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Abstract 
 

T helper (TH) lymphocytes are essential cells of the immune system that produce cytokines which 

tailor the immune response to be most efficient against a specific pathogen. Gene expression of TH 

lymphocytes must be carefully and rapidly regulated, since they have to mount fast and specific 

responses upon encountering an antigen, while at the same time limiting excessive inflammation 

and tissue damage. Post-transcriptional regulation plays a key role in the function of TH lymphocytes 

by modulating the stability and degradation of mature mRNAs, including those encoding for 

cytokines and other immune-relevant genes. This level of regulation is tightly controlled by a 

complex network of RNA-binding proteins (RBPs) in cooperation with microRNAs (miRNAs). RBPs 

often have multiple functions, paralogues and dynamic expressions which is why their function 

remains partially elusive, while for other RBPs the functions are completely unknown. 

In the work presented in this thesis, I aimed to characterize the role of RBPs in modulating the 

function of TH lymphocytes. Specifically, in the first part of the study, I investigated the redundancy 

of two RBP paralogues (Regnase-1 and Regnase-4), which have some known common and different 

features, as seen on the mouse knockout (KO) phenotypes. Regnases are RBPs with intrinsic 

ribonuclease activity that directly degrade mRNAs of immune-related genes. By using CRISPR-Cas9, I 

identified that Regnase-4 does not have unique mRNA targets, however, the deletion of both 

Regnases lead to a combined derepression of multiple known Regnase targets. Interestingly, despite 

high homology, Regnase-1 and Regnase-4 have differing expression dynamics upon T cell activation. 

Therefore, the observed functional differences between Regnase-1 and Regnase-4 can be attributed 

to their different expression levels and gene dosage. 

In the second part of the study, I described how we identified and functionally characterized another 

RBP, namely PDAP1. We identified that RFX transcription factors modulate the expression of miR-

150 which directly negatively regulates the expression of PDAP1. RNA-immunoprecipitation and 

sequencing (RIP-seq) of PDAP1 revealed directly bound mRNA targets that are crucial for T-cell 

activation, differentiation, and proliferation. Analysis of PDAP1 KO clones suggested that PDAP1 

increases the stability of at least a subset of direct mRNA targets. The abrupt downregulation of miR-

150 upon T cell activation releases PDAP1 from the negative brake enabling it to promote 

proliferation of TH lymphocytes.  

Overall, this study contributed to our understanding of the function of RBP paralogues and a novel 

RBP in modulating T cell function and proliferation. 
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Zusammenfassung 
 

T-Helferzellen (TH-Zellen) sind essenzielle Zellen des Immunsystems, die durch die Produktion von 

Zytokinen die Immunantwort so anpassen, dass sie gegen einen bestimmten Krankheitserreger am 

wirksamsten ist. Die Genexpression von TH-Zellen muss sorgfältig und schnell reguliert werden, da 

sie beim Auftreffen eines Antigens prompt eine spezifische Reaktion dar geben müssen, die aber 

nicht durch eine übermässige Reaktion gesundem Gewebe schadet. Die posttranskriptionelle 

Regulation spielt eine Schlüsselrolle in der Funktion von TH-Zellen, indem sie die Stabilität und den 

Abbau von mRNAs moduliert, einschliesslich derjenigen, die Zytokine und andere immunrelevante 

Gene codieren. Dieser Grad der Regulierung wird durch ein komplexes Netzwerk aus RNA-bindenden 

Proteinen (RBP) in Zusammenarbeit mit microRNAs (miRNAs) streng kontrolliert. RBPs haben oft 

mehrere Funktionen, Paraloge und dynamische Expressionen, weshalb die Funktion gewisser RBPs 

teilweise unklar bis zu völlig unbekannt sein kann.  

In der Arbeit, die in dieser Dissertation vorgestellt wird, war mein Ziel, die Rolle von RBPs bei der 

Modulation der Funktion von TH-Zellen zu charakterisieren. Im ersten Teil der Studie habe ich 

insbesondere die Redundanz zweier RBP-Paraloge (Regnase-1 und Regnase-4) untersucht, die einige 

gemeinsame und unterschiedliche Merkmale aufweisen, wie sie bei den Maus-Knockout-

Phänotypen (KO) zu sehen sind. Regnasen sind RBPs mit intrinsischer Ribonuklease-Aktivität, die 

mRNAs immunbezogener Gene direkt abbauen. Durch die Verwendung von CRISPR-Cas9 habe ich 

festgestellt, dass Regnase-4 keine spezifische Ziel-mRNA hat, jedoch führt die Gendeletion beider 

Regnasen zu einer kombinierten Derepression mehrerer bekannter Regnase-Ziel-mRNAs. Trotz 

hoher Homologie haben Regnase-1 und Regnase-4 eine unterschiedliche Expressionsdynamik nach 

der T-Zell-Aktivation auf. Daher können die beobachteten funktionellen Unterschiede zwischen 

Regnase-1 und Regnase-4 auf ihre unterschiedlichen Expressionen und der Gendosierung 

zurückgeführt werden. Im zweiten Teil dieser Dissertation habe ich beschrieben, wie wir ein weiteres 

RBP, nämlich PDAP1, identifiziert und funktionell charakterisiert haben. Wir haben festgestellt, dass 

RFX-Transkriptionsfaktoren die Expression von miR-150 modulieren, welche die Expression von 

PDAP1 direkt negativ reguliert. Die RNA-Immunpräzipitation und Sequenzierung (RIP-seq) von 

PDAP1 ergaben direkte Ziel-mRNAs, die für die Aktivierung, Differenzierung und Proliferation von TH-

Zellen von entscheidender Bedeutung sind. Die Analyse von PDAP1-KO-Klonen legte nahe, dass 

PDAP1 direkt die Stabilität einer Gruppe der Ziel-mRNAs erhöht. Die abrupte Herabregulierung von 

miR-150 während der T-Zell-Aktivierung löst PDAP1 von der Expressionsbremse ab, was die 

Proliferation von TH-Zellen fördert. Insgesamt trug diese Studie zum Verständnis von RBP-Paralogen 

und einem neuem RBP bei, die die Funktion und Proliferation von TH-Zellen modulieren.  
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1 The immune system 
 

The immune system is a complex network of specialized cells that enables an organism to defend 

itself against pathogens and cancer. The key feature of the immune system is the recognition of 

antigens which leads to the activation of immune cells with the aim of eliminating pathogens by 

different mechanisms. Antigens are expressed by pathogens, such as bacteria and parasites, as well 

as by cancer cells. The main mechanisms used by the immune system to fight pathogens can be 

divided into cell-mediated immunity and humoral immunity. Cell-mediated immunity describes the 

activity of immune cells, such as macrophages, monocytes, neutrophils, natural killer cells or 

cytotoxic T lymphocytes, that phagocytose or induce apoptosis of the pathogens thereby 

neutralizing them. Humoral immunity encompasses immune responses that are mediated by 

secreted proteins present in the blood and lymph such as antibodies and complement proteins that 

neutralize extracellular microbes or toxins. Elie Metchnikoff, who coined the term immunology, is 

often deemed the father of innate immunity for his landmark description of phagocytosis. For his 

findings, he shared the Nobel prize in 1908 with Paul Ehrlich, who in turn described antibodies and 

antibody-mediated immunity (Kaufmann, 2008).  

 

The technological development of the 20th and 21st century allowed the exponential growth of 

knowledge about the complexity and diversity of the immune mechanisms exerted by leukocytes 

which are the main agents of the immune system. Apart from leukocytes, other cell types can also 

act as members of the immune system such as epithelial cells, Kupffer cells, and microglia. 

 

1.1 Innate and adaptive immunity 
 

The immune system can be divided into the innate (natural, native) and adaptive (acquired) system 

based on their specificity and ability of immunological memory.  

 

The innate immune system, as the name implies, is the inborn, broad-based defense mechanism 

that provides an immediate response to disease-inducing agents. It does not confer long-lasting 

immunity to specific pathogens and consists of physical epithelial barriers, namely the skin and 

mucosal membranes, as well as cellular and molecular components. Innate immune cells include 

phagocytes (macrophages and neutrophils), monocytes, natural killer cells, dendritic cells, mast cells, 

basophils, eosinophils, and innate lymphoid cells. These cells recognize pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) with specialized 

receptors that initiate cellular effector functions (Seong & Matzinger, 2004). PAMPs are often 



The immune system   

2 
 

conserved molecular structures found in pathogens, e.g., bacterial cell wall components such as 

lipopolysaccharides, viral double-stranded RNA, and fungal β-glucans. On the contrary, DAMPs are 

molecules produced by the host itself due to tissue damage or cell death caused by different reasons 

including infections, physical trauma, burns, hemorrhagic shock or chemical toxins (Seong et al., 

2022). The complement system is the non-cellular compartment of the innate system which consists 

of plasma proteins that opsonize and neutralize microbes either directly or by recruiting phagocytes. 

The recruitment of phagocytes and other leukocytes to the site of a pathogen is called inflammation 

(Dunkelberger & Song, 2010). 

 

The adaptive immune system, in contrast to the innate, is a specialized defense mechanism 

characterized by its ability to recognize a highly diverse set of antigens and to remember them 

specifically. This allows the adaptive immune system to mount a targeted response to pathogens 

upon repeated exposure, so-called immunological memory. B and T lymphocytes constitute the cells 

of the adaptive immune system which have distinct surface receptors and immune functions. B 

lymphocytes have a B cell receptor, mature in the bone marrow and are a part of the humoral 

immunity by secreting antibodies (or immunoglobulins (Ig)) upon antigen recognition. Igs bind to 

antigens in their unprocessed native form causing different downstream responses such as 

phagocytosis, activation of the complement system, activation of basophils and mast cells based on 

the Ig class bound to the pathogen (IgA, IgD, IgE, IgG or IgM) (LeBien & Tedder, 2008; Raff, 1973). 

 

T lymphocytes have a T cell receptor (TCR), mature in the thymus, and are a part of the cell-

mediated immunity because they either directly kill pathogens and cancer cells or activate other 

cells to do so. In contrast to B lymphocytes, T lymphocytes recognize only processed antigens that 

are presented as short peptides on the major histocompatibility complex (MHC) molecules on other 

cells. Peptides deriving from cytosolic proteins are presented on MHC class I (MHC I) molecules 

which are expressed on the surface of all nucleated cells and platelets. On the other hand, if the 

peptide derives from phagocytosed pathogens, it is presented on MHC class II (MHC II) molecules 

expressed only on professional antigen-presenting cells (APCs) which are dendritic cells, 

macrophages and B lymphocytes. Peptides presented on the different MHC classes are recognized 

by different types of T lymphocytes. The MHC I-peptide complex is recognized by T lymphocytes that 

express the cluster of differentiation (CD) 4, while the MHC II-peptide complex is recognized by CD8-

expressing T lymphocytes.  

 



The immune system   

3 
 

CD4+ and CD8+ T lymphocytes have distinct immunological functions: CD8+ T lymphocytes have the 

ability to directly kill microorganisms and cells which is why they are also called cytotoxic T cells. 

Conversely, CD4+ T lymphocytes are called T helper (TH) lymphocytes because they secrete cytokines 

that activate or “help” other immune cells to kill microbes and tumor cells. TH lymphocytes are 

essential components of the immune system and their disfunctions are the cause of different health 

disorders. For example, immunodeficiencies of TH lymphocytes can be lethal as seen in the example 

of the acquired immunodeficiency syndrome (AIDS). AIDS is caused by the human immunodeficiency 

virus (HIV) which infects and destroys CD4+ T lymphocytes. If left untreated, severe CD4+ T cell 

depletion leads to lethal opportunistic secondary infections and an increased susceptibility to 

cancers (Gallo & Montagnier, 2003). On the other hand, hyperactive TH lymphocytes are the drivers 

of many autoimmune disorders such as multiple sclerosis (MS), rheumatoid arthritis (RA), and 

psoriasis. 

 

The innate and adaptive immune systems are closely intertwined, and their direct cooperation leads 

to the efficient clearance of a pathogen. For example, when an extracellular pathogen crosses the 

epithelial barrier, it is phagocytosed by dendritic cells. The pathogen-derived peptides presented on 

MHC II are recognized by the cognate CD4+ T lymphocytes that become activated and start to 

proliferate and secrete cytokines such as interleukin 17A (IL-17A). The secreted cytokines stimulate 

the recruitment and activation of neutrophils to phagocytose the pathogen. Upon pathogen 

clearance, the majority of the activated TH lymphocytes die. However, some cells survive and form a 

pool of long-lived memory T (Tmem) lymphocytes. Tmem lymphocytes have undergone epigenetic 

and transcriptional changes that enable them to recognize and respond to the same antigen upon 

re-exposure more rapidly and efficiently.  

 

In summary, TH lymphocytes are essential cells of the immune system that amplify and shape the 

immune reaction and generate immunological memory. In this study, I investigated their function, 

and the subsequent chapters will be focused on them. 

 

1.2 Development of T helper cells 
 

All blood cells, including TH lymphocytes, arise from hematopoietic stem cells in the bone marrow. 

The progenitor cells of T lymphocytes migrate from the bone marrow to the thymus which contains 

specialized epithelial cells, antigen-presenting cells, specific chemokines, and cytokines that drive 

and shape the T lymphocyte maturation. During maturation, the developing T lymphocytes, also 

called thymocytes, undergo different developmental stages characterized by the expression of the 
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co-receptors CD4 and CD8 and the TCR. Thymocytes that have recently reached the thymus from the 

bone marrow are deemed as double-negative (CD4-CD8-) since they do not express neither CD4 nor 

CD8, and they also lack the TCR complex. At this stage, proteins Recombination activating gene-1/2 

(RAG-1/2) rearrange the locus encoding the variable domain of the TCR-β chain. The β chain then 

pairs with an invariant TCR-α chain and associates with CD3 chains to form a pre-TCR complex. This 

receptor complex is functional and transduces essential signals for the further development of T 

lymphocytes; survival, strong proliferative expansion, genetic recombination of the TCR-α chain 

locus and the expression of the CD4 and CD8 molecules, making them double positive (CD4+CD8+) 

thymocytes with a fully functional αβ TCR (Germain, 2002).  

 

The highly diverse double positive αβ thymocytes undergo an important developmental checkpoint 

in the thymus to ensure that only T lymphocytes with tolerance to self-antigens reach the periphery. 

A prominent role in this process is played by the epithelial and antigen-presenting cells in the 

thymus. They allow thymocytes to be exposed to self-antigens bound to MHC I and II. If the TCR 

interacts with the MHC with low avidity, the thymocyte is positively selected and receives positive 

survival signals. If the TCR interacts with high avidity to self-antigens, the thymocyte is negatively 

selected and undergoes apoptosis or differentiates into regulatory T cells (discussed in chapter 1.5 

Effector T cell subsets) (von Boehmer et al., 1989). Most double positive thymocytes (~98%) interact 

very weakly with the MHC molecules and do not receive survival signals leading to cell death (so-

called death by neglect) (Sprent & Surh, 2011). During these selection processes thymocytes become 

single positive (either CD4+ or CD8+). If they recognize peptides bound to MHC I, they become 

CD8+CD4- cytotoxic T lymphocytes, while those that recognize MHC II-bound peptides become 

CD4+CD8-  TH lymphocytes.  

 

In addition to TCR stimulation and selection, the thymus provides an essential cytokine and 

chemokine milieu for the survival of T lymphocytes. The best-known function of chemokines is 

chemotaxis, but they also have functions in cell-cell adhesion, survival, proliferation, and 

differentiation (Lancaster et al., 2018). Among the essential cytokines and chemokines for 

thymocyte development are IL-7, cysteine-cysteine motif chemokine ligand (CCL) 19 (CCL19), CCL21, 

CCL25 and cysteine-cysteine motif chemokine ligand (CXCL) 12 (CXCL12) (von Freeden-Jeffry et al., 

1995). IL-7 promotes the survival and proliferation of T lymphocytes by upregulating the expression 

of anti-apoptotic molecules of the B cell lymphoma 2 (BCL2) family and downregulating the pro-

apoptotic molecule B cell lymphoma 2 interacting mediator (BIM) (Koenen et al., 2013; Z.-H. Liu et 

al., 2014). The chemokine CCL25 and the cysteine-cysteine motif chemokine receptor (CCR) 9 (CCR9) 
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are responsible for the chemotaxis of progenitor cells into the thymus (Zlotoff et al., 2010). CCL19 

and CCL21, ligands for the chemokine receptor CCR7, are responsible for thymic entry, intrathymic 

migration, TCR signaling, formation of the immunological synapse, as well as homing to lymphoid 

tissues (Gollmer et al., 2009; Laufer et al., 2019; Misslitz et al., 2004; Zlotoff et al., 2010). The 

chemokine CXCL12, which is the ligand for cysteine-X-cysteine motif chemokine receptor (CXCR) 4 

(CXCR4), is important for the survival and localization of double negative thymocytes and provides 

also a costimulatory signal for the pre-TCR to mediate thymocyte survival and differentiation 

(Lancaster et al., 2018; Trampont et al., 2010).  

 

T lymphocytes that have not yet encountered the cognate antigen for their specific TCR are called 

naïve T (TN) lymphocytes. Mature, self-tolerant TN lymphocytes leave the thymus and migrate to 

secondary lymphoid organs through vascular and lymphatic vessels. TN lymphocytes that egress from 

the thymus are characterized by the high expression of the lymph node-homing receptors CD62L and 

CCR7 as well as CD45RA which is involved in proximal TCR signaling (Courtney et al., 2019; Sallusto et 

al., 2000; Sprent & Surh, 2011). In the periphery, these cells receive survival signals from IL-7 and 

from weak TCR stimulation by interacting with MHC II molecules presenting self-peptides. This tonic 

TCR stimulation of TN lymphocytes is below the threshold necessary for a full activation (Sprent & 

Surh, 2011). Secondary lymphoid organs, which are comprised of lymph nodes, the spleen, and 

lymphoid follicles in mucosa-associated lymphoid tissues, have anatomical structures that facilitate 

the interaction of T lymphocytes and antigens. Upon recognition of the cognate antigen with high 

affinity and co-stimulation provided by antigen-presenting cells, TN lymphocytes initiate proliferation 

and assume effector functions by secreting cytokines that shape the immune response to efficiently 

clear the pathogen.  

 

1.3 TCR structure and proximal signaling 
 

The surface expression of the TCR is the defining feature of all T lymphocytes. The TCR is formed by 

covalently linked polypeptide chains TCRα, TCRβ, TCRγ, and TCRδ that form two distinct 

heterodimers: TCRαβ and TCRγδ. Majority of T lymphocytes express the TCRαβ heterodimer and are 

referred to as αβ T cells, while a small portion (~4%) of circulating T lymphocytes are γδ T cells (Groh 

et al., 1989). γδ T cells are often found in mucosal tissues where they exert local immunosurveillance 

(Deusch et al., 1991; Girardi et al., 2002). These cells are different from αβ T lymphocytes because 

they can recognize lipids and non-peptidic phosphorylated molecules as antigens (Constant et al., 

1994; Russano et al., 2007). In this study, I focused on αβ T cells and will refer to them in the 

following chapters unless otherwise specified. 
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The TCR chains consist of an extracellular region, transmembrane region and a short cytoplasmic 

region with no signaling capacity. The extracellular region contains a variable domain, a constant 

domain and a connecting peptide. The variable domain forms the antigen recognition site and as the 

name suggests, it undergoes genetic rearrangements during T cell development that lead to a vast 

TCR repertoire. The variability of this domain is the basis for the exceptional target diversity of T 

lymphocytes. An individual person can have 105 to 108 unique TCR sequences, although theoretically 

it can be more than 1015  (Francis Elliott et al., 1988; Nikolich-Žugich et al., 2004). The constant 

domains of the TCR chains associate non-covalently with CD3 chains δ, ε, γ, and ζ, that unlike the 

TCR chains, contain a total of 10 immunoreceptor tyrosine-based activation motifs (ITAM) in their 

cytoplasmic regions that are able to conduct the TCR signal downstream into the cell. T lymphocyte 

activation is a complex sequence of events involving multiple receptors that are often for practical 

purposes categorized as the first, second and third signal. 

 

The first signal in the activation of T lymphocytes is the recognition by the TCR of the cognate 

antigen presented on the MHC on APCs. CD8+ T lymphocytes and CD4+ T lymphocytes recognize 

antigens presented on MHC class I and II receptors, respectively. This cellular contact is stabilized by 

adhesion molecules that form a so called “immunological synapse” together with the MHC-TCR 

complex, coreceptors and costimulatory receptors (Dustin & Cooper, 2000). The coreceptors CD4 

and CD8 have the Lymphocyte-specific tyrosine kinase (LCK) bound to the cytoplasmic domains 

(Veillette et al., 1988). By binding to constant regions of MHC molecules, CD4 and CD8 bring LCK in 

close proximity to the ITAMs in the CD3 chains leading to a cascade of phosphorylations and 

conformational changes involving a network of enzymes, adaptor proteins, and secondary 

messengers that activate distinct signaling pathways eventually leading to the nuclear translocation 

of transcription factors. One of the first steps is the recruitment of ζ-chain-associated protein kinase 

70 (ZAP-70) which is subsequently phosphorylated by LCK. In turn, ZAP-70 activates Phospholipase C 

γ1 (PLCγ1) which hydrolyzes the membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2) into 

diacylglycerol (DAG) and inositol-3-phosphate (IP3). Both DAG and IP3 are essential secondary 

messengers for multiple downstream signaling cascades (Figure 1). 

 

Costimulatory receptors provide the second signal to lymphocytes which is necessary for complete 

activation and differentiation into effector cells. Without this second signal, T lymphocytes become 

unresponsive, or anergic, and undergo apoptosis. T lymphocytes have multiple costimulatory and 

coinhibitory receptors. CD28, which binds to CD80 or CD86 on APCs, is the principal costimulatory 

receptor that strongly enhances the TCR signal and induces the expression of the major survival and 
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proliferation factor IL-2 and of other costimulatory receptors. Inducible costimulator (ICOS) is 

another costimulatory receptor that belongs to the CD28 family. Although it activates similar 

signaling pathways as CD28, the main difference from CD28 is that its expression is rapidly induced 

upon T cell activation and it does not upregulate IL-2 (Hutloff et al., 1999). OX40 (Tumor necrosis 

factor receptor superfamily, member 4 (TNFRSF4), also known as CD134) is costimulatory receptor 

that is induced upon activation and it does not belong to the CD28 family. Upon binding to the OX40 

ligand (OX40L), several anti-apoptotic factors of the BCL2 family are induced extending the survival 

of T lymphocytes without directly promoting proliferation (Rogers et al., 2001). Unlike CD28 and 

ICOS that directly associate with protein kinases, OX40 is involved in downstream signaling through 

the TNF-receptor associated factor (TRAF) family of adaptor proteins (Smith-Garvin et al., 2009).  

 

The Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), on the other hand, is a coinhibitory 

receptor that competes with CD28 with the binding to CD80/CD86, thereby inhibiting the CD28 

signaling (van der Merwe et al., 1997). Another example of a coinhibitory receptor is Programmed 

cell death protein-1 (PD-1) which binds to Programmed cell death-ligands 1 and 2 (PD-L1/2). PD-1 

contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-

based switch motif (ITSM) in its cytoplasmic region which attenuate the downstream TCR signaling 

by recruiting phosphatases (Chemnitz et al., 2004; Okazaki et al., 2001). T cell immunoreceptor with 

immunoglobulin and ITIM domains (TIGIT) is a coinhibitory receptor that binds to Nectins. The 

engagement of TIGIT also inhibits downstream signaling pathways through the recruitment of 

phosphatases and by promoting the secretion of the anti-inflammatory cytokine IL-10 (Joller et al., 

2011).  

 

The third signal is a broad term used to describe all other signals that T lymphocytes are exposed to 

that shape the differentiation to effector cells. The main players of the third signal are cytokines 

whose role in the differentiation of T lymphocytes will be discussed in chapter 1.5 Effector T cell 

subsets.  

 

1.4 Distal TCR signaling and transcription factors 
 

Upon activation, T lymphocytes increase in size, proliferate, secrete effector molecules, and undergo 

a metabolic transition from oxidative phosphorylation to glycolysis to meet the higher energy 

demand (van der Windt & Pearce, 2012). The massive proliferation, also called clonal expansion, 

which is primarily driven by the autocrine and paracrine effect of IL-2, is a critical step in the defense 

process to amplify the immune reaction against the specific invading pathogen. These metabolic and 
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functional changes are driven by the activity of transcription factors. There are approximately 400 

transcription factors that are expressed during different stages of T lymphocyte development and 

differentiation (J. A. Zhang et al., 2012). Based on the inducing stimulus, they can be grouped as TCR-

induced transcription factors and cytokine induced transcription factors. 

 

TCR-induced transcription factors combine the first, second and third signal of T cell activation and 

are responsible for the immediate T cell changes. These transcription factors include Activator 

protein 1 (AP-1), Nuclear factor of activated T cells (NFAT), and Nuclear factor κ-light-chain-enhancer 

of activated B cells (NF-κB) (Figure 1). 

 

AP-1 is a group of transcription factors consisting of four subfamilies: Jun, Fos, Maf, and the 

Activating transcription factor (ATF) protein families. The family members form homo- and 

heterodimers that bind to common AP-1-binding site in the DNA (Karin et al., 1997).  Mitogen-

activated kinases (MAPK) are the essential components of the signaling cascade that leads to the 

activation of AP-1 members. PLCγ1 and DAG induce the activation of Rat sarcoma GTPase (RAS), a 

 
Figure 1. Schematic representation of TCR-induced transcription factors. Upon TCR activation, several signaling cascades 

which include kinases, adaptor molecules, phosphatases, and other signaling messengers are triggered which lead to the 

nuclear translocation of transcription factors. LCK - Lymphocyte-specific tyrosine kinase, ZAP70 - ζ-chain-associated protein 

kinase 70, PLCγ1 –  Phospholipase C γ1, PIP2 - phosphatidylinositol 4,5-bisphosphate, IP3 - inositol-3-phosphate, DAG – 

diacylglycerol, PKC –Pprotein kinase C, CBM - CARMA1-BCL10-MALT1 complex, IKK - IκB kinase, RAS – Rat sarcoma GTPase, 

RAF – Rapidly accelerated fibrosarcoma kinase, MEK1/2 – Mitogen-activated protein kinase kinase 1/2, ERK1/2 – 

Extracellular signal-Regulated Kinase, NFAT – Nuclear Factor of Activated T Cells, NF-κB – Nuclear factor kappa-light-chain-

enhancer of activated B cells, AP-1, Activator protein-1. Adapted from Shah et al., 2021. Created with BioRender.com. 
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small G protein that initiates the RAS-MAPK signaling cascade by activating the kinase Rapidly 

accelerated fibrosarcoma (RAF). RAF, in turn, phosphorylates Mitogen-activated protein kinase 

kinase 1/2 (MEK1/2), which then phosphorylates Extracellular-signal regulated kinase 1/2 (ERK1/2) 

(Hashimoto et al., 1998; Whitmarsh & Davis, 1996). Downstream of ERKs, transcription factors 

induce the expression of the of AP-1 members which form dimers with different target genes and 

abilities to induce transcription. For example, Jun/Fos heterodimers are stronger transcriptional 

inducers than other dimers (Atsaves et al., 2019). 

 

NFAT family of transcription factors expressed in T lymphocytes (NFAT1, NFAT2, NFAT4) are required 

for the expression of many important genes including cytokines such as IL-2, Tumor necrosis factor α 

(TNF-α), Lymphotoxin-α (LT-α), and transcription factors such as Forkhead box P3 (FOXP3) (Macian, 

2005; Vaeth et al., 2012). The binding of IP3 to the endoplasmic reticulum causes the release of Ca2+ 

into the cytosol. The increased cytosolic Ca2+ binds to the calcium-binding protein Calmodulin which 

in turn binds and activates the phosphatase Calcineurin that dephosphorylates NFAT eventually 

revealing the nuclear localization signal. In the nucleus, NFAT forms a complex with AP-1 and induces 

the expression of various effector molecules responsible for T cell activation. The composite DNA 

binding sites for NFAT and AP-1 have been identified in the promoter regions of many genes 

encoding proteins important for the function of T cells including IL-2, IL-4, IL-8, IL-13, Interferon γ 

(IFN-γ), TNF-α, Granulocyte-macrophage colony-stimulating factor (GM-CSF), Cyclooxygenase-2, and 

the transcription factor members of NFAT/AP-1 (Macián et al., 2001). Importantly, in the absence of 

AP-1, NFAT alone activates genes that are responsible for T cell anergy. Thus, NFAT controls opposite 

T lymphocyte functions: activation and anergy (Shah et al., 2021).  

 

NF-κB. This family, which is composed of five members, NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB 

and c-Rel, is essential for the survival, proliferation, and differentiation of T lymphocytes. They form 

various hetero- and homodimers and are bound by inhibitors of κB (IκB) in the cytoplasm in an 

inactive form (T. Liu et al., 2017). Typical IκBs are IκBα, IκBβ, IκBε, which inhibit NF-κB by covering 

nuclear localization signals that prevents nuclear translocation (Beg et al., 1992). TCR engagement 

initiates the canonical pathway of NF-κB activation which consists of the phosphorylation, 

ubiquitination, and subsequent degradation of the IκB by the IκB kinase (IKK) complex. Protein 

kinase C (PKC) phosphorylates the adaptor proteins that form a trimer complex consisting of Caspase 

activation and recruitment domains-containing MAGUK protein 1 (CARMA1), B cell lymphoma 10 

(BCL10) and Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM 

complex), that in turn recruits TRAF6 (Smith-Garvin et al., 2009). TRAFs are important adaptor 
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proteins that convey signals from receptors of the TNF receptor superfamily downstream to NF-κB. 

One of their main functions in signal transduction is mediated by their the E3 ubiquitin ligase activity 

(H. H. Park, 2018). TRAF6 ubiquitinates the IKK-γ subunit which allows the phosphorylation of IκB by 

the IKK catalytic subunits and subsequent IκB degradation (Smith-Garvin et al., 2009). This releases 

NF-κB from its inhibited state in the cytoplasm which leads to the nuclear translocation and its 

binding to κB DNA biding sites in the promoter region of many pro-inflammatory genes. (Annemann 

et al., 2016). However, there are also atypical IκBs, i.e. BCL3, IκBNS, IκBζ, IκBη, which do not act only 

as inhibitors but also as inducers of transcription by recruiting NF-κB to promoter regions 

(Hildebrand et al., 2013). IL-2, the most important survival and proliferation factor of T lymphocytes 

requires the coinciding binding of NFAT, AP-1 and NF-κB to its promoter region (X.-Y. Zhou et al., 

2002). 

 

Cytokine induced transcription factors. Signal transducer and activator of transcription (STAT) are a 

family of 7 transcription factors that convey the signaling of over 50 ligands (cytokines, hormones, 

and growth factors) through tyrosine phosphorylation-mediated activation, primarily mediated by 

Janus kinases (JAKs) associated to the receptors (Villarino et al., 2017). Upon binding of the ligand, 

the receptor dimerizes and JAKs are trans-activated due to the close proximity. The JAKs form a 

docking site for the recruitment of cytoplasmic STATs where they become phosphorylated. Once 

phosphorylated, STATs form dimers, leave the docking site and translocate to the nucleus where 

they bind to γ-interferon-activated sequence (GAS) motif within the promoter region of target genes 

(Awasthi et al., 2021; Seif et al., 2017). The GAS motifs have minimal sequence differences, and all 

STATs can engage with each other’s “preferred” binding site and yet, the phenotypes of mice 

deficient in specific STATs exhibit redundant as well as non-redundant functions (Akira, 1999; 

Villarino et al., 2017). STATs play a critical role in the induction of lineage-specific transcription 

factors which will be discussed in the context of each specific subset in the following chapter. 

 

Many other transcription factors are important for T lymphocyte development, control of 

proliferation, survival, and other processes, and are not necessarily involved in immediate responses 

upon recognition of a pathogen. Some of these factors are involved in the differentiation of 

specialized T cell subsets and will be discussed in chapter 1.5 Effector T cell subsets. 

