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Abstract

This work in low-dimensional topology investigates questions on the concordance of knots

and links. Links are one-dimensional submanifolds of S3, the three-dimensional sphere,

which are usually studied up to isotopy; knots are connected links. Concordance is an

equivalence relation that generalizes the concept of isotopy in dimension 4. In our work,

we always consider knots and links as closures of braids, which is possible for every link

by a result of Alexander in 1923. We often study knots that are closures of braids on

three strands. In addition, various notions of positivity for braids play a special role.

Much of this work has been motivated by Baker’s conjecture, which states that

strongly quasipositive, fibered knots are isotopic if they are concordant. A counterex-

ample to this conjecture would also provide a counterexample to the long-standing slice-

ribbon conjecture of Fox. We show that every non-trivial strongly quasipositive link

is concordant to infinitely many pairwise non-isotopic strongly quasipositive links. In

particular, we show that Baker’s conjecture is false in a strong sense if we drop the

requirement that the knots are fibered.

A special case of Baker’s conjecture is the following question: are closures of positive

braids isotopic if they are concordant? On the way to a possible answer to this question,

we study a particular concordance invariant. The upsilon invariant at 1 arises from

the broad field of Heegaard Floer theory and was defined in 2017 by Ozsváth, Stipsicz

and Szabó. We compute this invariant for all knots that are closures of braids on

three strands by constructing cobordisms between these knots and torus knots. As

an application, we determine various alternating distances of knots when restricting to

positive such braids. For example, it follows from our calculations that the alternation

number, the dealternating number and the Turaev genus are given by the sum of the

ordinary 3-genus and the upsilon invariant of the knots under consideration.

In the last chapter of this thesis we deal with a related question in the topological

category. Again, for knots which are closures of braids on three strands, we would like

to determine their topological four-ball genus, i. e. the minimal genus of a topologically

locally flatly embedded surface in the four-dimensional ball bounded by S3. We can

classify when, for such knots, the topological four-ball genus coincides with their 3-genus.

We use McCoy’s twisting method and the Xu normal form of braids on three strands. In

addition, we give upper bounds for the topological four-ball genus of closures of positive

and strongly quasipositive braids on three strands.
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Zusammenfassung

Diese Arbeit im Bereich der niedrigdimensionalen Topologie untersucht Fragen im Zusam-

menhang mit der Konkordanz von Knoten und Verschlingungen. Verschlingungen sind

eindimensionale Untermannigfaltigkeiten der dreidimensionalen Sphäre S3, die üblicher-

weise bis auf Isotopie untersucht werden; Knoten sind zusammenhängende Verschlin-

gungen. Konkordanz ist eine Äquivalenzrelation, welche das Konzept der Isotopie in

Dimension 4 verallgemeinert. In unserer Arbeit betrachten wir Knoten und Verschlin-

gungen immer als Abschlüsse von Zöpfen, was nach einem Resultat von Alexander aus

dem Jahre 1923 für jede Verschlingung möglich ist. Dabei untersuchen wir häufig Knoten,

die Abschlüsse von Zöpfen auf drei Strängen sind. Außerdem spielen verschiedene Posi-

tivitätsbegriffe für Zöpfe eine besondere Rolle.

Ein großer Teil dieser Arbeit wurde durch eine Vermutung von Baker motiviert, die

besagt, dass streng quasipositive, gefaserte Knoten isotop sind, wenn sie konkordant

sind. Ein Gegenbeispiel zu dieser Vermutung würde auch ein Gegenbeispiel zu der seit

langem bestehenden Slice-Ribbon-Vermutung von Fox liefern. Wir zeigen, dass jede

nicht-triviale streng quasipositive Verschlingung zu unendlich vielen, paarweise nicht-

isotopen streng quasipositiven Verschlingungen konkordant ist. Insbesondere zeigen wir,

dass die Vermutung von Baker in einem starken Sinne falsch ist, wenn wir die Bedingung

der Gefasertheit der Knoten weglassen.

Ein Spezialfall von Bakers Vermutung ist die folgende Frage: Sind Abschlüsse von

positiven Zöpfen isotop, wenn sie konkordant sind? Auf dem Weg zu einer möglichen

Antwort auf diese Frage untersuchen wir eine bestimmte Konkordanzinvariante. Die

Upsilon-Invariante an der Stelle 1 stammt aus dem weiten Feld der Heegaard-Floer-

Theorie und wurde 2017 von Ozsváth, Stipsicz und Szabó definiert. Wir berechnen diese

Invariante für alle Knoten, die Abschlüsse von dreisträngigen Zöpfen sind, indem wir

Kobordismen zwischen diesen Knoten und Torusknoten konstruieren. Als Anwendung

bestimmen wir verschiedene Alternierungsdistanzen von Knoten, wenn wir uns auf posi-

tive solche Zöpfe beschränken. Zum Beispiel ergibt sich aus unseren Berechnungen, dass

die Alternierungszahl, die Dealternierungszahl und das Turaev-Geschlecht jeweils durch

die Summe des gewöhnlichen 3-Geschlechts und der Upsilon-Invariante des betrachteten

Knotens gegeben sind.

Im letzten Kapitel dieser Arbeit behandeln wir eine verwandte Frage in der topologis-

chen Kategorie. Wiederum für Knoten, die als Abschlüsse von von dreisträngigen Zöpfen
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Zusammenfassung

gegeben sind, wollen wir ihr topologisches Vierball-Geschlecht bestimmen, das minimale

Geschlecht einer topologisch lokal flach eingebetteten Fläche im vierdimensionalen Ball,

welcher von S3 berandet wird. Wir können klassifizieren, wann für solche Knoten das

topologische Vierball-Geschlecht mit ihrem dreidimensionalen Geschlecht übereinstimmt.

Dazu verwenden wir eine Methode zum Entdrehen von Knoten von McCoy und die Xu-

Normalform von dreisträngigen Zöpfen. Außerdem geben wir obere Schranken für das

topologische Vierball-Geschlecht für Abschlüsse von positiven und streng quasipositiven

Zöpfen auf drei Strängen.
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1 Introduction

1.1 Overview and outline

This work is in the area of low-dimensional topology, which studies manifolds of di-

mension 4 and lower. Examples include (knotted) surfaces in 4-dimensional space and

classical knots in dimension 3. Knots are non-empty, oriented, connected, closed, smooth,

1-dimensional submanifolds of the 3-dimensional sphere S3, which are usually studied

up to isotopy. A natural generalization in dimension 4 of the question whether certain

knots are isotopic to the trivial knot, called unknot, is the concept of concordance. A

knot in S3 is called concordant to the unknot (or slice) if it bounds a slice disk, a “nicely

embedded” 2-dimensional disk in B4, the 4-dimensional ball bounded by S3. A more

general notion is that of the four-ball genus, or 4-genus for short. The 4-genus of a knot

in S3 is the minimal genus of an oriented, connected, compact surface “nicely embedded”

in B4 with boundary the given knot. In the smooth category “nicely embedded” means

smoothly embedded, in the topological category we ask the surface to be topologically

locally flat. It is one of the curiosities of low-dimensional topology that constructions

such as finding slice disks can sometimes be done in the topological category, but fail in

the smooth category. We will mainly work in the smooth category, but in Chapter 4 we

will address a question in the topological category.

Every knot can be represented as the closure of a braid [Ale23]. Informally, for n > 1,

an n-braid is a collection of n non-intersecting, unknotted and never-returning paths in

3-dimensional space connecting n distinguished points to another set of n distinguished

points. Isotopy classes of n-braids form a group, the braid group on n strands. Its

classical presentation, first introduced by Artin [Art25], provides an algebraic tool for

examining knots. In this thesis, we are particularly interested in knots that arise as

closures of braids on three strands, so-called 3-braid knots. On the other hand, we

study different notions of positivity for braids. We are particularly concerned with posi-

tive and strongly quasipositive braids, which behave specially in the context of smooth

concordance; more on this below.

Briefly and roughly, this thesis focuses on the study of knot concordance and related

concepts like the 4-genus, using the braid group as a tool to represent knots algebraically.

Structurally, it consists of three main chapters after this introductory chapter. The con-

tents of these chapters are available on the arXiv preprint server [Tru22,Tru21,BLMT23].

1



Chapter 1. Introduction

We provide a brief overview of these three chapters before proceeding with a more de-

tailed introduction, including definitions and more background on our results.

Chapter 2, corresponding to [Tru22]: This dissertation project was motivated by

a conjecture of Baker [Bak16] from knot concordance theory on strongly quasipositive,

fibered knots, which is implied by the slice-ribbon conjecture due to Fox [Fox62]. We

show that every non-trivial strongly quasipositive link is concordant to infinitely many

pairwise non-isotopic strongly quasipositive links. In particular, we show that Baker’s

conjecture is false in a strong sense when the fiberedness assumption is dropped.

Chapter 3, corresponding to [Tru21]: The question of whether concordant braid

positive knots are isotopic naturally arises as a special case of Baker’s conjecture. Fo-

cusing on the smaller subset of positive 3-braid knots, we work towards understanding

the concordance classes of these. As our main result of Chapter 3, we provide explicit

formulas for the integer-valued smooth concordance invariant υ(K) = ΥK(1) for every

3-braid knot K. One of the applications is the calculation of several alternating distances

for positive 3-braid knots. The contents of Chapter 3 will be published as an article in

Algebraic & Geometric Topology [Tru21].

Chapter 4, corresponding to [BLMT23]: Based on [BLMT23], together with

Sebastian Baader, Lukas Lewark and Filip Misev, we classify 3-braid knots whose topo-

logical 4-genus coincides with their 3-genus. The tools we use are a technique called

twisting [McC21] and a special representation for 3-braids called Xu normal form [Xu92].

In addition, we give upper bounds on the topological 4-genus of positive and strongly

quasipositive 3-braid knots.

1.2 Knots and links as closures of braids

A link (in S3) is a non-empty, oriented, closed, smooth, 1-dimensional submanifold of

the (oriented) 3-dimensional sphere S3. We consider links up to (ambient) isotopy,

i. e. orientation-preserving diffeomorphisms of S3. Knots are links with one connected

component. Links can be visualized by viewing them as subsets of the Euclidean 3-space

R3, which we identify with a subset of S3. Up to an isotopy, we can assume a link L to

be in general position with respect to the standard projection p : R3 → R2. The image

of L under p together with the additional data of which strand of L is over and which is

under at every double point (crossing) of the projection is called a diagram for L. The

unknot is the trivial knot that arises as the boundary of the 2-dimensional disk D2 in

R2 × {0} ⊂ R2 × R. Figure 1.1 shows two examples of knot diagrams.

Figure 1.1: Diagrams for the unknot and the trefoil knot.

2



1.2. Knots and links as closures of braids

By a fundamental theorem of Alexander [Ale23], every link can be represented as

the closure of an n-braid for some positive integer n. Fix n distinct points p1, . . . , pn in

D2 ⊂ R2. A (geometric) n-braid or braid on n strands is a collection of (oriented) smooth

paths fi : [0, 1] → D2 × [0, 1], i ∈ {1, . . . , n}, called strands, with pairwise disjoint images

fi([0, 1]) and such that for all i ∈ {1, . . . , n}, we have fi(t) ∈ D2 ×{t}, fi(0) = (pi, 0) and

fi(1) = (pπ(i), 1) for some permutation π of {1, . . . , n}. We study n-braids up to isotopy,

i. e. two n-braids are considered the same if there is an ambient isotopy of D2 × [0, 1]

fixing the set D2 × {0, 1} pointwise and taking one of the braids to the other.

The braid group on n strands, which we denote by Bn, is the group of isotopy classes

of n-braids, where the group operation is given by stacking braids on top of each other

and rescaling (see Figure 1.3(a) on the next page). The classical presentation for Bn

with n − 1 generators σ1, . . . , σn−1 and relations

σiσj = σjσi if |i − j| > 2 and σiσi+1σi = σi+1σiσi+1

was introduced by Artin [Art25]. The generator σi corresponds to the n-braid which

exchanges pi and pi+1 by a positive half-twist parameterized by [0, 1], i. e. the i-th and

(i + 1)-th strand of σi cross once positively. We illustrate the generator σ1 of B2 with

one positive crossing on the left in Figure 1.2. In our figures, braid diagrams are always

oriented from bottom to top. We call a word in the generators of Bn and their inverses

a braid word. Every braid word defines a diagram for a geometric n-braid; see the right-

hand side of Figure 1.2 for an example. In the following, we will usually identify braid

words with the corresponding geometric braids, and we suppress n if it is clear from the

context.

Figure 1.2: The 2-braid that corresponds to the generator σ1 of B2 on the left; the

geometric 3-braid defined by the braid word σ3
1σ2σ−1

1 σ2 in B3 on the right.

In Chapters 3 and 4, we will focus on the braid group on three strands B3. For

readability, we will often denote the two generators of B3 by a := σ1 and b := σ2. They

are subject to the relation aba = bab in B3, called braid relation.

3



Chapter 1. Introduction

The closure β̂ of a braid β is the closed 1-dimensional submanifold in R2×S1 obtained

by gluing the ends (pi, 0) ∈ R2 × {0} of the strands of β to the corresponding ends in

R2 × {1}. The closure β̂ of a braid β yields a link in S3 via a fixed standard embedding

of R2 × S1 in S3; see Figure 1.3(b). Note that conjugate braids β0, β1 ∈ Bn, denoted by

β0 ∼ β1, have isotopic closures β̂0 = β̂1.

α β

βcomposition

α

(a) The composition αβ of braids α and β.

ββ
closure

β̂

(b) The closure β̂ of a braid β.

Figure 1.3: The composition of and the closure operation on braids.

An n-braid link is a link that arises as the closure of an n-braid. If β ∈ Bn induces

a permutation with only one cycle on the ends of its n strands, then its closure β̂ is a

knot and we call it an n-braid knot. For example, a 3-braid knot is a knot that arises as

the closure β̂ of a 3-braid β. The braid index of a link L is the smallest positive integer

n such that L arises as the closure of a braid in Bn.

For a more detailed account on braids and their closures, we refer the reader to [BB05].

1.3 Notions of positivity for braids

Let us define various notions of positivity for braids and their closures, which will be used

throughout this thesis. Let n > 1. An n-braid is called positive if it can be represented by

a braid word σs1
σs2

· · · σsl
with sj ∈ {1, . . . , n−1}, i. e. a braid word that is a product of

the positive Artin generators σi of Bn (no inverses σ−1
i ). Moreover, an n-braid is called

quasipositive if it is a (finite) product of conjugates of the (positive) Artin generators σi,

and it is called strongly quasipositive if the product consists only of certain conjugates

4



1.4. Concordances of knots and links

of the σi, namely the positive band words σi,j (see Figure 1.4), where

σi,j = (σi · · · σj−2) σj−1 (σi · · · σj−2)−1 for 1 6 i < j 6 n. (1.1)

1 i j n

Figure 1.4: The positive band word σi,j.

We call a braid word β given as such a product a (strongly) quasipositive braid word,

and—despite a minor abuse of notation—also denote it by β. Note that σi,i+1 = σi.

A knot or link is called braid positive or (strongly) quasipositive if it arises as the closure

of a positive or (strongly) quasipositive n-braid for some n > 1, respectively. (Strongly)

quasipositive braids and links first appeared in the work of Rudolph [Rud83b, Rud90].

The positive band words σi,j were also used by Birman–Ko–Lee [BKL98] to provide a

new solution to the word problem in Bn.

Important examples for Chapter 3 of braid positive knots are the (positive) torus

knots Tp,q for coprime positive integers p, q. The torus knot Tp,q is the knot obtained as

the closure of the p-braid (σ1σ2 . . . σp−1)q. Positive torus knots are algebraic, i. e. they

arise as so-called links of isolated singularities of complex algebraic plane curves [Mil68].

Indeed, for small ε > 0 the torus knot Tp,q is isotopic to V (f) ∩ S3
ε ⊂ S3

ε ⊂ C2, where

V (f) denotes the zero-set of f : C2 → C, (x, y) 7→ xp − yq, and S3
ε a 3-sphere of radius

ε centered at the origin in C2. Not only positive torus knots, but more generally all

algebraic knots are braid positive; see e. g. [BK86, Theorem 12 in Section 8.3].

1.4 Concordances of knots and links

Two ordered links L0 = L1
0 ∪ · · · ∪ Lb

0 and L1 = L1
1 ∪ · · · ∪ Lb

1 of b components are

called (smoothly) concordant if there exists a smoothly and properly embedded oriented

submanifold A = A1 ∪ · · · ∪ Ab of S3 × [0, 1], called a concordance, such that A is

diffeomorphic to a disjoint union of r annuli S1 × [0, 1],

∂Ai = Li
0 × {0} ∪ Li

1 × {1}, i ∈ {1, . . . , b},

and the induced orientation on ∂A agrees with the orientation of L0, but is the opposite

one on L1. Concordance defines an equivalence relation on the set of ordered links in S3.
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Chapter 1. Introduction

In large parts of this work, we restrict our study of concordances to knots. Moreover,

in Chapter 2, the choice of the order of the considered links does not play an important

role. Thus we usually suppress the order from the notation.

Isotopic links are concordant, but the converse is generally not true. For example,

for any non-trivial knot K (i. e. K is not the unknot), the knot K# −K is concordant,

but not isotopic to the unknot. Here, for a knot K, its inverse −K is the image of K

under an orientation-reversing diffeomorphism of S3 with the opposite orientation and

# denotes the connected sum of knots. Note also for later that the image of K under

an orientation-reversing diffeomorphism of S3 is called the mirror of K, and the knot

K with the opposite orientation is the reverse of K. The name inverse is justified by

the fact that knots up to concordance form an abelian group, the concordance group C.

The group operation is induced by connected sum, the unknot represents the identity

element, and the additive inverse of a concordance class [K] is [−K]. To properly define

the connected sum operation we should really think of a knot as a pair of oriented

manifolds
(
S3, S1

)
; then the connected sum of two knots is defined in the standard way

for oriented pairs.

1.5 The slice-ribbon conjecture and a conjecture by Baker

A knot K is called slice if it is concordant to the unknot or, equivalently, if it arises as

the boundary of a smoothly embedded 2-dimensional disk D2 in B4, the 4-ball bounded

by S3. Furthermore, K is called ribbon if it bounds a smoothly embedded disk D in B4

for which the radial height function on B4 restricts to a smooth Morse function with no

local maxima in the interior of D. Equivalently, we could ask K to bound an immersed

disk in S3 with only so-called ribbon singularities. Ribbon knots are slice and in the

1960s Fox asked whether the converse is true [Fox62].

Conjecture 1.1 (Slice-ribbon conjecture). Every slice knot is ribbon.

Informally, the slice-ribbon conjecture states that for slice knots the sliceness can be

demonstrated with a disk that can be well visualized in three dimensions. The conjecture

is solved for some families of knots, namely 2-bridge knots and certain families of pretzel

knots [Lis07, GJ11]. However, it remains open in full generality. In [Bak16], Baker

showed that for any two strongly quasipositive, fibered knots K0 and K1, if K0# −K1 is

ribbon (which in particular implies that K0 and K1 are concordant), then K0 is isotopic

to K1. He conjectured the following.

Conjecture 1.2 (Baker’s conjecture). If two strongly quasipositive, fibered knots are

concordant, then they are isotopic.

We will define fibered knots in Section 1.7. Baker’s result described above shows

that Conjecture 1.1 implies Conjecture 1.2. In other words, either concordance implies

isotopy for the set of strongly quasipositive, fibered knots or the slice-ribbon conjecture

is false.

6
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1.6 Strongly quasipositive links are concordant to infinitely many such

links

In Chapter 2, which is mathematically equivalent to [Tru22], we show the following.

Theorem A. Every strongly quasipositive link other than an unlink is smoothly concor-

dant to infinitely many pairwise non-isotopic strongly quasipositive links.

To discuss the context of our result, we focus on knots. In particular, Theorem A

shows in a strong way that Baker’s conjecture (see Conjecture 1.2) does not hold without

the assumption of fiberedness. We can reformulate Theorem A as follows: each equiva-

lence class in the concordance group of a non-trivial strongly quasipositive knot contains

infinitely many such knots. Similar statements replacing strongly quasipositivity by

other stronger notions would not be true. Consider the following inclusions:

{algebraic knots} ⊂ {positive knots} ⊂ {strongly quasipositive knots}. (1.2)

Positive knots are the knots that admit a diagram in which all crossings are positive. The

first inclusion in (1.2) follows from the fact that algebraic knots are braid positive and

hence positive, the latter is due to Rudolph and Nakamura [Rud99,Nak00]. In contrast to

our result and generalizing earlier results of Stoimenow [Sto08,Sto15], Baader–Dehornoy–

Liechti [BDL17] showed that every (topological and thus also smooth) concordance class

contains at most finitely many (pairwise non-isotopic) positive knots. Furthermore,

considering an even smaller subset, it was shown by Litherland [Lit79] that algebraic

knots are isotopic if they are concordant.

We would like to point out that Hedden (see [Bak16, paragraph after Remark 6])

observed the existence of concordance classes that contain at least two strongly quasi-

positive knots. In fact, his observation was the starting point of the project that led to

Theorem A, which shows that every concordance class of a non-trivial strongly quasiposi-

tive knot (link) contains infinitely many strongly quasipositive knots (links), respectively;

see also Remark 2.2. Given the results on the concordance classes of algebraic and posi-

tive knots, which stand in contrast to Theorem A, the following question naturally arises.

As far as we know, this question, which is a weaker version of Conjecture 1.2, is open.

Question 1.3. Are there only finitely many strongly quasipositive, fibered knots in every

smooth concordance class?

1.7 The slice-Bennequin equalities

Throughout this thesis—especially in Chapter 3, but also to justify the non-triviality

assumption in Theorem A—we will repeatedly refer to what we call the slice-Bennequin

equalities, which are a consequence of the (slice-)Bennequin inequalities. We will recall

them here in full generality, introducing some important notions along the way.
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Chapter 1. Introduction

Let L be a link. A Seifert surface for L is an oriented, compact, not necessarily

connected surface in S3 with oriented boundary L and no closed components. Let χ(L)

be the largest Euler characteristic χ(F ) of any Seifert surface F for L, and let χ4(L)

be its 4-dimensional analog, i. e. the largest Euler characteristic χ(F ) of any oriented,

compact surface F smoothly embedded in the 4-ball B4 with oriented boundary the link

L in S3 = ∂B4 and no closed components. Moreover, for a knot K, denote by g(K) its

3-genus, the minimal genus of a Seifert surface for K, and by g4(K) its (smooth) 4-genus,

the minimal genus of an oriented, connected, compact surface smoothly embedded in

B4 with oriented boundary K in S3 = ∂B4. We will define the analog of g4(K) in

the topological category in Section 1.10. Note that we have χ(K) = 1 − 2g(K) and

χ4(K) = 1 − 2g4(K). Finally, let wr(β) denote the writhe of a braid β ∈ Bn, i. e. the

exponent sum of the braid word β with respect to the Artin generators σi, which is

the image of β under the abelianization wr: Bn → Z. Building on Kronheimer and

Mrowka’s proof of the local Thom conjecture [KM93], Rudolph [Rud93] showed that

χ4(β̂) 6 n−wr(β) for every β ∈ Bn, n > 1. The analogous statement in three dimensions,

χ(β̂) 6 n − wr(β) for every β ∈ Bn, n > 1, is due to Bennequin [Ben83]. Bennequin’s

and Rudolph’s results are known as the Bennequin and slice-Bennequin inequalities,

respectively. We will see in Section 2.2 that every strongly quasipositive braid word β

comes equipped with a canonical Seifert surface F for L = β̂ which realizes the equality

χ(β̂) = n − wr(β). Furthermore, every quasipositive braid word β gives rise to an

immersed surface with boundary L = β̂ with only ribbon singularities which realizes

the equality for χ4(L) when pushed into the 4-ball. In particular, for every strongly

quasipositive braid β ∈ Bn, n > 1, such that K = β̂ is a knot, we have

(slice-Bennequin equalities) g4 (K) = g (K) =
wr(β) − n + 1

2
. (1.3)

Stallings [Sta78] showed that (as closures of so-called homogeneous braids), braid

positive knots are fibered, i. e. their complement in S3 is the total space of a locally

trivial fiber bundle over S1 whose fibers are the interiors of Seifert surfaces for the knot.

Note that fibered knots have a unique (up to isotopy) Seifert surface of minimal genus

and the fibers are realized by minimal genus Seifert surfaces [Rud05, Proposition 2.19].

Using Stalling’s result, the special case g(β̂) = wr(β)−n+1
2 of (1.3) for positive braids β

was also shown in [BW83, Theorem 5.2].

Remark 1.4. The non-triviality assumption in Theorem A is necessary because there

exists only one strongly quasipositive, strongly slice link of b components: the unlink of

b components. This follows from the slice-Bennequin inequalities for χ and χ4, using that

there is a unique surface in S3 of Euler characteristic b, with b boundary components

and without closed components: the disjoint union of b disks; and a unique link, the

unlink of b components, bounded by this surface. Here, a link is called strongly slice if

it arises as the boundary of a disjoint union of smoothly embedded disks in B4.
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1.8 On the concordance of positive 3-braid knots

In addition to the inclusions in (1.2), by Stalling’s result mentioned above, we have

{braid positive knots} ⊂ {strongly quasipositive knots} ∩ {fibered knots}. (1.4)

The set on the right hand side of (1.4) consists of the knots from Conjecture 1.2;

see [Hed10, Proposition 2.1] for equivalent characterizations of strongly quasipositive,

fibered knots. The following question thus arises naturally as a special case of that

conjecture.

Question 1.5. Are concordant braid positive knots isotopic?

We illustrate in Figure 1.5 how the various notions of positivity for knots are related.

Note that all inclusions are strict. For example, the knot 52 in Rolfsen’s knot table [Rol03,

LM23] is a positive knot that is not fibered and therefore not braid positive. Moreover,

the knot 41 is fibered but not quasipositive, while the knot 10145 is strongly quasipositive

and fibered, but not positive (see also [Baa05]).

algebraic

braid positive

positive

strongly quasipositive

quasipositive

fibered

Figure 1.5: Notions of positivity and related notions for knots.

It follows from the slice-Bennequin equalities (1.3) that every concordance class in

the knot concordance group contains at most finitely many braid positive knots. To see

this, we first observe that there are only finitely many braid positive knots of a given

fixed 3-genus, which can be shown, for example, as follows. The writhe of a positive

braid β equals the number of generators in the corresponding braid word and is linearly

bounded from below by twice the positive braid index of β̂, the minimal number of
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Chapter 1. Introduction

strands among the positive braid representatives of β̂. For a fixed 3-genus g, there

are thus only finitely many possible positive braid indices n and positive braids β with

g = g(β̂) = wr(β)−n+1
2 . Now, since g4 = g for braid positive knots by (1.3) and g4 is

a concordance invariant, there can only be finitely many braid positive knots in every

(smooth) concordance class. This is also true in the topological category: as a corollary

of a result by Stoimenow [Sto08] on the signature growth of braid positive knots, there

are only finitely many braid positive knots in every concordance class of the topologically

locally flat concordance group.

