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Abstract

In this thesis, we extend RumbleDB with the ability to process and persist updates for heterogeneous,
and nested collections of JSON documents. RumbleDB is a query execution engine for large, messy,
and heterogeneous data that implements the JSONiq query language and is built on top of Apache
Spark. Semi-structured datasets are increasingly widespread and so is their need to be manipulated
and updated. JSONiq provides a specification for the syntax and semantics for the expressions that
enable updating JSON, but this specification is not yet implemented using the data independence
offered by RumbleDB and so its potency is not realised. The key challenge in the design, imple-
mentation, and persistence of JSONiq updates is maintaining the correctness of the update to the
state in spite of the arbitrary nestedness of both the JSON documents and the JSONiq queries. We
demonstrate the extensions to the grammar, expression tree, iterator tree, and local execution model
of RumbleDB that enable the creation and correctness of Pending Update Lists and six varieties of
updating expressions as integrated into RumbleDB’s arsenal. We also outline the incorporation of
Databricks’ Delta Lake API into RumbleDB allowing for the persistence of updates to a Big Data ready
format, and we describe the best practices and logical models to use in order to extend our imple-
mentation. Our query experimentation and performance analysis compares our local execution of
persisting updates to SparkSQL. These experiments show RumbleDB starts with a mean execution
time four times worse than SparkSQL then worsens linearly as more data is processed. To rectify
the inferior performance we detail optimisations that would drastically improve performance to be
in line with SparkSQL. Nevertheless, our analysis showcases the viability of JSONiq updates and our
implementation to be used as an intuitive and extensible model for further development. Our results
illustrate that with data independence, updating arbitrarily nested and heterogeneous data can be
simple, correct, and extendable.



1 Introduction

Data collection and processing have always been important aspects of our society, enabling numerous
technological advancements and even the understanding of our very own genome (Clarke et al.,
2012). Today they are more vital than ever before, but as we have advanced so has the data we need
to analyse. In 2022, Amazon Glacier boasts storing exabytes of data for single customers alone (ama,
1991), while the entirety of Shakespeare’s work has been collated by Motl and Schulte (2015) into
8.8 megabytes of relational tables in MariaDB (mar, 2019). In the face of such vast amounts of data,
we must recall that even as little as 8.8 megabytes can have the ability to impact the entire world.
Therefore, it is crucial that we do not discriminate between data, but rather embrace the Volume,
Velocity, and Variety of data (Laney et al., 2001) that form the foundations of the Big Data paradigm.

Shakespeare’s work was originally stored in a textual format making the use of relational tables
feel strange as their rigid, tabular structure and homogeneity do not immediately lend themselves to
encapsulating the plays, the acts within the plays, the speeches within the acts, and the rest of the
creative structure that comprise Shakespeare’s work. However, thanks to the NoSQL movement we
need not limit our data to such unfitting formats. One popular format of NoSQL is JSON (Crockford,
2006). Intuitive, concise, and simple, JSON is used by numerous systems and information-sharing
frameworks (being recommended as a core principle of the REST API by Rodriguez (2008))) to
naturally represent all forms of nested and heterogeneous data. The ubiquity of JSON is thanks to its
straightforward data model of documents made of arrays or sets of key-value pairs of atomic values.
However, a standardised format is not enough to utilise data and as SQL did for the relational model
(Codd, 1970), many query languages have sought to make the processing of JSON easy. SQL++
(Ong et al., 2014) and jaql (Beyer et al., 2011) are attempts to outline a query language capable of
intuitively querying JSON data. Nevertheless, SQL++ falls short as it insists on being fully backwards
compatible with SQL meaning it has to compromise, thereby making querying certain aspects of JSON
(mainly arrays) less intuitive as they require additional clauses to transform them into a context
SQL can understand. Moreover, in being as descriptive as possible jaql loses its sense of being a
declarative query language and instead, each query resembles an enigmatic configuration file making
the language feel more like an API. Rectifying these deficiencies is JSONiq (Robie et al., 2011),
a declarative and functional query language inspired by an extending XQuery (Boag et al., 2002)
to JSON data, but in actuality, JSONiq is capable of querying most semi-structured, tree-shaped
data formats. JSONiq boasts an intuitive navigation syntax making traversing heterogeneous data
easy, and when combined with FLWOR expressions JSONiq removes the complexity associated with
expressing queries on deeply nested data.

Analysing data is only one facet of data management and has been the focus of much research
into Big Data. However, static, immutable data has little use in a dynamic world. The On-Line
Transaction Processing (OLTP) paradigm is defined by the need for systems to handle swathes of
concurrent transactions, each of which may be updating the state of the data and so introducing
a dynamic element into data accesses. Many OLTP systems rely on relational databases including
PostgreSQL (Group) and mySQL (mys), thus they are restricted to tabular homogeneity. Nonetheless,
there is no inherent reason that the NoSQL movement cannot handle OLTP requirements, and systems
like MongoDB (Chodorow and Dirolf, 2010) do exactly that. The aspect of OLTP we will focus on
in this paper is the ability to update records and with the advent of JSONiq updates (Robie et al.,
2011) and JUpdates (Brahmia et al., 2022), it is clear that the need to update data extends into
the realm of semi-structured data. Where JSONiq updates and JUpdate differ is in the shoulders
upon which they stand. JSONiq updates aim to be naturally nested, like JSON itself, and so inherit
from the similarly natively nested query language XQuery. Whereas, JUpdate aims to be more SQL-
like, thereby removing some intuition behind the shape of JSON data. Therefore, JSONiq is capable
of intuitively representing both the analysis and updating of semi-structured JSON-like data, where
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Chapter 1. Introduction

“updating” refers to the modification, deletion, insertion, and renaming of arbitrarily nested fields
without whole-document overwrites.

JSONiq is only a specification for a query language and so does not facilitate semi-structured
data processing alone. RumbleDB (Müller et al., 2020) is a query execution engine for JSONiq built on
top of Spark (Armbrust et al., 2015) enabling the parallel processing of very large, messy distributed
datasets. RumbleDB provides the connection between JSONiq and Big Data. The focal element of
RumbleDB is the data independence it offers to decouple the logical processing model of JSONiq
from the physical implementation of the execution provided by a local volcano-style model and the
parallelism offered by Spark. However, RumbleDB does not yet offer data independence over JSONiq
updates meaning a crucial aspect of data processing is lacking from the system. Thus, in this thesis,
we extend RumbleDB by implementing the logical and physical components that will bring JSONiq
updates into RumbleDB’s data independence. Here we will outline the requirements and practices
that enable the updating of Big Data’s semi-structured data; in so doing we will showcase the viability
and extensibility of the data independence that RumbleDB offers. To highlight the possibilities for
JSONiq updates in RumbleDB, we will focus on implementing the core framework and models that
facilitate the local execution of these updates while remaining easy to extend for future parallel
execution. This means extending the suite of JSONiq expressions to include updating expressions,
creating the data model that will represent the updates these expressions intend to enact, and then
enacting these updates with complete correctness.

Once JSONiq updates have been integrated into RumbleDB, there still would not be any mech-
anism for keeping these updates. Does an update that is not persisted ever really update at all? We
believe that the answer is no and so it is vital that RumbleDB provide a way to maintain and persist
these updates. One such technology, built for transactional processing in an ACID-compliant manner
while sustaining a connection to the cloud and the Big Data ecosystem, is Databricks’ Delta Lake
(Armbrust et al., 2020). MongoDB is another system capable of facilitating transactional processing
and even natively does so for tree-shaped data like JSON. However, unlike MongoDB, Delta Lake and
RumbleDB are united by their use of Spark and aim to widen the reach of data management in Big
Data. Hence, this thesis’ secondary aim of extending RumbleDB to persisting JSONiq updates is im-
plemented by supporting Delta Lakes. In order to perform this extension we utilise RumbleDB’s data
independence to broaden the physical execution of JSONiq updates to be applicable to data derived
from Delta Lakes, without making any changes to the logical interface of JSONiq.

Subsequently, RumbleDB will be able to update and persist the updates of arbitrarily nested
heterogeneous data, with its consistency and correctness verified against the JSONiq updates speci-
fication (Robie et al., 2011), the XQuery specification (Consortium et al., 2011), and a suite of test
and use cases in a CI/CD pipeline.

The remainder of this thesis comprises an investigation into updating the semi-structured data
of Big Data. This investigation is structured in three overarching parts. Firstly, in Chapter 2 we present
an overview of Big Data and data independence that will lead us to the technologies developed to
meet their challenges, namely, the creation of JSONiq, RumbleDB, and Delta Lakes. Following this,
in Chapter 3 we outline and discuss the extensions to RumbleDB’s grammar, expressions, iterators,
and processing that facilitate the integration of updates into RumbleDB. We conclude this section
with our incorporation of Delta Lakes to persist updates processed in RumbleDB. We then present an
analysis of experiments comparing RumbleDB and SparkSQL’s processing of various updating queries
in Chapter 4. Finally, concluding remarks and a roadmap for potential future work are offered in
Chapter 5.
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2 Background

2.1 Big Data

The adjective “Big” in Big Data is misleading as it does not simply refer to the vast amount of data
produced in the modern day that requires storage and processing, but rather the “Big” refers to
how great every aspect of data has become. With this outlook, it is far easier to understand the
foundational categorisation of Big Data that (Laney et al., 2001) identify with the 3 V’s of Big Data.
Each V highlights the dimensions of Big Data: great Volume, great Velocity, and great Variety. Volume
describes the most intuitive attribute of Big Data – the size. Big Data scales far beyond even petabytes
of storage, (Sagiroglu and Sinanc, 2013), and will only continue to grow. Velocity refers to both the
speed at which data is produced and the need to be processed under the Big Data paradigm. Finally,
Variety outlines the number of shapes in which Big Data appears, generally described as structured,
semi-structured, and unstructured. Structured data is rigid, homogeneous, and analysable, the most
prominent example of which is any data that fits under the tabular relational model. Unstructured
data on the other hand is the exact opposite, it is random, hard to describe, and in a raw form like text,
audio, or video. However, semi-structured data meets them in the middle by being denormalised,
heterogeneous, and nested while maintaining a level of describability – tree-shaped formats, like
JSON, and graphs, like RDFs, are the most notable examples. Each categorisation of Variety has its
own subcategories, making the problem of being able to process the great variety of Big Data easy
for some data and extremely hard for others, thereby adding another layer of complexity. Although
there are other V’s that can be considered for Big Data, like Veracity in (Cappa et al., 2021), the
foundational V’s described above will provide an ample understanding of the Big Data paradigm.

Each facet of Big Data poses a different problem for modern data management and processing
that must be tackled by innovation. As a result of these problems, many different cloud-based comput-
ing architectures have been adopted to facilitate Big Data management, one such notable paradigm
being the data lake. Data lakes are huge collections of datasets spanning a variety of storage systems
and formats, with little useful metadata and a high degree of variation over time; consequently, their
structures are often heterogeneous. Data lakes are routinely supported by well-established systems,
namely Hadoop systems White, and fortuitously their implementation is analogous to data ware-
houses, leaving room to adapt data warehouse processing ideas, like metadata management and
data population, to meet the needs of data lakes outlined by Cuzzocrea (2021). Thus it has been pos-
sible to quickly progress using established research from the old architectures. Data lakes then prove
to be the answer to all of Big Data’s problems. The use of object stores, like S3 (Ama, 2002), and
distributed file systems, like HDFS (Borthakur et al., 2008), allow data lakes to handle the volume
of Big Data. Moreover, (Sawadogo and Darmont, 2021) outlines data ingestion services, like Flink
(apa, a) and Kafka (apa, b), along with ETL (Extract Transform Load) methodologies that match Big
Data input velocities, while processing techniques, like MapReduce (Dean and Ghemawat, 2008) and
Spark (Zaharia et al., 2016), are used to keep up with the output velocity demands of Big Data in
data lakes. Lastly, data lakes even tackle Big Data’s variety through extensive support for SQL and
NoSQL storage solutions: relational DBMSs, like MySQL (mys), handle structured data; document
stores, like MongoDB (Chodorow and Dirolf, 2010), and graph databases, like Neo4j (neo), facilitate
semi-structured data; and aforementioned object stores to store unstructured data.

Big Data processing, however, is not limited to MapReduce and Spark as they themselves are
limited to either key-value pairs or tabular formats. Moreover, neither provide a query language
natively designed for semi-structured data, rather they rely on APIs or extensions to the natively
relational query language SQL. Thus, to better encompass the variety of processing demanded by Big
Data, many query languages have been developed to be native to non-tabular data shapes. Some
such languages are JSONiq (Robie et al., 2011) for the tree-shaped data of JSON (Crockford, 2006),

3



2.2. DATA INDEPENDENCE Chapter 2. Background

and Cypher (Francis et al., 2018) for the graphs of Neo4j. Only with the integration of native query
languages can the power and complexity of semi-structured and unstructured data be found.

2.2 Data Independence

Data Independence, introduced for relational models in (Codd, 1970), is described as the indepen-
dence of application programs and terminal activities from growth in data types and changes in data
representations but can be summarised as the separation of logical and physical models in data sys-
tems. This understanding of data independence can be expanded to the technologies of data lakes
described in section 2.1, in that the solutions they provide must be independent of one another to
allow for better cohesion. Such a concept can be depicted by layering the technologies, with the
divides between layers representing their independence from one another. Nevertheless, the core of
data independence lies in the difference between the physical and logical data structures; this the-
sis looks at the technology interfacing between the user and the logical data structure – the query
language. With data independence, a query language like SQL can process queries on the logical, re-
lational model abstracted away from the underlying storage model, be it the N-ary storage model, the
decomposition storage model (Copeland and Khoshafian, 1985), or the PAX model (Ailamaki et al.,
2001). Thus, query processing engines need only to support SQL to ensure that the same query will
return the same result regardless of the storage model used, thereby giving both query writers and
database architects the freedom to work independently (Tsatalos et al., 1996).

Despite the importance of data independence in traditional data management systems, Big Data
has struggled to take advantage of data independence (Markl, 2014), and so technologies like Spark-
SQL of (Armbrust et al., 2015) have sought to stretch the independence capabilities of established
query languages – SQL – into the heterogeneous data models of Big Data. This approach to the
integration of data independence is taken one step further by establishing data independence in
RumbleDB (Müller et al., 2020), a query execution engine implementing JSONiq from (Robie et al.,
2011) which is a query language native to the tree-shaped data described in section 2.1. Utilising
data independence to create more free, efficient workflows for users and developers that directly
handle data in its natural form could enable rapid innovation and shielded workflows throughout
the Big Data space; this thesis works to grant more of this independence by extending RumbleDB to
handle updating JSON objects.

2.3 XQuery

XQuery, introduced in (Boag et al., 2002), is the precursor to JSONiq, the query language this thesis
focuses on, and was designed to query and allow the processing of XML data in a concise and un-
derstandable manner. Much like its successor, XQuery is derived from another language, called Quilt
(Chamberlin et al., 2000), and so has taken inspiration from non-XML query languages like SQL.

2.3.1 XML

XML, or eXtensible Markup Language, is a markup language with similar syntax and structure to
HTML (Raggett et al., 1999). However, the primary goal of XML is to easily describe data for storage
and communication. These data then comprise data objects dubbed XML documents, as outlined in
(Bray et al., 1998).

The logical structure of XML is simple in that the main components of an XML document are
elements, attributes, and text. These components are further specified by the XML information set
(Infoset), described by (Consortium et al., 2004), in which XML documents are Document Information
Items, elements are Element Information Items, attributes are Attribute Information Items, and text is
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Figure 2.1: Example of an XML docu-
ment with nesting Figure 2.2: Tree structure representing the XML in figure 2.1

made up of many Character Information Items. Each information item has a set of properties, but
for the purposes of this thesis, these properties only need to be described roughly. Elements have an
opening tag and a closing tag with everything between the tags being tagged data – mainly text and
nested elements. Attributes, on the other hand, are within the opening tags of elements and are the
key-value pairs of an element.

Together, the information items of XML can represent a variety of data formats, while enabling
arbitrary nestedness through elements – an example being 2.1. Thus, much like the JSON to come,
XML is excellent at portraying tree structures in data as seen in figure 2.2.

2.3.2 XQuery Data Model

The XQuery data model shares concepts with the XML Infoset, especially when considering how to
visualise the logical data structure, but it extends the type information of the Infoset and supports the
notion of ordered, heterogeneous sequences (Consortium et al., 2017). In XQuery, every instance of
the data model (an XDM instance) is a sequence, and sequences are simply ordered collections of zero
or more items that cannot contain other sequences. The items within a sequence are either nodes,
functions, or atomic values. Nodes are akin to the information items of the XML Infoset discussed
in subsection 2.3.1, whereas functions are items that can be called. With XQuery being a functional
language, all basic components of functions are present in that functions have names, parameters,
type signatures, and a set of instructions that map parameters to some instance of the result type.
Finally, atomic values are values that have an atomic type derived from the types of XML schema
outlined in (Biron et al., 2004), but for the purposes of this thesis, these atomic types can be assumed
to be limited to the simple atomic types found in a programming language like C.

Given the complex nestedness and heterogeneity of XML, the processing of millions of XML
documents demands the robust sequence-oriented data model of XQuery; it is from this foundation
that the processing and updating of the simpler data format, JSON, can be approached.

2.3.3 XQuery Update Facility 1.0

As specified by (Consortium et al., 2011), XQuery has an update facility that provides expressions
that can be used to make persistent changes to instances of the XQuery data model.

The basic building block of XQuery is the expression, and from here various expressions can be
composed with one another to form more complex queries. Nevertheless, every expression has zero
or more input XDM instances and returns a single XDM instance as a result. Under this processing
model, no expression can modify the state of existing XDM instances beyond creating new instances.
However, the update facility introduces the notion of an updating expression, which can modify
the state of existing instances. To accomplish this, five new expressions are added – delete, insert,
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replace, rename, and transform – and all expressions are categorised as either simple, basic-updating,
updating, or vacuous where:

• Simple expressions are any expression that is not an updating or basic-updating expression.

• Basic-updating expressions are any delete, insert, replace, or rename expressions, or a call to
an updating function.

• Updating expressions are any basic-updating expression, or any expression directly containing
an updating expression (recursively defined), except transform expressions

• Vacuous expressions: any expression explicitly defined to be vacuous by XQuery Update Facil-
ity 1.0 – nevertheless they all either return an empty XDM instance or raise an error.

Introducing updating expressions means the processing model is extended so that the result of an
expression consists of both an XDM instance and a Pending Update List (PUL), either or both of which
may be empty, meaning that both cannot be non-empty. PULs are unordered collections of update
primitives, which represent the change of state intended to be applied to a specified XDM instance.
Two update routines act on PULs: upd:mergeUpdates merges the update primitives of two PULs,
and upd:applyUpdates enacts the changes described by the update primitives of a PUL. Moreover,
upd:applyUpdates is implicitly invoked when the outermost expressions in a query returns a PUL.
Finally, the update primitives of a PUL are under strict snapshot semantics, meaning they are resolved
on the state of items before any update of the PUL is applied. upd:mergeUpdates can only act on
PULs of the same snapshot, while upd:applyUpdates terminates a snapshot. In the XQuery update
facility, each entire query is defined as one snapshot.

Both XQuery and JSONiq have specifications for updates, and both share the vast majority of
semantics as JSONiq is derived from XQuery and will be discussed later in subsection 2.4.4. Thus,
to avoid repetition, only the extensions not overridden by JSONiq updates, namely transform expres-
sions and updating functions, will be described in this subsection.

Syntax 2.1: Transform Expressions

The general form of a transform expression is:

TransformExpr ::= "copy" "$" VarName ":=" ExprSingle

( "," "$" VarName ":=" ExprSingle )*

"modify" ExprSingle "return" ExprSingle (2.1)

Transform expressions create modifiable copies of existing XDM instances with new, unique iden-
tities. These expressions then return an XDM instance that may contain items that existed prior
to the transform expression or were created and modified by it. Most notably, however, transform
expressions do not modify the value of existing instances and so the expression is simple.

The keywords, "copy", "modify", and "return" denote the three clauses of a transform ex-
pression, each with their own semantics. The copy clause begins every transform expression and is
comprised of one or more "$" VarName ":=" ExprSingle constructions that form a variable binding
with VarName being the variable name, and ExprSingle being the source expression resulting in the
data of the variable. The source expression must be a simple expression, else an err:XUST0001 static
error is raised. Moreover, this expression must evaluate to a single item otherwise an err:XUTY0013

error is raised. Once evaluated, this resulting item is copied, including any items it may contain,
meaning it is identical to the original item in every way except its identity. These copy variables can
only be accessed within the scope of their transform expression, but not within the copy in which
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they were instantiated. Next comes the modify clause which contains one ExprSingle that must be
an updating or vacuous expression, otherwise an err:XUST0002 static error is raised. The result of
evaluating this expression is then a PUL, but the target items of the update primitives in the PUL must
have been created in the previous copy clause – if not then an err:XUDY0014 dynamic error is raised.
Finally, the return clause closes the transform expression, and it too contains one ExprSingle but
this expression must be simple, otherwise an err:XUST0001 static error is raised. The resulting XDM
instance from the return clause expression is then the result of the transform expression as a whole.

Syntax 2.2: Function Declarations

The general form of a function declaration is extended with the keyword "updating":

FunctionDecl ::= "declare" "updating"? "function" QName "(" ParamList? ")"

( "as" SequenceType )? ( EnclosedExpr | "external" ) (2.2)

Function Declarations allow for the creation of user-defined functions. Before the XQuery update
facility, these functions could only be called as simple expressions, but with the "updating" keyword,
the functions can be marked as returning a non-empty PUL, making calls to updating functions be-
come updating expressions. The notion of function calls being updating or simple comes directly
from the new semantics of the function declarations. If updating is not specified, then the function
declaration must be a simple expression; otherwise an err:XUST0002 static error is raised. However,
if updating is specified then the function declaration cannot include a return type without raising an
err:XUST0028 static error. Moreover, the function declaration must be an updating expression or a
vacuous expression; otherwise an error:XUST0002 static error is raised.

