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Abstract
As human‐machine interaction (HMI) in healthcare continues to evolve, the issue of trust
in HMI in healthcare has been raised and explored. It is critical for the development and
safety of healthcare that humans have proper trust in medical machines. Intelligent ma-
chines that have applied machine learning (ML) technologies continue to penetrate deeper
into the medical environment, which also places higher demands on intelligent healthcare.
In order to make machines play a role in HMI in healthcare more effectively and make
human‐machine cooperation more harmonious, the authors need to build good human‐
machine trust (HMT) in healthcare. This article provides a systematic overview of the
prominent research on ML and HMT in healthcare. In addition, this study explores and
analyses ML and three important factors that influence HMT in healthcare, and then
proposes a HMTmodel in healthcare. Finally, general trends are summarised and issues to
consider addressing in future research on HMT in healthcare are identified.
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1 | INTRODUCTION

Machine learning (ML), one of the core technologies of arti-
ficial intelligence (AI), is developing by leaps and bounds [1–3].
With the development of technologies, more and more intel-
ligent machines are entering human life and embedded in all
aspects of people's production and life. Machines incorpo-
rating ML technology are gradually being used in military,
healthcare [4–6], education, transport [7] and other fields. The
development of technology has also changed the relationship
between humans and machines [8]. Most previous studies are

based on distrust of AI and unilaterally demand that AI must
conform to human ethical standards from all perspectives;
however, the trustworthiness of AI and ML is not only
determined by its trustworthy algorithms, but also related to
both sides of human‐machine interaction (HMI). The intro-
duction of trustworthy machine learning can build a bridge
between HMI and intelligent machines [9]. The application of
ML methods in healthcare is still imperfect so far. ML tech-
niques can have an impact on human‐machine trust (HMT)
from the machine perspective in HMI. Therefore, it is
important to explore ML and HMT in healthcare.
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In healthcare, do patients trust doctors [10]? Do patients
trust doctors or medical machines more [11]? As the use of ML
in healthcare deepens [12], the question of whether medical
intelligent machines can be trusted has sparked controversy.
Trust plays an important role in HMI in healthcare. For doc-
tors and patients, exposure to medical machines is inevitable
[13]. In human‐machine collaboration, the maturity of the
machine's technical capability is the first premise, then the
second premise is the trust relationship between humans and
machines [14]. The degree of trust between humans and ma-
chines largely affects the effectiveness of human‐machine
collaboration. Establishing a good trust mechanism [15] can
make rational use of the high performance of machines while
making use of human intelligence. How to enhance trust be-
tween humans and medical machines to make HMI in
healthcare more harmonious and comfortable to meet human
needs deserves extensive research. In HMI in healthcare, the
proper use of the machine depends on both the human and the
machine [16]. It is necessary to properly consider the factors
that affect HMT and combine trustworthy machine learning to
establish a good HMT relationship to make HMI more
effective [17].

However, so far, there is a lack of research reviews that
systematically and accurately sort out HMT and ML in
healthcare. This paper can help researchers understand the
important role of trustworthy machine learning in HMI and
how to build good HMT, which is important for optimising
HMI in healthcare. Based on an extensive literature reading,
this paper provides a systematic and in‐depth summary of ML
and HMT in healthcare, and outlines the development of ML
and HMT, leading to a synthetic HMT model in healthcare.

The main contributions of this paper are: (1) exploring the
characteristics of ML and HMT in healthcare with reference to
previous studies; (2) presenting the problem of HMT in
healthcare, exploring ML and the three important factors
(machine, human, and environment factors) influencing HMT
in healthcare, and discussing and proposing our HMTmodel in
healthcare; (3) exploring promising future research directions
for HMT in healthcare. The rest of the paper is organised as
follows: Section 2 describes and analyses the concept and
development of ML and HMT in detail; Section 3 specifically
analyses that trustworthy machine learning in HMI in health-
care can facilitate HMT and gives a trust model; Section 4
concludes and points out the direction of future work.

2 | RELATED WORKS

2.1 | Machine learning

As a rapidly developing technology, ML is widely used in
medical intelligent machines. In 1956, the term AI was defined
by John McCarthy [18] as the science and engineering of
building intelligent machines. This marked the formal birth of
the emerging discipline of AI. AI is a branch of computer
science that attempts to understand the essence of intelligence
and produce a new intelligent machine capable of responding

in a manner similar to human intelligence. ML is the main
branch of AI technologies, and deep learning (DL) is one of
the subfields of ML [19]. The relationship between AI, ML,
and DL is shown in Figure 1, where DL is a subset of ML, and
ML is a subset of AI.

The goal of AI is to make algorithms simulate ‘intelligence’.
ML is the core of AI and is a multidisciplinary discipline. ML is
the study of how machines can simulate human learning be-
haviours [20], so that they can learn to acquire new knowledge
and skills, and optimise their own machine performance based
on what they have learned.

ML algorithms build a mathematical model of sample data,
known as training data, in order to make predictions or de-
cisions without being explicitly programmed to perform the
task. The general process of ML is to train the input training
data, and use the trained machine model to operate on the
unknown test data according to its own algorithm and strategy
to get the running results. ML has been widely used to solve
various complex challenges in various fields such as healthcare,
finance and industry. In the healthcare field, ML technologies
are used in disease diagnosis [21] and surgical robotics [22] etc.
Of course, ML also faces difficulties and challenges. One
important issue is the opacity of ML techniques [23], which
makes it difficult to explain the inner workings of intelligent
machines, and which drives the development of explainable
machine learning. The core idea of explainable machine
learning is to make a model that considers both prediction
accuracy and interpretability [24], and try to find the best
balance between the two. It needs to consider not only the
accuracy of the model, but also to give the reason for getting
that result, and thus to achieve the properties of safety,
transparency, and fairness of the model. In short, explainability
is the transformation of machine learning from a black‐box
model to a white‐box model.

2.2 | Human‐machine trust

Human‐machine trust refers to the relationship that occurs
between a human and an intelligent machine and is established

F I GURE 1 The relationship between artificial intelligence (AI),
machine learning (ML) and deep learning (DL).
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by the criterion of mutual trust between the two parties. With
the continuous development and improvement of various
advanced technologies, machines incorporating ML and other
technologies are widely integrated into cell phones, hospitals,
and homes [25]. HMI [26] and HMT have become hot topics
of research today.

Advances in technology have driven the development of
HMT research. Researchers first focused on the trust rela-
tionship between humans. Whereas in HMI, the interaction
participants changed from human to human to human to
machine, and the research focus changed from interpersonal
trust to HMT. The corresponding history of HMT develop-
ment is shown in Figure 2. As demonstrated by previous
studies, there are various influencing factors of trust, which
need to be used rationally to improve HMT and promote
human‐machine cooperation.

