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Abstract

Physics-inspired machine learning can be seen as incorporating structure from physical systems (e.g.,
given by ordinary or partial differential equations) into machine learning methods to obtain models with
better inductive biases. In this thesis, we provide several of the earliest examples of such methods in
the fields of sequence modelling and graph representation learning. We subsequently show that physics-
inspired inductive biases can be leveraged to mitigate important and central issues in each particular
field. More concretely, we demonstrate that systems of coupled nonlinear oscillators and Hamiltonian
systems lead to recurrent sequence models that are able to process sequential interactions over long
time scales by mitigating the exploding and vanishing gradients problem. Additionally, we rigorously
prove that neural systems of oscillators are universal approximators for continuous and causal operators.
Moreover, we show that sequence models derived from multiscale dynamical systems not only mitigate
the exploding and vanishing gradients problem (and are thus able to learn long-term dependencies), but
equally importantly yield expressive models for learning on (real-world) multiscale data. We further show
the impact of physics-inspired approaches on graph representation learning. In particular, systems of
graph-coupled nonlinear oscillators denote a powerful framework for learning on graphs that allows for
stacking many graph neural network (GNN) layers on top of each other. Thereby, we prove that these
systems mitigate the oversmoothing issue in GNNs, where node features exponentially converge to the
same constant node vector for increasing number of GNN layers. Finally, we propose to incorporate
multiple rates that are inferred from the underlying graph data into the message-passing framework of
GNNs. Moreover, we leverage the graph gradient modulated through gating functions to obtain multiple
rates that automatically mitigate the oversmoothing issue. We extensively test all proposed methods on a
variety of versatile synthetic and real-world datasets, ranging from image recognition, speech recognition,
natural language processing (NLP), medical applications, and scientific computing for sequence models,
to citation networks, computational chemistry applications, and article and website networks for graph
learning models.
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Zusammenfassung

Die Einbettung von Strukturen physikalischer Systeme (beispielsweise gegeben durch gewöhnliche oder
partielle Differentialgleichungen) in Methoden des maschinellen Lernens, um Modelle mit einem besseren
induktiven Bias zu erhalten, kann als physikinspiriertes maschinelles Lernen bezeichnet werden. Wir
präsentieren in dieser Arbeit einige der frühesten Beispiele solcher Methoden in den Gebieten der
Modellierung von Sequenzen und des Graph-basierten Lernens. Wir zeigen dabei, dass der Physik-basierte
induktive Bias dazu genutzt werden kann, um wichtige und zentrale Probleme in beiden Bereichen zu lösen.
Wir zeigen beispielsweise, dass Systeme nichtlinearer gekoppelter Oszillatoren und Hamiltonsche Systeme
zu rekurrenten Methoden der Modellierung von Sequenzen führen, welche lange sequenzielle Interaktionen
verarbeiten können, indem diese das Problem der verschwindenden und explodierenden Gradienten lösen.
Zusätzlich zeigen wir, dass neuronale Systeme von Oszillatoren universell in der Klasse kontinuierlicher
und kausaler Operatoren zwischen Zeitreihen sind. Wir zeigen weiter, dass Methoden der Modellierung von
Sequenzen basierend auf multiskalen dynamischen Systemen nicht nur das Problem der verschwindenden
und explodierenden Gradienten lösen, sondern auch expressive Modelle zum Lernen von realen multiskalen
Datensätzen darstellen. Des weiteren zeigen wir, wie physikinspiriertes maschinelles Lernen für Graph-
strukturierte Anwendungen genutzt werden kann. Dazu ermöglichen insbesondere Graph-gekoppelte
nichtlineare Oszillatoren die Konstruktion von tiefen Graph Neuronalen Netzwerken (GNN). Dies ist
möglich, da Graph-gekoppelte nichtlineare Oszillatoren das sogenannte oversmoothing Problem lösen, in
welchem alle GNN Feature Vektoren zu demselben konstanten Feature Vektor konvergieren. Abschließend
schlagen wir den Einsatz von multiplen Raten im message-passing Vorgang in GNN vor, welche direkt von
den gegebenen Daten gelernt werden. Zusätzlich dazu modulieren wir die gelernten multiplen Raten mithilfe
von Graph-Gradienten und Gating Funktionen, um das oversmoothing Problem für jedes GNN Modell
zu lösen. Wir testen alle vorgeschlagenen Methoden umfassend an einer Vielzahl künstlicher und realer
Datensätze, die von der Bilderkennung, Spracherkennung, natürlicher Sprachverarbeitung, medizinischen
Anwendungen und wissenschaftlichen Rechnen bis hin zu Zitationsnetzwerken, Anwendungen in der
computergestützten Chemie, und Artikel und Website Netzwerken reichen.
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Introduction

Many problems in science and engineering require understanding and modelling of potentially large
amounts of measurement data. Prototypical examples include the design of crafts under physical
constraints (e.g., optimizing the lift and the drag across the wing of an aircraft for different operating
conditions), climate simulation (e.g., computing the mean global sea surface temperatures that result
from different levels of CO2 emissions), and de novo drug design (e.g., leveraging data-based insights from
known active binders to form a ligand pharmacophore model for inferring novel structures), to name just
a few. Thus, there has been a long record of versatile methods for pattern recognition and data-driven
modelling. Early examples include support vector machines [Steinwart and Christmann, 2008], general
kernel methods [Shawe-Taylor et al., 2004], clustering algorithms [Xu and Wunsch, 2005], and Bayesian
methods for probabilistic inference [Box and Tiao, 2011]. While artificial neural networks have been
around for a long time, arguably for centuries in its very simplistic form of linear regression (also known
as least squares method), their current widespread use is mainly due to the efficient computation of
their gradients with respect to trainable parameters (i.e., backpropagation algorithm [Rosenblatt, 1961,
Rumelhart et al., 1985]) and the exponentially increasing amount of available computational resources. In
particular the latter enabled training significantly deeper models on large datasets, i.e., artificial neural
networks with several layers stacked on top of each other, a field termed deep learning [Goodfellow et al.,
2016].

Deep learning is now among the most popular approaches in machine learning highly impacting
whole sub-fields of computer science and engineering, such as computer vision, autonomous systems and
robotics, natural language processing (NLP), and speech recognition. At the core of deep learning lies
the deep fully-connected feed-forward neural network (also termed multilayer perceptron [Rosenblatt,
1961, Werbos, 1982, Rumelhart et al., 1985]) which can be described as multiple (hence dubbed “deep”)
concatenations of affine transformations in alternation with element-wise nonlinear activation functions.
More concretely, consider an input u ∈ Rd. A deep fully-connected feed-forward neural network (Fig. 1)
with N ∈ N layers can then be compactly written as,

hn = σ(Anhn−1 + bn), n = 1, . . . , N − 1,

hN = ANhN−1 + bN

(1)

with hidden states hn ∈ Rmn , weights An ∈ Rmn×mn−1 , and biases bn ∈ Rmn for all layers n = 1, . . . , N ,
initial input given by h0 = u (i.e., m0 = d is the input dimension), and σ denoting a nonlinear activation
function, such as tanh(x) or relu(x) = max{0, x} for x ∈ R, which is applied element-wise. Deep neural
networks (1) can be trained by defining an appropriate loss function measuring the difference between
the output hN of the neural network and the ground-truth data, followed by applying a gradient descent
method (such as stochastic gradient descent [Robbins and Monro, 1951]) based on the gradient of the loss
function with respect to the parameters {An,bn}Nn=1 of the neural network (1). Thereby, the gradients
are efficiently computed using the backpropagation algorithm.
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Introduction

Figure 1: An illustration of a (fully connected) deep neural network. The red neurons represent the inputs
to the network and the blue neurons denote the output layer. They are connected by hidden layers with
yellow neurons. Each hidden unit (neuron) is connected by affine linear maps between units in different
layers and then with nonlinear (scalar) activation functions within units.

While deep fully-connected neural networks can in principle be applied to any collection of data, the
tremendous success of deep learning in many areas of application (such as computer vision or NLP)
required substantial structural changes of the neural networks. These structural changes are often
associated with “inductive biases”, emphasizing the incorporated structure reasoned from the underlying
data. For example, a class of widely used neural networks in computer vision are convolutional neural
networks (CNNs) [LeCun et al., 1989], which apply learnable convolutions to input pixel data, e.g. images.
CNNs are known to be shift equivariant [Fukushima, 1980, Bronstein et al., 2021, McGreivy and Hakim,
2022], due to weight sharing. This inductive bias, biologically-inspired by local receptive fields [LeCun and
Bengio, 1995], enables CNNs to significantly outperform fully-connected neural networks on image data.

While many neural network architectures are biologically-inspired there is an increasing interest in
drawing inspirations from physics to construct novel machine learning models which can successfully
be applied to problems in the physical sciences. Although many approaches in this context do not
possess physics-based inductive biases, but rather apply well-established models from computer vision,
NLP or graph learning to problems in physics, e.g., [Sanchez-Gonzalez et al., 2020, Vlachas et al., 2020,
Stachenfeld et al., 2021], machine learning models with physics-inspired inductive biases are increasingly
used for applications in the physical sciences. For instance, equivariant neural networks and Lie algebra
based approaches are used in the context of molecular sciences, e.g. molecular simulations [Batzner et al.,
2022], and molecular property predictions [Satorras et al., 2021]. While equivariance is an important
concept in the physical sciences, there are more symmetries and structures one can potentially leverage to
build neural network architectures with better inductive biases. For instance conservation of energy, such
as in Hamiltonian neural networks [Greydanus et al., 2019, Chen et al., 2020c], where the neural network
is parameterized according to a Hamiltonian. This enables the network to learn Hamiltonian systems
from data, which automatically preserve energy (i.e., the Hamiltonian) over time.

Physics-inspired inductive biases for neural networks are not limited to applications in the physical
sciences. On the contrary, recent physics-inspired machine learning methods are used in many classical
fields of deep learning. For instance in generative modelling, where diffusion models [Yang et al., 2022]
are state-of-the-art. These models leverage a physical process, namely diffusion, to incrementally corrupt
input data with random noise. Once the training is finished, new data can be generated by inverting
the diffusion process. Since this approach is grounded in physical processes, it is no surprise that many
models in this context leverage insights from physical systems to construct diffusion models with better
inductive biases [Dockhorn et al., 2021, Lai et al., 2022, Salimans and Ho, 2021]. Another example includes
graph representation learning, where physics-inspired graph neural networks (GNNs) are increasingly

xii



Introduction

used. For instance, grounding fundamental GNN operations (so-called message-passing [Bronstein et al.,
2021]) in anisotropic diffusion [Chamberlain et al., 2021b], gradient flows [Di Giovanni et al., 2022],
reaction-diffusion equations [Choi et al., 2022], or hyperbolic partial differential equations (PDEs) [Eliasof
et al., 2021], to name just a few.

In this thesis, we present several of the earliest examples of physics-inspired machine learning models.
More concretely, we present recurrent sequence models inspired by systems of nonlinear coupled oscillators,
(time-dependent) Hamiltonian systems, and multiscale dynamical systems. We subsequently show that
these models, due to their physics-based inductive biases, exhibit very favorable properties, such as
the ability to handle long-term interactions in sequential data, or improve the expressive power on
real-world datasets. Moreover, we present physics-inspired models for graph representation learning,
which are inspired by graph-dynamical systems, namely graph-coupled oscillators as well as multi-rate
graph-dynamical systems. We further prove various desirable properties for these models, such as the
mitigation of a central issue in graph representation learning using GNNs, i.e., oversmoothing [Nt and
Maehara, 2019, Oono and Suzuki, 2020], as well as handling heterophilic (large-scale) graph datasets.

Outline

The first part of this thesis focuses on sequence modeling from a physics-inspired perspective. We begin
Part I by introducing sequence models, namely Transformers and Recurrent Neural Networks (RNNs), and
propose three novel physics-inspired RNN architectures subsequently. The first architecture we propose is
called Coupled Oscillatory RNN (coRNN). We introduce coRNN in Chapter 2 and provide a rigorous
theoretical analysis of the proposed model in section 2.2. Moreover, we provide an extensive empirical
evaluation of coRNN in section 2.3. This chapter is based on the publication [Rusch and Mishra, 2021a].
We further introduce the Undamped Independent Controlled Oscillatory RNN (UnICORNN) in Chapter
3. Likewise, we provide a rigorous analysis in section 3.2 as well as an extensive empirical evaluation of
the proposed UnICORNN architecture in section 3.3. This chapter is based on the publication [Rusch
and Mishra, 2021b]. In Chapter 4, we generalize both coRNN and UnICORNN by introducing neural
oscillators. Subsequently, we rigorously prove that neural oscillators are universal. This chapter is based
on the preprint [Lanthaler et al., 2023]. In the last chapter of part one, i.e. Chapter 5, we propose
the Long Expressive Memory (LEM), an expressive recurrent sequence model for learning long-term
dependencies. In section 5.2, we rigorously prove gradient stability of the proposed LEM and show
that LEM is a universal approximator for general (Lipschitz continuous) multiscale dynamical systems.
Moreover, we show that LEM emulates the heterogeneous multiscale method for ordinary differential
equations (ODEs). Finally, in section 5.3, we provide a variety of versatile numerical experiments for the
proposed LEM architecture. This chapter is based on the publication [Rusch et al., 2022b].

The second part of this thesis deals with physics-inspired graph representation learning. We start
Part II by introducing modern Graph Neural Networks and the underlying message-passing framework.
Moreover, we outline important limitations of current frameworks, in particular the oversmoothing issue
in deep GNNs (the provided Definition of oversmoothing is based on [Rusch et al., 2023]). Subsequently,
we propose two physics-inspired message-passing frameworks. The first approach we propose is called
Graph-Coupled Oscillator Network (GraphCON) in Chapter 7. We further provide a rigorous analysis of
GraphCON in Section 7.2 as well as extensive empirical evaluations in Section 7.3. This chapter is based
on the publication [Rusch et al., 2022a]. The final chapter of this part, i.e., Chapter 8, introduces the
Gradient Gating framework (G2). We provide theoretical insights into the proposed G2 framework in
Section 8.2 and numerically test its performance on a variety of (large-scale) graph datasets in Section
8.3. This chapter is based on the publication [Rusch et al., 2022a]. Last but not least, we conclude this
thesis in Chapter 9.
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Chapter 1

Introduction to Sequence Modeling

Learning tasks with sequential data as inputs (and possibly outputs) arise in a wide variety of contexts,
including computer vision, text and speech recognition, natural language processing, and time series
analysis in the sciences and engineering, among others. Sequence models are the prevalent choice of
methods in this context and come in a variety of different flavours.

In this thesis we focus on recurrent neural networks (RNNs). RNNs incorporate temporal structure
into neural networks by recurrently processing input sequences, i.e., following the recurrent update rule,

yn = Fθ(yn−1,un), ∀n = 1, . . . , N, (1.1)

with hidden states yn ∈ Rm, input un ∈ Rd, nonlinear function Fθ, trainable parameters θ (i.e., weights
and biases of the RNN), and the initial value y0 ∈ Rm, which is set to the zero vector in most cases.
Specific choices of the nonlinear function Fθ yield popular RNN architectures such as Long Short-Term
Memories (LSTMs) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Units (GRUs) [Cho et al.,
2014].

While RNNs have been successfully used in processing sequential data sets, it is well-known that
training these models to process (very) long sequential inputs is extremely challenging on account of
the so-called exploding and vanishing gradients problem [Pascanu et al., 2013]. This arises as calculating
hidden state gradients in the backpropagation through time algorithm (BPTT) entails the computation
of an iterative product of gradients over a large number of steps. Consequently, this (long) product can
easily grow or decay exponentially in the number of recurrent interactions. More concretely, we train an
RNN (1.1) to minimize a loss function for instance given as the mean-squared error (summed over time),

E :=
1

N

N∑
n=1

En, En =
1

2
∥yn − ȳn∥22, (1.2)

with ȳ being the underlying ground truth (training data). During training, we compute gradients of the
loss function (1.2) with respect to the weights and biases θ of the underlying RNN (1.1) at every step of
the gradient descent procedure, i.e.,

∂E

∂θ
=

1

N

N∑
n=1

∂En

∂θ
. (1.3)

Following Pascanu et al. [2013], one uses the chain rule to show

∂En

∂θ
=

∑
1≤k≤n

∂E
(k)
n

∂θ
,

∂E
(k)
n

∂θ
=

∂En

∂yn

∂yn

∂yk

∂+yk

∂θ
. (1.4)
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Introduction to sequence modeling

Here, the notation ∂+yk

∂θ refers to taking the partial derivative of yk with respect to the parameter θ,

while keeping the other arguments constant. In general, for recurrent models, the partial gradient ∂E(k)
n

∂θ ,
which measures the contribution to the hidden state gradient at step n arising from step k of the model,
can behave as ∂E(k)

n

∂θ ∼ γn−k, for some γ > 0 [Pascanu et al., 2013] due to the long product,

∂yn

∂yk
=

∏
k<i≤n

∂yi

∂yi−1
,

in ∂E(k)
n

∂θ (1.4). If γ > 1, then the partial gradient grows exponentially in sequence length, for long-term
dependencies k << n, leading to the exploding gradient problem. On the other hand, if γ < 1, then
the partial gradient decays exponentially for k << n, leading to the vanishing gradient problem. Thus,
mitigation of the exploding and vanishing gradients problem entails deriving bounds on the gradients.

Existing RNN architectures that address the exploding and vanishing gradients problem include gated
networks such as LSTMs [Hochreiter and Schmidhuber, 1997] and GRUs [Cho et al., 2014], where an
additive structure of the gradients is leveraged to stabilize training. However, it is known that LSTMs
and GRUs still suffer from the exploding gradients problem. Moreover, these networks still struggle to
learn very long-term dependencies Li et al. [2018]. Other attempts enforce constrains on the structure of
the hidden-to-hidden weight matrices of the RNN, i.e., to be orthogonal or unitary Henaff et al. [2016],
Arjovsky et al. [2016], Wisdom et al. [2016], Kerg et al. [2019]. However, these structural constraints
significantly impair the expressivity of the network. The challenge of designing novel RNN architectures is
thus to ensure their ability to learn long-term dependencies (i.e., mitigating the exploding and vanishing
gradients problem) while at the same time improve (and in particular not sacrifice) their expressive power.

Other recent and very popular models in the context of sequence modelling include so-called Trans-
formers [Vaswani et al., 2017], such as BERT [Devlin et al., 2018], RoBERTa [Liu et al., 2019a], and
GPT [Radford et al., 2018], that rely on a self-attention mechanism. This mechanism, introduced in
Vaswani et al. [2017], allows these models to efficiently process input sequences in a non-recurrent manner.
Another class of efficient sequence models are temporal convolutional networks (TCNs) [Bai et al., 2018,
Romero et al., 2021b,a]. TCNs process input sequences based on dilated causal 1D convolutional layers.
Finally, state-space models have recently experienced a renaissance in modern sequence modeling by
incorporating a specific structure into the hidden-to-hidden weight matrix (i.e., HiPPO matrix [Gu et al.,
2020]) that leads to a very efficient and fast training. These structural state-space models for sequence
modeling (S4) [Gu et al., 2021] and their variants [Hasani et al., 2022, Smith et al., 2022] have successfully
been applied to challenging sequential long-range tasks, as well as tasks in natural language processing
and audio processing.

In this part we propose several novel RNN architectures with physics-inspired inductive biases (namely
that of nonlinear coupled oscillators, Hamiltonian systems, and multiscale dynamical systems), which are
able to process sequential inputs over very long time-scales. In particular, we show that these models
exhibit several favorable properties, such as memory efficiency as well as fast training and inference speed.
Moreover, we rigorously prove that these methods successfully mitigate the exploding and vanishing
gradients problem and exhibit high expressive power on various challenging (real-world) sequential
datasets.
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Chapter 2

Coupled Oscillatory Recurrent Neural
Network

Coupled networks of controlled nonlinear forced and damped oscillators arise in many physical, engineering
and biological systems, ensuring expressive representations while constraining the dynamics of state
variables and their gradients. This motivates us to propose a novel architecture for RNNs, based on
time-discretizations of second-order systems of nonlinear ordinary differential equations (ODEs) (2.1) that
model coupled oscillators. Under verifiable hypotheses, we are able to rigorously prove precise bounds
on the hidden states of these RNNs and their gradients, enabling a possible solution of the exploding
and vanishing gradients problem, while demonstrating through benchmark numerical experiments, that
the resulting system still retains sufficient expressivity, i.e., ability to process complex inputs, with a
competitive performance, with respect to the state-of-the-art, on a variety of sequential learning tasks.

2.1 The proposed RNN

Our proposed RNN is based on the following second-order system of ODEs,

y′′ = σ (Wy +Wy′ +Vu+ b)− γy − ϵy′. (2.1)

Here, t ∈ [0, 1] is the (continuous) time variable, u = u(t) ∈ Rd is the time-dependent input signal,
y = y(t) ∈ Rm is the hidden state of the RNN with W,W ∈ Rm×m, V ∈ Rm×d are weight matrices,
b ∈ Rm is the bias vector and 0 < γ, ϵ are parameters, representing oscillation frequency and the amount of
damping (friction) in the system, respectively. σ : R 7→ R is the activation function, set to σ(u) = tanh(u)

here. By introducing the so-called velocity variable z = y′(t) ∈ Rm, we rewrite (2.1) as the first-order
system:

y′ = z, z′ = σ (Wy +Wz+Vu+ b)− γy − ϵz. (2.2)

We fix a timestep 0 < ∆t < 1 and define our proposed RNN hidden states at time tn = n∆t ∈ [0, 1]

(while omitting the affine output state) as the following IMEX (implicit-explicit) discretization of the first
order system (2.2):

yn = yn−1 +∆tzn,

zn = zn−1 +∆tσ (Wyn−1 +Wzn−1 +Vun + b)−∆tγyn−1 −∆tϵzn̄,
(2.3)

5



Chapter 2. CoRNN

with either n̄ = n or n̄ = n− 1. Note that the only difference in the two versions of the RNN (2.3) lies in
the implicit (n̄ = n) or explicit (n̄ = n− 1) treatment of the damping term −ϵz in (2.2), whereas both
versions retain the implicit treatment of the first equation in (2.2).

Motivation and background. To see that the underlying ODE (2.2) models a coupled network of
controlled forced and damped nonlinear oscillators, we start with the single neuron (scalar) case by setting
d = m = 1 in (2.1) and assume an identity activation function σ(x) = x. Setting W = W = V = b = ϵ = 0

leads to the simple ODE, y′′ + γy = 0, which exactly models simple harmonic motion with frequency
γ, for instance that of a mass attached to a spring [Guckenheimer and Holmes, 1990]. Letting ϵ > 0 in
(2.1) adds damping or friction to the system [Guckenheimer and Holmes, 1990]. Then, by introducing
non-zero V in (2.1), we drive the system with a driving force proportional to the input signal u(t). The
parameters V,b modulate the effect of the driving force, W controls the frequency of oscillations and
W the amount of damping in the system. Finally, the tanh activation mediates a nonlinear response in
the oscillator. In the coupled network (2.2) with m > 1, each neuron updates its hidden state based on
the input signal as well as information from other neurons. The diagonal entries of W (and the scalar
hyperparameter γ) control the frequency whereas the diagonal entries of W (and the hyperparameter ϵ)
determine the amount of damping for each neuron, respectively, whereas the non-diagonal entries of these
matrices modulate interactions between neurons. Hence, given this behavior of the underlying ODE (2.2),
we term the RNN (2.3) as a coupled oscillatory Recurrent Neural Network (coRNN).

Oscillator networks are ubiquitous in nature and in engineering systems [Guckenheimer and Holmes,
1990, Strogatz, 2001] with canonical examples being pendulums (classical mechanics), business cycles
(economics), heartbeat (biology) for single oscillators and electrical circuits for networks of oscillators.
Our motivating examples arise in neurobiology, where individual biological neurons can be viewed as
oscillators with periodic spiking and firing of the action potential. Moreover, functional circuits of
the brain, such as cortical columns and prefrontal-striatal-hippocampal circuits, are being increasingly
interpreted by networks of oscillatory neurons, see Stiefel and Ermentrout [2016] for an overview. Following
well-established paths in machine learning, such as for convolutional neural networks [LeCun et al., 2015],
our focus here is to abstract the essence of functional brain circuits being networks of oscillators and design
an RNN based on much simpler mechanistic systems, such as those modeled by (2.2), while ignoring the
complicated biological details of neural function.

Related work. There is an increasing trend of basing RNN architectures on ODEs and dynamical
systems. These approaches can roughly be classified into two branches, namely RNNs based on discretized
ODEs and continuous-time RNNs. Examples of continuous-time approaches include neural ODEs [Chen
et al., 2018] with ODE-RNNs [Rubanova et al., 2019] as its recurrent extension as well as E [2017]
and references therein, to name just a few. We focus, however, in this chapter on an ODE-inspired
discrete-time RNN, as the proposed coRNN is derived from a discretization of the ODE (2.1). A good
example for a discrete-time ODE-based RNNs is the so-called anti-symmetric RNN of Chang et al. [2019],
where the RNN architecture is based on a stable ODE resulting from a skew-symmetric hidden weight
matrix, thus constraining the stable (gradient) dynamics of the network. This approach has much in
common with previously mentioned unitary/orthogonal/non-normal RNNs in constraining the structure
of the hidden-to-hidden layer weight matrices. However, adding such strong constraints might reduce
expressivity of the resulting RNN and might lead to inadequate performance on complex tasks. In contrast
to these approaches, our proposed coRNN does not explicitly constrain the weight matrices but relies on
the dynamics of the underlying ODE (and the IMEX discretization (2.3)), to provide gradient stability.
Moreover, no gating mechanisms as in LSTMs/GRUs are used in the current version of coRNN. There
is also an increasing interest in designing hybrid methods, which use a discretization of an ODE (in
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particular a Hamiltonian system) in order to learn the continuous representation of the data, see for
instance Greydanus et al. [2019], Chen et al. [2020c]. Overall, our approach here differs from these papers
in our use of networks of oscillators to build the RNN.

2.2 Rigorous analysis of coRNN

2.2.1 Continuous-time system

In the following, we present bounds that show how the continuous time dynamics of the ODE system
(2.2), modeling nonlinear damped and forced networks of oscillators, is constrained. We start with the
following estimate on the energy of the solutions of the system (2.2).

Proposition 2.2.1. Let y(t), z(t) be the solutions of the ODE system (2.2) at any time t ∈ [0, T ] and
assume that the damping parameter ϵ ≥ 1

2 and the initial data for (2.2) is given by,

y(0) = z(0) ≡ 0.

Then, the solutions are bounded as,

y(t)⊤y(t) ≤ mt

γ
, z(t)⊤z(t) ≤ mt, ∀t ∈ (0, T ]. (2.4)

Proof. To prove this proposition, we multiply the first equation in (2.2) with y(t)⊤ and the second
equation in (2.2) with 1

γ z(t)
⊤ to obtain,

d

dt

(
y(t)⊤y(t)

2
+

z(t)⊤z(t)

2γ

)
=

z(t)⊤σ(A(t))

γ
− ϵ

γ
z(t)⊤z(t), (2.5)

with
A(t) = Wy(t) +Wz(t) +Vu(t) + b.

Using the elementary Cauchy’s inequality repeatedly in (2.5) results in,

d

dt

(
y(t)⊤y(t)

2
+

z(t)⊤z(t)

2γ

)
≤ σ(A)⊤σ(A)

2γ
+

1

γ

(
1

2
− ϵ

)
z⊤z

≤ m

2γ
(as |σ| ≤ 1 and ϵ ≥ 1

2
).

Integrating the above inequality over the time interval [0, t] and using the fact that the initial data are
y(0) = z(0) ≡ 0, we obtain the bounds (2.4).

The above proposition and estimate (2.4) clearly demonstrate that the dynamics of the network of
coupled nonlinear oscillators (2.1) is bounded. The fact that the nonlinear activation function σ = tanh

is uniformly bounded in its arguments played a crucial role in deriving the energy bound (2.4). A
straightforward adaptation of this argument leads to the following proposition about the sensitivity of
the system to inputs,

Proposition 2.2.2. Let y(t), z(t) be the solutions of the ODE system (2.2) with respect to the input
signal u(t). Let ȳ(t), z̄(t) be the solutions of the ODE system (2.2), but with respect to the input signal
ū(t). Assume that the damping parameter ϵ ≥ 1

2 and the initial data are given by,

y(0) = z(0) = ȳ(0) = z̄(0) ≡ 0.
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Then we have the following bound,

(y(t)− ȳ(t))
⊤
(y(t)− ȳ(t)) ≤ 4mt

γ
, (z(t)− z̄(t))

⊤
(z(t)− z̄(t)) ≤ 4mt, ∀t ∈ (0, T ]. (2.6)

Thus from the bound (2.6), there can be atmost linear separation (in time) with respect to the
trajectories of the ODE (2.2) for different input signals. Hence, chaotic behavior, which is characterized
by the (super-)exponential separation of trajectories is ruled out by the structure of the ODE system
(2.2). Note that this property of the ODE system was primarily a result of the uniform boundedness of
the activation function σ. Using a different activation function such as ReLU might enable to obtain an
exponential separation of trajectories that is a prerequisite for a chaotic dynamical system.

We further bound the gradient dynamics corresponding to the ODE system (2.2). Therefore, let θ

denote the i, j-th entry of the weight matrices W,W,V or the i-th entry of the bias vector b. We are
interested in finding out how the gradients of the hidden state y (and the auxiliary hidden state z) with
respect to parameter θ, vary with time. Note that these gradients are precisely the objects of interest in
the training of an RNN, based on a discretization of the ODE system (2.2). To this end, we differentiate
(2.2) with respect to the parameter θ and denote

yθ(t) =
∂y

∂θ
(t), zθ(t) =

∂z

∂θ
(t),

to obtain,
y′
θ = zθ,

z′θ = diag(σ′(A)) [Wyθ +Wzθ] + Zi,j
m,m̄(A)ρ− γyθ − ϵzθ.

(2.7)

Here, Zi,j
m,m̄(A) ∈ Rm×m̄ is a matrix with all elements are zero except for the (i, j)-th entry which is set

to σ′(A(t))i, i.e. the i-th entry of σ′(A), and we have,

ρ = y, m̄ = m, if θ = Wi,j ,

ρ = z, m̄ = m, if θ = Wi,j ,

ρ = u, m̄ = d, if θ = Vi,j ,

ρ = 1, m̄ = 1, if θ = bi.

We see from (2.7) that the ODEs governing the gradients with respect to the parameter θ also represent
a system of oscillators but with additional coupling and forcing terms, proportional to the hidden states
y, z or input signal u. As we have already proved with estimate (2.4) that the hidden states are always
bounded and the input signal is assumed to be bounded, it is natural to expect that the gradients of the
states with respect to θ are also bounded. We make this statement explicit in the following proposition,
which for simplicity of exposition, we consider the case of θ = Wi,j , as the other values of θ are very
similar in their behavior.

Proposition 2.2.3. Let θ = Wi,j and y, z be the solutions of the ODE system (2.2). Assume that the
weights and the damping parameter satisfy,

∥W∥∞ + ∥W∥∞ ≤ ϵ,

then we have the following bounds on the gradients,

yθ(t)
⊤yθ(t) +

1

γ

(
zθ(t)

⊤zθ(t)
)
≤
[
yθ(0)

⊤yθ(0) +
1

γ

(
zθ(0)

⊤zθ(0)
)]

eCt +
mt2

2γ2
, t ∈ (0, T ],

C = max

{∥W∥1
γ

, 1 + ∥W∥1
}
.

(2.8)
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The proof of this proposition follows exactly along the same lines as the proof of proposition 2.2.1 and
we skip the details, while noting the crucial role played by the energy bound (2.4). We remark that the
bound (2.8) indicates that as long as the initial gradients with respect to θ are bounded and the weights
are controlled by the damping parameter, the hidden state gradients remain bounded in time.

2.2.2 Discretized system with implicit damping

Having established the attractive features of the ODE system (2.2) (i.e., bounded hidden states as well as
bounded gradients), one can expect that a suitable discretization of the ODE (2.2) that preserves these
bounds will not have exploding gradients. We claim that one such structure preserving discretization is
given by the IMEX discretization that results in the RNN (2.3) and proceed to derive bounds on this
RNN below.

Following standard practice we set y(0) = z(0) = 0 and purely for the simplicity of exposition, we set
the control parameters, ϵ = γ = 1 and n̄ = n in (2.3) leading to,

yn = yn−1 +∆tzn,

zn = zn−1

1+∆t +
∆t

1+∆tσ(An−1)− ∆t
1+∆tyn−1, An−1 := Wyn−1 +Wzn−1 +Vun + b.

(2.9)

Analogous results and proofs for the case where n̄ = n−1 and for general values of ϵ, γ follow subsequently.
As with the underlying ODE (2.2), the hidden states of the RNN (2.3) are bounded, i.e.

Proposition 2.2.4. Let yn, zn be the hidden states of the RNN (2.9) for 1 ≤ n ≤ N , then the hidden
states satisfy the following (energy) bounds:

y⊤
n yn + z⊤n zn ≤ nm∆t = mtn ≤ m. (2.10)

Proof. We prove this proposition by multiplying (y⊤
n−1, z

⊤
n ) to (2.3) and using the elementary identities,

a⊤(a− b) =
a⊤a

2
− b⊤b

2
+

1

2
(a− b)⊤(a− b), b⊤(a− b) =

a⊤a

2
− b⊤b

2
− 1

2
(a− b)⊤(a− b),

to obtain the following,

y⊤
n yn + z⊤n zn

2
=

y⊤
n−1yn−1 + z⊤n−1zn−1

2
+

(yn − yn−1)
⊤(yn − yn−1)

2

− (zn − zn−1)
⊤(zn − zn−1)

2
+ ∆tz⊤n σ(An−1)−∆tz⊤n zn

≤ y⊤
n−1yn−1 + z⊤n−1zn−1

2
+ ∆t (1/2 + ∆t/2− 1) z⊤n zn +

∆t

2
σ⊤(An−1)σ(An−1)

≤ y⊤
n−1yn−1 + z⊤n−1zn−1

2
+

m∆t

2
as σ2 ≤ 1 and ϵ > ∆t << 1.

Iterating the above inequality n times leads to the energy bound,

y⊤
n yn + z⊤n zn ≤ y⊤

0 y0 + z⊤0 z0 + nm∆t = mtn, (2.11)

as y0 = z0 = 0.

Next, we examine how changes in the input signal u affect the dynamics. We have the following
proposition:
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Proposition 2.2.5. Let yn, zn be the hidden states of the trained RNN (2.9) with respect to the input
u = {un}Nn=1 and let yn, zn be the hidden states of the same RNN (2.9), but with respect to the input
u = {un}Nn=1, then the differences in the hidden states are bounded by,

(yn − yn)
⊤
(yn − yn) + (zn − zn)

⊤
(zn − zn) ≤ 4mtn. (2.12)

The proof of this proposition is completely analogous to the proof of proposition 2.2.4, we subtract

yn = yn−1 +∆tzn,

zn = zn−1

1+∆t +
∆t

1+∆tσ(An−1)− ∆t
1+∆tyn−1, An−1 := Wyn−1 +Wzn−1 +Vun + b.

(2.13)

from (2.9) and multiply
(
(yn − yn)

⊤
, (zn − zn)

⊤
)

to the difference. The estimate (2.12) follows identically

to the proof of (2.10) (presented above) by realizing that σ(An−1)− σ(An−1) ≤ 2.
Note that the bound (2.12) ensures that the hidden states can only separate linearly in time for

changes in the input. Thus, chaotic behavior, such as for Duffing type oscillators, characterized by at
least exponential separation of trajectories, is ruled out for this proposed RNN, showing that it is stable
with respect to changes in the input. This is largely on account of the fact that the activation function σ

in (2.3) is globally bounded.

On the exploding gradient problem. We continue to provide rigorous bounds on the gradients of
the discretized system (2.3). To this end, we train the RNN (2.3) to minimize the loss function,

E :=
1

N

N∑
n=1

En, En =
1

2
∥yn − ȳn∥22, (2.14)

with ȳ being the underlying ground truth (training data). During training, we compute gradients of the
loss function (2.14) with respect to the weights and biases Θ = [W,W,V,b], i.e.

∂E

∂θ
=

1

N

N∑
n=1

∂En

∂θ
, ∀ θ ∈ Θ. (2.15)

Proposition 2.2.6. Let yn, zn be the hidden states generated by the RNN (2.9). We assume that the
time step ∆t << 1 can be chosen such that,

max

{
∆t(1 + ∥W∥∞)

1 + ∆t
,
∆t∥W∥∞
1 + ∆t

}
= η ≤ ∆tr,

1

2
≤ r ≤ 1. (2.16)

Denoting δ = 1
1+∆t , the gradient of the loss function E (2.14) with respect to any parameter θ ∈ Θ is

bounded as, ∣∣∣∣∂E∂θ
∣∣∣∣ ≤ 3

2

(
m+ Ȳ

√
m
)
, (2.17)

with Ȳ = max
1≤n≤N

∥ȳn∥∞ be a bound on the underlying training data.

Proof. Denoting Xn = [yn, zn], we can apply the chain rule repeatedly (for instance as in Pascanu et al.
[2013]) to obtain,

∂En

∂θ
=

∑
1≤k≤n

∂En

∂Xn

∂Xn

∂Xk

∂+Xk

∂θ︸ ︷︷ ︸
∂E

(k)
n

∂θ

. (2.18)
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Here, the notation ∂+Xk

∂θ refers to taking the partial derivative of Xk with respect to the parameter θ,
while keeping the other arguments constant. This quantity can be readily calculated from the structure
of the RNN (2.9),

∂+Xk

∂θ
=



[(
∆t2

1+∆tZ
i,j
m,m(Ak−1)yk−1

)⊤
,
(

∆t
1+∆tZ

i,j
m,m(Ak−1)yk−1

)⊤]⊤
if θ = (i, j)−th entry of W,[(

∆t2

1+∆tZ
i,j
m,m(Ak−1)zk−1

)⊤
,
(

∆t
1+∆tZ

i,j
m,m(Ak−1)zk−1

)⊤]⊤
if θ = (i, j)−th entry of W,[(

∆t2

1+∆tZ
i,j
m,d(Ak−1)uk

)⊤
,
(

∆t
1+∆tZ

i,j
m,d(Ak−1)uk

)⊤]⊤
if θ = (i, j)−th entry of V,[(

∆t2

1+∆tZ
i,1
m,1(Ak−1)

)⊤
,
(

∆t
1+∆tZ

i,1
m,1(Ak−1)

)⊤]⊤
if θ = i−th entry of b,

(2.19)

where Zi,j
m,m̄(Ak−1) ∈ Rm×m̄ is a matrix with all elements are zero except for the (i, j)-th entry which is

set to σ′(Ak−1)i, i.e. the i-th entry of σ′(Ak−1). We easily see that ∥Zi,j
m,m̄(Ak−1)∥∞ ≤ 1 for all i, j,m, m̄

and all choices of Ak−1. Moreover, from (2.14), we readily calculate that,

∂En

∂Xn
= [yn − ȳn, 0] . (2.20)

Further repeated application of the chain rule and a direct calculation with (2.9) yields,

∂Xn

∂Xk
=

∏
k<i≤n

∂Xi

∂Xi−1
,

∂Xi

∂Xi−1
=

[
I + ∆tBi−1 ∆tCi−1

Bi−1 Ci−1

]
, (2.21)

where I is the identity matrix and

Bi−1 = δ∆t (diag(σ′(Ai−1))W − I) , Ci−1 = δ (I + ∆tdiag(σ′(Ai−1))W) . (2.22)

It is straightforward to calculate using the assumption (2.16) that ∥Bi−1∥∞ < η and ∥Ci−1∥∞ ≤ η + δ.
Using the definitions of matrix norms and (2.16), we obtain:∥∥∥∥ ∂Xi

∂Xi−1

∥∥∥∥
∞

≤ max (1 + ∆t(∥Bi−1∥∞ + ∥Ci−1∥∞), ∥Bi−1∥∞ + ∥Ci−1∥∞)

≤ max (1 + ∆t(δ + 2η), δ + 2η) ≤ 1 + 3∆tr.

(2.23)

Therefore, using (2.21), we have∥∥∥∥∂Xn

∂Xk

∥∥∥∥
∞

≤
∏

k<i≤n

∥∥∥∥ ∂Xi

∂Xi−1

∥∥∥∥
∞

≤ (1 + 3∆tr)n−k ≈ 1 + 3(n− k)∆tr. (2.24)
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Note that we have used an expansion around 1 and neglected terms of O(∆t2r) as ∆t << 1. We remark
that the bound (2.23) is the crux of our argument about gradient control as we see from the structure of
the RNN that the recurrent matrices have close to unit norm.

Now, using definitions of matrix and vector norms and applying (2.24) in (2.18), together with (2.20)
and (2.19), we obtain the following estimate on the norm:

∣∣∣∣∣∂E(k)
n

∂θ

∣∣∣∣∣ ≤

(∥yn∥∞ + ∥ȳn∥∞)(1 + 3(n− k)∆tr)δ∆t∥yk−1∥∞, if θ is entry of W,

(∥yn∥∞ + ∥ȳn∥∞)(1 + 3(n− k)∆tr)δ∆t∥zk−1∥∞, if θ is entry of W,

(∥yn∥∞ + ∥ȳn∥∞)(1 + 3(n− k)∆tr)δ∆t∥uk∥∞, if θ is entry of V,

(∥yn∥∞ + ∥ȳn∥∞)(1 + 3(n− k)∆tr)δ∆t, if θ is entry of b.

(2.25)

We will estimate the above term, just for the case of θ is an entry of W, the rest of the terms are very
similar to estimate.

For simplicity of notation, we let k − 1 ≈ k and aim to estimate the term,∣∣∣∣∣∂E(k)
n

∂θ

∣∣∣∣∣ ≤ ∥yn∥∞∥yk∥∞(1 + 3(n− k)∆tr)δ∆t+ ∥ȳn∥∞∥yk∥∞(1 + 3(n− k)∆tr)δ∆t

≤ m
√
nk∆t(1 + 3(n− k)∆tr)δ∆t+ ∥ȳn∥∞

√
mk

√
∆t(1 + 3(n− k)∆tr)δ∆t (by (2.10))

≤ m
√
nkδ∆t2 + 3m

√
nk(n− k)δ∆tr+2 + ∥ȳn∥∞

√
mk

√
∆t(1 + 3(n− k)∆tr)δ∆t.

(2.26)

To further analyze the above estimate, we recall that n∆t = tn ≤ 1 and consider two different regimes.
Let us start by considering short-term dependencies by letting k ≈ n, i.e n−k = c with constant c ∼ O(1),
independent of n, k. In this case, a straightforward application of the above assumptions in the bound
(2.26) yields,∣∣∣∣∣∂E(k)

n

∂θ

∣∣∣∣∣ ≤ m
√
nkδ∆t2 + 3m

√
nk(n− k)δ∆tr+2 + ∥ȳn∥∞

√
m
√
tnδ∆t+ ∥ȳn∥∞

√
m
√
tncδ∆tr+1

≤ mtnδ∆t+mctnδ∆tr+1 + ∥ȳn∥∞
√
m
√
tnδ∆t+ ∥ȳn∥∞

√
m
√
tncδ∆tr+1

≤ tnmδ∆t+ ∥ȳn∥∞
√
m
√
tnδ∆t (for ∆t << 1 as r ≥ 1/2)

≤ mδ∆t+ ∥ȳn∥∞
√
mδ∆t.

(2.27)

Next, we consider long-term dependencies by setting k << n and estimating,∣∣∣∣∣∂E(k)
n

∂θ

∣∣∣∣∣ ≤ m
√
nkδ∆t2 + 3m

√
nk(n− k)δ∆tr+2 + ∥ȳn∥∞

√
mδ∆t

3
2 + 3∥ȳn∥∞

√
mnδ∆tr+

3
2

≤ m
√
tnδ∆t

3
2 + 3mt

3
2
n δ∆tr+

1
2 + ∥ȳn∥∞

√
mδ∆t

3
2 + 3∥ȳn∥∞

√
mtnδ∆tr+

1
2

≤ mδ∆t
3
2 + 3mδ∆tr+

1
2 + ∥ȳn∥∞

√
mδ∆t

3
2 + 3∥ȳn∥∞

√
mδ∆tr+

1
2 (as tn < 1)

≤ 3mδ∆tr+
1
2 + 3∥ȳn∥∞

√
mδ∆tr+

1
2 (as r ≤ 1 and ∆t << 1).

(2.28)

Thus, in all cases, we have that,∣∣∣∣∣∂E(k)
n

∂θ

∣∣∣∣∣ ≤ 3δ∆t
(
m+

√
m∥ȳn∥∞

)
(as r ≥ 1/2). (2.29)

Applying the above estimate in (2.18) allows us to bound the gradient by,∣∣∣∣∂En

∂θ

∣∣∣∣ ≤ ∑
1≤k≤n

∣∣∣∣∣∂E(k)
n

∂θ

∣∣∣∣∣ ≤ 3δtn
(
m+

√
m∥ȳn∥∞

)
. (2.30)
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Chapter 2. CoRNN

Therefore, the gradient of the loss function (2.14) can be bounded as,∣∣∣∣∂E∂θ
∣∣∣∣ ≤ 1

N

N∑
n=1

∣∣∣∣∂En

∂θ

∣∣∣∣
≤ 3δ

[
m∆t

N

N∑
n=1

n+

√
m∆t

N

N∑
n=1

∥ȳn∥∞n

]

≤ 3δ

[
m∆t

N

N∑
n=1

n+

√
mȲ∆t

N

N∑
n=1

n

]

≤ 3

2
δ(N + 1)∆t

(
m+ Ȳ

√
m
)

≤ 3

2
δ(tN +∆t)

(
m+ Ȳ

√
m
)

≤ 3

2
δ(1 + ∆t)

(
m+ Ȳ

√
m
)

(as tN = 1)

≤ 3

2

(
m+ Ȳ

√
m
)
,

(2.31)

which is the desired estimate (2.17).

As the entire gradient of the loss function (2.14), with respect to the weights and biases of the
network, is bounded above in (2.17), the exploding gradient problem is mitigated for the proposed coRNN
architecture.

On the assumption (2.16) and training. Note that all the estimates were based on the fact that
we were able to choose a time step ∆t in (2.3) that enforces the condition (2.16). For any fixed weights
W,W, we can indeed choose such a value of ϵ to satisfy (2.16). However, we train the RNN to find the
weights that minimize the loss function (2.14). Can we find a hyperparameter ∆t such that (2.16) is
satisfied at every step of the stochastic gradient descent method for training?

To investigate this issue, we consider a simple gradient descent method of the form:

θℓ+1 = θℓ − ζ
∂E

∂θ
(θℓ). (2.32)

Note that ζ is the constant (non-adapted) learning rate. We assume for simplicity that θ0 = 0 (other
choices lead to the addition of a constant). Then, a straightforward estimate on the weight is given by,

|θℓ+1| ≤ |θℓ|+ ζ

∣∣∣∣∂E∂θ (θℓ)
∣∣∣∣

≤ |θℓ|+ ζ
3

2

(
m+ Ȳ

√
m
)

(by (2.31))

≤ |θ0|+ ℓζ
3

2

(
m+ Ȳ

√
m
)
= ℓζ

3

2

(
m+ Ȳ

√
m
)
.

(2.33)

In order to calculate the minimum number of steps L in the gradient descent method (2.32) such that the
condition (2.16) is satisfied, we set ℓ = L in (2.33) and applying it to the condition (2.16) leads to the
straightforward estimate,

L ≥ 1

ζ 3
2

(
m+ Ȳ

√
m
)
m∆t1−rδ

. (2.34)
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Chapter 2. CoRNN

Note that the parameter is set to δ < 1, while in general, the learning rate is set to ζ << 1. Thus, as
long as r ≤ 1, we see that the assumption (2.16) holds for a large number of steps of the gradient descent
method. We remark that the above estimate (2.34) is a large underestimate on L. In the experiments
we present in Section 2.3, we are able to take a very large number of training steps, while the gradients
remain within a range (see Fig. 2.4).

On the vanishing gradient problem. The vanishing gradient problem [Pascanu et al., 2013] arises if∣∣∣∂E(k)
n

∂θ

∣∣∣, defined in (2.18), → 0 exponentially fast in k, for k << n (long-term dependencies). In that case,
the RNN does not have long-term memory, as the contribution of the k-th hidden state to error at time
step tn is infinitesimally small. We already see from (2.24) that

∥∥∥∂Xn

∂Xk

∥∥∥
∞

≈ 1 (independently of k). Thus,
we should not expect the products in (2.18) to decay fast. In fact, we will provide a much more precise
characterization of this gradient. To this end, we introduce the following order -notation,

β = O(α), for α, β ∈ R+ if there exist constants C,C such that Cα ≤ β ≤ Cα.

M = O(α), for M ∈ Rd1×d2 , α ∈ R+ if there exists a constant C such that ∥M∥ ≤ Cα.
(2.35)

For simplicity of notation, we will also set ȳn = un ≡ 0, for all n, b = 0 and r = 1 in (2.16) and we will
only consider θ = Wi,j for some 1 ≤ i, j ≤ m in the following proposition.

Proposition 2.2.7. Let yn be the hidden states generated by the RNN (2.9). Under the assumption that
yi
n = O(

√
tn), for all 1 ≤ i ≤ m and (2.16), the gradient for long-term dependencies satisfies,

∂E
(k)
n

∂θ
= O

(
ĉδ∆t

3
2

)
+O

(
ĉδ(1 + δ)∆t

5
2

)
+O(∆t3), ĉ = sech2

(√
k∆t(1 + ∆t)

)
, k << n. (2.36)

Proof. We start with the following decomposition of the recurrent matrices:

∂Xi

∂Xi−1
= Mi−1 +∆tM̃i−1,

Mi−1 :=

[
I ∆tCi−1

Bi−1 Ci−1

]
, M̃i−1 :=

[
Bi−1 0

0 0

]
,

with B,C defined in (2.22). By the assumption (2.16), one can readily check that ∥M̃i−1∥∞ ≤ ∆t, for all
k ≤ i ≤ n− 1.

We will use an induction argument to show the following representation formula for the product of
Jacobians,

∂Xn

∂Xk
=

∏
k<i≤n

∂Xi

∂Xi−1
=


I ∆t

n−1∑
j=k

k∏
i=j

Ci

Bn−1 +
k∑

j=n−2

(
j+1∏

i=n−1

Ci

)
Bj

k∏
i=n−1

Ci

+O(∆t). (2.37)

We start by the outermost product and calculate,

∂Xn

∂Xn−1

∂Xn−1

∂Xn−2
=
(
Mn−1 +∆tM̃n−1

)(
Mn−2 +∆tM̃n−2

)
= Mn−1Mn−2 +∆t(M̃n−1Mn−2 +Mn−1M̃n−2) +O(∆t2).
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Chapter 2. CoRNN

By direct multiplication, we obtain,

Mn−1Mn−2 =

[
I ∆t (Cn−2 +Cn−1Cn−2)

Bn−1 +Cn−1Bn−2 Cn−1Cn−2

]
+∆t

[
Cn−1Bn−2 0

0 Bn−1Cn−2

]
.

Using the definitions in (2.22) and (2.16), we can easily see that[
Cn−1Bn−2 0

0 Bn−1Cn−2

]
= O(∆t).

Similarly, it is easy to show that

M̃n−1Mn−2,Mn−1M̃n−2 ∼ O(∆t).

Plugging all the above estimates yields,

∂Xn

∂Xn−1

∂Xn−1

∂Xn−2
=

[
I ∆t (Cn−2 +Cn−1Cn−2)

Bn−1 +Cn−1Bn−2 Cn−1Cn−2

]
+O(∆t2),

which is exactly the form of the leading term (2.37).
Iterating the above calculations (n− k) times and realizing that (n− k)∆t2 ≈ n∆t2 = tn∆t yields the

formula (2.37).
Recall that we have set θ = Wi,j , for some 1 ≤ i, j ≤ m in proposition 2.2.7. Directly calculating

with (2.20), (2.19) and the representation formula (2.37) yields the formula,

∂E
(k)
n

∂θ
= y⊤

n∆t2δZi,j
m,m(Ak−1)yk−1 + y⊤

n∆t2δC∗Zi,j
m,m(Ak−1)yk−1 +O(∆t3), (2.38)

with matrix C∗ defined as,

C∗ :=

n−1∑
j=k

k∏
i=j

Ci,

and Zi,j
m,m(Ak−1) ∈ Rm×m is a matrix with all elements are zero except for the (i, j)-th entry which is set

to σ′(aik−1), i.e. the i-th entry of σ′(Ak−1).
Note that the formula (2.38) can be explicitly written as,

∂E
(k)
n

∂θ
= δ∆t2σ′(aik−1)y

i
ny

j
k−1 + δ∆t2σ′(aik−1)

m∑
ℓ=1

C∗
ℓiy

ℓ
ny

j
k−1 +O(∆t3), (2.39)

with yj
n denoting the j-th element of vector yn, and

aik−1 :=

m∑
ℓ=1

Wiℓy
ℓ
k−1 +

m∑
ℓ=1

Wiℓz
ℓ
k−1. (2.40)

By the assumption (2.16), we can readily see that

∥W∥∞, ∥W∥∞ ≤ 1 + ∆t.
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Therefore by the fact that σ′ = sech2, the assumption yi
k = O(

√
tk) and (2.40), we obtain,

ĉ = sech2(
√
k∆t(1 + ∆t) ≤ σ′(ak−1

i ) ≤ 1. (2.41)

Using (2.41) in (2.39), we obtain,

δ∆t2σ′(aik−1)y
i
ny

j
k−1 = O

(
ĉδ∆t

5
2

)
. (2.42)

Using the definition of Ci, we can expand the product in C∗ and neglect terms of order O(∆t4), to obtain

k∏
i=j

Ci = (O(1) +O((j − k + 1)δ∆t2))I.

Summing over j and using the fact that k << n, we obtain that

C∗ = (O(n) +O(δ∆t0))I. (2.43)

Plugging (2.43) and (2.41) into (2.39) leads to,

δ∆t2σ′(aik−1)

m∑
ℓ=1

C∗
ℓiy

ℓ
ny

j
k−1 = O

(
ĉδ∆t

3
2

)
+O

(
ĉδ2∆t

5
2

)
. (2.44)

Combining (2.42) and (2.44) yields the desired estimate (2.36).

Remark 2.2.8. A careful examination of the above proof reveals that the constants hidden in the
prefactors of the leading term O

(
ĉδ∆t

3
2

)
of (2.36) stem from the formula (2.44). Here, we have used the

assumption that yi
k = O(

√
tk). Note that this assumption implicitly assumes that the energy bound (2.10)

is equidistributed among all the elements of the vector yk and results in the obfuscation of the constants
in the leading term of (2.36). Given that the energy bound (2.10) is too coarse to allow for precise upper
and lower bounds on each individual element of the hidden state vector yk, we do not see any other way
of, in general, determining the distribution of energy among individual entries of the hidden state vector.
Thus, assuming equidistribution seems reasonable. On the other hand, in practice, one has access to all
the terms in formula (2.44) for each numerical experiment and if one is interested, then one can directly
evaluate the precise bound on the leading term of the formula (2.36).

