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A B S T R A C T

Quantum computation has made remarkable progress in recent years, not
only by constructing quantum computers that surpass classical counterparts
in specific tasks, but also by developing increasingly complex quantum
algorithms. Unfortunately, the development of essential tools for quantum
programming, such as high-level programming languages and debugging
tools, has not kept pace with these advancements. Therefore, the goal of this
thesis is to advance quantum computation by introducing novel tools that
both enable experts to fully leverage the potential of quantum computing
and lower the entrance barrier for non-expert quantum programmers.

To this end, the thesis presents three innovative tools: Silq, Unqomp,
and Abstraqt. Silq is a high-level quantum programming language whose
most significant contribution is its ability to ensure all temporary quantum
values can be automatically uncomputed, simplifying the programming
process. Unqomp is the first procedure to automatically synthesize uncom-
putation within quantum circuits containing non-classical gates, such as
the Hadamard gate. Abstraqt is a novel approach to efficiently simulate
arbitrary quantum circuits at the cost of lost precision, enabling the study
of circuit properties that were previously intractable.

These tools were inspired by established techniques from the program-
ming languages community, which can serve as a rich reservoir of concepts
and approaches beneficial for quantum computing. Silq utilizes a novel
type system to enable uncomputation, Unqomp synthesizes uncomputation
through a graph representation of quantum circuits, and Abstraqt leverages
abstract interpretation to abstract the imprecision it introduces.

Overall, these tools improve the productivity of quantum programmers
and reduce the likelihood of errors in quantum algorithm implementations.
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Z U S A M M E N FA S S U N G

Die Quantenberechnung hat in den letzten Jahren signifikante Fortschritte
erreicht, nicht nur durch den Bau von Quantencomputern, die klassischen
Gegenstücken bei bestimmten Aufgaben überlegen sind, sondern auch
durch die Entwicklung immer komplexerer Quantenalgorithmen. Leider
aber konnte die Entwicklung essenzieller Werkzeuge für die Quantenpro-
grammierung wie höheren Programmiersprachen oder Debugging-Tools
mit diesen Fortschritten nicht Schritt halten. Folglich ist das es Ziel dieser
Arbeit, die Quantenberechnung voranzutreiben indem sie neue Werkzeuge
einführt, die es sowohl Experten ermöglichen, das Potenzial der Quan-
tenberechnung voll auszuschöpfen, als auch den Einstieg für unerfahrene
Quantenprogrammierer erleichtern.

Diese Arbeit stellt drei innovative Werkzeuge vor: Silq, Unqomp und Ab-
straqt. Silq ist eine höhere Quantenprogrammiersprache, deren wichtigster
Beitrag ihre Fähigkeit ist, sicherzustellen, dass alle temporären Quantenwer-
te automatisch “uncomputed” werden können, was die Programmierung
vereinfacht. Unqomp ist das erste Verfahren zur automatischen Synthese
von “Uncomputation” in Quantenschaltungen, die nichtklassische Gatter
wie das Hadamard-Gatter enthalten. Abstraqt ist ein neuartiger Ansatz zur
effizienten Simulation beliebiger Quantenschaltungen zum Preis eines Ver-
lustes an Genauigkeit, der die Untersuchung von Schaltungen ermöglicht,
die zuvor berechnungstechnisch unerreichbar waren.

Diese Werkzeuge wurden von etablierten Techniken aus der Program-
miersprachenforschung inspiriert und zeigen die Vorteile der Anwendung
solcher Methodologien auf die Quantenberechnung. Silq nutzt ein neuarti-
ges Typsystem, um “uncomputation” zu ermöglichen, Unqomp syntheti-
siert “uncomputation” durch eine Graphenrepräsentation der Schaltung,
und Abstraqt nutzt abstrakte Interpretation, um die Ungenauigkeit, die es
einführt, abzuschätzen.

Insgesamt verbessern diese Werkzeuge die Produktivität von Quanten-
programmierern und reduzieren die Wahrscheinlichkeit von Fehlern bei
der Implementierung von Quantenalgorithmen.
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1
I N T R O D U C T I O N

Quantum algorithms can outperform classical algorithms by exploiting the
principles of quantum mechanics. To leverage this potential, researchers
keep proposing increasingly complex quantum algorithms [15, 16, 17, 18, 19,
20], with the goal of running them on ever-improving quantum computers.
At the same time, significant improvements in building quantum computers
have already enabled them to outperform classical computers on certain
tasks, albeit ones that are not yet practically useful [21]. Based on these
encouraging developments, it seems increasingly likely that future quantum
computers will be able to reliably run a wide range of quantum algorithms
and achieve significant speed-ups over classical algorithms.

quantum programming Unfortunately, these advances in building
powerful quantum computers and inventing novel quantum algorithms
are not matched by the development of tools crucial for quantum pro-
gramming, such as high-level programming languages. As a consequence,
programming quantum computers remains a fundamental challenge, even
for specialists well-versed in the intricacies of quantum computation. This
problem is exacerbated by the fact that debugging quantum programs is
notoriously difficult, as quantum state cannot be read without side-effects
and the behavior of quantum programs is inherently probabilistic and often
unintuitive.

goal The overarching goal of this thesis is therefore to advance the
field of quantum computation by introducing novel tools that both lower
the entrance barrier of non-expert quantum programmers but also enable
experts to harness the full potential of quantum computing.

Specifically, this thesis introduces three novel tools that boost the ability
of developers to quickly write efficient and correct quantum algorithms:

• Silq (Chapter 3) is a high-level quantum language designed to abstract
away low-level implementation details of quantum algorithms. Silq’s
most significant contribution is its ability to ensure all its temporary
quantum values can be automatically uncomputed, a tedious task
necessary when discarding values from a quantum program’s state.

1



2 introduction

• Unqomp (Chapter 4) is the first procedure that automatically synthe-
sizes uncomputation within quantum circuits containing non-classical
gates like the Hadamard gate, a crucial step required for the open
problem of compiling Silq.

• Abstraqt (Chapter 5) leverages a novel approach to efficiently simulate
arbitrary quantum circuits at the cost of lost precision. This allows it
to establish interesting properties of quantum circuits which would
otherwise be intractable.

discussion Overall, this thesis helps to mitigate multiple fundamen-
tal challenges in the field of quantum computation, including lifting the
level of abstraction when describing quantum algorithms (Chapter 3), com-
piling high-level specifications of quantum algorithms down to low-level
circuits (Chapter 4), and efficiently analyzing quantum circuits on a classical
computer (Chapter 5).

techniques Our tools are inspired by techniques from the program-
ming language community, which has extensive experience in automating
complex processes and making them more accessible to a wider audience.
Specifically, Silq establishes that uncomputation is possible using a novel
type system, Unqomp synthesizes uncomputation by relying on a graph repre-
sentation of the circuit, and Abstraqt leverages the mathematical framework
of abstract interpretation to (over-)abstract the imprecision it introduces.

In the following, we provide a brief overview of each tool.

1.1 silq

Chapter 3 introduces Silq, a high-level quantum language designed to
abstract away low-level implementation details of quantum algorithms.

As its key novelty, Silq helps to bridge the conceptual gap between classi-
cal and quantum languages by allowing quantum programs to safely drop
temporary values from the program state without unintended side-effects.
Generally, temporary values produced during quantum computations must
be reset to zero before they can be safely discarded, in a process called
uncomputation. Before Silq, discarding temporary values often required
programmers to manually uncompute these values or to rely on unsafe
constructs that could induce implicit measurements, which typically lead
to an unintended collapse of the program state (for details, see §3.2).
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By safely automating uncomputation, Silq naturally enables an intuitive
semantics that implicitly drops temporary values, as in classical computa-
tion. To ensure this semantics is indeed physically realizable, Silq features a
quantum type system which leverages novel annotations to reject unphysi-
cal programs.

Our experimental evaluation demonstrates that Silq programs are not
only shorter, but also easier to read and write than analogous programs
in existing quantum languages Q# [22] or Quipper [23], as Silq programs
require fewer primitives and concepts.

impact Silq has not only paved the way for more recent advancements
in automatic uncomputation [2, 14, 24, 25], but is also a useful reference
to demonstrate the suitability of a linear type system for quantum lan-
guages [26, 27, 28], and to show-case how quantum languages can elegantly
mix classical and quantum computation [27, 29, 30]. We provide an overview
of the significant impact Silq has had on quantum programming research
in terms of language features of other topics like internal representations
and verification in §3.9.

Silq is also being used to teach quantum programming, for example in the
CS238 Quantum Programming course at the University of California [31].

Finally, Silq has received widespread attention even beyond academia
(e.g., >500 stars on GitHub), prompted a book dedicated to learning Silq [32],
and was covered by major news publishers1.

1.2 unqomp

While Silq provides a much needed high-level language for quantum pro-
gramming, it does not address the open problem of compiling Silq down to
low-level circuits applying individual gates. The most challenging aspect
of such a compilation is synthesizing efficient uncomputation, which we
address by Unqomp, introduced in Chapter 4.

Perhaps surprisingly, Unqomp is not integrated with Silq but with Qiskit.
This choice is intentional, as it allows us to bring the benefits of automatic
uncomputation to the (to date) larger user base of Qiskit. Conveniently, our
working integration with Qiskit also demonstrates that Unqomp can be
readily integrated into existing quantum languages.

1 See https://silq.ethz.ch/news.

https://silq.ethz.ch/news


4 introduction

Our evaluation shows that compared to pure Qiskit, programs leveraging
Unqomp are not only shorter (-19% on average), but also generate more
efficient circuits (-71% gates and -19% qubits on average).

compiling silq Automatically synthesizing uncomputation, as achieved
by Unqomp, is a key step towards compiling Silq programs. However, the
task of compiling Silq also induces other challenges besides synthesizing
uncomputation, such as handling its flexible interleaving of classical and
quantum computation. Consequently, developing a full compiler for Silq is
an ongoing research effort [33].

impact Since we published Unqomp, several researchers have worked
on the topic of automatic uncomputation or even built directly upon Un-
qomp [14, 25, 34], with one work directly integrating Unqomp [25]. We
provide a detailed overview of the impact of Unqomp in §4.8.

In the future, we are expecting to see more usages of Unqomp, as it is
simple to integrate into existing languages and solves a pressing problem
when writing quantum programs.

1.3 abstraqt

Concluding this thesis, Chapter 5 presents Abstraqt, a novel approach to
efficiently simulate arbitrary quantum circuits at the cost of lost precision.

Debugging already written quantum programs is a fundamental chal-
lenge because quantum computers give very limited visibility into the
program’s internals, as quantum states cannot be read without side-effects.
Further exacerbating the problem, existing quantum computers are highly
error-prone, meaning that advanced debugging techniques to bypass this
problem [35] are difficult to exploit in practice. Thus, there is significant
interest in simulating quantum computations on classical computers, which
allows for full visibility into the quantum state but is typically intractable.

A notable exception are Clifford circuits, an important class of quantum
circuits which only apply a subset of all quantum gates and can therefore
be efficiently simulated using stabilizer simulation [36]. While generalizations
of stabilizer simulation to arbitrary circuits exist, they again suffer from
an exponential runtime as they must process an exponential amount of
information about the quantum state [36, §VII-C].

Abstraqt addresses this challenge by compressing the quantum state
information into an efficient representation, at the cost of potentially lost
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precision. Specifically, Abstraqt relies on the mathematical framework of
abstract interpretation to ensure that our compression of quantum states is
sound.

Our evaluation demonstrates that Abstraqt can establish circuit properties
intractable for all existing simulation techniques, comparing to state-of-the-
art stabilizer simulators [37, 38], a state vector simulator [39], and a recent
abstract simulator based on abstracting density matrices [40].

impact As a very recent work still under submission, Abstraqt has not
yet impacted quantum computing research.

However, we hope that Abstraqt will trigger more research into sacrificing
precision for efficiency when simulating quantum circuits. In turn, we
expect such efforts to benefit the understanding of high-level programs
such as Silq programs, without the need to run an intractable simulation.

1.4 discussion

Overall, Chapters 3–5 introduce a diverse set of novel tools that help devel-
opers to write efficient and correct quantum algorithms.

The impact of these tools is significant, as they allow quantum algorithm
developers to focus on the high-level logic of their algorithms, without
being distracted by low-level implementation details. This greatly improves
the productivity of quantum programmers and reduces the likelihood of
errors in the implementation of quantum algorithms.

Moreover, our tools have the potential to impact the wider quantum
computing community. Silq makes quantum programming accessible to
a wider audience, including those without deep knowledge of quantum
computation. Unqomp is easy to integrate with existing quantum languages,
and Abstraqt efficiently simulates key aspects of quantum circuits.

In conclusion, our tools showcase the power of taking inspiration from
established techniques in the programming language community, and the
potential of applying these techniques to the field of quantum computing—
an approach suitable not just for quantum languages (Chapter 3), circuit
synthesis (Chapter 4), and circuit simulation (Chapter 5), but also for tasks
like circuit optimization (e.g., [41, 42, 43]), verification (e.g., [44, 45, 46]), or
testing (e.g., [35]). We are optimistic that these tools will pave the way for
more efficient and correct quantum algorithms, and more generally will
encourage the quantum computation community to keep taking inspiration
from the programming language community.





2
B A C K G R O U N D

Before diving into the contributions of this thesis, we present a unified
background on quantum computation useful throughout this thesis. We
refer readers unfamiliar with quantum computation to [47] for an excellent
in-depth introduction.

basic notation Generally, we write B for {0, 1}, Z4 for {0, 1, 2, 3}, 2S

for the power set of set S, and ℜ(c) for the real part of a complex number c.

2.1 quantum states

We first introduce quantum states and how to represent them.

qubit The state of a quantum bit (qubit) is a superposition (linear com-
bination) φ = γ0 |0⟩ + γ1 |1⟩, where γ0, γ1 ∈ C, and ∥φ∥2 = ∥γ∥2 =
∥γ0∥2 + ∥γ1∥2 denotes the probability of being in state φ. In particular,
we allow ∥φ∥ < 1 to indicate that a measurement yields state φ with
probability ∥φ∥—a common convention [48, Convention 3.3].

Where convenient, if φ is the state of a variable x, we write its state
as φ = γ0 |0⟩x + γ1 |1⟩x. Especially in Chapters 3–4, this helps emphasize
which parts of the quantum state correspond to which variable.

tensor product A system of multiple qubits can be described using
the tensor product ⊗. For example, for two qubits φ0 = |0⟩ and φ1 =

1√
2
|0⟩ − i 1√

2
|1⟩, the composite state is

φ0⊗ φ1 = 1√
2
|0⟩ ⊗ |0⟩ − i 1√

2
|0⟩ ⊗ |1⟩ = 1√

2
|0⟩ |0⟩ − i 1√

2
|0⟩ |1⟩ .

Here, we first used the linearity of ⊗ in its first argument and then omitted
⊗ for convenience. Simplifying notation further, we may also write |0⟩ |0⟩
as |0, 0⟩ or even |00⟩.

7



8 background

Figure 2.1: Example quantum circuit.

We can emphasize that the first qubit is stored in variable x and the
second qubit is stored in variable y by writing

φ0⊗ φ1 = 1√
2
|0⟩x ⊗ |0⟩y − i 1√

2
|0⟩x ⊗ |1⟩y = 1√

2
|0⟩x |0⟩y − i 1√

2
|0⟩x |1⟩y .

For readability, we often abbreviate |a⟩x ⊗ |b⟩y by |a⟩x |b⟩y or |ab⟩xy.

entanglement A composite state is called entangled if it cannot be
written as a tensor product of single qubit states, but needs to be written as
a sum of tensor products. For example, the above composite state φ0⊗ φ1
is unentangled, while Φ+ = 1√

2
|0⟩ |0⟩+ 1√

2
|1⟩ |1⟩ is entangled.

measurement To acquire information about a quantum state, we can
(partially) measure it. Measurement has a probabilistic nature; if we measure
φ = ∑v∈{0,1} γv |v⟩, we obtain the value v′ ∈ {0, 1} with probability ∥γv′∥2.
As a fundamental law of quantum mechanics, if we measure the value v′,
the state after the measurement is γv′ |v′⟩ (we do not normalize this state to
preserve linearity). This is referred to as the collapse of φ to γv′ |v′⟩, since
superposition is lost.

Importantly, measuring part of a state can affect the whole state. To illus-
trate the effect of measuring the first part |v⟩ of ∑1

v=0 ∑1
w=0 γv,w |v⟩ ⊗ |w⟩,

we first rewrite it to ∑1
v=0 γv |v⟩ ⊗ φ̃v, separating out the remainder φ̃v

of the state, where ∥φ̃v∥ = 1. This is a common technique and always
possible for appropriate choices of γv and φ̃v, even for systems where φ̃v
consists of multiple qubits. Then, measuring the first part to be v′ yields
state γv′ |v′⟩ ⊗ φ̃v′ , also collapsing the remainder of the state.

density matrices We note that in Chapter 5, we will work with an
alternative representation of quantum states in terms of density matrices, as
introduced in §5.2.
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2.2 quantum circuits

A quantum circuit is the most widely used model of quantum computation
in which quantum computers apply a sequence of gates to manipulate
quantum states. Fig. 2.1 shows an example of a simple quantum circuit.

wires Quantum circuits represent each qubit as a wire, depicted as
horizontal lines named x and a in Fig. 2.1. For example, initializing x to

1√
2
(|0⟩+ |1⟩) and a to |0⟩ yields the initial state φ′0 in Fig. 2.1.

gates Circuits manipulate qubits using linear unitary operators1 called
gates, which may span multiple wires. For example, the first gate • in
Fig. 2.1 is the controlled NOT gate, called CX. It flips the second qubit
(⊕) if the first qubit (•) is 1. More formally: CXxy |ab⟩xy = |a⟩x ⊗ |a⊕ b⟩y,
where ⊕ is the XOR operation. Like every gate, CX is linear and this
definition hence extends naturally to arbitrary superpositions. For example,
in Fig. 2.1, CXxa (φ′0) = φ′1. The second gate applied in Fig. 2.1 is the
Hadamard transform H, which maps |0⟩ to |0⟩+|1⟩√

2
and |1⟩ to |0⟩−|1⟩√

2
. The

second qubit a is not modified by Hx. For example, Hx
(

φ′1
)
= φ′2. Finally,

Fig. 2.1 applies a measurement to the qubit x, shown as .
Mathematically, an n-qubit quantum gate U ∈ U (2n) is a unitary opera-

tion which evolves state vector φ ∈ C2n
to Uφ ∈ C2n

. Here, we write U (2n)
for the set of unitary 2n × 2n matrices. Padding a smaller k-qubit quantum
gate U ∈ U (2k) to act on an n-qubit state without modifying neither the
first i nor last n− i− k qubits yields U(i) := I2i ⊗U⊗ I2n−i−k , where ⊗ is
the tensor product. Here, Il is the l × l identity matrix.

controls and targets The qubits involved in a gate can generally
be divided into two groups. First, the controls (depicted as • in circuits) are
preserved by the gate (see also [47, §4.3]). The other qubits, which may be
modified by the gate depending on the controls, are called targets.

Formally, a gate U controlled by one2 qubit x maps state

∑
a∈{0,1}

γa |a⟩x ⊗ φa to ∑
a∈{0,1}

γa |a⟩x ⊗ φ′a ,

1 As we express linear operators as matrices U, U is unitary if its conjugate transpose is also its
inverse: U†U = UU† = I.

2 The definition generalizes naturally to multiple controls.
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preserving the coefficients γa of control x, and only modifying the re-
mainder of the state φa to φ′a, where the mapping φa 7→ φ′a may depend
on a.

no-cloning The no-cloning theorem is a fundamental result in quan-
tum mechanics that states that cloning an arbitrary quantum state is un-
physical: we cannot achieve the operation φ 7→ φ⊗ φ. We note that Silq’s
type system prevents cloning.

2.3 quantum random access machines

While Chapters 4–5 are phrased in terms of quantum circuits, Chapter 3

assumes a more powerful computational model for quantum computers,
namely a quantum random access machine (QRAM) [49]. In contrast to
the quantum circuit model, the QRAM model more explicitly incorporates
classical computation. Specifically, a QRAM consists of a classical computer
enhanced with quantum storage that supports state preparation, certain
unitary gates, and measurement operations.

hilbert space , ground set, basis state In Chapter 3, we further
generalize quantum states beyond qubits to allow for superpositions over ar-
bitrary sets. Consider a classical variable that can take on values from a finite
ground set S. Then, the quantum states induced by S form the Hilbert space
H (S) consisting of the formal complex linear combinations [50, p. 379]
over S:

H (S) :=

{
∑
v∈S

γv |v⟩
∣∣∣∣∣ γv ∈ C

}
.

Here, each element v ∈ S corresponds to a (computational) basis state |v⟩.
For S = {0, 1}, we obtain the Hilbert space of a single qubit H ({0, 1}) =
{γ0 |0⟩+ γ1 |1⟩ | γ0, γ1 ∈ C}, with computation basis states |0⟩ and |1⟩.

We note that we use the (standard) inner product ⟨·| |·⟩ throughout this
work, defined by

⟨∑
v∈S

γv |v⟩ | | ∑
v∈S

γ′v |v⟩⟩ = ∑
v∈S

γ∗vγ′v.

measurement Analogously to §2.1, measuring the first part |v⟩ of quan-
tum state ∑v∈S ∑w∈S′ γv |v⟩ ⊗ φ̃v yields state γv′ |v′⟩ ⊗ φ̃v′ with probability
∥γv′∥.
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linear isometries Besides measurements, Chapter 3 further assumes
that we can manipulate quantum states using linear isometries, i.e., linear
functions f : H (S) → H (S′) preserving inner products: for all φ, φ′ ∈
H (S), ⟨ f (φ)| | f (φ′)⟩ = ⟨φ| |φ′⟩. Linear isometries generalize the commonly
used notion of unitary operations, which additionally require that vector
spaces H (S) and H (S′) have the same dimension. As this prevents dynam-
ically allocating and deallocating qubits 3, we use the more general notion
of linear isometries in Chapter 3.

We note that QRAMs can be extended to support linear isometries, by
(i) padding input and output space to have the same dimension (using
state preparation) and (ii) approximating the resulting unitary operation
arbitrarily well using a standard set of universal quantum gates [47, §4.5.3].

3 Since given input spaceH (S), allocating qubits leads to a larger output spaceH (S′), requiring
H (S) and H (S′) to have the same dimension (as enforced by unitary operations) prevents
dynamically allocating qubits.





3
S I L Q : A H I G H - L E V E L Q UA N T U M L A N G UA G E W I T H
S A F E U N C O M P U TAT I O N A N D I N T U I T I V E S E M A N T I C S

In this chapter, we present Silq, a high-level quantum language designed
to abstract away low-level implementation details, most importantly by
supporting safe, automatic uncomputation.

Before Silq, quantum languages forced the programmer to work at a
low level of abstraction, leading to unintuitive and cluttered code. A fun-
damental reason is that dropping temporary values from the program
state requires explicitly applying quantum operations that safely uncompute
these values. Silq addresses this challenge by supporting safe, automatic
uncomputation. This enables an intuitive semantics that implicitly drops
temporary values, as in classical computation. To ensure physicality of Silq’s
semantics, its type system leverages novel annotations to reject unphysical
programs.

Our experimental evaluation demonstrates that Silq programs are not
only easier to read and write, but also significantly shorter than equivalent
programs in other quantum languages (on average -46% for Q#, -38% for
Quipper), while using only half the number of quantum primitives.

3.1 introduction

As discussed in Chapter 1, researchers have been proposing increasingly
complex quantum algorithms [15, 16, 17, 18, 19, 20], driving the need for
expressive, high-level quantum languages.

the need for uncomputation Analogously to the classical setting,
quantum computations often produce temporary values. However, as a key
challenge specific to quantum computation, removing such values from
consideration induces an implicit measurement collapsing the state [47, §4.4],
see also Fig. 4.2. In turn, collapsing can result in unintended side-effects on
the state due to the phenomenon of entanglement. Surprisingly, due to the
quantum principle of deferred measurement [47, §4.4], preserving values until
computation ends is equivalent to measuring them immediately after their
last use, and hence cannot prevent this problem.

13



14 silq : a high-level quantum language

To remove temporary values from consideration without inducing an
implicit measurement, algorithms in existing languages must explicitly
uncompute all temporary values, i.e., modify their state to enable ignoring
them without side-effects. This results in a significant gap from quantum to
classical languages, where discarding temporary values typically requires
no action (except for heap values not garbage-collected). This gap is a major
roadblock preventing the adoption of quantum languages, especially since
the implicit side-effects resulting from uncomputation mistakes such as
silently dropping temporary values are highly unintuitive.

silq This chapter presents Silq, a high-level quantum language bridging
this gap by ensuring temporary values can be uncomputed automatically.
To this end, Silq’s type system exploits a fundamental pattern in quantum
algorithms, stating that uncomputation can be done safely if (i) the original
evaluation of the uncomputed value can be described classically, and (ii) the
variables used to evaluate it are preserved and can thus be leveraged for
uncomputation.

As uncomputation happens behind the scenes and is always safe, Silq is
the first quantum language to provide intuitive semantics: if a program type-
checks, its semantics follows an intuitive recipe that simply drops temporary
values. Importantly, Silq’s semantics is physical, i.e., can be realized on a
quantum random access machine (QRAM, see §2.3).

Overall, Silq allows expressing quantum algorithms more safely and
concisely than existing quantum programming languages, while typically
using only half the number of quantum primitives. In our evaluation (§3.7),
we show that across 28 challenges from recent coding contests [51, 52], Silq
programs require on average 46% fewer lines of code than Q# [22]. Similarly,
expressing the triangle finding algorithm [53] in Silq requires 38% less code
than Quipper [23].
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1 d := a || b || c; Silq 1 using(t=Qubit()){

2 OR(a,b,t);

3 OR(t,c,d);

4 Adjoint OR(a,b,t);

5 } Q#

1 with_computed (OR a b) $

2 \t -> OR t c Quipper

Figure 3.1: Benefit of Silq’s automatic uncomputation.

main contributions The main contributions of this chapter are:

• Silq1, a high-level quantum language enabling safe, automatic uncom-
putation (§3.3).

• A full formalization of Silq’s key language fragment Silq-Core (§3.4),
including its type system (§3.5) and semantics (§3.6), whose physical-
ity relies on its type system.

• An implemented type-checker2, proof-of-concept simulator2, and de-
velopment environment3 for Silq.

• An evaluation, showing that Silq code is more concise and readable
than code in existing languages (§3.7).

3.2 benefit of automatic uncomputation

Next, we show the benefit of automatic uncomputation compared to ex-
plicit uncomputation in languages that preceded Silq, including Q# [22],
Quipper [23], and QWire [54].

explicit uncomputation Fig. 3.1 shows code snippets which com-
pute the OR of three qubits. This is easily expressed in Silq (top left), which
leverages automatic uncomputation for a||b. In contrast, Q# (right) requires
(i) allocating a new qubit t initialized to 0 in Line 1, (ii) using OR4 to store
the result of a||b in t in Line 2, (iii) using OR to store the result of t||c in
the pre-allocated qubit d in Line 3, and (iv) uncomputing t by reversing
the operation from Line 2 in Line 4. Here, Adjoint OR is the inverse of OR
and thus resets t to its original value of 0. Hence, the implicit measurement

1 http://silq.ethz.ch/

2 https://github.com/eth-sri/silq/tree/pldi2020

3 https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq

4 Since Q# does not support OR natively, we would need to implement it too.

http://silq.ethz.ch/
https://github.com/eth-sri/silq/tree/pldi2020
https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq
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1 cTri := 0:int[rrbar];

2 for j in [0..rrbar) {

3 for k in [j+1..rrbar) {

4 if ee[tau[j]][tau[k]]

5 && eew[j] && eew[k]{

6 cTri += 1;

7 } } } Silq

cTri <- foldM (\cTri j -> do

let tau_j = tau ! j

eed <- qinit (intMap_replicate rr False)

-- computing eed = ee[tau[j]]

(taub,ee,eed) <- a11_FetchE tau_j ee eed

cTri <- foldM (\cTri k -> do

let tau_k = tau ! k

eedd_k <- qinit False

-- eedd_k=eed[tau[k]]=ee[tau[j]][tau[k]]

(tauc, eed, eedd_k) <- qram_fetch qram tau_k eed

eedd_k

-- using eedd_k as ctrl

cTri <- increment cTri ‘controlled‘ eedd_k .&&. (eew

! j) .&&. (eew ! k)

-- uncomputing eedd_k

(tauc, eed, eedd_k) <- qram_fetch qram tau_k eed

eedd_k

qterm False eedd_k

return cTri)

cTri [j+1..rrbar-1]

-- uncomputing eed

(taub,ee,eed) <- a11_FetchE tau_j ee eed

qterm (intMap_replicate rr False) eed

return cTri)

cTri [0..rrbar-1]

Quipper

index : ∏(n:Nat,i:Nat) . CIRC(t[n] ,t[n]⊗ t) = ...

qindex : ∏(n:Nat,m:Nat) . CIRC(t[n]⊗qubit[m],t[n]⊗qubit[m]⊗t) = ...

controlledInc : ∏(n:Nat). CIRC(qubit[n]⊗qubit,qubit[n]⊗qubit) = ...