The concept of trust is abstract, complex, and has different
analyses and definitions in different fields. In 1958, The
American psychologist Deutsch introduced the study of trust
to the field of psychology with his famous Prisoner's Dilemma
experiment. Subsequently, numerous researchers have defined
and analysed the concept of trust. For illustration, Rotter de-
fines trust as the general expectation that an individual or
group can rely on the verbal statements or written expressions
of other individuals or groups in 1967 [27]. Although defini-
tions of trust vary, the consensus view among researchers is
that trust is the basis for relationships involving transactions or
exchanges. Mayer, Davis, and Schoorman [28] considered
characteristics of the trustor, the trustee, and the role of risk,
and proposed a definition of trust and a model of its ante-
cedents and outcomes. Mayer, et al. [28] define trust as the
willingness of one party to accept the vulnerability associated
with the potential risks or unfavorable actions of another party.

In this paper, we employ the classical definition given by
Rousseau, Sitkin, Burt, and Camerer [29]. Trust is a state of
mind that includes a willingness to take losses based on a
positive expectation of another person's intentions or actions.
The stronger this willingness is, the greater the trust in the
other party. Trust is an important component of interpersonal
and organisational behaviour that influences people's decisions
about the behaviour of others in personal and organisational
settings, and trusting others also means taking the risk of
possible harm from the other person's behaviour [30].

Although HMT is different from interpersonal trust, trust
also plays an important role in HMI.Muir [31] extended Barber's
definition of interpersonal trust and the model of trust from
Rempel, Holmes, and Zanna [32] to human‐machine relation-
ships, and developed a comprehensive framework for studying
automated trust [33]. Trust in human‐machine cooperation does
not occur directly between humans, but during the interaction
between humans and machines. The concept of HMT, which
has been accepted by many researchers, was proposed by Lee
and See [34]. Based on their definition of trust from an attitu-
dinal perspective, combined with the healthcare scenario we
focus on. Trust is the attitude of an individual (e.g. patient) who
believes that an agent (e.g. AI therapy robot) can help him/her
achieve a certain goal (e.g. disease detection) in an uncertain or

vulnerable situation. On the other hand, Siau and Wang [35]
considered trust in HMI as human trust in AI systems or trust in
AI algorithm developers. Hoffman [36] argued that trust in
human‐machine cooperation is a change process. An inappro-
priate level of trust may have negative consequences [34, 37, 38].
Parasuraman and Riley [38] discussed multiple mis‐calibrations:
misuse, disuse, and abuse of automation techniques. Trust is not
always properly calibrated.

In HMT, the trustor is humans and the trustee is machines.
It is difficult to generate mutual emotional interaction between
humans and machines, so trust is usually generated by
instantaneous judgement of humans on machines. The build-
ing and sustaining of trust depend on many factors [39]. Jian,
Bisantz, and Drury [40] conducted a three‐stage experiment
that included a word elicitation study, a questionnaire study,
and a paired comparison study. They explored three types of
trust, including human–human trust, HMT, and trust in gen-
eral. The results of the experiment identified 12 potential
factors of trust between human and automated machines. The
12 factors were used to develop a proposed scale to measure
HMT. Trust affects human dependence on machines in HMI
[34]. Researchers have found that in HMI, trust is influenced
by three main types of factors: human, machine (technology),
and environment. Hancock, et al. [41] developed a three‐factor
model of HMT based on the HMT model by reviewing rele-
vant data and quantitatively analysing the effects of human,
machine, and environment characteristics [42]. Schaefer, Chen,
Szalma, and Hancock [43] used meta‐analysis to assess trust in
machines. Human‐related factors and automation‐related fac-
tors provide the moderating effect [43]. The machine perfor-
mance and attributes were the largest contributors to the
development of trust in HMI [41]. In 2011, researchers pro-
posed a MT model of healthcare trust, which abstracts and
simplifies the object of study in a healthcare system into a
doctor agent, a patient agent, and a central trust agent that
perform interactive behaviours with each other [44]. The MT
model can integrate direct interactive trust and indirect trust
relationships to establish a dynamic equilibrium. Bahtiyar and
Çağlayan [45] proposed a model to assess the security trust of
e‐health services from the perspective of entities. The eHealth
trust model is a patient privacy research framework. The
eHealth trust model suggests that a patient's eHealth trust is
informed by their perceptions, experiences, and environment
[46]. The eHealth Trust is the primary determinant in a pa-
tient's behavioural reaction to health information exchange.
Shareef, et al. [47] proposed a trust‐disposition model for
understanding adoption of an autonomous homecare system.

3 | MACHINE LEARNING AND
HUMAN‐MACHINE TRUST IN
HEALTHCARE

Machine learning techniques are widely used in the healthcare
field, but also face difficulties and challenges. With the wide-
spread application of machine learning in intelligent healthcare
field, the issue of HMT is more and more worth exploring.
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3.1 | Trust issue

Currently, medical information sharing has become a trend in
medical informatics. In healthcare, a serious trust security issue

stems from data breaches. Once a data breach occurs, users'
privacy is not protected and users lose trust in the machine. In
2015, the U.S. health insurance company Anthem was hacked
to steal the personal information of more than 80 million

F I GURE 2 Development history of human‐machine trust (HMT).

LIN ET AL. - 289

 24682322, 2024, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12268 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



customers and employees. In the same year, UCLA's healthcare
system was hacked and about 500,000 medical data were
compromised. In 2017, a system failure at a U.S. healthcare
company resulted in a data breach of approximately 47.5 GB
involving sensitive private information of approximately
150,000 patients. The security of healthcare data is a matter of
personal privacy and healthcare organisations. Without data
security and privacy protection, it is impossible to gain the trust
of users (doctors and patients).

In the healthcare field, another serious trust security issue
is misdiagnosis. Although ML can help ensure a more accurate
diagnosis and reduce the rate of misdiagnosis to some extent, it
still has the potential for misdiagnosis. As it is known, the
famous IBM Watson Health had sometimes given wrong
recommendations for cancer treatment, prescribing drugs that
may cause bleeding for cancer patients who are already
bleeding heavily [48]. Misdiagnosis can occur if there are
problems with medical diagnosis. The consequences of
misdiagnosis in the medical process can be very serious. In the
healthcare field, incorrect diagnostic decisions from machine
learning models can threaten the lives of patients. Fortunately,
Memorial Sloan‐Kettering Cancer Centre gave the explanation
that the aforementioned cancer patient was only fictitiously
created to train Waston in tumour diagnosis and was not a real
patient, and no one was harmed as a result.