Question 1.5 asks whether there is in fact at most one braid positive knot in each

concordance class. One possible approach to answering this question is to explicitly

study knots that are the closures of positive braids on a fixed number of strands. In

this thesis, we call a knot a positive 3-braid knot if it is the closure of a positive braid

on three strands. Note that this terminology is somewhat ambiguous, because we do

not mean a 3-braid knot that is also positive. The knot 52 provides a simple example

to show that the two terms are not the same: it is a 3-braid knot (see Figure 1.2 for

the 3-braid σ3
1σ2σ−1

1 σ2 with closure 52) that is positive but not braid positive. However,

it is true that a braid positive knot of braid index 3 is also the closure of a positive

3-braid [Sto17]; see Theorem 4.11.

Focusing on positive 3-braid knots, Question 1.5 seems to be particularly accessible

due to classification results on the conjugacy classes of 3-braids [Gar69,Mur74]; see also

Proposition 3.8 in Chapter 3. As a corollary of our main theorem in Chapter 3, which

corresponds to [Tru21], we provide the following step towards understanding the concor-

dance classes of positive 3-braid knots. Here, υ(K) = ΥK(1) denotes a (smooth) concor-

dance invariant from knot Floer homology defined by Ozsváth–Stipsicz–Szabó [OSS17a].

Note that a pair of concordant, but non-isotopic positive 3-braid knots would provide a

counterexample to the slice-ribbon conjecture (Conjecture 1.1).

Corollary B. Let K be a positive 3-braid knot, i. e. K is the closure of an element of

the braid group B3 = 〈a, b | aba = bab〉 on three strands that can be written as a word in

the generators a and b only (no inverses). Then the minimal r such that K is the closure

of ap1bq1ap2bq2 · · · aprbqr for integers pi, qi > 1, i ∈ {1, . . . , r}, is r = g(K) + υ(K) + 1.

Moreover, if K and J are concordant positive 3-braid knots, then this minimal r is the

same for both K and J .

To explain the main result of Chapter 3, which implies Corollary B, we begin a little

further back.

1.9 The upsilon invariant at 1 of 3-braid knots

Heegaard Floer homology is a very effective tool for understanding 3-manifolds that

was developed by Ozsváth and Szabó [OS04b]. There are many generalizations and

refinements of this homology theory, which in its simplest form associates to any closed
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1.9. The upsilon invariant at 1 of 3-braid knots

3-manifold Y a graded chain complex whose chain homotopy type is an invariant of Y .

A knot in S3 induces a filtration on the chain complex associated to S3. The homology

of the associated graded object is known as knot Floer homology, which was defined

by Ozsváth–Szabó [OS04a] and independently by Rasmussen [Ras03]. The invariants τ

and Υ [OS03,OSS17a] that we consider in this thesis are only two of many concordance

invariants coming from knot Floer homology [Hom17].

Ozsváth, Stipsicz and Szabó [OSS17a] defined the invariant ΥK of a knot K using a

variant of the chain complex CFK−(K). For every knot K, the invariant ΥK takes the

form of a real-valued piecewise linear function on the interval [0, 2]. In fact, it induces a

homomorphism from the concordance group to the group of real-valued piecewise linear

functions on [0, 2]; see also [Liv17]. The function ΥK evaluated at t = 1, υ(K) := ΥK(1),

induces a homomorphism C → Z. In this work, we call υ(K) upsilon of K. In Chapter 3,

we determine upsilon for all 3-braid knots. More precisely, we show the following.

Theorem C. Let β = ∆2ℓa−p1bq1a−p2bq2 · · · a−pr bqr be a braid word in the generators a

and b of B3 for some ℓ ∈ Z, and integers r > 1 and pi, qi > 1 for i ∈ {1, . . . , r}, where

∆2 = (ab)3. Suppose that K = β̂ is a knot. Then its upsilon invariant is

υ(K) =

r∑
i=1

(pi − qi)

2
− 2ℓ.

As an application of Theorem C, we show that the following invariants coincide for

positive 3-braid knots.

Corollary D. Let K be a positive 3-braid knot. Then

alt(K) = dalt(K) = gT (K) = As(K) = g(K) + υ(K).

Here, the alternation number alt(K), dealternating number dalt(K) and Turaev

genus gT (K) are different ways of measuring how far a knot K is from being alternating.

The best known among them is certainly the first one: the alternation number alt(K) of

a knot K was first defined by Kawauchi [Kaw10] as the minimal Gordian distance of K to

the set of alternating knots. In Section 3.5, we review the precise definitions of the above

invariants and prove Corollary D. The invariant As(K) introduced by Friedl, Livingston

and Zentner [FLZ17] is defined as the minimal number of double point singularities in a

generically immersed concordance from a knot K to an alternating knot.

To prove Theorem C, we will first determine υ for all positive 3-braid knots and then

generalize our result to all 3-braid knots. Our main tool is the construction of cobordisms

between 3-braid knots and (connected sums of) torus knots. This extension to all 3-braid

knots from the positive ones was somewhat unexpected for the author since, in contrast,

the same method would not work to determine slice-torus invariants [Liv04,Lew14] such

as τ from Heegaard Floer homology or Rasmussen’s invariant s from Khovanov homol-

ogy [Ras10] for all 3-braid knots (see Section 3.4.4.2).
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1.10 3-braid knots with maximal topological 4-genus

This section is about a result in the topological category. The topological 4-genus gtop
4 (K)

of a knot K is the minimal genus of an oriented, connected, compact surface with

a topologically locally flat embedding in B4 and oriented boundary the knot K. By

definition,

gtop
4 (K) 6 g4(K) 6 g(K)

for every knot K. Four decades after Freedman’s celebrated work on 4-manifolds [Fre82],

the topological 4-genus of knots remains difficult to determine. The first challenge is

posed by the figure-eight knot 41. From the perspective of invariants that take the form

of group homomorphisms on the topologically locally flat concordance group, the figure-

eight knot satisfies gtop
4 (41) = 1 for no obvious reason. Its second power 41#41 bounds

a (smoothly, hence also topologically locally flatly) embedded disk in B4, causing all its

additive lower bounds on the topological 4-genus to be trivial. In particular, we have

σ(41) = 0, where σ(K) denotes the classical signature of the knot K [Tro62]1. Due to

this example, there is little reason to believe that the inequality

|σ(K)| 6 2gtop
4 (K)

has much to tell us about the topological 4-genus of knots in general. In Chapter 4,

which corresponds to [BLMT23], we show that 3-braids knots are exceptional in this

respect: we will see that the figure-eight knot is exceptional among closures of 3-braids

in that it is the only 3-braid knot K that satisfies |σ(K)| < 2g(K), yet gtop
4 (K) = g(K).

Theorem E. Let K be a 3-braid knot other than the figure-eight knot. Then

|σ(K)| = 2g(K) ⇐⇒ gtop

4 (K) = g(K).

These equalities hold precisely if K or its mirror is one of the following knots:

– T2,2m+1#T2,2n+1, with m, n > 0,

– P (2p, 2q + 1, 2r + 1, 1), with p > 1, q, r > 0,

– T3,4 or T3,5.

To understand the list in Theorem E, recall from Section 1.3 that Tp,q denotes a torus

knot. Furthermore, by P (2p, 2q + 1, 2r + 1, 1) we denote a 4-stranded pretzel knot; see

Figure 4.1 in Section 4.3. In Chapter 4, we also give an upper bound for the topological

4-genus of strongly quasipositive 3-braid knots and a more precise bound for certain

positive 3-braid knots.
1We use the standard signature convention that positive torus knots have negative signatures,

e. g. σ(T2,3) = −2.
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2 Strongly quasipositive links are con-

cordant to infinitely many strongly

quasipositive links

2.1 Introduction

The main result we prove in this chapter, based on [Tru22], is the following.

Theorem 2.1 (Theorem A). Every strongly quasipositive link that is not an unlink is

smoothly concordant to infinitely many pairwise non-isotopic strongly quasipositive links.

It follows directly from the definitions that strongly quasipositive links are quasi-

positive; see Section 1.3 and Figure 1.5 in the introduction. Quasipositive links occur in

algebraic geometry as transverse intersections of algebraic curves in C2 with the 3-sphere

S3 ⊂ C2, which provides a geometric characterization of these links [Rud83a,BO01]. In

the context of smooth concordance, from now on concordance, (strongly) quasiposi-

tive links are special. For example, it follows from the slice-Bennequin inequalities (see

Section 1.7) that not every link is concordant to a quasipositive link, and this is contrary

to the behavior in the topological category [BF19].

Recall from Sections 1.5 and 1.6 that in contrast to Theorem 2.1, every concor-

dance class in the knot concordance group contains at most finitely many positive

knots [BDL17], and at most one algebraic knot [Lit79]. Moreover, it was conjectured

in [Bak16] that every concordance class contains at most one strongly quasipositive,

fibered knot, and Baker’s conjecture is implied by the slice-ribbon conjecture due to

Fox [Fox62]. The links constructed in the proof of Theorem 2.1 are however not fibered;

see Remark 2.5.

Remark 2.2. In [Bak16], Baker explains a strategy personally communicated to him by

Hedden which directly shows that, contrary to the conjectured result for strongly quasi-

positive, fibered knots, there are (infinitely many) pairs of (ribbon) concordant, strongly

quasipositive knots that are not isotopic. Indeed, the positive k-twisted Whitehead dou-

bles of two concordant, non-isotopic knots provide examples of such pairs for negative,

sufficiently small k. In particular, there are concordance classes of knots that contain

more than one strongly quasipositive knot. Note that the statement of Theorem 2.1 is
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stronger, since it shows that every strongly quasipositive knot other than the unknot is

concordant to infinitely many strongly quasipositive knots.

This project began with the observation that, using the above idea of Hedden but

being careful about the choice of k, it is not difficult to construct an infinite family of

concordant, pairwise non-isotopic, strongly quasipositive knots. Indeed, we can take the

positive (−1)-twisted Whitehead doubles of an infinite family of concordant, pairwise

non-isotopic knots, all of which have maximal Thurston–Bennequin number TB equal to

−1. For instance, for a slice knot R with TB(R) = −1 (see Section 2.2 for an example

of such a knot), the connected sums of m copies of R for m > 1 can serve as the latter

infinite family. In Remark 2.9, we explain this in more detail.

Organization of this chapter. To prove Theorem 2.1, we will first establish some

notations and definitions regarding quasipositive Seifert surfaces and study examples of

such surfaces in Section 2.2. In Section 2.3, we will construct from two quasipositive

Seifert surfaces F1 and F2 for links ∂F1 and ∂F2 a third one which has as boundary a

link which is concordant, but not isotopic to ∂F2. The surface F1 will be one of the

quasipositive annuli from Section 2.2. We will finally prove Theorem 2.1 in Section 2.4,

leaving the proof of the technical Lemma 2.3 for Section 2.5.

2.2 Quasipositive Seifert surfaces and particular quasipositive annuli

We first define quasipositive Seifert surfaces. Let L be a link that arises as the closure β̂ of

a strongly quasipositive braid β ∈ Bn, n > 1, which is a product of m > 0 positive band

words σi,j (see (1.1) in Section 1.3). Recall that we refer to such a product as a strongly

quasipositive braid word, and, despite a minor abuse of notation, also denote it by β.

There is a canonical Seifert surface of Euler characteristic n − m for L associated to the

braid word β. It consists of n copies of disjoint parallel disks and m half-twisted bands

connecting these disks [Rud83b, Rud92a]; see Figure 2.1 for an example. Recall that a

Seifert surface (for L) is an oriented, compact surface in S3 (with oriented boundary L)

without closed components. We will denote the canonical Seifert surface associated to

L = β̂ by F (β). We call any Seifert surface F for a link L = ∂F quasipositive if, for some

strongly quasipositive braid word β ∈ Bn, n > 1, it is ambient isotopic to the canonical

Seifert surface F (β). We will be particularly interested in certain quasipositive annuli.

Let R be a non-trivial slice knot that has maximal Thurston–Bennequin number

TB(R) = −1, e. g. the mirror of the knot 946 from Rolfsen’s knot table [Ng01, Rol03,

LM23], which we denote by m (946). For our purposes, we could use any such knot R,

but for the sake of concreteness of our illustrations we will fix R = m (946) in the entire

chapter. Recall that every knot K has a Legendrian representative (which is at every

point in S3 tangent to the 2-planes of the standard contact structure on S3) and its

maximal Thurston–Bennequin number TB (K) is defined as

TB (K) = max{tb(L) | L is a Legendrian representative of K}.
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Here, for a Legendrian knot L, tb(L) denotes its Thurston–Bennequin number; see

e. g. [Etn05] for a definition.

Figure 2.1: The annulus A(R, −1) for R = m (946) is ambient isotopic to F (α) for

α = σ1,6σ3,8σ2,5σ1,4σ3,7σ2,6σ5,8σ4,7 ∈ B8.

Figure 2.2 shows the front projection of a Legendrian representative L of m (946)

with tb(L) = −1. There is a Lagrangian concordance between the Legendrian unknot

U with tb(U) = −1 and L; see [Cha15, Figure 4]. In particular, the knot m (946) is slice,

and since TB(K) 6 −1 for every slice knot K [Rud95], this implies TB (m (946)) = −1.

Figure 2.2: Front projection of a Legendrian representative L of m (946) with tb(L) = −1;

cf. [Cha15, Figure 1].

For a knot K and an integer k, following Rudolph’s notation [Rud92b], let A (K, k)

denote an annulus of type K with k full twists, i. e. A (K, k) is an annulus in S3 with
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K ⊂ ∂A (K, k) and such that the linking number lk (K, ∂A (K, k) \ K) = −k. We have

sup {k | A (K, k) is quasipositive} = TB (K) [Rud95, Proposition 1].

Hence, for every knot K with TB (K) = −1, the annulus A (K, −1) is quasipositive, in

particular for K = R = m (946). This is the key observation of this section. It implies

the existence of a strongly quasipositive braid word α ∈ Bm for some m > 1 such that

A (R, −1) is ambient isotopic to F (α). For example, we can choose

α = σ1,6σ3,8σ2,5σ1,4σ3,7σ2,6σ5,8σ4,7 ∈ B8; (2.1)

see Figure 2.1. Note that for any knot K with TB (K) = k, a quasipositive diagram

for the annulus A (K, k) can be found by taking the Legendrian ribbon of a Legendrian

representative L of K with tb(L) = k [Rud84,Rud92b].

2.3 Tying knots into bands of quasipositive Seifert surfaces preserving

quasipositivity

Let F be a quasipositive Seifert surface for a link L that is not an unlink. Moreover,

let R = m (946) such that the annulus A (R, −1) is quasipositive (see Section 2.2). As

mentioned in Section 2.2, for R we could also use every other non-trivial slice knot with

maximal Thurston–Bennequin number TB(R) = −1.

In this section, starting from the quasipositive Seifert surfaces A (R, −1) and F , we

will define a new quasipositive Seifert surface F ′ that will have as boundary a link which

is concordant, but not isotopic to L = ∂F . To that end, for both A (R, −1) and F ,

choose strongly quasipositive braid words α ∈ Bm and β ∈ Bn for m, n > 1, respectively,

such that A (R, −1) is ambient isotopic to F (α) and F is ambient isotopic to F (β). For

example, we can and will choose α as in (2.1) from Section 2.2. Let β =
∏ℓ

k=1 σik,jk
. We

can put the surfaces F (α) and F (β) in split position in S3 as sketched in Figure 2.5(a).

Concretely, we can take F (α) to lie in the lower hemisphere and F (β) to lie in the upper

hemisphere of S3, respectively. Then we can choose a cylinder Z ⊂ S3 such that the

bands Bα of F (α) and Bβ of F (β) corresponding to the positive band words σ4,7 and

σi1,j1
, respectively, intersect Z as indicated in the upper part of Figure 2.3 (ignoring

the red curve for now). More precisely, we can choose a cylinder Z ⊂ S3 and an

orientation-preserving diffeomorphism ϕ : Z → D2 × [0, 1] such that Z ∩ F (α) = Z ∩ Bα,

Z ∩ F (β) = Z ∩ Bβ and ϕ maps

Z ∩ Bα
∼=−→
ϕ

[
−

2

3
, −

1

3

]
× [0, 1], Z ∩ ∂Bα

∼=−→
ϕ

{
−

2

3
, −

1

3

}
× [0, 1],

Z ∩ Bβ
∼=
−→
ϕ

[
1

3
,
2

3

]
× [0, 1], Z ∩ ∂Bβ

∼=
−→
ϕ

{
1

3
,
2

3

}
× [0, 1],

(2.2)
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where X
∼=
→ Y indicates an orientation-preserving diffeomorphism. Here, [a, b] denotes

the straight line segment connecting a and b in the closed unit disk D2 in C. We choose

the orientations on D2 × [0, 1] and [a, b] × [0, 1] induced by the standard orientations on

C × R ∼= R3 ⊂ S3 and R2, respectively; the orientation on [a, b] × [0, 1] also induces an

orientation on {a, b} × [0, 1].

ϕ(γ)

Figure 2.3: Top: The triple
(
D2 × [0, 1], [−2

3 , −1
3 ]× [0, 1]∪ [1

3 , 2
3 ]× [0, 1], {±1

3 , ±2
3}× [0, 1]

)
,

which is mapped to (Z, Z ∩ (Bα ∪ Bβ), Z ∩ ∂(Bα ∪ Bβ)) via ϕ. The red curve depicts

ϕ(γ) ⊂ D2 × [0, 1]; see (2.3). Bottom: B′ ⊂ D2 × [0, 1] for B′ as defined in (2.4).

We claim that we can choose Z and ϕ : Z
∼=→ D2 × [0, 1] such that ϕ satisfies (2.2)

and such that there exists a simple closed curve γ in S3 \F (β) that goes once around the

band Bβ of F (β) corresponding to σi1,j1
and that is not null-homotopic in S3 \ ∂F (β).

More precisely, we claim that we can choose Z and ϕ satisfying (2.2) such that

γ = ϕ−1
(

C 1

3

(
1

2

)
×

{
1

2

})
⊂ S3 \ F (β) (2.3)

is a simple closed curve that is not null-homotopic in S3 \ ∂F (β), where C 1

3

(
1
2

)
⊆ D2

denotes the circle with center 1
2 and radius 1

3 . The situation is shown in the upper part

of Figure 2.3 with ϕ(γ) ⊂ D2 × S1 in red. The above claim follows from the following

lemma.1

Lemma 2.3. Let F (β) denote the canonical Seifert surface associated to a strongly

quasipositive braid word β such that ∂F (β) is not an unlink. Then we can choose a

cylinder Z ′ ⊂ S3 and an orientation-preserving diffeomorphism ϕ′ of triples of manifolds

1Note that up to conjugation of β or ambient isotopy of F (β), that is, up to a different choice of Z

and ϕ, we can choose any positive band word of β to be the first one σi1,j1
.
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Chapter 2. Strongly quasipositive links are concordant to infinitely many such links

with corners

ϕ′ :
(
Z ′, Z ′ ∩ F (β), Z ′ ∩ ∂F (β)

)

∼=
→

(
D2 × [0, 1],

[
−

1

2
,
1

2

]
× [0, 1],

{
−

1

2
,
1

2

}
× [0, 1]

)

such that Bβ = Z ′ ∩ F (β) is a band of F (β) corresponding to a positive band word of β

and such that γ = (ϕ′)−1((∂D2) × {1
2}) is a simple closed curve in S3 \ F (β) which is

not null-homotopic in S3 \ ∂F (β). Moreover, either the two components of ∂Bβ ∩ ∂F (β)

belong to two different components of the link ∂F (β) or we can assume that there exists

some quasipositive Seifert surface G that is a connected component of F (β) with boundary

a knot J = ∂G (which is one of the components of ∂F (β)) such that Bβ ⊂ G and γ is

not null-homotopic in S3 \ J .

For the proof of Lemma 2.3, we refer the reader to Section 2.5. The necessity of these

assumptions will become clear later. Now, let B = Z ∩ (Bα ∪ Bβ) for bands Bα and

Bβ of F (β) and a cylinder Z as in (2.2) and define F ′ = (F (α) ∪ F (β)) \ B ∪ ϕ−1 (B′),

where B′ is as in the lower part of Figure 2.3. More precisely, we let

B′ =
{

(a + t, t) | t ∈ [0, 1], a ∈

[
−

2

3
, −

1

3

]}

∪

{
(a − t + ti, t) | t ∈

[
0,

1

2

]
, a ∈

[
1

3
,
2

3

]}

∪

{
(a − t + (1 − t)i, t) | t ∈

[
1

2
, 1
]

, a ∈

[
1

3
,
2

3

]}
⊆ D2 × [0, 1].

(2.4)

In the definition of B′ in (2.4) (and only there in this chapter), i ∈ C denotes the

imaginary unit. We smooth the corners of ϕ−1 (B′) to obtain a smooth surface F ′ and

claim the following.

Lemma 2.4. Let Z and ϕ be defined as above such that (2.2) is satisfied and such that

γ as in (2.3) is a simple closed curve in S3 \ F (β) that goes once around the band Bβ

of F (β) and is not null-homotopic in S3 \ ∂F (β). Moreover, assume that either the two

components of ∂Bβ ∩∂F (β) belong to two different components of the link ∂F (β) or there

exists a connected component G of F (β) with boundary a knot J = ∂G such that Bβ ⊂ G

and γ is not null-homotopic in S3\J . Then the surface F ′ = (F (α) ∪ F (β))\B∪ϕ−1 (B′)

with smoothed corners, where B = Z ∩ (Bα ∪ Bβ) and B′ is defined as in (2.4), is a

quasipositive Seifert surface for a link ∂F ′ that is concordant, but not isotopic to ∂F (β).

Proof of Lemma 2.4. We will show the following two claims separately.

Claim 1. The surface F ′ is quasipositive.

Claim 2. The boundary of F ′ is concordant, but not isotopic to ∂F (β).

18



2.3. Tying knots into bands of quasipositive Seifert surfaces preserving quasipositivity

Proof of Claim 1: The quasipositivity of F ′ can be shown using an isotopy as depicted

in Figures 2.5(b) to 2.5(d) on the next page. A strongly quasipositive braid word δ such

that F (δ) is ambient isotopic to F ′ can then be read off in Figure 2.5(d). �

Proof of Claim 2: Observe that the surface F ′ is obtained from F (β) by tying the knot

R with framing 0 into the band Bβ of F (β); see Figure 2.4.

F (β)

F (α)

C

(a)

F ′

C

(b)

C

(c)

C

(d)

Figure 2.4: The surface F ′ is obtained from F (β) by tying the knot R into the band Bβ

corresponding to the positive band word σi1,j1
of β. Subfigure 2.4(a) shows a schematic

representation of the surfaces F (α) and F (β), and subfigure 2.4(b) one of F ′. Subfigures

2.4(c) and 2.4(d) indicate an ambient isotopy between F ′ and the surface F (β) with the

knot R tied into Bβ with framing 0.

This amounts to realizing the boundary of F ′ as a satellite with pattern ∂F (β) and

companion R. We explain this in detail. The link ∂F (β) can be viewed as a link in the

solid torus S3 \ ν(γ) given by the complement of an open tubular neighborhood ν(γ) of

γ in S3. We can identify this solid torus with V = D2 × S1 ⊂ S3 by an orientation-

preserving diffeomorphism that takes the preferred longitude of S3\ν(γ) to {1}×S1 ⊂ V .

Then ∂F ′ arising as a satellite link with pattern ∂F (β) and companion R means that

it is the image of ∂F (β) ⊂ S3 \ ν(γ) ∼= V under an orientation-preserving embedding

h : V = D2 × S1 → S3 that maps {0} × S1 to R and {1} × S1 to a curve that has

linking number 0 with h
(
{0} × S1

)
. For more details on satellite constructions and the

terms used here, see [Rol03, Sections 2E and 4D]. Our choices ensure that h is faithful

in Rolfsen’s terminology and that the companion is really R and not the reverse of R.
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γ

F (β)

F (α)

(a)

F ′

(b)

(c) (d)

Figure 2.5: Quasipositivity of the surface F ′ defined from F (α) and F (β) (see

Lemma 2.4). The surface F (α) is shown in black, the surface F (β) in blue, and

Z ∩ (F (α) ∪ F (β)) in grey. Subfigure 2.5(a) shows F (α) and F (β) together with γ

as in Lemma 2.4. Subfigure 2.5(b) shows the surface F ′ which is ambient isotopic to the

canonical quasipositive Seifert surface in 2.5(d); an intermediate stage of such an isotopy

is shown in 2.5(c).
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Now, it is a standard fact from concordance theory that, since R is slice, so concordant

to the unknot U , there is a concordance between ∂F ′, the satellite with pattern ∂F (β)

and companion R, and ∂F (β), the satellite with same pattern but companion U . Indeed,

if R and U are concordant via an annulus A ∼= S1 × [0, 1] ⊂ S3 × [0, 1], then we can

identify
(
S3 \ ν(γ)

)
× [0, 1] with a tubular neighborhood of A in S3 × [0, 1] and the image

of (∂F (β)) × [0, 1] in S3 × [0, 1] under this identification provides us with a concordance

between the two satellite links.

On the other hand, we claim that since R is not isotopic to U , the satellite links ∂F ′

and ∂F (β) are not isotopic. To prove this claim, we distinguish two cases. Note that

the two components of ∂Bβ ∩ ∂F (β) do not necessarily belong to the same component

of the link ∂F (β).

We first assume that they do, which is the case, for example, if ∂F (β) is a knot;

and we can further assume that γ is not null-homotopic in the complement of this

component J of ∂F (β) in S3 (see the assumptions in the lemma). The claim then

follows from work of Kouno and Motegi [KM94, Theorem 1.1] since in this case our

satellite operation modifies up to ambient isotopy only the component J of ∂F (β) by

applying a satellite operation with companion R and pattern J ; that ∂F ′ and ∂F (β)

are not isotopic follows from the fact that this satellite operation on the non-isotopic

knots R and U produces non-isotopic components of ∂F ′ and ∂F (β). Here we need the

assumptions on γ, which imply that the pattern J we use in the satellite construction

has wrapping number strictly greater than 1. The wrapping number ωV (P ) of a pattern

P in the solid torus V = D2 × S1 is the minimal geometric intersection number of P

and a generic meridional disk of V . Recall that we can consider ∂F (β) and hence also

its component J as a link in the solid torus S3 \ ν(γ), which we identify with V by

an orientation-preserving diffeomorphism that takes the preferred longitude of S3 \ ν(γ)

to {1} × S1. Then γ not being null-homotopic in S3 \ J implies that J geometrically

intersects non-trivially every meridional disk in S3 \ ν(γ) ∼= V , so ωV (J) 6= 0. Since the

algebraic winding number of J in S3 \ ν(γ) ∼= V is zero (thus even), we get ωV (J) > 1.

Now, suppose that the two components of ∂Bβ ∩ ∂F (β) belong to two different

components L1 and L2 of the link ∂F (β). The satellite operation then has the effect

of tying R into both of these components (up to orientation), i. e. the resulting link has

components L1#R and L2#Rr, where Rr denotes R with the reversed orientation, and

all other components unchanged. Note that for our particular choice R = m (946) we

have R = Rr [LM23]. This clearly produces a link ∂F ′ that is not isotopic to ∂F (β). �

This concludes the proof of Lemma 2.4.