This precise bound (2.36) on the gradient shows that although the gradient can be small, i.e O(∆t
3
2 ),

it is in fact independent of k, ensuring that long-term dependencies contribute to gradients at much later
steps and mitigating the vanishing gradient problem.

Summarizing, we see that the RNN (2.3) indeed satisfied similar bounds to the underlying ODE (2.2)
that resulted in upper bounds on the hidden states and its gradients. However, the lower bound on the
gradient (2.36) is due to the specific choice of this discretization and does not appear to have a continuous
analogue, making the specific choice of discretization of (2.2) crucial for mitigating the vanishing gradient
problem.

2.2.3 Discretized system with explicit damping

In this section, we will provide rigorous estimates, similar to that of propositions 2.2.4, 2.2.5 and 2.2.6 for
the version of coRNN (2.3) that results by setting n̄ = n− 1 in (2.3) leading to,

yn = yn−1 +∆tzn,

zn = zn−1 +∆tσ (Wyn−1 +Wzn−1 +Vun + b)−∆tγyn−1 −∆tϵzn−1.
(2.45)
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Note that (2.45) can be equivalently written as,

yn = yn−1 +∆tzn,

zn = (1− ϵ∆t) zn−1 +∆tσ (Wyn−1 +Wzn−1 +Vun + b)−∆tγyn−1.
(2.46)

We will also consider the case of non-unit values of the control parameters γ and ϵ below.
We start with the following bound on the hidden states of (2.45),

Proposition 2.2.9. Let the damping parameter ϵ > 1
2 and the time step ∆t in the RNN (2.45) satisfy

the following condition,

∆t <
2ϵ− 1

γ + ϵ2
. (2.47)

Let yn, zn be the hidden states of the RNN (2.45) for 1 ≤ n ≤ N , then the hidden states satisfy the
following (energy) bounds:

y⊤
n yn +

1

γ
z⊤n zn ≤ mtn

γ
. (2.48)

Proof. We set An−1 = Wyn−1+Wzn−1+Vun−1+b and as in the proof of proposition 2.2.4, we multiply
(y⊤

n−1,
1
γ z

⊤
n ) to (2.45) and use elementary identities and rearrange terms to obtain,

y⊤
n yn

2
+

z⊤n zn
2γ

=
y⊤
n−1yn−1

2
+

z⊤n−1zn−1

2γ
+

(yn − yn−1)
⊤(yn − yn−1)

2

− (zn − zn−1)
⊤(zn − zn−1)

2γ

+
∆t

γ
z⊤n σ(An−1)−

ϵ∆t

γ
z⊤n zn +

ϵ∆t

γ
z⊤n (zn − zn−1) .

We use a rescaled version of the well-known Cauchy’s inequality

ab ≤ ca2

2
+

b2

2c
,

for a constant c > 0 to be determined, to rewrite the above identity as,

y⊤
n yn

2
+

z⊤n zn
2γ

≤ y⊤
n−1yn−1

2
+

z⊤n−1zn−1

2γ
+

(yn − yn−1)
⊤(yn − yn−1)

2

+

(
ϵ∆t

2cγ
− 1

2γ

)
(zn − zn−1)

⊤(zn − zn−1) +
∆t

2γ
σ(An−1)

⊤σ(An−1)

+

(
∆t

2γ
+

cϵ∆t

2γ
− ϵ∆t

γ

)
z⊤n zn.

Using the first equation in (2.45), the above inequality reduces to,

y⊤
n yn

2
+

z⊤n zn
2γ

≤ y⊤
n−1yn−1

2
+

z⊤n−1zn−1

2γ

+

(
ϵ∆t

2cγ
− 1

2γ

)
(zn − zn−1)

⊤(zn − zn−1) +
∆t

2γ
σ(An−1)

⊤σ(An−1)

+

(
∆t2

2
+

∆t

2γ
+

cϵ∆t

2γ
− ϵ∆t

γ

)
z⊤n zn.
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As long as,

∆t ≤ min

(
c

ϵ
,
(2− c)ϵ− 1

γ

)
, (2.49)

we can easily check that,

y⊤
n yn

2
+

z⊤n zn
2γ

≤ y⊤
n−1yn−1

2
+

z⊤n−1zn−1

2γ
+

∆t

2γ
σ(An−1)

⊤σ(An−1)

≤ y⊤
n−1yn−1

2
+

z⊤n−1zn−1

2γ
+

m∆t

2γ
(σ ≤ 1).

Iterating the above bound till n = 0 and using the zero initial data yields the desired (2.48) as long as we
find a c such that the condition (2.49) is satisfied. To do so, we equalize the two terms on the right hand
side of (2.49) to obtain,

c =
ϵ(2ϵ− 1)

γ + ϵ2
.

From the assumption (2.47) and the fact that ϵ > 1
2 , we see that such a c > 0 always exists for any value

of γ > 0 and (2.49) is satisfied, which completes the proof.

We remark that the same bound on the hidden states is obtained for both versions of coRNN, i.e. (2.3)
with n̄ = n and (2.45). However, the difference lies in the constraint on the time step ∆t. In contrast to
(2.47), a careful examination of the proof of proposition 2.2.4 reveals that the condition on the time step
for the stability of (2.3) with n̄ = n is given by,

∆t <
2ϵ− 1

γ
, (2.50)

and is clearly less stringent than the condition (2.49) for the stability of (2.45). For instance, in the
prototypical case of γ = ϵ = 1, the stability of (2.3) with n̄ = n is ensured for any ∆t < 1. On the other
hand, the stability of (2.45) is ensured as long as ∆t < 1

2 . However, it is essential to recall that these
conditions are only sufficient to ensure stability and are by no means necessary. Thus in practice, the
coRNN version (2.45) is found to be stable in the same range of time steps as the version (2.3) with
n̄ = n.

On the exploding and vanishing gradients problem for coRNN with explicit damping (2.45).
Next, we have the following upper bound on the hidden state gradients for the version (2.45) of coRNN,

Proposition 2.2.10. Let yn, zn be the hidden states generated by the RNN (2.45). We assume that
the damping parameter ϵ > 1

2 and the time step ∆t can be chosen such that in addition to (2.49) it also
satisfies,

max {∆t(γ + ∥W∥∞),∆t∥W∥∞} = η ≤ C̃∆tr,
1

2
≤ r ≤ 1, (2.51)

and with the constant C̃ independent of the other parameters of the RNN (2.45). Then the gradient of
the loss function E (2.14) with respect to any parameter θ ∈ Θ is bounded as,∣∣∣∣∂E∂θ

∣∣∣∣ ≤ 3(C̃)
(
m+ Ȳ

√
m
)

2γ
, (2.52)

with the constant C̃, defined in (2.51) and Ȳ = max
1≤n≤N

∥ȳn∥∞ be a bound on the underlying training data
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The proof of this proposition is completely analogous to the proof of proposition 2.2.6 and we omit
the details here.

Note that the bound (2.52) enforces that hidden state gradients cannot explode for version (2.45) of
coRNN. A similar statement for the vanishing gradient problem is inferred from the proposition below.

Proposition 2.2.11. Let yn be the hidden states generated by the RNN (2.45). Under the assumption
that yi

n = O(
√

tn
γ ), for all 1 ≤ i ≤ m and (2.51), the gradient for long-term dependencies satisfies,

∂E
(k)
n

∂θ
= O

(
ĉ

γ
∆t

3
2

)
+O

(
ĉ

γ
δ(1 + δ)∆t

5
2

)
+O(∆t3), ĉ = sech2

(√
k∆t(1 + ∆t)

)
k << n. (2.53)

The proof is a repetition of the steps of the proof of proposition 2.2.7, with suitable modifications for
the structure of the RNN and non-unit ϵ, γ and we omit the tedious calculations here. Note that (2.53)
rules out the vanishing gradient problem for the coRNN version with explicit damping (2.45).

2.3 Empirical results

We present results on a variety of learning tasks with coRNN (2.3) with n̄ = n − 1, as this version
resulted in marginally better performance than the version with n̄ = n. Details of the training procedure
for each experiment can be found at the end of this section. We wish to clarify here that we use a
straightforward hyperparameter tuning protocol based on a validation set and do not use additional
performance enhancing tools, such as dropout [Srivastava et al., 2014], gradient clipping [Pascanu et al.,
2013] or batch normalization [Ioffe and Szegedy, 2015], which might further improve the performance of
coRNNs.

Adding problem. We start with the well-known adding problem [Hochreiter and Schmidhuber, 1997],
proposed to test the ability of an RNN to learn (very) long-term dependencies. The input is a two-
dimensional sequence of length T , with the first dimension consisting of random numbers drawn from
U([0, 1]) and with two non-zero entries (both set to 1) in the second dimension, chosen at random locations,
but one each in both halves of the sequence. The output is the sum of two numbers of the first dimension
at positions, corresponding to the two 1 entries in the second dimension. We compare the proposed
coRNN to three recently proposed RNNs, which were explicitly designed to learn long-term dependencies,
namely the FastRNN [Kusupati et al., 2018], the antisymmetric (anti.sym.) RNN [Chang et al., 2019]
and the expRNN [Lezcano-Casado and Martınez-Rubio, 2019], and to a plain vanilla tanh RNN, with
the goal of beating the baseline mean square error (MSE) of 0.167 (which stems from the variance of
the baseline output 1). All methods have 128 hidden units (dimensionality of the hidden state y) and
the same training protocol is used in all cases. Fig. 2.1 shows the results for different lengths T of the
input sequences. We can see that while the tanh RNN is not able to beat the baseline for any sequence
length, the other methods successfully learn the adding task for T = 500. However, in this case, coRNN
converges significantly faster and reaches a lower test MSE than other tested methods. When setting the
length to the much more challenging case of T = 2000, we see that only coRNN and the expRNN beat the
baseline. However, the expRNN fails to reach a desired test MSE of 0.01 within training time. In order
to further demonstrate the superiority of coRNN over recently proposed RNN architectures for learning
long-term dependencies, we consider the adding problem for T = 5000 and observe that coRNN converges
very quickly even in this case, while expRNN fails to consistently beat the baseline. We thus conclude
that the coRNN mitigates the vanishing/exploding gradient problem even for very long sequences.
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Figure 2.1: Results of the adding problem for coRNN, expRNN, FastRNN, anti.sym. RNN and tanh
RNN based on three different sequence lengths T , i.e. T = 500, T = 2000 and T = 5000.

Sequential (permuted) MNIST. Sequential MNIST (sMNIST) [Le et al., 2015] is a benchmark
for RNNs, in which the model is required to classify an MNIST [LeCun et al., 1998] digit one pixel
at a time leading to a classification task with a sequence length of T = 784. In permuted sequential
MNIST (psMNIST), a fixed random permutation is applied in order to increase the time-delay between
interdependent pixels and to make the problem harder. In Table 2.1, we compare the test accuracy for
coRNN on sMNIST and psMNIST with recently published best case results for other recurrent models,
which were explicitly designed to solve long-term dependencies together with baselines corresponding to
gated and unitary RNNs. To the best of our knowledge the proposed coRNN outperforms all single-layer
recurrent architectures, published in the literature, for both the sMNIST and psMNIST. Moreover in
Fig. 2.3, we present the performance (with respect to number of epochs) of different RNN architectures
for psMNIST with the same fixed random permutation and the same number of hidden units, i.e. 128. As
seen from this figure, coRNN clearly outperforms the other architectures, some of which were explicitly
designed to learn long-term dependencies, handily for this permutation.

Table 2.1: Results on sMNIST and psMNIST for coRNN as well as uRNN [Arjovsky et al., 2016], LSTM
(result taken from Helfrich et al. [2018]), GRU (result taken from Chang et al. [2017]), antisymmetric
RNN, DTRIV∞ [Casado, 2019], and FastGRNN. The three best performing methods are highlighted in
red (First), blue (Second), and violet (Third).

Model sMNIST psMNIST # units # parameters

uRNN 95.1% 91.4% 512 9k
LSTM 98.9% 92.9% 256 270k
GRU 99.1% 94.1% 256 200k
antisymmetric RNN 98.0% 95.8% 128 10k
DTRIV∞ 99.0% 96.8% 512 137k
FastGRNN 98.7% 94.8% 128 18k
coRNN (small) 99.3% 96.6% 128 34k
coRNN (big) 99.4% 97.3% 256 134k

Noise padded CIFAR-10. Another challenging test problem for learning long-term dependencies is
the recently proposed noise padded CIFAR-10 experiment by Chang et al. [2019], in which CIFAR-10 data
points [Krizhevsky et al., 2009] are fed to the RNN row-wise and flattened along the channels resulting in
sequences of length 32. To test the long term memory, entries of uniform random numbers are added
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such that the resulting sequences have a length of 1000, i.e. the last 968 entries of each sequence are
only noise to distract the network. Table 2.2 shows the result for coRNN together with other recently
published best case results. We observe that coRNN readily outperforms other RNN architectures on this
benchmark, while requiring only 128 hidden units.

Table 2.2: Results on noise padded CIFAR-10 for coRNN as well as LSTM, Incremental RNN, FastRNN,
antisymmetric RNN, gated antisymmetric RNN, and LipschitzRNN Erichson et al. [2020], where all
other results are taken from Kag et al. [2020], Chang et al. [2019], Erichson et al. [2020]. The three best
performing methods are highlighted in red (First), blue (Second), and violet (Third).

Model test accuracy # units # parameters

LSTM 11.6% 128 64k
Incremental RNN 54.5% 128 12k
FastRNN 45.8% 128 16k
antisymmetric RNN 48.3% 256 36k
gated antisymmetric RNN 54.7% 256 37k
Lipschitz RNN 55.2% 256 134k
coRNN 59.0% 128 46k

Human activity recognition. This experiment is based on the human activity recognition data set
provided by Anguita et al. [2012]. The data set is a collection of tracked human activities, which were
measured by an accelerometer and gyroscope on a Samsung Galaxy S3 smartphone. Six activities were
binarized to obtain two merged classes {Sitting, Laying, Walking_Upstairs} and {Standing, Walking,
Walking_Downstairs}, leading to the HAR-2 data set, which was first proposed in Kusupati et al. [2018].
Table 2.3 shows the result for coRNN together with other very recently published best case results on
the same data set. We can see that coRNN readily outperforms all other methods. We also ran this
experiment on a tiny coRNN with very few parameters, i.e. only 1k. We can see that even in this
case, the tiny coRNN beats all baselines. We thus conclude that coRNN can efficiently be used on
resource-constrained IoT micro-controllers.

Table 2.3: Results on HAR-2 for coRNN as well as GRU, LSTM, FastRNN, FastGRNN, antisymmetric
RNN, and incremental RNN, where all other results are taken from Kag et al. [2020], Kusupati et al.
[2018]. The three best performing methods are highlighted in red (First), blue (Second), and violet
(Third).

Model test accuracy # units # parameters

GRU 93.6% 75 19k
LSTM 93.7% 64 16k
FastRNN 94.5% 80 7k
FastGRNN 95.6% 80 7k
antisymmetric RNN 93.2% 120 8k
incremental RNN 96.3% 64 4k
coRNN 97.2% 64 9k
tiny coRNN 96.5% 20 1k
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IMDB sentiment analysis. The IMDB data set [Maas et al., 2011] is a collection of 50k movie reviews,
where 25k reviews are used for training (with 7.5k of these reviews used for validating) and 25k reviews
are used for testing. The aim of this binary sentiment classification task is to decide whether a movie
review is positive or negative. We follow the standard procedure by initializing the word embedding
with pretrained 100d GloVe [Pennington et al., 2014] vectors and restrict the dictionary to 25k words.
Table 2.4 shows the results for coRNN and other recently published models, which are trained similarly
and have the same number of hidden units, i.e. 128. We can see that coRNN compares favorable with
gated baselines (which are known to perform very well on this task), while at the same time requiring
significantly less parameters.

Table 2.4: Results on IMDB for coRNN as well as LSTM, Skip LSTM, GRU, Skip GRU, and ReLU
GRU, where all other results are taken from Campos et al. [2018], Dey and Salemt [2017]. The three best
performing methods are highlighted in red (First), blue (Second), and violet (Third).

Model test accuracy # units # parameters

LSTM 86.8% 128 220k
Skip LSTM 86.6% 128 220k
GRU 86.2% 128 164k
Skip GRU 86.6% 128 164k
ReLU GRU 84.8% 128 99k
coRNN 87.4% 128 46k

Chaotic time-series prediction. According to proposition 2.2.5, coRNN does not exhibit chaotic
behavior by design. While this property is highly desirable for learning long-term dependencies (a slight
perturbation of the input should not result in an unbounded perturbation of the prediction), it impairs the
performance on tasks, where the network has to learn actual chaotic dynamics. To test this numerically,
we consider the following version of the Lorenz 96 system: [Lorenz, 1996]:

x′
j = (xi+1 − xi−2)xi−1 − xi + F, (2.54)

where xj ∈ R for all j = 1, . . . , 5 and F is an external force controlling the level of chaos in the system.
Fig. 2.2 shows a trajectory of the system (2.54) plotted on the x1x2-plane for a small external force of
F = 0.9 as well as a trajectory for a large external force of F = 8. We can see that while for F = 0.9 the
system does not exhibit chaotic behavior, the dynamics for F = 8 is already highly chaotic.

Our task consists of predicting the 25-th next state of a trajectory of the system (2.54). We provide
128 trajectories of length 2000 for each of the training, validation and test sets. The trajectories are
generated by numerically solving the system (2.54) and evaluating it at 2000 equidistantly distributed
discrete time points with distance 0.01. The initial value for each trajectory is chosen uniform at random
on [F − 1/2, F + 1/2]5 around the equilibrium point (F, . . . , F ) of the system (2.54).

Since LSTMs are known to be able to produce chaotic dynamics, even in the autonomous (zero-entry)
case [Laurent and von Brecht, 2017], we expect them to perform significantly better than coRNN if the
underlying system exhibits strong chaotic behavior. Table 2.5 shows the normalized root mean square
error (NRMSE) (RMSE divided by the root mean square of the target trajectory) on the test set for
coRNN and LSTM. We can see that indeed for the non-chaotic case of using an external force of F = 0.9

LSTM and coRNN perform similarly. However, when the dynamics get chaotic (in this case using an
external force of F = 8), the LSTM clearly outperforms coRNN.
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Figure 2.2: Exemplary (x1, x2)-trajectories of the Lorenz 96 system (2.54) for different forces F .

Table 2.5: Test NRMSE on the Lorenz 96 system (2.54) for coRNN and LSTM.

Model F = 0.9 F = 8 # units # parameters

LSTM 2.0× 10−2 6.8× 10−2 44 9k
coRNN 2.0× 10−2 9.8× 10−2 64 9k

Further experimental results. To shed further light on the performance of coRNN, we consider the
following issues. First, the theory suggested that coRNN mitigates the exploding and vanishing gradients
problem as long as the assumptions (2.16) on the time step ∆t and weight matrices W,W hold. Clearly
one can choose a suitable ∆t to enforce (2.16) before training, but do these assumptions remain valid
during training? In 2.2.2, we argue, based on worst-case estimates, that the assumptions will remain
valid for possibly a large number of training steps. More pertinently, we can verify experimentally that
(2.16) holds during training. This is demonstrated in Fig. 2.4, where we show that (2.16) holds for all
long-term dependency tasks during training. Thus, the presented theory applies and one can expect
control over hidden state gradients with coRNN. Next, we recall that the frequency parameter γ and
damping parameter ϵ play a role for coRNNs (see 2.2.3 for the theoretical dependence and Table 2.8 for
best performing values of ϵ, γ for each numerical experiment within the range considered in Table 2.7).
How sensitive is the performance of coRNN to the choice of these 2 parameters? To investigate this
dependence, we focus on the noise padded CIFAR-10 experiment and show the results of a sensitivity study
in Fig. 2.5, where the test accuracy for different coRNNs based on a two dimensional hyperparameter grid
(ϵ, γ) ∈ [0.8, 1.8]× [5.7, 17, 7] (i.e., sufficiently large intervals around the best performing values of ϵ, γ from
Table 2.8) is plotted. We observe from the figure that although there are reductions in test accuracy for
non-optimal values of (ϵ, γ), there is no large variation and the performance is rather robust with respect
to these hyperparameters. Finally, note that we follow standard practice and present best reported results
with coRNN as well as other competing RNNs in order to compare the relative performance. However,
it is natural to investigate the dependence of these best results on the random initial (before training)
values of the weight matrices. To this end, in Table 2.6 we report the mean and standard deviation (over
10 retrainings) of the test accuracy with coRNN on various learning tasks and find that the mean value is
comparable to the best reported value, with low standard deviations. This indicates further robustness of
the performance of coRNNs.
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Table 2.6: Distributional information (mean and standard deviation) on the results for each classification
experiment presented in this chapter based on 10 retrainings of the best performing coRNN using random
initialization of the trainable parameters.

Experiment Mean Standard deviation

sMNIST (256 units) 99.17% 0.07%
psMNIST (256 units) 96.10% 1.20%
Noise padded CIFAR-10 58.56% 0.35%
HAR-2 (64 units) 96.01% 0.53%
IMDB 86.65% 0.31%

Training details. The IMDB task was conducted on an NVIDIA GeForce GTX 1080 Ti GPU, while
all other experiments were run on a Intel Xeon E3-1585Lv5 CPU. The weights and biases of coRNN are
randomly initialized according to U(− 1√

nin
, 1√

nin
), where nin denotes the input dimension of each affine

transformation. Instead of treating the parameters ∆t, γ and ϵ as fixed hyperparameters, we can also
treat them as trainable network parameters by constraining ∆t to [0, 1] by using a sigmoidal activation
function and ϵ, γ > 0 by the use of ReLU for instance. However, in this case no major difference in
performance is obtained. The hyperparameters are optimized with a random search algorithm, where
the results of the best performing coRNN (based on the validation set) are reported. The ranges of the
hyperparameters for the random search algorithm are provided in Table 2.7. Table 2.8 shows the rounded
hyperparameters of the best performing coRNN architecture resulting from the random search algorithm
for each learning task. We used 100 training epochs for sMNIST, psMNIST and noise padded CIFAR-10
with additional 20 epochs in which the learning rate was reduced by a factor of 10. Additionally, we used
100 epochs for the IMDB task and 250 epochs for the HAR-2 task.

2.4 Discussion

Inspired by many models in physics, biology and engineering, we proposed a novel RNN architecture
(2.3) based on a model (2.1) of a network of controlled forced and damped oscillators. For this RNN, we
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Table 2.7: Setting for the hyperparameter optimization of coRNN. Intervals denote ranges of the corres-
ponding hyperparameter for the grid search algorithm, while fixed numbers mean that no hyperparameter
optimization was done in this case.

task learning rate batch size ∆t γ ϵ

Adding 2× 10−2 50 [10−2, 10−1] [1, 100] [1, 100]

sMNIST (nhid = 128) [10−4, 10−1] 120 [10−2, 10−1] [10−1, 10] [10−1, 10]

sMNIST (nhid = 256) [10−4, 10−1] 120 [10−2, 10−1] [10−1, 10] [10−1, 10]

psMNIST (nhid = 128) [10−4, 10−1] 120 [10−2, 10−1] [10−1, 10] [10−1, 10]

psMNIST (nhid = 256) [10−4, 10−1] 120 [10−2, 10−1] [10−1, 10] [10−1, 10]

Noise padded CIFAR-10 [10−4, 10−1] 100 [10−2, 10−1] [1, 100] [1, 100]

HAR-2 [10−4, 10−1] 64 [10−2, 10−1] [10−1, 10] [10−1, 10]

IMDB [10−4, 10−1] 64 [10−2, 10−1] [10−1, 10] [10−1, 10]

Table 2.8: Rounded hyperparameters of the best performing coRNN architecture.

task learning rate batch size ∆t γ ϵ

Adding (T = 5000) 2× 10−2 50 1.6× 10−2 94.5 9.5

sMNIST (nhid = 128) 3.5× 10−3 120 5.3× 10−2 1.7 4

sMNIST (nhid = 256) 2.1× 10−3 120 4.2× 10−2 2.7 4.7

psMNIST (nhid = 128) 3.7× 10−3 120 8.3× 10−2 1.3× 10−1 4.1

psMNIST (nhid = 256) 5.4× 10−3 120 7.6× 10−2 4× 10−1 8.0

Noise padded CIFAR-10 7.5× 10−3 100 3.4× 10−2 1.3 12.7

HAR-2 1.7× 10−2 64 10−1 2× 10−1 6.4

IMDB 6.0× 10−4 64 5.4× 10−2 4.9 4.8

rigorously showed that under verifiable hypotheses on the time step and weight matrices, the hidden states
are bounded (2.10) and obtained precise bounds on the gradients (Jacobians) of the hidden states, (2.17)
and (2.36). Thus by design, this architecture can mitigate the exploding and vanishing gradients problem
for RNNs. We present a series of numerical experiments that include sequential image classification,
activity recognition and sentiment analysis, to demonstrate that the proposed coRNN keeps hidden states
and their gradients under control, while retaining sufficient expressivity to perform complex tasks. Thus,
we provide a novel and promising strategy for designing RNN architectures that are motivated by the
functioning of natural systems, have rigorous bounds on hidden state gradients and are robust, accurate,
straightforward to train and cheap to evaluate.

This work can be extended in different directions. For instance in this chapter, we have mainly
focused on the learning of tasks with long-term dependencies and observed that coRNNs are comparable
in performance to the best published results in the literature. Given that coRNNs are built with
networks of oscillators, it is natural to expect that they will perform very well on tasks with oscillatory
inputs/outputs, such as the time series analysis of high-resolution biomedical data, for instance EEG
(electroencephalography) and EMG (electromyography) data and seismic activity data from geoscience.
Similarly, applications of coRNN to language modeling will be covered in future work.

However, it is essential to point out that coRNNs might not be suitable for every learning task
involving sequential inputs/outputs. As a concrete example, we consider the problem of predicting time
series corresponding to a chaotic dynamical system. We recall that by construction, the underlying ODE
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(2.2) (and the discretization (2.3)) do not allow for super-linear (in time) separation of trajectories for
nearby inputs. Thus, we cannot expect that coRNNs will be effective at predicting chaotic time series
and it is indeed investigated and demonstrated for a Lorenz-96 ODE in the experimental results section
2.3, where we observe that the coRNN is outperformed by LSTMs in the chaotic regime.

Our main theoretical focus in this chapter was to demonstrate the possible mitigation of the exploding
and vanishing gradients problem. On the other hand, we only provided some heuristics and numerical
evidence on why the proposed RNN still has sufficient expressivity. A priori, it is natural to think that
the proposed RNN architecture might introduce a strong bias towards oscillatory functions. However, the
proposed coRNN can be significantly more expressive, as the damping, forcing and coupling of several
oscillators modulates nonlinear response to yield a very rich and diverse set of output states. This is also
evidenced by the ability of coRNNs to deal with many tasks in our numerical experiments, which do not
have an explicit oscillatory structure. This sets the stage for a rigorous investigation of universality of the
proposed coRNN architecture, as in the case of echo state networks in Grigoryeva and Ortega [2018]. A
possible approach would be to leverage the ability of the proposed RNN to convert general inputs into a
rich set of superpositions of harmonics (oscillatory wave forms). Moreover, the proposed RNN was based
on the simplest model of coupled oscillators (2.1). Much more detailed models of oscillators are available,
particularly those that arise in the modeling of biological neurons, Stiefel and Ermentrout [2016] and
references therein. An interesting variant of our proposed RNN would be to base the RNN architecture
on these more elaborate models, resulting in analogues of the spiking neurons model of Maass [2001] for
RNNs.
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Undamped Independent Controlled
Oscillatory Recurrent Neural Network

Hamiltonian systems Arnold [1989] are a large class of dynamical systems in physics and engineering that
allow for very precise control on the underlying states. Moreover, the fact that the phase space volume is
preserved by the trajectories of a Hamiltonian system, makes such systems invertible and allows one to
significantly reduce the storage requirements. Furthermore, if the resulting hidden state gradients also
evolve according to a Hamiltonian dynamical system, one can obtain precise bounds on the hidden state
gradients and alleviate the exploding and vanishing gradients problem. Motivated by this, we combine
and extend these ideas into an RNN architecture that will allow us to prove rigorous bounds on the
hidden states and their gradients, mitigating the exploding and vanishing gradients problem. Moreover,
our RNN architecture results in a fast and memory-efficient implementation that attains state-of-the-art
performance on a variety of sequential learning tasks with very long time dependencies.

3.1 The proposed RNN

Our proposed RNN is based on the time-discretization of the following system of second-order ordinary
differential equations (ODEs),

y′′ = −[σ (w ⊙ y +Vu+ b) + αy]. (3.1)

Here, t ∈ [0, 1] is the (continuous) time variable, u = u(t) ∈ Rd is the time-dependent input signal,
y = y(t) ∈ Rm is the hidden state of the RNN with w ∈ Rm is a weight vector, V ∈ Rm×d a weight
matrix, b ∈ Rm is the bias vector and α ≥ 0 is a control parameter. The operation ⊙ is the Hadamard
product and the function σ : R 7→ R is the activation function and is applied component wise. For the
rest of this chapter, we set σ(u) = tanh(u).

By introducing the auxiliary variable z = y′, we can rewrite the second order ODE (3.1) as a first
order ODE system:

y′ = z, z′ = −[σ (w ⊙ y +Vu+ b) + αy]. (3.2)

Assuming that wi ̸= 0, for all 1 ≤ i ≤ m, it is easy to see that the ODE system (3.2) is a Hamiltonian
system,

y′ =
∂H

∂z
, z′ = −∂H

∂y
, (3.3)
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with the time-dependent Hamiltonian,

H(y, z, t) =
α

2
∥y∥2 + 1

2
∥z∥2 +

m∑
i=1

1

wi
log(cosh(wiyi + (Vu(t))i + bi)), (3.4)

with ∥x∥2 = ⟨x,x⟩ denoting the Euclidean norm of the vector x ∈ Rm and ⟨·, ·⟩ the corresponding inner
product.

The next step is to find a discretization of the ODE system (3.2). Given that it is highly desirable
to ensure that the discretization respects the Hamiltonian structure of the underlying continuous ODE,
the simplest such structure preserving discretization is the symplectic Euler method Sanz Serna and
Calvo [1994], Hairer et al. [2003]. Applying the symplectic Euler method to the ODE (3.2) results in the
following discrete dynamical system,

yn = yn−1 +∆tzn,

zn = zn−1 −∆t[σ (w ⊙ yn−1 +Vun + b) + αyn−1],
(3.5)

for 1 ≤ n ≤ N . Here, 0 < ∆t < 1 is the time-step and un ≈ u(tn), with tn = n∆t, is the input signal. It
is common to initialize with y0 = z0 = 0.

We see from the structure of the discrete dynamical system (3.5) that there is no interaction between
the neurons in the hidden layer of (3.5). Such an RNN will have very limited expressivity. Hence, we
stack more hidden layers to propose the following deep or multi-layer RNN,

yℓ
n = yℓ

n−1 +∆tσ̂(cℓ)⊙ zℓn,

zℓn = zℓn−1 −∆tσ̂(cℓ)⊙ [σ(wℓ ⊙ yℓ
n−1 +Vℓyℓ−1

n + bl) + αyℓ
n−1].

(3.6)

Here yl
n, z

l
n ∈ Rm are hidden states and wℓ,Vℓ,bℓ are weights and biases, corresponding to layer

ℓ = 1, . . . , L. We set y0
n = un in the multilayer RNN (3.6).

In Fig. 3.1, we present a schematic diagram of the proposed multi-layer recurrent model UnICORNN.
Observe that we use the same step-size ∆t for every layer, while multiplying a trainable parameter

vector c ∈ Rm to the time step. The action of c is modulated with the sigmoidal activation function
σ̂(u) = 0.5 + 0.5 tanh(u/2), which ensures that the time-step ∆t is multiplied by a value between 0 and 1.
We remark that the presence of this trainable vector c allows us to incorporate multiscale behavior in
the proposed RNN, as the effective time-step is learned during training and can be significantly different
from the nominal time-step ∆t. It is essential to point out that including this multiscale time stepping is
only possible, as each neuron (within the same hidden layer) is independent of the others and can be
integrated with a different effective time step. Finally, we also share the control hyperparameter α across
the different layers, which results in a memory unit of L layers with a total of only 2 hyperparameters.

Motivation and background. The ODE system (3.2) is a model for a nonlinear system of uncoupled
driven oscillators Guckenheimer and Holmes [1990]. To see this, we denote yi(t) as the displacement and
zi(t) as the velocity. Then, the dynamics of the i-th oscillator is determined by the frequency α and also
by the forcing or driving term in the second equation of (3.2), where the forcing acts through the input
signal u and is modulated by the weight V and bias b. Finally, the weight w modulates the frequency α

and allows each neuron to oscillate with its own frequency, rather than the common frequency α of the
system. The structure of w implies that each neuron is independent of the others. A key element of the
oscillator system (3.2) is the absence of any damping or friction term. This allows the system to possess a
Hamiltonian structure, with desirable long time behavior. Thus, we term the resulting RNN (3.6), based
on the ODE system (3.2) as Undamped Independent Controlled Oscillatory RNN or UnICORNN.
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Figure 3.1: Schematic diagram of the multi-layer UnICORNN architecture, where the layers (respectively
the input) are densely connected and the hidden states evolve independently in time. The invertibility
of UnICORNN is visualized with blue arrows, emphasizing that the hidden states can be reconstructed
during the backward pass and do not need to be stored.

We remark that networks of oscillators are very common in science and engineering Guckenheimer and
Holmes [1990], Strogatz [2001] with prominent examples being pendulums in mechanics, electrical circuits
in engineering, business cycles in economics and functional brain circuits such as cortical columns in
neurobiology.

Comparison with related work. UnICORNN lies firmly in the class of ODE-based or ODE-inspired
RNNs, which have received considerable amount of attention in the machine learning literature in recent
years. Neural ODEs, first proposed in Chen et al. [2018], are a prominent example of using ODEs to
construct neural networks. In this architecture, the continuous ODE serves as the learning model and
gradients are computed from a sensitivity equation, which allows one to trade accuracy with computing
time. Moreover, it is argued that these neural ODEs are invertible and hence, memory efficient. However,
it is unclear if a general neural ODE, without any additional structure, can be invertible. Other RNN
architectures that are based on discretized ODEs include those proposed in E [2017] and Chang et al.
[2019], where the authors proposed an anti-symmetric RNN, based on the discretization of a stable ODE
resulting from a skew-symmetric hidden weight matrix, thus constraining the gradient dynamics.

Our proposed RNN (3.6) is inspired by two recent RNN architectures. The first one is coRNN of
Chapter 2, where the underlying RNN architecture was also based on the use of a network of oscillators.
As long as a constraint on the underlying weights was satisfied, coRNN was shown to mitigate the
exploding and vanishing gradients problem in Section 2.2.2. In contrast to coRNN, UnICORNN does not
use a damping term. Moreover, each neuron, for any hidden layer, in UnICORNN (3.6) is independent.
This is very different from coRNN where all the neurons were coupled together. Finally, UnICORNN is a
multi-layer architecture whereas coRNN used a single hidden layer. These innovations allow us to admit
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a Hamiltonian structure for UnICORNN and facilitate a fast and memory efficient implementation.
Our proposed architecture was also partly inspired by IndRNN, proposed in Li et al. [2018, 2019],

where the neurons in each hidden layers were independent of each other and interactions between neurons
were mediated by stacking multiple RNN layers, with output of each hidden layer passed on to the next
hidden layer, leading to a deep RNN. We clearly use this construction of independent neurons in each
layer and stacking multiple layers in UnICORNN (3.6). However in contrast to IndRNN, our proposed
RNN is based on a discretized Hamiltonian system and we will not require any constraints on the weights
to mitigate the exploding and vanishing gradients problem.

Finally, we would like to point out that discrete Hamiltonian systems have already been used to design
RNNs, for instance in Greydanus et al. [2019] and also in Chen et al. [2020c], where a symplectic time-
integrator for a Hamiltonian system was proposed as the RNN architecture. However, these approaches
are based on underlying time-independent Hamiltonians and are only relevant for mechanical systems as
they cannot process time-dependent inputs, which arise in most realistic learning tasks. Moreover, as
these methods enforce exact conservation of the Hamiltonian in time, they are not suitable for learning
long-time dependencies, see MacKay et al. [2018] for a discussion and experiment on that issue. Although
we use a Hamiltonian system as the basis of our proposed RNN (3.6), our underlying Hamiltonian (3.4)
is time-dependent and the resulting RNN can readily process any time-dependent input signal.

On the Memory Efficiency of UnICORNN. The standard BPTT training algorithm for RNNs
requires one to store all the hidden states at every time step. To see this, we observe that for a standard
multi-layer RNN with L layers and a mini-batch size of b (for any mini-batch stochastic gradient descent
algorithm), the storage (in terms of floats) scales as O(Nbd+LbmN), with input and hidden sequences of
length N . This memory requirement can be very high. Note that we have ignored the storage of trainable
weights and biases for the RNN in the above calculation.

On the other hand, as argued before, our proposed RNN is a symplectic Euler discretization for a
Hamiltonian system. Hence, it is invertible. In fact, one can explicitly write the inverse of UnICORNN
(3.6) as,

yl
n−1 = yl

n −∆tσ̂(cl)⊙ zln,

zln−1 = zln +∆tσ̂(cl)⊙ [σ(wl ⊙ yl
n−1 +Vℓyℓ−1

n + bl) + αyl
n−1].

(3.7)

Thus, one can recover all the hidden states in a given hidden layer, only from the stored hidden state at
the final time step, for that layer. Moreover, only the input signal needs to be stored as the other hidden
states can be reconstructed from the formula (3.7). Hence, a straightforward calculation shows that the
storage for UnICORNN scales as O(Nbd+ Lbm). As L << N , we conclude that UnICORNN allows for
a significant saving in terms of storage, when compared to a standard RNN.

3.2 Rigorous analysis of UnICORNN

3.2.1 Continuous-time system

In order to investigate the exploding and vanishing gradients problem for the proposed RNN (3.6), we
will first explore the dynamics of the gradients of hidden states y, z (solutions of the ODE (3.2)) with
respect to the trainable parameters w,V and b. Denote any scalar parameter as θ and fθ = ∂f

∂θ , then
differentiating the ODE (3.2) with respect to θ results in the ODE,

y′
θ = zθ,

z′θ = −σ′(A)⊙ (w ⊙ yθ)− αyθ − σ′(A)⊙C(t),
(3.8)
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where A = w⊙y+Vu+b is the pre-activation and the coefficient C ∈ Rm is given by Ci = yi if θ = wi,
Ci = uj if θ = Vij and Ci = 1 if θ = bi, with all other entries of the vector C being zero.

It is easy to check that the ODE system (3.8) is a Hamiltonian system of form (3.3), with the following
time-dependent Hamiltonian;

H (yθ, zθ, t) :=
α

2
∥yθ∥2 +

1

2
∥zθ∥2 +

1

2

m∑
i=1

σ′(Ai)wi((yθ)i)
2 +

m∑
i=1

σ′(Ai)Ci(t)(yθ)i. (3.9)

Thus, by the well-known Liouville’s theorem Sanz Serna and Calvo [1994], we know that the phase space
volume of (3.8) is preserved. Hence, this system cannot have any asymptotically stable fixed points.
This implies that {0,0} cannot be a stable fixed point for the hidden state gradients (yθ, zθ). Thus, we
can expect that the hidden state gradients with respect to the system of oscillators (3.2) do not remain
near zero and suggest a possible mechanism for the mitigation of the vanishing gradient problem for
UnICORNN (3.6), which is a structure preserving discretization of the ODE (3.2).

3.2.2 Discretized system

We rewrite UnICORNN (3.6) in the following form: for all 1 ≤ ℓ ≤ L and for all 1 ≤ i ≤ m

yℓ,i
n = yℓ,i

n−1 +∆tσ̂(cℓ,i)zℓ,in ,

zℓ,in = zℓ,in−1 −∆tσ̂(cℓ,i)σ(Aℓ,i
n−1)− α∆tσ̂(cℓ,i)yℓ,i

n−1,

Aℓ,i
n−1 = wℓ,iyℓ,i

n−1 +
(
Vℓyℓ−1

n

)i
+ bℓ,i.

(3.10)

Here, we have denoted the i-th component of a vector x as xi.
We follow standard practice and set yℓ

0 = zℓ0 ≡ 0, for all 1 ≤ ℓ ≤ L. Moreover for simplicity of
exposition, we set α > 0 in the following.

Pointwise bounds on hidden states. We have the following bounds on the discrete hidden states,

Proposition 3.2.1. Let yℓ
n, z

ℓ
n be the hidden states at the n-th time level tn for UnICORNN (3.10), then

under the assumption that the time step ∆t << 1 is sufficiently small, these hidden states are bounded as,

max
1≤i≤m

|yℓ,i
n | ≤

√
2

α
(1 + 2βtn), max

1≤i≤m
|zℓ,in | ≤

√
2 (1 + 2βtn) ∀n,∀ 1 ≤ ℓ ≤ L, (3.11)

with the constant
β = max{1 + 2α, 4α2}.

Proof. We fix ℓ, n and multiply the first equation in (3.10) with αyℓ,i
n−1 and use the elementary identity

b(a− b) =
a2

2
− b2

2
− 1

2
(a− b)2,

to obtain
α(yℓ,i

n )2

2
=

α(yℓ,i
n−1)

2

2
+

α

2
(yℓ,i

n − yℓ,i
n−1)

2 + α∆tσ̂(cℓ,i)yℓ,i
n−1z

ℓ,i
n ,

=
α(yℓ,i

n−1)
2

2
+

α∆t2

2
(σ̂(cℓ,i))2(zℓ,in )2 + α∆tσ̂(cℓ,i)yℓ,i

n−1z
ℓ,i
n .

(3.12)
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Next, we multiply the second equation in (3.10) with zℓ,in and use the elementary identity

a(a− b) =
a2

2
− b2

2
+

1

2
(a− b)2,

to obtain
(zℓ,in )2

2
=

(zℓ,in−1)
2

2
− 1

2
(zℓ,in − zℓ,in−1)

2 −∆tσ̂(cℓ,i)σ(Aℓ,i
n−1)

(
zℓ,in − zℓ,in−1

)
−∆tσ̂(cℓ,i)σ(Aℓ,i

n−1)z
ℓ,i
n−1 − α∆tσ̂(cℓ,i)yℓ,i

n−1z
ℓ,i
n .

(3.13)

Adding (3.12) and (3.13) and using Cauchy’s inequality yields,

α(yℓ,i
n )2

2
+

(zℓ,in )2

2
≤ α(yℓ,i

n−1)
2

2
+

(1 + ∆t)(zℓ,in−1)
2

2
+

α∆t2

2
(σ̂(cℓ,i))2(zℓ,in )2

+ (σ̂(cℓ,i))2(σ(Aℓ,i
n−1))

2∆t+
∆t− 1

2
(zℓ,in − zℓ,in−1)

2

⇒ α(yℓ,i
n )2 + (zℓ,in )2 ≤ α(yℓ,i

n−1)
2 + (1 +∆t)(zℓ,in−1)

2 + 2∆t+ α∆t2(zℓ,in )2,

where the last inequality follows from the fact that |σ|, |σ̂| ≤ 1 and ∆t < 1. Using the elementary
inequality,

(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2,

and substituting for zℓ,in from the second equation of (3.10) in the last inequality leads to,

α(yℓ,i
n )2 + (zℓ,in )2 ≤ (1 + 4α2∆t4)α(yℓ,i

n−1)
2 + (1 +∆t+ 2α∆t2)(zℓ,in−1)

2 + 2∆t+ 4α∆t4.

Denoting Hn = α(yℓ,i
n )2 + (zℓ,in )2 and

G := 1 + β∆t, β = max{1 + 2α, 4α2}

yields the following inequality,

Hn ≤ GHn−1 + 2∆t(1 + 2α∆t3). (3.14)

Iterating the above n-times and using the fact that the initial data is such that H0 ≡ 0 we obtain,

Hn ≤
(
2∆t+ 4α∆t4

) n−1∑
k=0

(1 + β∆t)k

≤ (1 + β∆t)n

β∆t

(
2∆t+ 4α∆t4

)
≤ 1

β
(1 + 2βn∆t)

(
2 + 4α∆t3

)
as ∆t << 1,

≤ 2(1 + 2βtn) (from definition of β).

(3.15)

The definition of H clearly implies the desired bound (3.11).

On the Exploding Gradient Problem for UnICORNN. We train the RNN (3.10) to minimize
the loss function,

E :=
1

N

N∑
n=1

En, En =
1

2
∥yL

n − ȳn∥22, (3.16)
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with ȳ being the underlying ground truth (training data). Note that the loss function (3.16) only involves
the output at the last hidden layer (we set the affine output layer to identity for the sake of simplicity).
During training, we compute gradients of the loss function (3.16) with respect to the trainable weights
and biases Θ = [wℓ,Vℓ,bℓ, cℓ], for all 1 ≤ ℓ ≤ L i.e.

∂E

∂θ
=

1

N

N∑
n=1

∂En

∂θ
, ∀ θ ∈ Θ. (3.17)

We have the following bound on the gradient (3.17),

Proposition 3.2.2. Let the time step ∆t << 1 be sufficiently small in the RNN (3.10) and let yℓ
n, z

ℓ
n,

for 1 ≤ ℓ ≤ L, be the hidden states generated by the RNN (3.10). Then, the gradient of the loss function
E (3.16) with respect to any parameter θ ∈ Θ is bounded as,∣∣∣∣∂E∂θ

∣∣∣∣ ≤ 1− (∆t)L

1−∆t
T (1 + 2γT )V(Y + F)∆, (3.18)

with Ȳ = max
1≤n≤N

∥ȳn∥∞, be a bound on the underlying training data and other quantities in (3.18) defined
as,

γ = max
(
2, ∥wL∥∞ + α

)
+

(
max

(
2, ∥wL∥∞ + α

))2
2

,

V =

L∏
q=1

max{1, ∥Vq∥∞},

F =

√
2

α
(1 + 2βT ),

∆ =

(
2 +

√
(1 + 2βT ) + (2 + α)

√
2

α
(1 + 2βT )

)
.

(3.19)

Proof. For any 1 ≤ n ≤ N and 1 ≤ ℓ ≤ L, let Xℓ
n ∈ R2m be the augmented hidden state vector defined

by,
Xℓ

n =
[
yℓ,1
n , zℓ,1n , . . . ,yℓ,i

n , zℓ,in , . . . ,yℓ,m
n , zℓ,mn

]
. (3.20)

For any θ ∈ Θ, we can apply the chain rule repeatedly to obtain the following extension of the formula of
Pascanu et al. [2013] to a deep RNN,

∂En

∂θ
=

L∑
ℓ=1

n∑
k=1

∂En

∂XL
n

∂XL
n

∂Xℓ
k

∂+Xℓ
k

∂θ︸ ︷︷ ︸
∂E

(n,L)
k,ℓ
∂θ

. (3.21)

Here, the notation ∂+Xℓ
k

∂θ refers to taking the partial derivative of Xℓ
k with respect to the parameter θ,

while keeping the other arguments constant.

We remark that the quantity
∂E

(n,L)
k,ℓ

∂θ denotes the contribution from the k-recurrent step at the l-th
hidden layer of the deep RNN (3.10) to the overall hidden state gradient at the step n.

It is straightforward to calculate that,

∂En

∂XL
n

=
[
yL,1
n − y1

n, 0, . . . ,y
L,i
n − yi

n, 0, . . . ,y
L,m
n − ym

n , 0
]
. (3.22)
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Repeated application of the chain and product rules yields,

∂XL
n

∂Xℓ
k

=

n∏
j=k+1

∂XL
j

∂XL
j−1

L∏
q=ℓ+1

∂Xq
k

∂Xq−1
k

. (3.23)

For any j, a straightforward calculation using the form of the RNN (3.10) leads to the following

representation formula for the matrix ∂XL
j

∂XL
j−1

∈ R2m × R2m:

∂XL
j

∂XL
j−1

=


BL,1

j 0 . . . 0

0 BL,2
j . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 BL,m
j

 , (3.24)

with the block matrices BL,i
j ∈ R2×2 given by,

BL,i
j =

1− (σ̂(cL,i))2∆t2
(
wL,iσ′(AL,i

j−1) + α
)

σ̂(cL,i)∆t

−σ̂(cL,i)∆t
(
wL,iσ′(AL,i

j−1) + α
)

1

 . (3.25)

Similarly for any q, the matrix ∂Xq
k

∂Xq−1
k

∈ R2m×2m can be readily computed as,

∂Xq
k

∂Xq−1
k

=



Dq,k
11 0 Dq,k

12 0 . . . . . . Dq,k
1m 0

Eq,k
11 0 Eq,k

12 0 . . . . . . Eq,k
1m 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Dq,k
m1 0 Dq,k

m2 0 . . . . . . Dq,k
mm 0

Eq,k
m1 0 Eq,k

m2 0 . . . . . . Eq,k
mm 0


, (3.26)

with entries given by,

Dq,k
i,̄i

= −∆t2(σ̂(cq,i))2σ′
(
Aq,i

k−1

)
Vq

īi
, Eq,k

i,̄i
= −∆tσ̂(cq,i)σ′

(
Aq,i

k−1

)
Vq

īi
. (3.27)

A direct calculation with (3.25) leads to,

∥BL,i
j ∥∞ ≤ max

(
1 + ∆t+ (|wL,i|+ α)∆t2, 1 + (|wL,i|+ α)∆t

)
≤ 1 + max

(
2, |wL,i|+ α

)
∆t+

(
max

(
2, |wL,i|+ α

))2 ∆t2

2
.

(3.28)

Using the definition of the L∞ norm of a matrix, we use (3.28) to the derive the following bound from
(3.24), ∥∥∥∥∥ ∂XL

j

∂XL
j−1

∥∥∥∥∥
∞

≤ 1 + max
(
2, ∥wL∥∞ + α

)
∆t+

(
max

(
2, ∥wL∥∞ + α

))2 ∆t2

2

≤ 1 + γ∆t,

(3.29)

with γ defined in (3.19).
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As ∆t < 1, it is easy to see that, ∥∥∥∥∥ ∂Xq
k

∂Xq−1
k

∥∥∥∥∥
∞

≤ ∥Vq∥∞∆t. (3.30)

Combining (3.29) and (3.30) , we obtain from (3.23)∥∥∥∥∂XL
n

∂Xℓ
k

∥∥∥∥
∞

≤
n∏

j=k+1

∥∥∥∥∥ ∂XL
j

∂XL
j−1

∥∥∥∥∥
∞

L∏
q=ℓ+1

∥∥∥∥∥ ∂Xq
k

∂Xq−1
k

∥∥∥∥∥
∞

≤ ∆tL−ℓ
L∏

q=ℓ+1

∥Vq∥∞(1 + 2γ(n− k)∆t), (as ∆t << 1)

≤ V∆tL−ℓ(1 + 2γtn),

(3.31)

where the last inequality follows from the fact that tn = n∆t ≤ T and the definition of V in (3.19).
Next, we observe that for any θ ∈ Θ

∂+Xℓ
k

∂θ
=

[
∂+yℓ,1

k

∂θ
,
∂+zℓ,1k

∂θ
. . . , . . . ,

∂+yℓ,i
k

∂θ
,
∂+zℓ,ik

∂θ
, . . . , . . . ,

∂+yℓ,m
k

∂θ
,
∂+zℓ,mk

∂θ

]⊤
. (3.32)

For any 1 ≤ i ≤ m, a direct calculation with the RNN (3.10) yields,

∂+yℓ,i
k

∂θ
= ∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
zℓ,ik +∆tσ̂(cℓ,i)

∂+zℓ,ik

∂θ
,

∂+zℓ,ik

∂θ
= −∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
σ(Aℓ,i

k−1)−∆tσ̂(cℓ,i)σ′(Aℓ,i
k−1)

∂Aℓ,i
k−1

∂θ
− α∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
yℓ,i
k−1.

(3.33)

Next, we have to compute explicitly ∂cℓ,i

∂θ and
∂Aℓ,i

k−1

∂θ in order to complete the expressions (3.33). To this
end, we need to consider explicit forms of the parameter θ and obtain,

If θ = wq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{
yℓ,i
k−1, if q = ℓ, p = i,

0, if otherwise.
(3.34)

If θ = bq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{
1, if q = ℓ, p = i,

0, if otherwise.
(3.35)

If θ = Vq
p,p̄, for some 1 ≤ q ≤ L and 1 ≤ p, p̄ ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{
yℓ−1,p̄
k , if q = ℓ, p = i,

0, if otherwise.
(3.36)

If θ = cq,pfor any 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
≡ 0. (3.37)
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Similarly, if θ = wq,p or θ = bq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, or If θ = Vq
p,p̄, for some

1 ≤ q ≤ L and 1 ≤ p, p̄ ≤ m, then
∂cℓ,i

∂θ
≡ 0. (3.38)

On the other hand, if θ = cq,pfor any 1 ≤ q ≤ L and 1 ≤ p ≤ m, then

∂cℓ,i

∂θ
=

{
1, if q = ℓ, p = i,

0, if otherwise.
(3.39)

For any θ ∈ Θ, by substituting (3.34) to (3.39) into (3.33) and doing some simple algebra with norms,
leads to the following inequalities,∣∣∣∣∣∂+zℓ,ik

∂θ

∣∣∣∣∣ ≤ ∆t
(
1 + α|yℓ,i

k−1|+max
(
|yℓ,i

k−1|, |y
ℓ−1,p̄
k |, 1

))
, (3.40)

and, ∣∣∣∣∣∂+yℓ,i
k

∂θ

∣∣∣∣∣ ≤ ∆t|zℓ,ik |+∆t2
(
1 + α|yℓ,i

k−1|+max
(
|yℓ,i

k−1|, |y
ℓ−1,p̄
k |, 1

))
, (3.41)

for any 1 ≤ p̄ ≤ m.
By the definition of L∞ norm of a vector and some straightforward calculations with (3.41) yields,∥∥∥∥∂+Xℓ

k

∂θ

∥∥∥∥
∞

≤ ∆t
(
2 + ∥zℓk∥∞ + (1 + α)∥yℓ

k−1∥∞ + ∥yℓ−1
k ∥∞

)
. (3.42)

From the pointwise bounds (3.11), we can directly bound the above inequality further as,∥∥∥∥∂+Xℓ
k

∂θ

∥∥∥∥
∞

≤ ∆t

(
2 +

√
2 (1 + 2βT ) + (2 + α)

√
2

α
(1 + 2βT )

)
. (3.43)

By (3.22) and the definition of Y as well as the bound (3.11) on the hidden states, it is straightforward
to obtain that, ∥∥∥∥ ∂En

∂XL
n

∥∥∥∥
∞

≤ Y +

√
2

α
(1 + 2βT ) (3.44)

From the definition in (3.21), we have∣∣∣∣∣∂E
(n,L)
k,ℓ

∂θ

∣∣∣∣∣ ≤
∥∥∥∥ ∂En

∂XL
n

∥∥∥∥
∞

∥∥∥∥∂XL
n

∂Xℓ
k

∥∥∥∥
∞

∥∥∥∥∂+Xℓ
k

∂θ

∥∥∥∥
∞

. (3.45)

Substituting (3.44), (3.43) and (3.29) into (3.45) yields,∣∣∣∣∣∂E
(n,L)
k,ℓ

∂θ

∣∣∣∣∣ ≤ ∆tL−ℓ+1 (1 + 2γT )V(Y + F)∆, (3.46)

with F and ∆ defined in (3.19).
Therefore, from the fact that ∆t < 1, tn = n∆t ≤ T and (3.21), we obtain∣∣∣∣∂En

∂θ

∣∣∣∣ ≤ 1− (∆t)L

1−∆t
T (1 + 2γT )V(Y + F)∆. (3.47)

By the definition of the loss function (3.16) and the fact that the right-hand-side of (3.47) is independent
of n leads to the desired bound (3.18).
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This proposition demonstrates that as long as the weights wL,Vq are bounded, there is a uniform
bound on the hidden state gradients. This bound grows at most as (N∆t)3, with N being the total
number of time steps. Thus, there is no exponential growth of the gradient with respect to the number of
time steps and the exploding gradient problem is mitigated for UnICORNN.