Beyond the extensions related to the updating keyword, the semantics of function declarations
remain unchanged.

The semantics of several existing expressions are also extended, despite no change to their syntax, to
help categorise them as simple, updating, or vacuous, and to set limitations on where an expression
must be one of simple, updating, or vacuous.

FLWOR Expressions are the XQuery equivalent of SELECT, FROM, WHERE in SQL, allowing for the
querying of collections of data. They are extended such that if a for, let, where, or order by clause
contains an updating expression then an err:XUST0001 static error is raised. Moreover, the category
of expression for the FLWOR expression is the same as the category of its return clause. Finally, if
the FLWOR expression is updating then each tuple passing through the return clause will generate a
PUL that is merged with the previously generated PULs using the upd:mergeUpdates routine.

Typeswitch Expressions are like a switch statement in C with case and default branches, except
instead of switching on the value of an expression they switch on the type. They ensure that if the
expression that is being “switched” upon is updating then an err:XUST0001 static error is raised.
Each expression in any case or default branch can be simple, updating, or vacuous, but if any
branch expression is updating, then all branch expressions must be updating or vacuous; otherwise an
err:XUST0001 static error is raised. Thus, if any branch expression is updating, then so is the whole
typeswitch expression. For the typeswitch to be vacuous, all branch expression must be vacuous. In
all other cases the typeswitch is a simple expression. Lastly, if the typeswitch is updating then the
resulting PUL comes directly from the matching updating branch.
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Conditional Expressions allow for branching into different clauses based on a boolean condition
and in XQuery they require both a then and an else clause to make up the if-then-else construct.
They are made similar to typeswitch expressions in that the semantics depend on branches – then and
else for conditional expressions. If the expression in the condition (if clause) is updating then an
err:XUST0001 static error is raised. Furthermore, one updating branch means both must be updating
or vacuous; otherwise an err:XUST0001 static error is raised. When all branches are vacuous the
conditional expression is vacuous, but if at least one is updating then the conditional expression is
updating. In any other case the conditional expression is simple. Finally, the PUL from an updating
conditional expression comes from the updating branch that is selected.

Comma Expressions allow for expressions to be chained together. They are the crux of having a
string of updating expressions create a large PUL acting like an updating transaction that you would
normally find in a language like SQL. Once more, at least one updating expression in the comma
expression means all others must be updating or vacuous, and so the comma expression is consid-
ered updating; otherwise an err:XUST0001 static error is raised. If all expressions are vacuous then
so is the comma expression. Any other case makes the comma expression simple. Then, to pool all
the changes together in an updating comma expression, each expression generates a PUL which are
merged together using the upd:mergeUpdates routine.

All of these changes enable XQuery to define a set of procedures that can modify the internal state
of XDM instances to virtually any desired degree, all while maintaining consistency through proper
isolation.

2.4 JSONiq

The focal query language for this thesis is JSONiq, a query and processing language specifically
designed for the JSON data model and built on the shoulders of SQL and XQuery. XQuery is a similar
query language but is designed for the XML data model instead. JSONiq borrowed several ideas
from XQuery, namely the FLWOR construct, the functional paradigm, and declarative, snapshot-based
updates. JSONiq then applies these concepts to JSON, a simpler data model than XML.

2.4.1 JSON

JavaScript Object Notation, JSON, is a textual data format used to represent semi-structured data of
arbitrary nestedness (Crockford, 2006).

Four primitive types – strings, numbers, booleans, and nulls – comprise the atomic data of
JSON, while two structured types – arrays and objects – enable nestedness; JSON values can be any
of these types. Arrays are ordered sequences of zero or more values of any type, whereas objects are
unordered collections of zero or more key-value pairs, in which the key is a string and the value can
be of any type.

These constructions ensure that JSON documents can represent arbitrary nestedness and much
heterogeneity, an example being figure 2.3. Having broken the atomic integrity and domain integrity
constraints generally enforced by tabular formats, JSON lends itself to best representing tree-shaped
data as depicted by figure 2.4.

2.4.2 JSONiq Data Model

JSONiq borrows much of its data model from XQuery, discussed above, and so it too treats a Sequence
of Items as a first-class citizen. Moreover, JSONiq is set-oriented like SQL, but despite this, a sequence
is ordered and allows for duplicates, more akin to List semantics; a sequence, unlike a List, is flat
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Figure 2.3: Example of JSON
object with nesting and hetero-
geneity

Figure 2.4: Tree structure representing the JSON in figure 2.3

and automatically unnested. Thus, a sequence cannot contain other sequences and if it does, these
sequences are automatically unfurled and their items are placed into the outer sequence. Finally,
sequences can be empty, and singleton sequences are considered the same as the item they contain.

Items on the other hand are much more heterogeneous as they represent all atomic and struc-
tured types available in standard JSON as well as many more, including time, date, duration, binary,
URI, and more comprehensive number types. Additionally, items can have function types, matching
JSONiq’s functional paradigm, and user types in the form of annotated types. As such, JSONiq can
handle the same heterogeneous, denormalised, semi-structured data format as represented by JSON,
and more.

2.4.3 JSONiq Processing Model

Sequences being first-class citizens in JSONiq means that not only does every expression produce
a sequence but they also all take sequences as input, thereby making JSONiq set-oriented in that
JSONiq processes a sequence at a time as opposed to single data objects. The functional nature of
JSONiq then asserts that every JSONiq program is an expression, itself composed of sub-expressions;
every JSONiq building block is an expression. These programs are then declarative in that they only
describe the shape and characteristics of the output, but cannot specify the implementation of the
execution – instead relying on underlying optimisations to make these decisions based on the data
being processed.

Combining these attributes with the extensive library of expressions available enables JSONiq
queries to manipulate all the intricacies of arbitrarily nested, heterogeneous, tree-shaped data. The
FLWOR (For, Let, Where, Order By, and Return) expression is the successor of SQL’s SELECT, FROM,

WHERE and is the core of JSONiq’s queries. Instead of directly being comprised of expressions, a
FLWOR expression is a chain of clauses in which each clause is composed of expressions. Through
this chain of clauses stream Tuples, which are sets of variables bound to sequences that evaluate to a
sequence of items once the stream meets the return clause. Using FLWOR expressions, JSONiq can
facilitate the complex processing required to join, enrich, and clean heterogeneous datasets, to name
a few of the possibilities.

9



2.4. JSONIQ Chapter 2. Background

2.4.4 JSONiq Updates

Similar to the XQuery Update Facility, (Robie et al., 2011) specifies the methodology behind updating
objects, arrays and the items they contain in JSONiq. To do so, the processing model is extended
such that every expression produces a sequence and a PUL, either or both of which may be empty,
meaning that both cannot be non-empty. The definition of a PUL, the update routines that can act
of them, and their snapshot semantics are largely the same as what is described in subsection 2.3.3,
with the exception that the update primitives represent the change of state intended to be applied to
a specified object or array. To account for this difference in the targets of update primitives, JSONiq
introduces several update primitives, along with the expressions that generate them:

UP1 jupd:insert-into-object($o as object(), $p as object()): Inserts all key-values pairs of $p into
$o.

UP2 jupd:insert-into-array($a as array(), $i as xs:integer, $c as item()*): Inserts all items of the
sequence $c into $a at position $i.

UP3 jupd:delete-from-object($o as object(), $s as xs:string*): Removes all key-value pairs from
$o whose key appears in the sequence of strings $s.

UP4 jupd:delete-from-array($a as array(), $i as xs:integer): Removes the item at position $i in
$a, while moving all following items down by one position.

UP5 jupd:replace-in-object($o as object(), $n as xs:string, $v as item()): Replaces the value of
the key-value pair that has the key $n, in $o, with the item $v. If no such key $n is present in
$o, then nothing occurs.

UP6 jupd:replace-in-array($a as array(), $i as xs:integer, $v as item()): Replaces the value lo-
cated at position $i in $a with the item $v. If $i is outside of the range 1 to jdm:size($a)
inclusive, then nothing occurs.

UP7 jupd:rename-in-object($o as object(), $n as xs:string, $p as xs:string): Replaces the key of
the key-value pair that has key $n, in $o, with the key $p. If no such key $n is present in $o,
then nothing occurs.

In order to generate update primitives and modify items, six expressions are introduced, and the
semantics of functions are extended. However, only the semantics of delete, insert, replace, rename,
and append expressions are specified by (Robie et al., 2011) with any additional semantics being
assumed from the XQuery Update Facility of subsection 2.3.3.

Syntax 2.3: Delete Expressions

The general form of a delete expression is:

JSONDeleteExpr ::= "delete" "json" PrimaryExpr ( "(" ExprSingle ")" )+ (2.3)

Delete Expressions enable the removal of key-value pairs from objects or items from an array
through the use of the jupd:delete-from-object and jupd:delete-from-array update primitives.
The PrimaryExpr acts as our base expression from which all but the last ExprSingle are evaluated
as dynamic function calls (array or object look-ups) to eventually return a single array or object,
otherwise error jerr:JNUP0008 is raised. The final ExprSingle is then either an array look-up
on array $a at index $i, or an object look-up on object $o with string $s. In the case of an ar-
ray look-up (delete expression of form delete json $a[[$i]]), $i is cast to an xs:integer and a
jupd:delete-from-array($a, $i) update primitive is created. Failing to cast $i to an xs:integer
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raises a jerr:JNUP0007 error, and $i outside of the index range of $a raises a jerr:JNUP0016 er-
ror. Whereas, in the case of an object look-up (delete expression of form delete json $o.$s), $s is
cast to an xs:string and a jupd:delete-from-object($o, $s) update primitive is created. Failing
to cast $s to an xs:string raises a jerr:JNUP0007 error, and a $s that is not a key of $o raises a
jerr:JNUP0016 error.

Syntax 2.4: Insert Expressions

Insert expressions have two distinct forms

JSONInsertExpr::= "insert" "json" ExprSingle "into"

ExprSingle ("at" "position" ExprSingle)?
(2.4)

and

JSONInsertExpr ::= "insert" "json" PairConstructor ("," Pair Constructor)*

"into" ExprSingle

(2.5)

Insert Expressions allow for the insertion of key-value pairs into objects or of items into an array
with the jupd:insert-into-object and jupd:insert-into-array update primitives. The latter of
the possible syntaxes can be interpreted as a specific case of the former where the comma separated
PairConstructor values, of the latter, define an object in the place of the first ExprSingle in the
former. As such,
insert json "foo" : "bar", "bar" : "foo" into $o
and
insert json { "foo" : "bar", "bar" : "foo" } into $o
are equivalent and we can focus on the first of the two forms of insert expressions. The second
ExprSingle will evaluate to either an array or an object, correspondingly the insert expression will
be an array-insertion or an object-insertion.

An array-insertion expression looks like insert json $c into $a at position $i, where $a
is the array to insert into, $i is the index to insert into, and $c is the sequence of items to insert. When
evaluating an array-insertion expression, $i is cast to an xs:integer, all items in $c are copied, and
a jupd:insert-into-array($a, $i, $c) update primitive is created. If $a is not an array then a
jerr:JNUP0008 error is raised, and if $i cannot be cast to an xs:integer then a jerr:JNUP0007

error is raised.
An object-insertion expression has a simpler syntax and takes shape insert json $p into $o,

where $o is the object to insert into, and $p is a sequence of objects containing all key-value pairs to
insert into $o. Evaluating an object-insertion expression involves converting $p into a single object
and copying the result, then creating a jupd:insert-into-object($o, $p) update primitive. If
$o is not an object then a jerr:JNUP0008 error is raised, if $p is not a sequence of objects then a
jerr:JNUP0019 error is raised, and if converting $p into a single object causes any pair collisions –
i.e. more than one object of $p share a key – then a jerr:JNDY0003 error is raised.

Syntax 2.5: Rename Expressions

Rename expressions take the shape

JSONRenameExpr ::= "rename" "json" PrimaryExpr ( "(" ExprSingle ")" )+
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"as" ExprSingle (2.6)

Rename Expressions permit the renaming of keys in the of key-value pairs of objects by using the
jupd:rename-in-object update primitive.

As in delete expressions, the PrimaryExpr followed by all but the last ExprSingle in the (

"(" ExprSingle ")" )+ construction, evaluate as dynamic function calls to return a single array or
object. However, since renaming can only alter the keys of object, in rename expressions only a single
object is expected and a jerr:JNUP0008 error is raised otherwise.
All rename expressions then simplify to the form rename json $o.$s as $n, where $o is the object
with a key to rename, $s is the key to rename, and $n is the new name of the key. To evaluate these,
$s is cast to an xs:string and a jupd:rename-in-object($o, $s, $n) update primitive is created.
If the cast of $s fails then a jerr:JNUP0007 error is raised, and if $o does not contain a pair with key
$s then a jerr:JNUP0016 error is raised.

Syntax 2.6: Replace Expressions

Replace expressions have the form

JSONReplaceExpr ::= "replace" "json" "value" "of"

PrimaryExpr ( "(" ExprSingle ")" )+ "with" ExprSingle (2.7)

Replace Expressions enable the replacing of the values of key-value pairs in objects or items at spe-
cific indexes in an array by using the jupd:replace-in-object and jupd:replace-in-array update
primitives. Once more, the PrimaryExpr ( "(" ExprSingle ")" )+ construction is evaluated with
dynamic function call semantics and must return a single object or array, otherwise a jerr:JNUP0008

error is raised. From here, interpreting the last ExprSingle creates an array-lookup case and an
object-lookup case as seen in delete expressions.

The array-lookup case occurs when the replace expression has the pattern replace json value

of $a[[$i]] with $c, where $a is an array, $i is cast to an xs:integer, and the sequence resulting
from $c is processed into a null item when the sequence is empty, a single item when the sequence
contains only said item, and an array of the items in the sequence when the sequence contains more
than one item. The single item result of $c is then copied and the jupd:replace-in-array($a,
$i, $c) update primitive is created. Failing to cast $i raises a jerr:JNUP0007 error, and if the cast
succeeds but $i is outside of the index range of $a then a jerr:JNUP0016 error is raised.

Whereas the object-lookup case occurs when the replace expression has the pattern replace

json value of $o.$s with $c, where $o is an object, $s is cast to an xs:string, and the sequence
resulting from $c is processed into a single item – as in the array-lookup case – which is copied and
the jupd:replace-in-object($o, $s, $c) update primitive is created. Failing to cast $s raises a
jerr:JNUP0007 error, and if the cast succeeds but $s is not a key of a pair in $o then a jerr:JNUP0016

error is raised.

Syntax 2.7: Append Expressions

Append expressions take the form

JSONAppendExpr ::= "append" "json" ExprSingle "into" ExprSingle (2.8)
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Append Expressions are similar to insert expressions, but only allow for the insertion of items at
the end of an array with the jupd:insert-into-array update primitive.

The semantics of an append expression are nearly identical to those of the array-insertion case in
an insert expression, with the omission of the "at" "position" ExprSingle construction as append
expression insert items into the end of an array. Thus, when executing an append expression with
the pattern append json $c into $a – where $a is an array and $c is the sequence of items to
append – only a jupd:insert-into-array($a, len($a) + 1, $c) update primitive is created with
the insertion index being the length of the array plus one. If $a is not an array, then a jerr:JNUP0008

error is raised.

Update Routines

Basic-updating expressions require integration with more complex updating expressions, and special
expressions, namely the transform expression. Each basic-updating expression generates a single up-
date primitive which is stored in a PUL, but certain updating expressions, like FLWOR expressions,
can invoke the execution of several basic-updating expressions which in turn produce several PULs.
Since each expression can only return a single PUL, these more complex updating expressions must
use upd:mergeUpdates to compress their PULs into one. Moreover, the changes represented by PULs
need to be enacted either at the end of a query or after the modify clause of a transform expression to
maintain their snapshot consistency; the use of upd:applyUpdates does exactly this. Nevertheless,
both upd:mergeUpdates, and upd:applyUpdates have semantics in JSONiq that differ from their
xQuery counterparts and so require clarifying.

Function Signature 2.1: Merging Updates

The update routine upd:mergeUpdates takes in two PULs, merges their update primitives, and
returns a single PUL to give the following function signature, in Java syntax

PUL mergeUpdates(PUL pul1, PUL pul2) (2.9)

upd:mergeUpdates is adapted to account for the targets of update primitives being either an object
or an array, and so has a unique merging action for each update primitive. First considering objects,
their semantics must be maintained while the updates are merged. For object insertions (UP1) this
means that all keys to insert into a single object should be collated in a single, new UP1, but if one key
to insert is shared by multiple UP1s then this should flag as a – would-be – key collision and throw a
jerr:JNUP0005. Whereas more leniency is available for object deletions (UP3) in that, similarly, all
keys to delete from a single object targeted by many UP3s are collected to create a single, new UP3,
but key collisions are not a problem in this case as any duplicates are ignored instead. Even simpler
are the object replacements (UP5) and object renamings (UP7) as no replacement nor renaming
on the same key within the same object can take precedence over another within the same PUL
as they are in the same snapshot, and so replacements of the same key in the same object raise a
jerr:JNUP0009 error, while renamings of the same key in the same object raise a jerr:JNUP0010

error. Lastly, for objects, an UP3 makes redundant any UP5 or UP7 that targets the same object and
key since at the end of the snapshot the key would not remain to show the changes of UP5s or UP7s;
hence these UP5s and UP7s can be ignored.

Regarding update primitives that target arrays, the semantics are similar to those for objects
with the exception that an integer index is to be accounted for instead of a string key, and so an
ordering is present. Unlike UP1, array insertions (UP2) do not need to worry about collisions during
merging as UP2s acting on the same array at the same position are merged into a single, new UP2
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with a sequence of all the items to insert from the previous UP2s – crucially, the order of this sequence
is implementation-defined and so any ordering can be valid. Array deletions (UP4), however, are akin
to UP3 in that multiple UP4s on the same array at the same index simply create a single, new UP4
and remove duplicates. Likewise, array replacements (UP6) are treated analogously to their object
counterparts, and so more than one UP6 on the same array at the same index raises a jerr:JNUP0009

error, for the simple reason that no replacement can take precedence over another within the same
snapshot. Finally, for the same reasoning as given above for objects, UP4 make any UP6, on the same
array and index, obsolete and so any such UP6s are ignored.

Once all varieties of update primitives have been merged and pruned, they can be collected in
a resultant PUL and provided as the return value of the upd:mergeUpdates routine. Figure 2.5 adds
visual clarification to the explanations above.
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Figure 2.5: Visualisation of merging operations as applied to the specified update primitives
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Function Signature 2.2: Applying Updates

The update routine upd:applyUpdates takes in a single PUL, applies the changes described by
its update primitives and returns nothing to give the following function signature, in Java syntax

void applyUpdates(PUL pul) (2.10)

upd:applyUpdates sees very few changes as it still applies the state changes described by the up-
date primitives of the PUL, and signifies the end of a snapshot. However, before any update can be
applied, the array or object that is being targeted for the update is “locked onto” by resolving the
expression that should evaluate to either an integer index, for arrays, or a string key, for objects.
Nevertheless, these expressions can result in an empty sequence, in which case the update primitive
is ignored as no change is specified. Naturally, this preliminary “locking on” does not occur for UP1
since the key is not yet present in the target object and so no evaluation against the target can occur.

Once all targets have been identified and any selector has been “locked in” then the update
primitive can be applied as described at the start of this section. Importantly, the order of application
should not matter since each update primitive should act independently of one another and so no
conflict can occur to disrupt the data model. After all the update primitives have been applied the
current snapshot ends, meaning future PULs will exist under a snapshot that contains the changes
applied during this update routine.

Adapting the semantics presented by the XQuery Update Facility to JSON allows JSONiq to update any
structured item to an arbitrary degree of nestedness, while maintaining the consistency and isolation
available in XQuery. Combining the power of the XQuery Update Facility with the simplicity of JSON
stands to cement JSONiq as a potent query processing language for highly nested and heterogeneous
data, now capable of handling fully transactional processing.

2.5 RumbleDB

RumbleDB, (Müller et al., 2020), is a query execution engine for large, messy datasets that imple-
ments the JSONiq query language discussed in section 2.4. Much like JSONiq, RumbleDB is built on
the shoulders of giants and so does not aim to outright replace any current big data technologies,
but rather piece them together to create a whole greater than the sum of its parts; hence, RumbleDB
is written in Java, allowing it to take full advantage of any Big Data APIs needed to meet its goal.
The primary goal of RumbleDB is to be an implementation of and provide data independence for
the heterogeneous, semi-structured data found in Big Data workflows. Thus, the user needs only to
interface with the JSONiq data model despite the numerous modes of execution RumbleDB has at its
disposal.

2.5.1 Execution Modes

RumbleDB employs three different execution modes to adjust to user query requirements while opti-
mising processing time. These modes are dubbed Local, RDD and Dataframe. The largest distinction
between these modes is their ability to parallelise; only RDD and Dataframe executions are able to
parallelise. As their names suggest, the RDD and Dataframe modes rely on the Spark/SparkSQL
Java API, whereas the local execution uses RumbleDB’s implementation of an open-next-close iter-
ator processing pattern (Graefe, 1993) over the JSONiq data model. Regardless of the underlying
execution mode, every execution produces a JSONiq sequence, meaning the user need only interact
with JSONiq, while taking full advantage of a variety of processing models. This separation of user
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query writing and execution mode is then the heart of RumbleDB’s data independence.