 

Among the many transcription factors with a role of T lymphocyte biology I will just mention the 

Regulatory factor X (RFX) family, which will be discussed in Manuscript [1]. This family comprises 8 

members (RFX1-8) that share a highly conserved winged-helix DNA-binding domain (DBD) that binds 
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to X-box motifs (Aftab et al., 2008; Sugiaman-Trapman et al., 2018). The RFX family members have in 

their promoter regions binding sites for at least 19 other transcription factors which underlines their 

involvement in diverse biological processes. They are involved in regulating the cell cycle 

progression, cell proliferation, differentiation, and apoptosis by targeting integrins, chemokines, 

cytokines, receptors, and transcription factors (Sugiaman-Trapman et al., 2018). In immunity, RFX5 

has a well-established role in the expression of MHC molecules which are fundamental for the 

development and function of T lymphocytes. Loss-of-function mutations of RFX5 result in complete 

lack of MHC II expression which leads to a severe primary immunodeficiency known as bare 

lymphocyte syndrome (Steimle et al., 1995). RFX1 has also been implicated in the function of T cells 

and the progression of systemic lupus erythematosus (SLE). RFX1 inhibits the expression of IL-17A by 

modulating chromatin modifications of the cytokine locus. Repressed expression of RFX1 in TH 

lymphocytes promotes the unchecked expressed of IL-17A, exacerbating the disease (Zhao et al., 

2018).  

 

1.5 Effector T cell subsets 
 

Activated T lymphocytes can assume different effector phenotypes depending on multiple factors: 

TCR affinity, duration of antigenic stimulation, concentration of the antigen, presence of 

costimulatory factors and the molecular milieu, including the presence of cytokines, chemokines and 

metabolites deriving from pathogens and cancer cells. The assumed phenotypes can be classified 

based on the expression of chemokine receptors, signature cytokines and transcription factors into 

subsets (Figure 2). Seminal work by Mosmann et al. in the 1980s formed the basis of our 

understanding of the subsets TH1 and TH2 (Mosmann et al., 1986) Further research and the 

development of novel technologies identified other subsets: TH17, TH22, regulatory T lymphocytes 

and follicular TH lymphocytes. This topic of cellular immunology is a matter of active research and is 

being expanded with evidence of additional subsets such as TH1* (TH1/17), TH9 and TGM-CSF 

(Annunziato et al., 2007; Noster et al., 2014; Veldhoen et al., 2008). In the following paragraphs, I 

will focus on the most well described effector subsets. 

 

TH1. During infections by intracellular pathogens, natural killer cells and dendritic cells create an 

environment rich in IFN-γ and IL-12. These cytokines activate STAT1 and STAT4 in TH lymphocytes, 

respectively, leading to the activation of T-bet which is the lineage-defining transcription factor of 

the TH1 subset. This transcription factor directly regulates the expression of IFN-γ and the tissue 

homing receptors CXCR3 and CCR5 (Jacobson et al., 1995; Szabo et al., 2000). The auto/paracrine 

production of IFN-γ promotes further activation of STAT1 and T-bet in a positive feedback loop, 
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enhancing the phenotype and differentiation of other TN cells in the vicinity (Amsen et al., 2009). TH1 

cells produce high levels of IFN-γ, TNF-α, LT-α which activate monocytes and macrophages to initiate 

a cell-mediated response and phagocytic clearance of an intracellular pathogen. B lymphocytes also 

receive stimuli from TH1 for antibody class-switching to promote the production of opsonizing IgG 

antibodies (Caza & Landas, 2015; Smith et al., 2000). TH1 have been implicated in the development 

of autoimmune diseases such as RA, celiac disease, type 1 diabetes (T1D), and Hashimoto’s 

thyroiditis (Luo et al., 2022; Nilsen et al., 1998; Phenekos et al., 2004; L. S. K. Walker & von Herrath, 

2015).  

 
Figure 2. Differentiation of TH subsets. Upon activation, TN lymphocytes can acquire different phenotypes based on the 

activation signals and the cytokine milieu. The phenotypes are specialized to activate other immune cells in clearing the 

source of the antigen. Adapted from Leung et al., 2010; Loo et al., 2018; Sallusto, 2016. Created with 

www.BioRender.com 

 

TH2. A critical factor in the differentiation of TH2 is the presence of IL-4 and absence of IFN-γ and IL-

12. IL-4 activates STAT6, which in turn induces the lineage-defining transcription factor GATA-

binding protein 3 (GATA3). There is evidence that STAT6 might be dispensable for TH2 

differentiation, however, GATA3 is essential for the Th2 phenotype and can also be induced through 

other mechanisms such as through signaling by CD40L and the Notch ligand Jagged 1 (Amsen et al., 

2009; J. A. Walker & McKenzie, 2018). TH2 cells are characterized by the expression of the receptors 

CCR3, CCR4 and CRTH2 and the production IL-4, IL-5 and IL-13 (Cosmi et al., 2000; Sallusto et al., 

1998; W. Zheng & Flavell, 1997). TH2 cells initiate a humoral response mainly against extracellular 
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microbes and intestinal helminths, mediated by the activation of B lymphocytes, eosinophils, 

basophils, and mast cells. IL-4 causes B lymphocytes to switch to IgE secretion which in turn leads to 

the release of histamine, serotonin, prostaglandins and leukotrienes by mast cells, eosinophils, and 

basophils. These molecules orchestrate contractions of smooth muscles in the intestine and lungs 

which helps in the expelling of parasites. TH2 cells are the main drivers of allergies, asthma and 

hepatic fibrosis  (Chiaramonte et al., 1999; Robinson et al., 1992). 

 

TH17. This subset was first described in 2005 as a distinct pro-inflammatory TH subset with IL-17A as 

the signature cytokine (Harrington et al., 2005; H. Park et al., 2005). Later, they were defined by the 

expression of CXCR3–CCR4+CCR6+ and the transcription factor Retinoic acid receptor-related orphan 

receptor γ t (RORγt) (Acosta-Rodriguez, Rivino, et al., 2007; X. O. Yang et al., 2007). Several members 

of the NF-κB pathway have been shown to be important in exerting a TH17 phenotype (Annemann et 

al., 2016). In particular, mice lacking IκBζ (encoded by NFKBIZ) showed an almost complete absence 

specifically of TH17 cells and were resistant to the induction of experimental autoimmune 

encephalomyelitis (EAE) (Okamoto et al., 2010). IL-6 and IL-23 activate STAT3 which further activates 

RORγt resulting in a TH17 phenotype (X. O. Yang et al., 2007). IL-1β and Transforming growth factor β 

(TGF-β) have also been shown to induce a TH17 phenotype (Acosta-Rodriguez, Napolitani, et al., 

2007; Veldhoen et al., 2006; L. Yang et al., 2008). In contrast to TH1 and TH2 cells, TH17 cells exert a 

higher plasticity and can assume pro-inflammatory and anti-inflammatory properties characterized 

by the co-expression of IFN-γ and IL-10, respectively (Wu et al., 2018; Zielinski et al., 2012). Another 

difference in respect to TH1 and TH2 subsets is that TH17 cells do not amplify further TH17 

differentiation in positive feedback, at least not directly, due to the lack of IL-6 production. However, 

they can indirectly promote TH17 differentiation by secreting IL-21, another STAT3 activator (Yamane 

& Paul, 2012). TH17 cells play a critical role in the protection against bacteria and fungi at mucosal 

barriers which they achieve by secreting pro-inflammatory cytokines IL-17A, IL-17F, IL-21, IL-22 and 

GM-CSF resulting in the recruitment and activation of neutrophils. The hyperactivity of TH17 cells has 

been implicated in the development of a number of autoimmune disorders such as MS, RA and 

psoriasis (Stockinger & Veldhoen, 2007), while a deficiency results in chronic and recurrent 

infections with Candida albicans and Staphylococcus aureus (McDonald, 2012). 

 

TH22 are phenotypically and functionally similar to TH17 cells. They participate in the protection 

against infections at epithelial barriers, express IL-22, CCR6 and CCR4, but in contrast to TH17, 

completely lack the expression of IL-17A and express CCR10 (Duhen et al., 2009; Eyerich et al., 2009; 

Fujita et al., 2009; Trifari et al., 2009). Their differentiation is promoted by IL-6 and TNF-α which 
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activate STAT3 and the expression of the master transcription factor Aryl hydrocarbon receptor 

(AHR) (Trifari et al., 2009.; Yeste et al., 2014). Apart from cytokines IL-22, IL-13 and TNF-α, this 

subset also produces fibroblast growth factors important for wound healing, tissue repair, tissue 

regeneration, and fibrosis (Eyerich et al., 2009). The cytokine IL-22 affects important aspects of 

keratinocyte function: differentiation, proliferation, mobility, wound healing and the production of 

antimicrobial peptides (Wolk et al., 2006). Hyperactive TH22 cells have a prominent role in psoriasis 

but have also been implicated in numerous other pathologies including RA, SLE, MS, immune 

thrombocytopenia, myasthenia gravis, Grave’s disease and Hashimoto’s thyroiditis 

(Hossein‐Khannazer et al., 2021; Jia & Wu, 2014; Jiang et al., 2021). 

 

Regulatory T (Treg) lymphocytes express the lineage-specific transcription factor FOXP3 and have a 

function in immunosuppression and the maintenance of self-tolerance (Hori et al., 2003; Sakaguchi 

et al., 1995). They can develop directly from thymocytes that recognize a self-antigen with high 

avidity (also called “natural Tregs”) (Jordan et al., 2001), or can be induced in the periphery from TN 

cells (also called “induced Tregs”) (W. Chen et al., 2003). FOXP3 expression is induced and 

maintained in response to TGF-β and IL-2 signaling (Loo et al., 2018). In line with this, Tregs have the 

highest expression of CD25, the high affinity IL-2 receptor α chain, among all resting CD4+ 

lymphocytes (Schmiedel et al., 2018). These cells can be distinguished from other CD4+ lymphocytes 

by the high expression of CD25 and low expression of CD127, the IL-7 receptor (W. Liu et al., 2006). 

Tregs exert multiple mechanisms of immunosuppression. The main mechanism is mediated by the 

activity of anti-inflammatory cytokines IL-10, TGF-β and IL-35 (Collison et al., 2007; Moore et al., 

2001; Nakamura et al., 2001). These cytokines suppress the activity of other immune cells to prevent 

excessive inflammation and tissue damage. Tregs also have the ability of inhibition through cell-to-

cell contact. They express surface markers CTLA-4, PD-1, and TIGIT that interact with receptors on 

other immune cells, thereby inhibiting their immune functions (Fallarino et al., 2003; Francisco et al., 

2009; Joller et al., 2014). Additionally, Treg lymphocytes can also influence the metabolic activity of 

other immune cells, for example by depriving them of IL-2 (deemed also as “IL-2 sink”) or by 

secreting cyclic adenosine monophosphate (cAMP) (Bopp et al., 2007; Höfer et al., 2012). There is 

also evidence that Tregs are capable of killing conventional T lymphocytes in a granzyme- and 

perforin-dependent manner (Tang & Bluestone, 2008; Workman et al., 2009). A functional deficiency 

of Tregs has been associated with several immune diseases including T1D, SLE, and immune 

dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome which is characterized by 

multisystem autoimmunity with clinical manifestations raging from food allergies, eczema to 

endocrinopathies (Barreto et al., 2009; Chatila et al., 2000; Ferraro et al., 2011). 
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Follicular TH (TFH) lymphocytes. Central memory T lymphocytes that express CXCR5 have been 

defined as TFH lymphocytes because of their predominant localization within B lymphocytes follicles 

in secondary lymphoid organs (Breitfeld et al., 2000; C. H. Kim et al., 2001). The lineage-defining 

transcription factor B cell lymphoma 6 (BCL6) and STAT3 are essential for establishing and 

maintaining their phenotype (Johnston et al., 2009; Ma et al., 2012; Nurieva et al., 2009; Yu et al., 

2009). The costimulatory receptor ICOS is critical for the development of TFH lymphocytes (Akiba et 

al., 2005). The most important molecules they express are IL-10, IL-21, and CD40L which support B 

lymphocytes in the production of antibodies and the formation of germinal centers (Breitfeld et al., 

2000; Crotty, 2014). Immunodeficiencies of TFH cells lead to an impaired humoral immune response 

due to defects in generating memory B cells and immunoglobulin isotype switching (Ma et al., 2014). 

 

1.6 Generation of Memory T lymphocytes 
 

Most activated TH lymphocytes are short-lived and die upon clearance due to the lack of the 

activating stimulus. However, some cells survive and become long-lived with the ability to respond 

quickly and more potently upon recognizing the same antigen. These cells that “memorize” their 

cognate antigen are called memory T (Tmem) lymphocytes and comprise the majority of the T 

lymphocyte compartment in the peripheral blood of adults (Saule et al., 2006). The threshold of 

activation of Tmem lymphocytes is lower than in TN lymphocytes and are less dependent on 

costimulation and cytokines (Croft et al., 1994). In respect to their homing potential, localization, 

and functional capacity, Tmem lymphocytes can be broadly classified as central memory (TCM) 

(CD45RA−CCR7+CD62L+) and effector memory T lymphocytes (TEM) (CD45RA−CCR7−) (Sallusto et al., 

1999). The constitutive expression of CCR7 and CD62L allows TCM to extravasate through high 

endothelial venules and enter secondary lymphoid organs. For this reason, TCM are enriched in 

secondary lymphoid organs such as lymph nodes and tonsils. Upon TCR activation, they produce 

mainly IL-2, but can eventually differentiate into effector cells and produce effector cytokines such 

as IFN-γ and IL-4. On the other hand, TEM cells do not express CCR7 but tissue-specific chemokines 

and adhesion molecules required for homing to non-lymphoid tissues such as the gut, lung and liver 

(Sallusto et al., 2004). TCM have a higher proliferative capacity, while TEM cells assume effector 

functions very rapidly upon restimulation (Lefrançois & Marzo, 2006). More recently, a rare subset 

of stem cell memory T lymphocytes (TSCM) (CD45RA+CCR7+CD95+CD122+) have been described with 

high proliferative and self-renewal capacity, but without effector functions (Gattinoni et al., 2011). 

Tmem lymphocytes that leave the blood and lymph and migrate to non-lymphoid tissues are so 

called tissue-resident memory T cells (TRM). They reside in tissues such as the lung, skin, gut, 

reproductive organs where they confer long-lasting localized immunity. Instead of CCR7 and CD62L, 
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they express integrins and chemokine receptors specific for entering and homing to these tissues 

where they serve the function of local immunosurveillance (Geberhardt et al., 2009; Iijima & Iwasaki, 

2014; M. Z. M. Zheng & Wakim, 2022).  

 

It is still not fully understood how Tmem lymphocytes develop from TN lymphocytes. Multiple 

models have been proposed to explain their genesis. One model suggests a divergent pathway with 

an asymmetric division of a TN lymphocyte that gives rise to daughter cells with different 

phenotypes: one effector-like and one memory-like daughter cells. In this model, memory 

lymphocytes develop directly from TN lymphocytes bypassing an effector stage (Kaech et al., 2002) A 

progressive model proposes that T lymphocytes accumulate signals from the TCR, costimulatory and 

cytokine receptors at different intensities, qualities, and durations, eventually leading to different 

levels of differentiation. After removal of the antigen, activated cells are selected for their ability to 

survive in the presence of homeostatic cytokines. This ensures that only the “fittest” activated T 

lymphocytes enter the memory pool. According to this model, cells at intermediates stages of the 

differentiation process form a TCM pool (Lanzavecchia & Sallusto, 2002).  

 

In summary, TH lymphocytes are essential players of the immune system. They have a central role in 

regulating functions of innate immune cells, the epithelium, cytotoxic T lymphocytes and B 

lymphocytes. The thymus is the main site of their development where they undergo different stages 

of maturation and TCR selection to ensure survival of cells that weakly recognize self-antigens. 

Mature TN lymphocytes, upon recognition of the cognate antigen, can become Tmem lymphocytes 

and assume different effector phenotypes depending on a variety of conditions present during 

activation. The different phenotypes are specialized in supporting the removal of a wide range of 

pathogens ranging from intra- and extracellular bacteria, viruses, fungi to helminths.  
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2 Post-transcriptional gene regulation in T helper lymphocytes 
 

Upon antigen recognition, TH lymphocytes undergo extensive changes including a switch to 

glycolysis, proliferation, and acquire a new phenotype by changing the expression of surface 

receptors and secretion of effector molecules. These dynamic changes happen within hours and 

days upon activation, and therefore need to be rapidly and tightly regulated to assume an effective 

phenotype to fight against the specific pathogen. Furthermore, the initiation, duration and 

resolution of the immune response has to be regulated to prevent a pathological, unrestrained, 

overreaction that can cause damage to healthy tissue. Cytokines, the main effector molecules of TH 

lymphocytes, are not stored in subcellular vesicles and their secretion depends on the translation of 

transcripts generated by AP-1, NFAT, NF-κB and other transcription factors explained in chapter 1.4 

Distal TCR signaling and transcription factors. 

 

However, transcriptional regulation only partially explains the regulation of the protein output. In 

fact, the transcribed RNA undergoes different processing steps at the post-transcriptional level that 

represents another, more immediate, checkpoint of protein production. During the transcription in 

the nucleus, the pre-messenger RNA (pre-mRNA) is already being modified by RNA-binding proteins 

(RBPs) that mediate splicing, capping (adding 7-methylguanosine (m7G) cap at the 5’ end) and 

polyadenylation (adding a polyadenylic acid (poly(A)) tail at the 3’ end) of the transcript. These 

modifications render the mature mRNA stable, which is then actively transported into the cytoplasm 

where translation can be initiated. However, not all mRNAs serve as a template for translation. Some 

transcripts generate aggregates in the cytoplasm forming processing bodies (P-bodies) or stress 

granules or get actively degraded by RBPs. Therefore, the amount of mRNA is governed by the 

balance of mRNA transcription and degradation (Akira & Maeda, 2021). This post-transcriptional 

level of gene expression regulation in TH lymphocytes is exceedingly important because it allows a 

fast, fine-tuned adjustment of protein output. In fact, it was proposed that up to 50% of changes in 

mRNA abundance upon activation are due to changes in stability of mature mRNA as opposed to 

synthesis of new mRNA transcripts (Cheadle et al., 2005). The main mechanism of decreased 

transcript stability is through mRNA decay (Raghavan et al., 2002). The regulation of mRNA stability 

is governed by the interaction of cis-acting factors found in the 5’ and 3’ untranslated regions (UTRs) 

of mRNA with trans-acting factors that recognize and bind them. The binding of trans-acting factors 

to the UTRs leads to the recruitment of other factors that regulate the half-life of the mRNA 

transcript. The molecular mechanisms affecting the decay of mature mRNA will be the focus of the 

following chapters. 
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2.1 Cis- and trans-acting factors 
 

Post-transcriptional regulation is a complex network of interactions between RNA and proteins that 

can be classified into two major molecular components: cis-acting regulatory sequence elements 

(cis-elements) and trans-acting factors. Cis-elements are sequences contained in the 5’ and 3’ UTRs, 

introns, and coding regions of precursor and mature mRNAs. These regulatory sequences can form 

secondary structures, so called stem loops or hairpin loops. The 3’UTR of cytokines, which are often 

longer than the coding sequence, contain many cis-elements allowing the interaction with 

potentially hundreds of trans-acting factors (S. Kim et al., 2021). Cis-elements are recognized by 

trans-acting factors microRNAs (miRNAs) and RBPs. The mechanism of recognition by miRNAs is 

based on partial sequence complementarity, while for many RBPs it is mediated by RNA-binding 

domains (RBDs). In the next paragraphs, I will explain in more detail the cis-elements and trans-

acting factors relevant for T cell biology. 

 

Adenosine uridine (AU)-rich elements (AREs) are most frequent cis-element in the human genome, 

with 5-8% of all genes containing them (Bakheet et al., 2001). They are also the best studied ever 

since their first description as conserved stretches of adenosine and uridine in the 3’UTR of TNF 

(Caput et al., 1986). Since then, AREs have been identified as crucial half-life regulators of many 

cytokines and immune-related genes including IL1B, IL2, IL3, IL6, IL10, IL17A, CSF2, FOS and JUN (C.-

Y. A. Chen & Shyu, 1995; Gratacós & Brewer, 2010; Lee et al., 2012; Stoecklin et al., 2008). There is 

no single consensus sequence of AREs, but most often they include several repeats of the pentamer 

AUUUA ranging from 50 to 150 nucleotides (C.-Y. A. Chen & Shyu, 1995; Peng et al., 1996). The 

importance of AREs was demonstrated with the mouse model lacking ARE in the 3’UTR of Tnf (TNF-

ΔARE). These mice suffered from chronic inflammatory arthritis and Crohn’s-like inflammatory bowel 

disease due to the inability of the RBP Tristetraprolin (TTP) to initiate an ARE-dependent degradation 

of Tnf  (Kontoyiannis et al., 1999; Taylor et al., 1996). The mRNA HBB (encoding β-globin) which is 

under normal conditions a stable transcript, became unstable when AREs were introduced in the 

3’UTR (Shaw & Kamen, 1986). For these reasons, AREs are generally considered as destabilizing 

factors, however, some RBPs stabilize ARE-containing transcripts such as the RBP human antigen R 

(HuR) (Fan & Steitz, 1998).  

 

Stem loops or hairpin loops are secondary structures generated by complementary base-pairing of 

RNA that forms a short double-stranded stem capped with a loop. They can also assume a more 

complex structure with multiple stems and bulges at regions with unpaired sequences. In the UTRs 

of mRNAs, they serve as binding sites for proteins and act as substrates for enzymes. Stem loops are 
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involved in diverse processes in the life of mRNA including subcellular localization, regulation of 

translation and stability (Svoboda & Cara, 2006). In the context of immunity, stem loops are present 

in the 3’UTR regulating the stability of cytokines and immune-related genes. The recognition of stem 

loops is not based on sequence specificity but on the stem loop shape. However, RBPs such as 

Roquin-1, Roquin-2 and Regulatory ribonuclease 1 (Regnase-1) do require a pyrimidine–purine–

pyrimidine loop (Schlundt et al., 2014).  

 

Guanosine uridine (GU)-rich elements (GREs) are another type of cis-elements that are less 

investigated in comparison to AREs and stem loops. They have been described to be functionally 

similar to AREs by destabilizing transcripts in human T lymphocytes and are overrepresented in the 

3’UTR of short-lived transcripts in human T cells, such as TNFR2 and JUN. The RBPs CUG triplet 

repeat, RNA binding protein 1 (CUGPB1) and CUGBP Elav-like family member 1 (CELF1) recognize 

them and recruit the Poly(A)-specific ribonuclease (PARN) for degradation (Moraes et al., 2006; 

Vlasova et al., 2008). 

 

miRNAs are short (∼22 nucleotides) non-coding RNAs that act as trans-acting factors by binding to 

miRNA-binding sites (MBS), also called miRNA response element (MRE), mainly located in the 3’UTR 

of target mRNA. It is estimated that ~30% of the human protein-coding genome (~8000 genes) 

contains MBS, implying an essential role in multiple biological processes. Interestingly, they are more 

frequently present in immune-related genes in comparison to the rest of the genome, 

predominantly regulating transcription (co)factors, signaling pathways and chromatin regulators 

(Asirvatham et al., 2008). Their binding usually results in a negative regulation of the target 

expression. Genes encoding miRNAs are transcribed as longer primary transcripts that are processed 

by the enzymes Drosha and Dicer. The resulting short double-stranded RNA is incorporated into the 

RNA-induced silencing complex (RISC) through the binding to Argonaute proteins (AGOs). The RISC, 

guided by the miRNA, binds to complementary sequences in the target mRNA and causes inhibition 

of mRNA translation or induction of mRNA degradation (Ivanov & Anderson, 2013). In rare cases, 

miRNA binding can induce translation such as the binding of miRNA-10a in the 5’UTR of mRNA 

encoding ribosomal proteins (Ørom et al., 2008). Genetic ablation of the main players of miRNA 

biogenesis, Drosha and Dicer, resulted in defective T lymphocyte development, function, and 

lymphopenia in mice due to a reduction in miRNA expression (Chong et al., 2008; Muljo et al., 2005). 

miRNAs can potentially regulate multiple targets because of their short sequences and mismatched 

pairing to MBS. For example, miR-181a, which has a critical role in T lymphocyte development, has 

~600 predicted target genes (Asirvatham et al., 2008; Q.-J. Li et al., 2007). One of the most 
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abundantly expressed miRNAs in CD4+ and CD8+ lymphocytes is miR-150, and accordingly, it 

regulates multiple processes in T cell biology. Specifically, miR-150 has been shown to be involved in 

the differentiation of effector and memory T lymphocytes, regulation of T cell activation, 

proliferation, and survival by targeting several genes involved in signaling pathways, including MYB, 

FOXP1 and the Roquin-1 encoding gene RC3H1 (Ménoret et al., 2023; Xia et al., 2022).  

 

RBPs are essential trans-acting factors and mediators of post-transcriptional regulation. They 

recognize cis-elements and N6-methyladenosine (m6A) modification in the RNA, thereby regulating 

all aspects of RNA life, including splicing, capping, polyadenylation, methylation, editing, nuclear 

export, localization, and decay (Akira & Maeda, 2021; Newman et al., 2016). An integrative approach 

based on multiple methods predicted 4200 putative RBPs in all human cell types, which represents 

one fifth of the protein-coding genome and exceeds the number of transcription factors, further 

underlying the importance of post-transcriptional regulation (Gebauer et al., 2021). Human TH 

lymphocytes express 800-1250 identified RBPs that bind to mature polyadenylated mRNA, with an 

overlap of ~70% with murine TH lymphocytes (Hoefig et al., 2021). The functions and mechanisms of 

action of many RBPs have been difficult to unravel, partly due to complex pleiotropic, redundant 

functions and the presence of multiple paralogues. Interestingly, a number of RBPs have been 

identified to have multiple functions that are not related to post-transcriptional control. For 

example, the housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which 

plays a key role in glycolysis and multiple other cellular processes, is an RBP that in T lymphocytes is 

involved in the RNA stability and translation efficiency of IFNG and IL2 (Chang et al., 2013; White & 

Garcin, 2016). As mentioned earlier, resting T lymphocytes rely on oxidative phosphorylation. This 

enables GAPDH to bind to the 3’UTRs of cytokine mRNAs decreasing their translation. Upon 

activation, T cells switch to glycolysis where GAPDH is recruited thereby releasing the cytokine 

mRNAs from the negative regulation (Chang et al., 2013). 

 

There are around 30 RBDs described that interact with RNAs which include the RNA recognition 

motif, cysteine-cysteine-cysteine-histidine (CCCH) zinc finger (ZF) domain, K homology, ROQ domain 

and YTH domain (Gebauer et al., 2021). Crucial regulators of cytokine mRNA regulation in T 

lymphocytes contain a CCCH ZF domain such as TTP, Roquin and Regnase family of RBPs (Fu & 

Blackshear, 2017). However, unconventional RBPs have also been identified and they have no 

discernable RBDs but intrinsically disordered regions that engage with RNA (Castello et al., 2016; 

Gebauer et al., 2021).  
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2.2 Mechanisms of RBP-mediated mRNA decay 
 

Cytoplasmic turnover of mRNA plays a central role in protein output. Mature mRNA contains an m7G 

cap at the 5′ ends and a poly(A) tail at the 3′ ends which render the transcript stable. Therefore, 

many decay mechanisms typically involve the generation of bare 5’ and 3’ ends. There are several 

protein-RNA interactions important for mRNA decay that can be roughly classified into 

exonucleolytic and endonucleolytic decay mechanisms. There are also other mRNA degradation 

mechanisms that act as a surveillance mechanism for RNA quality which are triggered when an 

aberrant translational status is detected, including nonsense-mediated decay, no-go decay, and 

nonstop decay (Akiyama et al., 2021; J. Cheng et al., 2017). For the regulation of cytokine 

production, exonucleolytic and endonucleolytic decay are the main mechanisms of establishing an 

adjusted immune response (Figure 3). RBPs such as TTP and Roquin recognize AREs and stem loops 

in the 3’UTR, respectively, and recruit the Carbon catabolite repressor 4–negative on TATA (CCR4-

NOT) deadenylase complex to remove the poly(A) tail. The shortened poly(A) tail is then targeted by 

the LSM1–7/PAT1 (Like-Sm protein 1/Protein associated with topoisomerase II 1) complex which 

recruits the decapping enzyme DCP2 (Decapping protein 2) that removes the m7G cap, allowing the 

5′→3′ exonucleolytic cleavage by Exoribonuclease 1 (XRN1) (Akiyama et al., 2021; C.-Y. Chen et al., 

2001; Fenger-Grøn et al., 2005; Hsu & Stevens, 1993; Leppek et al., 2013; Sandler et al., 2011). The 

endonucleolytic cleavage is initiated by RBPs with intrinsic ribonuclease (RNase) activity, which 

generate a bare 5’ and 3’ ends rendering the transcript susceptible to the above-mentioned 

exonucleolytic enzymes (Akiyama et al., 2021; Yoshinaga & Takeuchi, 2019).  

 

The expression levels, competition, and cooperation between RBPs govern the extent of mRNA 

decay. For example, in unstimulated T lymphocytes, ARE in the 3′ UTR of the IL2 mRNA mediates 

rapid degradation by negative regulators such as TTP (Ogilvie et al., 2005). Upon activation, IL2 is 

stabilized by the binding of the RBP Nuclear factor 90 (NF90) to the ARE, slowing down the 

degradation of the mRNA (Shim et al., 2002). IL2 also contains stem loops in the 3’UTR that are 

targeted for degradation by Regnase-1 (M. Li et al., 2012). Upon activation, Regnase-1 expression is 

strongly reduced, releasing the negative brake from IL-2 production (Uehata et al., 2013). 

Alternatively, the access of Regnase-1 to its target can be blocked by the RBP AT-rich interactive 

domain-containing protein 5A (ARID5A), which protects transcripts from degradation by binding to 

stem loops (Masuda et al., 2013). RBPs can potentially synergistically regulate mRNA decay. There is 

strong evidence that Regnase-1 and Roquin-1 (and its redundant paralogue Roquin-2) cooperatively 

regulate a common set of target genes through the same stem loops (Mino et al., 2015).  A disrupted  
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interaction between Regnase-1 and Roquin-1 led to a pronounced pro-inflammatory phenotype 

(Behrens et al., 2021). 

 

 

In summary, miRNAs and RBPs form an exceedingly complex network of positive and negative 

regulators of mRNA expression at the post-transcriptional level that fine-tunes the expression of 

immune-related genes at different stages of T cell activation. A factor that makes the investigation of 

this network more challenging is the fact that many RBPs have paralogues. For example, TTP 

(encoded by ZFP36 – Zinc finger protein 36) has paralogues ZFP36 like 1 and 2 (ZFP36L1 and 

ZFP36L2) in human and murine T lymphocytes with mostly redundant functions, but ZFP36L1 and 

 
Figure 3. Schematic overview of post-transcriptional regulation of mRNA. During and immediately after transcription, 

mRNA is bound by RBPs and miRNAs that regulate every aspect of its expression and function through splicing, capping, 

polyadenylation, editing, stability, and nuclear export. Transferred in the cytoplasm, its stability is regulated by RBPs that 

can induce the mRNA degradation through different mechanisms. ARE – AU-rich element, CCR4-NOT – carbon catabolite 

repression 4-negative on TATA-less, DCP2 – Decapping mRNA 2, LSM1-7 – Like-Sm protein 1-7, m6A – N6-methyladenosie, 

m7G – N7-methylguanosine, miRNA – microRNA; PAT1 – Protein associated with topoisomerase II, RBP – RNA-binding 

protein, TTP – Tristetraprolin, UTR – untranslated region, XRN1 – Exoribonuclease 1. Adapted from Akiyama et al., 2021. 
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ZFP36L2 are specifically required for antigen-specific T cell clonal expansion, at least in the murine 

system (Cook et al., 2022). Similarly, Roquin-1 and Roquin-2 are fully redundant and Roquin-2, which 

is expressed at 5 times lower levels than Roquin-1, can compensate for the lack of Roquin-1 (Vogel 

et al., 2013). Regnase-1 is also part of a family with 4 paralogues which are much less investigated 

than the Roquin family. 

 

Part of this study was focused on elucidating the role of Regnases, whose known functions and 

mechanisms I will explain in the following chapter. 

 

2.3 Regnases – a family of destabilizing RBPs 
 

Regnases are a family of four RNases encoded by the genes zinc finger cysteine-cysteine-cysteine-

histidine 12A-D (ZC3H12A-D). The family namesake Regnase-1 (ZC3H12A, also called MCPIP1 – 

monocyte chemoattractant protein induced protein 1) was first described as a protein induced by 

treating monocytes with monocyte chemoattractant protein-1 (MCP-1; CCL2), IL-1β and 

lipopolysaccharides (LPS) (Mizgalska et al., 2009; L. Zhou et al., 2006). For this reason, the earliest 

data on the importance of Regnase-1 in inflammation comes from data based on murine monocytes. 

