be relevant in other domains. For example, understanding efficiency can help
us in our daily decisions. The neuroscientist Moran Cerf always picks the
second item on the list of specials when eating out [283]. This algorithm may
not select the best option, but saving on the costs of making the decision
may make it preferable to considering all items on the menu. This approach
is similar to the idea of "satisficing" [284], a heuristic according to which
we should select the first option we encounter that is adequate, rather than
consider all options and select the one with the highest utility. Depending on
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the costs of making a decision and the marginal utility increase provided by
finding better options, this algorithm may be preferable.

The principles of neural efficiency are also relevant for marketing. The number
of different products sold in a typical supermarket increased from around
6 000 in the 1980s to around 30 000 today [285]. This increase was driven
in part by horizontal segmentation [286], which is the idea that consumers
should be proposed with multiple variations of a product in order to best
fit their individual preferences. However, this increase in options can lead
to choice overload [287]. Since considering options has a cost, increasing the
options increases the mental load of the choice, which can lead consumers to
prefer to not chose any product at all [288]. The supermarket chain Trader
Joe’s took another approach by limiting the number of different products
they sell to around 2 000. This reduced the choice overload effect and can
explain in part why the company is successful [289].

The neural efficiency principles may also help us understand our moral
decisions. For example, consider an individual who wants to reduce their
environmental footprint. Vegetarian and vegan meals may not always have a
lower environmental footprint than meals with meat [290]. However, comput-
ing the environmental footprint of each meal is tedious, so avoiding animal
products altogether can be considered an efficient heuristic to minimize one’s
environmental impact.

Finally, macroeconomists and policy makers can make use of behavior models
that take into account how humans make decisions with limited resources. For
example, given their limited cognitive resources, individuals will not adapt
instantaneously and perfectly to new monetary policy [291], as they will need
time to understand how the policies affect them and what their behavior
should be. This "stickiness" should be taken into account when evaluating
a given monetary policy [292]. Another important idea for policy making is
that, as individuals have limited cognitive resources, they may be sensitive to
the way the options are presented to them (e.g., which options are selected
by default). The policy maker can then influence the choice of the individuals
by changing the way in which the options are presented without changing
the options themselves [293]. Although debated [294], it has been argued
that since the options are not changed, the freedom to choose of individuals
is the same [293]. This approach has been successfully used for example to
increase participation in organ donation programs, by enrolling people by
default instead of requiring them need to enroll [295].
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We discussed how understanding that humans make efficient use of their
limited resources in decision-making can help in different domains. In addition,
considering efficiency altogether is also relevant. For example, since Trader
Joe’s sell less items, they have simplified their logistics. This can help explain
why they make the highest revenue per store surface [289]. Another example
can be found in hospital management, reducing the number of items in
inventory can lead to reduced costs by saving time and space, reducing
product waste, increasing clinician familiarity with products and improving
work flow [296].

In the case of moral decision-making, we may consider the principles of
efficiency differently. Moral decision-making is typically categorized in two
ethical frameworks. Deontological ethics, which considers the morality of
the action based on the action itself (e.g., lying is bad therefore we should
not lie) and consequentialism, which considers the outcome of the actions
(e.g., if lying saves lives, you should lie) [297]. The trolley problem is a
thought experiment used to disentangle these two approaches [298]. In this
dilemma, the decision maker is given the choice between an action that
will result in the death of one individual (consequentialist choice) or doing
nothing which will result in the death of five individuals (deontologist choice).
Surprisingly, people tend to change their responses depending on the framing
of the problem. Initial consequentialist become deontologist when they must
push another person to stop the trolley instead of pulling a lever to deviate
the trolley toward another person [299]. Therefore, it seems that individuals
do not behave in a purely deontological or consequentialist way, but rather
try to maximize the goodness of the consequences of their actions under the
constraint of minimizing their deontological violations. This view is similar
to the efficiency principle in decision-making discussed in this thesis, but
instead of considering the cost of processing information, we consider a cost
of violating ethical norms.

