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Influence of a triaxial stress state on the load-deformation behaviour of 
axisymmetrically corroded reinforcing bars 
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A B S T R A C T   

Local corrosion damage reduces the load-bearing capacity of reinforcing bars and, even more severely, their 
deformation capacity. These effects are mainly attributed to the reduced cross-sectional area and the accom
panying strain localisation. However, several experimental studies found an altered load-deformation behaviour 
of naturally corroded as well as artificially damaged reinforcing bars, including an apparently increased tensile 
strength, which cannot be explained solely by strain localisation. Accordingly, in an experimental campaign 
carried out by the authors on locally axisymmetrically damaged reinforcing bars, the observed peak load 
increased with decreasing damage length, and the deformation capacity was much less impaired than predicted 
by established strain localisation models. A series of nonlinear FE analyses was carried out to investigate a 
potential effect of the local stress state in the vicinity of the local corrosion damage. The results indeed revealed a 
triaxial stress state in this region, caused by the local deviation of the stress trajectories, explaining the exper
imental observations on a mechanical basis, and indicating a pronounced influence of the triaxial stresses on the 
uniaxial stress–strain behaviour of the bar in the vicinity of the corrosion pit. A parametric study was conducted 
to investigate a broader range of corrosion damage geometries and the corresponding triaxial stresses. The results 
indicate that the transverse stresses strongly affect the apparent uniaxial mechanical steel properties (yield stress, 
tensile strength, deformation capacity, loss of yield plateau) for short damage lengths typically found for pitting 
corrosion. A simplified modelling approach is proposed to capture the governing effects on the apparent uniaxial 
stress–strain curve of locally corroded reinforcing bars.   

1. Introduction 

Uniform and local corrosion reduce the load-bearing capacity of 
reinforcing bars and reinforced concrete (RC) structures due to the loss 
of cross-sectional area. In contrast to uniform corrosion, local corrosion 
additionally impairs the deformation capacity, as shown in many 
experimental campaigns on naturally corroded and artificially damaged 
reinforcing bars [1–11]. Recent studies [1,9,11–13] attributed the 
reduced ductility to strain localisation, proposing independently similar 
modelling approaches [11,13]. They introduced a critical cross-section 
loss beyond which most of the deformation capacity of a reinforcing 
bar is lost [1,13]. These studies also found that the deformation capacity 
is reduced disproportionally to the cross-section loss, with one study 
reporting a drastic reduction of the elongation at ultimate force by more 
than 80% for a cross-section loss of merely 17% [13]. 

The reduced deformation capacity of corroded reinforcing bars 
directly impairs the deformation capacity of the affected RC structure, 

depending on the variation of the residual cross-sectional area of the 
bars [12,13]. This is particularly crucial for structural safety assessment 
strategies applying the lower bound theorem of the plasticity theory, 
which – though often only implicitly – presumes sufficient deformation 
capacity. Furthermore, quantifying the residual deformation capacity of 
corroded structures is essential to successfully apply performance-based 
assessment strategies, i.e., to compare the deformation capacity of a 
structure to its deformation demand. Such assessments are typically 
used for the analysis of plastic load redistributions in statically inde
terminate structures (e.g., imposed deformations in multi-span bridges), 
and where the actions on the structure depend on its deformations (e.g., 
earth pressure on a retaining wall, seismic loading). Therefore, the 
mechanical understanding and the accurate modelling of the deforma
tion capacity of corroded reinforcing bars is key for a safe assessment of 
corroded RC structures. 
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1.1. Strain localisation effects 

As mentioned above, strain localisation plays a crucial role in the 
mechanical explanation of the reduced deformation capacity. It can 
readily be explained by modelling a corroded reinforcing bar as a chain 
of tension members having different lengths, with equal normal force F 
but varying tensile stiffness EsAs, where Es = tangent modulus of the 
reinforcing steel, and As = cross-sectional area of the reinforcing bar 
(reduced by corrosion where applicable). If the tensile stiffness of a 
member is strongly reduced – which may be caused by severe cross- 
section loss and/or yielding of the reinforcement – much higher 
strains εs = N/EsAs occur in this weak member than in the remaining 
members, i.e., the strains localise in the weak member. If this weak 
member is short, even very high localised strains cause only a small 
overall elongation (see, e.g., [13]). This typically applies to reinforcing 
bars affected by severe pitting corrosion, whose cross-section is reduced 
over a short length. It is particularly pronounced in cases where the 
tensile strength in the damaged section is reached (i.e., the bar ruptures) 
while the tensile stress in the regular cross-section is still below the yield 
stress: substantial deformation occurs only in the short damaged part, 
and the total elongation of the bar at ultimate load is strongly reduced. 

Cross-section loss and damage length are thus decisive parameters 
regarding strain localisation. For reinforcing bars affected by local 
corrosion, the extent of strain localisation further depends on the ma
terial characteristics of the steel: The ratio of yield stress to tensile 
strength determines the critical cross-section loss beyond which no 
plastic strains occur in the undamaged part of the reinforcing bar [1,13]. 
For smaller cross-section losses, the shape of the steel stress–strain 
curve, particularly the slope in the strain-hardening phase, is highly 
relevant as well. 

Models based on the strain localisation effect have been developed 
and successfully applied by [11] to describe the behaviour of corroded 
bare reinforcing bars, and by [13] to describe the response of concrete 
tension members containing locally corroded reinforcing bars, accounting 
for tension stiffening. However, experimental results [1,2,4–6,14] indi
cate that strain localisation alone cannot explain the observed differences 
in the load-deformation behaviour of bars with varying pit geometry (pit 
length and pit shape) but equal cross-section loss. 

1.2. Effects beyond strain localisation: Influence of pit geometry 

The pit geometry affects (i) the triaxial stress state in the pit region 
caused by the local deviation of the stress trajectories and, in case of 
non-axisymmetric corrosion, (ii) local bending moments caused by the 
shift of the centroidal axis in the pit region. 

Triaxial stress states occurring in the vicinity of geometry variations 
are well investigated in material and mechanical engineering, and their 
influence on the apparent uniaxial steel characteristics is well-known 
[15–21]. The occurring stress concentrations can lead to unforeseen 
failures (especially by fatigue) or undesired plastic deformations in 
mechanical parts, and considerable efforts have been made to quantify 
them (see, e.g., [22]). Since the stress concentration and the triaxial 
stress state strongly depend on the local geometry, closed-form solutions 
can at most be derived for simple geometries and linear elastic behav
iour. For general geometries and nonlinear material behaviour, such as 
that of steel beyond the yield point, Finite Element analyses are applied 
nowadays, making use of incremental plasticity models including von 
Mises’ J2-plasticity model and material damage models [19,20]. With 
such analyses, the effects related to a triaxial stress state can be inves
tigated, ranging from an increase or decrease of the apparent uniaxial 
yield stress and tensile strength to larger strains at peak stress. 

Evidently, these effects are not limited to mechanical parts exhibiting 
geometrical variations, but equally affect locally damaged reinforcing 
bars. Indeed, some of the mentioned effects have been observed in 
experimental campaigns on corroded reinforcing bars: Zhu et al. [4] 
specifically investigated bars with different pit geometries, reporting 
significant differences in the stress–strain behaviour among the different 
geometries despite equal residual cross-sections and, hence, an equal 
degree of strain localisation. Several studies [1,14,23,24] reported a slight 
to moderate increase of the apparent uniaxial tensile strength (defined as 
ultimate load divided by the actual residual cross-sectional area in the 
damaged zone) with increasing cross-section loss. These observations 
were either attributed to a variation of material characteristics along the 
bar, or accounted for by using an average of the reduced and initial cross- 
sectional areas, but maintaining the nominal uniaxial strength [14]. Only 
few researchers investigated the triaxial stress state in the vicinity of 
corrosion pits to date, and to the authors’ knowledge, FE analyses 
investigating the mechanical properties of reinforcing bars containing 
corrosion pits have only been conducted by [5,25], with [5] pointing out 
the effect of different pit geometries on the results. 

Fig. 1. Example of reinforcing bar with reasonably axisymmetric cross-section loss (a) extracted from an existing cantilever retaining wall [12,36]. Experiments on 
reinforcing bars with reduced diameter (b-d): Specimens of (b) CW series and (c) QST series after sandblasting; (d) tensile testing machine with spherical hinges and 
DIC cameras mounted on front side. 
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In addition to the triaxial stress state caused by the deviation of the 
stress trajectories, bending stresses occur in the vicinity of unilateral 
corrosion pits due to a shift of the centroidal axis at the pit. This effect was 
observed in some experimental campaigns on bare reinforcing bars [2,6], 
indicating a significant influence on the stress–strain behaviour, and on 
concrete structures instrumented with fibre optic strain sensing [12], 
where the strains caused by the bending stresses were measured. Pre
sumably, the superposition of bending stresses leads to a premature steel 
rupture in the case of unilateral corrosion when compared to an axi
symmetrically corroded bar with equal cross-section loss: due to the non- 
uniform tensile stresses caused by bending, the ultimate elongation on the 
tensile side of the cross-section is reached while the average stress in the 
residual cross-section is below the tensile strength. However, a quanti
fication is complicated by the triaxial stress state occurring additionally 
in the vicinity of the corrosion pit due to the short damage length. Hence, 
a parametric study based on FE-analyses would be required to account for 
both effects (similar to those carried out in this study for axisymmetric 
damage, but requiring much more computational resources). 

1.3. Focus of this study 

This study investigates the influence of a triaxial stress state on the 
apparent uniaxial stress–strain behaviour and material characteristics of 
reinforcing bars with local corrosion damage. It focuses on bare rein
forcing bars exhibiting corrosion pits with a reasonably axisymmetric 
damage geometry, similar to that shown in Fig. 1 (a) for a naturally 
corroded bar. Unilateral (non-axisymmetric) pit geometries are delib
erately excluded in this first step to clearly separate between the effects 
of a triaxial tensile stress state and the superimposed effects of bending 
stresses (see previous section). A future study addressing the combined 
effects of triaxiality and bending, as well as differences in pit morphol
ogies between bare and embedded bars is envisaged by the authors. 

An experimental campaign on reinforcing bars of two different steel 
types was conducted, with each specimen having an artificially created 
local damage of different lengths. The specimens were instrumented 
using a three-dimensional digital image correlation system, enabling the 
observation of the stress–strain behaviour in different regions near the 
pit, which are discussed and compared to simple engineering ap
proaches for strain localisation. In a second step, the experiments were 
modelled with the FE software Ansys, using von Mises’ J2-plasticity 
model beyond the yield point. The effects of the occurring triaxial 
stress state are discussed in detail. A comprehensive parametric study 
including 270 different datasets for each steel type demonstrates the 
influence of a triaxial stress state for varying geometrical parameters. 
Finally, a simplified modelling approach is presented, which allows 
estimating the stress–strain behaviour of an axisymmetrically corroded 
reinforcing bar accounting for the effects of the triaxial stress state. 

1.4. Further effects 

A considerable amount of reinforcing bars used since the 1990s [26] 
are produced as quenched and self-tempered (QST) bars, sold under the 
labels “Tempcore®” or “Thermex®”. In the last step of their production 
process, these hot-rolled bars are quenched with water and then cooled 
under ambient conditions. During the cooling period, the hot core of the 
reinforcing bar tempers the quenched outer annulus. This process forms 
a reinforcing bar with distinct microstructure over the cross-section: The 
ferritic/perlitic core with high ductility but moderate strength is sur
rounded by a bainitic transition zone and a martensitic outer annulus 
with high strength but moderate ductility. The composed bar exhibits 
favourable material characteristics of higher strength and ductility 
[27–30]. However, QST reinforcing bars change their apparent material 
characteristics during the corrosion degradation process due to changes 
in the relative areas of the different microstructures. 

This effect is well-investigated [25,31–35], and a simple model to 
consider this influence for corroded reinforcing bars is presented in [31], 
including different levels of approximation depending on the available 
material data. Within the present study, the mentioned model is used to 
describe the stress–strain behaviour of one of the investigated rein
forcing steels. However, since an in-depth analysis of the effect of 
distinct microstructure is beyond the scope of this study, the reader is 
referred to [31] for a detailed model description and further information 
on this topic. 

