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Abstract
Motivation: The maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of inte-
grating diverse data modalities in a reproducible manner.

Results: Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive
immune repertoires and single-cell sequencing. ePlatypus is an open-source web-based platform and provides programming tutorials and an inte-
grative database that helps elucidate signatures of B and T cell clonal selection. Furthermore, the ecosystem links novel and established bioinfor-
matics pipelines relevant for single-cell immune repertoires and other aspects of computational immunology such as predicting ligand–receptor
interactions, structural modeling, simulations, machine learning, graph theory, pseudotime, spatial transcriptomics, and phylogenetics. The
ePlatypus ecosystem helps extract deeper insight in computational immunology and immunogenomics and promote open science.

Availability and implementation: Platypus code used in this manuscript can be found at github.com/alexyermanos/Platypus.

1 Introduction

The fields of systems and computational immunology have
advanced substantially in recent years, most notably through
progress in genomics and single-cell sequencing, which are
transforming the measurement of adaptive immune responses
from qualitative to quantitative science. In recent years, a
number of bioinformatic software tools have been developed
that provide rapid and facile exploration of single-cell RNA
sequencing (scSeq) data and perform analyses such as differ-
ential gene expression, cell clustering and transcriptional phe-
notyping (Satija et al. 2015, Efremova et al. 2020). However,
in the context of immunogenomics, lymphocytes (B and T
cells) and their transcriptomes and immune receptor reper-
toires (B cell receptor, BCR and T cell receptor, TCR), there is
a lack of software enabling the simultaneous interrogation
and integration of multiple approaches capable of decon-
structing high-dimensional immune responses, such as phylo-
genetics, machine learning, graph theory, and structural
modeling. Moreover, although deep sequencing of immune
repertoires has become a common method in modern

immunology, locating, downloading, and integrating data
across experiments and research groups remains challenging.
Finally, most immunogenomics software tools require compu-
tational expertise involved in analyzing such feature-rich
datasets (Yaari and Kleinstein 2015, Yermanos et al. 2017,
Borcherding et al. 2020).

2 Ecosystem overview

Here, we present ePlatypus, a computational immunology
ecosystem that expands upon Platypus (Yermanos et al.
2021a), a previously developed immunogenomics software.
The ePlatypus ecosystem (Fig. 1) consists of hundreds of R
and python functions, including those most relevant for
single-cell immunogenomics (transcriptomes and immune rep-
ertoires) as well as many other aspects of computational im-
munology. More specifically, this novel ecosystem represents
a complete rework from the original Platypus R package
(Yermanos et al. 2021a), and has been rebuilt around a cen-
tral data object that is now compatible with R and python
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and can directly store and integrate features such as gene ex-
pression, immune receptors, spatial coordinates, and struc-
tural information (Supplementary Table S1). This central
object can be directly supplied as input for novel downstream
applications and modules spanning a wide-range of immuno-
genomics and bioinformatics applications (Supplementary
Tables S1 and S2). Additionally, the ePlatypus ecosystem

contains a database component, PlatypusDB, that directly
integrates into the R programming language, thereby allowing
the rapid analysis and integration of B and T cells containing
both adaptive immune receptor information (VDJ) and single-
cell transcriptomes (GEX). PlatypusDB both stores raw out-
put files from the commonly used aligner tool Cellranger (10x
Genomics) and also holds the immune-relevant data in the

Figure 1. Breadth of the ePlatypus computational immunology ecosystem. The ecosystem currently is composed of a core R package that has pipelines

pertaining to immune repertoires, gene expression, receptor–ligand interactions, spatial transcriptomics, pseudotime, simulations, structural modeling,

and machine learning. Similarly, the ecosystem contains an integrated database and a website currently containing 21 tutorials with accompanying code.
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form of an R object that can be loaded directly into the R en-
vironment without explicitly requiring file download.
Importantly, the data is stored as both the processed aligned
output and as a preprocessed R object that contains transcrip-
tome, immune repertoire, and metadata information. Within
the programming interface, the user has the ability to perform
the following actions: (i) download entire public sequencing
datasets, (ii) download individual samples from publications,
and (iii) download and integrate public repertoires with sam-
ples stored locally (Fig. 1). While the ePlatypus development
team will continuously update the ecosystem with newly pub-
lished datasets, external users can also submit their prepro-
cessed immune receptor repertoires directly for manual
curation and addition to the database.