Of note, Regnases exhibit a high level of conservation within multiple species, and the homology 

between human and mouse Regnases varies from 81 to 92% (Liang et al., 2008). In macrophages, 

Regnase-1 is induced by different signals, suggesting the importance of this protein in keeping the 

cells in a quiescent state. Because of a putative nuclear localization sequence arginine-lysine-lysine-

proline (RKKP), a ZF motif and an in vitro transactivation assay, Regnase-1 was considered to be a 

transcription factor that induces the expression of pro-apoptotic genes (Niu et al., 2008; L. Zhou et 

al., 2006). The landmark work by Mastushita et al., described Regnase-1 as an RNase with a pili 

twitching motility N-terminal (PIN) domain that contains an aspartic acid residue 141 (D141) which 

was essential for degrading Il6 in a 3’UTR-dependent manner (Matsushita et al., 2009). The catalytic 

RNase site in the PIN domain was later confirmed to be a negatively charged pocket formed by 

several conserved acidic residues where D141, D225, D226 and D244 were the most important 

residues (Xu et al., 2012). A mutation of the amino acid D141 completely abrogated the RNase 

activity (Matsushita et al., 2009). 

 

Although both the ZF domain and the PIN domain can bind to RNA, these domains exist and function 

independently without interacting with each other (Yokogawa et al., 2016). Further investigations 

revealed the importance of domain-domain interactions of Regnase-1 for exhibiting the RNase 

activity in vitro. More precisely, it was identified through in vitro cleavage assays and electrophoretic 
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mobility shift assays with Il6 mRNA that the presence of the N-terminal domain (NTD) strongly 

increased the RNase activity of the PIN domain, despite not directly binding to RNA. It is further 

suggested that the NTD/PIN interaction changed the conformation of the PIN domain allowing the 

binding of Mg2+ which is necessary for the RNase activity (Xu et al., 2012; Yokogawa et al., 2016). 

Additionally, Regnase-1 formed dimers through PIN-PIN interactions that are required for in vitro 

RNase activity, since the monomeric mutants (P212A, R214A, D278R) displayed no RNase activity 

(Yokogawa et al., 2016). The model of the enzymatic activity proposed by Yokogawa et al. suggests 

that in the absence of a target mRNA, the PIN domain forms dimers. However, only when the NTD of 

one of the Regnase-1 molecules binds to its PIN domain, a fully functional dimer is generated 

(Yokogawa et al., 2016).  

 

Interestingly, Regnase-1 is also involved at the translational level of regulation by removing ubiquitin 

moieties from TRAF2, TRAF3 and TRAF6 proteins thereby inhibiting the NF-κB pathway. The 

mutation of cysteine 157 (C157) abrogates the deubiquitinase activity, at least in vitro (Liang et al., 

2010). Therefore, Regnase-1 has different enzymatic activities that are mechanistically not fully 

elucidated, but it is clear that complex intermolecular and intramolecular interactions tightly control 

the protein’s activity and therefore the immune response. 

 

The global Regnase-1 deficiency in mice lead to death within 12 weeks after birth due to a severe 

lupus-like auto-inflammatory disease that included severe anemia, splenomegaly, 

lymphadenopathy, increased numbers of plasma cells, increased levels of anti-nuclear antibodies 

and anti-double-stranded-DNA antibodies, increased secretion of pro-inflammatory cytokines by 

macrophages and T lymphocytes (Matsushita et al., 2009). The CD4+-specific deletion of Regnase-1 

recapitulated the global knockout (KO), underlining the importance of Regnase-1 in restraining T cell 

activation for the prevention of auto-inflammatory disorders (Uehata et al., 2013). Most of the T 

cells of the KO mouse were of the effector/memory phenotype (CD62L-CD44hi) with increased 

proliferation and secretion of IFN-γ, IL-17A and IL-4 upon stimulation, suggesting that Regnase-1 KO 

T cells were polarized into specialized subsets. Subsequent studies in a number of immune cell types 

found a multitude of additional genes that are directly or indirectly negatively regulated by Regnase-

1 such as REL, NFKBIZ, NFKBID, CTLA4, ICOS, IL1B, IL2, IL6, IL12, PTGS2, TNFSF4 (OX40), and the list is 

steadily being expanded (M. Li et al., 2012; Mino et al., 2015; Uehata et al., 2013; Uehata & Akira, 

2013; Wei et al., 2019).  
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Regnase-1 has multiple levels of regulation. Early on it was identified that stimulating monocytes 

with MCP-1 and IL-1β promoted the activation of the transcription factor ETS Like-1 (ELK1), which in 

turn binds to the promoter of ZC3H12A (Kasza et al., 2010). Regnase-1 is in a negative regulatory 

feedback loop with the NF-κB pathway: Regnase-1 expression is induced by four κB sites, while 

Regnase-1 itself degrades NFKBID and NFKBIZ, negatively regulating NF-κB (Mino et al., 2015; Mino 

et al., 2019;  Skalniak et al., 2009) Upon TCR activation, the paracaspase MALT1 cleaves Regnase-1 at 

the arginine residue 111 (R111) inactivating it (Jeltsch et al., 2014). A possible mechanism of the 

inactivation following the cleavage by MALT1 is the removal of the NTD which in vitro greatly 

decreased the RNase activity (Yokogawa et al., 2016). It was shown in murine monocytes that the 

IKK complex and the Interleukin 1 receptor associated kinase 1 (IRAK1) phosphorylate Regnase-1 at 

the serine residues in the aspartic acid-serine-glycine-X-X-serine motif (DSGXXS motif), marking it for 

ubiquitination by the E3 ligase β-transducin repeats-containing protein (β-TrCP) and subsequent 

proteasomal degradation (Iwasaki et al., 2011). The association of Regnase-1 with β-TrCP was also 

observed in HeLa cells upon stimulation with IL-1β (Akaki et al., 2021). Interestingly, the 14-3-3 

protein family members were also induced upon stimulation of HeLa cells, and they competed with 

β-TrCP for the binding to the same serine residues in the DSGXXS motif (Akaki et al., 2021). The 

binding of 14-3-3 family members protected Regnase-1 from the β-TrCP-mediated proteasomal 

degradation. However, the 14-3-3 complex functionally inhibited Regnase-1 from degrading mRNA 

and it sequestered it in the cytoplasm by preventing nuclear import (Akaki et al., 2021). 

 

At the mRNA level, ZC3H12A is negatively regulated by Roquin-1 and Regnase-1 itself (Iwasaki et al., 

2011). Also, miRNAs miRNA-9, miR-139, and miR-27a-5P have been identified to initiate degradation 

of the Regnase-1-econding mRNA (Y. Cheng et al., 2015; Makki & Haqqi, 2015; L. Yang et al., 2013). 

 

The targeted cis-elements by Regnase-1 are stem loops. No common stem sequence has been 

identified among the targets, but the loops itself contain a pyrimidine-purine-pyrimidine sequence 

(UAU and UGU) (Figure 4) (Mino et al., 2015). The mechanism of stem loop recognition and 

subsequent mRNA degradation is not fully understood. There is evidence that the ribosomal protein 

up frameshift 1 (UPF1) associates with Regnase-1, and its helicase activity is critical for Regnase-1-

mediated decay by unwinding the stem loop of actively transcribed mRNAs (Mino et al., 2019). In 

accordance with this, Regnase-1 was identified to associate with mostly ribosomal proteins in 

unstimulated HeLa cells (Iwasaki et al., 2011).  
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Regnase-1 shares functional similarity with the RBP Roquin-1. Both RBPs degrade pro-inflammatory 

mRNAs and are degraded by MALT1 upon TCR activation (Jeltsch et al., 2014). Initial results 

suggested that these RBPs downregulate a common set of genes through distinct spatiotemporal 

mechanisms (Mino et al., 2015). However, more recent data in T lymphocytes showed that Regnase-

1 and Roquin-1 functionally and physically cooperate (Behrens et al., 2021; Jeltsch et al., 2014). It 

was identified that Regnase-1 and Roquin-1 form a ternary complex with the Zc3h12a mRNA in vitro, 

suggesting a cooperative negative regulation of common targets. Furthermore, the disruption of 

their interaction by mutating amino acid residues in Roquin-1 at the binding interface with Regnase-

1 lead to a higher frequency of activated T lymphocytes, increased proliferation, increased IFN-γ, and 

induced the accumulation of effector memory CD8+ in mouse models (Behrens et al., 2021) 

Therefore, the interaction of Regnase-1 with Roquin-1 is important for keeping cells in a quiescent 

state. This further suggested that the disruption of this interaction might be used as an approach for 

improving cancer immunotherapy which showed promising preclinical results (Behrens et al., 2021) 

 

Regnase-1 has three paralogues: Regnase-2, Regnase-3 and Regnase-4 (Figure 5). The paralog 

Regnase-4 (ZC3H12D, also called Transformed follicular lymphoma (TFL), and MCPIP4) was initially 

described as a tumor suppressor gene in follicular lymphoma and lung cancer (Minagawa et al., 

2007; Wang et al., 2007). It has a high sequence homology to Regnase-1 and shares the protein 

domains. Same as Regnase-1, the overexpression of Regnase-4 inhibits proliferation and induces 

apoptosis (Minagawa et al., 2009, 2014).  

 

 
Figure 4.  Cis-elements targeted by Regnase-1. Regnase-1 targets stem-loops in the 3’UTR without sequence specificity 

of the stem, but with a specificity to a loop with a final pyrimidine-purine-pyrimidine loop (Yoshinaga & Takeuchi, 2019). 
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Figure 5. Schematic structures of Regnase family members. MALT1 – Mucosa-associated lymphoid tissue lymphoma 

translocation protein 1, PIN-(PilT) N-terminal domain, ZF-zinc finger, DSGXXS motif – aspartic acid-serine-glycine-X-X-

serine motif, PRD-proline rich domain. 

 

In contrast to Regnase-1, knocking out Regnase-4 in mice is not lethal. In fact, the KO mice lived up 

to 2 years under steady-state conditions. However, with the induction of EAE, the KO mice had a 

more severe and prolonged paralysis with T lymphocytes sorted from the brain having a higher 

expression of TH17-related genes IL17A, IL23RA and IL23RB (Minagawa et al., 2014). Further studies 

identified that Regnase-4 negatively regulates mRNAs IL1B, IL2, IL6, IL10, TNF, IL17A and ZC3H12A 

via their 3’UTRs in an RNase-dependent manner (Iwasaki et al., 2011; Minagawa et al., 2014; 

Mizgalska et al., 2009; H. Zhang et al., 2015). Mutating the conserved aspartic acid residue 95 (D95) 

abrogates the RNase activity (Wawro et al., 2017). Importantly, Regnase-1 and Regnase-4 contribute 

additively, but independently, to the negative regulation of at least one mRNA, namely Il6, as seen in 

activated RAW264.7 cells, a murine macrophage cell line (S. Huang et al., 2015). Furthermore, co-

immunoprecipitation and confocal microscopy have confirmed that Regnase-1 and Regnase-4 

directly interact with each other (S. Huang et al., 2015). The two RBPs co-localize with P- bodies in 

HeLa cells, which contain protein machineries for RNA degradation (S. Huang et al., 2015). 

 

Despite the similarity with Regnase-1 as a negative regulator of pro-inflammatory genes, one 

difference between Regnase-1 and Regnase-4 has been identified concerning their transcriptional 

regulation. The transcriptional repressor Basic helix-loop-helix family member E40 (BHLHE40) has 

been identified to downregulate the expression of ZC3H12D but not of ZC3H12A in primary human T 

cells (Emming et al., 2020).  

 

The other two Regnase family members, Regnase-2 and Regnase-3, are expressed at very low levels 

in human T lymphocytes (Emming et al., 2020; Schmiedel et al., 2018). Their function in other cell 

types is largely unknown, although there have been some studies in recent years. Regnase proteins 
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are highly conserved, therefore it is expected that they exert similar functions. Indeed, 

overexpression of Regnase-2 suppressed the 3’UTR of IL6 mRNA in HeLa cells, but its role in vivo is 

still not characterized (Wawro et al., 2019). Regnase-3 is highly expressed in myeloid cells. Regnase-

3-deficient mice develop lymphadenopathy, most likely due to overproduction of IFN-γ in 

macrophages, although the direct targets of Regnase-3 in vivo remain unknown (von Gamm et al., 

2019). The overexpression of Regnase-2, Regnase-3 and Regnase-4 in murine T lymphocytes lacking 

endogenous Regnase-1 was able to downregulate the expression of ICOS, a known Regnase-1 target, 

further suggesting the redundancy of the Regnase paralogues (Behrens et al., 2021). 

 

2.4 Intrinsically disordered regions in RBPs 
 

Novel RBPs are identified by different biochemical assays, such as RNA-immunoprecipitation and 

sequencing (RIP-seq), orthogonal organic phase separation (OOPS), protein-crosslinked RNA 

extraction (XRNAX), and mRNA-oligo-deoxythymidine (dT) pull-down coupled with mass-

spectrometry (Baltz et al., 2012; Castello et al., 2012, 2016; Hoefig et al., 2021; Trendel et al., 2019). 

Because RBPs are highly conserved, their putative RBDs can be predicted computationally, at least in 

some cases. However, in a superset of 3470 RBPs analyzed genes, only 25% had a predicted RBD 

(Gebauer et al., 2021). This underlines the many unknowns in the molecular mechanisms exhibited 

by RBPs. In particular, many RBPs are characterized by intrinsically disordered regions (IDRs) which 

are natively flexible and lack a stable three-dimensional structure (Castello et al., 2012). Intrinsically 

disordered proteins (IDPs) frequently have multiple functions through multiple interaction interfaces 

and thereby are involved in a multitude of regulatory functions including transcription, RNA folding, 

RNA export, RNA granule formation, RNA degradation, translation and signaling pathways (Castello 

et al., 2012; Hautbergue et al., 2008; Järvelin et al., 2016; Vandelli et al., 2022; Wright & Dyson, 

2015). IDRs can be considered as non-canonical RBDs because in 170 RBPs these regions were the 

sole detectable RNA-binding site (Castello et al., 2016). Importantly, RBPs that specifically interact 

with mRNAs are highly enriched in IDRs in comparison to the complete human proteome (Castello et 

al., 2012). Thus, IDRs represent a multifunctional RNA-binding module. 

 

One example of an IDR-containing RBP is Platelet-derived growth factor A associated protein-1 

(PDAP1) which has been shown to protect B lymphocytes from cell death and to promote antibody 

gene diversification (Delgado-Benito et al., 2020). It was originally described as a mitogen-inducing 

protein with no significant homology to any known class of protein in a rat neural retina cell line 

(Fischer & Schubert, 2002). The roles of PDAP1 in cell survival, apoptosis resistance, proliferation, 

and metastasis were confirmed in cancer cell lines and mouse models (Cui et al., 2022; Sharma et al., 
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2016; Weston et al., 2018). Due to the high and broad expression levels across many tissues, 

including the brain, gastrointestinal tract, pancreas, bone marrow and lymphoid tissues, it is 

expected that also in these tissues PDAP1 might have a range of similar functions (Karlsson et al., 

2021; Uhlén et al., 2015; Uhlen et al., 2019).  

 

2.5 RBPs in health and disease 
 

As described in the previous chapters, RBPs have an important role in fine-tuning the function of TH 

lymphocytes by regulating the stability and decay of pro-inflammatory mRNA transcripts. Thus, the 

dysregulation of RBP expression is implicated in the development of inflammatory diseases in 

humans. In mouse models, a TTP deficiency leads to a TNF-α-mediated severe inflammatory 

phenotype with erosive arthritis, cachexia, and autoimmunity (Taylor et al., 1996). In humans, 

genome-wide associated studies (GWAS) have connected single nucleotide polymorphisms (SNPs) in 

the ZFP36 gene and its paralogues ZFP36L1 and ZP36L2 to pathological conditions. The studies have 

identified multiple SNPs in the loci of these genes in patients with RA, juvenile idiopathic arthritis, 

psoriasis, and MS (Carrick et al., 2006; Hinks et al., 2013; Suzuki et al., 2008). In addition, ZFP36L2 is 

identified as a susceptibility gene of MS, and its expression is decreased in MS patients (Parnell et al., 

2014). Therefore, the variants of ZFP36, ZFP36L1, and ZFP36L2 or their dysregulated expressions 

may be the underlying cause of the development of autoimmune disorders. 

 

Regnase-1 has also been implicated in some autoimmune and inflammatory disorders. A frameshift 

mutation in ZC3H12A caused an absence of the full-length Regnase-1 in one patient which caused a 

primary immunodeficiency (Hashim, 2017). The patient had increased levels of (auto)-antibodies, IL-

6 and suffered from autoimmune hepatitis, anemia, thrombocytopenia, and recurrent respiratory 

infections. Similarly, a dysregulated Regnase-1 expression dependent on IL-17A has been identified 

in the skin of psoriasis patients (Ruiz-Romeu et al., 2016). Furthermore, studies of intestinal inflamed 

epithelium identified mutations in Regnase-1 to be associated with ulcerative colitis (Kakiuchi et al., 

2020; Nanki et al., 2020). In contrast, human studies of Regnase-4 are much more limited. The only 

available study, with a total number of 6 patients, described a significant change in the methylation 

of the promoter of ZC3H12D in patients with leukoaraiosis which is a neuroimaging abnormality of 

the cerebral white matter (Huang et al., 2018). 

 

Unraveling the molecular mechanisms of RBP-dependent diseases allows the development of 

possible therapeutical treatments, even though these are still at a pre-clinical stage. One potential 

mechanism is disrupting the self-regulation of ZC3H12A by Regnase-1 itself. Indeed, when antisense 
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oligonucleotides were used to target the 3’UTR of ZC3H12A, it blocked the negative self-regulation 

of Regnase-1, eventually causing a higher Regnase-1 expression. This impeded the development of 

EAE due to a lower expression of pro-inflammatory cytokines and chemokines (Tse et al., 2022). 

Another field where Regnase-1 modulation can be used is in cancer immunotherapies. The adoptive 

transfer of Regnase-1-deficient CD8+ T cells resulted in a better anti-tumor response against both 

solid and blood cancers by reprogramming the tumor-infiltrating KO CD8+ cells to long-lived effector 

cells (Wei et al., 2019). This anti-tumor effect in vivo was further confirmed and enhanced by 

adoptively transferring human chimeric antigen receptor CD8+ T (CAR-T) cells lacking both Regnase-1 

and Roquin-1 (Mai et al., 2023). 

 

To summarize this chapter, post-transcriptional regulation is exceedingly important in fine-tuning 

the immune response of TH lymphocytes. This is mainly mediated by RBPs that regulate the stability 

of mRNAs encoding cytokines and other immune-related genes. RBPs usually have paralogues such 

as the Roquin, ZFP36 and Regnase families, while other RBPs do not have a discernible classical RBD. 

As RBPs are prominent modulators of the immune response, attempts have been made to harness 

their function for medical treatment with promising pre-clinical results. 
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3 Hypothesis and aim of the thesis 
 

TH lymphocytes are at the center of the immune network by secreting cytokines that affect all other 

immune cells and neighboring tissues. The gene expression of TH lymphocytes must be carefully and 

rapidly regulated, since they have to mount fast and specific responses upon encountering an 

antigen, while at the same time limiting excessive inflammation and tissue damage. Post-

transcriptional regulation plays a key role in the function of TH lymphocytes by modulating the 

stability and translation of mRNAs encoding for cytokines and other immune-relevant genes. RBPs, 

in cooperation with miRNAs, are essential for the adjusted and fine-tuned reaction of TH 

lymphocytes. The fact that many RBPs have paralogues renders their functional investigation more 

challenging. For example, the Regnase family has two members, Regnase-1 and Regnase-4, 

expressed in TH lymphocytes that seemingly have similar, but not identical functions and 

characteristics, with unknown levels of cross-interaction, cooperation and redundancy. Furthermore, 

many RBPs remain with completely unknown functions in TH lymphocytes, such as PDAP1.  

 

The aim of my thesis is the comparison of RBPs within the same family, as well as the 

characterization of a novel RBP, in the context of human TH lymphocyte function. 

 

In the first part of my studies, I compared the role of Regnase-1 and Regnase-4 in the repression of 

target mRNAs. The results of this study are included in Chapter 4. Functional analysis of Regnase-1 

and Regnase-4 in human T helper lymphocytes.  

 

In the second part, I contributed to the functional characterization of the RBP PDAP1. The results of 

this study are described in Manuscript [1], of which I am the joint first author.  

 

Additionally, I am the joint first author of a review article (Manuscript [2]) where I contributed to 

describing the role of RBPs in restraining the pro-inflammatory phenotype of TH lymphocytes. 
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4 Functional analysis of Regnase-1 and Regnase-4 in human T 
helper lymphocytes 

 

4.1 Rationale of the study 
 
Two members of the Regnase RBP family, namely Regnase-1 and Regnase-4, have been described to 

be negative regulators of inflammatory genes in TH lymphocytes. They share a high degree of 

homology and have overlapping mRNA targets; however, some important differences have been 

identified. For example, a T-cell specific deletion of Regnase-1 is lethal within 12 weeks after birth, 

while Regnase-4 can live for up to 2 years but exhibit a worse paralysis upon EAE induction 

(Matsushita et al., 2009; (Minagawa et al., 2014). Also, the transcription factor BHLHE40 negatively 

regulates ZC3H12D, but not ZC3H12A expression (Emming et al., 2020). For these reasons, I aimed to 

functionally compare Regnase-1 and Regnase-4 in order to identify unique, redundant or 

compensatory roles in human TH lymphocytes. 

 

4.2 Material and methods 
 

T cell separation. Buffy coats from healthy donors were obtained from the Swiss Blood Donation 

Centers of Basel and Lugano (Switzerland) with informed consent from the Swiss Red Cross and 

authorization number CE 3428 from the Comitato Etico Canton Ticino. Peripheral blood 

mononuclear cells (PBMCs) were separated by gradient centrifugation with Ficoll-Paque Plus (GE 

Healthcare), followed by positive selection for CD4+ cells using magnetic microbeads (Miltenyi 

Biotec). T cell populations were further sorted (FACSaria and FACSymphony A6, BD Biosciences) 

based on the expression of surface markers as follows:  

TN cells: CD4+ CD25− CD45RA+ CCR7+, 

Tmem cells: CD4+ CD25− CD45RA− CCR7+/−,  

TH1 cells: CD4+ CD25− CD45RA− CXCR3+ CCR4− CCR6−, 

TH2 cells: CD4+ CD25− CD45RA− CXCR3− CCR4+ CCR6−,  

TH17 cells: CD4+ CD25− CD45RA− CXCR3− CCR4+ CCR6+ CCR10-, 

TH22 cells: CD4+ CD25− CD45RA− CXCR3− CCR4+ CCR6+ CCR10+ and  

Treg: CD4+ CD25hi CD127lo.  

Sorting strategies are shown in Figure 4.1 and antibodies used in this study are listed in Table 4.1.  

 

Culturing of T cells. Sorted T cell populations were activated for two days with plate-bound anti-CD3 

(clone TR66 (Lanzavecchia & Scheidegger, 1987), recombinant, made in-house, a kind gift from 
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Federica Sallusto and Antonio Lanzavecchia) and anti-CD28 (BD Pharmingen) in Nunc MaxiSorp 

(Thermo Fisher Scientific) 96-well plates in complete medium consisting of RPMI-1640 medium 

(Gibco) supplemented with 5% human serum (Swiss Blood Center), 1% non-essential amino acids, 

1% sodium pyruvate, 1% glutamate, 1% penicillin/streptomycin (all from Gibco) and 50 μM β-

mercaptoethanol (considered as complete medium). After two days of activation, cells were moved 

into round-bottom 96-well plates. For cultures longer than 5 days, 50-200 U/ml human IL-2 

(recombinant, made in-house) was added to the medium and the cells were split every 3-4 days 1:2. 

 

Culturing of T cell clones. T memory cells were single cell cloned and activated as previously 

described (Messi et al., 2003). In brief, 0.8 cells per well were seeded in 384-well plates in complete 

medium containing 500 U/ml IL-2, 1 µg/ml phytohemagglutinin (PHA) (Thermo Fisher Scientific) and 

2.6 × 104 irradiated (45 Gy) PBMCs. After 14 days, individual clones were transferred into round-

bottom 96-well plates and further expanded with complete medium containing 500 U/ml IL-2 up to 

day 21 when functional analysis was performed. Similarly, sorted TH17 cells were single cell cloned 

and screened for the production of IL-17 on day 20 post-activation. On day 28, a single IL-17+ clone 

was transfected with CRISPR-Cas9 ribonucleoparticle (RNP) and single cell cloned again on day 30. 

Single clones were moved to round-bottom 96-well plates and used for functional analysis on day 

56. Clones used for Western blotting were expanded by stimulating 100’000 cells of each clone on 

day 28 post-activation in 1 ml complete medium containing 500 U/ml IL-2, 1 µg/ml, 1 million 

allogeneic irradiated PBMCs until day 44 when they were harvested for protein extraction.  

 

CRISPR-Cas9 gene editing. CRISPR-Cas9 gene editing was performed as previously described 

(Emming 2020; Leoni, Bianchi, 2021). In brief, CRISPR RNAs (crRNAs) and trans-activating CRISPR 

RNAs (tracrRNAs) (Dharmacon, IDT) were mixed at a final concentration of 80 µM in 10 µl of 

nuclease-free duplex buffer (Dharmacon, IDT), followed by boiling for 5 minutes at 95°C and cooled 

down at room temperature for 10 minutes to generate single guide RNAs (sgRNAs). The crRNAs are 

listed in Table 4.2. RNPs were generated by combining 1.5 µl (120 pmol) of sgRNA with 1.5 µl (46.19 

pmol) of TrueCut Cas9 Protein v2 (Thermo Fisher Scientific) in a volume of 3 µl. 1.2 µl of 100 mg/ml 

poly-L-glutamic acid sodium salt (Sigma) was added to the RNP to a final volume of 4.2 µl. The RNPs 

were transfected into 0.8-1 × 106 cells either by using the 10 µl Neon Transfection System Kit 

(Thermo Fisher Scientific) (20 ms, 1 pulse, 1800V for resting cells, 2200V for activated cells) or 20 µl 

P3 Primary Cell 4D-Nucleofector Kit (Lonza) (code EH-115). After transfection, cells were left to 

recover in complete medium without antibiotics with 200 U/ml IL-2 for 36-48h prior to activation. 
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Analysis of CRISPR-Cas9 deletion efficiency of T cell clones. In the case of the gene ZC3H12A, 

sgRNAs were transfected in the combinations of sgRNAs_1+3 or sgRNAs_2+3 (A KO) interchangeably 

where both strategies produced a similar deletion of ~5.7 kilobase pairs (kb) (Figure 4.3B). In the 

case of the gene ZC3H12D, two KO strategies were also applied. The first strategy consisted of 

transfecting sgRNAs_1+2 (D KO) that were designed to produce a deletion of 150 base pairs (bp) 

(Figure 4.3C). The second strategy consisted of transfecting sgRNAs_1+3 (D KO_1+3) which produced 

a deletion of ~17.7 kb (Figure 4.3F). The presence of deletions was assessed by PCR of the genomic 

DNA (gDNA). The gDNA was isolated using the QIAamp DNA Micro Kit (Qiagen) or extracted with the 

QuickExtract DNA extraction solution (Lucigen) following the manufacturer’s protocol. The extracted 

gDNA was used as a template for a PCR with KOD Hot Start DNA Polymerase (Sigma) and analyzed by 

gel electrophoresis. To screen for the presence of genomic deletions, PCRs were designed to span 

the regions of double-stranded breaks to distinguish between unmodified (wild type, WT) and KO 

clones. The screening primers are listed in Table 4.3. For selected clones, the existence of a KO was 

confirmed by Western blot.  

 

Quantitative reverse transcription-PCR (qRT-PCR). Total RNA was extracted using the TRI Reagent 

and the Direct-zol RNA Kit (Zymo Research) according to manufacturer’s protocol. cDNA was 

retrotranscribed with the qScript cDNA SuperMix (QuantaBio). PCR reactions were performed with 

PerfeCTa SYBR green FastMix (QuantaBio), 2-10 ng cDNA and 0.2 mM primers and run on 

QuantStudio 3 (Thermo Fisher Scientific). All primers used for qRT-PCR are listed in Table 4.4. 

 

Nanostring transcriptome profiling. Total RNA was extracted same as for qRT-PCR. 40-100 ng of 

total RNA of pools of KO clones was hybridized and probed with the nCounter Human Immunology 

v2 Panel (Nanostring) and ran on an nCounter PRO or nCounter SPRINT instrument (Nanostring). 

Data were normalized to housekeeping genes expressed above the expression threshold. The data 

was analyzed with the nSolver 3.0 software.  

 

Intracellular and surface staining. For IL-17A detection, cells were stimulated for 5 h with 200 nM of 

phorbol myristate acetate (PMA) and 1 µg/ml ionomycin. For the last 2.5 h of stimulation, 10 µg/ml 

of brefeldin A was added to the culture medium. Prior to fixation, cells were stained with the 

LIVE/DEAD Fixable Stain Kit (Thermo Fisher Scientific). Cells were fixed with 4% paraformaldehyde, 

followed by the permeabilization with 0.5% BSA and 0.1% saponin in PBS and staining with anti-IL-

17A-e660 (APC) antibody (BioLegend). For intracellular staining of hemagglutinin (HA), Regnase-1 

and Regnase-4, cells were fixed and stained by using the FOXP3/Transcription Factor Staining Buffer 
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Set (Thermo Fisher Scientific) following the manufacturer’s protocol. For the surface staining of ICOS, 

cells were incubated on ice for 15 minutes with ICOS-FITC (Invitrogen). Samples were acquired on a 

Fortessa or FACSymphony A5 flow-cytometer (BD Biosciences) and analyzed with the FlowJo 

software (BD Biosciences). 

 

Plasmids. Plasmids were generated and modified using standard molecular cloning techniques. For 

luciferase reporter assay, the 3’UTRs of NFKBIZ and IL17A was amplified by PCR and cloned into the 

pmirGLO plasmid (Promega). Human ZC3H12A was subcloned into pLVX-EF1α-IRES-ZsGreen 

(Clontech). pReceiver-Lv165-ZC3H12D was obtained from Genecopoeia. For in vitro mRNA 

transcription, a ZsGreen reporter and the genes of interest were cloned into pUC57mini. Site-

directed mutagenesis was performed using the Quick Change II kit (Agilent) or Q5 Site-Directed 

Mutagenesis Kit (New England BioLabs) according to manufacturers’ instructions. All plasmids were 

verified by Sanger sequencing. Cloning primers and plasmids are listed in Table 4.5 and Table 4.6. 

 

In vitro mRNA transcription and transfection. DNA templates for in vitro transcription (IVT) were 

generated by linearization of the pUC57mini plasmids (Table 4.6). The plasmids were designed to 

have the 5’UTR of HBB, followed by the ZsGreen coding sequence, P2A, and FLAG-HA-tagged 

Regnase contructs followed by two repeats of HBB 3’UTR. The plasmids were linearized by digesting 

with SpeI immediately downstream of the last 3’UTR and purified with the E.Z.N.A. Gel Extraction Kit 

(Omega Bio-tek). mRNA was generated using the HiScribe T7 ARCA mRNA Kit with tailing (New 

England BioLabs) according to manufacturer’s protocol. In brief, 0.5-1 µg of DNA template and 1.25 

mM pseudo-UTP (Jena BioSciences) was used for transcription for 1 h followed by 30 minutes of 

DNase treatment. Poly(A) tailing was performed for 60 minutes. mRNA was purified by adding 400 µl 

of TRI Reagent to the reaction mix followed by using the Direct-zol RNA Kit. 0.5 pmol of in vitro-

transcribed mRNA was transfected into CD4+ Tmem cells on day 3 of activation using the 10 µl Neon 

Transfection System Kit and the setting of 1800 V 20 ms 1 pulse. Upon transfection, the cells were 

moved into antibiotic-free complete medium with 200 U/ml IL-2. Cells were used for RNA extraction 

and intracellular staining 4h post-transfection. 