In addition, the unexplainability of medical diagnostic ma-
chines that incorporate machine learning poses a significant
challenge to trust. On the one hand, it reduces the trustworthi-
ness of the models and makes it difficult to build trust between
users and machines. On the other hand, an uninterpretable
model is extremely limited in practical deployment in many
domains because it does not provide more reliable information
to users.Whenmachine learningmodels are unexplainable and it
is impossible to determine how the models make decisions,
doctors are afraid to easily use the results provided by ML for
diagnosis, and patients do not trust the diagnosis [49].

So how to build a good HMT relationship? Multiple per-
spectives need to be considered in HMI, including human,
machine, and environmental perspectives. In the next section,
taking into account various factors of HMT, a synthetic HMT
model is proposed to make HMI in healthcare more effective.

3.2 | Human‐machine trust model

Trust as a multidimensional and dynamic construct has been
extensively studied in its models or frameworks in the psy-
chological field. In interaction, the cognition and behaviour of
human decision makers are influenced by multiple dynamic
and uncertain factors [50, 51]. Conducting evaluations can help
understand collaborative decision‐making processes [52] and
drive machine design and human‐machine collaborative design
forward in healthcare.

HMT in healthcare involves the collaboration and integra-
tion of humans and intelligent machines to improve patient care,
clinical decision making, and medical outcomes. Various ap-
proaches and solutions have been explored to rationalise the use

of HMT in healthcare. A clinical decision support system in-
tegrates ML algorithms and clinical knowledge to provide real‐
time decision support to healthcare professionals. It can help
diagnose diseases, select appropriate treatment options, and
predict patient outcomes. These systems combine patient data,
medical literature, and expert guidelines to provide evidence‐
based recommendations that reduce errors and improve the
efficiency of clinical decision making. HMT‐based telehealth
platforms can facilitate remote collaboration between healthcare
professionals and patients. These platforms utilise video
conferencing, wearables and remote monitoring tools to enable
virtual consultations and remote patient monitoring. Robotic
systems are used in surgical procedures under the guidance of
human surgeons to improve precision, dexterity, and minimally
invasive techniques. Surgeons collaborate with robotic systems
to perform complex procedures with improved precision and
reduced risk. Intelligent assistive technologies, such as exo-
skeletons or robotic prostheses, can help physically disabled or
injured patients regain mobility and independence. These tech-
nologies all require trust as a prerequisite, working in coordina-
tion with individuals to amplify their capabilities and provide
support. HMT‐based health monitoring systems use machine
learning algorithms to analyse patient data and detect early signs
of deterioration or disease progression. By continuously moni-
toring vital signs, biomarkers and other patient data, these sys-
tems can generate predictivemodels to anticipate adverse events,
enabling healthcare professionals to proactively intervene and
improve patient outcomes. These approaches highlight the po-
tential ofHMT to improve healthcare delivery, patient outcomes,
and decision‐making by healthcare professionals. It is critical to
ensure that these HMTsystems are carefully designed, validated,
and integrated into existing healthcare workflows, taking into
account human factors, ethical considerations, and regulatory
requirements to ensure their safe and effective use in healthcare.

Trust plays an important role in HMI in healthcare. Based
on the analysis discussed above, we explain and analyse the
influencing factors of HMT in healthcare from four perspec-
tives: machine (technology), human, interaction, and environ-
ment, and propose a synthetic HMT model in healthcare as
shown in Figure 3. The model is an interaction trust mechanism
model based on both machine and human interaction subjects
in healthcare, and integrating interaction environment and
interaction behaviours. This model can be applied to healthcare
to improve the trust between humans and machines during
healthcare interactions, thus contributing to a better develop-
ment of the healthcare field. From the machine perspective,
trust is closely related to machine technology. We fully consider
machine anthropomorphism and trustworthy machine learning
to incorporate into our trust model [53]. From the human
perspective, we divide them into two categories: healthcare
professionals, patients and attendants. We include their age,
professional level and experience in the model separately to
analyse their effects on trust. Among the interaction environ-
ment factors, we mainly consider the impact on trust from the
perspective of legal and ethical. Interaction behaviour, mean-
while, occurs during HMI, which affects HMT and is a dynamic
process. Different from general HMI, the main participants are
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the healthcare machines and the people using the healthcare
machines in HMI in healthcare. Nowadays, intelligent machines
are widely used in various medical scenarios [54], and we are
committed to propose the HMT model to promote trust in
HMI and improve medical interaction relationships. By
fostering the trust of healthcare professionals and patients to
increase their acceptance of intelligent machines, we aim to
establish a collaborative human‐machine healthcare system with
mutual trust and reliability [55], high quality and efficiency in the
process of healthcare intelligence. The HMT model in health-
care proposed in this paper has the following implications and
effects. First, it provides a reference for the design and devel-
opment of healthcare machines. It can provide help for re-
searchers to select trustworthy machine learning techniques and
provide a theoretical basis for developing trustworthy health-
care machines. Second, it solves the problem of healthcare
professionals' and patients' trust in machines in healthcare HMI
based on specific trust influencing factors. Only if the healthcare
professionals trust the healthcare machines used, the application
can be better. And it can promote patients to trust the machine.
Finally, it can provide suggestions for building a good external
healthcare environment, which can be used to establish trust
norms in healthcare to protect the power of healthcare orga-
nisations and patients, and thus improve the HMT in healthcare.
Below are the specific trust influencing factors in our model.

3.2.1 | Machine (Technology)

From the machine (technology) perspective, trustworthy ma-
chine learning models should be built. The trustworthiness of
machine learning techniques can be enhanced from six per-
spectives, including privacy, transparency, explainability, reli-
ability, accuracy, and autonomy as shown in Figure 4.

Privacy. Do a good job of protecting user data privacy.
Machine learning techniques need to be backed by good

trust technology, which in turn ensures privacy. And the
commonly applied trust technology is blockchain technology.
Blockchain technology can be used for privacy protection [56].
It can break the original more closed medical environment and
facilitate the collection and use of medical data and informa-
tion. And it can protect information security to a certain
extent. Blockchain can provide a trusted data. The greatest
quality of blockchain is decentralisation, creating trust from
mistrust. Blockchain can be used to solve the problem of data

F I GURE 3 Human‐ machine trust model.