2.5.2 From Query to Result

Execution modes only describe the processing model used for a given query, so to actually use these
execution modes on a JSONiq query RumbleDB must make several transitions: from the JSONiq
query to an abstract syntax tree (AST); from the AST to a JSONiq expression tree; from a JSONiq
expression tree to a JSONiq runtime iterator tree, holding the execution implementations; finally,
from a JSONiq runtime iterator tree to a JSONiq sequence.

query.jq

E

E E

E E E
I

I I

I I I

({”this”: ”is”}, [”A”], ”sequence)

Query

AST

Expression Tree

Iterator Tree

Result

Figure 2.6: Flow of RumbleDB processing from a JSONiq query to the resulting sequence

2.5.3 AST Generation

When a user writes a JSONiq query, RumbleDB must lex and parse the text and generate the tree of
JSONiq expressions that compose the query. Given that this task is common throughout programming
language compilations, many technologies exist to perform the lexing and parsing of programs – all
they need is a grammar to work against. RumbleDB employs ANTLR4 (Parr, 2013) for the lexing and
parsing of JSONiq queries. Thankfully, the JSONiq specification (Robie et al., 2011) was designed
meticulously and the grammar described can be used directly for RumbleDB’s parsing. ANTLR4
in conjunction with the JSONiq grammar creates an AST from which RumbleDB can generate an
expression tree.

2.5.4 Expression Tree Generation

JSONiq is a functional language meaning that each query can be broken down into component ex-
pressions that are nested or chained together in some fashion. Thus, generating an expression tree to
describe the information demanded by a query can be done using the AST. RumbleDB applies several
visitor patterns (Palsberg and Jay, 1998) to translate the AST to a JSONiq expression tree and then
populate this expression tree with data relevant for later processing.

Each expression is represented by a class that extends the Expression class, which has pro-
tected member variables constituting information relevant to each expression, such as the type of
sequence – empty, single item, etc. – returned by this expression. These sub-classes then have their
own member variables to accommodate the expressions that comprise them, like the expressions for
the if-condition, then branch, and else branch of a conditional expression. This nesting of expressions
forms an expression tree to represent the logical structure of the query which can be used to create a
runtime iterator tree.
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2.5.5 Iterator Tree Generation

In contrast to the logical structure described by the expression tree, the runtime iterator tree describes
the flow of execution for a given query. For RumbleDB, the runtime iterator tree is the equivalent of
the executable made by a compiler and so it outlines the methods for executing the query, guided
by the execution modes of subsection 2.5.1. In order to create the runtime iterator tree from the
intermediary expression tree, another set of visitors is used to instantiate and populate the runtime
iterator classes.

The RuntimeIteratorInterface interface and RuntimeIterator abstract class create a tem-
plate for the information and methods a runtime iterator must provide in order to be executable
under RumbleDB’s execution modes. An almost one-to-one mapping can be created between the ex-
pression classes and the runtime iterator classes in that almost every expression has a corresponding
runtime iterator and any nested expressions from the expression class are reflected in the runtime
iterator class, once more creating a tree structure. The distinctions arise when looking at expressions
like function calls which can correspond to many functions, such as Max and Min, each requiring
their own method of execution. As each runtime iterator extends the RuntimeIterator class they
must each provide an implementation for at least local execution, if not also RDD, and Dataframe
execution.

Local Execution API

Local execution is provided through an API in the RuntimeIterator class, consisting of: void

open(), to prepare the iterator for execution; boolean hasNext(), to indicate whether any more
results can be produced; Item next(), to materialise the result in the form of an Item interface to be
discussed later; and void close(), to stop the iterator from processing anything more. Each of these
methods will recurse down the tree, accessing the same API of other iterators to ensure all aspects of
the query are accounted for.

As the name implies, local execution is built for processing on a single machine, hence the use
of the Volcano processing to process one item at a time and minimise memory usage.

RDD Execution API

RDD execution has a simple API split across the RuntimeIterator and HybridRuntimeIterator

abstract classes that differentiate between the Spark APIs for RDDs and Dataframes. As described
in (Zaharia et al., 2016), RDDs, or Resilient Distributed Datasets, are the primary building block
of the Spark API and are simply immutable, distributed sets of data objects without any schemas.
Whereas, Dataframes are RDDs of records with a known schema, meaning that any parallel exe-
cution done using Dataframes can also be completed using RDDs, and RumbleDB is aware of this
fact. Thus, the RuntimeIterator class has a JavaRDD<Item> getRDD() method to materialise the
resulting sequence of items from parallel processing as a JavaRDD<Item>, and a boolean isRD-

DOrDataframe() method to signify if the current execution mode is for RDDs or Dataframes, i.e.
execution is not local. The HybridRuntimeIterator then overrides the JavaRDD<Item> getRDD()

method to use a new method when isRDDOrDataFrame() returns true but the execution mode is
not for Dataframes – JavaRDD<Item> getRDDAux() creates the JavaRDD<Item> using RDD transfor-
mations from the JavaSpark API. getRDDAux() is abstract in this class and so is implemented by the
concrete classes that extend HybridRuntimeIterator, which may call getRDDAux on iterators that
are their direct descendants in the tree, thereby creating a chain of calls following a depth-first search
approach.
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Dataframe Execution API

Dataframe execution has an API analogous to that of RDDs with the RuntimeIterator class specifying
a boolean isDataFrame() method to signify if the current execution mode is for Dataframes, and
a JSoundDataFrame getDataFrame() method to materialise the resulting DataFrame, often using
SparkSQL queries and temporary views. In order to adapt Spark Dataframes to JSONiq, RumbleDB
uses the JSoundDataFrame class as a wrapper for Dataframes (of type Dataset<Row> in Java) that
also contains an ItemType acting as the JSONiq representation of the Dataframe’s schema. These
getDataFrame() methods are then implemented for concrete classes and chain calls with the same
depth-first search structure described for RDD execution.

This array of RuntimeIterator classes and its subclasses then form the iterator tree and specify the
possible flows of execution ready to generate JSONiq sequences.

2.5.6 Sequence Generation

The final step for RumbleDB to create the result of a query is to use the runtime iterator tree to gen-
erate a JSONiq sequence of items.

JSONiq items are implemented in RumbleDB via the Item interface which provides dummy default

methods for every JSONiq item type. Within this interface, each item has methods to retrieve or ac-
cess the encapsulated Java value – like boolean getBooleanValue() for JSONiq boolean items, and
Item getItemByKey(String key) for JSONiq objects – and each item has methods to verify its type
– like boolean isArray() returning true only for JSONiq arrays – thereby maintaining the JSONiq
data model as all items need only be accessed via the Item interface and not the implemented classes.

JSONiq sequences are implemented using the SequenceOfItems class that acts like a wrapper for
the RuntimeIterator class, ensuring that it can only be used to create a List<Item> object that
represents the JSONiq sequence.

Generating a List<Item> requires the RuntimeIterator class to provide several methods to “mate-
rialize” the sequence of items, such as Item materializeExactlyOneItem(), but these are all just
variations of the List<Item> materialize() method which follows one of the execution flows, de-
scribed in subsection 2.5.5, based on the iterator’s execution mode.

Local execution necessitates an iterator model for materialisation, as outlined by code block 2.1.
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Code 2.1: Local Materialisation

Materialisation of a sequence from a locally executed iterator has the following iterator style:

List <Item > result = new ArrayList <>();

iterator.open();

while(iterator.hasNext ()) {

result.add(iterator.next());

}

iterator.close ();

return result;

RDD and Dataframe execution have similar materialisation flows, with the exception that the Dataframe
materialisation must account for a schema. Code block 2.2 highlights this difference.

Code 2.2: RDD & Dataframe Materialisation

As discussed, RDDs and Dataframes both use the getRDD() method as a JavaRDD<Item> can be
materialised by calling the collect() action on an RDD like so:

JavaRDD <Item > items = iterator.getRDD ();

List <Item > collectedItems = items.collect ();

return collectedItems;

Since materialisation can be done directly on JavaRDDs, deriving the resultant RDD to collect
is simple for the RDD execution mode (as getRDDAux() can be used) but the getDataFrame()

method returns a JSoundDataFrame that must be converted to a JavaRDD<Item>. Therefore the
JavaRDD<Item> dataFrameToRDDOfItems(JSoundDataFrame df) method is used to map each
row of the DataFrame to a JSONiq item by comparing the JSoundDataFrame’s ItemType to the
schema of the Spark DataFrame. A getRDD() method could then resemble:

JavaRDD <Item > getRDD () {

if (iterator.isDataFrame ()) {

JSoundDataFrame df = iterator.getDataFrame ();

return dataFrameToRDDOfItems(df);

} else {

return iterator.getRDDAux ();

}

}

During the materialisation, however, complications arise when iterators that are part of the same
iterator tree do not support the same execution modes. The most common example occurs when
iterators executing locally receive RDD or Dataframe inputs from child iterators. Nevertheless, this
problem is overcome by interlacing the different forms of materialisation, depicted in code blocks 2.1
and 2.2, depending on the required execution mode.

Finally, the generated SequenceOfItems can be accessed with a long populateList(List<Item>

resultList) method to materialise the concrete sequence of JSONiq items resulting from the query.
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2.6 Persisting Updates

Providing the ability to alter data objects, instead of completely overwriting them, is just the first
challenge of facilitating updates. The next challenge comes when actually persisting these changes
beyond the process in which the updates were created. Thus far, subsection 2.4.1 and 2.4.2 have
described the JSON data format and how to model it, while subsection 2.4.4 outlines a specification
for updating JSON data in place, and section 2.5 shows an implementation of JSONiq capable of
housing such a specification. The only challenge left to overcome is to discover how to store, and
persist these updates.

2.6.1 Transactions

User interactions with a database generally consist of operations that read data from the database –
read operations – and operations that write data to the database – write operations. A transaction is
a set of read and/or write operations on a database that follow the ACID principles, as outlined by
(Haerder and Reuter, 1983), although the most interesting cases occur when the goal of transactions
is to modify the data.

ACID principles, beyond being a lovely acronym, can be summarised as:

1. Atomicity: all operations in a transaction must occur in their entirety, or none of them at all

2. Consistency: transactions must transition the database from one stable state, defined by the
database system, to another

3. Isolation: concurrent transactions are independent of one another, and so produce predictable
results

4. Durability: modifications to state made by completed transactions will persist beyond system
failure

Virtually all relational data management systems (RDBMS), from PostgreSQL (Group) to MySQL
(mys), are ACID-compliant, and even some NoSQL solutions, like Apache CouchDB (Anderson et al.,
2010), are too. Thus, it seems that, thanks to their durability, any ACID-compliant system should be
perfectly capable of persisting updates to JSON via RumbleDB. However, RumbleDB is built for the
Big Data paradigm where JSON is extremely popular – with JSON being used as a primary format for
large data collections like the GitHub archive (gha) – and notoriously, Big Data systems struggle to
be ACID-compliant (Moniruzzaman and Hossain, 2013). The disparity between Big Data and ACID
is discussed, and ACID is compared with BASE as an alternative in (Banothu et al., 2016). However,
BASE was built with inspiration from the CAP theorem.

CAP is a theorem, thought up in (Brewer, 2000), to better describe the trade-offs that different data
systems make to meet their requirements. CAP is well outlined by (Gilbert and Lynch, 2012) and
stands for:

1. Consistency: differing between systems, consistency can refer to the consistency in ACID for
relational systems, but is broadly thought of as each server in a system returning the correct
response upon request

2. Availability: each system request eventually receives a response

3. Partition Tolerance: the system of nodes continues to function despite being split into multiple
independent groups due to some network failure impeding communications
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The theorem states that any distributed system can have at most two of the properties at the same
time, and herein lies the trade-off. ACID-compliant RDBMS are examples of traditionally single-site
databases that only support the C and A properties of CAP, as they are generally centralised.

BASE as a paradigm, described by (Pritchett, 2008), looks to account for the pitfalls of ACID in
distributed systems by noting that these systems demand reliability. In order to be ACID-compliant,
data systems have to provide many features and add compute power that is inefficient for distributed
systems as they impede their reliability. Thus, the BASE principles, cleverly mirroring its alternative
in name, are as follows:

1. Basically Available: a system will always return a response to every request, even if the re-
sponse is a notification of failure

2. Soft State: the system state is malleable, to mean that there is always the possibility to be
changing, even without user access, in order to maintain eventual consistency

3. Eventual Consistency: given enough time without transactions, changes to the state will prop-
agate to all nodes in the system and thus the system will become consistent; however, no
guarantee is made about the consistency immediately after a transaction

In relation to the CAP theorem, BASE looks to provide A and P, with the hope that C comes eventu-
ally. Thus, BASE is a popular set of principles for Big Data systems where the volume of data means
consistency is less important, and the need to house these large volumes requires distributed storage
systems that must be available and able to partition to ensure they can be used everywhere and all
the time.

Using ACID, BASE, and CAP allows for well-reasoned discernments about the best technologies for
persisting updates in a Big Data system.

2.6.2 Delta Lakes (Databricks)

Standard data lakes, mentioned in section 2.1, often use object stores, like S3 (Ama, 2002), which
prioritise a more BASE-like paradigm to maintain the A and P aspects of CAP since these stores tend
to be eventually consistent (ama, 2002). However, the ideal solution would be to integrate more
consistency into these stores so that they also receive ACID benefits, which delta lakes aim to pro-
vide. Introduced in (Armbrust et al., 2020), delta lakes extend data lakes with an ACID-compliant
table storage layer. To achieve some ACID compliance, delta lakes maintain information about which
objects are on a delta table in an ACID manner – with a write-ahead log also stored in an object
store. This log is also used for other metadata information like per-file min-max statistics for faster
searches. Alongside the log, delta tables encode the data objects in Parquet, a column-oriented data
format with mandatory schemas (apa, c). With this configuration, delta tables are able to use spark-
SQL to describe updating transactions that can be snapshot, logged, and applied to data objects in an
ACID manner.

Delta lakes allow for:

1. UPSERTs: the update of values of a row it has a primary key that already exists and the insertion
of new rows with primary keys that do not exist

2. DELETEs: the removal of a row from a table

3. MERGEs: the insertion of distinct (“non-matching”) rows from two target tables into a new
table, and the update of matching rows for the new table
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4. Schema Evolution: change the schema of the table (e.g. by inserting a column) while still
accessing older parquet files, for the same table, that lack the new schema

Hence, delta lakes provide at least the basic updating operations of SQL, but for more heterogeneous,
nested schemas similar to that of the JSONiq data model in subsection 2.4.2.

Discussed in section 2.5, RumbleDB relies on the Apache Spark API to meet the processing needs
of Big Data querying. Fortuitously, delta lakes too – being a Databricks product – have Spark API in-
tegration as a primary feature, thereby allowing for easier integration of delta lakes into RumbleDB.

Delta lakes are able to accommodate all of the requirements outlined at the beginning of this section
and are therefore the focal technology to persist updates for this thesis.
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3 Implementation of Updates

The primary aim of this thesis is the extension of RumbleDB with the JSONiq updates specification
(2.4.4) to allow for the update of deeply nested and heterogeneous JSON fields in an intuitive and
versatile manner. To achieve this, one requires extending all the components of RumbleDB that
take a JSONiq script from query to result (2.5.2) with respect to both the XQuery Update Facility
1.0 (2.3.3) and the JSONiq update specification (2.4.4). Since we are primarily concerned with the
implementation of updates for JSONiq, to ensure correctness we use local execution as the execution
mode for the initial work before considering more parallelised executions.

The secondary aim of this thesis is to allow for the persistence of any updates made via Rum-
bleDB. Thus, we extend RumbleDB to be compatible with Delta Lake – see subsection 2.6.2 – enabling
users to query, update, and store their heterogeneous data, all via RumbleDB. In order to accomplish
this integration, we only extend the iterator logic of RumbleDB since updates to Delta Lakes still inter-
face through JSONiq expressions, a benefit provided by RumbleDB’s data independence. Moreover,
unlike implementing the conventional JSONiq updates, persisting updates to Delta Lakes necessitates
the use of the Dataframe execution mode to access the SparkSQL API that RumbleDB and Delta Lakes
share. Therefore, we partially extend functionality for both local and Dataframe executions.

3.1 Grammar Extension

The first step to actualising JSONiq updates in RumbleDB is to add the textual representation of the
queries to the grammar. As mentioned in subsection 2.5.3, RumbleDB uses ANTLR4 to handle the lex-
ing and parsing of the JSONiq grammar. The grammar is stored in a grammar file called Jsoniq.g4

which ANTLR4 then uses to generate the token file, the lexer class, the parser class, and the visitor
class – used to generate the Abstract Syntax Tree (AST) – for JSONiq. Thus, the grammar file directly
influences the creation of the AST and what information is available in the AST to be used for creating
the Expression Tree. A grammar file must then be well made (to aid later development) and above
all, correct.

To extend the grammar file, we introduce adaptations of syntaxes 2.1 to 2.8. Here we now briefly
explain some terms specific to grammars (Grune and Jacobs, 2006): terminal symbols are the non-
divisible symbols that make up a grammar, while non-terminal symbols are symbols that can be re-
placed by groups of terminal symbols as defined by a set of production rules described in the grammar
file. Moreover, ANTLR4 allows for the assignment of variables to non-terminal symbols, as seen first
in 3.1, meaning these symbols can be easily referenced later when building the expression tree from
the AST.

3.1.1 Transform Syntax

Starting with the Transform Expression (2.1), we introduce a new non-terminal symbol to simplify
the declaration of variables to be copied for the transform expression. This non-terminal symbol is
named copyDecl.
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Syntax 3.1: Copy Declarations

Copy declarations for Transform Expressions take the form:

copyDecl : var ref=varRef ’:=’ ExprSingle

varRef ::= ’$’ varName (3.1)

Where varRef is an already present non-terminal representing a reference to a variable – a $
followed by a variable name, as above.

Using the copyDecl non-terminal we can simplify the Transform Expression’s production rule.

Syntax 3.2: RumbleDB Transform Expressions

Transform Expressions in RumbleDB take the form:

transformExpr : ’copy’ copyDecl ( ’,’ copyDecl )*

’modify’ mod expr=exprSingle ’return’ ret expr=exprSingle (3.2)

Syntax 3.2 concisely describes the shape of a transform expression, while taking advantage
of the copyDecl non-terminal in conjunction with ANTLR4’s variable assignment to ensure that the
expression is compartmentalised into each copied variable and each clause. This division allows for
easy pattern matching between the components of the syntax and the resulting transform expression,
as part of the expression tree. Moreover, it ensures that copy declarations are considered separately
from the transform expression which will prove useful for scoping. The treatment of these copy
declarations is then akin to the treatment of ordinary variable declarations.

3.1.2 Function Declaration Syntax

The implementation of RumbleDB function declarations depicted in Syntax 3.3 experiences little to
no changes in the syntax relative to Syntax 2.2. We only extend the function declaration by adding a
flag indicating if the function is updating or not. Adding the flag to the grammar is simple and adds
a boolean value to the AST.

Syntax 3.3: RumbleDB Function Declarations

Function declarations are extended with an optional ’updating’ flag, assigned to an ANTLR4
AST variable is updating:

functionDecl : ’declare’ (is updating=’updating’)? ’function’ fn name=qname

’(’ paramList? ’)’ (’as’ return type=sequenceType)?

(’’ (fn body=expr)? ’’ | is external=’external’) (3.3)

By adding the is updating variable, we can store information as to whether the function is
updating in the AST for later processing.

3.1.3 Update Locator Syntax

Many of the expressions, namely Delete, Rename, and Replace expressions, have a common pattern.
This pattern is used to identify the target expression (object or array) of the update and then access
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either the key or index that is to be updated. To simplify the production rules for these updating
expressions, we introduce the updateLocator non-terminal.

Syntax 3.4: Update Locators

Below are two forms of the updateLocator production rule, where 3.4 shows the rule in align-
ment with the JSONiq specification of section 2.4.4

updateLocator : PrimaryExpr ( "(" ExprSingle ")" )+ (3.4)

and 3.5 shows the rule used in RumbleDB which makes a distinction between an array lookup
(e.g. arr[[1]]) and an object lookup (e.g. obj.key)

updateLocator : main expr=primaryExpr ( arrayLookup | objectLookup )+ (3.5)

The non-terminal 3.5 proves useful as it extracts the lookup syntax shared by several expres-
sions, and allows the resolution of this lookup to be implemented independent of the updating ex-
pression. Moreover, it will make further updating expressions more concise.

3.1.4 Delete Syntax

The syntax of delete expressions is greatly simplified from the syntax of 2.3 to 3.6 in large part due
to the use of 3.5. Moreover, the ’json’ syntax is removed to avoid bloating the grammar with
redundancies. This removal is common throughout all expressions referenced in section 2.4.4.

Syntax 3.5: RumbleDB Delete Expressions

Delete Expressions in RumbleDB take the shape:

deleteExpr : ’delete’ updateLocator (3.6)

3.1.5 Replace Syntax

Replace expressions see a similar, although not so substantial, simplification to Delete expressions.
The updateLocator (3.5) non-terminal is used for the lookup, and ’json’ is removed, leaving the
replace production rule to only account for the expression containing the value that will replace the
old value.

Syntax 3.6: RumbleDB Replace Expressions

Replace Expressions in RumbleDB still use several terminal symbols to make the statement read
more like English and so take the form:

replaceExpr : ’replace’ ’value’ ’of’ updateLocator

’with’ replacer expr=exprSingle (3.7)

Using the syntax of 3.7, ANTLR4 can easily represent the core components of a replace expres-
sion in the AST; in particular, the item to update and the new item to replace the old.
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3.1.6 Rename Syntax

As will be seen throughout our implementation, Rename and Replace expressions share much the
same shape and logic. Consequently, the Rename and Replace expression syntax are updated simi-
larly, taking full advantage of the updateLocator (3.5) syntax.

Syntax 3.7: RumbleDB Rename Expressions

Rename Expressions in RumbleDB are made up of a target item identifying a key to rename,
and an item representing the new name of the key, like so:

renameExpr : ’rename’ updateLocator ’as’ replacer expr=exprSingle (3.8)

3.1.7 Insert Syntax

Insert expressions remain almost identical to their specification counterparts (2.4 and 2.5). However,
the ’json’ terminal is removed and ANTLR4 is used to neatly decompose the syntax into the primary
elements that comprise the expression, as shown in 3.9 and 3.10

Syntax 3.8: RumbleDB Insert Expressions

RumbleDB describes Insert Expressions as either

insertExpr : ’insert’ to insert expr=exprSingle ’into’

main expr=exprSingle (’at’ ’position’ pos expr=exprSingle)?
(3.9)

or

insertExpr : ’insert’ pairConstructor (’,’ pair Constructor)*

’into’ main expr=exprSingle
(3.10)

where the pairConstructor refers to a key expression and value expression making a key-value
pair

3.1.8 Append Syntax

Lastly, the Append Expression adapts its syntax very slightly from the specification (2.8). Syntax
3.11 makes the expression more readable for the query writer and easier to decompose for further
development on the AST.