On the Vanishing Gradient Problem for UnICORNN. By applying the chain rule repeatedly to
the each term on the right-hand-side of (3.17), we obtain

∂En

∂θ
=

L∑
ℓ=1

n∑
k=1

∂E
(n,L)
k,ℓ

∂θ
,
∂E

(n,L)
k,ℓ

∂θ
:=

∂En

∂XL
n

∂XL
n

∂Xℓ
k

∂+Xℓ
k

∂θ
. (3.48)

Here, the notation ∂+Xℓ
k

∂θ refers to taking the partial derivative of Xℓ
k with respect to the parameter θ,

while keeping the other arguments constant. The quantity
∂E

(n,L)
k,ℓ

∂θ denotes the contribution from the
k-recurrent step at the l-th hidden layer of the deep RNN (3.10) to the overall hidden state gradient at

the step n. The vanishing gradient problem [Pascanu et al., 2013] arises if
∣∣∣∣∂E(n,L)

k,ℓ

∂θ

∣∣∣∣, defined in (3.48),

→ 0 exponentially fast in k, for k << n (long-term dependencies). In that case, the RNN does not have
long-term memory, as the contribution of the k-th hidden state at the ℓ-th layer to error at time step tn
is infinitesimally small.

As argued before, the vanishing gradient problem for RNNs focuses on the possible smallness of
contributions of the gradient over a large number of recurrent steps. As this behavior of the gradient
is independent of the number of layers, we start with a result on the vanishing gradient problem for a
single hidden layer here. Also, for the sake of definiteness, we set the scalar parameter θ = w1,p for some
1 ≤ p ≤ m. Similar results also hold for any other θ ∈ Θ. Moreover, we recall the order -notation of
(2.35),

β = O(γ), for γ, β ∈ R+ if there exist constants C,C such that Cγ ≤ β ≤ Cγ.

M = O(γ), for M ∈ Rd1×d2 , γ ∈ R+ if there exists a constant C such that ∥M∥ ≤ Cγ.
(3.49)

Proposition 3.2.3. Let yn be the hidden states generated by the RNN (3.10). Then the gradient for
long-term dependencies, i.e. k << n, satisfies the representation formula,

∂E
(n,1)
k,1

∂w1,p
= −∆tσ̂(c1,p)2tnσ

′(A1,p
k−1)y

1,p
k−1

(
y1,p
n − yp

n

)
+O(∆t2). (3.50)

Proof. Following the definition (3.48) and as L = 1 and θ = w1,p, we have,

∂E
(n,1)
k,1

∂w1,p
:=

∂En

∂X1
n

∂X1
n

∂X1
k

∂+X1
k

∂w1,p
. (3.51)

We will explicitly compute all three expressions on the right-hand-side of (3.51). To start with, using
(3.32), (3.33) and (3.34), we obtain,

∂+X1
k

∂w1,p
=

[
0, 0, . . . , . . . ,

∂+y1,p
k

∂w1,p
,
∂+z1,pk

∂w1,p
, . . . , . . . , 0, 0

]⊤
,(

∂+X1
k

∂w1,p

)
2p−1

=
∂+y1,p

k

∂w1,p
= −∆t2(σ̂(c1,p))2σ′(A1,p

k−1)y
1,p
k−1,(

∂+X1
k

∂w1,p

)
2p

=
∂+z1,pk

∂w1,p
= −∆tσ̂(c1,p)σ′(A1,p

k−1)y
1,p
k−1.

(3.52)
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Using the product rule (3.23) we have,

∂X1
n

∂X1
k

=

n∏
j=k+1

∂X1
j

∂X1
j−1

. (3.53)

Observing from the expressions (3.24) and (3.25) and using the order -notation (3.49), we obtain that,

∂X1
j

∂X1
j−1

= I2m×2m +∆tC1
j +O(∆t2), (3.54)

with Ik×k is the k × k Identity matrix and the matrix C1
j defined by,

∂XL
j

∂XL
j−1

=


C1,1

j 0 . . . 0

0 C1,2
j . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 C1,m
j

 , (3.55)

with the block matrices C1,i
j ∈ R2×2 given by,

C1,i
j =

[
0 σ̂(c1,i)

−σ̂(c1,i)
(
w1,iσ′(A1,i

j−1) + α
)

0

]
. (3.56)

By a straightforward calculation and the use of induction, we claim that

n∏
j=k+1

∂X1
j

∂X1
j−1

= I2m×2m +∆tC1 +O(∆t2), (3.57)

with

C1 =


C1,1 0 . . . 0

0 C1,2 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 C1,m

 , (3.58)

with the block matrices C1,i ∈ R2×2 given by,

C1,i =

 0 (n− k)σ̂(c1,i)

−(n− k)ασ̂(c1,i)− σ̂(c1,i)w1,i
n∑

j=k+1

σ′(A1,i
j−1) 0

 . (3.59)

By the assumption that k << n and using the fact that tn = n∆t, we have that,

∆tC1,i =

 0 tnσ̂(c
1,i)

−tnασ̂(c
1,i)− σ̂(c1,i)w1,i∆t

n∑
j=k+1

σ′(A1,i
j−1) 0

 . (3.60)

Hence, the non-zero entries in the block matrices can be O(1). Therefore, the product formula (3.57) is
modified to,

n∏
j=k+1

∂X1
j

∂X1
j−1

= C+O(∆t), (3.61)
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with the 2m× 2m matrix C defined as,

C =


C1 0 . . . 0

0 C2 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 Cm

 , (3.62)

and,

Ci =

 1 tnσ̂(c
1,i)

−tnασ̂(c
1,i)− σ̂(c1,i)w1,i∆t

n∑
j=k+1

σ′(A1,i
j−1) 1

 . (3.63)

Thus by taking the product of (3.61) with (3.52), we obtain that,

n∏
j=k+1

∂X1
j

∂X1
j−1

∂+X1
k

∂w1,p
=

[
0, 0, . . . , . . . ,

∂+y1,p
k

∂w1,p
+Cp

12

∂+z1,pk

∂w1,p
,Cp

21

∂+y1,p
k

∂w1,p
+

∂+z1,pk

∂w1,p
. . . , . . . , 0, 0

]⊤
+O(∆t2),

(3.64)

with Cp
12,C

p
21 are the off-diagonal entries of the corresponding block matrix, defined in (3.63). Note that

the O(∆t2) remainder term arises from the ∆t-dependence in (3.52).
From (3.22), we have that,

∂En

∂X1
n

=
[
y1,1
n − y1

n, 0, . . . ,y
1,i
n − yi

n, 0, . . . ,y
1,m
n − ym

n , 0
]
. (3.65)

Therefore, taking the products of (3.65) and (3.64) and substituting the explicit expressions in (3.52), we
obtain the desired identity (3.50).

It is clear from the representation formula (3.50) that there is no k-dependence for the gradient. In
particular, as long as all the weights are of O(1), the leading-order term in (3.50) is O(∆t). Hence, the
gradient can be small but is independent of the recurrent step k. Thus, we claim that the vanishing
gradient problem, with respect to recurrent connections, is mitigated for UnICORNN (3.10).

On the vanishing gradient problem for the multilayer version of UnICORNN. The explicit
representation formula (3.50) holds for 1 hidden layer in (3.10). What happens when additional hidden
layers are stacked together as in UnICORNN (3.10)? To answer this question, we consider the concrete
case of L = 3 layers as this is the largest number of layers that we have used in the context of UnICORNN
with fully connected stacked layers. As before, we set the scalar parameter θ = w1,p for some 1 ≤ p ≤ m.
Similar results also hold for any other θ ∈ Θ. We have the following representation formula for the
gradient in this case,

Proposition 3.2.4. Let yn be the hidden states generated by the RNN (3.10). The gradient for long-term
dependencies satisfies the representation formula,

∂E
(n,3)
k,1

∂w1,p
= ∆t4σ̂(c1,p)tn

∂+z1,pk

∂w1,p

m∑
i=1

Ḡ2i−1,2p−1

(
y3,i − yi

)
+O(∆t6), (3.66)
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with the coefficients given by,

∂+z1,pk

∂w1,p
= −∆tσ̂(c1,p)σ′(A1,p

k−1)y
1,p
k−1,

Ḡ2i−1,2p−1 =

m∑
j=1

G3
ijG

2
jp, ∀ 1 ≤ i ≤ m, Gq

r,s = −(σ̂(cq,r))2σ′ (Aq,r
n−1

)
Vq

rs, q = 2, 3.
(3.67)

Proof. Following the definition (3.48) and as L = 3 and θ = w1,p, we have,

∂E
(n,3)
k,1

∂w1,p
:=

∂En

∂X3
n

∂X3
n

∂X1
k

∂+X1
k

∂w1,p
. (3.68)

We will explicitly compute all three expressions on the right-hand-side of (3.68).
In (3.52), we have already explicitly computed the right most expression in the RHS of (3.68). Using

the product rule (3.23) we have,

∂X3
n

∂X1
k

=
∂X3

n

∂X2
n

∂X2
n

∂X1
n

n∏
j=k+1

∂X1
j

∂X1
j−1

. (3.69)

Note that we have already obtained an explicit representation formula for
n∏

j=k+1

∂X1
j

∂X1
j−1

in (3.61).

Next we consider the matrices ∂X3
n

∂X2
n

and ∂X2
n

∂X1
n
. By the representation formula (3.26), we have the

following decomposition for any 1 ≤ q ≤ n,

∂Xq
n

∂Xq−1
n

= ∆t2Gq,n +∆tHq,n, (3.70)

with,

Gq,n =



Gq,n
11 0 Gq,n

12 0 . . . . . . Gq,n
1m 0

0 0 0 0 . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Gq,n
m1 0 Gq,n

m2 0 . . . . . . Gq,n
mm 0

0 0 0 0 . . . . . . 0 0

 , Gq,k
i,̄i

= −(σ̂(cq,i))2σ′
(
Aq,i

n−1

)
Vq

īi
, (3.71)

and

Hq,n =



0 0 0 0 . . . . . . 0 0

Hq,n
11 0 Hq,n

12 0 . . . . . . Hq,n
1m 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . . . . 0 0

Hq,n
m1 0 Hq,n

m2 0 . . . . . . Hq,n
mm 0

 , Hq,k
i,̄i

= −σ̂(cq,i)σ′
(
Aq,i

n−1

)
Vq

īi
. (3.72)

It is straightforward to see from (3.72) and (3.71) that,

H3,nH2,n ≡ 02m×2m, G3,nH2,n ≡ 02m×2m, (3.73)
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and the entries of the 2m× 2m matrix Ḡ = G3,nG2,n are given by,

Ḡ2r−1,2s−1 =

m∑
j=1

G3,n
r,j G

2,n
j,s , Ḡ2r−1,2s = Ḡ2r,2s−1 = Ḡ2r,2s = 0, ∀ 1 ≤ r, s ≤ m, (3.74)

while the entries of the 2m× 2m matrix H̄ = H3,nG2,n are given by

H̄2r,2s−1 =

m∑
j=1

H3,n
r,j G

2,n
j,s , H̄2r−1,2s−1 = H̄2r−1,2s = H̄2r,2s = 0, ∀ 1 ≤ r, s ≤ m. (3.75)

Hence we have,
∂X3

n

∂X2
n

∂X2
n

∂X1
n

= ∆t4(Ḡ+∆t−1H̄). (3.76)

Taking the matrix-vector product of (3.76) with (3.64), we obtain

∂X3
n

∂X1
k

∂+X1
k

∂w1,p
= ∆t4

(
∂+y1,p

k

∂w1,p
+Cp

12

∂+z1,pk

∂w1,p

)[
Ḡ1,2p−1,∆t−1H̄2,2p−1, . . . , Ḡ2m−1,2p−1,∆t−1H̄2m,2p−1

]⊤
+O(∆t6)

= ∆t4Cp
12

∂+z1,pk

∂w1,p

[
Ḡ1,2p−1,∆t−1H̄2,2p−1, . . . , Ḡ2m−1,2p−1,∆t−1H̄2m,2p−1

]⊤
+O(∆t6),

(3.77)

where the last identify follows from the fact that ∂+y1,p
k

∂w1,p = O(∆t2).
Therefore, taking the products of (3.65) and (3.77), we obtain the desired identity (3.66).

An inspection of the representation formula (3.66) shows that as long as the weights are O(1) and
from the bounds (3.11), we know that y ∼ O(1), the gradient

∂E
(n,3)
k,1

∂w1,p
∼ O(∆t5),

where the additional ∆t stems from the ∆t-term in (3.52). Thus the gradient does not depend on the
recurrent step k. Hence, there is no vanishing gradient problem with respect to the number of recurrent
connections, even in the multi-layer case.

However, it is clear from the representation formulas (3.50) and (3.66), as well as the proof of
proposition 3.2.4 that for L-hidden layers in UnICORNN (3.10), we have,

∂E
(n,L)
k,1

∂w1,p
∼ O

(
∆t2L−1

)
. (3.78)

Thus, the gradient can become very small if too many layers are stacked together. This is not at all
surprising as such a behavior occurs even if there are no recurrent connections in UnICORNN (3.10). In
that case, we simply have a fully connected deep neural network and it is well-known that the gradient
can vanish as the number of layers increases, making it harder to train deep networks.
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Residual stacking of layers in UnICORNN. Given the above considerations, it makes imminent
sense to modify the fully-connected stacking of layers in UnICORNN (3.10) if a moderately large number
of layers (L ≥ 4) are used. It is natural to modify the fully-connected stacking with a residual stacking,
see Li et al. [2019]. We use the following form of residual stacking,

yℓ
n = yℓ

n−1 +∆tσ̂(cℓ)⊙ zℓn,

zℓn = zℓn−1 −∆tσ̂(cℓ)⊙ [σ
(
wℓ ⊙ yℓ

n−1 + xℓ
n + bl

)
+ αyℓ

n−1],

(3.79)

(3.80)

where the input xℓ
n corresponds to a residual connection skipping S layers, i.e.

xℓ
n =

{
Λℓyℓ−S−1

n +Vℓyℓ−1
n , for l > S

Vℓyℓ−1
n , for l ≤ S

.

The number of skipped layers is 2 ≤ S and Λℓ ∈ Rm×m is a trainable matrix.
The main advantages of using a residual staking such as (3.79) is to alleviate the vanishing gradient

problem that arises from stacking multiple layers together and obtain a better scaling of the gradient
than (3.78). To see this, we can readily follow the proof of proposition 3.2.4, in particular the product,

∂XL
n

∂X1
n

=

ν∏
s=1

∂X
L−(s−1)S
n

∂XL−sS
k

L−νS∏
ℓ=2

∂Xℓ
n

∂Xℓ−1
n

+

L−1∏
ℓ=1

∂Xℓ+1
n

∂Xℓ
k

, (3.81)

with,

ν =

{[
L
S

]
, if L mod S ̸= 0,[

L
S

]
− 1, if L mod S = 0.

(3.82)

Here [x] ∈ N is the largest natural number less than or equal to x ∈ R.
Given the additive structure in the product of gradients and using induction over matrix products as

in (3.73) and (3.74), we can compute that,

∂XL
n

∂X1
n

= O
(
∆t2(ν+L−νS−1)

)
+O

(
∆t2(L−1)

)
. (3.83)

By choosing S large enough, we clearly obtain that ν + L− νS − 1 < L− 1. Hence by repeating the
arguments of the proof of proposition 3.2.4, we obtain that to leading order, the gradient of the residual
stacked version of UnICORNN scales like,

∂E
(n,L)
k,1

∂w1,p
∼ O

(
∆t2ν+2L−2νS−1

)
. (3.84)

Note that (3.84) is far more favorable scaling for the gradient than the scaling (3.78) for a fully connected
stacking. As a concrete example, let us consider L = 7 i.e., a network of 7 stacked layers of UniCORNN.
From (3.78), we see that the gradient scales like O(∆t13) in this case. Even for a very moderate values of
∆t < 1, this gradient will be very small and will ensure that the first layer will have very little, if any,
influence on the loss function gradients. On the other hand, for the same number of layers L = 7, let us
consider the residual stacking (3.79) with S = 3 skipped connections. In this case ν = 2 and one directly
concludes from (3.84) that the gradient scales like O(∆t5), which is significantly larger than the gradient
for the fully connected version of UnICORNN. In fact, it is exactly the same as the gradient scaling for
fully connected UnICORNN (3.10) with 3 hidden layers (3.66). Thus, introducing skipped connections
enabled the gradient to behave like a shallower fully-connected network, while possibly showing the
expressivity of a deeper network.
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3.3 Empirical results

Implementation. The structure of UnICORNN (3.6) enables us to achieve a very fast implementation.
First, the transformation of the input (i.e. Vℓyℓ−1

n for all l = 1, . . . , L), which is the most computationally
expensive part of UnICORNN, does not have a sequential structure and can thus be computed in parallel
over time. Second, as the underlying ODEs of the UnICORNN are uncoupled for each neuron, the
remaining recurrent part of UnICORNN is solved independently for each component. Hence, inspired
by the implementation of Simple Recurrent Units (SRU) [Lei et al., 2018] and IndRNN, we present the
details of an efficient CUDA implementation. More concretely, we speed up the computation of the
forward and backward pass, by parallelizing the input transformation and computing the recurrent part
for each independent dimension in an independent CUDA thread. While the forward/backward pass
for the input transformation is simply that of an affine transformation, we discuss only the recurrent
part. Since we compute the gradients of each dimension of UnICORNN independently and add them up
afterwards in order to obtain the full gradient, we simplify the dynamical system (3.6) as follows,

zn = zn−1 −∆tσ̂(c)[σ (wyn−1 + xn) + αyn−1],

yn = yn−1 +∆tσ̂(c)zn,

where xn = (Vun)j is the transformed input corresponding to the respective dimension j = 1, . . . ,m.
Since we wish to train the UnICORNN on some given objective

E :=

N∑
n=1

Ẽ(yn), (3.85)

where Ẽ is some loss function taking the hidden states yn as inputs, e.g. mean-squared distance of
(possibly transformed) hidden states yn to some ground truth. During training, we compute gradients of
the loss function (3.85) with respect to the following quantities Θ = [w,∆t, xn], i.e.

∂E

∂θ
=

N∑
n=1

∂Ẽ(yn)

∂θ
, ∀ θ ∈ Θ. (3.86)

We provide a recursion formula for computing the gradients in (3.86). We exemplarily provide the
formula for the gradient with respect to the hidden weight w (the computation of the gradients with
respect to the other quantities follow similarly),

δzk = δzk−1 + δyk−1∆tσ̂(c),

δyk = δyk−1 − δzk∆tσ̂(c)[σ′(wyN−k + xN−k+1)w + α] +
∂Ẽ

∂yN−k
,

(3.87)

(3.88)

with initial values δy0 = ∂Ẽ
∂yN

and δz0 = 0. The gradient can then be computed as

∂E

∂w
=

N∑
k=1

ak, with ak = −δzk∆tσ̂(c)σ′(wyN−k + xN−k+1)yN−k. (3.89)

Note that this recursive formula is a direct formulation of the back-propagation through time algorithm
[Werbos, 1990] applied to UnICORNN.

We can verify formula (3.87)-(3.89) by explicitly calculating the gradient in (3.86):
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∂E

∂w
=

N∑
n=1

∂Ẽ(yn)

∂w
=

N−1∑
n=1

∂Ẽ(yn)

∂w
+

∂Ẽ

∂yN

[
∂yN−1

∂w
+∆tσ̂(c)

(
∂zN−1

∂w
−∆tσ̂(c)(σ′(wyN−1 + xN )

(yN−1 + w
∂yN−1

∂w
) + α

∂yN−1

∂w

)]
=

N−2∑
n=1

∂Ẽ(yn)

∂w
+ a1 + δz1

∂zN−1

∂w
+ δy1

∂yN−1

∂w

=

N−2∑
n=1

∂Ẽ(yn)

∂w
+ a1 + δy1

∂yN−2

∂w
+ (δy1∆tσ̂(c) + δz1)

(
∂zN−2

∂w
−∆tσ̂(c)(σ′(wyN−2 + xN−1)

(yN−2 + w
∂yN−2

∂w
) + α

∂yN−2

∂w
)

)
=

N−3∑
n=1

∂Ẽ(yn)

∂w
+

2∑
k=1

ak + δz2
∂zN−2

∂w
+ δy2

∂yN−2

∂w
.

Iterating the same reformulation yields the desired formula (3.87)-(3.89).
We benchmark the training speed of UnICORNN with L = 2 layers, against the fastest available RNN

implementations, namely the cuDNN implementation [Appleyard et al., 2016] of LSTM (with 1 hidden
layer), SRU and IndRNN (both with L = 2 layers and with batch normalization). Fig. 3.2 shows the
computational time (measured on a GeForce RTX 2080 Ti GPU) of the combined forward and backward
pass for each network, averaged over 100 batches with each of size 128, for two different sequence lengths,
i.e. N = 1000, 2000. We can see that while the cuDNN LSTM is relatively slow, the SRU, IndRNN and
the UnICORNN perform similarly fast. Moreover, we also observe that UnICORNN is about 30− 40

times faster per combined forward and backward pass, when compared to recently developed RNNs such
as expRNN Lezcano-Casado and Martınez-Rubio [2019] and coRNN (Chapter 2). We thus conclude that
the UnICORNN is among the fastest available RNN architectures.
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Figure 3.2: Measured computing time for the com-
bined forward and backward pass for the UnI-
CORNN as well as for three of the fastest available
RNN implementations.
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Permuted sequential MNIST. A well-established benchmark for testing RNNs on input sequences
with long-time dependencies is the permuted sequential MNIST (psMNIST) task [Le et al., 2015]. Based
on the classical MNIST data set [LeCun et al., 1998], the flattened grey-scale matrices are randomly
permuted (based on a fixed random permutation) and processed sequentially by the RNN. This makes
the learning task more challenging than sequential MNIST, where one only flattens the MNIST matrices
without permuting them. In order to make different methods comparable, we use the same fixed seed for
the random permutation, as in Lezcano-Casado and Martınez-Rubio [2019], Casado [2019], Helfrich et al.
[2018]. Table 3.1 shows the results for UnICORNN with 3 layers, together with other recently proposed
RNNs, which were explicitly designed to learn long-term dependencies as well as two gated baselines. We
see that UnICORNN clearly outperforms the other methods.

Table 3.1: Results on permuted sequential MNIST. The three best performing methods are highlighted in
red (First), blue (Second), and violet (Third).

Model test accuracy # units # parameters

LSTM 92.9% 256 270k
GRU 94.1% 256 200k
expRNN 96.6% 512 127k
coRNN 97.3% 256 134k
IndRNN (L=6) 96.0% 128 86k
dense-IndRNN (L=6) 97.2% 128 257k
UnICORNN (L=3) 97.8% 128 35k
UnICORNN (L=3) 98.4% 256 135k

Noise padded CIFAR-10. A more challenging test for the ability of RNNs to learn long-term
dependencies is provided by the recently proposed noise padded CIFAR-10 experiment [Chang et al., 2019].
In it, the CIFAR-10 data points [Krizhevsky et al., 2009] are fed to the RNN row-wise and flattened along
the channels resulting in sequences of length 32. To test long term memory, entries of uniform random
numbers are added such that the resulting sequences have a length of 1000, i.e. the last 968 entries of
each sequences are only noise to distract the RNNs. Table 3.2 shows the result of the UnICORNN with
3 layers together with the results of other recently proposed RNNs, namely for the LSTM, anti.sym.
RNN and gated anti.sym. RNN [Chang et al., 2019], Lipschitz RNN [Erichson et al., 2020], Incremental
RNN [Kag et al., 2020], FastRNN [Kusupati et al., 2018] and coRNN (Chapter 2). We conclude that the
proposed RNN readily outperforms all other methods on this experiment.

EigenWorms. The EigenWorms data set Bagnall et al. [2018] is a collecting of 259 very long sequences,
i.e. length of 17984, describing the motion of a worm. The task is, based on the 6-dimensional motion
sequences, to classify a worm as either wild-type or one of four mutant types. We use the same
train/valid/test split as in Morrill et al. [2020], i.e. 70%/15%/15%. As the length of the input sequences is
extremely long for this test case, we benchmark UnICORNN against three sub-sampling based baselines.
These include the results of Morrill et al. [2020], which is based on signature sub-sampling routine for
neural controlled differential equations. Additionally after a hyperparameter fine-tuning procedure, we
perform a random sub-sampling as well as truncated back-propagation through time (BPTT) routine
using LSTMs, where the random sub-sampling is based on 200 randomly selected time points of the
sequences as well as the BPTT is truncated after the last 500 time points of the sequences. Furthermore,
we compare UnICORNN with three leading RNN architectures for solving long-term dependency tasks,
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Table 3.2: Results on noise padded CIFAR-10. The three best performing methods are highlighted in red
(First), blue (Second), and violet (Third).

Model test accuracy # units # parameters

LSTM 11.6% 128 64k
Incremental RNN 54.5% 128 12k
Lipschitz RNN 55.8% 256 158k
FastRNN 45.8% 128 16k
anti.sym. RNN 48.3% 256 36k
gated anti.sym. RNN 54.7% 256 37k
coRNN 59.0% 128 46k
UnICORNN (L=3) 62.4% 128 47k

namely expRNN, IndRNN and coRNN, which are all applied to the full-length sequences. The results,
presented in Table 3.3, show that while sub-sampling approaches yield moderate test accuracies, expRNN
as well as the IndRNN yield very poor accuracies. In contrast, coRNN performs very well. However, the
best results are obtained for UnICORNN as it reaches a test accuracy of more than 90%, while at the
same time yielding a relatively low standard deviation, further underlining the robustness of the proposed
RNN.

Table 3.3: Results on EigenWorms using 5 retrainings of each best performing network (based on the
validation set). The three best performing methods are highlighted in red (First), blue (Second), and
violet (Third).

Model test accuracy # units # parameters

t-BPTT LSTM 57.9%± 7.0% 32 5.3k
sub-samp. LSTM 69.2%± 8.3% 32 5.3k
sign.-NCDE 77.8%± 5.9% 32 35k
expRNN 40.0%± 10.1% 64 2.8k
IndRNN (L=2) 49.7%± 4.8% 32 1.6k
coRNN 86.7%± 3.0% 32 2.4k
UnICORNN (L=2) 90.3%± 3.0% 32 1.5k

As this data set has only recently been proposed as a test for RNNs in learning long-term dependencies,
it is unclear if the input sequences truly exhibit very long-time dependencies. To investigate this further,
we train UnICORNN on a subset of the entries of the sequences. To this end, we consider using only the
last entries as well as using a random subset of the entries. Fig. 3.3 shows the distributional results (10
re-trainings of the best performing UnICORNN) for the number of entries used in each sub-sampling
routine, ranging from only using 1000 entries to using the full sequences for training. We can see that
in order to reach a test accuracy of 80% when training on the last entries of the sequences, at least
the last 10k entries are needed. Moreover, for both sub-sampling methods the test accuracy increases
monotonically as the number of entries for training is increased. On the other hand, using a random
subset of the entries increases the test accuracy significantly when compared to using only the last entries
of the sequences. This indicates that the important entries of the sequences, i.e. information needed in
order to classify them correctly, are uniformly distributed throughout the full sequence. We thus conclude
that the EigenWorms data set indeed exhibits very long-time dependencies.
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Healthcare application: Vital signs prediction. We apply UnICORNN on two real-world data
sets in health care, aiming to predict the vital signs of a patient, based on PPG and ECG signals. The
data sets are part of the TSR archive Tan et al. [2020] and are based on clinical data from the Beth
Israel Deaconess Medical Center. The PPG and ECG signals are sampled with a frequency of 125Hz for
8 minutes each. The resulting two-dimensional sequences have a length of 4000. The goal is to predict a
patient’s respiratory rate (RR) and heart rate (HR) based on these signals. We compare UnICORNN
to 3 leading RNN architectures for solving long-term dependencies, i.e. expRNN, IndRNN and coRNN.
Additionally, we present two baselines using the LSTM as well as the recently proposed sub-sampling
method of computing signatures for neural controlled differential equations (NCDE) Morrill et al. [2020].
Following Morrill et al. [2020], we split the 7949 sequences in a training set, validation set and testing
set, using a 70%/15%/15% split. Table 3.4 shows the distributional results of all networks using 5
re-trainings of the best performing RNN. We observe that while the LSTM does not reach a low L2

testing error in both experiments, the other RNNs approximate the vital signs reasonably well. However,
UnICORNN clearly outperforms all other methods on both benchmarks. We emphasize that UnICORNN
significantly outperforms all other state-of-the-art methods on estimating the RR, which is of major
importance in modern healthcare applications for monitoring hospital in-patients as well as for mobile
health applications, as special invasive equipment (for instance capnometry or measurement of gas flow)
is normally needed to do so Pimentel et al. [2016].

Table 3.4: Results (L2 test error) on vital sign prediction using 5 retrainings of each best performing
network (based on the validation set), where the respiratory rate (RR) and heart rate (HR) is estimated
based on PPG and ECG data. The three best performing methods are highlighted in red (First), blue
(Second), and violet (Third).

Model respiratory rate heart rate

sign.-NCDE 1.51± 0.08 2.97± 0.45

LSTM 2.28± 0.25 10.7± 2.00

expRNN 1.57± 0.16 1.87± 0.19

IndRNN (L=3) 1.47± 0.09 2.10± 0.20

coRNN 1.45± 0.23 1.71± 0.10

UnICORNN (L=3) 1.06± 0.03 1.39± 0.09

Sentiment analysis: IMDB. As a final experiment, we test the proposed UnICORNN on the widely
used NLP benchmark data set IMDB [Maas et al., 2011], which consists of 50k online movie reviews with
25k reviews used for training and 25k reviews used for testing. This denotes a classical sentiment analysis
task, where the model has to decide whether a movie review is positive or negative. We use 30% of the
training set (i.e. 7.5k reviews) as the validation set and restrict the dictionary to 25k words. We choose
an embedding size of 100 and initialize it with the pretrained 100d GloVe Pennington et al. [2014] vectors.
Table 3.5 shows the results for UnICORNN with 2 layers together with other recently proposed RNN
architectures and gated baselines (which are known to perform very well on these tasks). The result of
ReLU GRU is taken from Dey and Salemt [2017], of coRNN from Chapter 2 and all other results are
taken from Campos et al. [2018]. We can see that UnICORNN outperforms the other methods while
requiring significantly less parameters. We thus conclude, that the UnICORNN can also be successfully
applied to problems, which do not necessarily exhibit long-term dependencies.
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Table 3.5: Results on IMDB. The three best performing methods are highlighted in red (First), blue
(Second), and violet (Third).

Model test accuracy # units # parameters

LSTM 86.8% 128 220k
skip LSTM 86.6% 128 220k
GRU 85.2% 128 99k
ReLU GRU 84.8% 128 99k
skip GRU 86.6% 128 165k
coRNN 87.4% 128 46k
UnICORNN (L=2) 88.4% 128 30k

Chaotic time-series prediction: Lorenz 96 system. It is instructive to explore limitations of the
proposed UnICORNN. It is straightforward to prove, along the lines of the proof of proposition 3.2.1,
that the UnICORNN architecture does not exhibit chaotic behavior with respect to changes in the input.
While this property is highly desirable for many applications where a slight change in the input should
not lead to a major (possibly unbounded) change in the output, it impairs the performance on tasks
where an actual chaotic system has to be learned.

Following the experiment in Chapter 2, we aim to predict future states of a dynamical system, following
the Lorenz 96 system [Lorenz, 1996]:

x′
j = (xi+1 − xi−2)xi−1 − xi + F, (3.90)

where xj ∈ R for all j = 1, . . . , 5 and F is an external force controlling the level of chaos in the system.
We consider two different choices for the external force, namely F = 0.9 and F = 8. While the

first one produces non-chaotic trajectories, the latter leads to a highly chaotic system. We discretize
the system exactly along the lines of Chapter 2, resulting in 128 sequences of length 2000 for each the
training, validation and testing set. Table 3.6 shows the normalized root mean square error (NRMSE) for

Table 3.6: Test NRMSE on the Lorenz 96 system (3.90) for UnICORNN, coRNN and LSTM.

Model F = 0.9 F = 8 # units # params

LSTM 2.0× 10−2 6.8× 10−2 44 9k
coRNN 2.0× 10−2 9.8× 10−2 64 9k
UnICORNN (L=2) 2.2× 10−2 3.1× 10−1 90 9k

UnICORNN as well as for coRNN and an LSTM, where all models have 9k parameters. We can see that
UnICORNN performs comparably to coRNN and LSTM in the chaos-free regime (i.e. F = 0.9), while
performing poorly compared to an LSTM when the system exhibits chaotic behavior (i.e. F = 8). This is
not surprising, as LSTMs are shown to be able to exhibit chaotic behavior [Laurent and von Brecht, 2017],
while coRNN and UnICORNN are not chaotic by design. This shows also numerically that UnICORNN
should not be used for chaotic time-series prediction.

Further experimental results. As stated before, UnICORNN has two hyperparameters, i.e. the
maximum allowed time-step ∆t and the damping parameter α. It is of interest to examine how sensitive
the performance of UnICORNN is with respect to variations of these hyperparameters. To this end, we
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consider the noise padded CIFAR-10 experiment and perform an ablation study of the test accuracy with
respect to variations of both α and ∆t. Both hyperparameters are varied by an order of magnitude and
the results of this study are plotted in Fig. 3.4. We observe from this figure, that the results are indeed
somewhat sensitive to the maximum allowed time-step ∆t and show a variation of approximately 15%

with respect to to this hyperparameter. On the other hand, there is very little noticeable variation with
respect to the damping parameter α. Thus, it can be set to a default value, for instance α = 1, without
impeding the performance of the underlying RNN. Next, we recall that the design of UnICORNN (3.6)
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Figure 3.4: Ablation study on the hyperparameters
∆t and α of UnICORNN (3.6) using the noise
padded CIFAR-10 experiment.
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psMNIST task using m = 256 hidden units and
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enables it to learn the effective time step (with a possible maximum of ∆t) from data. It is instructive to
investigate if this ability to express multiscale behavior is realized in practice or not. To this end, we
consider the trained UnICORNN of the psMNIST task with 3 layers and 256 neurons. Here, a maximum
time step of ∆t = 0.19 was identified by the hyperparameter tuning. In Fig. 3.5, we plot the effective
time step ∆tσ̂(cli), for each hidden neuron i = 1, . . . , 256 and each layer l = 1, 2, 3. We observe from this
figure that a significant variation of the effective time step is observed, both within the neurons in each
layer, as well as between layers. In particular, the minimum effective time step is about 28 times smaller
than the maximum allowed time step. Thus, we conclude from this figure, that UnICORNN exploits its
design features to learn multiscale behavior that is latent in the data. This perhaps explains the superior
performance of UnICORNN on many learning tasks.

Moreover, as we compare the results of the UnICORNN to the results of other recent RNN architecture,
where only the best results of each RNN were published for the psMNIST, noise padded CIFAR-10 and
IMDB task, we follow the same procedure by showing the best (based on a validation set) obtained results
for UnICORNN. However, distributional results, i.e. statistics of several re-trainings of the best performing
UnICORNN based on different random initialization of the trainable parameters, provide additional
insights into the performance. Table 3.7 shows the mean and standard deviation of 10 re-trainings of the
best performing UnICORNN for the psMNIST, noise padded CIFAR-10 and IMDB task. We can see
that in all experiments the standard deviation of the re-trainings are relatively low, which underlines the
robustness of our presented results.

As emphasized previously in this chapter, naively stacking of many layers for UnICORNN might

49



Chapter 3. UnICORNN

Table 3.7: Distributional information (mean and standard deviation) on the results for the classification
experiment presented in this chapter, where only the best results is shown, based on 10 re-trainings of
the best performing UnICORNN using different random seeds.

Experiment Mean Standard deviation

psMNIST (128 units) 97.7% 0.09%
psMNIST (256 units) 98.2% 0.22%
Noise padded CIFAR-10 61.5% 0.52%
IMDB 88.1% 0.19%

result in a vanishing gradient for the deep multi-layer model, due to the vanishing gradient problem of
stacking many (not necessarily recurrent) layers. However, one can use skipped residual connections. In
this context, we see that the estimate on the gradients scale preferably when using residual connections
compared to a naively stacking, when using many layers. To test this also numerically, we train a standard
UnICORNN (3.10) as well as a residual UnICORNN (res-UnICORNN) (3.79), with S = 2 skipping layers,
on the noise padded CIFAR-10 task. Fig. 3.6 shows the test accuracy (mean and standard deviation) of
the best resulting model for different number of network layers L = 3, . . . , 6, for the standard UnICORNN
and res-UnICORNN. We can see that while both models seem to perform comparably for using only
few layers, i.e. L = 3, 4, the res-UnICORNN with S = 2 skipping connections outperforms the standard
UnICORNN when using more layers, i.e. L = 5, 6. In particular, we can see that the standard UnICORNN
is not able to significantly improve the test accuracy when using more layers, while the res-UnICORNN
seems to obtain higher test accuracies when using more layers.

Moreover, Fig. 3.6 also shows the test accuracy for a UnICORNN with an untrained time-step vector
c, resulting in a UnICORNN without the multiscale property generated by the time-step. We can see that
the UnICORNN without the multiscale feature is inferior in performance, to the standard UnICORNN as
well as its residual counterpart.

Finally, we recall that the estimate (3.18) on the gradients for UnICORNN (3.10) needs the weights
to be bounded, see (3.19). One always initializes the training with bounded weights. However, it might
happen that the weights explode during training. To check this issue, in Fig. 3.7, we plot the mean and
standard deviation of the norms of the hidden weights wl for l = 1, 2, 3 during training based on 10
re-trainings of the best performing UnICORNN on the noise padded CIFAR-10 experiment. We can see
that none of the norms of the weights explode during training. In fact the weight norms seem to saturate,
mostly on account of reducing the learning rate after 250 epochs. Thus, the upper bound (3.18) can be
explicitly computed and it is finite, even after training has concluded.

Training details. All experiments were conducted on GPUs, namely NVIDIA GeForce GTX 1080 Ti
and NVIDIA GeForce RTX 2080 Ti. The hidden weights w of UnICORNN are initialized according to
U(0, 1), while all bias values are set to zero. The trained vector c is initialized according to U(−0.1, 0.1).
The input weights V are initialized according to the Kaiming uniform initialization [He et al., 2015] based
on the input dimension mode and the negative slope of the rectifier set to a = 8.

The hyperparameters of the UnICORNN are selected using a random search algorithm based on a
validation set. The hyperparameters of the best performing UnICORNN can be seen in Table 3.8. The
value for ∆t and α is shared across all layers, except for the IMDB task and EigenWorms task, where we
use a different ∆t value for the first layer and the corresponding ∆t value in Table 3.8 for all subsequent
layers, i.e. we use ∆t = 6.6× 10−3 for IMDB and ∆t = 2.81× 10−5 for EigenWorms in the first layer.
Additionally, the dropout column corresponds to variational dropout [Gal and Ghahramani, 2016], which

50



Chapter 3. UnICORNN

3 4 5 6
Number of layers L

58

60

62

T
es

t
ac

cu
ra

cy
in

%

res-UnICORNN

UnICORNN

UnICORNN w/o multiscale

Figure 3.6: Test accuracies (mean and stand-
ard deviation of 10 re-trainings of the best per-
forming model) of the standard UnICORNN, res-
UnICORNN and UnICORNN without multiscale
behavior on the noise padded CIFAR-10 experi-
ment for different number of layers L.

0 200000 400000 600000 800000
Learning steps

0

10

20

30

40

‖w1‖∞
‖w2‖∞

‖w3‖∞

Figure 3.7: Norms (mean and standard deviation
of 10 re-trainings) of the hidden weights ∥wl∥∞,
for l = 1, 2, 3, of the UnICORNN during training.

is applied after each consecutive layer. Note that for the IMDB task also an embedding dropout with
p = 0.65 is used.

We train the UnICORNN for a total of 50 epochs on the IMDB task and for a total of 250 epochs
on the EigenWorms task. Moreover, we train UnICORNN for 650 epochs on psMNIST, after which we
decrease the learning rate by a factor of 10 and proceed training for 3 times the amount of epochs used
before reducing the learning rate. On all other tasks, UnICORNN is trained for 250 epochs, after which
we decrease the learning rate by a factor of 10 and proceed training for additional 250 epochs. The
resulting best performing networks are selected based on a validation set.

Table 3.8: Hyperparameters of the best performing UnICORNN architecture (based on a validation set)
for each experiment.

Experiment learning rate dropout batch size ∆t α

noise padded CIFAR-10 3.14× 10−2 1.0× 10−1 30 1.26× 10−1 13.0

psMNIST (#units = 128) 1.14× 10−3 1.0× 10−1 64 4.82× 10−1 12.53

psMNIST (#units = 256) 2.51× 10−3 1.0× 10−1 32 1.9× 10−1 30.65

IMDB 1.67× 10−4 6.1× 10−1 32 2.05× 10−1 0.0

EigenWorms 8.59× 10−3 0.0 8 3.43× 10−2 0.0

Healthcare: RR 3.98× 10−3 1.0× 10−1 32 1.1× 10−2 9.0

Healthcare: HR 2.88× 10−3 1.0× 10−1 32 4.6× 10−2 10.0
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3.4 Discussion

The design of RNNs that can accurately handle sequential inputs with long-time dependencies is very
challenging. This is largely on account of the exploding and vanishing gradients problem. Moreover,
there is a significant increase in both computational time as well as memory requirements when long-
term dependency tasks have to be processed. Our main aim in this chapter was to present a novel
RNN architecture which is fast, memory efficient, invertible and mitigates the exploding and vanishing
gradients problem. To this end, we proposed UnICORNN (3.6), an RNN based on the symplectic Euler
discretization of a Hamiltonian system of second-order ODEs (3.2) modeling a network of independent,
undamped, controlled and driven oscillators. In order to gain expressivity, we stack layers of RNNs and
also endow this construction with a multiscale feature by training the effective time step in (3.6).

Given the Hamiltonian structure of our continuous and discrete dynamical system, invertibility and
volume preservation in phase space are guaranteed. Invertibility enables the proposed RNN to be memory
efficient. The independence of neurons within each hidden layer allows us to build a highly efficient CUDA
implementation of UnICORNN that is as fast as the fastest available RNN architectures. Under suitable
smallness constraints on the maximum allowed time step ∆t, we prove rigorous upper bounds (3.18) on
the gradients and show that the exploding gradient problem is mitigated for UnICORNN. Moreover, we
derive an explicit representation formula (3.50) for the gradients of (3.6), which shows that the vanishing
gradient problem is also mitigated. Finally, we have tested UnICORNN on a suite of benchmarks that
includes both synthetic as well as realistic learning tasks, designed to test the ability of an RNN to
deal with long-time dependencies. In all the experiments, UnICORNN was able to show state-of-the-art
performance.

It is instructive to compare UnICORNN with two recently proposed RNN architectures, with which it
shares some essential features. First, the use of coupled oscillators to design RNNs was already explored
in the case of coRNN (Chapter 2). In contrast to coRNN, neurons in UnICORNN are independent
(uncoupled) and as there is no damping, UnICORNN possesses a Hamiltonian structure. This paves the
way for invertibility as well as for mitigating the exploding and vanishing gradients problem without any
assumptions on the weights whereas the mitigation of exploding and vanishing gradients problem with
coRNN was conditional on restrictions on weights. Finally, UnICORNN provides even better performance
on benchmarks than coRNN, while being significantly faster. While we also use independent neurons
in each hidden layer and stack RNN layers together as in IndRNN Li et al. [2018], our design principle
is completely different as it is based on Hamiltonian ODEs. Consequently, we do not impose weight
restrictions, which are necessary for IndRNN to mitigate the exploding and vanishing gradients problem.
Moreover, in contrast to IndRNNs, our architecture is invertible and hence, memory efficient.

This work can be extended in different directions. First, UnICORNN is a very flexible architecture in
terms of stacking layers of RNNs together. We have used a fully connected stacking in (3.6) but other
possibilities can be readily explored. Second, the invertibility of UnICORNN can be leveraged in the
context of normalizing flows Papamakarios et al. [2019], where the objective is to parametrize a flow
such that the resulting Jacobian is readily computable. Finally, our focus in this chapter was on testing
UnICORNN on learning tasks with long-time dependencies. Given that the underlying ODE (3.2) models
oscillators, one can envisage that UnICORNN will be very competitive with respect to processing different
time series data that arise in healthcare AI such as EEG and EMG data, as well as seismic time series
from the geosciences.
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Neural Oscillators are Universal

Oscillators are ubiquitous in the sciences and engineering Guckenheimer and Holmes [1990], Strogatz
[2015]. Prototypical examples include pendulums in mechanics, feedback and relaxation oscillators in
electronics, business cycles in economics and heart beat and circadian rhythms in biology. Particularly
relevant to our context is the fact that the neurons in our brain can be thought of as oscillators on account
of the periodic spiking and firing of the action potential Stiefel and Ermentrout [2016], Gu et al. [2015].
Consequently, functional brain circuits such as cortical columns are being increasingly analyzed in terms
of networks of coupled oscillators Stiefel and Ermentrout [2016].

Given this wide prevalence of (networks of) oscillators in nature and man-made devices, it is not
surprising that oscillators have inspired various machine learning architectures in recent years. Prominent
examples include the RNN architectures introduced in the previous two chapters, i.e., coRNN in Chapter2
and UnICORNN in Chapter 3. Other examples include Second Order Neural ODEs (SONODEs) [Norcliffe
et al., 2020], which can be interpreted as oscillatory neural ODEs, locally coupled oscillatory recurrent
networks (LocoRNN) [Keller and Welling, 2023], and Oscillatory Fourier Neural Network (O-FNN) [Han
et al., 2022].

Another avenue where machine learning models based on oscillators arise is that of physical neural
networks (PNNs) Wright et al. [2022] i.e., physical devices that perform machine learning on analog
(beyond digital) systems. Such analog systems have been proposed as alternatives or accelerators to the
current paradigm of machine learning on conventional electronics, allowing us to significantly reduce the
prohibitive energy costs of training state-of-the-art machine learning models. In Wright et al. [2022],
the authors propose a variety of physical neural networks which include a mechanical network of multi-
mode oscillations on a plate and electronic circuits of oscillators as well as a network of nonlinear
oscillators. Coupled with a novel physics aware training (PAT) algorithm, the authors of Wright et al.
[2022] demonstrated that their nonlinear oscillatory PNN achieved very good performance on challenging
benchmarks such as Fashion-MNIST [Xiao et al., 2017]. Moreover, other oscillatory systems such as
coupled lasers and spintronic nano-oscillators have also been proposed as possible PNNs, see Velichko et al.
[2019] as an example of the use of thermally coupled vanadium dioxide oscillators for image recognition
and Romera and et. al [2018], Torrejon and et. al [2017] for the use of spin-torque nano-oscillators for
speech recognition and for neuromorphic computing, respectively.

What is the rationale behind the successful use of (networks of) oscillators in many different contexts
in machine learning? In Chapter 2 and Chapter 3 we argued that it is because of the inherent stability of
oscillatory dynamics, as the state (and its gradients) of an oscillatory system remain within reasonable
bounds throughout the time-evolution of the system. However, this is at best a partial explanation, as it
does not demonstrate why oscillatory dynamics can learn (approximate) mappings between inputs and
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outputs rather than bias the learned states towards oscillatory functions. As an example, consider the
problem of classification of MNIST [LeCun et al., 1998] (or Fashion-MNIST) images. It is completely
unclear if the inputs (vectors of pixel values), outputs (class probabilities) and the underlying mapping
possess any (periodic) oscillatory structure. Consequently, how can oscillatory RNNs (such as CoRNN
and UnICORNN) or a network of oscillatory PNNs learn the underlying mapping?

Our main aim in this chapter is to provide an answer to this very question on the ability of neural
networks, based on oscillators, to express (to approximate) arbitrary mappings. To this end,

• We introduce an abstract framework of neural oscillators that encompasses both sequence models
such as CoRNN and UnICORNN, as well as variants of physical neural networks as the ones
proposed in Wright et al. [2022]. These neural oscillators are defined in terms of second-order
versions of neural ODEs Chen et al. [2018], and combine nonlinear dynamics with a linear read-out.

• We prove a Universality theorem for neural oscillators by showing that they can approximate, to
any given tolerance, continuous operators between appropriate function spaces.

• Our proof of universality is based on a novel theoretical result of independent interest, termed the
fundamental Lemma, which implies that a suitable combination of linear oscillator dynamics with
nonlinear read-out suffices for universality.

Such universality results, Barron [1993], Cybenko [1989], Hornik et al. [1989], Pinkus [1999] and
references therein, have underpinned the widespread use of traditional neural networks (such as multi-
layer perceptrons and convolutional neural networks). Hence, our universality result establishes a
firm mathematical foundation for the deployment of neural networks, based on oscillators, in myriad
applications. Moreover, our constructive proof provides insight into how networks of oscillators can
approximate a large class of mappings.

4.1 Neural Oscillators

General Form of Neural Oscillators. Given u : [0, T ] → Rp as an input signal, for any final time
T ∈ R+, we consider the following system of neural ODEs for the evolution of dynamic hidden variables
y ∈ Rm, coupled to a linear read-out to yield the output z ∈ Rq,


ÿ(t) = σ (Wy(t) + V u(t) + b) ,

y(0) = ẏ(0) = 0,

z(t) = Ay(t) + c.

(4.1a)
(4.1b)
(4.1c)

Equation (4.1) defines an input-/output-mapping u(t) 7→ z(t), with time-dependent output z : [0, T ] → Rq.
Specification of this system requires a choice of the hidden variable dimension m and the activation
function σ. The resulting mapping u 7→ z depends on tunable weight matrices W ∈ Rm×m, V ∈ Rm×p,
A ∈ Rq×m and bias vectors b ∈ Rm, c ∈ Rq. For simplicity of the exposition, we consider only activation
functions σ ∈ C∞(R), with σ(0) = 0 and σ′(0) = 1, such as tanh or sin, although more general activation
functions can be readily considered. This general second-order neural ODE system (4.1) will be referred
to as a neural oscillator.
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Multi-layer neural oscillators. As a special case of neural oscillators, we consider the following much
sparser class of second-order neural ODEs,

y0(t) := u(t),

ÿℓ(t) = σ
(
wℓ ⊙ yℓ(t) + V ℓyℓ−1(t) + bℓ

)
, (ℓ = 1, . . . , L),

yℓ(0) = ẏℓ(0) = 0,

z(t) = AyL(t) + c.

(4.2a)

(4.2b)

(4.2c)

(4.2d)

In contrast to the general neural oscillator (4.1), the above multi-layer neural oscillator (4.2) defines a
hierarchical structure; The solution yℓ ∈ Rmℓ at level ℓ solves a second-order ODE with driving force yℓ−1,
and the lowest level, y0 = u, is the input signal. Here, the layer dimensions m1, . . . ,mL can vary across
layers, the weights wℓ ∈ Rmℓ are given by vectors, with ⊙ componentwise multiplication, V ℓ ∈ Rmℓ×mℓ−1

is a weight matrix, and bℓ ∈ Rmℓ the bias. Given the result of the final layer, yL, the output signal is finally
obtained by an affine output layer z(t) = AyL(t) + c. In the multi-layer neural oscillator, the matrices V ℓ,
A and vectors wℓ, bℓ and c represent the trainable hidden parameters. The system (4.2) is a special case
of (4.1), since it can be written in the form (4.1), with y := [yL, yL−1, . . . , y1]T , b := [bL, . . . , b1]T , and a
(upper-diagonal) block-matrix structure for W :

W :=



wLI V L 0 . . . 0

0 wL−1I V L−1 . . .
...

...
. . . . . . 0

0 . . . 0 w2I V 2

0 . . . 0 0 w1I

 , V :=



0
...
...
0

V 1

 (4.3)

Given the block-diagonal structure of the underlying weight matrices, it is clear that the multi-layer
neural oscillator (4.2) is a much sparser representation of the general neural operator (4.1). Moreover,
one can observe from the structure of the neural ODE (4.2) that within each layer, the individual neurons
are independent of each other.

Assuming that wℓ
i ̸= 0, for all 1 ≤ i ≤ mℓ and all 1 ≤ ℓ ≤ L, we further highlight that the multi-layer

neural oscillator (4.2) is a Hamiltonian system,

ẏℓ =
∂H

∂ẏℓ
, ÿℓ = −∂H

∂yℓ
, (4.4)

with the layer-wise time-dependent Hamiltonian,

H(yℓ, ẏℓ, t) =
1

2
∥ẏℓ∥2 −

mℓ∑
i=1

1

wℓ
i

σ̂(wℓ
iy

ℓ
i + (V ℓyℓ−1)i + bℓi), (4.5)

with σ̂ being the antiderivative of σ, and ∥x∥2 = ⟨x,x⟩ denoting the Euclidean norm of the vector x ∈ Rm

and ⟨·, ·⟩ the corresponding inner product. Hence, any symplectic discretization of the multi-layer neural
oscillator (4.2) will result in a fully reversible model, which can first be leveraged in the context of
normalizing flows [Rezende and Mohamed, 2015], and second leads to a memory-efficient training, as
the intermediate states (i.e., yℓ(t0), ẏℓ(t0), yℓ(t1), ẏℓ(t1), . . . , yℓ(tN ), ẏℓ(tN ), for some time discretization
t0, t1, . . . , tN of length N) do not need to be stored and can be reconstructed during the backward pass.
This potentially leads to a drastic memory saving of O(N) during training.
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4.1.1 Examples of Neural Oscillators

(Forced) harmonic oscillator. Let p = m = q = 1 and we set W = −ω2, for some ω ∈ R, V = 1, b = 0

and the activation function to be identity σ(x) = x. In this case, the neural ODE (4.1) reduces to the
ODE modeling the dynamics of a forced simple harmonic oscillator Guckenheimer and Holmes [1990] of
the form,

ÿ = −ω2y + u, y(0) = ẏ(0) = 0. (4.6)

Here, y is the displacement of the oscillator, ω the frequency of oscillation and u is a forcing term that
forces the motion of the oscillator. Note that (4.6) is also a particular example of the multi-layer oscillator
(4.2) with L = 1.