F I GURE 4 Trustworthy machine learning (ML).
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privacy and security [57]. First, blockchain is built on asym-
metric encryption, hash functions, secure multi‐party
computing, smart contracts and other technologies, and has
a deep technical foundation. Second, blockchain can solve the
problem of online data privacy and security [58]. Two main
features of blockchain are the immutability of data and de-
centralisation. This also makes the information collected and
stored by blockchain more authentic and reliable, which can
help solve the problem of people distrusting each other. De-
centralisation can eliminate centres of trust and create chained
networks of trust. Smart contracts on the blockchain provide a
trusted way of computing [59]. Smart contracts are written to
the blockchain, and a series of operations such as storing,
reading, and executing data are guaranteed by the characteris-
tics of the blockchain, and the execution process is transparent
and traceable. A successfully constructed smart contract waits
for the fulfilment of conditions and then automatically exe-
cutes the contents of the contract. This can solve the problem
of trust between users, between users and medical institutions,
and between users and machines.

Transparency and explainability. Improving trans-
parency and explainability.

First, ML provides advice or helps make decisions, then the
people making the decisions need to understand why the
machine is giving them that advice and choose whether to take
it. For example, when a doctor uses ML to diagnose a disease,
he or she must be able to understand why the medical diag-
nostic machine is making such a recommendation and decide
whether or not to adopt it. Second, for patients affected by ML
techniques, they need to be able to understand the decisions
made by the ML model in order to choose whether to accept
the treatment plans proposed by ML. Third, for developers,
understanding the black‐box models of ML can lead to better
research, improved methods and models, and increased system
capabilities. Last but not the least, for the general public, it is
essential to popularise the relevant scientific knowledge to
them, so that they can gradually accept it.

Transparency is the degree to which machine behaviour
can be understood and predicted [60]. Improving transparency
in human‐machine cooperation is important [61]. Studies have
found that bilateral transparency helps foster trust [62].
Fischer, Weigelin, and Bodenhagen [63] investigated the effect
of transparency on HMT in blood pressure measurement
scenarios. The results showed that improved transparency
increased patient's trust.

There is a need to make the ‘black box’ transparent and to
enhance the explainability of machine behaviour. How algo-
rithms derive the conclusion ‘whether the patient has cancer’
from ‘the pixel values of a medical image’ is a process that is
often difficult to explain to doctors and patients [64].

Explainable artificial intelligence (XAI) attempts to provide
explanations for black‐box models in ML that we humans can
understand. It aims to enable more transparent and interpret-
able machine learning to help users better understand machine
behaviour as well as make predictions and decisions [65],
improving the reliability and trustworthiness of machine

learning [66]. In recent years academics have conducted
extensive and in‐depth research and proposed explainable
machine learning models that can improve the explainability
and transparency of machine learning models and enable a
trust relationship between the user and the decision mode [67].
In addition, some models give appropriate explanations along
with decisions to gain users' trust and understanding [62]. The
Google team has developed an interpretable medical diagnostic
machine for cardiovascular disease [68]. It can generate heat
maps that show the pixels in medical images that have a sig-
nificant impact on the diagnostic results. Zhang, Xie, Xing,
McGough, and Yang [69] proposed a semantically and visually
interpretable medical image diagnostic network. Researchers
proposed a post hoc interpretable system for Doctor XAI.
Kang Zhang developed a medical diagnostic machine for
retinal diseases and pneumonia [70]. The machine is inter-
pretable, and when it gives a diagnosis, it shows people the
areas activated by the neural network during the decision‐
making process, showing the basis for its decision.

For some traditional machine learning models such as
linear regression, logistic regression, decision trees etc., the
models are relatively simple. It can be understood the internal
structure of the model and the internal parameters of the
model in the process of using. Machine model results are more
explainable.

However, for some complex machine learning models such
as neural networks, their internal structures are very complex,
and it is difficult for us to observe the changes of data infor-
mation by layer‐by‐layer neural networks or neuron‐by‐neuron.
The machine model results are less explainable.

The two types of models are explained in different ways.
As shown in Figure 5, to improve the explainability of the
models, we can use the following two approaches: ex post facto
explanation for complex models [71, 72], and for some tradi-
tional models, explanation from the internal nature of the
model [73–75]. Intrinsically explainable models, such as deci-
sion tree quantitative explanation [76] and decision tree regu-
larisation [77]. The complexity of the model structure can be
reduced, such as for random forests, by reducing the depth of
the tree model [78], sacrificing the accuracy of the model for
the explainability. In addition, the model can be visualised. For
example, for neural network models, the original accuracy of
the model can be maintained, and after the model is trained,
post‐hoc assisted attribution resolution methods and visual-
isation tools are used to obtain the explainability of the model.
Visualisation tools are CNNVis [79] and Lucid [80] which is a
neural network visualisation library built on Deep Dream etc.
Visualisation techniques can help to address the transparency
interpretability factor. The space of ML model may be high
level spatial, which humans cannot imagine and understand.
High‐dimensional abstract information can be transformed
into readable and interpretable information through visual-
isation techniques.

Our discussion and analysis can be summarised in Table 1.
As shown in Table 1, some popular explainable machine
learning and their explanation types with specific methods are
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listed. While these techniques and approaches enhance the
explainability of DL models, it is important to note that
complete explainability and transparency are still challenging to
achieve. DL models are highly complex, and their decision‐
making is influenced by numerous interconnected parame-
ters. DL techniques, particularly neural networks, are often
considered as black boxes because they can be difficult to
interpret and understand. The high complexity and non‐
linearity of DL models make it challenging to directly inter-
pret their decisions and reasoning processes. The level of
explainability achieved also depends on the specific architec-
ture, data, and problem domain.

While ML models are generally considered less explainable
compared to traditional techniques, there has been ongoing
research and efforts to make ML models more explainable and
transparent. Ongoing research and the development of XAI
methods are making progress in improving their explainability.
XAI is a field of study that aims to develop techniques and
methods to provide insights into the decision‐making process
of complex ML models. And improving explainability is
important for humans to understand intelligent machines and

achieve better medical human‐machine cooperation during
healthcare interactions [81]. In this paper, we summarise some
current research on methods to enhance explainability and
make ML as trustworthy as possible. In addition, explainability
enhancement is performed by studying the explainability of the
model themselves and post hoc explanations. Moreover,
improving the explainability and transparency of DL models
will help debug models, guide future data collection, provide
truly reliable information for feature construction and human
decision making, and ultimately build trust between humans
and machines.

Accuracy and reliability. Improved accuracy and reli-
ability can lead to good machine performance.

Good performance is crucial to the trustworthiness of
medical machines. The algorithm performance should be
improved to enhance the accuracy of medical virtual machines
such as Dr. Watson. Researchers at Stanford University had
developed an algorithm that could perform melanoma diag-
nosis better than dermatologists, but with an accuracy rate of
less than 75%. Although it can provide effective suggestions to
doctors, there is a possibility of misdiagnosis. Improvements to

TABLE 1 Some analysis of explainable Machine learning (ML).

