
DISS. ETH NO 29539

OPTIMIZATION-BASED TRAJECTORY PLANNING

FOR PRECISION MOTION SYSTEMS

AND AUTONOMOUS ROBOTIC INSPECTION

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zürich)

presented by

António Samuel Ávila Balula

M.Sc., Instituto Superior Técnico,

University of Lisbon

born on 19.10.1993

accepted on the recommendation of

Prof. Dr. John Lygeros, examiner

Prof. Dr. Kira Barton, co-examiner

Prof. Dr. Dominic Liao-McPherson, co-examiner

2023

For those who never cease to be curious.

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. John Lygeros and

Dr. Alisa Rupenyan for their guidance and support over the course of my doctoral

studies. I am also deeply grateful to Prof. Dominic Liao-Mc Pherson, to Dr. Alex

Liniger, and to Dr. Efe Balta who have contributed extensively with their valuable

insights and guidance. I would also like to thank Prof. Kira Barton, for accepting

to be part of the examination committee. This work benefited from the productive

collaboration with Dr. Stefan Stevšić, and Dr. Christoph Gebhardt. Besides their

scientific contributions, I would like to thank their invaluable support regarding

the experimental setup used in Chapter 4. I would also like to acknowledge Dr.

Natanael Lanz for his support with the Andromeda experimental setup, used in

Chapters 2 and 3. I thank the institutional and financial support of the Automatic

Control Laboratory of ETH Zürich, Inspire AG, Tinamu Labs, InnoSuisse, and

NCCR Automation.

I would like to thank all of the students I supervised during their group,

semester or master thesis, for their commitment, creativity, and for all that I have

learned with and from them in so many different topics. This was an extraordi-

narily enriching experience: Alexander Almeida, Andreas Schlaginhaufen, Danila

Merola, Divya Guruswamy, Eugenio Chisari, Gianni Pasini, Ivan Gehri, Jacob

Clarysse, Jente Clarysse, Jonas Holzem, Kathrin Schleicher, Luzian Hug, Martin

Baumann, Martin Vahlensieck Michel Schubiger, Silvia Ritsch, Tim Liechti, Timo

Laaksonlaita, Yingjie Jiang, and Zheng Sheng. A special word goes to the col-

leagues with whom I had the opportunity of co-supervising these students with: Dr.

Alex Liniger, Prof. Andrea Iannelli, Anil Parsi, Aren Karapetyan, Dr. Christoph

Gebhardt. Prof. Dominic Liao-Mc Pherson, Dr. Eva Ahbe, Dr. Goran Banjac,

Dr. Joe Warrington, Sandeep Menta, Dr. Stefan Stevšić, and Xavier Guidetti. I

would also like to thank Sabrina Baumann and Tanja Turner, who keep the lab

running so smoothly. A word of thanks to my colleagues, who have kindly ac-

cepted to proofread this thesis, Verena Häberle, Dr. Marta Zagorowska, Marta

Fochesato, and Anil Parsi. To my office mates, who have been true companions in

this journey, Dr. Yvonne Stürz, Dr. Jianzhe (Trevor) Zhen, and Dr. Efe Balta.

To my colleagues, with whom I had the privilege to work with at the Automatic

v

vi ACKNOWLEDGMENTS

Control Laboratory (IfA). You made, undoubtedly, the best of my experience

during my doctoral studies. Many of you have also become close friends. I am

deeply indebted to you, both scientifically and personally. You have shown me

how to see the world from new perspectives, helped me in times of struggle and

shared the joy in times of celebration. I could not have imagined better colleagues

and friends. A special word goes to Dr. Ahmed Aboudonia, Andrea Martinelli,

Anil Parsi, Aren Karapetyan, Marta Fochesato, and Sandeep Menta. I lack the

eloquence to thank you properly.

To my friends, who have made me call Switzerland home, and with whom I

shared so many adventures with, over the last five years. A special word goes to

Dr. Ricardo Peres, Dr. André Coroado, Dr. Raquel Calçada, Catarina Lozano,

Dr. Rita Afonso, Dr. Raúl Penaguião, Leonor Lopes, Pragnya Sharma, Marta

Ostini, and António Coelho as well as to my old friends, who I consider like family:

Manuel Barjona, Telmo Pires, João Duarte, Rita Tomaz, and Ricardo Meyrelles.

I am profoundly grateful for your friendship.

Lastly, and most importantly, I am deeply grateful to my parents, António and

Gilda Balula. You instilled in me the importance of perseverance, the value of

knowledge, and the courage to pursue my dreams. You believed in me, even when

I doubted myself. Thank for contributing more than anyone else to make me who

I am today.

Abstract

In industrial environments economic savings are a primary driver for constant

quality and productivity improvements. For motion systems in particular, im-

provements can be achieved with a better choice of motion trajectories. This

thesis proposes a set of methods to plan trajectories with applications in precision

motion systems and autonomous robotic inspection.

First, we propose an optimization-based pre-compensation method to improve

the contour tracking performance of precision motion systems. The approach

modifies the reference trajectory, while leaving unaltered the built-in low-level

controller. The position of the precision motion system is simulated with two

data-driven models of different fidelity. A linear low-fidelity model is employed to

optimize path traversal time, by manipulating the path velocity and acceleration

profiles. Next, a non-linear high-fidelity model is used to refine the previously

computed time-optimal solution. Second, we propose an algorithm for the nonlin-

ear iterative learning control problem based on sequential quadratic programming.

We iteratively solve quadratic subproblems built by combining approximate non-

linear models and process measurements to find an optimal input for the original

system. We demonstrate our method in a trajectory optimization problem for

a precision motion system. We present simulations and experimental results to

validate the performance of the proposed method, comparing the achieved perfor-

mance for linear and nonlinear gradient models. We demonstrate experimentally

that both methods are capable of simultaneously improving the productivity and

the accuracy of a precision motion system. Given the data-based nature of the

models, they can easily be adapted to a wide family of precision motion systems.

We then address the problem of planning trajectories for autonomous robotic

inspection. Volume estimation in large indoor spaces is an important challenge

in robotic inspection of industrial facilities. We propose an approach for volume

estimation for autonomous systems using visual features for indoor localization and

surface reconstruction from 2D-LiDAR measurements. A Gaussian Process-based

model incorporates information collected from measurements given statistical prior

information about the surface. The volume is measured from the surface model

reconstruction. Our algorithm finds feasible motion trajectories for quadcopters

vii

viii ABSTRACT

which minimize the uncertainty of the volume estimate. We show simulation and

experimental results for the surface reconstruction of topographic and industrial

data.

Zusammenfassung

In den heutigen industriellen Umgebungen besteht zunehmend mehr wirtschaftlicher

Druck, die Qualität und Produktivität von Produkten und/oder Prozessen zu max-

imieren. Insbesondere in Bewegungssystemen können Verbesserungen durch eine

bessere Auswahl von Trajektorien erreicht werden. Diese Dissertation stellt eine

Reihe von Methoden zur Planung von Trajektorien vor, welche für Anwendungen in

Präzisionsbewegungssystemen und autonomer robotergesteuerter Inspektion aus-

gelegt sind.

Zunächst wird eine optimierungsbasierte Vor-Kompensationsmethode präsen-

tiert, um die Konturverfolgungsleistung von Präzisionsbewegungssystemen zu ver-

bessern. Hierbei wird die Referenztrajektorie modifiziert, während der einge-

baute Low-Level-Controller unverändert bleibt. Die Position der Präzisionsbewe-

gungsplattform wird mit zwei datengetriebenen Modellen unterschiedlicher Genau-

igkeit simuliert. Als erstes wird ein lineares Low-Fidelity-Modell verwendet, um die

Pfad-Durchlaufzeit zu optimieren, indem die Pfadgeschwindigkeits- und Beschle-

unigungsprofile manipuliert werden. Im Anschluss wird ein nicht-lineares High-

Fidelity-Modell eingesetzt, um die zuvor berechnete zeitoptimale Lösung weiter zu

verfeinern. Experimente bestätigen, dass die vorgeschlagene Methode in der Lage

ist, die Produktivität und die Genauigkeit einer hochpräzisen Bewegungsstufe gle-

ichzeitig zu verbessern. Als ein zweites Resultat dieser Arbeit wird ein Algorithmus

für das nichtlineare iterative Lernkontrollproblem vorgestellt. Dieser basiert auf se-

quentieller quadratischer Programmierung, einer weit gebräuchlichen und anerkan-

nten Methode für nichtkonvexe Optimierung. Es werden wiederholt quadratis-

che Unterprobleme gelöst, die mit Hilfe von annähernden nichtlinearen Modellen

und Prozessmessungen erstellt werden, sodass ein optimaler Eingang für das ur-

sprüngliche System gefunden werden kann. Die neue Methode wird in einem Tra-

jektorienoptimierungsproblem für ein Präzisionsbewegungssystem demonstriert.

Simulations- und Experimentalergebnisse validieren die hohe Leistungsfähigkeit

der Methode, wobei sowohl das lineare als auch das nichtlineare Gradientenmodell

verglichen wird. Aufgrund der datenbasierten Natur beider Modelle können die

entwickelten Methoden auch auf andere Präzisionsbewegungssysteme angewandt

werden.

ix

x ZUSAMMENFASSUNG

Der letzte Teil dieser Arbeit befasst sich mit der Planung von Trajektorien für

die autonome robotergesteuerte Inspektion. Heutzutage stellt insbesondere die

Volumenschätzung in grossen Innenräumen eine wichtige Herausforderung bei der

robotergesteuerten Inspektion von Industrieanlagen dar. In dieser Arbeit wird da-

her ein neuer Ansatz zur Volumenschätzung für autonome Systeme präsentiert, der

visuelle Merkmale zur Innenraumlokalisierung und zur Oberflächenrekonstruktion

aus 2D-LiDAR-Messungen verwendet. Ein auf dem Gaussschen Prozess basieren-

des Modell beinhaltet Informationen, die aus Messungen unter Berücksichtigung

statistischer Vorinformationen über das Gelände gesammelt wurden. Das Volumen

wird aus der Rekonstruktion des Oberflächenmodells gemessen. Der vorgeschla-

gene Algorithmus findet machbare Trajektorien, die die Unsicherheit der Volu-

menschätzung minimieren. Die Oberflächenrekonstruktion aus topographischen

und industriellen Daten wird simulativ und experiementel validiert.

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

Contents xi

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 6

1.4 Publications . 7

1.5 Other work . 7

1.6 Thesis Outline . 14

2 Trajectory optimization for PMS 15

2.1 State-of-the-art . 16

2.2 Problem Statement . 17

2.3 Data driven modelling . 21

2.4 Trajectory Optimization . 26

2.5 Experimental Results . 31

2.6 Discussion . 36

3 Optimization-Based ILC 39

3.1 State-of-the-art . 40

3.2 Problem Statement . 41

xi

xii CONTENTS

3.3 Optimization Based ILC for non-linear systems 42

3.4 Case study with a 2D precision motion system 45

3.5 Simulation Results . 47

3.6 Experimental Results . 52

3.7 Discussion . 54

4 Quadcopter-based Volume Estimation in Indoor Environments 55

4.1 State-of-the-art . 56

4.2 Problem Statement . 57

4.3 Localization . 59

4.4 Volume estimation . 60

4.5 Planning . 64

4.6 Simulation Results . 64

4.7 Experimental Results . 67

4.8 Discussion . 68

5 Conclusion 71

5.1 Contributions . 71

5.2 Future Work . 72

Bibliography 75

List of Figures

1.1 Precision Motion System: Experimental apparatus and example tra-

jectory. 4

1.2 Autonomous Robotic Inspection: Experimental setup and simulation

environment. 6

2.1 Schematic of the target geometry, input and output trajectories. 18

2.2 Letters and Airfoil test cases. 19

2.3 Method schematic overview. 20

2.4 Neural network struture. 22

2.5 Sample of the training data. 23

2.6 Prediction error vs maximum acceleration. 25

2.7 Geometry of the first-stage optimization problem variables. 28

2.8 Results: Letter “r”, optimized with amax = 1 m s−2 in a xy plot. 32

2.9 Results: Airfoil test case, optimized with amax = 2 m s−2 in a xy plot. . 33

2.10 Results: Test cases optimization as a function of progress. 34

2.11 Precision-speed trade-off curve for the letters test case. 36

2.12 Trajectory time and computation time as a function of horizon length. 37

3.1 A realization of Target, Input, and Output trajectories. The error is

the distance between the output and the target. In the figure we plot

ei, the error for time step i. This is not to be confused with the ILC

iteration number k. 42

3.2 Block diagram of the method. 43

3.3 Simulation results: Output deviation as a function of the iteration

number for different gradient models. 48

3.4 Simulation results: Output deviation as a function of the iteration

number for different inializations. 48

3.5 Simulation results: Output error as a function of time. 49

3.6 Simulation results: Output error as a function of time, NL1 gradient

model. 49

3.7 Simulation results: Detail view of the trajectories. 50

3.8 Simulation results: Effect of step size. 51

xiii

xiv LIST OF FIGURES

3.9 Simulation results: Effect of step size. 51

3.10 Nonlinear model response . 52

3.11 Experimental results: Error vs iteration number for different initializa-

tions . 53

3.12 Experimental results: Error vs iteration number for LM and NL1 gra-

dient models. 54

4.1 Sample of the topographic data used in simulation. 58

4.2 Camera plane view . 59

4.3 Scheme of the LiDaR measurement. 61

4.4 Slope distribution. 62

4.5 Simulation: Ground truth and quality of fix. 65

4.6 Simulation results: Uncertainty map and Surface reconstruction with

the square wave pattern. 66

4.7 Simulation results: Uncertainty map and Surface reconstruction with

the greedy planner. 67

4.8 Simulation results: Volume estimate vs iteration. 68

4.9 Experimental results. Surface reconstruction with the square wave pat-

tern. 69

4.10 Experimental results: Surface reconstruction with the greedy planner. . 69

4.11 Experimental results: Independent surface reconstruction with a camera-

based system. 70

4.12 Experimental results: Histogram comparing the surface reconstruction

from different methods. 70

List of Tables

1.1 Software-limited values and operational specifications of the experimen-

tal setup. 5

2.1 Prediction error mean µ and standard deviation σ of the linear and

non-linear models. 25

2.2 Percent improvement in accuracy after applying the proposed input

trajectory design method compared to the default control without input

trajectory optimization. Experimental results for different shapes and

amax. 37

3.1 The three different models of the system used for optimization and sim-

ulation. σ is the standard deviation of the prediction error of the model,

for input trajectories with acceleration up to 3m s−2, when compared

to experimental data. 46

xv

Glossary

ANN Artificial Neural Network

CNC Computer Numeric Control

GP Gaussian Process

ILC Iterative Learning Control

LiDaR Light Detection and Ranging

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

MPC Model Predictive Control

MPCC Model Predictive Contouring Control

OB-ILC Optimization-Based Iterative Learning Control

PID Proportional Integral Derivative [Controller]

PMS Precision Motion System

QP Quadratic Program

SfM Structure from Motion

SQP Sequential Quadratic Programming

xvii

CHAPTER 1
Introduction

The aim of this thesis is to design trajectories for complex nonlinear systems that

are required to operate at the limits of their capabilities, while executing tasks of

industrial relevance in real-world scenarios.

This Chapter is organized as follows. In Section 1.1 we present the motivation

of this work, followed in Section 1.2 by the objectives and in Section 1.3 by the

contributions. In Section 1.4 we list the publications in which this thesis is based,

and in Section 1.5 we list other work that resulted from the supervision of students,

during the course of the doctoral studies. Finally, in 1.6 we present an outline of

the rest of this thesis.

1.1 Motivation

We are surrounded by dynamical systems of different scales and complexity, both

natural and engineered, that play a crucial role in our daily lives. An important

subset of these systems can be instrumented and controlled to function in desirable

ways. This work focuses on controlling such systems, taking into account their

dynamics and limitations, and improving their efficiency. Industrial processes,

in particular, stand to benefit from these improvements, as even small gains in

productivity are multiplied in scale and can have a large impact. Potential benefits

include reduced environmental footprint of the produced goods, as well as lower

manufacturing cost.

The task of designing an effective controller often requires or benefits from ac-

cess to a simplified mathematical representation of the complex system at hand.

For example, an effective model allows the evaluation of different control schemes

in a simulated environment. Furthermore, it can be used directly in the con-

1

2 CHAPTER 1. INTRODUCTION

text of optimization, such as with a Linear Quadratic Regulator (LQR) or Model

Predictive Control (MPC). Traditionally, different fields of science, for example

physics, chemistry or biology, provide mathematical models that describe the sys-

tem’s behavior. First-principles modeling relies on expert understanding of the

fundamental scientific and engineering principles, generalizes well and requires lit-

tle or no experimental data. However, models based on first principles analysis

are, in some cases, either cumbersome, time-consuming or impossible to derive. In

those cases data-driven models, built from experimental data, are advantageous.

In fact, with the widespread availability of sensors and connected embedded com-

puting devices, it is now feasible to record large amounts of data about a variety

of systems, enabling high-fidelity data-driven models to be built.

In this thesis, we consider two classes of problems where such a data driven

approach offers such benefits. The first are Precision Motion System (PMS). These

are essential in many industrial applications, including Computer Numeric Con-

trol (CNC), manufacturing of semiconductors, precision machining of parts, and

inspection. Trajectory planning is a critical component for PMS, enabling efficient

high accuracy motion. For PMS, the precision requirements of the task mean strin-

gent requirements of the model prediction accuracy if it is to be used in control.

Data-driven modelling can account for complex system dynamics, capturing details

that could otherwise be neglected by experts, and delivers high accuracy. Further-

more it offers adaptability to machine modifications, thus reducing the need for

continuous expert input and intervention.

The second class of problems we consider is Autonomous robotic inspection.

This is an area of growing importance, particularly in industrial settings. It allows

for the evaluation of assets in complex and hazardous environments, mitigating

the risks posed to humans. Due to limits on resources, notably in battery life,

effective planning of the inspection task is important to guarantee successful com-

pletion of the task. We focus in surface reconstruction and volume estimation

with a quadcopter platform. Here we leverage statistical information about the

surface properties, representing it with a efficient Gaussian Process (GP) model,

and combining it with sensor data.

In summary, this thesis is motivated by the high potential that automation

and control has for a more efficient society through advancements in industrial

processes, and enabled by the growing availability of data and computational re-

sources.

1.2. OBJECTIVES 3

1.2 Objectives

The main objective of this thesis is to propose and validate practical algorithms

for the control of nonlinear systems, more specifically tailored for PMS and Au-

tonomous Robotic Inspection using quadcopters. The algorithms presented in this

thesis are validated both with high-fidelity simulation and empirically.

Trajectory planning for PMS

A PMS is a robotic setup designed to precisely position an end-effector, typi-

cally in the micro- to nanometer range. PMSs are used in lithography [1], micro-

assembly [2], precision metrology [3], and precision engineering [4], and many other

applications [5, 6]. They are often used as components in machine tools for the

production of parts, such as metal laser cutting or grinding processes where the

goal is to trace a desired target geometry as quickly and accurately as possible.