Syntax 3.9: RumbleDB Append Expressions

Append Expressions are designed exclusively for arrays and so further information can be passed
through the AST by creating the production rule like so:

appendExpr : ’append’ to append expr=exprSingle ’into’ array expr=exprSingle

(3.11)

Once all of the production rules for each new expression are defined they can be added into the ex-

prSingle rule, thereby integrating them into the possible syntax that will be identified as an expres-
sion. Moreover, having simplified and decomposed the syntax for each expression, the AST created
from the grammar will have all the information necessary to easily produce an expression tree.
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3.2 Updating Expressions

Expressions in RumbleDB are represented by an abstract Expression class that extends an abstract
Node class acting as a building block of the intermediate representation of a JSONiq query. This
Expression class describes an arbitrary expression in the expression tree. However, not all nodes in
this tree are expressions, as some may be for function declarations and clauses of a FLWOR expression.
Nevertheless, each expression is associated with a static context containing additional information
about the context in which the expression is present, such as in-scope variables and currently known
function signatures. Each expression also contains a statically inferred sequence type that describes
the sequence that would result from evaluating this expression, but this is only available via static
analysis.

3.2.1 Expression Classification

In order to accommodate updating expressions, we assign a new member variable to the Expression

class called the expression classification, like so:

protected ExpressionClassification expressionClassification =

ExpressionClassification.UNSET;

The ExpressionClassification is implemented using a Java Enum, available in appendix A.1, and
is RumbleDB’s adaptation of the expression classification described for XQuery in subsection 2.3.3.
In RumbleDB, expressions share four possible classifications with those of XQuery – simple, basic-
updating, updating, and vacuous – as well as an additional UNSET classification signifying that the
expression has not yet been classified. Moreover, classifications are understood with respect to the
JSONiq data model (2.4.2) of Items:

• Simple expressions: any expression that is not an updating or basic-updating expression.

• Basic-updating expressions: any delete, insert, replace, rename, or append expressions, or a
call to an updating function.

• Updating expressions: any basic-updating expression, or any expression directly containing
an updating expression (recursively defined), except transform expressions

• Vacuous expressions: any expression explicitly defined to be vacuous by JSONiq – nevertheless
they all either return an empty sequence or raise an error.

• Unset expressions: the default classification of all expressions, indicating that they have not
been classified and the classification is currently erroneous.

These classifications offer us a finite and static strategy to describe the state of an expression: it is
indeed impossible for an expression to change its classification at runtime, since that would require
the expression, or its constituents, to morph into a different expression. Hence, an enum was chosen
to represent these classifications, as enums are good for encoding a small, finite set of possible states
while maintaining readability. Moreover, enums can include methods – such as boolean isUpdat-

ing() method in appendix A.1 – to encode logic that can be derived from the enum state. A possible
alternative is to simply represent the classification with a string, but this would be cumbersome and
inextensible. Indeed, checking if an expression is updating would require string parsing, and adding
additional classifications would entail an overhaul of all checks of these strings. Another alternative
is to use an abstract class to represent an arbitrary classification and employ inheritance to create
concrete classifications. However, this approach does not offer us any additional benefits beyond the
extensibility of inheritance, which is unnecessary for so few states with little logic since this would
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add overhead for what could be a simple encoding.

In addition to having an ExpressionClassification member variable, we extend the Expression

class with a getter and setter interface to retrieve and initialise the expression classification. The
setter method is used when providing additional information to expressions, such as their classifi-
cation, during visits to the expression tree. In subsection 2.5.4 we outlined that RumbleDB utilises
visitor patterns (Palsberg and Jay, 1998) to traverse the expression tree and apply expression-specific
methods. Expression classifications are initialised by one such visitor: the ExpressionClassifica-

tionVisitor class.
Visitors function by providing a defaultAction method for each node in a tree which describes

the default logic to apply if no visit method is created for the node currently being visited. Often
the default logic is simply to visit all of the descendants of the current expression, i.e. all expres-
sions in the tree that are below the current expression. In the ExpressionClassificationVisitor,
the default action is also to visit all of the descendants of the current expression and then use their
classifications to derive the classification of the current one according to the aforementioned rules.
However, very few expressions can be classified as updating without being explicitly specified as being
able to be updating by the XQuery Update Facility 1.0, described in subsection 2.3.3. It is therefore
simpler to implement specific visit methods for the expressions that can be updating and throw an er-
ror (XUST0001 or InvalidUpdatingExpressionPositionErrorCode) if an expression is classified as
updating in the default action. The result of this is the defaultAction method for the Expression-

ClassificationVisitor presented in appendix A.2. While the following expressions have specific
visit methods implemented to match the semantics demanded by the XQuery Update Facility 1.0
(2.3.3), JSONiq Updates specification (2.4.4), and the RumbleDB classifications: CommaExpression,
FlworExpression, ConditionalExpression, TypeSwitchExpression, DeleteExpression, Insert-
Expression, RenameExpression, ReplaceExpression, AppendExpression, TransformExpression,
FunctionCallExpression, InlineFunctionExpression, where the last two expressions fit the crite-
ria due to updating function declarations.

Expression classifications then allow us to extend the Expression class with a boolean isUp-

dating() method. The notion of being updating is simplified as it is owned by and interfaced via the
Expression as opposed to the ExpressionClassification state.

3.2.2 Expression Classes & Visitors

Each of the syntaxes in section 3.1 will create nodes in an AST that need to be transformed into an
expression tree. To do so, we use a TranslationVisitor class, similar in structure to the Expres-

sionClassificationVisitor class described in subsection 3.2.1. The goal of the TranslationVis-

itor is to translate each node of the AST into its corresponding Expression implementation, and so
each of the newly introduced syntaxes requires its own visit method.

Once the expression tree is created, several other visitors traverse it and populate the additional
information required by the new expression classes. The VariableDependenciesVisitor resolves
dependencies between variables and function declarations to ensure that the expressions that make
up the dependencies are evaluated in the correct order. For example, if a variable $x depends on a
variable $y, then $y must be evaluated before $x. In order to resolve these dependencies, a directed
acyclic graph (DAG) represents the dependencies and a topological sort over the DAG is used to
reorder the declaration into a valid order. The StaticContextVisitor populates the static contexts
of expressions via a multi-pass algorithm that enables function hoisting. The InferTypeVisitor

infers and populates the static sequence type of an expression by descending to expressions it does
know the type of, like a StringLiteralExpression whose type is defined as a singleton sequence
containing only a string item. These types then propagate back up the tree during a visit. Finally, the
ExecutionModeVisitor sets the highest execution mode of the expression to one of LOCAL, RDD, or
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DATAFRAME. These execution modes are described in subsection 2.5.5 and are implemented using an
ExecutionMode enum similar to that of the new ExpressionClassification in its use.

3.2.3 Transform Expression Class

A transform expression can be understood to have three main components: a list of copied variables
– the copyDeclarations; an expression describing the modification to be made to the copyDeclara-

tions – the modifyExpression; and an expression to be returned from the transform expression, the
returnExpression. Each copy declaration can be further broken down into a Name, with which to
refer to the variable, and an expression represented by the Name, this being the sourceExpression.

We extend the TranslationVisitor to decompose the syntax of 3.2 and visit the sub-expressions
to create a TransformExpression instance with member variables for the copyDeclarations, mod-
ifyExpression, and returnExpression. From here, visiting a TransformExpression becomes far
more involved as this expression introduces variables. To resolve these variables and ensure they are
evaluated in the correct order, a visitTransformExpression method is implemented in the Vari-
ableDependenciesVisitor. This transform visit adds all of the dependencies of the new variables,
contained in the copyDeclarations, to the DAG, ensuring that any declarations are given a work-
ing reordering. Without this visit, no copyDeclaration could reliably refer to variables declared
outside of the transform expression, as the sourceExpression of the copyDeclaration may try to
evaluate a variable reference that has not been properly evaluated yet itself. After CopyDeclaration
dependencies issues are resolved, the variables can be added to the static context via a specific visit
to the TransformExpression in the StaticContextVisitor. Now the static type of both the copy-

Declarations and the TransformExpression can be inferred by the InferTypeVisitor. Naturally,
the type of each copyDeclaration follows from the associated sourceExpression, and the type of
the TransformExpression is exactly that of its returnExpression, and the visit method reflects this
logic. Lastly, the ExecutionModeVisitor also must provide a specific visit method for a TransformEx-

pression as each copyDeclaration has an associated mode under which it is stored and this exactly
reflects the highest execution mode of the sourceExpression. Once more, this is crucial as any access
to the copyDeclaration must adjust its own execution mode to match that of the copyDeclaration.

3.2.4 Inline Function Expression Class

Function declarations are not represented in the expression tree as they are not expressions, so the
mechanism for expressing if a function declaration is updating is different from the other expressions
that we will discuss. During the translation from the AST to the expression tree, the TranslationVisi-
tor uses the function declaration syntax (3.3) to create a FunctionIdentifier and an InlineFunc-

tionExpression. The InlineFunctionExpression is the representation of the declared function in
the expression tree and so contains whether the function is updating using the isUpdating method of
the Expression class. While, the FunctionIdentifier is, as the name implies, a way to identify the
function so it can be inserted into the static context by the StaticContextVisitor for future reference,
much like variables. In the static context, functions are mapped from their FunctionIdentifier to
their FunctionSignature which is also extended to include whether the function is updating. Sub-
sequently, any call to the declared function – represented by a FunctionCallExpression – can look
up the FunctionSignature to know if the call is updating.

3.2.5 Update Locator Processing

Despite not being an expression itself, the update locator is a crucial part of Delete, Replace, and Re-
name expressions. The syntax 3.5 shows the two main components of the update locator, those being
the primary expression (PrimaryExpr) and the one or more array or object lookups. However, this
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syntax is misleading as the array or object that this update targets is not necessarily the PrimaryExpr,
but rather the evaluation of all the array and object lookups (except the last) on the PrimaryExpr.
The last lookup indicates the key/index that will be deleted, replaced, or renamed in the previously
evaluated object/array. See figure 3.1 for a pictorial decomposition.

key1

key2
i j ...

primaryExpr[[i]].key1.key2[[j]]....finalKey/[[finalIndex]]

Target Object/Array

Key/Index to change

Figure 3.1: Visual breakdown of Update Locator semantics with a depiction of the navigation to the target

To resolve all of these lookups, the TranslationVisitor visits the PrimaryExpr and then nests it
and the following lookups in either an ArrayLookupExpression or ObjectLookupExpression until
the final and most outer lookup is reached. In the expression tree, we dub the first half of the up-
date locator as the main expression, which we can think of as a straight line of nodes coming from
the initial PrimaryExpr. We dub the second half as the locator expression and is much simpler as
it will always be a single ArrayLookupExpression or ObjectLookupExpression. In order for ex-
pressions containing an update locator to be easily translated, we can extract the main expression
and the locator expression using our getMainExpressionFromUpdateLocator() and getLocatorEx-

pressionFromUpdateLocator() methods introduced in the TranslationVisitor.

3.2.6 Delete Expression Class

Illustrated by its simple syntax (Syntax 3.6) the delete expression is processed identically to the
update locator. The DeleteExpression class looks as if an update locator were formalised into
an expression; a DeleteExpression instance is comprised of a mainExpression and a locator-

Expression derived from the getMainExpressionFromUpdateLocator() and getLocatorExpres-

sionFromUpdateLocator() methods in the TranslationVisitor. Finally, much like all basic updating
expressions, the InferTypeVisitor is able to easily infer that any DeleteExpression will return an
empty sequence as they generate PULs instead.

3.2.7 Replace Expression Class

Replace expressions are very similar to delete expressions as much of their syntax, and so the infor-
mation that makes up the ReplaceExpression class, comes directly from the main expression and
locator expression extracted from the update locator processing. Moreover, as a ReplaceExpression

has the BASIC UPDATING classification, the InferTypeVisitor sets its sequence type to empty. The
novelty of each ReplaceExpression is the inclusion of a replacerExpression, being the expression
evaluated to replace the value described by the update locator information.

3.2.8 Rename Expression Class

As we have seen with ReplaceExpressions, creating the class and instances thereof of a RenameEx-

pression follows the same processing as for DeleteExpressions (3.2.6) with respect to the Trans-
lationVisitor and InferTypeVisitor. Nevertheless, a novelty is present in the class as each RenameEx-

pression also requires an expression evaluating to the new name of the renamed key – the nameEx-

pression.
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3.2.9 Insert Expression Class

An InsertExpression is implemented with a mainExpression, the expression evaluating to the
target array or object, a toInsertExpression, the expression resulting in the new object or new item
to be inserted into the target, and a positionExpression, the expression that gives the index to insert
the item at in the array. In the first syntax, 3.9, each constituent of an InsertExpression instance
is clearly defined and obtained by the TranslationVisitor, but in the case of an object insertion the
positionExpression will not be present and so can be null. To account for this possibility, the
InsertExpression class includes a way to safely check whether the positionExpression is null –
the boolean hasPositionExpression() method – which also acts as a method of discerning between
an object insertion and array insertion expression.

Although the second syntax (Syntax 3.10) asserts that the positionExpression will always
be null, it raises the issue of translating a list of pairConstructors into an object to be used as
the toInsertExpression. To do so, the TranslationVisitor considers the left-hand side of each
pairConstructor as a key and the right-hand side as a value. A list of key expressions and a list
of value expressions are generated and combined in an ObjectConstructorExpression to form the
object to be inserted.

Finally, as with all basic updating expressions, the InferTypeVisitor initialises the sequence type
of every InsertExpression as the empty sequence.

3.2.10 Append Expression Class

The final expression class to create is the AppendExpression which can be semantically perceived
as a subset of an InsertExpression since it is like an array insertion where the index is always the
length of the array. An expression that evaluates to a target array, the arrayExpression, and an
expression resulting in an item to be added to the end of said array, the toAppendExpression, are all
that make up an AppendExpression. Thus, like the DeleteExpression, the TranslationVisitor can
easily decompose and translate the append syntax (3.11) to create an AppendExpression, which is
then described with an empty sequence type by the InferTypeVisitor.

With all of the new expression classes implemented, visitors extended, and a reliable way to describe
whether an expression is updating – or simple, etc. – an expression tree representing an updating
JSONiq query can be created.

3.3 Updating Iterators

The responsibility for processing and materialising the results of a query falls on RumbleDB’s iter-
ators, actualised by the RuntimeIterator class. Before this thesis, RuntimeIterators would only
need to provide an interface for materialising sequences as this is all the JSONiq processing model
(2.4.3) would require. However, in order to accommodate updating expressions and the semantics
demanded by JSONiq updates (2.4.4), the RuntimeIterators must be extended beyond the current
implementation described in subsection 2.5.5. Our primary focus of this extension is to include the
ability to process PULs and to create RuntimeIterator implementations for each of the newly in-
troduced expressions so that an expression tree for an updating query can be transformed into an
iterator tree that can process said query.

3.3.1 Extensions to Runtime Iterators

The RuntimeIterator class needs two methods to facilitate PUL processing: one must indicate
whether this iterator returns a non-empty PUL instead of a non-empty sequence and the other must
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provide a way to materialise such a PUL – the following methods and member variable accomplish
exactly that:

protected boolean isUpdating;

.

.

.

public boolean isUpdating () {

return this.isUpdating;

}

public PendingUpdateList getPendingUpdateList(DynamicContext context) {

throw new OurBadException(

"Pending Update Lists are not implemented for the iterator "

+ getClass ().getCanonicalName (),

getMetadata ()

);

}

The isUpdating member variable is intended to reflect the ExpressionClassification (3.2.1) of
the expression from which the iterator is derived. For example, iterators derived from expressions
with an ExpressionClassification of BASIC UPDATING or UPDATING will have an isUpdating value
of true to indicate that the iterator is updating and so produces a non-empty PUL. Whereas, iterators
derived from expressions with an ExpressionClassification of SIMPLE will have an isUpdating

value of false to indicate the iterator produces a non-empty sequence. The isUpdating() method
is then simply a getter for the isUpdating state.

The final addition to the RuntimeIterator class is the getPendingUpdateList(DynamicContext
context) method which generates the PUL for the current iterator, but if the iterator is not designed
to be able to produce a PUL then an error is thrown to indicate the incorrect use of the iterator.
Moreover, the general use of this method is to first check if the iterator isUpdating() and if so start
processing the PUL, but if not then just return an empty PUL; hence adhering to the extensions to the
data model provided by the XQuery Update Facility 1.0 (2.3.3).

Lastly, the DynamicContext argument of the getPendingUpdateList method is the equivalent
of the StaticContext, briefly discussed in section 3.2, for a RuntimeIterator. Instead of remaining
static, the DynamicContext updates during the processing of iterators to account for new variables,
functions, and additional information introduced by other iterators, thereby enabling a dynamic scope
to run throughout the program alongside the StaticContext specific to each iterator.

3.3.2 Updating Iterator Classes

Creating the expression tree from the AST involves using a visitor to translate the AST nodes to
instances of the Expression class. Translating the expression tree to a tree of runtime iterators is
no different, and it is the role of the RuntimeIteratorVisitor to visit each Expression and create a
RuntimeIterator instance. As a result of the numerous visitors supplying each expression with as
much information as required, the methods to translate an Expression into a RuntimeIterator are
very simple. Each of the classes discussed in section 3.2 has its own visit method in the RuntimeIt-
eratorVisitor. This method visits every sub-expression of a given updating Expression instance and
translates it into a RuntimeIterator that becomes a sub-iterator of the new updating RuntimeIt-

erator instance. For example, in subsection 3.2.6 each DeleteExpression instance is shown to be
comprised of a mainExpression and a locatorExpression. The RuntimeIteratorVisitor will visit
the mainExpression and the locatorExpression to create a mainIterator and a locatorIterator

that are used to instantiate a DeleteExpressionIterator. Alongside this, the StaticContext and
the ExecutionMode of the Expression are directly carried over to the new RuntimeIterator. This
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procedure is the same for each of the new expressions with the exception of the TransformExpres-

sion (3.2.3), which converts the list of CopyDeclarations to a map from the Name of the copied
variable to the new RuntimeIterator that can materialise the associated value. Finally, the isUp-

dating() method of each Expression, from which a RuntimeIterator is derived, is used to set the
isUpdating flag of said RuntimeIterator.
Our new expressions now have a corresponding RuntimeIterator class, and so the expression tree
can successfully be translated into a tree of runtime iterators. The next step is to implement the
methods for materialising PULs so this iterator tree can process the query result.

3.4 Sequences & Pending Update Lists

Adding the ability to update JSONiq items to RumbleDB involves a large extension to the data and
processing model. Both a new type of output, the Pending Update List (PUL), is added and the be-
haviour of sequences relative to this new output type is altered. Moreover, every expression that can
produce a PUL requires an implementation of the corresponding RuntimeIterator’s getPendingUp-
dateList() method.

3.4.1 Update Primitives In RumbleDB

Update primitives are the fundamental building blocks for updating JSONiq items in RumbleDB.
Each of the seven update primitives describes a different way to alter the state of either an array or
an object. Subsection 2.4.4 describes the shape of an update primitive as if it were a function, but
this lacks the extensibility and simplicity of a more abstract approach that would aid the production
and processing of PULs. Hence, we require a logical interface that decomposes update primitives into
their most foundational components. This thesis looks at a Target-Selector-Content decomposition
of update primitives.

• Target: the array or object that is to undergo some update

• Selector: the item that identifies the component of the Target that is to be updated; this may
be an object key with a string type, or it could be an array index with an integer type

• Content: the item(s) that introduce new information to the Target, possibly at a specified Selec-
tor

Utilising this decomposition, the update primitives can take on a more homogeneous shape, but
still, some heterogeneity arises since not all update primitives require Content. The decompositions
of the update primitives from subsection 2.4.4 are outlined in figure 3.2.
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InsertIntoObject(Object, Object)

InsertIntoArray(Array, Integer, Item*)

DeleteFromObject(Object, String*)

DeleteFromArray(Array, Integer)

ReplaceInObject(Object, String, Item)

ReplaceInArray(Array, Integer, Item)

RenameInObject(Object, String, String)

InsertIntoObject(Target, Content)

InsertIntoArray(Target, Selector, Content)

DeleteFromObject(Target, Content)

DeleteFromArray(Target, Selector)

ReplaceInObject(Target, Selector, Content)

ReplaceInArray(Target, Selector, Content)

RenameInObject(Target, Selector, Content)

Target Selector Content

Figure 3.2: Target-Selector-Content Decomposition of Update Primitives

Using this model, in conjunction with the Item interface (2.5.6), an interface can be created to
describe how each update primitive needs to be implemented. Crucially, the Item interface can be
used as a single type that can abstract away the specific types of any Target, Selector, or Content that
may be part of an update primitive. The UpdatePrimitive interface mimics the Item interface in that
it outlines methods to identify the current type of update primitive being represented, for example
the boolean isDeleteObject() method returns true from the delete-from-object update primitive
and false for all others. Moreover, getter methods are provided to request the Item representing the
Target, Selector, or Content. However, some update primitives have multiple Contents and so a special
method is available called getContentList() to request the list of Items representing the Content.
Lastly, each update primitive must implement a method that applies the changes described by the
update primitive, and naturally this is the void apply() method. Appendix A.3 outlines a concrete
example of an update primitive interface.