Machine learning Paper Type of explanation Method

Neural networks Bach, et al. [72]; Liu, et al. [79];
Olah, et al. [80]

Explanation after the fact Using visualisation tools such as CNNVis, Lucid etc. to obtain
the explainability of the model after it has been trained

Random forest Zhao, et al. [78] Explanation after the fact Reducing the complexity of the model structure

Support vector machine W. Zhang, et al. [71] Explanation after the fact Providing an explanation of the structural risk of the model

Linear regression Caywood, et al. [75] Intrinsic explainable Viewing parameter or feature statistics within the interpretable model

Logistic regression Itani, et al. [73] Intrinsic explainable Using feature weight estimation to account for the model

Decision trees Q. Zhang, et al. [71]; Ming,
et al. [74]; Moraffah, et al. [77]

Intrinsic explainable Reflecting the decision process and data characteristics directly,
quantitative interpretation of decision trees, decision tree
regularisation

F I GURE 5 Explainable machine learning (ML).
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the algorithm are needed before it can be used. Otherwise, the
accuracy rate is too low to gain the trust of both doctors and
patients. Although users do not necessarily trust the diagnostic
results just because it is highly precise, high precision is a
guarantee for the credibility of a virtual machine such as Dr.
Watson. The Da Vinci surgical robot has been developed and
iterated and updated. The fourth and fifth generation of the
robots are now introduced to China and can be put into clinical
use. Compared with the previous version, the latest Da Vinci
surgical robot has a clearer vision, more stable operation, and
more flexible operation. Its mechanical arm is thinner and
longer and has a greater range of motion, allowing it to rotate
360°. It can help doctors complete difficult and risky surgeries.
Continued technological and algorithmic improvements in
physical machines can make HMI more effective and thus gain
the trust of users (doctors and patients).

While DL techniques can be effective in processing large
amounts of data and extracting patterns, there are consider-
ations to be made when applying them to individualised pre-
dictions or monitoring. At the same time, we need to consider
the impact of data type on reliability. Since different individuals
have different physical conditions, whether the approach of
using DL based on large data for medical diagnosis such as
disease prediction is reliable and whether its diagnosis results
are trustworthy.

DL models are highly dependent on the quality and
representativeness of the training data. If the training data
predominantly represents a certain demographic or specific
subgroups of individuals, the model's performance may be
biased towards those groups. It is crucial to ensure that the
training data adequately represents the diversity of individuals
to avoid biased predictions for specific populations. Individuals
exhibit variations in their physiology, genetics, lifestyle, and
other factors that influence their health. DL models trained on
large and diverse datasets may capture general trends, but they
may not be able to capture individual variations accurately. The
generalisation of the model's predictions to specific individuals
should be done cautiously, taking into account individual
characteristics and context.

While employing big data‐based DL methods for individ-
ualised predictions or monitoring presents challenges [82], it is
possible to address these concerns through careful consider-
ation of data representativeness, personalised models, transfer
learning, interpretability, and feedback mechanisms. To address
the challenge of individual variability, personalised DL models
can be developed. These models can be trained on data specific
to an individual or a smaller cohort that represents their
characteristics more accurately. Personalised models can
leverage a combination of big data and individual‐specific data
to provide more reliable predictions and monitoring. Transfer
learning is a technique where a pre‐trained DL model is used as
a starting point and fine‐tuned on a smaller dataset specific to
an individual or a subgroup [83]. By leveraging the knowledge
learned from big data, this approach can be used to adapt the
model to an individual's unique physiology and improve its

reliability for individual predictions. To build trust and ensure
the reliability of predictions, it is crucial to incorporate inter-
pretability techniques into DL models. By providing explana-
tions or highlighting the factors contributing to a prediction,
individuals can better understand the model's reasoning and
assess its reliability. Additionally, incorporating feedback
mechanisms allows individuals to provide input and correct
any inaccuracies, enhancing the reliability of the monitoring or
prediction system. These approaches can help improve the
reliability and trustworthiness of ML‐based systems when
applied to individual physiology.

Medical machines not only need to be trained with large
amounts of data, but also need to be personalised for different
medical individuals to assist in treatment [83]. That is, during
the training process, researchers need to train the characteris-
tics for different patients, based on their individual medical
data. ML techniques require not only large amounts of data,
but also small data about an individual. Generally, for data that
do not require consideration of individual differences, we use
machine learning methods based on large amounts of data [82],
while for targeted diagnosis we use a combination of individual
data and large amounts of data for prediction and diagnosis.
The outcome of the same disease may vary greatly depending
on factors such as the patient's age, physical condition, and the
period of disease development in which the patient is receiving
treatment. Targeted treatment approaches are needed for
different patients. Disease prediction can be performed based
on information about multiple patient characteristics and used
to guide personalised medicine. For example, skin cancer
detection is performed by inputting skin image data of patients
using a trained model [84]. With electronic medical data, the
risk of an individual developing various diseases is assessed
using noise‐reducing autoencoders [85]. The long‐term records
of patients' personal medical information can provide enough
personalised training for the machines to improve their diag-
nostic capabilities, provide safe and reliable technology, and
increase trust in medical machines.

Big data‐based machine learning learns large amounts of
data and can provide more robust and reliable predictions
because they have been trained on different examples. Small
data‐based machine learning focuses on using specific data
from individuals or smaller groups. This approach recognises
the uniqueness of physiological characteristics and individual
differences. By incorporating personalised or individual‐
specific data, it is possible to create models that are better
suited to the specific needs of individuals and take into account
their unique physiology. In practice, the choice between big
data‐based or small data‐based machine learning depends on
the specific application, the available data, and the desired level
of personalisation. A combination of the two approaches, such
as transfer learning or personalised models trained on a
combination of big data and individual‐specific data, can strike
a balance between general trends and personalised predictions,
providing reliable and customised insights for individual
physiological monitoring or prediction.
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In addition, the stable performance of the physical ma-
chines will also increase user's trust [86, 87]. Machines that
consistently perform well are more likely to be trusted than
those that perform poor [14, 37, 88, 89]. Therefore, there is a
need to improve technical accuracy and reliability to make the
machine perform well and thus gain trust in HMI in healthcare.