The accuracy of PMSs is critical as the parts they produce must satisfy tight

engineering tolerances. At the same time, economic considerations dictate rapid

production of parts to boost productivity. The physical inertia of PMSs dictates

a trade-off between productivity and accuracy. In practice, the quality of the

control system is crucial for managing this trade-off. Typical industrial precision

systems achieve high-precision using well-tuned “classical” feedback controllers,

such as Proportional Integral Derivative [Controller] (PID), to track a given target

trajectory. These low-level controllers are designed by the manufacturer and users

are generally not able to modify or tune the control algorithm.

Our goal is to improve the precision and productivity of a PMS, without any

changes to the existing controller structure. We aim to achieve such improvements

relying exclusively on experimental data, or data-based models, thus avoiding the

need for a expert-designed first-principles model. The trajectories should respect

system and engineering constraints, as well as system dynamics.

Experimental setup Figure 1.1a shows a picture of the experimental setup used

as a test bed in Chapters 2 and 3. It consists of an ETEL DXL-LM325 two stage

motion machine. The machine is instrumented with quadrature encoders that

measure the position of both axes and is actuated with ETEL LMS15-100 linear

motors. The system is driven by a feedback controller that adjusts the motor

voltages to track a supplied input trajectory r. The controller is implemented

on a Speedgoat rapid prototyping unit using MATLAB/Simulink software. We

consider this loop as a black-box and the 2D input trajectory r as the only input.

The machine enforces limits on the acceleration, velocity, and position of the input

4 CHAPTER 1. INTRODUCTION

(a) Experimental apparatus.

A

BC

D E

F

Start G

0.9 0.8 0.7 0.6
4.5

4.6

4.7

4.8

4.9

x (mm)

y
(m

m
)

4

2

0

2

4

4 3 2 1 0 1 2 3 4

20 μm bound
Target geometry

Non optimized experimental output
Optimized input trajectory
Optimized experimental output

(b) Example trajectory.

Figure 1.1: Panel (a) shows the 2D PMS used as a test case in this thesis. Ex-
perimental data from this experimental setup is shown in panel (b), where the
reference trajectory is optimized such that the output tracks a target shape more
precisely than the existing controller.

1.2. OBJECTIVES 5

Property Value Unit

Absolute Maximum acceleration 40 m s−2

Recommended Maximum acceleration 3 m s−2

Recommended Maximum velocity 1.5 m s−1

Low-level control loop frequency 10 kHz

Repeatability (standard deviation) 2 µm

Table 1.1: Software-limited values and operational specifications of the experimen-
tal setup.

trajectory to prevent accidental damage. The main characteristics of the machine

are collected in Table 1.1.

A highlight of this setup is that for the same provided input trajectory, the

distribution of the outputs over several repetitions exhibits a standard deviation

of approximately 2µm. This fact allows us to design input trajectories offline.

Figure 1.1b shows an example of an optimized trajectory.

Trajectory planning for Autonomous Robotic Inspection

The process of inspection is a complex and often critical task that traditionally

required direct human intervention. Employing autonomous robotic platforms

can enhance the safety, accuracy and quality of the inspection process, with the

potential to reduce cost. Quadcopters in particular can access difficult to reach

areas, carrying sensors adapted to the task at hand.

In the second part of the thesis, we consider the problem of designing feasible

trajectories that maximize the amount of information gathered with a Light De-

tection and Ranging (LiDaR) scanner. The scanner is attached to a quadcopter,

which is flying in a large indoor space in order to estimate the volume of bulk

material, such as sand or ore, contained in it. In particular we are interested in

estimating the volume of material, with the lowest possible uncertainty.

Experimental setup Figure 1.2 shows a picture of the experimental setup and

simulation environment where a quadcopter flies in an indoor, GPS-deprived, en-

vironment. The drone is equipped with a 2D LiDaR scanner, obtaining distance

measurements to the landscape below it. Localization is inferred from visual fea-

tures, with known 3D coordinates.

6 CHAPTER 1. INTRODUCTION

(a) Simulation environment. (b) Experimental environment.

Figure 1.2: A quadcopter flies above a landscape, collecting depth data with a
LiDaR scanner and inferring localization from a previously mapped set of fea-
tures. Panel (a): Simulated environment. The surface is a segment of a scaled
topographic map of the Swiss Alps. The features used for localization are marked
as dots located approximately on the y = 0 plane. Panel (b): A picture from an
experimental flight. The drone is highlighted with an orange circle, and one of the
features used for localization is highlighted with a blue square.

1.3 Contributions

The main contributions of this thesis are

1. A high-fidelity model of a 2D PMS, obtained exclusively from experimental

data;

2. A method for reference trajectory design using exclusively data-driven mod-

els’ information;

3. An Optimization-Based Iterative Learning Control (OB-ILC)-based method

for reference trajectory design, mixing model gradient information and error

correction from experimental data;

4. A modeling environment for drone flight in an indoor GPS-deprived setting,

where localization is inferred from features and incorporating LiDaR scanner

data;

5. An efficient method for surface reconstruction and volume computation from

a point cloud obtained from LiDaR data.

1.4. PUBLICATIONS 7

1.4 Publications

The work presented in this thesis is based on the published and submitted articles

listed below.

Chapter 2

[7] S. Balula, A. Liniger, A. Rupenyan, and J. Lygeros, “Reference de-

sign for closed loop system optimization,” in 2020 European Control

Conference (ECC), pp. 650–655, IEEE, 2020

[8] S. Balula, D. Liao-McPherson, A. Rupenyan, and J. Lygeros, “Data-

driven reference trajectory optimization for precision motion systems,”

Under submission, 2023

Chapter 3

[9] S. Balula, E. Balta, D. Liao-McPherson, A. Rupenyan, and J. Lygeros,

“Sequential quadratic programming-based iterative learning control

for nonlinear systems,” in 2023 IEEE Conference on Control Technol-

ogy and Applications (CCTA), IEEE, 2023

Chapter 4

[10] S. Balula, D. Liao-McPherson, S. Stevšić, A. Rupenyan, and

J. Lygeros, “Drone-based volume estimation in indoor environments,”

in IFAC world congress, 2023

1.5 Other work

This thesis does not address the following published and unpublished works, the

result of Master and Bachelor thesis work by students I had the privilege of su-

pervising.

Magnetic levitation: A control experiment for the General Laboratory

course by Danila Merola. Supervised by Aren Karapetyan, Xavier Guidetti,

Samuel Balula, Prof. John Lygeros.

A digital controller is developed for a Magnetic Levitation device from Quanser.

The device is used to levitate a small steel ball with the magnetic field force gener-

ated by passing current through a coil. First the system is analyzed theoretically:

8 CHAPTER 1. INTRODUCTION

two subsystems are identified, the electrical and the electro-mechanical subsys-

tem. The electrical subsystem generates a coil voltage depending on the desired

coil current, while he electro-mechanical subsystem generates a desired coil current

depending on the desired ball position. The modeling and the control design for

both subsystems are presented. Second, a PI controller for the electrical subsys-

tem and a PIV controller with Feed-Forward for the electro-mechanical subsystem

are introduced. The control system is designed as a cascade control loop, where

the electrical system represents the inner loop and the electro-mechanical system

represents the outer loop. Simulations are carried out in the MATLAB-Simulink

environment. As signal conditioning is needed to map the signals into the desired

voltage ranges, circuits with inverting operational amplifiers are designed and im-

plemented on a breadboard. A PCB for a future implementation is also presented.

For the digital controller an Arduino Mega 2560 microcontroller is chosen. In con-

clusion a possible structure to implement this project as a control laboratory is

presented.

Optimizing Quadrotor Trajectories for Robust Vision-based Flight by

Zheng Shen. Supervised by Samuel Balula, Prof. Dominic Liao-Mc Pherson, Dr.

Christoph Gebhardt, Prof. John Lygeros.

Autonomous mobile robots are increasingly being used for exploration and in-

formation gathering tasks, such as environmental monitoring, aerial surveillance,

and tactile object exploration. We propose an algorithm in the continuous space

based on Gaussian process and Traveling Salesman Problem and apply it to the

task of volume estimation via vision-based flight. We formulate the problem of

path planning for volume estimation as an informative path planning problem

based on Bayesian quadrature. We also introduce an efficient multi-query plan-

ner for vision-based flight. Simulation results show that our approach estimates

volumes accurately and travels a significantly smaller distance compared to other

algorithms.

Online control of quadrotor and camera with MPC for robust vision-

based flight by Yingjie Jiang. Supervised by Dr. Stefan Stevsic, Dr. Christoph

Gebhardt, Samuel Balula, Prof. Dominic Liao-McPherson, Prof. John Lygeros.

In this project a model predictive controller is designed for a microaerial robot

used for indoors inspection, relying on visual tags for localization. The drone nav-

igates between way points, predefined by a higher level planner, while minimizing

its state estimation uncertainty, a fundamental aspect of the monitoring task. By

introducing a Kalman Filter into the optimization problem of model predictive

control, the proposed real-time method brings a better state estimation quality

for the quadrotor during a vision-based flight.

1.5. OTHER WORK 9

Control of a paramotor I by Ivan Gehri. Supervised by Samuel Balula, Dr.

Eva Ahbe, Prof. Florian Dörfler.

An autopilot has been designed for a radio control model paramotor, with the

aim of performing waypoint navigation. The microcontroller and sensors: GPS,

gyroscope, compass, accelerometer, barometer, (indirect) force measurement on

the breaking lines, and a Pitot tube have been embedded in the flying apparatus,

contained in a 3D printed casing. The control can be taken over by the remote

control at any time to ensure safety of operation. A 2D model of the dynamic

system allows for the initial controller design in a simulated environment. Experi-

mental results, using solely the GPS sensor, have validated the setup, but haven’t

yet achieved autonomous navigation.

Control of a paramotor II by Timo Laaksonlaita. Supervised by Dr. Eva

Ahbe, Samuel Balula, Prof. Florian Dörfler.

This project deals with the control of a paramotor in straight level flight. The

paramotor is a two-body system connected through cords, making it a challenging

system to model and control compared to other UAVs. A simplified six degrees

of freedom model is derived, and the unknown model parameters are determined

through flight experiments. By linearizing the model around a trim equilibrium,

the longitudinal and lateral dynamics of the paramotor get decoupled, allowing for

separate control design of these two subsystems. Based on the linearized models,

MPC controllers for longitudinal and lateral dynamics are developed and tested

in simulation. The performance of the controllers to perturbed plants is analyzed

and possible improvements for the overall system are suggested.

Control of a paramotor III by Gianni Pasini. Supervised by Samuel Balula,

Dr. Eva Ahbe, Prof. Roy Smith.

The aim of this semester project is to control a paramotor, so that it can

autonomously fly and follow a path in 3D space. In order to do so, PID, LQR

and MPC controllers are tested in a simulation environment, using a previously

developed 6DoF paramotor model. In addition, PID and LQR controllers are

implemented on a Pixhawk Autopilot and tested during experimental flights with

a real paramotor. The results are presented together with some short videos.

The comparison between simulation and experiments shows that it is possible to

successfully control the paramotor, but some future improvements are necessary

in order to achieve fully autonomous flight.

Optimizing Control for CodinGame racing bot by Silvia Ritsch. Super-

vised by Anil Parsi, Samuel Balula, Prof. Florian Dörfler.

10 CHAPTER 1. INTRODUCTION

The online coding challenge Coders Strike Back is a competition to implement

the fastest podracer, a hovercraft-type vehicle. The objective is to pass through

a series of checkpoints in minimum time. The focus of this project is to design

controllers for this problem, and two controllers were designed. The first is a

PID controller which projects the distance to the current checkpoint onto the

line of sight. Additionally, an MPC controller was designed which minimizes the

distance to the current checkpoint. The knowledge of the next checkpoint was

also encoded by modifying the objective when close to the current checkpoint.

It was observed that in several randomly generated arenas, the MPC controller

consistently outperforms the PID controller.

Modeling of a Traveling Wave Thermoacoustic Engine by Tim Liechti.

Supervised by Prof. Andrea Iannelli, Samuel Balula, Prof. Roy S. Smith.

This semester project considers the problem of modeling thermoacoustic ma-

chines. They have significant potential for environmentally friendly and low main-

tenance solutions for electricity generation from waste heat or solar heat, and can

also be employed for refrigeration and air conditioning. An overview of existing

modeling methods is presented together with advantages and drawbacks, and their

area of application is explored. Two approaches are then considered in more detail

in the project. The transmission matrix method is used to get a first estimation of

the onset temperature and the operating frequency. The solver deltaEC is instead

used to model the steady-state operation. The modeling environment deltaEC is

a well established tool to investigate new prototypes and to inform design choices.

It is also a good tool for learning the modeling process and gaining some intuition

on the acoustic field generated by these machines. deltaEC was used to model and

analyze a thermoacoustic engine found in the literature (and for which experimen-

tal data are available), consisting of a two-stage looped traveling wave engine that

employs a push-pull linear alternator for electric power generation. After the mod-

eling procedure with deltaEC is explored, the validity of the model is investigated

and possible improvements are suggested.

Machine Learning Modelling for Path-following Control by Jonas Holzem.

Supervised by Samuel Balula, Dr. Alisa Rupenyan, Prof. John Lygeros.

Path-following with positioning systems often requires tracking accuracy in

the micrometer range that cannot always be achieved by the built-in controllers.

Enhancing the accuracy can be achieved by optimizing the controller reference

inputs to compensate for deviations, using the available information from previous

runs. The optimization procedure requires an accurate model predicting these

deviations for new geometries that have not been processed previously on the

system. The goal of this project is to achieve a model with sufficient accuracy to

1.5. OTHER WORK 11

be able to predict the system dynamics for new geometries, using representative

trials on the system as training data. The approach aims to explore one step,

as well as multiple step trajectory predictions for a given geometry. Different

neural network architectures were tested and optimized and sufficient accuracy

was achieved for the one-step prediction case. Furthermore, it is demonstrated

that the trained network can be integrated in the optimization framework.

Learning from Simulation, Racing in Reality: Sim2Real Methods for

Autonomous Racing by Eugenio Chisari. Supervised by Dr. Alisa Rupenyan,

Dr. Alex Liniger, Samuel Balula, Prof. John Lygeros.

Reinforcement Learning (RL) methods have been successfully demonstrated in

robotic tasks, however, their application to continuous state-action systems with

fast dynamics is challenging. In this work, we investigate RL solutions for the

autonomous racing problem on the ORCA miniature race car platform. When

training a deep neural network policy using RL methods only using simulations,

we observe poor performance, due to model mismatch also known as reality gap.

We propose three different methods to reduce this gap, first we propose a policy

regularization in the policy optimization step, second, we use model randomization.

These two methods allow learning a policy that can race the car without any real

environment interactions. Our third method improves this policy, by running

the RL algorithm online while driving the car. The achieved performance on

the ORCA platform is comparable to that achieved previously by a model-based

controller, in terms of lap time, and improved with respect to track constraint

violations.

Spin Shots for a Robotic Billiard Player by Luzian Hug. Supervised by

Samuel Balula, Sandeep Menta, Dr. Joe Warrington, Prof. John Lygeros .

Beside pocketing balls, a vital part of the game of snooker is also bringing

the cue ball into an advantageous position after the shot. Building upon several

preceding projects, we develop a robotic snooker player to the point of being able

to not only pocket a ball successfully, but also controlling the trajectory of the

cue ball over its whole movement. In order to achieve this, the cue strike, the

motion of the ball on the table, the collision between two balls and between a

ball and a cushion are modeled physically. By inverting the physical model, we

find the shot velocity and amount of spin needed in order to place the cue ball in

the desired location after the shot. We then test the model on the actual robot.

Furthermore, the robot’s state estimator and controller are improved in order to

generate meaningful results. The time required to line up a shot with the robot

is reduced from several minutes to between 15 and 30 seconds. With the updated

12 CHAPTER 1. INTRODUCTION

system, we are able to place the cue ball within 324mm of the desired position in

68 percent of shots.

Real-time Artificial Intelligence for a Robot Billiard Player by Andreas

Schlaginhaufen. Supervised by Dr. Joe Warrington, Dr. Marcello Colombino,

Sandeep Menta, Samuel Balula, Prof. John Lygeros.

With its continuous state and action space and stochastic outcomes snooker

provides major challenges for an artificial intelligence player. Building upon pre-

vious projects, we break the decision making problem down using tree search

methods for stochastic games. In addition, an efficient action filter is implemented

to restrict the set of possible actions. Alongside with this, we use the *-Minimax

algorithm to implement two different tree search players. One of them follows the

standard approach of evaluating a heuristic evaluation function at leaf nodes and

for the other one we propose a rollout according to some rollout policy to play

until a terminal state is reached. Then these players are combined with the two

different utilities of maximizing the probability of winning vs maximizing the ex-

pected lead. Simulating different scenarios we show that the rollout based players

are performing best, while still being capable of playing a whole game in less than

10 minutes time.

Design and deployment of a control board for thermoacoustic experi-

ments by Martin Stefan Baumann. Supervised by Prof. Andrea Iannelli, Samuel

Balula, prof. Roy Smith

We design an in-house control board tailored for thermoacoustic experiments.

Thermoacoustic systems pose special requirements on the hardware such as a high

sampling rate, compatibility with different types of sensors signals and voltage

levels, and low input to output latency. The board includes signal conditioning,

microcontroller, and output amplifier units, while a Raspberry Pi is used to collect

and store the data and to provide a web interface to the hardware platform. To

demonstrate the capabilities of the developed hardware, experiments and system

identification of the Rijke tube, a prototype of nonlinear thermoacoustic instabil-

ities, have been performed. Open loop data acquisition has been used to prelimi-

nary characterize the onset and main features of the limit cycle oscillations arising

due to the dynamic coupling between pressure and heat release. A proportional

feedback controller, sensing pressure measurements and actuating a speaker, has

then been implemented with a twofold aim. Firstly, the branch of periodic orbits

emanating from the Hopf bifurcation point has been experimentally constructed

by using the controller gain as bifurcation parameter. This has led to observe

hysteresis, which in turns indicates the presence of a subcritical Hopf bifurcation.

Secondly, the controller has been used to stabilize the limit cycles and thus identify

1.5. OTHER WORK 13

the underlying LTI system. Two different closed loop system identification meth-

ods have been compared to obtain the transfer function between input speaker

and pressure measurement at one location of the tube. This work resulted in the

publication:

[11] A. Iannelli, M. S. Baumann, S. Balula, and R. S. Smith, “Experi-

ments and identification of thermoacoustic instabilities with the rijke

tube,” in 2020 IEEE Conference on Control Technology and Applica-

tions (CCTA), pp. 757–763, IEEE, 2020

.

Machine learning of billiard ball dynamics by Divya Guruswamy. Super-

vised by Dr. Joe Warrington, Sandeep Menta, Samuel Balula, Prof. John Lygeros.

From the strike of the cue stick to the final positions on the table, billiard

balls have a number of equations involved. There are multiple parameters that

influence the behavior of the balls thus making it difficult to represent it in terms

of analytical equations. Machine learning models allow prediction of the behaviors

without handling these complex relations. This project aims to model the behavior

of the ball in case of spin shots, to allow decision making in future projects.