This simple example provides justification for our terminology of neural oscillators, as in general,
the hidden state y can be thought of as the vector of displacements of m-coupled oscillators, which are
coupled together through the weight matrix W and are forced through a forcing term u, whose effect
is modulated via V and a bias term b. The nonlinear activation function mediates possible nonlinear
feedback to the system on account of large displacements.

CoRNN. We recall that the Coupled Oscillatory RNN (CoRNN) architecture (2.3) of Chapter 2 is
given by the neural ODE:

ÿ = σ (Wy +Wẏ + V u+ b)− γy − ϵẏ.

Hence, we can recover the neural oscillator (4.1) as a special case of CoRNN by setting W = 0, γ = ϵ = 0;
thus, a universality theorem for neural oscillators immediately implies a corresponding universality result
for the CoRNN architecture.

UnICORNN. The Undamped Independent Controlled Oscillatory RNN (UnICORNN) architecture
(3.6) of Chapter 3 recovers the multi-layer neural oscillator (4.2) in the case where the fundamental
frequencies of UnICORNN are automatically determined inside the weight matrix W in (4.1).

Nonlinear oscillatory PNN of Wright et al. [2022]. In [Wright et al., 2022, SM, Sect. 4.A], the
authors propose an analog machine learning device that simulates a network of nonlinear oscillators, for
instance realized through coupled pendula. The resulting mathematical model is the so-called simplified
Frenkel-Kontorova model Braun and Kivshar [1998] given by the ODE system,

Mθ̈ = −K sin(θ)− C sin(θ) + F,

where θ = (θ1, . . . , θN ) is the vector of angles across all coupled pendula, M = diag(µ1, . . . , µN ) is a
diagonal mass matrix, F an external forcing, K = diag(k1, . . . , kN ) the “spring constant” for pendula,
given by ki = µig/ℓ with ℓ the pendulum length and g the gravitational acceleration, and where C = CT

is a symmetric matrix, with

Cℓℓ = −
∑
ℓ′ ̸=ℓ

Cℓℓ′ , so that [C sin(θ)]ℓ =
∑
ℓ′ ̸=ℓ

Cℓℓ′(sin(θℓ′)− sin(θℓ)), (4.7)

which quantifies the coupling between different pendula. We note that this simplified Frenkel-Kontorova
system can also model other coupled nonlinear oscillators, such as coupled lasers or spintronic oscillators
Wright et al. [2022].

We can bring the above system into a more familiar form by introducing the variable y according to the
relationship Py = θ for a matrix P . Substitution of this ansatz then yields MPÿ = −(K+C) sin(Py)+F ;
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choosing P = M−1(K + C), we find

ÿ = − sin(M−1(K + C)y) + F, (4.8)

which can be written in the form ÿ = σ(Wy) + F for σ = − sin( · ) and W = M−1(K + C). If we now
take C in a block-matrix form

C :=



γLI CL 0 . . . 0

CL,T γL−1I
. . .

...

0
. . . . . . 0

... . . . C3,T γ2I C2

0 . . . 0 C2,T γ1I


,

and with corresponding mass matrix M in block-matrix form M = diag(µLI, µL−1I, . . . , µ1I), then with
ρℓ := γℓ/µℓ, we have

M−1C :=



ρLI CL/µL 0 . . . 0

CL,T /µL−1 ρL−1I
. . .

...

0
. . . . . . 0

...
. . . ρ2I C2/µ2

0 . . . 0 C2,T /µ1 ρ1I


,

Introducing an ordering parameter ϵ > 0, and choosing γℓ, Cℓ, µℓ ∼ ϵℓ, it follows that ρℓ, Cℓ

µℓ = O(1), and
Cℓ

µℓ−1 = O(ϵ). Hence, with a suitable ordering of the masses across the different layers, one can introduce
an effective one-way coupling, making

M−1C =



ρLI V L 0 . . . 0

0 ρL−1I V L−1 . . .
...

...
. . . 0

0 . . . 0 ρ2I V 2

0 . . . 0 0 ρ1I

+O(ϵ),

upper triangular, up to small terms of order ϵ. We note that the diagonal entries ρℓ in M−1C are
determined by the off-diagonal terms through the identity (4.7). The additional degrees of freedom in
the (diagonal) K-matrix in (4.8) can be used to tune the diagonal weights of the resulting weight matrix
W = M−1(K + C).

Thus, physical systems such as the Frankel-Kontorova system of nonlinear oscillators can be approx-
imated (to leading order) by multi-layer systems of the form

ÿℓ = σ
(
wℓ ⊙ yℓ + V ℓyℓ−1

)
+ F ℓ, (4.9)

with F ℓ an external forcing, representing a tunable linear transformation of the external input to the
system. The only formal difference between (4.9) and (4.2) is (i) the absence of a bias term in (4.9) and
(ii) the fact that the external forcing appears outside of the nonlinear activation function σ in (4.9). A
bias term could readily be introduced by measuring the angles represented by yℓ in a suitably shifted
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reference frame; physically, this corresponds to tuning the initial position yℓ(0) of the pendula, with yℓ(0)

also serving as the reference value. Furthermore, in our proof of universality for (4.2), it makes very
little difference whether the external forcing F is applied inside the activation function, as in (4.2b) resp.
(4.1a), or outside as in (4.9); indeed, the first layer in our proof of universality will in fact approximate the
linearized dynamics of (4.2b), i.e. a forced harmonic oscillator (4.6). Consequently, a universality result
for the multi-layer neural oscillator (4.2) also implies universality of variants of nonlinear oscillator-based
physical neural networks, such as those considered in Wright et al. [2022].

4.2 Universality of Neural Oscillators

In this section, we concisely state the proof for our main result regarding the universality of neural
oscillators (4.1) or, more specifically, multi-layer oscillators (4.2). To this end, we start with some
mathematical preliminaries to set the stage for the main theorem.

4.2.1 Setting

Input signal. We want to approximate operators Φ : u 7→ Φ(u), where u = u(t) is a time-dependent
input signal over a time-interval t ∈ [0, T ], and Φ(u)(t) is a time-dependent output signal. We will assume
that the input signal t 7→ u(t) is continuous, and that u(0) = 0. To this end, we introduce the space

C0([0, T ];Rp) := {u : [0, T ] → Rp | t 7→ u(t) is continuous and u(0) = 0}.

We will assume that the underlying operator defines a mapping Φ : C0([0, T ];Rp) → C0([0, T ];Rq).
The approximation we discuss in this work are based on oscillatory systems starting from rest. These

oscillators are forced by the input signal u. For such systems the assumption that u(0) = 0 is necessary,
because the oscillator starting from rest takes a (arbitrarily small) time-interval to synchronize with the
input signal (to “warm up”); If u(0) ̸= 0, then the oscillator cannot accurately approximate the output
during this warm-up phase. This intuitive fact is also implicit in our proofs. We will provide a further
comment on this issue in Remark 4.2.2, below.

Operators of interest. We consider the approximation of an operator Φ : C0([0, T ];Rp) → C0([0, T ];Rq),
mapping a continuous input signal u(t) to a continuous output signal Φ(u)(t). We will restrict attention
to the uniform approximation of Φ over a compact set of input functions K ⊂ C0([0, T ];Rp). We will
assume that Φ satisfies the following properties:

• Φ is causal: For any t ∈ [0, T ], if u, v ∈ C0([0, T ];Rp) are two input signals, such that u|[0,t] ≡ v|[0,t],
then Φ(u)(t) = Φ(v)(t), i.e. the value of Φ(u)(t) at time t does not depend on future values
{u(τ) | τ > t}.

• Φ is continuous as an operator

Φ : (C0([0, T ];Rp), ∥ · ∥L∞) → (C0([0, T ];Rq), ∥ · ∥L∞),

with respect to the L∞-norm on the input-/output-signals.

Note that the class of Continuous and Causal operators are very general and natural in the contexts of
mapping between sequence spaces or time-varying function spaces, see Grigoryeva and Ortega [2018],
Gonon et al. [2019] and references therein.
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4.2.2 Universal approximation Theorem

The universality of neural oscillators is summarized in the following theorem:

Theorem 4.2.1 (Universality of the multi-layer neural oscillator). Let Φ : C0([0, T ];Rp) → C0([0, T ];Rq)

be a causal and continuous operator. Let K ⊂ C0([0, T ];Rp) be compact. Then for any ϵ > 0, there
exist hyperparameters L, m1, . . . ,mL, weights wℓ ∈ Rmℓ , V ℓ ∈ Rmℓ×mℓ−1 , A ∈ Rq×mL and bias vectors
bℓ ∈ Rmℓ , c ∈ Rq, for ℓ = 1, . . . , L, such that the output z : [0, T ] → Rq of the multi-layer neural oscillator
(4.2) satisfies

sup
t∈[0,T ]

|Φ(u)(t)− z(t)| ≤ ϵ, ∀u ∈ K.

It is important to observe that the sparse, independent multi-layer neural oscillator (4.2) suffices for
universality in the considered class. Thus, there is no need to consider the wider class of neural oscillators
(4.1), at least in this respect. We remark in passing that Theorem 4.2.1 immediately implies another
universality result for neural oscillators, showing that they can also be used to approximate arbitrary
continuous functions F : Rp → Rq. This extension is explained in detail in Section 4.3.

Remark 4.2.2. We note that the theorem can be readily extended to remove the requirement on u(0) = 0

and Φ(u)(0) = 0. To this end, let Φ : C([0, T ];Rp) → C([0, T ];Rq) be an operator between spaces of
continuous functions, u 7→ Φ(u) on [0, T ]. Fix a t0 > 0, and extend any input function u : [0, T ] → Rp to
a function D(u) ∈ C0([−t0, T ];Rp), by

D(u)(t) :=

{
(t0+t)

t0
u(0), t ∈ [−t0, 0),

u(t), t ∈ [0, T ].

Our proof of Theorem 4.2.1 can readily be used to show that the oscillator system with forcing D(u), and
initialized at time −t0 < 0, can uniformly approximate Φ(u) over the entire time interval [0, T ], without
requiring that u(0) = 0, or Φ(u)(0) = 0. In this case, the initial time interval [−t0, 0] provides the required
“warm-up phase” for the neural oscillator.

Remark 4.2.3. In practice, neural ODEs such as (4.2) need to be discretized via suitable numerical
schemes. As examples, CoRNN (2.3) and UnICORNN (3.6) were implemented with implicit-explicit time
discretizations. Nevertheless, universality also applies for such discretizations as long as the time-step is
small enough, as the underlying discretization is going to be a sufficiently accurate approximation of (4.2)
and Theorem 4.2.1 can be used for showing universality of the discretized version of the multi-layer neural
oscillator (4.2).

In the following, we present the proof of the universality Theorem 4.2.1. For a given tolerance ϵ, we
will explicitly construct the weights and biases of the multi-layer neural oscillator (4.2) such that the
underlying operator can be approximated within the given tolerance. This construction takes place in the
following steps:

(Forced) Harmonic Oscillators compute a time-windowed sine transform. Recall that the
forced harmonic oscillator (4.6) is the simplest example of a neural oscillator (4.1). The following lemma
shows that this forced harmonic oscillator actually computes a time-windowed variant of the sine transform
at the corresponding frequency:

Lemma 4.2.4. Assume that ω ̸= 0. Then the solution of (4.6) is given by

y(t) =
1

ω

ˆ t

0

u(t− τ) sin(ωτ) dτ. (4.10)
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Proof. We can rewrite y(t) = 1
ω

´ t
0
u(τ) sin(ω(t− τ)) dτ . By direct differentiation, one readily verifies that

y(t) so defined, satisfies

ẏ(t) =

ˆ t

0

u(τ) cos(ω(t− τ)) dτ + [u(τ) sin(ω(t− τ))]τ=t =

ˆ t

0

u(τ) cos(ω(t− τ)) dτ,

in account of the fact that sin(0) = 0. Differentiating once more, we find that

ÿ(t) = −ω

ˆ t

0

u(τ) sin(ω(t− τ)) dτ + [u(τ) cos(ω(t− τ))]τ=t

= −ω2y(t) + u(t).

Thus y(t) solves the ODE (4.6), with initial condition y(0) = ẏ(0) = 0.

Given the last result, for a function u, we define its time-windowed sine transform as follows,

Ltu(ω) :=

ˆ t

0

u(t− τ) sin(ωτ) dτ. (4.11)

Lemma 4.2.4 shows that a forced harmonic oscillator computes (4.11) up to a constant.

Approximation of causal operators from finite realizations of time-windowed sine transforms.
The following novel result, termed the fundamental Lemma, shows that the time-windowed sine transform
(4.11) composed with a suitable nonlinear function can approximate causal operators Φ to desired accuracy;
as a consequence, one can conclude that forced harmonic oscillators combined with a nonlinear read-out
defines a universal architecture in the sense of Theorem 4.2.1.

Lemma 4.2.5 (Fundamental Lemma). Let Φ : K ⊂ C0([0, T ];Rp) → C0([0, T ];Rq) be a causal and
continuous operator, with K ⊂ C0([0, T ];Rp) compact. Then for any ϵ > 0, there exists N ∈ N, frequencies
ω1, . . . , ωN and a continuous mapping Ψ : Rp×N × [0, T 2/4] → Rq, such that

|Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)| ≤ ϵ,

for all u ∈ K.

We prove this fundamental Lemma in the following. Let [0, T ] ⊂ R be an interval and K ⊂ C0([0, T ];Rp)

a fixed compact set. Note that for any u ∈ K, we have u(0) = 0, and hence K can be identified with a
subset of C((−∞, T ];Rp), consisting of functions with supp(u) ⊂ [0, T ]. We consider the reconstruction
of continuous functions u ∈ K. We will show that u can be approximately reconstructed from knowledge
of Lt(ω). More precisely, we provide a detailed proof of the following result:

Lemma 4.2.6. Let K ⊂ C((−∞, T ];Rp) be compact, such that supp(u) ⊂ [0, T ] for all u ∈ K. For any
ϵ,∆t > 0, there exists N ∈ N, frequencies ω1, . . . , ωN ∈ R \ {0}, phase-shifts ϑ1, . . . , ϑN ∈ R and weights
α1, . . . , αN ∈ R, such that

sup
τ∈[0,∆t]

∣∣∣∣∣∣u(t− τ)−
N∑
j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ ≤ ϵ,

for all u ∈ K and for all t ∈ [0, T ].
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Proof. Step 0: (Equicontinuity) We recall the following fact from topology. If K ⊂ C((−∞, T ];Rp) is
compact, then it is equicontinuous; i.e. there exists a continuous modulus of continuity ϕ : [0,∞) → [0,∞)

with ϕ(r) → 0 as r → 0, such that

|u(t− τ)− u(t)| ≤ ϕ(τ), ∀ τ ≥ 0, t ∈ [0, T ], ∀u ∈ K. (4.12)

Step 1: (Connection to Fourier transform) Fix t0 ∈ [0, T ] and u ∈ K for the moment. Define
f(τ) = u(t0 − τ). Note that f ∈ C([0,∞);Rp), and f has compact support supp(f) ⊂ [0, T ]. We also
note that, by (4.12), we have

|f(t+ τ)− f(t)| ≤ ϕ(τ), ∀ τ ≥ 0, t ∈ [0, T ].

We now consider the following odd extension of f to all of R:

F (τ) :=

{
f(τ), for τ ≥ 0,

−f(−τ), for τ ≤ 0.

Since F is odd, the Fourier transform of F is given by

F̂ (ω) :=

ˆ ∞

−∞
F (τ)e−iωτ dτ = i

ˆ ∞

−∞
F (τ) sin(ωτ) dτ = 2i

ˆ T

0

f(τ) sin(ωτ) dτ = 2iLt0u(ω).

Let ϵ > 0 be arbitrary. Our goal is to uniformly approximate F (τ) on the interval [0,∆t]. The main
complication here is that F lacks regularity (is discontinuous), and hence the inverse Fourier transform of
F̂ does not converge to F uniformly over this interval; instead, a more careful reconstruction based on
mollification of F is needed. We provide the details below.

Step 2: (Mollification) We now fix a smooth, non-negative and compactly supported function
ρ : R → R, such that supp(ρ) ⊂ [0, 1], ρ ≥ 0,

´
R ρ(t) dt = 1, and we define a mollifier ρϵ(t) :=

1
ϵρ(t/ϵ). In

the following, we will assume throughout that ϵ ≤ T . We point out that supp(ρϵ) ⊂ [0, ϵ], and hence, the
mollification Fϵ(t) = (F ∗ ρϵ)(t) satisfies, for t ≥ 0:

|F (t)− Fϵ(t)| =
∣∣∣∣ˆ ϵ

0

(F (t)− F (t+ τ))ρϵ(τ) dτ

∣∣∣∣ = ∣∣∣∣ˆ ϵ

0

(f(t)− f(t+ τ))ρϵ(τ) dτ

∣∣∣∣
≤
{

sup
τ∈[0,ϵ]

|f(t)− f(t+ τ)|
}ˆ ϵ

0

ρϵ(τ) dτ ≤ ϕ(ϵ).

In particular, this shows that
sup

t∈[0,T ]

|F (t)− Fϵ(t)| ≤ ϕ(ϵ),

can be made arbitrarily small, with an error that depends only on the modulus of continuity ϕ.
Step 3: (Fourier inverse) Let F̂ϵ(ω) denote the Fourier transform of Fϵ. Since Fϵ is smooth and

compactly supported, it is well-known that we have the identity

Fϵ(τ) =
1

2π

ˆ ∞

−∞
F̂ϵ(ω)e

−iωτ dω, ∀ t ∈ R,

where ω 7→ F̂ϵ(ω) decays to zero very quickly (almost exponentially) as |ω| → ∞. In fact, since Fϵ = F ∗ρϵ
is a convolution, we have F̂ϵ(ω) = F̂ (ω)ρ̂ϵ(ω), where |F̂ (ω)| ≤ 2∥f∥L∞T is uniformly bounded, and ρ̂ϵ(ω)

decays quickly. In particular, this implies that there exists a L = L(ϵ, T ) > 0 independent of f , such that∣∣∣∣∣Fϵ(τ)−
1

2π

ˆ L

−L

F̂ (ω)ρ̂ϵ(ω)e
−iωτ dω

∣∣∣∣∣ ≤ 2T∥f∥L∞

ˆ
|ω|>L

|ρ̂ϵ(ω)| dω ≤ ∥f∥L∞ϵ, ∀ τ ∈ R. (4.13)
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Step 4: (Quadrature) Next, we observe that, since F and ρϵ are compactly supported, their Fourier
transform ω 7→ F̂ (ω)ρ̂ϵ(ω)e

−iωτ is smooth; in fact, for |τ | ≤ T , the Lipschitz constant of this mapping
can be explicitly estimated by noting that

∂

∂ω

[
F̂ (ω)ρ̂ϵ(ω)e

−iωτ
]
=

∂

∂ω

ˆ
supp(Fϵ)

(F ∗ ρϵ)(t)eiω(t−τ) dt

=

ˆ
supp(Fϵ)

i(t− τ)(F ∗ ρϵ)(t)eiω(t−τ) dt.

We next take absolute values, and note that any t in the support of Fϵ obeys the bound |t| ≤ T + ϵ ≤ 2T ,
while |τ | ≤ T by assumption; it follows that

Lip
(
ω 7→ F̂ (ω)ρ̂ϵ(ω)e

−iωτ
)
≤ (2T + T )∥F∥L∞ ∥ρϵ∥L1 = 3T∥F∥L∞ , ∀ τ ∈ [0, T ].

It thus follows from basic results on quadrature that for an equidistant choice of frequencies ω1 < · · · < ωN ,
with spacing ∆ω = 2L/(N − 1), we have∣∣∣∣∣∣ 12π

ˆ L

−L

F̂ (ω)ρ̂ϵ(ω)e
−iωτ dω − ∆ω

2π

N∑
j=1

F̂ (ωj)ρ̂ϵ(ωj)e
−iωjτ

∣∣∣∣∣∣ ≤ CL2 3T∥F∥L∞

N
, ∀ τ ∈ [0, T ],

for an absolute constant C > 0, independent of F , T and N . By choosing N to be even, we can ensure
that ωj ̸= 0 for all j. In particular, recalling that L = L(T, ϵ) depends only on ϵ and T , and choosing
N = N(T, ϵ) sufficiently large, we can combine the above estimate with (4.13) to ensure that∣∣∣∣∣∣Fϵ(τ)−

∆ω

2π

N∑
j=1

F̂ (ωj)ρ̂ϵ(ωj)e
−iωjτ

∣∣∣∣∣∣ ≤ 2∥f∥L∞ϵ, ∀ τ ∈ [0, T ],

where we have taken into account that ∥F∥L∞ = ∥f∥L∞ .
Step 5: (Conclusion) To conclude the proof, we recall that F̂ (ω) = 2iLt0u(ω) can be expressed

in terms of the sine transform Ltu of the function u which was fixed at the beginning of Step 1.
Recall also that f(τ) = u(t0 − τ), so that ∥f∥L∞ = ∥u∥L∞ . Hence, we can write the real part of
∆ω
2π F̂ (ωj)ρ̂ϵ(ωj)e

−iωjτ = ∆ω
2π 2iLt0u(ωj)ρ̂ϵ(ωj)e

−iωjτ , in the form αjLt0(ωj) sin(ωjτ − ϑj) for coefficients
αj ∈ R and θj ∈ R which depend only on ∆ω and ρ̂ϵ(ωj), but are independent of u. In particular, it
follows that

sup
τ∈[0,∆t]

∣∣∣∣∣∣u(t0 − τ)−
N∑
j=1

αjLt0u(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ = sup
t∈[0,∆t]

∣∣∣∣∣∣F (τ)−ℜ

∆ω

2π

N∑
j=1

F̂ (ωj)ρ̂ϵ(ωj)e
−iωjτ

∣∣∣∣∣∣
≤ sup

τ∈[0,∆t]

∣∣∣∣∣∣F (τ)− ∆ω

2π

N∑
j=1

F̂ (ωj)ρ̂ϵ(ωj)e
−iωjτ

∣∣∣∣∣∣
≤ sup

τ∈[0,∆t]

|F (τ)− Fϵ(τ)|

+ sup
τ∈[0,∆t]

∣∣∣∣∣∣Fϵ(τ)−
∆ω

2π

N∑
j=1

F̂ (ωj)ρ̂ϵ(ωj)e
−iωjτ

∣∣∣∣∣∣ .
By Steps 1 and 3, the first term on the right-hand side is bounded by ≤ ϕ(ϵ), while the second one
is bounded by ≤ 2 supu∈K ∥u∥L∞ϵ ≤ Cϵ, where C = C(K) < ∞ depends only on the compact set
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K ⊂ C([0, T ];Rp). Hence, we have

sup
τ∈[0,∆t]

∣∣∣∣∣∣u(t0 − τ)−
N∑
j=1

αjLt0u(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ ≤ ϕ(ϵ) + Cϵ.

In this estimate, the function u ∈ K and t0 ∈ [0, T ] were arbitrary, and the modulus of continuity ϕ as
well as the constant C on the right-hand side depend only on the set K. it thus follows that for this
choice of αj , ωj and ϑj , we have

sup
u∈K

sup
t∈[0,T ]

sup
τ∈[0,∆t]

∣∣∣∣∣∣u(t− τ)−
N∑
j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ ≤ ϕ(ϵ) + Cϵ.

Since ϵ > 0 was arbitrary, the right-hand side can be made arbitrarily small. The claim then readily
follows.

The next step in the proof of the fundamental Lemma 4.2.5 needs the following preliminary result in
functional analysis,

Lemma 4.2.7. Let X ,Y be Banach spaces, and let K ⊂ X be a compact subset. Assume that Φ : X → Y
is continous. Then for any ϵ > 0, there exists a δ > 0, such that if ∥u− uK∥X ≤ δ with u ∈ X , uK ∈ K,
then ∥Φ(u)− Φ(uK)∥Y ≤ ϵ.

Proof. Suppose not. Then there exists ϵ0 > 0 and a sequence uj , u
K
j , (j ∈ N), such that ∥uj−uK

j ∥X ≤ j−1,
while ∥Φ(uj)− Φ(uK

j )∥Y ≥ ϵ0. By the compactness of K, we can extract a subsequence jk → ∞, such
that uK

jk
→ uK converges to some uK ∈ K. By assumption on uj , this implies that

∥ujk − uK∥X ≤ ∥ujk − uK
jk
∥X + ∥uK

jk
− uK∥X

(k→∞)−→ 0,

which, by the assumed continuity of Φ, leads to the contradiction that 0 < ϵ0 ≤ ∥Φ(ujk)− Φ(uK)∥Y → 0,
as k → ∞.

Now, we can prove the fundamental Lemma in the following,

Proof. Let ϵ > 0 be given. We can identify K ⊂ C0([0, T ];Rp) with a compact subset of C((−∞, T ];Rp),
by extending all u ∈ K by zero for negative times, i.e. we set u(t) = 0 for t < 0. Applying Lemma 4.2.7,
with X = C0([0, T ];Rp) and Y = C0([0, T ];Rq), we can find a δ > 0, such that for any u ∈ C0([0, T ];Rp)

and uK ∈ K, we have
∥u− uK∥L∞ ≤ δ ⇒ ∥Φ(u)− Φ(uK)∥L∞ ≤ ϵ. (4.14)

By the inverse sine transform Lemma 4.2.6, there exist N ∈ N, frequencies ω1, . . . , ωN ̸= 0, phase-shifts
ϑ1, . . . , ϑN and coefficients α1, . . . , αN , such that for any u ∈ K and t ∈ [0, T ]:

sup
τ∈[0,T ]

∣∣∣∣∣∣u(t− τ)−
N∑
j=1

αj Ltu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ ≤ δ.

Given Ltu(ω1), . . . ,Ltu(ωN ), we can thus define a reconstruction mapping R : RN × [0, T ] → C([0, T ];Rp)

by

R(β1, . . . , βN ; t)(τ) :=

N∑
j=1

αjβj sin(ωj(t− τ)− ϑj).
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Then, for τ ∈ [0, t], we have

|u(τ)− R(Ltu(ω1), . . . ,Ltu(ωN ); t)(τ)| ≤ δ.

We can now uniquely define Ψ : RN × [0, T 2/4] → C0([0, T ];Rp), by the identity

Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4) = Φ (R(Ltu(ω1), . . . ,Ltu(ωN ); t)) .

Using the short-hand notation Rtu = R(Ltu(ω1), . . . ,Ltu(ωN ); t), we have supτ∈[0,t] |u(τ)− Rtu(τ)| ≤ δ,
for all t ∈ [0, T ]. By (4.14), this implies that∣∣Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)

∣∣ = |Φ(u)(t)− Φ(Rtu)(t)| ≤ ϵ.

Given these two results, we can discern a clear strategy to prove the universality Theorem 4.2.1.
First, we will show that a general nonlinear form of the neural oscillator (4.2) can also compute the
time-windowed sine transform at arbitrary frequencies. Then, these outputs need to be processed in order
to apply the fundamental Lemma 4.2.5 and approximate the underlying operator Φ. To this end, we will
also approximate the function Ψ (mapping finite-dimensional inputs to finite-dimensional outputs) by
oscillatory layers. The concrete steps in this strategy are outlined below.

Nonlinear Oscillators approximate the time-windowed sine transform. The building block of
multi-layer neural oscillators (4.2) is the nonlinear oscillator of the form,

ÿ = σ(w ⊙ y + V u+ b). (4.15)

In the following Lemma, we show that even for a nonlinear activation function σ such as tanh or sin, the
nonlinear oscillator (4.15) can approximate the time-windowed sine transform.

Lemma 4.2.8. Fix ω ̸= 0. Assume that σ(0) = 0, σ′(0) = 1. For any ϵ > 0, there exist w, V, b, A ∈ R,
such that the nonlinear oscillator (4.15), initialized at y(0) = ẏ(0) = 0, has output

|Ay(t)− Ltu(ω)| ≤ ϵ, ∀u ∈ K, t ∈ [0, T ],

with Ltu(ω) being the time-windowed sine transform (4.11).

Proof. Let ω ̸= 0 be given. For a (small) parameter s > 0, we consider

ÿs =
1

s
σ(−sω2ys + su), ys(0) = ẏs(0) = 0.

Let Y be the solution of
Ÿ = −ω2Y + u, Y (0) = Ẏ (0) = 0.

Then we have, on account of σ(0) = 0 and σ′(0) = 1,

s−1σ(−sω2Y + su)− [−ω2Y + u] =
σ(−sω2Y + su)− σ(0)

s
− σ′(0)[−ω2Y + u]

=
1

s

ˆ s

0

∂

∂ζ

[
σ(−ζω2Y + ζu)

]
dζ − σ′(0)[−ω2Y + u]

=
1

s

(ˆ s

0

[
σ′(−ζω2Y + ζu)− σ′(0)

]
dζ

)[
−ω2Y + u

]
.

64



Chapter 4. Neural Oscillators are Universal

It follows from Lemma 4.2.4 that for any input u ∈ K, with supu∈K ∥u∥L∞ =: B < ∞, we have a uniform
bound ∥Y ∥L∞ ≤ BT/ω, hence we can estimate

| − ω2Y + u| ≤ B(ωT + 1),

uniformly for all such u. In particular, it follows that∣∣s−1σ(−sω2Y + su)− [−ω2Y + u]
∣∣ ≤ B(Tω + 1) sup

|x|≤sB(Tω+1)

|σ′(x)− σ′(0)|.

Clearly, for any δ > 0, we can choose s ∈ (0, 1] sufficiently small, such that the right hand-side is bounded
by δ, i.e. with this choice of s,∣∣s−1σ(−sω2Y (t) + su(t))− [−ω2Y (t) + u(t)]

∣∣ ≤ δ, ∀ t ∈ [0, T ],

holds for any choice of u ∈ K. We will fix this choice of s in the following, and write g(y, u) :=

s−1σ(−sω2y + su). We note that g is Lipschitz continuous in y, for all |y| ≤ BT/ω and |u| ≤ B, with
Lipy(g) ≤ ω2 sup|ξ|≤B(ωT+1) |σ′(ξ)|.

To summarize, we have shown that Y solves

Ÿ = g(Y, u) + f, Y (0) = Ẏ (0) = 0,

where ∥f∥L∞ ≤ δ. By definition, ys solves

ÿs = g(ys, u), ys(0) = ẏs(0) = 0.

It follows from this that

|ys(t)− Y (t)| ≤
ˆ t

0

ˆ τ

0

{|g(ys(θ), u(θ))− g(Y (θ), u(θ))|+ |f(θ)|} dθ dτ

≤
ˆ t

0

ˆ τ

0

{
Lipy(g)|ys(θ)− Y (θ)|+ δ

}
dθ dτ

≤ Tω2 sup
|ξ|≤B(ωT+1)

|σ′(ξ)|
ˆ t

0

|ys(τ)− Y (τ)| dτ + T 2δ.

Recalling that Y (t) = Ltu(ω), then by Gronwall’s inequality, the last estimate implies that

sup
t∈[0,T ]

|ys(t)− Ltu(ω)| = sup
t∈[0,T ]

|ys − Y | ≤ Cδ,

for a constant C = C(T, ω, sup|ξ|≤B(ωT+1) |σ′(ξ)|) > 0, depending only on T , ω, B and σ′. Since δ > 0

was arbitrary, we can ensure that Cδ ≤ ϵ. Thus, we have shown that a suitably rescaled nonlinear
oscillator approximates the harmonic oscillator to any desired degree of accuracy, and uniformly for all
u ∈ K.

To finish the proof, we observe that y solves

ÿ = σ(−ω2y + su), y(0) = ẏ(0) = 0,

if, and only if, ys = y/s solves

ÿs = s−1σ(−sω2ys + su), ys(0) = ẏs(0) = 0.

Hence, with W = −ω2, V = s, b = 0 and A = s−1, we have

sup
t∈[0,T ]

|Ay(t)− Ltu(ω)| = sup
t∈[0,T ]

|ys(t)− Ltu(ω)| ≤ ϵ.

This concludes the proof.
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Coupled Nonlinear Oscillators approximate time-delays. The next step in the proof is to show
that coupled oscillators can approximate time-delays in the continuous input signal. This fact will be of
crucial importance in subsequent arguments. We have the following Lemma,

Lemma 4.2.9. Let K ⊂ C0([0, T ];Rp) be a compact subset. For every ϵ > 0, and ∆t ≥ 0, there exist
m ∈ N, w ∈ Rm, V ∈ Rm×p, b ∈ Rm and A ∈ Rp×m, such that the oscillator (4.15), initialized at
y(0) = ẏ(0) = 0, has output

sup
t∈[0,T ]

|u(t−∆t)−Ay(t)| ≤ ϵ, ∀u ∈ K,

where u(t) is extended to negative values t < 0 by zero.

Proof. Let ϵ,∆t be given. By the sine transform reconstruction Lemma 4.2.6, there exists N ∈ N,
frequencies ω1, . . . , ωN , weights α1, . . . , αN and phase-shifts ϑ1, . . . , ϑN , such that

sup
τ∈[0,∆t]

∣∣∣∣∣∣u(t− τ)−
N∑
j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣ ≤ ϵ

2
, ∀ t ∈ [0, T ], ∀u ∈ K, (4.16)

where any u ∈ K is extended by zero to negative times. It follows from Lemma 4.2.8, that there exists a
coupled oscillator network,

ÿ = σ(w ⊙ y + V u+ b), y(0) = ẏ(0) = 0,

with dimension m = pN , and w ∈ Rm, V ∈ Rm×p, and a linear output layer y 7→ Ãy, Ã ∈ Rm×m, such
that [Ãy(t)]j ≈ Ltu(ωj) for j = 1, . . . , N ; more precisely, such that

sup
t∈[0,T ]

N∑
j=1

|αj |
∣∣∣Ltu(ωj)− [Ãy]j(t)

∣∣∣ ≤ ϵ

2
, ∀u ∈ K. (4.17)

Composing with another linear layer B : Rm ≃ Rp×N → Rp, which maps β = [β1, . . . , βN ] to

Bβ :=

N∑
j=1

αjβj sin(ωj∆t− ϑj) ∈ Rp,

we define A := BÃ, and observe that from (4.16) and (4.17):

sup
t∈[0,T ]

|u(t−∆t)−Ay(t)| ≤ sup
t∈[0,T ]

∣∣∣∣∣∣u(t−∆t)−
N∑
j=1

αjLtu(ωj) sin(ωj∆t− ϑj)

∣∣∣∣∣∣
+ sup

t∈[0,T ]

N∑
j=1

|αj |
∣∣∣Ltu(ωj)− [Ãy]j(t)

∣∣∣ | sin(ωj∆t− ϑj)|

≤ ϵ.
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Two-layer neural oscillators approximate neural networks pointwise. As in the strategy outlined
above, the final ingredient in our proof of the universality theorem 4.2.1 is to show that neural oscillators
can approximate continuous functions, such as the Ψ in the fundamental lemma 4.2.5, to desired accuracy.
To this end, we will first show that neural oscillators can approximate general neural networks (perceptrons)
and then use the universality of neural networks in the class of continuous functions to prove the desired
result. We have the following lemma,

Lemma 4.2.10. Let K ⊂ C0([0, T ];Rp) be compact. For matrices Σ,Λ and bias γ, and any ϵ > 0, there
exists a two-layer (L = 2) oscillator (4.2), initialized at yℓ(0) = ẏℓ(0) = 0, ℓ = 1, 2, such that

sup
t∈[0,T ]

∣∣[Ay2(t) + c
]
− Σσ(Λu(t) + γ)

∣∣ ≤ ϵ, ∀u ∈ K.

Proof. Fix Σ,Λ, γ as in the statement of the lemma. Our goal is to approximate u 7→ Σσ(Λu+ γ).
Step 1: (nonlinear layer) We consider a first layer for a hidden state y = [y1, y2]

T ∈ Rp+p, given by{
ÿ1(t) = σ(Λu(t) + γ)

ÿ2(t) = σ(γ)

}
, y(0) = ẏ(0) = 0.

This layer evidently does not approximate σ(Λu(t) + γ); however, it does encode this value in the second
derivative of the hidden variable y1. The main objective of the following analysis is to approximately
compute ÿ1(t) through a suitably defined additional layer.

Step 2: (Second-derivative layer) To obtain an approximation of σ(Λu(t) + γ), we first note that
the solution operator

S : u(t) 7→ η(t), where η̈(t) = σ(Λu(t) + γ)− σ(γ), η(0) = η̇(0) = 0,

defines a continuous mapping S : C0([0, T ];Rp) → C2
0 ([0, T ];Rp), with η(0) = η̇(0) = η̈(0) = 0. Note that

η is very closely related to y1. The fact that η̈ = 0 is important to us, because it allows us to smoothly
extend η to negative times by setting η(t) := 0 for t < 0 (which would not be true for y1(t)). The
resulting extension defines a compactly supported function η : (−∞, 0] → Rp, with η ∈ C2((−∞, T ];Rp).
Furthermore, by continuity of the operator S, the image S(K) of the compact set K under S is compact in
C2((−∞, T ];Rp). From this, it follows that for small ∆t > 0, the second-order backward finite difference
formula converges,

sup
t∈[0,T ]

∣∣∣∣η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣ = o∆t→0(1), ∀η = S(u), u ∈ K,

where the bound on the right-hand side is uniform in u ∈ K, due to equicontinuity of {η̈ | η = S(u), u ∈ K}.
In particular, the second derivative of η can be approximated through linear combinations of time-delays
of η. We can now choose ∆t > 0 sufficiently small so that

sup
t∈[0,T ]

∣∣∣∣η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣ ≤ ϵ

2∥Σ∥ , ∀y = S(u), u ∈ K,

where ∥Σ∥ denotes the operator norm of the matrix Σ. By Lemma 4.2.9, applied to the input set
K̃ = S(K) ⊂ C0([0, T ];Rp), there exists a coupled oscillator

z̈(t) = σ(w ⊙ z(t) + V η(t) + b), z(0) = ż(0) = 0, (4.18)
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and a linear output layer z 7→ Ãz, such that

sup
t∈[0,T ]

∣∣∣[η(t)− 2η(t−∆t) + η(t− 2∆t)]− Ãz(t)
∣∣∣ ≤ ϵ∆t2

2∥Σ∥ , ∀η = S(u), u ∈ K.

Indeed, Lemma 4.2.9 shows that time-delays of any given input signal can be approximated with any
desired accuracy, and η(t)− 2η(t−∆)− η(t− 2∆) is simply a linear combination of time-delays of the
input signal η in (4.18).

To connect η(t) back to the y(t) = [y1(t), y2(t)]
T constructed in Step 1, we note that

η̈ = σ(Au(t) + b)− σ(b) = ÿ1 − ÿ2,

and hence, taking into account the initial values, we must have η ≡ y1 − y2 by ODE uniqueness. In
particular, upon defining a matrix Ṽ such that Ṽ y := V y1 − V y2 ≡ V η, we can equivalently write (4.18)
in the form,

z̈(t) = σ(w ⊙ z(t) + Ṽ y(t) + b), z(0) = ż(0) = 0. (4.19)

Step 3: (Conclusion)
Composing the layers from Step 1 and 2, we obtain a coupled oscillator

ÿℓ = σ(wℓ ⊙ yℓ + V ℓyℓ−1 + bℓ), (ℓ = 1, 2),

initialized at rest, with y1 = y, y2 = z, such that for A := ΣÃ and c := Σσ(γ), we obtain

sup
t∈[0,T ]

∣∣[Ay2(t) + c
]
− Σσ(Λu(t) + γ)

∣∣ ≤ ∥Σ∥ sup
t∈[0,T ]

∣∣∣Ãz(t)− [σ(Λu(t) + γ)− σ(γ)]
∣∣∣

= ∥Σ∥ sup
t∈[0,T ]

∣∣∣Ãz(t)− η̈(t)
∣∣∣

≤ ∥Σ∥ sup
t∈[0,T ]

∣∣∣∣Ãz(t)− η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2

∣∣∣∣
+ ∥Σ∥ sup

t∈[0,T ]

∣∣∣∣η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣
≤ ϵ

2
+

ϵ

2
= ϵ.

This concludes the proof.

As can be seen, the proof is constructive and the neural oscillator that we construct has two layers.
The first layer just processes a nonlinear input function through a nonlinear oscillator and the second
layer, approximates the second-derivative (in time) from time-delayed versions of the input signal that
were constructed in Lemma 4.2.9.

Combining the ingredients to prove the universality theorem 4.2.1. We can now combine the
afore-constructed ingredients to prove the universality theorem 4.2.1.

Proof. Step 1: By the Fundamental Lemma 4.2.5, there exist N , a continuous mapping Ψ, and frequencies
ω1, . . . , ωN , such that

|Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)| ≤ ϵ,

for all u ∈ K, and t ∈ [0, T ]. Let M be a constant such that

|Ltu(ω1)|, . . . , |Ltu(ωN )|, t
2

4
≤ M,
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for all u ∈ K and t ∈ [0, T ]. By the universal approximation theorem for ordinary neural networks, there
exist weight matrices Σ,Λ and bias γ, such that

|Ψ(β1, . . . , βN ; t2/4)− Σσ(Λβ + γ)| ≤ ϵ, β := [β1, . . . , βN ; t2/4]T ,

holds for all t ∈ [0, T ], |β1|, . . . , |βN | ≤ M .
Step 2: Fix ϵ1 ≤ 1 sufficiently small, such that also ∥Σ∥∥Λ∥Lip(σ)ϵ1 ≤ ϵ, where Lip(σ) :=

sup|ξ|≤∥Λ∥M+|γ|+1 |σ′(ξ)| denotes an upper bound on the Lipschitz constant of the activation function over
the relevant range of input values. It follows from Lemma 4.2.8, that there exists an oscillator network,

ÿ1 = σ(w1 ⊙ y1 + V 1u+ b1), y1(0) = ẏ1(0) = 0, (4.20)

of depth 1, such that

sup
t∈[0,T ]

|[Ltu(ω1), . . . ,Ltu(ωN ); t2/4]T −A1y1(t)| ≤ ϵ1,

for all u ∈ K.
Step 3: Finally, by Lemma 4.2.10, there exists an oscillator network,

ÿ2 = σ(w2 ⊙ y2 + V 2y1 + b1),

of depth 2, such that
sup

t∈[0,T ]

|A2y2(t)− Σσ(ΛA1y1(t) + γ)| ≤ ϵ,

holds for all y1 belonging to the compact set K1 := S(K) ⊂ C0([0, T ];RN+1), where S denotes the
solution operator of (4.20).

Step 4: Thus, we have for any u ∈ K, and with short-hand Ltu(ω) := (Ltu(ω1), . . . ,Ltu(ωN )),∣∣Φ(u)(t)−A2y2(t)
∣∣ ≤ ∣∣Φ(u)(t)−Ψ(Ltu(ω); t

2/4)
∣∣

+
∣∣Ψ(Ltu(ω); t

2/4)− Σσ(Λ[Ltu(ω); t
2/4] + γ)

∣∣
+
∣∣Σσ(Λ[Ltu(ω); t

2/4] + γ)− Σσ(ΛA1y1(t) + γ)
∣∣

+
∣∣Σσ(ΛA1y1(t) + γ)−A2y2(t)

∣∣ .
By step 1, we can estimate∣∣Φ(u)(t)−Ψ(Ltu(ω); t

2/4)
∣∣ ≤ ϵ, ∀ t ∈ [0, T ], u ∈ K.

By the choice of Σ,Λ, γ, we have∣∣Ψ(Ltu(ω); t
2/4)− Σσ(Λ[Ltu(ω); t

2/4] + γ)
∣∣ ≤ ϵ, ∀ t ∈ [0, T ], u ∈ K.

By construction of y1 in Step 2, we have∣∣Σσ(Λ[Ltu(ω); t
2/4] + γ)− Σσ(ΛA1y1(t) + γ)

∣∣
≤ ∥Σ∥Lip(σ)∥Λ∥

∣∣[Ltu(ω); t
2/4]−A1y1(t)

∣∣
≤ ∥Σ∥Lip(σ)∥Λ∥ ϵ1
≤ ϵ,

for all t ∈ [0, T ] and u ∈ K. By construction of y2 in Step 3, we have∣∣Σσ(ΛA1y1(t) + γ)−A2y2(t)
∣∣ ≤ ϵ, ∀ t ∈ [0, T ], u ∈ K.
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Thus, we conclude that
|Φ(u)(t)−A2y2(t)| ≤ 4ϵ,

for all t ∈ [0, T ] and u ∈ K. Since ϵ > 0 was arbitrary, we conclude that for any causal and continuous
operator Φ : C0([0, T ];Rp) → C0([0, T ];Rq), compact set K ⊂ C0([0, T ];Rp) and ϵ > 0, there exists a
coupled oscillator of depth 3, which uniformly approximates Φ to accuracy ϵ for all u ∈ K. This completes
the proof.

To summarize the proof of the universality theorem 4.2.1, we explicitly construct a three-layer neural
oscillator (4.2) which approximates the underlying operator Φ. The first layer follows the construction
of Lemma 4.2.8, to approximate the time-windowed sine transform (4.11), for as many frequencies as
are required in the fundamental Lemma 4.2.5. The second- and third-layers imitate the construction of
Lemma 4.2.10 to approximate a neural network (perception), which in turn by the universal approximation
of neural networks, approximates the function Ψ in Lemma 4.2.5 to desired accuracy. Putting the network
together leads to a three-layer oscillator that approximates the continuous and casual operator Φ. This
construction is depicted in Figure 4.1.

Figure 4.1: Illustration of the universal 3-layer neural oscillator architecture constructed in the proof of
Theorem 4.2.1.

4.3 Another universality result for neural oscillators

The universal approximation Theorem 4.2.1 immediately implies another universal approximation results
for neural oscillators, as explained next. We consider a continuous map F : Rp → Rq; our goal is to show
that F can be approximated to given accuracy ϵ by suitably defined neural oscillators. Fix a time interval
[0, T ] for (an arbitrary choice) T = 2. Let K0 ⊂ Rp be a compact set. Given ξ ∈ Rp, we associate with it
a function uξ(t) ∈ C0([0, T ];Rp), by setting

uξ(t) := tξ. (4.21)
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Clearly, the set K := {uξ | ξ ∈ K0} is compact in C0([0, T ];Rp). Furthermore, we can define an operator
Φ : C0([0, T ];Rp) → C0([0, T ];Rq), by

Φ(u)(t) :=

{
0, t ∈ [0, 1),

(t− 1)F (u(1)), t ∈ [1, T ].
(4.22)

where F : Rp → Rq is the given continuous function that we wish to approximate. One readily checks
that Φ defines a causal and continuous operator. Note, in particular, that

Φ(uξ)(T ) = (T − 1)F (uξ(1)) = F (ξ),

is just the evaluation of F at ξ, for any ξ ∈ K0.
Since neural oscillators can uniformly approximate the operator Φ for inputs uξ ∈ K, then as a

consequence of Theorem 4.2.1 and (4.3), it follows that, for any ϵ > 0 there exists m ∈ N, matrices
W ∈ Rm×m, V ∈ Rm×p and A ∈ Rq×m, and bias vectors b ∈ Rm, c ∈ Rq, such that for any ξ ∈ K0, the
neural oscillator system, 

ÿξ(t) = σ (Wyξ(t) + tV ξ + b) ,

yξ(0) = ẏξ(0) = 0,

zξ(t) = Ayξ(t) + c,

(4.23)
(4.24)
(4.25)

satisfies
|zξ(T )− F (ξ)| = |zξ(T )− Φ(uξ)(T )| ≤ sup

t∈[0,T ]

|zξ(t)− Φ(uξ)(t)| ≤ ϵ,

uniformly for all ξ ∈ K0. Hence, neural oscillators can be used to approximate an arbitrary continuous
function F : Rp → Rq, uniformly over compact sets. Thus, neural oscillators also provide universal
function approximation.

4.4 Discussion

Machine learning architectures, based on networks of coupled oscillators, for instance sequence models
such as CoRNN (2.3) and UnICORNN (3.6), and the so-called physical neural networks (PNNs) such as
linear and nonlinear mechanical oscillators Wright et al. [2022] and spintronic oscillators Romera and et. al
[2018], Torrejon and et. al [2017], are being increasingly used. A priori, it is unclear why machine learning
systems based on oscillators can provide competitive performance on a variety of learning benchmarks, e.g.
Section 2.3, Section 3.3, and Wright et al. [2022], rather than biasing their outputs towards oscillatory
functions. In order to address these concerns about their expressivity, we have investigated the theoretical
properties of machine learning systems based on oscillators. Our main aim was to answer a fundamental
question: “are coupled oscillator based machine learning architectures universal?”. In other words, can
these architectures, in principle, approximate a large class of input-output maps to desired accuracy.

To answer this fundamental question, we introduced an abstract framework of neural oscillators (4.1)
and its particular instantiation, the multi-layer neural oscillators (4.2). This abstract class of second-order
neural ODEs encompasses both sequence models such as CoRNN and UnICORNN, as well as a very
general and representative PNN, based on the so-called Frenkel-Kontorova model. The main contribution
of this chapter was to prove the universality theorem 4.2.1 on the ability of multi-layer neural oscillators
(4.2) to approximate a large class of operators, namely causal and continuous maps between spaces
of continuous functions, to desired accuracy. Despite the fact that the considered neural oscillators
possess a very specific and constrained structure, not even encompassing general Hamiltonian systems,
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the approximated class of operators is nevertheless very general, including solution operators of general
ordinary and even time-delay differential equations.

The crucial theoretical ingredient in our proof was the fundamental Lemma 4.2.5, which implies that
linear oscillator dynamics combined with a pointwise nonlinear read-out suffices for universal operator
approximation; our construction can correspondingly be thought of as a large number of linear processors,
coupled with nonlinear readouts. This construction could have implications for other models such as
structured state-space models Gu et al. [2021, 2020] which follow a similar paradigm, and the extension of
our universality results to such models could be of great interest.

Our universality result has many interesting implications. To start with, we rigorously prove that an
machine learning architecture based on coupled oscillators can approximate a very large class of operators.
This provides theoretical support to many widely used sequence models and PNNs based on oscillators.
Moreover, given the generality of our result, we hope that such a universality result can spur the design
of innovative architectures based on oscillators, particularly in the realm of analog devices as machine
learning inference systems or machine learning accelerators Wright et al. [2022].

It is also instructive to lay out some of the limitations of our theoretical findings in this chapter and
point to avenues for future work. In this context, our setup currently only considers time-varying functions
as inputs and outputs. Roughly speaking, these inputs and outputs have the structure of (infinite)
sequences. However, a large class of learning tasks can be reconfigured to take sequential inputs and
outputs. These include text (as evident from the tremendous success of large language models Radford
et al. [2018]), DNA sequences, images Karpathy and Fei-Fei [2015], timeseries and (offline) reinforcement
learning Janner et al. [2021]. Nevertheless, a next step would be to extend such universality results
to inputs (and outputs) which have some spatial or relational structure, for instance by considering
functions which have a spatial dependence or which are defined on graphs. On the other hand, the class
of operators that we consider, i.e., casual and continuous, is not only natural in this setting but very
general Grigoryeva and Ortega [2018], Gonon et al. [2019].

Another limitation lies in the feed forward structure of the multi-layer neural oscillator (4.2). As
mentioned before, most physical (and neurobiological) systems exhibit feedback loops between their
constituents. However, this is not common in machine learning systems. In fact, we had to use a mass
ordering in the Frenkel-Kontorova system of coupled pendula (4.8) in order to recast it in the form of the
multi-layer neural oscillator (4.2). Such asymptotic ordering may not be possible for arbitrary physical
neural networks. Exploring how such ordering mechanisms might arise in physical and biological systems
in order to effectively give rise to a feed forward system could be very interesting. One possible mechanism
for coupled oscillators that can lead to a hierarchical structure is that of synchronization Winfree [1967],
Strogatz [2001] and references therein. How such synchronization interacts with universality is a very
interesting question and will serve as an avenue for future work.

Finally, universality is arguably necessary but far from sufficient to analyze the performance of any
machine learning architecture. Other aspects such as trainability and generalization are equally important,
and we do not address these issues here. We do mention that trainability of oscillatory systems would
profit from the fact that oscillatory dynamics is (gradient) stable and this formed the basis of the proofs of
mitigation of the exploding and vanishing gradients problem for CoRNN in Section 2.2 and UnICORNN
in Section 3.2. Extending these results to the general second-order neural ODE (4.2), for instance through
an analysis of the associated adjoint system, is left for future work.
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Long Expressive Memory

Realistic sequential data sets often contain information arranged according to multiple (time, length,
etc., depending on the data and task) scales. If there were only one or two scales over which information
correlated, then a simple model with a parameter chosen to correspond to that scale (or, e.g., scale
difference) should be able to model the data well. Thus, it is reasonable to expect that a multiscale
model should be considered to process efficiently such multiscale data. To this end, we propose a novel
sequence model, Long Expressive Memory (LEM), that is based on a suitable time-discretization of a
set of multiscale ordinary differential equations (ODEs). For this novel sequence model (proposed in
Section 5.1):

• we derive bounds on the hidden state gradients to prove that LEM mitigates the exploding and
vanishing gradients problem (Section 5.2.1);

• we rigorously prove that LEM can approximate a very large class of (multiscale) dynamical systems
to arbitrary accuracy (Section 5.2.1); and

• we provide an extensive empirical evaluation of LEM on a wide variey of data sets, including image
and sequence classification, dynamical systems prediction, keyword spotting, and language modeling,
thereby demonstrating that LEM outperforms or is comparable to state-of-the-art RNNs, GRUs
and LSTMs in each task (Section 5.3).

We also discuss a small portion of the large body of related work, and we provide a brief discussion of our
results in a broader context (Section 5.5).