2. Experimental programme 

The experimental campaign was designed to investigate the influ
ence of a triaxial stress state in the vicinity of an axisymmetric cross- 
section reduction induced by corrosion. The diameter of the reinforc
ing bar samples was reduced axisymmetrically to isolate the effect of 
triaxial stresses on their load-deformation behaviour, see Sections 1.2 
and 1.3. Such a damage geometry was found for some of the corroded 
reinforcing bars extracted from an existing Swiss cantilever retaining 
wall built in 1972 [12,36], see Fig. 1 (a). 

The experimental campaign was carried out in the structural labo
ratory at ETH Zurich and comprised two test series with 7 specimens 
each. One series used reinforcing bars which were hot-rolled and later 
cold-worked (CW, Fig. 1 (b)), the other series used quenched and self- 
tempered reinforcing bars (QST, Fig. 1 (c)). The 500 mm long speci
mens originated from the same production batch per series, and batches 
were identical to those of [31,37]. The initial (nominal) diameter of the 
bars was reduced from ∅ = 20 mm to a remaining (target) diameter of 
∅c = 19 mm over a distinct length Lc per specimen. The targeted cross- 
section reduction of 10% was chosen to ensure that the bar outside the 
damage zone still undergoes plastic deformation to attenuate the strain 

Table 1 
Specimen specifications: CW = hot-rolled and cold-worked, QST = hot-rolled, quenched and self-tempered; As, As,c = initial and reduced cross-sectional area obtained 
from GOM-Scan; ∅, ∅c = initial and reduced diameter; Lc = damage length; ζ = cross-section loss; and (Lc/2)/∅c = normalised damage length.  

Specimen Lc[mm] As[mm2] As,c[mm2] ∅[mm] ∅c[mm] ζ[-] (Lc/2)/∅c[-] 

CW-15 15  316.9  278.5  20.09  18.83  0.121  0.40 
CW-19 19  316.6  270.7  20.08  18.56  0.145  0.51 
CW-23 23  316.3  276.5  20.07  18.76  0.126  0.61 
CW-27 27  316.9  279.7  20.09  18.87  0.118  0.72 
CW-30 30  317.5  275.4  20.11  18.72  0.133  0.80 
CW-38 38  317.5  276.5  20.11  18.76  0.129  1.01 
CW-61 61  317.0  274.7  20.09  18.70  0.133  1.63 

QST-15 15  329.6  285.7  20.48  19.07  0.133  0.39 
QST-19 19  332.0  289.0  20.56  19.18  0.130  0.50 
QST-23 23  330.8  289.4  20.52  19.20  0.125  0.60 
QST-27 27  328.0  280.8  20.43  18.91  0.144  0.71 
QST-30 30  328.1  280.6  20.44  18.90  0.145  0.79 
QST-38 38  327.9  278.5  20.43  18.83  0.151  1.01 
QST-61 61  328.1  279.9  20.44  18.88  0.147  1.62  

S. Haefliger et al.                                                                                                                                                                                                                               



Construction and Building Materials 407 (2023) 132737

4

localisation. The diameter was reduced mechanically by machining on a 
lathe (turning). During turning, the specimens were constantly cooled to 
prevent heat inflow and an unintended alteration of steel microstructure 
and characteristics. The ratio (Lc/2)/∅c varied between 0.4 and 1.6, 
which resulted in the damage lengths Lc reported in Table 1; note that 
the numbers of the specimen designation correspond to the damage 
length in millimetres. The geometry of all reinforcing bars was scanned 
before testing using a three-dimensional optical scanner (ATOS Core by 
GOM). The accurate measurements of initial and residual diameter 
allowed to precisely determine the cross-sectional areas of the bars (see 
Table 1). With the effective initial diameter being a bit larger than 20 
mm and the precision of the mechanical diameter reduction, the effec
tive cross-section loss was slightly higher than targeted. 

The specimens were tested deformation controlled until failure in a 
universal testing machine at a constant strain rate of 10-4 s− 1 (Fig. 1 (d)). 
Load introduction heads with spherical hinges were installed on the 
testing machine to minimise unintentional bending moments in the 
specimens due to geometrical misalignment of either the machine heads 
or the clamping, which can hardly be avoided and could otherwise have 
affected the test results. Threads were provided at the specimen ends, 
which were connected to the load introduction heads using spherical 
washers and nuts. A three-dimensional digital image correlation system 
(DIC) with two ProSilica GT600-cameras containing a sensor of 6576 ×
4384 Px = 29MPx was used to capture the specimen deformations. To 
this end, the specimens were sandblasted and subsequently painted 
white and speckled black (see Fig. 1 (b) to (d)). The cameras were placed 
vertically at a distance of 900 mm from the specimen, with an inter- 
camera distance of 300 mm to enable optimal correlation of the 
curved bar surface. The system setup resulted in a resolution of 
approximately 0.014 mm/px. The data was post-processed with a subset 
size of 29 px and a step size of 7 px, providing data points at a distance of 
0.4 mm. 

Standard tensile tests were conducted on 1200 mm long bar samples 
at a constant strain rate of 10-4 s− 1 to determine the material charac
teristics of the reinforcing bars, using an LVDT of 300 mm gauge length 
to measure the deformations. Fig. 2 shows the steel stress–strain re
lationships (true and engineering strains and stresses, εs,tr, σs,tr and εs,eng,

σs,eng, respectively) together with the corresponding characteristics and 
the constitutive models (see Section 3.2) for (a) the QST reinforcing bars 
with an initial diameter of 20 mm, (b) the QST reinforcing bars with a 
reduced diameter of 19 mm, and (c) the CW reinforcing bars (diameter 
20 mm). 

Due to the different production processes, the CW reinforcing steel 
has a perlitic/ferritic microstructure over its entire cross-section, 
whereas the QST reinforcing steel of this specific sample consists of a 
martensitic outer annulus (for r⩾0.85R), a bainitic transition zone 
(0.85R > r⩾0.65R) and a perlitic/ferritic core (r < 0.85R) [31], with r 
= distance from bar centre and R = ∅/2 = outermost radius. The me
chanical characteristics of the different microstructural layers deter
mined in [31] are summarised in Table 2. Evidently, due to the large 
difference in the mechanical characteristics of the distinct layers, the 
QST bar changes its overall mechanical characteristics with increasing 
cross-section loss. To capture this effect, separate constitutive relation
ships were used in the analysis of the experimental results of the QST 
specimens ∅20 and ∅19 (determined experimentally for this batch in 
[31]), as shown in Fig. 2 (a) and (b); the model proposed in [31] linking 
the cross-section loss to the remaining mechanical characteristics of the 
composed bar was used for the parametric analysis, with the layer 
characteristics reported in Table 2 serving as input. 

Although originating from the same production batch as the speci
mens in [31,37], the plotted stress–strain relationships and the steel 
characteristics were determined from additional tensile tests conducted 
near-term to the experiments to avoid any influence of strain ageing, 
which commonly affects CW reinforcement. This effect is indeed evident 

Fig. 2. Stress–strain relationships and material characteristics from standard tensile tests of (a) QST reinforcing bar ∅20, (b) QST reinforcing bar ∅19, (c) CW 
reinforcing bar ∅20. The plots show true and engineering stress–strain curves of the test samples (grey curves, εs,tr , σs,tr and εs,eng , σs,eng , respectively), the steel 
characteristics (dynamic yield stress fsy,dyn, dynamic tensile strength fsu,dyn and corresponding strain Agt (marked with a triangle), and strain at onset of hardening εs,h) 
and the corresponding constitutive relationships (black and red curves), see Section 3.2. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Table 2 
Material characteristics of perlitic/ferritic core, martensitic outer annulus, and original (composed) reinforcing bar as experimentally determined in [31] for the QST 
series of the present study (same production batch).    

engineering values true values   
core outer annulus composed bar ∅20 core outer annulus composed bar ∅20 

yield strain [10–3] 2.0 5.5 4.7 2.0 5.5 4.7 
strain at hardening onset [10–3] 17.5 – 15.8 17.0 – 15.7 
strain at peak stress [10–3] 128.5 96.2 95.0 121.0 92.0 91.0 
yield stress [MPa] 409 703 539 410 707 542 
stress at hardening onset [MPa] 409 – 551 416 – 563 
peak stress [MPa] 555 777 651 627 852 712  
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when comparing the characteristics presented in Fig. 2 (c) to those re
ported in [37] (e.g., increase of yield stress by 5% over time). No strain 
ageing effect was observed for the QST reinforcing bars ∅20 (comparing 
the results of Fig. 2 (a) to those reported in [31,37]) which allowed to 
adopt the relationship and characteristics of the QST bar ∅19 (Fig. 2 (b)) 
directly from [31]. 

3. Definitions and basic theoretical models 

3.1. Used definition of stress 

Throughout this paper, the apparent uniaxial stress in the corroded 
damage zone (subscript c; in general and at peak load) is defined as 

σs,c =
F

As,c

σs,c,max =
Fu

As,c

(1) 

and the stress in the undamaged part of the bar (uncorroded regular 
cross-section, subscript uc) as 

σs,uc =
F
As

σs,uc,max =
Fu

As

(2) 

with F, Fu = load and peak load, and As, As,c = initial and reduced 
cross-sectional areas of the bar (Table 1). The relative cross-section loss 
is defined as 

ζ =
As − As,c

As
∈ [0, 1] (3) 

and hence, the stress in the damaged and undamaged parts is related 
by equilibrium 

σs,uc = σs,c(1 − ζ) (4) 

The corresponding strains in the damaged and undamaged part, εs,c 

and εs,uc, follow from the stress–strain relationships of Fig. 2 or any 
constitutive material relationship. 

3.2. Constitutive material relationships 

The stress–strain relationships of the QST reinforcing bars ∅20 and 
∅19 are approximated using the constitutive model described in [31]. 
The input parameters for the model evaluation (i.e., characteristics of 
the distinct microstructure layers perlite/ferrite, bainite, and 
martensite, as well as their amount on the total cross-sectional area) are 
also taken from [31], since the specimens of both studies originate from 
the identical production batch, and no strain ageing was observed in the 
QST bars. The model response is shown in Fig. 2 (a) and (b) as solid black 
lines, virtually identical to the material test results. 

Fig. 3. Strain measurements using DIC of Specimens (a) CW-15 and (b) QST-61, showing the bar geometry (grey), the full-field strains at peak load (coloured), and 
the corresponding mean strain over the bar width according to Equation (7); stress-mean strain curves σs,c vs εs,m of all specimens of (c) CW and (d) QST reinforcing 
bars using the virtual gauges GO indicated in red in (a) and (b), with a length Ltot reported in Table 3. Note: white areas in (a) and (b) could not be correlated. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The following constitutive relationship is used to approximate the 
results of the material tests of the CW reinforcing bars: 

εs(σs) =
σs

Es
+

(
c1

c2 − σs

)
1
/c3 + c4

c1 =
Kcc3

4 fsu

K − cc3
4

c2 =
c1

cc3
4

K =

(

Agt −
fsu

Es
+ c4

)c3

εs, Agt in [ - ], σs, fsu, Es in [MPa]

(5) 

with fsu, Agt = tensile strength and corresponding strain from the 
material tests, Es = 205 GPa = steel Young’s modulus, and c3, c4 =

model parameters. The proposed relationship extends the one proposed 
by Ramberg and Osgood [38] such that the curve accurately captures the 
behaviour of modern European reinforcing steel. The model parameters 
were determined such that the material tests are closely approximated, 
which resulted in c3 = 3.2⋅10− 10 and c4 = 2.0⋅10− 14 (in true stresses and 
true strains, which can be reformulated to engineering stresses and 
strains, see Section 5.1). The model response is shown in Fig. 2 (c) as 
solid black line. 