Initially, the ball collisions in case of 3D simulations having spin and 2D model

having no spin are observed to understand the impact of spin on the collision.

For a complete spin shot, model of cue strike with different parameters and ball

collision model are trained separately and then combined. Finally, two models,

one for predicting the final positions on table given initial parameters, and second

for predicting the required initial parameters, given final positions are built.

Implementation of a Convex Optimization Algorithm on a Graphics

Processing Unit by Michel Schubiger. Supervised by Dr. Goran Banjac,

Samuel Balula, Prof. John Lygeros.

Large-scale convex optimization problems arise in various practical applica-

tions. Even though there exist many efficient methods for solving these problems,

such as the alternating direction method of multipliers (ADMM), they may take

minutes or even hours to compute solutions of very large problem instances. In

this thesis we explore the possibilities of using a graphics processing unit (GPU) to

accelerate ADMM. We use OSQP as a state-of-the-art implementation of ADMM

to analyze the potential to parallelize the algorithm. We identify several parts of

the implementation that could be accelerated by using a GPU, such as the direct

linear system solver, which we replace with an iterative conjugate gradient (CG)

method implemented on a GPU. Our implementation written in CUDA C has been

tested on many medium- to large-scale problems in applications ranging from en-

gineering to statistics and finance. The GPU-accelerated algorithm outperforms

14 CHAPTER 1. INTRODUCTION

the CPU implementation by up to 2 orders of magnitude for problems that take

more than 15 minutes to solve by the standard OSQP implementation.

Building a Control System for the Hydroponic Gardening System by

Alexander Baltazar Almeida, Jacob Clarysse, Jente Clarysse, Kathrin Schleicher,

Martin Vahlensieck. Supervision by Samuel Balula, and Prof. John Lygeros.

Design and implementation a control system for a hydroponic gardening system

where vegetables grow in an automated hydroponic environment. Hydroponics

is a growing technique where crops are cultivated on water instead of soil. The

nutrients in the water, the pH-level and the temperature of the water are measured

and adapted during the growing process. In our implementation the water flows

continuously, driven by a pump in the reservoir, a method known as the nutrient

flowing technique (NFT).

System identification and control of a hydroponic based gardening sys-

tem by Jacob Clarysse, Alexander Almeida, and Martin Vahlensieck. Supervison

by Samuel Balula, Prof. John Lygeros.

In this project a hydroponic NFT gardening system is modeled, identified and

controlled, using a PI and LQG controllers. A clustering filter is used for the noisy

measurements of the level sensors. Finally, the manually adjustable outflow of the

system is estimated dynamically and incorporated in the controller.

1.6 Thesis Outline

In Chapter 2 we propose an optimization-based method for the design of refer-

ence trajectories with applications to PMS, based on different models built from

experimental data, and computed exclusively offline. In Chapter 3 we propose

an OB-ILC method for the same type of PMS, where we use model derivative

information as well as successive evaluations of the system, both in simulation and

experimentally. In Chapter 4 we propose a surface reconstruction method, as well

as a greedy algorithm for the planning of trajectories for a quadcopter equipped

with a LiDaR scanner. Finally, in Chapter 5 we summarize the conclusions of this

work and list possible future research directions.

CHAPTER 2
Trajectory optimization for

precision motion systems

In this Chapter, we propose an optimization-based reference (input trajectory)

design (pre-compensation) methodology for simultaneously improving the preci-

sion and productivity of PMS by leveraging the widespread availability of system

data. Our methodology is guided by the following requirements: (i) it does not

require modifications to the existing hardware and low-level controllers, making it

suitable for application in production machines; (ii) it does not require a physic-

s-based model of the machine, relying exclusively on experimental data; (iii) it

can be applied to individual machines with diverse technical characteristics; and

(iv) it can produce good results for previously unseen parts at the first attempt.

These requirements are motivated by the requirements of “Industry 4.0” where

machines are no longer standalone setups and are instead connected in a network,

making data more easily available [12]. This data can be exploited to improve per-

formance; for example, it can be leveraged to create data-driven models, avoiding

the labour intensive process of developing and maintaining first principles based

ones [13]. Future manufacturing is also expected to be more distributed and per-

sonalized (e.g., “Manufacturing as a service”) [14], leading to smaller volumes for

any given part, possibly produced across a pool of non-homogeneous machines.

This makes it more important to exploit data to ensure that machines can execute

designs with minimal calibration.

Chapter Outline

This Chapter is organized as follows. In Section 2.1 we summarise the state-of-

the-art and contributions, in Section 2.2 we precisely define the problem tackled,

15

16 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

while in Section 2.3 we describe the modeling structure, the model fitting strategy,

and the accuracy achieved. In Section 2.4 we detail the input trajectory design

strategy proposed, specifying the optimization problems. In Section 2.5 we show

experimental validation for the method with a set of test cases.

2.1 State-of-the-art

Several methods for improving PMS performance have been proposed in litera-

ture. One method is to re-designing the feedback controller. A common approach

is Model Predictive Contouring Control (MPCC) [15], wherein a model of con-

touring error is minimized in a receding horizon fashion, drawing on methods

from autonomous racing [16]. However these methods have high online computa-

tional loads, rely on accurate process models, and require modifying the inner-loop

controllers.

Another common approach in manufacturing and precision motion systems

is learning-based control [17, 18]. These methods assume that the processes is

repeatable and adjust the input trajectories, using the error from the previous

repetition as feedback. The input trajectories can be modified between iterations

(Iterative Learning Control, and Run-to-Run control), or periods (Repetitive Con-

trol). These methods can exploit models [19], include constraints [20] , and are

effective for repeatable processes. However, the computed trajectory is specific

for a particular part and machine, with multiple trials required to achieve the de-

sired accuracy. While this may be acceptable in large production runs, it may be

inefficient for smaller runs e.g., in ”manufacturing as a service” applications.

The final major class of methods is pre-compensation, which aim to modify

the input trajectory offline to reduce the contouring error for arbitrary parts [21].

A common approach is to drive a model of the contouring error to zero by manip-

ulating the input trajectory using a classical controller (e.g., a PID) [22]. These

methods cannot include look-ahead or constraints, motivating the use of offline

MPCC algorithms based on physics-based nonlinear [23], identified linear mod-

els [24] or combined with a reference governor [25]. In [26] the compensation is

computed online using previous measurements and a linear model. In [27] the

contour error is predicted with an Artificial Neural Network (ANN), and the pre-

compensation computed with reinforcement learning. This approach does not

allow constraints to be included and uses only zeroth-order information about the

ANN model, despite the ready availability of ANN derivatives. In [28, 29] a simul-

taneous feed rate optimization and error pre-compensation method is proposed for

a system described by a linear model. This approach is analogous to the first stage

optimization described in 2.4.

2.2. PROBLEM STATEMENT 17

Therefore, to the best of our knowledge, there is a gap in the existing literature

on pre-compensation methods for improving PMS performance/ productivity that

are data-driven, capable of generalizing to novel geometries, and applicable to a

broad variety of machines that can only be accurately described by a nonlinear

model.

Contributions

In this Chapter we tackle the challenge of simultaneously improving the perfor-

mance/ productivity of a PMS using only data from the system. Our main con-

tribution is a novel pre-compensation method based on data-driven modeling and

trajectory optimization. Our approach does not require modification of the design

or control software of the system (i) and is fully data-driven (ii). Moreover, it en-

ables adaptation to changing conditions or system degradation through retraining

the underlying data-driven model (iii). Finally, the approach is independent of the

target geometry and significantly shifts the precision/ productivity trade-off curve.

Relative to a method without pre-compensation, our proposed method is 30-60%

more accurate for new geometries for same trajectory time budget or alternatively,

trajectories can be traced in 25-50% of the time for the same contouring accuracy.

(iv).

2.2 Problem Statement

Consider a tooltip, e.g., the laser in a laser cutting machine, which traverses a two-

dimensional (2D) workspace W ⊂ R2. The position of the tooltip as a function of

time is denoted by γ(t) = [x(t) y(t)]⊤. The ultimate goal in precision motion plan-

ning is to have the tooltip trace a spatial target geometry Ξ : [0, S] → W , where

S is the path length. The target geometry Ξ is assumed to be a continuous func-

tion parameterized by the path progress variable s. Typical design specifications

require the target geometry to be traced with a precision of tens of micrometers;

for example, in industrial laser cutting systems a typical precision specification is

20 µm

Most industrial precision motion systems come with a built-in low-level con-

troller designed by the manufacturer to track an input trajectory r : [0, T] → W ,

where T > 0 is the time necessary for the tooltip to complete tracing the target

geometry. When r is given as an input to the low-level controller, its actions and

the dynamics of the machine give rise to an output trajectory γ : [0, T] → W ;

note that for simplicity we assume that both the input and the output trajectory

lie in the workspace W . We denote the mapping between the commanded input

18 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

Figure 2.1: A low-level controller tracks the input trajectory r, producing the
output trajectory γ. The deviation d(s, γ) measures the distance from γ to the
target geometry Ξ as a function of the path progress s. We desire that the deviation
is smaller than the tolerance µ(s) at all points.

trajectory r and the resulting output trajectory γ by

γ = F (r) + e, (2.1)

where the function F : W [0,T] → W [0,T] encapsulates the closed-loop dynamics

of the machine. The noise e is zero-mean and quantifies the repeatibility of the

system, a typical standard deviation is ≈ 2µm. Ideally, the low-level controller is

well designed so that γ ≈ r and F is approximately the identity function.

We are interested in the following inverse problem: Given the target geometry

Ξ, how do we generate an input trajectory r for the machine, so that the resulting

output γ = F (r) matches Ξ as closely as possible. In addition to the usual difficul-

ties associated with inverse problems, for precision motion systems the function

F is often poorly known, partly due to lack of information about the low-level

controller.

In standard practice, input trajectories are generated by traversing the path

at a constant speed v > 0, i.e. setting r(t) = Ξ(vt). However, due to sensor

noise, actuator limits, the inertia of the machine, and other factors we observe

experimentally a significant error between γ and r, especially when v is high. This

induces a natural trade-off between speed and precision that is characteristic of

precision motion systems. Our aim is to improve this trade-off by learning the

function F through preliminary experiments, then inverting it using optimization.

Formally, let d : [0, S] ×W [0,T] → R be the deviation function, defined as the

projection of the output into the target geometry d(s, γ) = mint∈[0,T] ∥Ξ(s)−γ(t)∥2.
Our goal is then to solve the optimization problem

min
r

T (γ) + λ

∫ S

0

d(s, γ)ds

s.t. γ = F (r),

d(s, γ) ≤ µ(s), ∀s ∈ [0, S] ,

(2.2)

2.2. PROBLEM STATEMENT 19

Figure 2.2: The two test cases used. The left panel shows Letters test case, where
the target geometry is the contour of the letters marked in black. The right panel
shows the airfoil test cases. The outline is labeled with the leading (L) and trailing
(T) edges locations.

where T (γ) is the duration of the output trajectory, λ > 0 governs the trade-off

between speed and accuracy, and µ(s) : [0, S]→ R is a tolerance bound around the

target geometry; for the typical industrial laser cutting systems mentioned above,

one would use µ(s) = 20 µm, ∀s ∈ [0, S]. The different quantities are illustrated

in Figure 2.1.

The optimization problem (2.2) is stated in a trajectory space and is not com-

putationally tractable as written. In the following Sections we present and exper-

imentally validate a practical methodology for approximately solving (2.2) using

only data gathered from the process. Because the methodology is data-driven and

noninvasive (in the sense that it does not require any knowledge of the underlying

controllers but only the ability to run experiments on the machine) it is applicable

to a wide range of practical industrial applications.

While our proposed methodology is applicable for general PMS, we use the

experimental setup described in Section 1.2 as a running example throughout this

work and to experimentally validate our approach.

Test cases

We selected two test cases, a series of letters and an airfoil, as target geometries to

validate our proposed methodology. These geometries contain a rich set of features

that are representative of industrial applications. To avoid “cherry picking”, and

to demonstrate generalization to new geometries, neither test case was used to

generate training data or during the development of the method.

The letters test case, as can be seen in Figure 2.2, consists of four letters

(“u”,“r”,“c”, and “h”) from the ETH Zürich logo. These letters were selected

due to the rich set of relevant and challenging features they contain, including

sharp corners, straight segments, and curves with various curvatures. The limiting

contour of each letter is used as the target geometry.

The airfoil test case, shown in Figure 2.2, is based on a high-lift Eppler e344

airfoil [30]. Geometries of this kind are typically laser cut out of e.g., balsa wood,

and are used in the primary structural sub-assembly of an aircraft. The main

20 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

...
...

. . .

. . .

. . .

. . .

...

Figure 2.3: In the first stage optimization (2.8) a minimum time trajectory for
tracking the target path Ξ(s) is computed. The speed and acceleration profile
from the first stage is used to sample the target geometry at constant sample
rate of 400 Hz, creating a surrogate target discrete time trajectory Ξ̄. In the
second stage optimization (2.10) nonlinear model is used to find the best input
trajectory r to track Ξ̄. The maximum allowable acceleration amax governs the
accuracy/trajectory time trade-off. The optimized input trajectory r is given to
the experimental apparatus.

challenging features of the airfoil are a cut-out at the leading edge (L) used to

attach a structural spar, and the trailing edge (T) whose geometry has a strong

effect on the aerodynamics of the aircraft.

Architecture overview

We approach the trajectory design problem in several stages. First, we design

experiments to generate informative input-output data for the unknown mapping

F and use the resulting data to identify two models for the system, a low-fidelity

linear one and a high-fidelity one based on an ANN. Throughout, we incorporate

machine learning best practices, such as independent training and validation data

sets, normalization, and diverse training data to avoid over fitting and to ensure

that the resulting models are able to generalize to trajectories outside the training

2.3. DATA DRIVEN MODELLING 21

data set, enabling optimization of new geometries.

Using these models, we propose a two-stage optimization-based approach for

offline optimization of references as schematized in Figure 2.3. In the first stage,

we compute an input trajectory by solving a contouring control problem using the

linear model of the system. This first stage solution yields a fast trajectory that

respects the problem constraints, by reducing the speed in intricate features of

the path, such as sharp corners, and accelerating through long smooth segments.

The output of the first-stage is used as the initial condition for the second stage,

which employs the high-fidelity neural network model to correct errors from the

first stage. The resulting input trajectory is then given to the low-level controller

as an input trajectory.

2.3 Data driven modelling

As a first approximation, we model the system using a continuous-time linear

model which captures the dominant dynamics. The structure of this model allows

for efficient computations of a time-optimal solution in the first stage, but lacks

the high-precision required by the application. This shortcoming is alleviated by

a second high-fidelity neural network model, used to refine the initial solution.

Low-fidelity linear model

The closed-loop system maps trajectories to trajectories and is of the form γ =

F (r). We approximate this mapping using a Linear Time Invariant (LTI) state

space model of the following form

ż(t) = Az(t) +Br(t), (2.3a)

γ(t) = Cz(t) +Dr(t). (2.3b)

The model (2.3) uses a non-physical hidden state z ∈ R4; the matrices A, B, C, and

D are identified from experimental data using the MATLAB function n4sid from the

system identification toolbox. The dimension of the state was chosen empirically,

noting that increasing the model order further has diminishing returns.

High-fidelity Nonlinear Model

To obtain a higher precision model, the 2D-positioning stage is modeled using

two independent causal ANN, one for each axis. Unlike (2.3) the nonlinear model

operates in discrete time, at a sample frequency of 400Hz and it has the following

form

γi = fnlm(ri−h, . . . , ri−1), (2.4)

22 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

...
...

. . .

. . .

. . .

. . .

...

ri−1

ri−2

ri−3

ri−h

ϕi

Input
layer

Hidden
layer 1

Hidden layers
2 to 8

Hidden
layer 8

Output
layer

Figure 2.4: Neural network structure. Each layer is fully connected to the
next. The input layer has 200 neurons, there are 8 hidden layers, with
{200, 200, 100, 100, 50, 25, 12, 6} neurons, and the output layer has 1 neuron. The
activation function of the hidden layers is a LeakyReLU function with slope 0.01,
and a bias term. There are total of 117322 weights to be adjusted in the training.
Two independent networks with identical structure were trained, one for each axis.

where γ is the output, fnlm is the nonlinear function defined by the ANN, r is the

input trajectory given to the closed loop system, and h is the length of the input

history considered for the prediction. The two ANN are structurally identical, but

are trained separately, leading to different weights. Each takes as input the most

recent 500ms of the input trajectory for the corresponding axis, subsampled at

400Hz, leading to 200 inputs. Each network has a single output, namely the pre-

dicted position at the subsequent time step. The networks have 8 fully connected

hidden layers of LeakyReLU [31] activation functions with a slope of 0.01, and a

triangular structure, as illustrated in Figure 2.4. The length of the time history

was selected to be approximately 25 times the timescale of the slowest mode of

the identified linear model. The sample rate was selected by analyzing how much

distance can be covered at the highest expected speeds, and comparing it to the

desired range of precisions. The number of hidden layers and their dimensions

were selected empirically, to achieve good performance with the lowest possible

complexity. The choice of feed-forward ANN was made to ensure that the model

prediction accuracy does not degrade over time due to compounding errors. We

also note that by training separate ANN for each axis we are implicitly ignoring

coupling effects between the two axes; this choice is supported by experimental

data that suggests coupling effects are negligible, as will be demonstrated in Sec-

tion 2.5.

2.3. DATA DRIVEN MODELLING 23

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Figure 2.5: Sample of the data collected to train and test the nonlinear neural
network model. Six trajectories are shown, five randomly generated and one reg-
ular shape (a spiral). The trajectories are contained in the workspace W , shown
in yellow background.

Training data generation

Choosing input trajectories that cover a wide range of operational regimes is es-

sential for generating informative data to train models that can generalize to pre-

viously unseen trajectories.

Linear Model

For the identification of the linear model we opted for randomly generated tra-

jectories, yielding 6 × 106 points in total. By randomly changing the velocity,

acceleration, and jerk of the input trajectory we made sure that the trajectories

represent features seen in real parts. This included, for example, curves of different

radii, traversed at different speeds and appearing in different locations within the

workspace, as well as sharp transitions in acceleration and jerk. The trajectories

were not designed for a specific part, but for a particular set of constraints on

velocity and acceleration.

Nonlinear Model

Having sufficient high-quality data is necessary to ensure that the ANN is accu-

rate and generalizes well. We started by training a first generation ANN with

the random trajectories used to fit the linear model, and a set of varied regular

geometries including circles, polygons, and spirals. Each shape was traversed at

24 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

varied speeds, constant for each trial. To enrich the data set further, the trained

first generation ANN was used in the optimization methodology of Section 2.4

applied to the same regular geometries. This resulted in optimized input trajec-

tories and, after applying these to the system, additional experimental data. This

data was used to train the ANN further obtaining a second generation ANN. This

training-optimization-retraining cycle can be executed recursively until the model

prediction accuracy is acceptable. These data sets lead to a targeted reduction in

over fitting in areas that are favored by the optimization. Overall, our strategy

is to include sufficient random (exploratory) and structured (exploitative) data to

ensure the ANN is both accurate and generalizes well in the areas of interest.

