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Abstract

After decades since the coming of the Internet, debugging issues between different
domains remains a challenge. Only rudimental primitives are usually available
to other network participants, such as the ICMP-based ping command, or the
already-running applications. Even if some sophisticated tools have been built
over the years, they are not always sufficiently powerful to quickly experiment,
exclude, or confirm hypotheses about an issue. One important limitation lies
in the point of view: constrained by the economic power of the user, only a few
endpoints, or just one, may be available to start the measurement from. Having
the opportunity to choose arbitrarily on the Internet such locations would be a
significant improvement. Furthermore, the use of special purpose packets like
ping, may not really highlight network performance and characteristics. Often,
operators are reluctant to allow ICMP and other debugging protocols: at first
glance, there is no economic advantage in letting others check their status.

In this work, we propose and discuss an infrastructure to tackle such problems.
Initially, we present an efficient system to authenticate latency measurements
such as ping, possibly behind a payment. Then, we provide a design for Debuglets,
consisting of a framework to write and execute small network-oriented programs
in a sandbox, evaluating their overhead in real-world measurements. We also
describe and evaluate how the blockchain can be exploited to facilitate and entice
the deployment of such a system, addressing both distribution and payment needs
of the Debuglets.
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1 Introduction

As long as complex systems have existed, it has always been necessary to have
efficient and accurate devices that can monitor their status and detect anomalies.
Let’s think about the Cursus publicus of the Roman Empire, a massive postal
system, reserved for the military and government, to quickly disseminate infor-
mation and money, or the beacons of the Great Wall of China, which in the event
of enemy attack could quickly report the size of the danger. In modern times, any
device (from transportation to industrial devices or home appliances) has some
form of monitoring that shows users its status, either continuously or on demand.

Even the Internet has its own: some simple and standard, such as the ping

command, or a wide variety of different and often non-interoperable protocols.
From a networking perspective, telemetry and debugging protocols are useful
together to monitor the health and current status of links and devices, to allow
detailed and insightful statistics, and prompt alerting of issues.

In particular, no widespread standard telemetry system allows reliable, secure,
and precise measurements through different network domains. We often refer to
these as Autonomous Systems, or ASes in short [1]. Anyhow, other smaller entities
can take advantage of being able to measure directly what is happening on the
Internet. For example, an end user may like to understand why their Internet
connection is not working properly when connecting to a website, or a technician
may want to fix a firewall issue on its rented bare-metal server in a shared data
center. There are other parties, and not only Autonomous Systems, which access
and see the Internet from different perspectives.

The goal of this work is to provide a novel perspective to network measure-
ments, developing a proof-of-concept design and implementation for the Debuglets
infrastructure. A Debuglet is a piece of code that allows automated execution of
simple, but arbitrary, network communications, aiming to measure some features
of the network, such as latency, bandwidth, loss rate, and others. We try to address
this problem in the Inter-Domain setting: several independent and untrusted enti-
ties, such as Autonomous Systems, want to measure themselves and others. An
involved party should be able to run any piece of code, and the remotes should
be able to accept it, reject it, run it in a safe and controlled environment, and,
potentially, benefit from it.

Furthermore, future Internet architectures, such as SCION [2], allow a higher
degree of control and flexibility from the packet sender side, such as path-aware
networking. We will elaborate also on such details to show that it can be easier
and more efficient to highlight where a problem lies, compared to the current
per-hop routing.
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1 Introduction

Additionally, we develop and evaluate a simple design for authorized ping-like
measurements, that can be used together with the debuglets, or alone, to allow
only specific entities to get data. We think that such capability may encourage
network operators to allow debugging protocols, such as ICMP, because they can
receive a payment in change of the measurements.

1.1 Goals of a Debuglet

The main goal of this Thesis is to provide a platform to develop, distribute, and
run arbitrary network measurements, the Debuglets. There are several properties
that are considered:

• Real-time. Measurements have to be executed in a short timeframe, usually
when a network failure happens or has to be analyzed.

• Accuracy. Measurements should reflect the real network behavior, and the
system itself should not add a significant overhead to the measurements.

• Programmability. The network measurement system should secure a high
level of programmability to employ various protocols, applications, and
devices, ensuring the consistent and precise reproduction of reported issues.

• Interoperability. The same measurement should be executed indepen-
dently from the underlying system. Network operators have diverse devices,
topologies, and capabilities: all of them have to be coherently supported.

• Control. Each AS should be able to monitor and decide which Debuglets
are considered safe to be executed, to prevent the leakage of sensitive infor-
mation from the AS domain.

• Deployability. To be widely adopted, the system should be easy to integrate
and should provide clear benefits to the participants.

• Verifiability. Network entities should be able to verify ex-post measurement
results, detect improper behaviors, and possibly make faulty operators
accountable for their problems.

1.2 Overview and Organization of the Report

In this work, we will first show that exploiting known and commonly used
techniques, such as ping, is not sufficient to highlight every network issue. We will
also remark that the performance and characteristics of network measurements
highly depend on the policies that are applied to running traffic.
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1.2 Overview and Organization of the Report

After a brief introduction about the used technologies, we will describe some
components that can be used as building blocks for the telemetry system and
approach the problem from two different points of view.

Initially, we tried to address the problem from a simple point of view. How is it
possible, for Internet operators, to allow measurements that must minimize the
computation overhead, such as latency ones, but that should provide authorization
beforehand, such as a payment?

We develop and evaluate an efficient and low-overhead packet authorization
mechanism. We will show how a remote party can use a pre-shared token to
send a defined amount of packets without significant overhead. It has some
analogies with DRKey [3] and it is compatible with it, but this specifically regards
a single-use key authorization mechanism for network measurements.

We, however, think that it is not sufficient and does not incentivize enough
its adoption. A novel approach that combines remote code execution, payment
exchange and the distribution of the results can be worthwhile.

For that purpose, we design a framework, based on WebAssembly, to allow
remote and secure sandboxed code execution to run network measurements, the
debuglets. We will evaluate it to show that debuglet measurements are comparable
to the normal ones.

Furthermore, we will describe how to combine them to be used in a real-
world environment, using a blockchain as a way of communication. Although
blockchain itself is not the only solution that achieves such properties, it simplifies
and orchestrates the overall measurement system and allows easy integration of
new parties in the environment.

In the end, we will discuss which are the economic implications of the proposed
system. We will also describe what are the still open points that we consider in
need of being addressed.
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2 Motivation

As of today, a large amount of manual effort is needed to debug issues outside of
the controlled domain, mainly because of the lack of a standardized infrastructure,
excluding some rudimental tools such as ICMP.

Inside a single network, own telemetry and failure detection systems can be
freely deployed. Very often, however, they are not interoperable and limit the
observable area.

When working with peers and other domains, instead, everyone works alone.
Debug is manual, using ping, traceroute, and a few more sophisticated tools.
For example, there exist commercial tools, such as PingPlotter, that provide an
articulate solution to monitor connectivity status. As the name suggests, it mainly
exploits ICMP to send systematic requests to target nodes.

In this chapter, we want to show that just ICMP is not sufficient to analyze a
complex environment such as a worldwide network. Fundamentally, we highlight
how different protocols receive different treatment from the provider, based on
the assumptions and expected behavior of the overlying applications and users.

This observation leads us to think that, to have a clear view of what and where
are the issues, the measurement traffic should be as similar as possible to real
traffic.

2.1 Setup

We conducted a simple experiment. Several hosts send a packet to a remote host
and expect a reply back. The Round Trip Time (RTT) is measured and logged.
Usually, this is the behavior of the ping command, which sends an ICMP echo
request to the target and waits for an ICMP echo reply. We extended this approach
also using other known transport-level protocols (UDP and TCP) and with an
unknown/custom protocol. In detail:

UDP packets with random payload,

TCP segments, without any special flag (no SYN/FIN...) with random sequence
numbers,

ICMP packets, with Echo as type,

Custom Protocol packets: IP packets, with an unassigned protocol number (201)
and random payload.
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2 Motivation

These four protocols all are encapsulated in IP packets, and they represent the
transport layer, with the exception of ICMP. Please refer to Section 3.1 for further
details.

We deployed several low-end virtual machines in the Digital Ocean network.
We chose the London data center as a target. All the virtual machines around the
world sent one packet per type every second, over a day.

We wrote two separate Go applications, one that sends requests and the other
that behaves as an echo server, forwarding back the received packets. Payload
is randomized, but the length of the packet and the transport-level header, if
present, is the same for all the types.

We did not force any failure or network topology change. All measurements
are just real-world behavior over one day.

2.2 Results and Discussion

Table 2.1 summarizes the complete measurement results.

Table 2.1: RTT and drop rate between the specified location and London. Each
measurement consists of 86400 packets, one per second over a day.
Data is expressed in milliseconds. Loss rate is given in per-thousandths
(‰).

Location
UDP TCP ICMP Custom Protocol

mean std mean std mean std mean std

Bangalore
146.01 7.01 158.05 5.27 145.44 3.89 151.44 2.87

0.23‰ lost 1.72‰ lost 0.57‰ lost 0.41‰ lost

Frankfurt
14.75 1.78 14.72 1.22 11.95 0.51 15.36 0.55
0.00‰ lost 1.09‰ lost 0.01‰ lost 0.00‰ lost

New York
73.94 6.64 71.58 6.12 76.08 3.98 76.47 4.02
5.59‰ lost 16.19‰ lost 0.24‰ lost 0.27‰ lost

San Francisco
134.79 1.00 134.42 0.70 134.62 0.66 135.09 1.71

0.00‰ lost 1.56‰ lost 0.02‰ lost 0.03‰ lost

Singapore
176.14 10.04 176.95 4.33 181.74 3.00 178.98 4.61

0.09‰ lost 1.74‰ lost 0.06‰ lost 0.03‰ lost

Sydney
274.01 7.79 278.60 5.19 277.99 5.15 278.44 5.18

0.50‰ lost 1.09‰ lost 0.96‰ lost 1.01‰ lost

ICMP and custom IP protocol packets exhibit greater stability in round-trip
times (RTT) when compared to UDP and TCP protocols. This behavior may be
attributed to specific treatment by routers: ICMP packets are handled differently
due to their primary use in network debugging, while custom IP protocol packets
lack dedicated routing rules, resulting in their default passage along reliable
routes.
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2.2 Results and Discussion

In contrast, UDP displays the most pronounced variability in measurements.
This phenomenon can be traced to the assumption that applications utilizing
UDP can withstand some degree of packet reordering. The variation in RTT may
arise from the intricate load balancing of UDP at a more granular level than the
typical per-flow or per-flowlet [4] basis seen with TCP flows.

TCP, on the other hand, records the highest rate of packet loss. This can be
elucidated by the tendency of routers to de-prioritize TCP packets on congested
links, prompting senders to curtail their transmission rates. In contrast, UDP may
not be as responsive to packet loss. Notably, the dropping of TCP packets doesn’t
lead to data loss as TCP will simply initiate retransmission, whereas applications
reliant on UDP may encounter data loss due to unrecovered packet loss.

Figure 2.1 illustrates a 4-hour segment within a 24-hour timeframe, depicting
the round-trip time (RTT) measurements between London and New York. In
comparison, UDP and TCP consistently demonstrate lower RTT values than ICMP
and custom IP protocols. Notably, intermittent spikes of approximately 5 ms
occasionally manifest, indicative of alterations in forwarding behavior, such as
shifts in routing paths.

Moving to Figure 2.2, a comprehensive 24-hour overview of results between
London and Frankfurt is presented. For UDP, distinct clusters emerge, likely
representing four distinct routes utilized for forwarding UDP traffic. Another
intriguing finding is that, across several hours, UDP and custom IP protocol RTT
experience noticeable upticks that remain absent in ICMP and TCP metrics.

Figure 2.3 further accentuates these observations by showcasing UDP’s RTT
variance between Bangalore and London, spanning a random 30 ms spectrum.
Conversely, alternative measurements, while consistently stable over short in-
tervals, exhibit multiple fluctuations throughout the day without a discernible
pattern.

These findings underscore the reality that network treatments diverge for dif-
ferent packet types, encompassing measurement and data packets. Consequently,
diagnosing performance concerns for a TCP application is best achieved through
the examination of TCP packets, as opposed to relying on ICMP or UDP packets.

7



2 Motivation

Figure 2.1: New York - London RTT latency, over 4 hours. The leftmost plot
shows latency variations over time, while the four vertical line plots
represent the density function of latency distribution for each protocol
type, logarithmic scale.

Figure 2.2: Frankfurt - London RTT latency, 24 hours.
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2.2 Results and Discussion

Figure 2.3: Bangalore - London RTT latency, 24 hours.

Figure 2.4: Sydney - London RTT latency, 24 hours.
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3 Background

In this chapter, we will provide the necessary background information about the
components underpinning the thesis work.

3.1 Network Protocols

In its present configuration, the Internet comprises a network of interconnected
independent entities. These entities exchange data in the form of nested packets,
each composed of a header and payload. The payload may further consist of a
higher-level protocol packet, thus forming a nested pair of headers and payloads,
or it may represent the application data itself.