3.3. Strain localisation model (SLM) 

Strain localisation is modelled by idealising the bars as tension 
members consisting of several sub-members with different lengths, 
cross-sectional areas and stress–strain behaviour, which are serially 
connected and, hence, subjected to an equal normal force. The stresses 
in the sub-members at any given load are determined with respect to 
their actual cross-sectional areas (e.g., using Equations (1) and (2)). The 
corresponding strains follow from the constitutive material model (e.g., 
Equation (5)), and the sub-member elongations are obtained by multi
plying the strains with the sub-member length. Summing up the elon
gations of all sub-members and dividing by the total length yields the 
mean strain of the entire tension member. For a reinforcing bar of total 
length Ltot and initial cross-sectional area As, which contains a locally 
reduced cross-sectional area As,c over the damage length Lc, the mean 
strain obtained by the SLM is (using the notation of Equations (1)-(3)): 

εSLM
s,m

(
σs,c

)
=

Lcεs
(
σs,c

)
+ (Ltot − Lc)εs

(
σs,uc

)

Ltot

=
Lcεs

(
σs,c

)
+ (Ltot − Lc)εs

(
σs,c(1 − ζ)

)

Ltot
(6)  

where εs(σs) denotes the constitutive material model. A detailed 
description of the concept, including example calculations and ac
counting for tension stiffening in concrete tension members, can be 
found in [13]. An identical model was successfully applied to bare 
reinforcing bars with artificially reduced cross-sections by Zeng et al. 
[11]. 

4. Experimental results 

4.1. Strain measurements and influence of ribs 

The field of view of the DIC setup described in Section 2 covered 
almost the entire projection of half the circumferential bar surface, as 
illustrated in Fig. 3 (a) and (b) for the surface geometry of the Specimens 
CW-15 and QST-61 (in grey). The correlation of the images of the two 
cameras was very satisfying; only the white areas below or above a rib 
could not be correlated since they were hidden by the corresponding rib 
and out of sight for either of the cameras. 

DIC provides deformation measurements of a specimen surface, 
which can deviate from the average specimen deformation over the 

cross-section, especially if the surface exhibits elevations such as the ribs 
of a reinforcing bar. This issue can be observed in the full-field strains at 
peak load shown in colour in Fig. 3 (a) and (b). In the undamaged part, 
the location of the areas exhibiting small strains matches the location of 
the ribs perfectly, indicating that the ribs deform much less than the bar 
on average. The measured strains on the ribs do not necessarily need to 
represent the specimen deformation over the cross-section, which is 
evident when comparing to the strains on the left and right side of a rib 
(at a horizontal cross-section, e.g., at x = − 50 mm). Similar effects are 
known from other near-surface measurement techniques, e.g., from fibre 
optic strain sensing on reinforcing bars, see [39,40]. 

To overcome this issue, the mean strain over the instrumented bar 
width is calculated as 

εs(x) =

∫ ymax
ymin

εs(x, y)dy
(ymax − ymin)

(7) 

Results obtained from Equation (7) are shown as solid lines in Fig. 3 
(a) and (b) for the strains at peak load. While the mean strain is a simple 
and intuitive measure to qualitatively compare the strains of different 
bar sections or between different specimens at equal load, it is inade
quate to determine strains and stresses quantitatively since the ribs still 
affect the calculated strain distribution εs(x) (as seen in Fig. 3 (a) and 
(b)), as a specific strain value εs(x) depends on the number of mea
surement points laying on or next to a rib. 

A more robust measure for strains was found to be the integral of 
axial strains along the bar axis (or a parallel to the latter) over an axial 
distance equal to the rib spacing, divided by this distance (essentially 
corresponding to virtual strain gauges with the rib spacing as base 
length). For any lateral position y = y1, this strain measure is defined as 

εs(x, y = y1) =

∫ x+c/2
x− c/2 εs(x, y = y1)dx

c
(8) 

with c = rib spacing. The ribs only negligibly influence the results 
since the number of measurement points laying on or next to a rib is 
approximately constant for all locations x. However, if Equation (8) is 
used continuously over x, it strongly underestimates steep strain gra
dients, e.g., in the cross-section transition at the end of the damage zone 
(see Fig. 3). To avoid this issue, discrete virtual gauges with gauge 
length = rib spacing were placed along the bar, paying attention that no 
gauge overlaps the cross-section transition (except for the gauge GO in 
Fig. 3, which spans the entire bar), and strains are calculated in this 
paper according to Equation (8) for the virtual gauges. 

The lengths Ltot of the longest gauge GO (shown in red in Fig. 3 (a) 
and (b)), bridging the damaged section with length Lc and a length Luc 
with regular cross-section, was approximately constant for all experi
ments; the exact values are reported in Table 3. Ltot was chosen such that 
the gauge endpoints were located at least one diameter away from the 

Table 3 
Lengths Ltot of Gauge GO (Fig. 3) per specimen, bridging the damaged section 
with length Lc and instrumenting a length Luc with regular cross-section.  

Specimen Lc[mm] Luc[mm] Ltot[mm] 

CW-15 15 90 105 
CW-19 19 86 105 
CW-23 23 73 96 
CW-27 27 73 100 
CW-30 30 73 103 
CW-38 38 79 117 
CW-61 61 68 129 

QST-15 15 88 103 
QST-19 19 82 101 
QST-23 23 93 116 
QST-27 27 87 114 
QST-30 30 81 111 
QST-38 38 89 127 
QST-61 61 65 126  
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damage zone (where possible two or more diameters, but observing the 
limitation by the field of view of the cameras). 

Fig. 3 (c) and (d) show the stress-mean strain curves (σs vs εs,m) of all 
CW- and QST-specimens, respectively, with εs,m = strain measured at the 
virtual gauge GO. The strain at peak stress is reduced by approximately 
50% compared to the corresponding Agt = 5.2% (CW), 9.4% (QST, ∅19) 
and 10.2% (QST, ∅20, see Fig. 2) of the undamaged bars (dashed lines in 
Fig. 3(c) and (d)), which is a direct consequence of strain localisation. 
However, the variation of the strain at peak stress among the same steel 
type is remarkably small, considering their different damage lengths Lc 
(except for QST-15, which failed prematurely). Moreover, the apparent 
uniaxial peak stress appears to increase with decreasing damage length 
Lc, which is remarkable since the cross-section reduction was equal for 
all specimens (small variations in the cross-sectional area, see Table 1, 
were accounted for in determining the stresses). These effects are 
attributed to a triaxial stress state in the vicinity of the damage zone, 
which is further analysed in the following sections. 

4.2. Increase in tensile strength and corresponding deformation 

Fig. 4 (a) shows the peak stress in the damage zone measured in the 
experiments, normalised with the tensile strength fsu of the material 
tests, vs the normalised damage length. The actual cross-sectional areas 

(Table 1) were used to determine the stresses, and the tensile strength of 
the reduced cross-section ∅19 (listed in Fig. 2 (b)) for the normalisation 
of the results of the QST reinforcing bars. While the ratio σs,c,max/fsu is 
close to 1 (±1%) for Lc/(2∅c)⩾1, a significant increase in the peak stress 
is observed for both steel types with decreasing damage length, with 
peak stresses exceeding the material tensile strength by up to 5%. 

In Fig. 4 (b), filled blue and red markers indicate the observed strains 
at peak stress εs,m

(
σs,c,max

)
of the virtual gauge GO (Fig. 3 and Table 3), 

plotted vs the normalised damage length. The measured strains are 
normalised with the strains expected according to the SLM (Equation 
(6)), assuming σs,c = fsu. For the QST reinforcement (filled red markers), 
a steady increase of the strain at peak stress, compared to the theoretical 
strains of the SLM, is observed with decreasing damage length, with a 
pronounced strain increase even for the longest damage length 
(Lc/(2∅c) = 1.6). For the CW-reinforcement (filled blue markers), the 
increase in peak strain is less pronounced for Lc/(2∅c)⩾0.6 but increases 
sharply for shorter damage lengths. 

Evidently, the strains at peak stress in the undamaged parts were 
higher than assumed by the calculations underlying the solid markers 
(using σs,c = fsu) due to the increased peak stress for shorter damage 
lengths (see Fig. 4 (a)). To eliminate this effect and visualise a poten
tially altered stress–strain behaviour, the actually measured load is 
considered in a second step for determining the theoretically expected 

Fig. 4. Experimental results of tension tests: (a) Peak stress normalised with uniaxial tensile strength and (b) mean strain at peak stress, normalised with mean strain 
predicted by SLM (Equation (6)). Filled markers result from evaluating Equation (6) with σs,uc = (1 − ζ)fsu, and empty markers for σs,uc = (1 − ζ)σs,c,max. 

Fig. 5. Stress–strain curves of different virtual gauges along the bar axis in the damage zone (red, yellow) and the adjacent undamaged zone (blue) for the Specimens 
(a) CW-19 and (b) CW-61, with schematic positions of the gauges shown to the right. The dashed black lines represent the reference curve of the material tests. 
Stresses refer to the reduced cross-sectional area in the damage zone and to the initial cross-sectional area in the undamaged part according to Equations (1) and (2), 
and Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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strains, replacing the term σs,uc = fsu(1 − ζ) in Equation (6) with σs,uc =

σs,c,max(1 − ζ). The results are depicted in Fig. 4 (b) with empty markers 
in red and blue for the QST and CW reinforcement, respectively. While 
the strain increase compared to the predictions of the SLM are somewhat 
reduced, particularly at short damage lengths, the overall tendencies 
remain the same, indicating an altered stress–strain behaviour. 

4.3. Analysis of stress–strain behaviour inside and close to the damage 
zone 

Fig. 5 shows the stress–strain curves of several virtual strain gauges 
for the specimens (a) CW-19 (short damage length) and (b) CW-61 (long 
damage length). The gauges in the undamaged part span one rib 

distance (as suggested in Section 4.1), while the gauge lengths in the 
damage zone without ribs are shorter (11–12 mm and 5 mm, respec
tively); the gauge positions and lengths are shown schematically in the 
figures and are reported in Table 4. Stresses (referred to the reduced 
cross-sectional area, Equation (1)) and strains in the damage zone are 
depicted in red and yellow; stresses (referred to the initial cross- 
sectional area, Equation (2)) and strains in the adjacent undamaged 
parts are shown in blue. The stress–strain curve of the corresponding 
material test is shown as a dashed black curve for comparison, and the 
peak load is marked with triangles. 

In Specimen CW-19 (short damage length, Fig. 5 (a)), the curves of 
the gauges in the damage zone (yellow and red) almost coincide, with 
slightly smaller strains at peak stress of the gauge closer to cross-section 

Table 4 
Gauge length GL and position of gauge centre of the gauges shown in Figs. 5 and 6 (x1=distance from damage zone centre, x2 = distance from cross-section transition, 
see Figs. 5 and 6).  

Gauge CW-15 CW-61 QST-15 QST-61  
GL[mm] x1[mm] x2[mm] GL[mm] x1[mm] x2[mm] GL[mm] x1[mm] x2[mm] GL[mm] x1[mm] x2[mm] 

C4     5.3  0.2  − 30.3     5.2  0.2  − 30.2 
C3     5.0  5.3  − 25.2     4.8  5.2  − 25.3 
C2  3.8  0.3  − 9.2  5.0  20.1  − 10.4  4.9  0.0  − 9.5  5.2  20.2  − 10.3 
C1  4.2  4.3  − 5.2  5.6  25.4  − 5.1  4.2  4.6  − 4.9  5.6  25.6  − 4.9 

UC1  10.9  17.6  8.1  10.9  38.8  8.3  13.6  20.9  11.4  10.8  37.3  6.8 
UC2  10.9  32.7  23.2  12.0  50.2  19.7  12.4  33.9  24.4  12.9  45.8  15.3 
UC3  12.0  44.1  34.6  11.9  62.1  31.6  12.7  46.4  36.9  12.4  58.4  27.9 
UC4  11.9  56.1  46.6  12.2  74.2  43.7  12.3  58.9  48.5  12.7  71.0  40.5  

Fig. 6. Stress–strain curves of different virtual gauges along the bar axis in the damage zone (red, yellow) and the adjacent undamaged zone (blue) for the Specimens 
(a) QST-19 and (b) QST-61, with schematic positions of the gauges shown to the right. The dashed black lines represent the reference curve of the material tests for 
∅20, and the dash-dotted lines that for ∅19. Stresses refer to the reduced cross-sectional area in the damage zone and to the initial cross-sectional area in the 
undamaged part according to Equations (1) and (2), and Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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transition (C1, red). The stresses of both curves are significantly higher 
than in the material tests, and the apparent uniaxial yield stress and 
tensile strength are clearly increased. After passing the yield point, the 
curves flatten pronouncedly and continue almost horizontally until the 
peak stress. On the other hand, the stress–strain curves in the undam
aged part exhibit a significantly softer behaviour compared to the ma
terial test, with lower stiffnesses and, accordingly, higher strains at peak 
stress the closer the gauges are located to the damage zone. Hence, while 
the curve of Gauge UC4 (light blue), away from the damage zone, closely 
follows the material reference curve, the strains of UC1 are roughly four 
times higher at equal stress. The strain of UC1 at peak stress is thus 
similar to the one of Gauge C1 in the damage zone although the cross- 
sectional area at UC1 was roughly 17% higher than at C1 in the dam
age zone (see Table 1). 