 

Luciferase reporter assay. Human embryonic kidney 293T (HEK293T) cells were transfected in 6-well 

plates with a mix containing 3.5 µg of the pmirGLO plasmid, 1 μg of Regnase-expressing vector and 

27 µg polyethylenimine (PEI) in 0.5 ml OptiMEM (Gibco) per well. After 36 h, cells were lysed and 

analyzed with a GloMax luminometer (Promega) using the Dual-luciferase reporter assay kit 

(Promega). Plasmids used for transfection are listed in Table 4.6. 
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Western blotting. Cells were lysed in RIPA buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.5 mM 

EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl) supplemented with a 

cocktail of protease inhibitors (Sigma). Protein extracts were cleared and quantified with the Pierce 

BCA Protein Assay Kit (Thermo Fisher Scientific). 40-100 µg of protein extract per sample were 

separated on a 8-12% SDS-PAGE. After electrophoresis, proteins were blotted to an Immobilon-P 

PVDF membrane (Millipore) using a wet transfer system. Blocking was done for 1 h at room 

temperature with 5% milk in TBST (5 mM Tris pH 7.3, 150 mM NaCl, 0.1% Tween-20). Blots were 

incubated with 1 µg/ml primary antibodies anti-ZC3H12D (Sigma), anti-MCPIP1/ZC3H12A 

(BioTechne), or anti-GAPDH (Sigma) in 5% bovine serum albumin, 0.02% sodium azide in TBST. After 

washing with TBST, blots were incubated with 0.1-0.4 µg/ml secondary HRP-conjugated antibodies 

for 1 h at room temperature in 2.5-5% milk in TBST. Blots were developed with the Clarity Western 

ECL Substrate (Bio-Rad Laboratories) and detected with the Fusion FX Edge (Vilber). The 

quantification of signals was done with ImageJ. 

 

Statistical analysis. nSolver 4.0 was used for statistical analysis of Nanostring profiling. All other 

statistical analyses were performed using GraphPad Prism 8. GraphPad Prism 8 software was used 

for generating graphs. The comparison between two means was evaluated by an unpaired t-test if 

the two populations compared were normally distributed or by the Wilcoxon-Mann-Whitney test in 

case the populations were not normally distributed. Distributions were tested using the Kolmogorov 

Smirnov test. Welch’s correction t-test was applied in the analysis of Nanostring transcriptome 

analysis. Comparisons among three or more sample means were made by ANOVA. 

 

 

 
Figure 4.1. Sorting strategy of different CD4+ cell populations. The TH17 + TH22 population was further stained for 

CCR10 and sorted as CCR10- TH17 and CCR10+ TH22. 
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Table 4.1. List of antibodies 
Name Company Product number 
anti-CCR4-PE  Biolegend 359411 
anti-CCR10-PerCP-Cy5.5 BD Pharmingen 564772 
anti-CCR4-PE-Cy7 BD Pharmingen 557864 
anti-CCR6-BV605 Biolegend 353419 
anti-CCR6-QD605 Biolegend 353420 
anti-CCR7-BV421 Biolegend 353208 
anti-CD127-FITC BD Pharmingen 561697 
anti-CD25-PE Biolegend 356103 
anti-CD25-PE-Cy5 Beckman Coulter IM2646 
anti-CD4-FITC Beckman Coulter A07750 
anti-CD4-PE-TR Invitrogen MHCD0417 
anti-CD45RA-QD655 Invitrogen Q10069 
anti-CXCR3-AF647 Biolegend 353711 
anti-CXCR3-APC BD Pharmingen 550967 
Anti-IL-17A-eFluor660 Life Technologies 50-7179-42 
Anti-ICOS-FITC Invitrogen 11-9948-42 
anti-HA.11 Novus Biologicals 901501 
Anti-MCPIP1/ZC3H12A  Novus Biologicals MAB7875 
Anti-ZC3H12D Sigma HPA036897 
Anti-GAPDH Sigma G9545 
Anti-rabbit-AF647 Sigma SAB4600352 
Anti-mouse-AF594 Life Technologies A11005 
anti-mouse-HRP Southern Biotech 1031-05 
anti-rabbit-HRP Sigma A0545 
 

 

Table 4.2 List of sgRNAs 
Name Sequence Comment 
Scramble control GGTTCTTGACTACCGTAATT (Mocciaro et al., 2018) 
ZC3H12A_sgRNA_1_AD AACACGGGACAGCCACCGAG Exon 2 
ZC3H12A_sgRNA_2_AO GAGACCAGTGGTCATCGATG Exon 2 
ZC3H12A_sgRNA_3_AA TTCACACCATCACGACGCGT Exon 4 
ZC3H12D_sgRNA_1_AB CCTGGTCAACGACGTGCTGC Exon 2 
ZC3H12D_sgRNA_2_AO CACTATGGGTCGCAGAGAAC Exon 2 
ZC3H12D_sgRNA_3_AA TCGTCTCCAACGACAACTAC Exon 4 
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Table 4.3. List of screening PCR primers and screening strategies 
Gene FW RV Amplicon 
ZC3H12A CTCATCCTGCTGGATGT

GGTTTTGG 
CATACATCCCCTCATAAG
TGCTACGG 

WT = 6719 bp 
sgRNAs 1+3 KO = ~810 bp 
sgRNAs 2+3 KO = ~855 bp 

ZC3H12D AGTCTGAGAAACAAGA
AACCTGTGT 
 

GTTAGGGACAGACTCCC
AACAAG 
 

WT = 1098 bp 
sgRNAs 1+2 KO = ~981 bp 

ZC3H12D AGTCTGAGAAACAAGA
AACCTGTGT 
 

AGTGGTGCCCTAAACAC
ATGCTT 
 

WT = 18542 bp 
sgRNAs 1+3 KO = ~840 bp 

 

Table 4.4. List of qRT-PCR primers 
Gene Forward sequence Reverse sequence 
ICOS GAAGTCAGGCCTCTGGTATTTC TATTTGCCCCCCTTTCAGCAAC 
IL17A CCACCTCACCTTGGAATCTC TGGTAGTCCACGTTCCCATC 
LTA AAACCTGCTGCTCACCTCATT ACCTGGGAGTAGACGAAGTAGATG 
NFKBIZ CAAAGGATGCAGATGGTGACAC AAGGCACTCTGTCCATTGTGCT 
ZC3H12A CCACTCCCAGAAGAGGAAAA CAGGAGAAGACCTCCTTGTT 
ZC3H12B CAGAGAGATTGCAAGCCCTGAA CCACAGCAAGTTGTATTCCTCTGC 
ZC3H12C GATGGCAGCAATGTGGCAAT TGTCTTTGTGGCCTCTTTCC 
ZC3H12D CCTGGAAGAGGACTTCAGAACC GTCAACAGCCAGCTTGATTCCC 
Housekeeping genes 
GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC 
UBE2D2 GATCACAGTGGTCTCCAGCA CGAGCAATCTCAGGCACTAA 
 

Table 4.5. List of cloning and mutation primers 

Name Sequence 
ZC3H12A_ FW AAAACTAGTCTAGAGAACCCACTGCTTACT 
ZC3H12A _RV TTAAACTTAAGCTAGATCTGCGGCCG 
ZC3H12A_D141N_FW CGTTGCTCCCATTAATGACCACTGGTCTCAGGTCGC 
ZC3H12A_D141N_RV GCGACCTGAGACCAGTGGTCATTAATGGGAGCAACG 
ZC3H12D_D95N_FW GCGACCCATAGTGATTAATGGCAGCAACGTGGCGATG 
ZC3H12A_D95N_RV CATCGCCACGTTGCTGCCATTAATCACTATGGGTCGC 
ZC3H12D_C111_FW AGCCAGCTTGATTCCTCGAGCAGAGAAGGTTTCTTTATTTCCATGGCTCA 
ZC3H12D_C111_RV TGAGCCATGGAAATAAAGAAACCTTCTCTGCTCGAGGAATCAAGCTGGCT 
FLAGHA_FW AATAAGAATTCGCCACCATGGACTACAAGGAC 
FLAGHA_RV AATAAGAATTCTCCGGCGTAGTCGGGCAC 
NFKBIZ-3'UTR _FW AACGGAATTCCTCCATTAGCTTGGAGCCT 
NFKBIZ-3'UTR _RV TTGCCTCGAGCTAGGGAAATAAGGCACTAGG 
IL-17A 3’UTR_FW ATCGAATTCCTCTGGGGAGCCCACACTC 
IL-17A 3’UTR_RV ACTTCTAGAGGGCGAAAATGGTTACGATGT 
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Table 4.6. List of plasmids 

Name Comment 

EF1α-Empty-IRES-ZsGreen Clontech (product # 631982) 

EF1α-FLAG-HA-ZC3H12A-WT-IRES-ZsGreen This thesis 

EF1α-FLAG-HA-ZC3H12A-D141N-IRES-ZsGreen This thesis 

EF1α-FLAG-HA-ZC3H12D-WT-IRES-eGFP Genecopoeia (product # EX-Y1201-Lv165) 

EF1α-FLAG-HA-ZC3H12D-D95N-IRES-eGFP This thesis 

EF1α-FLAG-HA-ZC3H12D-C111A-IRES-eGFP This thesis 

pmiRGLO-MCS Multi-cloning site generated in-house 

starting from Addgene 78131 plasmid 

pmiRGLO-NFKBIZ-3’UTR This thesis 

pmiRGLO-IL17A-3’UTR This thesis 

pUC57mini-HBB-5UTR-ZsGreen-MCS-2xHBB3UTR 

(pUC57mini-Empty) 

In-house designed 

pUC57mini-ZsGreen-P2A-FLAG-HA-ZC3H12A-WT This thesis 

pUC57mini-ZsGreen-P2A-FLAG-HA-ZC3H12A-D141N This thesis 

pUC57mini-ZsGreen-P2A-FLAG-HA-ZC3H12D-WT This thesis 

pUC57mini-ZsGreen-P2A-FLAG-HA-ZC3H12D-D95N This thesis 

 

 

4.3 Results 
 

4.3.1 Regnase-1 and Regnase-4 expression kinetics in human TH lymphocytes 
 

To determine the expression kinetics of the genes encoding the different Regnase family members, I 

activated TN and Tmem primary human CD4+ T lymphocytes with plate-bound anti-CD3 and anti-

CD28 antibodies for up to 5 days and measured the expression of the ZC3H12A-D mRNAs by qRT-

PCR. At the resting state, Tmem and TN cells expressed relatively high levels of ZC3H12A and 

ZC3H12D, while ZC3H12B and ZC3H12C were expressed at low levels (Figure 4.2A), which is 

consistent with available data (Emming et al., 2020; Schmiedel et al., 2018). The TCR activation of 

both Tmem and TN cell populations further downregulated the ZC3H12B transcript, while ZC3H12C 

was significantly increased by day 5, although remaining at comparatively low levels. Interestingly, 

the expression of ZC3H12A dropped significantly within 1 day after activation, while the expression 

of ZC3H12D remained overall relatively stable.  
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Next, I proceeded to determine the expression of Regnase-1 and Regnase-4 at the protein level, and 

both mirrored the mRNA expression levels. Regnase-1 was highly expressed by CD4+ Tmem 

lymphocytes at the resting state but was rapidly downregulated upon T cell activation and remained 

low up to 8 days, most likely due to a combination of reduced mRNA expression and proteolytic 

cleavage (Figure 4.2B). In fact, the predicted cleaved product was detected rapidly upon activation, 

which has been described earlier to be caused by the paracaspase MALT1 at the site of the arginine 

residue R111 (Uehata et al., 2013). The protein expression of Regnase-4 also followed the pattern of 

the expression of its transcript and remained relatively stable over time with an increased trend at 

days 3/4 post activation. The perceived low levels at later stages of activation (days 7/8) can be 

attributed to the increased expression of the of the housekeeping control GAPDH. Regnase-4 also 

contains the conserved putative cleavage site at R61, however it is not possible to detect the 

predicted cleaved product since the antibody used for Regnase-4 does not bind to the C-terminal 

cleavage product. To see if Regnase-4 can be downregulated with a stronger stimulation, I treated 

Tmem lymphocytes on day 6 post-TCR-activation with PMA/ionomycin for 0.5h and 3h (Figure 4.2C). 

Surprisingly, Regnase-4 was rapidly downregulated after 0.5h of treatment. This suggests that 

Regnase-4 might also be proteolytically regulated. 

 

To investigate if there is a difference of expression across specialized T cell subsets, I measured the 

expression of ZC3H12A and ZC3H12D in ex vivo sorted cells. The analysis showed that ZC3H12A was 

relatively constant across the different subsets, while ZC3H12D showed preferential expression in 

TH17 and Treg cells compared to the TH1 and TH2 subsets (Figure 4.2D). 

 

4.3.2 CRISPR-Cas9 KO of ZC3H12A and ZC3H12D in memory T lymphocytes 

 

To functionally compare Regnase-1 and Regnase-4, I deleted ZC3H12A (A KO) and ZC3H12D (D KO) in 

human CD4+ Tmem lymphocytes by CRISPR-Cas9, as previously described (Emming et al., 2020; Leoni 

et al., 2021) (Figure 4.3A). In brief, freshly isolated cells were transfected with RNPs targeting the 

genes of interest. To delete each gene, two RNPs were used to generate two double-stranded 

breaks. After activation, cells were single cell cloned by limiting dilution and cultured for 21 days. 

Individual clones were screened for genomic deletions by PCR (Figure 4.3B-C). qRT-PCR analyses 

confirmed ablated expression of the targeted genes in selected clones (Figure 4.3D). The ablation at 

the protein level was confirmed at the level of populations (Figure 4.3E). Interestingly, the ablation 

of Regnase-4 caused a significant increase in Regnase-1 expression at the population level, while the 

expression of Regnase-1 in Regnase-4 KO populations was variable.  
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The genetic deletion in A KO is 5.7 kb long, while for the D KO it is much shorter with 150 bp, leaving 

the possibility of generating a truncated functional protein, as detected by Western blotting (Figure 

4.3E). To confirm the results of the D KO with a longer genetic deletion, I used a second KO strategy 

that generates a deletion of 18.5 kb (D KO_1+3) (Figure 4.3F). I confirmed the downregulation of 

Regnase-1 and Regnase-4 in individual clones by Western blotting (Figure 4.3G). Interestingly, also 

here I could observe a limited level of cross-regulation between Regnase-1 and Regnase-4.  Pilot 

experiments comparing the two D KO strategies showed no significant differences, suggesting that 

the shorter genetic deletion is enough to ablate a functional Regnase-4. 

 

Next, 4-10 A KO or D KO and control clones from two different donors were pooled, and the 

expression of inflammatory genes was measured by Nanostring profiling. Out of 242 expressed 

genes, I found that upon deletion of ZC3H12A and ZC3H12D 78 and 91 genes, respectively, were 

differentially expressed (log2 ratio higher or lower of 0.5 compared to control group). Most of the 

differentially expressed genes (DEGs) in the KO experimental groups were upregulated (Figure 4.3H), 

consistent with the established role of Regnase-1 and Regnase-4 as negative regulators of transcript 

stability. Analysis of the DEGs revealed that while a large proportion (49.5%) of the genes was 

upregulated upon deletion of both ZC3H12A and ZC3H12D (for instance, ICOS, IL17A, IL17F, TNF), 

other targets appeared to be targeted preferentially by Regnase-1 (NFKBIZ, IL1A, IL5, PTGS2) or 

Regnase-4 (IL2, IL22, LTA) (Figure 4.3I). Previous RIP-seq analysis of HeLa cells treated with IL-1β 

identified 68 direct targets of Regnase-1 (Mino et al., 2015), and 10 of those genes are included in 

the Nanostring immunology panel. 5 of these genes were upregulated in A KO (IL1A, IL6, NFKBIZ, 

PTGS2, CCL20), suggesting that at least for these targets KO effect is direct, while only one of these 

genes (CCL20) was differentially upregulated in the D KO. The downregulated DEGs were very few 

(19 total) and are likely to represent indirect effects (Figure 4.3J). Among the most differentially 

expressed genes are known targets such as NFKBIZ, ICOS, PTGS2, and IL17A (Figure 4.3K). In both KO 

groups, several top DEGs were linked to TH17 cell functions (IL17A, IL17F, CCL20, RORC).  

 

4.3.3 Double knockout in TH17 subset 

 

Because of the established importance of Regnase-1 in the TH17 pathway (Jeltsch et al., 2014; 

Minagawa et al., 2014) and the most DEGs in KO clones being associated with the TH17 phenotype 

(Figure 4.2I-K), I aimed to determine the relative role of Regnase-1 and Regnase-4 specifically in 

human TH17 cells. Therefore, I enriched Th17 cells from PBMCs and single cell cloned them by 

limiting dilution. On day 20, I screened the clones for IL-17A production and transfected with 
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CRISPR-Cas9 one individual IL-17+ clone to delete ZC3H12A and ZC3H12D, alone or in combination 

(A+D KO), followed by a second round of single cell cloning (Figure 4.4A). After the second cloning, 

individual clones were screened by PCR to detect the expected genomic deletion same as Figure 

4.3B-C. qRT-PCR analysis confirmed ablated expression of the targeted gene(s) in selected clones 

(Figure 4.4B). Analysis of 51 A KO clones, 46 D KO clones, 36 A+D KO clones and 72 control clones by 

intracellular staining revealed significant derepression of IL-17A production by clones lacking 

ZC3H12A alone or both ZC3H12A and ZC3H12D, although I could not detect significant derepression 

of IL-17A protein production in TH17 clone lacking only ZC3H12D (Figure 4.4C). To determine the 

ability of Regnase-1 and -4 to target directly the IL17A 3’UTR, I performed luciferase reporter assays. 

The co-transfection of the IL17A 3’UTR reporter with a Regnase-1 expression plasmid led to a strong 

significant reduction of the luciferase signal, confirming the ability of Regnase-1 to directly modulate 

IL-17A expression (Figure 4.4D). This effect was completely abrogated by mutating a single amino 

acid (D141N) that abrogates RNase enzymatic activity (Matsushita et al., 2009). Interestingly, 

expression of Regnase-4 was also able to limit luciferase expression from the IL17A 3’UTR reporter, 

but to a much lesser extent. Same as for Regnase-1, this was fully abrogated when co-transfected 

with the RNase-inactive mutant D95N (Wawro et al., 2017), but not by the mutation of cysteine 111 

(C111A) that potentially affects the deubiquitination activity. Next, I performed a Nanostring 

transcriptome profiling of the clones from Figure 4.4B-C that were stimulated for 3h with 

PMA/ionomycin (Figure 4.4E). Out of 219 expressed genes, I found that upon deletion of ZC3H12A 

and ZC3H12D 47 and 16 genes, respectively, were differentially upregulated (log2 ratio higher than 

0.5 compared to control group) (Figure 4.4F). Analysis of the DEGs in the different experimental 

groups confirmed that NFKBIZ, IL1A, IL-5 and PTGS2 were affected exclusively by the ZC3H12A 

deletion either alone or in combination. Targets including ICOS, IL6 and LCP2 transcripts were 

instead affected in all experimental conditions, indicating that they are sensitive to the activity of 

both Regnases. Interestingly, I could not identify targets that were exclusively affected by the 

Regnase-4 deletion, except ARHGDIB and CDKN1A that had a low log2 ratio of 0.6. Taking also into 

consideration that CDKN1A is upregulated during the DNA damage response, this gene might be an 

indirect CRISPR-Cas9 KO effect (Dulić et al., 1994; Schiroli et al., 2019). On the other hand, the 

upregulation of genes in the double KO was striking with 84 differentially expressed genes. There is 

an apparent combined effect in the double KO on multiple targets including NFKBIZ and ICOS, while 

other genes such as LTA did not have a combined derepression suggesting an indirect effect of 

upregulation on this gene (Figure 4.4G). I confirmed by qRT-PCR on clones from independent donors 

that NFKBIZ is significantly derepressed only in the single or combined deletion of ZC3H12A (Figure 

4.4H). ICOS had a similar result by having the highest expression in the double KO, while LTA had a 
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variable expression with no combined KO effect, further suggesting that this gene is likely not a 

target of either Regnase. I was able to confirm the upregulation of 8 direct targets that were 

identified by RIP-seq of HeLa Cells (Mino et al., 2015) in at least one experimental group, namely 

IL1A, NFKBIZ and CXCL2 at the intersection of the A KO and A+D KO, CCL20, CXCL1, IL8 and PTGS2 

only in the A+D KO, and IL6 at the intersection of all three KO groups (targets in bold in Figure 4.4F). 

Analysis of downregulated genes showed only very few targets in the A KO and A+D KO (6 genes 

each) that in general have low expression in TH17 cells, such as PRF1, IL10 and GZMB, and therefore 

this result might be attributed to indirect effects (Figure 4.4I). However, D KO showed 26 

downregulated genes. Some of these genes are usually expressed at low levels in TH17 cells (IFNG, 

IL13), but several other genes are known targets of Regnase-1 (CTLA4, CXCL1, PTGS2), suggesting 

that this result might be a secondary effect of an induced Regnase-1 expression, although it remains 

to be confirmed. NFKBIZ did not show any effect when ZC3H12D was deleted individually, but the 

combined effect in the double KO indicates that also Regnase-4 might be a negative regulator of 

NFKBIZ. To investigate this, I performed a luciferase reporter assay on the NFKBIZ 3’UTR (Figure 

4.4J). The co-transfection of the NFKBIZ 3’UTR reporter with a Regnase-1 expression plasmid 

significantly reduced the luciferase signal, confirming the direct negative regulation by Regnase-1 in 

an RNase-dependent manner. Surprisingly, the Regnase-4-expressing plasmids with intact RNase 

domains (WT and C111A constructs) also strongly reduced the luciferase signal. This effect was 

completely abrogated and even significantly increased by the RNase-inactive D95N mutant. These 

results suggest that Regnase-4 in vitro can also bind to NFKBIZ 3’UTR and negatively regulate it in an 

RNase-dependent manner. 

 

Finally, to confirm that some selected mRNA targets were indeed targeted by one or both proteins in 

T cells, I established an in vitro transcription (IVT) system for mRNA transfection into primary T cells. 

Tmem lymphocytes were transfected 3 days post-activation with anti-CD3/anti-CD28 antibodies with 

IVT mRNA encoding the tagged wild-type and RNase-inactive mutants of Regnase-1 (Z3H12A-WT and 

ZC3H12A-D141N) and Regnase-4 (ZC3H12D-WT and ZC3H12D-D95N). 4h after transfection, the 

viability in all experimental groups was over 80% and the overexpression of Regnases was over 40% 

in all Regnase-overexpressing groups, as assessed by intracellular staining followed by flow-

cytometry (Figure 4.5A). The mRNA expression of NFKBIZ was reduced in cells transfected with 

ZC3H12A-WT, although it did not reach statistical significance (Figure 4.5B). NFKBIZ was not affected 

by the transfection with ZC3H12D-WT, which is in line with the CRISPR-Cas9 KO data where an 

individual deletion of ZC3H12D did not impact the NFKBIZ expression. Interestingly, ZC3H12D-D95N 

expression tended to increase the NFKBIZ expression, same as in the luciferase reporter assay 
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(Figure 4.4J), although the mechanism behind this effect remains to be understood. In the case of 

ICOS, ZC3H12A-WT significantly reduced the expression, and this effect was completely abrogated 

when transfected with ZC3H12A-D141N. ZC3H12D-WT and ZC3H12D-D95N mirrored the same 

results, but due to the donor-to-donor viability it did not reach statistical significance. I measured 

also the expression of LTA due to its variable upregulation in the Regnase KOs based on the 

Nanostring and qRT-PCR data. LTA mRNA expression was unaffected by the overexpression of 

Regnase constructs, further suggesting that it does not represent a target and that the upregulation 

in the KO is a false positive. 

 

Overall, I found that Regnase-1 and Regnase-4 possess mostly redundant functions in primary 

human T lymphocytes and selected transcripts such as ICOS are targeted by both enzymes, although 

some inflammatory transcripts, such as NFKBIZ appear to be more sensitive to Regnase-1 activity. 

Furthermore, I could not identify a target that was regulated uniquely by Regnase-4. Thus, Regnase-

4 does not have unique targets, Regnase-1 is a stronger modulator, and their combined deletion 

leads to a combined derepressive effect on inflammatory transcripts. 
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Figure 4.2. Regnase-1 and Regnase-4 expression in human TH lymphocytes. (A). Expression of ZC3H12A, ZC3H12B, 

ZC3H12C and ZC3H12D was measured by qRT-PCR in Tmem and TN lymphocytes at different days post-activation with anti-

CD3/anti-CD28, normalized to UBE2D2. N≥3 independent donors, one-way ANOVA. (B) Expression of Regnase-1 and 

Regnase-4 was measured by Western blotting in Tmem lymphocytes at different days post-activation with anti-CD3/anti-

CD28.  The quantification is shown on the right, N≥2 independent donors, mean±SD, one-way ANOVA, * - cleaved product. 

(C) Expression of Regnase-1 and Regnase-4 was measured by Western blotting in Tmem lymphocytes on day 6 post 

activation with anti-CD3/anti-CD28 activation and PMA/ionomycin stimulation, N=1. (D) Expression of ZC3H12A and 

ZC3H12D mRNAs was measured by qRT-PCR in different subsets of CD4+ T lymphocytes isolated ex vivo from peripheral 

blood, normalized to UBE2D2. N≥3 independent donors, mean±SD, unpaired t-test. A.U. – arbitrary units. 
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Figure 4.3. CRISPR-Cas9-mediated deletion of ZC3H12A or ZC3H12D leads to the derepression of target mRNAs in 

memory T cells. (A). Schematic representation of the experimental design to generate T lymphocyte KO clones by CRISPR-

Cas9. (B) Top: Schematic representation of the ZC3H12A genes, the location of the sgRNAs and the KO screening strategies. 

A PCR product of 0.8 kb is indicative of a genetic deletion in ZC3H12A. Bottom: Example screening of individual KO clones 
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by PCR.  (C) Top: Schematic representation of the ZC3H12D genes, the location of the sgRNAs and the KO screening 

strategies. A PCR product of 0.98 kb is indicative of a genetic deletion in ZC3H12D. Bottom: Example screening of individual 

KO clones by PCR. (D) mRNA expression measured by qRT-PCR of ZC3H12A and ZC3H12D in individual clones cultured for 

21 days and treated 3h with PMA/ionomycin, normalized to UBE2D2. N≥4 individual clones, mean±SD, unpaired t-test. (E) 

Protein expression of Regnase-1 and Regnase-4 in Tmem lymphocyte populations transfected with CRISPR-Cas9 and 

activated for 13 days. The quantification is shown on the right.  N=3 independent donors, mean±SD, unpaired t-test, * - 

cleaved product. (F) Top: Schematic representation of the ZC3H12D gene, the location of the sgRNAs that generate a 

longer deletion and the KO screening strategy of D KO_1+3. A PCR product of 0.84 kb is indicative of a genetic deletion in 

ZC3H12D. Bottom: Example screening of individual KO clones by PCR. (G) Protein expression of Regnase-1 and Regnase-4 in 

independent single KO clones transfected with CRISPR-Cas9 and cultured for 44 days.  N≥5 individual clones mean±SD, 

unpaired t-test. (H) Identified KO and control clones from two donors were stimulated 3h with PMA/ionomycin and pooled 

as follows: control pool 1 = 9 clones, control pool 2 = 10 clones, A KO pool 1 = 5 clones, A KO pool 2 = 9, A KO pool 3 = 4, D 

KO pool 1 = 7, D KO pool 2 = 7, D KO pool 3 = 10, and D KO pool 4 = 5. Pooled RNA was analyzed with nCounter SPRINT. The 

number of differentially upregulated (red) and downregulated (blue) expressed genes (log2 ratio <0.5<) compared to 

control group is shown. (I) Venn diagram of differentially upregulated (log2 ratio>0.5) genes. (J) Venn diagram of 

differentially downregulated (log2 ratio<0.5) genes.  Venn diagrams were generated with www.deepvenn.com. Genes in 

bold are identified direct targets obtained from RIP-seq data in HeLa cells (Mino et al., 2015).  (K) Heatmaps of most 

differentially expressed genes of KO clones.  A.U. – arbitrary units. 
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Figure 4.4. Combined deletion of ZC3H12A and ZC3H12D leads to a stronger derepression than individual KOs. (A). 

Schematic representation of the experimental design to generate TH17 KO clones by CRISPR-Cas9. (B) mRNA expression 

measured by qRT-PCR of ZC3H12A and ZC3H12D in individual clones cultured for 56 days and treated 3h with 

PMA/ionomycin, normalized to UBE2D2. N≥16 individual clones, mean±SD, Mann-Whitney test. (C) Intracellular staining 
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for IL-17A in individual clones activated for 5h with PMA/ionomycin, N≥36 individual clones, mean±SD, Mann-Whitney test. 

(D) Luciferase reporter assay in HEK293T cells using an IL17A 3’UTR reporter, co-transfected with vectors expressing either 

wild-type or mutant versions of Regnase-1 and Regnase-4. mean±SEM, unpaired t-test (E) Clones from (B) and (C) were 

stimulated for 3h with PMA/ionomycin, and the RNA was extracted and pooled as follows: 3 A KO pools with each 7 clones, 

3 D KO pools with each 5 clones, 3 A+D KO pools with each 5 clones, 3 pools of control clones with each 6 clones followed 

by analysis with Nanostring nCounter PRO. Red dots = selected genes of interest (NFKBIZ, ICOS, IL17A, IL17F, LTA) (F) Venn 

diagram of differentially upregulated (log2 ratio>0.5) genes. Venn diagrams were generated with www.deepvenn.com. 

Genes in bold are identified direct targets obtained from RIP-seq data in HeLa cells (Mino et al., 2015).  (G) Expression of 

NFKBIZ, ICOS and LTA from (F), dot = pool of clones, mean±SD, Welch’s t-test. (H) mRNA expression of NFKBIZ, ICOS and 

LTA was confirmed by qRT-PCR on independent individual clones, N≥7 individual clones, mean±SD, unpaired t-test. (I) Venn 

diagram of differentially downregulated (log2 ratio<0.5) genes (J) Luciferase reporter assay using an NFKBIZ 3’UTR reporter, 

co-transfected with vectors expressing either wild-type or mutant versions of Regnase-1 and Regnase-4. mean±SEM, 

unpaired t-test. 
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Figure 4.5. IVT mRNA overexpression allows overexpression of Regnases and reduced expression of selected Regnase 

targets. (A) Tmem lymphocytes were transfected with IVT mRNA encoding tagged wild-type or mutant Regnase-1 and 

Regnase-4 or GFP control on day 3 post-activation with anti-CD3/anti-CD28 antibodies. 4h post-transfection, cells were 

stained for Regnase-1, Regnase-4 and hemagglutinin (HA) and analyzed by flow-cytometry to determine the viability and 

level of overexpression. N=3 individual donors, mean±SD, unpaired t-test. (B) qRT-PCR mRNA expression of NFKBIZ, ICOS, 

and LTA in samples from (A), normalized to GAPDH, N=3 individual donors, mean±SD, unpaired t-test. 
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4.4 Discussion 
 

With this study, I identified some common and unique features of Regnase-1 and Regnase-4. First, I 

identified that the activation of T cells has opposite effects on the expression of the two Regnases. 

Regnase-1 is completely cleaved within one day of activation, while Regnase-4 expression at the 

protein and mRNA levels is more stable with a slightly increasing trend. The Regnase-4 antibody 

does not allow the detection of the predicted proteolytically cleaved Regnase-4 and needs to be 

investigated with further experiments. 

 

The CRISPR-Cas9-generated Tmem KO clones of ZC3H12A and ZC3H12D showed more upregulated 

than downregulated genes in the panel of 594 tested inflammatory genes with the Nanostring 

technology. This confirmed both Regnase-1 and Regnase-4 as negative inflammatory regulators. In 

fact, the majority of the upregulated genes were common in the two experimental groups, including 

the TH17-specific genes which were among the most differentially expressed. Generally, TH17 

effector cells are a rare population among Tmem cells, and there was the possibility that the results 

were skewed due to clonal variability. Because of this, I generated TH17 clones with a combined (A+D 

KO) or individual deletions of ZC3H12A and ZC3H12D. The TH17 KO clones did not reveal the 

existence of any unique target of Regnase-4. However, it showed that the A+D KO had a combined 

derepressive effect on many targets including NFKBIZ, ICOS, IL17A, IL6 and CCL20, suggesting that 

Regnase-4 also negatively regulates these targets, to some extent. 