Remark 2.5. The link ∂F ′ from Lemma 2.4 is not fibered. Indeed, we can use the

Seifert–van Kampen theorem to show that the fundamental group of the complement of

R embeds into the fundamental group of the complement of F ′ in S3, which is thus not

free. Hence, the constructed Seifert surface F ′ is not a fiber surface for ∂F ′, and since it

is a surface with maximal Euler characteristic for ∂F ′, the link ∂F ′ cannot be fibered.
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Chapter 2. Strongly quasipositive links are concordant to infinitely many such links

2.4 Proof of Theorem 2.1

Recall the statement of Theorem 2.1: Every strongly quasipositive link that is not an

unlink is smoothly concordant to infinitely many pairwise non-isotopic such links.

Proof of Theorem 2.1. Let L be a link other than an unlink, let F be a quasipositive

Seifert surface for L and let R = m (946) such that the annulus A (R, −1) is quasipositive

(see Section 2.2). Let α be as in (2.1) from Section 2.2 such that A (R, −1) is ambient

isotopic to F (α), and, as in Section 2.3, choose a strongly quasipositive braid word

β ∈ Bn, n > 1, such that F is ambient isotopic to F (β).

The statement of Theorem 2.1 will follow from an iterative application of the opera-

tion defined in Section 2.3: Given two quasipositive Seifert surfaces F (α) and F (β) for

links ∂F (α) and ∂F (β), respectively, using Lemma 2.3 and Lemma 2.4 we can construct

a quasipositive Seifert surface F ′ with boundary that is concordant, but not isotopic

to ∂F (β). We will denote this surface by F (α) ⊕ F (β) := F ′. We define F0 = F (β),

F1 = F ′ = F (α) ⊕ F (β) and, inductively, Fi+1 = F (α) ⊕ Fi for all i > 1. The links

{∂Fi}i>0 are then all in the same concordance class (the class of L = ∂F0 = ∂F (β)), but

pairwise non-isotopic. Let us make this more precise. Recall that we constructed the

surface F1 = F ′ by tying the knot R into a specific band Bβ of F (β) (see Section 2.3)

which implied that we obtained ∂F1 as a satellite with pattern ∂F (β) and companion R

(see the proof of Lemma 2.4). The surfaces F (β) and F1 are both quasipositive Seifert

surfaces (see Lemma 2.4) that can again be put in a position where we can choose a

cylinder Z1 ⊂ S3 and an orientation-preserving diffeomorphism ϕ1 : Z1 → D2 × [0, 1]

that satisfies a condition equivalent to the one in (2.2) from Section 2.3 for Z and ϕ. By

Lemma 2.3 and Lemma 2.4, we can choose Z1 and ϕ1 such that the surface F2 obtained

from F1 by tying the knot R into a specific band of F1 is quasipositive and has as bound-

ary ∂F2 a link that is concordant, but not isotopic to ∂F1. Inductively, Fi+1 is obtained

from Fi by tying R into a band of Fi such that ∂Fi+1 is concordant, but not isotopic to

∂Fi. However, up to an ambient isotopy of F1 and F2, we can assume that for F2 we tie

R into the “same band” of F1 as Bβ of F (β).2 Note that the additional assumptions in

Lemma 2.4 about this band will still be satisfied.

As in the proof of Claim 2 in the proof of Lemma 2.4, we now distinguish two cases.

If the two components of ∂Bβ ∩ ∂F (β) belong to the same component J of the link

∂F (β), then we actually obtain ∂F2 as PJ(R#R), the satellite with pattern PJ = J , but

companion R#R. Inductively, we get

∂Fi = PJ(R#R . . . #R)︸ ︷︷ ︸
i times

.

Since R is not isotopic to the unknot, the connected sums of i and k copies of R,

2To make the term “same band” more precise, we could fix an abstract embedding of the surface F (β)
throughout.
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respectively, are not isotopic for i 6= k (e. g. by arguing with the additivity of the nonzero

genus of R). It thus follows from [KM94, Theorem 1.1] that

∂Fi = PJ (R#R . . . #R)︸ ︷︷ ︸
i times

and ∂Fk = PJ(R#R . . . #R)︸ ︷︷ ︸
k times

are not isotopic if i 6= k. Again, it is important that the pattern J has wrapping number

strictly greater than 1 under the assumptions of Lemma 2.4 for F (β).

If the two components of ∂Bβ ∩ ∂F (β) belong to different components L1 and L2 of

the link ∂F (β), then, by induction, the link ∂Fi has components

L1# R#R . . . #R︸ ︷︷ ︸
i times

and L2# Rr#Rr . . . #Rr

︸ ︷︷ ︸
i times

and so again ∂Fi and ∂Fk are not isotopic if i 6= k.

Remark 2.6. A careful generalization of our proof of Theorem 2.1 and in particular

Lemma 2.4 shows the following slightly stronger statement. Let F be a quasipositive

Seifert surface for a link L other than an unlink. Then there exists an infinite family

{Σi × [0, 1]}i>1 of smoothly and properly embedded 3-manifolds Σi × [0, 1] in S3 × [0, 1]

where every Σi is a surface such that ∂ (Σi × [0, 1]) = F × {0} ∪ Σ′
i × {1} for some

quasipositive Seifert surface Σ′
i with boundary ∂Σ′

i non-isotopic to ∂F = L and such

that the boundaries ∂Σ′
i and ∂Σ′

j are non-isotopic for i 6= j.

2.5 Proof of Lemma 2.3

In this section, we prove Lemma 2.3, which we recall here (with a slightly different

notation) for the reader’s convenience.

Lemma 2.7 (Lemma 2.3). Let F (β) denote the canonical Seifert surface associated to

a strongly quasipositive braid word β such that ∂F (β) is not an unlink. Then we can

choose a cylinder Z ⊂ S3 and an orientation-preserving diffeomorphism ϕ of triples of

manifolds with corners

ϕ : (Z, Z ∩ F (β), Z ∩ ∂F (β))

∼=→

(
D2 × [0, 1],

[
−

1

2
,
1

2

]
× [0, 1],

{
−

1

2
,

1

2

}
× [0, 1]

) (2.5)

such that Bβ = Z∩F (β) is a band of F (β) corresponding to a positive band word of β and

such that γ = ϕ−1((∂D2) × {1
2}) is a simple closed curve in S3 \ F (β) which is not null-

homotopic in S3 \ ∂F (β). Moreover, either the two components of ∂Bβ ∩ ∂F (β) belong

to two different components of the link ∂F (β) or we can assume that there exists some

quasipositive Seifert surface G that is a connected component of F (β) with boundary a

23



Chapter 2. Strongly quasipositive links are concordant to infinitely many such links

knot J = ∂G (which is one of the components of F (β)) such that Bβ ⊂ G and γ is not

null-homotopic in S3 \ J .

Proof of Lemma 2.7. Let β =
∏ℓ

k=1 σik,jk
∈ Bn for some n > 1. We claim that one of

the following is true.

Case 1: There exists a half-twisted band in F (β) corresponding to one of the positive

band words σik,jk
, k ∈ {1, . . . , ℓ}, of β such that the boundary of this band

intersected with ∂F (β) has two components that belong to two different

components of the link ∂F (β).

Case 2: F (β) is a disjoint union of quasipositive Seifert surfaces each of which has

only one boundary component.

Here is the argument why: If the half-twisted bands in F (β) are such that for each

of them the boundary of the band intersected with ∂F (β) has two components that

belong to the same component of the link ∂F (β), then for each of the disks in F (β),

there is a component of ∂F (β) such that the entire boundary of the disk belongs to that

component. All the bands emanating from a disk must belong to the same component

of ∂F (β) as the boundary of that disk, and so every connected component of F (β) must

have only one component of F (β) (a knot) as its boundary.

Let us first assume that we are in case 2, so that F (β) is a disjoint union of quasi-

positive Seifert surfaces each of which a knot as its boundary. By assumption, F (β) is

not a union of disks. Let G be one of the connected components of F (β) which is not

a disk. We claim that we can choose Z and ϕ as in (2.5) such that Bβ = Z ∩ F (β)

is a band of G ⊂ F (β) corresponding to a positive band word of β and such that

γ = ϕ−1((∂D2)×
{

1
2}
)

is a simple closed curve in S3 \F (β) which is not null-homotopic

in S3 \ G. The claim of Lemma 2.7 will then follow from the more general statement in

Lemma 2.8, which can be shown using a standard innermost circle argument. Note that

quasipositive Seifert surfaces are of minimal genus [Rud93,KM93] and thus incompress-

ible. For the reader’s convenience, we will prove Lemma 2.8 below.

Lemma 2.8. Let F be an incompressible Seifert surface for a link L and let γ ⊂ S3 \ F

be a simple closed curve. If there exists a disk in S3 \ L with boundary γ, then there also

exists a disk in S3 \ F with boundary γ.

So if we find Z and ϕ as in (2.5) such that γ = ϕ−1((∂D2)×{1
2 }) is not null-homotopic

in S3 \ G, it is also not null-homotopic in S3 \ ∂G. To conclude the proof of Lemma 2.7

in case 2, it remains to show that this is always possible.

To that end, we claim that there exists a positive band word σiℓ,jℓ
in β which fulfills

the following condition: the core of the half-twisted band Bβ of F (β) associated to σiℓ,jℓ

together with an arc in G the interior of which misses Bβ unite to a simple closed curve

η in G so that η and a meridian of Bβ have linking number ±1. Under a diffeomorphism

ϕ : Z → D2 × S1 as in (2.5), we can identify any of the half-twisted bands in G with
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[−1
2 , 1

2 ] ⊂ D2×[0, 1] for an appropriately chosen cylinder Z ⊂ S3. For us, a meridian of a

band Bβ of G is then a simple closed curve in S3\G which is isotopic to ϕ−1((∂D2)×{1
2 })

under this identification, and the core of Bβ is ϕ−1({0} × [0, 1]). If we find a band Bβ

with the above requirements, the condition on the linking number of η and the meridian

γ = ϕ−1((∂D2) × {1
2}) of Bβ will imply that γ cannot be null-homotopic in S3 \ G.

The quasipositive Seifert surface G deformation retracts onto a graph Γ in S3 where

vertices of Γ correspond to the disks of G and edges of Γ correspond to the bands of G,

respectively. Since G is not disk, Γ is not a tree, hence there must exist an edge e of Γ

such that Γ \ e is not disconnected. This edge e together with a path in Γ connecting

the vertices of e, but missing the interior of e, forms a simple closed curve in Γ which

has linking number ±1 with its meridian in S3 \ Γ. For the desired positive band word

σiℓ,jℓ
, we can take the one corresponding to the edge e.

In summary, we have shown that in case 2 we can choose Z and ϕ as in (2.5) such

that Bβ = Z ∩ F (β) is a band of F (β) corresponding to a positive band word of β that

is contained in one of these Seifert surfaces G and such that γ = ϕ−1((∂D2) × {1
2}) is a

simple closed curve in S3 \ F (β) that is not null-homotopic in S3 \ G and therefore by

Lemma 2.8 not null-homotopic in S3 \ ∂G.

Now suppose we are in case 1, so we can choose a cylinder Z ⊂ S3 and an orientation-

preserving diffeomorphism ϕ as in (2.5) such that Bβ = Z ∩ F (β) is a band of F (β)

corresponding to a positive band word of β where the two components of ∂Bβ ∩ ∂F (β)

belong to two different components of the link ∂F (β). We claim that in this case

γ = ϕ−1((∂D2) × {1
2}) is a simple closed curve in S3 \ F (β) which is not null-homotopic

in S3 \ F (β) and thus, by Lemma 2.8, not null-homotopic in S3 \ ∂F (β).

Similar as in the argument in case 2 above, the quasipositive Seifert surface F (β)

deformation retracts onto a graph Γ in S3 where vertices of Γ correspond to the disks of

F (β) and edges of Γ correspond to the bands of F (β), respectively. Consider the edge e

of Γ that corresponds to the band Bβ . Since the two components of ∂Bβ ∩∂F (β) belong

to two different components of ∂F (β), this edge must be part of a cycle in Γ. This cycle

is a simple closed curve in Γ which has linking number ±1 with its meridian in S3 \ Γ,

so the core of the band Bβ together with a certain arc in F (β) unite to form a simple

closed curve in F (β) which has linking number ±1 with the meridian of Bβ and the

claim follows.

Proof of Lemma 2.8. Let D ⊂ S3 \ L be a disk with ∂D = γ ⊂ S3 \ F and suppose that

D intersects F non-trivially. Up to an ambient isotopy, we can assume that D and F

intersect transversally in S3 [GP10]. Then D ∩ F is a one-dimensional compact mani-

fold, so a finite collection of simple closed curves. Using the 2-dimensional Schoenflies

theorem [Rol03, Section 2A], each of these simple closed curves bounds a disk in D. Let

R be one of the simple closed curves in D ∩ F which is innermost in the sense that

the interior of the disk D′ bounded by R in D misses F . Since F is incompressible, R

must also bound a disk D′′ in F . The union of D′ and D′′ forms a 2-sphere which, by
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Chapter 2. Strongly quasipositive links are concordant to infinitely many such links

the 3-dimensional Schoenflies theorem [Rol03, Section 2F], bounds a ball in S3. We can

push F along this ball to obtain a Seifert surface F ′ for L which is ambient isotopic to

F and intersects D in less simple closed curves than F . We repeat this process until we

obtain a Seifert surface F ′′ for L which is ambient isotopic to F and disjoint from D. In

summary, up to an ambient isotopy we found the desired disk in S3 \ F .

We conclude with the promised details on the construction in Remark 2.2.

Remark 2.9. We elaborate on how to construct an infinite family of concordant, pair-

wise non-isotopic, strongly quasipositive knots using Whitehead doubles as sketched

in Remark 2.2. Let R be a non-trivial slice knot with maximal Thurston–Bennequin

number TB(R) = −1, e. g. R = m (946) (see Section 2.2). For m > 1, let Km be the

connected sum of m copies of R. Then for every m > 1, the knot Km is slice (since

R is) and by inductively using the formula TB(L1#L2) = TB(L1) + TB(L2) + 1 for

any knots L1, L2 [EH03, Tor03], we have TB(Km) = −1. Note that Km and Kn are

not isotopic for m 6= n, since R is non-trivial. Using the notation from [Hed07], we

now define Jm := D+ (Km, −1) as the positive (−1)-twisted Whitehead double of Km.

Then {Jm}m>1 is the desired infinite family. Indeed, using TB(Km) > −1, by work of

Rudolph (see e. g. [Rud05, 102.4]) each Jm is strongly quasipositive. Moreover, as Km

and Kn are not isotopic for m 6= n, the knots Jm and Jn are not isotopic either for such

m and n [KM94]. On the other hand, Jm and Jn are concordant for every m 6= n as

Km and Kn are. Indeed, as noted in the proof of Lemma 2.4, the satellite operation in-

duces a well-defined map on the concordance group of which taking the positive twisted

Whitehead double is a special case.
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3 The upsilon invariant at 1 of 3-braid

knots

3.1 Introduction

In this chapter, we study knots in S3, i. e. links of one connected component, as usual

up to ambient isotopy. Recall from Section 1.4 that two knots K and J are concordant

if there exists an annulus A ∼= S1 × [0, 1] smoothly and properly embedded in S3 × [0, 1]

such that ∂A = K × {0} ∪ J × {1} and such that the induced orientation on the

boundary of the annulus agrees with the orientation of K, but is the opposite one on

J . In [OSS17a], Ozsváth, Stipsicz and Szabó used a variant of the Heegaard Floer

chain complex CFK−(K) to define the invariant ΥK of a knot K, which induces a

homomorphism from the knot concordance group C to the group of real-valued piecewise

linear functions on the interval [0, 2]. Recall that we call the concordance invariant

υ(K) = ΥK(1) ∈ Z, the value of the function ΥK at 1, upsilon of K.

Recall further (see Section 1.2) that a 3-braid is an element of the braid group B3

on three strands with generators a = σ1 and b = σ2 and relation aba = bab, the braid

relation. A braid word β—a word in the generators of B3 and their inverses—defines a

diagram for a (geometric) 3-braid; the generators a and b correspond to the geometric

3-braids given by braid diagrams as in Figure 3.1(a). In our figures, braid diagrams

will always be oriented from bottom to top. We denote by ∆ the braid aba = bab (see

Figure 3.1(b)), and note that its square ∆2 = (ab)3 (the positive full twist on three

strands) generates the center of B3 [Cho48, Theorem 3]. A (positive) 3-braid knot is a

knot that arises as the closure β̂ of a (positive) 3-braid β.

(a) The two generators a and b of B3.

=

(b) The braid relation aba = bab in B3.

Figure 3.1: Generators and relation in the braid group B3.
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Chapter 3. The upsilon invariant at 1 of 3-braid knots

As our main result in this chapter, based on [Tru21], we determine the upsilon

invariant for all 3-braid knots. More precisely, we show the following.

Theorem 3.1 (Theorem C). Let β = ∆2ℓa−p1bq1a−p2bq2 · · · a−prbqr be a braid word in

the generators a and b of B3 for some ℓ ∈ Z, and integers r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r}. Suppose that the closure K = β̂ of β is a knot. Then its upsilon invariant

is

υ(K) =

r∑
i=1

(pi − qi)

2
− 2ℓ.

Note that it follows from Murasugi’s classification of the conjugacy classes of 3-braids

[Mur74, Proposition 2.1] that indeed all 3-braid knots, except for the torus knots that

are closures of 3-braids, are covered by Theorem 3.1. For torus knots, however, the

invariant υ can be computed explicitly by a combinatorial inductive formula in terms

of its Alexander polynomial [OSS17a, Theorem 1.15]; see (3.8) below. Hence, we have

indeed determined υ(K) for all 3-braid knots K.

As an application of Theorem 3.1, we show that for positive 3-braid knots K, several

alternating distances all equal the sum g(K) + υ(K); see Corollary 3.2 below. Recall

from Section 1.7 that g(K) denotes the 3-genus of K, the minimal genus of an oriented,

connected, compact smooth surface in S3 with oriented boundary the knot K. In par-

ticular, we compute the alternation number, the dealternating number and the Turaev

genus for all positive 3-braid knots. We will review the definitions of these invariants

and prove Corollary 3.2 in Section 3.5. We will also give upper and lower bounds on the

alternation number and dealternating number of each 3-braid knot that differ by 1.

Corollary 3.2 (Corollary D). Let K be a positive 3-braid knot, i. e. a knot that is the

closure of an element of B3 that can be written as a word in the generators a and b only

(no inverses). Then

alt(K) = dalt(K) = gT (K) = As(K) = g(K) + υ(K).

Another corollary of Theorem 3.1 for positive 3-braid knots is the following.

Corollary 3.3 (Corollary B). Let K be a positive 3-braid knot. Then the minimal r

such that K is the closure of ap1bq1ap2bq2 · · · apr bqr for integers pi, qi > 1, i ∈ {1, . . . , r},

is r = g(K) + υ(K) + 1. Moreover, if K and J are concordant positive 3-braid knots,

then this minimal r is the same for both K and J .

Proposition 3.8 in Section 3.3 provides a normal form for 3-braids, the Garside nor-

mal form, which is different from the Murasugi normal form mentioned above (see

Definition 3.26). The Garside normal form allows us to read off from a braid word

whether it is conjugate to a positive braid word. In Corollary 3.43 in Section 3.6, we
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3.1. Introduction

provide formulas for the fractional Dehn twist coefficient for all 3-braids in Garside nor-

mal form.

Proof strategy for Theorem 3.1. A crucial property of the invariant υ is that it

provides a lower bound on the 4-genus g4(K) of a knot K: we have

|υ(K)| 6 g4(K) (3.1)

for any knot K [OSS17a, Theorem 1.11]. Recall that the (smooth) 4-genus of a knot

K is the minimal genus of an oriented, connected, compact surface smoothly embedded

in B4 with oriented boundary K in S3 = ∂B4 (see Section 1.7). Our general strategy

to find υ(K) for every 3-braid knot K will be to construct a cobordism between K and

another knot J for which the value of υ is known. A cobordism between K and J is an

oriented, connected, compact surface C smoothly and properly embedded in S3 × [0, 1]

with boundary K × {0} ∪ J × {1} such that the induced orientation on the boundary of

C agrees with the orientation of K and disagrees with the orientation of J . Note that a

concordance is a cobordism of genus 0. We have

|υ(K) − υ(J)| 6 g(C) (3.2)

for any cobordism C between K and J , where g(C) denotes the genus of the cobordism;

see (3.11) in Section 3.4.1. This provides bounds on υ(K) in terms of υ(J) and g(C).

We will find such cobordisms for example by algebraic modifications of a braid

word representing K and by saddle moves corresponding to the addition or deletion

of generators from such braid words. We will also use repeatedly the trick described in

Example 3.13 in Section 3.4.1 of looking at cobordisms of genus 1 between β̂#T2,2n+1

and β̂b2n for 3-braid words β and n > 1.

To prove Theorem 3.1, we will first determine υ for all positive 3-braid knots and

then generalize our computations to all 3-braid knots. In Section 3.4.4.2, we will explain

why this extension of our technique was somewhat surprising to the author.

Remark 3.4. As we will only use properties of the upsilon invariant (see Section 3.2) and

not its definition, we can similarly determine any concordance homomorphism C → Z

whose absolute value bounds the 4-genus from below and which takes the same value as

υ on torus knots of braid index 2 and 3. An example is − t
2 for the concordance invari-

ant t constructed by Ballinger [Bal20] from the E(−1) spectral sequence on Khovanov

homology. The invariant t defines a concordance homomorphism valued in the even in-

tegers which satisfies
∣∣∣ t(K)

2

∣∣∣ 6 g4(K) for any knot K [Bal20, Theorem 1.1]. Moreover, it

satisfies t (Tp,q) = −2υ (Tp,q) for the torus knots Tp,q for any coprime positive integers p

and q [Bal20, p. 22]. The same method we use for the proof of Theorem 3.1 shows that

t(K) = −2υ(K) holds for any 3-braid knot K with explicit formulas in terms of braid

representatives of K as given by Theorem 3.1.
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Chapter 3. The upsilon invariant at 1 of 3-braid knots

Remark 3.5. Theorem 3.1 and a result of Erle [Erl99] imply that σ(K) = 2υ(K) for all

3-braid knots K except when K = ±T3,3ℓ+k for odd ℓ > 0 and k ∈ {1, 2}. Recall that

σ(K) denotes the classical signature of the knot K [Tro62]. In the exceptional cases we

have σ(K) = 2υ(K) − 2. This observation improves a result by Feller and Krcatovich

who showed that
∣∣∣υ(K) − σ(K)

2

∣∣∣ 6 2 for all 3-braid knots K [FK17, Proposition 4.4]; see

also Section 3.4.4.1.

Organization of this chapter. In Section 3.2, we will review the necessary prop-

erties of the upsilon invariant and the knot invariant τ from Heegaard Floer homol-

ogy before providing a normal form for 3-braids (Proposition 3.8) that we call Garside

normal form in Section 3.3. Then in Section 3.4, after a more detailed outline of our

proof strategy (Section 3.4.1), we will prove Theorem 3.1 first for positive 3-braid knots

(Section 3.4.2) and afterwards in the general 3-braid case (Section 3.4.3). We will prove

Corollary 3.3 in Section 3.4.2. Section 3.4.4 will provide further context on our results.

Section 3.5 is concerned with the proof of Corollary 3.2 (Section 3.5.1) and the applica-

tion of our result about the upsilon invariant to alternating distances of general 3-braid

knots (Section 3.5.2). Finally, in Section 3.6, we determine the so-called fractional Dehn

twist coefficient for all 3-braids in Garside normal form.

3.2 Preliminaries on the concordance invariants τ and Υ

In [OS03], Ozsváth and Szabó constructed the knot invariant τ via the knot filtration

on the Heegaard Floer chain complex of S3; the latter was also defined independently

by Rasmussen [Ras03]. The invariant τ induces a group homomorphism C → Z and

gives a lower bound on the 4-ball genus g4(K): we have |τ(K)| 6 g4(K) for any knot

K. For the torus knots Tp,q, where p and q are coprime positive integers, the invariant

τ recovers the 3-genus [OS03, Corollary 1.7], namely we have

τ (Tp,q) = g (Tp,q) =
(p − 1)(q − 1)

2
. (3.3)

Moreover, it follows from [Liv04, Theorem 4 and Corollary 7] together with the slice-

Bennequin equalities (see (1.3) in Section 1.7) that, for any knot K that is the closure

of a positive n-braid β, we have

τ(K) =
wr(β) − n + 1

2
= g4(K) = g(K). (3.4)

Note that (3.4) is true in greater generality for any slice-torus invariant µ replacing τ ,

that is, any homomorphism µ : C → R satisfying |µ(K)| 6 g4(K) and µ (Tp,q) = g4 (Tp,q)

for all coprime positive integers p and q; see [Liv04] and [Lew14, Proposition 5.6].

The invariant Υ was defined by Ozsváth–Stipsicz–Szabó [OSS17a]. We will not recall

the definition of Υ via the knot Floer complex CFK∞(K) since the properties of Υ
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3.3. The Garside normal form for 3-braids

mentioned below will be enough for our later computations and we will not explicitly

use the Heegaard Floer theory behind it. For an overview on the properties of Υ, see the

original article [OSS17a] or Livingston’s notes on Υ [Liv17]. For every knot K, the knot

invariant ΥK : [0, 1] → R is a continuous, piecewise linear function with the following

properties [OSS17a]:

− ΥK(0) = 0,

− the slope of ΥK(t) at t = 0 is given by − τ(K),

− ΥK1#K2
(t) = ΥK1

(t) + ΥK2
(t) for all 0 6 t 6 1 and all knots K1 and K2, (3.5)

− Υ−K(t) = −ΥK(t) for all 0 6 t 6 1, (3.6)

− |ΥK(t)| 6 g4(K)t for all 0 6 t 6 1. (3.7)

Recall that −K is the knot obtained by mirroring K and reversing its orientation, whose

concordance class is the inverse of the class of K in C. It follows from (3.5)-(3.7) that Υ

induces a homomorphism from C to the group of real-valued piecewise linear functions

on the interval [0, 1].

For some classes of knots, the invariant Υ can be explicitly computed in terms of

classical knot invariants like the signature σ and the Alexander polynomial. For a

definition of these invariants, see e. g. Rolfsen’s book on knots and links [Rol03]. A knot

is alternating if it admits a diagram such that the crossings alternate between under-

and overpasses as one travels along the diagram.

Proposition 3.6 ([OSS17a, Theorem 1.14]). We have ΥK(t) = σ(K)
2 t for all alternating

(or quasi-alternating) knots K and all 0 6 t 6 1.