A representative training data sample is shown in Figure 2.5. In section 2.5 we

present the prediction quality of a third generation ANN to generate the results

of Section 2.5. The data was divided 80%/20% for training and testing purposes.

This results in a ratio of ≈ 34 data points per parameter of the ANN. About 60%

of the data comes from the randomly generated trajectories, and the remaining

from regular shapes both before and after optimization. The experimental data is

divided in segments of 500 ms, subsampled to achieve an effective sample rate of

400Hz, and scaled. For the loss function we use the mean square of the prediction

error. We use batches of 16k segments which take maximum advantage of the

GPU computation power. Adam [32] was used for the optimizer, with decaying

learning rate. Modeling and training were done in PyTorch [33] with NVIDIA

CUDA support.

Model Validation

The quality of the model predictions is evaluated over different data sets and

acceleration limits. The results are summarized in Table 2.1.

The linear model training data set includes trajectories with a range of accel-

erations up to 5 m s−2. However, due to its simple structure, the linear model

cannot overfit the data as it does not have the representative power to provide

accurate predictions everywhere in its training set. We observed that it performs

better when the acceleration is restricted to a lower value, even for trajectories

not seen during the fit, such as the letters test case. The linear model accuracy is

insufficient for the demanding requirements of the application.

Regarding the nonlinear model, the prediction accuracy is best for data with

the same characteristics as the one used for the training. When presented with

data coming from shapes which have not been used for the training of the model,

the prediction accuracy degrades. However, the accuracy is still adequate for

the application, as the standard deviations remain below 20 µm for each axis for

accelerations below 3 m s−2.

2.3. DATA DRIVEN MODELLING 25

Training / amax amax

Validation 1.0 m s−2 3.0 m s−2

Model Axis µ σ µ σ µ σ

– – µm µm µm µm µm µm

Linear x 3.0 48.0 4.7 30.1 5.4 57.2

y -13.2 156.3 0.0 108.5 0.5 229.4

Non-linear x 0.0 3.2 -0.3 8.2 1.0 11.1

y 0.0 6.0 -2.0 13.4 -2.3 18.7

Table 2.1: Prediction error mean µ and standard deviation σ of the linear and
non-linear models. Both models are evaluated in the Letters test case after op-
timization, with different maximum acceleration values amax. The linear model is
also evaluated on its training data set, and the non-linear model on its validation
data set.

0 2 4 6 8 10
Maximum acceleration (m s 2)

0

20

40

60

No
rm

al
ise

d
L 2

 p
re

di
ct

io
n

er
ro

r (
m

)

Sufficient training data Insufficient training data

Figure 2.6: Prediction error of the nonlinear model as a function of the maximum
acceleration amax of the input trajectory. The error is evaluated for the letters
and airfoil test cases. Above 5 m s−2 the training data do not contain enough
information to train the model properly.

26 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

Figure 2.6 shows how the standard deviation of the prediction evolves with

the maximum acceleration amax that was set as a constraint in the optimization

of Section 2.4. For acceleration values where there is sufficient training data, the

model prediction error increases gradually with the acceleration. If we try to use

the model outside of the acceleration values it was trained for, the predictions

rapidly deteriorate.

2.4 Trajectory Optimization

With the the data-driven models in hand, we now discuss the two-stage optimiza-

tion architecture used to compute input trajectories. The decision to divide the

optimization problem in two stages is motivated by the need to include the duration

T of the trajectory in a computationally tractable manner. This is accomplished

by using a variable time-discretization in the first stage, enabling inclusion of T

as a decision variable. The second stage then fixes the duration T and refines the

accuracy of the first-stage solution using the high-fidelity neural network model.

Our experiments suggest that treating the time discretization directly with the

nonlinear model is intractable. A key difficulty is that real machines typically

generate noisy output measurements in a sampled, time series format. These

cannot be readily used to train the high-fidelity continuous time model needed

for a computationally tractable variable-time discretization, due the challenges

associated with numerical differentiation of noisy data. Trying to solve the inverse

problem in one shot using the resulting model leads to low quality solutions; often

the solver fails to even return a feasible solution in a reasonable amount of time.

On the other hand, skipping the second stage and inverting using only the linear

model is computationally tractable, but typically leads to low quality solutions;

this observation is supported by the model prediction errors shown in Table 2.1.

Training a fixed sampling time nonlinear model and seeding with the solution of

the first stage optimization substantially reduces the overall computation time and

improves the quality of the solutions.

A key advantage of our methodology is that, unlike iterative learning control,

once the models are trained and we are given a target geometry, the input tra-

jectory is computed off-line, without the need for additional experiments. This is

especially important for small batch manufacturing where it is crucial to minimize

failed parts. However we can still use the information collected from experimental

runs to improve the model.

2.4. TRAJECTORY OPTIMIZATION 27

First-stage Optimization Formulation

The purpose of the first stage is to fix the duration of the trajectory, T , by trading

off speed and precision. We employ a contouring control approach with a fixed

spatial discretization. This involves sampling the target geometry at N equally

spaced points in space {Ξk
.
= Ξ(sk) : k ∈ {0, 1, . . . , N − 1}}, where sk = k S

N−1
=

k∆s.

We use the identified linear model (2.3) to approximate the process dynamics.

As our approach involves a fixed spatial discretization ∆s, the time-discretization

must be variable. Starting with t0 = 0, we denote by tk as the time at which

we would like the trajectory to reach the point Ξk and consider the non-uniform

time steps ∆τk = tk+1− tk, k = {0, . . . , N − 1} as decision variables; note that the

time T = tN =
∑N−1

k=0 ∆τk at which the trajectory is completed is implicitly also a

decision variable. We then obtain a discrete time model by applying the 4th order

Runge-Kutta (RK4) [34] time-marching method to (2.3)

zk+1 = flm(zk, rk,∆τk) (2.5a)

γk = Czk +Drk, (2.5b)

where flm is the RK4 function, and ∆τ will be treated as decision variables.

To evaluate the contouring error dk we start with the distance νk = γk −
Ξk and introduce a local coordinate frame as shown in Figure 2.7. The linear

transformation

Tk =

 cosαk sinαk Ξk,x

− sinαk cosαk Ξk,y

0 0 1

 , (2.6)

where αk is the rotation angle of the local frame, encodes a translation and rotation

between the local coordinate frame k and the global coordinate frame. With[
γk
1

]
= Tk

[
νk
1

]
, (2.7)

the output can be transformed from local coordinates νk to global coordinates γk.

Since time discretization is variable, we can always ensure that the xl component

of νk is zero by adding a constraint to the optimization problem. The contouring

error is then simply the yl component of νk. The tolerance bound condition in (2.2)

can then also be computed for the corresponding discretization point µk = µ(sk).

The aim of the optimization problem is to minimize the total time needed

to complete the target geometry subject to the tolerance bounds, velocity and

acceleration limits. To this basic formulation, we introduce an additional term for

the input to promote smoothness; this is used to suppress high frequency content

28 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

Figure 2.7: For every point Ξk of the target geometry Ξ(s) a local coordinate frame
is placed. xl is tangent to the target geometry at Ξk and pointing in the direction
of increasing s whereas yl is orthogonal to xl pointing to the port side. αk is the
angle between the global x axis and xl. The maximum allowed deviation µk is
computed from µ(s). ∆s is the path distance between points Ξk and Ξk+1.

on the input trajectory, which is filtered out by the linear model. This results in

the following optimization problem

min
∆τ, r, γ, z, ν

N−1∑
k=1

∆τk +
1

N − 2

N−1∑
k=2

∥∂2rk∥22 (2.8a)

s.t.

zk+1 = flm(zk, rk,∆τk), k = 1, . . . , N − 1, (2.8b)

γk = Czk +Drk, k = 1, . . . , N, (2.8c)

∆τk ≥ 0, k = 1, . . . , N, (2.8d)

γk ∈ W , k = 1, . . . , N, (2.8e)[
γk
1

]
= Tk

[
νk
1

]
, k = 1, . . . , N, (2.8f)

νk1 = 0, k = 1, . . . , N, (2.8g)

|νk2| ≤ µk, k = 1, . . . , N, (2.8h)

∥∂γk∥∞ ≤ vmax, k = 1, . . . , N − 1, (2.8i)

∥∂2γk∥∞ ≤ amax, k = 2, . . . , N − 1, (2.8j)

where N is the number of discretization points, selected based on the total path

length and tolerance bound, ∆τ = {∆τk}N−1
k=1 ⊆ R, ∂γk = γk+1−γk

∆τk
and ∂2γk =

γk+1−2γk+γk−1

∆τk∆τk+1
are discrete derivative operators, ν = {νk}Nk=1 ⊆ R2 is the output

2.4. TRAJECTORY OPTIMIZATION 29

trajectory in local coordinates, γ = {γk}Nk=1 ⊆ R2 is the output trajectory in

global coordinates, r = {rk}N−1
k=1 ⊆ R2 is the input trajectory, flm is the RK4

approximation of the linear model (2.5), with identified matrices C and D, Tk is

the transformation matrix between global and local coordinates in (2.6), µk is the

discretized maximum allowed deviation from the target geometry,W are the limits

of the working space of the device, vmax is the maximum allowable speed, and amax

is the acceleration limit.

The cost (2.8a) contains two terms. The first penalizes the total time to per-

form the trajectory while the second penalizes the acceleration of the input, pro-

moting fast trajectories with a smooth input, (2.8b) and (2.8c) imposes the RK4

discretization of the linear dynamics (2.5), (2.8d) requires the variable time step

to be non-negative, (2.8e) imposes that the output stays within the working space

of the device, (2.8f) the transformation between local and global coordinates in

(2.7), (2.8g) requires that the xl
k component of νk is zero, in which case the ylk

component is the deviation, (2.8h) bounds the ylk component of νk to be less than

the maximum allowed deviation, (2.8i) and (2.8j) impose component-wise limits

on velocity and acceleration of the output. This formulation is analogous to [28]

where the feedrate and contour error are optimized using a linear model.

Second-stage Optimization Formulation

Experiments applying the trajectory r generated by (2.8) directly to the machine

suggest that this generally results in large deviations from the target geometry,

as can be seen in Figure 2.11, which we attribute to the low fidelity of the linear

model. To improve performance, we refine the trajectory generated by the first

stage using the high-fidelity ANN model (2.4). In principle, it is possible to skip

the first stage and directly embed the ANN model in an optimization problem

similar to (2.8). However numerical experiments suggest that this often leads to

poorer performance even compared to the linear model, as the solver tends to

converge to poor local minima, or fails to return a feasible solution. Here we take

advantage of the output of (2.8) to fix the time discretization and further improve

precision through a second optimization problem based on the nonlinear model.

In practice this leads to a more reliable and scalable overall method.

Given the structure of the nonlinear model, which is trained using time series

data, we sample the target geometry at M equally spaced points in time

Ξ̄i
.
= Ξ(s(ti)) : i ∈ {0, 1, . . . ,M} (2.9)

ti+1 = ti+∆t, where ∆t is the fixed sample rate of the time series data used to train

the nonlinear model. Given this fixed discretization, the target geometry of the

second-stage optimization problem is simply to minimize the deviation from the

30 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

target trajectory while satisfying the tolerance, speed, and acceleration bounds.

This leads to the optimization problem

min
r, γ

M∑
i=1

∥γi − Ξ̄i∥22 (2.10a)

s.t. γi = fnlm(ri−h, . . . , ri−1), i = 1, . . . ,M, (2.10b)

|γi − Ξ̄i| ≤ µi i = 1, . . . ,M, (2.10c)

γi ∈ W i = 1, . . . ,M, (2.10d)

|∂ γi| ≤ vmax i = 1, . . . ,M − 1, (2.10e)

|∂2γi| ≤ amax i = 2, . . . ,M − 1, (2.10f)

where M is the number of discretization points, γ = {γi}Mi=1 ⊆ R2 is the output,

r = {ri}Mi=1 ⊆ R2 is the input trajectory, Ξ̄ = {Ξ̄i}Mi=1 ⊆ R2 is the sampled

target geometry, fnlm is the nonlinear ANN model (2.4), µi is the tolerance bound

evaluated for each discretization point, W are the limits of the working space of

the device, vmax is the maximum allowable speed, and amax is the acceleration limit.

The cost (2.10a) penalizes deviations of the output from the target geometry.

The constraint (2.10b) imposes the nonlinear system dynamics modeled by the

ANN, (2.10c) constrains the output to be within the tolerance bound for each

discretization point, While (2.10d), (2.10e) and (2.10f) ensure that the output, its

velocity and acceleration stay within working space and operational limits of the

device.

In practice, to ensure feasibility, the tolerance constraint is replaced with an

exact L1 penalty which is implemented using slack variables [35]. For longer tra-

jectories, due to memory constraints, the optimization problem can be solved with

a receding horizon strategy. In this case we use an horizon of 11 steps. The maxi-

mum acceleration limit amax is the main parameter determining the total trajectory

time, tuning the solution along the accuracy/trajectory time trade-off curve.

Implementation Details

The optimization problems defined in (2.8) and (2.10) are both nonlinear and are

solved using IPOPT [36], with the JuMP [37], and Casadi [38] interfaces in Julia

and Python respectively. The first stage optimization problem (2.8) is initialized

by taking as r the target geometry traversed at a constant speed. The solution of

(2.8) is then used to initialize the second-stage (2.10).

The computer used throughout this work runs Arch Linux, with Linux kernel

version 5.15, and it is equipped with a GeForce RTX 2080 Ti GPU with 12 GB

of dedicated memory, an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz and

64 GB of RAM.

2.5. EXPERIMENTAL RESULTS 31

For the problem sizes we considered, the first-stage optimization takes approxi-

mately 1 minute to complete (N ≈ 103), and the second-stage takes approximately

between 1 to 4 hours depending on the trajectory time (M ∈ {200, . . . , 1000}).
Lower amax results in slower trajectories which take more time to compute due to

the increased number of function evaluations required. Training of the ANN model

takes approximately 24 h per axis.

2.5 Experimental Results

In this Section, we apply our proposed data-driven optimization methodology from

Section 2.4 to the experimental apparatus in 1.2, using the test cases in 2.2. Our

experiments demonstrate that the methodology is capable of improving system

performance relative to the baseline – the trajectory obtained with the low-level

controller following a not optimized input trajectory – by tracing desired geome-

tries faster and more precisely.

Individual trajectories

We first focus on the letter “r” as a case study and consider a scenario with an

acceleration limit of 1 m s−2; the individual results for the other letters in the test

case are comparable and will be discussed collectively in Section 2.5. Applying our

method results in an optimized input trajectory with a total time of T = 0.807 s.

The experimental result of this new input trajectory is compared with a baseline

performed in the same total time. For this the original, non-optimized shape (in

this case the letter “r”) is sampled at a constant progress speed r(t) = Ξ
(
tS
T

)
,

where S is the total path length, which for a closed shape corresponds to the

perimeter.

Figure 2.8 compares the output and input trajectories for the optimized and

baseline cases in the x − y plane while Figure 2.10a displays the same data as a

function of progress.

Analyzing Figures 2.8 and 2.10a, we see that the optimized output effectively

stays within the selected µ = 20 µm while the baseline output deviates by more

than 100µm. The optimized output trajectory speeds up in areas with low cur-

vature and slows down near corners or other intricate features. Figure 2.10a also

illustrates that the optimized input trajectory deviates aggressively from the tar-

get geometry near areas where the baseline output performs poorly. This can

be interpreted as an attempt to “cancel out” the error; The detail in Figure 2.8

illustrates this behavior in the x− y plane.

32 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

A

BC

D E

F

Start G

0.9 0.8 0.7 0.6
4.5

4.6

4.7

4.8

4.9

x (mm)

y
(m

m
)

4

2

0

2

4

4 3 2 1 0 1 2 3 4

20 μm bound
Target geometry

Non optimized experimental output
Optimized input trajectory
Optimized experimental output

Figure 2.8: Letter “r” of the ETH Zürich Logo. Optimized with amax = 1 ms−2,
including a detail view of station B. Note how the optimized input trajectory
significantly deviates from the target geometry near the corner in B to compensate
for the dynamics of the machine. This leads to significantly smaller error between
the output and the target geometry compared to using the state-of-practice (non-
optimized) input trajectory.

Figure 2.10b display the same information for the airfoil test geometry with a

maximum acceleration of 2 m s−2. The baseline and optimized trajectories com-

plete the part in 1.081 s. Similarly to the letter “r” example, the optimized trajec-

tory slows down near intricate features, in this case the leading and trailing edges

of the airfoil, and accelerates between them. Figures 2.9 and 2.10b show that

the optimized input again seeks to “compensate” for deviations in the baseline

trajectory.

To summarize, we observe that the optimizer exploits two main mechanisms

to improve performance of the machine relative to the baseline system with the

same trajectory time: 1. It reduces the speed of the input trajectory near intricate

geometric features and increases it in areas with low curvature. 2. It “compensates”

for errors in the baseline trajectory by moving the optimized input trajectory in

an opposing direction. In effect, the optimizer exploits information encapsulated

2.5. EXPERIMENTAL RESULTS 33

49.4 49.5 49.6 49.7 49.8 49.9 50.0
x (mm)

3.65

3.60

3.55

3.50

3.45

3.40

3.35

3.30
y

(m
m

)

Target geometry

Non optimized experimental output
Optimized input trajectory
Optimized experimental output

20 μm bound

Figure 2.9: A close-up of the trailing edge of the airfoil test case with amax =
2 m s−2. The optimized trajectory is able to track the desired geometry more
precisely than the baseline, though still not within the 20 µm tolerance band. The
optimized input trajectory is not constrained by the tolerance band.

in the data-driven models to push the limits of system performance and adapt the

input trajectory to the machine capabilities, for the selected maximum acceleration

value.

Precision-accuracy Trade-off

In precision motion systems there is a fundamental trade-off between speed and

accuracy caused primarily by the inertia of the machine. In this Section, we demon-

strate that our proposed methodology is able to improve system performance by

shifting this trade-off.

In our formulation (2.8)-(2.10), the trade-off between speed and accuracy is

controlled by the parameter amax which limits the maximum acceleration of the

input trajectory. We generated trade-off curves for both the letters and airfoil

test geometries by conducting experiments for different values of this parameter

between 0.1 m s−2 and 3.3 m s−2 for the letters and between 0.1 m s−2 and 10 m s−2

for the airfoil, and tested each resulting input trajectory experimentally. Similarly

to the two individual test cases presented above, the non-optimized input trajec-

tories are subsequently run with the same total time as the one found for the

optimized input trajectories.

34 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

EDCBA

0 5 10 15 20 25 30

100

50

0

50

100

150

200

D
e
v
ia

ti
o
n
 (

m
)

±20 m

Non optimized experimental output

Optimized experimental output

Optimized input trajectory

0 5 10 15 20 25 30
Progress (mm)

0

20

40

60

80

100

P
ro

je
ct

io
n
 p

a
th

 s
p
e
e
d
 (

m
m

s
1
)

F G

(a) Letter “r” of the ETH Zürich logo optimized with amax = 1 m s−2. The letters A-G
refer to the points labeled in Figure 2.8.