 

IL-17A was derepressed at the protein and mRNA level only in the groups A KO and A+D KO, while 

the D KO had the same expression levels as the control groups. Similar results were obtained for 

NFKBIZ where the individual deletion of ZC3H12D had no effect, but it increased the NFKBIZ 

expression in the combined KO. The luciferase reporter assay confirmed that Regnase-4 

overexpression in vitro can strongly negatively regulate the NFKBIZ transcript, but in vivo in Tmem 

cells it did not have any detectable effect. Interestingly, the overexpression of the RNase inactive 

ZC3H12D-D95N in Tmem cells increased the expression of NFKBIZ, similar to the luciferase reporter 

assay results. One possible explanation for this observation is that ZC3H12D-D95N binds to the 

NFKBIZ 3’UTR without degrading it, thereby competing with degradation-inducing RBPs, but this 

needs further investigation. 

 

Available RIP-seq data identified 68 direct mRNA targets of Regnase-1 (Mino et al., 2015) of which 

the immunology Nanostring panel includes 10 of these genes. 8 of these mRNAs were upregulated in 

at least one KO experimental group (IL1A, IL6, IL8, CCL20, CXCL1, CXCL2, PTGS2), suggesting that the 
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upregulation of at least these genes is a direct effect. On the other hand, the upregulation of LTA in 

Tmem and TH17 KO clones is most likely a false positive because it didn’t show any effect upon IVT 

mRNA overexpression.  

 

Regnase-1 and Regnase-4 have been shown to negatively regulate ZC3H12A 3’UTR in vitro (Iwasaki 

et al., 2011; Wawro et al., 2017). Also in this study, I identified that the ablation of Regnase-1 

significantly increases the Regnase-4 expression, and that Regnase-4 ablation tends to increase 

Regnase-1, although not significantly. Therefore, there is a possibility that an increased Regnase-1 

expression in the D KO fully compensates for the lack of Regnase-4 thereby keeping the IL17A 

expression unchanged, but this needs further investigation. Of note, Regnase-4 cannot compensate 

for the lack of Regnase-1 as seen on the effects on NFKBIZ, IL1 and IL5. 

 

The overexpression of Regnase-1 is known to induce apoptosis (Qi et al., 2011; L. Zhou et al., 2006) 

which makes it technically challenging to overexpress Regnases in T cells with classical methods such 

as plasmid transfection or lentiviral transduction. Here, I established a method to short-term 

overexpress Regnase-1 and Regnase-4 in a precise and highly efficient manner by transfecting 

Regnase-encoding mRNAs. With this method, I was able to identify a condition in which the viability 

of transfected T cells allowed the assessment of Regnase overexpression of certain mRNA targets. 

The overexpression of Regnase-1 showed that it can negatively regulate ICOS expression in an 

RNase-dependent manner, while for Regnase-4 a similar trend was also detected. RNA-

immunoprecipitation could confirm that the putative targets are directly regulated by Regnases in TH 

cells, however, the experimental procedures for this come with some challenges. For one, 

immunoprecipitation of endogenous proteins is limited by the availability and specificity of 

antibodies. Furthermore, the RNase activity of the proteins might degrade and omit bona fide 

targets from the analysis. This could be solved by transfecting cells with catalytically dead constructs, 

such as in the available RIP-seq data on HeLa cells which was performed with a tagged RNase-

inactive (D141N) mutant (Mino et al., 2015). However, primary T lymphocytes are notoriously 

difficult to transfect. Another option is the transfection of T cell lines (e.g. Jurkat cells, HUT78 cells), 

but they do not express the targets of interest including NFKBIZ, IL-17A, and ICOS. Therefore, such 

experiments require extensive optimization to give robust results. 

 

Previous work in murine and human cell lines showed that Regnase-1 and Regnase-4 colocalize, 

directly interact with each other and additively negatively regulate the Il6 mRNA (S. Huang et al., 

2015). In accordance with this, IL6 mRNA was upregulated in the individual and combined KO of 
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Regnase-1 and Regnase-4 (Figure 4.4E-F). However, it is unknown if this effect in human T cells is the 

result of the same intermolecular interactions. Since Regnases exhibit a high level of conservation 

across species and within the protein family, it is more likely than not that Regnase-1 and Regnase-4 

form dimers and oligomers, as it has been described for Regnase-1 (Yokogawa et al., 2016). Further 

investigation is required to confirm this interaction in human T lymphocytes. On the same line, it is 

important to consider the possibility of molecular structures composed of Regnase-1, Regnase-4, 

and other proteins in a specific cellular context that could potentially shape the affinity towards 

certain mRNA targets in distinct cell types. 

 

In summary, this study identified that Regnase-1 and Regnase-4 have different expression dynamics 

upon activation and that Regnase-4 does not have unique targets and cannot compensate for the 

lack of Regnase-1. Also, both Regnase-1 and Regnase-4 can negatively regulate a common set of 

targets, but some of them seem to be more sensitive to Regnase-1 activity, such as NFKBIZ. Hence, 

the observed differences in the role of Regnases can be explained by the combined effect of 

different expression dynamics, compensation, and potential cross-regulation within the same family.  
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miRNAs are versatile post-transcriptional regulators that affect a large number of genes across all 

cell types. In this study, we aimed to investigate the expression and relevance of the top expressed 

miRNAs in TH lymphocytes.  

Nanostring transcriptomics revealed that miR-150 was the most expressed of more than 800 tested 

miRNAs. To identify direct targets of this miRNA, my colleagues performed a biotinylated miR-150 

pull-down and sequencing, which retrieved several bound targets. The analysis identified PDAP1 to 

be a novel direct target of miR-150. RIP-seq analysis revealed that PDAP1 is an RBP that binds to 

mRNAs important for T cell activation and proliferation. I generated CRISPR-Cas9 KO clones and 

confirmed that PDAP1 positively regulates the expression of CBL, BCL9L and other transcripts 

encoding genes relevant in the regulation of proliferation. Furthermore, I deleted the predicted miR-

150 binding sites in the 3’UTR of PDAP1 and confirmed that mir-150 directly negatively regulates 

PDAP1 expression in TH lymphocytes in vivo. Finally, my colleagues performed bioinformatical and 

experimental analysis, including assay for transposase-accessible chromatin and sequencing (ATAC-

seq) and chromatin immunoprecipitation and quantitative PCR (chIP-qPCR), and identified that the 

RFX transcription factor family is necessary for sustaining miR-150 expression in resting TH 

lymphocytes.  

I actively contributed to this work by generating and analyzing PDAP1 CRISPR-Cas9 KO clones (Fig. 

4D-E, S5B, S6B), by generating deletions of miR-150 binding sites in the PDAP1 3’UTR (Fig. S2), and 

by contributing to the preparation of the ATAC-seq samples (Fig. 6, 7A, S8). 

mailto:silvia.monticelli@irb.usi.ch
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5.1 Abstract 
 

Within the immune system, miRNAs exert key regulatory functions. However, what are the mRNA 

targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remains 

for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-

150 was the most abundantly expressed miRNA, and its expression decreased drastically upon 

activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family 

of transcription factors, and its activation-induced downregulation was linked to their reduced 

expression. By performing miRNA pull-down and sequencing experiments, we identified PDAP1 

(PDGF-associated protein 1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as 

an RNA-binding protein, and its CRISPR-Cas9-mediated deletion revealed that it prominently 

contributed to the regulation of T cell proliferation. Overall, using an integrated approach involving 

quantitative analysis, unbiased genomics and genome editing, we identified RFX factors, miR-150 

and the PDAP1 RNA-binding protein as the components of a regulatory axis that restrains 

proliferation of primary human T lymphocytes.  
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5.2 Introduction 
 

Through their ability to target a variety of mRNAs and regulate their translation and stability, 

microRNAs (miRNAs) modulate all aspects of the biology of T lymphocytes, including cell 

differentiation, activation and proliferation (1, 2). The effect of any given miRNA is dependent on its 

expression level relative to that of its targets (3, 4), and also on the specific context and cell-specific 

usage of target sites in the 3’ untranslated region (3’UTR) of mRNAs (5), resembling the cell type-

specific regulation of gene expression mediated by transcription factors. The quantitative analysis of 

miRNA expression in different T cell subsets and in response to T cell receptor (TCR) triggering may 

thus provide clues on the functional impact of individual miRNAs on T cell responses. Abundant 

miRNAs that are downregulated after stimulation may be involved in restraining T cell activation, as 

shown in the case of miR-125b, which is required to maintain the naïve state of human T cells  (6). By 

contrast, miRNAs that are expressed at very low levels are highly unlikely to reach the 

concentrations required to exert biological functions (4, 7). Finally, modestly expressed but inducible 

miRNAs may dynamically reach intracellular concentrations relevant in the modulation of T cell 

activation. Examples in this group include miR-155 (8, 9) and miR-146a (10) which are responsible for 

enhancing and attenuating T cell responses, respectively. 

 

In this study, we took advantage of an integrated approach combining quantitative miRNA analysis, 

unbiased genomics and genome editing to identify miRNAs highly expressed in primary human T 

lymphocytes, analyze the regulatory logic underpinning their expression, and finally characterize 

mRNA target regulation and their functional impact. 

 

Specifically, we focused on the single miRNA accounting for almost 50% of miRNAs constitutively 

expressed in human T cells, miR-150-5p (hereafter miR-150). This miRNA is abundantly expressed in 

both T and B lymphocytes (11), and its deletion in mouse models revealed that it modulates B 

lymphocyte and CD8+ T cell differentiation (12-15). To identify the mechanisms controlling 

constitutive miR-150 expression and its activation-induced downregulation, we used an unbiased 

genomic approach to map the cis-regulatory elements in the MIR150 locus that controlled its 

expression, leading to the identification of RFX (Regulatory Factor X) transcription factors as crucial 

regulators of constitutive miR-150 expression in resting cells and stimulus-induced downregulation. 

Finally, we used miRNA pull-down and sequencing to identify the mRNAs specifically targeted by 

miR-150 in human T lymphocytes. MiR-150 targeted modulators of T cell proliferation, including the 

transcription factor MYB and a previously unidentified target, PDAP1 (PDGFA associated protein 1), 

that we characterized as an RNA-binding protein (RBP). Deletion of MYB, PDAP1 or MIR150 itself by 
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CRISPR/Cas9-mediated gene editing in primary human T lymphocytes revealed the contribution of 

each of these factors to the regulation of T cell proliferation in response to activating signals. Overall, 

our data identified a miRNA-regulated network involved in restraining proliferative responses of 

circulating resting T lymphocytes. 

 

5.3 Materials and methods 

 

Isolation, culture and activation of human CD4+ peripheral T lymphocytes. Buffy coats from healthy 

donors were obtained from the Swiss Blood Donation Center of Basel and Lugano (Switzerland), with 

informed consent from the Swiss Red Cross and authorization number CE 3428 from the Comitato 

Etico Canton Ticino. Leukocytes were separated by gradient centrifugation (Ficoll-Paque Plus; GE 

Healthcare), then CD4+ T cells were isolated by magnetic microbeads and LS columns (Miltenyi 

Biotec). Naïve and memory T cell subsets were then sorted using FACSaria (BD Biosciences) based on 

the expression of the following surface markers: naïve T cells: CD4+CD25–CD45RA+CCR7+; total 

memory T cells: CD4+CD25–CD45RA–CCR7+/–; TCM cells: CD4+CD25–CD45RA–CCR7+; TEM cells: 

CD4+CD25–CD45RA–CCR7–. Other T cell subsets were separated from CD4+ T cells by sorting for the 

following surface markers: TH1 cells: CD4+CD25–CD45RA–CXCR3+CCR4–CCR6–; TH2 cells: CD4+CD25–

CD45RA–CXCR3–CCR4+CCR6–; TH17 cells: CD4+CD25–CD45RA–CXCR3–CCR4+CCR6+; TH22 cells: 

CD4+CD25–CD45RA–CCR4+CCR6+CCR10+. When needed, cells were cultured in RPMI-1640 medium 

supplemented with 5% human serum, 1% non-essential amino acids, 1%, sodium pyruvate, 1% 

glutamine, penicillin, streptomycin and 50 µM β-mercaptoethanol (complete medium). Cells were 

activated in Nunc MaxiSorp flat 96-well plates with plate-bound anti-CD3 (recombinant TR66 clone, 

in house production) and anti-CD28 (1 µg/mL) antibodies. Cells were removed from stimuli and 

placed in a round bottom plate after 48 h. When needed, cultures were supplemented with IL-2 at 

the concentration of 60 U/mL after the initial 5 days of activation.  

 

Transfection of primary T cells and cell lines. Primary T cells were transfected with NEON 

nucleofector (Invitrogen) at 1800-2200 V, 20 ms, 1 pulse, using the provided buffer T. A total of 1 x 

106 cells was used with the 10 μl tip transfections or 2.5 x 106 cells with the 100 μl tip. LNAs and 

siRNAs (listed in Table S8) were used at the concentration of 2 μM. Primary cells were cultured for 

up to 48 h post-transfection in pre-warmed complete medium without antibiotics. About 2.5 x 106 

Jurkat cells were nucleofected at 1325 V, 10 ms, 3 pulses using buffer R, and were cultured in RPMI-

1640 medium supplemented with 10% FBS, 1% non-essential amino acids, 1% sodium pyruvate, 1% 

glutamine, penicillin, streptomycin, kanamycin and 50 μM β-mercaptoethanol. HEK293 cells were 
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transfected with polyethylenimine (PEI) using standard protocols and cultured in DMEM with 4.5 g/L 

D-glucose supplemented with 10% FBS, 1% sodium pyruvate, penicillin, streptomycin and 50 μM β-

mercaptoethanol. 

 

Lentivirus production and cell transduction. Lentiviral particles were purified from the supernatant 

of transfected HEK293 cells by sucrose gradient (10 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 

25% sucrose) and ultracentrifugation (2.5 h, 100’000 x g, 4°C). For some experiments, lentivirus 

particles were concentrated using a PEG-8000 solution (63) (80 g PEG-8000, 14 g NaCl in 200 ml of 

PBS, pH 7.2) followed by centrifugation at 1,600 x g, 1 h at 4°C. For primary T cells, 5 μl of lentiviral 

concentrate were mixed with 150,000 resting cells in a flat-bottom 96-well-plate. After 24-48 h, cells 

were transferred to a Nunc plate coated with anti-CD3 and anti-CD28 antibodies for 48 h, and finally 

transferred to a round bottom 96-well plate with until day 5-7. Jurkat T cells were transduced with 5 

μl of lentivirus-containing medium in a 96-well plate, 150,000 cells/well. After 48-72 h, transduced 

cells were selected by the addition of puromycin (2 µg/ml) for 72 h or sorted for GFP expression, 

depending on the selection marker. 

 

Plasmids and cloning. Plasmids were constructed and modified by standard molecular cloning 

techniques. The miR-150 lentiviral vector pLL3.7_hsa-miR-150 (#25792) and the empty backbone 

pLL3.7 (#11795) were obtained from Addgene. The RFX3- and RFX5-expressing lentiviral vectors 

were obtained from Genecopoeia. For dual luciferase assays, regions of ~600 bp containing the 

putative miR-150 sites were amplified by PCR from the 3’UTRs of the MYB, PDAP1, HNRNPAB and 

PIK3R1 genes, and were cloned into the pmirGLO plasmid using the NheI/XbaI restriction sites. The 

PDAP1-3’UTR-containing plasmid was further mutated to abrogate the miR-150 binding sites by site-

directed mutagenesis using the Quick Change II kit (Agilent) according to manufacturer’s 

instructions. All plasmids were verified by Sanger sequencing. 

 

Luciferase Assay. HEK cells were transfected in a 96-well plates with 25 ng of pmirGLO plasmid 

(containing part of the 3’UTR of the candidate target downstream to luciferase gene) and 1 μM of 

miR-150 mimic or control oligonucleotide using a standard PEI (polyethylenimine) protocol. After 24 

h, cells were lysed and analyzed using the Dual-luciferase reporter assay system (Promega) and a 

GloMax luminometer (Promega).  

 

Nanostring SPRINT profiling. Total RNA was isolated using TRI reagent RT (MRC) and ZymoSpin 

columns and eluted in nuclease-free water. When needed, RNA was concentrated with a speed vac. 
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100 ng of total RNA at a concentration of 33 ng/l were used for each experimental condition and 

probed with the Human miRNA v3 assay, according to manufacturer’s instructions. Data were 

normalized to the 25 most highly expressed hits and p-values and ratios were calculated using the n-

Solver 3.0 software.  

 

Quantitative RT-PCR. Total RNA was isolated using TRI reagent RT (MRC) and ZymoSpin columns and 

eluted in nuclease-free water. For gene expression analysis, RNA was retrotranscribed with qScript 

cDNA SuperMix (Quanta Biosciences) and PCR performed with PerfeCTa SYBR green FastMix (Quanta 

Bioscience) using primers listed in Table S8. For miRNA expression, TaqMan MicroRNA Reverse 

Transcription Kit (Applied Biosystems) and TaqMan Universal PCR Master Mix (Applied Biosystems) 

were used. Taqman probes are listed in Table S8. PCR reactions were run on the ABI 7900HT Fast 

Real-Time PCR System (Applied Biosystems) or using the Quant Studio 3 Real-Time PCR System 

(ThermoFisher). Data were normalized to the UBE2D2 housekeeping gene for SYBR-based qRT-PCRs 

or on RNU48 for Taqman reactions. 

 

Cell proliferation. For CSFE dilution, memory T cells were resuspended in PBS with 2% human serum 

and incubated with CFSE at the final concentration of 5 μg/ml for 8 min at 37°C, followed by 

quenching with complete medium and extensive washing prior to activation with plate-bound anti-

CD3 and anti-CD28 antibodies. For BrdU incorporation, 100,000 primary T cells were plated over-

night in 1 ml of complete medium in a 48-well plate. BrdU was incorporated at the concentration of 

3 μg/ml for either 1 h (day 3-stimulated primary T cells), 5.5 h (day 5-stimulated cells) or 24 h (day 6 

or later time points after stimulation).  After incorporation, cells were assayed using the APC BrdU 

Flow Kit by Pharmingen. For Jurkat cells, BrdU was incorporated for 5 h. 

 

Western blotting. For protein extraction, T cells were washed with PBS and lysed in RIPA buffer (10 

mM Tris-HCl pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM 

NaCl) supplemented with a cocktail of protease inhibitors (Sigma, P8340). Protein concentration was 

measured using a BCA assay (Thermo Fisher Scientific, Pierce BCA Protein Assay Kit) and samples 

were either frozen or directly loaded onto 8-12% polyacrylamide gels. About 40 μg of total protein 

extract was used per sample. After electrophoresis, blotting on a PVDF membrane was performed 

using a wet transfer system and a methanol-based transfer buffer (20 mM Tris, 150 mM glycine, 20% 

methanol). Blocking was performed with 5% milk in TBST (5 mM Tris pH 7.3, 150 mM NaCl, 0.1% 

Tween-20) for 60 min at RT with gentle shaking. Blots were incubated with primary antibodies over-

night at 4°C or 1 h at room temperature, followed by washing and incubation with an HRP-
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conjugated secondary antibody. Blot development was performed using the ECL Prime Western 

Blotting Detection Reagent (Amersham) and immediately analyzed with a blot imager (GE, 

Amersham Imager 680).  

 

Biotinylated miRNA:targets pull-down and sequencing. The biotinylated miRNA pull-down was 

performed as described (50) with optimization for primary human T helper cells. Briefly, 20 x 106 

memory T cells were stimulated with anti-CD3 and anti-CD28 antibodies and cultured for 5-6 days in 

complete medium. About 80 x 106 cells were then transfected with 50 nM of biotinylated miRNA 

mimic or control oligonucleotide (Exiqon) using the 100 μl kit for NEON nucleofector (Thermo Fisher 

Scientific) in multiple transfections of 2.5 x 106 cells each (2200 V, 20 ms, 1 pulse). Immediately after 

transfection, cells were incubated in pre-warmed complete medium without antibiotics 

supplemented with 60 U/mL of recombinant human IL-2. After 24 h, cells were collected, washed 

with MACS buffer (PBS, 0.5% BSA, 2 mM EDTA), and lysed in 500 μl of Lysis Buffer (20 mM TRIS pH 

8.0, NaCl 70 mM, KCl 150 mM, NP-40 0.5%, DTT 1 mM, glycerol 10%, EDTA 2 mM, RNAsin inhibitor 

(Promega), and protease inhibitor cocktail (Sigma)). Lysed cells were left 15 min on ice and then 

transferred at -80°C to ensure complete lysis. After thawing, the cell lysate was cleared of cell debris 

by centrifugation at 4°C for 20 min. 30 μl of the cleared lysate were set aside and mixed with 90 μl of 

TRI-reagent for RNA extraction of the “input” fraction. The protein content in the remaining lysate 

was quantified with a BCA kit. 100 μl of streptavidin-agarose resin (Sigma) were washed twice with 

Lysis Buffer and subsequently incubated in Blocking Buffer (Lysis Buffer containing 1 mg/ml BSA, 100 

μg/ml ssDNA Salmon Testis (Sigma), 500 μg/ml yeast tRNA (Thermo Fisher Scientific)) for at least 1 h 

at 4°C on a wheel. All centrifugation steps with agarose resin were performed at 11,000 x g for 11 

sec. After 1 h, the streptavidin-agarose resin was washed 3 times with 500 μl of Lysis buffer and 

incubated over-night at 4°C on a spinning wheel with 1 mg of protein extract freshly supplemented 

with protein and RNAse inhibitors. The minimum volume of extract used for the incubation was 250 

μl, at a final protein concentration of 1-3 mg/ml. The following day, samples were spun at 11,000 x g 

for 11 sec. The agarose beads were washed 4 times with 1 ml of Lysis buffer, then incubated with 

400 μl of TRI-reagent, 15 min at room temperature and 1 h 4°C. After centrifugation to remove the 

beads, the supernatants contained the “pull-down” fraction. Total RNA was extracted from the pull-

down and input fractions using Zymo-Spin IC columns and quantified using a Qubit fluorometer. 

Sequencing was performed at the Next Generation Sequencing platform at the University of Bern 

(Switzerland), using an Illumina HiSeq 3000 (for miR-150, 1x 100bp reads) or a NovaSeq 6000 (for 

miR-146a, 2x 50bp reads). For library preparation, the Takara SMARTer Stranded Total RNA-Seq Kit 

v2 - Pico Input Mammalian was used. Fastq files were analyzed using Linux and R. Quality control 
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was performed with FastQC and FastQScreen. Reads were trimmed of overrepresented sequences 

with Cutadapt and mapped to the human GRCh37 - hg19 assembly with Hisat2. Counts were 

generated using featureCounts and differential expression analysis performed with DESeq2.  

 

MiRNA seed analysis. MiRWalk 2.0 (21) was used to predict miRNA targets. Predictions were done 

on 3’UTR, CDS and 5’UTR. Afterwards, the presence of at least a 6-mer was verified manually for 

each pull-down target. 

 

ATAC-seq library preparation. ATAC-seq was performed on 1x105 sorted CD4+ memory and naive T 

cells obtained from four independent donors. After isolation, cells were either left resting or 

activated with plate-bound anti-CD3 and anti-CD28 antibodies in complete medium. Cells were 

processed on day 0 (resting condition), as well one and three days after activation. Briefly, cells were 

resuspended in 50 µl of lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM MgCl2, 0.1% Igepal CA-630) and 

incubated on ice for 3 minutes followed by centrifugation (500 × g, 4°C, 20 min). Nuclei were then 

resuspended in 50 µl of tagmentation buffer (10 mM Tris-HCl, 25 mM MgCl2 and 1 µl of adaptor-

loaded Tn5 transposase (produced in-house)) and incubated for 1 h at 37°C. The cleanup of the 

tagmented DNA was performed by adding 10 μl of clean-up buffer (900 mM NaCl, 30 mM EDTA), 2 μl 

of 10% SDS, 6 μl of milliQ water and 2 μl of Proteinase K (20 μg/μl) followed by incubation at 40°C 

for 30 minutes. Tagmented DNA was isolated using 2× AMPure XP beads and amplified by PCR with 

barcoded primers using 14 cycles of PCR. Finally, fragments smaller than 500 bp were purified with 

0,65× AMPure XP beads and primers were removed by purification with 1,8× AMPure XP beads. 

Libraries were sequenced paired-end on an Illumina NextSeq500 platform. 

 

ATAC-seq analysis. Paired end reads were adapter trimmed using BBDuk in pair-end mode 

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/ - last modified 

version November 7, 2019). Reads were subsequently trimmed with trimmomatic in pair-end mode 

(version 0.39 flags: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:25). Resulting reads were 

mapped to hg38 using bowtie2 (version 2.3.5.1; with flags: --very-sensitive -k 2 -t --phred33 -p 4 -q). 

Resulting bam files were then filtered using samtools (version 1.9) in order to remove unmapped 

reads, failing quality, mpping to mitochondrial chromosome or with their mate unmapped (flag: 

samtools view -b -f 3 -F 524). Reads mapping to ENCODE black-list regions 

(https://github.com/Boyle-Lab/Blacklist) were also removed using bedtools pairToBed (version 

2.29.2 flag: -type neither). PCR duplicated reads were removed using samtools markdup as described 

in the reference manual (http://www.htslib.org/doc/samtools-markdup.html). ATAC reads were 

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://github.com/Boyle-Lab/Blacklist
http://www.htslib.org/doc/samtools-markdup.html
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then shifted as reported previously (64) using deepTools alignmentSieve (version 3.4.1; flag: --

ATACshift). Peak calling was performed using MACS2 callpeak (version 2.2.6; options: –nomodel --

format=BAMPE -B -g hs --call-summits). A reference set of peaks was created by selecting peaks 

called in each samples/replicate with qvalue≤10-10 and being consistent between replicates (e.g. 

having an overlapping area of at least 50% between replicates). The resulting set of peaks was used 

to count reads in each sample using the R/Bioconductor package GenomicRanges and 

GenomicAlignment. Sample normalization was achieved by selecting invariant ATAC peaks across 

samples (for sample normalization strategy see Ref. (65)). Differentially regulated peaks were 

selected using DESEq2 (R/Bioconductor package version 1.26.0; R version 3.6.2). Peak clustering was 

performed in R implementing a strategy similar to the one described by Dorrity et al. 2020 

(PMC7093466). Transcription factor motif enrichment analysis was performed for each identified 

cluster using GimmeMotifs (40) using all accessible sites as background. 

 

CRISPR-Cas9 gene editing and single-cell cloning. CRISPR-Cas9 ribonucleoproteins (crRNPs) were 

delivered to primary CD4+ T memory cells by NEON transfection exactly as described (36). Briefly, 

crRNAs and fluorescently labelled tracrRNAs (Dharmacon, IDT) were mixed at a final concentration 

of 80 μM in 10 μl of Nuclease Free Duplex buffer (Dharmacon, IDT). The solution was then incubated 

for 5 min at 95°C and left at room temperature for 20 min for annealing. The RNP complex was 

prepared immediately before transfection by mixing 7.5 μg of recombinant TrueCut Cas9 Protein v2 

(Thermo Fisher Scientific) with 1.5 μl of the crRNA/tracrRNA duplex mix in a total volume of 3 μl 

followed by incubation for 20 min at room temperature. To increase transfection efficiency, Alt-R 

Electroporation enhancer (IDT) was added at a final concentration of 1.7 μM to the transfection mix 

(exclusively for primary cells). Transfection was performed with the 10 μl Neon Transfection System 

kit. One million memory T cells or Jurkat cells were resuspended in Neon Buffer T or Buffer R 

respectively and added to the electroporation solution. Cells were then electroporated at 2200 V, 20 

ms, 1 pulse for primary cells and 1600 V, 10 ms, 3 pulses for Jurkat cells. After transfection, 

individual T cells were seeded in 384-well plates at 0.4-0.65 cells per well in complete medium in the 

presence of recombinant IL-2 (500 U/ml, produced in house), 1 μg/ml of phytohaemagglutinin (PHA) 

and 25,000 irradiated (45 Gy) allogeneic feeder cells (PBMCs) per well (36, 66). After 2 weeks, 

individual clones were transferred into round-bottom 96-well plates and further expanded for 

another 10 days in presence of IL-2, 500 U/mL. 

 

Analysis of CRISPR/Cas9 deletion efficiency in T cell clones. Genomic DNA (gDNA) from individual 

clones (~1 x 105 cells) derived from primary human T cells was isolated using the QIAamp DNA Micro 
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Kit and DNeasy Blood & Tissue kit (Qiagen) or extracted with QuickExtract DNA extraction solution 

(Lucigen) following manufacturer’s protocol. To screen for the presence of deletions a simple PCR 

spanning the region of interest was used. In the case of the MIR150 gene, the two sgRNAs were 

designed to produce a deletion of ~200 bp, and clones were screened for the presence of this 

deletion by PCR, using external primers. To screen for the presence of mutations, a T7 endonuclease 

I cleavage assay was used (67, 68). Briefly, primers were designed to amplify a ~600-1000 bp region 

surrounding the targeted area. PCR amplification was performed using the high fidelity KOD Hot 

Start DNA polymerase and 20-100 ng of gDNA template in 30 μl. Because the T7 endonuclease I 

cleaves mismatched heteroduplex DNA, 15 µl of each PCR product were denatured and re-annealed 

to produce potential heteroduplexes of wild-type and mutated DNA strands. Five units of T7 

endonuclease I (New England Biolabs) were added directly to the annealed PCR product and 

incubated at 37°C for 15 min. As control, parallel reactions without T7 endonuclease were 

performed. After resolution of the DNA bands on a 1% agarose gel, band intensities were quantified 

with ImageJ and the percentage of cleavage efficiency was calculated by dividing the density of the 

cut product by that of the uncut. We considered as “modified” any clone presenting a cleavage 

efficiency higher than the average background generated by the control clones.  

 

Chromatin immunoprecipitation. About 60 million freshly isolated CD4+ T cells were resuspended in 

36 ml of PBS and 1 mL of formaldehyde solution 37% (Sigma) to a final concentration of ~1%. After 

10 min, the reaction was quenched with glycine at a final concentration of 0.125 M. After washing, 

cell pellets were flash-frozen in liquid nitrogen. Frozen cells were thawed and lysed in 3 mL of RIPA 

lysis buffer (Tris-HCl pH 8.0 10 mM, EDTA pH 8.0 1 mM, NaCl 140 mM, SDS 0.1%, deoxycholic acid 

0.1%, phenylmethylsulfonyl fluoride 2 mM, 1× Sigma protease inhibitor) for 30 min on ice, followed 

by sonication using a Diagenode Bioruptor Plus, 4°C, 45 cycles 30 sec on/60 sec off, leading to DNA 

fragments of ~200 bp in size. At the end of the sonication process, chromatin was cleared by 

centrifugation and addition of 1% Triton-X. 20 μl of cleared chromatin were set aside as input. To 

assess the extent of shearing, part of the chromatin (100 μl) was de-crosslinked by incubation with 5 

μg of proteinase K overnight at 65°C and column-purified before visual assessment on an agarose 

gel. For immunoprecipitation, 75 μl of magnetic Dynabeads protein G (Thermo Fisher Scientific) 

were washed twice in Binding Buffer (PBS, BSA 0.5%, Tween-20 0.5%) and incubated with 10 μg of 

mouse anti-human RFX5 antibody (Santa Cruz Biotechnology sc-271756-X) in 300 μL of Binding 

Buffer for 2 h at room temperature on a rotating platform. After washing, the beads were finally 

incubated with 1 ml of cleared chromatin overnight at 4°C on a rotating platform. After removal of 

the supernatant, the beads were washed five times with RIPA buffer, 2 times with Tris-HCl pH 8.0, 10 
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mM, EDTA pH 8.0 1 mM, NaCl 500 mM, SDS 0.1%, deoxycholic acid 0.1%, Triton-x-100 1%, 2 times 

with LiCl buffer (Tris-HCl pH 8.0 10 mM, EDTA pH 8.0 1 mM, LiCl 250 mM, NP-40 0.5%, deoxycholic 

acid 0.5%), and once in Tris-EDTA buffer. Beads were then resuspended in 50 μL of Direct Elution 

Buffer (Tris-HCl pH 8.0 10 mM, EDTA pH 8.0 5 mM, NaCl 300 mM, SDS 0.5%), and treated with 5 μg 

of RNse A, 37°C for 30 min. Glycogen 1 μl and 2.5 μl Proteinase K (20 mg/ml) were added and 

samples were incubated at 37°C for additional 2 h, shaking. Samples were finally reverse-crosslinked 

by incubation at 65°C for 6-18 h. Beads’ supernatants were transferred to new tubes and 132 μl of 

SPRI magnetic beads (Mag-Bind RxnPure Plus, Omega Bio-tek) were added to each sample and 

incubated 5 min at room temperature, followed by two washes with 500 μl of ethanol 70%, while 

leaving the tubes on the magnetic rack. After drying, the DNA was eluted with 30-60 μl of Tris-HCl pH 

8.0 and DNA samples were quantified by Qubit fluorometric quantification (Invitrogen). Finally, 600 

pg of immunoprecipitated DNA were used for qPCR, in a final volume of 10 μl. 