We categorize the Internet’s protocol stack into four fundamental layers, in the
following order:

• The Network Access Layer, often represented by the Ethernet protocol
and supported by physical protocols such as WiFi, primarily facilitates
communication between devices within the same network. For the purpose
of this work, we do not delve into the details of this layer.

• The Internet Layer, crucially enables the connection of devices across differ-
ent networks, assigning a unique address to each connected node.

• The Transport Layer, responsible for data transmission tailored to specific
application requirements, includes functionalities like retransmission and
reordering when necessary. Notable examples at this layer include TCP and
UDP, which will be discussed later.

• The Application Layer, encompassing the messages exchanged by network
applications.

It is important to note that these protocols, on their own, do not inherently pro-
vide any security measures, especially concerning privacy, when two applications
communicate across different networks. Over the years, protocols such as TLS
have evolved into essential building blocks of the Internet, even though they may
not be explicitly distinguishable within these definitions.

11



3 Background

3.1.1 IP

The Internet Protocol (IP) is a fundamental communication protocol that governs
the routing and addressing of data packets across computer networks. It facilitates
data transmission between devices connected to the Internet. IP corresponds to
the Internet Layer in the TCP/IP stack and is responsible for encapsulating
data into packets, adding source and destination addresses, and supporting how
packets should be routed through interconnected networks.

The most important fields of the IP header represent source and destination
addresses. Routers and other network devices use them to define the path that
the packet should follow. In general, they may also use further information, such
as other protocol fields (for example, TCP and UDP) or additional data, as in the
case of SCION.

IPv4, the most widely used version of IP, uses 32-bit addresses, allowing for
around 4 billion unique addresses. IPv6 was developed to address the exhaustion
of IPv4 addresses, utilizing 128-bit addresses to accommodate a larger number of
devices. This work mainly uses IPv4 as the reference protocol, but extending the
designed infrastructure to IPv6 should be straightforward.

3.1.2 ICMP

ICMP (Internet Control Message Protocol) is a vital component of internet com-
munication, employed for diagnosing transmission problems and troubleshooting.
It finds prominent use in the Ping command, employing ICMP echo requests and
echo replies to assess connectivity. Beyond this, ICMP serves additional purposes.
For instance, the traceroute command leverages the IP time to live (TTL) mecha-
nism to generate ICMP TTL-exceeded messages. When pinging, the TTL value is
incremented sequentially, allowing routers to respond to the source with an error
message if the TTL limit is surpassed. This aids in identifying network nodes
along a path and potential latency issues.

Due to its role as a control protocol, ICMP may be prioritized and treated differ-
ently by network devices compared to regular data traffic. ICMP packets could
receive special attention because they are essential for network diagnostics, error
reporting, and management. Network devices, including routers and firewalls,
typically ensure that ICMP packets are processed promptly to maintain the health
and efficiency of the network. We have already discussed this possibility in the
Motivation chapter.

3.1.3 TCP

TCP (Transmission Control Protocol) is a fundamental communication protocol
within the Internet Protocol Suite, ensuring reliable and orderly data transmission
between devices. It operates in a stream-oriented manner, breaking down large
messages into smaller packets for efficient transmission and reassembling them at

12



3.1 Network Protocols

the destination. If packets are not received or are deemed lost, TCP automatically
initiates a retransmission process, ensuring data integrity.

This mechanism requires more resources from both the sender and receiver
sides compared to other protocols, like UDP, as acknowledgments and sequencing
information must be managed. This meticulous approach guarantees that data is
delivered accurately and in the correct order.

One of TCP’s significant features is its adaptive flow control. It monitors the
capacity of the receiver’s buffer and adjusts the transmission rate accordingly
to prevent overwhelming the recipient. This dynamic adjustment also prevents
congestion and optimizes network efficiency. However, due to its reliability mech-
anisms, there might be cases where the time taken to receive data greatly exceeds
the latency between two hosts. This is due to factors like buffering, automatic
retrying of lost packets, and the occasional need to flush or reorganize the incom-
ing data stream. Despite this potential delay, TCP ensures data consistency and
integrity, as long as no active adversaries are trying to alter the flow, making it
a preferred choice for applications that prioritize accuracy and completeness of
information transmission.

3.1.4 UDP

UDP (User Datagram Protocol) is a lightweight communication protocol within
the Internet Protocol Suite, offering a simpler and faster alternative to TCP. Unlike
TCP, UDP does not include any bandwidth control mechanism, allowing senders
to transmit data at their desired rate without regulation. This can be problematic
if the links do not have enough capacity to support the flowing traffic, involving
packet queueing and delays, losses, and, generally, lower transmission quality.
Dropped packets in UDP are not automatically retried unless the higher-level
protocol incorporates a mechanism for such recovery. While UDP lacks the
reliability and error-checking mechanisms of TCP, its simplicity and speed make
it a valuable choice for scenarios where immediate data transfer is more crucial
than perfect data integrity, such as in multimedia streaming, online real-time
interactions, and certain types of Internet of Things (IoT) applications.

One of the notable characteristics of UDP is its efficiency in terms of resource
usage. Minimal resources are required from both the sender and receiver, primar-
ily centered around the transmission and reception of individual packets. This
results in lower overhead and faster processing times. UDP introduces minimal
additional delay between the sender and receiver, as the transmission time of
a packet essentially corresponds to the communication delay. This low latency
makes UDP preferable for applications that prioritize quick data delivery, even if
it comes at the cost of occasional data loss.

13



3 Background

3.2 SCION

SCION is an emerging Internet architecture with the aim of replacing the outdated
and insecure Border Gateway Protocol (BGP) for inter-domain routing. Its primary
goal is to achieve significant improvements in security, efficiency, scalability, and
reliability.

Currently, SCION is actively deployed in real-world scenarios, with several
Swiss service providers offering Internet connectivity through SCION. Addition-
ally, there exists a test and development environment known as SCIONLab [5],
which spans across various universities and institutions worldwide.

SCION comprises multiple components that collectively enable the attainment
of the aforementioned goals. Two crucial features are Path Awareness and DRKey,
which are elaborated upon in the subsequent sections.

From a BGP perspective, the Internet is composed of independent Autonomous
Systems (ASes) that exchange information concerning routing policies. Each
AS autonomously determines its forwarding policies based on routing tables,
typically aiming to minimize the cost of reaching destinations via the shortest
path.

Over the years, various attacks targeting BGP have proven effective in dis-
rupting connectivity and diverting traffic towards malicious destinations. Fur-
thermore, BGP is plagued by slow convergence and inefficiencies during packet
transmission, as each hop requires a lookup in the forwarding table. SCION aims
to rectify these vulnerabilities and inefficiencies by introducing an innovative and
radically different approach to packet forwarding, addressing these shortcomings
head-on.

3.2.1 Network Architecture

SCION introduces a new layer above the Autonomous Systems. The Internet is
partitioned into Isolation Domains (ISD), each serving as an independent root of
trust for all connected ASes within that domain. Within each Isolation Domain,
a collection of ASes forms the ISD Core. These ASes typically establish peer
relationships and facilitate communication with other isolation domains.

The ASes constituting the ISD Core are enumerated, along with other relevant
information and their public certificates, in the Trust Root Configuration (TRC)
file.

All other non-core ASes form a hierarchical structure with parent-child rela-
tionships that ultimately connect to the Core of the ISD. Additionally, peering
links may exist between these ASes, both within the same ISD and across different
ISDs. An AS can belong to multiple ISDs.

In contrast to BGP, where IP addresses are allocated to Autonomous Systems
and can be dispersed throughout the Internet, SCION treats an AS also as a
topological aggregation of various addresses. To facilitate routing and uniquely
identify locations, SCION mandates that the ISD and AS identifiers (referred to as
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ia) must be specified along with an IP address. This approach enables the public
utilization of the same IP address in different networks, as long as the ia-address
couple remains unique.

Figure 3.1: Example of a SCION network topology, from the SCION Book [2]

3.2.2 Path-Aware networking

One of the primary objectives of SCION is to replace the traditional per-hop
forwarding model with a secure path-aware networking approach, where the
source entity selects the preferred route.

The dissemination of paths is achieved through a process called beaconing.
Starting from the Core ASes, Path-Segment Construction Beacons (PCBs) are
propagated through parent-child and peering links. Each AS along the path
appends its entry, representing itself and the interfaces used, and signs it. ASes
can selectively choose which received PCBs to forward and which to retain as
path segments. These segments are categorized into down segments, which flow
from parent to children, and up segments, which flow from child to parents. A
similar process occurs within the same Core and across different ISDs to generate
core segments.

When a packet needs to be sent to different ASes, the source constructs a path
by combining multiple path segments. A maximum of three segments can be
appended, with the first being an up segment, the second a core segment, and the
third a down segment. These segments can be omitted if not required, for example,
when the target resides on a direct parent-child path or when no Core ASes
need to be traversed. Segments may also be shortcutted if a peering link exists,
eliminating the need to route up to a Core AS. For a more detailed explanation,
please refer to the SCION Book [2].
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In contrast to BGP, where each AS independently determines how to forward
packets based on internal policies, SCION ASes are expected to follow the path
designated by the source. This approach enhances routing performance by elimi-
nating the need for routers to search routing tables for packet forwarding deci-
sions.

3.2.3 Dynamically Recreatable Key (DRKey)

The DRKey infrastructure plays a pivotal role in enabling symmetric-key opera-
tions among different Autonomous Systems (ASes) within the SCION Network.
Its primary objective is to facilitate more efficient computations when compared
to the use of asymmetric public-private key pairs. Within the AS, Control Services
engage in the exchange of shared secrets, deriving them from a common root.

This approach empowers routers and other network devices to generate shared
keys through straightforward symmetric key operations, in particular regarding
message authentication.

DRKey employs a hierarchical key derivation scheme that commences with a
secret value at the AS level. From this initial secret, the infrastructure proceeds to
derive AS-to-AS (shared between the two involved ASes) and Host-to-Host secret
keys through the utilization of a Key Derivation Function (KDF).

Refer to the SCION Book [2], Chapter 3, for further details.

3.3 Symmetric Cryptography and Key Derivation

Functions

Packet authorization within the system relies on a Key Derivation Function (KDF).
As the name implies, a KDF is employed to generate new secrets from an existing
key, often incorporating additional parameters as input.

While avoiding formality, the key properties of a KDF, in the context of this
work, are as follows:

• Non-invertibility: It should be computationally infeasible to derive the input
secret key from its output.

• Pseudorandomness: The KDF’s output should be indistinguishable from a
random bit sequence unless both the input key and parameters are known.

• Computational Efficiency: Within the context of this thesis, the KDF should
execute rapidly. However, in certain scenarios, such as password hashing,
rapid execution is undesirable as it can open the door to dictionary attacks.

While there are several dedicated KDFs designed for this purpose, such as
PBKDF2 [6], our work employs a simpler and more efficient variant derived from
CBC-MAC.
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CBC-MAC, short for Cipher Block Chaining Message Authentication Code,
instantiated with AES, is a cryptographic construction primarily utilized for
message authentication. It functions by chaining the AES encryption of each
message block with the preceding ciphertext block, ultimately producing the final
ciphertext block as the Message Authentication Code (MAC).

We define the CBC-MAC function as tag = cbc-mac(key,iv,txt), where:
• key [16 bytes] represents a secret value.
• iv [16 bytes], the Initialization Vector, is employed as input during the

initial iteration of the algorithm. For AES-CBC encryption purposes, it
should remain unpredictable.

• txt [k ·16 bytes] denotes a sequence of k 16-byte blocks that require authen-
tication.

• tag [16 bytes] serves as the authentication result. It can be used to verify
the integrity of txt, and it can be demonstrated to be a pseudo-random
function.

Given that the tag is a pseudo-random value dependent on both the key and
the text, it can also function as a key derivation function.

We refer to this as kdft, instantiated as kdft(key,args) = cbc-mac(key, |0| ·
16,args). In essence, the output of kdft corresponds to the tag provided by
cbc-mac, with zero serving as the iv. This identical scheme is employed in the
DRKey SCION implementation [7].

3.4 WebAssembly

WebAssembly [8], abbreviated as WASM, has a relatively short but impactful
history in the context of web development. It was first introduced in 2015 as a low-
level binary instruction format, designed to enable high-performance execution
of code on web browsers. Developed as a collaborative effort by major browser
vendors including Mozilla, Google, Microsoft, and Apple, WebAssembly aimed to
address the limitations of JavaScript in terms of speed and efficiency for compute-
intensive tasks. In 2017, major browsers began supporting WebAssembly, marking
its official entry into mainstream web development. Since then, WebAssembly has
rapidly evolved, finding use not only in browser applications but also expanding
its reach to server-side environments and even emerging as a compilation target
for languages beyond JavaScript, contributing significantly to the advancement of
web technology. In this work, we will mainly focus on its usage outside of a web
browser.

3.4.1 Design

WebAssembly is a binary code format that is designed to be efficient to be transmit-
ted on the network, compared to other interpreted languages such as JavaScript.
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The low level instructions are intended to be executed in an abstract virtual
machine, based around the concept of stack. It means that the instructions use as
operators what is present on the stack, pushing and popping values on occurrence.
By default, the WASM virtual machine has a single region of memory, called linear
memory, that is used by the executing process for its data. New regions can be
instantiated at runtime. We refer to the official specification [9] for further details.