Healthcare organisations are focussing research on big data
analytics, disease diagnosis, risk prediction and quality of care
monitoring. In healthcare, ML plays an essential role. And the
results launched by ML models are related to the quality of care
and have an impact on patient safety. Therefore, for healthcare
organisations, there is a need to establish a common perfor-
mance metric to evaluate the performance of different ML
techniques and their application effectiveness for model se-
lection. In order to choose trustworthy machine learning, we
should consider a combination of accuracy, reliability, and
explainability [90]. ML methods should not be chosen solely
for their high accuracy. Hence, a compromise option that takes
into account multiple key indicators is required. The more
complex the model, the less generalisable the model is and the
less explainable it is. We need to use models with different
levels of complexity depending on the specific medical appli-
cation. In addition, data can also affect the reliability and ac-
curacy of the model. Therefore, in the selection process, ML
methods should be selected for different types of medical data.
Moreover, the intelligent machines should be tested and opti-
mised during the medical use, which in turn will better improve
the HMT.

Some recommendations for healthcare organisations to
guide their evaluation and selection process are summarised
below:

(1) Data privacy and security perspective: Evaluate the data
governance practices for ML technology. Ensure that it com-
plies with relevant data protection regulations and follows best
practices for data security, privacy and confidentiality. Evaluate
the effectiveness of technologies used to anonymise and pro-
tect sensitive patient data during the training and inference
phases. Ensure that appropriate measures are in place to
mitigate privacy risks. (2) Accuracy and reliability perspective:
Evaluate the performance of ML algorithms by validating them
on independent datasets and comparing them to the state‐of‐
the‐art methods available. Look for evidence of high accu-
racy, robustness, and generalisability across different pop-
ulations or environments. (3) Explainability perspective:
Prioritise ML models that provide transparency and explain-
ability. Models with clear explanations of their decision‐making
processes can help build trust and promote human under-
standing of the underlying factors that contribute to pre-
dictions. (4) Increase clinical validation: Work with healthcare
professionals and domain experts to evaluate the clinical val-
idity of ML technology. Assess whether the predictions or
results provided by the technology are consistent with estab-
lished medical knowledge and guidelines.

Autonomy. As autonomy increases, HMT decreases.
Autonomy can be described simply as the ability of a

machine to perform tasks independently. The U.S. Department
of Defence has identified four levels of autonomy, including

human operated, human delegated, human supervised, and
fully autonomous [91]. There are two tasks for humans and
machines: developing protocols and selecting actions. The di-
vision is based upon whether the task agency is in the humans
or in the machines [92]. Murray, Rhymer, and Sirmon [93],
Raisch and Krakowski [94] explored the level of machine
automation of the HMI process.

Levels of automation may complicate the human trust in
machines [95]. Higher levels of automation are not better. One
study found that higher levels of automation machines may
lead to human mistrust. The higher the level of automation of
the machine, the harder it is for the user to understand the
machine, which may lead to a decrease in trust [96]. Users tend
to trust better‐controlled machines [97]. In addition, in some
cases, adaptive automation can be an effective solution to the
problem of trade‐offs between different levels of machine
automation [98]. In healthcare, in general, as the level of
automation increases, the trust of doctors decreases and the
trust of patients decreases. However, perceptions of the level
of automation can change depending on factors such as the age
and experience of the doctors and patients, which in turn can
affect the level of trust.

Anthropomorphism. Add anthropomorphic features to
the machine.

Machines should be appropriately anthropomorphised, not
anthropomorphised the higher the better.

Adding anthropomorphic features can improve the trust of
machines. There are many studies on the role of anthropo-
morphism in HMT. Waytz, Heafner, and Epley [99] found that
when self‐driving cars have anthropomorphic features [100],
such as name and gender, humans are more confident that the
vehicle is up to the task of autonomous driving [101]. Thus, the
vehicles can be better put into use. Similarly, anthropomorphic
features can be applied to HMI in healthcare to improve pa-
tients' trust in machines. In the field of machine behaviour,
face trustworthiness can be used to improve communication
and interaction between medical machines (such as medical
guide robots) and humans [102–104].

Ramachandran et al. modified the personality design of the
robot to make it more useful in a healthcare setting, with
animated eyes, a voice with a local accent, and polite contextual
phrases to mimic the behaviour of a nurse when interacting
with a patient. The results of the experiment showed that if the
robot communicated with the user in a polite and friendly
manner, this would increase the user's trust in it. When the
robot behaved in a stricter manner, the user's trust in the robot
decreased. And psychological anthropomorphic robots that
exhibit empathy have higher participant acceptance. Different
facial expressions and design elements of the robot can affect
HMT. The Uncanny Valley is a hypothesis about how humans
feel about robots and non‐human objects. When the similarity
between robots and humans reaches a certain level, human
reactions to robots suddenly become extremely negative and
repulsive, and when the similarity between robots and humans
continues to rise to the level of similarity between ordinary
people, human emotional reactions to them will return to
positive. In human‐robot interaction, machines that are
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human‐like in appearance are perceived to be friendlier and
more reliable, while non‐human machines are perceived to be
colder. Broadbent, et al. [105] argue that appearance can in-
fluence the interaction between machines and humans, and
that a robot with a more human face display is more trusted.
Researchers found that machines with a distinctly non‐human
appearance were more popular than machines that were
extremely human‐like [106]. The Uncanny Valley Effect is also
an important reference for designing the degree of machine
anthropomorphism.

As shown in Table 2, typical machine influencing factors
and their targets in HMI in healthcare are listed. In addition,
HMT in healthcare can be improved by taking different
methods for these influencing factors. By studying the rele-
vance between influencing factors and HMT in healthcare,
better machine design development and use can be carried out
to improve trust in healthcare and human‐machine coopera-
tion. Machines with anthropomorphic designs can better
interact with healthcare professionals and patients. For
example, Pepper is a social humanoid robot, 120 cm tall, with
an anthropomorphic design and body language [107]. It can
synthesise its surroundings, actively response and interact with
healthcare professionals and patients. Anthropomorphism can
make patients trust the machine more, which in turn allows the

healthcare robot to fully play its role as an aid to treatment and
companionship.

3.2.2 | Human

As shown in Table 3, typical influencing factors in HMT in
healthcare are listed. HMT is a two‐sided relationship, and in
spite of machine influencing factors, we need to fully consider
human influencing factors and incorporate such features into
the HMT model in healthcare. Human age affects the user's
trust in the machines during such interactions [115]. Children
have grown up with intelligent machines, whereas adults did
not. Adults have more confidence in rejecting the machine's
advice. Children have not yet developed this kind of confi-
dence. Studies have shown that older people trust automation
more than younger people [109]. The specific effects of age on
trust may vary with the situation [108]. In addition, profes-
sional level and experience can affect healthcare trust.

For healthcare professionals, increasing the healthcare
professionals' professional level usually contributes to their
trust in machines [112]. The higher the level of profession, the
less likely healthcare professionals are to rely on machines [110,
111]. The experience of healthcare professionals can influence

TABLE 2 Some analysis of machine influencing factors in human‐machine trust (HMT) in healthcare.