 

RNA immunoprecipitation. Twenty million memory T cells were isolated from healthy donors and 

activated with plate-bound anti-CD3 and anti-CD28 antibodies for 5 days. Cells from two distinct 

donors were then pooled together for a total of ~80 × 106 cells. The cells were resuspended in ice-

cold PBS at the density of 20-30 × 106 cells/ml, and half of them were irradiated twice with 254nm 

UV light at 0.2J using a UV Stratalinker. Each irradiation cycle was conducted on ice with two-

minutes shaking intervals. After centrifugation, the cells were lysed in RIPA buffer (10mM Tris-HCl, 

pH 8.0, 1mM EDTA, 0.5mM EGTA, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS, 140mM 

NaCl) with recombinant protease inhibitors (Sigma) and RNAse inhibitor (1 U/µl, Promega). Protein 

content was quantified using a BCA kit (Thermo Fisher Scientific), and 1mg of cell extract was 

incubated on a rotating wheel ~16 h at 4°C using 6 µg of antibody (anti-PDAP1 Bethyl A304-651A or 

Proteintech anti-Tubulin 66240-1-Ig). Upon addition of 60 µl of protein-G dynabeads (Thermo Fisher 

Scientific) and incubation for 4 h at 4°C, beads were washed twice with RIPA buffer and two more 

times with RIPA-500 (same as RIPA, except for NaCl 500 mM). Washed beads were treated with 

proteinase K (60 mg in 60 µl of RIPA buffer containing RNAse inhibitor) at 37°C for 30 min, followed 

by RNA extraction using 400 µl of TRI-reagent (MRC) and Zymo spin RNA low-quantity IC columns. 

RNA was retrotranscribed using Quanta Bio master mix and qPCR was performed using SYBR green 

reagents (Quanta Bio). For sequencing, total RNA was quantified using a Qubit fluorometer, followed 

by library preparation and sequencing at the Next Generation Sequencing platform of the University 

of Bern (Switzerland), using an Illumina NovaSeq 6000. For library preparation, the CORALL Total 

RNA-Seq Library Prep Kit was used. Quality control was performed with FastQC (v. 0.11.5) and 

RSeQC (v. 2.6.4). PCR duplicates were removed using UMI-Tools v1.1.1 and the resulting reads were 
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mapped to the human GRCh38.104 assembly with Hisat2 (v. 2.1.0). Counts were generated using 

featureCounts (v. 1.6.0) and differential expression analysis performed with DESeq2. Only protein-

coding transcripts were considered for further analysis. 

 

Poly-A RNA pull-down. mRNA pull-down was performed using the Dynabeads Oligo(dT)25 kit 

(Thermo Fisher Scientific) according to manufacturer’s instructions. Briefly, 60-80 × 106 T cells were 

isolated and irradiated as described for RNA immunoprecipitation. Cells were then lysed directly in 1 

ml of Lysis/Binding buffer and crude extracts were passed 20 times through a 21-gauge needle to 

decrease viscosity, and then incubated directly with 100 µl of Dynabeads-oligo(dT) for 3 h at 4°C on a 

rotating wheel. After extensive washing, beads were resuspended in 60 µl of Laemmli buffer and 

boiled at 95°C for 5 min. Samples were then used for SDS-page and blotted with an anti-PDAP1 

antibody (1:500 dilution). 

 

Immunofluorescence. 1x105 memory T cells were fixed using 3.7% formaldehyde in PBS and then 

spun on cytospin slides (5 min at 500 rpm). The cells were then permeabilised with 0.1% TritonX in 

PBS and blocking was performed using 10% goat serum in PBS.  Slides were incubated with primary 

antibodies for 1 h at room temperature, followed by washing and incubation with an secondary 

antibodies for 30 min at room temperature. Nuclei were counterstained with DAPI. Images were 

acquired with a Leica TCS SP5 laser-scanning confocal microscope (LSCM), using a 63x/NA 1.4 PL APO 

CS Oil objective with a XY pixel size of 55 nm and pinhole 1 AU. Fluorescence was excited with 594 

nm He:Ne laser and collected in range 600-700nm. Quantification of the mean intensity of the 

signals in individual cells was performed using ImageJ software. 

 

Statistical analyses. Graphs were created with GraphPad Prism 8 software. FACS plots were 

analyzed by FlowJo 10 software. Heatmaps were made by R software using ggplot2, viridis and 

reshape2 libraries. Statistical analyses were performed using GraphPad Prism 8. The comparison 

between two means was evaluated by parametric t-test if the two populations compared were 

normally distributed or by non-parametric (Wilcoxon-Mann-Whitney) test in case the populations 

were not normally distributed. Distributions were tested using the Kolmogorov Smirnov test. 

Welch’s correction to t-test was applied in case the two populations were heteroscedastic 

(distribution of populations was evaluated with an F-test). Comparisons among three or more 

sample means were made by ANOVA. 
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Data availability. All relevant data are within the paper and its Supporting Information files, and are 

available at GEO with accession number GSE161100. The numerical data used in all figures are 

included in Data S1.  

 

5.4 Results 

 

miR-150 is the most highly expressed miRNA in human T cells and is downregulated by activation. 

To identify and accurately quantify miRNAs that are expressed by ex vivo-isolated primary human T 

cells, we performed Nanostring digital profiling of CD4+ naïve, central memory (TCM) and effector 

memory (TEM) T cell subsets isolated from four independent donors. Among the 827 miRNAs 

quantified, only 48 were detectable in these subsets (Table S1). The levels of expression of these 

miRNAs differed widely, with the combined expression of only two of them (miR-150 and miR-142) 

representing >70% of the overall miRNA content in all the T cell subsets analyzed (Fig. 1A). MiR-150 

was the most highly expressed miRNA, with an average number of ~110,000 molecules per 100 ng of 

total RNA (Fig. S1A). While miR-150 expression was substantially similar among subsets, a few 

moderately expressed miRNAs (such as miR-222) were preferentially expressed in memory T cells 

(both TCM and TEM) compared to naïve cells, while miR-181a was instead preferentially expressed in 

naïve compared to memory T lymphocytes (Fig. S1B). No significant differences were observed 

between TCM and TEM cells (Fig. S1B).  

 

 

Figure 1. miRNA expression in human CD4+ T cell subsets. (A) Total RNA was extracted from freshly isolated CD4+ naïve, 

TCM and TEM T cell subsets, and miRNA expression was measured by Nanostring Sprint profiling. The most highly 

expressed miRNAs are shown, and data are expressed as percentage of normalized counts over the total. N=3 
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independent donors. (B) Total RNA was extracted from the indicated T cell subsets freshly isolated from peripheral 

blood. miRNA expression was measured by qRT-PCR and data are expression as 2-∆Ct. N=3 independent donors. (C) 

Freshly isolated memory T lymphocytes were loaded with CFSE, transfected with either a miR-150 mimic or a control 

oligonucleotide and activated with anti-CD3 and anti-CD28 antibodies. The extent of cell proliferation was measured 3 

days after activation. Data in the bar graph were normalized to the overall baseline signal on day 0, prior to stimulation, 

to compensate from experimental differences in basal CFSE loading. N=6 independent experiments. Mean ± SD. 

Student’s t-test, two-tailed, paired. 

 

 

Figure S1. miRNA expression in primary human T lymphocytes. (A) Naïve, TCM and TEM lymphocytes were freshly 

separated from the peripheral blood of four independent donors. 100 ng of total RNA were used for the analysis. Raw 

data were normalized to the top 25 most expressed miRNAs and considered as expressed if following thresholds 

applied: at least one sample with more than 125 normalized reads and no more than one sample containing less than 

100 normalized reads. Mean ± SD. Each dot represents an independent donor.  (B) Volcano plot representations of the 

same data an in (A), to compare miRNA expression across subsets. Differentially expressed miRNAs (Log2 ratio ≥ 1 and ≤ 
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-1; Log10 p-value ≥ 1.3) are shown in red. N=3 independent donors. (C) Naïve, TCM and TEM cell subsets were isolated 

from peripheral blood and were either left resting or activated with plate-bound anti-CD3 and anti-CD28 antibodies for 

the indicated times. Total RNA was extracted and the expression of the indicated miRNAs measured by qRT-PCR. Data 

are shown as Fold Change (FC) compared to resting day 0 (d0) cells. N=3 independent donors. (D) Jurkat T cells were 

transduced with a lentiviral vector (LV) to force miR-150 expression. Expression of miR-150 compared to control 

samples was measured by qRT-PCR (left), and cell proliferation was measured by BrdU incorporation assay (right). N=4 

independent experiments. Mean ± SD. Student’s t-test, two-tailed, paired. 

 

Next, we selected some of the highly expressed or differentially expressed miRNAs to assess their 

regulation in response to T cell activation. T cells were stimulated with plate-bound anti-CD3 and 

anti-CD28 antibodies and miRNA expression was measured by qRT-PCR over time (Fig. 1B). Some of 

the miRNAs expressed at moderate levels in resting lymphocytes (miR-155, miR-222, miR-146a) 

were substantially induced upon TCR stimulation, especially in naïve cells. Abundant miRNAs such as 

miR-150 and miR-342 were instead markedly reduced after two days of activation, while miR-181a 

had a more variable pattern of expression across the different subsets and time-points. We further 

measured the expression of these highly abundant or inducible miRNAs in different ex vivo isolated 

effector subsets, namely TH1, TH2, TH17 and TH22 cells. We observed quantitatively modest and non-

significant differences, concordant with differential miRNA expression being limited primarily to 

naïve vs. memory cells (Fig. S1C). The dynamic regulation of miR-150 upon activation together with 

its high levels of expression in resting cells pointed towards its possible role in the regulation of T cell 

responses upon TCR triggering.  

 

To determine the functional role of miR-150 in human T cells, we transfected freshly isolated 

memory T lymphocytes with either a miR-150 mimic or a control oligonucleotide and we measured 

cell proliferation over time by CFSE dilution. We found that in the presence of miR-150, T cell 

proliferation was significantly affected after three days of anti-CD3 and anti-CD28 stimulation, as 

shown by the reduced dilution of CFSE, leading to higher mean fluorescence intensity (MFI) (Fig. 1C). 

Proliferation (measured by BrdU incorporation) was similarly reduced in Jurkat T cells stably 

transduced with a miR-150-expressing lentivirus (Fig. S1D). Overall, miR-150 was the most highly 

expressed miRNA in human T lymphocytes, in which it controlled proliferation in response to stimuli. 

 

Identification of miR-150 targets in human T cells. Cellular context-dependent regulation is a crucial 

aspect of miRNA-mediated regulation that is mainly based on the relative abundance of a miRNA 

and its targets within a specific cell type or activation state (5, 16). Such context-dependent 

regulation mediated by miRNAs cannot be predicted by the available databases and can only be 

experimentally explored. To identify the mRNAs that are directly and specifically regulated by miR-



Manuscript [1]   

70 
 

150 in T lymphocytes, we transfected activated memory T cells from three independent donors with 

either a biotinylated version of a miR-150 mimic or a control oligonucleotide, followed by 

streptavidin-agarose pull-down and sequencing (17-20). As a control of target specificity, we 

performed the same experiment using biotinylated miR-146a. We found that the pull-down of both 

miR-150 and miR-146a recovered established targets for these miRNAs, namely MYB for miR-150 

and IRAK1 and TRAF6 for miR-146a, thus confirming target specificity (Fig. 2A, Table S2, S3).  

 

 

Figure 2. Identification of miR-150 targets. (A) Volcano plot of differentially expressed genes between the indicated 

miRNA mimic and control oligonucleotides. Genes in red were considered significantly differentially expressed when 

Log2FC ≥ 0.6, -Log10 p-value ≥ 2. (B) The list of genes obtained from (A) was intersected with several prediction 
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databases using Mirwalk 2.0. Both the 3’UTRs and the CDS were manually searched for the presence of at least a 6-mer 

miR-150 or miR-146a binding site. (C) Activated memory cells were transfected with miR-150 mimic or control 

oligonucleotide. 24 h or 48 h after transfection, the expression of the indicated genes was measured by qRT-PCR. N=3-5 

independent donors. Mean ± SD. Student’s t-test, two-tailed, paired. (D) The 3’UTR of the indicated genes was cloned in 

a dual-luciferase reporter vector and transfected into HEK cells together with either a miR-150 mimic or a control 

oligonucleotide. Luciferase reads were normalized to the renilla ones. N=3-4 independent experiments. Mean ± SEM. 

Student’s t-test, two-tailed, paired. (E) Same as in (D), except that the four putative miR-150 binding sites identified in 

the PDAP1 3’UTR were mutated by site-directed mutagenesis. N=3 independent experiments. Mean ± SEM. Student’s t-

test, two-tailed, paired. A.U.: arbitrary units. 

 

Further analysis of the recovered targets showed that 31 out of the 33 miR-150 putative targets 

contained at least one 6-mer seed within either the 3’UTR, 5’UTR or the coding sequence (CDS), and 

~50% (17 out of 33) of these were predicted miR-150 targets by the miRWalk 2.0 database (21) (Fig. 

2B). Our results are in line with previous observations, reported by other groups, showing that about 

half of bound miRNA sites are noncanonical, and that most noncanonical sites are bound and 

functional in a cell-type-specific manner (5, 22, 23). To which extent these noncanonical sites (that 

are efficiently bound in vivo) mediate effective target repression remains to be fully understood (24). 

Similar results were obtained for miR-146a (Fig. 2B). Next, as validation of these pull-down data we 

selected 10 putative miR-150 targets and tested the effects of a miR-150 mimic on their expression 

in T cells from an independent set of donors. Memory T cells were transfected with either the miR-

150 mimic or control oligonucleotide, and mRNA expression was analyzed 24 h or 48 h later (Fig. 2C). 

For some of the targets (HNRNPAB, MYB, PDAP1, PIK3R1, RMND1), a suppressive effect of miR-150 

was already observed after 24 h, while for others (SMAD7 and VPS36) a significant reduction was 

observed only after 48 h, most likely due to varying mRNA stability and turnover. To determine 

whether the observed downregulation of these putative miR-150 targets was mediated by a direct 

activity of miR-150 on their 3’UTRs, we cloned either the entire 3’UTR or the regions containing the 

predicted miR-150 binding site(s) in a reporter vector. Co-transfection of these plasmids with a miR-

150 mimic oligonucleotide led to significantly reduced luciferase expression for three out of four 

targets tested, namely MYB, PDAP1 and HNRNPAB, which were therefore the highest confidence 

targets, while the effect on PIK3R1 appeared to be more variable (Fig. 2D). The PDAP1 3’UTR 

contains five putative miR-150 binding sites predicted by TargetScan 7.2 (25), four of which are 

clustered in the distal region of the 3’UTR. We cloned the region containing the four clustered sites 

and we evaluated the impact of mutating these sites on miR-150-mediated repression. We found 

that mutation of only one site was sufficient to abrogate repression by miR-150, suggesting that all 

four clustered sites are required for full miR-150 activity on the PDAP1 3’UTR (Fig. 2E), although this 

effect may be different in vivo. To further investigate the relationship between PDAP1 and miR-150 
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in a more physiological setting, we deleted one or three clustered miR-150 binding sites from the 

3’UTR of the PDAP1 gene in primary human T lymphocytes, using CRISPR-Cas9 editing. We found 

that deletion of one single site was insufficient to completely abrogate miR-150 activity, while the 

partial deletion of three sites reduced miR-150 responsiveness (Fig. S2). Overall, our target analysis 

in primary human T lymphocytes recovered established targets of miR-150, such as MYB, and 

identified additional ones, such as PDAP1, as direct miR-150 targets in human T cells.  

 

 

Figure S2. Genomic deletion of three miR-150 binding sites in the PDAP1 3’UTR abrogates miR-150 regulation. (A) 

Schematic representation of the PDAP1 3’UTR with indicated the locations of the predicted miR-150 binding sites (BS, 

black), the sgRNAs (red) and the primers used for gDNA screening (green arrows) of cells and clones lacking three or one 

single miR-150 site (DBS2/3/4 and DBS4, respectively). (B) Example of gDNA screening for single clones DBS4 (left) and 

DBS2/3/4 (right). We could identify only two clones with a partial deletion of DBS2/3/4. (C) Individual clones with the 

desired genomic modifications in the 3’UTR of the PDAP1 gene (or control clones, transfected with a scrambled sgRNA 

sequence) were pooled and transfected with either a miR-150 mimic or control oligonucleotide. 24h after transfection, 

expression of PDAP1 was measured by RT-qPCR (Scrambled control clones: N=8 pooled clones, 2 experiments; DBS4: 

N=9 pooled clones, 2 experiments; DBS2/3/4: N=2 pooled clones). 
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PDAP1 acts as an RNA-binding protein. Consistent with the fact that MYB is a target of miR-150 (12), 

we found that in the presence of miR-150, endogenous MYB mRNA expression was significantly 

reduced compared to the baseline in both transiently transfected primary memory T lymphocytes 

and transduced Jurkat cells (Fig. S3A). As expected, the down-modulation of MYB expression using 

siRNAs was sufficient to limit human T cell proliferation (Fig. S3B).  

 
Figure S3. miR-150 and MYB modulate T cell proliferation. (A) Primary memory T cells and Jurkat cells were transfected 

with an miRNA mimic or transduced with a control or miR-150-expressing lentivirus. Seven days after transduction MYB 

expression was measured by RT-qPCR. N=3 (primary T) or N=4 (Jurkat) independent experiments. Mean ± SD (primary T) 

or SEM (Jurkat). Student’s t-test, two-tailed, paired. (B) Memory T lymphocytes were loaded with CFSE, transfected with 

either siRNAs against MYB or a control oligonucleotide and activated with anti-CD3 and anti-CD28 antibodies. The 

extent of MYB downregulation was measured by RT-qPCR (left), while cell proliferation was measured by CFSE dilution 4 

days after activation (right). N=3 independent experiments. Mean ± SD. Student’s t-test, two-tailed, paired. 

 

Next, we investigated the role of additional miR-150 targets in the regulation of T cell proliferation. 

We focused on PDAP1 as it was the second most affected target in T cells transfected with miR-150. 

PDAP1 is a highly conserved protein whose precise functional role and mechanism of action is largely 

unknown. PDAP1 was found associated with different types of cancers (26, 27), hinting at a role in 

the regulation of cell proliferation. Indeed, T cell tumors also show high expression of PDAP1 (28). 

First, we transfected memory T lymphocytes with a miR-150 mimic oligonucleotide, which led to a 

significant reduction in endogenous PDAP1 protein expression (Fig. 3A). Next, we investigated the 

impact of PDAP1 on memory T cell proliferation using transfection of siRNAs. Compared to cells 

transfected with a control oligonucleotide, downregulation of MYB or PDAP1, or transfection of the 

miR-150 mimic oligonucleotide, all led to a significant reduction in T cell proliferation, as assessed by 

BrdU incorporation assay (Fig. 3B). Consistent with a positive role of PDAP1 in controlling T cell 

proliferation, we found that its expression increased, both at the mRNA and protein level, upon 

activation of T lymphocytes (Fig. 3C-D). We also found that PDAP1 remained strictly cytoplasmic in 

both resting and activated cells, pointing towards a role in signaling and/ or mRNA translation (Fig. 

3D). 
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The mechanisms by which PDAP1 regulates proliferation is incompletely understood, although it was 

recovered as an RBP in several RNA–protein interactome studies (29-32), and it was also described 

as an RNA-dependent protein, namely a protein able to engage in larger, yet uncharacterized, 

complexes only in the presence of RNA (33). Indeed, PDAP1 was reproducibly recovered after RNA 

pull-down in different human cell types, including human T lymphocytes (29-32), pointing towards a 

crucial function of this protein as an RBP (Fig. 4A, Table S4). To experimentally determine whether 

PDAP1 can indeed act as an RBP in human T lymphocytes, we performed an oligo-dT pull-down of 

total mRNA in memory T cells. Western blot analysis of these samples revealed the presence of 

PDAP1, which was preferentially enriched in samples that underwent UV crosslinking (Fig. 4B, and 

raw data in Fig. S4), suggesting that this protein is indeed capable of RNA binding in T cells, either 

directly or as part of a larger RNA-binding complex, yet to be determined.  

 

 
Figure 3. PDAP1 regulates T cell proliferation and is upregulated upon activation. (A) Memory T lymphocytes were 

transfected with either a miR-150 mimic or control oligonucleotide. 24 h after transfection, expression of PDAP1 was 

assessed by western blot. Tubulin was used as loading control. A representative western blot is shown on the left, while 

the densitometric quantification of independent experiments in shown on the right. N=4. Mean ± SD. Student’s t-test, 

two-tailed, paired. (B) Memory T lymphocytes were transfected with siRNAs targeting either MYB or PDAP1, or with a 

miR-150 mimic oligonucleotide. The extent of PDAP1 downregulation was measured by RT-qPCR (left), while cell 

proliferation was measured by BrdU incorporation assay. N=3-8 independent experiments (each dot represents one 

donor). Mean ± SD. Student’s t-test, two-tailed, paired. (C) Memory T lymphocytes were stimulated with plate-bound 
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anti-CD3 and anti-CD28 for the indicated days, followed by RT-qPCR analysis of PDAP1 expression. N=3, each dot 

represents one donor. Mean ± SD. One-way ANOVA. (D) Memory T lymphocytes were stimulated with plate-bound anti-

CD3 and anti-CD28 for the indicated days, followed by immunofluorescence for PDAP1. The bar corresponds to 5mm. 

Representative of N=2 experiments. Right: Quantification of the mean intensity of the PDAP1 signal in individual cells. 

Mean ± SD. Unpaired t-test, two-tailed. 

 

 

Figure 4. PDAP1 acts as an RNA-binding protein in primary human T lymphocytes. (A) Venn diagram showing the 

extent of overlap between RBPs identified in the indicated studies and cell types. (B) Activated memory T lymphocytes 

were UV-irradiated and lysed prior to poly-A mRNA pull-down and western blot. Non-irradiated samples were also used. 

Representative of N=2 independent experiments. (C) Activated memory T lymphocytes were UV-crosslinked and lysed 

prior to immunoprecipitation using either an anti-PDAP1 or an anti-tubulin antibody as irrelevant control. The extent of 

enrichment of the indicated mRNA targets was measured by RT-qPCR. N=3 independent experiments. Mean ± SD. (D) 

Sequencing of RIP samples as in in (C). 
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Figure S4. Poly-A mRNA pull-down recovers the PDAP1 protein raw data. (A) Complete western blot images of the 

images shown in Fig. 3a and (B) Fig 4b. 

 

Next, we searched for candidate targets that might be regulated by this protein. We initially focused 

our attention on AKT1 and PDK1 (phosphoinositide-dependent kinase-1), two selected candidates 

that were previously shown to be impacted both at the mRNA and protein level by PDAP1 deletion 

in glioma cells  (34). RNA-immunoprecipitation (RIP) experiments in UV-crosslinked memory T 

lymphocytes using an anti-PDAP1 antibody revealed that both transcripts for AKT1 and PDK1 were 

enriched in crosslinked samples, as opposed to the control mRNA UBE2D2 (Fig. 4C). Importantly, 

RNA-sequencing of the immunoprecipitated samples identified other crucial factors in T cell biology 

that were bound by PDAP1, most notably the key regulators of T cell activation, differentiation and 

functions CBL, NOTCH1 and NOTCH2 (Fig. 4D, S5A, Table S5). Many of the most highly significantly 

enriched transcripts (indicated in blue in the figure) were expressed at moderate to high levels in 

human T cells as shown in the DICE database (35), except for SDK2 that was lowly expressed.  
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Fugre S5. (A) RIP-seq for PDAP1 in memory T lymphocytes. Examples of snapshots of the sequencing tracks for 

selected genes. (B) Memory T lymphocytes were transfected with recombinant Cas9 and sgRNAs against PDAP1 or 

scrambled controls. After cloning, expansion and selection of PDAP1 KO clones, n=7 individual clones were pooled 

and the expression of the indicated mRNA transcripts was measured by RT-qPCR. (C) Memory T lymphocytes were 

transfected with siRNAs against PDAP1 or MYB. After 24h, RNA was extracted and the expression of MYB and PDAP1 

was measured by RT-qPCR. N=3 independent donors. Mean ± SD. Student’s t-test, two-tailed, paired. 
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The function of most of these factors in T lymphocytes remains to be established. Other regulators 

of T cell functions bound by PDAP1 included the RUNX family of transcription factors as well as some 

of the AGO mRNAs (Table S5). Factors that were instead not significantly enriched by PDAP1 

immunoprecipitation included RORC, Drosha, as well as PDAP1 itself and MYB. Importantly, deletion 

of PDAP1 in primary human T cells by CRISPR-Cas9 editing reduced the expression of CBL and 

NOTCH1, while NOTCH2 was less affected (Fig. S5B), suggesting a role for PDAP1 in modulating 

mRNA stability. Interestingly, knockdown of PDAP1 also modestly affected the expression of MYB 

(Fig. S5C), although this could be an indirect effect due for instance to the altered availability of miR-

150 upon removal of one its abundantly expressed primary targets. Even though the mechanistic 

underpinning of PDAP1 function and regulation on mRNA stability or translation remains to be 

understood, these results further indicate that PDAP1 is an RBP capable to modulate T cell 

proliferation at least in part by affecting the expression of factors that are central to T cell activation 

and metabolism. 

 

Deletion of PDAP1 limits lymphocyte proliferation. To further assess the role of miR-150 and its 

targets in T cell proliferation, we performed CRISPR/Cas9-mediated deletion of either the PDAP1 or 

MYB gene. The workflow of the overall experimental design includes transfecting primary human 

memory T lymphocytes with two sgRNAs for each gene together with recombinant Cas9 protein, 

followed by single-cell cloning, expansion, selection of gene-modified clones and functional analyses 

(Fig. 5A) (36, 37). After transfection, primary memory T cells were cloned in 384-well plates by 

limiting dilution, after which individual clones were screened for the presence of insertions/ 

deletions (indels) or mutations in the genomic region of interest by PCR and T7 endonuclease I 

cleavage assay (Fig. S6A-C). We found that the cloning efficiency in two independent donors was on 

average 16% for PDAP1 and 15% for MYB, compared to 24% for the control clones (transfected with 

sgRNAs targeting an irrelevant, non-expressed gene), suggesting that the targeted genes affected 

the ability of the clones to expand. Cell proliferation of individual clones was therefore measured by 

BrdU incorporation. By analyzing 12 MYB-KO and 25 PDAP1-KO clones, we found that T cell 

proliferation was significantly decreased for both (Fig. 5B). A similarly reduced proliferation was 

observed also in Jurkat cells transfected with sgRNAs against either MYB or PDAP1 (Fig. S6D). 

Further highlighting the role of PDAP1 in modulating lymphocyte proliferation, we found that in a 

panel of B-cell lymphoma cell lines, PDAP1 expression was often increased compared to primary B 

lymphocytes, and CRISPR-Cas9 deletion of PDAP1 in these cell lines led to significantly reduced 

proliferation (Fig. S7). Finally, to unequivocally determine whether miR-150 expression was 

sufficient to restrain T cell proliferation, we transfected memory T cells with two sgRNAs targeting 
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the MIR150 gene (Fig. S6C), which led to high deletion efficiency (67%). We found that upon 

targeting the MIR150 locus, T cells from two independent donors proliferated significantly more 

(~37% increase) compared to control clones (Fig. 5C). Overall, the experimental identification of miR-

150 targets coupled to their functional validation revealed that PDAP1 is a crucial regulator of T cell 

proliferation whose activity is restrained in the resting state by high levels of miR-150. 

 

RFX family transcription factors modulate miR-150 expression. High levels of miR-150 in basal 

conditions were coupled with its strong reduction upon T cell activation. In memory T cells, the 

reduced abundance of miR-150 was significant already at 24 h of stimulation with anti-CD3 and anti-

CD28 antibodies (Fig. 6A), namely before cells started to proliferate (38), thus ruling out a role of 

passive dilution of the mature miRNA. To investigate potential mechanisms of miR-150 

downregulation, we first measured the expression of the primary (pri-miR-150) transcript. We found 

that its expression was almost completely abrogated 15 h after activation (Fig. 6B), pointing toward 

the rapid downregulation of MIR150 gene transcription upon T cell activation.  

 

Figure 5. miR-150 restrains T cell proliferation through MYB and PDAP1. (A) Schematic representation of the 

experimental workflow to generate primary T lymphocytes knock-out for the factors and miRNA of interest. (B) Primary 

memory T cells were transfected with Cas9 RNPs to delete either MYB (left) or PDAP1 (right), followed by single-cell 

cloning. Individual clones were selected based on the presence of a large genomic deletion in the gene of interest, and 

proliferation was measured by BrdU incorporation assay. For the MYB gene, N=18 control clones and N=12 MYB-edited 

clones, from two independent donors. For the PDAP1 gene, N=18 control clones and N=25 PDAP1-edited clones, from 

two independent donors. Mean ± SD. Mann-Whitney test. (C) Memory T cells were transfected with Cas9 RNP 

complexes containing two different sgRNAs targeting the MIR150 gene. Individual clones were selected based on the 

presence of a genomic deletion overlapping the MIR150 sequence, and proliferation was measured by BrdU 

incorporation assay. N=31 control clones and N=22 MIR150-edited clones, from two independent donors. Mean ± SD. 

Welch’s t-test, two-tailed. 
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Figure S6. Screening strategies for CRISPR-Cas9-targeted primary T cell clones. (A) Clones targeted in the MYB gene 

were screened for deletion mutants by using PCR primers located externally to the sgRNAs. (B) Clones targeted in 

the PDAP1 gene were identified by PCR followed by T7 endonuclease I digestion. When digested by T7 endonuclease 

I, the PCR product of ~600 bp is digested into two segments of 200 and 400 bp if a mutation or small indel is present 

in this region. (C) Clones targeted in the MIR150 gene were screened for the presence of a deletion across the miR-

150 sequence by PCR, using primers located externally to the two sgRNAs. In each case, the red dashed square 

highlights an example of deleted or mutated clone that was used for further analyses. (D) Jurkat T cells were 

transfected with Cas9 RNPs to delete either MYB (left) or PDAP1 (right). Cells were transfected with either one (blue 

line) or two (yellow line) sgRNAs at the same time. Cell proliferation was measured 4 days after transfection by BrdU 

incorporation assay. 
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To identify in an unbiased manner the transcriptional mediators of miR-150 downregulation in 

activated primary T lymphocytes, we first set out to identify the genomic cis-regulatory elements in 

the MIR150 locus that were deactivated upon stimulation.  

 

Figure S7. Deletion of the PDAP1 gene in B cell lymphoma cell lines led to reduced cell proliferation. (A) RT-qPCR and 

(B) western blot analyses for PDAP1 expression in the indicated cell lines and in freshly isolated primary human CD19+ B 

lymphocytes. (C) The PDAP1 gene was deleted by CRISPR-Cas9 in the indicated cell lines. After single-cell cloning, 

selection and expansion, cell proliferation of the individual clones was measured by BrdU incorporation. Each dot 

represents one clone. Mean ± SD. Student’s t-test, two-tailed, unpaired. 

 

To this aim, we performed Assay for Transposase Accessible Chromatin and Sequencing (ATAC-seq) 

in primary human naïve and memory T cells, either resting or activated with anti-CD3 and anti-CD28 

antibodies for one or three days. In memory T cells, 747 peaks were already significantly reduced 

after one day of activation (log2 fold change ≤ -1 and adjusted p-value ≤ 10-5). Of these, 103 peaks 

could be associated to a transcription start site (TSS).  In the same samples, 6,237 peaks instead 

increased after activation. Naïve T cells showed similar results, with 923 ATAC-seq peaks reduced 

after activation with 124 of them matching a TSS, and 6,616 induced peaks (Table S6).  
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Figure 6. ATAC-seq analysis in human CD4+ T cell subsets. (A) Memory T cells were sorted from peripheral blood and were 

either left resting or activated with plate-bound anti-CD3 and anti-CD28 antibodies for the indicated number of hours. 