The virtual machine implementation is in charge of allowing it to communicate
with the external world. By design, it does not provide any interface, function
or system call. It is up to the interpreter to provide such functionality. The
interpreter can also allow direct access to the linear memory to other applications.

The WebAssembly virtual machine natively supports only simple integer and
float types, along with references.

Furthermore, the running environment is isolated and any piece of untrusted
code can be safely executed, thanks to the tight interaction control that the virtual
machine can enforce.

Given that, the weakest point in the chain lies in the exposed functions, which
can be vulnerable. For example, there is ongoing research work that analyzes the
WASI interface in one of its implementations [10]. WASI is used to provide the
WebAssembly code with a low-level system interface to interact with the host
machine, similar to one offered by a Kernel.

3.4.2 Modules and Import/Export functions

While WebAssembly offers a limited interface, its true power lies in its modularity
and interoperability.

Programs in WebAssembly are organized into modules, which serve as struc-
tured containers for defining functions, custom types, and global variables. Mod-
ules also support exports, which are names (variables or functions) accessible from
external code, and imports, categorized into namespaces, representing function
(and other structure) signatures. The implementation of imports is deferred to
the external environment. Modules can be linked together, effectively connecting
the exports of one module to the imports of another.

A module in WebAssembly represents a self-contained unit of code and defini-
tions that can be executed independently. However, in a running WebAssembly
environment, multiple modules can coexist and interact.

3.4.3 Performance considerations

Fundamentally, WebAssembly can be executed in two modes:

Interpreted: In this mode, the engine executes the code instruction by instruc-
tion, updating the memory as needed. While this approach is simple to
implement and supported by virtually all WebAssembly engines, it tends to
be slower due to the requirement of multiple machine instructions for each
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WebAssembly instruction. For example, a simple addition operation, which
can be executed in a single cycle by hardware (assuming data is readily
available in registers), involves several steps when interpreted: loading the
instruction, fetching the operands, performing the operation, and storing
the result back.

Compiled: In the compiled mode, WebAssembly code is translated into machine
instructions before execution. Although this incurs a startup overhead, it
offers significant performance advantages. Compilation allows for machine-
and architecture-specific optimizations, resulting in improved execution
speed. The reference engine used in this work, Wasmer [11], supports this
mode for specific platforms like x86 and ARM64.

While compiling WebAssembly code provides measurable performance benefits
that make it nearly as fast as other compiled languages, it is important to consider
the context switch between WebAssembly and the external environment. The
authors of Wasmer have conducted various benchmarks, comparing it to native
Rust code [12] [13].

Further discussion on this topic, especially in the context of network measure-
ments, will be presented in Section 5.3.

3.5 Sui and Blockchain

A blockchain is a distributed database and computational engine that accepts
transactions from its participants and updates its state without the need for central
authority management. One of its primary applications involves facilitating
payments through a cryptocurrency maintained within the system itself.

A blockchain consists of blocks, each containing a set of transactions. Nodes
append blocks to the chain in a manner that ensures they are never removed or
altered, creating a chain of hashes. Modifying a block necessitates updating all
subsequent blocks to match its new hash.

Users within the blockchain are represented by unique addresses, typically
associated with digital signatures. While the public key can be linked to the
address, the private key is used to sign transactions or other operations, certifying
that the issuer owns the address.

Fundamentally, there are two working paradigms for blockchains: Proof of
Work and Proof of Stake [14].

Proof of Work (PoW): To append a block to the chain in PoW, the appending
node must complete a computationally intensive task. For example, in
Bitcoin, this involves finding a nonce such that, when combined with the
block data, produces a hash value smaller than a defined threshold (deter-
mined by the network’s difficulty). As of August 2023, this difficulty value
necessitates approximately 5.2 · 1013 · 232 ≃ 2 · 1023 hash computations on
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average to append a new block. However, this energy-intensive approach
poses scalability and environmental sustainability challenges for Bitcoin.

Nevertheless, PoW ensures that appending or altering illegitimate blocks is
virtually impossible, as it requires the costly computation of hashes for the
modified block and all subsequent blocks.

Proof of Stake (PoS): In PoS, nodes participating in block appending must demon-
strate control over a certain amount of currency, often through digital sig-
natures, to add new blocks to the blockchain. While this approach is less
computationally intensive compared to PoW, it introduces new attack possi-
bilities [15]. A well-thought-out design is crucial to determine which parties
can validate transactions and how many of them must agree on the same
view.

In this work, we utilize Sui [16], a commercial PoS blockchain developed by
MystenLabs, known for its emphasis on programmability.

3.5.1 Sui Architecture

Sui is a blockchain system built around its distributed object storage. Users
participating in the blockchain can send transactions and update the state based
on their capabilities and smart contract functions.

The network’s core comprises a set of validators [17]. These validators are
responsible for receiving transactions from users, evaluating their acceptance
or rejection, and updating the storage accordingly. In cases where a transaction
requires consensus among the validators, at least two-thirds of them, weighted by
vote power, must reach an agreement. The agreement is signified by appending a
signature to the transaction.

The voting power of validators is determined by the amount of Sui Coins (SUI)
they possess or have received through delegation. Currently, a minimum stake of
30million SUI is required. However, no single node’s voting power can exceed
10% of the total.

Additionally, anyone can establish a full node within the network. Full nodes do
not partake in voting operations but serve as monitors and receivers of updates
from validators. They also function as endpoints for clients, allowing them to
query the blockchain’s current state.

Time within the Sui network is divided into epochs, each approximately lasting
a day. When an epoch concludes, new nodes may be elected as validators or
undergo updates.

3.5.2 Smart Contracts and Objects

The original idea of blockchain as cryptocurrency only considers having entities
that exchange money with no custom action except for what is defined by the
entities.
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Smart Contracts are pieces of code that are executed in the context of the
blockchain, usually, they aim to evolve the state with more complex operations
than just sending money. In practice, they can be Turing-complete machines that
work on the blockchain state.

Everything in Sui rotates around the concept of Object [18]. Even if they are
related to objects in commonly used Object-Oriented languages, a better analogy
is with the struct concept, for example in C or Rust, since they are mainly
composed of structured data and not code. As expected, objects can be nested to
allow elaborate structures to exist on the blockchain.

On the other side, objects are contained in modules, that may define functions
that operate on them, from the instantiation to the deletion.

Object Ownership

There are two distinct types of object ownership in the system, each designed to
efficiently handle objects based on their capabilities.

Shared: In the case of shared ownership, any party can execute transactions that
reference the object. However, this does not imply that anyone can perform
any action with the object. Instead, it means that if there are smart contract
functions capable of interacting with it, these functions can be called by any
address. The functions themselves are responsible for verifying the caller’s
permissions and updating the state accordingly.

Owned: Generally, an object can be owned by a specific address, granting exclu-
sive rights to that owner for referencing and executing transactions with
the object. In some cases, an object may also be owned by another object,
referred to as the Parent. This scenario typically applies to dynamic fields,
allowing direct indexing of the Child object. However, from the smart con-
tract code perspective, access to the Child object must occur through the
Parent. This indirect access restricts usage to the original address that owns
the Parent.

Transactions involving owned objects offer computational advantages. A single
validator can accept such transactions, as only the owner can sign and execute
transactions referencing these objects. Therefore, synchronization with other
validators is unnecessary, provided the transaction is valid.

In contrast, transactions involving shared objects must pass through the Sui
Consensus Engine [19] [20], a process that is slower, more costly, and requires
approval from two-thirds of the validators. A drawback is that, when synchroniz-
ing different owned objects is not guaranteed by the blockchain itself, it must be
managed externally.

Objects can also transition to an immutable state after their creation, becoming
Packages. In this state, they lack an owner and can be referenced in any transaction.
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3.5.3 Gas and costs of using Sui

Sui validators receive compensation for their efforts through gas, which users must
provide when executing transactions. Gas represents a quantity of tokens included
with the transaction to cover its execution costs. For an in-depth understanding
of these concepts, we refer to the official documentation [21].

Let τ denote the transaction. The fee consists of two components:

GasFees[τ] = CompUnits[τ] ·CompPrice[τ] +StorageUnits[τ] ·StoragePrice

Where:

• CompUnits[τ] depend on the transaction code’s complexity. More code and
computational resources required by the transaction lead to higher values.
Minimizing the number of instructions in a smart contract can help reduce
this cost. Additionally, it may indirectly depend on the storage required
by objects referenced in the transaction. The cost can increase when large
objects need to be accessed and manipulated.

Notably, CompUnits[τ] utilizes a bucketing mechanism. It is not a continuous
function but a step function, grouping together transactions with a similar
number of operations. This implies that similar transactions typically have
the same factor, even with minor differences. Executing the same transaction
with the same parameters multiple times usually incurs the same cost,
assuming consistent pricing for each operation.

• CompPrice[τ] consists of two components summed together: ReferencePrice
and Tip[τ]. The former represents the base computation price, determined
by validators in each epoch. The latter, Tip, represents an additional amount
the client is willing to pay for the transaction τ . Generally, this can be as
low as zero but may serve as an incentive for execution.

• StorageUnits[τ] depends on the space the transaction will occupy with
newly created or modified objects.

• StoragePrice represents the cost of handling a unit of storage. Unlike
ComputationPrice[τ], it is updated externally to align with the expected
cost of physical data storage. Over time, this cost should decrease.

Additionally, each object has an associated Gas value known as the storage rebate.
This amount is refunded to those who delete the object as compensation for the
savings. Generally, it is slightly smaller than the amount paid for storage during
creation and updates.
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per-packet authorization

In this chapter, we introduce and assess a lightweight authorization method
designed for time-sensitive packets, particularly those used in latency measure-
ments. We delve into their practical applications and offer insights into their
potential integration within existing systems, such as the DRKey infrastructure.

The primary objective of this type of authorization is to restrict packet transmis-
sion and reception to specific parties. In the current landscape, numerous hosts
across the Internet either block or modify the behavior of ICMP (Internet Control
Message Protocol) packets to prevent unrestricted measurements by external par-
ties. In some cases, individuals may wish to initiate occasional ping requests to a
specific host. Although this can be permitted through firewalls, it lacks flexibility
and automation, often necessitating the intervention of both parties.

We posit that offering the option of authorization for time-limited and usage-
bound packets can prove valuable, particularly from the perspective of service
providers who may wish to offer their services to external entities.

In general, payment may not be obligatory: tokens can be allocated when
requested using an arbitrary agreement scheme.

4.1 Attacker model

The primary objective of this component is to exclusively provide measurements
to authorized parties, typically those who have made the requisite payments. It
is imperative to ensure that an attacker cannot request measurements without
possessing valid authorization.

Conversely, it is evident that an on-path attacker can gather information simply
by observing the flow of traffic. However, the cost of such passive attacks can be
prohibitive, especially in high-bandwidth scenarios, depending on the detectabil-
ity of measurement packets. We consider such passive attacks to be beyond the
scope of this discussion.

Additionally, we exclude from our scope any attacks that seek to actively manip-
ulate measurement results, such as intentionally dropping packets, introducing
delays, or prioritizing them. Furthermore, we do not address Denial of Service
(DoS) attacks, as numerous commercial solutions and ongoing academic research
already focus on mitigating this pervasive issue.
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4.2 System Overview

Two distinct entities are involved in the measurement process:

Remote represents the entity initiating the measurement. This could be an end
user, an internet service provider, or any other relevant party.

Target refers to the device or system being subjected to measurement.

In our initial approach, the term measurement primarily encompasses Round-
Trip-Time latency and unidirectional bandwidth measurements, originating from
the Remote entity and directed towards the Target. These measurements can be
further expanded and refined to accommodate more complex and specific metrics.

The measurement system comprises three essential software components, as
depicted in Figure 4.1 for a high-level overview:

Client is situated on the Remote side and is responsible for tasks such as obtaining
a valid authorization key, transmitting packets, and conducting the actual
measurements.

Telemetry Service operates on the Target side and plays a pivotal role in verify-
ing authorization and issuing valid authorization keys.

Reflector is also located on the Target side and serves as the responder to queries
generated by the Client.

Client

Telemetry Service

Reflector r

Remote Target

1 - Key Request ⟨req⟩

2 - Key Km

⟨req⟩

3 - Packet with Authorization using Kpkt

i

4 - Response

0 - Krefl

r

Figure 4.1: High-level scheme representing involved components. Definitions of
the messages are provided in the following sections.
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Ideally, a Target is under the control of an Autonomous System (AS), which
provides one Telemetry Service and one or more Reflectors. We do not prescribe
specific rules regarding the distribution of the latter. However, one plausible
approach is to assign a Reflector to each border interface. This strategy safeguards
the in-depth internal topology of the AS from public disclosure while affording
the Remote entity a sufficient degree of flexibility to assess various scenarios.
Typically, the border routers are publicly known, and in the context of SCION,
they are addressable using their Interface Identifier [22] [23]. Additionally, SCION
necessitates the presence of a Discovery Service that facilitates the registration and
querying of available reflectors and telemetry services.

The authentication process for reflector packets is designed to execute within a
finite timeframe, employing only straightforward instructions that can be directly
implemented in hardware. It relies on standard cryptographic primitives.