EvalCondition : ∏(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar],...⊗qubit
) = box(ee,tau,eew) =>

(tau,tauj) <- unbox (index rrbar j) tau; -- tauj=tau[j]

(tau,tauk) <- unbox (index rrbar k) tau; -- tauk=tau[k]

(ee, tauj, eed) <- unbox (qindex rrbar r) ee tauj; -- eed=ee[tauj]

(eed,tauk,eedd_k) <- unbox (qindex rrbar r) eed tauk; -- eedk=eed[tauk]

(eew,eewj) <- unbox (index rrbar j) eew; -- eewj=eew[j]

(eew,eewk) <- unbox (index rrbar k) eew; -- eewk=eew[k]

(eedd_k,eewj,eewk,c) <- unbox and eedd_k eewj eewk; -- condition

output (ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) --output

LoopBody : ∏(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar],
qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar]

) = box (ee,tau,eew,cTri) =>

(ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) <- unbox (EvalCondition r rrbar j k) ee tau eew;

-- evaluate condition

(cTri,c) <- unbox (controlledInc rrbar) cTri c; -- controlled increment

(ee,tau,eew) <- unbox (reverseIsometric EvalCondition r rrbar j k) ee tau eew tauj tauk eed

eedd_k eewj eewk c -- uncompute

output (ee,tau,eew,cTri) -- output
QWire, 4–6

Figure 3.2: Comparing Silq to Quipper and QWire code, more readable version
in App. A.1.

induced by removing t from consideration in Line 5 always measures the
value 0, which has no side-effects (see Chapter 2). We note that we cannot
allocate t within OR, as Q# enforces that qubits must be deallocated in the
function that allocates them. 5 Overall, handling uncomputation in Q# is
more tedious but also more error-prone, as erroneous uncomputation can
trigger implicit measurements.

Explicit uncomputation is even more tedious in Fig. 3.2, which shows
part of a triangle finding algorithm originally encoded6 by the authors
of Quipper [23] (middle). The condition is easily expressed in Silq (left,
Lines 4–5) using nested expressions. In contrast, the equivalent Quipper
code is obfuscated by uncomputation of sub-expressions.

convenience functions As uncomputation is a common task, vari-
ous quantum languages try to reduce its boiler-plate code by introducing
convenience functions such as ApplyWith in Q#. Fig. 3.1 shows a Quipper
implementation using a similar function with_computed, which (i) evalu-
ates a||b in Line 1, (ii) uses the result t to compute t||c in Line 2, and
(iii) implicitly uncomputes t. However, this still requires explicitly trigger-
ing uncomputation using with_computed and introducing a name t for the
result of a||b. In particular, this does not enable a natural nesting of expres-
sions, as the sub-expression OR a b needs to be managed by with_computed.
Moreover, with_computed cannot ensure safety: we can make the uncom-
putation unsafe by flipping the bit stored in b between Line 1 and Line 2,
triggering an implicit measurement.

5 The Quantum memory management of Q# is explained on https://learn.microsoft.

com/en-us/azure/quantum/user-guide/language/statements/quantummemorymanagement#

quantum-memory-management, accessed on May 2, 2023.
6 Taken from: https://www.mathstat.dal.ca/~selinger/quipper/doc/src/Quipper/Algorithms/

TF/QWTFP.html#line-494

https://learn.microsoft.com/en-us/azure/quantum/user-guide/language/statements/quantummemorymanagement#quantum-memory-management
https://learn.microsoft.com/en-us/azure/quantum/user-guide/language/statements/quantummemorymanagement#quantum-memory-management
https://learn.microsoft.com/en-us/azure/quantum/user-guide/language/statements/quantummemorymanagement#quantum-memory-management
https://www.mathstat.dal.ca/~selinger/quipper/doc/src/Quipper/Algorithms/TF/QWTFP.html#line-494
https://www.mathstat.dal.ca/~selinger/quipper/doc/src/Quipper/Algorithms/TF/QWTFP.html#line-494
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non-linear type systems Most quantum languages cannot ensure
that all temporary values are safely uncomputed for a fundamental reason:
they support reference sharing in a non-linear type system and hence
cannot statically detect when values are removed from consideration (which
happens when the last reference to the value goes out of scope). Besides
Quipper, which we discuss in more detail, there are many other works of
this flavor, including LIQuiD [55], ProjectQ [56], Cirq [57], and QisKit [39].

linear type systems Other languages, like QPL [48] and QWire, in-
troduce a linear type system to prevent accidentally removing values from
consideration, which corresponds to not using a value. However, linear
type systems still require explicit uncomputation that ends in assertive ter-
mination [23]: the programmer must (manually) assert that uncomputation
correctly resets temporary values to 0. ReQWire [58] introduced syntactic
conditions sufficient to verify assertive termination. However, ReQWire can
only verify explicitly provided uncomputation (except for purely classical
oracle functions, see below), and cannot statically reason across function
boundaries as unlike Silq, its type system does not address uncomputation.

Further, linear type systems introduce significant syntactic overhead for
constant (i.e., read-only) variables where enforcing linearity is not necessary.
Fig. 3.2 demonstrates this in QWire code (right), where encoding only
Lines 4–6 from Silq (left) requires 19 lines of code, even when we generously
assume built-in primitives and omit parts of the required type annotations.
We note that while QWire [54] does not explicitly claim to be high-level,
we are not aware of more high-level quantum languages that achieve a
level of safety similar to QWire — even though it cannot prevent implicit
measurement caused by incorrect manual uncomputation.

In contrast, Silq uses a linear type system to detect values removed
from consideration (which are automatically uncomputed), but reduces
programming overhead by treating constant variables non-linearly. This
more liberal treatment of constant variables is possible because they can be
safely duplicated and uncomputed whenever convenient.

bennett’s construction Various quantum languages, including
Quipper, ReVerC [59], and ReQWire, support Bennett’s construction [60],
which can lift purely classical (oracle) functions to quantum inputs, au-
tomatically uncomputing all temporary values computed in the function.
Concretely, this standard approach (i) lifts all primitive classical operations
in the oracle function to quantum operations, (ii) evaluates the function
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while preserving all temporary values, (iii) uses the function’s result, and
(iv) uncomputes temporary values by reversing step (ii). Bennett’s con-
struction is also supported by Qumquat7, which skips step (i) above by
annotating quantum functions as @qq.garbage and calling them with nota-
tion analogous to Quipper’s with_computed.

However, Bennett’s construction is unsafe when the oracle function con-
tains quantum operations: as we demonstrate in App. A.3, it can fail to drop
temporary values without side-effects. In contrast, Silq safely uncomputes
temporary values in functions containing quantum operations.

Importantly, Silq’s workflow when defining oracle functions is different
from existing languages: while the latter typically require programmers to
define a purely classical oracle function and then apply Bennett’s construc-
tion, Silq programmers can define oracle functions directly using primitive
quantum operations, implicitly relying on Silq’s automatic uncomputation.

summary In contrast to previous languages, Silq (i) enables intuitive yet
physical semantics and (ii) statically prevents errors that are not detected in
existing languages, while (iii) avoiding the notational overhead associated
with languages that achieve (less) static safety (e.g., QWire).

3.3 overview of silq

We now illustrate Silq on Grover’s algorithm, a widely known quantum
search algorithm [61], [47, §6.1]. It can be applied to any NP problem, where
finding the solution may be hard, but verification of a solution is easy.

Fig. 3.3 shows a Silq implementation of grover. Its input is an oracle
function f from (quantum) unsigned integers represented with n qubits to
(quantum) booleans, mapping all but one input w⋆ to 0. Here, Silq uses
the generic parameter n to parametrize the input type uint[n] of f. Then,
grover outputs an n-bit unsigned integer w which is equal to w⋆ with high
probability.

3.3.1 Silq Annotations

classical types The first argument of grover is a generic parameter
n, used to parametrize f. It has type !N, which indicates classical natural
numbers of arbitrary size. Here, annotation ! indicates n is classically known,
i.e., it is in a basis state (not in superposition), and we can manipulate it

7 Available at https://github.com/patrickrall/Qumquat, commit 27d6794

https://github.com/patrickrall/Qumquat
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Figure 3.3: Grover’s algorithm in Silq. We provide an unannotated version, in-
cluding groverDiff, in App. A.2. The top-right box shows the type
of all used functions. The shown sums range over all n-bit unsigned
integers {0, . . . , 2n − 1}.

classically. For example, 0 has type !B. In contrast, H(0) applies Hadamard
H (defined shortly) to 0 and yields 1√

2

(
|0⟩+ |1⟩

)
. Thus, H(0) is of type B

and not of (classical) type !B.
In general, we can liberally use classical variables like normal variables on

a classical computer: we can use them multiple times, or drop them. We also
annotate parameter f as classical, writing the annotation as τ!→τ′ instead
of !τ → τ′ to avoid the ambiguity between !(τ → τ′) and (!τ)→ τ′. 8

qfree functions The type of f is annotated as qfree, which indicates
the semantics of f can be described classically: we can capture the semantics
of a qfree function g as a function g : S→ S′ for ground sets S and S′. Note
that since S′ is a ground set, g can never output superpositions. Then, g
acting on ∑v∈S γv |v⟩ yields ∑v∈S γv |g(v)⟩, where for simplicity ∑v∈S γv |v⟩
does not consider other qubits untouched by g.

For example, the qfree function X flips the bit of its input, mapping
∑1

v=0 γv |v⟩ to ∑1
v=0 γv |X(v)⟩, for X(v) = 1− v. In contrast, the Hadamard

transform H maps ∑1
v=0 γv |v⟩ to ∑1

v=0 γv
1√
2

(
|0⟩+ (−1)v |1⟩

)
. As this se-

mantics cannot be described by a function on ground sets, H is not qfree.

8 Annotating functions as classical indicates that their function bodies are classically known (at
runtime). We note that classical functions can still perform quantum operations: for example,

H : B! mfree−−−→ B is classical, meaning that the quantum operations performed by H are classically
known.
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constant parameters Note that X (introduced above) transforms its
input — it does not preserve it. In contrast, the parameter of f is annotated
as const, indicating f preserves its input, i.e., treats it as a read-only control.
Thus, running f on ∑v∈S γv |v⟩ yields ∑v∈S γv |v⟩ ⊗ φv, where φv follows
the semantics of f. Because f is also qfree, |v⟩ ⊗ φv = | f (v)⟩ for some
f : S→ S× S′. Combining both, we conclude that f (v) = (v, f̃ (v)) for some
function f̃ : S→ S′.

An example instantiation of f is NOT, which maps γ0|0⟩ + γ1|1⟩ to
γ0|0, 1⟩ + γ1|1, 0⟩. Here, ÑOT: {0, 1} → {0, 1} maps v 7→ 1 − v while
NOT: {0, 1} → {0, 1} × {0, 1} maps v 7→ (v, 1− v) = (v, ÑOT(v)).

Function parameters not annotated as const are not accessible after
calling the function — the function consumes them. For example, groverDiff
consumes its argument (see top-right box in Fig. 3.3). Hence, the call in
Line 10 consumes cand, transforms it, and writes the result into a new
variable with the same name cand. Similarly, measure in Line 12 consumes
cand by measuring it.

lifted functions We introduce the term lifted to describe qfree

functions with exclusively const parameters, as such functions are cru-
cial for uncomputation. In particular, we could write the type of f as

uint[n] lifted−−−→ B.

3.3.2 Silq Semantics

Next, we discuss the semantics of Silq on grover.

input state In Fig. 3.3, the state of the system after Line 1 is ψ1,

where the state of f:uint[n]!
qfree−−−→ B is described in terms of a function

f̃ : {0, . . . , 2n − 1} → {0, 1}. We note that later, our formal semantics repre-
sents the state of functions as Silq-Core expressions (§3.6). However, as the
semantics of f can be captured by f̃ , this distinction is irrelevant here. Next,
Line 2 initializes the classical variable nIterations, yielding ψ2.

superpositions Lines 3–4 result in state ψ4, where cand holds the equal
superposition of all n-bit unsigned integers. To this end, Line 4 updates the
kth bit of cand by applying the Hadamard transform H to it.
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loops The loop in Line 6 runs nIterations times. Each loop iteration
increases the coefficient of |w⋆⟩, thus increasing the probability of measuring
w⋆ in Line 12. We now discuss the first loop iteration (k = 0). It starts from
state ψ

(0)
6 which introduces variable k. For convenience of presentation, ψ

(0)
6

splits the superposition into w⋆ and all other values.

conditionals Intuitively, Lines 7–9 flip the sign of those coefficients
for which f(cand) returns true. To this end, we first evaluate f(cand) and
place the result in a temporary variable f(cand), yielding state ψ

(0)
7 . Here

and in the following, we write e for a temporary variable that contains the
result of evaluating e. Then, we determine those summands of ψ

(0)
7 where

f(cand) is true (marked as “then branch” in Fig. 3.3), and run phase(π) on

them. This yields ψ
(0)
8 , as phase(π) flips the sign of coefficients. Lastly, we

drop f(cand) from the state, yielding ψ
(0)
9 .

grover’s diffusion operator Completing the explanations of our
example, Line 10 applies Grover’s diffusion operator to cand. Its implemen-
tation consists of 6 lines of code (see App. A.2). It increases the weight of
solution w⋆, obtaining ∥γ+

w⋆∥ > ∥ 1√
2n ∥, and decreases the weight of non-

solutions v ̸= w⋆, obtaining ∥γ−v ∥ < ∥ 1√
2n ∥. After one loop iteration, this

results in state ψ
(0)
10 . Repeated iterations of the loop in Lines 6–11 further

increase the coefficient of w⋆, until it is approximately 1. Thus, measuring
cand in Line 12 returns w⋆ with high probability.

3.3.3 Uncomputation

While dropping the temporary value f(cand) from ψ
(0)
8 is intuitive, achiev-

ing this physically requires uncomputation.
Without uncomputation, simply removing f(cand) from consideration in

Line 9 would induce an implicit measurement. 9 Concretely, measuring and
dropping f(cand) would collapse ψ

(0)
8 to one of the following two states

(ignoring f, n, and k):

ψ
(0,0)
8 = ∑

v ̸=w⋆

1√
2n |v⟩cand or ψ

(0,1)
8 = − 1√

2n |w⋆⟩cand .

9 Formally, this corresponds to taking the partial trace over f(cand).



22 silq : a high-level quantum language

Figure 3.4: Uncomputation of f(cand) is safe. Orange boxes show the corre-
spondence to Fig. 3.3 where (−1)[v=w⋆ ] equals −1 if v = w⋆ and 1
otherwise.

In this case, as the probability of obtaining ψ
(0,1)
8 is only 1

2n , grover re-
turns the correct result w⋆ with probability 1

2n , i.e., it degrades to random
guessing.

Without correct intervention from the programmer, all quantum lan-
guages before Silq would induce an implicit measurement in Line 9, or
reject grover. This is unfortunate as grover cleanly and concisely captures
the programmer’s intent. In contrast, Silq achieves the intuitive semantics
of dropping f(cand) from ψ

(0)
8 , using uncomputation. In general, uncom-

puting x is possible whenever in every summand of the state, the value
of x can be reconstructed (i.e., determined) from all other values in this
summand. Then, reversing the operations of this reconstruction removes x
from the state.

automatic uncomputation To ensure that uncomputing f(cand) is
possible, the type system of Silq ensures that f(cand) is lifted, i.e., (i) f is
qfree and (ii) cand is const: it is preserved until uncomputation in Line 9.

Fig. 3.4 illustrates why this is sufficient. Evaluating f in Line 7 adds a
temporary variable f(cand) to the state, whose value can be computed from
cand using f̃ (as f is qfree and cand is const). Then, Line 8 transforms the
remainder ψ̃v of the state to χv, f̃ (v). The exact effect of Line 8 on the state is
irrelevant for uncomputation, as long as it preserves cand, ensuring we can
still reconstruct f(cand) from cand in ψ

(0)
8 . Thus, reversing the operations of

this reconstruction (i.e., reversing f) uncomputes f(cand) and yields ψ
(0)
9 .
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def useConsumed(x:B){

y := H(x); // consumes x

return
:
(x
:
,y);

} // undefined identifier x

def useConsumedFixed(const x:B){

// ψ1 = ∑1
v=0 γv |v⟩x

// ψ2 = ∑1
v=0 γv |v⟩x⊗ |v⟩x

y := H(x);

// ψ3 = ∑1
v=0 γv |v⟩x⊗ 1√

2

(
|0⟩y + (−1)v |1⟩y

)
return (x,y);

}

def discard[n:!N](
:
x:
:::
uint

:
[
:
n
:
]){

y := x % 2; // ’%’ supports quantum inputs

return y;

} // parameter ’x’ is not consumed (but caller expects it to be consumed)

def nonQfree(const x:B,y:B){

if
:
H(
:
x
:
) { y := X(y); }

return y;

} // non-lifted quantum expression must be consumed

def nonConst(c:B){

if
:
X(
:
c
:
) { phase(π); } // X consumes c

} // non-lifted quantum expression must be consumed

def nonConstFixed(const c:B){

// ψ1 = ∑1
v=0 γv |v⟩c

if X(c) { phase(π); }

// ψ2 = ∑1
v=0(−1)1−vγv |v⟩c

}

def condMeas(const c:B,x:B){

if c { x :=
:::::
measure

:
(
:
x); }

} // cannot call function

// ’measure[B]’ in ’mfree’ context

def revMeas(){

return
:::::
reverse

:
(
:::::
measure

:
);

} // reversed function must be mfree

Figure 3.5: Examples of invalid Silq programs, their error messages, and possible
fixes (where applicable).
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3.3.4 Preventing Errors: Rejecting Invalid Programs

Fig. 3.5 demonstrates how the type system of Silq rejects invalid programs.
We note that the presented examples are not exhaustive — we discuss
additional challenges in §3.5.

error : using consumed variables In useConsumed, H consumes x

and stores its result in y. Then, it accesses x, which leads to a type error as
x is no longer available.

Assuming we want to preserve x, we can fix this code by marking x as
const (see useConsumedFixed). Then, instead of consuming x in the call to H

(which is disallowed as x must be preserved), Silq implicitly duplicates x,
resulting in ψ2, and then only consumes the duplicate x.

implicit duplication It is always safe to implicitly duplicate constant
variables, as such duplicates can be uncomputed (in useConsumedFixed,
uncomputation is not necessary as the duplicate is consumed). In contrast,
it is typically impossible to uncompute duplicates of consumed quantum
variables, which may not be available for uncomputation later. Hence, Silq
treats constant variables non-linearly (they can be duplicated or ignored),
but treats non-constant variables linearly (they must be used exactly once).

We note that duplication ∑v γv |v⟩ 7→ ∑v γv |v⟩ |v⟩ is physical and can
be implemented using CNOT, unlike the unphysical cloning ∑v γv |v⟩ 7→
(∑v γv |v⟩)⊗ (∑v γv |v⟩) = ∑v,w γvγw |v⟩ |w⟩ discussed in §2.2.

error : discarding variables Function discard does not annotate x

as const, meaning that its callers expect it to consume x. However, the body
of discard does not consume x, hence any caller of discard would silently
discard x, falsely assuming that discard would consume x. As the callee
does not know if x can be uncomputed, Silq rejects this code. A possible fix
is annotating x as const, which would be in line with preserving x in the
function body.

error : uncomputation without qfree Silq rejects the function
nonQfree, as H(x) is not lifted (since H is not qfree), and hence its result
cannot be automatically uncomputed. Indeed, automatic uncomputation of
H(x) is not possible in this case, intuitively because H introduces additional
entanglement preventing uncomputation in the end. We provide a more
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def f(x:B){ // x is not const

if g(x){ // x is temporarily marked as const

x:=H(
:
x); // cannot consume const variable x

}

// x is no longer const

return x;

}

def g(const x:B)qfree{

return x;

}

Figure 3.6: Temporarily marking variables as constant.

detailed mathematical derivation of this subtle fact in App. A.3. To prevent
this case, Silq only supports uncomputing qfree expressions.

We note that because x is const in nonQfree, H does not consume it, but a
duplicate of x.

error : uncomputation without const Silq rejects the function
nonConst, as X(c) is not lifted (since it consumes c). Indeed, automatic
uncomputation is not possible in this case, as the original value of c is
not available for uncomputation of X(c). To get this code to type-check,
we can mark c as const (see nonConstFixed) to clarify that c should re-
main in the context. Then, Silq automatically duplicates c before calling
X, which thus consumes a duplicate of c, leaving the original c available
for later uncomputation. Note that X(c) is automatically uncomputed in
nonConstFixed.

temporary constants In contrast to nonConst, which consumes c,
grover does not consume cand in Line 7 (Fig. 3.3), even though cand is
not annotated as const either. This is because Silq temporarily annotates
cand as const in grover. In general, Silq allows temporarily annotating
some variables as const for the duration of a statement or a consumed
subexpression. Our implementation determines which variables to annotate
as const as follows: If a variable is encountered in a position where it is not
expected to be const (as in X(c)), it is consumed, and therefore any further
occurrence of that variable will result in an error (whether const or not). If
a variable is encountered in a position where it is expected to be const (as
in f(cand)), we temporarily mark it as const until the innermost enclosing



26 silq : a high-level quantum language

statement or consumed subexpression finishes type checking. Fig. 3.6 shows
such an example, where x is temporarily marked as const.

mfree Silq’s main advantage over existing quantum languages is its safe,
automatic uncomputation, enabled by its novel annotations const and qfree.
To ensure all Silq programs are physical (i.e., can be physically realized on a
QRAM), we leverage one additional annotation mfree, indicating a function
does not perform measurements. This allows us to detect (and thus prevent)
attempts to reverse measurements and to apply measurements conditioned
on quantum values.

error : conditional measurement Silq rejects condMeas, as it ap-
plies a measurement conditioned on quantum variable c. This is not real-
izable on a QRAM, as the then-branch requires a physical action and we
cannot determine whether or not we need to carry out the physical action
without measuring the condition. However, changing the type of c to !B
would fix this error, as conditional measurement is possible if c is classical.
We note that Silq could also detect this error if measurement was hidden in
a function passed to condMeas, as this function would not be mfree. Here, it
is crucial that Silq disallows implicit measurement — otherwise, it would
be hard to determine which functions are mfree.

reverse Silq additionally also supports reversing functions, where ex-
pression reverse( f ) returns the inverse of function f . In general, all quan-
tum operations except measurement describe linear isometries (see Chap-
ter 2) and are thus injective. Hence, if f is also surjective (and thus bijective),
we can reverse it, meaning reverse( f ) is well-defined on all its inputs.

reverse returns unsafe functions In case f is not surjective,
reverse( f ) is only well-defined on the range of f . Hence, it is the program-
mer’s responsibility to ensure reversed functions never operate on invalid
inputs.

For example, y:=dup(x) duplicates x, mapping ∑v γv |v⟩x to ∑v γv |v⟩x |v⟩y.
Thus, reverse(dup)(x,y) operates on states ∑v γv |v⟩x |v⟩y⊗ ψ̃v, for which
it yields ∑v γv |v⟩x⊗ ψ̃v, uncomputing y. On other states, reverse(dup) is
undefined. As reverse(dup) is generally useful for (unsafe) uncomputation,
we introduce its (unsafe) shorthand forget.

When realizing a reversed function on a QRAM, the resulting program
is defined on all inputs but only behaves correctly on valid inputs. For



3.4 the silq-core language fragment 27

example, we can implement reverse(dup)(x,y) by if x { y:=X(y); } and
then discarding y, which has unintended side-effects (due to implicit mea-
surement) unless originally x==y.

error : reversing measurement Silq rejects revMeas as it tries to
reverse a measurement, which is physically impossible according to the laws
of quantum mechanics. Thus, reverse only operates on mfree functions.

discussion : annotations as negated effects We can view anno-
tations mfree and qfree as indicating the absence of effects: mfree indicates
a function does not perform a measurement, while qfree indicates the
function does not introduce quantum superposition. As we will see later,
all qfree functions in Silq are also mfree.

3.4 the silq-core language fragment

In this section, we present the language fragment Silq-Core of Silq, including
syntax (§3.4.1) and types (§3.4.2).

Silq-Core is selected to contain Silq’s key features, in particular all its
annotations. Compared to Silq, Silq-Core omits features (such as the imper-
ative fragment and dependent types) that distract from its key insights. We
note that in our implementation, we type-check and simulate full Silq.
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Figure 3.7: Syntax, types, and annotations.

3.4.1 Syntax of Silq-Core

Fig. 3.7 summarizes the syntax of Silq-Core.

expressions Silq-Core expressions include constants and built-in func-
tions (c), variables (x), measurement (measure), and reversing quantum op-
erations (reverse). Further, its if-then-else construct if e then e1 else e2
is syntactically standard, but supports both classical (!B) and quantum (B)
condition e. Function application e′ (⃗e) explicitly takes multiple arguments.
Likewise, lambda abstraction λ(β⃗x⃗ : τ⃗).e describes a function with multiple
parameters {xi}n

i=1 of types {τi}n
i=1, annotated by {β}n

i=1, as discussed in
§3.4.2 (next).

We note that Silq-Core can support tupling as a built-in function c.

universality Assuming built-in functions c include X (enabling CNOT

by if x {y:=X(y)}) and arbitrary operations on single qubits (e.g., enabled
by rotX, rotY, and rotZ), Silq-Core is universal for quantum computation, i.e.,
it can approximate any quantum operation to arbitrary accuracy [47].

3.4.2 Types and Annotations of Silq-Core

Further, Fig. 3.7 introduces the types τ of Silq-Core.

primitive types Silq-Core types include standard primitive types, in-
cluding 1, the singleton type that only contains the element “()”, and B, the
Boolean type describing a single qubit. We note that it is straightforward to
add other primitive types like integers or floats to Silq-Core.

products and functions Silq-Core also supports products, where
we often write τ1× · · · × τn for×n

k=1 τk, and functions, where ! emphasizes
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Figure 3.8: Typing judgments.

that functions are classically known (i.e., we do not discuss superpositions of
functions). Function parameters and functions themselves may be annotated
by βi and α, respectively, as discussed shortly. As usual, × binds stronger
than→.

Finally, Silq-Core supports annotating types as classical.

annotations Fig. 3.7 also lists all Silq-Core annotations.
Our annotations express restrictions on the computations of Silq-Core ex-

pressions and functions, ensuring the physicality of its programs. For exam-
ple, for quantum variable x : B, the expression if x then f (0) else f (1) is
only physical if f is mfree (note that x does not appear in the two branches).

3.5 typing rules

In this section, we introduce the typing rules of Silq. Most importantly, they
ensure that every sub-expression that is not consumed can be uncomputed,
by ensuring these sub-expressions are lifted.

format of typing rules In Fig. 3.8, Γ
α

e : τ indicates an expression e
has type τ under context Γ, and the evaluation of e is α ⊆ {qfree, mfree}. For

example, x : B
α
H(x) : B for α = {mfree}, where mfree ∈ α since evaluating

H(x) does not induce a measurement, and qfree /∈ α since the effect of
evaluating H(x) cannot be described classically. We note that in general,

x : τ
α

f (x) : τ′ if f has type τ! α−→τ′, i.e., the annotation of f determines the

annotation of the turnstile .