3 Usage and application

To demonstrate several use cases of the ePlatypus computa-
tional ecosystem, we integrated and analyzed multiple single-
cell transcriptomes and immune receptor repertoires across dif-
ferent disease conditions, viral infections, and vaccination stud-
ies (Supplementary Fig. S1 and Supplementary Table S3).
These datasets were used to highlight various modules includ-
ing: (i) pseudobulking differential expression pipelines to ro-
bustly characterize transcriptional clusters leveraging methods
originally designed for bulk RNA-sequencing (Supplementary
Fig. S2), (ii) immune repertoire diversity metrics to characterize
clonal distributions and to ensure sufficient sampling depths
have been recovered (Supplementary Fig. S3), (iii) phyloge-
netics to identify evolutionary trajectories and intraclonal net-
work properties of B cells during infection (Supplementary Fig.
S4), (iv) B and T cell sequence similarity networks to identify
fundamental principles of lymphocyte repertoire architecture in
the course of an immune response (Supplementary Fig. S4), (v)
machine-learning guided classification to predict BCR and
TCR specificity and further uncover feature importance of
antigen-specific sequences (Supplementary Fig. S5), (vi) predict-
ing ligand–receptor interactions under homeostatic and disease
conditions using the CellphoneDB repository (Efremova et al.
2020) (Supplementary Fig. S6), (vii) spatial transcriptomics to
spatially interrogate gene expression patterns and further inte-
grate clonal selection and clonal evolution of adaptive immune
responses (Supplementary Fig. S7), and (viii) structural model-
ing of immune receptor sequences and repertoires with the
Steropodon pipeline using multiple external tools including
AlphaFold, IgFold, and DeepAb (Jumper et al. 2021)
(Supplementary Fig. S8). Furthermore, ePlatypus now supports
python functionality for the implementation of repertoire anal-
yses such as investigating clonal expansion and isotype distri-
bution. This python pipeline can also be supplied to more
advanced machine learning and artificial intelligence work-
flows such as the use of protein language models, including
both foundational and receptor-specific language models such
as ProtBERT, Sapiens (Prihoda et al. 2022), AntiBERTy
(Ruffolo et al. 2021), ESM-1B (Lin et al. 2023), Ablang (Olsen
et al. 2022), and TCR-BERT (Wu et al. 2021) for repertoire
feature visualization and classification (Supplementary Fig. S9).
Importantly, ePlatypus currently hosts an online portal with 21
educational tutorials and walk-throughs (Supplementary Fig.
S10), each of which contain code, comments, and explanatory
text (Supplementary Fig. S11) for various computational im-
munology frameworks (Supplementary Table S2).

To further demonstrate several use cases of the ePlatypus
computational ecosystem and accompanying database, we inte-
grated and analyzed multiple single-cell transcriptomes and im-
mune receptor repertoires across different disease conditions,
viral infections, and vaccination studies (Supplementary Fig. S1
and Supplementary Table S3). We directly downloaded murine
T cell repertoires from previously published datasets containing
both CD4 and CD8 T cells from conditions such as acute and
chronic viral infections (Khatun et al. 2021, Merkenschlager
et al. 2021, Kuhn et al. 2022, Shlesinger et al. 2022), homeo-
static aging (Yermanos et al. 2021b), and experimental autoim-
mune encephalomyelitis (Shlesinger et al. 2022) (Supplementary
Fig. S1 and Supplementary Table S3). Following transcriptional
integration with Harmony (Korsunsky et al. 2019), which aims
to reduce batch effects across different datasets, we visualized all
cells using uniform manifold approximation projection (UMAP)
(Supplementary Fig. S12A). This demonstrated two major tran-
scriptional regions, dominated by either Cd4 or Cd8 gene ex-
pression, which could be simultaneously interrogated with other
known gene markers of activation or exhaustion such as Cd44,
Ifng, Pdcd1, Lag3, and Il7r (Supplementary Fig. S12B).
Supplementing this focused analysis with ProjectTILS, a recently
developed reference atlas which helps resolve murine T cell het-
erogeneity of tumor-infiltrating T cells (Andreatta et al. 2021),
demonstrated that T cells from PlatypusDB almost entirely cover
the ProjecTILs main reference dataset (Supplementary Figs
S12C–E and S13).

Next, we explored whether transcriptional heterogeneity
could similarly be detected for B cells present in PlatypusDB.
Multiple datasets derived from murine models of infection,
immunization, and autoimmune disease (Merkenschlager
et al. 2021, Yewdell et al. 2021, Neumeier et al. 2022,
Shlesinger et al. 2022, Agrafiotis et al. 2023) were integrated
as previously performed with T cells (Supplementary Fig. S1
and Supplementary Table S3). Transcriptional analysis using
both canonical B cell markers and previously reported B cell
gene signatures highlighted the presence of diverse B cell sub-
types present in PlatypusDB across multiple datasets
(Supplementary Fig. S14A and B). For example, our database
contains a large number of ASCs, identified based on expres-
sion of Sdc1 (Cd138), Xbp1, and Slamf7, which exhibited
varying expression levels of markers relating to chemokine
receptors (Cxcr3 and Cxcr4) and B cell proliferation (Mki67)
(Supplementary Fig. S14C).

4 Concluding remarks

The analyses presented here highlight the breadth of B and T
cell phenotypes and selection patterns already available
within ePlatypus, which will only continue to grow as more
user-supplied public datasets are added. Lastly, we computed
the runtime of several pipelines within the ePlatypus ecosys-
tem on datasets of varying size and cell numbers, highlighting
the scalability and speed of our software (Supplementary
Table S4).

The maturation of systems immunology methodologies
requires novel and transparent computational frameworks ca-
pable of integrating diverse data modalities in a reproducible
manner. The ePlatypus ecosystem, composed of hundreds of
R and python functions, programming tutorials, and a com-
prehensive database, helps extract deeper insight in immuno-
genomics while promoting open science.
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