4.3 Key Generation and Usage

We categorize the released keys into two distinct groups:

• Single-Use keys, intended for a one-time application, such as in latency
measurements.

• Time-Bound keys, designated for use within a specified timeframe but po-
tentially shared across an unspecified number of packets, as in the case of
bandwidth measurements.

We define the Epoch as the minimal timeframe to which a key is bound, setting
it at 10milliseconds. Later, we will explore how to accommodate a certain degree
of delay or advancement, considering that time synchronization may not be strict.

Key generation relies on a Key Derivation Function, which we refer to as kdft.
For a more comprehensive understanding, please consult 3.3.

In total, there are four keys and three derivation steps. Refer to 4.3.2 for specific
details:

AS Key represents the master secret.

Reflector Key is a secret unique to each reflector, derived from the AS Key using
the reflector’s address.

Measurement Key is provided to the Client for conducting measurements.

Packet Key is derived by the Client to authenticate individual packets, starting
from the Measurement Key.

Primarily, a Telemetry Service does not necessitate recording all issued keys
unless there is a requirement for key revocation in cases of potential leakage (See
4.4.3).
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4.3.1 Packet Parameters

The Measurement Key is constructed by concatenating the following fields:

Start time [8 bytes]: This represents the moment when the key becomes valid,
specified in nanoseconds. It adheres to the Unix Timestamp convention,
with the reference point being the instant of midnight on January 1, 1970.
The use of this precision and byte size should suffice for approximately 500
years. Importantly, while packets are tied to epochs (see 4.4.1), start and
end times do not require rounding to epoch boundaries. The first epoch in
which a packet is valid corresponds to the epoch containing the start time.

End time [8 bytes]: Similar to the start time, this field denotes the last moment
of validity for the key, following the Unix Timestamp convention.

Packet index [4 bytes]: Each request can encompass multiple keys, with the
packet index starting from 0 for the first key and incrementing thereafter.

Period [4 bytes]: This value indicates the interval between epochs at which a
packet with this key can be transmitted. A period of 1 implies that a packet
can be sent every epoch (equivalent to every 10ms), while a period of 100
denotes a transmission interval of 100 epochs, equivalent to one second. It
is crucial to note that this value must always be 0 in conjunction with (and
exclusively with) time-bound keys.

Nonce [4 bytes]: The nonce serves as a unique value that should not be reused
with the same parameters. Two keys with identical parameters are consid-
ered identical and, consequently, cannot be used more than once.

Usage ID [1 byte]: This field signifies the purpose or scope of the key. For
example, a value of 0x01 may denote a latency request, while 0x81 could
be designated for bandwidth measurement. In general, IDs with the most
significant bit set to 0 are categorized as single-use, whereas those with the
MSB set to 1 are classified as time-bound.

Key Generation ID [3 bytes]: This field may be employed within the key revoca-
tion mechanism, with detailed information provided in 4.4.3.

Remote Address [16 bytes]: This segment represents the address of the autho-
rized remote party associated with the key.

Further Parameters [0 or more bytes, in blocks of 16 bytes]: These parameters
accommodate additional data that may be specified for particular purposes.
In the initial implementation and simpler use cases, this section is typically
empty. Depending on the specific requirements of a given use case, the
length of this field must remain consistent for all requests sharing the same
Usage ID and be predetermined to thwart any potential length-extension-
related attacks.
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A minimum of 48 bytes (equivalent to 3 16-byte blocks) is essential to represent
the required parameters.

There are certain optional features that are not universally necessary, leading
to two alternatives:

• Utilize only 2 blocks (32 bytes). This entails omitting the packet index (sav-
ing 4 bytes), utilizing only 6 bytes for the two timestamps (saving 4 bytes in
total, without representing micro- and nano-seconds), and forgoing the Key
Generation ID. Consequently, key revocation may become more resource-
intensive, and the Usage ID may need to be inferred from the context in
which the packet is used (saving 4 bytes). Additionally, if deemed secure,
the nonce could be reduced to 2 bytes, as the likelihood of an identical
request being repeated within a brief timespan is exceedingly low. Further-
more, the period could be indicated with two bytes, as the maximum value
already signifies a relatively extensive time interval (655 seconds, or nearly
11minutes).

• Opt for 3 blocks (48 bytes) while allowing for a larger address (up to 32
bytes, contingent on the altered fields) to be used. Although 16 bytes suffice
for an IPv6 address, representing a complete SCION address may necessitate
an additional 8 bytes.

In general, the nonce may be omitted, considering that the 8-byte timestamps
already introduce sufficient variability. However, given the requirement to utilize
entire blocks, this section can be consistently filled with zeroes or customized
parameters if they are necessary for another key’s purpose. The same rationale
applies to the Key Generation ID.

4.3.2 Key Derivation

We define the following entities and notations:

Autonomous System denoted as a, represents an independent entity providing
internet services and may serve as the target of measurements.

Reflector denoted as r, signifies a device within AS a responsible for responding
to authenticated requests.

Remote denoted as q, represents a device, potentially located outside of AS a,
that must be authorized to query r.

Address of a Device denoted as id(d), applicable to both reflectors and remotes.
In our implementation, id returns a 16-byte value.

Measurement Request denoted as ⟨req⟩, represents a sequence of bytes contain-
ing measurement parameters, as defined in Section 4.3.1. It must have a size
that is a multiple of 16.
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We then define the derivation scheme:

AS Key denoted as Kas

a for AS a, should be kept secret within the AS and must
be known by the AS Telemetry Service. It may be distributed to devices
within the AS to allow direct key generation without requiring requests
to the Telemetry Service. Trusted entities outside of the AS domain may
also receive this key for unrestricted measurement capabilities. Periodic
updates or revocations may be necessary in case of key leaks (see Section
4.4.3), requiring re-transmission to all keyholders.

Reflector Key denoted as Krefl

r for reflector r within AS a. It is computed as
follows:

Krefl

r = kdftKas

a
(id(r),kgid)

The key must be known by r, either provided by a Telemetry Service or gen-
erated by the reflector using Kas

a . The Key Generation Id (kgid) is included
if key revocation for reflectors is enabled (see Section 4.4.3).

Measurement Key denoted as Km

⟨req⟩, is tied to a specific reflector r and request
⟨req⟩.

Km

⟨req⟩ = kdftKrefl

r
(⟨req⟩)

It is generated twice:

• By the Telemetry Service, upon request by the Remote. The generated
key is securely provided to the remote via a secure channel after ver-
ifying the remote’s entitlement to receive it (e.g., verifying payment
completion). The key is generated based on the parameters contained
in the request.

• By the Reflector upon receiving an authenticated request from the
remote. The Reflector receives all the required parameters through the
telemetry packet and already possesses its Krefl

r .

Packet Key denoted as Kpkt

i , exclusively used for single-use telemetry requests.
It is generated by either the remote or the reflector to sign the i-th packet
within a sequence of single-use packets. The key is generated as follows:

Kpkt

i = kdftKm

⟨req⟩
(i)

The remote uses this key to craft a MAC tag that is appended to the request
and protects all the sent parameters.

Upon receiving a packet, the reflector dynamically generates this key to
verify the provided authentication tag.
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4.3.3 Key Exchange - SCION and DRKey Integration

Keys have to be sent through a secure channel between the Remote and the Teleme-
try Service. DRKey already provides a protocol to support such key exchange,
which should be augmented to allow requests with required parameters.

As an analogy, the AS Key Kas

a should correspond to the Level 0 Secret Value
(SVa), which must be kept secret inside the AS or given only to trusted entities.

The DRKey Protocol is composed of two distinct message classes: control plane
messages, which are exchanged between ASes, and application level messages,
between the local SCION daemon and the applications. In the Control Plane, the
Certificate Service (CS) takes care of handling the keys.

Assuming that every AS deploys a Telemetry Service, it should belong to the
Control Plane and work tightly coupled to the Certificate Service. Applications
in need of a Measurement Key can ask for it to their own Certificate/Telemetry
Service, using a DRKey message. The Certificate Service in turn forwards the
request to the other AS service, which accepts or rejects it, sending back the
generated key, if authorized.

4.4 Packet usage

The Remote transmits a packet to the Reflector, which should include sufficient
data for key recreation. Certain fields used in key derivation, such as source and
reflector addresses, are not required to be appended to the packet since they are
already present in the packet header. Additionally, the measurement type can be
deduced from its usage. However, other fields, including the validity timeframe,
index, and nonce, must be explicitly included. In general, this poses no issue,
as ICMP echo packets, commonly employed for ping measurements, typically
possess a 64-byte random payload by default. A portion of this payload can be
substituted with the necessary values.

4.4.1 Epochs

Authentication keys are bound to epochs, with each epoch representing a 10-
millisecond time frame.

Three crucial considerations need to be kept in mind:

• Unknown Latency Between Devices: It’s important to note that the latency
between two devices is not known in advance. In many cases, it’s imprac-
tical to assume that the remote party possesses precise knowledge of the
latency to the reflector with an accuracy of less than 10milliseconds. This
is especially relevant in situations where network issues or problems exist,
potentially leading to increased latency.

• Non-Negligible Latency Over Long Distances: Latency between geograph-
ically distant locations is not negligible. As a rule of thumb, approximately
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one millisecond of round-trip-time latency is added for every 100 kilometers.
For instance, locations at antipodes on Earth are roughly 20,000 kilometers
apart. Considering network device and link-induced delays, experimental
observations reveal that a packet typically takes about 285 milliseconds
round-trip between London and Sydney (see Chapter 2 for further details).

• Clock Synchronization Imperfections: Device clocks may not be precisely
synchronized. Although widely used protocols like NTP (Network Time
Protocol) are employed for real-time time synchronization among devices,
there can still be small errors and imprecisions. In general, these synchro-
nization errors tend to exceed 10 milliseconds. However, under normal
operating conditions, they are typically negligible. Notably, the original
NTP specification acknowledges the presence of synchronization errors [24].

Given these considerations, our proof-of-concept implementation allows for a
time frame of 5 seconds both before and after the system time to be deemed ac-
ceptable. Consequently, a total of 1000 epochs are considered valid. Furthermore,
this 5-second time window corresponds to the GRACE_PERIOD defined for DRKey
in SCION, serving a similar purpose.

4.4.2 Anti Replay Mechanism

A reflector must respond only to packets that have been authenticated and only
once. Allowing a remote to send multiple packets with the same authentication
would result in multiple free measurements, which goes against the primary goal
of the system.

To address this issue, we introduce an anti-replay mechanism that is compatible
with the proposed authentication scheme. This mechanism requires a fixed and
configurable amount of memory and offers constant access time.

The central component of this mechanism is the Bloom Filter [25]. A Bloom
Filter is a randomized data structure that enables constant-time write and "is
contained" operations. However, it has the drawback of potentially producing
false positives when queried. The probability of false positives can be bounded
by adjusting its parameters.

Based on the theory [26], the most significant characteristic of a Bloom Filter is
its false positive rate, which can be expressed as:

fp =
(
1−

(
1− 1

m

)k·n)k
≈

(
1− e−

k·n
m

)k
Here, n represents the expected number of elements to be contained in the

filter, m denotes the number of cells, and k signifies the number of different hash
functions used.
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For our anti-replay mechanism, we employ one Bloom filter for each epoch,
rotating them with the flow of the time. In total, 8 hash functions are used,
denoted as k = 8.

Instead of computing hashes, we directly utilize specific segments of the keys
as hash values. Specifically, the jth hash function for a packet i, where j ∈ (1..k), is
constructed using the (2j − 1)th and (2j)th most significant bytes of Kpkt

i . In this
context, these values can be treated as randomly distributed.

It is important to note that while this may not be within the attacker model,
it does not create vulnerabilities for chosen-value attacks from the remote side.
Remote parties cannot craft specific keys to fill slots in the Bloom filter. Adver-
saries would need access to a large number of keys to have the freedom to choose,
which is implausible since they must be authorized or pay for these keys. The
Telemetry Service retains control over the number of released keys to maintain
a low false positive rate for the Bloom filter. The Autonomous System should
carefully balance its resource availability with the pricing strategy it offers.

Resource flexibility

Depending on the available resources in the Reflector, the parameters of the
Bloom filter can be adjusted, albeit at the cost of a potentially higher false positive
rate. However, the Target can make resource allocation decisions for specific
reflectors based on the forecasted number of queries directed at them.

These parameters that can be varied include:

• Size of the single Bloom filters: The size can be reduced or increased,
affecting the number of slots. Note that exceeding 216 is not recommended
as it would necessitate changes to the hash functions. From a theoretical
perspective, this modification alters the parameter m.

• Number of Bloom filters: By default, there is one Bloom filter per epoch, but
multiple epochs can be mapped to a single filter. This results in potentially
more packets matched to fewer slots, effectively increasing the parameter n.

• Number of hash functions: The number of hash functions should be ad-
justed to minimize the false positive rate based on the other parameters.

4.4.3 Revocation mechanism

Although the unidirectional key derivation function effectively prevents lower-
level Key holders from recovering higher-level keys (Kas

• or Krefl

• ), the possibility
of a security breach remains due to device compromise. Such breaches may lead
to unauthorized access to valuable measurements.