A context Γ is a multiset {βixi : τi}i∈I that assigns a type τi to each
variable xi, where I is a finite index set, and xi may be annotated by
const ∈ βi, indicating that it will not be consumed during evaluation of e.
As a shorthand, we often write Γ = β⃗x⃗ : τ⃗.

We write Γ, βx : τ for Γ⊎{βx : τ}, where ⊎ denotes the union of multisets.
Analogously Γ, Γ′ denotes Γ ⊎ Γ′. In general, we require that types and
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βx : τ
mfree,qfree

x : τ

var
Γ

α
e : τ′

Γ, x : !τ
α

e : τ′
!W

Γ
α

e : τ′

Γ, const x : τ
α

e : τ′
W

Γ, x : !τ, x : !τ
α

e : τ′

Γ, x : !τ
α

e : τ′
!C

Γ, const x : τ, const x : τ
α

e : τ′

Γ, const x : τ
α

e : τ′
C

Figure 3.9: Typing variables, including weakening and contraction.

annotations of contexts can never be conflicting, i.e., βx : τ ∈ Γ and β′x : τ′ ∈
Γ implies β = β′ and τ = τ′.

3.5.1 Typing Constants and Variables

If c is a constant of type τ, its typing judgement is given by ∅
mfree,qfree

c : τ.

For example, ∅
mfree,qfree

H : B! mfree−−−→B. Here, we annotate the turnstile as
qfree, because evaluating expression H maps the empty state |⟩ to |⟩ ⊗ |H⟩H,

which can be described classically by f (|⟩) = |H⟩H. In contrast, the function
type of H is not qfree, as evaluating H can introduce quantum superposition.
We provide the types of other selected built-in functions in App. A.4.2.

Likewise, the typing judgement of variables carries annotations qfree and
mfree (rule var in Fig. 3.9), as all constants c and variables x in Silq-Core can
be evaluated without measurement, and their semantics can be described
classically. Further, both rules assume an empty context (for constants c) or
a context consisting only of the evaluated variable (for variables), preventing
ignoring variables from the context. To drop constant and classical variables
from the context, we introduce an explicit weakening rule, discussed next.

weakening and contraction Fig. 3.9 further shows weakening
and contraction typing rules for classical and constant variables. These
rules allow us to drop classical and constant variables from the context
(weakening rules !W and W) and duplicate them (contraction rules !C and
C). For weakening, the interpretation of “dropping variable x” arises from
reading the rule bottom-up, which is also the way our semantics operates
(analogously for contraction).

We note that variables with classical type can be used more liberally
than const variables (e.g., as if-conditions). Hence, annotating a classical
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const ∈ βi =⇒ qfree ∈ αi ∧ Γi = const x⃗ : τ⃗′′ (3.1)

qfree ∈ α′′ ⇐⇒ qfree ∈
⋂

i

αi ∩ α′ ∩ α′func (3.2)

mfree ∈ α′′ ⇐⇒ mfree ∈
⋂

i

αi ∩ α′ ∩ α′func (3.3)

Figure 3.10: Typing rule and constraints for function calls.

variable as const has no effect. We annotate variables (not types) as const

as our syntax does not allow partially consuming variables.

3.5.2 Measurement

We type measure as ∅
mfree,qfree

measure : τ ! −→ !τ, where the lack of
const annotation for τ indicates measure consumes its argument, and !τ
indicates the result is classical. We annotate the judgement itself as mfree,
as evaluating the expression measure simply yields the function measure,
without inducing a measurement. In contrast, the function type of measure
itself is not mfree (indicated by ! −→), as evaluating the function measure

on an argument induces a measurement. Thus, measure(0) is not mfree, as
evaluating it induces a measurement: ∅ ⊢ measure(0) : !B.

3.5.3 Function Calls

Fig. 3.10 shows the typing rule for function calls e′(e1, . . . , en). Ignoring
annotations, the rule follows the standard pattern, which we provide for
convenience in App. A.4.1 (Fig. A.5).

We now discuss the annotation Constraints (3.1)–(3.3). Constraint (3.1)
ensures that if a function leaves its argument constant (const ∈ βi), ei is
lifted, i.e., qfree and depending only on const variables. In turn, this
ensures that we can automatically uncompute ei when it is no longer
needed. We note that non-constant arguments (const /∈ βi) do not need to
be uncomputed, as they are no longer available after being consumed within
the call. To illustrate that Constraint (3.1) is critical, consider a function
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Figure 3.11: Typing lambda abstraction.

f : const B×B→ B, and a call f (x + 1, H(x)) with non-constant variable x
in context Γ1. This call must be rejected by Silq-Core as there is no way to
uncompute x + 1 after the call to f , since H consumes x. Indeed, since x is
not const in Γ1 even though const ∈ β1, (3.1) does not hold.

Constraint (3.2) ensures an expression is only qfree if all its compo-
nents are qfree, and if the evaluated function only uses qfree operations.
Constraint (3.3) is analogous for mfree.

We note that Fig. 3.10 does not allow temporarily marking variables as
const, as discussed in §3.3.4. To allow this, we can replace the top-left Γi
in Fig. 3.10 by Γi, ⋆i, where ⋆i = const Γi+1, . . . , const Γn if const /∈ βi, and
⋆i = ∅ otherwise. This would allow us to temporarily treat variables as
const, if they appear in a consumed expression ei and they are consumed
in a later expression ej for j > i. Fig. 3.10 omits this for conciseness.

3.5.4 Lambda Abstraction

Fig. 3.11 shows the rule for lambda abstraction. Its basic pattern without
annotations is again standard (App. A.4.1) . In terms of annotations, the
rule enforces multiple constraints. First, it ensures that the annotation of
the abstracted function follows the annotation α of the original typing
judgment. Second, we tag the resulting type judgment as mfree and qfree,
since function abstraction requires neither measurement nor quantum
operations. Third, the rule allows capturing classical variables (yi has type
!τi), but not quantum variables. This ensures that all functions in Silq-Core
are classically known, i.e., can be described by a classical state.

3.5.5 Reverse

Fig. 3.12 shows the type of reverse. We only allow reversing functions
without classical components in input or output types (indicated by ),
as reconstructing classical components of inputs is typically impossible.
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Figure 3.12: Type of reverse.

Concretely, types without classical components are (i) 1, (ii) B, and (iii) prod-
ucts of types without classical components. In particular, this rules out all
classical types !τ, function types, and products of types with classical
components.

The input to reverse, i.e., the function f to be reversed must be measure-
free, because measurement is irreversible. Further, the function f may or
may not be qfree (as indicated by a callout). Then, the type rule for reverse

splits the input types of f into constant and non-constant ones. The depicted
rule assumes the first parameters of f are annotated as constant, but we can
easily generalize this rule to other orders. Based on this separation, reverse
returns a function which starts from the constant input types and the output
types of f , and returns the non-constant input types. The returned function
reverse( f ) is measure-free, and qfree if f is qfree.

As discussed in §3.3.4, reverse returns unsafe functions, and it is the
programmer’s responsibility to ensure reversed functions never operate on
invalid inputs.

3.5.6 Control Flow

Even though if e then e1 else e2 is syntactically standard, it supports
both classical and quantum conditions e. A classical condition induces
classical control flow, while a non-classical (i.e., quantum) condition induces
quantum control flow. In Fig. 3.13, we provide the typing rules for both
cases, which follow the standard basic patterns when ignoring annotations
(App. A.4.1).

quantum control flow Constraint (3.4) ensures that e is lifted and
can thus be uncomputed after the conditional, analogously to uncomput-
ing constant arguments in Constraint (3.1). Constraint (3.5) requires both
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qfree ∈ αc ∧ Γc = const x⃗ : τ⃗′ (3.4)

mfree ∈ αc ∩ α1 ∩ α2 ∩ α (3.5)

qfree ∈ α ⇐⇒ qfree ∈ αc ∩ α1 ∩ α2 (3.6)

mfree ∈ α ⇐⇒ mfree ∈ αc ∩ α1 ∩ α2 (3.7)

qfree ∈ α ⇐⇒ qfree ∈ αc ∩ α1 ∩ α2 (3.8)

Figure 3.13: Typing quantum (top) and classical (bottom) control flow.

branches to be mfree, which is important because we cannot condition a
measurement on a quantum value (this would violate physicality). Further,
it also requires the condition to be mfree (which is already implicitly en-
sured by Constraint (3.4) as all qfree expressions are also mfree), meaning
the whole expression is mfree. Constraint (3.6) ensures that the resulting
typing judgment gets tagged as qfree if all subexpressions are qfree. Finally,
the rule does not allow the return type τ to contain classical components (in-
dicated by ), as otherwise we could introduce unexpected superpositions
of classical values.

classical control flow Classical control flow requires the condition
to be classical, in addition to our usual restrictions on annotations. Con-
cretely, Constraints (3.7) and (3.8) propagate mfree and qfree annotations.

3.6 semantics of silq-core

In this section, we discuss the operational semantics of Silq-Core. We use
big-step semantics, as this is more convenient to define reverse and control
flow.
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J1Kc := {()}
JBKc := {()}

s
n×

k=1
τk

{c

:=
n×

k=1
JτkK

c

s
n×

k=1
βkτk ! α−→ τ′

{c

:=
{

e, σ
∣∣∣ y⃗ : !⃗τ′′

α′
e : ×n

k=1 βkτk ! α−→ τ′,
σ ∈ J⃗y : !⃗τ′′Kc

}
J!τKc := JτKc × JτKq

Classical set JτKc

J1Kq := {()}
JBKq := {0, 1}

s
n×

k=1
τk

{q

:=
n×

k=1
JτkK

q

s
n×

k=1
βkτk ! α−→τ′

{q

:= {()}

J!τKq := {()}

Quantum ground set JτKq

Figure 3.14: Classical set JτKc and quantum ground set JτKq to build the seman-
tics JτK = JτKc ×H (JτKq) of type τ.

3.6.1 Semantics of Types

We build the semantics JτK of type τ from a classical set JτKc and a quantum
ground set JτKq as JτK = JτKc ×H (JτKq). Note that JτK stores the classical
and quantum parts of τ separately, which is in line with how a QRAM can
physically store values of type τ. In particular, JτKq contains the ground set
from which we build the Hilbert space H (JτKq).

classical set and quantum ground set Fig. 3.14 defines both the
classical set JτKc and the quantum ground set JτKq for all possible types τ.
For type 1, both the classical set and the quantum ground set are the single-
ton set {()}. The (quantum) Boolean type B stores no classical information
and hence, its classical set is again the singleton set. In contrast, its quantum
ground set is {0, 1}, for which H ({0, 1}) contains all superpositions of |0⟩
and |1⟩. The sets associated with the product type are standard. Functions
store no quantum information, and hence their quantum ground set is {()}.
In contrast, the classical set associated with a function type contains all



36 silq : a high-level quantum language

J!BK = J!BKc ×H (J!BKq) =
(
JBKc × JBKq

)
×H ({()})

=
(
{()} × {0, 1}

)
×H ({()}) ≃ {0, 1} ×H ({()})

J!B×BK = J!B×BKc ×H (J!B×BKq) =
(
J!BKc × JBKc

)
×H (J!BKq × JBKq)

=
(
{()} × {0, 1} × {()}

)
×H ({()} × {0, 1}) ≃ {0, 1} ×H ({0, 1})

J!B×BK+ = H (J!BKc × JBKq) ≃ H ({0, 1} × {0, 1}) = H
(
{0, 1}2)

=

 ∑
w∈{0,1}2

γw |w⟩

∣∣∣∣∣∣ γw ∈ C



Type semantics

Jx : !B×BK = Jx : !B×BKc ×H (Jx : !B×BKq)
≃ {(v)x | v ∈ {0, 1}} ×H

(
{(v′)x | v′ ∈ {0, 1}}

)
=

{(
(v)x , γ0 |0⟩x + γ1 |1⟩x

) ∣∣∣∣ v ∈ {0, 1}
γ0, γ1 ∈ C

}
Jx : !B×BK+ = H (Jx : !B×BKc × Jx : !B×BKq) ≃ H

({(
(v)x , (v′)x

)
︸ ︷︷ ︸

(v,v′)x

∣∣∣∣ v ∈ {0, 1}
v′∈ {0, 1}

})
=

 ∑
w∈{0,1}2

γw |w⟩x

∣∣∣∣∣∣ γw ∈ C



Context semantics

ι (Jx : !B×BK) ≃
{

ι
(
(v)x , γ0 |0⟩x + γ1 |1⟩x

) ∣∣∣ v ∈ {0, 1}, γ0, γ1 ∈ C
}

≃
{

γ0 |v, 0⟩x + γ1 |v, 1⟩x
∣∣∣ v ∈ {0, 1}, γ0, γ1 ∈ C

}
Embedding

Figure 3.15: Example semantics of type !B, type !B×B, and context x : !B×B.

expressions e of this type, and a state σ storing the variables captured in
e. Finally, classical types !τ store no quantum information and hence their
quantum ground set is {()}. In contrast, their classical set consists of (i) the
classical set JτKc which remains classical and (ii) the quantum ground set
JτKq. As a straightforward consequence of our definition, duplicate classical
annotations do not affect the semantics: J!!τK ≃ J!τK.

To illustrate the semantics of types, Fig. 3.15 provides semantics for two
example types. In particular, J!BK is isomorphic to {0, 1}×H ({()}) — note
that this is not formally isomorphic to {0, 1} because H ({()}) = {γ |()⟩ |
γ ∈ C} tracks a (physically irrelevant) global phase γ ∈ C.

extended semantic space Unfortunately, working with elements
(v, φ) ∈ JτK for v ∈ JτKc and φ ∈ H (JτKq) is inconvenient because (i) every
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standard representation

r
β⃗x⃗ : τ⃗

z
:=
r

β⃗x⃗ : τ⃗
zc
×H

(r
β⃗x⃗ : τ⃗

zq)
=
{
(v1)x1 , . . . , (vn)xn

∣∣ vi ∈ JτiK
c
}
×H

({
(v′1)x1 , . . . , (v′n)xn

∣∣ v′i ∈ JτiK
q
})

r
β⃗x⃗ : τ⃗

z+
:=H

(r
β⃗x⃗ : τ⃗

zc
×
r

β⃗x⃗ : τ⃗
zq)

≃

 ∑
wi∈JτiK

c×JτiK
q

γw1 ,...,wn |w1⟩x1
⊗ . . .⊗ |wn⟩xn

∣∣∣∣∣∣ γw1 ,...,wn ∈ C


Figure 3.16: Semantics

r
β⃗x⃗ : τ⃗

z
and extended semantics

r
β⃗x⃗ : τ⃗

z+
of context

β⃗x⃗ : τ⃗.

operation on (v, φ) needs to handle v and φ separately (as they are different
mathematical objects) and (ii) some operations, like (v, φ) + (v′, φ′) are not
defined because JτK is not a vector space.

Therefore, we define the semantics of expressions (§3.6.2) and annotations
(§3.6.4) on a more convenient, larger space that also allows superpositions
of classical values:

JτK+ := H (JτKc × JτKq) = H (JτKc)⊗H (JτKq) .

Here, (i) the classical and quantum part of ϕ ∈ JτK+ can be handled analo-
gously and (ii) operation + is defined on JτK+. We provide an example of
this extended semantics in Fig. 3.15.

While elements of JτK can be naturally lifted to JτK+ via embedding
ι : JτK→ JτK+ defined by ι(v, φ) := |v⟩ ⊗ φ, the larger space JτK+ also con-
tains invalid elements, namely those where classical values are in superposi-
tion. In contrast, valid elements do not put classical values in superposition,
i.e., the classical part of every summand in their superposition coincides.
For example, state |0⟩ ⊗ 1√

2

(
|0⟩+ |1⟩

)
is valid for type !B×B but invalid

for type B× !B.
Overall, our semantics exclusively produces valid elements, as we for-

mally prove in Thm. 3.6.1.

semantics of contexts Fig. 3.16 provides the semantics of contextr
β⃗x⃗ : τ⃗

z
. Here, (vi)xi indicates that variable xi stores value vi. Fig. 3.15

provides semantics for an example context, where we write |0⟩x as a short-
hand for |(0)x⟩.
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Analogously to JτK+, Fig. 3.16 also introduces the extended semanticsr
β⃗x⃗ : τ⃗

z+
for contexts, and a standard representation that stores the classical

and quantum value of variable x together in a single location |v⟩x. We use
this representation throughout this chapter (including Fig. 3.3). Again, we
illustrate this extended semantics in Fig. 3.15.

For contexts, the embedding ι :
r

β⃗x⃗ : τ⃗
z
→

r
β⃗x⃗ : τ⃗

z+
is

ι
(
(⃗v)x⃗, ∑

v⃗′
γv⃗′ |⃗v′⟩x⃗

)
= ∑

v⃗′
γv⃗′ |⃗v, v⃗′⟩x⃗ ,

for (⃗v)x⃗ ∈
r

β⃗x⃗ : τ⃗
zc

and ∑v⃗′ γv⃗′ |⃗v′⟩x⃗ ∈ H
(r

β⃗x⃗ : τ⃗
zq)

. We illustrate this in
Fig. 3.15 on an example context.

3.6.2 Semantics of Expressions

Our operational semantics evaluates an expression e in state ψ by con-
structing derivation trees whose structure follows the structure of our type
derivations. Since e may contain measurements with probabilistic outcome,

we provide an evaluation
[
Γ

α
e : τ

∣∣∣ ψ
]

run−−→ ψ′i for each possible sequence

of measurement results, indicating that evaluating e (typed as Γ
α

e : τ), on
state ψ yields state ψ′i with probability ∥ψ′i∥2, assuming ∥ψ∥2 = 1 (see §2.1).
If e is undefined for a given input ψ (possible since reverse returns unsafe
functions), we do not provide any evaluation.

domain of ψ , ψ ′ When our semantics evaluates e according to[
Γ

α
e : τ′′

∣∣∣ ψ
]

run−−→ ψ′,

it requires that ψ ∈ ι (JΓ, ∆K). By construction, for a context of the form
Γ = const x⃗ : τ⃗, y⃗ : τ⃗′, output state ψ′ lies in Jconst x⃗ : τ⃗, ∆, e : τ′′K+, i.e., we
preserve constant variables x⃗ and the additional context ∆ (discussed next),
and store the value of e in a temporary variable e.

Here, ∆ is additional context containing the remainder of the state pre-
served while evaluating e. We illustrate the need for ∆ in Fig. 3.17. Here,
we cannot evaluate (x || y) and z independently, as their values may be
entangled in ψ. Hence, we must evaluate x || y in a state that not only
contains x, y (in the context when typing x || y, cp. blue box), but also z
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Figure 3.17: Part of derivation when evaluating expression x || y || z on state
ψ = |0⟩x |0⟩y |1⟩z. The corresponding typing rule is func-eval. For
a complete semantics derivation tree that leverages more rules, see
App. A.5.3.

(in ∆, cp. red box). After this, we evaluate z in a state containing z (in the
context when typing z), x, y (in ∆), and the value of x || y (stored as x || y in
context ∆).

formal semantics Here, we discuss the most important aspects of the
formal semantics of Silq-Core expressions (see App. A.5.1 for details, and
App. A.5.3 for an example). Recall that the structure of semantic derivation
trees follows the structure of the type derivation trees, and hence, every
type rule corresponds to a semantic derivation rule.

The semantics of evaluating a variable x is to rename x to x in the new
state if x is consumed, and to duplicate x to x if x is constant. Contrac-
tion of constant variable x duplicates x, according to ∑v γv |v⟩x ⊗ ψ̃v 7→
∑v γv |v⟩x |v⟩x ⊗ ψ̃v. Weakening of constant variables postpones uncomput-
ing them until the end of the function body. When evaluating a function
call e′(e1, . . . , en), we uncompute the constant arguments ei (i.e., preserved
according to the signature of e′) at the end of the function call. To reverse
functions, we postpone the reversal until the reversed function is called.
We handle control flow if e then e1 else e2 by separately evaluating e1
(respectively e2) in the part of the state where e is true (respectively false).

3.6.3 Type Preservation

Thm. 3.6.1 ensures that our semantics never produces invalid states ψ′,
meaning that the classical values in ψ′ can never be in superposition (since
ι only returns valid elements).
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Theorem 3.6.1 (Type Preservation). If we have

Γ = const x⃗ : τ⃗, y⃗ : τ⃗′,[
Γ

α
e : τ′′

∣∣∣ ψ
]

run−→ ψ′, and

ψ ∈ ι (JΓ, ∆K) ,

then ψ′ lies in ι (Jconst x⃗ : τ⃗, e : τ′′, ∆K).

We provide a proof for Thm. 3.6.1 in App. A.6. Here, ι (JΓ, ∆K) contains all
elements of JΓ, ∆K+ where classical values are not in superposition.

3.6.4 Semantics of Annotations

In the following, we show theorems formalizing the guarantees of annota-
tions of Silq-Core expressions. We do not formally discuss the guarantees
of annotations of Silq-Core functions, which are analogous. We note that
the guarantees of ! were already discussed in §3.6.3.

preserving constants Thm. 3.6.2 ensures that constant variables are
indeed preserved by Silq-Core.

Theorem 3.6.2 (Const Semantics). If we have

Γ = const x⃗ : τ⃗, y⃗ : τ⃗′,[
Γ

α
e : τ′′

∣∣∣ ψ
]

run−→ ψ′, and

ψ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗,

then ψ′ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ χv⃗,w⃗⊗ ψ̃v⃗,w⃗ for some χv⃗,w⃗.

We provide a proof for Thm. 3.6.2 in App. A.6.

Figure 3.18: Non-isometry.
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mfree expressions We want to ensure that mfree expressions cor-
respond to linear isometries, which in turn ensures we can physically
implement their effect with quantum gates. However, this correspondence
is non-trivial: Fig. 3.18 shows an example where run−−→ is not isometric be-
cause we drop a classical value from the input. Thm. 3.6.3 side-steps this
issue, intuitively by ensuring that our semantics is isometric when the
classical components of its input have fixed values.

Theorem 3.6.3 (Mfree Semantics). If mfree ∈ α, σ ∈ JΓ, ∆Kc,[
Γ

α
e : τ′′

∣∣∣ ι(σ, ψ1)
]

run−→ ψ′1 for ψ1 ∈ H (JΓ, ∆Kq) , and[
Γ

α
e : τ′′

∣∣∣ ι(σ, ψ2)
]

run−→ ψ′2 for ψ2 ∈ H (JΓ, ∆Kq) ,

then ⟨ψ1| |ψ2⟩ = ⟨ψ′1| |ψ′2⟩.
We provide a proof for Thm. 3.6.3 in App. A.6.

A useful interpretation of Thm. 3.6.3 states that run−−→ acts like an isometry
on the subspace consistent with a fixed classical component σ ∈ JΓ, ∆Kc,

{ι(σ, χ) | χ ∈ H (JΓ, ∆Kq)} ⊆ JΓ, ∆K+ .

This corresponds to the intuition that in order to evaluate e on ψ1, we can
(i) extract the classical component σ from ψ1, (ii) build a circuit C that
realizes the linear isometry for this classical component and (iii) run C,
yielding ψ′1.

qfree expressions Thm. 3.6.4 ensures that qfree expressions can be
described by a function f̄ on the ground sets.

Theorem 3.6.4 (Qfree Semantics). If Γ
α

e : τ′′ for qfree ∈ α and context Γ =

const x⃗ : τ⃗, y⃗ : τ⃗′, then there exists a function f̄ : JΓKs → Jconst x⃗ : τ⃗, e : τ′′Ks

on ground sets such thatΓ
α

e : τ′′

∣∣∣∣∣∣ ∑
σ∈JΓKs

γσ |σ⟩ ⊗ ψ̃σ

 run−→ ∑
σ∈JΓKs

γσ | f̄ (σ)⟩ ⊗ ψ̃σ,

where JΓKs is a shorthand for the ground set JΓKc × JΓKq on which the Hilbert
space JΓK+ = H (JΓKs) is defined.

We provide a proof for Thm. 3.6.4 in App. A.6.
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3.6.5 Physicality

Thm. 3.6.5 ensures Silq-Core programs can be physically realized on a
QRAM. If we would change our semantics to abort on operations that are
not physical, we could re-interpret Thm. 3.6.5 to guarantee progress, i.e., the
absence of errors due to unphysical operations.

Theorem 3.6.5 (Physicality). The semantics of well-typed Silq programs is
physically realizable on a QRAM.

We provide a proof for Thm. 3.6.5 in App. A.6, which heavily relies on the
semantics of annotations. As a key part of the proof, we show that we can
uncompute temporary values by reversing the computation that computed
them. Reversing a computation is possible on a QRAM (and supported by
most existing quantum languages) by (i) producing the gates that perform
this computation and (ii) reversing them.

3.7 evaluation of silq

Next, we experimentally compare Silq to other languages. Our comparison
focuses on Q#, because (i) it is one of the most widely used quantum
programming languages, (ii) we consider it to be more high-level than
Cirq or Qiskit, and (iii) the Q# coding contest [51, 52] provides a large
collection of Q# implementations we can leverage for our comparison. To
check if our findings generalize to other languages, we also compare Silq to
Quipper (§3.7.2).

implementation We implemented a publicly available parser, type-
checker, and simulator for Silq as a fork of the PSI probabilistic program-
ming language [62]. Specifically, Silq’s AST and type checker are based
on PSI, while Silq’s simulator is independent of PSI. Our implementation
handles all valid Silq code examples in this paper, while rejecting invalid
programs. We also provide a development environment for Silq, in the form
of a Visual Studio Code extension. 10

Compared to Silq-Core, Silq supports an imperative fragment (including
automatic uncomputation), additional primitives, additional convenience
features (e.g., unpacking of tuples), additional types (e.g., arrays), depen-
dent types (which only depend on classical values, as shown in Fig. 3.3),
type equivalences (e.g., !!τ ≡ !τ), subtyping, and type conversions.

10 https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq

https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq
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Table 3.1: Silq compared to Q#.
Silq Q#

S18 W19 Both S18 W19 Both
Lines of code 99 168 267 251 242 493

Quantum primitives 8 10 10 12 19 22

Annotations 2 3 3 3 6 6

Low-level quantum gates 14 23 37 33 54 87

3.7.1 Comparing Silq to Q#

To compare Silq to Q#, we solved all 28 tasks of Microsoft’s Q# Summer
2018 and Winter 2019 [51, 52] coding contest in Silq. We compared the Silq
solutions to the Q# reference solutions provided by the language designers
[63, 64] (Table 3.1) and the top 10 contestants (App. A.7).

Our results indicate that algorithms expressed in Silq are far more concise
compared to the reference solution (−46%) and the average top 10 contes-
tants (−59%). We stress that we specifically selected these baselines to be
written by experts in Q# (for reference solutions) or strong programmers
well-versed in Q# (for top 10 contestants). We did not count empty lines,
comments, import statements, namespace statements, or lines that were
unreachable for the method solving the task. This greatly benefits Q#, as it
requires various imports.

Because the number of lines of code heavily depends on the available
language features, we also counted (i) the number of different quantum
primitives, (ii) the number of different annotations in both Q# (controlled
auto, adjoint self, Controlled, . . . ) and Silq (mfree, qfree, const, lifted,
and !), as well as (iii) the number of low-level quantum circuit gates used
to encode all programs in Q# and Silq (for details, see App. A.7).

Our results demonstrate that Silq is not only significantly more concise,
but also requires only half as many quantum primitives, annotations, and
low-level quantum gates compared to Q#. As a consequence, we believe Silq
programs are easier to read and write. In fact, we conjecture that the code of
the top 10 contestants was longer than the reference solutions because they
had difficulties choosing the right tools out of Q#’s large set of quantum
primitives. We further note that Silq is better in abstracting away standard
low-level quantum circuit gates: they occur only half as often in Silq.
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3.7.2 Comparing Silq to Quipper

The language designers of Quipper provide an encoding [53] of the triangle
finding algorithm [65, 66]. We encoded this algorithm in Silq and found
that again, we need significantly less code (−38%; Quipper: 378 LOC, Silq:
236 LOC). An excerpt of this, on which we achieve even greater reduction
(−64%), was already discussed in Fig. 3.2.