Considering efficiency is also relevant in macroeconomics. Current macroeco-
nomic models rarely consider biophysical limitations such as energy, materials
and waste [300]. In accordance, economics growth is usually considered a
political goal. However, considering biophysical limitations suggests that eco-
nomic growth is limited [301]. This has led to the development of post-growth
frameworks which aim to decouple well-being from economic growth [302].
In other words, post-growth frameworks shift the focus from increasing the
number of resources to efficiently using these resources. This is remarkably
similar to the efficiency principle discussed in this thesis. We have observed
that evolution likely did not simply pressure our ancestors to have larger
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brain, but also to use them efficiently. Given that evolutionary biology and
economics have historically inspired each other [303], one could expect this
framework of efficiency to make its way into macroeconomics.

6.3. Closing remarks

Throughout this work, we have argued that the when, what and how of the
brain are efficient. It is up to each of us to decide what to do with our efficient
brain and to find the purpose of our efficiency. As J.R.R. Tolkien’s Gandalf
told Frodo, "All we have to decide is what to do with the time that is given
us." [304]. In other words, our lifetimes are limited, and we are not able to do
everything. The goal is not to do everything possible, but rather to efficiently
live life according to our purpose, whatever we choose it to be.
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A.1. Abstract

Weber’s law appears to be a universal principle describing how we discriminate
between physical magnitudes. However, this law remained purely descriptive
for nearly two centuries. A study by Pardo-Vazquez et al. finally provides
a mechanistic explanation, revealing how both accuracy and reaction-time
performance lawfully emerge during sensory discrimination tasks.

A.2. Main

Weber’s law (WL) [305] is one of the few psychophysical laws that are largely
conserved across species and sensory modalities. WL states that, when
comparing the magnitudes of two stimuli, our accuracy does not depend on
the absolute intensity difference but instead on the ratio of the magnitudes of
the compared stimuli. Crucially, this law results from empirical observations
describing psychophysical performance, but ignores the temporal dynamics
of the discrimination process. This lack of constraint has perhaps made it
difficult to establish a biologically plausible mechanistic model of WL.

To solve this, Pardo-Vazquez et al. [47] designed an experiment that incorpo-
rates the time required for decision making. Specifically, they developed a
sound intensity discrimination task performed by rats in which they varied
from trial-to-trial the ratios and average magnitudes of the two sounds to be
discriminated, Fig. A.1A. They observed that, although accuracy is constant
for the same intensity ratio at different average magnitudes, the time required
to make a decision does not follow this relationship. In particular, input
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stimuli with higher average magnitudes are more rapidly discriminated, Fig.
A.1B,C, and their reaction-time distributions appear to be scale-invariant;
that is, changes in average magnitude for a given intensity ratio are equivalent
to a linear transformation in the units of time used to measure the decision
times. Notably, although the importance of reaction times during magnitude
discrimination was previously recognized [306, 307] the well-controlled exper-
imental setup adopted in this study allowed, for the first time, researchers
to demonstrate a tight relationship between scale-invariant reaction-time
distributions and WL. Importantly, the authors rationalized that this ap-
parent strict and joint requirement of accuracies and reaction times could
provide a hint for establishing the mechanistic foundation of WL. To this end,
the investigators relied on a general instantiation of a continuous Markov
process model that allowed the dynamics of decision making to be flexibly
captured.

Fig. A.1: Dependencies of accuracy and reaction times on stimulus magnitude.
a) Behavioral task: rats discriminated sounds at various ratios and average magnitudes,
high/low magnitudes are in orange/blue. b) Rats accumulate evidence until reaching a
decision threshold (middle). Higher magnitudes lead to faster but noisier accumulation,
leading to scale-invariant reaction-time distributions (top). Signal-to-noise ratios at decision
time are identical (bottom). c) Mean reaction times depend on sound ratio and average
magnitude. d) If evidence accumulation is stopped early, trials with lower average magnitude
have lower accuracy (1). However, for free reaction times, accuracy follows Weber’s law
(2). Abbreviations: RT, reaction time; SNR, signal to noise ratio.
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First, they investigated the conditions necessary for a continuous Markov
process to account for the psychophysical performance of WL and for the
scale-invariant property of the reaction times. They found only one biolog-
ically plausible solution, which required a power-law encoding of stimulus
magnitude as well as a linear relationship between the mean and variance of
the sensory evidence. Notably, these requirements can be implemented by
using populations of neurons with Poisson firing rates. In addition, a fixed
decision threshold and the absence of decay in the accumulated evidence were
the two remaining necessary conditions. As a result, the model belongs to the
class of standard evidence-accumulation models which are commonly used
in the decision-making literature [308]. These necessary properties not only
allow a fundamental understanding of the decision mechanisms but are also
suggested to be implemented by biological systems that instantiate decision
processes.