However, it’s essential to distinguish between different types of leaks and their
consequences:
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• If a Kas

• is leaked, it necessitates considering all derived keys as compro-
mised, leaving no choice but to replace them with fresh ones.

• In contrast, if a Krefl

• is leaked, there is no reason to assume that other
Reflector Keys or the AS Key are compromised. In this scenario, a coherent
method for generating new keys is required. We employ the Key Generation
Id for this purpose. Each Reflector maintains the last valid Id received
from the Telemetry Service and compares it with the one received from
the source. If they differ, the packet is dropped; otherwise, cryptographic
checks proceed. Changing the Key Generation Id should trigger updates to
the Reflector Key and all derived keys, rendering the old ones invalid.

This situation prompts a discussion on how to address the issue, each option
coming with associated costs:

• The simplest approach is to disregard the problem. While this grants unau-
thorized access to measurements and the potential for denial-of-service
attacks by those possessing a key, legitimate Measurement Key holders (Kas

• )
can continue to receive responses without interruption.

• Alternatively, Kas

• can be replaced with a fresh one, and new Kas

• -derived
keys are issued. Reflectors cease responding to queries using the old key.
While this does not add complexity on the Target side, it does prevent
authorized users from receiving responses to their queries.

• The Telemetry Service can maintain a record of all issued measurement keys
and establish a means to communicate key renewal. In this approach, the
Telemetry Service takes responsibility for reissuing all invalidated measure-
ment keys that are still valid according to its records, sending them to the
original remote parties. Reflectors should continue to reject requests with
revoked keys.

4.5 Needed resources and performance

4.5.1 Required Memory

The primary requirement for implementing a Bloom filter is an ample amount
of memory space. While Bloom filters offer fast and constant-time access and
write operations, they demand more memory compared to a simple list in order
to maintain a low false positive rate when storing the same number of elements.

Straightforward implementations in high-level languages like Go or C often
employ boolean values as cells for the Bloom filter. However, this approach can
be space-inefficient since booleans are typically implemented as one-byte values
(8 bits) for simplicity, as most computer architectures address memory at the byte
level rather than the bit level. Creating a custom filter, consisting of 1000 arrays
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of 65536 elements each, would consume approximately 64megabytes of memory.
By making minor optimizations, memory usage can be reduced by a factor of 8.
In essence, a single bit (1 or 0) is sufficient to indicate whether a cell in the Bloom
filter is occupied or not. This operation necessitates an additional bitwise shift or
AND operation.

However, in constrained devices, this amount of memory may pose a challenge.
We discussed how space savings can be achieved at the cost of supporting fewer
packets within the same timeframe in Section 4.4.2.

4.5.2 Performance

We assessed the performance of the authentication mechanism through a combi-
nation of micro-benchmarks and real-world measurements.

Performance considerations are particularly crucial on the reflector side, where
timely query responses are essential. In contrast, for clients, the execution time is
less critical, as they can potentially prepare packets prior to measurement.

Our initial evaluation involved executing the verification code from the reflec-
tor side within a controlled local environment. The objective was to isolate the
time required for the function to deliver a verdict. To quantify this, we measured
the interval from packet reception to response transmission by the reflector, ac-
counting for any processing time imposed by the operating system. We compared
executions with and without authorization checks.

Figure 4.2: Micro-benchmark results, comparing reflector processing time with
and without the proposed authorization scheme. Measurement results
(dots) are displayed along with a rolling average. CPU: ARM Apple
Silicon M2Max
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As observable in Figure 4.2, authenticating packets consistently add some
tenths of microseconds. On average, Authentication takes 29 µs more: 131 versus
102 µs.

After that, we ran the latency measurement between several virtual machines,
from London to other destinations around the world, using the same setup as al-
ready described in the Motivation Section (2). We ran the measurements for eight
hours, checking the authorization once every two received packets. Results are
displayed in Figure 4.3. On average, packets authenticated in San Francisco have
an overhead of 21microseconds in average (RTT of 135.477ms versus 135.456ms),
while the ones in Singapore add up 56 microseconds to the total time (RTT of
168.554ms versus 168.498ms). Differences are expected in the Cloud environ-
ment, as multiple guests share the same physical machine and may, to some extent,
influence one another. Additionally, we lack specific details about the underlying
hardware, which can vary slightly.

4.6 Further discussion

4.6.1 Bandwidth measurement

In the previous section, we discussed the application of the authentication mecha-
nism to single-use packets, particularly for latency measurements.

However, certain aspects of this framework can be adapted to perform band-
width measurements with appropriate authorization. Typically, bandwidth mea-
surements extend over longer durations compared to latency measurements, and
established solutions like iPerf [27] have demonstrated their effectiveness.

There are two primary reasons that make the implementation of our authenti-
cation system less imperative in this context:

• Bandwidth measurements are inherently long-lived, and they tolerate an
initial setup period that includes authorization checks.

• Bandwidth measurements inherently demand more resources as they aim
to fully utilize or stress the link capacity. Consequently, the number of
simultaneous connections is limited and manageable without requiring
specific optimizations.

Nevertheless, should one choose to employ the same infrastructure for band-
width measurements, certain distinctions must be taken into account:

• Unlike single-use packets, bandwidth measurement packets need not be
single-use. It suffices to issue a Measurement Key valid for an adequate du-
ration. Packets can then be authenticated using this key, or, for consistency,
a Packet Key with index 0 can be derived. Anti-Replay mechanisms such
as the ones provided by EPIC [28] can be adapted to also prevent packet
duplication.
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Figure 4.3: Real world results, comparing Round-Trip-Time latency with and
without packet authorization checks, over 8 hours. Measurement
results (dots) are displayed along with a rolling average.
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• Instead of employing a Bloom Filter, a Count-Min Sketch [29] can be uti-
lized to probabilistically count the number of received packets or the total
bytes. Although this entails some considerations regarding size and epoch
time, fewer resources and fewer arrays are typically required. Concurrent
measurements are generally less frequent, and the counting interval extends
to the order of seconds, depending on the duration of the measurement.

• Issuing a receipt for each received packet is unnecessary. Responses can be
sent at intervals, for example, every second or after a specific amount of
data has been received (e.g., whenever the expected amount for a second is
met).

• The cost of authenticating every packet may be prohibitive without specific
optimizations. Instead, the reflector can perform random checks on packet
validity, commencing with a low probability (e.g., one check per every
100 packets). If an invalid packet is detected, the checking probability
can be doubled, and gradually reduced if all packets validate successfully.
However, packets that trigger a receipt should always be checked to prevent
unauthorized parties from accessing sensitive information.

4.6.2 Need of in-advance payments

We explored the possibility of avoiding an initial interaction for exchanging au-
thorization information with the telemetry service and executing measurements
within a single round-trip time. As previously demonstrated, we achieved authen-
tication checks in under 30microseconds on typical devices, and we believe this
could be further reduced with custom, highly performant implementations.

To perform on-the-fly authorization checks for incoming packets, two primary
methods can be considered, but they require potentially more than 30microsec-
onds:

• Maintaining a list of accounts or balances in memory and accessing it, which
can incur both memory overhead and search costs.

• Alternatively, querying the Telemetry Service for such information with
each request, in addition to the authorization time, which typically takes a
few hundred additional microseconds due to communication overhead.

However, by anticipating authorization checks before the actual measurement,
we eliminate the entire burden of real-time checks, limiting it to a few crypto-
graphic operations.

4.6.3 Performance improvements

We have implemented our scheme in a high-level programming language, specif-
ically Go, without any specialized optimization techniques. It is worth noting
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that similar operations involving DRKey, particularly within EPIC [28], have
demonstrated processing times as low as a few hundred nanoseconds.

We believe that our approach has the potential to achieve such levels of ef-
ficiency, also when taking into account memory access for reading the Bloom
filter. Moreover, if the system’s cache size proves sufficient, it may even accommo-
date the entire Bloom filter, further reducing the required number of cycles for
processing.
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Execution

In this chapter, we describe the usage of WebAssembly to build an environment
to run small and arbitrary pieces of code, which have as their main objective
network measurements. We will refer to them as Debuglets. We will evaluate their
performance compared to classic network applications directly executed on the
host machine.

5.1 Debuglet Structure and interface

As previously introduced, a Debuglet is a network application written in WebAs-
sembly. A Debuglet is a module that must provide the run_debuglet function as
the entry point, serving as the equivalent of a main function in a typical program.
It can perform arbitrary computations until its execution concludes, at which
point it must return a result.

5.1.1 Interaction with the Host

By default, a WebAssembly application operates within an isolated environment
and lacks direct communication capabilities with the external world, except for
input parameters and return values.

When WebAssembly is executed in a web browser, it can employ an interface
to interact with the external JavaScript engine. Various frameworks facilitate the
exposure of kernel-like interfaces, such as WASI [30]. However, these interfaces
tend to be highly potent and open-ended, potentially exceeding the requirements
of this project’s scope. Future enhancements could involve encapsulating such
interfaces to allow only actions that a Debuglet is explicitly authorized for, thereby
potentially supporting previously developed applications that rely on such system
calls.

A fundamental challenge in WebAssembly pertains to the exchange of complex
data, which goes beyond simple scalar values and may include objects, arrays, or
arbitrary nested data structures. Moreover, the representation of data structures
can significantly vary depending on the programming language from which the
WebAssembly bytecode was compiled. For instance, a C program compiled into
WebAssembly may primarily support structs, which are implemented as contigu-
ous memory regions with specific interpretations according to their definitions.
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Conversely, a complete Java program compiled into WebAssembly may feature
more intricate structures.

This underscores the necessity to abstract the memory representation from the
internal language used within the Debuglet. The simplest approach to address
this challenge is to establish a constrained interface between the host environ-
ment and the Debuglet. In the current proof-of-concept implementation, the
need for exchanging complex data is relatively limited, rendering this challenge
manageable.

Buffers and packets

To facilitate the transmission and reception of packets, dedicated memory regions
are designated to serve as buffers. These buffers are assigned specific names,
such as udp_send_buffer or tcp_receive_buffer, making them easily accessible
from within the Debuglet as global variables. External access to these buffers
is straightforward, as the WebAssembly engine provides an interface to retrieve
their addresses and obtain a memory slice pointing to them.

Similarly, a buffer is allocated for storing the result of the execution. This
buffer serves as the location where the Debuglet should store data intended for
return to the requester.

Available calls

The proof-of-concept implementation provides several calls to interact with the
network and some utilities. Function definitions in this section are in Rust-style
notation: function_name([in_arg: in_type]...) -> ([out_type]...).

UDP-related calls:

A Debuglet is started with a UDP port listening for incoming packets.

• send_udp_packet(length: u32, destination: u32) sends a UDP
packet to destination, of the given length, using as the source the De-
buglet address. The payload must be loaded inside of udp_send_buffer.

• receive_udp_packet(timeout: u32) -> u32 reads a packet from
the listening UDP port, returning its length. It times out after timeout
ms. The Debuglet code can find it in the udp_receive_buffer.

TCP-related calls:

A Debuglet is started with a listening TCP server port, which can be used
to accept incoming connections. Furthermore, it can open new sockets to
other hosts.

• accept_tcp() -> u32 waits for an incoming connection to the local
TCP address and accepts it. It returns a handle that identifies the
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created connection. It may be used in other calls to send and receive
data.

• connect_tcp(destination: u32) -> u32 opens a connection to des-
tination. It returns a handle that identifies the created connection or
u32::MAX if there has been an error. It has to be used in the other calls.

• send_tcp_data(handle: u32, length: u32, offset: u32) reads
length bytes from the tcp_send_buffer array and sends them to des-

tination.

• receive_tcp_data(handle: u32, max: u32) -> u32 reads up to
max bytes from handle and puts them in the tcp_receive_buffer.
It returns the number of received bytes. In the proof-of-concept im-
plementation, the semantics are analogous to Reader.Read call in Go
[31].

• close_tcp(handle: u32) gracefully terminates, if open, the connec-
tion identified by handle.

TLS-related calls:

• connect_tls(destination: u32) -> u32 opens a TLS connection
to destination. The rest of the semantics are the same as connect_tcp.

• The other calls are the same as TCP. The handle returned after the TLS
connection creation has to be used.

SCION-related calls:

• send_scion_udp_packet and receive_scion_udp_packet are simi-
lar to send_udp_packet and receive_udp_packet, but they use the
SCION UDP socket.

• scion_available_paths(destination: u32) -> u32 fetches the avail-
able paths to destination, returning their number.

• scion_path_length(destination: u32, i: u32) -> u32 returns
the length of the ith path to destination.

• scion_path_as(destination: u32, path: u32, index: u32) -

> u64 returns the address of the requested AS on a path.

• scion_select_path(destination: u32, i: i32) -> u32 selects
the ith path to be used for sending outgoing packets. Initially, the path
is automatically chosen by the default SCION selector, giving i = -1
reverts control to the default selector.

Miscellanea calls:

• wait_start() blocks the execution of the Debuglet until the engine
receives the command to start it.
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• wait_until(timestamp: u64) blocks the execution of the Debuglet
until the given timestamp, in nanoseconds.