The intent of the algorithm in Fig. 3.2 is naturally captured in Silq:
it iterates over all j,k with 0 ≤ j < k < 2rbar, and counts how often
ee[tau[j]][tau[k]] && eew[j] && eew[k] is true, where we use quantum
indexing into ee. In contrast, Quipper’s code is cluttered by explicit un-
computation (e.g., of eedd_k), custom functions aiding uncomputation (e.g.,
.&&.), and separate initialization and assignment (e.g., eedd_k), because
Quipper lacks automatic uncomputation.

Similarly to Q#, Quipper offers an abundance of built-in and library
functions. It supports 76 basic gates and 8 types of reverse, while Silq
only provides 10 basic gates and 1 type of reverse, without sacrificing
expressivity. Some of Quippers overhead is due to double definitions for
programming in declarative and imperative style, e.g., it offers both gate_T

and gate_T_at or due to definition of inverse gates, e.g., gate_T_inv.

3.7.3 Further Silq Implementations

To further illustrate the expressiveness of Silq on interesting quantum
algorithms, we provide Silq implementations of (i) Wiesner’s quantum
money scheme [67], (ii) a naive (unsuccessful) attack on it, and (iii) a recent
(successful) attack on it [68] in App. A.7.3.

3.7.4 Discussion

Overall, our evaluation indicates that Silq programs are significantly shorter
than equivalent programs in other quantum languages, while using only
half the number of quantum primitives. In the future, it could be interesting
to confirm this evidence that Silq is more user-friendly by performing a
thorough usability study.
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Table 3.2: Comparing Silq to previous quantum languages. Parenthesized fea-
tures are partially (but not fully) supported.

Language Type
system

Autom.
Uncomp. const mfree qfree

QPL [48] linear11 ✗ ✗ ✗ ✗
Quantum λ-calc. [69] affine ✗ ✗ ✗ ✗
Quipper [23] non-linear (✓) ✗ ✗ ✗
ReVerC [59] non-linear (✓) ✗ ✗ (✗)
QWire [54] linear ✗ ✗ ✗ ✗
Q# [22] non-linear ✗ ✗ ✓ ✗
ReQWire [58] linear (✗) (✗) ✗ (✗)
Silq (this work) linear+ ✓ ✓ ✓ ✓

3.8 related work

Before Silq, various quantum programming languages aimed to simplify
development of quantum algorithms. Table 3.2 shows the key language
features of previous languages most related to Silq.

const To our knowledge, Silq is the first quantum language to mark
variables as constant. We note that for Q#, so-called immutable variables
can still be modified (unlike const variables), for example by applying the
Hadamard transform H.

Silq’s constant annotation is related to ownership type systems guar-
anteeing read-only references [70]. As a concrete example, the Rust pro-
gramming language supports a single mutable borrow and many const
borrows [71](§4.2). However, the quantum setting induces additional chal-
lenges: only guaranteeing read-only access to variables is insufficient as
we must also ensure safe uncomputation. To this end, Silq supports a
combination of const and qfree.

qfree To our knowledge, no existing quantum language annotates qfree

functions. ReverC’s language fragment contains qfree functions (e.g., X), and
ReQWire’s syntactic conditions cover some qfree operations, but neither
language explicitly introduces or annotates qfree functions.

mfree Of the languages in Table 3.2, only Q# can prevent reversing
measurement and conditioning measurement (via special annotations).
However, as Q# cannot detect implicit measurements, reverse and condi-

11 QPL (i) enforces no-cloning syntactically and (ii) disallows implicitly dropping variables (cp.
rule discard in Fig. 12)
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tionals may still induce unexpected semantics. For other languages, reversal
may fail at runtime when reversing measurements, and control may fail at
runtime on conditional measurement.

We note that QWire’s reverse returns safe functions, but only when given
unitary functions (otherwise, it reports a runtime error by outputting None).
Thus, it for example cannot reverse dup, which is linearly isometric but not
unitary.

semantics The semantics of Silq is conceptually inspired by Selinger
and Valiron, who describe an operational semantics of a lambda calculus
that operates on a separate quantum storage [69]. However, as a key differ-
ence, Silq’s semantics is more intuitive due to automatic uncomputation.

All other languages in Table 3.2 support semantics in terms of circuits
that are dynamically constructed by the program.

3.9 impact

Since its publication, Silq has had significant impact on quantum pro-
gramming language research. In the following, we highlight some key
developments we believe were facilitated by Silq.

automatic uncomputation Silq has paved the way for more recent
advancements in automatic uncomputation. Qunity [24] extends Silq’s no-
tion of automatic uncomputation to non-qfree expressions, at the cost of
probabilistic errors. Specifically, Qunity develops the relevant theory to
show that allowing a program to fail probabilistically enables automatically
uncomputing expressions even if they are non-qfree. One advantage of
this generalization is that it naturally supports non-qfree implementations
of (almost) qfree functions. We note that besides failing probabilistically,
one disadvantage of this approach is that the semantics of uncomputing a
variable depends on the semantics of the function which computed this vari-
able, while Silq’s uncomputation semantics simply drops the uncomputed
variable from the program state.

Our own works Unqomp (Chapter 4) and Reqomp [14] automatically
synthesize efficient uncomputation, which is one of the key challenges when
compiling Silq programs. Qrisp [25] was inspired by Silq and automates
uncomputation by using Unqomp.
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other language features Many works reference Silq as a useful
resource to demonstrate the benefits of a linear type system [26, 27, 28]—this
helps answer the long-standing question of whether linear or non-linear
type systems are preferable in quantum programming languages.

Likewise, multiple works refer to Silq to show-case a quantum language
which supports classical control flow, thus allowing mixing classical and
quantum computation [27, 29, 30].

Finally, Proto-Quipper [72], Qiwi [73], and others [74, 75] credit Silq as
being relevant for the design of their language primitives.

complementary high-level language features In line with
Silq’s goal of raising the abstraction level of quantum languages, Tower [76]
introduces quantum primitives for working with random-access memory,
allowing the programmer to implement quantum data structures.

Also providing more high-level insights but for a different aspect, Twist [77]
introduces language primitives helping to establish that some qubits are
unentangled.

Such efforts are complementary to Silq: for example, Twist mentions that
it benefits from automatic uncomputation as it can rely on the resulting
correctness guarantees [77, §11].

compilation and internal representations Silq2Qiskit [78] is
an effort to compile a fragment of Silq to Qiskit. While it handles some
interesting aspects of Silq including control flow and quantum indexing, it
unfortunately does not discuss how to compile automatic uncomputation
(see also Chapter 4).

More broadly, Silq has highlighted the importance of intermediate rep-
resentations (IR) that store, optimize, manipulate, and compile high-level
quantum programs.

The intermediate representation QIRO [79] is designed to also accommo-
date Silq, but does not provide a compiler from Silq to QIRO. HQIR [33] is
a recent effort with the goal of being sufficiently high-level to represent Silq
programs at a suitable level of abstraction, while still bridging the gap to
low-level quantum circuits.

verification Silq has also been identified as an interesting target for
verifying the correctness of quantum programs [46].

The ongoing work SilVer [80] aims to verify Silq programs using the
Z3 SMT solver. Other verification tools such as VOQC [43] and SQIR [44]
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currently do not support Silq, but mention it as an interesting future
extension.

3.10 conclusion

We presented Silq, a new high-level statically typed quantum programming
language which ensures safe uncomputation. This enables an intuitive
semantics that is physically realizable on a QRAM.

Our evaluation shows that quantum algorithms expressed in Silq are
significantly more concise and less cluttered compared to their version in
previous quantum languages.



4
U N Q O M P : S Y N T H E S I Z I N G U N C O M P U TAT I O N I N
Q UA N T U M C I R C U I T S

In this chapter, we present Unqomp, the first procedure to automatically
synthesize uncomputation in a given quantum circuit. Unqomp can be read-
ily integrated into popular quantum languages such as Qiskit, allowing the
programmer to allocate and use temporary values analogously to classical
computation, knowing they will be uncomputed by Unqomp. To allow a
more natural integration with popular quantum languages like Qiskit, this
chapter reframes the objective of uncomputation in a circuit-focused view,
as opposed to the language-focused view provided in Chapter 3.

Our evaluation shows that programs leveraging Unqomp are not only
shorter (-19% on average), but also generate more efficient circuits (-71%
gates and -19% qubits on average).

4.1 introduction

As discussed in Chapter 3, quantum programs often produce temporary
values during execution. However, in contrast to classical values, the mere
existence of temporary quantum values can lead to unexpected side effects
on the remainder of the program state due to the phenomenon of quantum
entanglement. Preventing such side effects typically requires resetting tem-
porary quantum values to zero before discarding them, in a process called
uncomputation [60].

synthesizing uncomputation This need for uncomputation is a
major roadblock preventing programmers from writing correct, efficient,
and intuitive quantum programs in circuit description languages like Qiskit.

Such programs construct quantum circuits to be run on a quantum com-
puter. Ideally, uncomputation would be synthesized automatically during
circuit construction, allowing the programmer to simply omit it. Unfor-
tunately, existing uncomputation synthesizers are restricted to quantum
programs consisting exclusively of classical operations (e.g., [23, 58, 59, 81]).

Silq (Chapter 3) addressed uncomputation in quantum programs by intro-
ducing a type system which statically checks that temporary values can be
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A A†

L†

A A†

(a) Modular Uncomputation.

synthesized

R

L

A

Unqomp

L† A†

(b) Efficient Uncomputation.

Figure 4.1: Manual yet modular uncomputation is inefficient.

uncomputed. However, Silq does not explicitly synthesize uncomputation
as it does not include a compiler. Likewise, ReQWire [58] can verify that
manually provided uncomputation is safe, but cannot synthesize it.

Consequently, most quantum languages before Unqomp require tedious
manual uncomputation by explicitly reversing all operations applied to
temporary values, sometimes aided by (unsafe) convenience functions (e.g.,
ApplyWith, with_computed, discussed in §4.7). However, this manual approach
leads to tension between modularity and efficiency, discussed next.

modular programs Generally, writing complex quantum programs
requires a modular approach, in particular when developing libraries. In-
deed, a quantum library function L typically uncomputes all its internal
temporary values, without exposing them to the caller. The programmer
can then use L’s inverse L† to uncompute the result of L. If L computes a
temporary value using an auxiliary function A, L can in turn leverage A†

to uncompute the result of A.

We visualize a call tree resulting from this modular approach in Fig. 4.1a,
where a function R uses the library L and later uncomputes its result using
L†, which internally recomputes A. Note that if L did not encapsulate
the uncomputation of A, it would have to expose the output of A to be
uncomputed by the user of L, thus breaking modularity.

inefficient circuits While the above modular construction facilitates
correct uncomputation, it often results in inefficient circuits. This is a critical
problem, as near-future quantum computers only support a limited number
of qubits and are subject to noise limiting the number of gates [82].

In the example of Fig. 4.1a, A is uncomputed in L only to be recomputed
again in L†. This redundant work (highlighted as ) increases exponen-
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tially with the depth of the call tree, becoming prohibitive for complex
programs.

In contrast, Fig. 4.1b shows the call tree of an equivalent but more efficient
computation, which avoids recomputing A. Achieving this without expos-
ing the output of A and thus breaking modularity of L’s implementation is
only possible if uncomputation is synthesized during circuit construction.

sacrificing modularity In some cases, programmers sacrifice mod-
ularity for efficiency and manually build call trees similar to Fig. 4.1b.
However, the resulting code is error-prone and may introduce other sources
of inefficiencies (see §4.6).

These downsides are exacerbated by the fact that erroneous uncomputa-
tion is particularly hard to detect. For example, programmers often reuse
the same physical qubit to first hold temporary value a and later tempo-
rary value b, in which case incorrectly uncomputing a may corrupt the
computation involving b.

unqomp To enable writing modular yet efficient quantum programs,
we introduce Unqomp, the first procedure to automatically synthesize
uncomputation.

Technically, Unqomp relies on the same fundamental insight as Silq,
namely that a temporary value can be safely uncomputed by inverting the
operation that computed it, if the original computation can be described
classically and depends on values that can be reused for uncomputation.
Unfortunately, whether these values are available for uncomputation can
depend on the exact order in which operations are applied, even though
these operations often commute. To address this challenge, Unqomp oper-
ates on circuit graphs, a representation of quantum circuits which does not
enforce unnecessary ordering constraints among operations.

evaluation results Unqomp is designed such that it can be readily
integrated into existing quantum languages currently requiring manual
uncomputation (see §4.3).

Our evaluation demonstrates that integrating Unqomp into Qiskit [39]
allows writing code that is shorter (19% on average), more modular (prevent-
ing bugs existing in current implementations), and often significantly more
efficient (71% fewer gates and 19% fewer qubits on average). We reported a
set of efficiency issues revealed by our evaluation to the Qiskit developers,
who have since addressed them. Even compared to the resulting enhanced
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version of Qiskit, Unqomp allows for significant improvements (57% for
gates and 19% for qubits). Furthermore, when used on purely classical
examples, Unqomp significantly outperforms other approaches, saving 40%
of gates and 41% of qubits on average when compared to Quipper.

main contributions The main contributions of this chapter are:

• Unqomp, a procedure synthesizing automatic uncomputation for
quantum circuits (§4.3).

• A formalization of circuit graphs, Unqomp’s internal representation
of quantum circuits (§4.4).

• A correctness theorem for Unqomp and its proof (§4.5).

• An end-to-end implementation1 and a thorough evaluation of Un-
qomp on common quantum algorithms (§4.6).

4.2 problem statement

Next, we motivate why uncomputation is critical and formally define the
problem statement addressed by Unqomp.

background : qfree gates Let us first rephrase the notion of qfree
from Chapter 3 in terms of quantum circuits.

Intuitively, a gate U is qfree if it can be expressed on classical bits. More
precisely, for a gate U with one2 control c and target t, U is qfree if its
semantics can be described in terms of a function f : {0, 1}×{0, 1} → {0, 1}
as

|i⟩c |k⟩t
Uct7−→ |i⟩c | fi(k)⟩t , (4.1)

writing fi(k) for f (i, k) and a U7−→ b when U(a) = b. For a gate U with no
controls, the above definition simplifies to

|k⟩t
U7−→ | f (k)⟩t , (4.2)

for some f : {0, 1} → {0, 1}.

1 https://github.com/eth-sri/Unqomp/tree/pldi2021

2 The definition generalizes naturally to multiple controls.

https://github.com/eth-sri/Unqomp/tree/pldi2021
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(a) Example circuit.

(b) Example circuit storing a temporary value into a.

(c) Uncomputing temporary value.

Figure 4.2: Uncomputation in an example quantum circuit, inspired by [83].

Examples of qfree gates include the identity I with semantics I |a⟩ =
|g(a)⟩where g is the identity and CX with semantics CX |a⟩ |b⟩ = |a⟩ | fa(b)⟩
for fa(b) := a⊕ b. In contrast, the Hadamard transform H is not qfree.

In this chapter, we only consider gates with exactly one target and zero or
more controls. For example, CX is controlled by its first qubit (•) and targets
the second qubit (⊕). The gate H targets only one qubit and has no controls.
As single qubit gates and CX are universal for quantum computation,
considering only one target is not a restriction [47, §4.5.2].

effect of temporary values To observe the effect of temporary
values that are not uncomputed in terms of quantum circuits, first consider
Fig. 4.2a, which applies H to x in initial state φ0 and measures x, yielding
0 with probability 1. This circuit is extended to Fig. 4.2b, which copies3 x
into an additional temporary qubit a (called ancilla). To this end, Fig. 4.2b

3 Note that copying using CX does not violate the no-cloning theorem.
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initializes a to |0⟩ yielding φ′0 = φ0⊗ |0⟩a, and applies CX to flip the value
of a if x is one. The resulting state φ′1 highlights the flipped value in red (see
Fig. 4.2b). At a high level, because x is not modified by CX (x is a control),
the two circuits should not differ in their effect on x. However, measuring
x yields different results, as we mathematically demonstrate in Fig. 4.2b:
the measurement now returns 0 or 1 with probability 1

2 . This difference is
caused by the existence of a, which is entangled with x due to the CX gate
(see φ′1).

We note that in this toy example, copying x into a is pointless, as the copy
is never used. However, we can easily imagine this copy being required in
the remainder of the computation (not shown). This is a common pattern
in practice, where ancillae store intermediate computation results.

uncomputation If we want to avoid the side effect of a onto x, we
need to disentangle a from the remainder of the state before measuring
x. This can be achieved by uncomputing a, which resets a to its initial,
unentangled state |0⟩. Mathematically, this amounts to transforming φ′2 to

1
2 (|00⟩xa + |00⟩xa + |10⟩xa − |10⟩xa) = |00⟩xa . (4.3)

To this end, we can insert another CX gate (the self-inverse of CX) as
shown in Fig. 4.2c (dashed box). This gate reverts the original CX gate, thus
uncomputing ancilla a. Then, the result of the measurement is again 0 with
probability 1, as expected.

goal : synthesizing uncomputation The goal of Unqomp is to
automate the process of uncomputation. Given a (quantum) circuit C and
a list of ancilla qubits A, our goal is to create a new circuit with the same
effect as C, except that ancilla qubits are brought back to |0⟩, as in Eq. (4.3).

The procedure Unqomp presented in this chapter achieves this goal,
formalized in Thm. 4.2.1 below. Thm. 4.2.1 represents circuit C as a circuit
graph G (discussed shortly), and describes the effect of G on an initial state
by the semantics JGK.

Theorem 4.2.1 (Correctness). Let Unqomp(G, A) = G for circuit graph G
with n qubits of which m are ancilla qubits. Without loss of generality, assume that
those ancillae A =

(
a(1), . . . , a(m)

)
are the first m qubits of G. If
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|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |k⟩A ⊗ ϕk, then (4.4)

|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |0 · · · 0⟩A⊗ ϕk. (4.5)

Because G resets ancillae to state |0 · · · 0⟩, they are unentangled with
the remainder of the state, and can hence be safely discarded without
unexpected side effects.

We note that Thm. 4.2.1 implicitly assumes that G contains no measure-
ment. In particular, in Fig. 4.2, G would correspond to Fig. 4.2b without the
measurement, and G would correspond to Fig. 4.2c without the measure-
ment.

4.3 overview

We now provide an overview of Unqomp, following Fig. 4.3.

unqomp for circuit-based languages At a high level, Fig. 4.3
shows how Unqomp can be readily integrated into circuit-based program-
ming languages such as Qiskit [39] (in the example), Cirq [57], Q# [22], or
Quipper [23]. Such languages describe quantum programs (see Fig. 4.3a)
which are then compiled to quantum circuits (see Fig. 4.3b).

Relying on Unqomp, we can extend Qiskit to Qiskit++, which allows
declaring ancilla qubits at allocation time (see Line 2 in Fig. 4.3a). Qiskit++
(i) constructs the circuit without uncomputation, (ii) transforms the circuit
to a circuit graph (§4.4.2), (iii) runs Unqomp to uncompute the ancilla qubits
(§4.5), and (iv) compiles the result back to a circuit (§4.4.4). We note that
the resulting circuit may be subject to post-processing such as decomposing
the circuit into universal gates.

Next, we walk through the steps in Fig. 4.3 in more detail.

adder circuit without uncomputation The circuit in Fig. 4.3b
(constructed from Fig. 4.3a) is an adder circuit which takes as input two
qubits x and y representing the binary encoding of the number x + 2y. The
circuit adds to this number the value of qubit b using a temporary carry
qubit c.
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1 [b,x,y]=QuantumRegister(3)

2 [c]=AncillaRegister(1)

3 r=QuantumCircuit(b,x,y,c)

4 r.ccx([b,x],c); r.cx(b,x)

5 r.cx(c,y) Qiskit++

b • •
x •
y
c •

init init init init

CCX

CX CX

b0 x0 c0 y0

c1

x1
y1

init init init init

CCX

CX CCX CX

b0 x0 c0 y0

c1

x1
y1c⋆0

b • • •
x • •
y
c •

(a) Code

(c) Circuit graph w/o uncomputation.

(d) Circuit graph with uncomputation.

(b) Circuit w/o
uncomputation.

(e) Circuit with
uncomputation.

§4.4.2

§4.5

§4.4.4

ancillae

Figure 4.3: Overview of Unqomp: A circuit incrementing x+ 2y by b, with carry c.
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First, the circuit computes the value of c, which is initialized with |0⟩,
using the CCX gate •• (a natural generalization of the CX gate to two
controls) to change c to 1 iff both x and b are 1. Next, the circuit flips the
value of x if b is 1, correctly determining the least significant qubit of the
result. Finally, the circuit flips the value of y if the carry c is 1. Note that
this circuit does not perform uncomputation of c.

finding the uncomputation position In order to uncompute c,
we have to revert the CCX gate computing c. As a naive attempt, we could
try to append the inverse gate of CCX (which is CCX again) at the end of
the circuit in Fig. 4.3b. Unfortunately, this does not correctly uncompute c:
the computation of c is controlled by x, whose value may change by the
end of the circuit due to the CX gate targeting x.

A key challenge of uncomputation is therefore finding the position in
the circuit to insert the inverse gate g† uncomputing a gate g. This position
must be (i) after all gates involving the computed value (here, after the CX
gate controlled by c), but (ii) before any other gates targeting any qubit
involved in g† (here, before the CX gate targeting x). In Fig. 4.3b, satisfying
(i–ii) is only possible when reordering the two CX gates. In Fig. 4.3e, we
have reordered the CX gates, and inserted the uncomputation gate CCX
in-between.

Crucially, reordering the CX gates in this example yields an equivalent cir-
cuit with the same semantics—on the same input state, the circuit produces
the same output state.

4.3.1 Circuit Graphs

To avoid the need for gate reorderings, we introduce an alternative circuit
representation called circuit graph, which abstracts different gate orderings
with the same semantics.

Fig. 4.3c shows the circuit graph G corresponding to Fig. 4.3b.

nodes and edges For every qubit in the circuit, the circuit graph
contains an init node indicating the circuit’s input (here: b0, x0, y0, and c0).
The remaining nodes represent gates. For example, c1 represents the CCX
gate from Fig. 4.3b, which targets c (indicated by a target edge →) and is
controlled by b and x (indicated by control edges •→).
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anti-dependency edges Any linearization of gate nodes in G can be
interpreted as a quantum circuit applying the corresponding gates in the
specified order. In order to ensure that all such circuits have equivalent se-
mantics, we introduce additional ordering constraints using anti-dependency
edges 99K.

For instance, the anti-dependency edge c1 99K x1 in Fig. 4.3c indicates
that the CCX gate must be applied before the CX gate targeting x. This is
critical, because the former uses the value of its control qubit x, which is
modified by the latter.

Note that G does not enforce an ordering between gate nodes x1 and y1,
implicitly accounting for the fact that we can swap these without affecting
the semantics of the circuit.

4.3.2 Uncomputation

We now show how Unqomp leverages the circuit graph in Fig. 4.3c to
uncompute the carry qubit c, yielding Fig. 4.3d.

one step of unqomp First, Unqomp determines the last gate targeting
c, which is the CCX gate in c1 ( ). Second, Unqomp checks that CCX is
qfree (otherwise, it returns an error). We discuss this necessity in §4.5.2.

Next, Unqomp inserts a node applying the inverse of CCX (which is
again CCX) into the graph ( ). We refer to this new node as c⋆0 because it
resets the state of c to its state after c0. We control c⋆0 by the same controls
as c1 ( ).

Finally, Unqomp checks that the resulting graph does not contain any
cycles (otherwise, it would return an error). This check takes into account
anti-dependency edges, which are also updated in Fig. 4.3d. In particular,
edge y1 99K c⋆0 ensures that the uncomputation node c⋆0 comes after gate
node y1 controlled by c1, while edge c⋆0 99K x1 ensures that uncomputation
node c⋆0 comes before gate node x1 targeting the control x0 of c⋆0 .

multiple uncomputation steps If more than one gate was applied
to c, Unqomp would execute multiple uncomputation steps as described
above, one for each gate targeting c. For instance, assume that two gates
U1, U2 are applied to c. The circuit graph then contains three nodes for this
qubit:

init U1 U2

c0 c1 c2
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Unqomp steps through all gates applied to ancilla qubits, in reverse order.
To process c2, it checks that U2 is qfree, inserts c⋆1 controlled by the same
nodes as c2, and links it to the latest node operating on c, yielding c2 → c⋆1 .
Next, Unqomp processes c1, checking that it is qfree, inserting c⋆0 controlled
by the same nodes as c1, and adding an edge from the latest node operating
on c, yielding c⋆1 → c⋆0 as shown below:

init U1 U2 U†
2 U†

1

c0 c1 c2 c⋆0c⋆1

4.4 circuit graphs

We now provide a more formal introduction to circuit graphs. In particular,
we discuss their motivation and definition (§4.4.1), show how a circuit
is transformed to its graph representation (§4.4.2), provide semantics for
circuit graphs (§4.4.3), and show how a circuit graph is compiled back to a
circuit (§4.4.4).

4.4.1 Motivation and Definition

We start by motivating the need for circuit graphs and presenting their
formal definition.

gate ordering As discussed in §4.3, quantum circuits typically en-
force an unnecessarily restrictive order on their gates. In contrast, circuit
graphs abstract away irrelevant ordering constraints: instead of enforcing a
total order, circuit graphs use edges to record only the relevant ordering
constraints between gate nodes, inducing a partial order on gates.

Specifically, circuit graphs reflect the fact that any two adjacent gates can
be reordered, unless the qubit targeted by one of them is involved in the
other gate (as a control or as a target). We illustrate this in Fig. 4.4, where we
show two equivalent circuits and their shared circuit graph representation.
In particular, the circuit graph does not contain an edge between gate nodes
U and V, allowing them to be ordered arbitrarily. Formally, this equivalence
can be derived from the properties of control qubits (see §2.2).

circuit graphs A circuit graph is a directed acyclic graph G = (V, E).
Its nodes V = Vinit ∪Vgates consist of init nodes Vinit and gate nodes Vgates.
The set Vinit contains an init node for each qubit accessed during the
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• •
•

U
V

• •
•

U
V

≡
init

init

init U

init V

=∧

Figure 4.4: Valid gate reordering.

computation. For v ∈ Vinit, we define qbit(v) to be the qubit modeled by
v. The set Vgates contains one node for each gate in the circuit. We define
gate(v) to be the gate represented by v ∈ Vgates, and qbit(v) to be the qubit
targeted by gate(v). For example, in Fig. 4.3c, the init node b0 models the
qubit b in Fig. 4.3b, and gate node c1 models the CCX gate targeting c.

The edges E are divided into target (visualized as →), control (•→),
and anti-dependency edges (99K). Target edges represent input-output
relationships, control edges represent additional dependencies, and anti-
dependency edges specify implicit ordering constraints on gate nodes. In
general, anti-dependency edges can always be reconstructed from target
and control edges. Specifically, circuit graphs contain an anti-dependency
edge t 99K c whenever there exists a node c′ such that c′ •→ t and c′ → c.
This anti-dependency edge models the ordering constraint that t must be
applied before c.

valid circuit graphs A circuit graph is valid if it represents an actual
quantum circuit. More precisely, G = (V, E) is valid iff (i) its init nodes
have no incoming target edge while gate nodes have exactly one, (ii) all
its nodes have at most one outgoing target edge, (iii) its anti-dependency
edges can be reconstructed from its control and target edges according to
the rule discussed above, (iv) the number of incoming control edges of each
gate node v ∈ Vgates equals the number of controls of gate(v), and (v) G is
acyclic. Consequently, the target edges should form disjoint paths starting
at init nodes.

In the following, we only consider valid circuit graphs. All operations
discussed in this chapter preserve validity.

naming convention We usually respect the following naming con-
vention: for qubit a, a0 is the init node and ai the ith gate node targeting a.
For example, in Fig. 4.3c, node c1 is the first gate targeting c. Further, we
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refer to gate nodes inserted by Unqomp as a⋆i , indicating that a⋆i restores
the state of qubit a after node ai.