In Specimen CW-61 (long damage length, Fig. 5 (b)), other than in 
Specimen CW-19, the peak stresses in the damage zone are almost 
identical to the tensile strength of the material tests. Still, the stress–
strain curves in the damage zone show a stiffer behaviour closer to the 
cross-section transition (Gauges C4 to C1, yellow to red): while Gauge 
C4 in the middle of the damage zone exhibits a stress–strain behaviour 
similar to the reference curve, the strain at peak stress of Gauge C1 is 
reduced approximately by a factor of 2. The curves of the gauges in the 
undamaged part (UC1 to UC4, blue) are very similar to the corre
sponding curves of Specimen CW-19 (Fig. 5 (a)), with a softer stress–
strain behaviour close to the damage zone. Again, the strains in Gauge 
UC4 (light blue) are similar to the reference curve, whereas the strains in 
Gauge UC1 (dark blue) are comparable to those in the damage zone, and 
even higher than the strains of Gauges C1 and C2. The strains at peak 
stress measured in the Gauges UC2 to UC4 are almost identical for both 
specimens CW-19 and CW-61, irrespective of the different damage 
lengths. 

Fig. 6 (a) and (b) show the results of Specimens QST-19 and QST-61, 
respectively, with a zoom to the yield point in (c) and (d). As a reference, 
the dashed lines show the stress–strain curve of the material test on a bar 
∅20, applying to the results of the gauges in the undamaged part (UC1 to 
UC4), and the dash-dotted lines refer to the material test on a bar with 
reduced diameter ∅19, applying to the results of the gauges in the 
damage zone (C1 to C4). 

The results obtained for Specimen QST-19 (short damage length, 
Fig. 6 (a)) are similar to those of Specimen CW-19 in Fig. 5 (a). The 
strains in Gauge C1 are similar to those of Gauge C2, and both curves 
show a stiffer behaviour at the beginning of the inelastic phase. 
Nevertheless, strains at peak stress are even higher in this specimen than 
in the reference test, and the peak stresses are again increased compared 
to the tensile strength of the reference test. The stress–strain curves of 
the Gauges UC1 to UC4 in Fig. 6 (c) in the adjacent undamaged part 
differ less from the reference curve than those in Fig. 5 (a), except for 
Gauge UC1 closest to the damage zone, which clearly exhibits a softer 
behaviour. 

The stress–strain curves of the gauges in the damage zone (red, 
yellow) of Specimen QST-61 (long damage length, Fig. 6 (b)) follow the 
curves of the reference test even closer than in Specimen QST-19. 
Nevertheless, a stiffer behaviour is observed closer to the cross-section 
transition (C4 to C1), with the Curve C1 (red) differing significantly, 
exhibiting merely about 60% of the strain at peak stress compared to C4. 
The curves of the gauges in the adjacent undamaged part UC1 to UC4 
differ much less than in Specimen CW-61 (Fig. 5 (b)) and closely follow 
the reference curve in the elastic range and at hardening onset. 

An interesting observation in Fig. 6 is the loss of the yield plateau (i. 
e., of the approximately horizontal part of the black reference stress–
strain curve between the yield point and the hardening onset). The same 
observation was made in tension tests of reinforcing bars with natural, 
unilateral corrosion pits [23]. In the undamaged part, the yield plateau 
is absent for all gauges close to the cross-section transition (UC1, UC2, 
C1 and C2). For UC1 of QST-19 and UC1 and UC2 of QST-61, the yield 
point is lowered from 540 MPa to approximately 450 to 470 MPa, 

directly followed by the strain hardening phase. Except for UC1 of QST- 

19, the curves pass the point 
(

εsh, fsy
)

and then follow the reference 

curves again. This stress–strain behaviour contrasts the one of gauges 
further away from the damage zone (UC3, UC4), which closely follow 
the reference curve and exhibit a yield plateau. Similarly, in all gauges of 
the damage zone close to the cross-section transition (C1 and C2 for 
QST-19 and C1 for QST-61), the strain hardening phase directly seems to 
follow the yield point, while the curves observed at Gauges C3 and C4 in 
QST-61, away from the transition, again follow the reference curve and 
exhibit a yield plateau. 

A macroscopically visible yield plateau is related to the occurrence of 
Lüders bands and is associated with discontinuous yielding. Presumably, 
the triaxial stress state at the cross-section transition influences the 
deformation behaviour of crystal grains in the steel, preventing macro
scopically visible discontinuous yielding. The phenomenon is further 
investigated in Section 5.5, after analysing the triaxial stress state near a 
local damage. 

5. Analysis of triaxial stress state near local damages 

5.1. Introduction and FE model description 

For the assessment of the experiments, the reinforcing bars were 
modelled with the FE-software Ansys Mechanical as concatenated 
smooth cylinders, with two cylinders of diameter ∅ enclosing a cylinder 
of length Lc and reduced diameter ∅c (diameters according to Table 1). 
The composed bar has a total length of 200 mm and is fixed at one end, 
whereas an increasing displacement is imposed at the other end. The 
structure is meshed with PLANE183-elements at a size of 1.0 mm, which 
allows to exploit the axial symmetry and reduce the calculation time. 
Von Mises’ J2-plasticity model (see Section 1.3) with isotropic hard
ening was implemented as a material model, and the analyses accounted 
for geometrical nonlinearity. A possible mesh-size dependency was not 
analysed since a similar study reported no such influence for the chosen 
mesh size [20]. 

For material input, the engineering stress–strain relationships shown 
in Fig. 2 need to be converted to true values. True strains result from 
considering the deformations on a differential element, leading to dεtr =

dl/l. For true stresses, the force is referred to the actual cross-sectional 
area, which decreases with increasing axial deformation due to vol
ume conservation. The conversion can be approximated by (see, e.g., 
[41]) 

εs,tr = ln
(
1 + εs,eng

)

σs,tr = σs,eng
(
1 + εs,eng

) (9) 

Assuming a homogeneous bar (no variation of mechanical properties 
along the bar axis), Equation (9) can be applied to the data of the ma
terial tests up to the onset of necking, which occurs after having reached 
the tensile strength. Fig. 2 shows the converted stress–strain curves of 
the material tests in grey and the constitutive material models in true 
values as dashed black lines. 

Following the concept of [20], the input material curve is not limited 
to the tensile strength and the corresponding strain, but extrapolated 
from the constitutive relationships (formulated in true values) up to 
εs,tr = 0.2. Since the application range of the constitutive relationships is 
limited to the tensile strength and cannot be evaluated beyond this 
point, a logarithmic equation of the form 

σs,tr = b1ln
(
εs,tr

)
+ b2

εs,tr in [ - ], σs,tr in [MPa] (10)  

is fitted to the constitutive relationships in the hardening branch, i.e., in 
the range 

[
εsh, Agt

]
for the QST reinforcement and 

[
0.02, Agt

]
for the CW 

reinforcement, with the parameters b1 and b2 summarised in Table 5. 
The resulting curves are shown in Fig. 2 as solid red lines. The second 
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part of Table 5 contains the parameters for bars with a cross-section 
reduction beyond 19 mm, which are used for the parametric study in 
Section 6. 

The force–elongation diagram resulting from the FE analyses is not 
monotonically increasing, as one might assume from the input material 
relationship. Since the FE-analysis considers the lateral contraction of 
the bar in the damage zone due to the high axial strains, the cross-section 
is continuously reduced with increasing axial deformation, and beyond a 
certain elongation, the force decreases despite that the axial stresses 
keep increasing. The elongation at the peak load – similar to the onset of 
necking in a tensile test – is considered representative for comparison 
with the experimental results. 

5.2. Comparison of experiments with different models 

Fig. 7 compares the force-mean strain curves obtained from the ex
periments (black) with the response of the SLM (blue, see Section 3.3) 
and the FE analyses of Section 5.1 for the CW (Fig. 7 (a) to (c)) and the 
QST reinforcement (Fig. 7 (d) to (f)) with damage lengths Lc = 15, 19, 
and 61 mm. The markers indicate the peak loads. The results of the 
remaining experiments with Lc = 23, 27, 30, and 38 mm are enclosed in 
the appendix. The gauge lengths Ltot used for evaluating the experi
mental data are reported in Table 3 and indicated in Fig. 7. Equation (6) 
is used for the SLM in combination with the constitutive material re
lationships of Section 3.2 and Table 1. 

The results of Fig. 7 (a), (b), and (e) confirm the observation of 
Section 4.2 that the SLM strongly underestimates the strain at peak stress 
(up to 40%) for short damage lengths and, to a minor extent, also the 
peak stress. With increasing damage length, the accuracy of the SLM 
increases (see also Fig. A1), with the SLM being almost identical to the 
experimental results in Fig. 7 (c) for Lc = 61 mm. In contrast, the re
sponses of the FE analyses capture the experimental curves for all 
damage lengths regarding curve shape, peak stress, and corresponding 
strain, except for Specimen QST-15 (Fig. 7 (d)), which failed prema
turely. Accordingly, both models overestimate the peak stress and 
elongation of this experiment. 

The results of the FE analyses support the hypothesis that the triaxial 
stress state at the cross-section transition considerably alters the 
stress–strain behaviour of reinforcing bars containing local corrosion 
damage. The hypothesis is further confirmed by the increasing predic
tion accuracy of the SLM for longer damage lengths, where the local 
effects of the transition zones become less relevant. 

Table 5 
Fitting parameters for extrapolation of the hardening branch of constitutive 
material curves according to Equation (10).  