• get_timestamp() -> (u64) returns the current system timestamp in
nanoseconds. The precision may depend on the function implementa-
tion and on the underlying host.

• write(length: u32) writes to the standard output of the executor a
string, which must be supplied in write_buffer.

• dump_result(length: u32) writes the contents of result to a file,
which is useful for debugging purposes.

5.2 Implementation

We implemented the execution environment using Go. We used Wasmer [32],
a well-supported and established runtime for WebAssembly programs. Even if
written in Rust, it also offers a Go wrapper, Wasmer-Go [33].

It provides support for both x86 and ARM64 architectures. From a deployment
perspective, this is clearly an advantage, since a reflector may be a physical server,
a virtual machine, or a small microcomputer (for example, a Raspberry Pi or a
similarly cheap device). Furthermore, several cloud providers are already provid-
ing end users with ARM-based virtual machines, that in general are cheaper and
more environmental-friendly with comparable performance in general-purpouse
tasks. Among the others, there are Amazon AWS with Graviton and Microsoft
Azure with Ampere Altra, while Google Cloud is making the Tau VMs available.

The execution environment has to be as simple and lightweight as possible. The
proof-of-concept implementation only receives requests through an open TCP
port via ProtoBuf messages [34], returning the initial state (which are the ports
opened by the debuglet and their addresses) and, at the end of the execution, the
result.

Each executor is connected to a trusted entity, the dispatcher, that takes care of
orchestrating the debuglets, sending them to the executors, and starting them
when ready. We will further discuss this component in Chapter 6.

Depending on the specific network setup, it may be required some sort of
authentication and encryption for the messages between the executor and the
dispatcher. Even if this is outside of the scope of this work, it is just a matter of
implementation: it may be added by augmenting the executor or by adding a
firewall and a proxy service. For encryption, we advise using well-established
protocols such as TLS 1.3 [35].

We implemented the execution environment using Go and employed Wasmer
[32], a well-supported and established runtime for WebAssembly programs. Al-
though primarily written in Rust, Wasmer also offers a Go wrapper, Wasmer-Go
[33]. This runtime provides support for both x86 and ARM64 architectures, which
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offers deployment flexibility. Reflectors can be physical servers, virtual machines,
or even small microcomputers like Raspberry Pi or similar low-cost devices.

Furthermore, various cloud providers now offer ARM-based virtual machines,
which are often more cost-effective and environmentally friendly while providing
comparable performance for general-purpose tasks, with respect to the stan-
dard x86 architecture. Notable examples include Amazon AWS with Graviton,
Microsoft Azure with Ampere Altra, and Google Cloud with Tau VMs.

The execution environment was designed to be as simple and lightweight as
possible. In the proof-of-concept implementation, it receives requests exclusively
through an open TCP port using ProtoBuf messages [34]. It returns the initial
state, including the ports opened by the Debuglet and their addresses, and at the
end of execution, it conveys the result.

Each executor is connected to a trusted entity called the dispatcher, responsible
for orchestrating the Debuglets, sending them to the executors, and initiating
their execution when they are ready. Further discussion about this component
can be found in Chapter 6.

Depending on the specific network setup, additional authentication and encryp-
tion for the messages between the executor and the dispatcher may be required.
Although beyond the scope of this work, these security measures can be imple-
mented by extending the executor or by adding a firewall and a proxy service. For
encryption, we recommend using well-established protocols such as TLS 1.3 [35].

5.3 Performance evaluation

Assuming that the effectiveness and usefulness of measurements depend on
the code that is written, and we provide a framework for that, it is important
to understand which is the impact of the sandboxing environment. In other
words, we want to understand which is the difference in performance between an
application that is running directly on the hardware, using standard compiled
languages, and one that is executed in the sandbox.

Experimental Setup

We developed two WebAssembly Debuglets, one that acts as a UDP client, sending
packets at a steady rate, and the other as a UDP echo server. We had previously
used similar applications in Go to measure protocol latencies in Chapter 2. How-
ever, unlike before, the UDP payload is not randomized.

We conducted four simple experiments to quantify the delay added by using
WebAssembly.

Debuglet to Debuglet (D2D): In this scenario, both the client and server are
Debuglets.
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Application to Debuglet (A2D): Here, the client is a Go application, and the
server is a Debuglet.

Debuglet to Application (D2A): In this case, the client is a Debuglet, and the
server is a Go standard application.

Application to Application (A2A): This serves as the baseline, where both client
and server are standard Go applications.

We ran these experiments simultaneously for one day, between virtual machines
located in London and New York, sending one packet per experiment per second.
In total, we collected 4 · 86400 data points.

Results

The charts in figure 5.1 represent the measurement results.

Figure 5.1: Latency measurements using different Debuglet and Application com-
binations. A dot represents a measurement.

We found that D2D measurements have a mean latency of 75.12ms. As expected,
A2A measurements achieved a slightly better result at 74.81 ms. Therefore,
Debuglets add a delay of approximately 300microseconds, which we attribute to
the additional operations needed to switch between Go and WebAssembly. D2A
and A2D measurements fall in between, with latencies of 75.01ms and 74.88ms,
respectively.

On the other hand, the standard deviation of D2D measurements is lower than
that of A2A, approximately 0.602ms compared to 0.684ms.

Packet loss does not significantly differ between measurements. With D2D,
1.68% of the packets are lost, while A2D experiences 1.38% loss, D2A 1.66%, and
A2A 1.71%.
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It is important to note that Debuglets do not compromise results by adding
noise or losing packets. Instead, they introduce a fixed term of latency, dependent
on the executed Debuglet code and the executor’s performance.

5.4 Further discussion

5.4.1 Modularization

It is intuitive to think that the more of the execution can be done from outside of
the WebAssembly debuglet, the smaller its footprint is. The smaller the debuglet
is, the cheaper its transmission is.

However, the drawback is that the execution engine becomes more complicated
and heavyweight, requiring all operators that use this system to deploy and keep
it updated. Otherwise, there is a risk of refusing to perform measurements with
unsupported calls.

Consider cryptography primitives as an example. They are typically imple-
mented with complex algorithms that operate at a very low level on bytes or bits
and are often optimized for the machine they run on. Moreover, modern CPUs
provide highly efficient hardware components for cryptographic operations.

While the presented proof-of-concept environment does not provide these
features yet, it is impractical to require the debuglet writer to include an AES
block cipher or a digital signature algorithm within a debuglet, which should
be small and lightweight. On the other hand, such features are desirable in a
networking-oriented application where certain measurements may require these
algorithms.

The Import/Export mechanisms (see 3.4.2) of WebAssembly address these
situations effectively. A Debuglet can declare a set of functions, grouped in a
namespace, that are supposed to be linked by the WebAssembly engine to actual
code at runtime. From a high-level perspective, there are two alternatives:

• Implement these functions in the host language, outside of WebAssembly.
This option should be preferred on systems where there is support for such
primitives directly in the host machines or when there is a need to interact
with the outside world (e.g., the network, filesystem, or peripherals).

• Implement these functions as another WebAssembly module. This approach
can be useful when there is no need to use the host language or when
it is unfeasible. While it may not offer advantages in terms of execution
performance, it still allows for a reduction in the size of the debuglet because
part of the code is already present in the host machine.
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5.4.2 Debuglet in the Browser

Another noteworthy feature of WebAssembly is its compatibility with major web
browsers, as originally envisioned for this technology. It prompts consideration
of whether a Debuglet can be executed within a browser environment.

There are foreseeable scenarios where the debugging procedure necessitates
end users to open a web page that attempts to establish connections with vari-
ous remote devices to identify issues. While such functionality can already be
achieved using JavaScript, the execution of untrusted code within a web page,
particularly when the creator of the Debuglet differs from the provider of the
webpage, raises concerns. As previously elucidated, WebAssembly offers the abil-
ity to meticulously sandbox untrusted code execution, all without necessitating
users to install additional software beyond their web browser.

However, a significant constraint arises from the fact that JavaScript, within
a web browser, is inherently limited in its interactions with external devices,
typically restricted to HTTP requests and WebSockets. This constraint extends to
the underlying WebAssembly engine responsible for running the Debuglet. While
these limitations are crucial for maintaining security while browsing the internet,
a more detailed investigation is warranted to ascertain the degree to which our
approach can be applied within this specific context.

5.4.3 Choice of WebAssembly and available alternatives

WebAssembly is one of the promising and current sandboxing environments.
However, this is not the only one that is currently in active development.

Another approach, yet completely different, is using the Extended Berkeley Packet
Filter [36] or uBPF [37], a user-space implementation of the same concepts. We will
refer to both with *BPF. BPF, initially developed for Linux, is a technology that is
used to extend kernel functionality without having to modify its source code and
recompile it. It is built around events that are called during normal OS execution,
such as system calls, input/output, and filesystem accesses. Developers can write
their own modules and load them at runtime. Code is formally verified before
its execution, to prevent illegal resource access and avoid kernel performance
degradation due to unbounded loops.

Although enhanced execution performance, given that the code is always com-
piled before running it and there is no intermediate layer between the sandbox
and the system, there are some drawbacks:

• Need for strict formal verification of the code at load time.

• Limited interaction with the outside world and high-level constructs. There
is a set of helper functions that can be called by *BPF programs [38], but
these have to be defined in the kernel and, in general, cannot be easily
customized.
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• Access to low-level kernel events: code must be trusted or checked before-
hand to avoid an improper leak of information.

• In general, it is not recommended to run untrusted code as BPF modules.
It is possible to exploit side-channel vulnerabilities, mounting Spectre-
and Meltdown-like attacks [39]. Even if these specific issues have been
mitigated, an unprivileged user cannot load BPF modules in the Linux
Kernel by default [40].

• Code must always terminate.

Although there exist several tools and research projects that tackle the auto-
mated verification of custom code properties, this is notoriously slow and costly,
from both the developer side and the verifier side.

On the other side, WebAssembly allows a precise sandboxing of the running
environments. The main advantages are:

• No need for prior verification of the code. The execution is already limited
by the exposed external functions. However, verification is not excluded,
given its simple structure and clear definitions.

• High-level operations can be easily defined and implemented from outside
the sandbox.

• Even if it allows for Turing-complete unbounded executions, the sandbox
can be terminated if it is taking too long.

However, it raises some concerns:

• The performance may be worse than *BPF, since the code is not always
compiled to machine instructions. However, several engines already offer
Just-In-Time compilation before execution. Furthermore, the context switch
between the sandbox and the exposed functions is not always negligible.

• The sandboxing virtual machine requires more resources than just the exe-
cution of some machine instructions as *BPF, which virtually can have down
to zero impact. As per our experiment, however, a debuglet can run without
any problem in a low-end virtual machine (with as little as 0.5 GB of RAM)
without any performance issues.

Both alternatives, however, do not offer an elegant and high-level way to ex-
change data between outside and inside, so it is needed to access memory regions
directly using pointers and references to it.

From the beginning, we excluded the idea of implementing a custom interpreter,
for two reasons: the effort is not worth the result, since there are already several
valuable alternatives, especially considering the limited timeframe of the work.
In the long term, as future work, this may guarantee higher performance and
better integration with the commonly used telemetry primitives.
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In this chapter, we discuss our approach to utilize a blockchain, named Sui, to
address several pivotal questions, encompassing:

• The distribution of Debuglet code.

• Coordination of entities during the measurement process.

• Dissemination of measurement results.

• Provision of trusted storage for the preservation and retrieval of historical
measurements and results. These historical data sets can subsequently be
employed for in-depth analysis of the behavior of one or more network
components.

The choice of employing a blockchain as a foundational component in our
approach is underpinned by several compelling rationales:

• Its original goal revolves around facilitating economic transactions between
untrusted parties, without the need for a centralized authority.

• Contemporary blockchains transcend the realm of currency, offering support
for custom logic through smart contracts, which can manage transactions,
data, and more.

• The inherent fault tolerance of blockchains, stemming from their distributed
architecture, enhances their robustness.

• The current deployment and operational status of blockchain technology
further underscore its practicality and readiness for use.

6.1 Components

Every participating entity, referred to as an AS, is required to deploy several
components to ensure the proper functioning of the system. Specifically, each AS
deploys a set of distinct Debuglet executors that need to establish connections
with the blockchain to receive new instructions. From the perspective of an AS,
we discern the following key components:
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The Blockchain: In the context of this thesis, we refer to it as Sui. Sui comprises
a collection of nodes, validators, and clients that operate independently yet
collaboratively to advance the blockchain’s state.

An Instance of a Blockchain Node: This node is deployed within the AS’s do-
main and is connected to an adequate number of other nodes [41]. An AS
may also opt to circumvent the expenses associated with running a full Sui
Node by relying on another entity’s node or a public one.

A Set of Dispatchers: These dispatchers are connected to the local node and
are responsible for interactions with Sui. They are tasked with forwarding
debuglets to their corresponding executors, recording results when they
become available, and conducting analysis of the Debuglets to determine
whether to accept or reject them.

A Set of Executors: Each executor is linked to its respective dispatcher. Ex-
ecutors receive code from the dispatchers and execute it, subsequently
providing the results.