L

0 25 50 75 100 125 150 175 200

200

100

0

100

200

300

D
e
v
ia

ti
o
n
 (

m
)

±20 m

Non optimized experimental output
Optimized experimental output
Optimized input trajectory

T

0 25 50 75 100 125 150 175 200
Progress (mm)

0

50

100

150

200

250

300

P
ro

je
ct

io
n
 p

a
th

 s
p
e
e
d
 (

m
m

s
1
)

(b) Airfoil test case, optimized with amax = 2 ms−2. The letters L and T refer to the
leading and trailing edges labeled in Figure 2.2.

Figure 2.10: Top panels show the deviation from the target geometry for the
optimized and non-optimized output, as well as the optimized input trajectory.
The non-optimized input trajectory by construction does not deviate from the
target geometry. Bottom panels shows the velocity of the optimized and non-
optimized outputs projected onto the target geometry.

2.5. EXPERIMENTAL RESULTS 35

We use the normalized norms

L1 =
1

M

M∑
i=1

min
s
||γi − Ξ(s)||2 , (2.11a)

L2 =

√√√√ 1

M

M∑
i=1

min
s
||γi − Ξ(s)||22 (2.11b)

L∞ = max
i∈{1,...,M}

min
s
||γi − Ξ(s)||2 (2.11c)

to quantify the deviation between the output γ and target geometry Ξ, both in

simulation and experimentally.

The results are shown in Figure 2.11. In all cases the optimized experimental

output results in significantly more precise trajectories for a given part completion

time than the non-optimized trajectories. The input trajectories optimized in the

first stage exhibit higher deviations than the non-optimized trajectories. This is

to be expected given the prediction error of the linear model, as quantified in

Table 2.1. Moreover, the simulated deviation is lower than the experimental one

due to model mismatch. Figure 2.11 also show that for the same deviation values

the optimized trajectories take less time to complete. For example, in the letters

test case the non-optimized version takes 8.1 s and achieves a deviation of 26 µm,

while the optimized version takes only 2.2 s for an identical deviation. In this case

the optimized trajectory reduces the time needed to trace the shape in 73%. For

the airfoil test case a similar analysis yields a reduction of 57% for a deviation of

47 µm. In Table 2.2 we show the results for 5 different test cases, each at two

different amax scenarios. For all cases our method improves system performance in

L1, L2 and L∞ norms.

Effect of horizon length

In Figure 2.12 we study the effect of optimizing the reference trajectory with a

receding horizon strategy on the first stage optimization. We observe that the

trajectory time is the smallest for the one-shot optimization, and increases with

a reduction of the horizon length. The increase is more pronounced for the Air-

foil test case, which can be traced at higher speeds compared to the Letters test

case. The computation time is also the smallest for the one-shot optimization.

Short horizons are fast to compute, but require the largest number of optimiza-

tion problems to be solved. The maximum computation time is reached for long

horizons, where each optimization problem takes some time to compute and many

are required.

36 CHAPTER 2. TRAJECTORY OPTIMIZATION FOR PMS

2 3 4 5 6 7 8

101

102

103

N
or

m
al

ize
d
L 2

n
o
rm

 o
f

d
e
v
ia

ti
o
n
 (

m
)

Non optimized experimental output
Non optimized simulated output
Optimized experimental output
Optimized simulated output
First-stage experimental output
First-stage simulated output

2 3 4 5 6 7 8
time (s)

0

1

2

3

a
m
a
x

(m
s

2
)

Figure 2.11: Precision-speed trade-off curve for the letters test case. The top panel
shows the normalized L2 deviation of the outputs from the target geometry. The
bottom panel shows the total time to perform the trajectory and the amax used in
optimization. To determine the performance at a given acceleration value, one can
use the lower panel to determine the time needed to complete the trajectory for
a given acceleration, then retrieve the deviation for the corresponding time from
the top plot.

2.6 Discussion

In this Chapter we proposed a method that improves the precision vs. productivity

trade-off of a PMS. We use models built exclusively from experimental data, and

only modify the input trajectory provided to the closed loop control system. Ex-

perimental data obtained for shapes outside of the training dataset corroborates

simulation results and shows that the method can significantly improve system

performance, reliably shifting the precision vs. productivity trade-off curve across

a wide range of operating conditions. This is accomplished by exploiting vari-

able speeds (possible since the full trajectory is optimized in one go), and error

compensation while respecting system operational constraints.

2.6. DISCUSSION 37

amax = 1.0 m s−2 amax = 3.0 m s−2

Shape time L1 L2 L∞ time L1 L2 L∞

– s % % % s % % %

Letter u 1.052 52.7 60.0 63.0 0.618 36.4 38.7 46.1

Letter r 0.807 58.9 64.3 75.1 0.473 32.8 29.7 42.9

Letter c 0.807 80.0 78.5 74.4 0.473 40.2 38.6 54.3

Letter h 0.971 26.6 32.8 31.0 0.568 22.6 27.0 43.1

airfoil 1.322 73.5 69.0 64.9 1.024 75.0 63.0 28.1

Table 2.2: Percent improvement in accuracy after applying the proposed input
trajectory design method compared to the default control without input trajectory
optimization. Experimental results for different shapes and amax.

101 102

Horizon lengthgth

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
o
rm

a
liz

e
d
 t

ra
je

ct
o
ry

 t
im

e
 (

-)

100

101

N
o
rm

a
liz

e
d
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 (

-)

Letters test case

Airfoil test case

Figure 2.12: Trajectory time and computation time of the first stage as function of
the horizon length using a receding horizon strategy. Both times are normalized by
the one-shot optimization case, the right-most points where the horizon is equal
to the number of points used in the discretization N = 128. In this study the
tolerance band is set to 200µm.

Future work will focus on reducing the computational load of the offline input

trajectory optimization and further increasing the ANN complexity to improve the

prediction accuracy.

CHAPTER 3
Optimization-Based iterative

learning control

ILC is used in repetitive tasks to improve performance over iterations by learning

from previous trials. In ILC, the control input is updated between iterations

using the measured error, which is shown to ensure monotonic convergence to an

approximate fixed point of the original problem under various assumptions [20,

19, 39, 40]. An important challenge with Iterative Learning Control (ILC) is to

ensure convergence and constraint satisfaction, which is especially difficult when

the underlying system is nonlinear.

In this chapter we extend existing OB-ILC methods to nonlinear system dy-

namics. Specifically, our goal is to leverage approximate process models to pose

an optimization problem that we iteratively solve using the underlying nonlinear

system while ensuring constraint satisfaction.

Chapter Outline

This Chapter is organized as follows. In Section 3.1 we summarise the state-of-the-

art and contributions, in Section 3.2 we present the problem setting and the control

approach, in Section 3.3 we present the optimization problem and the proposed

OB-ILC approach, in Section 3.4 we present a detailed case study in precision

motion control, in Sections 3.5 and 3.6 we present simulation and experimental

results respectively, and in Section 3.7 we provide closing remarks with potential

future directions.

39

40 CHAPTER 3. OPTIMIZATION-BASED ILC

Notation

We denote the Jacobian by ∇ and the Jacobian along a certain direction d by

∇d. Similarly ∇2 and ∇2
d are the Hessian and the Hessian along the direction

d respectively. ∂n denotes the discrete derivative of order n, defined by ∂nx =

(∂n−1x(i + 1) − ∂n−1x(i))/∆t, ∂0x = x, where ∆t is the discrete time interval,

between x(i) and x(i+ 1).

3.1 State-of-the-art

OB-ILC methods have been proposed in the literature to systematically study

iteration-wise error dynamics and constraint satisfaction. Robust optimization-

based methods [41, 39], interior point-based OB-ILC [42], and norm-optimal ILC

methods [43, 19, 18, 44] are some of the common approaches in the literature for

linear systems. While some of the works consider model mismatch and process

constraints jointly, many of the existing works do not provide robust constraint

satisfaction, and convergence results in the presence of measurement noise. Re-

cently, OB-ILC has been extended to handle process constraints in linear processes

while accounting for noise and model mismatch during all iterations [20].

A survey of the ILC method for nonlinear dynamics is given in [45]. In [40]

robust convergence for a class of nonlinear systems is given, while a neural network-

based nonlinear ILC method is presented in [46]. Linearization-based OB-ILC

methods for nonlinear systems are studied in [47, 48]. Variants of Newton-based

methods are used for nonlinear ILC problems [49, 50, 51]. In [52] a zeroth-order

ILC for nonlinear processes is proposed. It requires solving a nonlinear program

after each iteration and difficult-to-verify properties with approximate sensitivities.

ILC is used extensively in motion tracking problems and has been shown to

improve the performance of gantry systems [53], wafer stages [42], precision motion

systems [18, 19] and various related applications [54, 55].

Contributions

In this Chapter, we propose a novel nonlinear OB-ILC method based on the Se-

quential Quadratic Programming (SQP) method for nonconvex optimization [56].

Specifically, we consider model mismatch and constraints to form approximate

subproblems, which are solved by using measurements from the nonlinear process.

The main contribution of this Chapter is a nonlinear OB-ILC scheme based on the

SQP framework, that requires solving convex quadratic subproblems after each

trial and can handle constraints.

3.2. PROBLEM STATEMENT 41

We illustrate our proposed OB-ILC method for nonlinear dynamics on a pre-

cision motion tracking problem. We present a detailed case study using a high-

fidelity simulator of a precision motion system, and we compare the achieved track-

ing accuracy by using models with different fidelity (linear and neural network-

based).

3.2 Problem Statement

We consider a noisy nonlinear repetitive process of the form

y = f(u) + w, (3.1)

where u ∈ Rn is the input, y ∈ Rm is the output, f : Rn → Rm is the system re-

sponse (input/output map), and w ∈ Rm is a non-repeating disturbance, assumed

to be zero-mean. We focus on the response of a dynamical system over a finite

interval where u and y define input/output trajectories of the underlying nonlinear

system. Therefore, we have u = (u(1), u(2), . . . , u(N)) for an input trajectory of

N time steps, and similarly for y. For example, the input u could be a trajectory

of actuator commands or a reference trajectory tracked by a low-level feedback

controller, and the output y is the actual trajectory traced by the system. In

Section 3.4 we show a case study with this configuration. The input and output

must satisfy the constraints u ∈ U ⊂ Rn, y ∈ Y ⊂ Rm. For example, in a motion

tracking problem, the sets U and Y may encode limits on actuation velocity, and

acceleration.

Our control objective is to choose the input u such that the output y tracks

a target trajectory Ξ as closely as possible. The ILC approach designs a learning

policy π = (x, T , q) of the form

xk+1 = T (xk, yk), (3.2a)

uk = q(xk). (3.2b)

where x is the internal state of the policy, T is the update function, and q is an

output function that recovers the control input from x. The goal is to design x,

T , and q such that the (iteration domain) closed-loop system

uk = q(xk), (3.3a)

yk = f(uk) + wk, (3.3b)

xk+1 = T (xk, yk), (3.3c)

converges to some yk ≈ Ξ, with u ∈ U and y ∈ Y . Due to the dynamics and

constraints yk will, in general, not reach Ξ exactly. Subscript k indicates the

iteration index of the ILC throughout the rest of the Chapter.

42 CHAPTER 3. OPTIMIZATION-BASED ILC

Figure 3.1: A realization of Target, Input, and Output trajectories. The error is
the distance between the output and the target. In the figure we plot ei, the error
for time step i. This is not to be confused with the ILC iteration number k.

Here we propose to design the policy (x, T , q) using SQP. We assume access

to a model that is used to derive gradient and hessian information about f(u).

In subsequent Sections we provide the details of the individual components in

Figure 3.2. We initialize with a feasible input and take an SQP step after each

experiment to evaluate the ILC policy (3.3) using the approximate model of the

system, measurements, and past inputs. The objective of the approach is to min-

imize the output tracking error with respect to a target trajectory, illustrated in

Figure 3.1.

3.3 Optimization Based ILC for non-linear

systems

The process (3.1) is assumed to be nonlinear and unknown, as well its gradient and

Hessian. We assume it to be possible to evaluate (3.1), by running an experiment,

and to have access to a model of the process either from first principles, experi-

mental data or combinations of both, from which gradient and Hessian models can

be derived. Our goal is to efficiently improve the quality of the output trajectory

by leveraging the model information to reduce the number of experiments needed.

Driving the output of the repetitive process to the target geometry can be en-

coded as an optimization problem, where the cost function encodes the objective

of tracking the target trajectory Ξ and the limits on input and output are framed

as constraints. The challenge is to incorporate process data into the optimiza-

tion problem. We can use tools from optimization theory to solve the nontrivial

nonlinear constrained ILC problem. In this work, we focus on adapting the SQP

algorithm to compute the ILC updates.

3.3. OPTIMIZATION BASED ILC FOR NON-LINEAR SYSTEMS 43

Figure 3.2: Scheme of the proposed approach. We start with some initial input u0.
The output is obtained from an experiment. The model is used for the gradient
F and Hessian H information in the SQP step k, which is used for evaluating the
next input u(k + 1).

We encode our control objective in the following optimization problem

min
z

J(z) (3.4a)

s.t.

h(z) ≡ p− f(u) = 0 , (3.4b)

g(z) ≤ 0, (3.4c)

where z = (u, p), U ×Y = {z | g(z) ≤ 0}, J(z) is a function measuring the distance

between the output and target trajectory (e.g., J(z) = ∥p − Ξ∥), and p is an

optimization variable constrained by (3.4b) to be equal to the noise-free system

response f(u).

This is a nonlinear program, that we aim to solve using SQP. In SQP, we

construct and solve a sequence of QPs that eventually converge to a solution of

the original nonlinear problem. The Lagrangian associated with (3.4) is

L(z, λ, σ) = J(z) + λTh(z) + σTg(z), (3.5)

44 CHAPTER 3. OPTIMIZATION-BASED ILC

and the standard quadratic subproblem is

min
∆z

1

2
∆zTB∆z +∇J(z)T∆z (3.6a)

s.t.

∇h(z)T∆z + h(z) = 0, (3.6b)

∇g(z)T∆z + g(z) ≤ 0, (3.6c)

where B ≈ ∇2L(z, λ, σ) is an approximation for the Hessian of the Lagrangian

(3.5). We can use the primal-dual solution (∆z∗, λ∗, σ∗) of the subproblem (3.6)

to construct the SQP-based ILC policy

T (z, λ, σ) =

z +∆z∗

λ∗

σ∗

 (3.7)

It is known that the iteration

xk+1 = T (xk) (3.8)

where x = (z, λ, σ) converges locally at a quadratic rate to minimizers of the

original problem (3.4) that satisfy appropriate regularity conditions (e.g., the linear

independence constraint qualification and strong second order sufficient conditions

[56]).

We modify the SQP algorithm to design an ILC policy by incorporating data.

We assume that f(u) is unknown but can be obtained for any given uk by running

an experiment leading to the output data yk = f(uk) + wk is corrupted by noise

wk. Further, we assume to have access to approximations of the Jacobian and

Hessian of the process derived from a system model

F (uk) ≈ ∇f(uk) (3.9a)

H(uk) ≈ ∇2f(uk) (3.9b)

We adapt (3.6a) to deal with the fact that we do not have direct access to f(u),

replacing h(z) with p− yk, and ∇h = [I −∇f] with [I − F].

min
∆u,∆p

1

2

[
∆u

∆p

]T[
R S

ST Q

][
∆u

∆p

]
+

[∇uJ

∇pJ

]T[
∆u

∆p

]
(3.10a)

s.t.

∆p = F (uk)∆u+ (yk − pk), (3.10b)

uk +∆u ∈ U , (3.10c)

pk +∆p ∈ Y , (3.10d)

3.4. CASE STUDY WITH A 2D PRECISION MOTION SYSTEM 45

where R ≈ ∇2
uL, S ≈ ∇2

y,uL, and Q ≈ ∇2
yL. The first term in (3.10b) imposes

a linearized version of the dynamic constraint, while the second term corrects the

local estimate of the system output given the new measurement yk. Additionally,

R is constructed using the Hessian approximation H(uk).

Finally, we introduce a step size ηk as damping factor for the algorithm’s iter-

ates to encourage convergence; below we use a diminishing step size and provide

simulation results on the effect of the decay rate. The resulting OB-ILC policy

T (z, λ, σ, k) =

zk + ηk∆z∗k
λ∗

σ∗

 (3.11)

where (∆z∗, λ∗, σ∗) is the solution to the modified data-dependant subproblem

(3.10) and ∆z∗ = (∆u∗,∆p∗). Note that constraint (3.10b) explicitly incorporates

data from the real unknown system into our SQP algorithm to compensate for

model mismatch and improve robustness.

The overall algorithm is outlined in Algorithm 1. The ILC loop is terminated

when ∥∆z∗∥ goes below a certain threshold, or when a maximum number of itera-

tions is reached. The SQP steps can be solved using a standard Quadratic Program

(QP) solver. In our implementation, we use OSQP [57] via the Casadi [38] interface

for Python.

Algorithm 1 OB-ILC with SQP steps

1: u← u0 ▷ Initialization
2: repeat
3: yk ← f(uk) + wk ▷ Measurement
4: ∆z∗k ← Solution of (3.10)
5: zk+1 ← zk + ηk∆z∗k ▷ Update
6: k ← k + 1
7: until termination criteria are met

3.4 Case study with a 2D precision motion

system

In this Section, we provide a detailed case study in precision tracking via a non-

linear high-fidelity simulator of a physical system.

The system

As a case study we use a 2-axis high precision motion system depicted in Figure

1.1a. This system contains an internal closed-loop controller, it takes reference

46 CHAPTER 3. OPTIMIZATION-BASED ILC

trajectories as inputs and produces tool-tip trajectories as outputs. In this work,

we use three different models to instantiate Algorithm 1. All model the system

response in discrete time, with a sample rate of 400Hz. For each case, we report σ,

the standard deviation of the prediction error of the model, for input trajectories

with acceleration up to 3m s−2, when compared to experimental data. The three

models are summarized in Table 3.1. For a more detailed description of the system

see Section 1.2, and for details on the model architecture see Section 2.3.

Model Description σ

LM A discrete-time linear model, in a state space lifted rep-
resentation.

236.4µm

NL1 A nonlinear ANN model, with an input layer capturing
200ms of input history, and LeakyReLu activation func-
tions.

16.50µm

NL2 A nonlinear ANN model, with an input layer capturing
500ms of input history, and LeakyReLu activation func-
tions. This model is, for the purposes of simulations, con-
sidered to be the ground truth.

11.27µm

Table 3.1: The three different models of the system used for optimization and
simulation. σ is the standard deviation of the prediction error of the model, for
input trajectories with acceleration up to 3m s−2, when compared to experimental
data.

In the following numerical results, we use either LM or NL1 to derive the

gradient (3.9a) and Hessian (3.9b) information. Since the structure of both models

is known, one can take symbolic derivatives of the output in respect to the input to

obtain the gradient and Hessian. The quality of the derivative information is not

directly affected by the non-repeating disturbance, that is only used to determine

the point where the derivatives are computed. Due to the structure of both models,

the Hessian evaluates to zero. In all simulations, the model NL2 is used in lieu of

the true system, i.e., for the evaluations of f(u) but not its gradients.