Total RNA was extracted and miR-150 expression was measured by qRT-PCR. N=3 independent donors (each dot 

represents one donor). Mean ± SD. One-way ANOVA. (B) Same as (A), except that the expression of pri-miR-150 was 

measured. N=3. Mean ± SD. One-way ANOVA. (C) Naïve and memory T cells were freshly isolated from three independent 

donors and were either left resting or were stimulated with anti-CD3 and anti-CD28 antibodies for one or three days, 

before tagmentation and sequencing for ATAC-seq analysis. Representative snapshots of the sequencing tracks. Arrows 

indicate the distal (D) and proximal (P) peaks relative to MIR150. (D) Clustering analysis including all ATAC-seq peaks that 

were significantly affected after 24 h or 72 h of activation in either naïve or memory T cells, with different representations 

of cluster 2 and 9 (middle and right panels). 

 

Visual inspection of the data revealed two prominent ATAC-seq peaks in the proximity of the 

MIR150 gene (Fig. 6C, right panel): the distal one (D) was located upstream of MIR150 and was likely 

to be involved in the regulation of the adjacent gene RPS11, but a role in the control of MIR150 itself 

cannot be ruled out since the promoter and transcription start site of the full pri-miR-150 gene 

remain undetermined. This peak showed modest, if any, changes during T cell activation and 

corresponded to a region bound by the transcription factor XBP1 in T lymphocytes (39).  
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The second, proximal peak (P) almost perfectly coincided with the miR-150 sequence (Fig. 6C, right 

panel), and while it was very prominent in both naïve and memory resting T lymphocytes, it quickly 

and almost completely disappeared in both cell subsets 24 h after stimulation and it was not 

regained at a later time point, suggesting a possible role in the direct control of MIR150 expression.  

In a clustering analysis including all ATAC-seq peaks that were significantly affected after 24 h or 72 h 

of activation in either naïve or memory T cells (n = 16,697 sites), the downregulated peak 

overlapping MIR150 belonged to a large cluster (cluster 2, Fig. 6D) that included all peaks that lost 

accessibility after 1 day of stimulation in both naïve and memory T cells, hinting at a shared 

regulation associated with activation. Other clusters included peaks that were more gradually 

reduced over time (clusters 1-4), or those that were variably induced by activation (clusters 5-10) 

(Fig. S8). Several peaks, like those in cluster 9, were more strongly affected in memory compared to 

naïve T cells, pointing towards regulatory regions and genes likely to be more active in one of the 

subsets (Fig. 6D). 

 

We subsequently focused on cluster 2, containing the ATAC-seq peak coinciding with MIR150. In 

order to identify transcription factor DNA binding motifs associated with the accessible regions in 

this cluster, we performed transcription factor motif enrichment analysis (40). To this aim, peaks in 

cluster 2 were compared to all accessible sites detected. The DNA binding motifs recognized by the 

RFX family of transcription factors were consistently the sites most over-represented in cluster 2 in 

both naïve and memory cells (Fig. 7A and Table S7).  

 

Among the eight members of the RFX family, RFX4, 6 and 8 showed low-to-undetectable expression 

in T lymphocytes according to both the Human Protein Atlas (41) and the Database of Immune Cells 

(DICE) (35). RFX2 was also lowly expressed. We therefore assessed the expression of the remaining 

RFX family members in resting and activated naïve and memory T cells. We found that RFX7 

expression was diminished in naïve T cells upon activation but induced in memory cells (Fig. S9A), 

while expression of RFX1 did not change significantly upon T cell activation, and RFX2 expression 

increased over time (Fig. 7B, Fig. S9B), all patterns that were not consistent with the rapid 

downregulation of miR-150 expression in both naïve and memory T cells. Conversely, expression of 

both RFX3 and RFX5 strongly diminished upon activation (Fig. 7B, Fig. S9B), hinting at their potential 

involvement in the regulation of miR-150 expression. 

 

To determine the functional impact of RFX3 and RFX5 on miR-150 expression we performed RNAi 

experiments in primary resting memory T cells. We found that downregulation of either RFX3 or 
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RFX5, as determined by qRT-PCR, reduced the expression of pri-miR-150 and mature miR-150 (Fig. 

7C). In these experimental conditions the levels of miR-150 remain however overall very high, 

therefore no significant effect on MYB and PDAP1 expression could be measured (Fig. S9C). 

 

 
Figure S8. ATAC-seq analysis in primary T cells. Clustering analysis including all ATAC-seq peaks that were significantly 

affected after 24 h or 72 h of activation in either naïve or memory T cells. 

 

Finally, overexpression of RFX3 or RFX5 in T lymphocytes before activation did not significantly affect 

miR-150 expression or T cell proliferation after five days of activation (Fig. S10). Therefore, RFX3 and 

5 are both required to maintain basal miR-150 expression in resting T cells, but they are not 

sufficient to avoid the drastic reduction in miR-150 expression that occurs upon TCR activation.  

Next, we explored whether such regulation was due to direct RFX factor binding to the MIR150 

locus. Browsing of the ChIP-Atlas (chip-atlas.org, (42)) identified an RFX5 ChIP-seq peak in B 
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lymphocytes upstream of the miR-150 sequence (GM12878 ENCODE, (43)), within the ATAC-seq 

peak identified in our dataset (Fig. 7D). 

 

Figure 7. RFX factors regulate miR-150 expression. (A) Transcription factor motifs enrichment analysis. Peaks in cluster 2 

were compared to all accessible sites detected. (B) Memory T lymphocytes were stimulated with plate-bound anti-CD3 and 

anti-CD28 antibodies for the indicated times. Total RNA was extracted and the expression of the different RFX mRNAs was 

measured by qRT-PCR. N=3-6 independent donors (each dot represents one donor). Mean ± SD. One-way ANOVA. (C) 

Resting memory T lymphocytes were transfected with siRNAs targeting either RFX3 (left) or RFX5 (right). 24 h after 

transfection, total RNA was extracted and the expression of the indicated genes measure by qRT-PCR. N=4 independent 

donors (each dot represents one donor). Mean ± SD. Paired t-test, two-tailed. (D) Schematic representation of the MIR150 

locus, with overlapping ATAC peak and the location of an RFX5 ChIP-seq peak in the human B lymphocyte cell line 

GM12878 as described by the ENCODE project (ChIP-Atlas). The location of PCR primers for ChIP analysis of RFX5 binding is 

also indicated. (E) RFX5 binding at the indicated genomic loci was determined by ChIP-qPCR in resting (day 0) and activated 

(day 3) memory T lymphocytes. Data were normalized on the input and a control immunoprecipitation with an irrelevant 

antibody for each target (dashed line y=1). Target genes exceeding the dashed line threshold were considered to be bound 
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by RFX5. Data are shown as median with 95% confidence interval; at least N=4 independent human donors. Each dot 

represents one experiment. Ratio paired t-test, two-tailed. 

 

 

 

Figure S9. RFX7 expression in human T lymphocytes. (A) Naïve and memory T lymphocytes were stimulated with plate-

bound anti-CD3 and anti-CD28 antibodies for three days. Total RNA was extracted and the expression of RFX7 was 

measured by RT-qPCR. N=2 independent donors (each dot represents one donor). Mean ± SD. This experimental setup, 

with two data-points (average of techical duplicates for each donor), precludes a statistical assessment of the 

differences observed. (B) Naïve T lymphocytes were stimulated with plate-bound anti-CD3 and anti-CD28 antibodies for 

the indicated times. Total RNA was extracted and the expression of the different RFX mRNAs was measured by RT-qPCR. 

N=3-5 independent donors (each dot represents one donor). Mean ± SD. One-way ANOVA. (C) Resting primary memory 

CD4+ T lymphocytes were transfected with siRNAs against RFX5. Total RNA was extracted 24h after transfection, 

followed by RT-qPCR analyses of the indicated genes. Each dot represents one donor/ experiment. Mean ± SD. Paired t-

test, two tailed. 
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To assess whether RFX5 directly bound the MIR150 locus in T lymphocytes, we performed RFX5 

ChIP-qPCR in primary human CD4+ T lymphocytes either resting or activated with anti-CD3 and 

anti-CD28 antibodies for three days. As a positive control for RFX5 binding, we used a region of 

the HLA-DRA gene containing an RFX5 binding site (44). We found that in resting, but not in 

activated T cells, the region containing the MIR150 locus was enriched in the RFX5-bound DNA 

fraction, while no enrichment was detected for the non-target gene TRAF6 (Fig. 7E). Thus, RFX5 

regulated basal miR-150 expression in resting T cells by binding directly to the MIR150 locus. 

 

Overall, we identified a regulatory network required to restrain lymphocyte proliferation, 

composed by an RFX-miR-150 axis required to limit the activity of factors important for T cell 

proliferation, most notably the RBP PDAP1. 

 

 

Figure S10. Overexpression of RFX factors in activated cells is not sufficient to influence miR-150 expression and T cell 

proliferation. (A) Resting memory T lymphocytes were transduced with the indicated plasmid (containing an IRES-GFP), 

followed by activation with plate-bound anti-CD3 and anti-CD28. Representative example of the efficiency of cell 

transduction. (B) GFP+ cells were sorted after 5 days and proliferation was measured by BrdU incorporation assay. The 

results of N=3 independent experiment is shown on the right. Each dot represents one donor. Mean ± SD. (C) A portion 

of the cells was used to measure the indicated transcripts by RT-qPCR. Each dot represents one donor. Mean ± SD. 
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5.5 Discussion 

 

In this work, we identified RFX family members as factors involved in maintaining basal miR-150 

expression in resting cells, which in turn restrained proliferation by targeting MYB and PDAP1. The 

role of miR-150 in the control of cell proliferation is suggested by several pieces of evidence. First, it 

is significantly downregulated in different types of T cell lymphoma, including peripheral T cell 

lymphomas (PTCL) and advanced cutaneous T cell lymphoma (CTCL) (45, 46). Second, reduced miR-

150 expression was associated with invasion and metastasis in mouse models, suggesting that in 

these cells miR-150 acts as a crucial tumor suppressor. 

 

While our analyses identified MYB and PDAP1 as direct miR-150 targets in activated human T 

lymphocytes, a few other targets previously identified in CD4+ T cells were not detected in our study. 

For instance, miR-150 was shown to cooperate with miR-99 to repress mTOR expression and to 

promote Treg differentiation in the mouse. Interestingly, miR-150 could only exert its repressing 

activity on this target in the presence of miR-99, pointing towards cooperativity between different 

miRNA binding sites (47). Other reported miR-150 targets included AKT3 (48) and SLC2A1 (GLUT1), 

which was targeted by miR-150 in regulatory Th1 cells stimulated with anti-CD3 and anti-CD46 

antibodies (49). The fact that these genes were not identified in our experiments might be linked to 

the different T cell subsets under consideration, or to the conditions of T cell culture and stimulation. 

Moreover, for most other reported targets the strength of a direct in vivo association with miR-150 

was not assessed. In this respect, the pull-down approach that we used to identify T cell-specific 

targets may also be limited by the necessity to balance stringency (to reduce false positives) and 

sensitivity, which might lead to the predominant enrichment of abundant targets that are most 

strongly regulated by miR-150 (17, 19, 50).  

 

Apart from MYB, we identified PDAP1 as a direct miR-150 target implicated in regulating T cell 

proliferation. PDAP1 (also known as PAP, HAP28) is a 28 kDa phosphoprotein that was originally 

identified as a modulator of mitosis in association with PDGFA and PDGFB in rat neural retina cells 

(51). Browsing of the Human Protein Atlas (41) revealed the broad tissue expression of PDAP1 and 

mainly cytoplasmic and plasma membrane-associated expression. However, very little is known 

about the physiological functions of this protein, although a genetic association with Mendelian 

diseases of the nervous system was identified (52). In T lymphocytes, RBPs such as the Roquin, 

Regnases and the TTP family of proteins have an important role in post-transcriptional gene 

regulation, being key actors in modulating T cell activation and functions, for instance through the 



Manuscript [1]   

89 
 

regulation of cytokine mRNA expression and stability (36, 53). These proteins often contain defined 

RNA-binding domains able to recognize specific features on the transcripts, such as AU-rich elements 

and stem-loop structures (53). Although our own data and data from RNA-interactome studies 

clearly revealed that PDAP1 can act as an RBP, it contains no recognizable RNA-binding domains 

(D2P2 Database of Disordered Protein Predictions) (54), an observation compatible with the 

intrinsically disordered regions often observed in an abundant and understudied class of 

noncanonical RBPs (29, 30, 32, 55). Interestingly, although the PDAP1 mRNA contains a coding 

sequence that measures only 546 nucleotides in length, its 3’UTR is instead much larger (more than 

2 kb), pointing towards a highly regulated expression for this protein mediated both by miRNAs as 

shown in this study, and potentially also through extensive cross-regulation with other RBPs, as 

shown for many other instances of RBP regulation (53). In murine B lymphocytes, PDAP1 was shown 

to protect mature B cells from stress and to favor antibody diversification, although no clear 

mechanism of action could emerge, most likely due to the high number of genes that were affected 

both positively and negatively in the absence of PDAP1 (56). Such large changes in the transcriptome 

of cells lacking PDAP1 are likely to be the result of a complex pattern of direct and indirect effects. 

What is the exact mechanism of action of PDAP1 and to what extent its RNA-binding capacity is 

relevant to its functions remains to be understood and it will be the subject of future studies. At this 

stage, we also have no evidence for any direct relationship between MYB and PDAP1, apart from 

both of these factors being targeted by miR-150 and being involved in regulating T cell proliferation. 

One other intriguing observation of our study is the very rapid reduction of miR-150 levels after T 

cell activation. Other miRNAs, like let-7, were also reported to be downregulated upon T cell 

activation, at least in murine CD8+ T cells (57). While we found that a large component of miR-150 

downregulation was transcriptional, some post-transcriptional mechanisms may also be at play, and 

would probably contribute to explain the observed reduction of miR-150 expression even in the 

absence of cell division. For instance, miR-150 was shown to be degraded by the inositol-requiring 

enzyme 1α (IRE1α), which possesses endoribonuclease activity towards cellular mRNAs, that was 

shown to directly cleave selected miRNAs, including miR-17a and miR-150 (58, 59). Finally, miR-150 

is highly abundant in extracellular vesicles derived from activated primary human T lymphocytes (60, 

61), a process that may also be important to achieve the rapid elimination from the cytoplasm of 

negative regulators of lymphocyte activation (60, 62). Apart from the abrupt loss of transcription 

described in our study, these post-transcriptional mechanisms may also variably contribute to the 

reduction of mature miR-150 in the cytoplasm, thereby allowing full-blown T cell activation. 
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Unrestrained Inflammatory responses by T lymphocytes are at the base of many immunological 

pathologies, however, an overly restrained activation promotes the development of tumors. In this 

manuscript, we reviewed the current opinions on how T lymphocytes balance the extent of the 

immune response. In the first part, we discussed the role of the most prominent transcription 

factors in establishing T cell phenotypes. In the second part, we described the mechanisms of 

selected RBPs in adjusting the immune reaction in cooperation with miRNAs, and in the last part we 

discussed the roles of these regulatory checkpoints in the development of autoimmunity and 

antitumoral responses. 
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6.1 Abstract 
 

Activation of T lymphocytes induces robust immune responses that in most cases lead to the 

complete eradication of invading pathogens or tumor cells. At the same time, however, such 

responses must be both highly controlled in magnitude and limited in time to avoid unnecessary 

damage. To achieve such sophisticated level of control, T lymphocytes have at their disposal an array 

of transcriptional and post-transcriptional regulatory mechanisms that ensure the acquisition of a 

phenotype that is tailored to the incoming stimulus while restraining unwarranted activation, 

eventually leading to the resolution of the inflammatory response. Here, we will discuss some of 

these cell-intrinsic mechanisms that control T cell responses and involve transcription factors, 

microRNAs, and RNA-binding proteins. We will also explore how the same mechanisms can be 

involved both in anti-tumor responses and in autoimmunity. A mechanistic understanding of the 

regulatory circuits that control the effector responses of memory T helper lymphocytes, and in 

particular their ability to produce pro-inflammatory cytokines, may lead to effective therapeutic 

interventions in all immune-related diseases. 
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6.2 Introduction 
 

 Initially thought to be a passive process, the resolution of inflammatory responses to an invading 

pathogen or noxious agent is now understood to be actively controlled, involving the upregulation of 

pathways with anti-inflammatory and reparatory functions, including anti-inflammatory cytokines, 

microRNAs (miRNAs) and inhibitory molecules and enzymes. Defects in these regulatory pathways 

can lead to sterile inflammatory processes and autoimmunity. Despite their importance in 

maintaining immune homeostasis, the mechanisms that restrain or dampen pro-inflammatory 

responses in T lymphocytes are not completely understood, and the therapeutic stimulation of 

resolution of inflammation may become attractive in the treatment of chronic inflammatory 

disorders such as multiple sclerosis and other autoimmune diseases. A number of cell-intrinsic 

factors can modulate T cell responses to an antigen, both at a transcriptional level through 

epigenetic mechanisms and transcription factors, and at a post-transcriptional level, for example 

through the action of miRNAs and RNA-binding proteins (RBPs) that collectively regulate mRNA 

stability and translation (Fig. 1). 

 
Figure 1. An integrated regulatory network in the transcriptional and post-transcriptional control of gene expression. 

Gene expression is a complex process with many regulatory layers. Transcription is controlled by trans-acting elements 

(e.g. transcription factors) binding to cis regulatory regions on the DNA (e.g. promoters and enhancers), but also by DNA 

methylation, histone modifications (not depicted) and in general all the mechanisms that influence chromatin topology and 

DNA accessibility. Once an mRNA transcript is generated, its maturation, intracellular localization, stability and translation 

are regulated by an array of RBPs, possibly acting in a cooperative or antagonistic, redundant or unique manner, and 

potentially also with modes of action that are defined in time and space by environmental triggers. All of these 

mechanisms (and more that are not depicted for simplicity), contribute to modulate the final output on protein synthesis. 

Arrow: transcriptional start site; open and closed circles, unmethylated and methylated cytosines in DNA; red vertical lines: 

RBP binding regions; the protein shown is human GM-CSF (image from the RCSB PDB (rcsb.org), PDB ID 2GMF (158)). 
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An integrated network in which multiple layers of regulation cooperate in modulating the rapidity, 

intensity and length of an immune reaction is particularly important to achieve responses that are 

swift (for instance by maintaining ‘pre-stored’ mRNAs in a repressed state until they are needed), 

and at the same time sufficiently dynamic that they can be turned off before the onset of excessive 

damage.  

 

Here, we will discuss how some of these mechanisms may intrinsically regulate the pro-

inflammatory phenotype of T lymphocytes. We will focus primarily on regulatory networks that may 

influence the phenotype of inflammatory memory CD4+ T helper (Th) lymphocytes, while for more 

in-depth discussions on the regulation of T regulatory (Treg) cells and the initial naïve-to-memory 

cell transition and differentiation, we refer the reader to some outstanding reviews on the topic (1-

3). 

 

6.3 Transcription factors 
 

T helper lymphocytes have a central role in the immune system thanks to their main effector 

function of secreting cytokines that affect the activity of other innate and adaptive immune cells. 

Upon activation, T lymphocytes undergo widespread changes in gene expression, allowing them to 

differentiate into effector phenotypes able to elicit efficient responses against invading pathogens. 

Many transcriptional regulators contribute to the induction and maintenance of a broad range of T 

cell phenotypes, from highly pro-inflammatory and potentially tissue damaging to regulatory or 

exhausted, the latter being associated with reduced effector functions (Fig. 2). Among the 

transcription factors that are clearly associated with a pro-inflammatory phenotype, T-BET and 

RORγt are primarily expressed by the IFN-γ-producing and IL-17-producing subsets of T lymphocytes 

(Th1 and Th17 cells, respectively), contributing to their cellular identity and acting as master 

regulators of cytokine production. For instance, T-BET induces directly the expression of IFN-γ in Th1 

cells, but it also limits the acquisition of the alternative IL-4-producing Th2 phenotype by 

sequestering GATA3 and cooperating with Runx-3 to silence IL-4 production (4-6). RORγt expression 

instead characterizes the highly pro-inflammatory Th17 and Th1* subsets, the latter being defined 

by a dual Th1/17 phenotype (7-11). Concordant with their role in the regulation of inflammatory 

cells, these transcription factors are also involved in autoimmunity (12, 13). Among the factors that 

are now emerging as consistently associated with a high cytokine-producing and pro-inflammatory T 

cell signature is also BHLHE40, a transcription factor that appears to regulate gene expression acting 

primarily as a repressor of transcription (14-18). In both mouse and human T cells, expression of this 

transcription factor was associated with a pathogenic signature (14, 19), and its deletion led to 
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reduced expression of several pro-inflammatory cytokines, most notably GM-CSF (14, 19-24). In 

human T cells, it was highly expressed by inflammatory Th1* cells (14), and Bhlhe40-/- mice were 

protected from experimental autoimmune encephalomyelitis (EAE) (19, 21, 22), pointing towards a 

crucial pro-inflammatory role for this transcription factor. Emphasizing the complex interplay 

between regulatory factors that can either favor or limit the acquisition of a pro-inflammatory 

phenotype by T lymphocytes, we found that BHLHE40 could bind to the promoter region of the 

ZC3H12D gene, encoding for Regnase-4, a negative regulator of cytokine mRNA stability and 

translation. BHLHE40-mediated regulation reduced ZC3H12D expression, ultimately leading to 

increased cytokine production (14). 

 
Figure 2. T helper lymphocyte differentiation upon antigenic stimulation. Following TCR engagement, T lymphocytes 

differentiate toward effector subsets characterized by specific functions, determined by a finely tuned transcriptional 

profile. Specifically, Th1, Th17 and Th1* T cell subsets display a more inflammatory profile, characterized by the expression, 

among others, of the transcription factors T-BET and RORγt and the cytokines IFN-γ, IL-17 and IL-22. Similarly, Th2 cells are 

characterized by GATA3 and IL-4 expression, while the hallmark of Treg cells is the expression of the transcription factor 

FOXP3. However, chronic TCR stimulation may lead to the loss of functional effector responses and to the induction of 

inhibitory surface receptors such as PD-1, LAG-3 and TIM-3. The transcription factors TOX and NR4A recently emerged as 

key factors associated with the exhausted phenotype, while Helios expression was associated to a subset of Treg cells and 

chronically activated CD4+, but not CD8+ T cells. 

 

While these and other factors have been consistently associated with an inflammatory phenotype, 

other transcription regulators are primarily linked to a regulatory or exhausted phenotype and 
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contribute to restraining T cell responses. In this regard, FOXP3 represents a prototypical example. 

This transcription factor orchestrates the genetic program regulating the differentiation and 

maintenance of Treg cells, and its deficiency in both mouse and human results in severe, often fatal 

multiorgan autoimmunity (25). However, human (but not mouse) conventional T cells also 

transiently upregulate FOXP3 expression upon activation (26). Although such transient FOXP3 

expression is not sufficient to induce a full Treg differentiation program, for which stable and robust 

expression is required (27), this observation suggests that at least in human cells, limited FOXP3 

expression may represent a contributing factor in reducing the activity of effector T lymphocytes in a 

cell-intrinsic manner. Expression of the transcription factor Helios (encoded by the IKZF2 gene) also 

characterizes a subset of Treg cells, and at least in humans, loss of IKZF2 expression resulted in 

impaired Treg functions (28, 29). Whether these factors also effectively contribute to the 

termination of the response in conventional T lymphocytes remains to be fully understood.  

 

Other transcription factors, such as TOX, are instead primarily associated with T cell exhaustion, 

defined as a state of reduced T cell responsiveness in both CD4+ and CD8+ T lymphocytes (30-34). 

Following chronic antigenic stimulation, TOX promoted the acquisition of a dysfunctional phenotype 

by inducing widespread epigenetic and gene-expression changes in CD8+ T cell (30-34). TOX  

expression was induced by activation of NFAT (30, 31, 33), a transcription factor with a crucial role in 

the regulation of T cell effector functions and in the induction of an anergic state (35). Importantly, 

NFAT activation also led to the induction of the NR4A transcription factor, a member of a family of 

nuclear receptors which is also critical for T cell exhaustion (33). Indeed, chimeric antigen receptor 

(CAR) T cells lacking all three members of the NR4A family (NR4A1-3) showed highly efficient tumor 

killing capacity and led to prolonged mouse survival compared to wild-type CAR T cells (36). While 

these results clearly identified TOX as a regulator of a dysfunctional program in T lymphocytes, its 

expression may not be exclusively associated with exhaustion. For example, circulating TOX+ 

memory CD8+ T cells were recently detected in humans. These cells targeted persistent viruses, 

while retaining the ability to produce high levels of effector molecules, such as perforin and 

granzyme B (37), suggesting that some aspects of the regulation of the dysfunctional state may 

somewhat diverge in T cells from human and mouse origins. Further regulatory differences may also 

occur between CD8+ and CD4+ T lymphocytes. For instance, transcriptional profiling of CD4+ and CD8+ 

T cells during chronic viral infections identified both shared and unique factors potentially involved 

in regulating the hypofunctional state of these cells following chronic stimulation (38). Among these, 

expression of Ikzf2 was specifically associated with exhausted conventional CD4+, but not CD8+ T 
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cells, pointing towards some unique transcriptional aspects defining the dysfunctional state in these 

two cell populations (38). 

 

Overall, a number of transcription factors and networks are emerging as key regulators of the 

phenotype of inflammatory T cells. Although some of these transcription factors are primarily 

associated to a particular T cell phenotype or state (for instance, Treg or exhausted cells), they might 

also more generally contribute to either restraining or favoring responses of conventional effector 

and memory cells. Adding to the possible combinatorial complexity in transcriptional regulation, 

many key factors, including for example FOXP3, form multi-protein complexes by interacting with a 

variety of binding partners. Depending on the recruited interacting partner, each factor can 

therefore influence transcription positively or negatively, potentially leading to very different 

transcriptional landscapes and cellular states (39). 

 

6.4 RNA-binding proteins 
 

Throughout the process of T cell activation and differentiation, tight control of cytokine production is 

necessary to orchestrate appropriate responses to incoming signals while avoiding excessive damage 

to healthy tissues. The expression of cytokines and other immune-relevant genes is therefore 

controlled not only at a transcriptional, but also at a post-transcriptional level, through the action of 

RBPs that modulate the stability and translation of target mRNAs (3, 40-42). For instance, the 3’-

untranslated regions (3’UTRs) of many cytokine mRNAs contain multiple regulatory cis-acting 

elements, including stem-loop structures and adenine and uridine (AU)-rich elements (AREs) that 

influence mRNA stability and translation (43, 44). These cis elements are recognized in trans by RBPs 

that can positively or negatively affect mRNA decay and protein synthesis. Other factors that may 

strongly influence the stability and functionality of a given mRNA include miRNAs, which exert their 

functions in the context of miRNA-containing RNA silencing complexes (45), as well as the YTH 

domain-containing family of proteins YTHDF1-3, which recognize the N6-methyladenosine (m6A) 

modification in target transcripts (46). Therefore, although each RBP can individually affect mRNA 

translation or decay, mRNAs may contain binding sites for a multitude of factors (ARE and stem-loop 

binding proteins, miRNAs, m6A-binding proteins), all potentially binding in a cooperative or 

competitive manner, and contributing to the final outcome on mRNA half-life and protein output. 

For instance, the cytokine transcripts CSF1 (encoding G-CSF), IL2 and IL6 were shown to contain both 

ARE and stem-loop elements (47). Further increasing the complexity of studying the impact of post-

transcriptional mechanisms on regulation of gene expression, each RBP-encoding mRNA can be 

subjected to cross-regulation by other RBPs, as illustrated by the fact that Regnase-1 is capable of 
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repressing Roquin expression by targeting its 3’UTR (48). Because of these complexities and the 

number of possible regulatory combinations, here we will focus on specific examples of RBPs that 

have been shown to impact primarily the pro-inflammatory phenotype of T helper lymphocytes, 

including tristetraprolin (TTP), Roquin and Regnase family members (Table 1).  

 

Table 1. Comparison of selected RBPs with a regulatory role in T lymphocytes. 

 Anti-inflammatory RBPs  
Pro-inflammatory  

RBPs 

 Regnase-1 Regnase-2 Regnase-3 Regnase-4 Roquin-1/2 TTP HuR ARID5A 

Encoding 

gene 
ZC3H12A ZC3H12B ZC3H12C ZC3H12D RC3H1/2 ZFP36 ELAVL1 ARID5A 

Mechanism 

of action 

RNase activity  

Catalyzed by  

four aspartic 

 acid residues 

(77, 120) 

Deubiquitinase  

activity  

catalyzed 

 by at least one  

cysteine residue  

(76) 

Probable 

RNase, aspartic 

acid residues 

conserved  

(121) 

Deubiquitinase 

activity 

unknown, 

cysteine 

residue 

conserved 

Unknown, 

aspartic acid 

and cysteine 

residues 

conserved 

Probable RNase,  

aspartic acid  

residues  

conserved  

(122, 123) 

Deubiquitinase  

activity  

unknown,  

cysteine  

residue  

conserved 

Recruitment  

of CCR4-NOT 

and EDC4 for 

deadenylation 

and decapping 

(73, 124) 

Ubiquitination  

of targets  

(125, 126) 

Recruitment 

of CCR4-NOT 

and DCP1/2 

for deadeny-

lation and 

decapping, 

recruitment 

of exosome 

and RISC  

(55, 56, 127-

129) 

Promotes translation by 

binding to 5’UTR mRNA 

(130) 

Blocks binding of the 

silencing complex RISC 

(131) 

Recruits translational 

inhibitor TIA-1  

(132) 

Competes 

with Regnase-

1 and Roquin-

1/2 for cis-

element  

(133) 

Cis-acting 

element 

Stem loop  

(74) 

Stem loop 

(121) 

Not described Stem loop  

(123) 

Stem loop  

(73, 134)  

ARE  

(135) 

ARE  

(136) 

Stem loop  

(137) 

Targeted 

mRNAs 

IL1B, IL12B, IL2, 

IL6, ICOS, INOS, 

TNF, TNFRSF4 

(OX40), CTLA4, 

CREL, CCL2, 

NFKBID, NFKBIZ, 

IRF4, TFRC, 

PTGS2 (COX2), 

ZC3H12A  

(74, 75, 120, 

138) 

IL6, IER3, 

ZC3H12A  

(121) 

VCAM1, 

ICAM1, 

LECAM2, IL-8, 

CCL2,  

ZC3H12A  

(79, 121)  

CFOS, IL1B,  

IL10, IL17A, IL2,  

IL2, IL6, IER3,  

INOS, NFKBIZ, 

 TNF, ZC3H12A   

 (75, 80, 122,  

123, 139)  

ICOS, 

NKFBIZ, 

NKFBID, 

TNF, 

TNFRSF4, 

PTGS2 

(67, 73, 

134)  

IL1B, L2, 

IL3, L6, 

IL10, IL27, 

TNF, TTP, 

IL17A, 

CSF2, 

CXCL1, 

IFNG, 

PTGS2, 

ZPF36   

(67, 140, 

141) 
 

CDKN1B, 

IGF1R, 

THBD, 

WNT5A, 

MYC 

(142)  

CFOS, 

IL6, 

ELAVL1, 

CSF2, 

TGFB, 

TNF, 

TLR4, 

PTGS2  

(143-

148) 

IL6, TBX21, 

TNFRSF4, 

STAT3, 

CXCL1, 

CXCL5, 

NFKBIZ  

(112, 149) 
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 Regnase-1 Regnase-2 Regnase-3 Regnase-4 Roquin-1/2 TTP HuR ARID5A 

Regulation 

Cleaved by 

MALT1 

paracaspase  

at site of one 

arginine residue  

(69, 75)  

Proteasomal 

degradation 

upon 

phosphorylation 

of DSGXXS motif 

(150) 

Unknown; 

arginine 

residue 

conserved, 

DSGXXS motif 

not 

conserved 

Proteasome 

degradation, 

but 

mechanism 

unknown, 

DSGXXS motif 

not conserved, 

arginine 

residue 

conserved  

(79) 

Unknown;  

arginine residue  

conserved,  

DSGXXS  

motif not  

conserved 

Cleaved by 

MALT1 

paracaspase at 

site of one 

arginine 

residue  

(69) 

Proteasomal 

degradation  

upon 

interaction 

with 

pyruvate 

kinase M2 

(151, 152)  

Cleaved by caspase-3/8 

(153)  

Proteasomal 

degradation mediated 

by E3-ubiquitin-ligase 

TRIM13  

(154) 

Proteasomal 

degradation  

upon 

phosphor-

rylation by 

MAPK  

(155) 

Knockout 

mouse 

phenotype 

Systemic 

autoimmunity 

lethal within 

12 weeks 

after birth (74, 

75)  

Unknown Macrophage-

dependent 

sublethal 

lympha-

denopathy  

(79) 

No effect  

under  

steady state;  

severe  

paralysis with  

induced EAE  

(75) 

Perinatal 

lethality  

(68) 

Systemic 

inflam-

mation, 

TNFα-

mediated 

cachexia 

dermatitis

arthritis  

(57) 

Embryonic lethality; 

atrophy of bone 

marrow, thymus  

(156, 157) 

Resistant 

to EAE 

induction 

(133) 

 

In T cells, the importance of post-transcriptional regulation of cytokine mRNAs is highlighted by the 

recognition that CD28-mediated co-stimulation led to the stabilization of a number of transcripts, 

including IL2, IFNG, TNF and CSF2 (encoding GM-CSF) (49), thereby ensuring that T lymphocytes 

produced cytokines shortly after activation, but only for a limited time. Interestingly, some of these 

regulatory mechanisms are cytokine-specific, and guarantee that individual cytokines are expressed 

at the appropriate time after activation. For instance, in murine effector and memory CD8+ T cells, 

the immediate production of TNF-α was shown to be intense but transient, and primarily linked to 

the translation of pre-synthesized mRNAs, while IL-2 expression was dependent on de novo 

transcription upon antigen stimulation (50). Production of IFN-γ instead required both the initial 

translation of pre-formed mRNAs and de novo transcription, highlighting the importance of 

appropriate expression kinetics for each individual cytokine. IFN-γ expression was regulated post-

transcriptionally via AREs present in the 3’UTR of the Ifng mRNA, and germline deletion of these 

elements led to uncontrolled, chronic cytokine production and tissue pathology with an 

autoimmune phenotype (51). 
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AREs are often found in short-lived mRNAs and usually confer rapid decay in a process known as 

ARE-mediated decay. There are several different domains, found in a variety of proteins, that were 

shown to bind AREs, although some of them may also recognize stem-loops (43). TTP (encoded by 

the Zfp36 gene) represents one well-studied example of a destabilizing protein that recognizes ARE-

containing inflammatory transcripts, such as TNF, IL6, CSF2, IFNG, IL2, but also the anti-inflammatory 

cytokine mRNA IL10, suggesting that RBPs contribute to modulating both the amplitude and 

duration of the initial inflammatory response, and also its decline and resolution (43, 52). TTP binds 

directly to target mRNAs (53), and induces their destabilization through deadenylation-dependent 

decay (54), by recruiting the CCR4-CAF1-NOT deadenylase complex and the exosome for RNA 

degradation (55, 56). Mice lacking TTP developed a severe and complex autoimmune syndrome (57), 

while stabilization of TTP expression protected mice against severe forms of inflammatory 

pathologies such as collagen-induced arthritis, imiquimod-induced dermatitis and EAE (58). To 

achieve such protection from a number of inflammatory diseases, it was sufficient to remove an 

ARE-containing region in the Zfp36 mRNA that is responsible for TTP binding and destabilization of 

its own transcript. These results underscore the importance of tight post-transcriptional control in 

modulating immune responses.  