For torus knots, ΥK(t) is completely determined by a combinatorial formula in terms

of their Alexander polynomial [OSS17a, Theorem 1.15]. For torus knots of braid index

2 or 3, the following holds; see e. g. [Fel16]. For ℓ > 0 and k ∈ {1, 2}, we have

ΥT2,2ℓ+1
(t) = −τ (T2,2ℓ+1) · t = −ℓ · t for all 0 6 t 6 1,

ΥT3,3ℓ+1
(1) = ΥT3,3ℓ+2

(1) + 1 = −2ℓ,

ΥT3,3ℓ+k
(t) = −τ(T3,3ℓ+k)t = −(3ℓ + k − 1)t for all 0 6 t 6

2

3
and

ΥT3,3ℓ+k
(t) is linear on

[
2

3
, 1
]

. (3.8)

3.3 The Garside normal form for 3-braids

In this section, we provide a classification result on the conjugacy classes of 3-braids;

see Proposition 3.8. This result is basically due to work of Garside [Gar69] who gave

the first solution to the conjugacy problem for all braid groups Bn, n > 3, in 1965.

Proposition 3.8 might be known to the experts, but since the explicit formulas appear
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Chapter 3. The upsilon invariant at 1 of 3-braid knots

to be missing from the literature, we will provide them here.

Throughout, we denote the two generators of the braid group B3 by a = σ1 and

b = σ2. They are subject to the braid relation aba = bab. Recall that the braid

∆2 = (aba)2 = (ab)3 generates the center of B3.

Remark 3.7. Any 3-braid is conjugate to the same braid with generators a and b in-

terchanged. More precisely, let β = ap1bq1 · · · aprbqr for some r > 1 and integers pi, qi,

i ∈ {1, . . . , r}, be a 3-braid. Then, using ∆a = b∆ and ∆b = a∆, we have

β = ∆−1∆ap1bq1 · · · apr bqr = ∆−1bp1aq1 · · · bpr aqr∆ ∼ bp1aq1 · · · bpraqr .

In Proposition 3.8, we provide a certain standard form for the conjugacy classes of

3-braids.

Proposition 3.8. Let β be a 3-braid. Then β is conjugate to one of the 3-braids

(A) ∆2ℓap for ℓ ∈ Z, p > 0,

(B) ∆2ℓapb for ℓ ∈ Z, p ∈ {1, 2, 3},

(C) ∆2ℓap1bq1 · · · apr bqr for ℓ ∈ Z, r > 1, pi, qi > 2, i ∈ {1, . . . , r},

(D) ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr for ℓ ∈ Z, r > 1, pr > 2, pi, qi > 2,

i ∈ {1, . . . , r − 1}.

If β is a positive 3-braid, then ℓ > 0. If β̂ is a knot, then only the cases (B)–(D) can

occur and p must be odd in case (B), at least one of the pi and one of the qi must be odd

in case (C), and at least one of the pi or qi must be odd in case (D).

We note the following uniqueness result related to Proposition 3.8.

Remark 3.9. Up to cyclic permutation of the exponents p1, q1, . . . , pr, qr in (C) and

p1, q1, . . . , pr−1, qr−1, pr in (D), respectively, every 3-braid is conjugate to exactly one of

the 3-braids listed in Proposition 3.8. For 3-braids conjugate to braids in (C), we could

for example choose as a unique representative the braid in Garside normal form where

the tuple (−2ℓ, p1, q1, . . . , pr, qr) is lexicographically minimal among all words of the form

(C) representing the same conjugacy class. This follows from Garside’s work [Gar69]. In

his notation, each of the 3-braids listed in (A)–(D) in Proposition 3.8 is the standard

form of a certain element in the (so-called) summit set of β. For 3-braids of the form

(C) or (D), the summit set consists of those 3-braids obtained by cyclic permutation of

the powers p1, q1, . . . , pr, qr in (C) and p1, q1, . . . , pr−1, qr−1, pr in (D), respectively.

Definition 3.10. We call a braid word of the form in (A)–(D) a 3-braid in Garside

normal form.
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3.3. The Garside normal form for 3-braids

Remark 3.11. The advantage of the Garside normal form over Murasugi’s normal form

for 3-braids used later in Section 3.4.3 (see Definition 3.26) is that positive 3-braids are

easier to detect in this normal form: if β is a positive 3-braid, then β is conjugate to one

of the braids in (A)–(D) with ℓ > 0. Since Garside’s solution to the conjugacy problem

works for any n-braid with n > 3, one might hope to generalize an explicit standard

form as in Proposition 3.8 to n-braids for any n > 3.

Remark 3.12. For odd p, case (B) of Proposition 3.8 covers the torus knots of braid index

3. More precisely, if β ∼ ∆2ℓab = (ab)3ℓ+1, then its closure is β̂ = T3,3ℓ+1 for ℓ > 0 and

β̂ = −T3,3(−ℓ−1)+2 for ℓ < 0, and if β ∼ ∆2ℓa3b ∼ (ab)3ℓ+2, then β̂ = T3,3ℓ+2 for ℓ > 0

and β̂ = −T3,3(−ℓ−1)+1 for ℓ < 0.

Proof of Proposition 3.8. The proof will follow from the following claim.

Claim 1. Let β be a positive 3-braid. Then β is conjugate to one of the 3-braids in

(A)–(D) with ℓ > 0.

We first deduce Proposition 3.8 from this claim. To that end, let β be any 3-braid.

If β is a positive braid, we are done by Claim 1. If not, then β can be written in the

form β = ∆mα where m is a negative integer and α a positive 3-braid [Gar69, Theorem

5]. In fact, inserting ∆−1∆ if m is odd, we can assume β to be of the form ∆−2nα for

some n > 1 and a positive 3-braid α. The proposition then easily follows using the claim

for α. It remains to prove Claim 1.

Proof of Claim 1: A positive 3-braid β has the form β = aP1bQ1 · · · aPRbQR for integers

R > 1, Pi, Qi > 0, i ∈ {1, . . . , R}. If all the Pi or all the Qi are 0, then (possibly

using Remark 3.7) β is conjugate to ap for some p > 0 and we are in case (A) for ℓ = 0.

Possibly after conjugation and reduction of R, we can thus assume that all of the integers

Pi, Qi are non-zero. If P1, Q1 > 2 applies for all i ∈ {1, . . . , R}, then β is of the form in

(C) for ℓ = 0. If R = 1, i. e. β = aP1bQ1 for integers P1, Q1 > 1, and P1 = 1 or Q1 = 1,

then (possibly using Remark 3.7) β is conjugate to a braid of the form in (B).

It remains to consider the case where R > 2 and at least one of the Pi or Qi is 1. In

that case—if necessary after conjugation—β contains ∆ = aba = bab as a subword and

is thus conjugate to ∆α for some positive 3-braid α. Let m > 1 be maximal with the

property that β is conjugate to ∆mα for some positive 3-braid α. Then, possibly after

conjugation of β, the braid word α must be one of the following:

ap for p > 0,

apb for p > 1,

ap1bq1 · · · apr bqr for r > 1, pi, qi > 2, i ∈ {1, . . . , r},

ap1bq1 · · · apr−1bqr−1apr for r > 1, pr > 2, pi, qi > 2, i ∈ {1, . . . , r − 1}.

(3.9)

Indeed, using Remark 3.7, up to conjugation these are the only possible words such that

∆mα does not contain any additional ∆ as a subword. Note that α can be the empty
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Chapter 3. The upsilon invariant at 1 of 3-braid knots

word, which is covered by the first case in (3.9) for p = 0. Further, note that

∆2ℓapb ∼ ∆2ℓ+1ap−2, ∆2ℓ+1a ∼ ∆2ℓa3b, ∆2ℓ+1apb ∼ ∆2ℓ+1ap+1,

∆2ℓ+1ap1bq1 · · · apr bqr ∼ ∆2ℓ+1ap1+qr bq1ap2 · · · bqr−1apr and

∆2ℓap1bq1 · · · apr−1bqr−1apr ∼ ∆2ℓap1+prbq1ap2 · · · apr−1bpr−1

(3.10)

for any ℓ > 0, p > 1, pi, qi > 2, i ∈ {1, . . . , r}. It follows from a case by case analysis of

the cases in (3.9), using (3.10) and taking the parity of m into account, that any positive

3-braid is conjugate to one of the 3-braids in (A)–(D) with ℓ > 0. �

This concludes the proof of Proposition 3.8.

3.4 The upsilon invariant of 3-braid knots

In this section, we prove Theorem 3.1. Along the way, we compute the invariant υ for pos-

itive 3-braid knots in Garside normal form (Proposition 3.14) and prove Corollary 3.3.

3.4.1 Methodology

First, we recall the inequality (3.2) from Section 3.1—which will be used repeatedly in

Section 3.4—in more generality. The cobordism distance d(K, J) between two knots K

and J is defined as the 4-genus g4(K# −J) of the connected sum of K and the inverse

of J . Equivalently, the cobordism distance d(K, J) is the minimal genus of a cobordism

between K and J (see Section 3.1 for the definition of a cobordism). Suppose the genus

of a cobordism C between two knots K and J is g(C). We then have d(K, J) 6 g(C),

so by the properties (3.5)-(3.7) of Υ from Section 3.2, we get

|ΥK(t) − ΥJ(t)| = |ΥK#−J(t)| 6 g4(K# −T )t = d(K, T )t 6 g(C)t (3.11)

for all 0 6 t 6 1. This provides bounds on ΥK(t) in terms of ΥJ(t) and g(C).

We now give an example for the cobordisms we will use later on.

Example 3.13. Among other things, we will frequently use the following trick the

author first saw in [FK17, Example 4.5]. Let β be a 3-braid such that K = β̂ is a

knot. Consider the 3-braid α := βb2n for some n > 1. Then α̂ is also a knot and

there is a cobordism between α̂ and the connected sum K#T2,2n+1 of genus 1. This

cobordism can be realized by two saddle moves (1-handle attachments) of the form shown

in Figure 3.2(b) on the next page, performed in the two circled regions of Figure 3.2(a).

One of them is used to add a generator b to the braid α to obtain the braid word βb2n+1

and the other is used to transform the closure of this new braid word into a connected

sum of K and T2,2n+1. Recall that our braid diagrams are oriented from bottom to top.

Using υ (T2,2n+1) = −n by (3.8) and that the genus of the cobordism is 1, by (3.11)
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3.4. The upsilon invariant of 3-braid knots

for t = 1, we have

|υ (α̂) − υ (K#T2,2n+1)| 6 1 ⇐⇒ |υ (α̂) − υ (K) + n| 6 1, (3.12)

which provides the lower bound υ(K) > υ
(
α̂
)

+ n − 1 on υ(K).

ββ

2n

α̂

2n
+1

β̂#T2,2n+1

2 saddle
moves

(a) Schematic of a cobordism between α̂ and β̂#T2,2n+1 realized by 2 saddle moves.

(b) A saddle move.

Figure 3.2: An example illustrating our proof strategy.

3.4.2 The upsilon invariant of positive 3-braid knots

In this subsection, we determine the invariant υ for all positive 3-braid knots.

By Proposition 3.8 and Remark 3.12, positive 3-braid knots are either the torus

knots T3,3ℓ+k for ℓ > 0 and k ∈ {1, 2} which have braid representatives of Garside

normal form (B), or closures of positive 3-braids of Garside normal form (C) or (D)
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Chapter 3. The upsilon invariant at 1 of 3-braid knots

(cf. Definition 3.10). The following proposition thus proves Theorem 3.1 for all positive

3-braid knots.

Proposition 3.14. Let β be a positive 3-braid such that K = β̂ is a knot. Then

υ(K) =





−2ℓ −
p − 1

2
if β is conjugate to a braid in (B),

−

r∑
i=1

(pi + qi)

2
+ r − 2ℓ if β is conjugate to a braid in (C),

−

r−1∑
i=1

(pi + qi) + pr

2
+ r − 2ℓ −

3

2
if β is conjugate to a braid in (D).

Remark 3.15. In fact, the formulas from Proposition 3.14 also give the correct upsilon

invariant in terms of the Garside normal form of a 3-braid representative of a knot K

if K is the closure of any 3-braid in Garside normal form (C) or (D), not necessarily

a positive one. This follows from Theorem 3.1 (proved in the next subsection) and the

observations of Section 3.4.4.3.

Recall that for the torus knots of braid index 3, we know the invariant υ by (3.8). In

the following, we will determine the invariant υ for all knots that are closures of positive

3-braids of Garside normal form (C) or (D).

We first provide an upper bound on ΥK(t) for all positive 3-braid knots K and

0 6 t 6 1. The following inequality (3.13) in Lemma 3.16 could also be shown using

the dealternating number and a result of Abe–Kishimoto [AK10, Lemma 2.2], whereas

the main work for the upper bound on υ for the knots in the second and third case in

Proposition 3.14 will be to rewrite the braid words representing these knots. We use

the approach below since it will also give bounds on the minimal cobordism distance

between any positive 3-braid knot and an alternating knot; see Remark 3.25.

Lemma 3.16. Let β = ap1bq1 · · · apr bqr be a positive 3-braid, where r > 1 and pi, qi > 1,

i ∈ {1, . . . , r}, are integers such that K = β̂ is a knot. Then

ΥK(t) 6 (−g(K) + r − 1) t for all 0 6 t 6 1. (3.13)

Proof. We claim that there is a cobordism C of genus

g(C) =
r − 1 + ε

2
(3.14)

between K and the connected sum

Jε = T
2,

r∑
i=1

pi+εp

# T2,q1+ε1
# T2,q2+ε2

# . . . # T2,qr+εr , (3.15)

where ε1, . . . , εr, εp ∈ {0, 1} are chosen such that Jε is a connected sum of torus knots
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3.4. The upsilon invariant of 3-braid knots

(rather than links), i. e. such that
∑r

i=1 pi + εp, q1 + ε1, q2 + ε2, . . . , qr + εr are all odd,

and ε := εp +
∑r

i=1 εi. This cobordism C can be realized by r − 1 + ε saddle moves as

follows.

p1p1

q1

p2p2

q2

pr

qr

q1

+ε1

q2

+ε2

qr

+εr

r − 1 + ε
saddle
moves

pr

+εp

K Jε

Figure 3.3: A schematic of a cobordism between the knots K = β̂ and Jε as in (3.15)

realized by r − 1 + ε saddle moves.

Following the schematic in Figure 3.3, we add ε generators b by ε saddle moves and

additionally perform r − 1 saddle moves of the form shown in Figure 3.2(b) in the green

circled regions of Figure 3.3. In Figure 3.3, a box on the left labeled pi or qi stands

for the positive braid api or bqi , respectively. The Euler characteristic of the cobordism

C is χ(C) = −r + 1 − ε. Since C is connected and—as Jε and K are knots—has two

boundary components, the genus of C is g(C) = −χ(C)
2 = r−1+ε

2 as claimed. By (3.11),
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we get |ΥK(t) − ΥJε(t)| 6 g(C)t for all 0 6 t 6 1, hence

ΥK(t) 6 ΥJε(t) + g(C)t for all 0 6 t 6 1. (3.16)

By (3.5) and (3.8) from Section 3.2, we have

ΥJε(t) =
(

−

∑r
i=1 pi + εp − 1

2
−

q1 + ε1 − 1

2
−

q2 + ε2 − 1

2
· · · −

qr + εr − 1

2

)
t

= −
1

2

(
r∑

i=1

(pi + qi) − (r + 1) + ε

)
t,

so (3.14) and (3.16) imply

ΥK(t) 6


−

r∑
i=1

(pi + qi)

2
+ r


 t for all 0 6 t 6 1.

The claim follows, since by the slice-Bennequin equalities (1.3), we have

g(K) =
wr(β) − 2

2
=

r∑
i=1

(pi + qi) − 2

2
.

The following Lemmas 3.17 and 3.18 improve the upper bound on ΥK(t) from the

last Lemma 3.16 for knots K that are closures of positive 3-braids of Garside normal

form (C) or (D), respectively.

Lemma 3.17. Let β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr for some ℓ > 0, r > 1, pr > 1 and

pi, qi > 1 for i ∈ {1, . . . , r − 1} such that K = β̂ is a knot. Then

ΥK(t) 6


−

r−1∑
i=1

(pi + qi) + pr

2
+ r − 2ℓ −

3

2


 t for all 0 6 t 6 1.

In the proof of Lemma 3.17, we will use that in B3, we have

(ab)3n+1 = ab∆2n = a2ba3(aba3)n−1ban for all n > 1, (3.17)

where ∆2 = (aba)2 = (ab)3 = (ba)3; see [Fel16, Proof of Prop. 22].

Proof of Lemma 3.17. Let Σβ =
r−1∑
i=1

(pi + qi) + pr and note that using (1.3), we have

g(K) =
3(2ℓ + 1) + Σβ − 2

2
=

Σβ

2
+ 3ℓ +

1

2
. (3.18)
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If ℓ = 0, then β = ∆ap1bq1 · · · apr−1bqr−1apr is conjugate to

β1 = ap1+1bq1 · · · apr−1bqr−1apr+1b

and β̂1 = β̂ = K, so g
(
β̂1

)
= Σβ

2 + 1
2 . By Lemma 3.16, we get

ΥK(t) 6
(
−g

(
β̂1

)
+ r − 1

)
t =

(
−

Σβ

2
+ r −

3

2

)
t for all 0 6 t 6 1.

For ℓ > 1, using ∆2ℓ+1 = (ab)3ℓaba = (ab)3ℓ+1a, we have

β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr = (ab)3ℓ+1ap1+1bq1 · · · apr−1bqr−1apr

(3.17)
= a2ba3(aba3)ℓ−1bap1+ℓ+1bq1 · · · apr−1bqr−1apr

∼ apr+2ba3(aba3)ℓ−1bap1+ℓ+1bq1 · · · apr−1bqr−1 =: β1.

We have β̂1 = β̂ = K and g
(
β̂1

)
= Σβ

2 + 3ℓ + 1
2 by (3.18). Again, Lemma 3.16 implies

ΥK(t) 6
(
−g

(
β̂1

)
+ r + ℓ − 1

)
t =

(
−

Σβ

2
+ r − 2ℓ −

3

2

)
t for all 0 6 t 6 1,

which proves the claim of the lemma.

Lemma 3.18. Let β = ∆2ℓap1bq1 · · · aprbqr for some ℓ > 0, r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r} such that K = β̂ is a knot. Then

ΥK(t) 6


−

r∑
i=1

(pi + qi)

2
+ r − 2ℓ


 t for all 0 6 t 6 1.

In the proof of Lemma 3.18, we will need the following statement about positive

3-braids.

Lemma 3.19. In B3, we have

(ab)3n−1 = a2nb(a2b2)n−1a for all n > 1. (3.19)

Proof. Starting with the left-hand side we have

(ab)3n−1 = a(ba)3(n−1)bab = a(ab)3(n−1)aba,

which proves (3.19) for n = 1. We now show by induction that

(ab)3(n−1)a = a2n−1b(a2b2)n−2a2b for all n > 2, (3.20)
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which implies the lemma for all n > 1. For n = 2, we have

(ab)3a = a(ba)3 = a(ab)3 = a2babab = a3ba2b.

Assuming that (3.20) is true for some n − 1 > 2, we get

(ab)3(n−1)a = a(ba)3(n−1) = a(ab)3(n−1) = a2(ba)3(n−2)babab = a2(ab)3(n−2)aba2b

= a2
(
a2n−3b(a2b2)n−3a2b

)
ba2b = a2n−1b(a2b2)n−2a2b,

using the induction hypothesis in the second to last equality.

Proof of Lemma 3.18. Let Σβ =
r∑

i=1
(pi + qi). If ℓ = 0, then by (1.3) and Lemma 3.16 we

have

ΥK(t) 6 (−g (K) + r − 1) t =
(

−
Σβ

2
+ r

)
t for all 0 6 t 6 1.

For ℓ > 1, using ∆2 = (ba)3 and Lemma 3.19, we have

β = (ba)3ℓap1bq1 · · · apr bqr ∼ (ab)3ℓ−1ap1+1bq1 · · · aprbqr+1

∼ a2ℓb(a2b2)ℓ−1ap1+2bq1 · · · aprbqr+1 =: β1.

Note that β̂1 = β̂ = K and by (1.3), we have

g
(
β̂1

)
= g(K) =

6ℓ + Σβ − 2

2
=

Σβ

2
+ 3ℓ − 1.

Again by Lemma 3.16, we get

ΥK(t) 6
(
−g

(
β̂1

)
+ r + ℓ − 1

)
t =

(
−

Σβ

2
+ r − 2ℓ

)
t for all 0 6 t 6 1.

We will now focus on υ(K) = ΥK(1) and prove Proposition 3.14 by showing that

the upper bounds on ΥK(t) from Lemma 3.17 and Lemma 3.18 for t = 1 are also lower

bounds. We will need the following observation used in [FK17, Example 4.5] about

3-braids, which we prove here for completeness.

Lemma 3.20. In B3, we have

a2n+1b
(
a2b2

)n
= (ab)3n+1 and b2n+1a

(
b2a2

)n
= (ba)3n+1 for all n > 0. (3.21)

Proof. We prove the first statement by induction. For n = 0, the equality is clearly true.

For n = 1, using ∆a = b∆ and ∆b = a∆, we have

a3ba2b2 = a2∆ab2 = a2ba∆b = a∆2b = ∆2ab = (ab)4.
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We now assume that (3.21) is true for some n − 1 > 0. Using the induction hypothesis

and the equality for n = 1, we get

a2n+1b
(
a2b2

)n
= a2 (ab)3(n−1)+1 a2b2 = a3b∆2(n−1)a2b2

= ∆2(n−1)a3ba2b2 = (ab)3(n−1)(ab)4 = (ab)3n+1.

Lemma 3.21. Let β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr for some ℓ > 0, r > 1, pr > 3 and

pi, qi > 2 for i ∈ {1, . . . , r − 1} such that K = β̂ is a knot. Then

υ(K) = −

r−1∑
i=1

(pi + qi) + pr

2
+ r − 2ℓ −

3

2
.

Proof of Lemma 3.21. Let Σβ =
r−1∑
i=1

(pi + qi) + pr. From Lemma 3.17, it follows directly

that υ(K) = ΥK(1) 6 −1
2Σβ + r − 2ℓ − 3

2 , so we are left to show that

υ(K) > −
1

2
Σβ + r − 2ℓ −

3

2
.

To that end, consider

β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr ∼ ∆2ℓa∆ap1bq1 · · · apr−1bqr−1apr−1

= ∆2ℓbab2ap1bq1 · · · apr−1bqr−1apr−1 =: β1,

where we used a∆ = abab = bab2. Note that β̂1 = β̂ = K. Now, define

α := b2rβ1 = ∆2ℓb2r+1ab2ap1bq1 · · · apr−1bqr−1apr−1

and note that α̂ is a knot. By assumption, we have pr − 1 > 2. There is a cobordism

between α̂ and the connected sum T2,2r+1#β̂1 = T2,2r+1#K of genus 1 by using two

saddle moves similar to the two saddle moves illustrated in Figure 3.2 from Example 3.13.

Similarly as in (3.12) from Example 3.13, we have υ(K) > υ
(
α̂
)

+ r − 1.

In order to find a lower bound for υ
(
α̂
)
, note that there is a cobordism C between α̂

and the torus knot T = T3,3(ℓ+r)+1 of genus g(C) = Σβ

2 −2r+ 1
2 . Here we think of T as the

closure of the braid γ = ∆2ℓb2r+1a(b2a2)r, which is equal to ∆2ℓ(ba)3r+1 = (ba)3(ℓ+r)+1

as 3-braid words by Lemma 3.20. The cobordism C between α̂ and T = γ̂ can thus be

realized by

p1 − 2 + q1 − 2 + · · · + pr−1 − 2 + qr−1 − 2 + pr − 3 = Σβ − 4r + 1

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word α to obtain γ. Hence the Euler characteristic of the cobordism C

is χ(C) = −Σβ + 4r − 1. Since C is connected and has two boundary components (as
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α̂ and T = γ̂ are knots), the genus of C is indeed g(C) = Σβ

2 − 2r + 1
2 . By (3.11) and

(3.8), we have

υ (α̂) > υ (T ) − g(C) = −2 (ℓ + r) −

(
Σβ

2
− 2r +

1

2

)
= −

Σβ

2
− 2ℓ −

1

2
.

It follows that

υ(K) > υ (α̂) + r − 1 > −
Σβ

2
+ r − 2ℓ −

3

2
.

This finishes the computation of υ(K) for K the closure of a positive 3-braid in

Garside normal form (C).

Lemma 3.22. Let β = ∆2ℓap1bq1 · · · aprbqr for some ℓ > 0, r > 1, pr, qr > 3 and

pi, qi > 2 for i ∈ {1, . . . , r − 1} such that K = β̂ is a knot. Then

υ(K) = −

r∑
i=1

(pi + qi)

2
+ r − 2ℓ.

Proof of Lemma 3.22. The proof uses similar ideas as the proof of Lemma 3.21. Let

Σβ =
r∑

i=1
(pi + qi). By Lemma 3.18, we have υ(K) 6 −

Σβ

2 + r − 2ℓ, so it remains to show

that υ(K) > −
Σβ

2 + r − 2ℓ. To that end, we consider

β = ∆2ℓap1bq1 · · · aprbqr ∼ ∆2ℓbap1bq1 · · · aprbqr−1 =: β1.

Note that β̂1 = β̂ = K. We define

α := a2rβ1 = a2r∆2ℓbap1bq1 · · · aprbqr−1 ∼ ∆2ℓba2rbap1bq1 · · · aprbqr−2 =: α1.

Then α̂1 = α̂ is a knot and by assumption we have qr − 2 > 1. There is a cobordism

between α̂ and T2,2r+1#β̂1 = T2,2r+1#K of genus 1 by using two saddle moves similar

to the cobordism considered in Example 3.13 and in the proof of Lemma 3.21, hence

υ(K) > υ
(
α̂1

)
+ r − 1. To find a lower bound for υ

(
α̂1

)
, we observe that there is a

cobordism C between the knot α̂1 and the knot γ̂, where

γ = ∆2ℓba2rb(a2b2)r−1a3b.

Using (3.21) from Lemma 3.20 for n − 1, in B3, we have

ba2nb
(
a2b2

)n−1
a2 = ba(ab)3(n−1)+1a2 = ba∆2(n−1)aba2 = ∆2n for all n > 1.

We thus have γ = ∆2ℓ∆2rab = (ab)3(ℓ+r)+1. Hence the closure of γ is the torus knot

T = T3,3(ℓ+r)+1 with υ(T ) = −2 (ℓ + r) by (3.8). The cobordism C between α̂1 and
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T = γ̂ can be realized by

p1 − 2 + q1 − 2 + · · · + pr−1 − 2 + qr−1 − 2 + pr − 3 + qr − 3 = Σβ − 4r − 2

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word α1 to obtain γ. By a similar Euler characteristic argument as in the

proofs of Lemma 3.16 and Lemma 3.21, the genus of this cobordism is g(C) = Σβ

2 −2r−1.

Note that here we used pr > 3 and qr > 3. Now, by (3.11), we have

υ(α̂1) > υ (T ) − g(C) = −
Σβ

2
− 2ℓ + 1, hence

υ(K) > υ (α̂1) + r − 1 > −
Σβ

2
+ r − 2ℓ.