Update primitives could have been implemented using a hierarchical inheritance structure with
an abstract UpdatePrimitive class at the top instead of an interface. However, the only state that
every update primitive shares is the Target, meaning many of the benefits of an abstract class, like
extracting shared logic, cannot be taken advantage of. Moreover, the likelihood is that a query will
incur the production of many update primitives, signifying that a class hierarchy would add a lot of
processing overhead with little to gain for development purposes.

The UpdatePrimitive interface then allows for a class to be created for each update primitive, while
ensuring they can all be interfaced with in a similar manner.

The InsertIntoObjectPrimitive class contains an Item target and an Item content, both of
which are objects. As the responsibility of update primitives is only to apply an update given argu-
ments that fit their model, no checks for the type of each Item are performed and they are assumed
to be correct. Thus, when applying the primitive it can be assumed that all methods intended for
objects in the Item interface are safe to use; the apply() method iterates through all of the keys of
the content, uses getItemByKey(String key) to get the value of the key in the content, and inserts
the key-value pair in the target using the putItemByKey(String key, Item value) method.
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The InsertIntoArrayPrimitive class contains an Item target, an Item selector, and a List<Item>
content, which are an array, an integer index into the target, and a list of items to insert into the
target, respectively. When instantiating this primitive, the selector is checked to be within the
bounds of the target and, if it is not, an error is thrown to communicate this. To apply this primitive
the Item interface is extended with a putItemsAt(List<Item> items, int i) method that inserts
a list of items into an array at a given index. Before calling this method on the target with the con-

tent and selector, the selector must be decremented by one to account for Java being 0-indexed
and JSONiq being 1-indexed.

The DeleteFromObjectPrimitive class contains an Item target, intended to be an object, and
a List<Item> content, intended to be a list of the keys to be removed from the target. Upon
instantiation of this primitive, each key in the content is verified for existence against the target

object using the getItemByKey(String key) method of the Item interface. If this method returns
null, then the key is not present in the target and an error is thrown to indicate such. In order to
apply the primitive, a new method is added to the Item interface called removeItemByKey(String

key) which removes a key-value pair from an object – this method is then applied to the target for
each key in the content.

The DeleteFromArrayPrimitive class contains an Item target, being an array, and an Item

selector, being an integer of the index to remove from the target. Before the primitive can be
created however, the selector is checked as to whether it is a valid index into the target – if it is
not in the range of the target then an out of bounds error is thrown. When applied to the target,
this primitive uses the new removeItemAt(int i) method in the Item interface to remove the item
at the index of the selector decremented by one.

The ReplaceInObjectPrimitive class contains an Item target as an object, an Item selector

as a string key of the target, and an Item content as the item to replace the value at the selector

in the target. The selector is verified as a key of the target by checking if a value is associated
with the selector, if not then an error is thrown. When applying this primitive, a combination of the
removeItemByKey method, introduced for DeleteFromObjectPrimitives, and the putItemByKey

method are used to first remove the selector from the target and then add it back with the new
content. This avoids unnecessarily creating additional methods that would bloat the Item interface.

The ReplaceInArrayPrimitive class contains an Item target as an array, an Item selector

as an integer index into the target, and an Item content as the item to replace the value at the
selector in the target. Once more an out-of-bounds error check is performed on the selector with
respect to the target upon instantiation. Moreover, as was the case with the ReplaceInObjectPrim-

itive, the application of this primitive takes advantage of methods introduced for array deletions
and insertions to first remove the item at the decremented selector in the target, and then insert
the content at that same index.

Finally, the RenameInObjectPrimitive class contains an Item target as an object, an Item

selector as a string key of the target, and an Item content as the new string key to replace the
key at the selector in the target. The selector is error checked as a valid key of the target, and
applying the primitive is like a hand-over-hand procedure in which the item currently at the selector
in the target is temporarily stored, the key-value pair is removed, and the item is re-inserted into
the target under the new content key.

These update primitive classes are part of the underlying implementation for processing updates in
RumbleDB, and so should not be directly interacted with by other components of the system. The
UpdatePrimitive interface ensures that update primitives can be accessed homogeneously, but for
proper encapsulation, the instantiation of each primitive must also be abstracted. Thus, the Up-

datePrimitiveFactory is introduced, and employs the factory design pattern, described in (Gamma
et al., 1995), to instantiate each update primitive. Accessing these methods is done through a static

instance of the factory, thereby encapsulating update primitives behind the interface and factory so
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that the processing logic of PULs can be simplified.

3.4.2 Pending Update Lists in RumbleDB

In the context of RumbleDB, PULs, or Pending Update Lists, are unordered collections of update
primitives, which represent the change of state intended to be applied to an array or an object with
respect to a given snapshot of state. It is through PULs that iterators can create and process updates
defined by update primitives. PULs enable this processing via two update routines – mergeUpdates

and applyUpdates, both described in subsection 2.4.4.

To create a PendingUpdateList class, the requirements of the primary update routines must be as-
sessed. Both PUL update routines require the categorisation and comparison of the different update
primitives in order to function. Importantly, merging update primitives requires that their decom-
posed forms are merged since many of the merge operations compare the Targets, Selectors, and
Content of update primitives within the same snapshot. Whereas applying updates needs the update
primitives to be in their composed form such that their apply() methods can be executed. Thus,
the PendingUpdateList class can maintain either a collection of UpdatePrimitives or their decom-
posed versions. For this extension of RumbleDB, the latter was chosen because applyUpdates can
only be called once per PendingUpdateList instance, while mergeUpdates can be called many times
and the likelihood is that many PULs will be merged before the final merged PUL is applied as many
expressions create small PULs that are merged by other expressions, like FlworExpressions. Thus,
the latter version does not involve the overhead of repeatedly decomposing and recomposing update
primitives for each execution of mergeUpdates.

In practice, this decomposed variation uses five Map instances to match the various shapes of the
decomposed update primitives outlined by figure 3.2. Although, figure 3.2 only shows three distinct
shapes, five Map instances are needed to account for the various Target, and Content types, which will
simplify the mergeUpdates and applyUpdates algorithms by making this distinction so they need
not. Moreover, we do not need as many as seven Map instances to account for each type of update
primitive since a decomposed ReplaceInArrayPrimitive is identical to a decomposed DeleteFro-

mArrayPrimitive where the Content is null, indicating the removal of the value at the Selector in
the Target. Similarly, a decomposed DeleteFromObjectPrimitive can be interpreted as several de-
composed ReplaceInObjectPrimitives where each of the keys in the Content of the DeleteFro-

mObjectPrimitive are a Selector in a new ReplaceInObjectPrimitive with a null Content, using
the same semantics as with array replacements and deletions. Notably, this same logic cannot also be
applied to the Map instances needed for insertion primitives since no insertion can be merged with ei-
ther a deletion or a replacement as defined by the JSONiq updates specification (Robie et al., 2011).
Therefore, a strict ordering is required between insertions and other primitives otherwise a single
insertion and deletion could share the same Target and Selector meaning they would need to occupy
the same slot if they shared a Map. Below is the Java syntax for these Map instances in the Pendin-

gUpdateList class and figure 3.3 shows the equivalence between the update primitives decomposed
in their Map and their composed version.

private Map <Item , Item > insertObjMap;

private Map <Item , Map <Item , List <Item >>> insertArrayMap;

private Map <Item , Map <Item , Item >> delReplaceObjMap;

private Map <Item , Map <Item , Item >> delReplaceArrayMap;

private Map <Item , Map <Item , Item >> renameObjMap;
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Decomposed In Map Composed Equivalent

renameObjMap :: Target Selector Content ReplaceInObject(Target, Selector, Content)

delReplaceArrayMap :: Target Selector Content {Content == null

Content != null

DeleteFromArray(Target, Selector)

ReplaceInArray(Target, Selector, Content)

delReplaceObjMap :: Target Selector Content {Content == null

Content != null

DeleteFromObject(Target, List[Selector])

ReplaceInObject(Target, Selector, Content)

insertArrayMap :: Target Selector Content InsertIntoArray(Target, Selector, Content)

insertObjMap :: Target Content InsertIntoObject(Target, Content)
Object

Object

Object

Array

Array

Int

Int

String

String

Object

List[Item]

Item

Item

String

Content

Figure 3.3: Illustration of Maps for the PendingUpdateList class

These five Map instances then make up the state of a PendingUpdateList class, and while they could
be implemented with either a hash map or a tree map, our extension of RumbleDB opts for a tree
map. Tree maps differ from hash maps in that tree maps maintain their entries in a sorted order based
on a given comparator using a red-black tree, whereas hash maps use hashing and hash buckets to
maintain their entries which provide no particular order. Despite hash maps having a better amortised
time complexity for the standard operations – insertions, searches, and deletions all having constant
time, while tree maps have O(log(n)) time complexity for the same operations – hash maps use much
more memory, and provide no ordering when extracting values, which will prove useful for the update
routines of PULs, while minimising the overhead of large PULs. Moreover, hash maps in Java use the
equals() and hashCode() methods of values to enter them into the hash map, and RumbleDB’s
current implementation already has language-dependent semantics associated with these methods
for Items meaning they cannot be altered for PULs without disrupting other features. Thus, for two
different Items item1 and item2, it can be the case that hashCode(item1) == hashCode(item2)

and that item1.equals(item2) == true, meaning that their logical models cannot be relied upon
to differentiate them. Instead, the default hash code function can be used, which returns the internal
memory address the object was instantiated at, as this is highly unlikely to be the same for two Items

that are logically equal. However, the default hash code function can only be used in the current
implementation as it is designed for local execution. The code that matches this logic is used for the
comparator that informs the ordering in the tree maps and can be found in appendix A.4.

Finally, the PendingUpdateList class can be instantiated with an UpdatePrimitive that is de-
composed and entered into the appropriate Map. Having prepared the state of a PendingUpdateList

and created a way to discern between the different decompositions of update primitives, we can now
properly implement the update routines.

The mergeUpdates routine of a PUL combines the update primitives of two PULs, removes redun-
dancies, and flags errors where appropriate. The goal of this routine is to only have one PUL at the
end of every snapshot so no conflicts can arise upon the application of the update primitives. More-
over, thanks to the Maps of decomposed update primitives, merging two PULs just involves iterating
through the keys of each Map of one PUL and processing them relative to the same Map of the other
PUL, as described by the JSONiq update specification (Robie et al., 2011) and figure 2.5. During the
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algorithm pseudocode, the PUL being merged into will be referred to as PUL1 while the PUL merging
into PUL1 will be referred to as PUL2. Due to all of the iterations required for this routine, the Map ac-
cesses are best described in a Java-like pseudocode alongside descriptions of the core components of
the merging of each update primitive as adjusted from the descriptions of subsection 2.4.4, utilising
the model of update primitives introduced in subsection 3.4.1.

Firstly, the merging of two delReplaceObjMaps is concerned with DeleteFromObjectPrimi-

tives, ReplaceInObjectPrimitives, and RenameInObjectPrimitives. Merging two DeleteFro-

mObjectPrimitives requires both primitives to have the same Target and Selector, if so then one
can be forgone. On the other hand, two ReplaceInObjectPrimitives cannot be merged as no re-
placement on the same Target and Selector can take precedence over another, so instead an error
is thrown indicating that too many replacements have occurred on the same Target and Selector.
However, a DeleteFromObjectPrimitive and a ReplaceInObjectPrimitive or RenameInObject-

Primitive can be merged as deletions take precedence over replacements and renamings, meaning
if the aforementioned pairings of primitives have the same Target and Selector then only the Delete-

FromObjectPrimitive remains. Code block 3.1 reflects this logic along with the navigation of the
Maps.
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Code 3.1: Merge Object Deletions & Object Replacements

for (target : PUL1.delReplaceObjMap.keySet ()) {

// get inner maps

pul2SelectorContentMap = PUL2.delReplaceObjMap.get(target);

pul1SelectorContentMap = PUL1.delReplaceObjMap.get(target);

for (selector : pul2SelectorContentMap.keySet ()) {

// get content

pul2Content = pul2SelectorContentMap.get(selector);

pul1Content = pul1SelectorContentMap.get(selector);

pul1HasSelector = pul1SelectorContentMap.containsKey(selector

);

if (pul2Content == null) {

// if new content is delete -- remove rename if present

hasRename = PUL1.renameObjMap.get(target).containsKey(

selector);

if (hasRename) {

PUL1.renameObjMap.get(target).remove(selector);

}

} else {

// if new content is replace check if duplicate or

redundant

if (pul1HasSelector && tempSrcRes != null) {

throw TooManyReplacesOnSameTargetSelectorError ();

} else if (pul1HasSelector) {

continue;

}

}

// add new content

pul1SelectorContentMap.put(selector , pul2Content);

}

PUL1.delReplaceObjMap.put(target , pul1SelectorContentMap);

}

Analogously, DeleteFromArrayPrimitives with the same Target and Selector result in only one
remaining when merged, and ReplaceInArrayPrimitives with the same Target and Selector raise an
error for the same rationale as the ReplaceInObjectPrimitive case. Furthermore, DeleteFromAr-
rayPrimitives merged with ReplaceInArrayPrimitives result only in the original DeleteFromAr-
rayPrimitive. Such similar logic results in a similar algorithm for merging two delReplaceArrMaps,
as seen in code block 3.2.
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Code 3.2: Merge Array Deletions & Array Replacements

for (target : PUL2.delReplaceArrayMap.keySet ()) {

// get inner maps

pul2SelectorContentMap = PUL2.delReplaceArrayMap.get(target);

pul1SelectorContentMap = PUL1.delReplaceArrayMap.get(target);

for (selector : pul2SelectorContentMap.keySet ()) {

// get content

pul2Content = pul2SelectorContentMap.get(selector);

pul1Content = pul1SelectorContentMap.get(selector);

pul1HasSelector = pul1SelectorContentMap.containsKey(selector

);

if (pul2Content != null && pul1HasSelector) {

// if new content is replace check if duplicate or

redundant

if (pul1Content == null) {

continue;

} else {

throw new TooManyReplacesOnSameTargetSelectorError ();

}

}

// add new content

pul1SelectorContentMap.put(selector , pul2Content);

}

PUL1.delReplaceArrayMap.put(target , pul1SelectorContentMap);

}

Similarly to ReplaceInObjectPrimitives, no two RenameInObjectPrimitives can be merged for
the same rationale as replacements, meaning this merge would result in an error indicating that too
many renames have occurred on the same Target and Selector. Merging two renameObjMaps also
needs to account for the removal of renamings that conflict with already present deletions, thus
giving the algorithm in code block 3.3.

Code 3.3: Merge Object Renamings

for (target : PUL2.renameObjMap.keySet ()) {

// get inner maps

pul2SelectorContentMap = PUL2.renameObjMap.get(target);

pul1SelectorContentMap = PUL1.renameObjMap.get(target);

for (selector : pul2SelectorContentMap.keySet ()) {

// check if duplicate rename

if (pul1SelectorContentMap.containsKey(selector)) {

throw TooManyRenamesOnSameTargetSelectorError ();

}

// check if delete is present

isDelete = PUL1.delReplaceObjMap.get(target).containsKey(

selector) && PUL1.delReplaceObjMap.get(target).get(

selector) == null;

if (isDelete) {
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continue;

}

// add new content

pul2Content = pul2SelectorContentMap.get(selector)

pul1SelectorContentMap.put(selector , pul2Content);

}

PUL1.renameObjMap.put(target , pul1SelectorContentMap);

}

In comparison, two InsertIntoArrayPrimitives with the same Target and Selector merge by
concatenating their Contents together. The lack of interaction with other update primitives when
merging means the merge of two insertArrayMaps is simple and independent of other maps, result-
ing in the pseudocode of code block 3.4.

Code 3.4: Merge Array Insertions

for (target : PUL2.insertArrayMap.keySet ()) {

// get inner maps

pul2SelectorContentMap = PUL2.insertArrayMap.get(target);

pul1SelectorContentMap = PUL1.insertArrayMap.get(target);

for (selector : pul2SelectorContentMap.keySet ()) {

// get content

pul2Content = pul2SelectorContentMap.get(selector);

if (pul1SelectorContentMap.containsKey(selector)) {

pul1Content = pul1SelectorContentMap.get(selector);

// concatenate content

pul2Content.addAll(pul1Content);

}

// add new content

pul1SelectorContentMap.put(selector , pul2Content);

}

PUL1.insertArrayMap.put(target , pul1SelectorContentMap);

}

Finally, two InsertIntoObjectPrimitives may have the same Target, and if so merging them
only involves inserting the key-value pairs of one Content into the other’s Content. Fortunately, just
as seen with insertArrayMaps, object insertions are independent of other update primitives. Thus
giving a simple algorithm to merge two insertObjMaps as shown in code block 3.5.

Code 3.5: Merge Object Insertions

for (target : PUL2.insertObjMap.keySet ()) {

// get content

pul2Content = PUL2.insertObjMap.get(target);

if (PUL1.insertObjMap.containsKey(target)) {

pul1Content = PUL1.insertObjMap.get(target);

// concatenate content

pul2Content.insertAll(pul1Content);

}

// add new content
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PUL1.insertObjMap.put(target , pul2Content);

}

As the mergeUpdates routine is likely to be the update routine most frequently executed, the
focus of the PendingUpdateList class so far has been on balancing the speed, memory efficiency, and
correctness associated with merging PULs. The next challenge is to reconstruct the update primitives
and correctly apply them.

The implementation of applyUpdates requires an understanding of the difficulties of implementing a
declarative language like JSONiq in an imperative language like Java. The definition of PULs provided
by the XQuery Update Facility (Consortium et al., 2011) states that PULs are unordered collections of
update primitives, and so the order of the application of update primitives does not matter. However,
in practice, this is not the case, specifically for array updates. For example, take A to be an arbitrary
array which has an insertion at index x applied to it, and a deletion at index x + 1 applied in the
same snapshot, then the resulting A depends on the order of application of these update primitives as
shown in figure 3.4.

InsertIntoArray($A, 2, [’b’])

DeleteFromArray($A, 3)

$A == [’a’, ’b’, ’d’]

let $A := [’a’, ’c’, ’d’]

InsertIntoArray($A, 2, [’b’])

DeleteFromArray($A, 3)

$A == [’a’, ’b’, ’c’]!=
Figure 3.4: Inconsistency of results from the application of unordered update primitives

Related inconsistencies arise from the composition of other array update primitives. Thus, array up-
date primitives are not associative, even with primitives of the same category, meaning some form of
ordering must be enforced when maintaining PULs or when applying the updates of PULs. From the
example in figure 3.4, it is difficult to ascertain which ordering is correct, but first considering the
effect an update primitive has on the indexes of the array will help reveal an appropriate ordering. A
DeleteFromArrayPrimitive at index x will decrement all indexes greater than x; an InsertIntoAr-

rayPrimitive at index x will increment all indexes greater than or equal to x so that the inserted
value has index x; a ReplaceInArrayPrimitive makes no changes to the indexes as it only swaps
values. Since insertions affect the index x while deletions do not, an insertion before deletion will
disrupt the intended effect of the deletions, whereas a deletion before insertion will not affect the
insertion. Figure 3.5 helps visualise this dependency. Therefore, when considering array update
primitives on the same Selector, deletions must occur before insertions.

[1, 2, 3, . . . , x, x+ 1, x+ 2, . . . ]

−1

+1
Insertion at x

Deletion at x

Figure 3.5: Effects of insertions and deletions on array indexes
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Observing this same index relationship between update primitives of different Selectors, it is
clear to see that updates primitives with a Selector at index x will disrupt update primitives with a
Selector at an index greater than x. Therefore, array update primitives must be applied in descend-
ing order of Selector, with insertions occurring last the Selectors are the same. With this rubric, of the
orders in our initial example in figure 3.4, the right-hand path should be chosen since the Selector of
the DeleteFromArray is greater than that of the InsertIntoArray.

For update primitives on objects, however, more nuances arise. Objects have no natural ordering
to their keys, meaning that there is no natural way to order the update primitives. As a result of this,
each update primitive on an object has to be validated against the original Target independently of
other update primitives, meaning that their order does not matter as long as they are independently
validated. For example, take an arbitrary object O. If a deletion at key x is applied in conjunction
with an insertion of key x, it is either the case that O already contains the key x or it does not.
If O does not contain x then the deletion is invalid, but if O does contain x then the insertion is
invalid – in either case, an error is thrown and so no order is valid. This same logic can be applied
to replacements and renamings, but when merging update primitives deletions supersede both so
the example only considers deletions and insertions. In order to keep some consistency between
applying update primitives to arrays and objects, the chosen order for applying update primitives
to objects matches that of arrays with renamings appearing last. Hence, object update primitives
will be applied in the order DeleteFromObjectPrimitive/ReplaceInObjectPrimitive, followed by
InsertIntoObjectPrimitive, then finally RenameInObjectPrimitive.

The last consideration is the reformation of the UpdatePrimitive classes from their decom-
posed form in the Maps of the PUL. To do so, each Map is iterated over and the UpdatePrimitive-

Factory is used to instantiate the corresponding UpdatePrimitive. If this UpdatePrimitive is to
be applied to objects then it can be added to a list of other object update primitives. Otherwise for
arrays, a tree map from Target to a map linking each Selector to a list of UpdatePrimitves is used
to maintain the descending order of Selectors over the same Target array. Moreover, the inner list
of UpdatePrimitives is added to first by iterating over the delReplaceArrayMap and then over the
insertArrayMap to ensure that even within the same Selector, insertions come last. Each of these
iterations over a Map is almost identical to the corresponding pseudocode in code blocks 3.1 to 3.5,
with the exception that the innermost logic is not a merge operation but rather the aforementioned
population of lists and maps of UpdatePrimitive instances. Once each list has been compiled, it can
be iterated over using the apply() method of each UpdatePrimitive to enact the update.

Now that we have both the mergeUpdates and the applyUpdates routines implemented, we can
finally use the PendingUpdateList to process and store UpdatePrimitives.