3.5. SIMULATION RESULTS 47

Cost and constraints

The optimization problem (3.4) used in the case study is

min
u, p

J(u, p) =
N∑
i=0

∥p(i)− Ξ(i)∥2Qa
+ ∥∂2u(i)∥2Ra

(3.12a)

s.t.

p− f(u) = 0, (3.12b)

p(i) ∈ W , i = 1, . . . , N, (3.12c)

|∂u(i)| ≤ vmax, i = 1, . . . , N − 2, (3.12d)

|∂2u(i)| ≤ amax, i = 1, . . . , N − 3, (3.12e)

|∂3u(i)| ≤ jmax, i = 1, . . . , N − 4, (3.12f)

where N is the number of points in the target trajectory Ξ = {Ξi}Ni=1 ⊆ R2,

p = {pi}Ni=1 ⊆ R2 and W ⊆ R2 is the workspace. The first term of the cost

function penalizes deviations of the output with respect to the target geometry,

while the second term regularizes the input by penalizing the acceleration. We use

Qa = 106I, Ra = 10−2I to reflect the different order of magnitude of the input

acceleration and output deviation. For the constraints we use vmax = 2, amax = 2,

jmax = 500, derived from the physical limits of the machine. The number of points

N in the target trajectory (see Figure 3.7) is 314, which corresponds to 0.785 s

time discretization between sample points given the sample rate of 400Hz. As the

target geometry we use the outline of the letter “r” from the ETH Zurich logo,

shown in the inset of Figure 3.7. The values for the velocity, acceleration, and jerk

limits are derived from the physical limits of the machine.

3.5 Simulation Results

We present results using LM and NL1 for evaluating the approximations in (3.9)

and discuss the effect of the initial input u0 and the decay rate of the form ηk =

η0k
−c on ILC performance.

Effect of the model

The results presented in Figure 3.3 and Figure 3.4 show that for the iterations

taken using gradient information from both the LM and the NL1, the error con-

verges to a value of the same order of magnitude. However, we see LM converge

to a solution with lower deviation and at a faster rate compared to NL1. This

result is at first surprising given that the prediction error of the LM is one order of

magnitude higher than NL1. We note however that NL1 is built with LeakyReLu

48 CHAPTER 3. OPTIMIZATION-BASED ILC

0 5 10 15 20 25 30

Iteration number

100

101

102

103

rm
s

er
ro

r
(µ

m
)

ILC with LM

ILC with NL1

Figure 3.3: Simulation results. Output deviation as a function of the iteration
number for SQP steps using the derivative information from either the LM or NL1
models, evaluated with NL2 as ground truth. The initial condition for both series
is the target geometry traced at constant velocity. Step size updated with c = 0.5.

Figure 3.4: Simulation results. Output deviation as a function of the iteration
number for SQP steps using the derivative information from either the LM or
NL1 models, evaluated with NL2 as ground truth. Two different initialization
are provided for each case. The initialization starting with rms = 5250.0µm
is the solution of an optimal time problem with dynamics modeled with LM,
where the velocity along the path is adjusted, for example negotiating intricate
features slower and straight segments faster. The initialization starting with rms =
32.1µm takes the optimal time solution as a starting point and solves a global
optimization problem with dynamics modeled by NL1 and additional constraints
on deviation, velocity, and acceleration. Further details can be found in [8]. Step
size ηk = η0k

−c with c = 0.5.

3.5. SIMULATION RESULTS 49

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
60

40

20

0

20

40

60
Initial trajectory
Optimised with ILC, linear model

Figure 3.5: Simulation results. Output error as a function of time, after 20 ILC
steps using the LM, and evaluated with NL2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

60

40

20

0

20

40

60

Initial trajectory
Optimised with ILC, nonlinear model

Figure 3.6: Simulation results. Output error as a function of time, after 20 ILC
steps using the NL1, and evaluated with NL2.

activation functions, and thus its gradient is piecewise constant and discontinuous.

A visualization of the nonlinear model response is presented in Figure 3.10. De-

spite its higher prediction error, the structure of the LM is found to provide more

accurate gradient information. Different shapes and tunings of the cost function

show mostly similar trends of the ILC loop using the linear and nonlinear models

(data not shown). We have observed that the system is only mildly nonlinear, and

since the ILC step relies on measurements that do not depend on the models used,

the fidelity of the approximations (3.9) is apparently not of critical importance.

We hypothesize that a system with more pronounced nonlinearities would expe-

rience faster convergence with ILC steps relying on the nonlinear model for the

approximations. In Figure 3.5 and Figure 3.6, we show the output deviation as a

50 CHAPTER 3. OPTIMIZATION-BASED ILC

2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6

4.5

4.6

4.7

4.8

4.9

5.0

Objective
Initial trajectory
Optimised with ILC, linear model
Optimised with ILC, nonlinear model

Figure 3.7: Simulation results. Detail view of trajectories before and after 20 ILC
iterations. The figure shows a 20µm band around the target geometry as a visual
aid.

function of time before and after 20 steps of the proposed method. The deviations

are computed between the output and the target trajectory depicted in Figure 3.7,

where the output trajectories are plotted in x− y coordinates.

Effect of initialization

In Figure 3.4, we show the results for two different initial conditions. The results

illustrate that since the underlying problem is nonlinear it is possible to be in a local

minimum and not achieve a better solution, depending on the initial conditions.

3.5. SIMULATION RESULTS 51

0 10 20 30 40 50

Iteration number

10−3

10−2

10−1

100
N

or
m

al
iz

ed
rm

s
er

ro
r

ILC with c=0.2, LM

ILC with c=0.5, LM

ILC with c=0.9, LM

Figure 3.8: Simulation results: Normalized error (rms) as a function of the iteration
number for step size ηk = η0k

−c with the LM, and an initialization with rms =
5250.0µm.

0.0 0.2 0.4 0.6 0.8 1.0

c

0.002

0.004

0.006

0.008

0.010

0.012

N
or

m
al

iz
ed

rm
s

er
ro

r

10 iter

50 iter

Figure 3.9: Simulation results. Output error (rms) after 10 and 50 iterations
for different step size rates ηk = η0k

−c with the LM, and an initialization with
rms = 5250.0µm.

52 CHAPTER 3. OPTIMIZATION-BASED ILC

0.0 0.2 0.4 0.6 0.8 1.0

Input (µm)

−3

−2

−1

0

1

2

3

O
u

tp
u

t
(n

m
)

Model output, detrended

Model expected output

Figure 3.10: Output prediction of the NL1 for the x axis. For each point, the
input is set to a linear sequence u = {l, 2l, . . . , 80l}m, with l ∈ [1, 1+ 5× 10−6] m.
The horizontal axis shows the last value of the offset-free input vector 80lm. The
vertical axis shows the output deviation from the linear least squares fit of the
model output.

Effect of step size

Next, we study the effect of step size on convergence behavior. We take ηk = η0k
−c

and compare the convergence. We show the error trajectories for c = {0.2, 0.5, 0.9}
(Figure 3.8). In Figure 3.9 we plot the error after 10 and 50 iterations for different

values of c. We observe that for c between 0.3 and 0.6, we obtain fast decreases in

the error without compromising the value at a steady state.

3.6 Experimental Results

Figure 3.11 shows experimental results for different initializations of the ILC

method, using the LM as the gradient model. For all four cases, the target path is

the letter “r” from the letters test case. The non-optimized case tracks this path

with constant path speed. In contrast, the remaining cases track the projection of

the optimal time trajectory found with the first-stage optimization into the target

path, as described in Sections 2.4 and 2.4. The target, as well as input trajectories,

all have, by construction, the same total trajectory time. The results show that

using the non-optimized target, sampled at constant speed, as an input trajectory

3.6. EXPERIMENTAL RESULTS 53

0 2 4 6 8

Iteration number

100

101

102
rm

s
er

ro
r

(µ
m

)
Non-optimised

1st-stage optimization

2nd-stage optimisation with NL1

2nd-stage optimisation with NL2

Figure 3.11: Experimental results. ILC steps using gradient information from
the LM. Step size rate ηk = η0k

−0.5. The target shape is the letter “r” from the
letters test case, performed in 0.783 s.The plot shows the evolution of the error
for different initializations of the reference trajectory as a function of the iteration
number. The non-optimized case tracks the target shape at constant speed. The
first-stage optimization case starts from the optimization result as explained in
Section 2.4, and the second-stage optimization case from the optimization result
as explained in Section 2.4. For this test case, it was observed that after nine
iterations the error varies at a much smaller rate.

result in a large (305.6µm rms) error, that can be compensated for with nine iter-

ations of the OB-ILC method to a value of 13.0µm. Initializing the method with

the result of the first-stage optimization starts also with a large (136.0µm) error,

that can be driven down to 6.5µm. Finally, starting with an input trajectory that

is the result of the second-stage optimization with either the NL1 or NL2 models,

we get an error of 11.2µm and 13.3µm which are improved only slightly after nine

iterations to 9.5µm and 8.5µm respectively.

Taken together this results indicate that the input trajectories designed with

the second-stage optimization explore to a large degree the capabilities of the

machine. Due to model mismatch, they can however be further improved by taking

additional experimental data. A smaller error can be obtained from a different

initialization. We hypothesize that the solution of second-stage optimization is a

a local minimum of the nonlinear optimization problem, and that this property

is inherited by the iterates of the OB-ILC method. The first-stage optimization

initialization reaches a lower error value compared to the non-optimized version.

This is to be expected, since the target trajectory in this case is optimized for path

speed, slowing down for corners and other intricate features and speeding up for

54 CHAPTER 3. OPTIMIZATION-BASED ILC

0 5 10 15 20 25 30

Iteration number

100

101

102

rm
s

er
ro

r
(µ

m
)

Gradient LM

Gradient NL1

Figure 3.12: Experimental results. ILC steps using gradient information from the
LM or NL1 gradient models. Step size rate ηk = η0k

−0.5. The target shape is the
letter “r” from the letters test case, performed in 0.548 s.

low curvate segments.

Figure 3.12 shows experimental results comparing the OB-ILC iterates for two

different gradient models. As seen previously in simulation, we observe that using

the LM gradient model results consistently in lower errors.

3.7 Discussion

We propose an algorithm for optimization-based ILC of nonlinear systems based

on the SQP framework. We formulate the ideal optimization problem and find

approximate solutions using models of the true plant. We illustrate the perfor-

mance of the algorithm on a precision motion control simulation study using a

high-fidelity simulator. The results show that our method works well under var-

ious parameter tunings and we are able to show significant improvement in the

tracking error over baseline initial iterations. Contrary to our initial assumptions,

the ILC using gradient information from a simpler linear model performs best

than the one taken from the more accurate nonlinear one. We observe that the

performance of a model depends on its application.

CHAPTER 4
Quadcopter-based Volume

Estimation in Indoor

Environments

Autonomous robotic platforms are increasingly used for data collection, for exam-

ple in structural inspection [58], agriculture surveillance, search and rescue, and

industrial environments. In industrial warehouses it is common to store raw ma-

terials as stockpiles, and determining the current amount of material in stock is of

paramount importance for logistics. However, to the best of our knowledge, the

task of estimating the volume with an automated robotic platform in an indoor

environment has not been addressed. On the contrary, current business practice is

to take differential measurements of the volume added or removed, which is prone

to drift over time, and on periodic inspections from experts, which are costly and

inaccurate. A quadcopter equipped with an adequate suite of sensors could be used

for this purpose, since it can fly above the pile of bulk material taking advantage

of its maneuverability to take measurements from poses otherwise unreachable

while avoiding obstacles in cluttered environments. Estimating the volume using

autonomous quadcoptor in indoor environment imposes several requirements, e.g.:

1. indoor localization, where the location uncertainty depends on the drone state,

2. accurate measurements in environments with uneven light and dust, 3. an effi-

cient surface reconstruction method, able to cope with large amounts of data, and

4. path planning, due to the limited time budget to fly the drone and the presence

of obstacles.

55

56
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

Chapter Outline

This chapter is organized as follows. In Section 4.1 we summarise the state-of-

the-art and contributions, in Section 4.2 we present the problem statement, in

Section 4.3 we derive detailed measurement models for the localization system

and LiDaR sensor, in Section 4.4 we propose a method for estimating the volume,

in Section 4.5 we propose a greedy algorithm to approximate a solution of the

original problem.

4.1 State-of-the-art

Localizing a mobile platform in a GPS-deprived environment with a known map

can be achieved using information obtained from dead-reckoning, infrared, radio

or sound-based distance measurements, visual information using a motion capture

system, or from an onboard camera. In this work localization is inferred from an

onboard camera, detecting a set of fixed, previously mapped features, given the

lower overall system cost, flexibility and taken into account the accuracy require-

ments.

Surface reconstruction can be performed from images, with photogrammetry

methods such as Structure from Motion (SfM) [59]. This methods are however

problematic for objects with homogeneous surfaces or improper lighting. An al-

ternative way is via active laser scanners (LiDAR) which project a laser beam and

measure the time of flight of the reflected light. This sensors are precise and are not

affected by the effect of scale uncertainty present in vision based measurements.

Furthermore 2D LiDAR systems are lighter than their 3D counterparts, allow-

ing the use of more maneuverable quadrotors. There are commercial examples

of drone-based solutions that use this method in outdoor environments [60]. The

reconstruction quality depends to a large degree on the availability and quality of

measurements. Classic approaches for quality-driven and automated 3D scanning

use volumetric [61] and Poisson mesh-based metric. Algorithms also been proposed

for multi-view stereo reconstruction [62], defining heuristics to decide on the util-

ity of the next measurements and optimize set viewpoints based on initial scans.

Alternatively, 2D laser scanner has been used for 3D mapping in [63, 64, 65], often

mounting the 2D scanner on a rotating motor to emulate 3D LiDAR properties.

In this Chapter, we consider the problem of estimating the volume of material

within a given domain using a drone mounted 2D LiDAR unit operating in an

indoor environment, leveraging information about the surface. This setting has

challenges unique to GPS denied environments, notably the uncertainty in the

localization depends on the position of the drone, which must follow trajectories

that keep enough features in view to maintain localization accuracy. In [66] the

4.2. PROBLEM STATEMENT 57

authors consider visual inspection of ship hulls using underwater vehicles. In [67]

the authors consider inspection of 3D object, and [68] deals with a similar problem

setting, but localization uncertainty is not taken into account. This work differs

since it deals with indoor environments and carefully considers the uncertainty of

the measurements.

Contributions

Our contributions are threefold: 1. we derive measurement models and uncertainty

estimates for the camera-based localization scheme and the LiDaR system used

to measure the surface; 2. we propose a scalable methodology for estimating the

volume of material based on LiDaR measurements and qualifying the uncertainty

of our estimate; 3. we propose a preliminary informative path planning method

that greedily minimizes the uncertainty in the volume estimate.

4.2 Problem Statement

We consider the problem of estimating the volume of a pile of bulk material inside

a region of interest using a quadrotor-based mobile sensor. Let h(x) = h(x1, x2)

be the true surface function of the height of the pile, defined in the domain of

interest D = [x−
1 , x

+
1]× [x−

2 , x
+
2]. The volume of the pile is

V =

∫∫
D
h(x)dx, (4.1)

and the dynamics of the quadcopter are given by

χ̇full(t) = f(χfull(t), u(t)), (4.2a)

u(t) = g(r(t), χ̂full(t)) (4.2b)

where χfull(t) = (p, θ, v, ω, b) : [0, T] → R13 is the drone state, consisting of its

position p, orientation θ, velocity v and angular velocity ω, as well as the battery

state of charge b, u(t) : [0, T]→ R4 are the rotor voltages, g is a feedback controller

that stabilizes the system to a commanded position and yaw setpoint r, and χ̂full(t)

is an estimate of the current state of the drone. In this work we assume that the

low-level controller can follow the reference closely, such that χfulli(t) ≈ ri(t), i ∈
{1, . . . , 4} if the time derivatives of r(t) up to order four (velocity, acceleration,

jerk and snap) are within specified bounds, derived from actuator limits U [69].

The quadcopter is equipped with a 2D LiDaR, measuring the radial distance

dl from the sensor to the surface of the pile, that is used to estimate the volume

of the pile based on a reconstruction of the surface. The drone is also equipped

with a camera and computer vision algorithms that allow it to detect and identify

58
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

Figure 4.1: A sample of the scaled topographic data used in simulation. The
color circles on the back plane are previously mapped visual features used for
localization. The drone represented is not to scale.

features placed in the environment at known locations. These features are used to

localize the drone which must keep a minimum number of features within its field

of view at all times.

We have now all the ingredients needed to formulate our volume estimation

problem. We aim to find a reference trajectory r(t) : [0, T]→ Cfree ⊆ R3 × [0, 2π[,

where T is the trajectory time and Cfree is the set of 3D positions and yaw where

the drone is allowed to fly and is able to detect enough features to localize itself,

that minimizes the volume estimate uncertainty,

4.3. LOCALIZATION 59

Figure 4.2: An example of the image in the camera plane, showing the detected
points Pim which are used to infer localization.

min
r(t)

V(V(T)) (4.3a)

s.t. χ̇full(t) = f(χfull(t), u(t)), (4.3b)

u(t) = g(r(t), χ̂full(t)), (4.3c)

χfull(t) ∈ Cfree, (4.3d)

u(t) ∈ U , (4.3e)

where V is the variance operator. This is a hard problem as the uncertainty in the

volume estimate is a consequence of uncertainty in the LiDaR measurements which

in turn depends on the uncertainty in the camera-based localization system.

4.3 Localization

We are primarily interested in operations in indoor GPS denied environments.

Our drone is equipped with an IMU and a front facing camera, which is used to

localize the drone based on markers placed in known locations in the environment.

Both markers and natural features are detected using computer vision algorithms

([70, 71]) which also have been demonstrated by Tinamu Labs ([72]). We require

that enough previously mapped features are visible at any given point of the

flight to assure that the state can always be determined, independently from other

sensory information. Let Pim = {Pimk}Nk=1 ⊂ R2 be the set of N features detected

and identified in the image plane of the onboard camera, as exemplified in Figure

4.2. We can compute the coordinates in the image frame Pim from the global

frame Pg as a function of the position and orientation of the drone χ = {χfulli}6i=1

Pim(χ) = Cc
imT

g
c (χ)Pg, (4.4)

60
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

where T g
c (χ) is the geometric transform from the global to the camera frame, and

Cc
im the transform from camera frame to image plane given by the camera model.

We can solve a nonlinear least squares problem to find an estimate of χ

χ̂ = argmin
χ

N∑
k=1

∥Pim(χ)− Pim∥22. (4.5)

Linearizing the nonlinear least squares problem around the solution, for nor-

mally distributed measurement errors, the estimate χ̂ is also normally distributed

with variance V(χ̂) = σ2(JTJ)−1, where σ is the standard deviation of a measure-

ment in the image plane, and J = ∇Pim(χ)|χ=χ̂ is the Jacobian. Assuming χ̂ ≈ χ,

we can compute the variance of the state estimate Σχ as a function of the drone

coordinates

Σχ(χ) = V(χ̂)|χ̂=χ. (4.6)

Let qpos(Σ
χ(χ)) = 1/

√
Tr(Σχ) be a function mapping the covariance matrix

to a scalar quality of position fix metric. This metric is used to define the feasible

flying domain Cfree as

Cfree = {χ ∈ C : qpos(Σχ(χ)) > τ | W} (4.7)

where χ is the drone state, C is the configuration space, τ is the minimum quality of

fix threshold, andW the available information about the visual features positions.