Lemma 3.23. Let β = ∆2ℓap1bq1 · · · apr bqr for some ℓ > 0, r > 2, pi, qi > 2 for

i ∈ {1, . . . , r}. Suppose that qr > 3 and pk > 3 for some 1 6 k < r and that K = β̂ is a

knot. Then

υ(K) = −

r∑
i=1

(pi + qi)

2
+ r − 2ℓ.

Proof. We proceed similar as in the proof of Lemma 3.22, but here we will look at a

different cobordism to obtain a lower bound for υ (α̂1). The steps of the proof are

exactly the same until then, so we consider

β = ∆2ℓap1bq1 · · · aprbqr ∼ ∆2ℓbap1bq1 · · · aprbqr−1 =: β1

and define

α := a2rβ1 ∼ ∆2ℓba2rbap1bq1 · · · aprbqr−2 =: α1.

Again, we have υ(K) > υ(α̂1) + r − 1. Now, in order to find a lower bound for υ(α̂1), we

observe that there is a cobordism C between α̂1 and the knot γ̂, where

γ = ∆2ℓba2rb(a2b2)k−1a3b2(a2b2)r−k−1a2b.

We find the cobordism C by the deletion of generators from the braid word γ to obtain

α1, where we use the assumptions qr > 3 and pk > 3. In fact, the cobordism can be

realized by

p1 − 2 + q1 − 2 + · · · + pk−1 − 2 + qk−1 − 2 + pk − 3 + qk − 2

+ pk+1 − 2 + qk+1 − 2 + · · · + pr−1 − 2 + qr−1 − 2 + pr − 2 + qr − 3

= Σβ − 4r − 2
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saddle moves, so its genus is g(C) = Σβ

2 − 2r − 1. Using a2k−1b(a2b2)k−1 = (ab)3k−2

by Lemma 3.20, we have

γ = ∆2ℓba2r−2k+1(ab)3k−2a3b2(a2b2)r−k−1a2b

= ∆2ℓba2r−2k+1∆2(k−1)aba3b2(a2b2)r−k−1a2b

∼ ∆2(ℓ+k−1)∆a2b2(a2b2)r−k−1a2b2a2r−2k+1

= ∆2(ℓ+k−1)+1(a2b2)r−k+1a2r−2k+1 =: γ1.

Note that by our assumptions on ℓ, r and k, we have ℓ + k − 1 > 0, r − k + 1 > 2 and

2r − 2k + 1 > 3, so γ1 has the form of the braid words considered in Lemma 3.21. We

thus have

υ (γ̂) = υ (γ̂1) = −
4(r − k + 1) + 2r − 2k + 1

2
+ (r − k + 2) − 2 (ℓ + k − 1) −

3

2

= −2(ℓ + r).

By (3.11), we have

υ(α̂1) > υ (γ̂) − g(C) = −
Σβ

2
− 2ℓ + 1, hence

υ(K) > υ (α̂1) + r − 1 > −
Σβ

2
+ r − 2ℓ.

Proof of Proposition 3.14. The first case of Proposition 3.14 follows from Remark 3.12

and (3.8). Lemma 3.22 and 3.23 together prove the second case, Lemma 3.21 proves the

third case. Note that up to conjugation, by Remark 3.7 and Proposition 3.8, it is no

restriction to assume that pr > 3 in Lemma 3.21 and that qr > 3 and either pr > 3 or

pk > 3 for some 1 6 k < r in Lemma 3.22 and 3.23, respectively.

Before we proceed with the general case where the knot K is given as the closure of

any 3-braid, let us prove the following corollary of our results in this subsection.

Corollary 3.24 (Corollary 3.3). Let K be a positive 3-braid knot. Then

r = g(K) + υ(K) + 1

is minimal among all integers r > 1 such that K is the closure of a positive 3-braid

ap1bq1 · · · aprbqr for integers pi, qi > 1, i ∈ {1, . . . , r}. If K and J are concordant positive

3-braid knots, then this minimal r is the same for both K and J .

Proof. By Lemma 3.16 we have

υ(K) 6 −g(K) + r − 1 ⇐⇒ g(K) + υ(K) + 1 6 r

whenever K is the closure of a positive 3-braid ap1bq1 · · · aprbqr for integers r > 1 and
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pi, qi > 1, i ∈ {1, . . . , r}. To prove the first statement of the corollary, it remains to show

that we can always find a positive braid representative for K of the form ap1bq1 · · · aprbqr

with r = g(K) + υ(K) + 1. We will use Proposition 3.8. In fact, if K is the closure of a

positive braid β of the form in (C) with ℓ > 0, then g (K) + υ (K) + 1 = r + ℓ by (1.3)

applied to β, Lemma 3.22 and Lemma 3.23. Moreover, we have

β = ap1bq1 · · · aprbqr if ℓ = 0 and

β ∼ a2ℓb(a2b2)ℓ−1ap1+2bq1 · · · aprbqr+1 if ℓ > 1

by the proof of Lemma 3.18; these give the desired braid representatives for K. Fur-

thermore, if K is represented by a positive braid β of the form in (D) with ℓ > 0, then

g (K) + υ (K) + 1 = r + ℓ by (1.3) and Lemma 3.21, and we have

β ∼ ap1+1bq1 · · · apr−1bqr−1apr+1b if ℓ = 0 and

β ∼ apr+2ba3(aba3)ℓ−1bap1+ℓ+1bq1 · · · apr−1bqr−1 if ℓ > 1

by the proof of Lemma 3.17. Finally, if K = T3,3ℓ+k for ℓ > 0 and k ∈ {1, 2}, then by

(3.3) and (3.8), we have g(K)+υ(K)+1 = ℓ+1 and T3,3ℓ+1 and T3,3ℓ+2 are represented by

the positive 3-braids (ab)3ℓ+1 = a2ℓ+1b
(
a2b2

)ℓ
and (ab)3ℓ+2 ∼ a2ℓ+3b(a2b2)ℓ, respectively,

by Lemma 3.20 and Lemma 3.19.

If K and J are concordant, then their 4-genus and their upsilon invariants are equal.

So by (1.3) and the above proved first part of Corollary 3.24, positive 3-braids with

closures K and J , respectively, will have the same minimal r.

Remark 3.25. Let Ag(K) denote the minimal genus of a cobordism between a knot

K and an alternating knot, that is the cobordism distance d (K, {alternating knots}).

By [FLZ17, Theorem 8], we have |τ(K)+υ(K)|
2 6 Ag(K) for any knot K. It thus follows

from our results in this subsection that

r + ℓ − 1

2
6 Ag(K) 6

r + ℓ − 1 + ε

2

for any knot K that is the closure of a positive 3-braid in Garside normal form (C) or

(D), where ε > 0 is an integer depending on K. The lower bound uses Proposition 3.14

and (3.4) from Section 3.2; see also the proof of Corollary 3.24. The upper bound follows

from the proofs of Lemma 3.17 and Lemma 3.18; see also the proof of Lemma 3.16. Note

that for most positive 3-braid knots, we have ε > 0, so we do not get an equality.

A shorter proof of Lemma 3.16 without cobordisms follows from a result of Abe and

Kishimoto on the dealternating number of positive 3-braid knots. Indeed, we have

|ΥK(t) + g(K)t|
(3.4)
= |ΥK(t) + τ(K)t| 6 alt(K)t

(3.23)
6 dalt(K)t

(3.26)

6 (r − 1) t for all 0 6 t 6 1.
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The definitions of the dealternating number dalt(K) and the alternation number alt(K)

of a knot K and more details on the inequalities used here will be provided in Section 3.5.

3.4.3 Proof of Theorem 3.1

It remains to show Theorem 3.1 when K is the closure of a 3-braid that is not necessarily

positive. We first recall a result of Murasugi, which implies that indeed all 3-braid knots

except for the torus knots of braid index 3 are covered by Theorem 3.1.

Let β be a 3-braid. Then, by [Mur74, Proposition 2.1], β is conjugate to one and

only one of the 3-braids

∆2ℓap or ∆2ℓ+1 for ℓ ∈ Z, p ∈ Z, (a)

∆2ℓab or ∆2ℓ(ab)2 for ℓ ∈ Z, (b)

∆2ℓa−p1bq1 · · · a−prbqr for ℓ ∈ Z, r > 1, pi, qi > 1, i ∈ {1, . . . , r}. (c)

Definition 3.26. We call a braid word of the form in (a)–(c) a 3-braid in Murasugi

normal form.

Remark 3.27. The closures of the 3-braids in Murasugi normal form (a) are links of two

(if p is odd) or three components and the closures of the 3-braids in Murasugi normal

form (b) are the torus knots of braid index 3 (cf. Remark 3.12).

If ℓ = 0 in case (c), the braid word β = a−p1bq1 · · · a−prbqr for integers r > 1 and

pi, qi > 1, i ∈ {1, . . . , r}, gives rise to an alternating braid diagram. If K = β̂ is a

knot, by Proposition 3.6 we thus have υ(K) = σ(K)
2 in that case and the statement of

Theorem 3.1 follows directly from a result by Erle on the signature of 3-braid knots.

Proposition 3.28 ([Erl99, Theorem 2.6]). Let β = ∆2ℓa−p1bq1 · · · a−prbqr for integers

ℓ ∈ Z, r > 1 and pi, qi > 1 for i ∈ {1, . . . , r} such that K = β̂ is a knot. Then

σ(K) =
r∑

i=1

(pi − qi) − 4ℓ.

We still need to show Theorem 3.1 when K is the closure of a 3-braid in Murasugi

normal form (c) with ℓ 6= 0. The proof will follow from the following two lemmas.

Lemma 3.29. Let β = ∆2ℓa−p1bq1 · · · a−prbqr for some ℓ > 1, r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r} such that K = β̂ is a knot. Then

ΥK(t) 6




r∑
i=1

(pi − qi)

2
− 2ℓ


 t for all 0 6 t 6 1.
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Lemma 3.30. Let β = ∆2ℓa−p1bq1 · · · a−prbqr for some ℓ > 0, r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r} such that K = β̂ is a knot. Then

υ(K) >

r∑
i=1

(pi − qi)

2
− 2ℓ.

Proof of Theorem 3.1. For ℓ > 1, the statement of the theorem follows directly from

Lemma 3.29 and Lemma 3.30. If ℓ < 0, the knot −K is represented by the braid word

∆−2ℓa−qrbpr · · · a−q1bp1 with −ℓ > 1 and accordingly we have

υ (−K) =

r∑
i=1

(qi − pi)

2
+ 2ℓ.

Using that υ(−K) = −υ(K) by (3.6) from Section 3.2, this implies the claim.

The remainder of this subsection is devoted to the proofs of the above Lemmas 3.29

and 3.30.

Proof of Lemma 3.29. We first consider the case where p1 > 2 and ℓ > 2. Using the

equality ∆a−1 = ab and

(ab)3n+2 = bn+1a(b3ab)n−1b3ab3 for all n > 1 [Fel16, Proof of Prop. 22],

we have

β = ∆2ℓa−p1bq1 · · · a−prbqr = ∆2(ℓ−1)+1aba−p1+1bq1 · · · a−prbqr

= (ba)3(ℓ−1)+2ba−p1+1bq1 · · · a−pr bqr ∼ (ab)3(ℓ−1)+2a−p1+1bq1 · · · a−prbqr+1

∼ a(b3ab)ℓ−2b3ab3a−p1+1bq1 · · · a−prbqr+ℓ+1 =: β1.

Now, we claim that there is a cobordism C of genus g(C) = ℓ+r−1+ε
2 between the closure

K of β1 and the connected sum

Jε = −T2,p1−1−ε1
# −T2,p2−ε2

# . . . # −T2,pr−εr# T
2,

r∑
i=1

qi+5ℓ−1+εq

,

where we choose ε1, . . . , εr, εq ∈ {0, 1} such that Jε is a connected sum of torus knots,

i. e. such that
∑r

i=1 qi + 5ℓ − 1 + εq, p1 − 1 − ε1, p2 − ε2, . . . , pr − εr are all odd; and

ε = εq +
∑r

i=1 εi. This cobordism C can be realized using ℓ + r − 1 + ε saddle moves

as follows. On the one hand, we add
∑r

i=1 εi generators a and εq generators b to the

braid word β1, on the other hand, we perform ℓ + r − 1 saddle moves of the form as

the r − 1 saddle moves used in the proof of Lemma 3.16 to get a connected sum of

torus knots. The Euler characteristic of C is χ(C) = −ℓ − r + 1 − ε. Since C is

connected and has two boundary components (as K and Jε are knots), the genus of C
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is g(C) = −χ(C)
2 = ℓ+r−1+ε

2 as claimed. By (3.5) and (3.8), we have

ΥJε(t) =




r∑
i=1

(pi − qi) − ε − r − 5ℓ + 1

2


 t for all 0 6 t 6 1

and by (3.11), we get

ΥK(t) 6 ΥJε(t) + g(C)t =




r∑
i=1

(pi − qi)

2
− 2ℓ


 t for all 0 6 t 6 1.

If p1 > 2 and ℓ = 1, then

β ∼ (ab)2a−p1+1bq1 · · · a−prbqr+1 ∼ ab2a−p1+1bq1 · · · a−prbqr+2 =: β1,

and similarly as above, there is a cobordism C of genus g(C) = r+ε
2 between the closure

K of β1 and the connected sum

Jε = −T2,p1−1−ε1
# −T2,p2−ε2

# . . . # −T2,pr−εr# T
2,

r∑
i=1

qi+4+εq

,

where we choose ε1, . . . , εr, εq ∈ {0, 1} such that Jε is a connected sum of torus knots

and ε = εq +
∑r

i=1 εi. The claim follows also in this case from (3.5) and (3.8), and the

inequality in (3.11).

It remains to show the claim when p1 = 1. In that case, using ∆a−1 = ab, we have

β = ∆2ℓa−1bq1 · · · a−prbqr = ∆2ℓ−1abq1+1 · · · a−prbqr ∼ ∆2ℓ−1bq1+1 · · · a−prbqr+1.

If ℓ = 1, then β is conjugate to β1 = abq1+2a−p2bq2 · · · a−prbqr+2 and if ℓ > 2, then using

(3.17) from Section 3.4.2, we have

β ∼ ∆2(ℓ−1)+1bq1+1a−p2bq2 · · · a−pr bqr+1 = (ba)3(ℓ−1)+1bq1+2a−p2bq2 · · · a−prbqr+1

∼ ab3(bab3)ℓ−2abq1+ℓ+1a−p2bq2 · · · a−prbqr+3 =: β1.

In both cases, there is a cobordism C of genus g(C) = ℓ+r−2+ε
2 between the closure K

of β1 and the connected sum

Jε = −T2,p2−ε2
# . . . # −T2,pr−εr# T

2,
r∑

i=1

qi+5ℓ−1+εq

,

where we choose ε1, . . . , εr, εq ∈ {0, 1} such that Jε is a connected sum of torus knots

and ε = εq +
∑r

i=1 εi. Using (3.5), (3.8) and (3.11) again, the claim follows.
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We will need the following two technical lemmas for the proof of Lemma 3.30.

Lemma 3.31. Let β = ∆2ℓap1bq1 · · · aprbqr for some ℓ > 0, r > 1 and integers pi, qi

such that pi < 0 or pi > 2, and qi < 0 or qi > 2, for every i ∈ {1, . . . , r}. Moreover,

assume that K = β̂ is a knot. Then

υ(K) > −

r∑
i=1

(pi + qi)

2
+ r − 2ℓ − #{i | pi < 0} − #{i | qi < 0},

where #A denotes the cardinality of the set A.

Lemma 3.32. Let β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr for some ℓ > 0, r > 1 and integers

pi, qi such that pi < 0 or pi > 2 for every i ∈ {1, . . . , r} and qi < 0 or qi > 2 for every

i ∈ {1, . . . , r − 1}. Moreover, assume that K = β̂ is a knot. Then

υ(K) > −

r−1∑
i=1

(pi + qi) + pr

2
+ r − 2ℓ −

3

2
− #{i | pi < 0} − #{i | qi < 0}.

For the proof of Lemmas 3.31 and 3.32, we refer the reader to the very end of this

subsection; we will first prove Lemma 3.30 using these lemmas.

Proof of Lemma 3.30. Let k be the number of exponents qj of β with qj = 1 and let

J = {j1, . . . , jk} for 0 6 k 6 r be the set of indices such that qj = 1 if and only if j ∈ J .

For all j ∈ J , we rewrite the subword a−pj bqj of β using ∆−1ab = a−1 as

a−pj bqj = a−pj b = a−pj a−1∆∆−1ab = a−pj−1∆a−1 = ∆b−pj−1a−1.

Note that if j, j+1 ∈ J , then a−pj bqj a−pj+1bqj+1 = ∆2a−pj−1b−pj+1−2a−1. After rewriting

a−pj bqj for all j ∈ J , we have β ∼ β1 = ∆2ℓ+kα for some 3-braid α of the form

α =





ap̃1bq̃1 · · · ap̃nbq̃n for n = r − k
2 if k is even,

bp̃1aq̃1 · · · bp̃n−1aq̃n−1bp̃n for n = r − k−1
2 if k is odd,

where
n∑

i=1
(p̃i + q̃i) =

r∑
i=1

(−pi + qi)− 3k and where the p̃i and q̃i fulfill the assumptions of

Lemma 3.31 and Lemma 3.32, respectively, i. e. where p̃i < 0 or > 2 and q̃i < 0 or > 2 for

any i. The number of negative exponents in α equals the number of negative exponents

−pi in β, so #{i | p̃i < 0} + #{i | q̃i < 0} = r. If k is even, by Lemma 3.31, we get

υ
(
β̂
)
> −

n∑
i=1

(p̃i + q̃i)

2
+ n − (2ℓ + k) − #{i | p̃i < 0} + #{i | q̃i < 0}

= −

r∑
i=1

(−pi + qi) − 3k

2
+ r −

k

2
− (2ℓ + k) − r =

r∑
i=1

(pi − qi)

2
− 2ℓ.

49



Chapter 3. The upsilon invariant at 1 of 3-braid knots

Similarly, if k is odd, the claim follows from Lemma 3.32.

It remains to prove Lemma 3.31 and Lemma 3.32.

Proof of Lemma 3.31. We will modify the braid word β in 2r steps, where each step

corresponds to one of the 2r exponents pi, qi, i ∈ {1, . . . , r}, of β. In every step, we will

either just conjugate β (if the corresponding exponent is positive) or perform a cobordism

of genus 1 between the closure of a2nβ or b2nβ and the connected sum T2,2n+1#β̂ for

some n > 0—similarly as the cobordism described in Example 3.13 and used in the

proofs of Lemma 3.21, Lemma 3.22 and Lemma 3.23. We now describe these steps in

more detail. First, let β′
0,q = β and define

a−p1+2+ε1,pβ′
0,q = ∆2ℓa2+ε1,pbq1ap2bq2 · · · aprbqr

∼ ∆2ℓbq1ap2bq2 · · · aprbqra2+ε1,p =: β′
1,p if p1 < 0 and

β′
0,q ∼ ∆2ℓbq1ap2bq2 · · · aprbqr ap1 =: β′

1,p if p1 > 0

such that β′
1,p = ∆2ℓbq1ap2 · · · apr bqrap̃1 for some p̃1 > 2 (note that we assumed p1 < 0 or

p1 > 2). Here, if p1 < 0, we choose ε1,p ∈ {0, 1} such that −p1 + 2 + ε1,p is even and β̂′
1,p

is a knot. Second, let ε1,q ∈ {0, 1} such that −q1 + 2 + ε1,q is even if q1 < 0, and define

β1,q = b−q1+2+ε1,qβ′
1,p = ∆2ℓb2+ε1,q ap2bq2 · · · aprbqr ap̃1

∼ ∆2ℓap2bq2 · · · aprbqrap̃1b2+ε1,q =: β′
1,q if q1 < 0 and

β1,q = β′
1,p ∼ ∆2ℓap2bq2 · · · aprbqr ap̃1bq1 =: β′

1,q if q1 > 0

such that β′
1,q = ∆2ℓap2bq2 · · · apr bqrap̃1bq̃1 for some p̃1, q̃1 > 2. Inductively, for any

1 6 i 6 r, we let

a−pi+2+εi,pβ′
i−1,q = ∆2ℓa2+εi,pbqiapi+1 · · · aprbqrap̃1bq̃1 · · · ap̃i−1bq̃i−1

∼ ∆2ℓbqiapi+1 · · · apr bqrap̃1bq̃1 · · · ap̃i−1bq̃i−1a2+εi,p =: β′
i,p if pi < 0 and

β′
i−1,q ∼ ∆2ℓbqiapi+1 · · · aprbqrap̃1bq̃1 · · · ap̃i−1bq̃i−1api =: β′

i,p if pi > 0

such that

β′
i,p = ∆2ℓbqiapi+1 · · · aprbqrap̃1bq̃1 · · · ap̃i−1bq̃i−1ap̃i

for some integers p̃1, q̃1, . . . , p̃i−1, q̃i−1, p̃i > 2. Here, we choose εi,p ∈ {0, 1} such that

−pi + 2 + εi,p is even if pi < 0. Moreover, for any 1 6 i 6 r, we let εi,q ∈ {0, 1} such

that −qi + 2 + εi,q is even, and define

βi,q = b−qi+2+εi,q β′
i,p if qi < 0 and

βi,q = β′
i,p if qi > 0;
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and we define β′
i,q similarly as β′

1,q. Inductively, after 2r steps, we get the positive 3-braid

β′
r,q = ∆2ℓap̃1bq̃1 · · · ap̃r bq̃r with

p̃i =





2 + εi,p if pi < 0,

pi if pi > 0,
and q̃i =





2 + εi,q if qi < 0,

qi if qi > 0,

for all 1 6 i 6 r; so that p̃1, q̃1, . . . p̃r, q̃r > 2. By Proposition 3.14, we have

υ
(
β̂′

r,q

)
= −

r∑
i=1

pi>0

pi +
r∑

i=1

qi>0

qi +
r∑

i=1

pi<0

(2 + εi,p) +
r∑

i=1

qi<0

(2 + εi,q)

2
+ r − 2ℓ.

Now, note that if pi < 0 for some 1 6 i 6 r, then there is a cobordism of genus 1 between

β̂′
i,p and T2,2m+1#β̂′

i−1,q by using two saddle moves, where m = −pi+2+εi,p

2 , so similarly

as in (3.12) from Example 3.13, we have

υ
(
β̂′

i−1,q

)
> υ

(
β̂′

i,p

)
+ m − 1 = υ

(
β̂′

i,p

)
+

−pi + εi,p

2
.

Similarly, if qi < 0 for some 1 6 i 6 r, then υ(β̂′
i,p) > υ(β̂′

i,q) + −qi+εi,q

2 . In addition, if

pi > 0, we have υ(β̂′
i,p) = υ(β̂′

i−1,q), and if qi > 0, then υ(β̂′
i,q) = υ(β̂′

i,p). We conclude

υ
(
β̂
)

= υ
(
β̂′

0,q

)
> υ

(
β̂′

r,q

)
+

r∑

i=1

pi<0

−pi + εi,p

2
+

r∑

i=1

qi<0

−qi + εi,q

2

= −

r∑
i=1

pi>0

pi +
r∑

i=1

qi>0

qi +
r∑

i=1

pi<0

(pi + 2) +
r∑

i=1

qi<0

(qi + 2)

2
+ r − 2ℓ

= −

r∑
i=1

(pi + qi)

2
+ r − 2ℓ − #{i | pi < 0} − #{i | qi < 0}.

Proof of Lemma 3.32. The strategy of the proof is the same as in the proof of Lemma 3.31.

Here, we need 2r −1 steps corresponding to the 2r −1 exponents p1, q1, . . . , pr−1, qr−1, pr

of β. The steps are similar as in the proof of Lemma 3.31, the only change is that we

multiply β′
i−1,q by a power of b if pi < 0, and β′

i,p by a power of a if qi < 0 (since

a∆2ℓ+1 = ∆2ℓ+1b and b∆2ℓ+1 = ∆2ℓ+1a). Thus, starting with β′
0,q = β, after 2r −1 steps

we obtain the positive 3-braid

β′
r,p = ∆2ℓ+1ap̃1bq̃1 · · · ap̃r−1bq̃r−1ap̃r with

p̃i =





2 + εi,p if pi < 0,

pi if pi > 0,
and q̃i =





2 + εi,q if qi < 0,

qi if qi > 0.
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By Lemma 3.21, we have

υ
(
β′

r,p

)
= −

r∑
i=1

pi>0

pi +
r−1∑
i=1

qi>0

qi +
r∑

i=1

pi<0

(2 + εi,p) +
r−1∑
i=1

qi<0

(2 + εi,q)

2
+ r − 2ℓ −

3

2
.

Since the steps we performed have similar effects on υ
(
β̂
)

as the ones in the proof of

Lemma 3.31, we get

υ
(
β̂
)

= υ
(
β̂′

0,q

)
> υ

(
β̂′

r,p

)
+

r∑

i=1

pi<0

−pi + εi,p

2
+

r−1∑

i=1

qi<0

−qi + εi,q

2

= −

r∑
i=1

pi>0

pi +
r−1∑
i=1

qi>0

qi +
r∑

i=1

pi<0

(pi + 2) +
r−1∑
i=1

qi<0

(qi + 2)

2
+ r − 2ℓ −

3

2

= −

r−1∑
i=1

(pi + qi) + pr

2
+ r − 2ℓ −

3

2
− #{i | pi < 0} − #{i | qi < 0}.

3.4.4 Further discussion of Theorem 3.1

In this subsection, we provide some further context on our main result. In particular, in

Section 3.4.4.2 we will discuss why it might be surprising that our proof strategy works

for all 3-braid knots.

3.4.4.1 Comparison of upsilon and the classical signature

By Theorem 3.1 and Proposition 4.10, we have

σ(K) = 2υ(K) (3.22)

for every knot K which is the closure of a 3-braid β = ∆2ℓa−p1bq1 · · · a−prbqr for inte-

gers ℓ ∈ Z, r > 1 and pi, qi > 1 for i ∈ {1, . . . , r}. Computations of the signature

for torus knots (and links) of braid index 3, first done by Hirzebruch, Murasugi and

Shinora [Mur74, Proposition 9.1, pp. 34-35], together with (3.8) from Section 3.2 imply

that the equality in (3.22) is in fact true for all 3-braid knots K except for the cases that

K = ±T3,3ℓ+1 for odd ℓ > 0 or K = ±T3,3ℓ+2 for odd ℓ > 0. In the exceptional cases, we

have σ(K) = 2υ(K) − 2. As mentioned in the introduction, this improves the inequality

|υ(K) − σ(K)
2 | 6 2 for all 3-braid knots K in [FK17, Proposition 4.4].