3.4.3 Mutability Scoping

Before implementing the materialisation of PULs, it must first be understood which items can be
updated and which cannot. According to the XQuery Update Facility (Consortium et al., 2011) and
JSONiq update specification (Robie et al., 2011), only those items that have been copied by a trans-
form expression (3.2) can be updated. Moreover, while the variables introduced in the copy clause
of a transform expression can be referenced throughout the expression they can only be modified by
the modify clause of the same expression. This means that copied variables cannot be modified by
nested transform expressions. Thus, the scope in which copied variables can be changed is extremely
limited.

To account for this scoping, the notion of a Mutability Level is introduced to RumbleDB, wherein
each transform expression incurs a new mutability level. Both items and scopes have mutability lev-
els, represented by an int piece of state named mutabilityLevel, and items can only be updated
when their mutabilityLevel matches that of the scope they are in. As seen, items are implemented
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with the Item interface, and these scopes are tracked through both StaticContext and Dynamic-

Context instances. Moreover, the mutabilityLevel of scopes increases linearly with the scoping of
transform expressions, where a mutabilityLevel of 0 indicates that the program is not inside of a
transform expression and a mutabilityLevel of n indicates that the program is in n nested transform
expressions. From here, instances of Item have a mutabilityLevel of -1 when not associated with
the copy clause of a transform expression, otherwise the mutabilityLevel is set equal to that of the
transform expression’s scope. This logic is illustrated by figure 3.6.

Item
mutabilityLevel = 1

Item
mutabilityLevel = -1

Transform
Transform

Transform

0

1

2
3

Query

Transform
Transform

Transform

0

1

2
3

Query

Figure 3.6: Example of Mutability Level restricting scopes in which an item can be updated (red indicates
immutable)

Using this mutabilityLevel, we can dynamically check the validity of updates as the iterator tree
materialises the PULs. However, to make this mutabilityLevel available, several aspects of Rum-
bleDB must be extended, namely the Item interface, the StaticContext class, the DynamicContext

class, and of course both the TransformExpression and TransformExpressionIterator classes.
The first step is to give the StaticContext class a currentMutabilityLevel along with getters

and setters so that when the StaticContextVisitor visits a TransformExpression the current-

MutabilityLevel of the StaticContext can be incremented at the start and decremented at the
end of the visit. Thus maintaining the logic of updating the mutability level in accordance with the
scopes of transform expressions. Then, the TransformExpression must similarly be extended with
a mutabilityLevel that can be set during the visit of the StaticContextVisitor using the cur-

rentMutabilityLevel of the StaticContext. Now the expression tree has the information about
the mutability levels of every TransformExpression it contains. Once the state of the TransformEx-

pressionIterator class has been extended to include a mutabilityLevel, this information can be
directly passed onto the TransformExpressionIterator during the translation from the expression
tree to the iterator tree described in section 3.3.

Finally, to allow the TransformExpressionIterator to interface with DynamicContext and
Item instances during PUL materialisation, both are extended with getters and setters for a mutabil-
ity level. Similar to StaticContexts, each DynamicContext maintains an always updating current-

MutabilityLevel as part of its state. Whereas not all items need a mutability level, as only those
that can be updated – objects and arrays – can have non-negative mutability levels. Therefore, only
the state of the ObjectItem and ArrayItem classes include a mutabilityLevel.

3.4.4 Pending Update List Materialisation

The materialisation of PULs is similar to that of sequences, described through execution modes in
subsection 2.5.6. The RuntimeIterator class is equipped with a method indicating that PUL mate-
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rialisation is possible, isUpdating, and a method to materialise a PUL, getPendingUpdateList. It
is the second method that completes the brunt of the processing and must be implemented for each
updating iterator, i.e. the RuntimeIterator representing each Expression that could have the BA-

SIC UPDATING or UPDATING ExpressionClassification (3.2.1), as well as TransformExpressions.
For each of the UPDATING expressions, that is to exclude all of the new expressions, the getPendin-

gUpdateList method is similar to their getRDDAux method and follows the rough structure of code
block 3.6 in which getPendingUpdateList is invoked on each child iterator and the resulting PULs
are all merged.

Code 3.6: Updating Expression PUL Materialisation

Materialisation of a PUL from an updating iterator that was not derived from a BASIC UPDATING

expression, in which an empty PUL is immediately returned if the iterator is not updating:

if (! iterator.isUpdating ()) {

return new PendingUpdateList ();

}

PendingUpdateList pul = new PendingUpdateList ();

for (RuntimeIterator child : iterator.children) {

pul.mergeUpdates(child.getPendingUpdateList(context));

}

return pul;

Nevertheless, the implementations still have nuances to offer, especially with respect to the new
expressions.

Although a TransformExpressionIterator does not produce a PUL upon its return, it does need
to create a PUL from the modify clause that must be applied so that the changes to the copied
variables are available in the return clause. To materialise this PUL, the DynamicContext must be
prepared before being used by the getPendingUpdateList method of the iterator representing the
modify clause (the modifyIterator). To do so, the value associated with each copy variable is
materialised into a sequence (a list of items) that is cloned using Apache Commons (Apache Com-
mons Team). Each cloned Item then has its multabilityLevel set to the mutabilityLevel of the
current TransformExpressionIterator, so that it may be modified. Once the cloned sequence is
prepared, it can be associated with the name of the copy variable in the DynamicContext. Then the
currentMutabilityLevel of the DynamicContext can also be updated to that of the current Trans-
formExpressionIterator, and so this context can be used as the context from which the PUL of the
modify clause is generated. The resulting PUL of the modifyIterator is the resulting PUL of the
TransformExpressionIterator.

The StaticUserDefinedFunctionCallIterator is the iterator derived from the InlineFunction-

Expression (3.2.4) which is the expression derived the FunctionDeclaration syntax (3.1.2). The
implementation of getPendingUpdateList for this iterator is very similar to the generic implementa-
tion in code block 3.6, with the exception that the iterator representing the body of the function being
called must be looked up in the DynamicContext before getPendingUpdateList can be invoked. As
only one iterator is required here there is no need to merge any PULs.

The ReturnClauseSparkIterator class holds the final steps when processing a FLWOR expres-
sion in RumbleDB. FLWOR expressions can be thought of as a river that tuples float down in order to
reach the ReturnClauseSparkIterator, and along the way, they may become beached when they do
not meet the requirements of a where-clause, or they may clump together due to a group-by-clause –
in any case, processing a FLWOR expression means processing the tuples that reach the return-clause.
The local execution implementation of getPendingUpdateList is no different. For each tuple, a new
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DynamicContext is prepared which adds all of the necessary variable bindings ready for the expres-
sion in the return-clause to generate a PUL for that tuple. As every tuple generates a PUL, they must
be merged, and the final PUL resulting from the merge is then the output PUL for an updating Re-

turnClauseSparkIterator. Once more this procedure is very similar to code block 3.6, but with
different tuples instead of different child iterators.

The TypeswitchRuntimeIterator class must first discern the correct branch that would be se-
lected by the type of the expression being switched upon. Once the branch is known the correspond-
ing iterator can be used to materialise the resulting PUL for the TypeswitchRuntimeIterator. Here,
instead of all child iterators being taken into account as in code block 3.6, only one child iterator
needs to be processed meaning no merging of PULs is required.

The IfRuntimeIterator class has an implementation of getPendingUpdateList very similar
to the TypeswitchRuntimeIterator but must only discern between two iterators, associated with
either the then clause or the else clause. When the correct clause is known, getPendingUpdateList
is invoked on the associated iterator to materialise the resulting PUL.

The CommaExpressionIterator class has an implementation of getPendingUpdateList nearly
identical to code block 3.6, as all that is required is to merge the PULs resulting from the constituent
expressions.

The following iterators correspond to BASIC UPDATING expressions and so share commonalities. These
are the terminal iterators for materialising PULs; they create the UpdatePrimitive instances that are
then added to a PendingUpdateList. The PULs produced by their getPendingUpdateList method
will only contain one UpdatePrimitive as, currently, each of these expressions can only describe an
update to one item at a time. Moreover, it is in these iterators that the Target, Selector, and Content are
materialised and their types are verified. The validity of the mutability of the Target is also verified.
The general flow of these error checks is: if the Target is an object, then the Selector is verified as a
string and the mutabilityLevel of the Target is checked to be equal to that of the current Dynamic-
Context; if the Target is an array, then the Selector is verified as an integer and the mutabilityLevel

is checked to be equal to that of the current DynamicContext. Any other circumstances will result in
an error describing the issue, and these errors correspond to those mentioned throughout subsections
2.3.3 and 2.4.4. This general flow of error checking is outlined in code block 3.7.

Code 3.7: Basic Updating Expression PUL Materialisation

Item target = targetIterator.materialize(context);

Item selector = selectorIterator.materialize(context);

Item target = contentIterator.materialize(context);

PendingUpdateList pul = new PendingUpdateList ();

UpdatePrimitive up;

if (main.isObject ()) {

if (! selector.isString ()) {

throw CannotCastUpdateSelectorException ();

}

if (target.getMutabilityLevel () != context.

getCurrentMutabilityLevel ()) {

throw TransformModifiesNonCopiedValueException ();

}

up = factory.createObjectUpdatePrimitive(target , selector ,

content);

} else if (target.isArray ()) {
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if (! selector.isInt ()) {

throw CannotCastUpdateSelectorException ();

}

if (target.getMutabilityLevel () != context.

getCurrentMutabilityLevel ()) {

throw TransformModifiesNonCopiedValueException ();

}

up = factory.createArrayUpdatePrimitive(target , selector , content

);

} else {

throw InvalidUpdateTargetException ();

}

pul.addUpdatePrimitive(up);

return pul;

DeleteExpressionIterators follow the flow of code block 3.7 with the exception that the Up-

datePrimitive instantiated by the factory is either a DeleteFromObjectExpression or DeleteFro-
mArrayExpression. However, deletion primitives each only take two arguments, and their decom-
posed update primitive models do not align, meaning that no explicit Selector or Content item is
materialised. Instead, the item materialised as an integer becomes the Selector for a DeleteFromAr-

rayPrimitive, and the item materialised as a string becomes the Content for a DeleteFromObject-

Primitive.
ReplaceExpressionIterators also follow the flow of code block 3.7 and create PULs with either

a ReplaceInObjectExpression or ReplaceInArrayExpression. However, they still require some
nuance since any replacement introduces an Item to either an object or an array. As a result of
this the Content must be cloned, like copy variables in a transform expression, to avoid multiple
unintentional references to the same underlying Item being present in the program.

RenameExpressionIterators can only produce PULs with a RenameInObjectPrimitive. These
iterators closely align with code block 3.7, but since they can only create RenameInObjectPrimi-

tives, the flow associated with the Target being an array is not required.
InsertExpressionIterators materialise PULs with either an InsertIntoObjectPrimitive or an

InsertIntoArrayPrimitive. This materialisation requires two main distinctions from code block
3.7. Firstly, only the InsertIntoArrayPrimitive requires a Selector, meaning that this is only ma-
terialised if the associated iterator exists. Secondly, both of these primitives will add an Item into
either an object or an array and so, for the same reasoning as with ReplaceExpressionIterators,
the Content must be cloned.

AppendExpressionIterators do not have any UpdatePrimitive of their own namesake as they
instead produce PULs with an InsertIntoArrayPrimitive. Thus, they follow the same procedure
as InsertExpressionIterators by cloning their Content, but they only require the array-related
flow of code block 3.7 and the Selector is known implicitly as the size of the Target array incremented
by one. Thereby ensuring the insertion occurs at the end of the array to match the logic of appending.

Once each possible updating expression is equipped with a runtime iterator that can materialise PULs,
updates can be processed by RumbleDB. The final task is to ensure that sequences safely interact with
these PULs and updating expressions.

3.4.5 Sequences in an Updating World

Sequences in RumbleDB are implemented with the SequenceOfItems class described in subsection
2.5.6, and were previously the only possible result from evaluating expressions. With the introduc-
tion of PULs, expressions produce both sequences and PULs, but crucially, both cannot be non-empty.
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Moreover, when a non-empty sequence is output, nothing needs to explicitly happen with the items
inside beyond displaying them, unless the query writer specifies otherwise – such as being output to a
given file format. Whereas, when a non-empty PUL is output, all of the update primitives within must
be applied to end the snapshot associated with the PUL. The same thing happens for PULs generated
by the modify clause of transform expressions before the sequence of the return clause is materi-
alised. Thus once an iterator tree is created from a JSONiq query, if the root iterator is updating, as
indicated by the isUpdating method, then a PUL should be materialised and applied. However, all of
this happens in the Rumble class which is used to generate a SequenceOfItems and interface with the
results of a query. As such it is still possible that this SequenceOfItems could be used to materialise a
sequence (List<Item>) with undefined results. To remedy this issue, maintain the processing model
described by (Robie et al., 2011), and avoid overhauling the Rumble class which could have many
dependencies, the semantics of the SequenceOfItems are adjusted. This adjustment simply ensures
that if the root iterator used to materialise the sequence is updating, then any attempt to materialise
a sequence will only return an empty sequence. RumbleDB’s implementation of sequences can then
match the semantics of (Robie et al., 2011) and safely coexist with pending update lists.

Thus concludes the implementation of the primary aim of this thesis. Now let us consider the sec-
ondary aim.

3.5 Delta Table Integration

Subsection 3.4.5 indicates that when non-empty PULs are output from the iterator tree, they are im-
mediately applied, but because a non-empty sequence cannot also be output, the changes as a result
of the PUL cannot be seen without the use of a transform expression. Two methods for remedying
this pitfall are available: either scripting is introduced to JSONiq and RumbleDB – for example, an
updating script can be followed by a non-updating script that uses the changes of the former script
– or the updates can be persisted beyond RumbleDB. As the hope is for RumbleDB to be well inte-
grated into the Big Data ecosystem while ensuring its power can be used beyond its bounds, the latter
remedy is chosen.

Persisting updates beyond RumbleDB requires some transactional system to actually store the
data in a way that allows for changes to be applied. As discussed in section 2.6, Delta Lake (Armbrust
et al., 2020) is the best choice for RumbleDB due to its ACID transactions and easy integration with
the Spark API. Integrating the API and capabilities of Delta Lakes will not require an overhaul of the
system built for updates so far. Rather, RumbleDB must be extended to handle the files of a Delta
Lake table, identify which Item instances come from a Delta table, and adapt each UpdatePrimitive

to be able to be applied to Delta table Item instances.

3.5.1 Delta Files

RumbleDB is equipped with several functions that allow query writers to process data from several
different file formats from JSON to Parquet. Moreover, RumbleDB can output the results of a sequence
– as long as it was executed using the Spark API – to many file formats. In order for RumbleDB to
integrate Delta tables, it must first be able to take Delta tables as inputs and be able to output them.

Delta tables use Parquet files to store the data and a write-ahead log to track transactions on the
data. This means that Delta tables have schemas and so, to interact with them using the Spark API, the
execution must be done via dataframes. Using Delta tables as inputs requires creating a function that
takes a file path in the form of a string as input and outputs a sequence where each item is a different
row in the Delta table. This function will take the form delta-file(file path). Adding this function
to RumbleDB does not involve any new syntax as it just uses the syntax of a standard function call;
instead, the catalogue of built-in functions is extended with the name "delta-file" associated with
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a runtime iterator prepared to process this function – the new DeltaFileFunctionIterator class.
With this addition to the built-in function catalogue, when the RuntimeIteratorVisitor encounters
a FunctionCallExpression with an identifier matching the name "delta-file", the DeltaFile-

FunctionIterator can be immediately found as the correct iterator to be added to the iterator tree.
When instantiated, the DeltaFileFunctionIterator takes a RuntimeIterator instance for each of
its arguments, of which there is only one that will materialise the file path of the Delta table.

Since Delta tables must be executed in the DATAFRAME execution mode, the DeltaFileFunc-

tionIterator need only implement a getDataFrame method to fulfil its promises of execution. In
this method, the Delta table file path is materialised by the only argument iterator and used to read
the Delta table into a Spark dataframe, which is then wrapped in a JSoundDataFrame instance to
form the result.

On the other side of interacting with Delta tables, outputting them proves to be very simple
with the Spark API. As long as the sequence produced from a JSONiq query can be formulated using
dataframes, a Spark DataFrameWriter can be used to write the dataframe result to a designated
file path. Outputting to a Delta table only requires that a query creates results with a homogeneous
schema that can be used by a dataframe and that the query is run with the command line arguments
"--output-format delta" and "--output-path $path".

3.5.2 Item Identifiers

During the local execution of PULs, each Item instance was identified by a combination of its logical
hashCode value and its physical hashCode value. However, when incorporating Delta tables, the
execution is no longer restricted to being local, meaning a solely logical method to uniquely identify
Item instances is needed.

To identify an Item, the translation from a Delta table to a sequence must first be understood. A
Delta table is made up of rows and columns, where each column has a data type corresponding to a
SparkSQL data type as defined by the schema of the table. Every data type available in a Delta table
must then be mapped to the equivalent JSONiq data type which is depicted by table 3.1.

Delta Table Data Type Spark Data Type JSONiq Item Type
INT IntegerType IntItem
BIGINT LongType IntegerItem
FLOAT FloatType FloatItem
DOUBLE DoubleType DoubleItem
STRING StringType StringItem
BOOLEAN BooleanType BooleanItem
DATE DateType DateItem
TIMESTAMP TimestampType DateTimeStampItem
ARRAY ArrayType ArrayItem
STRUCT StructType ObjectItem

Table 3.1: Type equivalences between Delta tables, Spark, and JSONiq

Using table 3.1 each row in a Delta table can then be mapped to an ObjectItem where the keys of
the object are the names of the table columns and the values are the corresponding row values once
they have been mapped to an Item. Naturally, this can create very nested objects given a Delta table
schema containing many nested columns of STRUCT and ARRAY types.

Every Item derived from a Delta table can be identified by three values. The first and simplest
is the actual Delta table that produced the Item, which is represented by a string containing a path
to the Delta table – this is known as the Table Location. The second is the number of the row from
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which the Item came in the Delta table – this is the Row ID as an integer. Finally, the third is which
column, no matter how nested, the Item was mapped from – this is the Path In as a string of the series
of object and array accesses required to arrive at the column. An example of how these properties
correspond to a value in a Delta table is illustrated by figure 3.7.

root
|– foo: struct
| |– barArray: array
| | |– element: struct
| | | |– fizz: string
|– foobar: string

Schema

+————————————+———————–+
| foo | foobar |
+————————————+———————–+
| {[”these”, ”are”, ”strings”]} | ”another string” |
+————————————+———————–+
| {[”another”, ”row”, ”here”]} | ”yas (like yaml)” |
+————————————+———————–+

Table: /this/is/a/path/DeltaTable

Item Properties

Table Location: ”/this/is/a/path/DeltaTable”

Row ID: 2

Path In: ”foo.barArray[1].fizz”

Figure 3.7: Example of item properties derived from a Delta table and schema in Spark dataframe notation

Integrating this method of identifying each Item begins by extending the Item interface to have get-
ters and setters for the three new pieces of state: tableLocation, rowID, and pathIn – with default
values of "null", -1, and "null" respectively. Only the ObjectItem and ArrayItem need to imple-
ment this state since they are the only possible targets of an update primitive. The next challenge
is to extract these values when materialising an Item from a dataframe. To do so the dataframe
must first have these values to extract, thus when a dataframe is created from a Delta file in the
DeltaFileFunctionIterator, three new columns are added: a tableLocation, a rowID, and a
pathIn column. However, the pathIn value is not guaranteed to be static because sequences repre-
sented by dataframes can be navigated via three means: object lookups (e.g. seq.key), array lookups
(e.g. seq[[index]]), and array unboxings (these “explode” or transform arrays into sequences of the
same items and look like seq of arr[]). Each of these sequence navigation techniques will access a
different column in the dataframe, meaning the value of pathIn must be updated to match.

Object lookups are processed using the ObjectLookupIterator, which, when dealing with
dataframes, uses a SparkSQL query to select the desired key from the dataframe, producing a new
dataframe. When encountering dataframes from Delta tables, this method is extended to also select
the rowID, the pathIn concatenated with ".$key", and the tableLocation. With this concatenation
to the pathIn column, the object lookup is tracked.

Array lookups use the ArrayLookupIterator to navigate dataframes by performing a SparkSQL
query similar to that of object lookups, with the exception that these lookups select for the array
column indexed at a given index (e.g. SELECT $array[$index] ...). This too is extended to select
the newly added columns for Delta tables, but pathIn is instead concatenated with the array indexing,
i.e. "[$index]".

Lastly, array unboxings are implemented with the ArrayUnboxingIterator. This iterator un-
boxes an array by performing a select with the SparkSQL explode() function applied to the array,
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which creates a new row in the resulting dataframe for each element in the array. Once more this
query is altered to include the columns for Delta table dataframes, but concatenating pathIn is not so
simple as no static index can be used. Thus, for Delta table dataframes, the SparkSQL posexplode()

function is used to provide both the position in the array and the array element on a new row. From
here the position can be concatenated to pathIn to reformulate the array indexing that would have
happened otherwise.

The final consideration is that there is no guarantee that the Delta table will have a column for
the rowID already built in to be matched against the rowID of an Item. To account for this possibility,
before reading the Delta table into a dataframe in the DeltaFileFunctionIterator, a rowID column
must also be inserted into the Delta table.

Materialising an ObjectItem or ArrayItem from a row of a Delta table dataframe still involves
mapping all columns, except the newly added ones, to an Item to form the values of the object or the
elements of the array. However, the tableLocation, rowID, and pathIn columns must not be mapped
to an Item. Rather the values associated with these columns should be set as the corresponding state
for the resulting ObjectItem or ArrayItem. With this model, each Item instance can be directly
associated with a particular value in a Delta table.