It is noteworthy that while an executor may be deployed on a cost-effective,
low-end device, dispatchers may necessitate more robust hardware to per-
form their validation checks. We distinguish these two components to allow
for their separation across different devices, although co-location is also a
viable configuration.

6.2 Implementation

6.2.1 Owned and Shared objects

In Section 3.5.2, we elucidated the distinction between Owned and Shared objects
in Sui. For the proof-of-concept implementation, we opted to model a mea-
surement as a Shared object. This choice offers distinct advantages in terms of
implementation conciseness and eliminates the need for synchronization between
parties, as Sui provides inherent synchronization mechanisms. Additionally, this
approach encapsulates the entire measurement within a single data structure.

6.2.2 Sequence of operations

Figure 6.1 shows, at a high level, what is the timeline of a measurement and its
associated debuglets. The next section describes in further details which are the
involved function calls and events.
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Measurement
initialization

Debuglet
creation

Initialization
End

Debuglet
Evaluation

Accepted
and set-up

Rejected

Measurement
Started

Execution

Debuglet
Terminated

Measurement
Completed

Measurement Lifecycle Debuglet Lifecycle

add_debuglet_request()

measurement_initialization_end()

measurement_start()

MeasurementInitializedEvent

accept_debuglet()

debuglet_terminated()

MeasurementStartedEvent

Status: 1

Status: 2

Status: 3

Status: 4

Status: 1

Status: 2

Status: 3

Status: 4

Figure 6.1: This chart describes the high-level sequence of operations that involve
the measurement and debuglet objects on the blockchain.
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6.2.3 Measurement Smart Contract implementation

The Smart Contract is implemented in Move [42]. After deploying it on the
blockchain using the Sui command-line tool, any participating entity can utilize
it by knowing its Object ID. There is no necessity to publish a new smart contract
unless there are changes required in its code, such as adding functionality, altering
its behavior, or rectifying a bug. Generally, it can already accommodate any piece
of WebAssembly code, as elucidated in this report, without necessitating any
modifications.

It is important to note that the smart contract itself does not represent a mea-
surement; rather, it outlines the sequence of steps regarding its generic execution,
from creation to result storage.

The following commented code illustrates the definitions of the Debuglet
structures, utilizing a simplified Move syntax.

struct Measurement {

// The Unique Identifier of the measurement. It has to be used to refer to

it, and it is kept unique by the Sui engine.

id: UID,

// The address of the initiator entity. It is used inside of the smart

contract code to check if a transaction sender has the permission of adding

a new debuglet to the measurement or starting it.

initiator: address,

// A list of debuglets. It is populated during its setup.

debuglets: vector<Debuglet>,

// It represent the current status of the debuglet. See Figure 6.1 for state

details

status: u8

}

struct Debuglet {

// The unique identifier of the debuglet

id: UID,

// The address of the entity that should execute it

executor: address,

// The piece of code that has to be executed. Generally, a WebAssembly

module encoded in Base64
code: String,

// The amount of money that is received by the executor after accepting or

declining it.

setUpPayment: Option<Coin<SUI>>,
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// The amount of money that is received by the executor after the recording

of the result

completionPayment: Option<Coin<SUI>>,

// The result of the execution of the debuglet, represented as a Base64
string

result: String,

// The Internet address(es) of the instantiated debuglet

addr: String,

// The execution status of the debuglet. See Figure 6.1 for state details

status: u8

}

To manage measurements and Debuglets, the following smart contract calls are
available:

• measurement_create() is invoked to initialize a new measurement.

• add_debuglet_request(measurement: Measurement, recipient: ad-

dress, code: String, setUpPayment: Coin<SUI>, completionPayment:

Coin<SUI>) is called for each Debuglet that needs to be set up. The initiator
is required to provide a sufficient amount of coins for this operation. This
call can only be made before the initialization phase concludes.

• measurement_initialization_end(measurement: Measurement) is em-
ployed to finalize the Debuglet list. It emits a MeasurementInitializedE-

vent event to notify participating entities that a measurement has been set
up, and certain entities should take action accordingly. The Sui API provides
the capability to listen specifically to events of interest.

• accept_debuglet(measurement: Measurement, index: u64, accepted:

bool, addr: String) is used by a target entity to either accept or reject
the execution of a Debuglet. In either case, the money contained in se-

tUpPayment is transferred to the target. This approach compensates the
target even if it chooses to decline running a Debuglet, for any reason, as a
form of compensation for the inconvenience of handling the request. This
strategy helps prevent the initiator from flooding the network with invalid
requests, as they must bear the associated costs. In the long term, it also
discourages targets from refusing seemingly valid Debuglets for two reasons:
1. They may receive better compensation if they complete the execution,
and 2. Other entities may cease sending further requests to them if they
consistently reject valid ones.

• measurement_start(measurement: Measurement) is invoked by the ini-
tiator after they are satisfied with the set of Debuglets that have been set up.
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While one might intuitively assume that the measurement starts when all
Debuglets have been accepted, this decision is left to the discretion of the
initiator. Various factors may influence this decision, such as the initiator’s
assessment that not all Debuglets need to be instantiated for the experiment
to run successfully. For instance, consider a scenario where multiple devices
need to ping a single entity. The initiator may deem it sufficient for only
half of the devices to be set up.

• debuglet_terminated(measurement: Measurement, index: u64, re-

sult: String) is invoked by the target when the execution of a Debuglet
concludes, and it records the final result. The target is eligible to receive the
final payment for this operation.

• measurement_delete(measurement: Measurement) can be called no ear-
lier than 7 days after the measurement was created, and this action is run
by the initiator. By doing so, the initiator can reclaim a portion of the initial
setup payment, facilitated through the storage rebate mechanism present in
Sui. Additionally, the initiator may receive a refund for Debuglets that were
accepted but left incomplete.

6.2.4 Permissions and allowed operations

While a Debuglet should possess the capability to execute diverse measurements,
its interaction with the environment must be constrained to align with expected
behaviors. For instance, it should not have the capacity to perform actions such as
querying all devices on a local network to bypass a firewall. However, it should be
permissible if the Debuglet explicitly declares such actions and the target entity
consents to them. To facilitate this, we need a mechanism to declare and manage
such requests.

In our initial approach, we propose providing Debuglets with the ability to
connect to all other Debuglets and a specified list of hosts. This approach encom-
passes the following:

• Following the setup of a Debuglet, its reachable address is added to the
blockchain object. Consequently, all Debuglets should be permitted to
transmit packets to this address. The target entity may opt to decline the
execution of a Debuglet if it (or any other) necessitates running on an
undesirable device.

• For each Debuglet, the initiator has the option to include a list of additional
addresses and ports to which it can establish connections. The target entity
is responsible for determining whether these additional connections are
permissible, based on its established policies.
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Clearly, more advanced extensions of Debuglet capabilities, such as the ability
to monitor lower-level messages, may necessitate more sophisticated control
mechanisms. However, these considerations are deferred to future work.

Furthermore, it is essential to clarify that this work does not consider Network
Address Translation (NAT) and similar technologies. Consequently, we assume
for simplicity that any address assigned or declared for a Debuglet is directly ac-
cessible on the Internet without undergoing translation or other transformations.

6.2.5 SCION Integration

As of the writing of this thesis in August 2023, it is important to note that Sui, as
any other blockchain at the time of this work, did not possess integration capa-
bilities with SCION. SCION, in its offerings, includes a Gateway (SIG, [43]) that
enables legacy applications to communicate using its infrastructure. Nevertheless,
for practical deployments in the real world, we consider secure and dependable
inter-AS communication to be highly valuable. Achieving this, however, also
necessitates modifications to the blockchain software.

6.3 Debuglet pricing

In this section, we present various features that can be used for pricing Debuglets.
We observe that there exist several (almost) independent types of resources that

Debuglets utilize during execution:

CPU: This resource represents the amount of CPU time required to run a De-
buglet. Since it is generally challenging to predict the execution duration,
it is convenient to impose a maximum execution time for a Debuglet. We
propose adopting the concept of gas in blockchains, and necessitate the ini-
tiator to provide an adequate amount of currency to cover it. The entity that
completes the measurement will be entrusted to withdraw only the actual
amount used. The WebAssembly engine facilitates the setting of a CPU
execution time limit, which can be effectively employed for this purpose.

Memory: Specifically, this pertains to the maximum amount of RAM utilized by
a Debuglet. The initiator should bear the cost for an adequate amount of
memory for the execution. During runtime, the Debuglet can freely allocate
and manage memory based on its requirements, with the developer typically
having control over the instantiation of new memory regions.

Used Bandwidth: If a Debuglet sends or receives substantial data, the initiator
should incur higher costs compared to those utilizing less bandwidth. Band-
width expenses may also be influenced by the number of packets, not solely
the total size.
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Reserved Ports: If a Debuglet necessitates the use of a port (TCP, UDP, IP, or any
other) for an extended period, the initiator should assume the associated
costs. Ports are a finite resource within a system, and therefore, no entity
should be allowed to reserve them without compensation. By default, TCP
and UDP ports are allocated randomly. Furthermore, for debugging specific
issues, such as firewall checks, the initiator may require binding to a specific
port, which could already be in use. Debuglets can also open raw IP sockets
with specific protocol types: this feature should incur higher costs than
binding to TCP or UDP ports.

Authenticated Packets: Debuglets may opt to conduct measurements using the
low-overhead authentication method outlined in this work. Entities provid-
ing such services should receive compensation if they follow the scheme
proposed in Chapter 4.

All of these resources are externally measurable. Specifically, execution time
and memory are influenced by engine configuration, while the others can be
assessed during execution by augmenting the host’s calls exposed to the Debuglet.

However, defining specific prices for these resources beforehand is not easy for
two primary reasons:

• Costs typically decrease over time, while resource availability increases. For
instance, several years ago, homes were equipped with 64kbps bandwidth,
and servers operated at only a few Mbps, while today, multiple-Gbps connec-
tions are readily available even in domestic settings or on relatively low-end
devices.

• Entities may wish to tailor the prices to their particular requirements and
available resources, in line with supply and demand dynamics. For instance,
if Debuglet capacity is nearing exhaustion, an entity might raise prices to
limit new Debuglets and only accept those willing to pay more.

In the following two sections, we explore alternative ideas for determining
Debuglet prices.

6.3.1 Price lists

Each entity that offers Debuglet execution services publishes a smart contract
object that enumerates the prices for its resources. Initiators are expected to
review this list in advance and provide an adequate amount of currency to cover
the requested resources.

The entity may periodically update the prices based on its own availability
and network conditions. It is important to note that the entity should not reject
a Debuglet if it is accompanied by sufficient funds to cover the execution cost.
However, if the Debuglet’s execution surpasses the offered amount, the entity has
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the option to terminate it and record the error on the blockchain. Additionally,
resource consumption checks can be performed in advance using methods such
as symbolic execution or other relevant tools.

This approach obviates the need for the creation of a new currency, as it is
sufficient to utilize an established currency within the reference blockchain, such
as Sui Coin.

6.3.2 Tokens

Sui offers the capability to create new currencies and exchangeable items through
smart contracts. Instead of using a general-purpose cryptocurrency directly, a
specific set of items can be designated for use as a payment method for particular
resources. For instance, a PacketSend token may be utilized for sending messages.

With this technique, two alternative designs are possible:

• The first design entails that each entity establishes its own Kiosk [44], which
sells tokens exclusively for its services. While the acquirer has the option to
resell these tokens to other interested parties, they can only be utilized with
a specific target entity. The target entity defines the price at which these
tokens should be initially sold.

• Alternatively, tokens can be employed with any participating entity. How-
ever, this necessitates making a certain quantity of tokens available to partic-
ipants at the initiation of the architecture. In the context of cryptocurrencies,
this can be likened to an Initial Coin Offering (ICO) [45].

An independent central entity may assume responsibility for distributing
new tokens as needed. However, this alternative raises concerns regarding
which entity should bear this responsibility.

It is important to note that these designs assume that all entities receive the
same compensation for the same measurement, even though the exchange
rate of tokens may fluctuate over time.

6.4 Sui costs evaluation

We aim to comprehend the economic prerequisites for executing a measurement
contract. As previously elucidated, the cost of executing a Sui function is bucketed,
meaning that comparable program executions should yield a similar value of
CompUnits[]. The only variables that may alter this value are the size of input
data and the storage requirements for resultant objects. However, the core logic
remains highly consistent and should not exhibit significant variation across
diverse executions.

To attain this understanding, we conducted multiple iterations of the entire
measurement workflow, with variations in the size of the input debuglet code. This
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experiment involved the inclusion of a single debuglet within the measurement
object.

The ensuing table presents a summary of the costs incurred during the creation
and updating of a smart contract, relative to the code size. All costs are expressed
in SUI. For reference, as of September 1, 2023, 1 SUI is equivalent to 0.50 USD.

Code size Total cost Init cost Other costs Storage rebate
0 B 0.01369 0.00306 0.01063 0.00430
100 B 0.01585 0.00509 0.01075 0.00632
1 kB 0.03527 0.02342 0.01184 0.02456
5 kB 0.12160 0.10489 0.01671 0.10562
10 kB 0.22953 0.20674 0.02279 0.20696

The columns in the table are defined as follows:

Code size represents the size of the measurement code provided as input.