It was shown in [OSS17b, Theorem 1.2] that |υ(K) − σ(K)
2 | gives a lower bound on

the nonorientable smooth 4-genus of a knot K, denoted γ4(K), the minimal first Betti

number of a nonorientable surface in B4 that meets the boundary S3 along K. The

similarity of the invariant υ and the classical signature σ on 3-braid knots K described

52



3.4. The upsilon invariant of 3-braid knots

above clearly does not lead to a good lower bound on γ4(K). However, the equality

σ(K) = 2υ(K) for most 3-braid knots is actually no great surprise when noting that in

fact |υ(K) − σ(K)
2 | 6 1 must be true for all 3-braid knots K for the following reason. It

is not hard to see that for every 3-braid knot K, there is a nonorientable band move

to a 2-bridge knot J , which is alternating [Goo72]. This implies that the nonorientable

cobordism distance dγ(K, J) = γ4(K# −J) between K and J is bounded from above by

1. On the other hand, using that υ and σ induce homomorphisms C → Z (see Section 3.2

and [Mur65]), the inequality |υ(K) − σ(K)
2 | 6 γ4(K) implies that

∣∣∣∣υ(K) −
σ(K)

2

∣∣∣∣ =

∣∣∣∣υ (K# −J) −
σ (K# −J)

2

∣∣∣∣ 6 dγ(K, J) 6 1,

where we used υ(J) = σ(J)
2 by Proposition 3.6. Note that a similar argument shows

that |υ(K) − σ(K)
2 | 6 2 for all 4-braid knots K, using two nonorientable band moves to

transform K into a 2-bridge link, which is also alternating.

3.4.4.2 On the proof technique

As mentioned in the introduction, it came as a surprise to the author that our proof

strategy works not only for positive 3-braid knots, but for all 3-braid knots. Let us make

this more precise.

The proofs in Section 3.4.2 and Section 3.4.3 imply, for any 3-braid knot K, the

existence of cobordisms C1 and C2 of genus g(C1) and g(C2) between K and (connected

sums of) torus knots T1 and T2, respectively, such that

g (C1) + g (C2) = |υ(T2) − υ(T1)| and

υ(K) = υ(T1) + g(C1) = υ(T2) − g(C2).

For example, for knots K that are closures of positive 3-braids of Garside normal form

(D), the proof of Lemma 3.17 shows the existence of such a cobordism C1 for T1 = Jε as

in the proof of Lemma 3.16; and the existence of such a cobordism C2 between K and

T2 = T3,3(ℓ+r)+1# −T2,2r+1 follows from the proof of Lemma 3.21.

The same strategy would work to determine the concordance invariants s and τ

(or any other slice-torus invariant; see the paragraph after (3.4) for the definition of slice-

torus invariants) for all positive 3-braid knots K. Indeed, every positive 3-braid knot

can be realized as the slice of a cobordism C between the unknot U and a torus knot T

of braid index 3 such that g(C) = |τ(U) − τ(T )| = |s(U) − s(T )| [FLL22, Proposition

4.1]. However, in contrast, there are 3-braid knots where this strategy provably fails

to determine s and τ . A concrete example is the 3-braid knot 10125, the closure of

a−5ba3b [LM23], which is not squeezed [FLL22, Example 3.1]. This means that every

cobordism C between two connected sums of torus knots T1 and T2 that has 10125 as a

slice satisfies g(C) > |τ(T2) − τ(T1)| = |s(T2) − s(T1)|.
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3.4.4.3 Comparison of the normal forms for 3-braids

An algorithm described in [BM93, Section 7] as Schreier’s solution to the conjugacy prob-

lem [Sch24] can be used to convert 3-braids in Garside normal form (cf. Definition 3.10)

to 3-braids in Murasugi normal form (cf. Definition 3.26): If β is a 3-braid of Garside

normal form (C), then

β ∼ ∆2(ℓ+r)a−1bp1−2a−1bq1−2 · · · a−1bpr−2a−1bqr−2,

and if β is of Garside normal form (D), then

β ∼ ∆2(ℓ+r)a−1bp1−2a−1bq1−2 · · · a−1bpr−1−2a−1bqr−1−2a−1bpr−2.

In addition, it is easy to see how 3-braids of Garside normal form (A) or (B) are conjugate

to braids of Murasugi normal form (a) or (b).

3.5 On alternating distances of 3-braid knots

In this section, we prove Corollary 3.2 and provide lower and upper bounds on the

alternation number and dealternating number of any 3-braid knot which differ by 1.

3.5.1 Alternating distances of positive 3-braid knots

We will prove the following proposition.

Proposition 3.33. Let K be a knot that is the closure of a positive 3-braid. Then

alt(K) = dalt(K) = τ(K) + υ(K)

=





ℓ if K is the torus knot T3,3ℓ+k for ℓ > 0, k ∈ {1, 2},

r + ℓ − 1 if K is the closure of a braid of the form in (C) or (D),

where (C) and (D) refer to the Garside normal forms from Proposition 3.8.

Remark 3.34. Some of the cases in Proposition 3.33 have already been proved by other

authors. Indeed, Feller, Pohlmann and Zentner used the observation (3.24) below to

show that alt (T3,3ℓ+k) = ℓ for all ℓ > 0, k ∈ {1, 2} [FPZ18, Theorem 1.1]. The upper

bound they used was provided by [Kan10, Theorem 8]; in fact, the equality had already

been shown by Kanenobu in half of the cases, namely when ℓ is even. Moreover, Abe and

Kishimoto [AK10, Theorem 3.1] showed that alt(K) = dalt(K) = r + ℓ−1 if K is a knot

that is the closure of a positive 3-braid of the form in (C). However, to the best of the

author’s knowledge, it is new that alt(K) = g(K) + υ(K) for all positive 3-braid knots

K. Recall that τ(K) = g(K) for all positive 3-braid knots K by (3.4) from Section 3.2.

Before we prove Proposition 3.33, let us provide the necessary definitions and back-

ground. The Gordian distance dG(K, J) between two knots K and J is the minimal
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number of crossing changes needed to transform a diagram of K into a diagram of J ,

where the minimum is taken over all diagrams of K [Mur85]. The alternation number

alt(K) of a knot K is defined as the minimal Gordian distance of the knot K to the set

of alternating knots [Kaw10], i. e.

alt(K) = min {dG(K, J) | J is an alternating knot} .

The dealternating number dalt(K) of a knot K is defined via a more diagrammatic

approach [ABB+92]: it is the minimal number m such that K has a diagram that

can be turned into an alternating diagram by m crossing changes. It follows from the

definitions that

alt(K) 6 dalt(K) (3.23)

for any knot K and alt(K) = dalt(K) = 0 if and only if K is alternating. Note that

there are families of knots for which the difference between the alternation number and

the dealternating number becomes arbitrarily large [Low15, Theorem 1.1].

In the proof of Proposition 3.33, we will use that

|τ(K) + υ(K)| 6 alt(K) (3.24)

for any knot K. In fact, for all alternating knots K, we have

τ(K) =
s(K)

2
= −υ(K) = −

ΥK(t)

t
= −

σ(K)

2
(3.25)

for any t ∈ (0, 1] (see [OS03, Theorem 1.4], [Ras10, Theorem 3] and [OSS17a, The-

orem 1.14]), where s denotes Rasmussen’s concordance invariant from Khovanov ho-

mology [Ras10]. It follows from [Abe09, Theorem 2.1]—which builds on ideas of Liv-

ingston [Liv04, Corollary 3]—that the absolute value of the difference of any two of the

invariants in (3.25) is a lower bound on alt(K). It was first observed in [FPZ18] that

the upsilon invariant fits very well in this context (see also [FLZ17, Lemma 8]). Another

main ingredient of our proof of Proposition 3.33 is the inequality

dalt
(
β̂
)
6 r − 1 (3.26)

for any positive 3-braid β = ap1bq1 · · · apr bqr with integers r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r} [AK10, Lemma 2.2].

Proof of Proposition 3.33. Let K be a knot that is the closure of a positive 3-braid β of

the form in (C) or (D) from Proposition 3.8 with ℓ > 0. We claim that then

r + ℓ − 1 = τ(K) + υ(K) = |τ(K) + υ(K)| 6 alt(K) 6 dalt(K) 6 r + ℓ − 1, (3.27)
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which implies the statement of the proposition for these knots. The two equalities

in (3.27) directly follow from our computations of υ(K) in Proposition 3.14 and (3.4)

applied to K = β̂. The first two inequalities are direct consequences of the inequalities

(3.24) and (3.23). The last inequality follows from (3.26) applied to the particular braid

representatives of K considered in the proof of Corollary 3.24.

For torus knots of braid index 3, the statement follows analogously. More precisely,

if K = T3,3ℓ+k for ℓ > 0 and k ∈ {1, 2}, then |τ(K) + υ(K)| = ℓ by (3.3) and (3.8). In

addition, (3.26) applied to the particular braid representatives of K considered in the

proof of Corollary 3.24 implies that dalt (T3,3ℓ+k) 6 ℓ.

From Proposition 3.33, it is easy to deduce that the alternating positive 3-braid knots

are precisely the unknot and the connected sums T2,2p+1#T2,2q+1 of two torus knots of

braid index 2 for p, q > 0. This was already known; in fact, the stronger statement is

true that the only prime alternating positive braid knots are the torus knots of braid

index 2 [Baa13, Corollary 3]. Note that by [Mor79] (see also [BM93, Corollary 7.2]), the

only composite 3-braid knots are the connected sums T2,2p+1#T2,2q+1 for p, q ∈ Z.

By [Abe09, Theorem 1.1], the only torus knots with alternation number 1 are the

torus knots T3,4 and T3,5. A knot with dealternating number 1 is called almost alternat-

ing.

Corollary 3.35. A positive 3-braid knot is almost alternating if and only if it is one of

the torus knots T3,4 and T3,5 or it is represented by a braid of the form

ap1bq1ap2bq2, ∆ap1bq1ap2, ∆2ap1bq1 or ∆3ap1

for some integers p1, p2, q1, q2 > 2.

Proof. This follows directly from Proposition 3.33.

Remark 3.36. In particular, the seven positive 3-braid knots with crossing number 12

(cf. [LM23]) are all almost alternating.

Remark 3.37. Our results imply that the Turaev genus equals the alternation number

for all positive 3-braid knots. Indeed, let K be a knot that is the closure of a positive

braid of the form in (C) or (D) with ℓ > 0. Then we have

gT (K) = alt(K) = dalt(K) = r + ℓ − 1, (3.28)

where gT (K) denotes the Turaev genus of the knot K. The Turaev genus gT (K) of a

knot K is another alternating distance [Low15], which was first defined in [DFK+08]

as the minimal genus of a Turaev surface F (D), where the minimum is taken over all

diagrams D of K. The Turaev surface F (D) is a closed orientable surface embedded in

S3 associated to the diagram D. It is formed by building the natural cobordism between

the circles in the two extreme Kauffman states (the all-A-state and the all-B-state) of
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the diagram D via adding saddles for every crossing of D, and then capping off the

boundary components with disks. More details on the definition can be found e. g. in a

survey by Champanerkar and Kofman [CK14].

The equality gT (K) = dalt(K) in (3.28) above follows easily from Proposition 3.33,

the chain of inequalities |τ(K) + σ(K)
2 | 6 gT (K) 6 dalt(K) by [DL11, Theorem 1.1]

and [AK10, Cor. 5.4], and the fact that σ(K) = 2υ(K) for all knots that are closures of

positive braids of Garside normal form (C) or (D) (see Section 3.4.4.1).

It is not known whether the alternation number and the Turaev genus of a knot

are comparable in general: it is not known whether alt(K) 6 gT (K) for all knots

K (see [Low15, Question 3]). However, it was shown by Abe and Kishimoto that

gT (T3,3ℓ+k) = dalt (T3,3ℓ+k) = ℓ for all ℓ > 0 and k ∈ {1, 2} [AK10, Theorem 5.9],

so gT (K) = alt(K) = dalt(K) is true for all positive 3-braid knots.

Remark 3.38. In [FLZ17], Friedl, Livingston and Zentner introduce the invariant As(K),

defined as the minimal number of double point singularities in a generically immersed

concordance from a knot K to an alternating knot. In the case that the alternating knot

is the unknot, this is the well studied invariant c4(K) called the 4-dimensional clasp

number [Shi74]. A sequence of crossing changes in a diagram of a knot K leading to a

diagram of an alternating knot J realizes an immersed concordance from K to J where

any crossing change gives rise to a double point singularity in the concordance. We thus

have As(K) 6 alt(K) for any knot K, which resembles the inequality c4(K) 6 u(K)

between the 4-dimensional clasp number and the unknotting number u(K) := dG(K, U)

of K, where U denotes the unknot. Moreover, we have |υ(K) + τ(K)| 6 As(K) for

any knot K [FLZ17, Theorem 18], so Proposition 3.33 implies As(K) = alt(K) for all

positive 3-braid knots K.

We are now ready to prove Corollary 3.2.

Proof of Corollary 3.2. The claim follows directly from Proposition 3.33, Remark 3.37

and Remark 3.38.

3.5.2 Bounds on the alternation number of general 3-braid knots

In the following, we turn our attention to 3-braid knots in general, which are not neces-

sarily the closure of positive 3-braids. We will use that

∣∣∣∣
s(K)

2
+ υ(K)

∣∣∣∣ 6 alt(K) for any knot K, (3.29)

which follows from [Abe09, Theorem 2.1], see also (3.25) from Section 3.5.1. Ras-

mussen’s invariant s was computed for all 3-braid knots in Murasugi normal form

(cf. Definition 3.26) by Greene.1

1These computations were generalized to all links that are closures of 3-braids in [Mar19].
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Corollary 3.39. Let β = ∆2ℓa−p1bq1 · · · a−pr bqr for some ℓ ∈ Z, r > 1 and pi, qi > 1 for

i ∈ {1, . . . , r} such that K = β̂ is a knot. Then

|ℓ| − 1 6 alt(K) 6 dalt(K) 6 |ℓ| if ℓ 6= 0.

Proof of Corollary 3.39. The lower bound on the alternation number follows from (3.29),

Theorem 3.1 and the values of the invariant s for K = β̂ [Gre14, Proposition 2.4], namely

s(K) =





−
r∑

i=1
(pi − qi) + 6ℓ − 2 if ℓ > 0,

−
r∑

i=1
(pi − qi) + 6ℓ + 2 if ℓ < 0.

Moreover, it follows from [AK10, Theorem 2.5] that dalt
(
β̂
)
6 |ℓ|.

Remark 3.40. An alternative way to prove the upper bound on dalt(K) in Corollary 3.39

for ℓ > 1 follows from our observations in the proof of Lemma 3.29. In fact, the braid

diagrams given by the braid representatives β1 of K = β̂ considered in that proof can

easily be transformed into alternating diagrams by ℓ crossing changes: it is enough to

change the positive crossings corresponding to the single generators a in β1 to nega-

tive crossings; we obtain generators a−1 in the corresponding braid words which then

correspond to alternating braid diagrams.

Remark 3.41. If K is represented by a 3-braid of Garside normal form (C) or (D) (see

Definition 3.10), then using the observations in Section 3.4.4.3, Corollary 3.39 implies

|r + ℓ| − 1 6 alt(K) 6 dalt(K) 6 |r + ℓ| if |r + ℓ| > 0 and (3.30)

alt(K) = dalt(K) = 0 if r + ℓ = 0.

By Proposition 3.33, the lower bound in (3.30) is sharp whenever K is the closure of

a positive 3-braid of Garside normal form (C) or (D). However, there are examples

where the upper bound in (3.30) is sharp. The two easiest such examples in terms of

crossing number are the non-alternating knots 820 and 821, which are represented by the

3-braids (cf. [LM23])

a3b−1a−3b−1 ∼ ∆−3a7 and

a3ba−2b2 ∼ ∆−2a3b2a2b3,

respectively. The lower bound on the alternation number from (3.30) is |r + ℓ| − 1 = 0

in both cases. Indeed, by [Bal08, Theorem 8.6] both knots are quasi-alternating, so all

the invariants from (3.25) are equal [Bal08, Proposition 1.4], [MO08], [OSS17a].

Remark 3.42. Similarly to Corollary 3.39, the Turaev genus of all 3-braid knots was

determined up to an additive error of at most 1 by Lowrance [Low11, Proposition 4.15]
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using his computation of the Khovanov width for these knots. More precisely, we have

|ℓ| − 1 6 gT (K) 6 |ℓ| if ℓ 6= 0

for any knot K that is represented by β = ∆2ℓa−p1bq1 · · · a−pr bqr for some ℓ ∈ Z, r > 1

and pi, qi > 1 for i ∈ {1, . . . , r}.

3.6 The fractional Dehn twist coefficient of 3-braids in Garside normal

form

In this section, we compute the fractional Dehn twist coefficient of any 3-braid in Garside

normal form (cf. Definition 3.10).

The fractional Dehn twist coefficient is a homogeneous quasimorphism on the braid

group Bn that assigns to any n-braid β a rational number ω(β). Here, a quasimorphism

on a group G is any map ϕ : G → R such that

sup
(a,b)∈G×G

|ϕ(ab) − ϕ(a) − ϕ(b)| =: Dϕ < ∞,

where Dϕ is called the defect of ϕ. A quasimorphism ϕ : G → R is called homogeneous

if ϕ(ak) = kϕ(a) for all k ∈ Z and a ∈ G. Any homogeneous quasimorphism is invariant

under conjugation, so ω(β) is invariant under the conjugacy class of β.

The fractional Dehn twist coefficient first appeared in [GO89] in a different language.

It can be defined for mapping classes of general surfaces with boundary, where we here

view braids as mapping classes of the n times punctured closed disk. Malyutin defined

the fractional Dehn twist coefficient ω : Bn → R, n > 2, for all braid groups and showed

that its defect is 0 if n = 2 and 1 if n > 3 [Mal04, Theorem 6.3]. We refer the reader

to [Mal04] for a more detailed account.

Corollary 3.43. Let β be a 3-braid. Then its fractional Dehn twist coefficient is

ω(β) =





ℓ if β is conjugate to a braid in (A),
p+1

6 + ℓ if β is conjugate to a braid in (B),

r + ℓ if β is conjugate to a braid in (C) or (D).

where (A)–(D) refer to the Garside normal forms from Proposition 3.8.

Remark 3.44. The fractional Dehn twist coefficient was computed for 3-braids in Mura-

sugi normal form (cf. Definition 3.26) in [HKK+21, Proposition 6.6].

In the proof of Corollary 3.43, we will use that the fractional Dehn twist coefficient

of any 3-braid β is completely determined by the writhe wr(β) and the homogenized
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upsilon invariant υ̃ of β: we have

ω(β) = υ̃(β) +
wr(β)

2
[FH19, Theorem 1.3] (3.31)

for any 3-braid β. The invariant υ̃ is another real-valued homogeneous quasimorphism

on the braid group B3 which can be defined as

υ̃ : B3 → R, β 7→ υ̃ (β) = lim
k→∞

υ
(
β̂6kab

)

6k
.

More generally, Brandenbursky [Bra11, Theorem 2.6] showed that a homogeneous quasi-

morphism Bn → R can be assigned to any concordance homomorphism C → R that is

bounded above by a constant multiple of the 4-genus. We refer the reader to [Bra11]

or [FH19, Appendix A] for more details on homogenized concordance invariants.

Proposition 3.45. Let β be a 3-braid. Then

υ̃(β) =





−p
2 − 2ℓ if β is conjugate to a braid in (A),

−p+1
3 − 2ℓ if β is conjugate to a braid in (B),

−

r∑
i=1

(pi+qi)

2 + r − 2ℓ if β is conjugate to a braid in (C),

−

r−1∑
i=1

(pi+qi)+pr

2 + r − 2ℓ − 3
2 if β is conjugate to a braid in (D).

Proof of Proposition 3.45. We will use that υ̃(αβ) = υ̃(α) + υ̃(β) if α and β com-

mute [FH19, Lemma A.1]. In particular, for any 3-braid β and any ℓ ∈ Z, we have

υ̃
(
∆2ℓβ

)
= υ̃

(
∆2ℓ

)
+ υ̃(β). (3.32)

Moreover, by the definition of υ̃, (3.8) and the homogeneity of υ̃, we have

υ̃
(
∆2ℓ

)
= −2ℓ for all ℓ ∈ Z. (3.33)

We will now compute υ̃(β) for the positive 3-braids β of the form (A)–(D), i. e. assuming

ℓ > 0 in (A)–(D). The statement of Proposition 3.45 then follows from (3.32) and (3.33).

First, let β = ∆2ℓap for some ℓ > 0, p > 0. If p = 0, we have υ̃(β) = −2ℓ by (3.33).

If p > 1, we have

β6kab = ∆12ℓka6pkab ∼ ∆12ℓk+1a6pk−1,

so by Lemma 3.21, for k > 1, we get

υ
(
β̂6kab

)
= −

6pk − 1

2
+ 1 − 12ℓk −

3

2
= −3pk − 12ℓk,
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hence we have

υ̃(β) = lim
k→∞

υ
(
β̂6kab

)

6k
= lim

k→∞

−3pk − 12ℓk

6k
= −

p

2
− 2ℓ.

Second, let β = ∆2ℓapb for some ℓ > 0, p ∈ {1, 2, 3}. We have

β6kab = ∆12ℓk (ab)6k ab = ∆12ℓk+4kab if p = 1,

β6kab = ∆12ℓk
(
a2ba2b

)3k
ab = ∆12ℓk (ababab)3k ab = ∆12ℓk+6kab if p = 2, and

β6kab = ∆12ℓk
(
a3ba3ba3b

)2k
ab = ∆12ℓk

(
a2babababa2b

)2k
ab

= ∆12ℓk+8kab if p = 3.

By (3.8), we get

υ̃(β) = lim
k→∞

−12ℓk − (2p + 2)k

6k
= −2ℓ −

p + 1

3
.

Third, let β = ∆2ℓap1bq1 · · · aprbqr for some ℓ > 0, r > 1, pi, qi > 2, i ∈ {1, . . . , r}.

Then

β6kab = ∆12ℓk (ap1bq1 · · · apr bqr)6k ab

∼ ∆12ℓk+1ap1−1bq1 · · · aprbqr (ap1bq1 · · · apr bqr)6k−1

∼ ∆12ℓk+1 (bq1ap2bq2 · · · aprbqrap1)6k−1 bq1ap2bq2 · · · apr bp1+qr−1,

where p1 + qr − 1 > 3. By Lemma 3.21, we have

υ
(
β̂6kab

)
= −3k

r∑

i=1

(pi + qi) + 6kr − 12ℓk − 1, hence

υ̃(β) = −
1

2

r∑

i=1

(pi + qi) + r − 2ℓ.

Finally, let β = ∆2ℓ+1ap1bq1 · · · apr−1bqr−1apr for some l > 0, r > 1, pr > 2 and

pi, qi > 2, i ∈ {1, . . . , r − 1}. Then

β6kab = ∆12ℓk (∆ap1bq1 · · · apr−1bqr−1apr )6k ab

= ∆12ℓk
(
∆2bp1aq1 · · · bpr−1aqr−1bprap1bq1 · · · apr−1bqr−1apr

)3k
ab

= ∆12ℓk+6k (bp1 · · · bpr ap1 · · · apr )3k ab

∼ ∆12ℓk+6kaq1bp2 · · · bprap1 · · · apr (bp1 · · · bprap1 · · · apr)3k−2

bp1 · · · bprap1 · · · apr+1bp1+1,
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where pr + 1, p1 + 1 > 3. By Lemma 3.22, we have

υ
(
β̂6kab

)
= −3k

(
r−1∑

i=1

(pi + qi) + pr

)
+ 6kr − 12ℓk − 9k − 1, hence

υ̃(β) = −
1

2

(
r−1∑

i=1

(pi + qi) + pr

)
+ r − 2ℓ −

3

2
.

Proof of Corollary 3.43. Corollary 3.43 follows directly from Proposition 3.45, (3.31),

and a straightforward calculation of the writhe of the braids in (A)–(D).

Remark 3.46. If β is a 3-braid conjugate to a braid of the form in (C) or (D) such that β̂

is a knot, then Proposition 3.45 and Theorem 3.1 imply υ̃(β) = υ(β̂). If β additionally

is a positive 3-braid, then ω(β) = r + ℓ = g(β̂) + υ(β̂) + 1 is the minimal number from

Corollary 3.3/Corollary 3.24.

Remark 3.47. Our above computation of ω(β) (see Corollary 3.43) together with a result

by Feller–Hubbard [FH19, Theorem 1.3] completely determines Υ̃(t)(β) for all 0 6 t 6 1

for any 3-braid β, where Υ̃(t)(β) is the homogenization of the invariant Υ(t) : C → R,

defined similarly as the homogenization υ̃ of υ.
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4 3-braid knots with maximal 4-genus

4.1 Introduction

In this chapter, based on [BLMT23] together with Sebastian Baader, Lukas Lewark and

Filip Misev, we prove the following theorem.

Theorem 4.1 (Theorem E). Let K be a 3-braid knot other than the figure-eight knot.

Then

|σ(K)| = 2g(K) ⇐⇒ gtop

4 (K) = g(K).

These equalities hold precisely if K or its mirror is one of the following knots:

– T2,2m+1#T2,2n+1, with m, n > 0,

– P (2p, 2q + 1, 2r + 1, 1), with p > 1, q, r > 0,

– T3,4 or T3,5.

The question arises whether the equivalence of |σ(K)| = 2g(K) and gtop
4 (K) = g(K)

holds for other families of knots K. Indeed, it is also true for braid positive knots

K [Lie16]. Moreover, we do not know if there exists a knot K of braid index 4 with

gtop
4 (K) = g(K), but |σ(K)| < 2g(K). One may check that such a knot would have to

be prime and have crossing number at least 13. For braid index 5 however, there are

several knots K in the table with σ(K) = 0 < 2g(K) = 2 and gtop
4 (K) = g(K) = 1, such

as K = 81 [LM23].

The proof of Theorem 4.1 is based on a technique called (un)twisting, which was

used by McCoy to estimate the topological 4-genus from above [McC21]. We will also

make use of a special presentation for 3-braids that goes back to Xu [Xu92], which we

call the Xu normal form.

Organization of this chapter. In Section 4.2, we will introduce the Xu normal

form of 3-braids and show how it determines the signature invariant (Proposition 4.10),

as well as strong quasipositivity and braid positivity (Proposition 4.12) of their clo-

sures. Section 4.3 contains the proof of Theorem 4.1, as well as a complementary result

(Theorem 4.14): a sharp lower bound on the difference g(K)− gtop
4 (K) of strongly quasi-

positive 3-braid knots, in terms of two characteristic quantities associated with the Xu
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Chapter 4. 3-braid knots with maximal 4-genus

normal forms of the corresponding strongly quasipositive 3-braids. In Section 4.4, we

determine the topological 4-genus of various families of braid positive 3-braid knots

(almost) exactly, and show examples where our technique comes to a limit.

4.2 The Xu normal form of 3-braids

In this chapter, our tool to handle 3-braids is what we call their Xu normal form. It

was developed by Xu [Xu92] (who called it representative symbol), as a variation of the

Garside normal form [Gar69]; see also Section 3.3. The reader will note many parallels

between the Garside and Xu normal forms. Using the Xu normal form, one may de-

cide whether two given 3-braids are conjugate [Xu92], and whether their closures are

equivalent links [BM93, BM08]. Later, the Xu normal form was generalized to braids

on arbitrarily many strands by Birman–Ko–Lee [BKL98]. The Garside, Xu and BKL

normal forms are all examples of Garside structures on (braid) groups [DDG+15].