3.5.3 Updating Delta Tables

Adapting the UpdatePrimitive classes to be able to be applied to Item instances from a Delta table
is the final step to persisting JSONiq updates. Before implementing the class extensions needed,
the notion of the Mutability Level must be altered to support updating these Delta Item instances.
Fortuitously, a gap in the Mutability Level model is already present wherein no Item can have a
mutabilityLevel of 0 to match the scope outside of any transform expression. Thus, Item instances
derived from a Delta table will have a mutabilityLevel of 0 such that they can be updated, but not
within any transform expression. This too then gives meaning to the topmost expression returning a
PUL that is immediately applied, as this application would persist to a Delta table. Integrating these
new Mutability Level semantics only involves adding a column to the Delta table dataframe called
mutabilityLevel that has a static value of 0. The new mutabilityLevel column can be added
and mapped onto an Item in exactly the same way the tableLocation column was, for example, in
subsection 3.5.2.

The original apply() method for the UpdatePrimitive interface assumes that the update is
performed locally and on Item instances as the Target, but the real Target when persisting to a Delta
table is a particular column and row as represented by an Item. Therefore, a delineation must
be made between applying an UpdatePrimitive to an Item and applying an UpdatePrimitive to a
Delta table. Two new methods are introduced to the Item interface, applyItem() and applyDelta(),
with the original apply() method choosing between the two based on whether the Target Item has a
non-default value for its tableLocation. Each concrete UpdatePrimitive must now implement the
applyDelta() method. These methods use the .sql() function of the Spark API which executes a
provided query with respect to the specified tables. Thus, each update primitive can have a template
for a SparkSQL query associated with it, where the blanks are filled in by the Target, Selector, and
Content as necessary. However, several difficulties with this approach arise. Firstly, unlike the keys of
a STRUCT type column, the individual elements of ARRAY type columns in a Delta table cannot directly
be updated, instead the whole ARRAY must be updated at once. Secondly, some update primitives will
also update the schema of the Delta table. Thus, each update primitive may be associated with up to
four different queries: a query to update the schema of a non-ARRAY type column; a query to update
the schema of an ARRAY type column; a query to change the value of a non-ARRAY type column; and
a query to change the value of an ARRAY type column.

Before we can identify which update primitives will alter the schema, let us understand the
meaning of each update primitive as applied to a Delta table. Firstly, a DeleteFromObjectPrimitive
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interprets the keys to delete as columns to set to NULL for its Target row, because deleting the key for
one Target row should not delete the key for every Target row. Next, an InsertIntoArrayPrim-

itive can only insert Content that matches the type of the Target array since the Delta ARRAY type
does not support heterogeneous types. Likewise, a ReplaceInArrayPrimitive can only replace an
element with Content that coincides with the type of the Target array. The InsertIntoObjectPrimi-

tive can insert Content of any supported type but it must first update the schema by adding columns
for each new key and then setting the value of all rows except the Target row to NULL. Whereas, the
ReplaceInObjectPrimitive can only replace a value with Content whose type matches that of the
column being replaced on the Target row. However, the RenameInObjectPrimitive is comparable
to the InsertIntoObjectPrimitive in that it too must update the schema by introducing a column
for the new name Content and set the value of all non-Target rows to NULL, but the type of this new
column must match that of the old column name in order to support the old values. Finally, the
DeleteFromArrayPrimitive remains semantically the same as it need not care for the type of the
element it removes from a Target array. From these semantics, we recognise that only the Insert-

IntoObjectPrimitive and the RenameInObjectPrimitive can alter the schema of a Delta table.
Knowing which update primitives can alter schema highlights our control flow for these ap-

plyDelta() methods and shows us that most update primitives only require two queries, one for
updating ARRAY type columns and one for non-ARRAY type columns. Updating an ARRAY type column
occurs when the pathIn for the Target Item includes any array indexing because Delta tables cannot
update the individual elements of an array. Therefore, even if the final Selector is not an array index
we may still need to update a column nested inside of an ARRAY type column. Every update primitive
then needs a query updating an ARRAY type column and a non-ARRAY type column. Fortuitously, we
can distinguish between the two by checking if the pathIn involves array indexing.

Now that we have established the different forms of SparkSQL queries we can consider their general
forms with respect to the decomposed model of update primitives from subsection 3.4.1. Code block
3.8 outlines the template for a SparkSQL query that updates a column, regardless of if it is of an
ARRAY type or not.

Code 3.8: General SparkSQL Column Update

Template for updating a column in a Delta table using SparkSQL and the decomposed update
primitive model, where + indicates string concatenation:

UPDATE $target.tableLocation

SET $target.pathIn + $selector = $content

WHERE rowID == $target.rowID

Depending on the update primitive, the Target, Selector, and Content are arguments for the
query, however in our implementation, they are stored as Item instances which cannot be interpreted
by SparkSQL. Hence, we extend the Item interface with a getSparkSQLValue(ItemType itemType)

method to translate Item instances into a string of their corresponding SparkSQL values. This method
is implemented for each concrete Item type and recurses through components of structured items,
such as the keys and values of an ObjectItem and the elements of an ArrayItem. Most concrete
Items can just be converted to their string representations, but the key-value pairs of an ObjectItem

must be wrapped in the SparkSQL named struct() function, while the elements of an ArrayItem use
the array() function. The itemType argument of the getSparkSQLValue method is used to account
for values that must appear in the struct corresponding to an ObjectItem but do not appear in the
ObjectItem because they are NULL in the Delta table. Now with this getSparkSQLValue method
and the knowledge that when an array indexing occurs we need to update the whole array at once,
we note that every update involving an array index can be interpreted as mapping that array from
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the Delta table to an ArrayItem containing our Target, invoking applyItem() on our Target, and
using getSparkSQLValue on the ArrayItem to reconstitute the Delta array. Using this method, every
application of an update to an ARRAY type column can use the same method, thereby simplifying the
control flow.

In comparison, queries that alter the table schema do not directly interact with either the Con-
tent or Target rowID of the update primitive. Instead, they need only know the location of the table,
the location of the new column to add, the name of the new column, and the type associated with
that column, as depicted by code block 3.9.

Code 3.9: General SparkSQL Schema Update

Template for updating the schema a Delta table using SparkSQL and the decomposed update
primitive model, where + indicates string concatenation:

ALTER TABLE $target.tableLocation

ADD COLUMNS ($target.pathIn + $selector $type)

Both code block 3.8 and 3.9 show that the Target, Selector, and Content still make up the foun-
dations of our update primitives. However, when updating the schema, the Content is present in
the form of a type argument as opposed to the SparkSQL representation of the underlying Item.
This type must be the SparkSQL representation of the type of our underlying Content Item. Hence,
we must extend the Item interface with a getSparkSQLType method, analogous to the getSpark-

SQLValue method. This getSparkSQLType method is also implemented for each concrete Item and
returns a string representation of the Delta type equivalent for each JSONiq item, as outlined by table
3.1. The final nuance of schema updates is that if the pathIn of our Target does contain array index-
ing then we cannot directly use the pathIn to make our update. However, unlike column updates,
schema updates do not need to alter the whole ARRAY type at once. Rather, each array index in the
pathIn can be replaced by a ".element" string to refer to the homogeneous type of the elements
of the array, thereby equating the pathIn to a series of only object lookups and short-circuiting the
schema update.

Now we may implement the applyDelta() methods. Firstly, we look towards updating the value of
an ARRAY-type column as this is common among all update primitives and can be implemented with
a default arrayIndexingApplyDelta() method in the UpdatePrimitive interface. We begin by
splitting the pathIn value at the first use of array indexing – the first half of this split will give us the
path to the array we will update in the Delta table (preArrayPathIn) and the second half will be the
path in the array to our Target (postArrayPathIn). Then we extract the array from the Delta table
using a SELECT with the preArrayPathIn and map the resulting dataframe to an ArrayItem and its
ItemType. Next, we navigate the ArrayItem using the postArrayPathIn until we reach either the
object key or the array index that identifies the Delta table clone of our Target Item. This is not the
real Target Item instance as it was mapped from a dataframe. From here we can invoke applyItem()

to update the real Target Item and replace the clone with the real instance. The ArrayItem will now
contain our updated Target Item and getSparkSQLValue can be applied to the ArrayItem to create
the Content argument of the query template in code block 3.8. Additionally, the $target.pathIn +

$selector will be replaced with the preArrayPathIn to match the array we are updating.
The InsertIntoObjectPrimitive must precede the arrayIndexingApplyDelta method with

a method that first updates the schema when array indexing is involved – the arrayIndexingUp-

dateSchemaDelta method. We start this method by replacing all array indexings in pathIn with
".element" justified by the trick mentioned before. Moreover, we change our template from code
block 3.9 by deriving the $selector from the key of our Content ObjectItem and the $type by in-
voking getSparkSQLType on the corresponding values of our Content ObjectItem. Thus we form

54



3.5. DELTA TABLE INTEGRATION Chapter 3. Implementation of Updates

one query for each key to insert and execute them one by one, skipping any columns that al-
ready exist. Correspondingly, the RenameInObjectPrimtive also implements an arrayIndexingUp-

dateSchemaDelta method. Once more we replace the array indexings of pathIn with ".element".
However, here our $selector argument is the Content of the RenameInObjectPrimtive as this is
the new name of the column, and the semantics of renames in a Delta table dictates that we must
add a new column with the new name. Moreover, the $type argument is extracted from the Delta
table using an SQL DESC statement on the original column (the unaltered pathIn + the Selector of
the RenameInObjectPrimitive). The resulting query is only executed if the column does not already
exist.

Looking towards queries that do not involve an ARRAY type column, we must implement an
applyDelta method for each update primitive. Generally, the control flow of an applyDelta method
differentiates between ARRAY type execution and non-ARRAY execution by checking the pathIn for
array indexing like so:

if (pathIn.contains("[")) {

if (requiresSchemaUpdate ()) {

arrayIndexingUpdateSchemaDelta ();

}

arrayIndexingApplyDelta ();

} else {

...

}

Each update primitive has a different process for the else branch above. Fortuitously, we can
refer back to 3.8 frequently in the coming explanations as the $target argument and its identifiers
are exactly as described in 3.8, since no array indexing is present in the else branch. Many of the
update primitives for objects share similarities and so we will focus on them first. The DeleteFro-

mObjectPrimitive mimics the code block of 3.8 but performs several SETs where each $selector is
a key to be deleted, as described by the Content, and each $content is NULL to indicate that the col-
umn has been deleted for this row. Comparably, the ReplaceInObjectPrimitive is almost identical
to code block 3.8 as the $selector and $content arguments match with the primitive’s Selector as
a string and the Content Item reconstituted by the getSparkSQLValue method respectively. On the
other hand, the RenameInObjectPrimitive still needs to update the schema. As with the ARRAY type
column case, we do so by deriving the type of the new column with the SQL DESC statement applied
to the original column and input this as the $type argument of the template in code block 3.9, with
the $selector being the new name of the column. Then we set the value of the new column with
the template of code block 3.8, where the $selector is the new column name and the $content
is the SparkSQL value of the old column. Moreover, the InsertIntoObjectPrimitive also updates
the schema but uses the keys and types of the values of the Content ObjectItem as the $selector
and $type arguments of code block 3.9 respectively. Then we set each of these fields using the tem-
plate from code block 3.8 where the $selector is, again, the Content key and the $content is the
SparkSQL value of the Content value.

Finally, we consider the else branch for update primitives that update arrays. The DeleteFro-

mArrayPrimitive, ReplaceInArrayPrimitive, and InsertIntoArrayPrimitive share a simplified
version of the process required in the case of the updating of an ARRAY type column, as we can ex-
ploit their applyItem methods. For each, we extract the array from the Delta table with a SELECT

at the column identified by the pathIn value, map this array to an ArrayItem and its type, invoke
applyItem to update our Target ArrayItem, and formulate the updated SparkSQL array by calling
getSparkSQLValue on the updated ArrayItem with the derived type. This updated SparkSQL array
then constitutes the $content argument for the template in code block 3.8.

Thus concludes the queries for each UpdatePrimitive and we can then execute them using the
Spark API sql() method.
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The culmination of integrating Delta file I/O, identifying Item instances in a Delta table, and extend-
ing each UpdatePrimitive to handle being applied to a Delta table then allows us to persist updates
while maintaining the simplicity and versatility of JSONiq in RumbleDB. Moreover, the data indepen-
dence offered by RumbleDB enables us to hide the complexity of not only persisting these updates but
also of handling updates in JSONiq at all. Now we look toward benchmarking and experimentation
to discover optimisations that can be made.
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4 Experimentation

RumbleDB is intended to be a tool for teaching and processing in a Big Data paradigm. Although the
aim of this thesis is to introduce updating functionality to RumbleDB and so sheer performance is not
a primary goal, it is still crucial that we analyse the performance of updates in RumbleDB against sim-
ilar systems so that we may understand possible optimisations. Throughout our experimentation, we
will be querying Delta tables and so using the extension to JSONiq updates in RumbleDB introduced
in section 3.5. Doing so ensures that we explore how RumbleDB may be used for Big Data updates
which is the most likely use case for updates in RumbleDB, and after all, if an update is not persisted,
did it even update at all?

4.1 Structure

Experimentation requires a structure to rely on to enable repeatability and reproducibility. In this
section, we will define the datasets used to evaluate updates in RumbleDB, the systems RumbleDB is
compared against, the queries that stretch and showcase the capabilities of RumbleDB’s updates, and
the way in which our experiments will be conducted.

4.1.1 Datasets

There are two facets of RumbleDB’s updates that are crucial to explore. The first is its ability to
handle standard queries in an On-Line Transaction Processing (OLTP) paradigm, in which updates are
commonplace. Often OLTP will focus on relational data and the associated workflows as this has been
how data has been structured for much of data management. Therefore, understanding how JSONiq
updates in RumbleDB operate under an OLTP paradigm will provide a baseline for the performance
of RumbleDB’s updates on very structured and homogeneous as compared to more heterogeneous
data. Moreover, an OLTP dataset gives some insights into the capability of updates in RumbleDB to
adjust to different data shapes. The second facet of RumbleDB’s updates to explore is its capabilities
with respect to semi-structured and highly heterogeneous data as this is precisely what RumbleDB
and JSONiq are designed to process and describe.

Fulfilling the role of the relational dataset for more OLTP queries is the TPC-C dataset (Council).
TPC-C is an OLTP benchmark for medium-complexity transactional loads simulating the workload of a
wholesale supplier. The dataset is comprised of nine relational tables: Warehouse, District, Stock,
Customer, Order, History, New-Order, Item, Order-Line. Each Warehouse serves ten Districts

which themselves serve 3,000 Customers who each have at least one History and at least one Order.
Then each Order is associated with at most one New-Order and five to fifteen Order-Lines. Finally,
every Warehouse has a Stock of 100,000 Items, this Stock then serves at least three Order-Lines.
For the purposes of our updates, we only care about the shape of our data and the size of our data.
All of the tables above are standard relational tables so they are ideal for investigating the OLTP
paradigm. The size of each table we will use can be found in table 4.1. This data was acquired in
CSV format from the Relational Dataset Repository described and maintained by (Motl and Schulte,
2015). To convert each table from CSV to a Delta table we can use a validation expression from
JSONiq and read the CSV file into RumbleDB, validate each record against the expected type, and
output the result to a Delta table. Simple examples of validation are available in (rum), and appendix
A.6 shows a more complex example of schema validation along with how to output to a Delta table.
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Table Size (# Tuples)
Warehouse 1
District 10
Customer 30,000
Order 30,000
New-Order 9,000
Stock 100,000
Item 100,000
Order-Line 300,000

Table 4.1: Size, in number of tuples, of each table in the TPC-C dataset

Satisfying our need for a heterogeneous and denormalised dataset is the GitHub Archive (GA)
dataset (gha). This dataset records information about GitHub events, such as the type of event, the
author of the event, the associated URL and much more. The exact schema of each record is highly
heterogeneous, enough such that the data cannot be put into a dataframe due to a lack of rigidity,
meaning that we cannot test the data using our Delta table updates. However, this heterogeneity
only persists between different event types, so we will only use the data from push events. In order
to acquire this data, the GA website suggests using Google’s BigQuery, described by (Fernandes and
Bernardino, 2015), which is Google’s cloud website for querying Big Data in an SQL-like fashion.
BigQuery allows up to 1GB of data to be downloaded as a JSON file in which the field causing the
heterogeneity, that BigQuery cannot natively handle, is stored as a string. However, this does not
pose a problem for us as there is still plenty of heterogeneity present in the other fields to perform
our experiments. For our purposes, this JSON data must be transferred to a Delta table and can be
done so via a JSONiq query ran on RumbleDB that reads the JSON data and outputs a Delta table,
an example of which is found in appendix A.6. The exact schema for this Delta table is available in
appendix A.5. Finally, from this Delta table, we create several copies, each with a power of two tuples
to show the relationship between the amount of data and the query execution time. In order to keep
execution time realistic while still showing the relationship, the powers of two chosen are 2, 4, 8, 16,
32, 64, and 128.

4.1.2 Systems & Queries

Now that we know which datasets we will be using and why we are examining them, we must assess
how we will query them and with what we will compare RumbleDB.

For the TPC-C dataset, we will examine RumbleDB against SparkSQL via the Java API. SparkSQL
acts as a good benchmark for the best possible result for RumbleDB as much of the implementation
for updating Delta tables uses the SparkSQL Java API.

The GitHub Archive dataset, however, will only be queried using RumbleDB and SparkSQL as
PostgreSQL offers very little native support for updating the values of deeply nested data, which can
be a struggle for SparkSQL too.

Our queries for the TPC-C dataset are extracted from the TPC-C benchmark specification (Council).
We only choose three of the updating queries as very few of the queries actually alter values and all
of them are not nested, making them simple relative to RumbleDB’s capabilities. The explanation and
associated transaction of each query is as follows:

Q1A Query 1A: Within the New Order Transaction, increment the NO O ID field of the New Order

table. (JSONiq: A.7, SparkSQL: A.8)
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Q1B Query 1B: Within the Payment Transaction, add 343 to the C BALANCE field of the Customer

table, and if the customer has bad credit (C CREDIT is equal to ‘BC’) then add information
about the update to C DATA. (JSONiq: A.9, SparkSQL: A.10)

Q1C Query 1C: Within the Delivery Transaction, sum the OL AMOUNT field of the Order Line table for
each district, and add this to the C BALANCE of every customer in each district. (JSONiq: A.11,
SparkSQL: A.12)

When querying the GitHub Archive dataset we can be much more exploratory. I was unable to
find any reference updating queries for the GA dataset, presumably due to it normally serving as a
static archive, so I developed the following five queries to stretch the potential of updating highly
heterogeneous data.

Q2A Query 2A: Toggle the public boolean field of each record. (JSONiq: A.13, SparkSQL: A.14)

Q2B Query 2B: Give each record’s repo a nickname and popularity rating!. (JSONiq: A.15, Spark-
SQL: A.16)

Q2C Query 2C: Change the structure of each id by refactoring the id, repo.id, and actor.id into a
struct in an array to allow for versioning. Remove the old ids. (JSONiq: A.17, SparkSQL: A.18)

4.1.3 Benchmarking Methodology

The final step to being able to analyse the performance of updates in RumbleDB is to devise a frame-
work for executing our queries. This framework requires four inputs for each benchmark. The first
is the updating query to be executed, for JSONiq this must be a JSONiq file, but for SparkSQL the
input can either be a string query or a void Java function that executes the query. The second is
the expected location of the table being updated, as referenced by the query. The third is the query
responsible for creating the table to be updated. The fourth, and final, is the location of the file to
append the results. These inputs then construct a FileTuple class instance which can be used by the
benchmark framework to execute each input as required. Once initialised, each benchmark will be
executed three times without recording the execution time to warm up any cache or memory that
may be used. Then the benchmark is executed and recorded, in milliseconds, ten times with the
time for each iteration being output, along with the total, mean, and standard deviation at the end.
Notably, with each iteration, outside of any timing, the table being updated is created at the start
and deleted at the end to reset any automatically created indexes that the table may make. More-
over, Delta tables log all transactions and implement versioning meaning that with each iteration the
Delta table will begin to bloat and introduce an unwanted dependence between the iterations. Thus,
constantly creating and deleting the table ensures the independence of each iteration.

Finally, all benchmarks are run on my laptop because we are searching for an understanding of
how to optimise the implementation, which is only local, so a large computing cluster or a supercom-
puter is unnecessary. My laptop has the following relevant specs:

• CPU: 12th Generation Intel® Core™ i7-1260P Processor (E-cores up to 3.40 GHz P-cores up to
4.70 GHz)

• Memory: 16 GB DDR4-3200MHz (Soldered) & 32 GB DDR4-3200MHz (SODIMM)

• Storage: 1 TB SSD M.2 2280 PCIe Gen4 Performance TLC Opal

4.2 Performance Evaluation

The structure provided by section 4.1 enables us to decide what we want to measure and then gather
our data for analysis.
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4.2.1 Performance Metric

Every query we will run is designed to explore the performance of RumbleDB updates across its di-
verse set of methods to update a variety of shapes of data. Thus, we look toward the mean execution
time over ten iterations for each tuple count for each query as the metric that highlights performance
since speed is a major limiting factor when processing Big Data. While measuring the execution
time we vary the number of tuples being updated by the query in order to assess how RumbleDB’s
performance changes as the amount of data being processed increases. Comparing this to handwrit-
ten SparkSQL queries will allow us to visualise how much optimisation is possible as RumbleDB uses
SparkSQL in its implementation, meaning the mean execution time for SparkSQl represents the lower
bound of RumbleDB. Lastly, we display the mean execution time and the tuple count on log2 scales
because we measure the mean execution time while doubling the tuple count. Hence, a log2 scale
allows us to better understand the relationship between the two variables.