 

Another RBP with key functions in immune cells is human antigen R (HuR, encoded by the ELAVL1 

gene). HuR also has preference for ARE sequences (59, 60), and its predominant role in the 

regulation of gene expression is linked to mRNA stabilization (61), although the final outcome on the 

phenotype in in vivo settings may be more complex (62, 63). Both TTP and HuR contribute to 

coordinated regulation of mRNA stability, as shown for example for TNF. Specifically, stimulation of 

macrophages by lipopolysaccharide induced phosphorylation of TTP, reducing its affinity for ARE 

sites in the TNF 3’UTR. This in turn allowed HuR binding and transcript stabilization, leading to 

increased translation and protein synthesis (64). Interestingly, since the Zfp36 mRNA (encoding TTP) 

is under the same feedback control mediated by TTP itself, this mechanism may create a window of 

opportunity for HuR-mediated stabilization and translation of TNF, which would however be limited 

in time due, at least in part, to the concomitant stabilization of Zfp36 (64). 

 

Stem-loop-binding proteins strongly involved in the regulation of T cell functions and inflammation 

include the Roquin family members Roquin-1 and -2 (encoded by the Rc3h1 and Rc3h2 genes) (65), 

and the Regnase family members Regnase 1-4 (encoded by the Zc3h12a-d genes) (66). Roquin-1 and 

-2 are E3 ubiquitin ligase enzymes essential during development, as shown by the early postnatal 

lethality of both Rc3h1 and Rc3h2 deletions (67, 68). In T lymphocytes, the combined deletion of 
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both enzymes led to hyperactivation of both CD4+ and CD8+ T cells, with development of 

splenomegaly and lymphadenopathy, pointing towards compensatory functions for these RBPs that 

are key to restrain effector cell functions (67, 69). Roquin ablation led to the aberrant differentiation 

of Th17 and T follicular helper cells, and also affected the phenotype and functionality of Treg cells, 

which became defective in their ability to suppress the activation of conventional T lymphocytes 

(70). The RNA-binding ROQ domain of Roquin proteins recognizes stem-loop structures (called 

constitutive decay elements or CDEs) characterized by a short stem and a 3-nucleotides loop (71-73). 

Similar to ARE-mediated mRNA decay, Roquin interacts with the CCR4-CAF1-NOT deadenylase 

complex, leading to mRNA decay upon deadenylation and decapping (73).  

 

Regnase-1 was first shown to be involved in the direct destabilization and degradation of the Il6 and 

Il12 mRNAs (74). Such destabilization was dependent on the presence of a conserved region in the 

target 3’UTRs, and on the RNase, endoribonuclease activity of the Regnase-1 enzyme (74). Regnase-

1 acts therefore as a strong negative regulator of inflammation. In its absence, mice developed a 

severe autoimmune pathology and died within 12 weeks after birth with severe splenomegaly, 

lymphadenopathy and hyperimmunoglobulinemia (74). Underlining the key role of Regnase-1 

expression in T cells, deletion of this enzyme only in the CD4+ T cell compartment was sufficient to 

induce an autoimmune phenotype similar to full Zc3h12a-deleted mice (75). Perhaps unsurprisingly, 

the expression of this potent modulator of inflammation is also regulated by multiple mechanisms. 

First, Regnase-1 is capable of degrading its own mRNA in a negative feedback loop. Second, the 

paracaspase MALT1 cleaves Regnase-1 (and also Roquin-1 and -2) protein upon T cell receptor (TCR) 

activation, essentially removing the “inflammation brake” which subsequently leads to a high 

production of cytokines (69, 75).  

 

All members of the Regnase family share a conserved region containing RNase and deubiquitinase 

catalytic domains (76, 77). Regnase-2 (ZC3H12B) and Regnase-3 (ZC3H12C) are expressed at very low 

levels in human T lymphocytes (78), and they are therefore unlikely to have a relevant functional 

impact in these cells. Concordant with this observation, deletion of mouse Zc3h12c led to some 

lymphocyte abnormalities that were not cell-autonomous, but rather secondary to defects in the 

myeloid lineage (79). Both Regnase-1 and Regnase-4 were shown to degrade an overlapping set of 

mRNAs, such as IL2, IL6, IL10, and TNF in an RNase-dependent manner via the targets’ 3’UTRs (Table 

1). This observation raises the question about protein redundancy, and specifically whether these 

two enzymes may have fully overlapping or also unique functions in T cells. Pointing towards the 

possibility that these two proteins may not be fully redundant is the observation that the phenotype 
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of mice lacking either Zc3h12a or Zc3h12d is different. Specifically, in contrast to Regnase-1, deletion 

of Regnase-4 did not lead to macroscopic changes in immune functions under steady state 

conditions. However, in models of EAE, these mice showed exacerbation of symptoms both at the 

peak of disease as well as in the resolution phase (80). These findings suggest that these two 

enzymes may in fact have functions that are not fully redundant, with Regnase-1 being potentially 

primarily involved in regulating the initial activation of T lymphocytes, while Regnase-4 might be 

more important during the resolution phase of inflammation. Concordant with this hypothesis, the 

expression of Regnase-4 protein in mouse splenocytes was increased after three days of TCR 

stimulation with anti-CD3 antibodies, suggesting a role at later stages of activation (80), while 

ZC3H12A was most highly expressed in resting lymphocytes, suggesting a role in restraining initial T 

cell activation (14, 78) (Fig. 3). An alternate explanation for these findings is that the apparent 

functional differences between these two proteins are actually due primarily to their relative 

expression levels, since Regnase-1 is more abundantly expressed than Regnase-4 in T lymphocytes. 

This might also explain the more severe phenotype observed upon Regnase-1 ablation, that could 

not be fully compensated by the more moderately expressed Regnase-4.  

 

 
Figure 3. Dynamic expression of specific RBPs at different stages of T cell activation. Following T cell activation, the 

expression of selected RBPs relevant for the regulation of inflammation exhibit dynamic changes in mRNA expression. 

Specifically, based on our own data (14) and on the Database of Immune Cells (DICE) (78), ZFP36 (TTP) was the most highly 

expressed RBP in resting lymphocytes, followed by ZC3H12A (Regnase-1), ZC3H12D (Regnase-4) and ELAVL1 (HuR). Upon 

stimulation, ZFP36 and ZC3H12A are transiently upregulated, at least at the mRNA level, followed by a strong 

downregulation, thereby potentially enabling cells to produce high levels of cytokines. In contrast, ZC3H12D and ELAVL1 

are gradually induced during the course of activation. Expression data for activated T cells were based on microarray data 

published in (118), as well as our own unpublished data. Similar changes in expression upon activation (downregulated TTP 

and Regnase-1, upregulated Regnase-4 and HuR) were reported also at protein level (75, 80, 119). 
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The relevance of the m6A modification in T cell biology was revealed by studies showing that 

conditional deletion of the Mettl3 gene (encoding for the m6A methyltransferase enzyme Mettl3) in 

murine T lymphocytes compromised Treg cell functions (81) and led to the inability of naïve T cells to 

proliferate in response to cytokine signalling (82). Functional consequences of the m6A marks on 

RNA are mediated by m6A-binding proteins, including primarily members of the YTH family. Within 

the immune system, YTHDF1 impacted anti-tumor responses, and its ablation led to improved 

immunity and prolonged survival (83). Recent efforts to understand the level of redundancy 

between the different paralogs of the YTH family (YTHDF1-3) of m6A-binding proteins recently 

reconciled apparently divergent results by showing that within individual cells, the three paralogs 

can fully compensate for each other in a gene dosage-dependent manner to mediate degradation of 

m6A-containing mRNAs (84, 85). However, the phenotypes of the individual knock-out mice revealed 

differences due to the varying levels of expression of the YTH proteins across cell types (85). In other 

words, even though two proteins may be in reality fully redundant, deletion of a lowly expressed 

family member may have subtle consequences, for instance by affecting a subset of mRNAs highly 

sensitive to gene-dosage effects, while the deletion of a more highly expressed family member 

would affect mRNA stability or translation in a more widespread manner, leading to overall different 

phenotypes (84). Similar to the YTH proteins example, more studies investigating the details of 

Regnase-1 and -4 regulation and their mechanism of action will shed light on the level of functional 

overlap between these two enzymes, and specifically whether some of the differences observed 

when deleting individual proteins are due to unique functions and regulatory mechanisms, or they 

reflect instead hypomorphic phenotypes. 

 

Overall, the overarching results paint a picture of a tightly controlled network of RBPs that regulate 

immune cell functions and responses both at resting state, and during the initiation and resolution 

phases of inflammation. However, mRNAs are subjected to regulation (and cross-regulation) by a 

large number of factors binding to a variety of sites in a cooperative or competitive manner, for 

which the regulatory logic remains for the most part to be examined. 

 

6.5 The interplay between miRNAs and RBPs in the regulation of T lymphocytes 
 

Through their ability to target a variety of mRNAs and limit their translation, miRNAs strongly 

influence T cell responses by modulating T cell differentiation, activation and proliferation (86, 87). 

When investigating the role of miRNAs in T lymphocytes, the level of expression and the kinetic of 

miRNA expression in response to TCR triggering may already provide some information about their 

potential functional role. First, highly abundant miRNAs that are rapidly downregulated upon 
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stimulation may be involved in restraining ‘spurious’ T cell activation that may occur in the absence 

of a genuine threat for the organism. One such example is provided by miR-125b, that was shown to 

be involved in the maintenance of the naïve state in human T cells (88). On the other hand, very 

lowly expressed miRNAs are very unlikely to achieve thresholds of expression that can lead to 

biologically relevant effects beyond stochastic noise (89, 90), if not in specific conditions of a few, 

very high-affinity target sites (potentially in cooperation with other miRNAs) and/ or in specialized T 

cell subsets. For instance, despite being an overall moderately expressed miRNA, miR-181a was 

expressed at relatively high levels in the Th17 subset of human T lymphocytes, where it contributed 

to define the threshold of TCR activation in these cells (91). Finally, modestly expressed miRNAs in 

resting cells that are strongly induced upon acute stimulation may achieve during this process an 

intracellular concentration sufficient to modulate the expression of mRNA targets important during 

T cell activation. Depending upon the kinetics of induction, categories of ‘inducible miRNAs’ might be 

divided into ‘early’ miRNAs (hours), potentially involved in favoring T cell activation and proliferation 

(e.g. miR-155 (92, 93)), and ‘late’ miRNAs (days), likely involved in the resolution of inflammation. A 

representative example of the latter category is provided by miR-146a, a negative regulator of NF-kB 

activation (94), whose deletion led to defective resolution of inflammation and development of T 

cell-associated autoimmunity (95). 

 

Similar to protein-coding genes, miRNA expression is regulated at the transcriptional level by 

transcription factors. In contrast, there are not many examples in the literature regarding 

interactions between miRNAs and RBPs. However, one can easily envision various situations in which 

a) miRNA expression is regulated by RBPs; b) RBP transcripts are targeted and regulated by miRNAs; 

and c) both miRNAs and RBPs contribute to the regulation of the same target mRNA, in a 

cooperative, competitive or antagonist manner. The concept that miRNA expression is regulated 

post-transcriptionally by RBPs is exemplified by miR-146a, which was shown to be regulated by 

Roquin. In the absence of Roquin, miR-146a levels increased in T lymphocytes, due to the 

augmented stability of the mature miRNA (96). This stabilization was associated with enhanced 

ability of the Dicer enzyme to process the precursor pre-miR-146a (96). MiRNAs are also abundantly 

found in extracellular vesicles derived from many cell types, including activated primary human T 

lymphocytes (97, 98), which may have a role in cell-to-cell communication and also in the process of 

rapid ‘elimination’ of cytoplasmic factors that may hinder rapid T cell activation upon recognition of 

a specific antigen (99). Interestingly, hnRNPA2B1, a ubiquitously expressed RBP, was shown to be 

involved in the selection and loading of specific miRNAs into the exosomes of activated T cells, 
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pointing towards an active sorting process in the loading of the exosomes’ cargo and a further layer 

of interplay between RBPs and miRNAs (100).  

 

As for examples of ‘classic’ miRNA regulation of RBP expression, miR-27b was shown to modulate 

TTP levels in macrophages, in a complex interplay with HuR binding (101). In addition, both miRNAs 

and RBPs may target the same site on a given mRNA, as shown for example by Pten. This mRNA is 

regulated both by miR-17~92 and by Roquin, although in this case Roquin was shown to limit the 

access to the miR-17~92 site through competitive binding at an overlapping site (70). A further 

example is provided by HuR, which was shown to modulate miRNA-mediated mRNA targeting 

genome-wide in macrophages (101). Specifically, the presence of HuR-binding sites in the proximity 

of miRNA sites antagonized and attenuated miRNA activity resulting in increased gene expression, 

highlighting once more the complex interaction between different players in regulating mRNA 

stability and translation. In general, it is increasingly clear that both miRNAs and RBPs have a 

substantial impact of the regulation of gene expression during immune responses. However, the 

interplay between these different factors and their potential for cross-regulation remains less 

understood. 

 

6.6 From autoimmunity to anti-tumor responses 
 

Several of the molecular mechanisms discussed so far that affect lymphocyte responses are crucial in 

the context of their ability to limit T cell responses in autoimmunity, as shown by the many instances 

in which deletion of a miRNA or RBP led to spontaneous immune cell activation and pathology. 

However, the reverse can also be true, that unleashing the activity of these same factors might 

enhance T cell functions in the context of anti-tumor responses. Indeed, immune-related adverse 

effects such as autoimmunity also arise during immune cancer therapy, reflecting the removal of 

inhibitory brakes to T cell function (102). Understanding the mechanisms that regulate the balance 

between inflammation and tissue damage may be beneficial for both autoimmunity (where reduced 

inflammation is a desired outcome) and cancer immunotherapy, which instead would benefit of 

enhanced inflammatory and cytotoxic T cell responses. 

 

The advent of immunotherapy has revolutionized prospects for cancer treatment, opening the 

possibility of inducing or reactivating anti-tumor immunity. Despite its effectiveness in many 

instances, the outcomes of immune checkpoint therapy are overall still highly heterogenous, and the 

basic biological knowledge that would reveal mechanistic insights about efficacy (or lack of thereof) 

in inducing anti-tumor responses is still lagging behind (103). The presence at tumor sites of 
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infiltrating T lymphocytes retaining effector functions usually correlates with more favorable 

outcomes (104). However, tumor-infiltrating lymphocytes are very heterogenous regarding gene 

expression and functional properties, and especially cells of the CD8+ subset can acquire a 

functionally impaired state that limits their ability to control tumor growth (104). Critical differences 

between human and mouse models also hinder the interpretation of exhausted states. For instance, 

markers of T cell exhaustion such as the transcription factor TOX are associated with dysfunction in 

the mouse but not in human cells, suggesting underlying mechanistic differences (37).  

 

Several factors discussed so far that were associated with a cytokine-producing, potentially 

pathogenic T cell phenotype were also shown to impact T cell responses to tumors. For example, T 

cell-specific ablation of Regnase-1 in mouse models caused pathogenic activation of T lymphocytes, 

aberrant cytokine production and spontaneous autoimmune disease (75). However, Regnase-1-

deficient CD8+ T lymphocytes also showed markedly increased efficacy in models of cancer 

immunotherapy (105). Similarly, while the transcription factor BHLHE40 was associated to a 

pathogenic cytokine signature in both human and mouse (14, 19), a T cell subset defined by 

BHLHE40 expression was specifically expanded in colorectal cancer patients with favorable 

responses to treatment with immune-checkpoint therapy (106). These findings highlight how these 

(and probably many other) factors may be involved in ‘tipping the balance’ of T cell responses, from 

beneficial for cancer therapy to pathogenic in autoimmunity.  

 

One caveat to the apparently simple idea that anti-tumor responses should activate pathways that 

should instead be dampened in autoimmunity, is represented by the fact that the association 

between the two diseases is in reality bidirectional, and patients with autoimmune diseases are 

often also at increased risk of developing malignancies, at least in part because of the chronically 

altered inflammatory milieu (107). For instance, while the transcription factor TOX was clearly 

implicated in the acquisition of a dysfunctional, exhaustion program in tumor-specific CD8+ T cells 

(30-34), it was also shown to promote CD8+ T cell-mediated autoimmunity (108). These observations 

critically emphasize the importance of gaining a more comprehensive understanding of the 

intricacies of immune cell regulation. 

 

One example of a potent pro-inflammatory cytokine at the crossroad between autoimmunity and 

cancer is provided by IL-17A. This cytokine plays a key role in the responses against infections with 

extracellular bacteria and fungi. However, its dysregulated expression is also strongly associated 

with autoimmunity, as shown by the effectiveness of neutralizing antibodies against IL-17A in the 
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treatment of psoriasis (109). Dysregulated, chronic production of this cytokine is now emerging also 

as a player in tumorigenesis (110). Interestingly, IL-17-signaling was found to strongly affect the 

stability of different mRNAs, in part by inducing the expression of mRNA stabilizers such as HuR and 

ARID5A (111). ARID5A in particular binds to the 3’UTR of target mRNAs at stem-loop structures 

overlapping with Regnase-1 binding sites, thereby counteracting Regnase-mediated degradation and 

promoting mRNA translation (112). In T lymphocytes, ARID5A favored differentiation of naïve T cells 

towards the inflammatory Th17 subsets through the stabilization of the Stat3 mRNA, which is 

required for Th17 cell differentiation (112). The IL17A mRNA is also itself a target of post-

transcriptional regulation, as shown for instance by the reduced IL-17 expression observed in the 

absence of HuR in Th17 cells, and the consequent amelioration of EAE development (113). Whether 

some of these mechanisms may be harnessed in the context of anti-cancer therapies remains to be 

investigated. Overall, it is becoming clear that many of the abovementioned regulatory factors act at 

the interface between anti-tumor responses and autoimmunity, underlying a role that is most likely 

primarily linked to the maintenance of balanced immune responses. 

 

6.7 Outstanding questions 
 

Many questions remain open about the role of specific transcription factors in regulating T cell 

functions. Most notably, it will be important to better understand whether some of the factors that 

have been implicated primarily in the regulation of Treg cells or chronically activated, exhausted cells 

may actually have important physiological functions in conventional T lymphocytes. Such factors 

could for instance contribute to the attenuation of the response once a pathogen has been 

successfully eliminated. Other key issues that will have to be better understood in the future are 

related to potential regulatory differences between CD4+ and CD8+ T lymphocytes, and also whether 

some of the important findings that have been described using mouse models can be now 

recapitulated in humans.  

 

Functional studies have shown that the dysregulation of miRNA expression can be causative in 

various diseases, leading to an interest in the development of therapeutics to harness miRNAs for 

clinical benefit (114). One of the key issues in targeting these molecules to modulate immune cell 

functions is whether delivery systems can be designed that target efficiently and specifically the 

desired cell type, and at the same time can deliver sufficient quantities of miRNA mimic or 

antagonist that can reach biologically relevant intracellular concentrations. Moreover, the chemical 

modifications that are introduced in miRNAs to improve their stability in vivo can interfere with 

loading onto the silencing complex or with mRNA targeting (114). As a result, only few miRNA mimic 
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molecules progressed to some initial clinical testing. An interesting development in this direction 

was recently described for a miR-146a mimic oligonucleotide conjugated to a Toll-like receptor 9 

agonist. This conjugated molecule efficiently reached the cytoplasm of myeloid and leukemic cells 

and was effective in reducing NF-kB activation, in limiting leukemia progression and in dampening 

excessive inflammation in models of cytokine release syndrome. Whether this or similar systems can 

be exploited therapeutically will undoubtedly be explored in the near future (115). 

 

Likewise, in the case of RBPs, and despite their emerging importance in the regulation of immune 

responses, a number of outstanding questions remain to be addressed. Specifically: which cytokines 

and genes are affected by the expression of individual RBPs? What is the extent of target overlap, if 

any, between RBPs belonging to the same family, such as Regnase-1 and Regnase-4? How are these 

rheostats of inflammation themselves regulated in T lymphocytes? And finally, what is the precise 

kinetic of events in the regulation of inflammatory mRNA stability and translation in response to 

environmental cues? Understanding the temporal relationship between different RBPs and mRNA 

expression may lead to a better understanding of the impact of many of these post-transcriptional 

regulators on the initiation and persistence of inflammatory responses, as well as their resolution.  

 

6.8 Concluding Remarks 
 

If not appropriately controlled, the transcriptional program induced by pro-inflammatory stimuli or 

noxious agents has the potential to inflict significant damage to healthy tissues. The control of RNA 

stability and decay acts therefore in concert with transcription to delimit the amplitude and duration 

of an inflammatory response. Potentially, a combined approach that inhibits pro-inflammatory, 

pathogenic T cells and at the same time actively promotes the resolution of inflammation and tissue 

repair may become an attractive answer in the treatment of autoimmunity (116). On the other hand, 

the enhancement of some of these pathways, at least temporarily or targeted to antigen-specific 

cells (117), may improve strategies for cancer immunotherapy, highlighting the importance of 

advancing our understanding of the molecular and functional bases for immune activation and 

regulation. Many of the factors discussed heretofore (transcription factors, RBPs, miRNAs) act in a 

concerted, regulated manner to modulate the interface between insufficiently protective and 

excessively damaging immune responses, and may eventually become valuable targets for 

immunomodulation. 
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7 Discussion 
 

TH lymphocytes undergo remarkable metabolic and functional changes throughout their lifetime. 

These changes must happen very rapidly upon antigen recognition to ensure an appropriate immune 

reaction and clearance of the pathogen or tumor cells. Our understanding of the importance of RBPs 

in establishing the immune response has become more appreciated since the first serious studies on 

TTP in the 1990s. In T lymphocytes, the most important role of RBPs is the regulation of the stability 

of target mRNA through different decay mechanisms. Newly developed technologies keep 

expanding the list and currently the number of predicted RBPs in human TH lymphocytes that bind to 

mature mRNA is as high as 1250 (Hoefig et al., 2021). The dysregulation of RBP expression leads to 

aberrant cytokine production and immune pathologies which warrants the investigation of their 

molecular mechanisms.  

 

In Chapter 4. Functional analysis of Regnase-1 and Regnase-4 in human T helper lymphocytes I 

aimed to describe the unique and redundant function of the Regnase family members. I confirmed 

that Regnase-1 and Regnase-4 are expressed and functional in TH lymphocytes, while Regnase-2 and 

Regnase-3 expression was very low or below the expression threshold. We noticed an increase of 

Regnase-3 mRNA expression during activation, but it did not reach the expression levels of ZC3H12A 

and ZC3H12D, as measured by qRT-PCR. Previous data demonstrated that a T cell-specific Regnase-3 

KO mouse model showed no effect on the number and phenotype of T cells, while the macrophage-

specific Regnase-3 KO mouse model led to an excessive IFN-γ expression (von Gamm et al., 2019). 

These results suggest that RBPs of the same family may have unique functions dependent on the 

cell-specific expression level and cellular context. Of note, Roquin-2 can compensate for the lack of 

Roquin-1 despite its 5 times lower expression (Vogel et al., 2013), and therefore there is a possibility 

that Regnase-3 at least partially compensates for the lack of Regnase-1 and Regnase-4. I was able to 

identify the redundant and compensatory effects of Regnase-1 and Regnase-4 by generating a 

double KO that led to a striking increase of upregulated pro-inflammatory genes. Apart from the 

Roquin family, the redundancy of paralogues has also been described in other RBP families such as 

the ZFP36 family that has 3 members (ZFP36 (TTP), ZFP36L1, ZFP36L2) expressed in human and 

mouse T cells. The T-cell specific triple KO mouse model is lethal within 6 weeks after birth due to a 

severe systemic inflammatory syndrome. However, the expression of any of the three members fully 

prevented the lethality suggesting a complete functional redundancy within the family (Cook et al., 

2022). Unexpectedly, the double KO of ZFP36L1 and ZFP36L2 rendered mice resistant to the 

induction of EAE due to a failed priming of antigen-specific TH cells. Thus, members of the same RBP 

family can have mostly redundant functions, but also specific additional non-redundant roles.  
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An interesting finding of this study were the different expression kinetics of Regnase-1 and Regnase-

4 across activation stages. I confirmed previous results that Regnase-1 becomes abruptly cleaved 

upon activation. However, Regnase-4 did not show a reduction of expression, in fact, it had an 

increasing trend up to day 3/4 post-activation. The antibody used for Regnase-4 detection does not 

recognize the C-terminus, as in the case of the Regnase-1 antibody, and for this reason it cannot 

detect the putative cleaved product. However, the recognition site by the paracaspase MALT1 is 

conserved between Regnases, and one would expect the same regulatory checkpoint. To confirm 

this, further experiments are needed. It is important to note that it is computationally predicted that 

the RNase catalytic site is still present in the cleaved product of Regnase-1 and Regnase-4. 

Therefore, it might be possible that the cleaved products still exhibit RNase activity, albeit this is 

unlikely since the presence of the NTD is necessary for these RBPs to be functional, as previously 

described (Xu et al., 2012; Yokogawa et al., 2016). Additionally, there is evidence that Regnase-1 

forms functional dimers with itself (Yokogawa et al., 2016). Due to the structural similarity between 

Regnase-1 and Regnase-4, and their previously described colocalization in HeLa cells (S. Huang et al., 

2015) , there is a possibility that the two RBPs form dimers with each other in T lymphocytes, which 

requires further investigation. 

 

The dysregulated expression of immunomodulatory RBPs is a double-edged sword. On one hand, 

their reduced expression leads to pro-inflammatory disorders, on the other hand, this can have 

tumor suppressive functions. For example, an adoptive cell therapy of Regnase-1-KO CD8+ T cells in 

mice greatly improved the anti-tumor response thanks to a stronger and more persistent effector 

phenotype of the engineered cells (Wei et al., 2019). The effect was further confirmed and enhanced 

with human CAR-T cells lacking both Regnase-1 and Roquin-1 (Mai et al., 2023). Thus, the results of 

this study, which showed a strong pro-inflammatory phenotype of the double KO of Regnase-1 and 

Regnase-4, warrants further investigation and a potential of Regnase-4 as well in cancer 

immunotherapies.  In summary, studying the function of RBPs and their paralogues is important to 

unravel possible molecular and cellular mechanisms to advance medical treatments. 

 

In Manuscript [1], we identified an axis comprising the RFX transcription factors, miR-150 and the 

RBP PDAP1 that regulates the proliferation of TH lymphocytes. miR-150 is highly expressed in resting 

T cells, and it is strongly reduced upon activation. We showed that miR-150 directly negatively 

regulates the expression of PDAP1 by binding to MBS in the 3’UTR of PDAP1 in vivo in human TH 

lymphocytes and in in vitro reporter assays. Therefore, the abrupt downregulation of miR-150 

releases the negative brake from PDAP1 allowing it to exert its pro-proliferative function. Our data 
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suggests that PDAP1 either directly stabilizes certain transcripts (most prominently CBL) while other 

targets might be regulated at the level of translation regulation. PDAP1 has been retrieved in RBP 

databases as an IDP that functions in B lymphocytes and cancer cell lines to promote proliferation 

and cell cycle progression. Here, we described PDAP1 to have a similar role in primary human T 

lymphocytes. IDPs have fluctuating tertiary structures which potentially interact with many partner 

proteins and mRNAs (Wright & Dyson, 2015). Indeed, IDPs frequently act as hubs in protein 

interaction networks (Dunker et al., 2005). The exact mode of mRNA recognition by IDRs is still a 

matter of ongoing investigations, but they are certainly very important regions for post-

transcriptional control as seen by the fact that RBPs that interact with mRNAs are enriched with IDRs 

(Castello et al., 2012). IDPs can directly interact with RNA through the IDR itself, but they can also 

form larger complexes (so-called fuzzy complexes because of the disordered structure) that form 

functional units (Castello et al., 2016; Tompa & Fuxreiter, 2008) Thus, IDPs can potentially regulate 

the stability of mRNA transcripts through different mechanisms, which we also propose to be 

possible for PDAP1. It is feasible to inhibit the function of IDPs by targeting with small molecules 

(Santofimia-Castaño et al., 2020). Considering that PDAP1 promotes the proliferation of B and T 

lymphocytes and cancer cell lines, it might be a potential target for developing anti-proliferative 

cancer treatments. 

 

The study of RBPs in T lymphocytes is challenging for multiple reasons. For one, the intrinsic 

instability of mRNA transcripts as well as intrinsic RNase activity of RBPs as is the case of Regnases. 

Also, RBPs usually have paralogues with compensatory and redundant effects among the family 

members and even non-family members. Another issue comes with the investigation of intrinsically 

disordered RBPs which give no structural hints to possible co-factors, pathways, or putative 

functional mutants. Finally, the dynamic expression changes during activation underlines that each 

RBP network has to be studied longitudinally at the global level. However, investigating these 

molecular mechanisms, despite the challenges, is essential due to the great potential they hold for 

the development of future autoimmune and cancer therapies. 
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