4.4.2 From Circuits to Circuit Graphs

We now describe how to transform a given circuit into its circuit graph
representation.

building a circuit graph To construct a circuit graph from a circuit,
we first create an init node for each qubit.

Then, we process the gates in order. When processing a gate U, we add
a fresh node u representing U to Vgates. To determine the incoming target
edge at u, let q be the qubit targeted by U. We then introduce a target edge
v→ u, where v is the node corresponding to the latest gate targeting q, or
the init node for q if we are processing the first gate targeting q. Similarly,
to determine incoming control edges at u, we consider each control qubit
c of the gate. We introduce a control edge v •→ u, where v is the node
corresponding to the latest gate targeting c, or the init node for c.

Finally, we introduce anti-dependency edges based on the inserted target
and control edges (see §4.4.1).

example When processing the first CX gate in Fig. 4.3b, we introduce
gate node x1 and add edge x0 → x1. Because this gate is controlled by qubit
b represented by init node b0, we further add edge b0 •→ x1 to the graph.
The anti-dependency edge c1 99K x1 exists due to x0 •→ c1 and x0 → x1.

4.4.3 Circuit Graph Semantics

We now define the semantics of circuit graphs. We first define the semantics
of individual nodes, and then extend this semantics to whole circuit graphs.

states The init nodes Vinit = {v1, . . . , vn} of a circuit graph specify the
qubits of the system. The state of this system is in Hq1,...,qn({0, 1}n), where
qi := qbit(vi).

semantics of gate nodes The semantics JvK of a gate node v ∈ Vgates
is defined according to the semantics of gate(v), where the target and
control edges ending at v determine the involved target and control qubits,
respectively. For example, the semantics of x1 in Fig. 4.3c is Jx1K = CXbx.
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semantics of circuit graphs The semantics of a given circuit graph
G = (V, E) is the composition of the semantics of its gate nodes, according
to the partial order specified by its edges. More precisely, we first select an
arbitrary linearization L(G) of the gate nodes Vgates ⊆ V consistent with
the partial order induced by E. Then, we compose the node semantics in
this order by function composition. Importantly, the resulting semantics is
independent of the choice of L(G).

For example, for the circuit graph G in Fig. 4.3b, we can select L(G) =
(c1, x1, y1), yielding the semantics:

JGK = Jy1K ◦ Jx1K ◦ Jc1K .

4.4.4 Compilation to Circuit

We now discuss how circuit graphs are compiled to circuits. As visualized
in Fig. 4.3, this step is applied after introducing uncomputation in the circuit
graph (discussed in §4.5). As such, the steps performed here are not part
of the transformation covered by Thm. 4.2.1, which for instance assumes a
constant number of ancillae.

ccx gates optimization Before the actual compilation, we run a
simple optimization pass suggested in [84, §6]: we replace every CCX gate
targeting an ancilla qubit by a more efficient Margolus gate, which has
the same semantics as CCX, except that it maps |111⟩ to − |110⟩ instead
of |110⟩. This so-called phase change does not affect the semantics of the
whole circuit, as Unqomp ensures that all replaced CCX gates are paired
with a gate uncomputing it, which, when also replaced, reverts the phase
change.

This optimization is already selectively leveraged by experts. For instance,
Qiskit uses Margolus gates in its library implementation of the MCX gate.
In our case, by leveraging the uncomputation information available in the
circuit graph, we can effortlessly extend this optimization to all uncomputed
CCX gates in a circuit.

linearization To compile G = (V, E) to a circuit after applying the
optimization above, we first prepare a wire for each init node and then
select a linearization L(G) yielding (v1, . . . , vn). Next, we insert the gates
gate(v1), . . . , gate(vn) into the circuit according to this linearization, deter-
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a1 |0⟩ |0⟩
b H • • • • H

a2 |0⟩ |0⟩

(a) Naive compilation.

a |0⟩
|0⟩

|0⟩
b H • • • • H

(b) Efficient compilation.

≡

Figure 4.5: Reusing qubits.

mining the target and control qubits involved in gate(vi) by the incoming
target and control edges at vi.

For example, compiling Fig. 4.3d using the linearization (c1, y1, c⋆0 , x1)
yields the circuit in Fig. 4.3e.

reusing qubits Unfortunately, this strategy allocates a wire for each
ancilla qubit in G. This is unnecessarily wasteful, as a wire holding a
correctly uncomputed ancilla is in unentangled state |0⟩ and can be safely
reused to hold another ancilla without introducing unexpected side effects.

For example, Fig. 4.5a shows the result of uncomputing qubits a1 and
a2 in a toy circuit, where dotted boxes indicate gates inserted by Unqomp.
The resulting circuit requires 3 wires in total. In contrast, Fig. 4.5b shows a
more efficient compilation which only requires 2 wires by reusing the same
wire to hold both ancillae. This is possible because the lifetimes of the two
ancillae do not overlap.

final nodes To track the lifetime of ancillae, we introduce final nodes,
which mark the end of the computation involving a qubit. Specifically, for
every node u ∈ V with no outgoing target edge, we add to G a final node v,
a target edge u→ v, and any induced anti-dependency edges. Additionally,
we extend the linearization to L+(G), which includes init, gate, and final
nodes, respecting the partial order induced by E. As a result, in L+(G), the
qubit corresponding to a final node is not involved in any gate at any later
position.

greedy ancilla allocation To reduce the number of wires, we
employ a simple but effective greedy strategy reusing wires whenever
possible. Specifically, we process the nodes in V in the order L+(G). The
init and final nodes allow us to track the start and end of a qubit’s lifetime.
Upon visiting an ancilla init node, we greedily try to allocate it on a wire
that holds an ancilla qubit which is no longer alive and thus must have
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been uncomputed by Unqomp. If no such wire exists, we allocate a fresh
wire. This approach is an instantiation of linear scan register allocation [85],
which is provably optimal for a fixed linearization [86, §17]. As finding an
optimal linearization is computationally expensive, we next introduce a
greedy heuristic to select a linearization that performs well empirically (see
§4.6).

linearization heuristic To select a linearization L+(G), we slightly
modified Kahn’s algorithm [87]—a standard algorithm which creates a
linear order of G’s vertices by iteratively removing vertices that have no
incoming edges.

Specifically, when selecting the next node to be removed from G, we de-
prioritize ancilla init nodes and only select them if no other choice exists. As
a consequence, L+(G) greedily completes computations involving ancillae
before allocating new ancillae, whenever possible.

discussion : graph coloring Unfortunately, graph coloring alloca-
tion (e.g., [88, §8]) cannot be readily adapted for circuit graphs as they
enforce fewer ordering constraints between operations than control flow
graphs, meaning that we cannot definitively determine if two given ancillae
are live simultaneously. Hence, recording pairwise conflicts is insufficient:
even if each pair of ancillae (a, b), (b, c) and (c, a) can be allocated on the
same wire, allocating all three of them on the same wire may be impossible.

4.5 synthesizing uncomputation

In this section, we formalize Unqomp (§4.5.1), discuss the conditions it
checks to ensure uncomputation is possible (§4.5.2), and sketch Unqomp’s
correctness proof (§4.5.3).

4.5.1 Unqomp

Algorithm 1 formalizes Unqomp, which takes a circuit graph G and a list
of ancilla qubits to be uncomputed (Line 1), and returns, if possible, G
extended by gate nodes uncomputing the ancilla qubits. The following
discussion complements our informal presentation of Unqomp on the
example in §4.3.
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Algorithm 1 Unqomp: Synthesizing uncomputation.

1: procedure Unqomp(G, a(1), . . . , a(n): qubits)
2: (v1, . . . , vn)← L(G) ▷ linearization of gate nodes
3: for all v in (vn, . . . , v1) do ▷ iterate in reverse order
4: if qbit(v) ∈ {a(1), . . . , a(n)} then ▷ gates operates on ancilla
5: G ← UncomputeStep(G, v)

return G
6: procedure UncomputeStep(G, an: gate node) ▷ G = (V, E)
7: assert gate(an) is qfree
8: a⋆n ← last gate node targeting qbit(an)
9: ctrls← {c ∈ V | c •→ an ∈ E} ▷ controls of an

10: for all c ∈ ctrls do ▷ in ctrls, replace c by c⋆ wherever possible
11: if c⋆ ∈ V then ctrls← ctrls \ {c} ∪ {c⋆}
12: a⋆n−1 ← Inverse(an) ▷ fresh node with inverse gate
13: Eu ← {c •→ a⋆n−1 | c ∈ ctrls} ∪ {a⋆n → a⋆n−1} ▷ fresh edges
14: Ea ← {v 99K a⋆n−1 | a⋆n •→ v ∈ E, v ∈ V}∪ ▷ anti-dependencies
15: {a⋆n−1 99K v | c→ v ∈ E, c ∈ ctrls}
16: Gu ←

(
V ∪ {a⋆n−1}, E ∪ Eu ∪ Ea

)
▷ adding uncomputation

17: assert Gu has no cycles
18: return Gu

all steps To uncompute a given list of ancillae on a given circuit
graph G = (V, E), Unqomp iterates over a linearization L(G) in reverse
order (Lines 3–5), introducing an uncomputation step for every gate node
targeting an ancilla.

single step The core of Unqomp is procedure UncomputeStep (Line 6),
which takes a circuit graph G = (V, E) and a gate node an to be uncom-
puted. It first checks that the gate of an is qfree (Line 7). It then determines
the last gate node a⋆n targeting qbit(an) (Line 8), which restores the state of
qubit a after an and will be the target of the inserted uncomputation. We
note that if this is the first uncomputation step on qubit a, then a⋆n = an, as
in our overview example (Fig. 4.3). Otherwise, a⋆n was inserted by Unqomp
in a previous step.

In Line 9, UncomputeStep determines the nodes controlling an, which are
required for controlling the uncomputation. Note that some of those control
nodes c may have already been uncomputed by a previous step of Unqomp.
In this case, as c and c⋆ can be used interchangeably, UncomputeStep

replaces the former by the latter whenever possible (Line 11). This is helpful
as using c⋆ is more likely to result in a cycle-free graph than using c (see
App. B.2).

Next, UncomputeStep constructs the gate node a⋆n−1 and edges Eu to be
inserted into G. Specifically, the gate node a⋆n−1 applies the inverse gate of
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a X H

G1 (as circuit)

|0⟩a
JG1K7−−→ 1√

2

(
|0⟩a − |1⟩a

)
|0⟩a

JG1K7−−→ 1√
2

(
|0⟩a − |0⟩a

)
= 0

(a) Ancilla a is modified by the non-qfree gate H.

a •
x •

G2 (as circuit)
1√
2

(
|00⟩ax − |01⟩ax

) JG2K7−−→ 1√
2

(
|00⟩ax − |10⟩ax

)
1√
2

(
|00⟩ax − |01⟩ax

) JG2K7−−→ 1√
2

(
|00⟩ax − |00⟩ax

)
= 0

(b) Uncomputing ancilla a would result in a cyclic dependency.

Figure 4.6: Ancilla qubits that cannot be uncomputed.

an (Line 12), targets a⋆n, and is controlled by ctrls (Line 13). UncomputeStep

further generates the anti-dependency edges induced by the new edges
(Line 14), and constructs the new graph Gu by inserting all new gates and
edges into G (Line 16).

Finally, UncomputeStep reports an error if Gu contains a cycle (Line 17),
and returns Gu otherwise (Line 18).

4.5.2 Incompleteness

Unfortunately, uncomputation is mathematically impossible in some cases.
Fig. 4.6 exemplifies the two fundamental reasons for this. In both examples,
satisfying Thm. 4.2.1 would require constructing a circuit graph G which
produces the invalid state 0 = ∑k∈{0,1}n 0 · |k⟩. As no quantum circuit can
produce this state, uncomputation is impossible in these cases, forcing
Unqomp to return an error.

non-qfree In Fig. 4.6a, the underlying problem is that gate H applied
to ancilla a is not qfree and therefore mixes basis states: it turns the basis
state |1⟩a (the result of applying X to the initial state |0⟩a) into superpo-
sition 1√

2

(
|0⟩a − |1⟩a

)
. Replacing |1⟩a by |0⟩a in this state (as required

by Thm. 4.2.1) then yields the invalid state 0. Therefore, Unqomp only
uncomputes qfree gates, as asserted in Line 7 of Algorithm 1.

cyclic dependency Fig. 4.6b demonstrates that even for circuits con-
taining only qfree gates, uncomputation may not be possible. The underly-
ing problem in the example is that inserting an uncomputation gate would
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result in a cyclic dependency: the uncomputation node for a would have
to be (i) before the CX gate targeting x, as it uses the initial value of x,
but also (ii) after it, as this gate uses the updated value of a. Therefore,
Unqomp asserts that the generated circuit graph contains no cycles (Line 17

in Algorithm 1).

conservative criteria We note that Unqomp may return an error
even though uncomputation would be possible in principle, as the criteria
it checks (Lines 7 and 17 in Algorithm 1) are conservative. For example,
applying gate H to an ancilla twice has no effect on its state (as H is self-
inverse), but triggers an error in Unqomp as H is not qfree. In such rare
cases, the programmer may revert to manual uncomputation, at the costs
discussed in Fig. 4.1.

We note that this is not a concern in practice: in our evaluation (§4.6),
Unqomp was able to uncompute all temporary values, except when they
involved temporary changes of controls. This problem appeared for MCX
gates with negated controls, present in two of our examples (Adder and
WeightedAdder, see §4.6). To resolve this issue, we ensured that Unqomp
treats these problematic gates as atomic qfree gates.

4.5.3 Correctness of Unqomp

Next, we discuss the key insights in our proof of Thm. 4.2.1.

Theorem 4.2.1 (Correctness). Let Unqomp(G, A) = G for circuit graph G
with n qubits of which m are ancilla qubits. Without loss of generality, assume that
those ancillae A =

(
a(1), . . . , a(m)

)
are the first m qubits of G. If

|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |k⟩A ⊗ ϕk, then (4.4)

|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |0 · · · 0⟩A⊗ ϕk. (4.5)

outline We first prove Thm. 4.2.1 in a restricted setting, where (i) there
is only a single ancilla a targeted by a single gate U, (ii) the controls c of U
are in a basis state |i⟩, and (iii) the gate U occurs first in the computation,
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Figure 4.7: Effect of uncomputation on quantum state.

while (iv) the gate U† uncomputing U occurs last. Then, we discuss how
our full proof avoids these restrictions.

proof sketch The key insight of our proof is that if an ancilla is
computed using a qfree gate U, it can be uncomputed as long as its controls
are still available.

Fig. 4.7 shows how the qfree gate U and its uncomputation affect the
quantum state. First, the effect of U follows Eq. (4.1) in §4.2, updating qubit
a to | fi(0)⟩. Then, any remaining gates preserve both a (as U is the only
gate targeting a) and c (as any gate targeting the control c of U† must be
after U† due to anti-dependency edges). Finally, applying U† restores the
state of ancilla qubit a to | f−1

i ( fi(0))⟩ = |0⟩.
This concludes our proof as the first, second to last, and last states in

Fig. 4.7 correspond to the left hand side of Eq. (4.4), the right hand side of
Eq. (4.4), and the right hand side of Eq. (4.5), respectively.

full proof We provide a full proof in App. B.2. It (i) handles multiple
ancillae and multiple gates by induction on the number of gate nodes in G,
(ii) naturally extends to controls in superposition, (iii) accounts for gates
before U and after U†, and (iv) takes into account that nodes c and c⋆ can
be used interchangeably (see Line 11 in Algorithm 1).

4.6 evaluation

We now present an extensive experimental evaluation of Unqomp on com-
mon quantum algorithms.

implementation We implemented our approach as a language exten-
sion called Qiskit++, which integrates Unqomp into Qiskit as visualized
in Fig. 4.3. Qiskit++ allows annotating ancilla qubits in a Qiskit program
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at allocation time (e.g., see Line 2 in Fig. 4.3a) and uncomputes these
automatically. Like Qiskit, Qiskit++ is written in Python.

research questions Our evaluation addresses the following research
questions, where Q1 and Q2 analyze the input Qiskit++ code and Q3

evaluates the compilation result.

Q1 Code Length: Does Unqomp reduce the amount of code, compared to
manual uncomputation?

Q2 Modularity: Does Unqomp allow writing more modular and hence less
complex code?

Q3 Efficiency: Does Unqomp yield more efficient circuits in terms of gates
and qubits?

4.6.1 Evaluated Algorithms

To address these questions, we evaluated Unqomp on 10 quantum al-
gorithms shown in Table 4.1. We used the implementations from Qiskit
0.22.0 [89] and Cirq v0.9.1 [90], where we re-implemented Cirq examples in
Qiskit.

algorithms Each quantum algorithm is represented by a Python func-
tion which, given some parameters such as the input size, constructs a cir-
cuit implementing the algorithm. For example, the MCX (multi-controlled
NOT) function accepts a parameter n, and constructs a circuit which takes
inputs (c1, . . . , cn, t) to compute (c1, . . . , cn, t⊕ (c1& . . . &cn)).

Deutsch-Jozsa [47, §1.4.4] and Grover [47, §6] are well-known quantum
algorithms. Given an integer v, IntegerComparator flips a target qubit if the
number encoded in a list of control qubits is greater than v. Given n and an
angle θ, MCRY (multi-controlled Y rotation) rotates a target qubit by θ in the
Y basis if all of n control qubits are 1. For parameter n, Multiplier computes
the binary representation of x · y for two numbers x and y encoded in n
qubits each. Similarly, Adder computes x + y. Given n and a piecewise
linear function f , PiecewiseLinearR rotates a target qubit by the angle f (c)
in basis Y, where c is encoded using n control qubits. In PolynomialPauliR,
the function f is polynomial. Finally, given n and a list v1, . . . , vn of classical
values, WeightedAdder computes ∑ civi for control qubits ci.

For our Qiskit++ implementations of these algorithms, we simply re-
moved the parts performing uncomputation or manually passing ancillae
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Table 4.1: Comparing code complexity with and without Unqomp. The table
shows the lines of code (incl. relative difference), whether ancilla
allocation is modular (M), and whether uncomputation is implicit
(U). Algorithms marked with c are from Cirq [90], while all other
algorithms are from Qiskit [89].

Original with Unqomp
Algorithm lines M U lines diff M U

Adder c 31 ✓ 28 −10% ✓ ✓
Deutsch-Jozsa 13 ✓ ✓ 12 −8% ✓ ✓
Grover 46 ✓ ✓ 31 −33% ✓ ✓
IntegerComparator 45 38 −16% ✓ ✓
MCRY 7 4 −43% ✓ ✓
MCX 16 ✓ 13 −19% ✓ ✓
Multiplier c 13 11 −15% ✓ ✓
PiecewiseLinearR 43 29 −33% ✓ ✓
PolynomialPauliR 120 118 −2% ✓ ✓
WeightedAdder 70 42 −40% ✓ ✓

(see §4.6.3) and instead annotated ancilla qubits to enable automatic un-
computation.

uncomputation synthesis time We ran the Qiskit++ compilation
pipeline on a commodity laptop with 8 GB of RAM and 8 CPU cores at
2.40 GHz. For all algorithms presented in Table 4.1, our implementation of
Unqomp required less than 1 second to introduce uncomputation.

4.6.2 Q1: Code Length

Table 4.1 compares the code lengths of the Qiskit (original) and Qiskit++
(with Unqomp) implementations for each algorithm. We observe that Un-
qomp consistently reduces the number of code lines, by up to 43%.

Most Qiskit algorithm implementations include explicit uncomputation
code, which reverts all gates applied to the ancillae (see non-ticked in
column U). This is not required in Qiskit++, leading to a significant code
reduction. For example, in WeightedAdder, 39% of the source code lines
deal with explicit uncomputation, which can be omitted using Unqomp.
Explicitly inserting uncomputation not only increases code length but may
also require rewriting the actual computation. For example, the original
implementation of Adder is convoluted by re-ordered gates and interleaved
uncomputation (cp. Fig. 4.3e). In contrast, uncomputation in Unqomp is
implicit and ancillae are uncomputed automatically.
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c1 = QuantumRegister(n)

c2 = QuantumRegister(n - 1)

g1 = MCXGate(len(c1))

g2 = MCXGate(len(c2))

a = QuantumRegister(max(

g1.num_ancillae,

g2.num_ancillae))

c.append(g1, c1, t, a)

c.append(g2, c2, t, a)

(a) Ancilla reuse in Qiskit.

c1 = QuantumRegister(n)

c2 = QuantumRegister(n - 1)

a = QuantumRegister(n - 2)

c.mcx(c1, t, a)

c.mcx(c2, t, a)

(b) Hardcoded qubits.

c1 = QuantumRegister(n - 1)

c2 = QuantumRegister(n)

c.mcx(c1, t)

c.mcx(c2, t)

(c) Modularity in Qiskit++.

Figure 4.8: Exposing ancillae to the caller in Qiskit. We shorten c.append(MCXGate(

len(c)), c, t, a) to c.mcx(c, t, a).

The Deutsch-Jozsa and Grover implementations do not include any un-
computation as they leverage phase kickback for the oracle evaluation.
We note that the oracle circuit (which may perform uncomputation inter-
nally) is provided as a parameter to these algorithms and hence not part of
the code considered here. For this reason, Unqomp cannot save any lines
for Deutsch-Jozsa. The significant reduction for Grover originates from a
modularity issue discussed next.

4.6.3 Q2: Modularity

Next, we compare the modularity of ancilla allocation. Overall, we find that
Qiskit functions often break modularity, while Qiskit++ allows for modular
code.

exposing ancillae in qiskit Qiskit functions expose the number
of required ancillae to the caller using a field num_ancillae and rely on the
caller to allocate them. This allows developers to manually reuse ancillae
across functions, relying on correct uncomputation within the functions.
For example, Fig. 4.8a shows a code snippet where the developer allocates
the required ancillae a for two MCX gates.

While this construction respects modularity, it requires the developer to
manually reuse qubits and tediously combine the ancilla requirements of
multiple functions to determine the number of ancillae to allocate. This
creates significant overhead: for instance, a third of the lines in the original
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Grover implementation deal with ancilla management. Indeed, this con-
struction is only used for few examples in our benchmark (see ticked ✓ in
column M of Table 4.1).

breaking modularity To reduce developer overhead, Qiskit functions
are often implemented in a non-modular manner (see column M), where
ancilla requirements are hard-coded using hand-crafted formulas relying
on explicit knowledge about the implementation of called functions. As a
typical example, Fig. 4.8b allocates exactly n− 2 ancillae for MCX using
knowledge of its internal implementation and of the length of both c1 and
c2.

Clearly, this increases coupling and leads to issues if library implemen-
tations are changed. Indeed, we found multiple inefficient usages of MCX
and MCRY in the Qiskit library, allocating more ancillae than necessary for
those gates due to a change in their default implementation. We reported
three such issues to the developers, who have subsequently fixed them. 4

Fixing these issues further ensured that using the “v-chain” variant of MCX
requires only a low number of basic gates by using all allocated ancillae, as
we discuss in §4.6.4.

modularity in qiskit++ In contrast to Qiskit, Qiskit++ allows allo-
cating ancillae in a modular manner, as indicated by ✓ in column M of
Table 4.1. A library function can locally allocate ancilla qubits for internal
use, without exposing them to the caller of the function. Both caller and
library can rely on Unqomp to automatically uncompute ancillae, and effi-
ciently allocate and reuse qubits. For example, in Fig. 4.8c, the caller does
not need to know about the ancillae in MCX.

4.6.4 Q3: Efficiency

We now compare the efficiency of circuits generated by Qiskit++ to circuits
generated by Qiskit and Quipper, where Quipper is only applicable for clas-
sical programs, i.e., programs only consisting of qfree operations. Overall,
we find that Qiskit++ circuits are often significantly more efficient.

4 https://github.com/Qiskit/qiskit-terra/issues/4786 for MCRY, https://github.com/

Qiskit/qiskit-terra/issues/5320 for WeightedAdder, and https://github.com/Qiskit/

qiskit-terra/issues/5321 for PolynomialPauliR.

https://github.com/Qiskit/qiskit-terra/issues/4786
https://github.com/Qiskit/qiskit-terra/issues/5320
https://github.com/Qiskit/qiskit-terra/issues/5320
https://github.com/Qiskit/qiskit-terra/issues/5321
https://github.com/Qiskit/qiskit-terra/issues/5321
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Table 4.2: Percentage of gates and qubits (qbs) saved by Unqomp, where higher
numbers are better. Implementations marked with ∗ were improved
in Qiskit due to our bug reports (see Footnote 4). Entries in paren-
thesis require manual intervention, and ✗ indicates that Quipper’s
classical_to_reversible_optim is not applicable.

Qiskit Quipper
gates qbs gates qbs

Algorithm all CX all CX

Adder 34 35 0 56 62 17
Deutsch-Jozsa 0 0 0 (38) (50) (5)
Grover 0 0 0 (40) (50) (5)
IntegerComparator 31 48 0 41 51 0
MCRY 99.5 99.5 −4 ✗ ✗ ✗
MCRY ∗ 48 48 −4 ✗ ✗ ✗
MCX 0 0 0 41 51 5
Multiplier 36 38 2 −25 −25 34
PiecewiseLinearR 41 42 29 ✗ ✗ ✗
PolynomialPauliR 81 86 11 ✗ ✗ ✗
PolynomialPauliR ∗ 44 45 11 ✗ ✗ ✗
WeightedAdder 43 55 −12 52 53 78
WeightedAdder ∗ 30 33 −12 52 53 78
WeightedAdder alt. impl. 31 46 0 48 50 82
WeightedAdder alt. impl. ∗ 16 20 0 48 50 82

approach For all algorithms, we ran the full compilation pipeline as
shown in Fig. 4.3, followed by Qiskit’s decomposition into the two basic
gates CX and U3 as post-processing, using the “v-chain” variant of MCX.
Further, we instantiated the oracle circuit in Grover and Deutsch-Jozsa
with an MCX gate. For the comparison to Quipper, we manually translated
the algorithms to Quipper using the classical_to_reversible_optim construct to
insert uncomputation. We then applied the Qiskit decomposition discussed
above to the resulting circuits.

We show the resulting reduction from Qiskit to Qiskit++ and Quipper to
Qiskit++ for gates and qubits in Table 4.2. For completeness, Table 4.2 also
shows the reduction in CX gates only (which are typically more expensive
than U3 gates), with analogous results.

limitations of classical uncomputation As shown in Table 4.2,
the uncomputation offered by Quipper is severely limited: because construct
classical_to_reversible_optim only supports classical programs, the presence
of non-qfree gates prevents directly applying it on Deutsch-Jozsa, Grover,
MCRY, PiecewiseLinearR, and PolynomialPauliR. However, when ancillae
are only used in qfree parts of the circuit, it is possible to isolate those
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c.ccx(c0, c1, a0)

c.ccx(c2, a0, r)

c.h(c0)

(a) Separable qfree section.

c.ccx(c0, c1, a0)

c.ccx(c2, a0, a1)

c.cry(a1, r, 2)

(b) Non-qfree gate on ancilla.

Figure 4.9: Limitation of Classical Uncomputation. Variables c0, c1, c2, r are
qubits and a0, a1 are ancillae. The call c.ccx(c0, c1, a0) applies a CCX
gate with controls c0, c1 and target a0, while c.cry(a0, r, 2) applied
a controlled rotation with control a0, target r, and angle 2.

qfree parts and apply classical_to_reversible_optim to these, before combining
them with the non-qfree parts of the algorithm. For example, Fig. 4.9a
shows an extract of the Grover implementation for input size 3. The an-
cilla a0 is only used in the first two lines. Thus, we can apply Quipper
classical_to_reversible_optim to the circuit generated by those two lines, and
append to its result the gate corresponding to the third line. This strat-
egy allows applying Quipper uncomputation to Grover and Deutsch-Jozsa.
However, this approach not only requires manual intervention but also
results in less efficient circuits (see Table 4.2).

When ancillae are used in parts of the circuit that are not purely qfree—as
shown for instance in Fig. 4.9b on the code for MCRY with input size 3—the
above separation is not possible. This is the case for MCRY, PiecewiseLin-
earR and PolynomialPauliR. Thus, Quipper cannot synthesize uncomputa-
tion for these examples (see ✗ in Table 4.2).