5.1 The proposed sequence model

We start with the simplest example of a system of two-scale ODEs,

dy

dt
= τy (σ (Wyz+Vyu+ by)− y) ,

dz

dt
= τz (σ (Wzy +Vzu+ bz)− z) . (5.1)

Here, t ∈ [0, T ] is the continuous time, 0 < τy ≤ τz ≤ 1 are the two time scales, y(t) ∈ Rmy , z(t) ∈ Rmz

are the vectors of slow and fast variables and u = u(t) ∈ Rd is the input signal. For simplicity, we
set my = mz = m. The dynamic interactions between the neurons are modulated by weight matrices
Wy,z,Vy,z, bias vectors by,z and a nonlinear tanh activation function σ(u) = tanh(u).
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However, two scales (one fast and one slow), may not suffice in representing a large number of scales
that could be present in realistic sequential data sets. Hence, we need to generalize (5.1) to a multiscale
version. One such generalization is provided by the following set of ODEs,

dy

dt
= σ̂ (W2y +V2u+ b2)⊙ (σ (Wyz+Vyu+ by)− y) ,

dz

dt
= σ̂ (W1y +V1u+ b1)⊙ (σ (Wzy +Vzu+ bz)− z) .

(5.2)

In addition to previously defined quantities, we need additional weight matrices W1,2,V1,2, bias vectors
by,z and sigmoid activation function σ̂(u) = 0.5(1+ tanh(u/2)). Note that ⊙ refers to the componentwise
product of vectors. As σ̂ is monotone, we can set W1,2 = V1,2 ≡ 0 and (b1)j = by, (b2)j = bz, for all
1 ≤ j ≤ m, with σ̂(by,z) = τy,z to observe that the two-scale system (5.1) is a special case of (5.2). One
can readily generalize this construction to obtain many different scales in (5.2). Thus, we can interpret
(τz(y, t), τy(y, t)) = (σ̂ (W1y +V1u+ b1) , σ̂ (W2y +V2u+ b2)) in (5.2) as input and state dependent
gating functions, which endow ODE (5.2) with multiple time scales. These scales can be learned adaptively
(with respect to states) and dynamically (in time).

Next, we propose a time-discretization of the multiscale ODE system (5.2), providing a circuit to our
sequential model architecture. As is common with numerical discretizations of ODEs, doing so properly
is important to preserve desirable properties. To this end, we fix ∆t > 0, and we discretize (5.2) with the
following implicit-explicit (IMEX) time-stepping scheme to arrive at LEM, written in compact form as,

∆tn = ∆tσ̂(W1yn−1 +V1un + b1),

∆tn = ∆tσ̂(W2yn−1 +V2un + b2),

zn = (1−∆tn)⊙ zn−1 +∆tn ⊙ σ(Wzyn−1 +Vzun + bz),

yn = (1−∆tn)⊙ yn−1 +∆tn ⊙ σ(Wyzn +Vyun + by).

(5.3)

For steps 1 ≤ n ≤ N , the hidden states in LEM (5.3) are yn, zn ∈ Rm, with input state un ∈ Rd. The
weight matrices are W1,2,z,y ∈ Rm×m and V1,2,z,y ∈ Rm×d and the bias vectors are b1,2,z,y ∈ Rm. We
also augment LEM (5.3) with a linear output state ωn ∈ Ro with ωn = Wyyn, and Wy ∈ Ro×m.

Related work. We start by comparing our proposed model, LEM (5.3), to the widely used LSTM of
Hochreiter and Schmidhuber [1997]. Observe that ∆tn,∆tn in (5.3) are similar in form to the input,
forget and output gates in an LSTM, and that LEM (5.3) has exactly the same number of parameters
(weights and biases) as an LSTM, for the same number of hidden units. Moreover, as detailed in the
last paragraph of this section, we show that by choosing very specific values of the LSTM gates and the
∆tn,∆tn terms in LEM (5.3), the two models are equivalent. However, this analysis also reveals key
differences between LEM (5.3) and LSTMs, as they are equivalent only under very stringent assumptions.
In general, as the different gates in both LSTM and LEM (5.3) are learned from data, one can expect
them to behave differently. Moreover in contrast to LSTM, LEM stems from a discretized ODE system
(5.2), which endows it with (gradient) stable dynamics.

The use of multiscale neural network architectures in machine learning has a long history. An early
example was provided in Hinton and Plaut [1987], who proposed a neural network with each connection
having a fast changing weight for temporary memory and a slow changing weight for long-term learning.
More recently, one can view convolutional neural networks as multiscale architectures for processing
multiple spatial scales in data [Bai et al., 2020].

The use of ODE-based learning architectures has also received considerable attention in recent years
with examples such as continuous-time neural ODEs [Chen et al., 2018, Queiruga et al., 2020, 2021] and
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their recurrent extensions ODE-RNNs [Rubanova et al., 2019], as well as RNNs based on discretizations
of ODEs [Chang et al., 2019, Erichson et al., 2020, Chen et al., 2020c, Lim et al., 2021b]. In addition to
the specific details of our architecture, we differ from other discretized ODE-based RNNs in the explicit
use of multiple (learned) scales in LEM.

Relation between LEM and the Hodgkin-Huxley equations. We observe that the multiscale
ODEs (5.2), on which LEM is based, are a special case of the following ODE system,

dz

dt
= Fz (y, t)−Gz(y, t)⊙ z,

dy

dt
= Fy (z, t)⊙H (y, t)−Gy(y, t)⊙ y. (5.4)

It turns out the well-known Hodgkin-Huxley equations Hodgkin and Huxley [1952], modeling the dynamics
of the action potential of a biological neuron can also be written down in the abstract form (5.4), with
my = 1, mz = 3 and the variables y = y modeling the voltage and z = (z1, z2, z3) modeling the
concentration of Potassium activation, Sodium activation and Sodium inactivation channels.

The exact form of the different functions in (5.4) for the Hodgkin-Huxley equations is given by,

Fz(y) = (α1(y), α2(y), α3(y)) ,

Gz(y) = (α1(y) + β1(y), α2(y) + β2(y), α3(y) + β3(y)) ,

α1(y) =
0.01(10 + ŷ − y)

e
10+ŷ−y

10 − 1
, α2(y) =

0.1(25 + ŷ − y)

e
25+ŷ−y

10 − 1
, α3(y) = 0.07e

ŷ−y
20 ,

β1(y) = 0.125e
ŷ−y
80 , β2(y) = 4e

ŷ−y
18 , β3(y) =

1

1 + e1+
ŷ−y
10

,

Fy(z, t) = u(t) + z41 + z32z3, H(y) = c1(ȳ − y) + c2(ȳ − y), Gy(y) = c3,

(5.5)

with input current u and constants ŷ, ȳ, c1,2,3, whose exact values can be read from [Hodgkin and Huxley,
1952].

Thus, the multiscale ODEs (5.2) and the Hodgkin-Huxley equations are a special case of the same
general family (5.4) of ODEs. Moreover, the gating functions Gy,z(y), that model voltage-gated ion
channels in the Hodgkin-Huxley equations, are similar in form to ∆tn,∆tn in (5.2).

It is also worth highlighting the differences between our proposed model LEM (and the underlying
ODE system (5.2)) and the Hodgkin-Huxley ODEs modeling the dynamics of the neuronal action potential.
Given the complicated form of the nonlinearites Fy,z,Gy,z,H in the Hodgkin-Huxley equations (5.5), we
cannot use them in designing any learning model. Instead, building on the abstract form of (5.4), we
propose bespoke nonlinearities in the ODE (5.2) to yield a tractable learning model, such as LEM (5.3).
Moreover, it should be emphasized that the Hodgkin-Huxley equations only model the dynamics of a
single neuron (with a scalar voltage and 3 ion channels), whereas the hidden state dimension d of (5.2)
can be arbitrary.

Relation between LEM and LSTM. The well-known LSTM [Hochreiter and Schmidhuber, 1997]
(in its mainly-used version using a forget gate [Gers et al., 2000]) is given by,

fn = σ̂(Wfhn−1 +Vfun + bf )

in = σ̂(Wihn−1 +Viun + bi)

on = σ̂(Wohn−1 +Voun + bo)

cn = fn ⊙ cn−1 + in ⊙ σ(Whn−1 +Vun + b)

hn = on ⊙ σ(cn).

(5.6)
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Here, for any 1 ≤ n ≤ N , hn ∈ Rm is the hidden state and cn ∈ Rm is the so-called cell state. The vectors
in, fn,on ∈ Rd are the input, forget and output gates, respectively. un ∈ Rd is the input signal and the
weight matrices and bias vectors are given by W,Wf,i,o ∈ Rm×m,V,Vf,i,o ∈ Rm×d and b,bf,i,o ∈ Rm,
respectively.

It is straightforward to relate LSTM (5.6) and LEM (5.3) by first setting the cell state cn = zn, for
all 1 ≤ n ≤ N and the hidden state hn = yn.

We further need to assume that the input state in = ∆tn and the forget state has to be fn = 1−∆tn.
Finally, the output state of the LSTM (5.6) has to be

on = ∆tn = 1, ∀1 ≤ n ≤ N.

Under these assumptions and by setting ∆t = 1, we can readily observe that the LEM (5.3) and LSTM
(5.6) are equivalent.

A different interpretation of LEM, in relation to LSTM, is as follows; LEM can be thought of a variant
of LSTM but with two cell states yn, zn per unit and no output gate. The input gates are ∆tn and ∆tn
and the forget gates are coupled to the input gates. Given that the state zn is fed into the update for the
state yn, one can think of one of the cell states sitting above the other, leading to a more sophisticated
recursive update for LEM (5.3), when compared to LSTM (5.6).

5.2 Rigorous analysis of LEM

In this section, we provide a rigorous analysis of the proposed LEM architecture. We start with the
following simplifying notation for various terms in LEM (5.3),

An−1 = W1yn−1 +V1un + b1,

Bn−1 = W2yn−1 +V2un + b2,

Cn−1 = Wzyn−1 +Vzun + bz,

Dn = Wyzn +Vyun + by.

Note that for all 1 ≤ n ≤ N , An,Bn,Cn,Dn ∈ Rm. With the above notation, LEM (5.3) can be written
componentwise, for each component 1 ≤ i ≤ d as,

zin = zin−1 +∆tσ̂(Ai
n−1)σ(C

i
n−1)−∆tσ̂(Ai

n−1)z
i
n−1,

yi
n = yi

n−1 +∆tσ̂(Bi
n−1)σ(D

i
n)−∆tσ̂(Bi

n−1)y
i
n−1.

(5.7)

Moreover, we recall the order -notation from (2.35),

β = O(α), for α, β ∈ R+ if there exist constants C,C such that Cα ≤ β ≤ Cα.

M = O(α), for M ∈ Rd1×d2 , α ∈ R+ if there exists a constant C such that ∥M∥ ≤ Cα.
(5.8)

5.2.1 On the exploding and vanishing gradients problem

Bounds on hidden states. The structure of LEM (5.3) allows us to prove that its hidden states satisfy
the following pointwise bound.

Proposition 5.2.1. Denote tn = n∆t and assume that ∆t ≤ 1. Further assume that the initial hidden
states are z0 = y0 ≡ 0. Then, the hidden states zn,yn of LEM (5.3) are bounded pointwise as,

max
1≤i≤d

max{|zin|, |yi
n|} ≤ min

(
1,∆

√
tn
)
, ∀1 ≤ n, with ∆ =

1 +∆t√
2−∆t

. (5.9)
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Proof. The proof of the bound (5.9) is split into 2 parts. We start with the first equation in (5.7) and
rewrite it as,

zin =
(
1−∆tσ̂(Ai

n−1)
)
zin−1 +∆tσ̂(Ai

n−1)σ(C
i
n−1).

Noting that the activation functions are such that 0 ≤ σ̂(x) ≤ 1, for all x and −1 ≤ σ(x) ≤ 1, for all x
and using the fact that ∆t ≤ 1, we have from the above expression that,

zin ≤
(
1−∆tσ̂(Ai

n−1)
)
max

(
zin−1, 1

)
+∆tσ̂(Ai

n−1)max
(
zin−1, 1

)
,

≤ max
(
zin−1, 1

)
.

By a symmetric argument, one can readily show that,

zin ≥ min(−1, zin−1).

Combining the above inequalities yields,

min(−1, zin−1) ≤ zin ≤ max
(
zin−1, 1

)
. (5.10)

Iterating (5.10) over n and using zi0 = 0 for all 1 ≤ i ≤ d leads to,

−1 ≤ zin ≤ 1, ∀n, ∀1 ≤ i ≤ d. (5.11)

An argument, identical to the derivation of (5.11), but for the hidden state y yields,

−1 ≤ yi
n ≤ 1, ∀n, ∀1 ≤ i ≤ d. (5.12)

Thus, we have shown that the hidden states remain in the interval [−1, 1], irrespective of the sequence
length.

Next, we will use the following elementary identities in the proof,

b(a− b) =
a2

2
− b2

2
− 1

2
(a− b)

2
, (5.13)

for any a, b ∈ R, and also,

ab ≤ ϵa2

2
+

b2

2ϵ
, ∀ϵ > 0. (5.14)

We fix 1 ≤ i ≤ d and multiply the first equation in (5.7) with zin−1 and apply (5.13) to obtain,

(zin)
2

2
=

(zin−1)
2

2
+ ∆tσ̂(Ai

n−1)σ(C
i
n−1)z

i
n−1 −∆tσ̂(Ai

n−1)(z
i
n−1)

2 +
(zin − zin−1)

2

2

=
(zin−1)

2

2
+ ∆tσ̂(Ai

n−1)σ(C
i
n−1)z

i
n−1 −∆tσ̂(Ai

n−1)(z
i
n−1)

2

+
∆t2

2

(
σ̂(Ai

n−1)σ(C
i
n−1)− σ̂(Ai

n−1)z
i
n−1

)2
, (from (5.7))

≤ (zin−1)
2

2
+ ∆tσ̂(Ai

n−1)|σ(Ci
n−1)||zin−1| −∆tσ̂(Ai

n−1)(z
i
n−1)

2

+
∆t2

2
(σ̂(Ai

n−1)σ(C
i
n−1))

2 +
∆t2

2
σ̂(Ai

n−1)
2(zin−1)

2

+∆t2σ̂(Ai
n−1)

2|σ(Ci
n−1)||zin−1| (as (a− b)2 ≤ a2 + b2 + 2|a||b|)
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We fix ϵ = 2−∆t
1+∆t in the elementary identity (5.14) to yield,

|σ(Ci
n−1)||zin−1| ≤

σ(Ci
n−1)

2

2ϵ
+

ϵ(zin−1)
2

2

Applying this to the inequality for (zin)
2 leads to,

(zin)
2

2
≤ (zin−1)

2

2
+
(
∆tσ̂(Ai

n−1) + ∆t2σ̂(Ai
n−1)

2
) σ(Ci

n−1)
2

2ϵ

−∆tσ̂(Ai
n−1)

[
1− ϵ

2
− ∆tσ̂(Ai

n−1)

2
− ∆tσ̂(Ai

n−1)ϵ

2

]
(zin−1)

2.

Using the fact that 0 ≤ σ̂(x) ≤ 1 for all x ∈ R, σ2 ≤ 1 and that ϵ = 2−∆t
1+∆t , we obtain from the last line of

the previous equation that,

(zin)
2 ≤ (zin−1)

2 +
∆t+∆t2

ϵ
≤ (zin−1)

2 +
∆t(1 + ∆t)2

2−∆t
, ∀1 ≤ n.

Iterating the above estimate over n = 1, . . . , n̄, for any 1 ≤ n̄ and setting n̄ = n yields,

(zin)
2 ≤ (zi0)

2 + n
∆t(1 + ∆t)2

2−∆t
,

⇒ (zin)
2 ≤ tn

(1 + ∆t)2

2−∆t
as zi0 = 0, tn = n∆t.

Taking a square root in the above inequality yields,

|zin| ≤ ∆
√
tn, ∀n, ∀1 ≤ i ≤ m. (5.15)

with ∆ defined in the expression (5.9).
We can repeat the above argument with the hidden state y to obtain,

|yi
n| ≤ ∆

√
tn, ∀n, ∀1 ≤ i ≤ m. (5.16)

Combining (5.15) and (5.16) with the pointwise bounds (5.11) and (5.12) yields the desired bound
(5.9).

On the exploding and vanishing gradients problem. For any 1 ≤ n ≤ N , let Xn ∈ R2m, denoted
the combined hidden state, given by Xn =

[
z1n,y

1
n, . . . . . . , z

i
n,y

i
n, . . . . . . , z

m
n ,ym

n

]
. For simplicity of the

exposition, we consider a loss function: En = 1
2∥yn − yn∥2, with yn being the underlying ground truth.

The training of our proposed model (5.3) entails computing gradients of the above loss function with
respect to its underlying weights and biases θ ∈ Θ = [W1,2,y,z,V1,2,y,z,b1,2,y,z], at every step of the
gradient descent procedure. Following Pascanu et al. [2013], one uses chain rule to show,

∂En

∂θ
=

∑
1≤k≤n

∂E
(k)
n

∂θ
,

∂E
(k)
n

∂θ
=

∂En

∂Xn

∂Xn

∂Xk

∂+Xk

∂θ
. (5.17)

In general, for recurrent models, the partial gradient ∂E(k)
n

∂θ , which measures the contribution to the

hidden state gradient at step n arising from step k of the model, can behave as ∂E(k)
n

∂θ ∼ γn−k, for some

78



Chapter 5. LEM

γ > 0 Pascanu et al. [2013]. If γ > 1, then the partial gradient grows exponentially in sequence length,
for long-term dependencies k << n, leading to the exploding gradient problem. On the other hand,
if γ < 1, then the partial gradient decays exponentially for k << n, leading to the vanishing gradient
problem. Thus, mitigation of the exploding and vanishing gradients problem entails deriving bounds on
the gradients. We start with the following upper bound,

Proposition 5.2.2. Let zn,yn be the hidden states generated by LEM (5.3). We assume that ∆t << 1

is chosen to be sufficiently small. Then, the gradient of the loss function En with respect to any parameter
θ ∈ Θ is bounded as ∣∣∣∣∂En

∂θ

∣∣∣∣ ≤ (1 + Ŷ)tn + (1 + Ŷ)Γt2n, Ŷ = ∥yn∥∞,

η = max{∥W1∥∞, ∥W2∥∞,∥Wz∥∞, ∥Wy∥∞}, Γ = 2 (1 + η) (1 + 3η)

(5.18)

Proof. We can apply the chain rule repeatedly (for instance as in Pascanu et al. [2013]) to obtain,

∂En

∂θ
=

∑
1≤k≤n

∂En

∂Xn

∂Xn

∂Xk

∂+Xk

∂θ︸ ︷︷ ︸
∂E

(k)
n

∂θ

. (5.19)

Here, the notation ∂+Xk

∂θ refers to taking the partial derivative of Xk with respect to the parameter θ,
while keeping the other arguments constant.

A straightforward application of the product rule yields,

∂Xn

∂Xk
=

∏
k<ℓ≤n

∂Xℓ

∂Xℓ−1
. (5.20)

For any k < ℓ ≤ n, a tedious yet straightforward computation yields the following representation formula,

∂Xℓ

∂Xℓ−1
= I2m×2m +∆tEℓ,ℓ−1 +∆t2Fℓ,ℓ−1. (5.21)

Here Eℓ,ℓ−1 ∈ R2m×2m is a matrix whose entries are given below. For any 1 ≤ i ≤ m, we have,

Eℓ,ℓ−1
2i−1,2j−1 ≡ 0, j ̸= i

Eℓ,ℓ−1
2i−1,2i−1 = −σ̂(Ai

ℓ−1),

Eℓ,ℓ−1
2i−1,2j = (W1)i,j σ̂

′(Ai
ℓ−1)

(
σ(Ci

ℓ−1)− ziℓ−1

)
+ (Wz)i,j σ̂(A

i
ℓ−1)σ

′(Ci
ℓ−1), ∀1 ≤ j ≤ d

Eℓ,ℓ−1
2i,2j−1 = (Wy)i,j σ̂(B

i
ℓ−1)σ

′(Di
ℓ), ∀1 ≤ j ≤ m

Eℓ,ℓ−1
2i,2j = (W2)i,j σ̂

′(Bi
ℓ−1)

(
σ(Di

ℓ)− yi
ℓ−1

)
, j ̸= i

Eℓ,ℓ−1
2i,2i = −σ̂(Bi

ℓ−1) + (W2)i,iσ̂
′(Bi

ℓ−1)
(
σ(Di

ℓ)− yi
ℓ−1

)
.

(5.22)

Similarly, Fℓ,ℓ−1 ∈ R2m×2m is a matrix whose entries are given below. For any 1 ≤ i ≤ m, we have,

Fℓ,ℓ−1
2i−1,j ≡ 0, ∀ 1 ≤ j ≤ 2m,

Fℓ,ℓ−1
2i,2j−1 = −(Wy)i,j σ̂(A

j
ℓ−1)σ̂(B

i
ℓ−1)σ

′(Di
ℓ), 1 ≤ j ≤ m,

Fℓ,ℓ−1
2i,2j = σ̂(Bi

ℓ−1)σ
′(Di

ℓ)

d∑
λ=1

(Wy)i,λ
((
σ(Cλ

ℓ−1)− zλℓ−1

)
σ̂′(Aλ

ℓ−1)(W1)λ,j

+σ̂(Aλ
ℓ−1)σ

′(Cλ
ℓ−1)(Wz)λ,j

)
.

(5.23)
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Using the fact that,
sup
x∈R

max {|σ(x)|, |σ′(x)|, |σ̂(x)|, |σ̂′(x)|} ≤ 1,

the pointwise bounds (5.9), the notation tn = n∆t for all n, the definition of η (5.18) and the definition
of matrix norms, we obtain that,

∥Eℓ,ℓ−1∥∞ ≤ max
{
1 + ∥Wz∥∞ + (1 +min(1,∆

√
tℓ))∥W1∥∞, 1 + ∥Wy∥∞ + (1 +min(1,∆

√
tℓ))∥W2∥∞

}
≤ 1 + (2 + min(1,∆

√
tℓ))η.

(5.24)

By similar calculations, we obtain,

∥Fℓ,ℓ−1∥∞ ≤ ∥Wy∥∞
(
1 + (1 + min(1,∆

√
tℓ))∥W1∥∞ + ∥Wz∥∞

)
≤ η(1 + (2 + min(1,∆

√
tℓ))η).

(5.25)

Applying (5.24) and (5.25) in the representation formula (5.21) and observing that ∆t ≤ 1 and ℓ ≤ n, we
obtain. ∥∥∥∥ ∂Xℓ

∂Xℓ−1

∥∥∥∥
∞

≤ 1 +
(
1 + (2 + min(1,∆

√
tℓ))η

)
∆t+ η

(
1 + (2 + min(1,∆

√
tℓ))η

)
∆t2,

≤ 1 +
Γ

2
∆t,

with
Γ = 2 (1 + η) (1 + 3η). (5.26)

Using the expression (5.20) with the above inequality yields,∥∥∥∥∂Xn

∂Xk

∥∥∥∥
∞

≤
(
1 +

Γ

2
∆t

)n−k

. (5.27)

Next, we choose ∆t << 1 small enough such that the following holds,(
1 +

Γ

2
∆t

)n−k

≤ 1 + Γ(n− k)∆t, (5.28)

for any 1 ≤ k < n.
Hence applying (5.28) in (5.27), we obtain,∥∥∥∥∂Xn

∂Xk

∥∥∥∥
∞

≤ 1 + Γ(n− k)∆t. (5.29)

For the sake of definiteness, we fix any 1 ≤ α, β ≤ m and set θ = (Wy)α,β in the following. The
following bounds for any other choice of θ ∈ Θ can be derived analogously. Given this, it is straightforward
to calculate from the structure of LEM (5.3) that entries of the vector ∂+Xk

∂(Wy)α,β
are given by,(

∂+Xk

∂(Wy)α,β

)
j

≡ 0, ∀ j ̸= 2α,(
∂+Xk

∂(Wy)α,β

)
2α

= ∆tσ̂(Bα
k−1)σ

′(Dα
k )z

β
k .

(5.30)
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Hence, by the pointwise bounds (5.9), we obtain from (5.30) that∥∥∥∥ ∂+Xk

∂(Wy)α,β

∥∥∥∥
∞

≤ ∆tmin(1,∆
√
tk). (5.31)

Finally, it is straightforward to calculate from the loss function En = 1
2∥yn − yn∥2 that

∂En

∂Xn
=
[
0,y1

n − ȳ1, . . . . . . , 0,ym
n − ȳm

]
. (5.32)

Therefore, using the pointwise bounds (5.9) and the notation Ŷ = ∥ȳ∥∞, we obtain∥∥∥∥ ∂En

∂Xn

∥∥∥∥
∞

≤ Ŷ +min(1,∆
√
tn). (5.33)

Applying (5.29), (5.31) and (5.33) in the definition (5.19) yields,∣∣∣∣∣ ∂E
(k)
n

∂(Wy)α,β

∣∣∣∣∣ ≤ ∆tmin(1,∆
√
tk)
(
Ŷ +min(1,∆

√
tn)
)
(1 + Γ(n− k)∆t) . (5.34)

Observing that 1 ≤ k ≤ n, we see that n− k ≤ n and tk ≤ tn. Therefore, (5.35) can be estimated for any
1 ≤ k ≤ n by,∣∣∣∣∣ ∂E

(k)
n

∂(Wy)α,β

∣∣∣∣∣ ≤ ∆tmin(1,∆
√
tn)
(
Ŷ +min(1,∆

√
tn)
)
(1 + Γtn) , 1 ≤ k ≤ n. (5.35)

Applying the bound (5.35) in (5.19) leads to the following bound on the total gradient,∣∣∣∣ ∂En

∂(Wy)α,β

∣∣∣∣ ≤ n∑
k=1

∣∣∣∣∣ ∂E
(k)
n

∂(Wy)α,β

∣∣∣∣∣
≤ tn min(1,∆

√
tn)
(
Ŷ +min(1,∆

√
tn)
)
(1 + Γtn)

≤ tn(1 + Ŷ)(1 + Γtn)

≤ (1 + Ŷ)tn + (1 + Ŷ)Γt2n

(5.36)

which is the desired bound (5.18) for θ = (Wy)α,β .
Moreover, for long-term dependencies i.e., k << n, we can set tk = k∆t < 1, with k independent of

sequence length n, in (5.34) to obtain the following bound on the partial gradient,∣∣∣∣∣ ∂E
(k)
n

∂(Wy)α,β

∣∣∣∣∣ ≤ ∆t
3
2∆

√
k
(
1 + Ŷ

)
(1 + Γtn) , 1 ≤ k << n. (5.37)

Remark 5.2.3. The bound (5.18) on the total gradient depends on tn = n∆t, with n being the sequence
length and ∆t ≤ 1, a hyperparameter which can either be chosen a priori or determined through a
hyperparameter tuning procedure. The proof of the bound (5.36) relies on ∆t being sufficiently small. It
would be natural to choose ∆t ∼ n−s, for some s ≥ 0. Substituting this expression in (5.18) leads to a
bound of the form, ∣∣∣∣∂En

∂θ

∣∣∣∣ = O
(
n2(1−s)

)
(5.38)
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If s = 1, then clearly
∣∣∂En

∂θ

∣∣ = O(1) i.e., the total gradient is bounded. Clearly, the exploding gradient
problem is mitigated in this case.

On the other hand, if s takes another value, for instance s = 1
2 which is empirically observed during

the hyperparameter training (see Section 5.3), then we can readily observe from (5.38) that
∣∣∂En

∂θ

∣∣ = O(n).
Thus in this case, the gradient can grow with sequence length n but only linearly and not exponentially.
Thus, the exploding gradient problem is also mitigated in this case.

Following Pascanu et al. [2013], to mitigate the vanishing gradient problem, we need to obtain a more
precise characterization of the gradient ∂E(k)

n

∂θ defined in (5.19). For the sake of definiteness, we fix any
1 ≤ α, β ≤ m and set θ = (Wy)α,β in the following. The following formulas for any other choice of θ ∈ Θ

can be derived analogously. Moreover, for simplicity of notation, we set the target function X̄n ≡ 0.

Proposition 5.2.4. Let yn, zn be the hidden states generated by LEM (5.3), then we have the following
representation formula for the hidden state gradient,

∂E
(k)
n

∂θ
= ∆tσ̂(Bα

k−1)σ
′(Dα

k )z
β
k (y

α
n − ȳα

n)

+ ∆t2σ̂(Bα
k−1)σ

′(Dα
k )z

β
k

 d∑
j=1

(
yj
n − ȳj

n

) n∑
ℓ=k+1

σ̂′(Bj
ℓ−1)

(
σ(Dj

ℓ)− yj
ℓ−1

)
(W2)j,2α


+∆t2σ̂(Bα

k−1)σ
′(Dα

k )z
β
k

[
n∑

ℓ=k+1

σ̂(Bα
ℓ−1) (y

α
n − ȳα

n)

]
+O(∆t3).

(5.39)

Here, the constants in O could depend on η defined in (5.18).

Proof. The starting point for deriving an asymptotic formula for the hidden state gradient ∂E(k)
n

∂θ is
to observe from the representation formula (5.21), the bound (5.25) on matrices Fℓ,ℓ−1 and the order
notation (5.8) that,

∂Xℓ

∂Xℓ−1
= I2m×2m +∆tEℓ,ℓ−1 +O(∆t2), (5.40)

as long as η is independent of ∆t.

By using induction and the bounds (5.24),(5.25), it is straightforward to calculate the following
representation formula for the product,

∂Xn

∂Xk
=

∏
k<ℓ≤n

∂Xℓ

∂Xℓ−1
= I2m×2m +∆t

n∑
ℓ=k+1

Eℓ,ℓ−1 +O(∆t2). (5.41)

Recall that we have set θ = (Wy)α,β . Hence, by the expressions (5.32) and (5.30), a direct but tedious
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calculation leads to,

∂En

∂Xn
I2m×2m

∂+Xk

∂θ
= ∆tσ̂(Bα

k−1)σ
′(Dα

k )z
β
k (y

α
n − ȳα

n) ,

n∑
ℓ=k+1

∂En

∂Xn
Eℓ,ℓ−1 ∂

+Xk

∂θ
=

∆tσ̂(Bα
k−1)σ

′(Dα
k )z

β
k

 d∑
j=1

(
yj
n − ȳj

n

) n∑
ℓ=k+1

σ̂′(Bj
ℓ−1)

(
σ(Dj

ℓ)− yj
ℓ−1

)
(W2)j,2α −

n∑
ℓ=k+1

σ̂(Bα
ℓ−1) (y

α
n − ȳα

n)

 .

(5.42)

Therefore, by substituting the above expression into the representation formula (5.41) yields the desired
formula (5.39).

In order to prove the formula (5.45), we focus our interest on long-term dependencies i.e., k << n.
Then, a closer perusal of the expression in (5.42), together with the pointwise bounds (5.9) which implies
that yk−1 ≈ O(

√
∆t), results in the following,

∂En

∂Xn
I2m×2m

∂+Xk

∂θ
= O

(
∆t

3
2

)
. (5.43)

Similarly, we also obtain,

∆t

n∑
ℓ=k+1

∂En

∂Xn
Eℓ,ℓ−1 ∂

+Xk

∂θ
= O

(
∆t

3
2

)
. (5.44)

Combining (5.43) and (5.44) results in the desired asymptotic bound (5.45).

A straight-forward corollary of proposition 5.2.4 is,

Proposition 5.2.5. Let yn, zn be the hidden states generated by LEM (5.3) and the ground truth satisfy
yn ∼ O(1). Then, for any k << n (long-term dependencies) we have,

∂E
(k)
n

∂θ
= O

(
∆t

3
2

)
. (5.45)

Here, constants in O(∆t
3
2 ) depend on only on η (5.18) and η = ∥W2∥1 and are independent of n, k.

This formula (5.45) shows that although the partial gradient can be small, i.e., O(∆t
3
2 ), it is in fact

independent of k, ensuring that long-term dependencies contribute to gradients at much later steps and
mitigating the vanishing gradient problem.

Remark 5.2.6. The upper bound on the gradient (5.18) and the gradient asymptotic formula (5.45)
impact the choice of the timestep hyperparameter ∆t. For sequence length n, if we choose ∆t ∼ n−s, with
s ≥ 0, we see from Remark 5.2.3 that the upper bound on the total gradient scales like O(n2(1−s)). On the
other hand, from (5.45), the gradient contribution from long-term dependencies will scale like O(n

−3s
2 ).
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Hence, a small value of s ≈ 0, will ensure that the gradient with respect to long-term dependencies will
be O(1). However, the total gradient will behave like O(n2) and possibly blow up fast. Similarly, setting
s ≈ 1 leads to a bounded gradient, while the contributions from long-term dependencies decay as fast as
n

−3
2 . Hence, one has to find a value of s that balances both these requirements. Equilibrating them leads to

s = 4
7 , ensuring that the total gradient grows sub-linearly while long-term dependencies still contribute with

a sub-linear decay. This value is very close to the empirically observed value of s = 1
2 which also ensures

that the total gradient grows linearly and the contribution of long-term dependencies decays sub-linearly in
the sequence length n.

5.2.2 Universality of LEM

Universal approximation of general dynamical systems. The above bounds on hidden state
gradients show that the proposed model LEM (5.3) mitigates the exploding and vanishing gradients
problem. However, this by itself, does not guarantee that it can learn complicated and realistic input-
output maps between sequences. To investigate the expressivity of the proposed LEM, we will show in
the following proposition that it can approximate any dynamical system, mapping an input sequence un

to an output sequence on, of the (very) general form,

ϕn = f (ϕn−1,un) , on = o(ϕn), ∀ 1 ≤ n ≤ N, (5.46)

with ϕn ∈ Rdh ,on ∈ Rdo denoting the hidden and output states, respectively. The input signal is un ∈ Rdu

and maps f : Rdh × Rdu 7→ Rdh and o : Rdh 7→ Rdo are Lipschitz continuous. For simplicity, we set the
initial state ϕ0 = 0.

Proposition 5.2.7. For all 1 ≤ n ≤ N , let ϕn,on be given by the dynamical system (5.46) with input
signal un. Under the assumption that there exists a R > 0 such that max{∥ϕn∥, ∥un∥} < R, for all
1 ≤ n ≤ N , then for any given ϵ > 0 there exists a LEM of the form (5.3), with hidden states yn, zn ∈ Rdy

and output state ωn = Wyyn ∈ Rdo , for some dy such that the following holds,

∥on − ωn∥ ≤ ϵ, ∀1 ≤ n ≤ N. (5.47)

Proof. To prove this proposition, we have to construct hidden states yn, zn, output state ωn, weight
matrices W1,2,y,z,Wy,V1,2,y,z and bias vectors b1,2,y,z such that LEM (5.3) with output state ωn = Wyyn

approximates the dynamical system (5.46).
Let R∗ > R >> 1 and ϵ∗ < ϵ, be parameters to be defined later. By the theorem for universal

approximation of continuous functions with neural networks with the tanh activation function σ = tanh

[Barron, 1993], given ϵ∗, there exist weight matrices W1 ∈ Rd1×dh , V1 ∈ Rd1×du ,W2 ∈ Rdh×d1 and bias
vector b1 ∈ Rd1 such that the tanh neural network defined by,

N1(h, u) = W2σ (W1h+ V1u+ b1) , (5.48)

approximates the underlying function f in the following manner,

max
max(∥h∥,∥u∥)<R∗

∥f(h, u)−N1(h, u)∥ ≤ ϵ∗. (5.49)

Similarly, one can readily approximate the identity function g(h, u) = h with a tanh neural network of
the form,

N̄2(h) = W̄2σ
(
W̄1h

)
, (5.50)
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such that
max

∥h∥,∥u∥<R∗
∥g(h)−N2(h)∥ ≤ ϵ∗. (5.51)

Next, we define the following dynamical system,

z̄n = W2σ (W1ȳn−1 + V1un + b1) ,

ȳn = W̄2σ
(
W̄1z̄n

)
,

(5.52)

with initial states z̄0 = ȳ0 = 0.
Using the approximation bound (5.49), we derive the following bound,

∥ϕn − ȳn∥ = ∥f (ϕn−1,un)− z̄n + z̄n − ȳn∥
≤ ∥f (ϕn−1,un)−W2σ (W1ȳn−1 + V1un + b1) ∥+ ∥g(z̄n)− W̄2σ

(
W̄1z̄n

)
∥

≤ ∥f (ϕn−1,un)− f (ȳn−1,un) ∥+ ∥f (ȳn−1,un)−W2σ (W1ȳn−1 + V1un + b1) ∥
+ ∥g(z̄n)− W̄2σ

(
W̄1z̄n

)
∥

≤ Lip(f)∥ϕn−1 − ȳn−1∥+ 2ϵ∗ (from (5.49),(5.51)).

Here, Lip(f) is the Lipschitz constant of the function f on the compact set {(h, u) ∈ Rdh×du : ∥h∥, ∥u∥ <

R∗}. Note that one can readily prove using the fact that ȳ0 = z̄0 = 0, bounds (5.49), (5.51) and the
assumption ∥ϕn∥, ∥un∥ < R, that ∥z̄n∥, ∥ȳn∥ < R∗ = 2R.

Iterating the above inequality over n leads to the bound,

∥ϕn − ȳn∥ ≤ 2ϵ∗
n−1∑
λ=0

Lip(f)λ. (5.53)

Hence, using the Lipschitz continuity of the output function o in (5.46), one obtains,

∥on − o(ȳn)∥ ≤ 2ϵ∗Lip(o)

n−1∑
λ=0

Lip(f)λ, (5.54)

with Lip(o) being the Lipschitz constant of the function o on the compact set {h ∈ Rdh : ∥h∥ < R∗}.
Next, we can use the universal approximation theorem for neural networks again to conclude that

given a tolerance ϵ̄, there exist weight matrices W3 ∈ Rd2×dh ,W4 ∈ Rdh×d2 and bias vector b2 ∈ Rd2 such
that the tanh neural network defined by,

N3(h) = W4σ (W3h+ b2) , (5.55)

approximates the underlying output function o in the following manner,

max
∥h∥<R∗

∥o(h)−N3(h)∥ ≤ ϵ̄. (5.56)

Now defining,
ω̄n = W4σ (W3ȳn + b2) , (5.57)

we obtain from (5.56) and (5.54) that,

∥on − ω̄n∥ ≤ ϵ̄+ 2ϵ∗Lip(o)

n−1∑
λ=0

Lip(f)λ. (5.58)
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Next, we introduce the notation,

z̃n = σ (W1ȳn−1 + V1un + b1) , ỹn = σ
(
W̄1z̄n

)
. (5.59)

From (5.52), we see that

z̄n = W2z̃n, ȳn = W̄2ỹn (5.60)

Thus from (5.60) and (5.58), we have

ω̄n = W4σ (W3W2ỹn + b2) ,

= W4σ
(
W3W2σ

(
W̄1W2z̃n

)
+ b2

)
.

(5.61)

Define the function R : Rdh × Rdu 7→ Rdo by,

R(z) = W4σ
(
W3W2σ

(
W̄1W2z

)
+ b2

)
. (5.62)

The function, defined above, is clearly Lipschitz continuous. We can apply the universal approximation
theorem for tanh neural networks to find, for any given tolerance ϵ̃, weight matrices W5 ∈ Rd3×d4 ,W6 ∈
Rdo×d3 , V2 ∈ Rd3×du and bias vector b3 ∈ Rd3 such that the following holds,

max
max(∥z∥)<R∗

∥R(z)−W6σ(W5z + b3)∥ ≤ ϵ̃. (5.63)

Denote ω̃n = W6σ(W5z̃n + b3), then from (5.63) and (5.61), we obtain that

∥ω̄n − ω̃n∥ ≤ ϵ̃.

Combining this estimate with (5.58) yields,

∥on − ω̃n∥ ≤ ϵ̃+ ϵ̄+ 2ϵ∗Lip(o)

n−1∑
λ=0

Lip(f)λ. (5.64)

Now, we collect all ingredients to define the LEM that can approximate the dynamical system (5.46).
To this end, we define hidden states zn,yn ∈ R2dh as

zn = [z̃n, ẑn] , yn = [ỹn, ŷn] ,

with z̃n, ẑn, ỹn, ŷn ∈ Rdh . These hidden states are evolved by the dynamical system,

z⊥n = σ

([
W1W̄2 0

0 0

]
y⊥
n−1 + [V1un, 0]

⊥
+ [b1, 0]

⊥
)
,

y⊥
n = σ

([
W̄1W2 0

W5 0

]
z⊥n + [0, 0]⊥ + [0, b3]

⊥
) (5.65)

and the output state is calculated by,

ω⊥
n = [0,W6]y

⊥
n . (5.66)

Finally, we can recast the dynamical system (5.65), (5.66) as a LEM of the form (5.3) for the hidden
states yn, zn, defined in (5.65), with the following parameters, Now, define the hidden states ȳn, z̄n ∈ Rdy
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for all 1 ≤ n ≤ N by the LEM (5.3) with the following parameters,

∆t = 1, dy = 2dh,

W1 = W2 = V1 = V2 = 0

b1 = b2 = b∞,

Wz =

[
W1W̄2 0

0 0

]
, Vz = [V1, 0], bz = [b1, 0]

Wy =

[
W̄1W2 0

W5 0

]
, Vy = 0, bz = [0, b3].

Wy = [0,W6].

(5.67)

Here, b∞ ∈ Rdh is defined as
b∞ = [b∞, b∞, . . . , . . . , b∞],

with 1 << b∞ is such that
|1− σ̂(b∞)| ≤ δ. (5.68)

The nature of the sigmoid function guarantees the existence of such a b∞ for any δ. As δ decays
exponentially fast, we set it to 0 in the following for notational simplicity.

It is straightforward to verify that the output state of the LEM (5.3) with parameters given in (5.67)
is ωn = ω̃n.

Therefore, from (5.64) and by setting ϵ̄ < ϵ
3 , ϵ̃ < ϵ

3 and

ϵ∗ <
ϵ

6Lip(o)
N−1∑
λ=0

Lip(f)λ
,

we prove the desired bound (5.47).

From this proposition, we conclude that, in principle, the proposed LEM (5.3) can approximate a
very large class of dynamical systems.

Universal approximation of multiscale dynamical systems. While expressing a general form of
input-output maps between sequences, the dynamical system (5.46) does not explicitly model dynamics
at multiple scales. Instead, here we consider the following two-scale fast-slow dynamical system of the
general form,

ϕn = f(ϕn−1,ψn−1,un), ψn = τg(ϕn,ψn−1,un), on = o(ψn). (5.69)

Here, 0 < τ << 1 and 1 are the slow and fast time scales, respectively. The underlying maps (f ,g) :

Rdh×dh×du 7→ Rdh are Lipschitz continuous. In the following proposition we show that LEM (5.3) can
approximate (5.69) to desired accuracy.

Proposition 5.2.8. For any 0 < τ << 1, and for all 1 ≤ n ≤ N , let ϕn,ψn,on be given by the two-scale
dynamical system (5.69) with input signal un. Under the assumption that there exists a R > 0 such that
max{∥ϕn∥, ∥ψn∥, ∥un∥} < R, for all 1 ≤ n ≤ N , then for any given ϵ > 0, there exists a LEM of the
form (5.3), with hidden states yn, zn ∈ Rdy and output state ωn ∈ Rdo with ωn = Wyn such that the
following holds,

∥on − ωn∥ ≤ ϵ, ∀1 ≤ n ≤ N. (5.70)

Moreover, the weights, biases and size (number of neurons) of the underlying LEM (5.3) are independent
of the time-scale τ .
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Proof. The proof of this proposition is based heavily on the proof of Proposition 5.2.7. Hence, we will
highlight the main points of difference.

As the steps for approximation of a general Lipschitz continuous output map are identical to the
corresponding steps in the proof of proposition 5.2.7 (see the steps from Eqns. (5.54) to (5.64)), we will
only consider the following linear output map for convenience herein,

o(ψn) = Wcψn. (5.71)

Let R∗ > R >> 1 and ϵ∗ < ϵ, be parameters to be defined later. By the theorem for universal
approximation of continuous functions with neural networks with the tanh activation function σ = tanh,
given ϵ∗, there exist weight matrices W f

1 ,W
f
2 ∈ Rd1×dh , V f

1 ∈ Rd1×du ,W f
3 ∈ Rdh×d1 and bias vector

bf1 ∈ Rd1 such that the tanh neural network defined by,

Nf (h, c, u) = W f
3 σ
(
W f

1 h+W f
2 c+ V f

1 u+ bf1

)
, (5.72)

approximates the underlying function f in the following manner,

max
max(∥h∥,∥c∥,∥u∥)<R∗

∥f(h, c, u)−Nf (h, c, u)∥ ≤ ϵ∗. (5.73)

Next, we define the following map,

G(h, c, u) = g(h, c, u) +

(
1− 1

τ

)
c, (5.74)

for any τ > 0.
By the universal approximation theorem, given ϵ∗, there exist weight matrices W g

1 ,W
g
2 ∈ Rd2×dh , V g

1 ∈
Rd2×du ,W g

3 ∈ Rdh×d2 and bias vector bg1 ∈ Rd2 such that the tanh neural network defined by,

Ng(h, c, u) = W g
3 σ (W g

1 h+W g
2 c+ V g

1 u+ bg1) , (5.75)

approximates the function G (5.74) in the following manner,

max
max(∥h∥,∥c∥,∥u∥)<R∗

∥G(h, c, u)−Nf (h, c, u)∥ ≤ ϵ∗. (5.76)

Note that the sizes of the neural network Ng can be made independent of the small parameter τ by simply
taking the sum of the neural networks approximating the functions g and ĝ(h, c, u) = c with tanh neural
networks. As neither of these functions depend on the small parameter τ , the sizes of the corresponding
neural networks are independent of the small parameter too.

Next, as in the proof of proposition 5.2.7, one can readily approximate the identity function f̂(h, c, u) =

h with a tanh neural network of the form,

N̄f (h) = W̄2σ
(
W̄1h

)
, (5.77)

such that
max

∥h∥,∥c∥,∥u∥<R∗
∥f̂(h, c, u)−Nf (h)∥ ≤ ϵ∗, (5.78)

and with the same weights and biases, one can approximate the identity function ĝ(h, c, u) = c with the
tanh neural network,

N̄g(c) = W̄2σ
(
W̄1c

)
, (5.79)
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such that
max

∥h∥,∥c∥,∥u∥<R∗
∥ĝ(h, c, u)−Ng(c)∥ ≤ ϵ∗. (5.80)

Next, we define the following dynamical system,

ẑn = W f
3 σ
(
W f

1 ỹn−1 +W f
2 ŷn−1 + V f

1 un + bf1

)
,

z̃n = W̄2σ
(
W̄1ŷn−1

)
,

ŷn = (1− τ)ŷn−1 + τW g
3 σ (W g

1 ẑn +W g
2 z̃n + V g

1 un + bg1) ,

ỹn = W̄2σ
(
W̄1ẑn

)
,

(5.81)

with hidden states ẑn, z̃n, ŷn, ỹn ∈ Rdh and with initial states ẑ0 = z̃0 = ŷ0 = ỹ0 = 0.
We derive the following bounds,

∥ϕn − ẑn∥ = ∥f(ϕn−1,ψn−1,un)−W f
3 σ
(
W f

1 ỹn−1 +W f
2 ŷn−1 + V f

1 un + bf1

)
∥

≤ ∥f(ϕn−1,ψn−1,un)− f(ỹn−1, ẑn−1,un)∥,
+ ∥f(ỹn−1, ẑn−1,un)−W f

3 σ
(
W f

1 ỹn−1 +W f
2 ŷn−1 + V f

1 un + bf1

)
∥

≤ Lip(f) (∥ϕn−1 − ẑn−1∥+ 2∥ỹn−1 − ẑn−1∥+ ∥ψn−1 − ỹn−1∥) + ϵ∗ (by (5.76))
≤ Lip(f) (∥ϕn−1 − ẑn−1∥+ ∥ψn−1 − ỹn−1∥) + (1 + 2Lip(f)) ϵ∗ (by (5.78),(5.81)),

and

∥ψn − ŷn∥ = ∥(1− τ)(ψn−1 − ŷn−1) + τ (G(ϕn,ψn−1,un)−W g
3 σ (W g

2 z̃n +W g
1 ẑn + V g

1 un + bg1)) ∥
≤ ∥ψn−1 − ŷn−1∥+ τ∥G(ϕn,ψn−1,un)−G(ẑn, z̃n,un)∥
+ τ∥G(ẑn, z̃n,un)−W g

3 σ (W g
2 z̃n +W g

1 ẑn + V g
1 un + bg1) ∥

≤ ∥ψn−1 − ŷn−1)∥+ τLip(G) (∥ϕn − ẑn∥+ ∥z̃n − ŷn−1∥+ ∥ψn−1 − ŷn−1∥) + τϵ∗,

≤ (1 + τLip(G))(1 + Lip(f))∥ψn−1 − ŷn−1∥+ τLip(G)Lip(f)∥ϕn−1 − ẑn−1∥
+ τ(1 + Lip(G)(2 + 2Lip(f)))ϵ∗,

where the last inequality follows by using the previous inequality together with (5.81) and (5.80).
As τ < 1, it is easy to see from (5.74) that Lip(G) < Lip(g)+ 2

τ . Therefore, the last inequality reduces
to,

∥ψn − ŷn∥ ≤ (3 + τLip(g))(1 + Lip(f))∥ψn−1 − ŷn−1∥+ (2 + τLip(g))Lip(f)∥ϕn−1 − ẑn−1∥
+ (τ + (2 + τLip(g))(2 + 2Lip(f)))ϵ∗.

Adding we obtain,

∥ϕn − ẑn∥+ ∥ψn − ŷn∥ ≤ C∗ (∥ϕn−1 − ẑn−1∥+ ∥ψn−1 − ŷn−1∥) +D∗ϵ∗, (5.82)

where,
C∗ = max{(3 + Lip(g))Lip(f),Lip(f)(3 + Lip(g))(1 + Lip(f))},
D∗ = 1 + (2 + Lip(g))(2 + 2Lip(f)).

(5.83)

Iterating over n leads to the bound,

∥ϕn − ẑn∥+ ∥ψn − ŷn∥ ≤ ϵ∗D∗
n−1∑
λ=0

(C∗)λ. (5.84)
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Here, Lip(f),Lip(g) are the Lipschitz constants of the functions f ,g on the compact set {(h, c, u) ∈
Rdh×dh×du : ∥h∥, ∥c∥, ∥u∥ < R∗}. Note that one can readily prove using the zero values of initial states, the
bounds (5.78), (5.80) and the assumption ∥ϕn∥, ∥ψn∥, ∥un∥ < R, that ∥ẑn∥, ∥z̃n∥, ∥ŷn∥, ∥ỹn∥ < R∗ = 2R.

Using the definition of the output function (5.70) and the bound (5.84) that,

∥on − o(ŷn)∥ ≤ ∥Wc∥ϵ∗D∗
n−1∑
λ=0

(C∗)λ. (5.85)

Defining the dynamical system,

z∗n = σ
(
W f

1 W̄2ȳn−1 +W f
2 W

g
3 y

∗
n−1 + V f

1 un + bf1

)
z̄n = σ

(
W̄1W

g
3 y

∗
n−1

)
y∗
n = (1− τ)y∗

n−1 + τσ
(
W g

1W
f
3 z

∗
n +W g

2 W̄2z̄n + V g
1 un + bg1

)
,

ȳn = σ
(
W̄1W

f
3 z

∗
n

)
.

(5.86)

By multiplying suitable matrices to (5.81), we obtain that,

ẑn = W f
3 z

∗
n, z̃n = W̄2z̄n, ŷn = W g

3 y
∗
n, ỹn = W̄2ȳn. (5.87)

Finally, in addition to b∞ defined in (5.53), for any given τ ∈ (0, 1], we introduce bτ ∈ R defined by

σ̂(bτ ) = τ. (5.88)

The existence of a unique bτ follows from the fact that the sigmoid function σ̂ is monotone. Next, we
define the two vectors b∞,bτ ∈ R2dh as

bi
∞ = b∞, ∀ 1 ≤ i ≤ 2dh,

bi
τ = bτ , ∀ 1 ≤ i ≤ dh,

bi
τ = b∞, ∀ dh + 1 ≤ i ≤ 2dh.

(5.89)

We are now in a position to define the LEM of form (5.3), which will approximate the two-scale
dynamical system (5.69). To this end, we define the hidden states zn,yn ∈ R2dh such that zn = [z∗n, z̄n]

and yn = [y∗
n, ȳn]. The parameters for the corresponding LEM of form (5.3) given by,

∆t = 1, dy = 2dh

W1 = W2 = V1 = V2 ≡ 0,

b1 = b∞, b2 = bτ ,

Wz =

[
W f

2 W
g
3 W f

1 W̄2

W̄1W
g
3 0

]
, Vz = [V f

1 0], bz = [bf1 , 0],

Wy =

[
W g

1W
f
3 W g

2 W̄2

W̄1W
f
3 0

]
, Vz = [V g

1 0], bz = [bg1, 0],

(5.90)

and with following parameters defining the output states,

Wy = [WcW
g
3 0] , (5.91)
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yields an output state ωn = Wyyn.
It is straightforward to observe that ωn ≡ o(ŷn). Hence, the desired bound (5.70) follows from (5.84)

by choosing,
ϵ∗ =

ϵ

D∗
N−1∑
λ=0

(C∗)λ
.

The proof of proposition 5.2.8 can be readily extended to prove the following proposition about a
general r-scale dynamical system of the form,

ϕ1
n = τ1f

1(ϕ1
n−1,ϕ

2
n−1, . . . ,ϕ

r
n−1un),

ϕ2
n = τ2f

2(ϕ1
n−1,ϕ

2
n−1, . . . ,ϕ

r
n−1un),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕr
n = τrf

r(ϕ1
n−1,ϕ

2
n−1, . . . ,ϕ

r
n−1un),

on = o(ϕ1
n,ϕ

2
n, . . . ,ϕ

r
n).

(5.92)

Here, τ1 ≤ τ2 . . . . . . ≤ τr ≤ 1, with r > 1, are the r-time scales of the dynamical system (5.92). We assume
that the underlying maps f1,2,...,r are Lipschitz continuous. We can prove the following proposition,

Proposition 5.2.9. For all 1 ≤ n ≤ N , let ϕ1,2,...,r
n ,on be given by the r-scale dynamical system (5.92)

with input signal un. Under the assumption that there exists a R > 0 such that max{∥ϕ1
n∥, |ϕ2

n∥, . . . , |ϕr
n∥, ∥un∥} <

R, for all 1 ≤ n ≤ N , then for any given ϵ > 0, there exists a LEM of the form (5.3), with hidden states
yn, zn and output state ωn with ωn = Wyn such that the following holds,

∥on − ωn∥ ≤ ϵ, ∀1 ≤ n ≤ N. (5.93)

Moreover, the weights, biases and size (number of neurons) of the underlying LEM (5.3) are independent
of the time-scales τ1,2,...,r.