Recall that a 3-braid β is an element of the braid group B3 = 〈a, b | aba = bab〉. Let

us write x := a−1ba ∈ B3 and δ := ba = ax = xb ∈ B3. In this chapter, by a Xu word

or simply word, we mean a word with letters a, b, x, δ and their inverses. We reserve the

equality sign = for equality of braids, and use a dotted equality sign
.
= for equality of

words. Moreover, recall that we write β ∼ γ if the two braids β, γ are conjugate. For

efficiency, let us also introduce the following notation: for any i ∈ Z, set τi
.
= a if i ≡ 1

(mod 3), τi
.
= b if i ≡ 2 (mod 3) and τi

.
= x if i ≡ 0 (mod 3).

Definition 4.2. Let w be a word of the form

w
.
= δN τu1

1 τu2

2 . . . τuT
T for N ∈ Z, T > 0, ui > 1. (4.1)

We say that w is in Xu normal form if the tuple (−N, T, u1, . . . , uT ) is lexicographically

minimal among all words of the form (4.1) representing the same conjugacy class of

3-braids.

The condition of lexicographic minimality means, in particular, that the Xu normal

form maximizes N , and afterwards minimizes T . The term ‘normal form’ is justified by

the following.

Theorem 4.3. Every 3-braid is conjugate to a unique word in Xu normal form.

The following lemma gives a criterion to easily decide whether a word is in Xu normal

form.

Lemma 4.4. A word w
.
= δN τu1

1 τu2

2 . . . τuT
T for some N ∈ Z, T > 0, ui > 1 is in Xu

normal form if and only if one of the following conditions holds:

(a) T = 0. In this case w
.
= δN .
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4.2. The Xu normal form of 3-braids

(b) T = 1, and if N ≡ 1 (mod 3) then u1 = 1. In this case, w
.
= δ3kau1 , or w

.
= δ3k+1a,

or w
.
= δ3k+2au1 .

(c) T > 2, N + T ≡ 0 (mod 3) and the tuple (u1, . . . , uT ) is lexicographically minimal

among its cyclic permutations.

The proofs of Theorem 4.3 and Lemma 4.4 are essentially contained in Xu’s pa-

per [Xu92, Section 4], albeit with slightly other conventions. In our setup, Theorem 4.3

is not actually hard to prove, and makes a good exercise to get acquainted with the

calculus of Xu words. The same is true for the ‘only if’ direction of Lemma 4.4. Let us

provide two hints. Firstly, the easily verifiable rules

δ = τiτi−1, τiδ
N = δN τi+N , τ−1

i δN = δN−1τi+N+1 (4.2)

allow to find Xu words for every 3-braid without the letters a−1, b−1, x−1, and to ‘pull

all δ±1 to the left’ in a Xu word. In this way, one can find a Xu word of the form

δN τu1

m+1 . . . τuT
m+T with m ∈ Z and ui > 1 for any 3-braid. Secondly, note that

δN τu1

1 . . . τuT
T = τu1

1−NδN τu2

2 . . . τuT
T ∼ δN τu2

2 . . . τuT
T τu1

1−N

∼ δN+1τu2

2 . . . τuT
T τu1

1−N δ−1 = δN τu2

1 . . . τuT
T −1τu1

−N .

So cyclically permuting the tuple (u1, . . . , uT ) results in a conjugate braid if −N ≡ T

(mod 3).

Proof of the ‘if’ direction of Lemma 4.4. Xu proves that condition (c) is sufficient for w

to be in Xu normal form (see the definition of the representative symbol and Theorem 5

in [Xu92]), but omits a discussion of conditions (a) and (b). So suppose w satisfies (a)

or (b), w′ = δN ′

τ
u′

1

1 . . . τ
u′

T ′

T ′ is in Xu normal form, and w′ ∼ w. We need to show that

w
.
= w′. Let us distinguish the following cases.

– If w satisfies (a), then w
.
= δN . The words w and w′ must have the same writhe, so

2N = 2N ′ + u′
1 + · · · + u′

T ′ . But since w′ is in Xu normal form, N ′ > N . Because

u′
i > 0, it follows that N ′ = N and T ′ = 0, thus w

.
= w′ as desired.

– If w satisfies (b) and w
.
= δN a, a similar argument applies: the equality of the

writhes of w and w′ now reads as 2N + 1 = 2N ′ + u′
1 + · · · + u′

T ′ . Because of

parity, we may again deduce N ′ = N . It follows that T ′ = 1, u′
1 = 1 and w

.
= w′

as desired.

– The remaining case is that w
.
= δN au1 satisfies (b) with N 6≡ 1 (mod 3) and

u1 > 2. Then the so-called r-index of w defined below Lemma 5 in [Xu92] is 0,

and so [Xu92, Theorem 4] implies that N is maximal. It follows that N ′ = N ,

and hence the minimality of T ′ implies T ′ 6 T = 1. Finally, it follows from the

equality of the writhes of w and w′ that T ′ = 1 and u1 = u′
1, and thus w

.
= w′.
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Chapter 4. 3-braid knots with maximal 4-genus

To get a link invariant from the Xu normal form, we need to understand the re-

lationship between conjugacy classes of 3-braids and link equivalence classes of their

closures. Birman–Menasco have shown that with a few well-understood exceptions, this

relationship is one-to-one.

Theorem 4.5 ([BM93,BM08]). Two 3-braids are conjugate if their closures are equiv-

alent links, except in the following cases:

(1) The non-conjugate braids ab, ab−1, a−1b−1 have the unknot as closure.

(2) For N ∈ Z \ {±1}, the non-conjugate braids aN b, aNb−1 have the T2,N torus link

as closure.

(3) For pairwise distinct integers p, q, r ∈ Z\{0, −1, −2}, the two non-conjugate braids

β = apbqxr and γ = apbrxq have the P (p, q, r, 1) pretzel as closure (see Figure 4.1);

and the two non-conjugate braids β−1 and γ−1 have the P (−p, −q, −r, −1) pretzel

link as closure.
≈

≈

a4b3x5

P (4, 1, 3, 5)

Figure 4.1: Isotopy (denoted ≈) from the closure of the braid au1bu2xu3 to the pretzel

knot P (u1, 1, u2, u3) ≈ P (u1, u2, u3, 1); here (u1, u2, u3) = (4, 3, 5).

The following corollary allows us to sidestep the exceptional cases (1), (2), (3) in

Theorem 4.5 by focusing on links of braid index 3 instead of 3-braid links (the latter

class of links includes links with braid index 1 and 2, i. e. 2-stranded torus links). Let

the reverse of a braid β ∈ B3, denoted by rev(β), be the braid given by reading β

backwards and switching a with b, and a−1 with b−1. Note that r̂ev(β) is obtained from

β̂ by reversing the link’s orientation.

Corollary 4.6. Let L be a link of braid index 3.

(1) Either there is a unique conjugacy class of 3-braids with closure L, or there are

two of them, such that one consists of the reverses of the braids contained in the

other.
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4.2. The Xu normal form of 3-braids

(2) The numbers N , T , and U = u1 + · · · + uT of the Xu normal form of a braid

with closure L do not depend on the choice of braid. Thus N , T and U are link

invariants of links with braid index 3.

Proof. Part (1). This follows quickly from Theorem 4.5, since the unknot and the two-

stranded torus links have braid index less than 3, and rev(apbqxr) = xraqbp ∼ apbrxq.

Part (2). Note that rev(x) = x and so rev(τi) = τ−i. Also rev(δ) = δ. Thus the reverse

of δN τu1

1 τu2

2 . . . τuT
T is τuT

−T . . . τu1

−1δN , which has Xu normal form δN τuT
1 τ

uT −1

2 . . . τu1

T (up

to cyclically permuting the exponents uT , . . . , u1). So the numbers N , T and U do not

change under braid reversal. Together with (1), this implies (2).

Xu calls N and T the power and syllable length, while Birman–Ko–Lee use the terms

infimum and canonical length, respectively.

Since the Xu normal form determines the link type, all link invariants may be read

off it. Let us first prove a formula for the signature invariant σ. For that, we will recall

from Section 3.3 the Garside normal form [Gar69]. Recall that ∆ = aba. A Garside

word is a word with letters a, b, ∆ and their inverses. Again, we use
.
= for equality of

words. For the purposes of this chapter, we also use the following notation: for any i ∈ Z,

set ηi
.
= a if i ≡ 1 (mod 2) and ηi

.
= b if i ≡ 0 (mod 2). We invoke Proposition 3.8 in a

slightly modified form.

Proposition 4.7 (Proposition 3.8). Every 3-braid contains in its conjugacy class a

unique Garside word v in Garside normal form, i. e. a word

v
.
= ∆ℓηp1

1 ηp2

2 . . . ηpr
r ,

with ℓ ∈ Z, r > 0, pi > 1, satisfying one of the following conditions:

(A) ℓ is even and r ∈ {0, 1}, i. e. v
.
= ∆2ka>0,

(B) ℓ is even, r = 2, p1 ∈ {1, 2, 3} and p2 = 1, i. e. v
.
= ∆2ka{1,2,3}b,

(C)/(D) r > 1, pi > 2, ℓ ≡ r (mod 2), and the tuple (p1, . . . , pr) is lexicographically

minimal among its cyclic permutations.

We refer by (C) and (D) to the case that ℓ is even and odd, respectively.

The following lemma tells us how to convert between the Xu and the Garside normal

forms.

Lemma 4.8. Let a word w
.
= δnτu1

1 τu2

2 . . . τuT
T in Xu normal form be given. Then the

unique word v in Garside normal form representing the same conjugacy class of 3-braids

as w is given by the following table.
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Chapter 4. 3-braid knots with maximal 4-genus

Case in

Lemma 4.4

Xu normal

form w

Garside normal

form v

Case in

Proposition 4.7

(a) δ3k ∆2k (A)

(a) δ3k+1 ∆2kab (B)

(a) δ3k+2 ∆2ka3b (B)

(b) δ3kau1 ∆2kau1 (A)

(b) δ3k+1a ∆2ka2b (B)

(b) δ3k+2au1 ∆2k+1a1+u1 (D)

(c) δN τu1

1 . . . τuT
T ∆(2N−T )/3η1+u1

1 . . . η1+uT
T (C)/(D)

Proof. All rows in the table except for the last one may be checked quickly, using δ3 = ∆2.

Let us now prove w ∼ v for the words w and v in the last row. Let N = 3k + m and

T = 3s + 3 − m for k, s ∈ Z, s > 0, m ∈ {1, 2, 3}. In the Xu word w, replace δN

by (ba)m∆2k. Moreover, replace every xu by ∆−1ab1+ua. These replacements yield a

Garside word v1 with v1 = w and

v1
.
= (ba)m∆2kau1bu2(∆−1ab1+u3a)au4 . . . (∆−1ab1+u3sa)au3s+1bu3s+2 ,

setting ui = 0 if i > T . Now proceed by ‘pulling all the ∆−1 to the right’, i. e. replacing

∆−1a by b∆−1 and ∆−1b by a∆−1 as long as possible. These replacements produce a

word v2 with v2 = v1, where v2 starts with (ba)m∆2kau1bu2(ba1+u3b)bu4 . . .. Using the

ηi-notation and noting that there are precisely s occurrences of ∆−1 in v1, we have

v2
.
= (ba)m∆2kηu1

1 η1+u2

2 η1+u3

3 η1+u4

4 . . . η1+u3s
3s η

1+u3s+1

3s+1 η
u3s+2

3s+2 ∆−s

∼ v3
.
= ∆−s(ba)m∆2kηu1

1 η1+u2

2 . . . η1+u3s
3s η

1+u3s+1

3s+1 η
u3s+2

3s+2 .

Let us now consider the three possibilities for m case by case.

– If m = 3, then u3s+2 = u3s+1 = 0 and

v3
.
= ∆−s(ba)3∆2kηu1

1 η1+u2

2 . . . η1+u3s
3s η3s+1

= ∆2k+2−sηu1

1 ηu2+1
2 . . . η1+u3s

3s η3s+1

∼ v4 = ∆2k+2−sη1+u1

1 ηu2+1
2 . . . η1+u3s

3s .

We have v4
.
= v as desired, since 2k + (m − 1) − s = (2N − T )/3.

– If m = 2, then u3s+2 = 0 and

v3
.
= ∆−s(ba)2∆2kηu1

1 η1+u2

2 . . . η1+u3s
3s η

1+u3s+1

3s+1

= ∆2k+1−sη1+u1

1 η1+u2

2 . . . η1+u3s
3s η

1+u3s+1

3s+1
.
= v.
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4.2. The Xu normal form of 3-braids

– If m = 1, then

v3
.
= ∆−sba∆2kηu1

1 η1+u2

2 . . . η1+u3s
3s η

1+u3s+1

3s+1 η
u3s+2

3s+2

= ηs∆2k−sη1+u1

1 η1+u2

2 . . . η
1+u3s+1

3s+1 η
u3s+2

3s+2 ∼ v.

In [Erl99, Theorem 2.6], Erle provided a formula for the signature of closures of

3-braids in Murasugi normal form (see Proposition 4.10). The following formula for

the signature of 3-braid knots using the Garside normal form follows from Remark 3.5,

Proposition 3.14 and Remark 3.15.

Proposition 4.9. Let K be a knot that is the closure of a 3-braid in Garside normal

form ∆ℓηp1

1 . . . ηpr
r in case (C)/(D) of Proposition 4.7. Then

σ(K) = −
r∑

i=1

pi + r − 2ℓ.

We are now ready to state and prove our signature formula for 3-braids in Xu normal

form.

Proposition 4.10. Let δN τu1

1 τu2

2 . . . τuT
T be the Xu normal form of a 3-braid whose

closure is a knot K of braid index 3. Set U = u1 + · · · + uT . If T > 0 (equivalently, if

K is not a torus knot), then

σ(K) = −U −
4

3
N +

2

3
T.

In the case T = 0, i. e. U = 0 and K = T3,N , the value σ(K) = −4
3N given by the above

formula is only approximately true, with an error of at most 4
3 . In fact, in that case we

have

σ(K) = −
4

3
N +

(
2 + 4

⌊
1

6
N

⌋
−

2

3
N

)
= 2 − 2N + 4

⌊
1

6
N

⌋
.

Proof. Our signature formula for torus knots may be seen to agree with the formula given

e. g. in [Mur74, Proposition 9.1]. So we are left with the case T > 1, i. e. cases (b) and

(c) in Lemma 4.4. Denote the Xu normal form in question by w. Let us first consider

case (c). Then w has Garside normal form ∆(2N−T )/3η1+u1

1 . . . η1+uT
T , see Lemma 4.8.

By Proposition 4.9, we have σ(K) = −4N/3 + 2T/3 + T − (U + T ), which is equal to

the claimed formula. In case (b), since the closure of w is a knot, the only possibility is

w
.
= δ3k+2au1 . Then the Garside normal form of w is ∆2k+1a1+u1 , which has the desired

signature, again by Proposition 4.9.

Next, let us give complete criteria to decide braid positivity and strong quasipositivity

for links of braid index 3. Recall from Section 1.3 that a braid positive link is the

closure of some positive word, i. e. a word in positive powers of the standard generators

σ1, . . . , σn−1 of the braid group Bn on some number n of strands. Similarly, a link is
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Chapter 4. 3-braid knots with maximal 4-genus

called strongly quasipositive if it is the closure of a strongly quasipositive word in some

Bn. In this chapter, a strongly quasipositive word is a word in positive powers of the

(positive) band words

σij = σ−1
i σ−1

i+1 . . . σ−1
j−1σjσj−1 . . . σi

with 1 6 i 6 j 6 n − 1. Note that this convention is different from the one used in

Chapters 1 and 2; see (1.1). Thus, in this chapter, for n = 3, positive words are words

in a = σ1, b = σ2 and strongly quasipositive words are words in a = σ11, b = σ22 and

x = σ12. It is well-known and straightforward to show that an n-braid is the closure

of some (strongly quasi-)positive word if and only if the power of ∆ (δ) in its Garside

(Birman–Ko–Lee) normal form is non-negative, respectively. This makes positivity and

strong quasipositivity decidable for braids. For links, the problem is harder because a

priori, a braid positive (strongly quasipositive) link with braid index n need not be the

closure of a (strongly quasi-)positive word on n strands. For n = 3, however, this is the

case.

Theorem 4.11 ([Sto17, Theorem 1.1 and 1.3]). The following hold.

(1) If a strongly quasipositive link is the closure of some 3-braid, then it is the closure

of a strongly quasipositive 3-braid.

(2) If a braid positive link is the closure of some 3-braid, then it is the closure of a

positive 3-braid.

We are now ready to state and prove our positivity characterizations.

Proposition 4.12. Let δN τu1

1 τu2

2 . . . τuT
T be in Xu normal form, with closure a link L

of braid index 3. Then the following hold.

(1) L is a strongly quasipositive link if and only if N > 0.

(2) L is a braid positive link if and only if N > T/2 or N = 0 and T = 1.

Proof. Part (1). If N > 0, then the Xu normal form yields a strongly quasipositive

word for L, so L is strongly quasipositive. For the other direction, assume L is strongly

quasipositive and a Xu normal form w with closure L is given. By Theorem 4.11, there

is a strongly quasipositive word in B3 representing L. It may be transformed to its

Xu normal form w′ just by replacing τi+1τi → δ and τiδ ↔ δτi+1, and by passing from

yτi to τiy for y a word in positive powers of a, b, x, δ. None of these transformations

create negative powers of δ, and so we find that the Xu normal form w′ has N > 0. By

Corollary 4.6(2), all Xu normal forms with closure L have the same N , so w has N > 0

as well, which was to be proven.

Part (2). If N > T/2, then one may check using Lemma 4.8 that the Garside normal

form of δN τu1

1 τu2

2 . . . τuT
T starts with a non-negative power of ∆, and thus yields a positive

word with closure L. If N = 0 and T = 1, then the Xu normal form is au1 , which is
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already a positive word with closure L. In both cases, it follows that L is braid positive.

For the other direction, assume L is braid positive and let a Xu normal form w with

closure L be given. By Theorem 4.11, there is a positive word in B3 representing L.

Similarly as in the proof of part (1), one sees that the Garside normal form of this

positive word starts with ∆ℓ with ℓ > 0. By going through the rows of the table in

Lemma 4.8, one sees that this implies that N > T/2, with the sole exception in the

fourth row if k = 0 and u1 6= 0: then, the Xu normal form is au1 , so N = 0 and T = 1.

Again using Corollary 4.6(2), it follows that w also satisfies N > T/2, or N = 0 and

T = 1.

If a knot K is the closure of a strongly quasipositive 3-braid in Xu normal form

δN τu1

1 . . . τuT
T , there is also a simple formula for the 3-genus of K:

g(K) =
U

2
+ N − 1, (4.3)

where U = u1 + · · · + uT . This follows from the Bennequin equality; see (1.3).

4.3 Proofs of main theorems

Before beginning with the proof of Theorem 4.1, we describe a technique that we use to

detect topological 4-genus defect in a given knot K, that is, to show gtop
4 (K) < g(K).

The main ingredient is the so-called generalized crossing change, also known as null-

homologous twist, or simply twist. A null-homologous twist consists in performing a ±1

Dehn surgery on the boundary circle of an embedded disk D ⊂ S3, such that D intersects

K transversely in a finite number of interior points, with total algebraic intersection

count 0. While ±1 Dehn surgery on an unknot in S3 gives back S3, the effect on K is

that a (left- or right-handed) full twist is introduced into the strands of K that cross D

(cf. Figure 4.2).

Figure 4.2: Two examples of twists, at the locations marked by ⋆. Here, the boundary

of the respective disc D is drawn in blue; in subsequent figures, it will be omitted.

The untwisting number tu(K) of K, introduced by Ince [Inc16], is defined as the

minimal number of null-homologous twists needed to turn K into the unknot. Clearly,

tu(K) 6 u(K), since crossing changes are special cases of null-homologous twists. Recall

that u(K) denotes the unknotting number of K; see Remark 3.38. McCoy [McC21]
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Chapter 4. 3-braid knots with maximal 4-genus

showed that gtop
4 (K) 6 tu(K), that is, the untwisting number of K is an upper bound

on the topological 4-genus of K. His result is based on Freedman’s theorem, which states

that knots of Alexander polynomial 1 are topologically slice [Fre82,FQ90]. This bound

can now be used to find topological 4-genus defect: If we find a way to turn a knot

K into the unknot with strictly less than g(K) null-homologous twists, this will show

gtop
4 (K) < g(K). This method was already applied by Baader–Banfield–Lewark [BBL20]

to 3-stranded torus knots. For the proof of Theorem 4.1 below, we use a slightly refined

version of the method, as follows.

Assume we find a cobordism C ⊂ S3 × [0, 1] from a given knot K to some knot K ′

such that g(C) = g(K) − g(K ′). If such a C exists, we will write K  K ′. Assume

that furthermore tu(K ′) < g(K ′). Then, by McCoy’s result, gtop
4 (K ′) 6 tu(K ′) < g(K ′).

Composing the cobordism C with a topological slice surface for K ′, we obtain

gtop
4 (K) 6 gtop

4 (K ′) + g(C) < g(K ′) + g(C) = g(K).

In particular, for the topological 4-genus defect we find

g(K) − gtop
4 (K) > g(K ′) − gtop

4 (K ′) > g(K ′) − tu(K ′). (4.4)

One way to construct cobordisms is to apply saddle moves to knot diagrams, as in

Figure 4.3. Note that we have already used this method for finding cobordisms many

times in the previous chapter, see in particular Section 3.4.1 and Example 3.13 therein,

where we explained the proof strategy for that chapter. Such cobordisms will always be

smooth.

↔ ↔

α

α

↔

Figure 4.3: Left: Saddle move. Middle: How to use isotopy and a saddle move to add

or remove a braid crossing. Right: Example of a cobordism between α̂ and α̂ · abx that

consists of three saddle moves, for some 3-braid α.
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Suppose the knot K is the closure of a strongly quasipositive 3-braid of the form

β = δN τu1

1 · · · τuT
T with N > 0 and u1, . . . , uT > 1. Out of saddle moves, one may

build a cobordism C that lowers the exponents ui and N (one saddle move per letter

τi, two saddle moves per letter δ), or transforms δ into τi (one saddle move). Suppose

the exponents remain non-negative, and C is a cobordism from K to another knot K ′.

Then K ′ is also strongly quasipositive, and it follows from the Bennequin equality (see

(4.3) and (1.3)) that g(C) = g(K) − g(K ′), i. e. K  K ′.

Proof of Theorem 4.1. We organize the proof into two parts, which consist in verifying

the following statements.

(1) |σ(K)| = 2g(K) for all K in the list of Theorem 4.1 and their mirrors,

(2) gtop
4 (K) < g(K) for all other 3-braid knots except the figure-eight.

In light of Kauffman and Taylor’s signature bound |σ(J)| 6 2gtop
4 (J), valid for all

knots J , see [KT76,Pow17], these two statements together imply the theorem.

Part (1). The genera and signatures of torus knots are well understood [Lit79]; in

particular, we know that the torus knots K with |σ(K)| = 2g(K) are precisely the knots

T3,4, T3,5, T2,2k+1, k > 0, and their mirrors. In fact, the signature of T2,2k+1, k > 0,

is known to be −2k. Both 3-genus and signature are additive under connected sum of

knots; hence |σ(K)| = 2g(K) for all knots K of the first type listed. If K is one of

the listed pretzel knots K = P (2p, 2q + 1, 2r + 1, 1) with p > 1, q, r > 0, then K has

a positive and alternating, hence special alternating diagram; see Figure 4.1. Murasugi

shows in this case that |σ(K)| = 2g(K); see [Mur65, Corollary 10.3].

Part (2). Let K be a 3-braid knot other than the figure-eight knot such that neither

K nor its mirror appears in the list of Theorem 4.1. Our goal now is to show that

gtop
4 (K) < g(K). We distinguish several cases.

– If K is the closure of a positive 3-braid, this is a special case of the analogous

statement about all positive braids, on any number of strands, which is due to

Liechti [Lie16, Theorem 1, Corollary 2]. f

– Next, we consider the case in which K is strongly quasipositive without being braid

positive; this is the main part of the proof. By Lemma 4.4 and Proposition 4.12,

K is the closure of a 3-braid β in Xu normal form β = δN τu1

1 τu2

2 · · · τuT
T with

u1, . . . , uT > 1, N > 0, T > 2, N + T ≡ 0 mod 3, and 2N < T (note that the

case N = 0, T = 1 is excluded since we assume that β̂ is a knot). These conditions

on N and T leave the following possibilities: (N, T ) = (0, 3), or (N, T ) = (1, 5), or

T > 6. First, if (N, T ) = (0, 3), then K = P (u1, u2, u3, 1); see Figure 4.1. If more

than one of u1, u2, u3 is even, K is a link of more than one component; the same

is true if all three parameters are odd. We may therefore assume that u1 = 2p is
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Chapter 4. 3-braid knots with maximal 4-genus

even and u2 = 2q + 1, u3 = 2r + 1 are odd, with p > 1, q, r > 0, in which case K

is a pretzel knot from the list, which we excluded.

Secondly, if (N, T ) = (1, 5), we have β = δau1bu2xu3au4bu5. If the exponents ui

are all odd, β closes to a two component link, a contradiction to K being a knot.

Therefore at least one of the ui is even. We may assume that u1 is even, because the

exponents u1, u2, . . . , uT may be cyclically permuted without changing the braid

closure, as explained in Section 4.2 after Lemma 4.4. In particular, we may assume

that u1 > 2. Then, since δ = xb,

β ∼ au1bu2xu3au4bu5xb  a2bxabxb = a(abx)2b ֌ ab,

where ‘∼’ denotes conjugation, ‘ ’ denotes the existence of a cobordism whose

genus equals the difference of the 3-genera of the knots it connects and ‘֌’ is

shown in Figure 4.4. Here, the cobordism ‘ ’ is built from saddles decreasing the

exponents ui. Since the closure of a(abx)2b has 3-genus 3 while only 2 twists are

used in ‘֌’, we obtain gtop
4 (K) 6 g(K) − 1 < g(K).

→

→

≈

⋆

⋆

Figure 4.4: abxabx ֌ ∅ using one twist on four strands, followed by another twist on

two strands, at the locations marked ⋆ (cf. Figure 4.2). The first step is an isotopy,

moving the blue strand. The last step is a crossing change near ⋆, followed by an isotopy

fixing the endpoints of the braid strands.

Finally, if T > 6, we proceed similarly as in the previous case. First, assume via

conjugation that u1 is even. If T > 6 or N > 0, then

β  au1bu2xu3au4bu5xu6b  a(abx)2b ֌ ab.

If T = 6 and N = 0, then β = au1bu2xu3au4bu5xu6 . Again, the parity of the

exponents ui determines whether β closes to a knot or a multi-component link. In

order to obtain a knot, at least two of them, say ui and uj, need to be even. We

may assume that (i, j) = (1, 2) or (i, j) = (1, 4). To see this, use cyclic permutation

(as in the case (N, T ) = (1, 5)) and the fact that u1, u3 cannot be the only even

exponents, again because β would not close to a knot if they were. Therefore,
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smooth cobordisms bring us to a2b2xabx or to a2bxa2bx. In the first case,

a2b2xabx = a2bδ−1δbxabx = a2bδ−1b(abx)2 ֌ a2bδ−1b = a2ba−1 ∼ ab.