Material constitutive relationship b1[-] b2[-] 

CW  37.9  759.4 
QST, ∅20  94.7  942.6 
QST, ∅19  98.8  935.7 

QST, ∅19.5  96.7  939.2 
QST, ∅18.4  101.4  931.3 
QST, ∅17.9  104.1  926.6 
QST, ∅17.3  107.2  921.2 
QST, ∅16.7  108.9  910.5 
QST, ∅16.1  110.5  901.9 
QST, ∅15.5  112.1  894.1 
QST, ∅14.8  113.5  887.5 
QST, ∅14.1  114.9  882.5 
QST, ∅13.4  115.9  879.9 
QST, ⩽∅12.7  116.3  879.9  

Fig. 7. Comparison of experimental results (black) with the SLM (Equation (6), blue) and the FE analyses (red): (a)-(c) Series CW; (d)-(f) Series QST, specimens with 
damage lengths Lc = 15, 19, and 61 mm. The markers indicate the peak loads. Additionally, the total gauge length Ltot and the mean strain at peak load εs,m,max are 
reported, as well as the relative deviation between the models and the experimental result. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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5.3. Analysis of the triaxial stress state 

Fig. 8 illustrates the stress state for Specimens (a) CW-15 and (b) CW- 
61 at the peak load, showing the engineering values of the von Mises 
stress σvM(r, x), the axial, radial, and tangential stresses, σx(r, x), σr(r, x), 
and σφ(r, x), the non-zero shear stress τrx(r, x), and the distribution of the 
axial and von Mises stresses averaged over the cross-section, i.e., 

σx(x) =

∫

A
σx(r, x)dA

A

σvM(x) =

∫

A
σvM(r, x)dA

A

A =

⎧
⎨

⎩

As,c in damage zone

As elsewhere

(11) 

The results are shown for a section between the bar axis and the bar 

surface in cylindrical coordinates. The maximum and minimum stress 
and the corresponding location are indicated per stress variable with a 
circle (at the cross-section transition, a small distance from the edge was 
chosen to avoid reporting potential singularities related to the FE mesh). 
Since the problem is axially symmetric and only a tensile force is 
applied, stresses do not depend on the rotation angle φ in the rφ-plane 
perpendicular to the x-axis, and the shear stresses in φ-direction vanish, 
τrφ = τxφ = 0. Hence, the von Mises stress simplifies to 

σvM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
(
(σx − σr)

2
+ (σr − σφ)

2
+ (σφ − σx)

2 )
+ 6τ2

rx

√

(12) 

The von Mises stresses σvM(r, x) are similar for both specimens, with 
the maximum value in the range of the material tensile strength fsu =

615 MPa occurring at the centre of the damage zone. While they are 
fairly constant along the damage length, the von Mises stresses start 
decreasing near the cross-section transition, tending to a constant value 
(over both the cross-section and along the axis) at a distance ⩾1∅ away 
from the damage zone, where the stress state is essentially uniaxial. At 

Fig. 8. Visualisation of triaxial stress state: Von Mises stress σvM, axial, radial and tangential stresses, σx, σr , and σφ, non-zero shear stresses τrx, and axial and von 
Mises stresses averaged over cross-section (Equation (11)) for (a) CW-15 and (b) CW-61. Locations of maximum and minimum stress are indicated with circles. 
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the centre of the damage zone (x = 0), the von Mises stress is approxi
mately constant over the cross-section for CW-61, whereas it decreases 
towards the bar surface for CW-15. 

The occurrence of a triaxial stress state within the damage zone (CW- 
15) or at its ends (CW-61) can easily be seen from the radial and 
tangential stresses, σr(r, x) and σφ(r, x). They are maximum near the 
cross-section transition, with a positive sign (tensile stresses) at the ends 
of the damage zone and a negative sign (compressive stresses) in the 
adjacent undamaged parts. The absolute shear stress (its value depends 
on the coordinate system) is highest at the edge of the cross-section 
transition, and decreases radially and axially. For a short damage 
length, the radial and tangential stresses are much higher than for a long 
damage length and extend over the entire damage zone, whereas an 
essentially uniaxial stress state is reached at the centre of a long damage 
length. Considering the considerable radial and tangential tensile 
stresses at x = 0 and Equation (12), it is evident that the axial stress can 
be substantially increased for a short damage length until the von Mises 
stress reaches the material uniaxial tensile stress. In contrast, no such 
increase is possible at the centre of a long damage length, where the 
axial stress approximately equals the von Mises stress. 

At the peak load, the von Mises stress averaged over the cross-section 
(Equation (11)) exactly reaches the material uniaxial tensile strength for 
both specimens. This is noteworthy since the input material curve was 
not limited to the material tensile strength. This result indicates an 
excellent model accuracy since the von Mises stress is the representative 
value for comparing a triaxial stress state with uniaxial steel 
characteristics. 

For CW-61, the mean axial stress at x = 0, coinciding with the von 
Mises stress, evidently also reaches the tensile strength and remains 
fairly constant over the entire damage length. At the cross-section 
transition, the mean axial stress drops sharply, whereas a gradual 
decrease is obtained for the von Mises stress in this zone. Both stress 
values are slightly below the uniaxial yield stress in the undamaged part, 

reaching a tensile stress of 534 MPa. This value can be validated by 
Equation (4), i.e., σs,uc = σs,c(1 − ζ) = 533 MPa (with σs,c = fsu =

615 MPa, and ζ = 0.133 according to Table 1). 
In the damage zone of CW-15, the mean axial stress reaches a peak 

value of 643 MPa, which is 4.5% higher than the uniaxial tensile 
strength (coinciding with the von Mises stress). This result matches well 
with the experiment, where an increase in peak stress of 3.5% was 
observed compared to the uniaxial tensile strength. As for CW-61, the 
mean axial stress drops sharply at the ends of the damage zone, whereas 
the von Mises stress gradually decreases over a length of approximately 
1∅ from the damage zone end. Both stresses reach a value of 564 MPa in 
the undamaged part in the FE analysis, which corresponds well to the 
565 MPa obtained from Equation (4) (σs,c = 642 MPa and ζ = 0.121). 

The FE analyses thus confirm the presence of a triaxial stress state 
near corrosion pits and underline its significant influence on the 
apparent uniaxial tensile strength of bars containing a short damage 
length, as it enables the activation of axial stresses exceeding the uni
axial tensile strength of the material. For long damage lengths, a uniaxial 
stress state is again reached at the centre of the damage zone, with 
conditions equal to those in a standard tensile test, and the apparent 
uniaxial peak stress cannot exceed the uniaxial tensile strength of the 
material. The influence of the triaxial stress state on the deformation 
behaviour is analysed in Section 5.4, and Section 6 explores for which 
damage geometries triaxial stresses potentially develop. 

5.4. Influence of a triaxial stress state on stresses and deformations 

The left two columns of Fig. 9 shows the mean von Mises and mean 
axial stresses according to Equation (11) at the peak load along the bar 
obtained from the FE analyses simulating (a) the CW series and (b) the 
QST series. The black lines indicate the uniaxial tensile strength from the 
material tests (shown in the damaged part) and the corresponding 
theoretical, reduced stress in the undamaged part (determined from 

Fig. 9. Influence of triaxial stress state on the mean von Mises and mean axial stress σvM(x) and σx(x), and the mean axial strain over cross-section εx(x) for (a) the 
CW and (b) the QST reinforcement. 
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Equation (4)) as reference values. The plots in the right column of Fig. 9 
show the mean axial engineering strains over the cross-section εx(x), 
along with the strain at the peak stress of the material tests in the 
damaged part and the corresponding theoretical value in the undam
aged part as reference (black lines). Results are shown for only half of 
the modelled reinforcing bar (with the symmetry axis laying in the 
middle of the damage zones), and continuation is indicated with dotted 
lines. Note that a different coordinate is used along the bar axis than in 
Fig. 8, x′ = x − Lc/2, i.e., the cross-section transition is positioned at x′ =
0, which facilitates the comparison between the different damage 
lengths. 

For all damage lengths, the mean von Mises stress in the damages 
zone exactly matches the uniaxial tensile strength for the CW series and 
is in good agreement for the QST series (indicating a slightly weaker FE 
model accuracy for the QST series). In the adjacent undamaged part, the 
stress decreases and reaches a constant value at a distance approxi
mately 1∅ away from the damage zone, independently of the damage 
length. This is noteworthy since the peak load of the specimens increases 
with decreasing damage length, as indicated by the von Mises stresses at 
x = 40 mm, and confirms the principle of de Saint-Venant, stating that 
stress discontinuities generally attenuate over a length equal to the 
element width. 

The mean axial stresses in the damage zone, hence the peak load, 
decrease with increasing damage length, reducing to the uniaxial ma
terial tensile strength for the damage lengths Lc = 38 and 61 mm (again 
almost exactly for the CW series and in good agreement for the QST 
series). Unlike for the von Mises stresses, there is a pronounced stress 
decrease at the cross-section transition, x′ = 0. Nevertheless, the axial 
stress in the undamaged part equals the corresponding von Mises stress 
at a distance > 1∅ from the damage zone. 

The mean strain starts to increase in the undamaged part at a dis
tance of approximately 0.5…1.0Ø from the cross-section transition and 
reaches its maximum at the centre of the damage zone. The maximum 
strains are much higher than observed in the material tests, εx,max ≈ 2Agt 

for Lc = 15 mm and εx,max = 1.5Agt for Lc = 61 mm. However, with 
increasing damage length, the mean strain is lower than Agt over a 
considerable length at the ends of the damage zone, partly compensating 
the high maximum strain at the centre. On the other hand, as mentioned 
above, the mean strain in the undamaged part is higher than the ex
pected theoretical strain over a length of 0.5…1.0Ø from the damage 
zone; hence the bar exhibits additional deformation in this region. 
Further away from the damage zone, the mean strain for specimens with 
long damage length equals the expected theoretical value, while it is 
higher for shorter damage lengths due to the increased peak load 
(compare the increased mean axial stresses). This strain increase is more 
pronounced for the QST bars due to the different shape of the stress–
strain curve. 

Fig. 10 compares the experimental results (markers) with the FE 
analyses (solid lines) at the peak load, plotting them against the nor
malised damage length: (a) peak stress in the damage zone, (b) mean 
strain over the damage zone, (c) mean strain over the first 20 mm in the 
undamaged part adjacent to the cross-section transition (between 0⩽x′⩽ 
20 mm in Fig. 9), and (d) mean strain at the Gauge GO extending over 
the damage zone and the undamaged part, as shown in Fig. 3. The results 
are normalised with their corresponding theoretical values (fsu, Agt, 
εs
(
σs,uc = (1 − ζ)fsu

)
, and εSLM

s,m
(
σs,c = fsu

)
according to the SLM and 

Equation (6)). Note that the experimental results in Fig. 10 (a) and (d) 
correspond to those in Fig. 4 (a) and (b). 

The results of the FE analyses match the experimentally observed 

Fig. 10. Influence of triaxial stress state on peak stress and deformation, depending on damage length: (a) peak stress normalised by uniaxial material tensile 
strength; (b) strain in damage zone at peak stress, normalised with strain at peak stress of material tensile tests; (c) mean strain in adjacent undamaged part at peak 
stress, measured over a distance of one diameter from the cross-section transition, normalised with strain corresponding to a stress σs,uc = (1 − ζ)fsu (Equation (4); 
positions of outlying values are indicated with arrows); (d) strain of Gauge GO (Fig. 3) at peak stress, normalised by strain according to SLM. 
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increased peak stresses very well, for the CW as well as the QST bars, see 
Fig. 10 (a). Regarding the mean strain over the damage length (Fig. 10 
(b)), the FE analyses predict the experimental results of the QST bars 
fairly well, particularly compared to the conventional prediction (=Agt), 
which underestimates the experimentally observed mean strain in the 
damage zone by up to 40%. The experimentally observed strains for the 
CW series do not show a clear tendency regarding damage length, but all 
strains are below Agt . The FE analyses predict strains slightly lower than 
Agt for long damage lengths, but a moderate increase for shorter damage 
lengths. The mismatch might be due to a model inaccuracy or secondary 
effects having influenced the strain measurements in the experiments 
(influence of ribs, presence of bending stresses caused by a slight shift of 
the centroidal axis due to tolerances when reducing the diameter). 

The experimentally observed mean strains measured over the first 
20 mm (1Ø) of the undamaged part (Fig. 10 (c)) – which are strongly 
underestimated by the SLM (roughly 20% for long damage lengths and 
up to a factor of 3 for short damage lengths) – are fairly well predicted by 
the FE analyses for both, the CW and the QST reinforcement. However, 
the large scatter of the experimental results reflects the challenge of 
accurately measuring strains in reinforcing bars over a short reference 
length, even with advanced measurement technologies. 

Fig. 10 (d) shows the experimentally measured, normalised mean 
strain in Gauge GO of Fig. 3 and the corresponding results of the FE 
analyses. The FE analyses match the experimental data accurately for 
the CW reinforcement and slightly overpredicts the results for the QST 
reinforcement. The experimental results as well as the FE analyses 
indicate that for damage lengths shorter than twice the reduced diam
eter, i.e., Lc⩽2∅c, the SLM tends to strongly underestimate the defor
mation capacity of damaged reinforcing bars by 10…70% in the cases 
investigated here. This is due to the beneficial effects of the triaxial stress 
state at the cross-section transition, which partly compensates the strain 
localisation effect described by the SLM (Equation (6)). 