Hence, we show that, in principle, the proposed model LEM (5.3) can approximate multiscale dynamical
systems, with model size being independent of the underlying timescales. These theoretical results for
LEM (5.3) point to the ability of this architecture to learn complicated multiscale input-output maps
between sequences, while mitigating the exploding and vanishing gradients problem. Although useful
prerequisities, these theoretical properties are certainly not sufficient to demonstrate that LEM (5.3) is
efficient in practice. To do this, we perform several benchmark evaluations, and we report the results in
Section 5.3.

5.2.3 LEMs emulate Heterogeneous multiscale methods for ODEs

Following Kuehn [2015], we consider the following prototypical example of a fast-slow system of ordinary
differential equations,

ϕ′(t) =
1

τ
(f(ψ)− ϕ) ,

ψ′(t) = g(ϕ,ψ).
(5.94)

Here ϕ,ψ ∈ Rdc are the fast and slow variables respectively and 0 < τ << 1 is a small parameter. Note
that we have rescaled time and are interested in the dynamics of the slow variable ψ(t) in the time
interval [0, T ].
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A naive time-stepping numerical scheme for (5.94) requires a time step size δt ∼ O(τ). Thus, the
computation will entail time updates N ∼ O(1/τ). Hence, one needs a multiscale ODE solver to
approximate the solutions of the system (5.94). One such popular ODE solver can be derived by using the
Heterogenous multiscale method (HMM); see Kuehn [2015] and references therein. This in turns, requires
using two time stepping schemes, a macro solver for the slow variable, with a time step ∆t of the form,

ψn = ψn−1 + ∆̃tg(ϕn,ψn−1). (5.95)

Here, the time step ∆̃t < 1 is independent of the small parameter τ .
Moreover, the fast variable is updated using a micro solver of the form,

ϕ
(k)
n−1 = ϕ

(k−1)
n−1 − δt(f(ψn−1)− ϕ(k−1)

n−1 ), 1 ≤ k ≤ K.

ϕn = ϕK
n−1,

ϕ
(0)
n−1 = ϕn−1.

(5.96)

Note that the micro time step size δt and the number of micro time steps K are assumed to independent
of the small parameter τ .

It is shown in Kuehn [2015] (Chapter 10.8) that for any given small tolerance ϵ > 0, one can choose a
macro time step ∆̃t, a micro time step δt, the number K of micro time steps, the number N of macro
time steps, independent of τ , such that the discrete states ψn approximate the slow-variable ψ(tn) (with
tn = n∆̃t) of the fast-slow system (5.94) to the desired accuracy of ϵ.

Our aim is to show that we can construct a LEM of the form (5.3) such that the states ϕn,ψn, defined
in (5.95), (5.96) can be approximated to arbitrary accuracy. By combining this with the accuracy of
HMM, we will prove that LEMs can approximate the solutions of the fast-slow system (5.94) to desired
accuracy, independent of the small parameter τ in (5.94).

Proposition 5.2.10. Let ϕn,ψn ∈ Rdc , for 1 ≤ n ≤ N , be the states defined by the HMM dynamical
system (5.95), (5.96). For any given ϵ > 0, there exists a LEM of the form (5.3) with hidden states
[zn,yn], where zn,yn ∈ Rdm and output states ωh

n, ω
c
n such that the following holds,

max
{
∥ϕn − ωh

n∥, ∥ψn − ωc
n∥
}
≤ ϵ, ∀1 ≤ n ≤ N. (5.97)

Proof. We start by using iteration on the micro solver (5.96) from k = 1 to k = K to derive the following,

ϕn = δtϕn−1 + (1− δt)f(ψn−1),

δt = (1− δt)
K
.

(5.98)

As δt < 1, we have that δt < 1.
By the universal approximation theorem for tanh neural networks, for any given tolerance ϵ∗, there

exist weight matrices W f
1 ∈ Rd1×dc ,W f

2 ∈ Rdc×d1 and bias vector bf1 ∈ Rd1 such that the tanh neural
network defined by,

Nf (c) = W f
2 σ
(
W f

1 c+ bf1

)
, (5.99)

approximates the underlying function f in the following manner,

max
∥c∥<R∗

∥f(c)−Nf (c)∥ ≤ ϵ∗. (5.100)

Next, we define the following map,

G(h, c) = g(h, c) + c, (5.101)
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By the universal approximation theorem, given ϵ∗, there exist weight matrices W g
1 ,W

g
2 ∈ Rd2×dc ,W g

3 ∈
Rdc×d2 and bias vector bg1 ∈ Rd2 such that the tanh neural network defined by,

Ng(h, c) = W g
3 σ (W g

1 h+W g
2 c+ bg1) , (5.102)

approximates the function G (5.101) in the following manner,

max
max(∥h∥,∥c∥)<R∗

∥G(h, c)−Ng(h, c)∥ ≤ ϵ∗. (5.103)

Next, as in the proof of propositions 5.2.7 5.2.8, one can readily approximate the identity function
f̂(h, c) = h with a tanh neural network of the form,

N̄f (h) = W̄2σ
(
W̄1h

)
, (5.104)

such that
max

∥h∥,∥c∥<R∗
∥f̂(h, c)−Nf (h)∥ ≤ ϵ∗, (5.105)

and with the same weights and biases, one can approximate the identity function ĝ(h, c) = c with the
tanh neural network,

N̄g(c) = W̄2σ
(
W̄1c

)
, (5.106)

such that
max

∥h∥,∥c∥<R∗
∥ĝ(h, c)−Ng(c)∥ ≤ ϵ∗. (5.107)

Then, we define the following dynamical system,

ẑn = δtẑn + (1− δt)W f
2 σ
(
W f

1 ŷn−1 + bf1

)
,

z̃n = W̄2σ
(
W̄1ŷn−1

)
,

ŷn = (1− ∆̃t)ŷn−1 + ∆̃tW g
3 σ (W g

1 ẑn +W g
2 z̃n + bg1) ,

ỹn = W̄2σ
(
W̄1ẑn

)
,

(5.108)

with hidden states ẑn, z̃n, ŷn, ỹn ∈ Rm and with initial states ẑ0 = z̃0 = ŷ0 = ỹ0 = 0.
Completely analogously as in the derivation of (5.84), we can derive the following bound,

∥ϕn − ẑn∥+ ∥ψn − ŷn∥ ≤ C∗ϵ∗, (5.109)

with constant C∗ = C∗ (n,Lip(f),Lip(g)).
Defining the dynamical system,

z∗n = δtz∗n + (1− δt)σ
(
W f

1 W
g
3 ŷn−1 + bf1

)
z̄n = σ

(
W̄1W

g
3 y

∗
n−1

)
y∗
n = (1− ∆̃t)y∗

n−1 + ∆̃tσ
(
W g

1W
f
3 z

∗
n +W g

2 W̄2z̃n + bg1

)
ȳn = σ

(
W̄1W

f
2 z

∗
n

)
.

(5.110)

By multiplying suitable matrices to (5.110), we obtain that,

ẑn = W f
2 z

∗
n, z̃n = W̄2z̄n, ŷn = W g

3 y
∗
n, ỹn = W̄2ȳn. (5.111)
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In addition to b∞ defined in (5.53), for δt ∈ (0, 1], we introduce bδ ∈ R defined by

σ̂(bδ) = δt. (5.112)

Similarly for ∆̃t ∈ (0, 1], we introduce b∆ ∈ R defined by

σ̂(b∆) = ∆̃t. (5.113)

The existence of unique bδ and b∆ follows from the fact that the sigmoid function σ̂ is monotone.
Next, we define the two vectors b∞,bδ,b∆ ∈ R2dc as

bi
δ = bδ, ∀ 1 ≤ i ≤ dc,

bi
δ = b∞, ∀ dc + 1 ≤ i ≤ 2dc,

bi
∆ = b∆, ∀ 1 ≤ i ≤ dc,

bi
∆ = b∞, ∀ dc + 1 ≤ i ≤ 2dc.

(5.114)

We define the LEM of form (5.3), which will approximate the HMM (5.95),(5.96). To this end, we define
the hidden states zn,yn ∈ R2dc such that zn = [z∗n, z̄

∗
n] and yn = [y∗

n, ȳ
∗
n]. The parameters for the

corresponding LEM of form (5.3) given by,

∆t = 1, dy = 2dc

W1 = W2 = V1 = V2 ≡ 0,

b1 = bδ, b2 = b∆,

Wz =

[
W f

1 W
g
3 0

W̄1W
g
3 0

]
, Vz = 0, bz = [bf1 , 0],

Wy =

[
W g

1W
f
3 W g

2 W̄2

W̄1W
f
2 0

]
, Vz = 0, bz = [bg1, 0].

(5.115)

The output states are defined by,
ωh
n = W f

2 z
∗
n, ωh

n = W g
3 y

∗
n (5.116)

It is straightforward to observe that ωh
n = ẑn, ωc

n = ŷn. Hence, the desired bound (5.97) follows from
(5.109) by choosing,

ϵ∗ =
ϵ

C∗ .

5.3 Empirical results

We present a variety of experiments ranging from long-term dependency tasks to real-world applications
as well as tasks which require high expressivity of the model. Details of the training procedure for
each experiment can be found at the end of this section. As competing models to LEM, we choose two
different types of architectures—LSTMs and GRUs—as they are known to excel at expressive tasks
such as language modeling and speech recognition, while not performing well on long-term dependency
tasks, possibly due to the exploding and vanishing gradients problem. On the other hand, we choose
state-of-the-art RNNs which are tailor-made to learn tasks with long-term dependencies. Our objective is
to evaluate the performance of LEM and compare it with competing models.
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Very long adding problem. We start with the well-known adding problem [Hochreiter and Schmidhuber,
1997], proposed to test the ability of a model to learn (very) long-term dependencies. The input is a
two-dimensional sequence of length N , with the first dimension consisting of random numbers drawn
from U([0, 1]) and with two non-zero entries (both set to 1) in the second dimension, chosen at random
locations, but one each in both halves of the sequence. The output is the sum of two numbers of the first
dimension at positions, corresponding to the two 1 entries in the second dimension. We consider three
very challenging cases, namely input sequences with length N = 2000, 5000 and 10000. The results of
LEM together with competing models including state-of-the-art RNNs, which are explicitly designed to
solve long-term dependencies, are presented in Fig. 5.1. We observe in this figure that while baseline
LSTM is not able to beat the baseline mean-square error of 0.167 (the variance of the baseline output
1) in any of the three cases, a proper weight initialization for LSTM, the so-called chrono-initialization
of Tallec and Ollivier [2018] leads to much better performance in all cases. For N = 2000, all other
architectures (except baseline LSTM) beat the baseline convincingly. However for N = 5000, only LEM,
chrono-LSTM and coRNN are able to beat the baseline. In the extreme case of N = 10000, only LEM and
chrono-LSTM are able to beat the baseline. Nevertheless, LEM outperforms chrono-LSTM by converging
faster (in terms of number of training steps) and attaining a lower test MSE than chrono-LSTM in all
three cases.
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Figure 5.1: Results on the very long adding problem for LEM, coRNN, DTRIV∞ [Casado, 2019],
FastGRNN [Kusupati et al., 2018], LSTM and LSTM with chrono initialization [Tallec and Ollivier, 2018]
based on three very long sequence lengths N , i.e., N = 2000, N = 5000 and N = 10000.

Sequential image recognition. We consider three experiments based on two widely-used image
recognition data sets, i.e., MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky et al., 2009], where the
goal is to predict the correct label after reading in the whole sequence. The first two tasks are based on
MNIST images, which are flattened along the rows to obtain sequences of length N = 784. In sequential
MNIST (sMNIST), the sequences are fed to the model one pixel at a time in streamline order, while
in permuted sequential MNIST (psMNIST), a fixed random permutation is applied to the sequences,
resulting in much longer dependency than for sMNIST. We also consider the more challenging noisy
CIFAR-10 (nCIFAR-10) experiment [Chang et al., 2019], where CIFAR-10 images are fed to the model
row-wise and flattened along RGB channels, resulting in 96-dimensional sequences, each of length 32.
Moreover, a random noise padding is applied after the first 32 inputs to produce sequences of length
N = 1000. Hence, in addition to classifying the underlying image, a model has to store this result
for a long time. In Table 5.1, we present the results for LEM on the three tasks together with other
state-of-the-art RNNs, which were explicitly designed to solve long-term dependency tasks, as well as
LSTM and GRU baselines. We observe that LEM outperforms all other methods on sMNIST and
nCIFAR-10. Additionally on psMNIST, LEM performs as well as coRNN, which has been state-of-the-art
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among single-layer RNNs on this task.

Table 5.1: Test accuracies on sMNIST, psMNIST and nCIFAR-10, where M denotes the total number
of parameters of the corresponding model. The three best performing methods are highlighted in red
(First), blue (Second), and violet (Third).

Model
MNIST CIFAR-10

sMNIST psMNIST # units / M nCIFAR-10 # units / M

GRU 99.1% 94.1% 256 / 201k 43.8% 128 / 88k
LSTM 98.9% 92.9% 256 / 267k 11.6% 128 / 116k
chrono-LSTM 98.9% 94.6% 128 / 68k 55.9% 128 / 116k
anti.sym. RNN 98.0% 95.8% 128 / 10k 48.3% 256 / 36k
Lipschitz RNN 99.4% 96.3% 128 / 34k 57.4% 128 / 46k
expRNN 98.4% 96.2% 360 / 69k 52.9% 360 / 103k
coRNN 99.3% 96.6% 128/ 34k 59.0% 128 / 46k
LEM 99.5% 96.6% 128 / 68k 60.5% 128 / 116k

EigenWorms: Very long sequences for genomics classification. The goal of this task [Bagnall
et al., 2018] is to classify worms as belonging to either the wild-type or four different mutants, based
on 259 very long sequences (length N = 17984) measuring the motion of a worm. In addition to the
nominal length, it was empirically shown in Chapter 3 that the EigenWorms sequences exhibit actual
very long-term dependencies (i.e., longer than 10k).

Following Morrill et al. [2020] and Chapter 3, we divide the data into a train, validation and test set
according to a 70%, 15%, 15% ratio. In Table 5.2, we present results for LEM together with other models.
As the validation and test sets, each consist of only 39 sequences, we report the mean (and standard
deviation of) accuracy over 5 random initializations to rule out lucky outliers. We observe from this table
that LEM outperforms all other methods, even the 2-layer UnICORNN architecture, which has been
state-of-the-art on this task.

Table 5.2: Test accuracies on EigenWorms using 5 re-trainings of each best performing network (based
on the validation set), where all other results are taken from Chapter 3 except that the NRDE result is
taken from Morrill et al. [2020] and the results indicated by ∗ are added by us. The three best performing
methods are highlighted in red (First), blue (Second), and violet (Third).

Model test accuracy # units # parameters

NRDE 83.8%± 3.0% 32 35k
expRNN 40.0%± 10.1% 64 2.8k
IndRNN (2 layers) 49.7%± 4.8% 32 1.6k
LSTM 38.5%± 10.1%∗ 32 5.3k
BiLSTM+1d-conv 40.5%± 7.3%∗ 22 5.8k
chrono-LSTM 82.6%± 6.4%∗ 32 5.3k
coRNN 86.7%± 3.0% 32 2.4k
UnICORNN (2 layers) 90.3%± 3.0% 32 1.5k
LEM 92.3%± 1.8% 32 5.3k
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Healthcare application: Heart-rate prediction. In this experiment, one predicts the heart rate
from a time-series of measured PPG data, which is part of the TSR archive [Tan et al., 2020] and has
been collected at the Beth Isreal Deaconess medical center. The data set, consisting of 7949 sequences,
each of length N = 4000, is divided into a train, validation and test set according to a 70%,15%,15% ratio
(i.e., same es in Section 3.3). The results, presented in Table 5.3, show that LEM outperforms the other
competing models, including having a test L2 error of 35% less than the state-of-the-art UnICORNN.

Table 5.3: Test L2 error on heart-rate prediction using PPG data. All results are obtained by running
the same code and using the same fine-tuning protocol.

Model test L2 error # units # parameters

LSTM 9.93 128 67k
chrono-LSTM 3.31 128 67k
expRNN 1.63 256 34k
IndRNN (3 layers) 1.94 128 34k
coRNN 1.61 128 34k
UnICORNN (3 layers) 1.31 128 34k
LEM 0.85 128 67k

Multiscale dynamical system prediction. The FitzHugh-Nagumo system [Fitzhugh, 1955]

v′ = v − v3

3
− w + Iext, w′ = τ(v + a− bw), (5.117)

is a prototypical model for a two-scale fast-slow nonlinear dynamical system, with fast variable v and slow
variable w and τ << 1 determining the slow-time scale. This relaxation-oscillator is an approximation to
the Hodgkin-Huxley model [Hodgkin and Huxley, 1952] of neuronal action-potentials under an external
signal Iext ≥ 0. With τ = 0.02, Iext = 0.5, a = 0.7, b = 0.8 and initial data (v0, w0) = (c, 0), with c

randomly drawn from U([−1, 1]), we numerically approximate (5.117) with the explicit Runge-Kutta
method of order 5(4) in the interval [0, 400] and generate 128 training and validation and 1024 test
sequences, each of length N = 1000, to complete the data set. The results, presented in Table 5.4, show
that LEM not only outperforms LSTM by a factor of 6 but also all other methods including coRNN,
which is tailormade for oscillatory time-series. This reinforces our theory by demonstrating efficient
approximation of multiscale dynamical systems with LEM.

Table 5.4: Test L2 error on FitzHugh-Nagumo system prediction. All results are obtained by running the
same code and using the same fine-tuning protocol. The three best performing methods are highlighted
in red (First), blue (Second), and violet (Third).

Model error (×10−2) # units # parameters

LSTM 1.2 16 1k
expRNN 2.3 50 1k
LipschitzRNN 1.8 24 1k
coRNN 0.4 24 1k
LEM 0.2 16 1k
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Google12 (V2) keyword spotting. The Google Speech Commands data set V2 [Warden, 2018] is a
widely used benchmark for keyword spotting, consisting of 35 words, sampled at a rate of 16 kHz from 1

second utterances of 2618 speakers. We focus on the 12-label task (Google12) and follow the pre-defined
splitting of the data set into train/validation/test sets and test different sequential models. In order
to ensure comparability of different architectures, we do not use performance-enhancing tools such as
convolutional filtering or multi-head attention. From Table 5.5, we observe that both LSTM and GRU,
widely used models in this context, perform very well with a test accuracy of around 95%. Nevertheless,
LEM is able to outperform both on this task and provides the best performance.

Table 5.5: Test accuracies on Google12. All results are obtained by running the same code and using
the same fine-tuning protocol. The three best performing methods are highlighted in red (First), blue
(Second), and violet (Third).

Model test accuracy # units # parameters

tanh-RNN 73.4% 128 27k
anti.sym. RNN 90.2% 128 20k
LSTM 94.9% 128 107k
GRU 95.2% 128 80k
FastGRNN 94.8% 128 27k
expRNN 92.3% 128 19k
coRNN 94.7% 128 44k
LEM 95.7% 128 107k

Language modeling: Penn Tree Bank corpus. Language modeling with the widely used small
scale Penn Treebank (PTB) corpus [Marcus et al., 1993], preprocessed by Mikolov et al. [2010], has been
identified as an excellent task for testing the expressivity of recurrent models [Kerg et al., 2019]. To this
end, in Table 5.6, we report the results of different architectures, with a similar number of hidden units, on
the PTB char-level task and observe that RNNs, designed explicitly for learning long-term dependencies,
perform significantly worse than LSTM and GRU. On the other hand, LEM is able to outperform both
LSTM and GRU on this task by some margin (a test bpc of 1.25 in contrast with approximately a bpc
of 1.36). In fact, LEM provides the smallest test bpc among all reported single-layer recurrent models
on this task, to the best of our knowledge. This superior performance is further illustrated in Table 5.7,
where the test perplexity for different models on the PTB word-level task is presented. We observe that
not only does LEM significantly outperform (by around 40%) LSTM, but it also provides again the
best performance among all single layer recurrent models, including the recently proposed TARNN [Kag
and Saligrama, 2021]. Moreover, the single-layer results for LEM are better than reported results for
multi-layer LSTM models, such as in Gal and Ghahramani [2016] (2-layer LSTM, 1500 units each: 75.2

test perplexity) or Bai et al. [2018] (3-layer LSTM, 700 units each: 78.93 test perplexity).

Training details. All experiments were run on CPU, namely Intel Xeon Gold 5118 and AMD EPYC
7H12, except for Google12, PTB character-level and PTB word-level, which were run on a GeForce RTX
2080 Ti GPU. All weights and biases of LEM (5.3) are initialized according to U(−1/

√
m, 1/

√
m), where

m is the number of hidden units.
The hyperparameters are selected based on a random search algorithm, where we present the rounded

hyperparameters for the best performing LEM model (based on a validation set) on each task in Table 5.8.
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Table 5.6: Test bits-per-character (bpc) on PTB character-level for single layer LEM and other single
layer RNN architectures. Other results are taken from the papers cited accordingly in the table, while the
results for coRNN are added by us. The three best performing methods are highlighted in red (First),
blue (Second), and violet (Third).

Model test bpc # units # parameters

anti.sym RNN [Erichson et al., 2020] 1.60 1437 1.3M
Lipschitz RNN [Erichson et al., 2020] 1.42 764 1.3M
expRNN [Kerg et al., 2019] 1.51 1437 1.3M
coRNN 1.46 1024 2.3M
nnRNN [Kerg et al., 2019] 1.47 1437 1.3M
LSTM [Krueger et al., 2017] 1.36 1000 5M
GRU [Bai et al., 2018] 1.37 1024 3M
LEM 1.25 1024 5M

Table 5.7: Test perplexity on PTB word-level for single layer LEM and other single layer RNN architectures.
The three best performing methods are highlighted in red (First), blue (Second), and violet (Third).

Model test perplexity # units # parameters

Lipschitz RNN [Erichson et al., 2020] 115.4 160 76k
FastRNN [Kag and Saligrama, 2021] 115.9 256 131k
LSTM [Kag and Saligrama, 2021] 116.9 256 524k
SkipLSTM [Kag and Saligrama, 2021] 114.2 256 524k
TARNN [Kag and Saligrama, 2021] 94.6 256 524k
LEM 72.8 256 524k

We base the training for the PTB experiments on the following language modelling code: ht-
tps://github.com/deepmind/lamb, where we fine-tune, based on a random search algorithm, only the
learning rate, input-, output- and state-dropout, L2-penalty term and the maximum gradient norm.

We train LEM for 100 epochs on sMNIST, psMNIST and nCIFAR-10, after which we decrease the
learning rate by a factor of 10 and proceed training for 20 epochs. Moreover, we train LEM for 50, 60 as
well as 400 epochs on EigenWorms, Google12 and FitzHugh-Nagumo. We decrease the learning rate by a
factor of 10 after 50 epochs on Google12. On the Healthcare task, we train LEM for 250 epochs, after
which we decrease the learning rate by a factor of 10 and proceed training for 250 epochs.

5.4 Further empirical analysis

On the choice of the hyperparameter ∆t. The hyperparameter ∆t in LEM (5.3) measures the
maximum allowed (time) step in the discretization of the multiscale ODE system (5.2). In propositions
5.2.1, 5.2.2 and 5.2.5, this hyperparameter ∆t plays a key role in the bounds on the hidden states (5.9)
and their gradients (5.18). In particular, setting ∆t = O(N−1) will lead to hidden states and gradients,
that are bounded uniformly with respect to the underlying sequence length N . However, these upper
bounds on the hidden states and gradients account for worst-case scenarios and can be very pessimistic
for the problem at hand. Thus, in practice, we determine ∆t through a hyperparameter tuning procedure.
To this end, we perform a random search within ∆t < 2 and present the resulting optimal values of ∆t

99

https://github.com/deepmind/lamb
https://github.com/deepmind/lamb


Chapter 5. LEM

Table 5.8: Rounded hyperparameters of the best performing LEM architecture for each experiment. If no
value is given for ∆t, it means that ∆t is fixed to 1 and no fine-tuning is performed on this hyperparameter.

experiment learning rate batch size ∆t

Adding (N = 10000) 2.6× 10−3 50 2.42× 10−2

sMNIST 1.8× 10−3 128 2.1× 10−1

psMNIST 3.5× 10−3 128 1.9× 100

nCIFAR-10 1.8× 10−3 120 9.5× 10−1

EigenWorms 2.3× 10−3 8 1.6× 10−3

Healthcare 1.56× 10−3 32 1.9× 10−1

FitzHugh-Nagumo 9.04× 10−3 32 /
Google12 8.9× 10−4 100 /
PTB character-level 6.6× 10−4 128 /
PTB word-level 6.8× 10−4 64 /

for each of the considered data sets in Table 5.8. From this table, we observe that for data sets such as
PTB, FitzHugh-Nagumo and Google 12 we do not need any tuning of ∆t and a default value of ∆t = 1

resulted in very good empiricial performance. On the other data sets such as sMNIST, nCIFAR-10 and
the healthcare example, where the sequence length (N = O(103)) is larger, we observe that values of
∆t ≈ 0.1 yielded the best performance. The notable exception to this was for the EigenWorms data set,
with a very long sequence length of N = 17984 as well as demonstrated very long range dependencies in
the data, see Chapter 3. Here, a value of ∆t = 1.6 × 10−3 resulted in the best observed performance.
To further investigate the role of the hyperparameter ∆t in the EigenWorms experiment, we perform a
sensitivity study where the value of ∆t is varied and the corresponding accuracy of the trained LEM is
observed. The results of this sensitivity study are presented in Fig. 5.2, where we plot the test accuracy
(Y-axis) vs. the value of ∆t (X-axis). From this figure, we observe that the accuracy is rather poor for
∆t ≈ 1 but improves monotonically as ∆t is reduced till a value of approximately 10−2, after which it
saturates. Thus, in this case, a value of ∆t = O(N− 1

2 ) (for sequence length N) suffices to yield the best
empirical performance.

Given this observation, we further test whether ∆t = O(N− 1
2 ) suffices for other problems with

long-term dependencies. To this end, we consider the adding problem and vary the input sequence length
by an order of magnitude, i.e., from N = 250 to N = 2000. The value of ∆t is now fixed at ∆t = 1√

N

and the resulting test loss (Y-axis) vs the number of training steps (X-axis) is plotted in Fig. 5.3. We see
from this figure that this value of ∆t sufficed to yield very small average test errors for this problem for
all considered sequence lengths N . Thus, empirically a value of ∆t in the range 1√

N
≤ ∆t ≤ 1 yields very

good performance.
Even if we set ∆t = O( 1√

N
), it can happen for very long sequences N >> 1 that the gradient can

be quite small from the gradient asymptotic formula (5.45). This might lead to saturation in training,
resulting in long training times. However, we do not observe such long training times for very long
sequence lengths in our experiment. To demonstrate this, we again consider Fig. 5.3 where the number
of training steps (X-axis) is plotted for sequence lengths that vary an order of magnitude. The figure
clearly shows that the approximately the same number of training steps are needed to attain a low test
error, irrespective of the sequence length. This is further buttressed in Fig. 5.1, where similar number of
training steps where needed for obtaining the same very low test error, even for long sequence lengths,
with N up to 10000. Moreover, from the training details in section 5.3, we see that the number of epochs
for different data sets is independent of the sequence length. For instance, only 50 epochs were necessary
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for EigenWorms with a sequence length of N = 17984 and ∆t = 1.6 × 10−3 whereas 400 epochs were
required for the FitzHugh-Nagumo system with a ∆t = 1.
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Figure 5.2: Sensitivity study on hyperparameter
∆t in (5.3) using the EigenWorms experiment.
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Figure 5.3: Average (over ten different initializa-
tions each) test mean-square error on the adding
problem of LEM for different sequence lengths N ,
where the hyperparameter ∆t of LEM (5.3) is fixed
to ∆t = 1/

√
N .

Multiscale Behavor of LEM. LEM (5.3) is designed to represent multiple scales, with terms ∆tn,∆tn
being explicitly designed to learn possible multiple scales. In the following, we will investigate if in
practice, LEM learns multiple scales and uses them to yield the observed superior empirical performance
with respect to competing models.
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Figure 5.4: Histogram of (∆tn)i and (∆tn)i for all n = 1, . . . , N and i = 1, . . . ,m of LEM (5.3) after
training on the FitzHugh-Nagumo fast-slow system (5.117) using ∆t = 2.

To this end, we start by recalling the proposition 5.2.8 where we showed that in principle, LEM can
learn the two underlying timescales of a fast-slow dynamical system (see proposition 5.2.9 for a similar
result for the universal approximation of a r-time scale (with r ≥ 2) dynamical system with LEM). Does
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this hold in practice ? To further investigate this issue, we consider the FitzHugh-Nagumo dynamical
system (5.117) which serves as a prototype for a two-scale dynamical system. We consider this system
(5.117) with the two time-scales being τ = 0.02 and 1 and train LEM for this system. In Fig. 5.4, we plot
the empirical histogram that bins the ranges of learned scales ∆tn,∆tn ≤ ∆t = 2 (for all n and m) and
counts the number of occurrences of ∆tn,∆tn in each bin. From this figure, we observe that there is a
clear concentration of learned scales around the values 1 and τ = 0.02, which exactly correspond to the
underlying fast and slow time scales. Thus, for this model problem, LEM is exactly learning what it is
designed to do and is able to learn the underlying time scales for this particular problem.

Nevertheless, one might argue that these learnable mutliple scales ∆tn,∆tn are not necessary and
a single scale would suffice to provide good empirical performance. We check this possibility on the
FitzHugh-Nagumo data set by simply setting ∆tn,∆tn ≡ ∆t1 (with 1 being the vector with all entries
set to 1), for all n and tuning the hyperparameter ∆t. The comparative results are presented in Table 5.9.
We see from this table by not allowing for learnable ∆tn,∆tn and simply setting them to a single scale
parameter ∆t and tuning this parameter only leads to results that are comparable to the baseline LSTM
model. On the other hand, learning ∆tn,∆tn resulted in an error that is a factor of 6 less than the
baseline LSTM test error. Thus, we demonstrate the importance of the ability of the proposed LEM
model to learn multiple scales in this example.

Table 5.9: Test L2 error on FitzHugh-Nagumo system prediction.

Model error (×10−2) # units # params

LSTM 1.2 16 1k
LEM w/o multiscale 1.1 16 1k
LEM 0.2 16 1k
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Figure 5.5: Histogram of (∆tn)i and (∆tn)i for all n = 1, . . . , N and i = 1, . . . ,m of LEM (5.3) after
training on the Google12 data set

Hence, the multiscale resolution of LEM seems essential for the fast-slow dynamical system. Does this
multiscale resolution also appear for other datasets and can it explain aspects of the observed empirical
performance ? To this end, we consider the Google12 Keyword spotting data set and start by pointing out
that given the spatial (with respect to hidden dimension m) and temporal (with respect to sequence length
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N) heterogeneities, a priori, it is unclear if the underlying data has a multiscale structure. We plot the
empirical histograms of ∆tn,∆tn in Fig. 5.5 to observe that even for this problem, the terms ∆tn,∆tn
are expressed over a range of scales, amounting to 2− 3 orders of magnitude. Thus, a range of scales are
present in the trained LEM even for this example, but do they affect the empirical performance of LEM ?
We investigate this question by performing an ablation study and reporting the results in Fig. 5.6. In
this study, we clip the values of ∆tn,∆tn to lie within the range [2−i, 1], for i = 0, 1, . . . , 7 and plot the
statistics of the observed test accuracy of LEM. We observe from Fig. 5.6 that by clipping ∆tn,∆tn to
lie near the default (single scale) value of 1 results in very poor empirical performance of an accuracy of
≈ 65%. Then the accuracy jumps to around 90% when an order of magnitude range for ∆tn,∆tn is
considered, before monotonically and slowly increasing to yield the best empirical performance for the
largest range of values of ∆tn,∆tn, considered in this study. A closer look at the empirical histograms
plotted in Fig. 5.5 reveal that the proportion of occurrences of ∆tn,∆tn decays as a power law, and
not exponentially, with respect to the scale amplitude. This, together with results presented in Fig. 5.6
suggest that not only do a range of scales occur in learned ∆tn,∆tn, the small scales also contribute
proportionately to the dynamics and enable the increase in performance shown in Fig. 5.6.
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Figure 5.6: Average (and standard deviation of) test accuracies of 5 runs each for LEM on Google12,
where ∆tn and ∆tn in (5.3) are clipped to the ranges [ 12i , 1] for i = 0, . . . , 7 during training.

Finally, in Fig. 5.7, we plot the empirical histograms of ∆tn and ∆tn for the learned LEM on the
sMNIST data set to observe that again a range of scales are observed and the observed occurrences
of ∆tn and ∆tn at each scale decays as a power law with respect to scale amplitude. Hence, we have
sufficient empirical evidence to claim that the multiscale resolution of LEM seems essential to its observed
performance. However, further investigation is required to elucidate the precise mechanisms through
this multiscale resolution enables superior performance, particularly on problems where the multiscale
structure of the underlying data may not be explicit.

On gradient-stable initialization. Specialized weight initialization is a popular tool to increase the
performance of RNNs on long-term dependency tasks. One particular approach is the so-called chrono
initialization [Tallec and Ollivier, 2018] for LSTMs, where all biases are set to zero except for the bias of
the forget gate as well as the input gate (bf and bi in the LSTM (5.6)), which are sampled from

bf ∼ log(U [1, Tmax − 1])

bi = −bf ,
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Figure 5.7: Histogram of (∆tn)i and (∆tn)i for all n = 1, . . . , N and i = 1, . . . ,m of LEM (5.3) after
training on the sMNIST data set

where Tmax denotes the maximal temporal dependency of the underlying sequential data. We can
see in Table 5.2 that the chrono initialization significantly improves the performance of LSTM on the
EigenWorms task. Hence, we are interested in extending the chrono initialization to LEMs. One possible
manner for doing this is as follows: Initialize all biases of LEM to zero except for b1 in (5.3), which is
sampled from

b1 ∼ − log(U [1, Tmax∆t− 1]).

Table 5.10: Test accuracies on EigenWorms using 5 re-trainings of each best performing network (based
on the validation set), where we train LSTM and LEM with and without chrono intialization, as well as
LEM without chrono initialization but with tuned ∆t.

Model test accuracy # units # params chrono tuning ∆t

LSTM 38.5% ± 10.1% 32 5.3k NO /
LSTM 82.6 % ± 6.4% 32 5.3k YES /
LEM 57.9% ± 7.7% 32 5.3k NO NO
LEM 88.2% ± 6.9% 32 5.3k YES NO
LEM 92.3% ± 1.8% 32 5.3k NO YES

We test the chrono initialization for LEM on the EigenWorms dataset, where we train LEM (without
tuning ∆t, i.e., setting ∆t = 1), with and without chrono initialization. We provide the results in
Table 5.10, where we show again the results of LSTM with and without chrono initialization as well as the
LEM result with tuned ∆t and without chrono initialization from Table 5.2 for comparison. We see from
Table 5.10 that when ∆t is fixed to 1, the chrono initialization significantly improves the result of LEM.
However, if we tune ∆t, but do not use the chrono initialization, we significantly improve the performance
of LEM again. We further remark that tuning ∆t as well as using chrono initialization for LEM does not
improve the results obtained with simply tuning ∆t in LEM. Thus, we conclude that chrono initialization
can successfully be adapted to LEM. However, tuning ∆t (which controls the gradients) is still advisable
in order to obtain the best possible results.
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5.5 Discussion

The design of a gradient-based model for processing sequential data that can learn tasks with long-term
dependencies while retaining the ability to learn complicated sequential input-output maps is very
challenging. In this chapter, we have proposed Long Expressive Memory (LEM), a novel recurrent
architecture, with a suitable time-discretization of a specific multiscale system of ODEs (5.2) serving as
the circuit to the model. By a combination of theoretical arguments and extensive empirical evaluations
on a diverse set of learning tasks, we demonstrate that LEM is able to learn long-term dependencies while
retaining sufficient expressivity for efficiently solving realistic learning tasks.

It is natural to ask why LEM performs so well. A part of the answer lies in the mitigation of the
exploding and vanishing gradients problem. Proofs for gradient bounds (5.18),(5.45) reveal a key role
played by the hyperparameter ∆t. We observe from Table 5.8 that small values of ∆t might be needed
for problems with very long-term dependencies, such as the EigenWorms dataset. On the other hand, no
tuning of the hyperparameter ∆t is necessary for several tasks such as language modeling, keyword spotting
and dynamical systems prediction and a default value of ∆t = 1 yielded very good performance. The
role and choice of the hyperparameter ∆t is investigated extensively in section 5.4. However, mitigation
of exploding and vanishing gradients problem alone does not explain high expressivity of LEM. In this
context, we proved that LEMs can approximate a very large class of multiscale dynamical systems.
Moreover, we provide experimental evidence in section 5.4 to observe that LEM not only expresses a
range of scales, as it is designed to do, but also these scales contribute proportionately to the resulting
multiscale dynamics. Furthermore, empirical results presented in section 5.4 show that this ability to
represent multiple scales correlates with the high accuracy of LEM. We believe that this combination of
gradient stable dynamics, specific model structure, and its multiscale resolution can explain the observed
performance of LEM.

We conclude with a comparison of LEM and the widely-used gradient-based LSTM model. In
addition to having exactly the same number of parameters for the same number of hidden units, our
experiments show that LEMs are better than LSTMs on expressive tasks such as keyword spotting and
language modeling, while also providing significantly better performance on long-term dependencies. This
robustness of the performance of LEM with respect to sequence length paves the way for its application
to learning many different sequential data sets where competing models might not perform satisfactorily.
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Chapter 6

Introduction to Graph Representation
Learning

Learning tasks involving graph structured data arise in a wide variety of problems in science and
engineering. Graph Neural Networks (GNNs) [Sperduti, 1994, Goller and Kuchler, 1996, Sperduti and
Starita, 1997, Frasconi et al., 1998, Gori et al., 2005, Scarselli et al., 2008, Bruna et al., 2014, Defferrard
et al., 2016, Kipf and Welling, 2017, Monti et al., 2017, Gilmer et al., 2017] are a popular deep learning
architecture for graph-structured and relational data. GNNs have been successfully applied in domains
including computer vision and graphics [Monti et al., 2017], recommender systems [Ying et al., 2018],
transportation [Derrow-Pinion et al., 2021], computational chemistry [Gilmer et al., 2017], drug discovery
[Gaudelet et al., 2021], particle physics [Shlomi et al., 2020] and social networks. See Zhou et al. [2019],
Bronstein et al. [2021] for extensive reviews.

Modern GNNs process graph-structured data based on the so-called message-passing framework,
which can be described as propagating node features on the underlying graph by exchanging (passing)
information among adjacent nodes. More concretely, let G = (V, E) be an undirected graph with |V| = v

nodes and |E| = e edges (i.e., unordered pairs of nodes {i, j} ∈ E ⊆ V × V we denote as i ∼ j). We define
the 1-neighborhood of a node i as Ni = {j ∈ V : i ∼ j}. Furthermore, we define an m-dimensional feature
vector Xi for every node i ∈ V and arrange all feature vectors into a v × m matrix X = (Xik) with
i = 1, . . . , v and k = 1, . . . ,m. An N -layer Message-Passing GNN can then be defined via the iterative
update rule,

Xn = σ(Fθn(Xn−1,G)), ∀n = 1, . . . , N,

X0 = X,
(6.1)

where Fθn is a learnable function with parameters θn, Xn ∈ Rv×m are the m-dimensional hidden node
features, and σ is an element-wise nonlinear activation function. In particular, we consider local (1-
neighborhood) coupling of the form (F(X,G))i = F(Xi,Xj∈Ni) operating on the multiset of 1-neighbors of
each node, such as Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017] and Graph Attention
Networks (GATs) [Velickovic et al., 2018].

Despite the widespread success of GNNs and a plethora of different architectures, several fundamental
problems still impede their efficiency on realistic learning tasks. These include bottlenecks on graphs
[Alon and Yahav, 2021], oversquashing [Topping et al., 2021], and oversmoothing [Nt and Maehara, 2019,
Oono and Suzuki, 2020] phenomena.
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Oversmoothing. The phenomenon of oversmoothing refers to the observation that all node features in
a deep (multi-layer) GNN tend to converge to the same constant node vector for increasing number of
layers. More formally, oversmoothing can be defined as,

Definition 6.0.1 (Oversmoothing). Let G be an undirected, connected graph and Xn ∈ Rv×m denote
the n-th layer hidden features of an N -layer GNN defined on G. Moreover, we call µ : Rv×m −→ R≥0 a
node-similarity measure if it satisfies the following axioms:

1. ∃c ∈ Rm with Xi = c for all nodes i ∈ V ⇔ µ(X) = 0, for X ∈ Rv×m

2. µ(X+Y) ≤ µ(X) + µ(Y), for all X,Y ∈ Rv×m

We then define oversmoothing with respect to µ as the layer-wise exponential convergence of the
node-similarity measure µ to zero, i.e.,

3. µ(Xn) ≤ C1e
−C2n, for n = 0, . . . , N with some constants C1, C2 > 0.

Based on definition 6.0.1, oversmoothing can be measured through the Dirichlet energy on graphs,

D(Xn) =
1

v

∑
i∈V

∑
j∈Ni

∥Xn
i −Xn

j ∥2. (6.2)

Oversmoothing is then defined with respect to the Dirichlet energy as the exponential convergence to
zero of D for increasing number of GNN layers, i.e.,

D(Xn) ≤ C1e
C2n, ∀n = 1, . . . , N, (6.3)

with some constants C1, C2 > 0. The main challenge in designing methods that mitigate oversmoothing
is to maintain the expressive power of the GNN model, besides preserving the diversity of node features.
Thereby, current approaches addressing the oversmoothing issue can be classified into three main strategies:
(i) using regularization and normalization Zhou et al. [2021], Zhao and Akoglu [2019], Rong et al. [2020],
(ii) leveraging residual connections Chen et al. [2020b], Xu et al. [2018b], Liu et al. [2020], and (iii)
changing the dynamics of the message-passing propagation Di Giovanni et al. [2022], Bodnar et al. [2022].

Oversquashing and bottlenecks. The phenomenon of oversquashing Alon and Yahav [2021],
Giovanni et al. [2023] relates to the node-wise encoding of (layer-wise) exponentially increasing number of
node features through the message-passing framework. This is of particular harm to the GNN in case of
bottlenecks in the underlying graph, in which case information cannot be bypassed but rather has to flow
through “over-squashed” nodes. In Giovanni et al. [2023], the authors propose to define oversquashing
through the second-order mixing of nodes in an underlying graph dataset, connecting oversquashing with
the expressive power of GNNs. Finally, to mitigate oversquashing, the majority of recent approaches are
based on re-wiring the underlying computational graph [Topping et al., 2021, Deac et al., 2022, Klicpera
et al., 2018].

In this part, we focus on constructing novel message-passing frameworks inspired by physical systems
(i.e., that of graph-coupled oscillators and multi-rate systems) that are provably able to mitigate over-
smoothing and thus allow for building deep GNNs. Moreover, we provide extensive empirical evidence that
the proposed frameworks obtain state-of-the-art results on real-world small- /medium- /and large-scale
graph dataset with different levels of homophily.
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Graph-Coupled Oscillator Network

Graph-coupled oscillators are often encountered in mechanical, electronic, and biological systems, and
have been studied extensively Strogatz [2001], with a prominent example being functional circuits in the
brain such as cortical columns Stiefel and Ermentrout [2016]. In these circuits, each neuron oscillates
with periodic firing and spiking of the action potential. The network of neurons is coupled in the form of
a graph, with neurons representing nodes and edges corresponding to synapses linking neurons.

Motivated by this, we propose a novel physically-inspired approach to learning on graphs. Our frame-
work, termed GraphCON (Graph-Coupled Oscillator Network) builds upon suitable time-discretizations
of a specific class of ordinary differential equations (ODEs) that model the dynamics of a network
of nonlinear controlled and damped oscillators, which are coupled via the adjacency structure of the
underlying graph.

Main Contributions. In the subsequent sections, we will demonstrate the following features of
GraphCON:

• GraphCON is flexible enough to accommodate any standard GNN layer (such as GAT or GCN)
as its coupling function. As timesteps of our discretized ODE can be interpreted as layers of a
deep neural network Chen et al. [2018], Haber and Ruthotto [2018], Chamberlain et al. [2021b],
one can view GraphCON as a wrapper around any underlying basic GNN layer allowing to build
deep GNNs. Moreover, we will show that standard GNNs can be recovered as steady states of the
underlying class of ODEs, whereas GraphCON utilizes their dynamic behavior to sample a richer
set of states, which leads to better expressive power.

• We mathematically formulate the frequently encountered oversmoothing problem for GNNs Nt
and Maehara [2019], Oono and Suzuki [2020] in terms of the stability of zero-Dirichlet energy
steady states of the underlying equations. By a careful analysis of the dynamics of the proposed
ODEs, we demonstrate that any zero-Dirichlet energy steady states are not (exponentially) stable.
Consequently, we show that the oversmoothing problem for GraphCON is mitigated by construction.

• We rigorously prove that GraphCON mitigates the so-called exploding and vanishing gradients
problem for the resulting GNN. Hence, GraphCON can greatly improve the trainability of deep
multi-layer GNNs.

• We provide an extensive empirical evaluation of GraphCON on a wide variety of graph learning
tasks such as transductive and inductive node classification and graph regression and classification,
demonstrating that GraphCON achieves competitive performance.
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7.1 The proposed graph-learning framework

We recall the v ×m-dimensional feature matrix X defined on the undirected graph G. Based on this and
central to our framework, we define a graph dynamical system represented by the following nonlinear
system of ODEs:

X′′ = σ(Fθ(X, t,G))− γX− αX′. (7.1)

Here, X(t) denotes the time-dependent v ×m-matrix of node features, σ is the activation function, Fθ is
a general learnable (possibly time-dependent) 1-neighborhood coupling function of the form

(Fθ(X, t,G))i = Fθ (Xi(t),Xj(t), t) ∀i ∼ j, (7.2)

parametrized with a set of learnable parameters θ.
By introducing the auxiliary velocity variable Y(t) = X′(t) ∈ Rv×m, we can rewrite the second-order

ODEs (7.1) as a first-order system:

Y′ = σ(Fθ(X, t,G))− γX− αY,

X′ = Y.
(7.3)

The key idea of our framework is, given the input node features X(0) as an initial condition, to use the
solution X(T ) at some time T as the output (more generally, one can also apply (linear) transformations
(embeddings) to X(0) and X(T )). As will be shown in the following section, the space of solutions of our
system is a rich class of functions that can solve many learning tasks on a graph.

The system (7.3) must be solved by an iterative numerical solver using a suitable time-discretization.
It is highly desirable for a time-discretization to preserve the structure of the underlying ODEs (7.3)
Hairer et al. [1987]. In this chapter, we use the following IMEX (implicit-explicit) time-stepping scheme,
which extends the symplectic Euler method Hairer et al. [1987] to systems with an additional damping
term,

Yn = Yn−1 +∆t[σ(Fθ(X
n−1, tn−1,G))− γXn−1 − αYn−1],

Xn = Xn−1 +∆tYn,
(7.4)

for n = 1, . . . , N , where ∆t > 0 is a fixed time-step and Yn,Xn denote the hidden node features at
time tn = n∆t. The iterative scheme (7.4) can be interpreted as an N -layer graph neural network (with
potential additional linear input and readout layers, omitted here for simplicity), which we refer to as
GraphCON (see section 7.2 for the motivation of this nomenclature). The coupling function Fθ plays
the role of a message-passing mechanism (Gilmer et al. [2017], also referred to, in various contexts, as
‘diffusion’ or ‘neighborhood aggregation’) in traditional GNNs.

Choice of the coupling function Fθ. Our framework allows for any learnable 1-neighborhood coupling
to be used as Fθ, including instances of message-passing mechanisms commonly used in the Graph ML
literature such as GraphSAGE [Hamilton et al., 2017], Graph Attention Velickovic et al. [2018], Graph
Convolution Defferrard et al. [2016], Kipf and Welling [2017], SplineCNN [Fey et al., 2018], or MoNet
[Monti et al., 2017]). In this chapter, we focus on two particularly popular choices:

Attentional message-passing of Velickovic et al. [2018]:

Fθ(X
n, tn,G) = An(Xn)XnWn,

with learnable weight matrices Wn ∈ Rm×m and attention matrices An ∈ Rn×n following the adjacency
structure of the graph G, i.e., (An(Xn))ij = 0 if j /∈ Ni and

(An(Xn))ij =
exp(LeakyReLU(a⊤[WnXn

i ||WnXn
j ]))∑

k∈Ni

exp(LeakyReLU(a⊤[WnXn
i ||WnXn

k ]))
,

112



Chapter 7. GraphCON

otherwise (here Xn
i denotes the i-th row of Xn and a ∈ R2m). We refer to (7.4) based on this attentional

1-neighborhood coupling as GraphCON-GAT.
Graph convolution operator of Kipf and Welling [2017]:

Fθ(X
n, tn,G) = D̂− 1

2 ÂD̂− 1
2XnWn, (7.5)

with Â = A + I denoting the adjacency matrix of G with inserted self-loops, diagonal degree matrix
D = diag(

∑n
l=1 Âkl), and Wn

i ∈ Rm×m being learnable weight matrices. We refer to (7.4) based on this
convolutional 1-neighborhood coupling as GraphCON-GCN.

Steady States of GraphCON and relation to GNNs. It is straightforward to see that the
steady states X∗,Y∗ of the GraphCON dynamical system (7.4) with an autonomous coupling function
Fθ = Fθ(X,G) (as in GraphCON-GAT or GraphCON-GCN) are given by Y∗ ≡ 0 and

X∗ =
1

γ
σ(Fθ(X

∗,G)). (7.6)

Using a simple fixed point iteration to find the steady states (7.6) yields a multi-layer GNN of the form;

Xn =
1

γ
σ(Fθ(X

n−1,G)), for n = 1, 2, . . . , N. (7.7)

We observe that (up to a rescaling by the factor 1/γ) equation (7.7) corresponds to the update formula
for any standard N -layer message-passing GNN Gilmer et al. [2017], including such popular variants as
GAT Velickovic et al. [2018] or GCN Kipf and Welling [2017].

Thus, this interpretation of GraphCON (7.4) clearly brings out its relationship with standard GNNs.
Unlike in standard multi-layer GNNs of the generic form (7.7) that can be thought of as steady states
of the underlying ODEs (7.3), GraphCON evolves the underlying node features dynamically in time.
Interpreting the multiple GNN layers as iterations at times tn = n∆t in (7.4), we observe that the node
features in GraphCON follow the trajectories of the corresponding dynamical system and can explore a
richer sampling of the underlying latent feature space, leading to possibly greater expressive power than
standard GNNs (7.7), which might remain in the vicinity of steady states.

Moreover, this interpretation also reveals that, in principle, any GNN of the form (7.7) can be used
within the GraphCON framework, offering a very flexible and broad class of architectures. Hence, one can
think of GraphCON as an additional wrapper on top of any basic GNN layer allowing for a principled and
stable design of deep multi-layered GNNs. In the following Section 7.2, we show that such an approach
has several key advantages over standard GNNs.

Related Work. Differential equations have historically played a role in designing and interpreting
various algorithms in machine learning, including nonlinear dimensionality reduction methods Belkin and
Niyogi [2003], Coifman and Lafon [2006] and ranking Page et al. [1999], Chakrabarti [2007] (all of which
are related to closed-form solutions of diffusion PDEs). In the context of Deep Learning, differential
equations have been used to derive various types of neural networks including Neural ODEs and their
variants, that have been used to design and interpret residual Chen et al. [2018] and convolutional Haber
and Ruthotto [2018] neural networks. These approaches have recently gained traction in Graph ML, e.g.
with ODE-based models for learning on graphs Avelar et al. [2019], Poli et al. [2019], Zhuang et al. [2020],
Xhonneux et al. [2020].

Chamberlain et al. [2021b] used parabolic diffusion-type PDEs to design GNNs using graph gradient
and divergence operators as the spatial differential operator, a transformer type-attention as a learnable
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diffusivity function (‘1-neighborhood coupling’ in our terminology), and a variety of time stepping schemes
to discretize the temporal dimension in this framework. Chamberlain et al. [2021a] applied a non-euclidean
diffusion equation (‘Beltrami flow’) to a joint positional-feature space, yielding a scheme with adaptive
spatial derivatives (‘graph rewiring’), and Topping et al. [2021] studied a discrete geometric PDE similar
to Ricci flow to improve information propagation in GNNs. We can see the contrast between the diffusion-
based methods of Chamberlain et al. [2021b,a] and GraphCON in the simple case of identity activation
σ(x) = x. Then, under the further assumption that the second-order time derivative X′′ is removed from
(7.1) and α = γ = 1, we recover the graph diffusion-PDEs of Chamberlain et al. [2021b]. Hence, the
presence of the temporal second-order derivative distinguishes this approach from diffusion-based PDEs.

Eliasof et al. [2021] proposed a GNN framework arising from a mixture of parabolic (diffusion) and
hyperbolic (wave) PDEs on graphs with convolutional coupling operators, which describe dissipative
wave propagation. We point out that a particular instance of their model (damped wave equation, also
called as the Telegrapher’s equation) can be obtained as a special case of our model (7.1) with the identity
activation function. This is not surprising as the zero grid-size limit of oscillators on a regular grid yields
a wave equation. However, given that we use a nonlinear activation function and the specific placement
of the activation layer in (7.3), a local PDE interpretation of the general form of our underlying ODEs
(7.1) does not appear to be feasible.

Finally, we proposed the explicit use of networks of coupled, controlled oscillators to design machine
learning models in context of recurrent neural networks (RNNs) in Chapter 2 and Chapter 3.

7.2 Rigorous analysis of GraphCON

7.2.1 GraphCON dynamics

To gain some insight into the functioning of GraphCON (7.4), we start by setting the hyperparameter
γ = 1 and assuming that the 1-neighborhood coupling Fθ is given by either the GAT or GCN type
coupling functions. In this case, the underlying ODEs (7.3) takes the following node-wise form,

X′
i = Yi,

Y′
i = σ

∑
j∈Ni

AijXj

−Xi − αYi,
(7.8)

for all nodes i ∈ V , with Aij = A (Xi(t),Xj(t)) ∈ R stemming from the attention or convolution operators.
Furthermore, the matrices are right stochastic i.e., the entries satisfy,

0 ≤ Aij ≤ 1, ∀j ∈ Ni, ∀i ∈ V,∑
j∈Ni

Aij = 1, ∀i ∈ V. (7.9)

Uncoupled case. The simplest case of (7.8), corresponds to setting σ ≡ 0 and α = 0. In this case, all
nodes are uncoupled from each other and the solutions of the resulting ODEs are of the form,

Xi(t) = Xi(0) cos(t) +Yi(0) sin(t). (7.10)

Thus, the dynamics of the ODEs (7.3) in this special case correspond to a system of uncoupled oscillators,
with each node oscillating at unit frequency.
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Coupled linear case. Next, we introduce coupling between the nodes that are adjacent on the
underlying graph G and assume identity activation function σ(x) = x. In this case, (7.8) is a coupled
linear system and an exact closed form solution, such as (7.10) may not be possible. However, we can
describe the dynamics of (7.8) in the form of the following proposition,

Proposition 7.2.1. Let the node features X,Y evolve according to the ODEs (7.8) with activation
function σ = id and time-independent matrix A (e.g. Aij = A(Xi(0),Xj(0)) using the initial features).
Further assume that A is symmetric and α = 0. Then∑

i∈V
∥Yi(t)∥2 +

∑
i∈V

∑
j∈Ni

Aij∥Xi(t)−Xj(t)∥2

=
∑
i∈V

∥Yi(0)∥2 +
∑
i∈V

∑
j∈Ni

Aij∥Xi(0)−Xj(0)∥2,
(7.11)

holds for all t > 0.