Total cost signifies the cumulative Gas costs essential for the completion of
measurement transactions.

Init cost encompasses the costs associated with transactions up to the measure-

ment_start phase. These transactions are responsible for the creation and
population of the object, contributing significantly to the overall storage
expenses.

Other costs denotes the remaining expenses incurred.

Storage rebate quantifies the amount of SUI returned to the party deleting the
object.

It is apparent that the total cost associated with creating a measurement is
directly proportional to the input size. Larger code segments necessitate larger
objects, resulting in increased memory requirements for storage.

The Initialization cost is closely tied to the storage rebate, albeit slightly smaller
across all measurements due to the additional space also utilized by other trans-
actions.

The combined cost of the other transactions remains relatively unaffected by
code size, except when it is substantially larger (5-10 kB). This behavior can be
attributed to the increased number of memory operations required for loading,
storing, and processing larger objects.

Furthermore, the storage rebate demonstrates a nearly proportional relation-
ship with code size when the latter exceeds a certain threshold, i.e., when it is
significantly larger than the rest of the object.
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6.5 Drawbacks and limitations

6.5.1 High costs for transactions and storage

As assessed in the preceding pages, transaction fees have a substantial impact,
and potentially, the cost of utilizing a public instance of SUI can significantly
outweigh what operators are willing to pay for a single measurement. In future
work, it is imperative to explore various alternatives:

• Utilize a different blockchain: This option may seem enticing and has
the potential to address the cost issue. Alternatives like Algorand [46], for
instance, claim to offer lower costs, potentially by an order of magnitude.
However, it is essential to consider that differences in the smart contract
paradigm may necessitate adjustments in the logic of measurement func-
tions and the overall workflow.

• Establish a custom instance of the Sui blockchain: This approach entails
deploying a specific-purpouse Sui blockchain instance where gas prices are
reduced and tailored to specific needs. Validator operators play a role in the
network and should be motivated to contribute to its operation, even if the
rewards become less attractive than using the default Sui blockchain.

6.5.2 Limits on the size of the storage

There are several limitations associated with code on the blockchain, and Sui, in
particular, imposes various constraints on objects and transactions sizes [47]:

• Every transaction argument/parameter is limited to 16 KB. If the code size
surpasses this limit, it must be divided and passed to the object through
multiple arguments.

• Total transaction size is limited to 128 KB. A single transaction cannot
accommodate code exceeding this size, necessitating the use of multiple
transactions.

• An object cannot exceed 250 KB. If the code size exceeds this threshold, it
must be distributed across multiple linked objects. Sui also incorporates the
concept of dynamic objects, effectively linking some as children of a principal
object, which can be employed to achieve this outcome.

As demonstrated in Section 6.4, notwithstanding these limits, storage on the
blockchain remains expensive, potentially exceeding what an entity is willing
to pay for a debuglet measurement. We propose several alternatives to consider
when seeking to reduce storage costs:
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• Delete objects from the blockchain: Objects may be deleted after a specific
duration to reclaim the storage rebate, which is contingent on the freed-up
space. However, deleting objects from the chain partially compromises, or
at least constrains, the Verifiability goal, as described in Section 1.1.

• Implement more code outside of the Debuglet: The executor offers a
comprehensive interface to support a range of complex logic behaviors
out of the box. This mitigates the need to deliver such code alongside the
debuglet. Nevertheless, two limitations exist: this logic must have broad
utility and merit integration into any executor, and it must be supported
by all executors; otherwise, it still needs to be transmitted alongside the
Debuglet.

• Distribute debuglet code off-band, without relying on the blockchain:
While this alleviates the challenge of managing large objects, it disrupts
the assumption that the blockchain serves as a trusted and reliable com-
munication infrastructure. Choices like network-accessible services such as
Git repositories, HTTP servers, or other locations necessitate accessibility
by all parties involved. This raises questions about what happens if such
an endpoint is inaccessible to a specific target, or if a target falsely claims
inaccessibility. Additionally, considerations arise regarding the duration of
service availability, both during and after the measurement.

While Sui remains a well-established general-purpose blockchain, for future
developments and deployability, it may be prudent to explore alternative, purpose-
specific environments that offer reduced costs and enable more cost-effective
distributed and reliable storage.
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7.1 Network Debugging and Telemetry Protocols

The historical background of network telemetry can be traced back to the early
days of computer networking, particularly with the development of ARPANET,
one of the first packet-switched networks. ARPANET, which laid the groundwork
for the modern internet, began its operation in the late 1960s [48]. It intercon-
nected research and military institutions and allowed for the exchange of data
and resources among its nodes. The network grew rapidly, facilitating remote
collaboration and communication.

In the context of ARPANET, a significant milestone occurred when the Univer-
sity College London Node node was connected to the network. This connection
occurred in the year 1973. The London node’s integration into ARPANET was a
notable event, as it bridged the network’s reach to the United Kingdom, Sweden,
and Norway, and further expanded its global footprint.

The staff at University College London (UCL) took on the task of developing a
novel and tailor-made system for monitoring and retrieving information about
user accesses and node operations [49]. Information was primarily transmitted to
Rutherford IBM laboratory. The solution they developed marked one of the early
instances of network telemetry. This system allowed administrators and operators
to remotely gather essential data about the London node’s usage, performance, and
health. This pioneering effort at UCL exemplifies the ingenuity and adaptability
required to manage and monitor the evolving landscape of computer networks.
The solutions developed opened the path to further evolution and standardization
of telemetry processes.

A significant leap in network monitoring occurred with the introduction of
the Simple Network Management Protocol (SNMP) in 1988 [50]. SNMP tried
to establish a standardized framework for efficiently gathering and exchanging
critical information about network devices, marking a notable advancement from
the earlier developments in network telemetry.

However, SNMP’s security concerns include version 1 and 2c’s reliance on weak
plaintext community strings for authentication, exposing devices to unauthorized
access. SNMP version 3 attempts to rectify these issues with robust authentica-
tion, encryption, and access controls, but its complex implementation hinders
widespread adoption. Additionally, vulnerabilities in some SNMP agents pose
serious threats, allowing attackers to execute arbitrary code or gain unauthorized
access to devices, further complicating the security landscape. To address these
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challenges, network administrators often employ additional security measures
and prioritize thorough configuration and monitoring when deploying SNMP
in their networks. In general, this prevented a widespread usage of SNMP be-
tween untrusted domains, since its level of detail and relatively limited control
on accessed information.

Remote Monitoring (RMON) [51], an extension of SNMP, enhances network
visibility by providing in-depth monitoring capabilities at the data link and
network layers. RMON enables administrators to capture detailed performance
data, such as traffic statistics and error reports, directly from network devices,
facilitating comprehensive network analysis and troubleshooting. RMON mainly
targets local networks.

As of today, cloud providers are actively developing custom tools to aggregate
and analyze large amounts of data for enhanced operational insights. However, it’s
important to note that these tools often primarily focus on monitoring their own
networks and infrastructure, rather than the broader global network environment.

For example, Amazon CloudWatch [52] is a monitoring and observability ser-
vice offered by AWS, designed to track and manage the performance of various
AWS resources, including network components, and collect log and other teleme-
try information. Its usage extends to monitoring network issues by providing
insights into metrics related to network performance, latency, and packet loss
within AWS environments and compatible applications.

When addressing network problems, Ping continues to serve as a fundamental
tool for debugging. Its simplicity makes it accessible, yet its limitations lie in
its lack of granularity and detailed insights into network issues. While Ping
provides basic connectivity testing through ICMP echo requests and replies, its
diagnostic capabilities are often limited. To bridge this gap, various commercial
tools have emerged, building upon the foundation of Ping with complex and
intricate features. These advanced tools offer heightened monitoring capabilities,
allowing administrators to delve deeper into network intricacies. They refine
the ping concept by incorporating features like advanced analytics, historical
trend analysis, and real-time visualization, enabling more comprehensive issue
detection and resolution. One prominent example is PingPlotter [53].

However, despite the availability of more sophisticated tools, Ping’s straight-
forwardness and ubiquity continue to make it a valuable starting point for basic
network troubleshooting. It remains an indispensable tool in the toolkit of net-
work professionals, even as more advanced solutions try to emerge and become
widespread to address the complexities of modern network environments.

7.2 In-band Network Telemetry

In-band network telemetry (INT) pertains to the practice of appending debug
information directly to the flow of network traffic. This approach has become fea-
sible due to the emergence of programmable data-plane devices and frameworks
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like P4. The reference standard [54] outlines the specifications for structuring
and attaching headers, as well as the types of information that can be included.

INT devices utilize the collected data to assess the condition and performance
of the path taken by packets. This enables subsequent automated or manual
analysis, including machine learning-driven approaches [55] [56].

The primary limitation of this approach is the necessity to modify the flowing
traffic by adding headers. Not all network devices may support such modifica-
tions, as they may lack the capability to handle such altered packets. Another
consideration revolves around traffic congestion, as the packet size can potentially
increase without specific knowledge of the overall path state.

An extension of INT, known as SINT [57], aims to enhance the security prop-
erties of INT by employing a blockchain to store telemetry data and validate
measurement accuracy, thereby preventing tampering by malicious parties.

Our approach is orthogonal: debug processes are initiated and managed by
application-level devices, with network devices simply forwarding generated
traffic as ordinary packets without engaging in specific analysis.

7.3 RIPE Atlas

RIPE Atlas [58] constitutes a distributed measurement infrastructure comprising
probes and anchors. Probes are simple microcomputers allocated to various
interested entities, such as service providers or end users, who can deploy them
within their networks. Anchors, in contrast, are more powerful and demand
higher availability assurances, thus they are reserved for bigger internet service
providers and data centers. These devices are capable of conducting a predefined
set of measurements upon request from users, subsequently recording the results
in a publicly accessible log. Our approach can be regarded as an expansion of
the RIPE Atlas system in two key aspects: firstly, it introduces the capability
for arbitrary remote code execution, overcoming the limitations imposed by
pre-installed software, and secondly, it decouples the system from dedicated
hardware requirements. RIPE Atlas is also progressing toward the latter objective
by distributing Software Probe packages, simple virtual machines that can be
installed on already-running systems.
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8 Conclusion

In this project, we have explored how to establish the groundwork for a novel
debugging and telemetry system founded on collaboration among various Internet
stakeholders.

Initially, our focus was on how network operators could offer high-performance
services in exchange for compensation. However, this only partially introduced a
new perspective on inter-domain telemetry.

Subsequently, we explored the notion of perceiving the Internet from diverse
viewpoints by creating an infrastructure for Debuglets – arbitrary code fragments
distributed to other operators, who would then execute them and provide the
results.

We implemented a proof-of-concept to illustrate its feasibility and conducted
an initial performance analysis. We presented numerous instances of tasks that
Debuglets can facilitate, while also leaving room for future enhancements. Inte-
gration with SCION further enables measurements via distinct routes, as per the
developer’s preference.

We elucidated how blockchain technology can serve as a dependable system
for transmitting data and facilitating payments. Additionally, we demonstrated
how smart contracts can be harnessed for the storage of measurement code and
results.

We believe that the adoption and widespread acceptance of systems based on
such scheme hinge significantly on the innovative ideas and features that network
developers will be able to introduce and integrate in the future. Furthermore, its
integration with a payment system undoubtedly fosters the entry of new operators
who can monetize their network resources by showcasing their performance. In
a scenario where multiple network domains are actively participating, those
without such a system may come to be perceived as untrustworthy, as they may
be unwilling to disclose their performance.

8.1 Future work

We hope that this new approach will pave the way for varied and unpredictable
scenarios for debugging and monitoring networks, but efforts are still required to
refine the system, without excluding radically different alternatives.

Although performance can still be improved to a level equivalent to bare-metal
execution, this preliminary work shows that the gaps to be bridged are relatively
short. WebAssembly execution engines are designed to be general-purpose and
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8 Conclusion

flexible enough for any type of program. Improving some features and optimizing
for our specific environment, such as context switching between sandbox and
host, should be feasible.

However, several questions have to be addressed, and some future develop-
ments are already clear.

Achieve trust in the execution

As of today, this system does not provide any guarantee about the behavior of
the measuring entity. The initiator trusts the others to run the code correctly and
return the result without altering it.

Remote attestation procedures, such as the ones provided by Intel SGX enclaves,
or by Trusted Platform Modules, can be exploited to validate the loaded code
and verify its execution. The blockchain can also be used to store the attestation
measurements, thus allowing third parties to verify their correctness.

Not all measurements may require such kind of guarantee, thus a different
pricing can be required for the improved level of service.

Achieve trust in the results

Debuglets alone do not provide any automated way to check the correctness of
the results. Entities that execute it or forward packets coming from a debuglet
may, in principle, alter them, yielding fictitious numbers that may not reflect the
real behavior of the network.

Debuglet developers should, if needed, develop and use methods to cross-
validate and post-verify their results coming from different situations, to achieve
a higher level of assurance.

Reduce the costs of using the Sui blockchain

As we discussed in Section 6.4, costs may be prohibitive and alternatives to reduce
them have to be evaluated. Using a private instance of a blockchain like Sui should
easily bring such improvement, but may hurt the incentives for its adoption.
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