5.5. Influence of a triaxial stress state on the yield behaviour 

The strain measurements of gauges near the cross-section transition 
of QST bars illustrated in Fig. 6 revealed (i) a reduced yield stress and (ii) 
a loss of the yield plateau (see Section 4.3). The yield stress increased 
again further away from the damage zone, and a yield plateau was 
retrieved. Both effects directly result from the triaxial stress state near 
the cross-section transition. 

The apparently reduced yield stress in the undamaged part adjoining 
the damaged zone follows from the distribution of the von Mises stresses 
σvM in Fig. 8 (b), where the von Mises yield criterion σvM = fsy is reached 
or exceeded for 30⩽|x|⩽40 mm, and hence, yielding occurs, whereas the 
mean axial stress is still below the yield stress, i.e., σx = 534 MPa < fsy. 
In contrast, if one scales the mean von Mises and mean axial stress 
distributions in Fig. 8 (a), it evolves that a stress state σvM⩽fsy < σx exists 
where no plastic deformations occur in the damaged part, although the 
mean axial stresses exceed the yield stress. Hence, the apparent yield 
stress is increased. 

The macroscopic occurrence of a yield plateau in low carbon steel is 
related to the formation of Lüders bands, i.e., discrete local bands of high 
deformation increase (discontinuous yielding) due to a sudden break 
free of the dislocations from the interstitial carbon atoms (Cottrell-Bilby 
clouds), which propagate along the reinforcing bar (see, e.g., [41–46]). 
It has been shown that the Lüders band front orients in the direction of 
the maximum shear stress (i.e., 45◦ to the bar axis for pure tension) 
[42,46]. The presence of shear stresses τxr at the cross-section transition 
(see Fig. 8) causes the stress trajectories to rotate, leading to a variation 
of the maximum shear stress direction over the cross-section. This could 
hinder the Lüders bands from propagating in an ordered manner [47]. 
Moreover, it is probable that the varying von Mises stress (which rep
resents the yield criterion) over the cross-section triggers the disloca
tions to break free from their interstitial atoms in only a few grains 

simultaneously. This hypothesis is supported by the fact that in the FE 
analyses simulating bars with short damage lengths – for which a wide 
range of stress values is exhibited over the cross-section, see Fig. 8 – no 
yield plateau was obtained either (see curves for Lc/2∅c = 0.2 in Fig. 11 
(b)). Hence, these issues presumably hinder the occurrence of macro
scopically visible Lüders bands (i.e., a yield plateau) and favour 
continuous yielding with strain hardening near the cross-section tran
sition, as also observed in a recent study in the context of bond [47]. 

6. Parametric study 

6.1. Aim and setup 

Besides the material characteristics, the formation of a triaxial stress 
state is mainly governed by the diameter of the residual cross-section ∅c 
and the length of the damage zone Lc. To investigate the influence of 
these parameters on the triaxial stress state, a parametric study was 
conducted, investigating the force–elongation behaviour of a reinforcing 
bar with a total length Ltot = 150 mm and exhibiting a cross-section loss 
ζ = 0.05...0.8 over a variable length Lc/(2∅c) = 0.2...1.4. The bar 
behaviour was simulated using the FE model described in Section 5.1 
and adopting the two material models of Section 3.2. The initial diam
eter was held constant at ∅ = 20 mm, yielding ∅c = 8.95...19.5 mm 
and Lc = 3.6...54.6 mm. By normalising with ∅c/∅, ∅2

c /∅2, and Lc/2∅c, 
respectively, the results apply to other bar and damage geometries 
within the limitation set in this paper, i.e., an axisymmetric cross-section 

Fig. 11. Selected force-mean strain curves of parametric study to illustrate the 
strong influence of a triaxial stress state, depending on damage length Lc/(2∅c)

and cross-section loss ζ, for (a) CW and (b) QST reinforcement. 
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reduction. A total number of 544 simulations (272 per steel type) were 
run and evaluated. 

6.2. General results 

As an overview, Fig. 11 shows selected force - mean strain curves 
resulting from the parametric study for (a) CW and (b) QST reinforcing 
bars with different damage lengths (Lc/(2∅c)=0.2, 0.6, and 1.0, indi
cated with different markers) and different cross-section losses (ζ=0.1, 
0.2, and 0.4, indicated with different colours). The stress–strain curves 
of the undamaged bars are shown in black as a reference. 

As expected, the peak load generally decreases with increasing cross- 
section loss. However, for a specific cross-section loss, it varies consid
erably and increases with decreasing damage length. Similar to the 
maximum load, the strain at peak stress generally decreases with 
increasing cross-section loss. However, the results indicate that the peak 
strain for a short damage length (circular markers) can even be larger 
than for a longer damage length (square and triangular markers) for small 
or moderate cross-section loss (blue and red curves). This result contra
dicts the SLM (Equation (6)) and is caused by the triaxial stress state. 

6.3. Load-carrying and deformation capacity compared to the SLM 

Fig. 12 (a) and (b) show contour plots of the ratio σs,c,max/fsu, i.e., the 
deviation of the peak stress obtained by the FE analyses from the uni
axial material tensile strength, for (a) the CW and (b) the QST 

reinforcing steel. Results are shown in the parameter range of the cross- 
section loss ζ and the normalised damage length Lc/(2∅c) as defined in 
Section 6.1. Red colours indicate an underestimation of the peak load; 
note that the colour map is limited to 1.1fsu for a higher resolution in the 
main part of the diagram. The maximum and minimum values and their 
locations are indicated with circles. Black lines indicate constant nor
malised damage lengths Lc; they are curved because the residual bar 
diameter ∅c and thus the ratio Lc/(2∅c) constantly vary with the cross- 
section loss ζ. Isolines are plotted in grey, with an equidistance of 0.05 in 
(a) and(b), and 0.5 in (c) and (d). 

For damage lengths longer than 1∅, the load-carrying capacity is 
underestimated by less than 5% for both steel types, almost indepen
dently of the cross-section loss. The load-carrying capacity is under
estimated by 5…10% for damage lengths in the range of 0.5∅ to 1∅, and 
by 10…35% for shorter damage lengths. 

Fig. 12 (c) and (d) show contour plots of the strain ratio εs,m(σs,c,max)

/εSLM
s,m (σs,c = fsu), i.e., the deviation of the strain at peak load obtained by 

the FE analyses from the strain at peak load according to the SLM 
(Equation (6)), for (c) the CW and (d) the QST reinforcing steel. Red 
colours indicate an underestimation of the strain at peak stress by the 
SLM, and blue colours an overestimation. Note that the colour map is 
limited to 0.8 and 1.5 for a higher resolution of the main part of the 
diagram. The dashed line in Fig. 12 (d) indicates the critical cross- 
section loss ζcrit, denoting the maximum cross-section loss for which 
the undamaged cross-section still reaches the yield stress at maximum 
load according to the SLM (see [13]). Additionally, the cross-section loss 

Fig. 12. Load-carrying and deformation capacity predicted by the FE analyses compared to the uniaxial tensile strength and the SLM. (a), (b) ratios of the peak stress 
(FE) to the uniaxial material tensile strength for CW and QST bars, respectively. (c), (d) ratios of strain at peak stress of the FE analyses to that of the SLM for CW and 
QST bars, respectively. Solid black lines correspond to constant damage lengths, circular markers show extreme values, and target markers correspond to the 
parameter sets analysed in Fig. 13. Isolines are plotted in grey, with an equidistance of 0.05 in (a, b) and 0.5 in (c, d). 
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ζmart indicates the complete loss of the martensitic outer annulus for the 
QST bar, and ζbain indicates the complete loss of the bainitic transition 
zone (see [31]). 

For the CW reinforcing steel in Fig. 12 (c) and the chosen parameter 
range, an empirical, elliptical relationship was found, above which the 
error made by using an SLM is less than ± 10%: 

R(ζ, Lc) =
( ζ

0.8
− 1

)2
+

(
Lc

2∅
̅̅̅̅̅̅̅̅̅̅̅
1 − ζ

√ − 1.3
)2

⩽1 (13) 

The limit R(ζ, Lc) = 1.0 is shown in Fig. 12 (c) with a dash-dotted 
line. For shorter damage lengths and smaller cross-section losses, the 
SLM underestimates the deformation capacity, especially for ζ < 0.4 and 
Lc/(2∅c) < 0.4, where the peak strain ratio reaches a maximum value of 
εs,m/εSLM

s,m = 2.8. 
For QST reinforcing bars, Fig. 12 (d) indicates that the underesti

mation of the deformation capacity by the SLM is acceptable, i.e., 
εs,m/εSLM

s,m < 1.2, for cross-section losses ζ > ζmart (and Lc/(2∅c) > 0.3); 
this might be an artefact of the constitutive material model formulated 
in [31], with an increase of the strain at peak stress as soon as the 
martensitic outer annulus is completely lost. Independent of the damage 
length, the SLM underestimates the deformation capacity most pro
nouncedly around the critical cross-section loss ζcrit , with a maximum 
ratio εs,m/εSLM

s,m ≈ 5 for short damage lengths Lc⩽∅, and peak strain ratios 
greater than 1.5 even for long damage lengths. 

Fig. 13 (a) and (b) show the stress-mean strain diagrams for the 

simulated CW bars with Lc/(2∅c) = 0.4, and QST bars with Lc/(2∅c) =

0.6, respectively, for cross-section losses ζ = 0.05...0.4. These damage 
conditions (parameters (ζ|Lc/(2∅c) )) are depicted with target markers 
in Fig. 12. Solid lines show the behaviour obtained from the FE analyses, 
and dashed lines show the predictions according to the SLM (Equation 
(6)), with triangular (FE) and square (SLM) markers indicating the peak 
stress and corresponding strain. The stress is related to the undamaged, 
initial cross-sectional area As (Equation (2)). Fig. 13 (c) shows the 
constitutive material relationships (black lines) and the stresses and 
strains observed in the undamaged parts (far away from the damage 
zone) at the peak forces of the calculations shown in Fig. 13 (a) and (b). 

Fig. 13 (a) and (b) show a significantly decreasing load-carrying 
capacity with increasing damage, and a substantial decrease in defor
mation capacity already for low cross-section losses. This is a direct 
consequence of the strain localisation described in Section 1.1. The 
concept of the critical cross-section loss [13] explains why the defor
mation capacity is almost entirely lost as soon as the stress in the un
damaged part drops below the yield stress. 

For the CW bars, Fig. 13 (a) and (c) show that the difference in the 
mean strain at peak stress between the FE analyses and the SLM is 
highest for low cross-section losses ζ < ζcrit, where the undamaged part 
of the bar also exhibits significant plastic strains. Since load variations in 
the plastic strain range can lead to significantly different strains, it is 
evident that the FE analyses, which unlike the SLM account for the 
increased maximum load due to the triaxial stress state, lead to signifi
cantly larger deformations than the SLM. As soon as the undamaged part 

Fig. 13. Stress-mean strain diagrams for the damage conditions indicated with black markers in Fig. 12 for (a) the CW and (b) the QST reinforcement. Solid lines 
correspond to the FE analyses, and dashed lines to the SLM; (c) peak stresses and corresponding strains of FE analyses (traingles) and SLM (squares) in the undamaged 
part far away from the damage zone together with the constitutive material relationships (black) for validation. All stresses refer to the initial cross-sectional area. 

Fig. 14. Schematic representation of model strategy: (a) strain distribution at peak load (red) and mean strains in the vicinity of the cross-section transition ac
cording to Equations (15) and (16); (b) stresses resulting from material stress–strain curve for mean strains; (c) equivalent cross-sectional areas (red dotted lines) 
according to Equations (17) and (18). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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is not reaching the yield stress, the predicted strains at peak stress of 
both models start converging, although the predicted peak loads still 
differ significantly. 

The same observations apply to the QST reinforcing bars, Fig. 13 (b) 
and (c), where again significant differences in strain at peak stress are 
observed for small cross-section losses, i.e., where the undamaged part 
also exhibits plastic strains, with the largest difference between the two 
models occurring for ζ = 0.2. For this cross-section loss, the undamaged 
part reaches strains at the onset of hardening in the FE analyses (ac
counting for a higher peak load due to the triaxial stress state), whereas 
the strains according to the SLM – with a 4% lower maximum load – are 
just below the elastic limit (yield point). The FE- and SLM-strains in the 
undamaged zone thus differ by the length of the yield plateau (Lüders 
strain, see Fig. 13 (c)). This explains the considerable differences (i.e., the 
high ratios) observed in Fig. 12 (d) for QST bars with a cross-section loss 
ζ ≈ ζcrit, irrespective of the damage length. Moreover, the loss of the 
martensitic outer annulus for ζ > 0.28 has a visible influence on the dif
ferences between the model predictions, as can be seen from Fig. 13 (b). 