Proof. We multiply Y⊤
i to the second equation of (7.8) and obtain,

Y⊤
i

dYi

dt
=
∑
j∈Ni

AijY
⊤
i (Xj −Xi) ,

as
∑
j∈Ni

Aij = 1


Summing over i ∈ V and using the symmetry condition Aij = Aji in the above expression yields,

d

dt

∑
i∈V

∥Yi∥2
2

= −
∑
i∈V

∑
j∈Ni

Aij (Yj −Yi)
⊤
(Xj −Xi) ,

= −
∑
i∈V

∑
j∈Ni

Aij

(
d(Xj −Xi)

dt

)⊤

(Xj −Xi)

⇒1

2

d

dt

∑
i∈V

∥Yi∥2 +
∑
i∈V

∑
j∈Ni

Aij∥Xj −Xi∥2
 = 0.

Integrating the last line in the above expression over time [0, t] yields the desired identity (7.11)

Thus, in this case, we have shown that the dynamics of the underlying ODEs (7.8) preserves the
energy,

E (t) :=
∑
i∈V

∥Yi(t)∥2 +
∑
i∈V

∑
j∈Ni

Aij∥Xi(t)−Xj(t)∥2, (7.12)

and the trajectories of (7.8) are constrained to lie on a manifold of the node feature space, defined by the
level sets of the energy. In particular, energy (7.12) is not produced or destroyed but simply redistributed
among the nodes of the underlying graph G. Thus, the dynamics of (7.3) in this setting amounts to the
motion of a linear system of coupled oscillators.

General nonlinear case. In the general case, we have (i) a nonlinear activation function σ; (ii)
time-dependent nonlinear coefficients Aij = A(Xi(t),Xj(t)); and (iii) possible unsymmetrical entries
Aij ̸= Aji. All these factors destroy the energy conservation property (7.11) and can possibly lead to
unbounded growth of the energy. Hence, we need to add some damping to the system. To this end,
the damping term in (7.8) is activated by setting α > 0. Moreover, γ ̸= 1 corresponds to controlling
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frequencies of the nodes. Thus, the overall dynamics of the underlying ODEs (7.3) amounts to the motion
of a nonlinear system of coupled, controlled and damped oscillators with the coupling structure being
that of the underlying graph. This explains our choice of the name, Graph-Coupled Oscillatory Neural
Network or ‘GraphCON’ for short.

We illustrate the dynamics of GraphCON in Fig. 7.1, where the model is applied to the graph of a
molecule from the ZINC database Irwin et al. [2012], with features X denoting the position of the nodes
and they are propagated in time through the action of GraphCON (7.4). The oscillatory behavior of the
node features, as well as their dependence on the adjacency structure of the underlying graph can be
clearly observed in this figure.

time

Figure 7.1: Illustration of GraphCON dynamics on a ZINC molecular graph. The initial positions of
GraphCON (X0 in (7.4)) are represented by the 2-dimensional positions of the nodes, while the initial
velocities (Y0 in (7.4)) are set to the initial positions. The positions are propagated forward in time
(‘layers’) using GraphCON-GCN with random weights. The molecular graph is plotted at initial time
t = 0 as well as at t = 20.

7.2.2 On the oversmoothing issue

We will show that GraphCON allows to mitigate the oversmoothing problem in the sense of definition
6.0.1, measured by the Dirichlet energy (6.2). To see this, we focus on the underlying ODEs (7.3). It
is trivial to extend the Dirichlet energy-based definition of oversmoothing from the discrete case to the
continuous one,

Definition 7.2.2 (Continuous-time oversmoothing). Let G be an undirected, connected graph and
X(t) ∈ Rv×m denote the normalized hidden node features of a continuous-time GNN (7.1) at time
t ≥ 0 defined on G. Moreover, µ is a node-similarity measure as of Definition 6.0.1. We then define
oversmoothing with respect to µ as the exponential convergence in time of the node-similarity measure µ

to zero, i.e.,
µ(X(t)) ≤ C1e

−C2t, for t ≥ 0, (7.13)

with some constants C1, C2 > 0.

Note that also here we instantiate the node-similarity measure with the Dirichlet energy (6.2).
We have the following simple proposition that characterizes the oversmoothing problem for the

underlying ODEs in the standard terminology of dynamical systems Wiggins [2003],
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Proposition 7.2.3. The oversmoothing problem occurs for the ODEs (7.3) if and only if the hidden
states (X∗,Y∗) = (c,0) are exponentially stable steady states (fixed points) of the ODE (7.3), for some
c ∈ Rm and 0 being the m-dimensional vector with zeroes for all its entries.

Proof. By the definition of the Dirichlet energy (6.2), (7.13) implies that,

lim
t→∞

Xi(t) ≡ c, ∀i ∈ V, (7.14)

for some c ∈ Rm. In other words, all the hidden node features converge to the same feature vector c as
time increases. Moreover, by (7.13), this convergence is exponentially fast.

Plugging in (7.14) in to the first equation of the ODE (7.3), we obtain that,

lim
t→∞

Yi(t) ≡ 0, ∀i ∈ G, (7.15)

with 0 being the m vector with zeroes for all its entries. Thus, oversmoothing in the sense of definition
7.2.2, amounts to (c,0) being an exponentially stable fixed point (steady state) for the dynamics of (7.8)

On the other hand, if (c,0) is an exponentially stable steady state of (7.8), then the trajectories
converge to this state exponentially fast satisfying (7.13). Consequently, by the definition of the Dirichlet
energy (6.2), we readily observe that the oversmoothing problem, in the sense of definition 7.2.2, occurs
in this case.

In other words, all the trajectories of the ODE (7.3), that start within the corresponding basin of
attraction, have to converge exponentially fast in time (satisfy (7.13)) to the corresponding steady state
(c,0) for the oversmoothing problem to occur for this system. Note that the basins of attraction will be
different for different values of c.

Given this characterization, the key questions are a) whether (c,0) are fixed points for the ODE (7.3),
and b) whether these fixed points are exponentially stable. We answer these questions for the ODEs (7.8)
in the following

Proposition 7.2.4. Assume that the activation function σ in the ODEs (7.8) is ReLU. Then, for any
c ∈ Rm such that each entry of the vector cℓ ≥ 0, for all 1 ≤ ℓ ≤ m, the hidden state (c,0) is a steady
state for the ODEs (7.8). However under the additional assumption of α ≥ 1

2 , this fixed point is not
exponentially stable.

The fact that (c,0) is a steady state of (7.8), for any positive c is straightforward to see from the
structure of (7.8) and the definition of the ReLU activation function. We can already observe from the
energy identity (7.11) for the simplified symmetric linear system that the energy (7.12) for the small
perturbations around the steady state (c,0) is conserved in time. Hence, these small perturbations do not
decay at all, let alone, exponentially fast in time. Thus, these steady states are not exponentially stable.

An extension of this analysis to the nonlinear time-dependent, possibly non-symmetric system (7.8) is
more subtle. Therefore, the main aim of the remaining section is to prove proposition 7.2.4 by showing
that steady states of (7.8), of the form (c,0) are not exponentially stable.

To this end, we fix c and start by considering small perturbations around the fixed point (c,0). We
define,

X̂i = Xi − c, Ŷi = Yi,

and evolve these perturbations by the linearized ODE,

X̂′
i = Ŷi,

Ŷi
′
= σ′(c)

∑
j∈Ni

Âi,jX̂j − X̂i − αŶi,
(7.16)
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As σ(x) = max(x, 0) and c ≥ 0, we have that σ′(c) = ID and linearized system (7.17) reduces to,

X̂′
i = Ŷi,

Ŷi
′
=
∑
j∈Ni

ÂijX̂j − X̂i − αŶi,
(7.17)

with
Âij = Aij(c, c), ∀j ∈ Ni, ∀i ∈ G,

0 ≤ Âij ≤ 1,
∑
j∈Ni

Âij = 1. (7.18)

We have the following proposition on the dynamics of linearized system (7.17) with respect to perturbations
of the fixed point (c,0),

Proposition 7.2.5. Perturbations X̂(t), Ŷ(t) of the fixed point (c,0), which evolve according to (7.17)
satisfy the following identity,

1

v

∑
i∈V

∥ ˆYi(t)∥2 +
∑
i∈V

∑
j∈Ni

Âij + Âji

2

(
∥X̂j(t)− X̂i(t)∥2

) = T1(t) + T2(t) + T3(t),

T1(t) =
1

v

∑
i∈V

(
∥ ˆYi(0)∥2

)
e−2αt +

1

v

∑
i∈V

∑
j∈Ni

Âij + Âji

2

(
∥X̂j(0)− X̂i(0)∥2

)
e−2αt

T2(t) =
α

v

∑
i∈V

∑
j∈Ni

(
Âij + Âji

) tˆ

0

∥X̂j(s)− X̂i(s)∥2e2α(s−t)ds

T3(t) =
1

v

∑
i∈V

∑
j∈Ni

(
Âij − Âji

) tˆ

0

(
Ŷi(s) + Ŷj(s)

)⊤ (
X̂j(s)− X̂i(s)

)
e2α(s−t)ds

(7.19)

Proof. Multiplying the second equation in (7.17) with Ŷ⊤
i and using the fact that

∑
j∈Ni

Âij = 1, we

obtain,
d

dt

∥Ŷi∥2
2

+ α∥Ŷi∥2 =
∑
j∈Ni

ÂijŶ
⊤
i

(
X̂j − X̂i

)
,

=
∑
j∈Ni

Âij

(
Ŷi + Ŷj

)⊤
2

(
X̂j − X̂i

)
−
∑
j∈Ni

Âij

(
Ŷj − Ŷi

)⊤
2

(
X̂j − X̂i

)
,

=
∑
j∈Ni

Âij

(
Ŷi + Ŷj

)⊤
2

(
X̂j − X̂i

)
−
∑
j∈Ni

Âij

2

d

dt

(
X̂j − X̂i

)⊤ (
X̂j − X̂i

)
,

(7.20)

where we have used the first equation of (7.17) in the last line of (7.20). Consequently, we have for all
i ∈ V,

d

dt

∥Ŷi∥2
2

+ α∥Ŷi∥2 +
d

dt

∑
j∈Ni

Âij

2

∥X̂j − X̂i∥2
2

=
∑
j∈Ni

Âij

(
Ŷi + Ŷj

)⊤
2

(
X̂j − X̂i

) (7.21)
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Summing (7.21) over all nodes i ∈ V yields,

d

dt

∑
i∈V

∥Ŷi∥2
2

+ α
∑
i∈V

∥Ŷi∥2 +
d

dt

∑
i∈V

∑
j∈Ni

Âij + Âji

2

∥X̂j − X̂i∥2
2

=
∑
i∈V

∑
j∈Ni

Âij − Âji

2

(
Ŷi + Ŷj

)⊤ (
X̂j − X̂i

) (7.22)

Multiplying e2αt to both sides of (7.22) and using the chain rule, we readily obtain,

d

dt

∑
i∈V

e2αt

∥Ŷi∥2
2

+
∑
j∈Ni

Âij + Âji

2

∥X̂j − X̂i∥2
2


= αe2αt

∑
i∈V

∑
j∈Ni

Âij + Âji

2
∥X̂j − X̂i∥2

+ e2αt
∑
i∈V

∑
j∈Ni

Âij − Âji

2

(
Ŷi + Ŷj

)⊤ (
X̂j − X̂i

)
(7.23)

Integrating (7.23) over the time interval [0, t] yields,

∑
i∈V

(
∥ ˆYi(t)∥2

2

)
e2αt +

∑
i∈V

∑
j∈Ni

Âij + Âji

2

(
∥X̂j(t)− X̂i(t)∥2

2

)
e2αt

=
∑
i∈V

(
∥ ˆYi(0)∥2

2

)
+
∑
i∈V

∑
j∈Ni

Âij + Âji

2

(
∥X̂j(0)− X̂i(0)∥2

2

)

+ α
∑
i∈V

∑
j∈Ni

Âij + Âji

2

tˆ

0

∥X̂j(s)− X̂i(s)∥2e2αsds

+
∑
i∈V

∑
j∈Ni

Âij − Âji

2

tˆ

0

(
Ŷi(s) + Ŷj(s)

)⊤ (
X̂j(s)− X̂i(s)

)
e2αsds

(7.24)

We readily obtain the desired identity (7.19) from (7.24).

Next, we observe that the right-hand side of the nonlinear ODEs (7.8) is globally Lipschitz. Therefore,
solutions exist for all time t > 0, are unique and depend continuously on the data.

We assume that the initial perturbations around the steady state (c,0) are small i.e., they satisfy

∥X̂i(0)− X̂j(0)∥ ≤ ϵ, ∀j ∈ Ni, ∀i ∈ V,
∥Ŷi(0)∥ ≤ ϵ, ∀i ∈ V,

for some 0 < ϵ << 1.
Hence, there exists a small time τ > 0 such that the time-evolution of these perturbations can be

approximated to arbitrary accuracy by solutions of the linearized system (7.17).
Next, we see from the identity (7.19) that the evolution of the perturbations X̂, Ŷ from the fixed

point (c,0) for the linearized system (7.17) is balanced by three terms T1,2,3. The term T1 is clearly a
dissipative term and says that the initial perturbations are damped exponentially fast in time.
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On the other hand, the term T2, which has a positive sign, is a production term and says that the
initial perturbations will grow with time t. Given the continuous dependence of the dynamics evolved by
the ODE (7.17), there exists a time, still called τ by choosing it even smaller than the τ encountered
before, such that

∥X̂i(t)− X̂j(t)∥ ∼ O(ϵ), ∀j ∈ Ni, ∀i ∈ V, ∀t ∈ [0, τ ],

∥Ŷi(t)∥ ∼ O(ϵ), ∀i ∈ V,∀t ∈ [0, τ ].
(7.25)

Plugging the above expression into the term T2 in (7.19) and using the right-stochasticity of the matrix
Â, we obtain that,

T2(t) ∼ O(ϵ2)
(
1− e−2αt

)
, ∀t ≤ τ (7.26)

Thus, the leading term in T2 grows algebraically with respect to the initial perturbations.
Next we turn our attention to the term T3 in (7.19). This term is proportional to the asymmetry in

the graph-coupling matrix Â = A(c, c). If this matrix were symmetric, then T3 vanishes. On the other
hand, for many 1-neighborhood couplings considered in this chapter, the matrix Â is not symmetric. In
fact, one can explicitly compute that for the GAT and Transformers attention and GCN-couplings, we
have,

Âij =
1

deg(i)
, ∀j ∈ Ni, ∀i ∈ V. (7.27)

Here, deg refers to the degree of the node, with possibly inserted self-loops.
As the ordering of nodes of the graph G is arbitrary, we can order them in such a manner that

Âij > Âji. Even with this ordering, as long as the matrix Â is not symmetric, the term T3 is of indefinite
sign. If it is positive, then we have additional growth with respect to time in (7.19). On the other hand,
if T3 is negative, it will have a dissipative effect. The rate of this dissipation can be readily calculated for
a short time t ≤ τ under the assumption (7.25) to be,

|T3(t)| ∼
D −D

DD

(
1− e−2αt

2α

)
O(ϵ2). (7.28)

Here, we define,

D = max
i∈V

deg(i), D = min
i∈V

deg(i) (7.29)

Thus by combining (7.26) with (7.28), we obtain,

T2 + T3 ∼
(
1− D −D

2αDD

)(
1− e−2αt

)
O(ϵ2) (7.30)

In particular for α ≥ 1/2, we see from (7.30), that the overall balance (7.19) leads to an algebraic growth,
rather than exponential decay, of the initial perturbations of the fixed point (c,0). Thus, we have shown
that this steady state is not exponentially stable and small perturbations will take the trajectories of the
ODE (7.17) away from this fixed point, completing the proof of Proposition 7.2.4.

Remark 7.2.6. We see from the above proof, the condition α ≥ 1
2 is only a sufficient condition for the

proof of Proposition 7.2.4, we can readily replace it by,

α ≥ D −D

2DD
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To summarize the careful analysis, small perturbations can grow polynomially in time (at least for
short time periods) and do not decay exponentially. Consequently, the fixed point (c,0) is not stable.
This shows that the oversmoothing problem, in the sense of definition 7.2.2, is mitigated for the ODEs
(7.3) and structure preserving time-discretizations of it such as (7.4), from which, in simple words it
follows that GraphCON mitigates oversmoothing by construction.

This analysis also illustrates the rich dynamics of (7.3) as we show that even if the trajectories reach
a steady state of the form (c,0), very small perturbations will grow and the trajectory will veer away
from this steady state, possibly towards other constant steady states which are also not stable. Thus, the
trajectories can sample large parts of the latent space, contributing to the expressive power of the model.

We remark here that the use of ReLU activation function in proposition 7.2.5 is purely for definiteness.
Any other widely used activation function can be used in σ, with corresponding zero Dirichlet energy
steady states being specified by the roots of the algebraic equation σ(c) = c and an analogous result can
be derived. For instance, the zero-Dirichlet energy steady state corresponding to the Tanh activation
function is given by (0,0).

7.2.3 On the exploding and vanishing gradients problem

The mitigation of oversmoothing by GraphCON has a great bearing on increasing the expressivity of
the resulting deep GNN. In addition, it turns out that using graph-coupled oscillators can also facilitate
training of the underlying GNNs. To see this, we will consider a concrete example of the coupling function
in (7.4) to be GCN (7.5). Other coupling functions such as GAT can be considered analogously. For
simplicity of exposition and without any loss of generality, we consider scalar node features by setting
m = 1. We also set α, γ = 1. With these assumptions, a N -layer deep GraphCON-GCN reduces to the
following explicit (node-wise) form,

Yn
i = (1−∆t)Yn−1

i +∆tσ
(
Cn−1

i

)
−∆tXn−1

i ,

Cn−1
i =

ωn

di
Xn−1

i +
∑
j∈Ni

ωnXn−1
j√

didj
,

Xn
i = Xn−1

i +∆tYn
i , ∀1 ≤ n ≤ N, ∀1 ≤ i ≤ v.

(7.31)

Here, di = deg(i), denoting the degree of a node i ∈ V and ωn ∈ R, denoting the learnable weight.
Moreover, we are in a setting where the learning task is for the GNN to approximate the ground truth

vector X ∈ Rv. Consequently, we set up the following loss-function,

J(w) :=
1

2v

∑
i∈V

|XN
i −Xi|2, (7.32)

with w = [ω1, ω2, · · · , ωN ] denoting the concatenated learnable weights in (7.31). During training, one
computes an approximate minimizer of the loss-function (7.32) with a (stochastic) gradient descent (SGD)
procedure. At every step of gradient descent, we need to compute the gradient ∂wJ. For definiteness, we
fix layer 1 ≤ ℓ ≤ N and consider the learnable weight ωℓ. Thus, in a SGD step, one needs to compute
gradient, ∂J

∂ωℓ . By chain rule, one readily proves the following identity (see for instance Pascanu et al.
[2013]),

∂J

∂ωℓ
=

∂J

∂ZN

∂ZN

∂Zℓ

∂Zℓ

∂ωℓ
. (7.33)

Here,
Zn = [Xn

1 ,Y
n
1 ,X

n
2 ,Y

n
2 , · · · ,Xn

i ,Y
n
i , · · · ,Xn

v ,Y
n
v ] ,
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is the concatenated node-feature vector at the layer 1 ≤ n ≤ N .
Furthermore, by using the product rule, we see that,

∂ZN

∂Zℓ
=

N∏
n=ℓ+1

∂Zn

∂Zn−1
. (7.34)

In other words, the gradient ∂J
∂ωℓ measures the contribution made by the node k in the ℓ-th hidden layer

to the learning process.
If we assume that the partial gradient behaves as ∂Zn

∂Zn−1 ∼ λ, for all n, then, the long-product structure
of (7.34) implies that ∂ZN

∂Zℓ ∼ λN−ℓ. If on average, λ > 1, then we observe that the total gradient (7.33)
can grow exponentially in the number of layers, leading to the exploding gradients problem. Similarly,
if on average, λ < 1, then the total gradient (7.33) can decay exponentially in the number of layers,
leading to the vanishing gradients problem. Either of these situations can lead to failure of training as
the gradient step either blows up or does not change at all. Hence, for very deep GNN architectures, it is
essential to investigate if the exploding and vanishing gradients problem can be mitigated. We start by
showing the following upper bound on the gradients. To this end, we first establish an upper bound on
the hidden node features of the following general form of GraphCON (7.4), written node-wise as,

Cn−1
i = (Fθ(X

n−1,G))i,
Yn

i = Yn−1
i +∆tσ(Cn−1

i )− γ∆tXn−1
i − α∆tYn−1

i ,

Xn
i = Xn−1

i +∆tYn
i .

(7.35)

We derive following upper bound on the resulting hidden node features,

Proposition 7.2.7. For all n, let tn = n∆t and the time step ∆t satisfy,

∆t < min

(
α

γ
,
1

α

)
Let Xn

i denote the hidden state vector at any node i ∈ V which evolves according to GraphCON (7.35),
then the hidden states satisfy the following bound,

∥Xn
i ∥2 ≤ ∥X0

i ∥2 +
1

γ
∥Y0

i ∥2

+
mβ2tn

2γ(α− γ∆t)

(7.36)

where β is the global bound on the underlying activation function σ (7.41).

Proof. We multiply γ(Xn−1
i )⊤ to the third equation of (7.35) and (Yn

i )
⊤ to the second equation of (7.35)

and repeatedly use the following elementary identities,

a⊤(a− b) =
∥a∥2
2

− ∥b∥2
2

+
1

2
∥a− b∥2,

b⊤(a− b) =
∥a∥2
2

− ∥b∥2
2

− 1

2
∥a− b∥2,
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to obtain,

γ
∥Xn

i ∥2
2

+
∥Yn

i ∥2
2

= γ
∥Xn−1

i ∥2
2

+
∥Yn−1

i ∥2
2

+ ∆t(Yn
i )

⊤σ(Cn−1
i )

+ ∆t

(
γ∆t

2
− α+

α

2

)
∥Yn

i ∥2

− α∆t

2
∥Yn−1

i ∥2

+

(
α∆t− 1

2

)
∥Yn

i −Yn−1
i ∥2

As we have assumed that the time step ∆t is chosen such that

∆t < min

(
α

γ
,
1

α

)
we obtain from the above inequality that,

γ
∥Xn

i ∥2
2

+
∥Yn

i ∥2
2

≤ γ
∥Xn−1

i ∥2
2

+
∥Yn−1

i ∥2
2

+ ∆t(Yn
i )

⊤σ(Cn−1
i )

−∆t

(
α− γ∆t

2

)
∥Yn

i ∥2

Next we use the elementary identity
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with ϵ = α− γ∆t in the above inequality to obtain,
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(7.37)

Now from the bound (7.41) on the activation function, we obtain from (7.37) that,
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∥Xn−1
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2

+
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(7.38)

Iterating (7.38) over n yields,

γ∥Xn
i ∥2 + ∥Yn

i ∥2 ≤ γ∥X0
i ∥2 + ∥Y0

i ∥2

+
mn∆tβ2

2(α− γ∆t)
,

(7.39)

which readily yields the desired inequality (7.36).

Based on this bound, we can prove the following upper bound on the gradients,
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Proposition 7.2.8. Let Xn,Yn be the node features, generated by Graphcon-GCN (7.31). We assume
that ∆t << 1 is chosen to be sufficiently small. Then, the gradient of the loss function J (7.32) with
respect to any learnable weight parameter ωℓ, for some 1 ≤ ℓ ≤ N is bounded as∣∣∣∣ ∂J∂ωℓ

∣∣∣∣ ≤ β′D̂(d̂+ 1)∆t(1 + ΓN∆t)

v

(
max
1≤i≤v

(|X0
i |+ |Y0

i |+ max
1≤i≤v

|Xi|+ β
√
N∆t

)2

. (7.40)

Here,
β = max

x
|σ(x)|, β′ = max

x
|σ′(x)|, d̂ = max

i∈V
di

D̂ = max
i,j∈V

1√
didj

, Γ := 6 + 4β′D̂ max
1≤n≤N

|ωn|.
(7.41)

Proof. For any ℓ ≤ n ≤ N , a tedious yet straightforward computation yields the following representation
formula,

∂Zn

∂Zn−1
= I2v×2v +∆tEn,n−1 +∆t2Fn,n−1. (7.42)

Here En,n−1 ∈ R2v×2v is a matrix whose entries are given below. For any 1 ≤ i ≤ v, we have,

En,n−1
2i−1,2i = 1,

En,n−1
2i−1,j = 0, ∀j ̸= 2i,

En,n−1
2i,2i = −1,

En,n−1
2i,2i−1 = −1 +

σ′(Cn−1
i )ωn

di
,

En,n−1
2i,2j = 0, ∀1 ≤ j ≤ v, and j ̸= i,

En,n−1
2i,2j−1 =

σ′(Cn−1
j )ωn√
didj

,∀j ∈ Ni,

En,n−1
2i,2j−1 = 0, ∀j /∈ Ni and j ̸= i.

Similarly, Fn,n−1 ∈ R2v×2v is a matrix whose entries are given below. For any 1 ≤ i ≤ v, we have,

Fn,n−1
2i,j = 0, ∀j,

Fn,n−1
2i−1,2i−1 = −1 +

σ′(Cn−1
i )ωn

di
,

Fn,n−1
2i−1,2j−1 =

σ′(Cn−1
j )ωn√
didj

,∀j ∈ Ni,

Fn,n−1
2i−1,2j−1 = 0, ∀j /∈ Ni and j ̸= i.

Using (7.41), it is straightforward to compute that,

∥En,n−1∥∞ ≤ 2 + β′D̂|ωn|,
∥Fn,n−1∥∞ ≤ 1 + β′D̂|ωn|,

(7.43)

Then using ∆t ≤ 1 and definition (7.41), we have from (7.42) that,∥∥∥∥ ∂Zn

∂Zn−1

∥∥∥∥
∞

≤ 1 +
Γ

2
∆t, ∀n.

124



Chapter 7. GraphCON

Therefore, from the identity (7.34), we obtain,∥∥∥∥∂ZN

∂Zℓ

∥∥∥∥
∞

≤
(
1 +

Γ

2
∆t

)N−ℓ

.

Now choosing ∆t << 1 small enough such that the following inequality holds,(
1 +

Γ

2
∆t

)N−ℓ

≤ 1 + (N − ℓ)Γ∆t, (7.44)

leads to the following bound, ∥∥∥∥∂ZN

∂Zℓ

∥∥∥∥
∞

≤ 1 + (N − ℓ)Γ∆t ≤ 1 +NΓ∆t (7.45)

A straight-forward differentiation of the loss function (7.32) yields,
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Hence, ∥∥∥∥ ∂J

∂ZN

∥∥∥∥
∞

≤ 1

v

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|Xi|

)
(7.47)

Applying the pointwise upper bound (7.36) to (7.47), we obtain,∥∥∥∥ ∂J
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(7.48)

Finally, a direct calculation provides the following characterization of the vector ∂Zℓ

∂ωℓ ∈ R2v,
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(7.49)

Therefore using the pointwise bound (7.36), one can readily calculate that,∥∥∥∥∂Zℓ

∂ωℓ

∥∥∥∥
∞

≤ ∆tβ′D̂(d̂+ 1)
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Multiplying (7.45), (7.48) and (7.50) and using the product rule (7.34) yields the desired upper bound
(7.40).

The upper bound (7.40) clearly shows that the total gradient is globally bounded, independent of
the number of layers N , if ∆t ∼ N−1, thus mitigating the exploding gradients problem. Even if the
small parameter ∆t is chosen independently of the number of layers N , the total gradient in (7.40) only
grows, at most quadratically in the number of layers, thus preventing exponential blowup of gradients
and mitigating the exploding gradients problem. However, this upper bound (7.40) does not necessarily
rule out the vanishing gradients problem. To this end, we derive the following formula for the gradients,
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Proposition 7.2.9. For 1 ≤ n ≤ N , let Xn be the node features generated by GraphCON-GCN (7.31),
Then for sufficiently small ∆t << 1, the gradient ∂J

∂ωℓ , for any ℓ satisfies the following expression,

∂J

∂ωℓ
=
∆t2

v

∑
j∈V

∑
k∈Nj∪{j}

σ′(Cℓ−1
j )Xℓ−1

k

(
XN

j −Xj

)√
djdk

+O(∆t3),

(7.51)

with the order notation being defined in (2.35).

Proof. The key ingredient in the proof is the following representation formula,

∂ZN

∂Zℓ
= I2v×2v +∆t

N∑
n=ℓ+1

En,n−1 +O(∆t2), (7.52)

the proof of which follows directly from the identity (7.42) and the boundedness of the matrices E,F in
(7.42).

Then, (7.51) follows from a multiplication of (7.46), (7.52) and (7.49) and a straightforward rearrange-
ment of the terms,

One readily observes from the formula (7.51), that to leading order in the small parameter ∆t, the
gradient ∂J

∂ωℓ is independent of the number of layers N of the underlying GNN. Thus, although the
gradient can be small (due to small ∆t), it will not vanish by increasing the number of layers, mitigating
the vanishing gradient problem. Even if small parameter ∆t depends on the number of layers, as long as
this dependence is polynomial i.e., ∆t ∼ N−s, for some s, the gradient cannot decay exponentially in N ,
alleviating the vanishing gradients problem in this case too.

7.3 Experimental results

We present a detailed experimental evaluation of the proposed framework on a variety of graph learn-
ing tasks. We test two settings of GraphCON: GraphCON-GCN (using graph convolution as the
1-neighborhood coupling in (7.4)) and GraphCON-GAT (using the attentional coupling). Since in most
experiments, these two configurations already outperform the state-of-the-art, we only apply GraphCON
with more involved coupling functions in a few particular tasks.

Evolution of Dirichlet Energy. We start by illustrating the dynamics of the Dirichlet energy (6.2) of
GraphCON for an undirected graph representing a 2-dimensional 10× 10 regular grid with 4-neighbor
connectivity. The node features X are randomly sampled from U([0, 1]) and then propagated through
100-layer GNNs (with random weights): GAT, GCN, and their GraphCON-stacked versions (GraphCON-
GAT and GraphCON-GCN) for two different values of the damping parameter α = 0, 0.5 in (7.4) and
with fixed γ = 1. In Fig. 7.2, we plot the (logarithm of) Dirichlet energy of each layer’s output with
respect to (logarithm) of the layer number. It can clearly be seen that GAT and GCN suffer from the
oversmoothing problem as the Dirichlet energy converges exponentially fast to zero, indicating that the
node features become constant, while GraphCON is devoid of this behavior. This holds true even for
non-zero value of the damping parameter α, where the Dirichlet energy stabilizes after an initial decay.
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Figure 7.2: Dirichlet energy D(Xn) of layer-wise node features Xn propagated through a GAT and GCN
as well as their GraphCON-stacked versions (GraphCon-GAT and GraphCON-GCN) for two different
values of α = 0, 0.5 in (7.4) and fixed γ = 1.

Transductive node classification. We evaluate GraphCON on both homophilic and heterophilic
datasets, where high homophily implies that the features in a node are similar to those of its neighbors.
The homophily level reported in Table 7.1 and Table 7.2 is the measure proposed by Pei et al. [2020].

Homophilic datasets: We consider three widely used node classification tasks, based on the citation
networks Cora [McCallum et al., 2000], Citeseer [Sen et al., 2008] and Pubmed [Namata et al., 2012]. We
follow the evaluation protocols and training, validation, and test splits of Shchur et al. [2018], Chamberlain
et al. [2021b], using only on the largest connected component in each network.

Table 7.1 compares GraphCON with standard GNN baselines: GCN [Kipf and Welling, 2017], GAT
[Velickovic et al., 2018], MoNet [Monti et al., 2017], GraphSAGE (GS) [Hamilton et al., 2017], CGNN
[Xhonneux et al., 2020], GDE [Poli et al., 2019], and GRAND Chamberlain et al. [2021b]. We observe
that GraphCON-GCN and GraphCON-GAT outperform pure GCN and GAT consistently. We also
provide results for GraphCON based on the propagation layer used in GRAND i.e., transformer Vaswani
et al. [2017] based graph attention, referred to as GraphCON-Tran, which also outperforms the basic
underlying model. Overall, GraphCON models show the best performance on all these datasets.

Heterophilic datasets: We also evaluate GraphCON on the heterophilic graphs; Cornell, Texas
and Wisconsin from the WebKB dataset. Here, the assumption on neighbor feature similarity does not
hold. Many GNN models were shown to struggle in this settings as can be seen by the poor performance
of baseline GCN and GAT in Table 7.2. On the other hand, we see from Table 7.2 that not only do
GraphCON-GCN and GraphCON-GAT dramatically outperform the underlying GCN and GAT models
(e.g. for the most heterophilic Texas graph, GraphCON-GCN and GraphCON-GAT have mean accuracies
of 85.4% and 82.2%, compared to accuracies of 55.1% and 52.2% for GCN and GAT), the GraphCON
models also provide the best performance, outperforming recent baselines that are specifically designed
for heterophilic graphs.

Inductive node classification. In this experiment, we consider the Protein-Protein-Interaction (PPI)
dataset of Zitnik and Leskovec [2017], using the protocol of Hamilton et al. [2017]. Table 7.3 shows the
test performance (micro-average F1) of GraphCON and several standard GNN baselines. We can see that
GraphCON significantly improves the performance of the underling models (GAT from 97.4% to 99.4%

and GCN from 98.5% to 99.6%, which is the top result on this benchmark).
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Table 7.1: Transductive node classification test accuracy (MAP in %) on homophilic datasets. Mean and
standard deviation are obtained using 20 random initializations on 5 random splits each. The three best
performing methods are highlighted in red (First), blue (Second), and violet (Third).

Cora Citeseer Pubmed
Homophily level 0.81 0.74 0.80

GAT-ppr 81.6± 0.3 68.5± 0.2 76.7± 0.3

MoNet 81.3± 1.3 71.2± 2.0 78.6± 2.3

GraphSage-mean 79.2± 7.7 71.6± 1.9 77.4± 2.2

GraphSage-maxpool 76.6± 1.9 67.5± 2.3 76.1± 2.3

CGNN 81.4± 1.6 66.9± 1.8 66.6± 4.4

GDE 78.7± 2.2 71.8± 1.1 73.9± 3.7

GCN 81.5± 1.3 71.9± 1.9 77.8± 2.9

GraphCON-GCN 81.9± 1.7 72.9± 2.1 78.8± 2.6

GAT 81.8± 1.3 71.4± 1.9 78.7± 2.3

GraphCON-GAT 83.2± 1.4 73.2± 1.8 79.5± 1.8

GRAND 83.6± 1.0 73.4± 0.5 78.8± 1.7

GraphCON-Tran 84.2± 1.3 74.2± 1.7 79.4± 1.3

Table 7.2: Transductive node classification test accuracy (MAP in %) on heterophilic datasets. All results
represent the average performance of the respective model over 10 fixed train/val/test splits, which are
taken from Pei et al. [2020]. The three best performing methods are highlighted in red (First), blue
(Second), and violet (Third).

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN 78.4± 4.4 82.9± 4.2 80.3± 8.1

H2GCN 84.9± 7.2 87.7± 5.0 82.7± 5.3

GCNII 77.6± 3.8 80.4± 3.4 77.9± 3.8

Geom-GCN 66.8± 2.7 64.5± 3.7 60.5± 3.7

PairNorm 60.3± 4.3 48.4± 6.1 58.9± 3.2

GraphSAGE 82.4± 6.1 81.2± 5.6 76.0± 5.0

MLP 80.8± 4.8 85.3± 3.3 81.9± 6.4

GAT 52.2± 6.6 49.4± 4.1 61.9± 5.1

GraphCON-GAT 82.2± 4.7 85.7± 3.6 83.2± 7.0

GCN 55.1± 5.2 51.8± 3.1 60.5± 5.3

GraphCON-GCN 85.4± 4.2 87.8± 3.3 84.3± 4.8

Molecular graph property regression. We reproduce the benchmark proposed in Dwivedi et al.
[2020], regressing the constrained solubulity of 12K molecular graphs from the ZINC dataset [Irwin et al.,
2012]. We follow verbatim the settings of Dwivedi et al. [2020], Beani et al. [2021]: make no use of edge
features and constrain the network sizes to ∼100K parameters. Table 7.4 summarizes the performance of
GraphCON and standard GNN baselines. Both GraphCON-GAT and GraphCON-GCN outperform GAT
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Table 7.3: Test micro-averaged F1 score on Protein-Protein Interactions (PPI) data set. The three best
performing methods are highlighted in red (First), blue (Second), and violet (Third).

Model Micro-averaged F1

VR-GCN [Chen et al., 2017] 97.8

GraphSAGE [Hamilton et al., 2017] 61.2

PDE-GCN [Eliasof et al., 2021] 99.2

GCNII [Chen et al., 2020b] 99.5

Cluster-GCN [Chiang et al., 2019] 99.4

GeniePath Liu et al. [2019b] 98.5

JKNet [Xu et al., 2018b] 97.6

GAT [Velickovic et al., 2018] 97.3

GraphCON-GAT 99.4

GCN [Kipf and Welling, 2017] 98.5

GraphCON-GCN 99.6

and GCN respectively, by a factor of 2. Moreover, the performance of GraphCON-GCN is on par with
the recent state-of-the-art method DGN [Beani et al., 2021] with significantly lower standard deviation.

Table 7.4: Test mean absolute error (MAE, averaged over 4 runs on different initializations) on ZINC
(without edge features, small 12k version) restricted to small network sizes of ∼ 100k parameters.
Baseline results are taken from Beani et al. [2021]. The three best performing methods are highlighted in
red (First), blue (Second), and violet (Third).

Model Test MAE

GIN [Xu et al., 2018a] 0.41± 0.008

GatedGCN [Bresson and Laurent, 2017] 0.42± 0.006

GraphSAGE Hamilton et al. [2017] 0.41± 0.005

MoNet [Monti et al., 2017] 0.41± 0.007

PNA [Corso et al., 2020] 0.32± 0.032

DGN [Beani et al., 2021] 0.22± 0.010

GCN [Kipf and Welling, 2017] 0.47± 0.002

GraphCON-GCN 0.22± 0.004

GAT [Velickovic et al., 2018] 0.46± 0.002

GraphCON-GAT 0.23± 0.004

MNIST Superpixel graph classification. This experiment, first suggested by Monti et al. [2017],
is based on the MNIST dataset [LeCun et al., 1998], where the grey-scale images are transformed into
irregular graphs, as follows: the vertices in the graphs represent superpixels (large blobs of similar color),
while the edges represent their spatial adjacency. Each graph has a fixed number of 75 superpixels
(vertices). We use the standard splitting of using 55K-5K-10K for training, validation, and testing.

Table 7.5 shows that GraphCON-GCN dramatically improves the performance of a pure GCN (test
accuracy of 88.89% vs 98.70%). We stress that both models share the parameters over all layers, i.e.
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GraphCON-GCN does not have more parameters despite being a deeper model. Thus, the better
performance of GraphCON-GCN over GCN can be attributed to the use of more ‘layers’ (iterations) and
not to a higher number of parameters (see Table 7.8 for accuracy vs. number of layers for this testcase).
Finally, Table 7.5 also shows that GraphCON-GAT outperforms all other methods, including the recently
proposed PNCNN Finzi et al. [2021], reaching a nearly-perfect test accuracy of 98.91%.

Table 7.5: Test accuracy in % on MNIST Superpixel 75. The three best performing methods are
highlighted in red (First), blue (Second), and violet (Third).

Model Test accuracy

ChebNet [Defferrard et al., 2016] 75.62

MoNet [Monti et al., 2017] 91.11

PNCNN [Finzi et al., 2021] 98.76

SplineCNN [Fey et al., 2018] 95.22

GIN [Xu et al., 2018a] 97.23

GraphCON-GIN 98.53

GatedGCN [Bresson and Laurent, 2017] 97.95

GraphCON-GatedGCN 98.27

GCN [Kipf and Welling, 2017] 88.89

GraphCON-GCN 98.68

GAT [Velickovic et al., 2018] 96.19
GraphCON-GAT 98.91

Training details. All experiments were run on NVIDIA GeForce GTX 1080 Ti, RTX 2080 Ti as well
as RTX 2080 Ti GPUs. The tuning of the hyperparameters was done using a standard random search
algorithm. We fix the time-step ∆t in (7.4) to 1 in all experiments. The damping parameter α as well as
the frequency control parameter γ are set to 1 for all Cora, Citeseer and Pubmed experiments, while
we set them to 0 for all experiments based on the Texas, Cornell and Wisconsin network graphs. For
all other experiments we include α and γ to the hyperparameter search-space. The tuned values can be
found in Table 7.6.

Table 7.6: Hyperparameters α and γ of GraphCON (7.4) for each best performing GraphCON model
(based on a validation set).

Model Experiment α γ

GraphCON-GCN
PPI

0.242 1.0

GraphCON-GAT 0.785 1.0

GraphCON-GCN
ZINC

0.215 1.115

GraphCON-GAT 1.475 1.324

GraphCON-GCN
MNIST (superpixel)

1.0 0.76

GraphCON-GAT 0.76 0.105
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7.4 Further empirical analysis

Performance of GraphCON with respect to number of layers. GraphCON is designed to be a
deep GNN architecture with many layers. Depth could enhance the expressive power of GraphCON and
we investigate this issue in three of the datasets, presented in Section 7.3. In the first two experiments,
we will focus on the GraphCON-GCN model and compare and contrast its performance, with respect to
increasing depth, with the baseline GCN model.

We start with the molecular graph property regression example for the ZINC dataset of Irwin et al.
[2012]. In Table 7.7, we present the mean absolute error (MAE) of the model on the test set with respect
to increasing number of layers (up to 20 layers) of the respective GNNs. As observed from this table, the
MAE with standard GCN increases with depth. On the other hand, the MAE with GraphCON decreases
as more layers are added.

Table 7.7: Test mean absolute errors of GraphCON-GCN as well as its baseline model GCN on the ZINC
task for different number of layers N = 5, 10, 15, 20.

Model
Layers

5 10 15 20

GraphCON-GCN 0.241 0.233 0.228 0.214

GCN 0.442 0.463 0.478 0.489

Next, we consider the MNIST Superpixel graph classification task and present the test accuracy with
increasing depth (number of layers) for both GCN and GraphCON-GCN. As in the previous example, we
observe that increasing depth leads to worsening of the test accuracy for GCN. On the other hand, the
test accuracy for GraphCON-GCN increases as more layers (up to 32 layers) are added to the model.

Table 7.8: Test accuracies in % of GraphCON-GCN as well as its baseline model GCN on the MNIST
Superpixel 75 task for different number of layers N = 4, 8, 16, 32.

Model
Layers

4 8 16 32

GraphCON-GCN 97.78 98.51 98.55 98.68

GCN 88.09 87.26 86.78 85.67

Additionally, we compare the performance of GraphCON-GCN to GCN with EdgeDrop [Rong
et al., 2020] (GCN+EdgeDrop), which has been specifically designed to mitigate the oversmoothing
phenomenon for deeper GNN models. We consider the Cora node-based classification task in the semi-
supervised setting, where we compare GraphCON-GCN to GCN+DropEdge for increasing number of
layers N = 2, 4, 8, 16, 32, 64. We observe in Table 7.9 that GraphCON improves (or retains) performance
for a large increase in the number of layers, in contrast to plain GCN+DropEdge on this task. Thus, all
three experiments demonstrate that GraphCON leverages more depth to improve performance.
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Table 7.9: Test accuracies in % of GraphCON-GCN as well as of GCN+DropEdge on cora (semi-supervised
setting) for different number of layers N = 2, 4, 8, 16, 32, 64. The GCN+DropEdge results are taken from
https://github.com/DropEdge/DropEdge

Model
Layers

2 4 8 16 32 64

GraphCON-GCN 82.20 82.78 83.53 84.85 82.95 82.12

GCN+DropEdge 82.80 82.00 75.80 75.70 62.50 49.50

Sensitivity of performance of GraphCON to hyperparameters α and γ. We recall that
GraphCON (7.4) has two additional hyperparameters, namely the damping parameter α ≥ 0 and the
frequency control parameter γ > 0. In Table 7.6, we present the values of α, γ that led to the best
performance of the resulting GraphCON models. It is natural to ask how sensitive the performance of
GraphCON is to the variation of these hyperparameters. To this end, we choose the MNIST Superpixel
graph classification task and perform a sensitivity study of the GraphCON-GCN model with respect to
these hyperparameters. First, we fix a value of γ = 0.76 (corresponding to the best results in Table 7.6)
and vary α in the range of α ∈ [0, 2]. The results are plotted in Fig. 7.3 and show that the accuracy is
extremely robust to a very large parameter range in α. Only for large values α > 1.6, we see that the
accuracy deteriorates when the damping is too high.
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Figure 7.3: Sensitivity (measured as test accuracy) plot for α and γ hyperparameters of GraphCON-GCN
(with 32 layers) trained on MNIST superpixel 75 experiment. First, α = 1.0 is fixed and γ is varied in
[0, 2]. Second, γ = 0.76 is fixed and α is varied in [0, 2]. The fixed α, γ are taken from the best performing
GraphCON-GCN on the MNIST superpixel 75 task (Table 7.6)

Next for this model and task, we fix α = 1 (which provides the best performance as reported in Table
7.6) and vary γ ∈ [0, 2]. Again, for a large range of values corresponding to γ ∈ [0.2, 2], the accuracy is
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very robust. However, for very small values of γ, the accuracy falls significantly. This is to be expected as
the model loses its interpretation as system of oscillators for γ ≈ 0.

Thus, these sensitivity results demonstrate that GraphCON performs very robustly with respect to
variations of the parameters α, γ, within a reasonable range.

7.5 Discussion

In conclusion, we proposed a novel framework for designing deep Graph Neural Networks called GraphCON,
based on suitable time discretizations of ODEs (7.1) that model the dynamics of a network of controlled
and damped oscillators. The coupling between the nodes is conditioned on the structure of the underlying
graph.

One can readily interpret GraphCON as a framework to propagate information through multiple
layers of a deep GNN, where each hidden layer has the same structure as standard GNNs such as GAT,
GCN etc. Unlike in canonical constructions of deep GNNs, which stack hidden layers in a straightforward
iterative fashion (7.7), GraphCON stacks them in a more involved manner using the dynamics of the ODE
(7.3). Hence, in principle, any GNN hidden layer can serve as the coupling function Fθ in GraphCON
(7.4), offering it as an attractive framework for constructing very deep GNNs.

The well-known oversmoothing problem for GNNs was described mathematically in terms of the
stability of zero Dirichlet energy steady states of the underlying ODE (7.3). We showed that such zero
Dirichlet energy steady states of (7.3), which lead to constant node features, are not (exponentially) stable.
Even if a trajectory reaches a feature vector that is constant across all nodes, very small perturbations
will nudge it away and the resulting node features will deviate from each other. Thus, by construction, we
demonstrated that the oversmoothing problem, in the sense of definition 7.2.2, is mitigated for GraphCON.

In addition to increasing expressivity by mitigating the oversmoothing problem, GraphCON was
rigorously shown to mitigate the exploding and vanishing gradients problem. Consequently, using coupled
oscillators also facilitates efficient training of the resulting GNNs.

Finally, we extensively test GraphCON on a variety of node- and graph-classification and regression
tasks, including heterophilic datasets known to be challenging for standard GNN models. From these
experiments, we observed that (i) GraphCON models significantly outperform the underlying base GNN
such as GCN or GAT and (ii) GraphCON models are either on par with or outperform state-of-the-art
models on these tasks. This shows that ours is a novel, flexible, easy to use framework for constructing
deep GNNs with theoretical guarantees and solid empirical performance.
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Gradient Gating

Standard Message-Passing GNN architectures (MPNNs), such as GCN [Kipf and Welling, 2017] or GAT
[Velickovic et al., 2018], update each node at exactly the same rate within every hidden layer. Yet,
realistic learning tasks might benefit from having different rates of propagation (flow) of information on
the underlying graph. This insight leads to a novel multi-rate message-passing scheme capable of learning
these underlying rates. Moreover, we also propose a novel procedure that harnesses graph gradients to
ameliorate the oversmoothing problem. Combining these elements leads to a new architecture, which we
term Gradient Gating (G2).

Main Contributions. We will demonstrate the following advantages of the proposed approach:

• G2 is a flexible framework wherein any standard message-passing layer (such as GAT, GCN, GIN, or
GraphSAGE) can be used as the coupling function. Thus, it should be thought of as a framework into
which one can plug existing GNN components. The use of multiple rates and gradient gating facilitates
the implementation of deep GNNs and generally improves performance.

• G2 can be interpreted as a discretization of a dynamical system governed by nonlinear differential
equations. By investigating the stability of zero-Dirichlet energy steady states of this system, we
rigorously prove that our gradient gating mechanism prevents oversmoothing. To complement this, we
also prove a partial converse, that the lack of gradient gating can lead to oversmoothing.

• We provide extensive empirical evidence demonstrating that G2 achieves state-of-the-art performance
on a variety of graph learning tasks, including on large heterophilic graph datasets.

8.1 The proposed Gradient Gating framework

We recall the v ×m-dimensional feature matrix X defined on the undirected graph G. Based on this, a
typical residual Message-Passing GNN (MPNN) updates the node features by performing several iterations
of the form,

Xn = Xn−1 + σ(Fθ(X
n−1,G)), (8.1)

where Fθ is a learnable function with parameters θ, and σ is an element-wise nonlinear activation function.
Here n ≥ 1 denotes the n-th hidden layer with n = 0 being the input.

One can interpret (8.1) as a discrete dynamical system in which F plays the role of a coupling
function determining the interaction between different nodes of the graph. In particular, we consider local
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(1-neighborhood) coupling of the form Yi = (F(X,G))i = F(Xi, {{Xj∈Ni
}}) operating on the multiset

of 1-neighbors of each node. Examples of such functions used in the graph machine learning literature
[Bronstein et al., 2021] are graph convolutions Yi =

∑
j∈Ni

cijXj (GCN, [Kipf and Welling, 2017]) and
graph attention Yi =

∑
j∈Ni

a(Xi,Xj)Xj (GAT, [Velickovic et al., 2018]).
We observe that in (8.1), at each hidden layer, every node and every feature channel gets updated

with exactly the same rate. However, it is reasonable to expect that in realistic graph learning tasks one
can encounter multiple rates for the flow of information (node updates) on the graph. Based on this
observation, we propose a multi-rate (MR) generalization of (8.1), allowing updates to each node of
the graph and feature channel with different rates,

Xn = (1− τn)⊙Xn−1 + τn ⊙ σ(Fθ(X
n−1,G)), (8.2)

where τ denotes a v×m matrix of rates with elements τik ∈ [0, 1]. Rather than fixing τ prior to training,
we aim to learn the different update rates based on the node data X and the local structure of the
underlying graph G, as follows

τn(Xn−1,G) = σ̄(F̂θ̂(X
n−1,G)), (8.3)

where F̂θ̂ is another learnable 1-neighborhood coupling function, and σ̄ is a sigmoidal logistic activation
function to constrain the rates to lie within [0, 1]. Since the multi-rate message-passing scheme (8.2) using
(8.3) does not necessarily prevent oversmoothing (for any choice of the coupling function), we need to
further constrain the rate matrix τn. To this end, we note that the graph gradient of scalar node features
y on the underlying graph G is defined as (∇y)ij = yj − yi at the edge i ∼ j [Lim, 2015]. Next, we will
use graph gradients to obtain the proposed Gradient Gating (G2) framework given by

τ̂n = σ(F̂θ̂(X
n−1,G)),

τn
ik = tanh

∑
j∈Ni

|τ̂n
jk − τ̂n

ik|p
 ,

Xn = (1− τn)⊙Xn−1 + τn ⊙ σ(Fθ(X
n−1,G)),

(8.4)

where τ̂n
jk − τ̂n

ik = (∇τ̂n
∗k)ij denotes the graph-gradient and τ̂n

∗k is the k-th column of the rate matrix
τ̂n and p ≥ 0. Since

∑
j∈Ni

|τ̂n
jk − τ̂n

ik|p ≥ 0 for all i ∈ V, it follows that τn ∈ [0, 1]v×m for all n,
retaining its interpretation as a matrix of rates. The sum over the neighborhood Ni in (8.4) can be
replaced by any permutation-invariant aggregation function (e.g., mean or max). Moreover, any standard
message-passing procedure can be used to define the coupling functions F and F̂ (and, in particular, one
can set F̂ = F). As an illustration, Fig. 8.1 shows a schematic diagram of the layer-wise update of the
proposed G2 architecture.

The intuitive idea behind gradient gating in (8.4) is the following: If for any node i ∈ V local
oversmoothing occurs, i.e., limn→∞

∑
j∈Ni

∥Xn
i −Xn

j ∥ = 0, then G2 ensures that the corresponding rate
τn
i goes to zero (at a faster rate), such that the underlying hidden node feature Xi is no longer updated.

This prevents oversmoothing by early-stopping of the message-passing procedure.

Related Work. Gating is a key component of our proposed framework. The use of gating (i.e., the
modulation between 0 and 1) of hidden layer outputs has a long pedigree in neural networks and sequence
modeling. In particular, classical recurrent neural network (RNN) architectures such as LSTM [Hochreiter
and Schmidhuber, 1997] and GRU [Cho et al., 2014] rely on gates to modulate information propagation in
the RNN. Given the connections between RNNs and early versions of GNNs [Zhou et al., 2019], it is not
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Xn−1 Xn

Figure 8.1: Schematic diagram of G2 (8.4) showing the layer-
wise update of the latent node features X (at layer n). The
norm of the graph-gradient (i.e., sum in second equation in
(8.4)) is denoted as ∥∇∥pp.

surprising that the idea of gating has been used in designing GNNs Bresson and Laurent [2017], Li et al.
[2016], Zhang et al. [2018]. However, to the best of our knowledge, the use of local graph-gradients to
further modulate gating in order to alleviate the oversmoothing problem is novel, and so is its theoretical
analysis.