4.2.2 TPC-C Evaluation

In this subsection, we only discuss the results of Q1B in figure 4.1 as the results for Q1A and Q1C
display an almost identical relationship, but they are available in figures A.1 and A.2 in appendix
A.19. We see that as the tuple count grows the mean execution time for SparkSQL remains relatively
constant at about one second of execution time. This result can be attributed to SparkSQL’s ability
to scale and parallelise meaning the increase in tuple count was too small to incur any performance
penalties. However, for RumbleDB the mean execution time roughly doubles with each doubling in
the tuple count, primarily due to our implementation using volcano-style processing to generate one
update primitive per record being updated. As a result of this, we perform a SparkSQL query for each
record instead of one SparkSQL query batching similar updates together. Therefore, our RumbleDB
results can be interpreted as a function of the mean of SparkSQL’s mean execution time and the
tuple count. Moreover, it is important to note that SparkSQL’s mean execution time for two tuples
lies at one second while RumbleDB’s lies at four seconds. Supposing that RumbleDB’s performance
was simply SparkSQL’s performance multiplied by the tuple count then we would expect this result
for RumbleDB to lie at two seconds. However, this additional overhead can be explained mostly
by the need for RumbleDB to add a rowID column to any Delta table read in by the delta-file

built-in function. Updating the Delta table in this way always requires altering the schema, which is
more computationally expensive than an update to a column. The relationships we have identified
here represent how RumbleDB performs on flat, structured, relational datasets. On this kind of
data, RumbleDB’s expressivity cannot be realised, as seen by the similarities between the JSONiq and
SparkSQL queries.
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Figure 4.1: Comparison of performance on Query 1B (Q1B) between RumbleDB and SparkSQL, on log2
scales

4.2.3 GitHub Archive Evaluation

Analogously to our evaluation of performance on the TPC-C dataset in subsection 4.2.2, in this sub-
section we only display the results for Q2B in figure 4.2 as the results for Q2A and Q2C display the
same relationships – their results can be found in figures A.3 and A.4 in appendix A.19.In a similar
fashion to the results of 4.1 in figure 4.2 we see SparkSQl remain constant in spite of the increasing
tuple count, but here it remains constant at just below two seconds of mean execution time. Likewise,
the mean execution time for RumbleDB at a tuple count of two is higher for Q2B than for Q1B and
this is likely due to the Q2B adding columns into the schema – a computationally expensive operation
– while Q1B only updates an existing column. However, as the tuple count increases for RumbleDB,
this additional cost is diminished by the increasing number of column updates because the alteration
to the schema only occurs once for each query execution but the column updates occur for each tu-
ple. Once more we see that RumbleDB’s mean execution time increases linearly with the tuple count,
and this too is due to the one-item-at-a-time updating philosophy of the iterator processing in our
implementation. Additionally, the disparity between the mean execution time at a tuple count of
two between RumbleDB and SparkSQL is due to the addition of the rowID column when using Delta
tables. Nevertheless, it is in the code for Q2B in JSONiq and SparkSQL that we see the potency of
RumbleDB as SparkSQL requires two separate queries while JSONiq only needs one. This is due to
the dataset being naturally heterogeneous and thus more intuitively processed by RumbleDB.
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Figure 4.2: Comparison of performance on Query 2B (Q2B) between RumbleDB and SparkSQL, on log2
scales

4.2.4 RumbleDB Evaluation

Finally, now that we understand the deficiencies of RumbleDB in comparison to SparkSQL, we can
investigate how RumbleDB handles the different queries.

Let us begin with figure 4.3 which compares RumbleDB’s performance for each query applied
to the TPC-C dataset. Q1A and Q1B have very similar mean execution times for each tuple count
despite Q1B introducing some control flow in the form of an if expression. This highlights that the
processing of PULs, as it flows through the iterator tree, incurs very little computational costs for the
repeated application of the mergeUpdates routine – implying the algorithm and implementation of
PULs is scalable both with more expressions and more tuples, at least for the data measured. The
trend for Q1C corroborates this conclusion as we see the cost of computing a join cause the mean
execution times for Q1C to begin much higher than either of the other queries. However, as the cost
of updating each tuple individually overshadows the cost of the join, we see each query’s trend begin
to converge. Hence, we can assume that, with careful optimisation, each of these queries can have
comparable computational costs with regard to the processing of updates.
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Figure 4.3: Comparison of performance of RumbleDB for Queries 1A, 1B, and 1C (Q1A, Q1B, Q1C), on
log2 scales

Figure 4.4, on the other hand, compares RumbleDB’s performance for each query applied to
the GitHub archive dataset and outlines trends different from those that occur when updating purely
flat datasets. Initially, we see the mean execution time of each query increases linearly with the
tuple count as identified in subsection 4.2.3. Nevertheless, on close inspection, we can recognise
that Q2A consistently outperforms Q2B, but this superior performance becomes less pronounced
as the tuple count increases. This is due to Q2B performing a nested insert, which will alter the
schema and update a column, while Q2A only replaces the value in a non-nested column. From this,
we realise that no optimisation will be able to equalise the cost of performing these two different
types of updates – schema-altering and non-schema-altering – as they are fundamentally disparate.
However, this additional cost of Q2B is small and only noticeable due to the small number of tuples
being affected, so when processing many more records the difference is likely to be unimportant.
However, Q2C has a much larger execution cost associated with it than either of the other two
queries do and this is due to it inserting and updating values nested inside of an array. As mentioned
in subsection 3.5.3, any update that occurs inside of an array forces the array to be fully materialised,
manipulated, and reconstituted as a Delta table array. Consequently, much more computational and
memory overhead is required to handle this materialisation, and as the arrays grow or become more
nested even more overhead is added. Compounding this is yet again the fact that each record incurs
the same processing due to the current model of the update primitives only updating one item at a
time. Therefore, it is likely that Q2C would see the largest improvements upon optimisation as they
could help batch both the updating of items and the materialisation of large arrays.
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Figure 4.4: Comparison of performance of RumbleDB for Queries 2A, 2B, and 2C (Q2A, Q2B, Q2C), on
log2 scales

Finally, we look towards figure 4.5 to understand how the size of tuples affects RumbleDB’s
performance. Here we compare RumbleDB with itself for Q1A and Q2A as these are both similar
queries in that they only update the top-level columns. The New Order table of the TPC-C dataset
has 3 columns, each of them 4-byte integers meaning the Delta table will store 12 bytes per tuple.
Whereas, the GitHub Archive table has 17 string columns, 3 struct columns, and 1 boolean column,
with each tuple averaging 365 bytes. Clearly, in both the number of columns (and so the number of
Item instances needed to represent a tuple in RumbleDB) and the number of bytes the tuples of the
GitHub Archive are larger than the tuples of the New Order table. Hence, if we were batch-processing
then we would expect similar mean execution times between Q1A and Q2A up until a certain number
of tuples at which point memory would start bottlenecking Q2A. However, figure 4.5 shows that the
mean execution times of the two queries are virtually the same for each tuple count indicating that
the current iterator-processing model in which we only materialise and update one tuple at a time is
not bottlenecked by tuple size, as anticipated. Nevertheless, there is still the possibility that the tuple
counts here would not be large enough to incur much of a memory bottleneck if batch processing
were used.

64



4.2. PERFORMANCE EVALUATION Chapter 4. Experimentation

Figure 4.5: Comparison of performance of RumbleDB for Queries 1A, and 2A (Q1A, Q2A), on log2 scales
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5 Conclusion

This report details the rationale and methodology behind implementing JSONiq updates in Rum-
bleDB. Overall the project has been successful in accomplishing its main goal of displaying the via-
bility of JSONiq updates in RumbleDB and the best practices for achieving its integration. This has
been performed using a volcano-style iterator-based approach which exploits the Spark dataframes
API to enable the persistence of updates via ACID-compliant Delta tables. Throughout, a variety of
logical models were introduced, including an abstract decomposition for update primitives, and mu-
tability scoping for updateable items. These models allowed us to utilise system design principles in
an object-oriented paradigm to maximise extensibility without incurring severe overhead.

Based on the evaluation tests performed in this report and the test suite extended in RumbleDB’s
repository, updates in RumbleDB have the ability to represent a wide range and breadth of desirable
alterations on highly heterogeneous and deeply nested, semi-structured data. This project has ex-
ceeded the JSONiq updates specification, identifying additional errors and semantic pitfalls to create
a truly robust mechanism for describing and processing updates. Nevertheless, our experimentation
also displays that RumbleDB starts with a mean execution time four times worse than SparkSQL and
this linearly worsens are more data is updated, thereby indicating much room for improvement in
efficiency is available.

Summatively, this project realises the combination of JSONiq’s intuitive update semantics and
Delta table’s efficient transactional storage in RumbleDB to take another step in conquering het-
erogeneous Big Data. Despite the success of this implementation, it highlights numerous exciting
opportunities for optimisation and the extension of what JSONiq updates mean when mapped onto
other data shapes.

5.1 Future Work

Updates in RumbleDB present a variety of possible directions for extending the tool in ways that both
improve efficiency and explore updating heterogeneous data as a whole.

Update primitives as they stand are limited in their scalability as they currently only target
one item to update at a time. As outlined by the results of our experimentation, this approach is
unsustainable for handling Big Data. Thus, it is essential to expand the suite of update primitives and
applying the Target-Selector-Content decomposition can lead to many possibilities. One such crucial
possibility is developing update primitives whose Target can be a collection of items in the form of
an RDD or dataframe, thereby enabling batch processing of updates. However, this would entail the
integration of PULs into RDD and Spark execution flows. Moreover, these update primitives acting
on dataframes can then be extended to take into account the predicates applied in where clauses
of FLWOR expressions. This model of processing would be more in line with the data-centric code
generation model which is more efficient and well-suited for OLTP workloads where updates are
plenty (Kersten et al., 2018).

In addition to expanding the notion of a Target to collections of items, it can also take into non-
structured data. When persisting updates in a Delta table, the Target is an item of a structured data
type (an object or an array) materialised before altering one component of its structure. This materi-
alisation can incur additional overhead when taking a more batch-processing approach, especially if
the object or array is particularly large. Therefore, adapting the Target of the update primitive to only
be the atomic field being updated should eliminate unnecessary overhead. However, this approach
only works when persisting to Delta tables as the Selector of the update primitive can be represented
by the state identifying the Target item in the Delta table.

Finally, the set of update primitives implemented in this project lacks some useful semantics and
operations for data manipulation. The most important to rectify is that no update primitive can act
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on collections of items that are not in an object or an array. For persisting updates in Delta tables, this
has meant that rows cannot be inserted without processing the entire table as an array, inserting the
rows into the array, and then reconstructing the table. Perhaps this can be implemented with built-
in functions as was done in Zorba DB (zor). Additionally, certain semantics are missing, including
removing a column from a structured collection (like a dataframe or Delta table) when that column is
deleted for each record in the collection. An alike semantic deficiency is also present when renaming
columns.

Although Delta tables are the logical option for persisting updates in RumbleDB due to the Spark
API, they are not the most native option for storing heterogeneous, semi-structured data. One such
native alternative is MongoDB (Chodorow and Dirolf, 2010), which natively stores and processes
JSON documents, but the MongoDB API lacks the intuition and power of a query language like
JSONiq. Hence, integrating MongoDB connections into RumbleDB could supply the native storage of
heterogeneous data updates alongside ACID-compliant transactions, while maintaining RumbleDB’s
query-processing prowess. However, proper support of a system like MongoDB would be beyond the
scope of just persisting updates.

Persisting updates in RumbleDB is a crucial step towards improving RumbleDB’s practicality
in a Big Data paradigm. Another vital step, which is briefly mentioned in section 3.5, is to extend
RumbleDB with scripting capabilities. Not only would this improve the usability and intuition of
RumbleDB, but it will allow for updates to be immediately used within the same script, thereby
abstracting the power of the return clause of the transform expression to non-copied values.
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A Appendix

The code for the project is found here: https://gitlab.inf.ethz.ch/gfourny/rumble/-/tree/

master-dloughlin.

A.1 Expression Classification Enum

Code 1.1: Expression Classification Enum

public enum ExpressionClassification {

UNSET ,

BASIC_UPDATING ,

UPDATING ,

SIMPLE ,

VACUOUS;

public boolean isUnset () {

return this == ExpressionClassification.UNSET;

}

public boolean isUpdating () {

return this == ExpressionClassification.BASIC_UPDATING || this ==

ExpressionClassification.UPDATING;

}

public boolean isSimple () {

return !isUpdating ();

}

public boolean isVacuous () {

return this == ExpressionClassification.VACUOUS;

}

public String toString () {

switch (this) {

case UNSET:

return "unset";

case BASIC_UPDATING:

return "basic_updating";

case UPDATING:

return "updating";

case SIMPLE:

return "simple";

case VACUOUS:

return "vacuous";

}

return null;

}

}
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A.2 Expression Classification Visitor Default Action

Code 1.2: Expression Classification Visitor Default Action

public class ExpressionClassificationVisitor extends

AbstractNodeVisitor <ExpressionClassification > {

@Override

protected ExpressionClassification defaultAction(Node node ,

ExpressionClassification argument) {

ExpressionClassification expressionClassification = this.

visitDescendants(node , argument);

if (!( node instanceof Expression)) {

return expressionClassification;

}

if (expressionClassification.isUpdating ()) {

throw new InvalidUpdatingExpressionPositionException(

"Operand of expression is Updating when it should be

Simple or Vacuous",

node.getMetadata ()

);

}

Expression expression = (Expression) node;

expression.setExpressionClassification(expressionClassification);

return expressionClassification;

}

@Override

public ExpressionClassification visitDescendants(Node node ,

ExpressionClassification argument) {

List <ExpressionClassification > expressionClassifications = node.

getChildren ()

.stream ()

.map(child -> this.visit(child , argument))

.collect(Collectors.toList ());

ExpressionClassification result = expressionClassifications.

stream ()

.anyMatch(ExpressionClassification :: isUpdating)

? ExpressionClassification.UPDATING

: ExpressionClassification.SIMPLE;

return result;

}
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A.3 Standard Update Primitive Interface

Code 1.3: Standard Update Primitive Interface

public interface UpdatePrimitive {

void apply ();

Item getTarget ();

default Item getSelector () {

throw new UnsupportedOperationException("Operation not defined");

}

default Item getContent () {

throw new UnsupportedOperationException("Operation not defined");

}

default List <Item > getContentList () {

throw new UnsupportedOperationException("Operation not defined");

}

default boolean isDeleteObject () {

return false;

}

default boolean isDeleteArray () {

return false;

}

default boolean isInsertObject () {

return false;

}

default boolean isInsertArray () {

return false;

}

default boolean isReplaceObject () {

return false;

}

default boolean isReplaceArray () {

return false;

}

default boolean isRenameObject () {

return false;

}

}
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A.4 Local Pending Update List Tree Map Comparator

Code 1.4: Local Pending Update List Tree Map Comparator

(item1 , item2) -> {

int hashCompare = Integer.compare(item1.hashCode (), item2.

hashCode ());

if (item1.hashCode () != item2.hashCode ()) {

return hashCompare;

}

if (! item1.equals(item2)) {

return hashCompare;

}

return Integer.compare(

System.identityHashCode(item1),

System.identityHashCode(item2)

);

A.5 Github Archive Schema

Code 1.5: Github Archive Schema

Schema of Github Archive dataset in dataframe notation:

root

|-- actor: struct (nullable = true)

| |-- avatar_url: string (nullable = true)

| |-- gravatar_id: string (nullable = true)

| |-- id: string (nullable = true)

| |-- login: string (nullable = true)

| |-- url: string (nullable = true)

|-- created_at: string (nullable = true)

|-- id: string (nullable = true)

|-- org: struct (nullable = true)

| |-- avatar_url: string (nullable = true)

| |-- gravatar_id: string (nullable = true)

| |-- id: string (nullable = true)

| |-- login: string (nullable = true)

| |-- url: string (nullable = true)

|-- payload: string (nullable = true)

|-- public: boolean (nullable = true)

|-- repo: struct (nullable = true)

| |-- id: string (nullable = true)

| |-- name: string (nullable = true)

| |-- url: string (nullable = true)

|-- type: string (nullable = true)
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A.6 JSONiq Github Archive Delta Table Creation

Code 1.6: JSONiq Github Archive Delta Table Creation

JSONiq query that creates and validates the schema for GitHub Archive push event data where
the payload field is a string.

declare type local:attempt as {

"actor": {

"avatar_url": "string",

"gravatar_id": "string",

"id": "string",

"login": "string",

"url": "string"

},

"created_at": "string",

"id": "string",

"org": {

"avatar_url": "string",

"gravatar_id": "string",

"id": "string",

"login": "string",

"url": "string"

},

"payload": "string",

"public": "boolean",

"repo": {

"id": "string",

"name": "string",

"url": "string"

},

"type": "string"

};

validate type local:attempt* {

json-file("some/file/path/gharchive.json")

}

If the above is put into a JSONiq script then the data can be output to a Delta table using the
command:

spark-submit --packages io.delta:delta-core_2.12:2.3.0 path/to/rumbledb.jar

run "path/to/createDeltaTableQuery.jq"

--output-format delta

--output-path "desired/path/to/table"

-P 1

A.7 Query 1A: JSONiq
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Code 1.7: Query 1A: JSONiq

for $d in delta-file("queries/delta_benchmark_data/newOrderTable")

return replace value of $d.NO_O_ID with ($d.NO_O_ID + 1)

A.8 Query 1A: SparkSQL

Code 1.8: Query 1A: SparkSQL

UPDATE delta.newOrderTable

SET NO_O_ID = (NO_O_ID + 1);

A.9 Query 1B: JSONiq

Code 1.9: Query 1B: JSONiq

let $h_amt := 343

for $c in delta-file("../../../queries/delta_benchmark_data/customerTable2")

return

(

replace value of $c.C_BALANCE with $c.C_BALANCE + $h_amt,

if ($c.C_CREDIT eq "BC")

then

replace value of $c.C_DATA with $c.C_DATA || $c.C_ID || $c.C_D_ID ||

$c.C_W_ID || $h_amt

else

()

)

A.10 Query 1B: SparkSQL

Code 1.10: Query 1B: SparkSQL

int h_amt = 343;

UPDATE delta.customerTable

SET C_BALANCE = (C_BALANCE + h_amt),

C_DATA = if(C_CREDIT == ’BC’,

concat(C_DATA, C_ID, C_D_ID, C_W_ID, h_amt),

C_DATA

);
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A.11 Query 1C: JSONiq

Code 1.11: Query 1C: JSONiq

let $no_o_id := 4

let $w_id := 1

let $d_id_to_ol_total := (

for $d in delta-file("../queries/delta_benchmark_data/districtTable"),

$ol in delta-file("../queries/delta_benchmark_data/orderLineTable")

[ $$.OL_D_ID eq $d.D_ID ]

where $ol.OL_W_ID eq $w_id and $ol.OL_O_ID eq $no_o_id

group by $d_id := $d.D_ID

return { "d_id" : $d_id, "ol_total" : sum($ol.OL_AMOUNT) }

)

for $d in $d_id_to_ol_total,

$c in delta-file("../queries/delta_benchmark_data/customerTable16")

[ $$.C_D_ID eq $d.d_id ]

where $c.C_W_ID eq $w_id

return replace value of $c.C_BALANCE with ($c.C_BALANCE + $d.ol_total)

A.12 Query 1C: SparkSQL

Code 1.12: Query 1C: SparkSQL

int no_o_id = 4;

int w_id = 1;

WITH ol_total_per_dist AS (

SELECT D_ID, SUM(OL_AMOUNT) AS OL_TOTAL

FROM delta.districtTable

JOIN delta.orderLineTable ON D_ID = OL_D_ID

WHERE OL_W_ID = w_id AND OL_O_ID = no_o_id

GROUP BY D_ID

)

MERGE INTO delta.customerTable USING ol_total_per_dist

ON C_D_ID = ol_total_per_dist.D_ID

WHEN MATCHED THEN

UPDATE SET C_BALANCE = (C_BALANCE ol_total_per_dist.OL_TOTAL);

A.13 Query 2A: JSONiq

Code 1.13: Query 2A: JSONiq

for $d in delta-file("../../../../queries/delta_benchmark_data/bigghTable")
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return replace value of $d.public with (not $d.public)

A.14 Query 2A: SparkSQL

Code 1.14: Query 2A: SparkSQL

UPDATE delta.bigghTable

SET public = (NOT public)

A.15 Query 2B: JSONiq

Code 1.15: Query 2B: JSONiq

for $d in delta-file("queries/delta_benchmark_data/bigghTable")

return insert { "nickname" : "cool_nickname", "popularity_rating" : -1 }

into $d.repo

A.16 Query 2B: SparkSQL

Code 1.16: Query 2B: SparkSQL

ALTER TABLE delta.bigghTable

ADD COLUMNS (repo.nickname STRING, repo.popularity_rating INT);

UPDATE delta.bigghTable

SET repo.nickname = ’cool_nickname’,

repo.popularity_rating = -1;

A.17 Query 2C: JSONiq

Code 1.17: Query 2C: JSONiq

for $d in delta-file("queries/delta_benchmark_data/bigghTable")

return (

insert "ids" : [

{ "repo_id" : $d.repo.id, "actor_id" : $d.actor.id, "id" : $d.id }

] into $d,

delete $d.repo.id,

delete $d.actor.id,

delete $d.id

)
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A.18 Query 2C: SparkSQL

Code 1.18: Query 2C: SparkSQL

ALTER TABLE delta.bigghTable

ADD COLUMNS (

ids ARRAY<STRUCT<repo_id : STRING, actor_id : STRING, id : STRING>>

);

UPDATE delta.bigghTable

SET ids = array(

named_struct(’repo_id’, repo.id, ’actor_id’, actor.id, ’id’, id)

),

repo.id = NULL,

actor.id = NULL,

id = NULL;

A.19 Additional Performance Graphs

Figure A.1: Comparison of performance on Query 1A (Q1A) between RumbleDB and SparkSQL, on log2
scales
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Figure A.2: Comparison of performance on Query 1C (Q1C) between RumbleDB and SparkSQL, on log2
scales – additional deficiencies over A.1 and 4.1 due to the overhead of a join in both queries

Figure A.3: Comparison of performance on Query 2A (Q2A) between RumbleDB and SparkSQL, on log2
scales
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Figure A.4: Comparison of performance on Query 2C (Q2C) between RumbleDB and SparkSQL, on log2
scales
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