The IMU and position measurements derived from the vision system are fused

using an extended Kalman filter [73] to produce an estimate of the full state of the

drone. The full estimate is used by the inner loop controller g while the planning

algorithm only use the position and yaw localization.

4.4 Volume estimation

Now that we know the position and orientation of the drone, as well as their uncer-

tainties we consider the LiDaR model. The sensor rotates in a plane with constant

angular velocity, collecting approximately 10K distance samples per second, at dis-

crete angles as illustrated in Figures 4.1 and 4.3. We can compute the hit point

coordinates of the LiDaR measurements with the geometric transformation

zm(χ, α) = T l
g(χ, α)dl, (4.8)

where T l
g(χ, α) is the geometric transformation converting points in the LiDaR scan

line frame to global coordinates, α is the angle of the sensor, dl is the measured

distance, and zm ∈ R3 are the coordinates of the hit point. Propagating the

4.4. VOLUME ESTIMATION 61

Σm

Σx

Terrain

dl

Drone

Measurement

Σα

Σdl

Shadow region

Figure 4.3: The 2D LiDaR measures the distance from the drone to the terrain
dl. The uncertainty in the drone position and orientation Σχ, LiDaR angle Σα

and measurement distance Σdl are propagated to obtain the covariance of the
measurement Σm. Due to features of the terrain some areas might not be visible
from current pose, marker as the shadow region in the bottom right.

uncertainty of each of the variables we obtain an estimate of the covariance of the

measurement zm, where again we use the Jacobian of the geometric transformation

Σm = ∇χT
l
g(χ, α)dl Σ

χ (∇χT
l
g(χ, α)dl)

T

+∇αT
l
g(χ, α)dl Σ

α (∇αT
l
g(χ, α)dl)

T

+ T l
g(χ, α) Σ

dl T l
g(χ, α)

T,

(4.9)

where Σm, Σχ, Σα and Σdl are the covariance matrices of a measurement, the drone

position and orientation, the LiDaR angle, and measured distance, respectively.

Note that due the intrinsic properties of the sensor, only obstacles in a certain

distance range can be detected dl ∈ [dmin, dmax]. Figure 4.3 shows how the LiDaR

scan obtains data about the surface. We condense the position uncertainty

Σm, propagating the errors-in-variables to errors in height, given known statistical

information about the slope of the terrain

Σm
(z) =

[
σt σt 1

]
Σm
[
σt σt 1

]T
, (4.10)

where σt is the standard deviation of a Gaussian distribution fitted to an histogram

of the slopes of this terrain, as shown in Figure 4.4.

Surface model

A common way to store the information about a 3D object is to use voxels, a

generalization of the concept of pixel in 3D. Variations include sparse octree rep-

resentations [74]. However, if we assume that the surface can be described with a

62
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

−3 −2 -1 0 1 2 3

Slope (m/m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or
m
al
is
ed

fr
eq
u
en
cy

(-
)

Histogram

Gaussian Distribution

Figure 4.4: The volume slope distribution can be approximated by a normal dis-
tribution N (0, σs), and it is a property of the material.

function from x, y to h we can simplify the representation. One option is to use

kriging-based methods [75] such as a GP [76]. This is the method used in [68]

where an informative path planning framework is proposed.

We parameterize the surface using a grid of heights. Each point of the grid is

described by a univariate normal distribution

hi,j ∼ N (µij, σ
2
ij), i = {1, . . . , N}, j = {1, . . . ,M}, (4.11)

where N and M are the dimensions of the grid. Between the grid points, we

represent the surface distribution (the surface height is a random variable due

to uncertainty) using a Gaussian Process model where the height grid provides

inducing points.

We use a specific kernel tailored to the physics of our surface. Due to their

physical properties, the materials piled up in the region of interest have a volu-

metric organization which can be described statistically. The Matérn Kernel is a

good choice to estimate the correlation of the heights of two points separated by

a distance s [76]

k(s) =
1

Γ(ν)2ν−1

(√
2ν

l
s

)ν

Kν

(√
2ν

l
s

)
, (4.12)

where l is the lengthscale, ν is a positive parameter controlling the smoothness

of the function, and Kν and Γν are Bessel and Gamma functions, respectively.

4.4. VOLUME ESTIMATION 63

We describe the surface as a sparse GP with fixed inducing points X which are

obtained from the height grid, f(x) ∼ GP(0, k(X,X ′)). At an arbitrary set of

points X∗ ∈ D, we can predict the expected value and variance of the height of

the surface using the equations

M f∗
Θ = E[f∗] = KX∗X [KXX + Σ2I]−1Z (4.13a)

Σf∗
Θ = V[f∗] = KX∗X∗−

KX∗X [KXX + Σ2I]−1KXX∗

(4.13b)

where E is the expected value, V is the variance, KX∗X is the covariance between

the points X and X∗ computed with the kernel (4.12), where s is the pairwise

distance between the points ([76]), Z is the vector of the z coordinates of the

inducing points, and Σ the vector of their uncertainties. For a certain kernel

lengthscale, the vector Θ
.
= [Z,Σ] contains all the information needed to make

predictions. For computational reasons, the kernel is made sparse by setting to

zero the correlation between points outside of a ball with radius γl. With this

model for the surface, we can readily compute the volume, its expected value and

variance using the equations

V =

∫∫
S

f(x∗)dS (4.14a)

µV = E(V) ≈ A□

N∑
i=1

M∑
j=1

M f∗
ij , (4.14b)

(σV)
2
= V(V) ≈ A2

□

N∑
i=1

M∑
j=1

Σf∗
ij , (4.14c)

where A□ is the area of the base of each square cuboid.

Update

When a new measurement is obtained we first propagate it to the grid points.

This is accomplished using the kernel Σm
(z) + σ2

t (e
s/l − 1), where σt is the standard

deviation of the normal distribution that approximates the slope distribution, s is

the distance between the measurement point and the grid coordinates, and l is the

lenghtscale used in (4.12). We then use a Kalman filter to update the parameters

of the height model (4.11)

µk = (I −Kk)µk−1 +Kkzk

σk = (I −Kk)σk−1

Kk =
σ2
k−1

σ2
k−1 + (Σm

(z)k
+ σ2

t (e
s/l − 1))

(4.15)

64
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

where µk−1, µk, σk−1, and σk are the mean and standard deviation of each point

of the grid, before and after the update step, zk and Σm
(z)k

are the measurement

value and covariance from (4.9). Kk is the Kalman gain.

4.5 Planning

To estimate the volume of the surface, the robot needs to collect information of the

whole surface, moving on a path suitable for this purpose. Two main approaches

exist in path planning, that achieve this goal. Coverage path planning [77] is a

method to design paths that visit all points of interest while avoiding obstacles.

Typical cost functions minimize the length of the path, whereas with informative

path planning [78] the objective is to maximize the amount of information in a

feasible path. An overview of path planning algorithms can be found in [79].

For the purposes of planning we 1. assume a constant nominal surface height

h0, which allows us to compute dl; 2. decouple the motion of the drone and the

rotating LiDaR scan, since the latter is at least one order of magnitude faster;

3. neglect the possible effect of shadows, as defined in Figure 4.3; 4. we find a

discrete set of waypoints instead of a continuous time trajectory. We use a greedy

algorithm for planning, where the next point to be picked is the one with that

minimizes the volume estimate uncertainty

r∗k+1 = arg max
rk+1

∥σV
k+1(rk+1)∥2 (4.16a)

s.t. ∥rk+1 − rk∥2 ≤ R, (4.16b)

r ∈ {Cfreei}4i=1, (4.16c)

where σV is computed with (4.14c), r is the reference, R is the radius of a ball where

the next step can lie. The simulations of the next section consider only the x and

y components of r, and fix z and the yaw. The greedy algorithm is suboptimal but

fast to evaluate, and allows us to test the surface reconstruction method. Future

work will focus on implementing more advanced planning algorithms.

4.6 Simulation Results

We demonstrate our approach for volume estimation on a topographic map of

the Alps mountain range, rich on features, which we scale by a factor of 10−3.

We show simulation results for two trajectories, where the first one is a fixed,

manually created square wave pattern, and the second is the trajectory resulting

from applying the path planning algorithm from Section 4.5, in the variables rx
and ry, while keeping rz and ryaw fixed. The disposition of visually identifiable

4.6. SIMULATION RESULTS 65

Figure 4.5: The left plot shows the ground truth surface height used in simulation.
The right plot shows the quality of fix qpos as a function of the xy coordinates, for
z = 7m and zero yaw. Overlayed are the trajectories of the square wave pattern
in solid blue and the greedy algorithm in dashed red. The yellow region on the
top of the plot indicates constraints in the position coordinates.

features in the example used in this simulations, shown in Figure 4.1, creates an

uneven uncertainty of position map, as shown in the right plot of Figure 4.5, where

darker colors represent lower uncertainty.

Figure 4.6a shows the path of the drone and the altitude uncertainty map,

and Figure 4.6b the surface reconstruction map for the fixed square wave pattern.

Traversing the whole region results in reduced uncertainty of surface reconstruc-

tion. It is in general not trivial to manually design paths that avoid constraints or

regions with insufficient localization quality. As for the greedy algorithm and its

resulting trajectory, we show in Figure 4.7a the path of the drone and the altitude

uncertainty map, and in Figure 4.7b the surface reconstruction map. The simula-

tion results show that a feasible reference trajectory is found that visits most of the

region of interest through regions with a high quality of position fix and drives the

uncertainty of the volume down to σV/µV = 2.26% and a relative error of 2.53%

for the greedy algorithm, comparable with σV/µV = 2.42% with a relative error of

2.30% for the square wave pattern. We speculate that the two methods perform

similarly in this example due to the greedy nature of the planning algorithm used,

which optimizes only for the next step ahead, thus finding only an approximate

solution for the optimization problem defined in (4.3). Also note that in this pre-

liminary result the yaw and altitude are kept fixed, so the planner has less degrees

of freedom to explore. These factors taken together make it difficult to improve

on the benchmark square wave pattern. Figure 4.8 shows the evolution of the

volume estimate as well as the uncertainty as a function of the number of samples

66
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

(a) Uncertainty map.

(b) Surface renconstruction.

Figure 4.6: Simulation results. Uncertainty map and Surface reconstruction with
the square wave pattern after 20 steps (left plot) and 50 steps (right plot).

collected. The two paths have the same length and number of samples, and the

evolution of the volume and its uncertainty is similar for both paths. Furthermore,

the final reconstructions from Figures 4.6b and 4.7b approximate the ground truth

shown in Figure 4.5 adequately. In summary the simple greedy planner finds a

path that is by all metrics similar to the manually designed square wave pattern,

allowing the automation of the task of designing paths for experimental volume

estimation campaigns.

4.7. EXPERIMENTAL RESULTS 67

(a) Uncertainty map.

(b) Surface reconstruction.

Figure 4.7: Simulation results. Uncertainty map and Surface reconstruction with
the greedy planner after 20 steps (left plot) and 50 steps (right plot).

4.7 Experimental Results

The surface reconstruction and associated uncertainty, generated from experimen-

tal data collected from a warehouse containing loose sand is shown in Figures 4.9

and 4.10 for the square wave pattern and Greedy planner respectively. The tra-

jectory length, altitude, yaw, and number of points used for surface reconstruction

is the same in both cases. The measured quadcopter trajectory is overlayed in

black, with the arrow marking the direction of travel. Some artifacts from the

operation of the drone are observable. In Figure 4.9, the scan pattern is preceded

and followed by segments connecting it from and to the starting and finish points.

In Figure 4.10 the starting point is considered by the Greedy Planner, and after

68
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

0 20 40

Measurement number

0

500

1000

1500

2000

2500

3000

3500

V
ol

u
m

e
(m

3
)

Ground truth

Estimate µ

Estimate µ± 2σ

Estimate µ± 1σ

0 20 40

Measurement number

0

500

1000

1500

2000

2500

3000

3500

V
ol

u
m

e
(m

3
)

Ground truth

Estimate µ

Estimate µ± 2σ

Estimate µ± 1σ

Figure 4.8: Simulation results. Evolution of the volume estimate and its uncer-
tainty along the trajectory. The left plot shows the result for the square wave
pattern and the right plot for the greedy algorithm.

the reference is completed, the quadcopter briefly hovers in place before initiating

the landing procedure. An independent measurement using visual information and

SfM of the same surface is shown in Figure 4.11. In Figure 4.12 we compare this

independent measurement against the surface reconstruction of both trajectories.

Due to the experimental nature of this data, we do not possess ground truth to

compare against. A qualitative analysis of the results show that, similarly to the

simulation case, the surface reconstruction using LiDaR data agrees between the

two datasets. We verify that they are comparable as well with the data obtained

with the SfM method, altought deviations up to ±2m are observed.

4.8 Discussion

We develop and implement a framework for volume and uncertainty estimation

for an autonomous robotic platform collecting experimental data with a LiDaR

scanner under variable position uncertainty. The surface reconstruction and vol-

ume estimation are validated in simulation with a feature rich surface, for two

trajectories generated manually and with a simple greedy algorithm. The method

is also tested experimentally, yielding consistent results, that are comparable to

an independent method for surface reconstruction.

4.8. DISCUSSION 69

Figure 4.9: Experimental results. Uncertainty map and surface reconstruction
with the square wave pattern. The black dots show the position of the drone
during the scan.

Figure 4.10: Experimental results. Uncertainty map and surface reconstruction
with the greedy planner. The black dots show the position of the drone during
the scan.

70
CHAPTER 4. QUADCOPTER-BASED VOLUME ESTIMATION IN INDOOR

ENVIRONMENTS

Figure 4.11: Experimental results. Independent surface reconstruction with a
camera-based system using SfM provided by Tinamu Labs.

3 2 1 0 1 2 3
Estimate difference (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d
fre

qu
en

cy
 (-

) Square Wave Pattern
Greedy

Figure 4.12: Experimental results. Histogram of the height difference between the
surface reconstructions obtained with the square wave pattern and greedy trajec-
tories, and the independent surface reconstruction with a camera-based system
using SfM provided by Tinamu Labs. The two histograms overlap for the most
part, with the overlap represented in green. Interpolation is used to obtain points
from the grid-based surface model. This data was produce with data from the
area where 10 ≤ y ≤ 30 (m).

CHAPTER 5
Conclusion

In this thesis we propose a set of methods for trajectory planning, with applications

in PMS control and robotic based inspection for volume estimation. The three

methods proposed were demonstrated both in simulation and emprically.

5.1 Contributions

We developed a family of high fidelity, data driven, input-output models, that

capture the dynamics of a specific PMS. Although specific, the model structure

should generalize well for other systems with similar configurations. Due to its

input-output structure the model prediction accuracy does not degrade over the

prediction horizon. Using this model, we proposed and validate a method for

offline optimization of input trajectories for PMS, that improves the accuracy vs.

trajectory time trade-off curve, when compared to the default controller. Using

a gradient model and experimental iterations, we propose and validate a OB-ILC

method that reduces the tracking error.

The trajectory optimization methods of Chapters 2 and 3 are similar in their

goals, but differ considerably on their approach. In Chapter 2 we rely heavily on

a high-fidelity model. Although the computational burden is high, the method

allows for offline optimization of input trajectories, without the need for further

iterations. In contrast, in Chapter 3, a small number of iterations is needed to

achieve an acceptable error, with a low computational burden. Given that the pri-

mary goal of designing fast trajectories is to improve productivity, a practitioner

should consider this trade-off when deciding which approach to use. The iterative

nature of the OB-ILC method, leads to experimental campaigns that take an order

of magnitude longer to complete. This qualitative insight, obtained after having

run a large amount of experiments, makes it clear that for one-off trajectories, or

71

72 CHAPTER 5. CONCLUSION

whenever the experimental apparatus is a production bottleneck, it is worth pay-

ing the additional computational cost of optimizing trajectories with the method

proposed in Chapter 2. Another factor to consider is the need for an initial set

of input-output responses that provides enough information to train the nonlinear

model required for the method of Chapter 2. Although a database of previously

run trajectories may already exist, there might be the need to run experiments

for the purpose of identification. It is known that due to normal wear and tear,

among other factors, the system response can change over time. We have experi-

enced a change in dynamics first hand, when a structural part suffered damage,

and after the system underwent repairs, the dynamics had changed considerably.

However we were able to update the existing model, training it with a relatively

small amount of experimental data from the “new” system. This indicates that

one feasible option to keep up to date with the current true dynamics of the sys-

tem is to continually record the experimental data and periodically update the

nonlinear model. Regarding the OB-ILC method, it works best with the sim-

pler linear model, for which much less data is needed for identification, needs less

computational resources and can cope well with changes in dynamics.

We propose and validate a method for surface reconstruction of a surface by

processing LiDaR data obtained from a quadcopter. The surface reconstruction

method is incorporated in the planning of trajectories that minimize the volume

estimate uncertainty, using a greedy planning algorithm.

Finally, with the method we propose in Section 4 we are able to efficiently

reconstruct the surface from LiDaR data. The planned trajectory with a greedy

algorithm offers similar levels of performance compared to a regular pattern, which

is to be expected, given the uniform environment where the test was conducted.

5.2 Future Work

During the development of this work numerous divergent lines of research were

identified, but not pursued due to time limitations. We present a non-exhaustive

summary of possible work directions:

• As a next step we envision an experimental comparison of the controller

developed in Chapter 2 against additional benchmarks. We advise to ex-

pand the search area by evaluating the adequacy of control methods initially

devised for other applications for the specific context and challenges of PMS.

• A formal analysis to provide robust convergence guarantees on the proposed

ILC method.

5.2. FUTURE WORK 73

• Our findings indicate that the model demonstrating the highest accuracy

in output prediction is not the one with the best derivative information

for ILC. Notably, in this application, the simpler linear model outperforms

the nonlinear ANN model. Consequently, it is relevant to investigate how

to train machine learning models that better capture the sensitivity of the

output in respect to input variations. Potential improvements could involve

modifications to the loss function, alternative activation functions or network

architectures, as well as smoothing of the derivative estimates.

• The trajectory planning strategy presented in Chapter 4, and employed for

the validation of the surface reconstruction method, presents potential areas

for improvement. One option is to convert the Greedy algorithm into a

receding horizon planner. However, this approach poses challenges due to

the additional computational load that it entails.

• The strategy introduced in Chapter 4 also requires further testing in more

complex environments. This is necessary in order to fully evaluate the po-

tential of the trajectory planning method.

Bibliography

[1] W. Kim and D. L. Trumper, “High-precision magnetic levitation stage for

photolithography,” Precision engineering, vol. 22, no. 2, pp. 66–77, 1998.

[2] J. J. Gorman and N. G. Dagalakis, “Force control of linear motor stages

for microassembly,” in ASME International Mechanical Engineering Congress

and Exposition, vol. 37130, pp. 615–623, 2003.