The multi-rate gating procedure used in G2 is a particular example of multiscale mechanisms. The
use of multiscale neural network architectures has a long history. An early example is Hinton and Plaut
[1987], who proposed a neural network with each connection having a fast changing weight for temporary
memory and a slow changing weight for long-term learning. The classical convolutional neural networks
(CNNs, LeCun et al. [1989]) can be viewed as multiscale architectures for processing multiple spatial scales
in images [Bai et al., 2020]. Moreover, there is a close connection between our multi-rate mechanism (8.4)
and the use of multiple time scales in recently proposed sequence models such as UnICORNN (Chapter
3) and LEM (Chapter 5).

Ordinary and partial differential equations (ODEs and PDEs) are playing an increasingly important
role in designing, interpreting, and analyzing novel graph machine learning architectures Avelar et al.
[2019], Poli et al. [2019], Zhuang et al. [2020], Xhonneux et al. [2020]. Chamberlain et al. [2021b] designed
attentional GNNs by discretizing parabolic diffusion-type PDEs. Di Giovanni et al. [2022] interpreted
GCNs as gradient flows minimizing a generalized version of the Dirichlet energy. Chamberlain et al. [2021a]
applied a non-Euclidean diffusion equation (“Beltrami flow”) yielding a scheme with adaptive spatial
derivatives (“graph rewiring”), and Topping et al. [2021] studied a discrete geometric PDE similar to Ricci
flow to improve information propagation in GNNs. Eliasof et al. [2021] proposed a GNN framework arising
from a mixture of parabolic (diffusion) and hyperbolic (wave) PDEs on graphs with convolutional coupling
operators, which describe dissipative wave propagation. Finally, in Chapter 7 we used systems of nonlinear
oscillators coupled through the associated graph structure to rigorously overcome the oversmoothing
problem. In line with these works, one contribution of this chapter is a continuous version of G2 (8.9),
which we use for a rigorous analysis of the oversmoothing problem. Understanding whether this system
of ODEs has an interpretation as a known physical model is a topic for future research.
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8.2 Rigorous analysis of Gradient Gating

G2 is a flexible framework. An important aspect of G2 (8.4) is that it can be considered as a
“wrapper” around any specific MPNN architecture. In particular, the hidden layer update for any form
of message-passing (e.g., GCN [Kipf and Welling, 2017], GAT [Velickovic et al., 2018], GIN [Xu et al.,
2018a] or GraphSAGE [Hamilton et al., 2017]) can be used as the coupling functions F, F̂ in (8.4). By
setting τ ≡ I, (8.4) reduces to

Xn = σ
(
Fθ(X

n−1,G)
)
, (8.5)

a standard (non-residual) MPNN. As we will show in the following, the use of a non-trivial gradient-gated
learnable rate matrix τ allows implementing very deep architectures that avoid oversmoothing.

Maximum Principle for node features. Node features produced by G2 satisfy the following
Maximum Principle.

Proposition 8.2.1. Let Xn be the node feature matrix generated by iteration formula (8.4). Then, the
features are bounded as follows:

min (−1, σ) ≤ Xn
ik ≤ max (1, σ) , ∀1 ≤ n, (8.6)

where the scalar activation function is bounded by σ ≤ σ(z) ≤ σ for all z ∈ R.

The proof follows readily from writing (8.4) component-wise and using the fact that 0 ≤ τn
ik ≤ 1, for

all 1 ≤ i ≤ v, 1 ≤ k ≤ m and 1 ≤ n.

Continuous limit of G2. It has recently been shown (see Avelar et al. [2019], Poli et al. [2019], Zhuang
et al. [2020], Xhonneux et al. [2020], Chamberlain et al. [2021b], Eliasof et al. [2021], Chamberlain et al.
[2021a], Topping et al. [2021] and references therein) that interesting properties of GNNs (with residual
connections) can be understood by taking the continuous (infinite-depth) limit and analyzing the resulting
differential equations.

In this context, we can derive a continuous version of (8.4) by introducing a small-scale 0 < ∆t < 1

and rescaling the rate matrix τn to ∆tτn leading to

Xn = (1−∆tτn)⊙Xn−1 +∆tτn ⊙ σ
(
Fθ(X

n−1,G)
)
. (8.7)

Rearranging the terms in (8.7), we obtain

Xn −Xn−1

∆t
= τn ⊙

(
σ
(
Fθ(X

n−1,G)
)
−Xn−1

)
. (8.8)

Interpreting Xn ≈ X(n∆t) = X(tn), i.e., marching in time, corresponds to increasing the number of
hidden layers. Letting ∆t → 0, one obtains the following system of graph-coupled ordinary differential
equations (ODEs):

dX(t)

dt
= τ (t)⊙ (σ (Fθ(X(t),G))−X(t)) , ∀t ≥ 0,

τik(t) = tanh

∑
j∈Ni

|τ̂ik(t)− τ̂jk(t)|p
 ,

τ̂ (t) = σ̂(F̂θ̂(X
n−1,G)).

(8.9)
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We observe that the iteration formula (8.4) acts as a forward Euler discretization of the ODE system (8.9).
Hence, one can follow Chamberlain et al. [2021b] and design more general (e.g., higher-order, adaptive, or
implicit) discretizations of the ODE system (8.9). All these can be considered as design extensions of
(8.4).

Oversmoothing. Using the interpretation of (8.4) as a discretization of the ODE system (8.9), we can
leverage the same mathematical framework that we developed in chapter 7 to study the oversmoothing
problem for G2.

To this end, one can prove the following proposition further characterizing oversmoothing with the
standard terminology of dynamical systems [Wiggins, 2003].

Proposition 8.2.2. The oversmoothing problem occurs for the ODEs (8.9) iff the hidden states X∗
i = c,

for all i ∈ V are exponentially stable steady states (fixed points) of the ODE (8.9), for some c ∈ Rm.

In other words, for the oversmoothing problem to occur for this system, all the trajectories of the
ODE (8.9) that start within the corresponding basin of attraction have to converge exponentially fast in
time (according to (7.13)) to the corresponding steady state c. Note that the basins of attraction will be
different for different values of c. The proof of Proposition 8.2.2 is a straightforward adaptation of the
proof of Proposition 7.2.3.

Given this precise formulation of oversmoothing, we will investigate whether and how gradient gating
in (8.9) can prevent oversmoothing. For simplicity, we set m = 1 to consider only scalar node features
(extension to vector node features is straightforward). Moreover, we assume coupling functions of the
form F(X) = A(X)X, expressed element-wise as,

(F(X))i =
∑
j∈Ni

A(Xi,Xj)Xj . (8.10)

Here, A(X) is a matrix-valued function whose form covers many commonly used coupling functions
stemming from the graph attention (GAT, where Aij = A(Xi,Xj) is learnable) or convolution operators
(GCN, where Aij is fixed). Furthermore, the matrices are right stochastic, i.e., the entries satisfy

0 ≤ Aij ≤ 1,
∑
j∈Ni

Aij = 1. (8.11)

Finally, as the multi-rate feature of (8.9) has no direct bearing on the oversmoothing problem, we focus
on the contribution of the gradient feedback term. To this end, we deactivate the multi-rate aspects and
assume that τ̂i = Xi for all i ∈ V, leading to the following form of (8.9):

dXi(t)

dt
= τi(t)

σ

∑
j∈Ni

AijXj(t)

−Xi(t)

 , ∀t ≥ 0,

τi(t) = tanh

∑
j∈Ni

∥Xj(t)−Xi(t)∥p
 .

(8.12)

Lack of G2 can lead to oversmoothing. We first consider the case where the Gradient Gating
is switched off by setting p = 0 in (8.12). This yields a standard GNN in which node features are
evolved through message-passing between neighboring nodes, without any explicit information about
graph gradients. We further assume that the activation function is ReLU i.e., σ(x) = max(x, 0). Given
this setting, we have the following proposition on oversmoothing:
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Proposition 8.2.3. Assume the underlying graph G is connected. For any c ≥ 0, let X∗
i ≡ c, for all

i ∈ V be a (zero-Dirichlet energy) steady state of the ODEs (8.12). Moreover, assume no Gradient Gating
(p = 0 in (8.12)) and

Aij(c, c) = Aji(c, c), and Aij(c, c) ≥ a, 1 ≤ i, j ≤ v, (8.13)

with 0 < a ≤ 1 and that there exists at least one node denoted w.l.o.g. with index 1 such that X1(t) ≡ c,
for all t ≥ 0. Then, the steady state X∗

i = c, for all i ∈ V, of (8.12) is exponentially stable.

Proposition 8.2.2 implies that without gradient gating (G2), (8.9) can lead to oversmoothing. In
order to prove 8.2.3, we first have to establish the following technical result, i.e., a Poincare inequality on
connected graphs.

Poincare inequalities for functions [Evans, 2010] bound function values in terms of their gradients.
Similar bounds on node values in terms of graph-gradients can be derived and a particular instance is
given below,

Proposition 8.2.4. Let G = (V,D) be a connected graph and the corresponding (scalar) node features
are denoted by Yi ∈ R, for all i ∈ V. Let Y1 = 0. Then, the following bound holds,∑

i∈V
Y2

i ≤ d∆1

∑
i∈V

∑
j∈Ni

|Yj −Yi|2, (8.14)

where d = max
i∈V

deg(i) and ∆1 is the eccentricity of the node 1.

Proof. Fix a node i ∈ V . By assumption, the graph G is connected. Hence, there exists a path connecting
i and the node 1. Denote the shortest path as P(i, 1). This path can be expressed in terms of the nodes
ℓi,1 with 0 ≤ ℓ ≤ δ, where 0i,1 = 1 and δi,1 = i. For any ℓ, we require ℓi,1 ∼ (ℓ+ 1)i,1. Moreover, δi,1 is
the graph distance between the nodes i and 1 and ∆1 = max

i∈V
δi,1 is the eccentricity of the node 1.

Given the node feature Yi, we can rewrite it as,

Yi = Y1 +

δ−1∑
ℓ=0

Y(ℓ+1)i,1 −Yℓi,1 =

δ−1∑
ℓ=0

Y(ℓ+1)i,1 −Yℓi,1 ,

as by assumption Y1 = 0.
Using Cauchy-Schwartz inequality on the previous identity yields,

Y2
i ≤ ∆1

δ−1∑
ℓ=0

(
Y(ℓ+1)i,1 −Yℓi,1

)2
.

Summing the above inequality over i ∈ V and using the fact that ℓi,1 ∼ (ℓ+ 1)i,1, we obtain the desired
Poincare inequality (8.14).

Leveraging this Poincare inequality on connected graphs, we proceed to prove proposition 8.2.3.

Proof. By the definition of exponential stability, we consider a small perturbation around the steady state
c and study whether this perturbation grows or decays in time. To this end, define the perturbation as,

X̂i = Xi − c, 1 ≤ i ≤ v. (8.15)
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A tedious but straightforward calculation shows that these perturbations evolve by the following linearized
system of ODEs,

dX̂i(t)

dt
=
∑
j∈Ni

Aij(c, c)
(
X̂j − X̂i

)
, ∀t, ∀i ∈ V. (8.16)

Multiplying x̂i to both sides of (8.16) yields,

X̂i
dX̂i(t)

dt
=
∑
j∈Ni

Aij(c, c)X̂i

(
X̂j − X̂i

)
,

⇒ dX̂2
i (t)

dt
=
∑
j∈Ni

Aij(c, c)
(
X̂2

j − X̂2
i

)
−
∑
j∈Ni

Aij(c, c)
(
X̂j − X̂i

)2
.

Summing the above identity over all nodes i ∈ V yields,

d

dt

∑
i∈V

X̂2
i (t) =

∑
i∈V

∑
j∈Ni

Aij(c, c)
(
X̂2

j − X̂2
i

)
−
∑
i∈V

∑
j∈Ni

Aij(c, c)
(
X̂j − X̂i

)2
=

1

2

∑
i∈V

∑
j∈Ni

(Aij(c, c)−Aj,i(c, c))︸ ︷︷ ︸
=0 (8.13)

(
X̂2

j − X̂2
i

)
− 1

2

∑
i∈V

∑
j∈Ni

(Aij(c, c) +Aj,i(c, c))︸ ︷︷ ︸
=2Aij (8.13)

(
X̂j − X̂i

)2
,

= −
∑
i∈V

∑
j∈Ni

Aij(c, c)
(
X̂j − X̂i

)2
,

≤ −a
∑
i∈V

∑
j∈Ni

(
X̂j − X̂i

)2
, (by (8.13)),

≤ − a

d∆1

∑
i∈V

X̂2
i .

Here, the last inequality comes from applying the Poincare inequality (8.14) for the perturbations X̂ and
from the fact that by assumption X̂1 = 0.

Applying Grönwall’s inequality yields,∑
i∈V

X̂2
i (t) ≤

∑
i∈V

X̂2
i (0)e

− a

d∆1
t
. (8.17)

Thus, the initial perturbations around the steady state c are damped down exponentially fast and the
steady state c is exponentially stable implying that this architecture will lead to oversmoothing.

G2 prevents oversmoothing. We next investigate the effect of Gradient Gating in the same setting
of Proposition 8.2.3. The following Proposition shows that gradient gating prevents oversmoothing:

Proposition 8.2.5. Assume the underlying graph G is connected. For any c ≥ 0 and for all i ∈ V, let
X∗

i ≡ c be a (zero-Dirichlet energy) steady state of the ODEs (8.12). Moreover, assume Gradient Gating
(p > 0) and that the matrix A in (8.12) satisfies (8.13) and that there exists at least one node denoted
w.l.o.g. with index 1 such that X1(t) ≡ c, for all t ≥ 0. Then, the steady state X∗

i = c, for all i ∈ V is
not exponentially stable.

Proof. As in the proof of Proposition 8.2.3, we consider small perturbations of form (8.15) of the steady
state c and investigate how these perturbations evolve in time. Assuming that the initial perturbations
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are small, i.e., that there exists an 0 < ϵ << 1 such that max
i∈V

|x̂i(0)| ≤ ϵ, we perform a straightforward

calculation to obtain that the perturbations (for a short time) evolve with the following quasi-linearized
system of ODEs,

dX̂i(t)

dt
= τ i(t)

∑
j∈Ni

Aij(c, c)
(
X̂j − X̂i

)
, ∀i ∈ V,

τ i(t) =
∑
j∈Ni

|X̂j(t)− X̂i(t)|p, ∀i ∈ V.
(8.18)

Note that we have used the fact that σ′(x) = 1 and tanh′(0) = 1 in obtaining (8.18) from (8.12).
Next, we multiply x̂i to both sides of (8.18) to obtain,

X̂i
dX̂i(t)

dt
=
∑
j∈Ni

Aij(c, c)τ iX̂i

(
X̂j − X̂i

)
,

⇒ dX̂2
i (t)

dt
=
∑
j∈Ni

Aij(c, c)τ i

(
X̂2

j − X̂2
i

)
−
∑
j∈Ni

Aij(c, c)τ i

(
X̂j − X̂i

)2 (8.19)

Trivially,
|X̂j − X̂i|p ≤ τ i, ∀j ∈ Ni, ∀i.

Applying this inequality to the last line of the identity (8.19), we obtain,

dX̂2
i (t)

dt
≤
∑
j∈Ni

Aij(c, c)τ i

(
X̂2

j − X̂2
i

)
−
∑
j∈Ni

Aij(c, c)
∣∣∣X̂j − X̂i

∣∣∣p+2

.

Summing the above inequality over i ∈ V leads to,

d

dt

∑
i∈V

X̂2
i (t) ≤

∑
i∈V

∑
j∈Ni

Aij(c, c)τ i

(
X̂2

j − X̂2
i

)
−
∑
i∈V

∑
j∈Ni

Aij(c, c)
∣∣∣X̂j − X̂i

∣∣∣p+2

≤ 1

2

∑
i∈V

∑
j∈Ni

Aij(c, c) (τ i − τ j)
(
X̂2

j − X̂2
i

)
(Aij = Aj,i)

− a
∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣p+2

(from (8.13)).

Therefore, we have the following inequality,

d

dt

∑
i∈V

X̂2
i (t) ≤ T1 − T2,

T1 =
1

2

∑
i∈V

∑
j∈Ni

Aij(c, c) (τ i − τ j)
(
X̂2

j − X̂2
i

)
T2 = a

∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣p+2

.

(8.20)

We analyze the differential inequality (8.20) by starting with the term T1 in (8.20). We observe that this
term does not have a definite sign and can be either positive or negative. However, we can upper bound
this term in the following manner. Given that the right-hand side of the ODE system (8.18) is Lipschitz
continuous, the well-known Cauchy-Lipschitz theorem states that the solutions x̂ depend continuously on
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the initial data. Given that max
i∈V

|X̂i(0)| ≤ ϵ << 1 and the bounds on the hidden states (8.1), there exists

a time t > 0 such that
max
i∈V

|X̂i(t)| ≤ 1,∀t ∈ [0, t].

Using the definitions of τ and the right stochasticity of the matrix A, we easily obtain the following
bound,

|T1| ≤ 2p+1d
2
v, (8.21)

where d = max
i∈V

deg(i).

On the other hand, the term T2 in (8.20) is clearly positive. Hence, the solutions of resulting ODE,

d

dt

∑
i∈V

X̂2
i (t) ≤ −T2, (8.22)

will clearly decay in time. The key question is whether or not the decay is exponentially fast. We answer
this question below.

To this end, we have the following calculation using the Hölder’s inequality,

∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣2 ≤
(
dv
) p

p+2

∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣p+2

 2
p+2

,

⇒ 1(
dv
) p

2

∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣2


p+2
2

≤
∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣p+2

.

Observing that X̂1 = 0 by assumption, we can applying the Poincare inequality (8.14) in the above
inequality to further obtain,

1

d
p+1

v
p
2∆

p+2
2

1

(∑
i∈V

|X̂i|2
) p+2

2

≤
∑
i∈V

∑
j∈Ni

∣∣∣X̂j − X̂i

∣∣∣p+2

.

Hence, from the definition of T2 (8.20), we have,

T2 ≥ a

d
p+1

v
p
2∆

p+2
2

1

(∑
i∈V

|X̂i|2
) p+2

2

. (8.23)

Therefore, the differential inequality (8.22) now reduces to,

d

dt

∑
i∈V

X̂2
i (t) ≤ − a

d
p+1

v
p
2∆

p+2
2

1

(∑
i∈V

|X̂i|2
) p+2

2

. (8.24)

The differential inequality (8.24) can be explicitly solved to obtain,

∑
i∈V

X̂2
i (t) ≤

(
2 + pt

a

d
p+1

v
p
2∆

p+2
2

1

∑
i∈V

X̂2
i (0)

p
2

)− 2
p ∑

i∈V
X̂2

i (0). (8.25)
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From (8.25), we see that the initial perturbations decay but only algebraically at a rate of t−
2
p in time.

For instance, the decay is only linear in time for p = 2 and even slower for higher value of p.
Combining the analysis of the terms T1,2 in the differential inequality (8.20), we see that the one

of the terms can lead to a growth in the initial perturbations whereas the second term only leads to
polynomial decay. Even if the contribution of the term T1 ≡ 0, the decay of initial perturbations is only
polynomial. Thus, the steady state c is not exponentially stable.

This proof clearly elucidates the role of gradient gating by showing that the energy associated with
the quasi-linearized evolution equations (8.18) is balanced by two terms (8.20)), both resulting from the
introduction of gradient gating by setting p > 0 in (8.12). One of them is of indefinite sign and can even
cause growth of perturbations around a steady state c. The other decays initial perturbations. However,
the rate of this decay is at most polynomial (Eqn. (8.25)). For instance, the decay is merely linear for
p = 2 and slower for higher values of p. Thus, the steady state c cannot be exponentially stable and
oversmoothing is prevented. This justifies the intuition behind gradient gating, namely, if oversmoothing
occurs around a node i, i.e., limn→∞

∑
j∈Ni

∥Xn
i −Xn

j ∥ = 0, then the corresponding rate τn
i goes to zero

(at a faster rate), such that the underlying hidden node feature Xi stops getting updated.

Remark 8.2.6. We note that the Proposition 8.2.5 assumes a certain structure of the matrix A in (8.12).
A careful perusal of the proof presented above reveals that these assumptions can be further relaxed. To
start with, if the matrix A(c, c) is not symmetric, then there will be an additional term in the inequality
(8.20), which would be proportional to Aij − Aji. This term will be of indefinite sign and can cause
further growth in the perturbations of the steady state c. In any case, it can only further destabilize
the quasi-linearized system. The assumption that the entries of A are uniformly positive amounts to
assuming positivity of the weights of the underlying GNN layer. This can be replaced by requiring that the
corresponding eigenvalues are uniformly positive. If some eigenvalues are negative, this will cause further
instability and only strengthen the conclusion of lack of (exponential) stability. Finally, the assumption
that one node is not perturbed during the quasi-linearization is required for the Poincare inequality (8.14).
If this is not true, an additional term, of indefinite sign, is added to the inequality (8.20). This term
can cause further growth of the perturbations and will only add instability to the system. Hence, all the
assumptions in Proposition 8.2.5 can be relaxed and the conclusion of lack of exponential stability of the
zero-Dirichlet energy steady state still holds.

8.3 Empirical results

In this section, we present an experimental study of G2 on both synthetic and real datasets. We use
G2 with three different coupling functions: GCN [Kipf and Welling, 2017], GAT [Velickovic et al., 2018]
and GraphSAGE [Hamilton et al., 2017].

Effect of G2 on Dirichlet energy. Given that oversmoothing relates to the decay of Dirichlet energy
(6.2), we follow the experimental setup proposed in Chapter 7 to probe the dynamics of the Dirichlet energy
of Gradient-Gated GNNs, defined on a 2-dimensional 10× 10 regular grid with 4-neighbor connectivity.
The node features X are randomly sampled from U([0, 1]) and then propagated through a 1000-layer GNN
with random weights. We compare GAT, GCN and their gradient-gated versions (G2-GAT and G2-GCN)
in this experiment. Fig. 8.2 depicts on log-log scale the Dirichlet energy of each layer’s output with respect
to the layer number. We clearly observe that GAT and GCN oversmooth as the underlying Dirichlet
energy converges exponentially fast to zero, resulting in the node features becoming indistinguishable. In
practice, the Dirichlet energy for these architectures is ≈ 0 after just ten hidden layers. On the other
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hand, and as suggested by the theoretical results of the previous section, adding G2 decisively prevents
this behavior and the Dirichlet energy remains (near) constant, even for very deep architectures (up to
1000 layers).
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Figure 8.2: Dirichlet energy D(Xn) of layer-wise
node features Xn propagated through a GAT,
GCN and their gradient gated versions (G2-GAT,
G2-GCN).
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Figure 8.3: Test accuracies of GCN with gradient
gating (G2-GCN) as well as plain GCN and GCN
combined with other methods on the Cora dataset
for increasing number of layers.

G2 for very deep GNNs. Oversmoothing inhibits the use of large number of GNN layers. As G2 is
designed to alleviate oversmoothing, it should allow very deep architectures. To test this assumption,
we reproduce the experiment considered in Chamberlain et al. [2021b]: a node-level classification task
on the Cora dataset using increasingly deeper GCN architectures. In addition to G2, we also compare
with two recently proposed mechanisms to alleviate oversmoothing, DropEdge [Rong et al., 2020] and
GraphCON (Chapter 7). The results are presented in Fig. 8.3, where we plot the test accuracy for all
the models with the number of layers ranging from 2 to 128. While a plain GCN seems to suffer the
most from oversmoothing (with the performance rapidly deteriorating after 8 layers), GCN+DropEdge as
well as GCN+GraphCON are able to mitigate this behavior to some extent, although the performance
eventually starts dropping (after 16 and 64 layers, respectively). In contrast, G2-GCN exhibits a small
but noticeable increase in performance for increasing number of layers, reaching its peak performance
for 128 layers. This experiment suggests that G2 can indeed be used in conjunction with deep GNNs,
potentially allowing performance gains due to depth.

G2 for multiscale node-level regression. We test the multi-rate nature of G2 on node-level regression
tasks, where the target node values exhibit multiple scales. Due to a lack of widely available node-level
regression tasks, we propose regression experiments based on the Wikipedia article networks Chameleon
and Squirrel, [Rozemberczki et al., 2021]. While Chameleon and Squirrel are already widely used as
heterophilic node-level classification tasks, the original datasets consist of continuous node targets (average
monthly web-page traffic). We normalize the provided webpage traffic values for every node between 0 and
1 and note that the resulting node values exhibit values on a wide range of different scales ranging between
10−5 and 1 (see Fig. 8.4). Table 8.1 shows the test normalized mean-square error (mean and standard
deviation based on the ten pre-defined splits in Pei et al. [2020]) for two standard GNN architectures
(GCN and GAT) with and without G2. We observe from Table 8.1 that adding G2 to the baselines
significantly reduces the error, demonstrating the advantage of using multiple update rates.
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Table 8.1: Normalized test MSE on multiscale node-level regression tasks. The three best performing
methods are highlighted in red (First), blue (Second), and violet (Third).

Chameleon Squirrel
#Nodes 2,277 5,201
#Edges 31,421 198,493

GCNII 0.170± 0.034 0.093± 0.031

PairNorm 0.207± 0.038 0.140± 0.040

GCN 0.207± 0.039 0.143± 0.039

GAT 0.207± 0.038 0.143± 0.039

G2-GCN 0.137± 0.033 0.070± 0.028

G2-GAT 0.136± 0.029 0.069± 0.029
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Figure 8.4: Histogram of the target node values of
the Chameleon and Squirrel node-level regression
tasks.
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Figure 8.5: Test accuracy of GCN and GAT with
/ without gradient gating (G2) on synthetic Cora
with a varying level of true label homophily.

G2 for varying homophily (Synthetic Cora). We test G2 on a node-level classification task with
varying levels of homophily on the synthetic Cora dataset Zhu et al. [2020]. Standard GNN models
are known to perform poorly in heterophilic settings. This can be seen in Fig. 8.5, where we present
the classification accuracy of GCN and GAT on the synthetic-Cora dataset with a level of homophily
varying between 0 and 0.99. While these models succeed in the homophilic case (reaching nearly perfect
accuracy), their performance drops to ≈ 20% when the level of homophily approaches 0. Adding G2 to
GCN or GAT mitigates this phenomenon: the resulting models reach a test accuracy of over 80%, even
in the most heterophilic setting, thus leading to a four-fold increase in the accuracy of the underlying
GCN or GAT models. Furthermore, we notice an increase in performance even in the homophilic setting.
Moreover, we compare with a state-of-the-art model GGCN [Yan et al., 2021], which has been recently
proposed to explicitly deal with heterophilic graphs. From Fig. 8.5 we observe that G2 performs on par
and slightly better than GGCN in strongly heterophilic settings.

Heterophilic datasets. In Table 8.2, we test the proposed framework on several real-world heterophilic
graphs (with a homophily level of ≤ 0.30) [Pei et al., 2020, Rozemberczki et al., 2021] and benchmark
it against baseline models GraphSAGE [Hamilton et al., 2017], GCN [Kipf and Welling, 2017], GAT
[Velickovic et al., 2018] and MLP [Goodfellow et al., 2016], as well as recent state-of-the-art models on
heterophilic graph datasets, i.e., GGCN [Yan et al., 2021], GPRGNN [Chien et al., 2020], H2GCN [Zhu
et al., 2020], FAGCN [Bo et al., 2021], F2GAT [Wei et al., 2022], MixHop [Abu-El-Haija et al., 2019],
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Table 8.2: Results on heterophilic graphs. The three best performing methods are highlighted in red
(First), blue (Second), and violet (Third).

Texas Wisconsin Film Squirrel Chameleon Cornell
Hom level 0.11 0.21 0.22 0.22 0.23 0.30
#Nodes 183 251 7,600 5,201 2,277 183
#Edges 295 466 26,752 198,493 31,421 280
#Classes 5 5 5 5 5 5

GGCN 84.86± 4.55 86.86± 3.29 37.54± 1.56 55.17± 1.58 71.14± 1.84 85.68± 6.63

GPRGNN 78.38± 4.36 82.94± 4.21 34.63± 1.22 31.61± 1.24 46.58± 1.71 80.27± 8.11

H2GCN 84.86± 7.23 87.65± 4.98 35.70± 1.00 36.48± 1.86 60.11± 2.15 82.70± 5.28

FAGCN 82.43± 6.89 82.94± 7.95 34.87± 1.25 42.59± 0.79 55.22± 3.19 79.19± 9.79

F2GAT 82.70± 5.95 87.06± 4.13 36.65± 1.13 47.32± 2.43 67.81± 2.05 83.51± 6.70

MixHop 77.84± 7.73 75.88± 4.90 32.22± 2.34 43.80± 1.48 60.50± 2.53 73.51± 6.34

GCNII 77.57± 3.83 80.39± 3.40 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.86± 3.79

Geom-GCN 66.76± 2.72 64.51± 3.66 31.59± 1.15 38.15± 0.92 60.00± 2.81 60.54± 3.67

PairNorm 60.27± 4.34 48.43± 6.14 27.40± 1.24 50.44± 2.04 62.74± 2.82 58.92± 3.15

LINKX 74.60± 8.37 75.49± 5.72 36.10± 1.55 61.81± 1.80 68.42± 1.38 77.84± 5.81

GloGNN 84.32± 4.15 87.06± 3.53 37.35± 1.30 57.54± 1.39 69.78± 2.42 83.51± 4.26

GraphSAGE 82.43± 6.14 81.18± 5.56 34.23± 0.99 41.61± 0.74 58.73± 1.68 75.95± 5.01

ResGatedGCN 80.00± 5.57 81.57± 5.35 36.02± 1.19 37.60± 1.80 49.82± 2.71 73.51± 4.95

GCN 55.14± 5.16 51.76± 3.06 27.32± 1.10 31.52± 0.71 38.44± 1.92 60.54± 5.30

GAT 52.16± 6.63 49.41± 4.09 27.44± 0.89 36.77± 1.68 48.36± 1.58 61.89± 5.05

MLP 80.81± 4.75 85.29± 3.31 36.53± 0.70 28.77± 1.56 46.21± 2.99 81.89± 6.40

G2-GAT 84.59± 5.55 87.65± 4.64 37.30± 0.87 46.48± 1.41 64.12± 1.96 87.30± 4.84

G2-GCN 84.86± 3.24 87.06± 3.19 37.09± 1.16 39.62± 2.91 55.83± 2.88 86.49± 5.27

G2-GraphSAGE 87.57± 3.86 87.84± 3.49 37.14± 1.01 64.26± 2.38 71.40± 2.38 86.22± 4.90

GCNII [Chen et al., 2020b], Geom-GCN [Pei et al., 2020], PairNorm [Zhao and Akoglu, 2019]. We can
observe that G2 added to GCN, GAT or GraphSAGE outperforms all other methods (in particular recent
methods such as GGCN, GPRGNN, H2GCN that were explicitly designed to solve heterophilic tasks).
Moreover, adding G2 to the underlying base GNN model improves the results on average by 45.75% for
GAT, 45.4% for GCN and 18.6% for GraphSAGE.

Large-scale graphs. Given the exceptional performance of G2-GraphSAGE on small and medium
sized heterophilic graphs, we test the proposed G2 (applied to GraphSAGE, i.e., G2-GraphSAGE) on
large-scale datasets. To this end, we consider three different experiments based on large graphs from
Lim et al. [2021a], which range from highly heterophilic (homophily level of 0.07) to fairly homophilic
(homophily level of 0.61). The sizes range from large graphs with ∼170K nodes and ∼1M edges to a very
large graph with ∼3M nodes and ∼14M edges.

Table 8.3 shows the results of G2-GraphSAGE together with other standard GNNs, as well as recent
state-of-the-art models, i.e., MLP[Goodfellow et al., 2016], GCN [Kipf and Welling, 2017], GAT [Velickovic
et al., 2018], MixHop [Abu-El-Haija et al., 2019], LINK(X) [Lim et al., 2021a], GCNII [Chen et al., 2020b],
APPNP [Klicpera et al., 2018], GloGNN [Li et al., 2022], GPR-GNN [Chien et al., 2020] and ACM-GCN
[Luan et al., 2021]. We can see that G2-GraphSAGE significantly outperforms current state-of-the-art (by
up to 13%) on the two heterophilic graphs (i.e., snap-patents and arXiv-year). Moreover, G2-GraphSAGE
is on-par with the current state-of-the-art on the homophilic graph dataset genius.

We conclude that the proposed gradient gating method can successfully be scaled up to large graphs,
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reaching state-of-the-art performance, in particular on heterophilic graph datasets.

Table 8.3: Results on large-scale datasets. The three best performing methods are highlighted in red
(First), blue (Second), and violet (Third).

snap-patents arXiv-year genius
Hom level 0.07 0.22 0.61
#Nodes 2,923,922 169,343 421,961
#Edges 13,975,788 1,166,243 984,979
#Classes 5 5 2

MLP 31.34± 0.05 36.70± 0.21 86.68± 0.09

GCN 45.65± 0.04 46.02± 0.26 87.42± 0.37

GAT 45.37± 0.44 46.05± 0.51 55.80± 0.87

MixHop 52.16± 0.09 51.81± 0.17 90.58± 0.16

LINKX 61.95± 0.12 56.00± 1.34 90.77± 0.27

LINK 60.39± 0.07 53.97± 0.18 73.56± 0.14

GCNII 37.88± 0.69 47.21± 0.28 90.24± 0.09

APPNP 32.19± 0.07 38.15± 0.26 85.36± 0.62

GloGNN 62.09± 0.27 54.68± 0.34 90.66± 0.11

GPR-GNN 40.19± 0.03 45.07± 0.21 90.05± 0.31

ACM-GCN 55.14± 0.16 47.37± 0.59 80.33± 3.91

G2-GraphSAGE 69.50± 0.39 63.30± 1.84 90.85± 0.64

Training details. All small and medium-scale experiments have been run on NVIDIA GeForce RTX
2080 Ti, GeForce RTX 3090, TITAN RTX and Quadro RTX 6000 GPUs. The large-scale experiments
have been run on Nvidia Tesla A100 (40GiB) GPUs.

All hyperparameters were tuned using random search. Table 8.4 shows the ranges of each hyperpara-
meter as well as the random distribution used to randomly sample from it. Moreover, Table 8.5 shows
the rounded hyperparameter p in G2 (8.4) of each best performing network.

Table 8.4: Hyperparameter ranges.

range rand. distribution

learning rate [10−4, 10−2] log uniform
hidden size m {32, 64, 128, 256, 512} disc. uniform
dropout input [0, 0.9] uniform
dropout output [0, 0.9] uniform
weight decay [10−8, 10−2] log uniform
G2-exponent p [1, 5] uniform
Usage of F̂θ̂ in (8.4) {YES, NO} disc. uniform

8.4 Further empirical analysis

On the multi-rate effect of G2. Here, we analyze the performance of G2 on the multiscale node-level
regression task of Section 8.3. As we see in Section 8.3, G2 applied to GCN or GAT outperforms
their plain counterparts (GCN and GAT) on the multiscale node-level regression task by more than
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Table 8.5: Rounded hyperparameter p in G2 of each best performing network.

Texas Wisconsin Film Squirrel Chameleon Cornell snap-patents arXiv-year genius

G2-GAT 3.06 1.68 1.23 3.48 3.54 3.54 / / /
G2-GCN 3.93 2.92 3.79 1.99 1.08 3.87 / / /
G2-GraphSAGE 4.47 1.14 2.89 3.04 2.00 3.27 1.60 3.40 4.40

50% on Chameleon and more than 100% on Squirrel. The question therefore arises whether this better
performance can be explained by the multi-rate nature of gradient gating.

To empirically analyse this, we begin by adding a control parameter α to G2 (8.4) as follows,

Xn = (1− (τn)
α
)⊙Xn−1 + (τn)

α ⊙ σ(Fθ(X
n−1,G)).

Clearly, setting α = 1 recovers the original gradient gating message-passing update,

Xn = (1− τn)⊙Xn−1 + τn ⊙ σ(Fθ(X
n−1,G)),

while setting α = 0 disables any explicit multi-rate behavior and a plain message-passing scheme is
recovered,

Xn = σ(Fθ(X
n−1,G)).

Note that by continuously changing α from 0 to 1 controls the level of multi-rate behavior in the proposed
gradient gating method.

In Fig. 8.6 we plot the test NMSE of the best performing G2-GCN and G2-GAT on the Chameleon
multiscale node-level regression task for increasing values of α ∈ [10−3, 1] in log-scale. We can see that
the test NMSE monotonically decreases (lower error means better performance) for both G2-GCN and
G2-GAT for increasing values of α, i.e., increasing level of multi-rate behavior. We can conclude that the
multi-rate behavior of G2 is instrumental in successfully learning multiscale regression tasks.
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Figure 8.6: Test NMSE on the multiscale
chameleon node-level regression task of G2-GCN
and G2-GAT for continuously decreasing level of
multi-rate behavior.
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Figure 8.7: Test accuracies of G2-GraphSAGE on
Texas, Squirrel, Film, Wisconsin and Chameleon
graph datasets for varying values of p in (8.4).
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On the sensitivity of performance of G2 to the hyperparameter p. The proposed gradient
gating model implicitly depends on the hyperparameter p, which defines the multiple rates τ , i.e.,

τ̂n = σ̂(F̂θ̂(X
n−1,G)),

τn
ik = tanh

∑
j∈Ni

|τ̂nik − τ̂njk|p
 .

While any value p > 0 can be used in practice, a standard hyperparameter tuning procedure on p has
been applied in every experiment included in this chapter. Thus, it is natural to ask how sensitive the
performance of G2 is with respect to different values of the hyperparameter p.

To answer this question, we trained different G2-GraphSAGE models on a variety of different graph
datasets (i.e., Texas, Squirrel, Film, Wisconsin and Chameleon) for different values of p ∈ [1, 5]. Fig. 8.7
shows the resulting performance of G2-GraphSAGE. We can see that different values of p do not
significantly change the performance of the model. However, including the hyperparameter p to the
hyperparameter fine-tuning procedure will further improve the overall performance of G2.

On the sensitivity of performance of G2 to the number of parameters. All results of G2 provided
in this chapter are obtained using standard hyperparameter tuning (i.e., random search). Those hyperpara-
meters include the number of hidden channels for each hidden node of the graph, which directly correlates
with the total number of parameters used in G2. It is thus natural to ask how G2 performs compared to
its plain counter-version (e.g. G2-GCN to GCN) for the exact same number of total parameters of the
underlying model. To this end, Fig. 8.8 shows the test accuracies of G2-GCN and GCN for increasing
number of total parameters in its corresponding model. We can see that first, using more parameters has
only a slight effect on the overall performance of both models. Second, and most importantly, G2-GCN
constantly reaches significantly higher test accuracies for the exact same number of total parameters. We
can thus rule out that the better performance of G2 compared to its plain counter-versions is explained
by the usage of more parameters.
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Figure 8.8: Test accuracies of plain GCN and
G2-GCN on Texas for varying number of total
parameters in the GNN.

Ablation of F̂θ̂ in G2. In its most general form G2 (8.4) uses an additional GNN F̂θ̂ to construct
the multiple rates τn. Is this additional GNN needed ? To answer this question, Table 8.6 shows in
which of the provided experiments (using G2-GraphSAGE) we actually used an additional GNN F̂θ̂ (as
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suggested by our hyperparameter tuning protocol). We can see that on small-scale experiments having an
additional GNN is not needed. However, on the considered medium and large-scale graph datasets it
is beneficial to use it. Motivated by this, Table 8.7 shows the results for G2-GraphSAGE on the three
medium-scale graph datasets (Film, Squirrel and Chameleon) without using an additional GNN in (8.4)
(i.e., Fθ = F̂θ̂) as well as with using an additional GNN. We can see that while G2-GraphSAGE without
an additional GNN (i.e., w/o F̂θ̂) yields competitive results, using an additional GNN is needed in order
to obtain state-of-the-art results on these three datasets.

Table 8.6: Usage of F̂θ̂ in G2 (8.4) for each result with G2-GraphSAGE (YES indicates the usage of F̂θ̂,
while NO indicates that no additional GNN is used to construct the multiple rates, i.e., Fθ = F̂θ̂)

Texas Wisconsin Film Squirrel Chameleon Cornell snap-patents arXiv-year genius

NO NO YES YES YES NO YES YES YES

Table 8.7: Test accuracies of G2-GraphSAGE with and without additional GNN (i.e., w/ F̂θ̂ and w/o F̂θ̂

in (8.4)) on Film, Squirrel and Chameleon graph dataset.

Film Squirrel Chameleon

G2-GraphSAGE w/ F̂θ̂ 37.14± 1.01 64.26± 2.38 71.40± 2.38

G2-GraphSAGE w/o F̂θ̂ 36.83± 1.26 55.78± 1.61 65.04± 2.27

Ablation of multi-rate channels in G2. The corner stone of the proposed G2 is the multi-rate
matrix τn in (8.4), which automatically solves the oversmoothing issue for any given GNN (Proposition
8.2.3). This multi-rate matrix learns different rates for every node but also for every channel of every
node. It is thus natural to ask if the multi-rate property for the channels is necessary, or if having multiple
rates for the different nodes is sufficient, i.e., having a multi-rate vector τn ∈ Rv. A direct construction
of such multi-rate vector (derived from our proposed G2) is:

τ̂n = σ(F̂θ̂(X
n−1,G)),

τn
i = tanh

∑
j∈Ni

∥τ̂n
j − τ̂n

i ∥p

 ,

Xn = (1− τn)⊙Xn−1 + τn ⊙ σ(Fθ(X
n−1,G)).

(8.26)

Note that the only difference to our proposed G2 is in the second equation of (8.26), where we sum
over the node-wise p-norms of the differences of adjacent nodes. This way, we compute a single scalar τn

i

for every node i ∈ V.
Table 8.8 shows the results of our proposed G2-GraphSAGE as well as the single-rate channels ablation

of G2 (eq. (8.26)) on the Film, Squirrel and Chameleon graph datasets. As a baseline, we also include
the results of a plain GraphSAGE. We can see that while G2 with single-scale channels outperforms the
base GraphSAGE model, our proposed G2 with multi-rate channels vastly outperforms the single-rate
channels version of G2.
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Table 8.8: Test accuracies of plain GraphSAGE, G2-GraphSAGE with multi-rate channels for each
node (i.e., standard G2 (8.4)) as well as with only a single rate for every channel on Film, Squirrel and
Chameleon.

Film Squirrel Chameleon

GraphSAGE 34.23± 0.99 41.61± 0.74 58.73± 1.68

G2-GraphSAGE w/ multi-rate channels G2 (8.4) 37.14± 1.01 64.26± 2.38 71.40± 2.38

G2-GraphSAGE w/ single-rate channels G2 (8.26) 36.67± 0.56 44.03± 1.01 60.29± 3.45

Alternative measures of oversmoothing. The proof of Proposition 8.2.2 and Proposition 8.2.3 as
well as the first experiment in Section 8.3 is based on the definition of oversmoothing using the Dirichlet
energy. However, there exist alternative measures to describe the oversmoothing phenomenon in deep
GNNs. One such measure is the mean average distance (MAD), which was proposed in Chen et al. [2020a].
In order to check if our proposed G2 mitigates oversmoothing defined through the MAD measure we
repeat the first experiment in Section 8.3 and plot the MAD instead of the Dirichlet energy for increasing
number of layers in Fig. 8.9. We can see that while the MAD of a plain GCN and GAT converges
exponentially with increasing number of layers, it remains constant for G2-GCN and G2-GAT. We can
thus conclude that G2 mitigates oversmoothing defined through the MAD measure.
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Figure 8.9: Mean average distance (MAD) of layer-
wise node features Xn propagated through a GAT,
GCN and their gradient gated versions (G2-GAT,
G2-GCN).

8.5 Discussion

We have proposed a novel framework, termed G2, for efficient learning on graphs. G2 builds on standard
MPNNs, but seeks to overcome their limitations. In particular, we focus on the fact that for standard
MPNNs such as GCN or GAT, each node (in every hidden layer) is updated at the same rate. This might
inhibit efficient learning of tasks where different node features would need to be updated at different
rates. Hence, we equip a standard MPNN with gates that amount to a multi-rate modulation for the
hidden layer output in (8.4). This enables multiple rates (or scales) of flow of information across a graph.
Moreover, we leverage local (graph) gradients to further constrain the gates. This is done to alleviate
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oversmoothing where node features become indistinguishable as the number of layers is increased.
By combining these ingredients, we present a very flexible framework (dubbed G2) for graph machine

learning wherein any existing MPNN hidden layer can be employed as the coupling function and the multi-
rate gradient gating mechanism can be built on top of it. Moreover, we also show that G2 corresponds
to a time-discretization of a system of ODEs (8.9). By studying the (in)-stability of the corresponding
zero-Dirichlet energy steady states we rigorously prove that gradient gating can mitigate the oversmoothing
problem, paving the way for the use of very deep GNNs within the G2 framework. In contrast, the lack
of gradient gating is shown to lead to oversmoothing.

We also present an extensive empirical evaluation to illustrate different aspects of the proposed
G2 framework. Starting with synthetic, small-scale experiments, we demonstrate that i) G2 can prevent
oversmoothing by keeping the Dirichlet energy constant, even for a very large number of hidden layers, ii)
this feature allows us to deploy very deep architectures and to observe that the accuracy of classification
tasks can increase with increasing number of hidden layers, iii) the multi-rate mechanism significantly
improves performance on node regression tasks when the node features are distributed over a range of
scales, and iv) G2 is very accurate at classification on heterophilic datasets, witnessing an increasing gain
in performance with increasing heterophily.

This last feature was more extensively investigated, and we observed that G2 can significantly
outperform baselines as well as recently proposed methods on both benchmark medium-scale and large-
scale heterophilic datasets, achieving state-of-the-art performance. Thus, by a combination of theory and
experiments, we demonstrate that the G2-framework is a promising approach for learning on graphs.
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Conclusion

Physics-inspired machine learning can be seen as incorporating structure from physical systems (e.g.,
given by ordinary or partial differential equations) into machine learning methods to obtain models with
better inductive biases. Examples of such systems include oscillatory systems, Hamiltonian systems,
multiscale systems, gradient flows, reaction-diffusion systems, and Langevin dynamics, to name just a
few. The main goals of physics-inspired machine learning are: (i) address important and central issues in
machine learning from a physics perspective, (ii) improve the performance of machine learning models
applied to problems in the physical sciences by incorporating structure reasoned from the problem at hand
(i.e., inductive bias), and (iii) provide better theoretical understanding of the proposed machine learning
models by leveraging insights from the underlying physical principles. In this thesis, we have proposed and
theoretically analysed novel physics-inspired machine learning models in the fields of sequence modeling
and graph representation learning.

The first part of this thesis introduces recurrent sequence models derived from specific physical systems,
namely that of nonlinear oscillators. Motivated by the need of expressive and fast sequence models that
are able to process sequential data with time-dependent interactions over (very) long time-scales, we
first propose to leverage the structure of fully coupled nonlinear driven oscillators in this context by
constructing the coupled oscillatory RNN (CoRNN) in Chapter 2. We show that CoRNN is able to learn
long-term dependencies by mitigating the exploding and vanishing gradients problem, a central issue for
deep (or recurrent) neural networks prohibiting information to flow over long time scales. Moreover, we
provide extensive empirical evidence on challenging synthetic as well as real-world datasets, demonstrating
that CoRNN performs comparably to state-of-the-art recurrent sequence models. While fully coupled
oscillatory systems (i.e., CoRNN) perform very well on sequential data, even faster methods (in terms of
training and inference time) are needed to process sequential data with very long sequence length (i.e.,
sequence length > 10k). To this end, in Chapter 3 we propose the undamped independent controlled
oscillatory RNN (UnICORNN), which is based on independent (i.e., uncoupled) nonlinear oscillators.
This enables a very fast implementation on GPUs, where each independent neuron (i.e., dimension
of the underlying dynamical system) is solved in a (possibly independent) CUDA thread. Moreover,
since the underlying dynamics of UnICORNN denotes a time-dependent Hamiltonian systems, we can
apply Liouville’s theorem on the preservation of the phase space volume to show that UnICORNN is
perfectly invertible in time. This makes UnICORNN very memory efficient, as no intermediate layers
have to be stored for the backpropagation through time algorithm but can simply be reconstructed based
on the very last hidden state. This drastically reduces the memory requirement to train UnICORNN.
Thus, UnICORNN can potentially be used for continuous online training on memory-constrained edge
devices. Finally, we rigorously show that UnICORNN mitigates the exploding and vanishing gradients
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problem and can thus successfully be applied to sequential data exhibiting long-term dependencies. We
subsequently show that UnICORNN reaches state-of-the-art performance and outperforms every other
recurrent sequence model on a variety of versatile sequence tasks, where the length of the sequences range
from 1k up to ∼ 18k. While coRNN and UnICORNN are empirically very successful, it is unclear if
these models are universal. Moreover, based on the oscillatory inductive bias, it is natural to ask if these
models are biased towards oscillatory functions. To answer this question empirically we note that both
CoRNN as well as UnICORNN have successfully been applied to a large variety of different datasets
that certainly do not dominantly exhibit oscillatory representations (e.g., datasets in computer vision
and NLP). However, we also provide a rigorous theoretical answer to this question in Chapter 4. In this
chapter, we generalize CoRNN and UnICORNN to neural oscillators and rigorously prove that these
models are indeed universal approximators for continuous and causal operators.

In the second part of the thesis, we discuss the necessity of machine learning models to be able to
process (real-world) data potentially exhibiting multiple scales. This motivates LEM in Chapter 5, a
novel physics-inspired sequence model that we derive from dynamical systems with multiple time-adaptive
learnable scales. We rigorously prove that LEM is able to learn long-term dependencies. Moreover, we
show that LEM is a universal approximator for general (Lipschitz continuous) dynamical systems. On top
of that, we show that LEM is even universal within the class of multiscale dynamical systems, where the
size of LEM is independent of the different scales, which is in stark contrast to standard RNNs. Finally,
we show that LEM does not only reach state-of-the-art results among recurrent models on tasks exhibiting
long-term dependencies, but also on tasks that require high expressive power of the underlying model
(e.g., in natural language understanding).

The third part of this thesis introduces graph representation learning in Chapter 6. In particular it
highlights a central issue impairing the expressive power of deep GNNs, namely oversmoothing. This
phenomenon describes the exponential convergence of all node features towards the same constant node
vector with respect to increasing number of GNN layers. Motivated by unsynchronized graph-coupled
oscillators to preserve node feature diversity over time, we present GraphCON in Chapter 7. This
physics-inspired framework for learning on graphs is derived from graph-dynamical systems modelling
interactions of nonlinear oscillators coupled through a graph. GraphCON can be seen as a general
framework allowing to stack many GNN layers and propagating information according to the dynamics
of graph-coupled nonlinear oscillators. We subsequently prove that GraphCON indeed mitigates the
oversmoothing issue and allows for the construction of deep GNNs. Finally, we show that GraphCON
outperforms state-of-the-art graph-learning models on a variety of different graph datasets, namely
heterophilic and homophilic node-level tasks as well as graph-level tasks.

Last but not least we present gradient gating (G2) in Chapter 8. This framework is based on gating
the output of GNN layers with a mechanism for multi-rate flow of message-passing information across
nodes of the underlying graph. Local gradients are harnessed to further modulate message-passing
updates. Our framework flexibly allows one to use any basic GNN layer as a wrapper around which the
multi-rate gradient gating mechanism is built. Moreover, G2 can be used as a wrapper around other
GNN architectures that perform poorly on heterophilic data (e.g., GCN, GAT), and turns them into
powerful methods on such data. We rigorously prove that G2 alleviates the oversmoothing problem and
allows the design of deep GNNs. Finally, we show that G2 vastly outperforms state-of-the-art models in
particular on heterophilic large-scale graph datasets.

The results in this thesis thus represent a collection of very early approaches in the exciting field of
physics-inspired machine learning. In particular, it emphasizes the symbiosis of machine learning and
physics, and provides a recipe on how to tackle problems in machine learning research from a physics
perspective. Moreover, it demonstrates its potential to provide not only empirical solutions but also
theoretical answers to challenging problems in various aspects of modern machine learning.
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Future research directions. Although the presented models and methods have been extensively
tested on synthetic and real-world datasets, we have mainly applied them to datasets in classical machine
learning, e.g. in image recognition, speech recognition, NLP, time series, and citation networks. However,
only few experiments have been done in the context of physics and scientific computing. Since these
models are based and inspired by physical systems (and thus exhibit physics-based inductive biases), one
would expect these models to excel on problems in the physical sciences. Hence, an important future
research direction is to test the proposed methods on their ability to solve problems in the physical
sciences and analyse the role of their physics-based inductive bias therein.

Another important open research direction is the theoretical understanding of the proposed inductive
biases. For instance, in 5.4 we saw that LEM exhibits multiscale behavior after training, as the proportion
of occurrences of the learned scales decays as a power law. However, it is unclear how this power law and
the corresponding multiscale predictions correlate with the scales in the underlying dataset, in particular
for real-world data such as images or natural text. Thus, a theoretical analysis of this phenomenon is
needed, which potentially gives rise to a better understanding of natural and real-world data from a
multiscale perspective.

While this thesis focuses on sequence modelling and graph representation learning, there are many
more fields of machine learning research that can profit from physics-inspired approaches. For instance
generative modelling, a field of machine learning in which, instead of fitting functions to data, the
distribution that generates the data is learned. In this context, neural oscillators as of Chapter 4 denote
promising models, as they are invertible (and potentially symplectic) by design. This makes neural
oscillators suitable candidates for normalizing flows [Rezende and Mohamed, 2015]. Moreover, current
state-of-the-art methods in generative modelling are diffusion models [Yang et al., 2022], that incrementally
corrupt input data with random noise (i.e., diffuse the input data), and generate new data points by
inverting this process. Since diffusion models are already based on a physical process, namely diffusion, it
is no surprise that recent advances in this field are based on physical insights into the underlying diffusion
process [Dockhorn et al., 2021, Lai et al., 2022, Salimans and Ho, 2021]. However, little work has been
done on the theoretical understanding of these models. Therefore, an important future research direction
is the theoretical understanding of (score-based) diffusion models (possibly with further physical inductive
biases) along the same lines of Chapter 4 providing in-depth theoretical understanding of oscillatory
neural architectures.

A very recent area of modern machine learning research deals with the development of generalist
learners – a single model capable of performing various different (possibly out-of-distribution) tasks.
Examples of such include recent advances in large language models [Brown et al., 2020, Chowdhery et al.,
2022], neural algorithmic learning [Ibarz et al., 2022], and general-purpose agents [Reed et al., 2022].
Since physics represents a mathematical generalist description of natural phenomena and engineering
systems, physics-inspired machine learning models denote a promising approach for setting up novel and
powerful generalist learners.

The author hopes that the presented work in this thesis may serve as a basis for future research on
physics-inspired machine learning, as well as a guidance for tackling and addressing challenging problems
in machine learning research from a physics perspective.
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