Paper
Influencing
factors Target Method Relevance

Sharma, et al. [56]; de Moraes
Rossetto, et al. [57]; Mathis, et al.
[58]; Al Omar, et al. [59]

Privacy Protecting data and
user privacy and
security

Using technologies such as
blockchain to provide a trusted
data and a trusted way of
computing

Increasing

Chien, et al. [60]; Ishowo‐Oloko,
et al. [61]; Edmonds, et al. [62];
Fischer, et al. [63]

Transparency Turning a black‐box
model into a
white‐box

Enhancing the transparency of the
machine

Increasing

Edmonds, et al. [62]; Nazar, et al.
[65]; Glikson and Woolley [66];
Eshete [67]; Poplin, et al. [68];
Zhang, et al. [69]; Adadi and
Berrada [70]

Explainability Turning a black‐box
model into a
white‐box

Improving machine interpretability
and predictability

Increasing

Yin, et al. [14]; Parasuraman and
Manzey [37]; Aggarwal, et al.
[88]; Buchlak, et al. [89]

Accuracy Making the machine
have good
performance

Improving machine model accuracy Increasing

Mathis, et al. [58]; Kraus, et al. [87] Reliability Making the machine
have good
performance

Improving reliability Increasing

Argall [91]; Wen and Imamizu [92];
Murray, et al. [93]; Raisch and
Krakowski [94]; Moray, et al.
[95]; Klugman, et al. [96];
Verberne, et al. [97]; de Visser
and Parasuraman [98]

Autonomy Designing the level of
machine
automation

Appropriate level of automation Reducing (As machines
become more automated,
human trust decreases.)

Waytz, et al. [99]; Niu, et al. [100];
Song and Luximon [104];
Broadbent, et al. [105]; Lim,
et al. [106]

Anthropomorphism Adding
anthropomorphic
elements to
machines

Moderate anthropomorphism Fluctuating (As the degree of
anthropomorphism increases,
trust increases and then
decreases.)
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their acceptance of medical machines. Experience can facilitate
human understanding of machines [113], and it has a direct
impact on the development of HMT [112, 114]. The age of
healthcare professionals can also affect their trust in machines.
These factors can be used to maintain a good level of trust and
build a good HMT relationship.

For patients and attendants, their age, professional level
and experience can also affect healthcare trust. The level of
profession here is reflected in their perception of the health-
care professionals and the medical machines. The experience is
mainly reflected in their level of perception of the disease. The
level of patients and attendants information about the disease
affects trust. One study found that improving patients' disease
perceptions by providing information tailored to their needs
can help patients have a more consistent understanding of their
disease and may lead to a better health‐related quality of life
[116, 117]. In addition, a high level of profession and experi-
ence of the doctors can lead to a good sense of patient
perception of the doctor and the machine. Together with good
machine performance, this can improve patients' perceptions
and feelings about the healthcare system, which in turn can
improve trust. And in HMI in healthcare, maintaining mutual
trust between healthcare professionals and patients is also the
basis of good HMT.

3.2.3 | Interaction behaviours

Between humans, gaze and other forms of interaction behav-
iours can affect trust. Does a similar effect occur during HMI?
Experiments have found that robot gaze has an effect on trust.
Establishing eye contact with a robot has a positive effect on
the perceived sociality of the robot and the quality of HMI
[118]. Kompatsiari, Ciardo, Tikhanoff, Metta, and Wykowska
[119] conducted a study on how users evaluate human‐like
machines based on established eye contact. Participants felt a
higher level of interaction with the machine when the machine
established eye contact. Therefore, establishing eye contact
should be considered when designing robot behaviour for
HMI in healthcare. In addition, the healthcare robot Pepper
can be used for care in preventive gymnastics exercises for the
elderly [120]. Pepper can communicate with healthcare pro-
fessionals and patients through expressions, movements,

sounds, and feedback, and can even dance and joke. Pepper is
believed to have the ability to move, act, and communicate like
a human. The healthcare robot Paro can stimulate verbal and
behavioural interactions in stroke patients [121]. One study
found that Paro could alleviate patients' depression and help
them interact and communicate better [122]. A healthcare
social robot typically has four primary senses, including vision,
hearing, balance, and touch. Lifelike behaviours can be created
from these to interact with health care professionals and pa-
tients. Therefore, increasing multi‐sensory interaction behav-
iours should be considered when designing machine for HMI
in healthcare. Fratczak, Goh, Kinnell, Justham, and Soltoggio
[123] investigated whether the use of robot control strategies
has a positive effect on human post‐accident behaviour. In the
designed scene, a robot first made a sudden and unexpected
action, and then it may apologise for their behaviour. The
results suggested that this act of apology can improve HMT
after a machine malfunction. Some researchers further found
that a robot that can recognise errors and communicate its
intent to correct the situation is considered more capable than
a robot that simply apologises for the error. However, the latter
was considered more popular and people were more willing to
use such robots [124]. Researchers studied 326 people's per-
ceptions of a mobile guidance robot that employed synthetic
social behaviours to elicit trust in its use after an error [124].
This could be applied to a healthcare guidance robot in
healthcare HMI to allow the robot to show self‐awareness and
ownership of its errors to mitigate the effects of errors, in-
crease affinity and trust of healthcare professionals and pa-
tients for the robot, and make the robot's interactive behaviour
appear more genuine.

3.2.4 | Environment

A good external environment can facilitate trust building. With
the constraints of relevant laws, policies and ethics, the safety
of users (doctors and patients) in using machines can be
guaranteed and the trust of users in using them can be
enhanced [125, 126].

Regulatory Compliance and Standards: Ensure that ma-
chine learning technology complies with relevant healthcare
regulations. Assess whether the technology adheres to

TABLE 3 Some analysis of human influencing factors in human‐machine trust (HMT) in healthcare.

Paper Influencing factors Relevance

Steinke, et al. [108]; Ho, et al. [109] Human age Relatively speaking, older people and children trust intelligent
machines more.

Yamani, et al. [110]; Sanchez, et al. [111];
Rajaonah, et al. [112]

Professional
level

Perception of healthcare
professionals and machines

As professional level increases, humans will have increased trust
in machines, but will not rely on them.

Professional level of healthcare
professionals

Rajaonah, et al. [112]; Balfe, et al. [113];
Merritt and Ilgen [114]

Experience Level of perception of disease Experience can improve human trust in machines.