4.6.4.1 Reduction in Gate Count

For all but three algorithms, Qiskit++ significantly reduces the number of
gates compared to Qiskit, by up to 99.5%. These extremely high savings are
partially due to a regression bug in Qiskit (see Footnote 4), which Unqomp
helps to avoid. Even for algorithms not affected by this regression, or after
fixing this regression (∗ in Table 4.2), Qiskit++ allows for significant savings
of up to 48%. On the three algorithms where Qiskit++ does not outperform
Qiskit, both yield circuits with identical size. Being well-studied quantum
algorithms, the implementations of Grover and Deutsch-Jozsa have been
manually optimized by experts to reduce gate and qubit counts. Similarly,
MCX has been heavily studied and optimized [84].

Compared to Quipper, Qiskit++ almost always produces fewer gates, with
savings of up to 66%. Quipper outperforms Qiskit++ only on Multiplier,
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due to an optimization pass performed by Quipper but not Qiskit++. In
particular, Quipper applies constant propagation and can for example
remove CCX gates if one of their controls is known to be 0. We note that this
optimization is orthogonal to our work and could in principle be integrated
in Qiskit++ as well. When disabling the optimization in Quipper, Qiskit++
consistently produces fewer gates than Quipper.

origin of reductions Overall, the gate savings of Qiskit++ can be ex-
plained by (i) redundant uncomputation in the original implementation (see
Fig. 4.1) and (ii) CCX gate optimizations performed during our compilation
(see §4.4.4).

Redundant uncomputation concerns MCRY, PiecewiseLinearR, Polyno-
mialPauliR, and WeightedAdder, as these examples rely on libraries for
integrating sub-components in a modular manner.

CCX gate optimizations lead to significant gains for all algorithms, except
for those where no savings were observed. Note that this optimization is
already partially applied in the baseline Qiskit implementations (manu-
ally to MCX, and indirectly to all examples that use MCX). Consistently
applying this optimization to the Qiskit baseline would be virtually im-
possible without Unqomp: it would require knowing which CCX gates are
later uncomputed, which is impossible to determine for library functions
computing values which may or may not be used as ancillae.

For Quipper, an additional source of gate savings lies in the more fine-
grained control allowed by Qiskit++. Algorithms must be implemented
as Haskell functions in Quipper. Hence, many optimizations, such as tem-
porarily changing the value of an input argument in-place, cannot be used.

asymptotic gains Fig. 4.10a shows the effect of varying some circuit
parameters for selected algorithms: efficiency gains often increase with
increasing complexity. Even after the fixes following our bug reports (Foot-
note 4), Unqomp allows for a significant reduction in all shown algorithms.

gate explosion for recursive calls As visualized in Fig. 4.1,
using library functions in Qiskit leads to redundant uncomputation. We
now demonstrate that this effect is arbitrarily amplified by nested library
calls. As a consequence, we should expect Unqomp to yield even larger
efficiency gains when quantum algorithms become increasingly complex.

We implemented a toy algorithm RecursiveSeq that computes the se-
quence xn+1 = 2xn + 1 according to its recursive definition: the function
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Figure 4.10: Gates and qubits for different algorithm parameters using Qiskit++
( ; this work) and Qiskit ( ). Some implementations were im-
proved as a result of our bug reports (see Footnote 4), shown as .
For WeightedAdder, we show an alternative Qiskit++ implementa-
tion ( ) trading gates for qubits. Lower values are better.

computing xn+1 uses a recursive function call to compute xn on an ancilla
a and returns 2a + 1. We implemented this algorithm in Qiskit by explicitly
performing uncomputation in each recursive call. In Qiskit++, uncompu-
tation is automatic. As shown in Fig. 4.10a, this leads to an exponential
increase of gate counts for Qiskit, while the count only increases linearly
for Qiskit++. This suggests that more generally, Unqomp allows significant
efficiency gains for complex algorithms with deep call trees.

4.6.4.2 Reduction in Qubit Count

Table 4.2 also compares the number of qubits for the implementations, and
Fig. 4.10b shows the impact of varying algorithm parameters on the number
of qubits.

Overall, Quipper yields significantly higher qubit counts. Compared to
Qiskit, Qiskit++ results in an identical number of qubits for many algo-
rithms, showing that Unqomp’s ancilla allocation (§4.4.4) can often compete
with manual allocation. Furthermore, for some examples, Unqomp yields
a significant reduction in qubits, indicating that a completely manual ap-
proach fosters errors and missed optimizations.
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For RecursiveSeq, Unqomp finds a non-trivial qubit allocation that is hard
to detect manually, and thus only requires a constant number of qubits.

For PolynomialPauliR, the number of qubits in Qiskit++ remains constant
for polynomial degrees d above 8, while it increases linearly for Qiskit. This
is due to the Qiskit implementation allocating d qubits in a hard-coded
fashion (see §4.6.3). However, a detailed analysis of the code shows that
the number of required ancillae is actually only min(d, n), where n is the
input size. In contrast to Qiskit, Unqomp automatically finds this improved,
non-trivial qubit allocation. Similarly, for PiecewiseLinearR, Unqomp finds
a more efficient qubit allocation, using n ancillae for an input size n, instead
of n + b, where b is the number of breakpoints.

trading off qubits and gates Unfortunately, the gate count reduc-
tion for WeightedAdder comes at the cost of more qubits. This is a result
of Unqomp performing uncomputation later in the circuit than the Qiskit
implementation, which prevents some qubit reuse. Still, using a slightly
modified alternative Qiskit++ implementation, we can trade Unqomp’s gate
savings for fewer qubits, resulting in identical qubit counts (see Table 4.2).
Similarly, for MCRY, Qiskit++ requires exactly one more qubit than the
original Qiskit implementation, as it uses slightly different code—instead
of two MCX gates it uses only one MCX with its uncomputation and an
extra ancilla qubit. This trade-off is only interesting when using automatic
uncomputation: as MCX uses a lot of internal auxiliary values, modular
manual uncomputation is quite expensive, while automatic uncomputation
is cheap, as illustrated in Fig. 4.1. This cheap uncomputation allows Qiskit++
to produce half as many gates as Qiskit, at the cost of only one extra qubit.

4.7 related work

We now discuss previous works related to Unqomp both in terms of (i) our
goal of synthesizing uncomputation, and (ii) key aspects of our approach
to address this goal.

automatic uncomputation Table 4.3 summarizes existing approaches
to handle automatic uncomputation. As discussed next, these approaches
differ from Unqomp in that they either do not provide a compilation to
circuits, or only apply to classical computation. We note that ReQWire [58]
can additionally prove that a manually provided uncomputation is safe.
However, it cannot automatically synthesize uncomputation, except for
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Table 4.3: Comparing Unqomp to related approaches.
Approach/Language Autom. Uncomp. Circuit

Quipper [23] (qfree) ✓
Revs [81] (qfree) ✓
ReVerC [59] (qfree) ✓
ReQWire [58] (qfree) ✓
Silq [1] ✓ ✗
Unqomp (this work) ✓ ✓

purely classical circuits. Table 4.3 omits SQUARE [91] as it does not syn-
thesize uncomputation: SQUARE expects the programmer to manually
provide and mark the uncomputation code blocks for each ancilla, and then
saves qubits or operations by interleaving those blocks. Further, SQUARE
suffers from multiple shortcomings such as skipping uncomputation of
some ancillae [14, §7.1].

silq : enable safe uncomputation Silq is the closest work to Un-
qomp in that it also promises automatic uncomputation and relies on
analogous high-level insights for ensuring correctness, namely the notion
of qfree gates and controls (cp. §4.5.3). However, while Silq’s type system en-
sures that safe uncomputation is possible for all temporary values, Silq does
not provide a compiler that synthesizes this uncomputation. In contrast,
Unqomp synthesizes uncomputation, which allows extending arbitrary
circuit-based languages (such as Qiskit [39]) to support automatic uncom-
putation. We can view Unqomp as a key step towards compiling Silq, which
in particular requires automatically generating safe uncomputation.

qfree programs Quipper [23], Revs [81], ReverC [59], and ReQWire [58]
support automatic uncomputation only for classical programs, i.e., pro-
grams that only use qfree functions. Further, ReverC only uncomputes
boolean expressions, meaning it is not applicable to any of our examples
in Table 4.1. In contrast, only Silq and Unqomp support uncomputation in
quantum programs that interleave qfree with non-qfree operations. Only
supporting qfree computations is a severe restriction—half of the programs
we evaluated (see §4.6) are not fully qfree. Further, the proposed workflow
for these approaches is to compile the classical part of a quantum program
and then insert the result into the resulting quantum circuit. However, this
workflow cannot always be applied, as shown in Fig. 4.9, and generally
results in inefficient circuits, analogously to Fig. 4.1.
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operation ErroneousUncomputation(x : Qubit) : Unit

{

use ancilla = Qubit();

ApplyWith(CopyX, ModifyX, (x, ancilla));

// Error: Ancilla is not in zero state

}

operation CopyX(x : Qubit, ancilla : Qubit) : Unit is Adj

{

CNOT(x, ancilla);

}

operation ModifyX(x : Qubit, ancilla : Qubit): Unit is Adj

{

CNOT(ancilla, x);

// Error: modifies x which is needed for uncomputation

}

Figure 4.11: ApplyWith producing erroneous uncomputation.

convenience functions Various quantum languages offer conve-
nience functions that simplify manual uncomputation, such as ApplyWith

in Q# [22] or with_computed in Quipper [23]. However, relying on these fea-
tures cannot guarantee the resulting uncomputation is safe, as incorrectly
using them does not result in an error.

For example, Fig. 4.11 shows Q# code using ApplyWith to uncompute a
in Fig. 4.6b. As uncomputing a is physically impossible (see §4.5.2) and
ApplyWith performs no static checks, this program results in an incorrect
circuit whose error is only detected at runtime (i.e., during simulation).

In addition to being unsafe, convenience functions are often tedious to
use. For instance, ApplyWith cannot be used in combination with for-loops,
forcing even expert Q# developers to resort to manual uncomputation
in some cases. 5 Finally, convenience functions often generate inefficient
circuits, as explained in Fig. 4.1.

circuit graphs Various existing works have represented circuits in
terms of circuit graphs. In classical computation, dependency graphs have
long been used to represent computations without enforcing irrelevant
ordering constraints (see e.g., [92], [88, §5.2]). Naturally, works in this
domain do not discuss quantum computations or quantum circuits.

5 For an example, see https://github.com/microsoft/QuantumKatas/blob/

7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.

qs#L73

https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73
https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73
https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73
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Multiple works in quantum computation operate on graph-based circuit
representations. However, as none of them are geared towards uncom-
putation, their graphs (i) do not distinguish between target, control, and
anti-dependency edges [93, 94, 95], (ii) are often limited to only a few types
of gates [94, 95], and (iii) are not suitable for inserting (uncomputation)
gates because they do not contain enough information to reconstruct the
circuit they represent [93].

ancilla allocation Our approach to ancilla allocation (§4.4.4) is an
instantiation of linear scan register allocation [85], with one key simplifica-
tion: instead of a fixed number of registers (and the option of spilling to
the heap), we have an unlimited number of potential ancillae. The cost of
a specific allocation is hence simply the number of ancillae used, instead
of the cost of the operations on spilled registers, allowing for an optimal
allocation given a graph linearization.

4.8 impact

Since the publication of Unqomp, several researchers have worked on the
topic of automatic uncomputation or even built directly upon Unqomp,
highlighting its importance.

As discussed in §3.9, Qunity [24] extends Silq’s notion of automatic
uncomputation to non-qfree expressions, at the cost of probabilistic errors.
Qunity provides a compilation procedure for its programs, but unlike
Unqomp does not discuss how to minimize the gate count of produced
circuits. In fact, as its compilation is modular (see Fig. 4.1a), we do not
expect its suggested compilation to be particularly efficient.

Further, as mentioned in §3.9, Qrisp [25] was inspired by Silq and auto-
mates uncomputation by using Unqomp.

While VQO [34] does not support automatically synthesizing uncompu-
tation code, it can efficiently compile quantum oracles to circuits containing
non-qfree gates, e.g., applying a quantum Fourier transform. Due to this
improved flexibility, the resulting circuits are more efficient than Quipper
implementations. Overall, we believe these approaches are complementary,
i.e., we conjecture that combining both automatic uncomputation (from
Unqomp) and the ability to generate non-qfree gates (from VQO) would
likely yield the best results.
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Our own most recent work Reqomp [14] extends Unqomp with the ability
to respect a given resource constraint, allowing to synthesize circuits for
space-constrained quantum computers.

Further, Unqomp naturally complements other more recent works. For
example, Twist would reportedly benefit from the presence of automatic
uncomputation [77, §11].

4.9 conclusion

We presented Unqomp, a procedure synthesizing automatic uncomputation
for quantum circuits, using an internal representation in terms of circuit
graphs. Unqomp can be readily integrated into existing quantum languages,
which we demonstrated by extending Qiskit to Qiskit++.

Our evaluation showed that Unqomp reduces the amount of code, im-
proves code modularity, and yields substantially more efficient circuits in
terms of number of gates and qubits.





5
A B S T R A Q T: A N A LY S I S O F Q UA N T U M C I R C U I T S V I A
A B S T R A C T S TA B I L I Z E R S I M U L AT I O N

Stabilizer simulation can efficiently simulate an important class of quantum
circuits consisting exclusively of Clifford gates. However, all existing exten-
sions of this simulation to arbitrary quantum circuits including non-Clifford
gates suffer from an exponential runtime.

To address this challenge, we present a novel approach for efficient stabi-
lizer simulation on arbitrary quantum circuits, at the cost of lost precision.
Our key idea is to compress an exponential sum representation of the
quantum state into a single abstract summand covering (at least) all occur-
ring summands. This allows us to introduce an abstract stabilizer simulator
that efficiently manipulates abstract summands by over-approximating the
effect of circuit operations including Clifford gates, non-Clifford gates, and
(internal) measurements.

We implemented our abstract simulator in a tool called Abstraqt and
experimentally demonstrate that Abstraqt can establish circuit properties
intractable for existing techniques.

5.1 introduction

Stabilizer simulation [96] is a promising technique for efficient classical
simulation of quantum circuits consisting exclusively of Clifford gates. Un-
fortunately, generalizing stabilizer simulation to arbitrary circuits including
non-Clifford gates requires exponential time [36, 37, 38, 97, 98, 99]. Specifi-
cally, the first such generalization by Aaronson and Gottesman [36, §VII-C]
tracks the quantum state ρ at any point in the quantum circuit as a sum
whose number of summands m grows exponentially with the number of
non-Clifford gates:

ρ =
m

∑
i=1

ciPi

n

∏
j=1

I+(−1)
bij Qj

2 . (5.1)

Here, while ci, Pi, bij, and Qj can be represented efficiently (see §5.2), the
overall representation is inefficient due to exponentially large m.

83
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abstraction The key idea of Abstraqt is to avoid tracking the exact
state ρ of a quantum system and instead only track key aspects of ρ. To this
end, we rely on the established framework of abstract interpretation [100,
101], which is traditionally used to analyze classical programs [102, 103] or
neural networks [104] by describing sets of possible states without explicitly
enumerating all of them. Here, we use abstract interpretation to describe the
set of quantum states that could occur at a specific point during execution
of a circuit, by over-approximating the summands that could occur in any of
those quantum states ρ.

merging summands This allows us to curb the exponential blow-up
of stabilizer simulation by merging multiple summands in Eq. (5.1) into
an abstract single summand which over-approximates all summands, at
the cost of lost precision. The key technical challenge addressed by our
work is designing a suitable abstract domain to describe sets of summands,
accompanied by the corresponding abstract transformers to over-approximate
the actions performed by the original exponential stabilizer simulation on
individual summands.

As a result, our approach is both efficient and exact on Clifford circuits,
as these circuits never require merging summands. On non-Clifford circuits,
merging summands trades precision for efficiency. Moreover, our approach
naturally allows us to merge the possible outcomes of a measurement into
a single abstract state, preventing an exponential path explosion when
simulating multiple internal measurements.

main contributions The main contributions of this chapter are:

• An abstract domain (§5.4) to over-approximate a quantum state repre-
sented by Eq. (5.1).

• Abstract transformers (§5.5) to simulate quantum circuits, including
gate applications and measurements.

• An efficient implementation1 of our approach in a tool called Ab-
straqt (§5.6), together with an evaluation showing that Abstraqt can
establish circuit properties that are intractable for existing tools (§5.7).

results Overall, we find that Abstraqt is useful in scenarios where
a full simulation of a given circuit is intractable, but establishing specific
properties of the considered circuit is desirable.

1 Our implementation is available at https://github.com/eth-sri/abstraqt.

https://github.com/eth-sri/abstraqt
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For example, in our evaluation (§5.7), we demonstrate that Abstraqt

can establish that a circuit ultimately restores some qubits to state |0⟩. As
precisely simulating the entire circuit is intractable, Abstraqt is typically
the only existing tool able to establish this fact on 12 benchmarked circuits.
In contrast, existing tools typically yield incorrect results, throw errors, run
out of memory, time out, or are too imprecise to establish the resulting state
is |0⟩.

outlook Abstraqt trades precision for efficiency by abstracting the sta-
bilizer simulation from Eq. (5.1), therefore allowing to establish properties
of quantum circuit outputs when full simulation is intractable. Such results
may be useful for tasks like (i) establishing that an internal circuit state
allows for specific optimizations, (ii) debugging quantum computers by
establishing invariants that can be checked at runtime, and more generally
(iii) static analysis of quantum circuits, or (iv) verification of the correctness
of quantum circuits.

Further, as discussed in §5.7.4, Abstraqt abstracts the very first stabilizer
simulation generalized to non-Clifford gates by Aaronson and Gottes-
man [36, §VII-C]. We believe that our encouraging results pave the way to
introduce analogous abstraction to various follow-up works which improve
upon this simulation [37, 38, 98, 99]. As these more recent works scale
better than [36, §VII-C], we expect that a successful application of abstract
interpretation to them will yield even more favorable trade-offs between
precision and efficiency.

5.2 background

In the following, we present the background necessary for this chapter.

quantum state As discussed in Chapter 2, a pure n-qubit quantum
state can be represented as a state vector ψ ∈ C2n

. In this chapter, however,
we will typically represent state ψ as a density matrix ρ ∈ C2n×2n

, defined as
ρ = ψψ†, where ψ† denotes the conjugate transpose of ψ. For a mixed state,
i.e., a distribution over pure states ψi with probability pi, the corresponding
density matrix is ρ = ∑i piψiψ

†
i . Because both ψ and ρ store exponentially

many values, they cannot be represented explicitly for large n.

quantum gate An n-qubit quantum gate U ∈ U (2n) thus evolves ρ to
UρU†, where U (2n) is the set of unitary 2n × 2n matrices.
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stabilizer simulation The key idea of stabilizer simulation [36, 96]
is representing quantum states ρ = ψψ† implicitly, by stabilizers Q which sta-
bilize the state ψ, that is Qψ = ψ. As shown in [36], appropriately selecting

n stabilizers Qj then specifies a unique n-qubit state ρ = ∏n
j=1

I+Qj
2 .

In stabilizer simulation, all Qj are Pauli elements from Pn of the form
iv · P(0)⊗ · · · ⊗ P(n−1), where P(j) ∈ {X, Y, Z, I2} and v ∈ Z4. This directly
implies that all stabilizers Qi for the same state ψ commute, that is QiQj =
QjQi, as elements from the Pauli group Pn either commute or anti-commute.
These elements can be represented efficiently in memory by storing v and
P(0), . . . , P(n−1). In App. C.2, we list states stabilized by Pauli matrices
(Table C.1) and the results of multiplying Pauli matrices (Table C.2). Further,
in this chapter we use the functions bare b : Pn → Pn and prefactor f : Pn →
Z4 which extract the Pauli matrices without the prefactor and the prefactor,
respectively:

f(ivP(0)⊗ · · · ⊗ P(n−1)) = v, (5.2)

b(ivP(0)⊗ · · · ⊗ P(n−1)) = P(0)⊗ · · · ⊗ P(n−1). (5.3)

Applying gate U to state ρ can be reduced to conjugating the stabilizers
Qj with U:

UρU† = U
( n

∏
j=1

I+Qj
2

)
U† [47, Sec. 10.5]

=
n
∏
j=1

I+UQjU†

2 . (5.4)

While Eq. (5.4) holds for any gate U, stabilizer simulation can only exploit
it if UQjU† ∈ Pn. Clifford gates such as S, H, CNOT, I, X, Y, and Z satisfy
this for any Qj ∈ Pn.

To also support the application of non-Clifford gates such as T gates, we
follow [36, §VII.C] and represent ρ more generally as

ρ =
m
∑

i=1
ciPi

n
∏
j=1

I+(−1)
bij Qj

2 ,

for ci ∈ C, Pi ∈ Pn, bij ∈ B, and Qj ∈ Pn. Here, applying U to ρ amounts
to replacing Pi by UPiU† and Qj by UQjU†, which we can exploit if both
UPiU† and UQjU† lie in Pn.
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Otherwise, we decompose2 U to the sum ∑K
p=1 dpRp, where dp ∈ C and

Rp ∈ b(Pn) are bare Pauli elements, which have a prefactor of i0 = 1. Then,

UρU† =
( K

∑
p=1

dpRp

)( m
∑

i=1
ciPi

n
∏
j=1

I+(−1)
bij Qj

2

)( K
∑

q=1
dqRq

)†
(5.5)

[36, §VII.C]
=

K
∑

p=1

m
∑

i=1

K
∑

q=1
cpiqPpiq

n
∏
j=1

I+(−1)
bijq Qj

2 , (5.6)

for cpiq = dpcid∗q ∈ C, Ppiq = RpPiRq ∈ Pn, and bijq = bij + Qj ⋄ Rq ∈ B.
Here, d∗q denotes the complex conjugate of dq, + denotes addition modulo
2, and Qj ⋄ Rq is the commutator defined as 0 if Qj and Rq commute and 1
otherwise. Note that · ⋄ · : Pn ×Pn → B has the highest precedence.

Overall, the decomposition of a k-qubit non-Clifford gate results in at
most K = 4k summands, thus blowing up the number of summands in
our representation by at most 4k · 4k = 16k. In practice, the blow-up is
typically smaller, e.g., decomposing a T gate only requires 2 summands,
while decomposing a CCNOT gate requires 8 summands.

measurement Recall that we introduced measurements in the com-
putational basis in Chapter 2. In this chapter, we consider more general
measurements in any Pauli basis.

Measuring in bare Pauli basis P ∈ b(Pn) yields one of two possible
quantum states. They can be computed by applying the two projections
P+ := I+P

2 and P− = I−P
2 , resulting in states ρ+ = P+ρP+ and ρ− =

P−ρP−, respectively. For example, collapsing the ith qubit to |0⟩ or |1⟩
corresponds to measuring in Pauli basis Z(i). The probability of outcome
ρ+ is tr (ρ+), and analogously for ρ−. Note that we avoid renormalization
for simplicity. We discuss in §5.5 how measurements are performed in
stabilizer simulation [36, Sec. VII.C].

abstract interpretation Abstract interpretation [100] is a frame-
work for formalizing approximate but sound calculation. An abstraction
consists of ordered sets (2X ,⊆) and (X ,≤), where X and X are called
concrete set and abstract set respectively together with a concretization func-
tion γ : X → 2X which indicates which concrete elements x = γ(x) ⊆ X
are represented by the abstract element x. Additionally, ⊥ ∈ X refers to
∅ = γ(⊥) ⊆ X and ⊤ ∈ X refers to X = γ(⊤).

2 This decomposition always exists and is unique, as bare Pauli elements span (more than)
U (2n).
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Table 5.1: Transformers for the interval abstraction.

Function Abstract Transformer Efficient Closed form
+ [l1, u1] +

♯ [l2, u2] = [l′, u′] l′ = l1 + l2 and u′ = u1 + u2
· [l1, u1] ·♯ [l2, u2] = [l′, u′] l′ = min(l1l2, l1u2, u1l2, u1u2), u′ defined

analogously with max
exp exp♯([l, u]) = [l′, u′] l′ = exp(l) and u′ = exp(u)
cos cos♯([l, u]) = [l′, u′] exists, several case distinctions necessary
∪ [l1, u1] ⊔ [l2, u2] = [l′, u′] l′ = min(l1, l2) and u′ = max(u1, u2)

An abstract transformer f ♯ : X → X of a function f : X → X satisfies
γ ◦ f ♯(x) ⊇ f ◦ γ(x) for all x ∈ X , where f was lifted to operate on subsets
of X . This ensures that f ♯ (over-)approximates f , a property referred to
as soundness of f ♯. Abstract transformers can analogously be defined for
functions f : X n → X . Further, we introduce join ⊔ : X ×X → X , satisfying
γ(x) ∪ γ(y) ⊆ γ(x ⊔ y). Throughout this chapter, we distinguish abstract
objects x ∈ X and concrete objects x ∈ X by stylizing them in bold or
non-bold respectively.

As an example, a common abstraction is the interval abstraction with
X = R. The abstract set is the set of intervals

X = {(l, u) | l, u ∈ R∪ {±∞}},

where x = (l, u) is a tuple. The concretization function γ : X → X maps
these tuples to sets:

γ(x) = [l, u] = {y ∈ R | l ≤ y ≤ u}.

Further, ⊤ = (−∞, ∞) and ⊥ = (l, u) for l > u. Common abstract trans-
formers for the interval abstraction are shown in Table 5.1.

The transformers in Table 5.1 are precise, meaning that for f : R→ R, we
have that f ♯((l, u)) = (minl≤v≤u f (v), maxl≤v≤u f (v)) and analogously for
f : Rn → R. An abstract transformer for a composition of functions f ◦ g
is the composition of the abstract transformers. Although this is sound, it
is not necessarily precise: let g : R→ R2 with g(x) = ( x

x ) and f : R2 → R

with f (x, y) = x · y, then f ◦ g(x) = x2, but f ♯ ◦ g♯((−2, 2)) = (−4, 4)
whereas a precise transformer would map (−2, 2) to (0, 4).

notational convention In slight abuse of notation, throughout this
chapter we may write the concretization of abstract elements instead of the
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Figure 5.1: Overview of Abstraqt, where we define c and c1–c4 in §5.3.

abstract element itself. For example, for (0, 1) ∈ RRRRRR, we write [0, 1] defined
as {v ∈ R | 0 ≤ v ≤ 1} to indicate that it represents an interval. Where
clear from context, we omit ♯ and write f for f ♯. For example, we write
[l1, u1] + [l2, u2] for [l1, u1] +

♯ [l2, u2].

5.3 overview

In this section, we showcase Abstraqt by applying it to the example circuit
in Fig. 5.1. Overall, Abstraqt proceeds analogously to [36, §VII-C], but
operates on abstract summands representing many concrete summands.

example circuit We first discuss the circuit in Fig. 5.1. Both qubits
are initialized to |0⟩. The circuit then applies a succession of gates. The
abstract representation of the state after the application of each gate is
shown in the gray boxes below the circuit. On the final state, the circuit

collapses the upper qubit to |−⟩ by applying the projection M− =
I−X(0)

2 .
Precise circuit simulation shows that the probability of obtaining |−⟩ is 0,
in this case. In the following, we demonstrate how Abstraqt computes an
over-approximation of this probability.

initial state The density matrix for the initial state |0⟩ ⊗ |0⟩ can be
represented as (see [36]):

ρA = 1I
I+(−1)0Z(0)

2
I+(−1)0Z(1)

2 .
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To translate this to an abstract density matrix, we simply replace some
elements by abstract representations. This gives the following initial abstract
state:

ρA = e[0,0]+[0,0]i{I} I+(−1){0}Z(0)
2

I+(−1){0}Z(1)
2 . (5.7)

Here we abstract booleans as sets, for instance {0}. For conciseness, in
Fig. 5.1 we write x y, x y, and x y for x + (−1){0}y, x + (−1){1}y, and
x + (−1){0,1}y. Further, we represent abstract complex numbers in polar
form with logarithmic length, using real intervals: 1 is represented as
e[0,0]+[0,0]i, while we can over-approximate the set of complex numbers

{1, i} as e[0,0]+[0, π
2 ]i. Finally, we abstract Pauli elements as sets, such as {I}

in Fig. 5.1 and Eq. (5.7). In §5.4, we will clarify how we store these sets
efficiently, for example representing {I} as i{0} · {I}⊗{I} and {i · I, i · Z(0)}
as i{1} · {I, Z}⊗{I}.