The authors propose a parsimonious implementation of their mechanistic
model, which was sufficient to capture the accuracy and reaction-time distri-
butions of the animals even for data in a range of stimulus intensities that
was not used to fit the model parameters. Interestingly, the new theory also
generates a counterintuitive prediction about the breakdown of WL. Given
that decision evidence evolves more slowly for lower sound intensities, the the-
ory predicts that early stopping of stimulus presentation should lead to lower
accuracies for quieter sounds, Fig. A.1B,D, which clearly violates WL. Strik-
ingly, the results of experiments designed to incorporate this manipulation
confirmed this counterintuitive prediction.

To provide evidence for the generality of their theory, Pardo-Vazquez et al.
showed a similar dependency of accuracies and reaction-time distributions
in humans on a similar sound discrimination task, and also in rodents in an
odor mixture discrimination task. However, whether such a relationship holds
for other modalities remains an open question. In particular, higher-order
percepts (e.g., numerosity discrimination or reward-based decisions), which
require integration of information in higher cortical areas, may follow distinct
encoding rules from lower-order sensory systems such as those described in
the study. An additional and intriguing result is that rats were unable to
adapt the parameters of their decision-making process as a function of reward
and motivation. The authors of the study investigated this by changing the
rewards for correct trials depending on trial difficulty, and by presenting
only the most difficult or easiest trials to the animals. Following principles of
optimality, one would expect the animals to adapt their decision thresholds
to maximize their reward rate [121]. Pardo-Vazquez et al. hypothesize that
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this lack of adaptation could be due to the hardwired nature of neural
systems dedicated to detecting interaural level differences in mammals [309].
Therefore, it could be argued that adaptation to reward distributions in this
auditory system may require longer adaptation periods, perhaps via top-down
influences of higher-order areas.

The clear exposition of the mechanisms underlying WL revealed by Pardo-
Vazquez et al. generates new questions. For instance, it is unclear how the
rigid relationships of accuracies and reaction times found in this study could
account for contextual changes in the environment. In the case of the stimulus
distributions used by Pardo-Vazquez et al. power-law encoding mechanisms
have the convenient property of compressing physical stimulus intensity,
allowing neuronal populations with a limited output range to represent a large
spectrum of the physical world. Because the natural distributions of physical
stimuli tend to follow a power law, such that lower-magnitude stimuli are more
common than larger stimuli, power-law encoding allows better discrimination
of frequently occurring stimuli, thus efficiently considering the allocation
of limited encoding resources. Therefore, power-law encoding of a physical
stimulus could be a product of computational principles such as efficient
coding, which stems from the limited capacity of neural systems to represent
information [89]. This predicts that encoding by sensory systems should adapt
via experience and learning mechanisms if the stimulus distribution changes,
and not only for early sensory perception but also for higher-order processing
such as reward systems [74]. However, it is important to note that the sound
intensities chosen by Pardo-Vazquez et al. were spaced logarithmically, which
may have provided a similar distribution to naturally occurring stimuli.
Thus, it would be interesting to place the animals in an environment with
a different distribution of sound intensities (e.g., where higher intensities
occur more frequently) to test whether WL and reaction-time distribution
scale-invariance still holds.

As we finally move from a purely descriptive to a dynamic mechanistic
explanation of WL, an interesting challenge for future research will be to
understand how these mechanisms can be extended by incorporating learning
and adaptation processes. Ultimately, organisms must constantly adapt to
dynamic environments for survival. (Un)fortunately, because WL also applies
to time perception [310], the additional decades of research to come will
gradually be perceived as shorter and shorter.
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