[3] T. Kim and J. J. Gorman, “A 3-dof MEMS motion stage for scanning tun-

neling microscopy,” in 2022 IEEE 35th International Conference on Micro

Electro Mechanical Systems Conference (MEMS), pp. 470–472, IEEE, 2022.

[4] M. Khosravi, C. Koenig, M. Maier, R. S. Smith, J. Lygeros, and A. Ru-

penyan, “Safety-aware cascade controller tuning using constrained Bayesian

optimization,” IEEE Transactions on Industrial Electronics, pp. 1–1, 2022.

[5] K. K. Tan, T. H. Lee, and S. Huang, Precision Motion Control: Design and

Implementation. Springer Science & Business Media, 2007.

[6] P. Ouyang, R. Tjiptoprodjo, W. Zhang, and G. Yang, “Micro-motion devices

technology: The state of arts review,” The International Journal of Advanced

Manufacturing Technology, vol. 38, no. 5, pp. 463–478, 2008.

[7] S. Balula, A. Liniger, A. Rupenyan, and J. Lygeros, “Reference design

for closed loop system optimization,” in 2020 European Control Conference

(ECC), pp. 650–655, IEEE, 2020.

[8] S. Balula, D. Liao-McPherson, A. Rupenyan, and J. Lygeros, “Data-driven

reference trajectory optimization for precision motion systems,” Under sub-

mission, 2023.

[9] S. Balula, E. Balta, D. Liao-McPherson, A. Rupenyan, and J. Lygeros, “Se-

quential quadratic programming-based iterative learning control for nonlinear

systems,” in 2023 IEEE Conference on Control Technology and Applications

(CCTA), IEEE, 2023.

75

76 BIBLIOGRAPHY

[10] S. Balula, D. Liao-McPherson, S. Stevšić, A. Rupenyan, and J. Lygeros,

“Drone-based volume estimation in indoor environments,” in IFAC world

congress, 2023.

[11] A. Iannelli, M. S. Baumann, S. Balula, and R. S. Smith, “Experiments and

identification of thermoacoustic instabilities with the rijke tube,” in 2020

IEEE Conference on Control Technology and Applications (CCTA), pp. 757–

763, IEEE, 2020.

[12] M. Ghobakhloo, “The future of manufacturing industry: a strategic roadmap

toward industry 4.0,” Journal of Manufacturing Technology Management,

2018.

[13] N. Kouraytem, X. Li, W. Tan, B. Kappes, and A. D. Spear, “Modeling

process–structure–property relationships in metal additive manufacturing: a

review on physics-driven versus data-driven approaches,” Journal of Physics:

Materials, vol. 4, no. 3, p. 032002, 2021.

[14] J. S. Srai, M. Kumar, G. Graham, W. Phillips, J. Tooze, S. Ford, P. Beecher,

B. Raj, M. Gregory, M. K. Tiwari, et al., “Distributed manufacturing: scope,

challenges and opportunities,” International Journal of Production Research,

vol. 54, no. 23, pp. 6917–6935, 2016.

[15] D. Lam, C. Manzie, and M. Good, “Model predictive contouring control,”

in 49th IEEE Conference on Decision and Control (CDC), pp. 6137–6142,

IEEE, 2010.

[16] J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros,

“Optimization-based hierarchical motion planning for autonomous racing,” in

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2397–2403, 2020.

[17] Y. Wang, F. Gao, and F. J. Doyle III, “Survey on Iterative Learning Control,

Repetitive Control, and Run-to-Run control,” Journal of Process Control,

vol. 19, no. 10, pp. 1589–1600, 2009.

[18] E. C. Balta, K. Barton, D. M. Tilbury, A. Rupenyan, and J. Lygeros,

“Learning-based repetitive precision motion control with mismatch compen-

sation,” arXiv preprint arXiv:2111.10246, 2021.

[19] K. L. Barton and A. G. Alleyne, “A norm optimal approach to time-varying

ILC with application to a multi-axis robotic testbed,” IEEE Transactions on

Control Systems Technology, vol. 19, no. 1, pp. 166–180, 2010.

BIBLIOGRAPHY 77

[20] D. Liao-McPherson, E. C. Balta, A. Rupenyan, and J. Lygeros, “On ro-

bustness in optimization-based constrained Iterative Learning Control,” arXiv

preprint arXiv:2203.05291, vol. 6, pp. 2846–2851, 2022.

[21] K. Zhang, A. Yuen, and Y. Altintas, “Pre-compensation of contour errors in

five-axis CNC machine tools,” International Journal of Machine Tools and

Manufacture, vol. 74, pp. 1–11, 2013.

[22] C.-C. Lo and C.-Y. Hsiao, “CNC machine tool interpolator with path com-

pensation for repeated contour machining,” Computer-Aided Design, vol. 30,

no. 1, pp. 55–62, 1998.

[23] T. Haas, S. Weikert, and K. Wegener, “MPCC-based set point optimisation

for machine tools,” International Journal of Automation Technology, vol. 13,

no. 3, pp. 407–418, 2019.

[24] X. Yang, R. Seethaler, C. Zhan, D. Lu, and W. Zhao, “A model predictive

contouring error precompensation method,” IEEE Transactions on Industrial

Electronics, vol. 67, no. 5, pp. 4036–4045, 2019.

[25] S. Di Cairano, A. Goldsmith, U. V. Kalabić, and S. A. Bortoff, “Cascaded

reference governor–MPC for motion control of two-stage manufacturing ma-

chines,” IEEE Transactions on Control Systems Technology, vol. 27, no. 5,

pp. 2030–2044, 2018.

[26] Z. Wang, C. Hu, Y. Zhu, and L. Zhu, “Prediction-model-based contouring er-

ror iterative precompensation scheme for precision multiaxis motion systems,”

IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2274–2284,

2021.

[27] Y. Jiang, J. Chen, H. Zhou, J. Yang, P. Hu, and J. Wang, “Contour error

modeling and compensation of CNC machining based on deep learning and re-

inforcement learning,” The International Journal of Advanced Manufacturing

Technology, vol. 118, no. 1, pp. 551–570, 2022.

[28] H. Kim and C. E. Okwudire, “Simultaneous servo error pre-compensation and

feedrate optimization with tolerance constraints using linear programming,”

The International Journal of Advanced Manufacturing Technology, vol. 109,

no. 3, pp. 809–821, 2020.

[29] H. Kim and C. E. Okwudire, “Accurate and computationally efficient

approach for simultaneous feedrate optimization and servo error pre-

compensation of long toolpaths—with application to a 3d printer,” The In-

ternational Journal of Advanced Manufacturing Technology, vol. 115, no. 7,

pp. 2069–2082, 2021.

78 BIBLIOGRAPHY

[30] R. Eppler, “Airfoil data,” in Airfoil Design and Data, pp. 163–512, Springer,

1990.

[31] G. Masetti and F. D. Giandomenico, “Analyzing forward robustness of feed-

forward deep neural networks with LeakyReLU activation function through

symbolic propagation,” in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pp. 460–474, Springer, 2020.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[33] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems 32,

pp. 8024–8035, Curran Associates, Inc., 2019.

[34] A. Aboanber and Y. Hamada, “Generalized Runge–Kutta method for two-and

three-dimensional space–time diffusion equations with a variable time step,”

Annals of Nuclear Energy, vol. 35, no. 6, pp. 1024–1040, 2008.

[35] G. Goodwin, M. M. Seron, and J. A. De Doná, Constrained Control and

Estimation: An Optimisation Approach. Springer Science & Business Media,

2006.

[36] A. Wächter and L. T. Biegler, “On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming,” Mathe-

matical programming, vol. 106, no. 1, pp. 25–57, 2006.

[37] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language for

mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[38] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi

– A software framework for nonlinear optimization and optimal control,”

Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[39] T. D. Son, G. Pipeleers, and J. Swevers, “Robust monotonic convergent it-

erative learning control,” IEEE Transactions on Automatic Control, vol. 61,

no. 4, pp. 1063–1068, 2015.

[40] A. Tayebi and C.-J. Chien, “A unified adaptive iterative learning control

framework for uncertain nonlinear systems,” IEEE Transactions on Auto-

matic Control, vol. 52, no. 10, pp. 1907–1913, 2007.

[41] R. Adlakha and M. Zheng, “An optimization-based iterative learning control

design method for UAV’s trajectory tracking,” in 2020 American Control

Conference (ACC), pp. 1353–1359, IEEE, 2020.

BIBLIOGRAPHY 79

[42] S. Mishra, U. Topcu, and M. Tomizuka, “Optimization-based constrained

Iterative Learning Control,” IEEE Transactions on Control Systems Technol-

ogy, vol. 19, no. 6, pp. 1613–1621, 2010.

[43] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control for

discrete-time systems with exponential rate of convergence,” IEE Proceedings-

Control Theory and Applications, vol. 143, no. 2, pp. 217–224, 1996.

[44] S. Gunnarsson and M. Norrlöf, “On the design of ILC algorithms using opti-

mization,” Automatica, vol. 37, no. 12, pp. 2011–2016, 2001.

[45] J.-X. Xu, “A survey on iterative learning control for nonlinear systems,” In-

ternational Journal of Control, vol. 84, no. 7, pp. 1275–1294, 2011.

[46] Y. Yu, C. Zhang, Y. Wang, and M. Zhou, “Neural-network-based iterative

learning control for hysteresis in a magnetic shape memory alloy actuator,”

IEEE/ASME Transactions on Mechatronics, vol. 27, no. 2, pp. 928–939, 2021.

[47] A. Schöllig and R. D’Andrea, “Optimization-based iterative learning con-

trol for trajectory tracking,” in 2009 European Control Conference (ECC),

pp. 1505–1510, IEEE, 2009.

[48] J. Lu, Z. Cao, R. Zhang, and F. Gao, “Nonlinear monotonically convergent

Iterative Learning Control for batch processes,” IEEE Transactions on In-

dustrial Electronics, vol. 65, no. 7, pp. 5826–5836, 2017.

[49] K. E. Avrachenkov, “Iterative learning control based on quasi-Newton meth-

ods,” in Proceedings of the 37th IEEE Conference on Decision and Control

(Cat. No. 98CH36171), vol. 1, pp. 170–174, IEEE, 1998.

[50] “Newton method based iterative learning control for discrete non-linear sys-

tems, author = Lin, T and Owens, DH and Hatonen, J, year = 2006, journal

= International Journal of Control, publisher = Taylor & Francis, volume =

79, number = 10, pages = 1263–1276,”

[51] M. Volckaert, A. Van Mulders, J. Schoukens, M. Diehl, and J. Swevers,

“Model based nonlinear iterative learning control: A constrained Gauss-

Newton approach,” in 2009 17th Mediterranean Conference on Control and

Automation, pp. 718–723, IEEE, 2009.

[52] K. Baumgärtner and M. Diehl, “Zero-order optimization-based iterative learn-

ing control,” in 2020 59th IEEE Conference on Decision and Control (CDC),

pp. 3751–3757, IEEE, 2020.

80 BIBLIOGRAPHY

[53] Y. Chen, B. Chu, and C. T. Freeman, “Iterative learning control for path-

following tasks with performance optimization,” IEEE Transactions on Con-

trol Systems Technology, vol. 30, no. 1, pp. 234–246, 2021.

[54] J. Bolder and T. Oomen, “Rational basis functions in iterative learning con-

trol—with experimental verification on a motion system,” IEEE Transactions

on Control Systems Technology, vol. 23, no. 2, pp. 722–729, 2014.

[55] D. A. Bristow and A.-G. Alleyne, “A high precision motion control system

with application to microscale robotic deposition,” IEEE Transactions on

Control Systems Technology, vol. 14, no. 6, pp. 1008–1020, 2006.

[56] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta nu-

merica, vol. 4, pp. 1–51, 1995.

[57] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an

operator splitting solver for quadratic programs,” Mathematical Programming

Computation, vol. 12, no. 4, pp. 637–672, 2020.

[58] R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, and G. Cai, “A survey on in-

specting structures using robotic systems,” International Journal of Advanced

Robotic Systems, vol. 13, no. 6, p. 1729881416663664, 2016.

[59] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,

P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-

time dense surface mapping and tracking,” in 2011 10th IEEE international

symposium on mixed and augmented reality, pp. 127–136, Ieee, 2011.

[60] E. van Rees, “Creating aerial drone maps fast,” GeoInformatics, vol. 18, no. 7,

p. 24, 2015.

[61] S. Khalfaoui, R. Seulin, Y. Fougerolle, and D. Fofi, “An efficient method for

fully automatic 3D digitization of unknown objects,” Computers in Industry,

vol. 64, no. 9, pp. 1152–1160, 2013.

[62] B. Hepp, M. Nießner, and O. Hilliges, “Plan3d: Viewpoint and trajectory

optimization for aerial multi-view stereo reconstruction,” ACM Transactions

on Graphics (TOG), vol. 38, no. 1, pp. 1–17, 2018.

[63] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan, “Elastic

LiDAR fusion: Dense map-centric continuous-time SLAM,” pp. 1206–1213,

05 2018.

[64] J. Zhang and S. Singh, “Loam: LiDaR odometry and mapping in real-time,”

07 2014.

BIBLIOGRAPHY 81

[65] J. Zhang and S. Singh, “Low-drift and real-time LiDaR odometry and map-

ping,” Autonomous Robots, vol. 41, pp. 401–416, 02 2017.

[66] G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. S. Sukhatme,

“Uncertainty-driven view planning for underwater inspection,” in 2012 IEEE

International Conference on Robotics and Automation, pp. 4884–4891, IEEE,

2012.

[67] H. Zhu, J. J. Chung, N. R. Lawrance, R. Siegwart, and J. Alonso-Mora,

“Online informative path planning for active information gathering of a 3D

surface,” in 2021 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1488–1494, IEEE, 2021.

[68] M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart, and

J. Nieto, “An informative path planning framework for UAV-based terrain

monitoring,” Autonomous Robots, vol. 44, no. 6, pp. 889–911, 2020.

[69] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE inter-

national conference on robotics and automation, pp. 2247–2252, IEEE, 2005.

[70] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-

Jiménez, “Automatic generation and detection of highly reliable fiducial

markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292,

2014.

[71] K. Celik, S.-J. Chung, M. Clausman, and A. K. Somani, “Monocular vision

SLAM for indoor aerial vehicles,” in 2009 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 1566–1573, 2009.

[72] Y. Jiang, “Online control of quadrotor and camera with MPC for robust

vision-based flight,” Master’s thesis, ETH Zurich, 2022.

[73] G. Einicke and L. White, “Robust extended Kalman filtering,” IEEE Trans-

actions on Signal Processing, vol. 47, no. 9, pp. 2596–2599, 1999.

[74] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Transactions

on Visualization and Computer Graphics, vol. 17, no. 8, pp. 1048–1059, 2010.

[75] D. G. Krige, “A statistical approach to some basic mine valuation problems

on the Witwatersrand,” Journal of the Southern African Institute of Mining

and Metallurgy, vol. 52, no. 6, pp. 119–139, 1951.

[76] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learn-

ing, vol. 2. MIT press Cambridge, MA, 2006.

82 BIBLIOGRAPHY

[77] E. Galceran and M. Carreras, “A survey on coverage path planning for

robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276,

2013.

[78] F. Stache, J. Westheider, F. Magistri, M. Popović, and C. Stachniss, “Adap-

tive path planning for UAV-based multi-resolution semantic segmentation,” in

2021 European Conference on Mobile Robots (ECMR), pp. 1–6, IEEE, 2021.

[79] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.

June 19, 2023. ID:LJXQY

Samuel Balula
Curriculum Vitæ

Universitätstrasse 112,

8006 Zürich, Switzerland

I +41 77 201 36 44

samuel.balula@gmail.com

� linkedin.com/in/samuel-balula

Born 10.1993 (29)

Portuguese

A creative problem solver, with an engineering physics background, who loves to model and automate.

Education

06.2018–08.2023 Doctoral student in Automatic Control, Automatic Control Lab/Inspire AG, Swiss

Federal Institute of Technology Zurich (ETHZ), Zürich, Switzerland

○ Developed optimisation-based algorithms for trajectory planning, using high fidelity models

built from experimental data.

○ Applications in Precision Motion System control and Autonomous Robotic Inspection.

09.2011–11.2016 Master of Science in Engineering Physics, Instituto Superior Técnico – University of

Lisbon, Lisbon, Portugal

○ 5 years degree that combines physics and engineering. The broad curriculum includes

mathematics, theoretical and experimental physics, analogue and digital electronics, robotics,

machine learning, and management.

○ Used optimal control in the master thesis to swing-up and equilibrate an inverted pendulum.

Awarded the 2017 Lúıs Vidigal Prize and the APCA 2018 M.Sc. Thesis Award.

Experience

06.2018–05.2023 Scientific Assistant, Automatic Control Lab/Inspire AG, Swiss Federal Institute of

Technology Zurich (ETHZ), Zürich, Switzerland

○ Teaching Assistant for “Nonlinear Systems and Control”, “System Identification”, and the

“General Control Laboratory”.

○ Supervised a total of 17 Semester and Master projects on a variety of control applications.

01.2017–04.2018 Head of Research, Trigger.Systems, Lisbon, Portugal

○ Trigger.Systems is a technological startup focused on closing the control loop with IoT

solutions for agriculture, irrigation, and energy management. I was hired as the 5th employee.

○ Responsible for electronic design, mathematical modelling, optimisation, and product devel-

opment. Participated in HR selection, contacted clients, suppliers, and, to a lesser extent,

investors. As project manager, supervised the work of a small team of engineers.

09.2015–01.2017 Teaching Assistant, Instituto Superior Técnico – University of Lisbon, Lisbon, Portugal

○ Teaching Assistant for the “Microcontrollers” course (Engineering Physics program), where

students learn basic concepts of electronics and embedded systems, by programming PIC

microcontrollers in C and assembly. 2015/16 Excellence in Teaching Award.

09.2013–08.2015 Researcher, Instituto de Plasmas e Fusão Nuclear (IPFN), Lisbon, Portugal

○ Collaborated in the development of the e-lab platform, where physics experimental apparatus

are available online for remote control and data acquisition.

○ Developed and integrated the firmware, electronics, and science apparatus, taking projects

from idea to deployment.

Other skills and interests

Software Linux enthusiast, confident with Python, C, Julia, Mathematica, and Matlab. Experienced with

C++, Bash, Assembly, HTML, javascript, CAD, Kicad, (ng)spice, Git, ROS, etc.

Hardware Circuit and PCB design. I may tear things apart to understand how they work.

Languages C2 English, Native Portuguese, B1 French, A1 German.

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Contributions
	Publications
	Other work
	Thesis Outline

	Trajectory optimization for PMS
	State-of-the-art
	Problem Statement
	Data driven modelling
	Trajectory Optimization
	Experimental Results
	Discussion

	Optimization-Based ILC
	State-of-the-art
	Problem Statement
	Optimization Based ILC for non-linear systems
	Case study with a 2D precision motion system
	Simulation Results
	Experimental Results
	Discussion

	Quadcopter-based Volume Estimation in Indoor Environments
	State-of-the-art
	Problem Statement
	Localization
	Volume estimation
	Planning
	Simulation Results
	Experimental Results
	Discussion

	Conclusion
	Contributions
	Future Work

	Bibliography