We now explain how each operation in the circuit modifies this abstract
state.

clifford gate application First, the circuit applies one Hadamard
gate H to each qubit. This corresponds to the unitary operator H(0)H(1),
yielding updated abstract density matrix ρB = (H(0)H(1))ρA(H(0)H(1))

†.
Just as for concrete density matrices (see §5.2), this amounts to replacing

{I} by (H(0)H(1)){I}(H(0)H(1))
† = {I},

Z(0) by (H(0)H(1))Z(0)(H(0)H(1))
† = X(0), and

Z(1) by (H(0)H(1))Z(1)(H(0)H(1))
† = X(1).

We hence get ρB = e[0,0]+[0,0]i{I} I+(−1){0}X(0)
2

I+(−1){0}X(1)
2 .

non clifford gate application Next, the circuit applies gate T on
the upper qubit. To this end, we again follow the simulation described in
§5.2. We first decompose T into Pauli elements: T(0) = d1I + d2Z(0), where
d1 ≈ e−0.1+0.4i and d2 ≈ e−1.0−1.2i. Replacing T with its decomposition, we
can then write ρT = TρBT†, using Eq. (5.6), as:

ρT =
(

d1I + d2Z(0)

)(
e[0,0]+[0,0]i{I} I+(−1){0}X(0)

2
I+(−1){0}X(1)

2

)
(

d1I + d2Z(0)

)†
.
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Analogously to §5.2, we can rewrite this to:

c1{I}
I+(−1){0}X(0)

2
I+(−1){0}X(1)

2

+c2{Z(0)}
I+(−1){1}X(0)

2
I+(−1){0}X(1)

2

+c3{Z(0)}
I+(−1){0}X(0)

2
I+(−1){0}X(1)

2

+c4{I}
I+(−1){1}X(0)

2
I+(−1){0}X(1)

2 ,

where

c1 = d1e[0,0]+[0,0]id∗1 ≈ e[−0.2,−0.2]+[0,0]i,

c2 = d1e[0,0]+[0,0]id∗2 ≈ e[−1.1,−1.1]+[1.6,1.6]i,

c3 = d2e[0,0]+[0,0]id∗1 ≈ e[−1.1,−1.1]+[−1.6,−1.6]i,

c4 = d2e[0,0]+[0,0]id∗2 ≈ e[−2.0,−2.0]+[0,0]i.

merging summands Unfortunately, simply applying T gates as shown
above may thus increase the number of summands in the abstract den-
sity matrix by a factor of 4. To counteract this, our key idea is to merge
summands, by allowing a single abstract summand to represent multiple
concrete ones, resulting in reduced computation overhead at the cost of
lost precision. Our abstract representation allows for a straightforward
merge: we take the union of sets and join intervals. Specifically, for complex
numbers, we join the intervals in their representation, obtaining:

c := c1 ⊔ c2 ⊔ c3 ⊔ c4 = e[−2.0,−0.2]+[−1.6,1.6]i.

Finally, we introduce the symbol ⋆ to denote how many concrete summands
an abstract summand represents. Altogether, merging the summands in ρT
yields:

ρC = 4 ⋆ e[−2.0,−0.2]+[−1.6,1.6]i{I, Z(0)}
I+(−1){0,1}X(0)

2
I+(−1){0}X(1)

2 .

Note that for an abstract element x, r ⋆ x is not equivalent to r · x. For
example, 2 ⋆ {0, 1} = {0, 1}+ {0, 1} = {0, 1, 2}, while 2 · {0, 1} = {0, 2}. 3

3 We implicitly lift concrete elements to abstract elements: 2 · {0, 1} = {2} · {0, 1} = {0, 2}.
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measurement After the T gate, the circuit applies two additional
CNOT gates, resulting in the updated density matrix:

ρD = 4 ⋆ e[−2.0,−0.2]+[−1.6,1.6]i{I, Z(0)}
I+(−1){0,1}X(0)X(1)

2
I+(−1){0}X(0)

2 .

Finally, the circuit applies the projection M− =
I−X(0)

2 . To update the density
matrix accordingly, we closely follow [36], which showed that measurement
can be reduced to simple state updates through a case distinction on M−
and the state ρ. If (i) the measurement Pauli (here −X(0)) commutes with
the product Paulis (here (−1){0,1}X(0)X(1) and (−1){0}X(1)) and (ii) the
measurement Pauli cannot be written as a product of the product Paulis,
the density matrix after measurement is 0. We will explain in §5.5.2 how
our abstract domain allows both of these checks to be performed efficiently.

Here, both conditions are satisfied, and we hence get the final state
ρM1 = 0. We can then compute the probability of such an outcome by
p = tr (ρM1) = 0. Thus, our abstract representation was able to provide a
fully precise result.

imprecise measurement Suppose now that instead of the measure-
ment in Fig. 5.1, we had collapsed the lower qubit to |0⟩ by applying

projection M0 =
I+Z(1)

2 .

To derive the resulting state, we again follow [36] closely. We note that
the measurement Pauli +Z(1) (i) anticommutes with the first product Pauli
(−1){0,1}X(0)X(1) and commutes with the second one (−1){0}X(0) and (ii)
commutes with the initial Paulis {I, Z(0)}. In this case, we get that the
density matrix is unchanged, thus ρM2 = ρD. To compute the trace of this
matrix, we follow the procedure outlined in §5.5.4. We omit intermediate
steps here and get: 4

p = tr (ρM2) = 4ℜ(c) ≈ [0, 1.7].

Thus, our abstraction here is highly imprecise and does not yield any infor-
mation on the measurement result (we already knew that the probability
must lie in [0, 1]).

4 We used the precise interval bounds for c here, not the rounded values provided earlier.
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Table 5.2: Example elements on abstract domains.

Dom. Example element Concretization

BBBBBB {0, 1} {0, 1}
ZZZZZZ4 {0, 3} {0, 3}
RRRRRR (0, 1) [0, 1] = {r | 0 ≤ r ≤ 1}
CCCCCC (0, 1, π, 2π) e[0,1]+[π,2π]i

= {er+φi | 0 ≤ r ≤ 1, π ≤ φ ≤ 2π}
PPPPPP2 ({0, 3}, {Z, Y}, {X}) i{0,3} · {Z, Y}⊗ {X}

=

{
ib · P(1) ⊗ P(2)

∣∣∣∣ b ∈ {0, 3},
P(1) ∈ {Z, Y}, P(2) ∈ {X}

}

5.4 abstract domains

In the following, we formalize all abstract domains (Table 5.2) underly-
ing our abstract representation of density matrices ρ along with key ab-
stract transformers operating on them (Table 5.3). We note that all abstract
transformers introduced here naturally also support (partially) concrete
arguments.

example elements Table 5.2 provides an example element x of each
abstract domain, along with an example of its concretization γ(x), where
γ : X → 2X . While Table 5.2 correctly distinguishes abstract elements from
their concretization, in the following, when describing operators we write
concretizations instead of abstract elements (as announced in §5.2).

booleans and Z4 Abstract booleans b ∈ BBBBBB = 2B are subsets of B, as
exemplified in Table 5.2. The addition of two abstract booleans naturally
lifts boolean addition to sets and is clearly sound:

b + c = {b + c | b ∈ b, c ∈ c}. (5.8)

We define multiplication of abstract booleans analogously. Further, we
define the join of two abstract booleans as their set union.

Analogously to booleans, our abstract domain ZZZZZZ4 consists of subsets of Z4,
where addition, subtraction, multiplication, and joins works analogously
to abstract booleans. Further, we can straight-forwardly embed abstract
booleans into ZZZZZZ4 by mapping 0 to 0 and 1 to 1.
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Table 5.3: Summary of abstract transformers.

Transformers Domains Definition

b + c ∈ BBBBBB, b · c ∈ BBBBBB b, c ∈ BBBBBB Lifting to sets, Eq. (5.8)
b ⊔ c ∈ BBBBBB b, c ∈ BBBBBB b ∪ c
b + c ∈ ZZZZZZ4, b− c ∈ ZZZZZZ4, b · c ∈ ZZZZZZ4 b, c ∈ ZZZZZZ4 Lifting to sets
b ⊔ c ∈ ZZZZZZ4 b, c ∈ ZZZZZZ4 b ∪ c
b ∈ ZZZZZZ4 b ∈ BBBBBB Embedding
c · d ∈ CCCCCC c, d ∈ CCCCCC Eq. (5.9)
c ⊔ d ∈ CCCCCC c, d ∈ CCCCCC Eq. (5.10)
ℜ(c) ∈ RRRRRR c ∈ CCCCCCn Eq. (5.11)
ib ∈ CCCCCC b ∈ BBBBBB Eq. (5.12)
PQ ∈ PPPPPPn P, Q ∈ PPPPPPn Eq. (5.13)
f(PQ) ∈ ZZZZZZ4 P, Q ∈ PPPPPPn Eq. (5.14)
U(i)PU†

(i) ∈ PPPPPPn U ∈ U (2k), P ∈ PPPPPPn Eq. (5.15)
P ⋄Q ∈ BBBBBB P, Q ∈ PPPPPPn Eq. (5.16)
P ⊔Q ∈ PPPPPPn P, Q ∈ PPPPPPn Eq. (5.17)
(−1)b · P b ∈ BBBBBB, P ∈ PPPPPPn Eq. (5.18)

real numbers We abstract real numbers by intervals of the form [a, a] ⊆
R∪ {±∞}, and denote the set of such intervals by RRRRRR. Here, a and a indicate
the lower and upper bounds of the interval, respectively. Interval addition,
interval multiplication, and the cosine and exponential transformer on
intervals are defined in their standard way, see §5.2.

complex numbers We parametrize complex numbers c ∈ C in polar
coordinates (with magnitude in log-space), as c = er+φi for r, φ ∈ R. For
example, we parametrize 0 as e−∞+0i.

Based on this parametrization, we abstract complex numbers using two
real intervals for r and φ respectively, as exemplified in Table 5.2. Formally,
we interpret c ∈ CCCCCC as the set of all possible outcomes when instantiating
both intervals:

γ(c) = e[r,r]+[φ,φ]i =
{

er+φi
∣∣∣ r ∈ [r, r], φ ∈ [φ, φ]

}
.
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We can compute the multiplication and join of two abstract complex
numbers c = e[r,r]+[φ,φ]i and c′ = e[r

′ ,r′ ]+[φ′ ,φ′ ]i as

c · c′ = e[r+r′ ,r+r′ ]+[φ+φ′ ,φ+φ′ ]i and (5.9)

c ⊔ c′ = e[min(r,r′),max(r,r′)]+[min(φ,φ′),max(φ,φ′)]i. (5.10)

Again, simple arithmetic shows that Eqs. (5.9)–(5.10) are sound. We note
that to increase precision, we could map complex numbers to a canonical
representation before joining them, by exploiting er+ϕi = er+(ϕ+2π)i to
ensure that φ lies in [0, 2π].

We compute the real part of an abstract complex number c = e[r,r]+[φ,φ]i

as

ℜ(c) = exp([r, r]) · cos([φ, φ]), (5.11)

where we rely on interval transformers to evaluate the right-hand side. The
soundness of Eq. (5.11) follows from the standard formula to extract the
real part from a complex number in polar coordinates. We will later use
Eq. (5.11) to compute tr (ρ). To this end, we also need the transformer

ib =
⊔
b∈b

{ib} ∈ CCCCCC. (5.12)

pauli elements Recall that a Pauli element P ∈ Pn has the form
P = iv · P(0)⊗ · · · ⊗ P(n−1), for v in Z4 and P(k) ∈ {I, X, Y, Z}. We therefore
parametrize P as a prefactor v (in logi space) and n bare Paulis P(k).

Accordingly, we parametrize abstract Pauli elements P ∈ PPPPPPn as iv ·
P(0)⊗ · · · ⊗P(n−1), where v ∈ ZZZZZZ4 is a set of possible prefactors and P(k) ⊆
{X, Y, Z, I2} are sets of possible Pauli matrices. Formally, we interpret P as
the set of all possible outcomes when instantiating all sets:

γ(P) =
{

iv · n−1⊗
i=0

P(i)
∣∣∣∣ v ∈ v, P(i) ∈ P(i)

}
.

We define the product of two abstract Pauli elements as:

PQ = if(PQ) n−1⊗
i=0
b
(

P(i)Q(i)
)

. (5.13)
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To this end, we evaluate the prefactor induced by multiplying Paulis as

f(PQ) = f(P) + f(Q) +
n

∑
i=1
f(P(i)Q(i)), (5.14)

where we can evaluate the summands in the right-hand side of Eq. (5.14)
by precomputing them for all possible sets of Pauli matrices P(i) and Q(i).
Then, we compute the sum using Eq. (5.8). Analogously, we can evalu-

ate b
(

P(i)Q(i)
)

by precomputation. The soundness of Eq. (5.13) follows
from applying the multiplication component-wise, and then separating out
prefactors from bare Paulis.

We also define the conjugation of an abstract Pauli element P with k-qubit
gate U padded to n qubits as:

U(i)PU†
(i) = U(i)

(
iv · P(0:i)⊗P(i:i+k)⊗P(i+k:n)

)
U†
(i)

= iv+f(UP(i:i+k)U†) · P(0:i)⊗ b(UP(i:i+k)U†)⊗P(i+k:n), (5.15)

where P(i:j) denotes P(i)⊗ · · · ⊗P(j−1). Because k is typically small, and
all possible gates U are known in advance, we can efficiently precompute
f(UP(i:i+k)U†) and b(UP(i:i+k)U†). We note that this only works if the
result of conjugation is indeed an (abstract) Pauli element—if not, this
operation throws an error5. The soundness from Eq. (5.15) follows from
applying U to qubits i through i + k, and then separating out prefactors
from bare Paulis.

We define the commutator P ⋄Q of two abstract Pauli elements P and Q
as (

iv · n−1⊗
i=0

P(i)
)
⋄
(

iw · n−1⊗
i=0

Q(i)
)
=

n

∑
i=1

P(i) ⋄Q(i). (5.16)

Here, we evaluate the sum using Eq. (5.8), and efficiently evaluate P(i) ⋄
Q(i) ∈ BBBBBB by precomputing:

P(i) ⋄Q(i) =
{

P(i) ⋄Q(i)
∣∣∣ P(i) ∈ P(i), Q(i) ∈ Q(i)

}
.

5 We can recover from this error by decomposing U as a sum of bare Pauli elements, as
mentioned in §5.2, see also Eqs. (5.21)–(5.22).
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The soundness of Eq. (5.16) can be derived from the corresponding concrete
equation, which can be verified using standard linear algebra.

We define the join of abstract Pauli elements as(
iv n−1⊗

i=0
P(i)

)
⊔
(

iw n−1⊗
i=0

Q(i)
)
= iv⊔w n−1⊗

i=0

(
P(i) ∪Q(i)

)
, (5.17)

where P(i) ∪Q(i) ⊆ {I, X, Y, Z}. Clearly, this join is sound.

Finally, we define an abstract transformer for modifying the sign of an
abstract Pauli element P by:

(−1)b ·
(

iv · n−1⊗
i=0

P(i)
)
= iv+2·b · n−1⊗

i=0
P(i) (5.18)

The soundness of Eq. (5.18) follows directly from (−1)v = i2v.

abstract density matrices The concrete and abstract domains in-
troduced previously allow us to represent an abstract density matrix ρ ∈ DDDDDD
as follows:

ρ = r ⋆ c · P ·
n

∏
j=1

I+(−1)
bj Qj

2 . (5.19)

Here, r ∈N, c ∈ CCCCCC, P ∈ PPPPPPn, bj ∈ BBBBBB, and Qj ∈ Pn. Note that Qj are concrete
Pauli elements, while P is abstract. Further, both P and Qj can have a
prefactor, i.e., are not necessarily bare Paulis. Here, the integer counter r
records how many concrete summands were abstracted. Specifically, r ⋆ x is
defined as ∑r

i=1 x. Overall, we interpret ρ as:

γ(ρ) =

{
r

∑
i=1

ciPi

n

∏
j=1

I+(−1)
bij Qj

2

∣∣∣∣∣ ci ∈ γ(c), Pi ∈ γ(P), bij ∈ γ(bj)

}
, (5.20)

relying on the previously discussed interpretations of C, Pn, and B.

5.5 abstract transformers

We now formalize the abstract transformers used by Abstraqt to simulate
quantum circuits. The soundness of all transformers is straightforward,
except for the trace transformer (§5.5.4) which we discuss in App. C.1.
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initialization We start from initial state ⊗n
i=1 |0⟩, which corresponds

to density matrix

ρ =
n

∏
j=1

I+Z(j)
2 = 1 ⋆ e[0,0]+i[0,0] · i{0}{I}

n

∏
j=1

I+(−1){0}Z(j)
2 ,

as established in [36, Sec. III]. We note that we can prepare other starting
states by applying appropriate gates to the starting state ⊗n

i=1 |0⟩.

5.5.1 Gate Application

Analogously to the concrete case discussed in §5.2, applying a unitary gate
U to ρ yields:

UρU† = r ⋆ cP′
n

∏
j=1

I+(−1)
bj Q′j

2 , (5.21)

for P′ = UPU† and Q′j = UQjU†.

If either UPU† ̸⊆ Pn or UQjU† ̸⊆ Pn, Eq. (5.21) still holds, but we cannot
represent the resulting matrices efficiently. In this case, again analogously
to §5.2, we instead decompose the offending gate as U = ∑p dpRp, with
Rp ∈ Pn and obtain

UρU† = ∑
pq

r ⋆ cpqPpq

n

∏
j=1

I+(−1)bjq Qj
2 , (5.22)

for cpq = dpcd∗q , P′pq = RpPRq, and bjq = bj + Qj ⋄ Rq.
Overall, we can evaluate Eqs. (5.21)–(5.22) by relying on the abstract

transformers from §5.4.

compression To prevent an exponential blow-up of the number of
summands and to adhere to the abstract domain of ρ which does not
include a sum, we compress all summands to a single one. Two summands
can be joined as follows:(

r1 ⋆ c1P1

n

∏
j=1

I+(−1)
b1j Qj

2

)
⊔
(

r2 ⋆ c2P2

n

∏
j=1

I+(−1)
b2j Qj

2

)

= r ⋆ cP
n

∏
j=1

I+(−1)
bj Qj

2 ,
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where r = r1 + r2, c = c1 ⊔ c2, bj = b1j ⊔ b2j, and P = P1 ⊔ P2. The key
observation here is that the concrete Qj are independent of the summand,
and thus need not be joined.

We note that we could also only merge some summands and leave the
others precise—investigating the effect of more flexible merging strategies
could be interesting future research.

5.5.2 Measurement

We now describe how to perform Pauli measurements, by extending the
(concrete) stabilizer simulation to abstract density matrices. The correctness
of the concrete simulation was previously established in [36, Sec. VII.C],
while the correctness of the abstraction is immediate.

simulating measurement Applying a Pauli measurement in basis
R ∈ b(Pn) has a probabilistic outcome and transforms ρ to ρ+ = I+R

2 ρ I+R
2

with probability tr(ρ+) or ρ− = I−R
2 ρ I−R

2 with probability tr(ρ−). We
describe how to compute ρ+. Computing ρ− works analogously by using
−R instead of R.

In the following, we will consider a concrete state ρ as defined in §5.2
and an abstract state ρ as defined in Eq. (5.19):

ρ =
m

∑
i=1

ciPi

n

∏
j=1

I+(−1)
bij Qj

2 and ρ = r ⋆ cP
n

∏
j=1

I+(−1)bj Qj
2 . (5.23)

Concrete simulation of measurement distinguishes two cases: either (i) R
commutes with all Qj or (ii) R anti-commutes with at least one Qj. Note
that as the Qj are concrete in an abstract state ρ, those two cases translate
directly to the abstract setting. We now describe both cases for concrete and
abstract simulation.

background : concrete case (i) In this case, we assume R commutes
with all Qj. Focusing on a single summand ρi of ρ, measurement maps it to
(see [36]):

ρi,+ = ci
I+R

2 Pi
I+R

2

n

∏
j=1

I+(−1)
bij Qj

2 . (5.24)

Let us first introduce the notation {(−1)bij Qj} ⇝ R, denoting that R
can be written as a product of selected Pauli elements from {(−1)bij Qj}.
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Symmetrically, we write {(−1)bij Qj} ̸⇝ R if R cannot be written as such a

product. As shown in [36], if {(−1)bij Qj}⇝ R then I+R
2 ∏n

j=1
I+(−1)

bij Qj
2 is

equal to ∏n
j=1

I+(−1)
bij Qj

2 and if {(−1)bij Qj} ̸⇝ R then I+R
2 ∏n

j=1
I+(−1)

bij Qj
2

is null. Further, using that R2 = I, we get from Eq. (5.24) that if Pi commutes
with R, ρi,+ is equal to ρi, otherwise, Pi anti-commutes with R and ρi,+ is
null. Putting it all together, we finally get:

ρ+ =
m

∑
i=1

ρi,+ =
m

∑
i=1

ciPi
n
∏
j=1

I+(−1)
bij Qj

2 if {(−1)bij Qj}⇝ R and R ⋄ Pi = 0,

0 if {(−1)bij Qj} ̸⇝ R or R ⋄ Pi = 1.
(5.25)

abstract case (i) Let us first define ⇝u and ̸⇝u for a concrete R,
concrete Qj and abstract bj. We say {(−1)bj Qj} ⇝u R if for all j, for all
bj ∈ γ(bj), we have {(−1)bj Qj}⇝ R. Similarly, we say {(−1)bj Qj} ̸⇝u R if
for all j, for all bj ∈ γ(bj), we have {(−1)bj Qj} ̸⇝ R. Note that⇝u and ̸⇝u

are under-approximations, and there can exist some R and {(−1)bj Qj} such
that neither apply. Using those two abstract relations, we get the abstract
transformer for ρ+:

r ⋆


cP

n
∏
j=1

I+(−1)bj Qj
2 if {(−1)bj Qj}⇝u R and R ⋄ P = {0},

0 if {(−1)bj Qj} ̸⇝u R or R ⋄ P = {1},
(c ⊔ {0})P

n
∏
j=1

I+(−1)bj Qj
2 otherwise.

(5.26)

We can evaluate Eq. (5.26) by relying on the abstract transformers from
Table 5.3 and by evaluating⇝u as discussed shortly.

background : concrete case (ii) We now suppose R anti-commutes
with at least one Qj. In this case, we can rewrite ρ such that R anti-commutes
with Q1, and commutes with all other Qj. Specifically, we can select any
Qj∗ which anti-commutes with R, swap bij∗ and Qj∗ with bi1 and Q1, and
replace all other Qj anti-commuting with R by Q1Qj (and analogously bij
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by bij + bi1), which leaves ρ invariant (see [36]). Assuming ρ is the result
after this rewrite, we have:

ρ+ = ∑
i

1
2 ciP′i

I+(−1)0R
2

n

∏
j=2

I+(−1)
bij Qj

2 , (5.27)

where P′i =

{
Pi if R ⋄ Pi = 0,
(−1)bi1 PiQ1 if R ⋄ Pi = 1.

Overall, after rewriting ρ as above, Eq. (5.27) replaces ci by 1
2 ci, Pi by P′i , bi1

by 0, and Q1 by R.

abstract case (ii) In the abstract case, we first apply the same rewrite
as in the concrete case, where we pick j∗ as the first j for which Qj anti-
commutes with R. 6 Then, directly abstracting Eq. (5.27) yields:

ρ+ = r ⋆ 1
2 cP′ I+(−1){0}R

2

n

∏
j=2

I+(−1)bj Qj
2 , (5.28)

where P′ =


P if R ⋄ P = {0},
(−1)b1 PQ1 if R ⋄ P = {1},
P ⊔ (−1)b1 PQ1 otherwise.

Here, we replace c by 1
2 c, P by P′, b1 by {0}, and Q1 by R. When defining

P′, we follow the two cases from Eq. (5.27) when our abstraction is precise
enough to indicate which case we should choose, or join the results of both
cases otherwise. Again, we can evaluate Eq. (5.28) by relying on the abstract
transformers from Table 5.3.

joining both measurement results For measurements occurring
within a quantum circuit, stabilizer simulation generally requires randomly
selecting either ρ+ or ρ− with probability tr(ρ+) and tr(ρ−), respectively,
and then continues only with the selected state. In contrast, Abstraqt can
join both measurement outcomes into a single abstract state ρ+ ⊔ ρ−, as
the Qj are the same in both. This allows us to pursue both measurement
outcomes simultaneously, as we demonstrate in §5.7.

6 We could also consider other strategies than picking the first possible j, for example picking a
j for which bj is precise whenever possible, to increase precision.
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5.5.3 Efficiently computing⇝

To simulate the result of a measurement, we introduced the new operator
{(−1)bj Qj}⇝ R, denoting that some Pauli R can be written as a product
of {(−1)bj Qj}. We now show how to compute⇝ efficiently.

background : concrete case We first note that {(−1)bj Qj} ⇝ R
holds if and only if there exist some x ∈ Bn such that:

R !
=

n

∏
j=1

(
(−1)bj Qj

)xj
. (5.29)

Further, this solution x would satisfy:

b(R) !
= b

(
n

∏
j=1

(
(−1)bj Qj

)xj

)
(5.30)

Eq. (5.30) has a solution if and only if R commutes with all the Qj, in which
case this solution x is unique (see [36]). Hence, to check if {(−1)bj Qj}⇝ R,
we can first verify whether R ⋄Qj = 0 for all j, and if so, check if the unique
x satisfying Eq. (5.30) also satisfies Eq. (5.29).

background : finding x for Eq . (5 .30) To compute this solution
x, the stabilizer simulation relies critically on an isomorphism g between
Pauli matrices {I, X, Y, Z} and B2.

Specifically, g maps I to
(

0
0
)
, X to

(
1
0
)
, Y to

(
1
1

)
, and Z to

(
0
1
)
. Further,

g extends naturally to bare Pauli elements R ∈ b(Pn) and tuples Q =
(Q1, . . . , Qn) ∈ b(Pn)

n by:

g(R) =

 g(R(0))

...
g(R(n−1))

 and g(Q) =

 g(Q(0)
1 ) ··· g(Q(0)

n )

...
. . .

...
g(Q(n−1)

1 ) ··· g(Q(n−1)
n )

,

where g(R) ∈ B2n×1 and g(Q) ∈ B2n×n. We can naturally extend g to Pn,
by defining g(R) = g(b(R)).

This isomorphism g is designed so that the product of bare Pauli elements
ignoring prefactors corresponds to a component-wise addition of encodings:

g(P1P2) = g(P1) + g(P2). (5.31)
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Using Eq. (5.31), we can obtain solution candidates x for Eq. (5.30) by
solving a system of linear equations using Gaussian elimination modulo 2:

g (R) !
= g

(
n
∏
j=1

Q
xj
j

)
=

n
∑

j=1
g(Qj)xj = g(Q)x. (5.32)

Because in our case, g(Q) is over-determined and has full rank, Eq. (5.32)
either has no solution, or a unique solution x.

background : checking prefactors Once we have found the unique
x (if it exists) satisfying Eq. (5.30) as described above, we need to check if it
also satisfies Eq. (5.29). It is enough to check if the prefactors match:

f (R) !
= f

(
∏

j
(−1)bjxj Q

xj
j

)
,

or equivalently:

f (R)− f
(

∏
j

Q
xj
j

)
− 2 ∑

j
bjxj

!
= 0,

where the subtraction and sum operations are over Z4.

Putting it all together, we can define F : Pn ×Pn
n ×Bn → Z4 ∪ { } with

F(R, Q, b) =


 if ∃j, R ⋄Qj = 1,

f(R)− f
(

n
∏
j=1

Q
xj
j

)
− 2

n
∑

j=1
xjbj otherwise,

(5.33)

where x is the unique value such that g(R) = g(Q)x and  indicates there is
no such x. We then have that {(−1)bj Qj}⇝ R if and only if F(R, Q, b) = 0,
or equivalently, {(−1)bj Qj} ̸⇝ R if and only if F(R, Q, b) ̸= 0.