Experience of healthcare
professionals
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recognised standards or has received relevant certifications
specific to healthcare. The following are the relevant laws and
regulations of some typical countries and regions. (1) In 2017,
the Development Plan of New Generation Artificial Intelli-
gence proposed by the Chinese government emphasised the
need to strengthen the innovative application of AI in the
healthcare field and accelerate the development of intelligent
medical treatment, which provides a platform and opportunity
for further development of medical robots. It also listed the
hybrid intelligence of human‐robot cooperation as one of the
bottlenecks that urgently need to be broken. In 2021, the
Professional Committee on the Governance of China's Next
Generation Artificial Intelligence released the Code of Ethics
for Next Generation Artificial Intelligence, which focuses
attention on algorithmic bias and other technical governance
issues. With the policy support, it can make people have more
trust in such technologies. (2) Regulatory agencies such as the
FDA have approved its use or the corresponding national laws
and regulations can improve human trust in the intelligent
machines [127]. (3) In 2018, The EU General Data Protection
Regulation (GDPR) came into force, mandating AI algorithms
to be interpretable. AI can better gain the trust of humans if it
has the ability to explain its decisions. The European Com-
mission's Senior Expert Group on Artificial Intelligence has
defined trusted AI. Trustworthy AI should meet three neces-
sary conditions: Machines with AI should comply with all
applicable laws and regulations, adhere to ethical principles and
values, and be safe and secure.

Human doctors are guided by a set of legal and ethical
principles, as well as industry norms and professional ethics.
However, when it comes to intelligent machines, the question
arises: can they truly comply with medical ethics? Some in-
dividuals argue that ML is merely a tool and utilising it may
lead to potentially unethical outcomes. The involvement of
humans in the ML process is limited, and the generated results
may lack a comprehensive explanation. This unpredictability
raises concerns about unexpected outcomes.

Moreover, intelligent machines lack the inherent qualities
of human doctors, such as empathy and compassion. As a
result, they may make decisions that differ from those made by
human practitioners [128]. It is crucial to consider the re-
sponsibility associated with employing machines for diagnostic
purposes and whether they can effectively shoulder this
responsibility.

Therefore, due to existing ethical constraints and legal
norms, the complete reliance on machines for making medical
judgements is currently impractical. It remains necessary for a
human doctor to be involved in the decision‐making process.
This collaboration ensures that the medical judgements are
signed off by a qualified professional who can be held
accountable.

Consequently, for the widespread application of ML
technology in healthcare, it is essential to further enhance so-
cial and moral constraints, as well as refine legal norms. These
improvements will establish a framework that addresses the
ethical considerations and provides a reliable and responsible
integration of ML technology in medical practice.

Ethical considerations: (1) Bias assessment: Investigate
whether ML technology has been assessed for potential bias in
its predictions, particularly regarding sensitive attributes such as
race or gender. Ensure that the technology does not perpetuate
or amplify existing biases in healthcare. (2) Fairness and
impartiality: Assess the fairness and impartiality of the tech-
nology, considering how it affects different population groups
and whether it contributes to health disparities. Assess whether
measures are in place to address and mitigate bias and ensure
equitable outcomes. (3) Human oversight and accountability:
Consider the role of human oversight in the deployment of ML
technology. Determine how the technology can be used to
enhance the decision‐making of healthcare professionals, rather
than replace their expertise and ethical judgement.

Collaboration and Vendor evaluation: (1) Collaborate with
experts: Collaborate with reputable research institutions,
healthcare organisations, or ML experts in the healthcare field.
Their input and assessment can provide additional insight into
the reliability and ethical implications of the technology. (2)
Vendor evaluation: Assess the track record, reputation and
expertise of the vendor or organisation providing the ML
technology. Consider factors such as their experience in
healthcare, previous successful deployments, and commitment
to ethical practices.

For healthcare organisations, it is important to have a
thorough understanding of the clinical context, ethical con-
siderations, and potential impact on patient outcomes when
evaluating and selecting ML technologies. Engaging a multi-
disciplinary team that includes healthcare professionals, data
scientists, and ethicists can help facilitate a thorough evaluation
process and ensure the selection of trustworthy and reliable
ML technologies.

4 | CONCLUSION AND FUTURE WORK

Trust plays an important role in the process of HMI in
healthcare, and the establishment of a good trust relationship
in HMI in healthcare requires the joint efforts of the fields of
computer science, psychology, and medicine. Establishing
effective trust in HMI in healthcare is of great significance for
both academic research and real‐world applications. As
described in this paper, with the development of technology,
trust is no longer only between human and human, but also
exists between human and machine. With the AI technologies
such as ML being widely used in medical machines, it is
becoming increasingly important to better apply the trust
influencing factors of HMI in healthcare and use these to
improve machine development and design.

AI is currently in an early stage, what will happen to HMT
when it reaches an advanced stage in the future? Will people
trust machines better? Or even everyone will have to have a
intelligent robot dog as a pet. Although much progress has
been made in the application of intelligent machines in the
healthcare field, HMT is still a key issue that needs to be
researched, there is still a long way to go for its specific
application. In order to achieve breakthroughs, the following
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challenges must be considered and overcome. The following
issues and challenges are worth considering:

(1) Enhance communications in the fields of healthcare and
computer science, psychology etc. HMI in healthcare is not
the same as other scenarios. It is necessary to collect and
extract information from medical institutions such as hos-
pitals. Therefore, future research should increase commu-
nication and cooperation with medical and other related
professionals. Focusing on intelligent healthcare and
exploring HMT in it is a long‐term and important subject.

(2) Improve accuracy and explainability of ML in healthcare.
Although DL methods improve accuracy, they cannot be
explained, and DL models vary. Therefore, it is necessary
to find a balance between the two directly and develop
relevant visualisation techniques to transform high‐
dimensional information into interpretable information.
Deep learning machine models are often not available at
the same time, and most studies focus on one perspective.
It is a necessary study to balance the relationship between
both improving accuracy and enhancing explainability to
get better DL machine models.

(3) Create a unified human‐machine trust index system. Since
the concept of trust is inclined to abstraction, there is a
lack of unified quantitative indicators. So far, there is a lack
of unified evaluation indexes for HMT models in health-
care. Trust is influenced by multiple factors, and it is an
inevitable trend for future research to combine multiple
trust influencing factors and establish an index system
based on these factors to improve machine models accu-
rately and effectively.

(4) Explore decision‐making relationship between human and
machine in HMI in healthcare. More attention needs to be
paid to the influence of human perspective on HMT and
further research on the decision‐making relationship be-
tween human and machine in HMI in healthcare. How to
ensure that the machine does not affect human autonomy,
maintain human‐centeredness, and promote human‐
machine cooperation deserves deeper investigation.
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