7. Simplified modelling approach to estimate the influence of 
the triaxial stress state 

While FE analyses of reinforcing bars with local damage are well 
suited to investigate and explain the effects of a triaxial stress state, 
modelling entire concrete structures containing locally corroded rein
forcement on such a level of detail is not expedient, particularly due to 
the immense computational effort. Hence, simplified models are needed 
to capture the governing effects with reasonable accuracy. Such a 
simplified approach is proposed in this section, valid for the parameter 
ranges set in Section 6.1 and following the model strategy illustrated in 
Fig. 14. 

7.1. General model strategy 

As seen in the previous sections, a shorter damage length leads to a 
considerable increase in the apparent uniaxial tensile strength σs,c,max 

(Equation (1)), which is decisive for the differences between the FE 
analyses and the SLM. The effect is captured in the following by the 
parameter pσ, defined as the ratio of the maximum apparent uniaxial 
stress and the material tensile strength: 

pσ =
σs,c,max

fsu
(14) 

The proposed approach is based on the observation that in all FE 
analyses, the triaxial stress state had a limited influence length, defined 
as the length between the cross-section transition and the point where 

σvM(x) ≈ σx(x) (see Figs. 8 and 9) and corresponding to 0.75...1.0∅ and 
min(Lc/2, 0.7...0.9∅c) for the undamaged and damaged parts, 
respectively. 

The results of the FE analyses align well with the principle of de 
Saint-Venant, whose direct application would result in influence lengths 
of one diameter. For simplicity, this value is adopted in the following. 
The strains near the cross-section transition of the FE analyses were thus 
averaged over lengths of 1∅ and min(Lc/2, ∅c) in the undamaged and 
damaged part, respectively, resulting in the following mean strains εs,c 

(damaged part) and εs,uc (undamaged part) at peak load F = Fu (see 
Fig. 14): 

εs,c =

∫ s

0
εx(x,F = Fu)dx

/

s

s = min(Lc/2, ∅c)

(15)  

εs,uc =

∫ 0

− ∅
εx(x,F = Fu)dx

/

∅ (16) 

The stresses corresponding to these mean strains are determined 
from the stress–strain diagram of the material tensile tests. By dividing 
the applied maximum force by these stresses, one gets the equivalent 
cross-sectional areas Aeq

s,c and Aeq
s , i.e., the cross-sectional area of a 

fictitious bar exhibiting these mean strains at peak load (Fig. 14): 

Aeq
s,c =

Fu

σs
(
εs = εs,c

) =
As,cfsupσ

σs
(
εs = εs,c

)

pε,c =
Aeq

s,c

As,c
=

fsupσ

σs
(
εs = εs,c

)

(17)  

Aeq
s =

Fu

σs
(
εs = εs,uc

) =
As,cfsupσ

σs
(
εs = εs,uc

)

pε,uc =
Aeq

s

As
=

As,c

As

fsupσ

σs
(
εs = εs,uc

)

(18) 

The parameters pε,c and pε,uc are the ratios between the equivalent 
and the actual cross-sectional areas. The parameters pσ, pε,c, and pε,uc thus 
represent the effect of the triaxial stress state regarding peak stress and 
corresponding strain on the bar load-deformation behaviour, i.e., the 
differences compared to the SLM (Equation (6)). They were determined 
for every FE analysis and are analysed in the following section. 

7.2. Model parameter evaluation 

Fig. 15 (a) illustrates the parameters pσ obtained for the CW bars with 
different ratios ∅c/∅ in blue, plotted vs the normalised damage length. 

Fig. 15. Simplified model approximating the effects of the triaxial stress state: (a) parameter pσ for the CW bars as a function of normalised damage length and 
diameter ratio (blue), and evaluation of Equation (19) (red). (b, c) regression parameters a and b, respectively, as functions of linear and squared diameter ratios 
(coloured), and fits according to Equations (20) and (21) (dashed and dash-dotted black lines). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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The peak stress increases strongly with decreasing damage length and 
residual diameter, while the influence of the triaxial stress state 
evidently vanishes at large damage lengths, with no increase in the peak 
stress for Lc⩾(2∅c), irrespective of the residual diameter. 

The FE analyses showed that the parameters pσ and pε,c are virtually 
identical, and there are only marginal differences between the CW and 
the QST bars despite the strongly differing steel characteristics. The 
distribution of both parameters, pσ and pε,c, can thus be approximated by 
the same empirical relationship, valid for the CW and the QST bars: 

pσ = pε,c = ae− b(Lc/(2∅c)) + c (19) 

with a, b, c = fitting parameters depending on the diameter ratio ∅c/

∅ and the steel type (CW or QST). The parameter c is set equal to unity 
for the CW bars, as expected for long damage lengths, and slightly higher 
(c = 1.01) to achieve a better fit for the QST bars. Fig. 15 (b) and (c) 
show the distribution of the parameters a and b, respectively, found by 
linear regression, as functions of ∅c/∅ and (∅c/∅)

2, respectively, with 
triangles indicating the results for pσ and circles those for pε,c. The pa
rameters for the QST reinforcing steel are shown in blue, and those of the 
CW reinforcing steel in red. The virtually identical values of both pa
rameters and reinforcing steel types is seen in both figures. 

As a further simplification, the fitting parameter a is assumed to be 
bilinear in ∅c/∅, independent of the steel type: 

a =

{
− 0.3∅c/∅ + 1.3 for ∅c/∅⩽0.69
− 3.6∅c/∅ + 3.6 for ∅c/∅ > 0.69 (20) 

and the fitting parameter b is assumed to be bilinear in ∅2
c/∅2, and 

slightly dependent on the steel type: 

b(CW) =

⎧
⎨

⎩
1.0∅2

c

/
∅2 + 6.1 for ∅2

c ∅2⩽0.5 − 7.3∅2
c

/
∅2 + 10.2for ∅2

c

/
∅2 > 0.5b(QST) =

⎧
⎨

⎩

0.2∅2
c

/
∅2 + 6.5 for ∅2

c

/
∅2⩽0.5

− 6.5∅2
c

/
∅2 + 9.9 for ∅2

c

/
∅2 > 0.5

/

(21) 

where the fitting coefficients were again obtained by regression. 
Fig. 15 (a) includes the results obtained from Equation (19) as red lines 
for ∅c/∅ = 0.98 (ζ = 0.05) and ∅c/∅ = 0.45 (ζ = 0.8), once using the 
parameters a and b found by the linear regression of the FE analyses (i.e., 
the values indicated with red triangles in Fig. 15 (b) and (c)), and once 
using the bilinear parameters defined by Equations (20) and (21). Both 
parameter sets fit the results of the FE analyses almost equally well. 

Fig. 16 (a) shows the parameter pε,uc of the CW reinforcing steel in 
blue for different normalised damage lengths Lc/(2∅c) vs the diameter 
ratio ∅c/∅. The curves are serrated for low ∅c/∅-ratios, i.e., high cross- 

section losses, most probably due to the chosen load steps in the FE 
analyses. For a specific damage length, pε,uc increases with the residual 
diameter, i.e., as the residual cross-sectional area approximates the 
initial cross-sectional area, and the influence of the triaxial stress state in 
the adjacent undamaged parts reduces. Similarly, pε,uc increases with the 
damage length, but only up to Lc = ∅c beyond which it is independent of 
Lc. This observation indicates that the damage length influences the 
triaxial stress state in the adjacent undamaged part much less than the 
cross-section loss. 

The parameter pε,uc was found to be roughly proportional to the 
diameter ratio, and can thus be approximated by a straight line with the 
slope m 

pε,uc = m(∅c/∅ − 1) + 1 (22) 

Fig. 16 (b) shows the slopes obtained by linear regression of the FE 

Fig. 16. Simplified model approximating the effects of the triaxial stress state: (a) parameter pε,uc for the CW bars as a function of damage length and diameter ratio 
(blue), and evaluation of Equation (22) (red). (b) regression parameter m as a function of normalised damage length (coloured) and fits according to Equation (23) 
(dashed and dash-dotted black lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. Comparison of material stress–strain relationship (black), stress-mean 
strain relationship over the length Ltot = Lc +2∅ according to the SLM (Equa
tion (6)), blue) and the simplified modelling approach accounting for the 
triaxial stress state (red). Example for ∅ = 18 mm, ∅c = 17 mm, Lc = 10 mm, 
and constitutive material relationship defined in Equation (5). (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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analyses shown in Fig. 16 (a) (blue = CW bars, red = QST bars). The 
parameter m strongly depends on the type of reinforcing steel, with the 
QST steel showing higher values than the CW steel, indicating a stronger 
influence of the triaxial stress state. The slope stays approximately 
constant for Lc > ∅c, i.e., the parameter pε,uc merely depends on the 
diameter ratio, except for very short damage lengths. 

The parameter m is assumed to be bilinear in Lc/(2∅c), hence one 
gets by regression: 

m(CW) ≈

⎧
⎨

⎩

− 1.10(Lc/2∅c) + 1.14 for Lc/2∅c⩽0.5

− 0.05(Lc/2∅c) + 0.62 for Lc/2∅c > 0.5

m(QST) ≈

⎧
⎨

⎩

− 0.95(Lc/2∅c) + 1.26 for Lc/2∅c⩽0.5

− 0.05(Lc/2∅c) + 0.81 for Lc/2∅c > 0.5

(23) 

Fig. 16 (a) shows the results of Equation (22) as red lines for Lc/∅c =

0.2 and Lc/∅c = 1.4. The dashed lines are obtained for the parameter m 
found by the linear regression of the FE analyses (i.e., the values indi
cated with red squares in Fig. 16 (b)), and the dash-dotted lines if m is 
chosen according to Equation (23). 

7.3. Model application 

To assess the influence of the triaxial stress state on the force-elon
gation behaviour of a damaged reinforcing bar, the SLM (Equation (6)) 
is enhanced with (i) the increased apparent uniaxial tensile strength and 
(ii) the equivalent cross-sectional areas of the bar sections above and 
below the cross-section transition, see Fig. 17. 

The material stress–strain relationship εs-σs (e.g. from a conventional 
tensile test, black curve in Fig. 17) is converted into the relationship 
εs,triax-σs,triax accounting for strain localisation and the triaxial stresses, 
which applies for the bar over a length Ltot = Lc + 2∅. For ∅ = 18 mm, 
∅c = 17 mm, and Lc = 10 mm, the blue solid line results according to 
the SLM in Equation (6), exhibiting severe strain localisation mainly due 
to the reduced strain outside the pit (dashed blue line). The red solid line 
results from the simplified modelling approach, described in the 
following, and applying the model parameters pσ, pε,c, and pε,uc to ac
count for the effects of the triaxial stress state.  

1. Estimate the fitting parameters a, b, m using Equations (20), (21), 
and (23), depending on the steel type, with c = 1.0 (CW) or c = 1.01 
(QST).  