For the second case, Figure 4.5 shows how to turn a(abxa2bx) into aγ using two

twists. Here, γ is the tangle shown in the top right corner of the figure. Note that

aγ describes the unknot when closed like a braid. Since the closure of a2bxa2bx

has 3-genus 3 (see (4.3)), we obtain gtop
4 (K) 6 g(K) − 1 < g(K). This concludes

the case that K is strongly quasipositive.

→
≈

⋆

⋆

→

≈
≈

abxa2bx γ

Figure 4.5: How to turn the braid abxa2bx (top left) into the tangle γ (top right) using

one twist on four strands, followed by another twist on two strands, at the locations

marked ⋆ (cf. Figure 4.2).

– If the mirror of K is strongly quasipositive, we apply the above argument to the

mirror of K; since both gtop
4 and g are invariant under taking mirror images, we

obtain gtop
4 (K) < g(K) again.

– If K or its mirror is the knot T2,2m+1#T2,−2n−1 with m > n > 1, then it has a

Seifert surface S of genus m + n = g(K) that contains a copy of the ribbon knot

R := T2,2n+1#T2,−2n−1, bounding a subsurface of S of genus g(R) = 2n. A surgery

that cuts this subsurface off S and replaces it with a slice disk for R gives rise to

a smooth surface of genus m + n − 2n = m − n embedded in the four-ball, with

boundary K. This shows that g4(K) 6 m − n 6 m + n − 2 < g(K), because n > 1

by assumption. Recall that g4(K) denotes the smooth 4-genus. In particular, we

obtain gtop
4 (K) < g(K).
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Chapter 4. 3-braid knots with maximal 4-genus

– We are left with the 3-braid knots K such that neither K nor its mirror is among the

following: strongly quasipositive, a connected sum of the form T2,2m+1#T2,−2n−1

with m > n > 1, or the figure-eight knot. For such knots K, Lee–Lee [LL13]

prove a bound on their unknotting number u(K), namely u(K) < g(K). Since

gtop
4 (J) 6 g4(J) 6 u(J) holds for all knots J , this implies gtop

4 (K) < g(K) and

completes the proof.

For comparison, we note the following analog of Theorem 4.1, in which the smooth

4-genus g4(K) replaces its analog gtop
4 (K) in the topological category, and Rasmussen’s

invariant s(K) from Khovanov homology [Ras10] plays the role of the signature σ(K).

Here, we could replace s by any other slice-torus invariant [Liv04], e. g. the Heegaard

Floer τ -invariant [OS03]; see the paragraph after (3.4) in Section 3.2 for the definition

of slice-torus invariants.

Proposition 4.13. Let K be a 3-braid knot other than the figure-eight knot. Then

|s(K)| = 2g(K) ⇐⇒ g4(K) = g(K).

These equalities hold precisely when K or its mirror is strongly quasipositive.

Proof. First, if K or its mirror is strongly quasipositive, then |s(K)| = 2g(K) follows, see

[Shu07, Proposition 1.7]. Moreover, the implication |s(K)| = 2g(K) ⇒ g4(K) = g(K)

holds for all knots K, because of the inequalities |s(K)| 6 2g4(K) 6 2g(K). It remains

to prove that if K is a 3-braid knot other than the figure-eight knot with g4(K) = g(K),

then K or its mirror is strongly quasipositive. This follows from Lee–Lee’s results [LL13].

More precisely, for a 3-braid knot K with g4(K) = g(K) Theorem 1.1 in [LL13] implies

that u(K) = g(K). By Theorem 1.3 of the same paper, K or its mirror is either

strongly quasipositive or a connected sum of two-strand torus knots T2,2m+1#T2,−2n−1

with m > n > 1. The latter can be excluded as in the proof of Theorem 4.1 by showing

g4(K) 6 m − n 6 m + n − 2 < g(K), a contradiction to g4(K) = g(K).

Theorem 4.14. Let K be a strongly quasipositive 3-braid knot, written as the closure

of a 3-braid β in Xu normal form β = δN τu1

1 τu2

2 · · · τuT
T , with u1, . . . , uT > 1 and N > 0.

Then the topological 4-genus defect of K is bounded as follows:

N

3
+

T

3
− 1 > g(K) − gtop

4 (K) >
N

3
+

T

6
− 3.

The constants 1
3 and 1

6 in the second inequality are optimal in the following sense: When-

ever C > 1
3 or D > 1

6 , and E ∈ R, there exists a 3-braid in Xu normal form as above

with N > 0 such that its braid closure K satisfies

g(K) − gtop

4 (K) < CN + DT − E.
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Proof. We begin with the upper bound N
3 + T

3 − 1 > g(K) − gtop
4 (K). The case T = 0,

in which K = T3,N , is covered by [BBL20, Theorem 1]:

g(K) − gtop
4 (K) = N − 1 −

⌈
2N

3

⌉
6

N

3
− 1.

For T > 0, we first use Proposition 4.10 to compute the absolute value of the signature

|σ(K)| = −σ(K) = U + 4
3N − 2

3T , where U = u1 + . . . + uT , and recall from (4.3) in

Section 4.2 that g(K) = U
2 + N − 1. The bound then follows directly from Kauffman

and Taylor’s classical bound |σ(K)| 6 2gtop
4 (K).

To establish the lower bound, we first apply a smooth cobordism from K to a knot

K ′, by suitably lowering the exponents N, u1, u2, . . . , uT in β, as explained in Figure 4.3

above. First, assume N > 0. We set K ′ := ̂δm(abx)
s
3 , where

s = 6
⌊

T

6

⌋
and m =





N − 2 if N ≡ 0 mod 3

N − 1 if N ≡ 2 mod 3

N if N ≡ 1 mod 3.

We have K  K ′, and so this is a smooth cobordism which does not increase the

topological 4-genus defect. In other words,

g(K) − gtop
4 (K) > g(K ′) − gtop

4 (K ′),

as in (4.4). Next, we apply the untwisting move (abx)2 ֌ ∅ from Figure 4.4 exactly s
6

times to the knot K ′, resulting in δ̂m = T3,m. Since m ≡ 1 mod 3, this is a knot again.

For m > 4, [BBL20, Lemma 5 (1)] yields tu(T3,m) 6 2
3m + 1

3 . This inequality still holds

for m = 1 and adds up to

gtop
4 (K ′) 6 tu(K ′) 6 2 ·

s

6
+

2

3
m +

1

3
.

Since g(K ′) = s
2 + m − 1 by (4.3), and since s

6 >
t
6 − 5

6 and m > N − 2, we obtain

g(K) − gtop
4 (K) >

s

6
+

m

3
−

4

3
>

t

6
+

N

3
− 3.

In the case N = 0, the above procedure fails because m, as defined above, is negative

and the smooth cobordism to K ′ might therefore increase the 4-genus defect. However,

a simple cosmetic modification allows for a cobordism that only increases the 4-genus

defect by at most one. Specifically, we set m = 1 (instead of m = −2) and K ′ = ̂δ(abx)
s
3 .

The cobordism from K to K ′ is then given by lowering the exponents u1, u2, . . . , uT in

β as above while increasing the exponent of δ from 0 to 1. This gives

g(K) − gtop
4 (K) > g(K ′) − gtop

4 (K ′) − 1.
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Now we apply the s
6 untwisting moves (abx)2 ֌ ∅ as above. The result is the unknot δ̂.

Since N = 0, we again obtain the claimed bound

g(K) − gtop
4 (K) >

s

6
− 1 >

t

6
−

5

6
− 1 >

T

6
+

N

3
− 3.

In order to demonstrate optimality of the constants, we consider the two special fam-

ilies of 3-braids δN and (abx)N , which we slightly modify to δ3k+1 and (abx)2kabx2abx2,

to make sure that their braid closures are connected.

– For K = T3,3k+1 with k > 1, the closure of the braid δ3k+1 in Xu normal form

with N = 3k + 1 and t = 0, we have g(K) = 3k and gtop
4 (K) = 2k + 1 by [BBL20],

hence g(K) − gtop
4 (K) = k − 1. Whenever C > 1

3 and D, E are arbitrary constants,

we will therefore have

g(K) − gtop
4 (K) = k − 1 < C · (3k + 1) + D · 0 − E

for sufficiently large k.

– If K is the closure of (abx)2kabx2abx2, which is in Xu normal form with N = 0 and

t = 6k+6, then g(K) = 3k+3. By Gambaudo–Ghys [GG16, Corollary 4.4], for any

3-braid β with closure J , the Levine–Tristram signature function of J , [0, 1] → Z,

t 7→ σe2πit(J), grows linearly on (0, 1
3) with slope −2 times the writhe of β, up to

a pointwise error of at most 2 (see e. g. Figure 4.6 at the end of Section 4.4). For

strongly quasipositive β with J a knot, that slope is −4(g(J) + 1), see (4.3), and

hence

σ̂(J) := max
ω∈S1\∆−1

J
(0)

|σω(J)| >
4

3
(g(J) + 1) − 2. (4.5)

Since 1
2 |σω(J)| 6 gtop

4 (J) whenever ω ∈ S1 is not a root of the Alexander polyno-

mial of J (see [KT76, Pow17]), we obtain 2
3(g(K) + 1) − 1 = 2k + 5

3 6 gtop
4 (K).

Hence, if C, E are arbitrary constants and D > 1
6 , we have

g(K) − gtop
4 (K) 6 3k + 3 − 2k −

5

3
= k +

4

3
< C · 0 + D · (6k + 6) − E,

for sufficiently large k. In this case, it does not suffice to consider the (classical)

signature bound on gtop
4 (K). Indeed, |σ(K)| = 2k + 4 (see Proposition 4.10) is

roughly half the maximal Levine–Tristram signature σ̂(K). Substituting |σ(K)|

for σ̂(K) in the above argument would therefore not work.

4.4 The topological 4-genus of positive 3-braid knots

The methods of Section 4.3 allow us to determine the topological 4-genus up to an error

of 1 for knots which are closures of positive 3-braids under an additional assumption
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on their Xu normal form (see Proposition 4.18). In certain cases, we can determine

gtop
4 exactly (see Examples 4.16 and 4.17 and Remark 4.19). For these results, we use

the 1
2 |σ| 6 gtop

4 . We end with a discussion of examples where this bound is not sharp

(Remark 4.21) and give examples where instead of untwisting, we determine gtop
4 via

their algebraic genus (Example 4.20). We are led by the following questions.

Question 4.15. Does the equality 1
2 σ̂(K) = gtop

4 (K) hold for all braid positive 3-braid

knots? For all strongly quasipositive 3-braid knots? For all braid positive knots?

Throughout, we will use the Xu normal form of 3-braids from Section 4.2. Recall

that we write δ = ba = ax = xb such that aδ = δb, bδ = δx and xδ = δa (see (4.2) in

Section 4.2).

Example 4.16. Consider the 3-braid β = δ3ℓ+2au1 for ℓ > 0, u1 > 1 in Xu normal form

with closure a knot K. Note that u1 must be even for K to be a knot. We claim that

gtop
4 (K) = tu(K) =

|σ(K)|

2
=

u1

2
+ 2ℓ + 1. (4.6)

The last equality follows directly from Proposition 4.10. To prove (4.6), using the in-

equalities 1
2 |σ(K)| 6 gtop

4 (K) 6 tu(K) (as explained in the beginning of Section 4.3) it is

enough to show that tu(K) 6 1
2 |σ(K)|. By u1−2

2 crossing changes from positive crossings

of β to negative crossings we obtain the braid δ3ℓ+2a2. We will prove by induction that

this braid can be untwisted with 2ℓ + 2 twists, which implies tu(K) 6 u1

2 + 2ℓ + 1. For

ℓ = 0, we have δ2a2 = baba3 = aba4 which becomes ab (with closure the unknot) by two

crossing changes. For ℓ = 1, we have

δ5a2 = δ4axa2 = δ3x2bxa2 = δ2b3abxa2 = δa4xabxa2 = x5bxabxa2

∼ b5abxabxx֌ b5x,

which turns into bx ∼ δ using two crossing changes. Recall that the two twists needed

to untwist abxabx֌ ∅ are shown in Figure 4.4 of Section 4.3. Now, for ℓ > 2, we have

δ3ℓ+2a2 = δ3ℓ−3x5bxabxa2 ∼ δ3ℓ−3b5abxabxx֌ δ3ℓ−3b5x

∼ δ3ℓ−3δb4 = δ3ℓ−3aδb3 ∼ δ3ℓ−1b2 ∼ δ3(ℓ−1)+2a2,

where we again used two twists for ‘֌’. Inductively this shows that δ3ℓ+2a2 can be

untwisted with 2ℓ + 2 twists as claimed.

Example 4.16 combined with the results from [BBL20] for 3-strand torus knots shows

that the equalities gtop
4 = tu = σ̂

2 hold for all strongly quasipositive 3-braid knots in Xu

normal form (a) or (b) from Lemma 4.4, where σ̂ = |σ| except for certain torus knots of

braid index 3; see also Remark 4.21. We next consider a sub-case of case (c).
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Example 4.17. Let K be a knot that is the closure of a 3-braid in Xu normal form

β = δ3ℓ+1au1bu2 for ℓ > 0, u1, u2 > 1. Note that u1 and u2 must both be even for K to

be a knot. We claim that

gtop
4 (K) = tu(K) =

|σ(K)|

2
=

u1 + u2

2
+ 2ℓ.

The proof works as in Example 4.16. After u1+u2−4
2 positive to negative crossing changes

in β we obtain the braid δ3ℓ+1a2b2, which we can untwist with 2ℓ + 2 twists as follows.

For ℓ = 0, the braid δa2b2 turns into δ by two crossing changes. For ℓ = 1, we have

δ4a2b2 = δ3xaxab2 = δ2bx2bxab2 = δab3abxab2 = xa4xabxab2

∼ ab4abxabxx֌ ab4x,

which can be untwisted using two crossing changes. For ℓ > 2, we have

δ3ℓ+1a2b2 = δ3ℓ−3xa4xabxab2 ∼ δ3ℓ−3ab4abxabxx֌ δ3ℓ−3ab4x

= δ3ℓ−4xa3babx = δ3ℓ−5bx3a2xabx = δ3ℓ−6ab3x3bxabx

∼ δ3ℓ−6a3b3abxabx֌ δ3ℓ−6a3b3 ∼ δ3ℓ−5a2b2 = δ3(ℓ−2)+1a2b2,

which we can untwist inductively using the two base cases above.

The following proposition improves the statement from Theorem 4.14 for braid pos-

itive 3-braid knots under the additional assumption ui > 2 for the exponents in the Xu

normal form of their braid representatives. In fact, we can determine gtop
4 (K) in this

case up to an error of 1, using 1
2 |σ(K)| as a lower bound.

Proposition 4.18. Let K be a knot that is the closure of a 3-braid in Xu normal form

δN τu1

1 τu2

2 . . . τuT
T for T > 1, N >

T

2
, u1, . . . , uT > 2.

Then K is a braid positive knot and

N + T

3
− 1 = g(K) −

|σ(K)|

2
> g(K) − gtop

4 (K) >
N + T

3
− 2. (4.7)

Proof. Let

β = δN τu1

1 τu2

2 . . . τuT
T for T > 1, N >

T

2
, u1, . . . , uT > 2

such that its closure is a knot K. Set U = u1 + · · · + uT . Proposition 4.12 implies

that K is braid positive. Moreover, we have |σ(K)|
2 = U

2 + 2N
3 − T

3 by Proposition 4.10

and g(K) = U
2 + N − 1 by (4.3). Using 1

2 |σ(K)| 6 gtop
4 (K), it remains to show that

gtop
4 (K) 6 |σ(K)|

2 + 1. We distinguish two cases depending on the parity of T .
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First, let T = 2r be even for r > 1. The conditions 2N > T and N + T ≡ 0 (mod 3)

imply that we can write N = 3ℓ + r for ℓ > 0, and we have

β = δ3ℓ+rτu1

1 τu2

2 . . . τu2r
2r .

The case r = 1 (T = 2) is covered by Example 4.17, so we can further assume that r > 2.

There is a smooth cobordism of Euler characteristic 4r − U − 4 from K to the knot that

is the closure of

β′ = τ1−rδ3ℓ+r−1
r−2∏

i=1

τ2
i τr−1τrτr+1

2r∏

i=r+2

τ2
i .

Indeed, we can use U − 4r + 3 saddle moves to replace all but three of the exponents ui

by 2 and the other three by 1. We use a last saddle move to replace δ by τ1−r. We will

prove by induction on r that β′ turns into δ3ℓ+1 by 2r − 2 twists. Since the closure of

δ3ℓ+1 is the torus knot T3,3ℓ+1, this will imply

tu
(
β̂′
)
6 tu(T3,3ℓ+1) + 2r − 2 =





2ℓ + 2r − 1 if ℓ > 1,

2r − 2 if ℓ = 0,
(4.8)

where the equality follows from [BBL20, Lemma 5 and Theorem 1]. Recall that we have

δ = τi+1τi and τiδ = δτi+1 by (4.2), and τi = τi+3m for all m ∈ Z, i ∈ Z. For r = 2, we

thus have τ1−r = τ2 and

β′ = τ2δ3ℓ+1τ1τ2τ3τ2
4 = δ3ℓτ2τ1τ0τ1τ2τ3τ2

4 = δ3ℓτ0τ−1τ0τ1τ2τ3τ2
4

∼ δ3ℓτ2τ1τ2τ3τ4τ5τ2
6 ֌ δ3ℓτ2τ6 ∼ δ3ℓ+1,

so β′ indeed turns into δ3ℓ+1 using 2r−2 = 2 twists in this case. Now, for r > 3, consider

β′ = τ1−rδ3ℓ+r−2
r−3∏

i=1

τ2
i−1δτ2

r−2τr−1τrτr+1τ2
r+2

2r∏

i=r+3

τ2
i

= τ1−rδ3ℓ+r−2
r−3∏

i=1

τ2
i−1τr−3τr−2τr−3τr−2τr−1τrτr+1τ2

r+2

2r∏

i=r+3

τ2
i

∼ τ(1−r)−(r−4)δ
3ℓ+r−2

r−3∏

i=1

τ2
i−1−(r−4)τ1τ2τ1τ2τ3τ4τ5τ2

6

2r∏

i=r+3

τ2
i−(r−4)

֌ τ(1−r)−r+1δ3ℓ+r−2
r−3∏

i=1

τ2
i−rτ1τ2τ3

2r∏

i=r+3

τ2
i−r+1

∼ τ(1−r)+1δ3ℓ+r−2
r−3∏

i=1

τ2
i τr−2τr−1τr

2(r−1)∏

i=r+1

τ2
i .
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The braid β′ hence turns into

τ(1−r)+1δ3ℓ+r−2
r−3∏

i=1

τ2
i τr−2τr−1τr

2(r−1)∏

i=r+1

τ2
i

by two twists and inductively we get that β′ turns into

τ(1−r)+r−2δ3ℓ+1τ1τ2τ3τ2
4

by 2(r − 2) twists. Since τ(1−r)+r−2 = τ2, this braid is the same as the one from the base

case r = 2 and therefore can be untwisted with two twists. We obtain that β′ becomes

δ3ℓ+1 by 2r − 2 twists. Thus (4.8) follows and we get

gtop
4 (K) 6 gtop

4

(
β̂′
)

+
U − 4r + 4

2
6 tu

(
β̂′
)

+
U

2
− 2r + 2

6





U
2 + 2ℓ + 1 = |σ(K)|

2 + 1 if ℓ > 1,

U
2 = |σ(K)|

2 if ℓ = 0.

Next, let T = 2r + 1 be odd for r > 0. The conditions 2N > T and N + T ≡ 0

(mod 3) imply that we can write N = 3ℓ + r + 2 for ℓ > 0, and we have

β = δ3ℓ+r+2τu1

1 τu2

2 . . . τ
u2r+1

2r+1 .

The case T = 1 is covered by Example 4.16, so we can further assume that r > 1. There

is a smooth cobordism of Euler characteristic 4r − U − 2 from K to the knot that is the

closure of

β′ = τ1−rδ3ℓ+r+1
r−1∏

i=1

τ2
i τrτr+1τr+2

2r+1∏

i=r+3

τ2
i ,

similar to the cobordism considered in the above case. We prove by induction on r that

β′ turns into δ3(ℓ+1)+1 by 2r − 2 twists, hence

tu
(
β̂′
)
6 tu(T3,3(ℓ+1)+1) + 2r − 2 = 2ℓ + 2r + 1.

For r = 1, we have

β′ = τ0δ3ℓ+2τ1τ2τ3 = δ3ℓ+3τ2τ3 ∼ δ3(ℓ+1)+1. (4.9)

For r = 2, we have

β′ = τ2δ3ℓ+3τ2
1 τ2τ3τ4τ2

5 = τ2δ3ℓ+2τ0τ1τ0τ1τ2τ3τ4τ2
5

∼ τ0δ3ℓ+2τ1τ2τ1τ2τ3τ4τ5τ2
6 ֌ τ0δ3ℓ+2τ1τ2τ6 ∼ δ3(ℓ+1)+1
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4.4. The topological 4-genus of positive 3-braid knots

using (4.9) in the last step. Now, for r > 3, consider

β′ = τ1−rδ3ℓ+r
r−2∏

i=1

τ2
i−1δτ2

r−1τrτr+1τr+2τ2
r+3

2r+1∏

i=r+4

τ2
i

= τ1−rδ3ℓ+r
r−2∏

i=1

τ2
i−1τr−2τr−1τr−2τr−1τrτr+1τr+2τ2

r+3

2r+1∏

i=r+4

τ2
i

∼ τ(1−r)−(r−3)δ
3ℓ+r

r−2∏

i=1

τ2
i−1−(r−3)τ1τ2τ1τ2τ3τ4τ5τ2

6

2r+1∏

i=r+4

τ2
i−(r−3)

֌ τ(1−r)−rδ3ℓ+r
r−2∏

i=1

τ2
i−r−1τ1τ2τ3

2r+1∏

i=r+4

τ2
i−r

∼ τ(1−r)+1δ3ℓ+r
r−2∏

i=1

τ2
i τr−1τrτr+1

2(r−1)+1∏

i=r+2

τ2
i .

Inductively we get that β′ turns into τ(1−r)+r−2δ3ℓ+3τ2
1 τ2τ3τ4τ2

5 = τ2δ3ℓ+3τ2
1 τ2τ3τ4τ2

5 by

2(r − 2) twists, so into δ3(ℓ+1)+1 by 2r − 2 twists. We obtain

gtop
4 (K) 6 gtop

4

(
β̂′
)

+
U − 4r + 2

2
6 tu

(
β̂′
)

+
U

2
− 2r + 1

6
U

2
+ 2ℓ + 2 =

|σ(K)|

2
+ 1.

Remark 4.19. The proof of Proposition 4.18 (more precisely, the first case with ℓ = 0)

shows that the first inequality in (4.7) is an equality when 2N = T .

Example 4.20. Let us try to determine the topological 4-genera of the knots arising as

closures of the following positive 3-braids:

δ3a2b2xabx ∼ a3b3a2b2a2b2

δ4a2bxab ∼ ∆a3b2a2b2a2

δ4a4bxab ∼ ∆a5b2a2b2a2

δ4a2b2xa2b ∼ ∆a3b3a2b3a2

δ6a2bx ∼ ∆3a3b2a2.

First, we note that for all of these knots K, we have the lower bound

1

2
σ̂(K) =

1

2
|σ(K)| = g(K) − 2 6 gtop

4 (K).

Second, in the search for upper bounds, we are able to find a knot J such that K  J

and tu(J) = g(J) − 1, thus proving gtop
4 (K) 6 g(K) − 1, for each of these knots K.

However, we are unable to find J with K  J and tu(J) = g(J) − 2. Nevertheless,

we can prove gtop
4 (K) = g(K) − 2 for all of these knots K in a different way, which
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Chapter 4. 3-braid knots with maximal 4-genus

is practical for individual knots with low genus. Namely, a computer search [Lew23]

reveals that the algebraic genus galg(K), which is defined in terms of Seifert matrices of

K and provides an upper bound gtop
4 (K) 6 galg(K) [FL18], satisfies galg(K) 6 g(K) − 2

for all those knots K.

Remark 4.21. The maximal Levine–Tristram signature, see (4.5) in Section 4.3, provides

a good computable lower bound for gtop
4 :

σ̂(K) = max
ω∈S1\∆−1

K (0)
|σω(K)| 6 gtop

4 (K).

The function S1 → Z, ω 7→ σω(K), is piecewise constant and jumps only at zeroes of

the Alexander polynomial ∆K . A priori, its maximum absolute value may be assumed

anywhere on S1.

0.1 0.2 0.3 0.4 0.5

−20

−40

−60

1/3

0.3599

0.3826

Figure 4.6: In blue, the graph of the Levine–Tristram signature σe2πit(K) for t ∈ [0, 1
2 ]

and K the closure of the 3-braid
(
a2b2

)8 (
a5b5

)4
∼ δ12

(
a4b4x4

)2
a4b4(xab)5x. In black,

the linear approximation by [GG16, Corollary 4.4] for t ∈ [0, 1
3 ]. The maximum absolute

value σ̂(K) of σe2πit(K), which equals |σ(K)| + 4 = |σe2πi/3(K)| + 4, is assumed between

0.3599 and 0.3826 (rounded).

In the above examples and Proposition 4.18 we have seen that for certain families

of 3-braid knots, σ̂ = |σ| = 2gtop
4 , where σ = σ−1 = σeπi is the classical knot signature.

This also holds for the T3,3k+m torus knots with m ∈ {1, 2} and odd k > 1 [BBL20]. For

even k on the other hand, e. g. for T3,7, one finds σ̂ = |σω| = |σ| + 2 for ω chosen only

one jump-point of the Levine–Tristram signature away from eπi, i. e. ω = e2πit for

t ∈

(
1

2
−

5

18k + 6m
,

1

2
−

1

18k + 6m

)
.

This observation relies on the fact that the jumps of the Levine–Tristram signatures

of torus knots are well understood [Lit79, Ban22]. Moreover, we have seen examples

where σ̂ = σe2πi/3 , namely the closure of (abx)2kabx2abx2 for k > 0; see the proof

of Theorem 4.14 in Section 4.3. Overall, whenever we could precisely determine the

topological 4-genus of a 3-braid knot K, then the maximum absolute value of σe2πit was
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4.4. The topological 4-genus of positive 3-braid knots

either assumed at t = 1
3 , or at t = 1

2 , or close to t = 1
2 . However, there are 3-braid knots

K for which σ̂(K) > |σe2πi/3(K)| + 4 and σ̂(K) > |σ(K)| + 4; see Figure 4.6. In fact,

we conjecture that the difference σ̂(K) − max (|σe2πi/3(K)|, |σ(K)|) is unbounded for K

ranging over closures of 3-braids of the form
(
a2b2

)m (
a5b5

)n
. Determining σ̂ and gtop

4

for all 3-braid knots, or even just closures of positive 3-braids, thus appears to be a hard

problem.
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