2. Use Equations (19) and (22) to determine the parameters pσ, pε,c, and 
pε,uc. 

Fig. 18. Comparison of the strain at peak stress predicted by the FE analyses and the simplified model of Sections 7.2 and 7.3 for (a, b) CW and (d, e) QST bars. For 
(a, d), model coefficients for the simplified model were chosen according to the FE analyses; for (b, e) coefficients were chosen according to Equations (20), (21), and 
(23). (c, f) stress-mean strain curves of the FE analyses, the simplified model and the SLM at the points indicated with target markers in (a, b, d, e). 
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3. Determine the vector of apparent uniaxial stress σs,triax, and the 
auxiliary stress vectors σs,c and σs,uc: 

σs,triax = pσσs

σs,c =
σs,triax

pε,c
=

pσ

pε,c
σs

σs,uc =
σs,triaxAs,c

pε,ucAs
=

pσ

pε,uc

As,c

As
σs

(24)    

4. Obtain the strain vectors εs,c, εs,c, εs,uc, corresponding to the stresses 
determined in Step 3 from the material stress–strain curve 

εs,c =

⎧
⎨

⎩

εs
(
σs,triax

)

Agt

if σs,triax⩽fsu

if σs,triax > fsu

εs,c =

⎧
⎨

⎩

εs
(
σs,c

)

Agt

if σs,c⩽fsu

if σs,c > fsu

εs,uc =

⎧
⎨

⎩

εs
(
σs,uc

)

Agt

if σs,uc⩽fsu

if σs,uc > fsu

(25)    

5. Determine the strain vector ε′
s by weighting and summing up the 

strains of Step 4 

εs,triax =
(Lc − 2∅c)εs,c + 2∅cεs,c + 2∅εs,uc

Ltot
for Lc > 2∅c

εs,triax =
Lcεs,c + 2∅εs,uc

Ltot
for Lc⩽2∅c

(26) 

Note the similarity of Equations (26) and (6). Inserting the stress 
σs,c = F/As,c (Equation (1)) in the εs,triax-σs,triax relationship yields the 
mean strain exhibited by the bar section with length Ltot , accounting for 
the effects of the triaxial stress state. Failure of the bar at the pit occurs, if 
σs,c = pσfsu. 

7.4. Model evaluation 

Fig. 18 (a, b) (CW bars) and (d, e) (QST bars) show the deviation in 
the strain at peak stress of the simplified model from the FE analyses, 
similar to the comparison between FE analyses and the SLM illustrated 
in Fig. 12. The black lines correspond to constant normalised damage 
lengths, and circles indicate the maximum and minimum ratios found in 
the parameter range. 

Fig. 18 (a) and (d) show the results obtained using the individual 
regression parameters of each FE analysis for evaluating Equations (19) 
and (22), while Fig. 18 (b) and (e) are based on the regression param
eters approximated with Equations (20), (21), and (23). In the former 
case, the strain at peak stress is slightly underestimated; in the latter 
case, deviations are generally higher (as expected, since two regression 
steps are now included), and the strain at peak stress is more pro
nouncedly underestimated for very short damage lengths Lc/(2∅c) =

0.2...0.3. However, the deviations are still much smaller than those of 
the SLM neglecting the effects of the triaxial stress state, see Fig. 12. 

Fig. 18 (c) and (f) show the stress–strain curves of the FE analyses, 
the SLM, and the simplified model with original and approximated 
model parameters for the four coloured target markers included in 
Fig. 18 (a, b, d, e), i.e., for the combinations ζ = 0.15, 0.4 and Lc/

(2∅c) = 0.4, 0.8. It is observed that the stress–strain curves of the FE 
analyses and both simplified models are virtually identical, whereas the 

curve based on the SLM underestimates the peak load and the strain at 
peak stress, particularly for shorter damage lengths. 

The presented simplified model thus appears to reasonably capture 
the altered stress–strain behaviour of bars containing a axisymmetric 
corrosion damage, accounting for both strain localisation as well as the 
effect of triaxial stresses near the cross-section transition. However, it 
needs to be validated in a larger experimental campaign for different 
material behaviour and a wider range of geometrical parameters, and 
extended to non-axisymmetric damage in future studies. 

8. Summary and conclusions 

Numerous experimental campaigns aiming to characterise the 
stress–strain behaviour of reinforcing bars affected by local corrosion 
have been conducted to date, using both naturally corroded and artifi
cially damaged bars. However, the behaviour has been described mainly 
empirically, and only few researchers tried to derive mechanically 
consistent models. However, such models are essential to understand 
and describe the various effects caused by local corrosion damages. 

This paper investigated the influence of a triaxial stress state on the 
stress–strain behaviour of reinforcing bars affected by local corrosion, 
focusing on axisymmetric damage. It was found that the triaxial stress 
state inside and near the damage zone of a corroded bar strongly in
fluences the apparent uniaxial stress–strain behaviour, typically 
enhancing the tensile strength and deformation capacity, which explains 
experimental observations that cannot be attributed to strain local
isation alone. Likewise strain localisation, the triaxial stress state is 
mainly governed by the material characteristics, especially in the in
elastic phase, and the geometrical characteristics of the damage. 
Therefore, if local corrosion is considered, it is all the less expedient to 
describe damage of a bar merely by its mass loss, as it is still common 
practice in many experimental campaigns despite having been criticised 
in former studies [5,6,48]. An effort should therefore be made to a better 
characterisation of the corrosion damage geometry and its mechanical 
influence on the apparent uniaxial stress–strain behaviour of affected 
bars, as previously suggested by other researchers [1,4,6]. 

The following findings emerged from experiments and theoretical 
considerations of this study:  

• Due to the local deviation of the stress trajectories, a triaxial stress 
state occurs inside and near the damage zone of reinforcing bars 
affected by local corrosion. The significant radial, tangential and 
shear stresses present in the vicinity of the cross-section transition 
change the local steel stress–strain behaviour, particularly for short 
damage lengths.  

• For axisymmetric damage, the triaxial stress state mainly depends on 
the shape of the steel stress–strain curve in the inelastic phase, the 
damage length and the cross-section reduction. Its effects are most 
pronounced for severe cross-section losses and short damage lengths. 
For damage lengths exceeding twice the residual diameter, the in
fluence of the triaxial stresses on the apparent uniaxial peak stress 
and deformation capacity is negligible. 

• For short damage lengths, the triaxial stress state leads to a consid
erable increase of the apparent uniaxial peak stress, which can be up 
to 35% higher than the uniaxial tensile strength for high cross- 
section losses, with experimental evidence of up to 4% higher peak 
stresses even for slight cross-section losses of merely 10 to 15%. 
Similar experimental findings were reported in previous studies 
[1,14,23,24], and are mechanically substantiated by this study.  

• Experimental observations show that the tensile stiffness of a bar is 
reduced in the undamaged part near the cross-section transition, but 
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increased in the adjoining parts of the damage zone. This is explained 
by the radial and tangential compressive and tensile stresses acting 
on the undamaged and damaged side of the cross-section transition, 
respectively. The length over which the altered behaviour is 
observed comprises approximately one bar diameter.  

• The triaxial stress state was found to alter the yield behaviour near 
the corrosion damage of reinforcing steels exhibiting a yield plateau, 
as previously reported by [23]. The yield plateau (due to the prop
agation of Lüders bands) is lost, and strain hardening directly follows 
the elastic phase. The loss of the yield plateau might be caused by the 
rotating principal directions as direct consequence of the deviated 
stress trajectories, preventing the of Lüders bands to progress.  

• The lower stiffness and reduced yield strength in front of the damage 
zone, combined with the higher peak stress, can lead to a signifi
cantly higher deformation capacity of damaged bars than would be 
assumed by established concepts of strain localisation. This partic
ularly applies to short damage lengths and small to moderate cross- 
section losses below 15…20%.  

• While the triaxial stress state was investigated with a nonlinear FE 
model considering von Mises / J2-plasticity in this study, such a 
model is deemed inadequate for application to entire structures due 
to its high computational cost. Hence, a simplified modelling 
approach is proposed to estimate the combined influence of strain 
localisation and the triaxial stress state on the stress–strain behaviour 
of damaged reinforcing bars. 

• The simplified modelling approach correlates well with the FE ana
lyses carried out in this study. However, it is restricted to axisym
metric damage and needs to be validated in a larger experimental 
campaign regarding different material characteristics and damage 
geometries.  

• The application range of this study is limited to axisymmetric local 
damage of reinforcing bars, and the results may not directly apply to 
bars exhibiting unilateral corrosion damage. It was shown that uni
lateral damages additionally cause bending stresses in the pit vicinity 
[2,12], which may soften the stress–strain behaviour in this part of 
the bar (yield stress is reached at lower load), but may also reduce 
the failure load. 

The increased peak load and especially the increased deformation at 
peak load imply that load redistributions between locally corroding and 
uncorroded reinforcing bars inside a structure might be possible to a 
larger extent than what has been assumed up to now. A recent study [49] 
applying the findings presented in this paper in the analysis of experi
mental results on corroded retaining wall segments [12] concluded that 
such load redistributions directly cohere to the effects of the triaxial 
stress state at the corrosion pits. Corroding structures might thus exhibit 
a higher resilience than considered today and their service life might be 
prolonged. However, more research is needed regarding the influence of 
the pit geometry (especially for non-axisymmetric damage) to further 
substantiate this hypothesis. 

9. Notation  

Agt =

ε
(

fsu,dyn

)
Strain at steel tensile strength 

As, As,c Reinforcing bar cross-sectional area (initial, reduced) 
Aeq

s , Aeq
s,c Equivalent cross-sectional areas in (undamaged, damaged) section, 

for simplified modelling approach 
a Fitting parameter 
b, b1, b2 Fitting parameters 

(continued on next column)  

(continued ) 

c Rib distance, fitting parameter 
c1, c2, c3, c4 Coefficients for steel constitutive relationship 
Es Young’s modulus of reinforcing steel 
F, Fu Axial normal force (in general, maximum) 
fsy, fsy,dyn Steel yield stress (in general, dynamic value) 
fsu, fsu,dyn Steel tensile strength (in general, dynamic) 
K Coefficient for steel constitutive relationship 
Ltot , Lc, Luc Total bar length, length of damaged section, length of section with 

initial diameter (undamaged) 
m Fitting parameter 
pσ , pε,c , pε,uc Parameters to simplified modelling approach to account for the 

influence of the triaxial stresses on the apparent uniaxial stress and 
the axial strains 

r, R Distance from bar centre, outermost radius (R = ∅/2) 
x, x′, x1, x2 Coordinates (parallel to bar axis), with x′ = x − Lc/2 
εs,eng, εs,tr Steel strain (engineering, true, with εs,tr = ln

(
1 + εs,eng

)
) 

εs, εs,c , εs,uc Steel strain in general, steel strain in section with (reduced, initial) 
cross-sectional area 

εs,h Steel strain at hardening 
εs,m, εSLM

s,m Mean strain over total bar length (measured, or according to strain 
localisation model (SLM)) 

εs, εuc Mean strain over 1∅c of damaged zone, and over 1∅of adjacent 
undamaged section, respectively, for simplified modelling approach 

σs,eng, σs,tr Steel stress (engineering, true, with σs,tr = σs,eng
(
1 + εs,eng

)
) 

σs, σs,c , σs,uc Steel stress in general, steel stress referred to (reduced, initial) cross- 
sectional area 

σs,c,max ,

σs,uc,max 

Steel stress at maximum load referred to (reduced, initial) cross- 
sectional area 

σvM, σvM Von Mises stress (in general, mean over cross-section) 
σx, σx, σr, σφ Axial stress (in general, mean over cross-section), radial, and 

tangential stress 
τrx, τrφ, τxφ Shear stresses 
ζ, ζcrit Relative cross-section loss of reinforcing bar (in general, critical) 
ζmart , ζbain Relative cross-section loss of reinforcing bar for which (martensitic, 

bainitic) microstructure layer is lost 
∅, ∅c Reinforcing bar diameter (initial, reduced)  
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Fig. A1 
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Fig. A1. Comparison of experimental results 
(black) with the SLM (Equation (6), blue) and 
the FE analyses (red): (a,c,e,g) Series CW; (b,d,f, 
h) Series QST; specimens with damage lengths 
Lc = 23, 27, 30, and 38 mm. The markers 
indicate the peak loads. Additionally, the total 
gauge length Ltot and the mean strain at peak 
load εs,m,max are reported, as well as the relative 
deviation between the models and the experi
mental result. (For interpretation of the refer
ences to colour in this figure legend, the reader 
is referred to the web version of this article.)   

S. Haefliger et al.                                                                                                                                                                                                                               



Construction and Building Materials 407 (2023) 132737

23

[1] E. Chen, C.G. Berrocal, I. Fernandez, I. Löfgren, K. Lundgren, Assessment of the 
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