F for abstract b j For abstract values bj, we define F : Pn×Pn
n × BBBBBBn →

2Z4∪{ } as follows:

F(R, Q, b) =


{ } if ∃j, R ⋄Qj = 1,

f(R)− f
(

n
∏
j=1

Q
xj
j

)
− 2

n
∑

j=1
xjbj otherwise.

(5.34)
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Following the same reasoning as above, we have {(−1)bj Qj} ⇝u R
if and only if F(R, Q, b) = {0} and {(−1)bj Qj} ̸⇝u R if and only if
F(R, Q, b) ∩ {0} = ∅.

F for abstract b j and R To compute the trace of a state (see §5.5.4),
we further extend Eq. (5.33) to abstract bj and abstract R, and define
F : PPPPPPn ×Pn

n × BBBBBBn → 2Z4∪{ } as:

F(R, Q, b) =



{ } if ∃j.R ⋄Qj = {1},

f(R)− f
(

n
∏
j=1

Q
xj
j

)
− 2

n
∑

j=1
xjbj if ∀j.R ⋄Qj = {0},

f(R)− f
(

n
∏
j=1

Q
xj
j

)
− 2

n
∑

j=1
xjbj ∪ { } otherwise,

(5.35)

for g(R) = g(Q)x. (5.36)

Here, evaluating Eq. (5.35) requires evaluating Qb
j for an abstract boolean b,

which we define naturally as

Qb
j :=


{Qj} if b = {1},
{I} if b = {0},
{Qj, I} if b = {0, 1}.

Further, Eq. (5.36) requires over-approximating all x which satisfy the
linear equation g(R) = g(Q)x. Here, we naturally extend g to abstract
Paulis by joining their images. For instance, we have that g({X, Y}) ={(

1
0
)}
⊔
{(

1
1

)}
=
( {1}
{0,1}

)
. We then view g(R) = g(Q)x as a system of

linear equations b = Ax, where the left-hand side consists of abstract
booleans b ∈ BBBBBB2n. We then drop all equations in this equation system where
the left-hand side is {0, 1}, as they do not constrain the solution space. This
updated system is fully concrete, hence we can solve it using Gaussian
elimination. We get either no solution, or a solution space y + ∑

p
k=1 λkuk,

where y is a possible solution and u1, ..., up is a possibly empty basis of the
null solution space. In the case of no solution, x is not needed in Eq. (5.35).
Otherwise, we can compute xj as {yj + ∑m

k=1 λkuk,j | λk ∈ B}.
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5.5.4 Trace

Recall that the probability of obtaining state ρ+ when measuring ρ is tr (ρ+).
We now describe how to compute this trace using F defined above.

background : concrete trace Following [36], we compute the trace
of a density matrix ρ by:

tr (ρ) =
m

∑
i=1
ℜ
(

ciiF(P,Q,bi)
)

, (5.37)

where we define i := 0. Because the trace of a density matrix is always
real, ℜ(·) is redundant, but will be convenient to avoid complex traces in
our abstraction.

abstract trace For an abstract state ρ, we define:

tr (ρ) = r · ℜ
(

ciF(P,Q,b)
)

, (5.38)

where we use F(·) as defined in Eq. (5.35).

5.6 implementation

In the following, we discuss our implementation of the abstract transformers
from §5.4 and §5.5 in Abstraqt.

language and libraries We implemented Abstraqt in Python 3.8,
relying on Qiskit 0.40.0 [39] for handling quantum circuits, and a com-
bination of NumPy 1.20.0 [105] and Numba 0.54 [106] to handle matrix
operations.

bit encodings An abstract density matrix ρ = r ⋆ c ·P ·∏n
j=1

I+(−1)
bj Qj

2
is encoded as a tuple (r, c, P, b1, ..., bn, Q1, . . . , Qn). To encode the concrete
Pauli matrices Qj, we follow concrete stabilizer simulation encodings such
as [107] and encode Pauli matrices P using two bits g(P) (see §5.5.3). To
encode abstract elements of a finite set we use bit patterns. For exam-
ple, we encode b1 = {1, 0} ∈ BBBBBB as 112, where the least significant bit
(i.e. the right-most bit) indicates that 0 ∈ b1. Analogously, we encode
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v = {3, 0} ∈ ZZZZZZ4 as 10012. Further, we encode {Z, Y} as 11002, where the
indicator bits correspond to Z, Y, X, and I, respectively, from left to right.
Hence the abstact Pauli P = ({0, 3}, {Z, Y}, {X}) would be represented as
(10012, 11002, 00102).

implementing transformers The abstract transformers on abstract
density matrices can be implemented using operations in BBBBBB, ZZZZZZ4, CCCCCC, and PPPPPP1.
As BBBBBB, ZZZZZZ4, and PPPPPP1 are small finite domains, we can implement operations
in these domains using lookup tables, which avoids the need for bit ma-
nipulation tricks. While such tricks are applicable in our context (e.g., [36]
uses bit manipulations to compute H(i)PH†

(i) for P ∈ Pn), they are generally
hard to come up with [108]. In contrast, the efficiency of our lookup tables
is comparable to that of bit manipulation tricks, without requiring new
insights for new operations.

For example, to evaluate {}+ {0} over BBBBBB using Eq. (5.8), we encode the
first argument {} as 00 and the second argument {0} as 01. Looking up
entry (00, 01) in a two-dimensional pre-computed table then yields 00, the
encoding of the correct result {}. We note that we cannot implement this
operation directly using a XOR instruction on encodings, as this would
yield incorrect results: 00 XOR 01 = 01 ≃ {0}, which is incorrect.

gaussian elimination To efficiently solve equations modulo two as
discussed in §5.5, we implemented a custom Gaussian elimination relying
on bit-packing (i.e., storing 32 boolean values in a single 32-bit integer). In
the future, it would be interesting to explore if Gaussian elimination could
be avoided altogether, as suggested by previous works [36, 107].

testing To reduce the likelihood of implementation errors, we have
complemented Abstraqt with extensive automated tests. We test that
abstract transformers f ♯ are sound with respect to concrete functions f , that
is to say that

∀x1 ∈ γ(x1) · · · ∀xk ∈ γ(xk). f (x1, . . . , xn) ∈ f ♯(x1, . . . , xk).

We check this inclusion for multiple selected samples of xi and xi ∈ xi
(typically corner cases).

This approach is highly effective at catching implementation errors, which
we have found in multiple existing tools as shown in §5.7.
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5.7 evaluation

We now present our evaluation of Abstraqt, demonstrating that it can
establish circuit properties no existing tool can establish.

5.7.1 Benchmarks

To evaluate Abstraqt, we generated 12 benchmark circuits, summarized
and visualized in Table 5.4.

benchmark circuit generation Each circuit operates on 62 qubits,
partitioned into 31 upper qubits and 31 lower qubits. We picked the limit of
62 qubits because our baseline ESS (discussed shortly) only supports up to
63 qubits; Abstraqt is not subject to such a limitation.

Each circuit operates on initial state |0⟩ and is constructed to ensure that
all lower qubits are eventually reverted to state |0⟩. We chose this invariant
as it can be expressed for most of the evaluated tools, as we will discuss
in §5.7.2. Further, as some tools can only check this for one qubit at a time,
we only check if the very last qubit is reverted to |0⟩, instead of running 31
independent checks (which would artificially slow down some baselines).
Note that this check is of equivalent difficulty for all lower qubits.

benchmark details Table 5.4 details how each benchmark circuit was
generated. Most of the circuits are built from three concatenated subcir-
cuits. First, c1 modifies the upper qubits, then c2 modifies the lower qubits
(potentially using gates controlled by the upper qubits) and finally c3 re-
verts all lower qubits to |0⟩, but in a non-trivial way. Circuit CCX+H;Cliff
slightly deviates from this pattern, as it also modifies the upper qubits
using gates controller by lower qubits. Further, circuits Cliff+T;H;CZ+RX

and Cliff+T;H;CZ+RX’ additionally apply two layers of H gates to the lower
qubits. Finally, circuit MeasureGHZ applies internal measurements, as dis-
cussed below.

The majority of circuits revert the lower qubits to |0⟩ by applying c3, the
inverse of c2 but optimized using PyZX [109]—this obfuscates the fact that
c2 and c3 cancel out. Four circuits, marked with a trailing prime (’), generate
c3 by optimizing the un-inverted c2. They still reset all lower qubits to |0⟩,
but establishing this requires advanced reasoning. Specifically, RZ2+H;CX’
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Table 5.4: Description of benchmark circuits, where upper = {1, . . . , 31} and
lower = {32, . . . , 62}.

Circuit Generation Gates (approx.)
Cliff;Cliff c1 ∈

(
{o(q) | o ∈ {H, S}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

c2 ∈
(
{o(q) | o ∈ {H, S}, q ∈ lower} ∪ {CX(q1, q2) | q1, q2 ∈ lower}

)104

return c1; c2; opt(c†
2)

26k×Clifford

Cliff+T;Cliff c1 ∈
(
{o(q) | o ∈ {H, S, T}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

c2 ∈
(
{o(q) | o ∈ {H, S}, q ∈ lower} ∪ {CX(q1, q2) | q1, q2 ∈ lower}

)104

return c1; c2; opt(c†
2)

23k×Clifford,
2.5k× T

Cliff+T;CX+T c1 ∈
(
{o(q) | o ∈ {H, S, T}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T(q) | q ∈ lower}

)104

return c1; c2; opt(c†
2)

18k×Clifford,
9k× T, 40× T†

Cliff+T;CX+T’ c1 ∈
(
{o(q) | o ∈ {H, S, T}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T(q) | q ∈ lower}

)104

return c1; c2; opt(c2)

18k×Clifford,
9k× T, 40× T†

Cliff+T;H;CZ+RX c1 ∈
(
{o(q) | o ∈ {H, S, T}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

ch = H(32); . . . ; H(62)

c2 ∈
(
{CZ(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {RX π

4
(q) | q ∈ lower}

)104

return c1; ch ; c2; opt(c†
2); ch

18k×Clifford,
5k× RX π

4
,

3k× T, 1k× T†

Cliff+T;H;CZ+RX’ c1 ∈
(
{o(q) | o ∈ {H, S, T}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

ch = H(32); . . . ; H(62)

c2 ∈
(
{CZ(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {RX π

4
(q) | q ∈ lower}

)104

return c1; ch ; c2; opt(c2); ch

18k×Clifford,
5k× RX π

4
,

4k× T, 40× T†

CCX+H;Cliff c1 ∈
(
{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}

)104

c2 ∈
(
{o(q) | o ∈ {H, S}, q ∈ lower}∪
{CX(q1, q2) | q1 ∈ lower, q2 ∈ lower∪ upper}

)104

return c1; c2; opt(c†
2)

22k×Clifford,
5k× CCX

CCX+H;CX+T c1 ∈
(
{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T(q) | q ∈ lower}

)104

return c1; c2; opt(c†
2)

16k×Clifford,
5k× CCX,
5k× T, 1k× T†

CCX+H;CX+T’ c1 ∈
(
{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T(q) | q ∈ lower}

)104

return c1; c2; opt(c2)

16k×Clifford,
5k× CCX,
7k× T, 30× T†

RZ2+H;CX c1 ∈
(
{o(q) | o ∈ {RZ2, H}, q ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower}

)104

return c1; c2; opt(c†
2)

16k×Clifford,
5k× RZ2

RZ2+H;CX’ c1 ∈
(
{o(q) | o ∈ {RZ2, H}, q ∈ upper}

)104

c2 ∈
(
{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower}

)104

return c1; c2; opt(c2)

16k×Clifford,
5k× RZ2

MeasureGHZ c1 = CX(1, 2); . . . ; CX(1, 62)
c2 = H(1); c1; measure(1), c1
return c2; . . . ; c2 (100 times)

12k×Clifford,
100×measure
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flips each lower qubit an even number of times. 7 Similarly, Cliff+T;CX+T’
and CCX+H;CX+T’ additionally modify the phase but still flip each lower
qubit an even number of times. Finally, Cliff+T;H;CZ+RX’ flips between
states |+⟩ and |−⟩ an even number of times, where RX π

4
only modifies the

phase.
The last benchmark MeasureGHZ first generates a GHZ state 1√

2
|0 · · · 0⟩+

1√
2
|1 · · · 1⟩, and collapses it to |0 · · · 0⟩ or |1 · · · 1⟩ by measuring the first

qubit. Then, it resets all qubits to |0⟩ except for the first one. It then repeats
this process, with the first qubit starting in either |0⟩ or |1⟩. Thus, the
state before measurement is either 1√

2
|0 · · · 0⟩+ 1√

2
|1 · · · 1⟩ or 1√

2
|0 · · · 0⟩−

1√
2
|1 · · · 1⟩, but every repetition still resets all lower qubits to |0⟩.

discussion Our benchmark covers a wide variety of gates, with all
applying Clifford gates, seven applying T gates, three applying CCX gates,
two applying RX π

4
gates (one qubit gate, rotation around the X axis of π

4
radians), and two applying RZ2 gates (one qubit gate, rotation around the
Z axis of 2 radians).

All benchmarks are constructed to revert the lower qubits to |0⟩, but
in a non-obvious way. As fully precise simulation of most benchmarks is
unrealistic, we expect that over-approximation is typically necessary to
establish this fact.

5.7.2 Baselines

We now discuss how we instantiated existing tools to establish that a
circuit c evolves a qubit q to state |0⟩. Overall, we considered two tools
based on stabilizer simulation (ESS [37] and QuiZX [38]), one tool based
on the Feynman path integral (Feynman [110]), one tool based on abstract
interpretation (YP21 [40], in two different modes), and one tool based on
state vectors (Statevector as implemented by Qiskit [39]).

ess Qiskit [39] provides an extended stabilizer simulator implementing
the ideas published in [37] which (i) decomposes quantum circuits into
Clifford circuits, (ii) simulates these circuits separately, and (iii) performs
measurements by an aggregation across these circuits. To check if a cir-
cuit c consistently evolves a qubit q to |0⟩, we check if c extended by a

7 More precisely, when representing the quantum state as a sum over computational basis states,
an even number of flips are applied to each qubit of each summand.
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measurement of q always yields 0. To run our simulation, we used default
parameters.

quizx QuiZX [38] improves upon [37] by alternating between decompos-
ing circuits (splitting non-Clifford gates into Clifford gates) and optimizing
the decomposed circuits (which may further reduce non-Clifford gates). We
can use QuiZX to establish that a qubit is in state |0⟩ by "plugging" output
q as |1⟩ and establishing that the probability of this output is zero. 8

feynman Feynman [110] allows to verify quantum circuits based on the
Feynman path integral. Its implementation9 supports two main use cases,
namely optimization and checking the equivalence of two circuits. While
these use cases cannot prove that a circuit resets a qubit to |0⟩, we can use
Feynman’s equivalence check to check whether the circuits in Table 5.4 are
equivalent to a simplified version which performs no operation at all on
lower qubits. We check this equivalence for all circuits, even for those where
we know it does not hold (namely all whose name ends with a prime),
allowing us to confirm that Feynman cannot scale to any of our benchmarks
(see §5.7.3).

We note that Feynman currently does not support internal measure-
ments. 10

yp21 Like Abstraqt, YP21 [40] also uses abstract interpretation, but
relies on projectors instead of stabilizer simulation. Specifically, it encodes
the abstract state of selected (small) subsets of qubits as projectors {Pj}j∈J ,
which constrain the state of these qubits to the range of Pj.

To check if a qubit q is in state |0⟩, we check if the subspace resulting
from intersecting the range of all Pj is a subset of the range of I + Z(q)—an
operation which is natively supported by YP21.

When running YP21, we used the two execution modes suggested in its
original evaluation [40]. The first mode tracks the state of all pairs of qubits,
while the second considers subsets of 5 qubits that satisfy a particular
condition (for details, see [40, §9]). Because [40] does not discuss which
execution mode to pick for new circuits, we evaluated all circuits in both
modes.

We note that because YP21 does not support CX(a, b) for a > b, we
instead encoded such gates as H(a); H(b); CX(b, a); H(b); H(a).

8 The use of plugging is described on https://github.com/Quantomatic/quizx/issues/9.
9 Tool available at https://github.com/meamy/feynman

10 https://github.com/meamy/feynman/issues/8

https://github.com/Quantomatic/quizx/issues/9
https://github.com/meamy/feynman
https://github.com/meamy/feynman/issues/8
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statevector Qiskit [39] further provides a simulator based on state
vectors, which we also used for completeness.

abstraqt In Abstraqt, we can establish that a qubit is in state |0⟩
by measuring the final abstract state ρ in basis Z(i) and checking if the
probability of obtaining |1⟩ is 0.

experimental setup We executed all experiments on a machine with
110 GB RAM and 56 cores at 2.6 GHz, running Ubuntu 22.04. Because some
tools consumed excessive amounts of memory, we limited them to 12 GB of
RAM. This was not necessary for Abstraqt, which never required more
than 600 MB of RAM. We limited each tool to a single thread.

5.7.3 Results

Table 5.5 summarizes the results when using all tools discussed in §5.7.2 to
establish that the last qubit in 10 randomly selected instantiations of each
benchmark from Table 5.4 is in state |0⟩. Overall, it demonstrates that while
Abstraqt can establish this for all benchmarks within minutes, QuiZX can
only establish it for a few instances, and all other tools cannot establish it
for any benchmark. Further, we found that for some circuits the established
simulation tool ESS yields incorrect results. We now discuss the results of
each tool in more details.

measureghz Importantly, no baseline tool except Abstraqt can simul-
taneously simulate both outcomes of a measurement, without incurring
an exponential blow-up. Therefore, for MeasureGHZ, we consider internal
measurements as an unsupported operation in these tools. We note that
we could randomly select one measurement outcome and simulate the
remainder of the circuit for it, but then we can only establish that the final
state is |0⟩ for a given sequence of measurement outcomes. In contrast, a single
run of Abstraqt can establish that the final state is |0⟩ for all possible
measurement outcomes (see also §5.5.2).

quizx As QuiZX is the only baseline tool solving some of our benchmark
instances, we provide a detailed comparison to it in Table 5.6.

Overall, QuiZX cannot consistently handle any of the benchmarks from
Table 5.4, Instead, it often either times out or runs out of memory. Fur-
ther, QuiZX consistently runs into an internal error when simulating
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Table 5.5: Success rates when running simulators on benchmarks from Table 5.4.
Label Abstraqt QuiZX ESS Feynman YP21 (mode 1) YP21 (mode 2) Statevec.
Cliff;Cliff 100% 0% (E) 0% (I) 0% (T,M) 0% (T,P) 0% (I) 0% (M)
Cliff+T;Cliff 100% 70% (T) 0% (I) 0% (T,M) 0% (T,P) 0% (I) 0% (M)
Cliff+T;CX+T 100% 80% (M) 0% (M) 0% (T) 0% (T,E,P) 0% (I) 0% (M)
Cliff+T;CX+T’ 100% 0% (M) 0% (M) 0% (T) 0% (T,E,P) 0% (I) 0% (M)
Cliff+T;H+CZ+RX 100% 60% (M) 0% (M) 0% (T) 0% (T,P) 0% (I) 0% (M)
Cliff+T;H+CZ+RX’ 100% 0% (T,M) 0% (M) 0% (T) 0% (T,P) 0% (I) 0% (M)
CCX+H;Cliff 100% 0% (T) 0% (M) 0% (M) 0% (T) 0% (T) 0% (M)
CCX+H;CX+T 100% 50% (T) 0% (M) 0% (T) 0% (T) 0% (T) 0% (M)
CCX+H;CX+T’ 100% 0% (T,M) 0% (M) 0% (T) 0% (T) 0% (T) 0% (M)
RZ2+H;CX 100% 0% (E) 0% (T,M) 0% (U) 0% (U) 0% (U) 0% (M)
RZ2+H;CX’ 100% 0% (E) 0% (M) 0% (U) 0% (U) 0% (U) 0% (M)
MeasureGHZ 100% 0% (U) 0% (U) 0% (U) 0% (U) 0% (U) 0% (U)
Overall success 100% 22% 0% 0% 0% 0% 0%

T: timeout (6h), M: out of memory, U: unsupported operation in the circuit,
I: incorrect simulation results, P: too imprecise, E: internal error

Table 5.6: Detailed comparison of outcomes from Abstraqt and QuiZX, includ-
ing runtimes of successful runs.

Label Abstraqt QuiZX
Outcomes min [s] max [s] Outcomes min [s] max [s]

Cliff;Cliff 10×✓ 24 33 0×✓, 10× E - -
Cliff+T;Cliff 10×✓ 32 47 7×✓, 3× T 5.5 · 103 2.0 · 104

Cliff+T;CX+T 10×✓ 46 63 8×✓, 2×M 2.0 · 103 9.4 · 103

Cliff+T;CX+T’ 10×✓ 47 65 0×✓,10× T - -
Cliff+T;H+CZ+RX 10×✓ 58 69 6×✓, 4×M 3.6 · 103 1.4 · 104

Cliff+T;H+CZ+RX’ 10×✓ 52 71 0×✓, 1× T, 9×M - -
CCX+H;Cliff 10×✓ 143 155 0×✓,10× T - -
CCX+H;CX+T 10×✓ 155 173 5×✓, 5× T 5.9 · 103 7.9 · 103

CCX+H;CX+T’ 10×✓ 155 173 0×✓, 1× T, 9×M - -
RZ2+H;CX 10×✓ 37 47 0×✓, 10× E - -
RZ2+H;CX’ 10×✓ 37 46 0×✓, 10× E - -
MeasureGHZ 10×✓ 23 32 0×✓, 10×U - -

T: timeout (6h), M: out of memory, U: unsupported operation in the circuit,
E: internal error
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RZ2+H;CX and RZ2+H;CX’. Surprisingly, QuiZX also consistently fails to simu-
late Cliff;Cliff, which we conjecture is due to a bug for circuits that do
not contain non-Clifford gates. After adding a single T gate, simulation is
successful.

Importantly, even when QuiZX succeeds, it is significantly slower than
Abstraqt, sometimes by more than two orders of magnitude.

ess Surprisingly, ESS simulates circuits Cliff;Cliff and Cliff+T;Cliff

incorrectly. Specifically, it samples the impossible measurement of 1 around
50% of cases. Interestingly, smaller circuits generated with the same process
are handled correctly. It is reassuring to see that Abstraqt allows us to
discover such instabilities in established tools.

It may be surprising that ESS returns an incorrect result for Cliff+T;Cliff
instead of timing out, although the circuit contains many T gates—this is
because Qiskit can establish that the Clifford+T part of the circuit is irrel-
evant when measuring the last qubit. For all remaining circuits, ESS runs
out of memory or times out, as it decomposes the circuit into exponentially
many Clifford circuits.

feynman Feynman consistently either times out, runs out of memory,
or does not support a relevant operation (namely measurement and RZ2).

yp21 YP21 typically either times out, throws an internal error, does
not support a relevant operation (e.g., measurements or RZ2), or returns
incorrect results. The latter is because on some circuits, mode 2 choses an
empty set of projectors, which leads to trivially unsound results. When
YP21 does terminate, it is too imprecise to establish that the last qubit is in
state |0⟩.

statevector Unsurprisingly, statevector simulation cannot handle the
circuits in Table 5.5. This is because it requires space exponential in the
number of qubits, which precludes simulating any of the benchmarks.

5.7.4 Limitations and Discussion

We note that our benchmarks are designed to showcase successful applica-
tions of Abstraqt where it outperforms existing tools. Of course, Abstraqt

is not precise on all circuits—e.g., Abstraqt quickly loses precision on
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general Clifford+T circuits (analogously to the imprecise measurement
discussed in §5.3).

future abstractions We expect that for many real-world circuits,
existing approaches work better than the current implementation of Ab-
straqt. However, as Abstraqt only abstracts the first stabilizer simulation
generalized to non-Clifford gates [36, §VII-C], we believe it paves the way to
also abstract more recent stabilizer simulators. For example, ESS [37] oper-
ates on so-called CH-forms which, like the generalized stabilizer simulation
underlying Abstraqt, can be encoded using bits and complex numbers.
Hence, it seems plausible that our ideas could be adapted to abstract ESS.
QuiZX operates on ZX-diagrams consisting of graphs whose nodes are
parametrized by rotation angles α. Again, a promising direction for future
research is introducing abstract ZX-diagrams that support abstract rotation
angles. This is particularly promising because both ESS and QuiZX scale
better in number of T gates than [36, §VII-C]: with 2n instead of 4n.

We note however that not all concrete simulation techniques are directly
amenable to abstraction. For example, when naively abstracting the Clifford
simulation by Aaronson and Gottesmann, applying a measurement requires
selecting an entry in an boolean matrix that definitively equals one [36, Case
I in §III]—it is unclear how to generalize this to abstract boolean matrices
whose entries may be {0, 1}.

improving abstraqt Another promising route towards better abstrac-
tions in incrementally improving Abstraqt itself. For example, it would
be interesting to consider the effect of keeping more than one abstract
summand, abstracting Pi or bij using a custom relational domain (which
retains information about the relationship between different values) [111],
or a more precise abstraction for complex numbers by taking into account
that restricted gate sets such as Clifford+T only induce matrices over finite
sets of values.

summary Overall, we believe that all tools in Table 5.5 are valuable
to analyze quantum circuits. We are hoping that addressing some limi-
tations of the considered baselines (e.g., fixing bugs in QuiZX and ESS)
and cross-pollinating ideas (e.g., extending QuiZX by abstract interpreta-
tion) will allow the community to benefit from the fundamentally different
mathematical foundations of all tools.
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5.8 related work

Here, we discuss works related to the goal and methods of Abstraqt.

quantum abstract interpretation Some existing works have
investigated abstract interpretation for simulating quantum circuits [40, 112,
113]. As [40] is not specialized for Clifford circuits, it is very imprecise on
the circuits investigated in §5.7: it cannot derive that the lower qubits are |0⟩
for any of them. While [112, 113] are inspired by stabilizer simulation, they
only focus on determining if certain qubits are entangled or not, whereas
Abstraqt can extract more precise information about the state. Further,
both tools are inherently imprecise on non-Clifford gates—in contrast, a
straight-forward extension of Abstraqt can treat some non-Clifford gates
precisely at the exponential cost of not merging summands.

stabilizer simulation The Gottesman-Knill theorem [96] established
that stabilizers can be used to efficiently simulate Clifford circuits. Stim [107]
is a recent implementation of such a simulator, which only supports Clifford
gates and Pauli measurements.

Stabilizer simulation was extended to allow for non-Clifford gates at
an exponential cost, while still allowing efficient simulation of Clifford
gates [36, §VII-C]. Various works build upon this insight, handling Clifford
gates efficiently but suffering from an exponential blow-up on non-Clifford
gates [37, 38, 97, 98, 99]. In our evaluation, we demonstrate that Abstraqt

extends the reach of state-of-the-art stabilizer simulation by comparing to
two tools from this category, ESS [37] (chosen because it is implemented in
the popular Qiskit library) and QuiZX [38] (chosen because it is a recent
tool reporting favorable runtimes).

verifying quantum programs Another approach to establishing
circuit properties is end-to-end formal program verification, as developed
in [44] for instance. However, this approach often requires new insights
for each program it is applied to. Even though recent works have greatly
improved verification automation, proving even the simplest programs still
requires a significant time investment [114], whereas our approach can
analyze it without any human time investment.

The work [115] automatically generates rich invariants, but is exponential
in the number of qubits, limiting its use to small circuits. Finally, [110] can
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automatically verify the equivalence of two given circuits, but times out on
the benchmarks considered in §5.7.

5.9 conclusion

In this chapter, we have demonstrated that combining abstract interpretation
with stabilizer simulation allows to establish circuit properties that are
intractable otherwise.

Our key idea was to over-approximate the behavior of non-Clifford gates
in the generalized stabilizer simulation of Aaronson and Gottesman [36]
by merging summands in the sum representation of the quantum states
density matrix. Our carefully chosen abstract domain allows us to define ef-
ficient abstract transformers that approximate each of the concrete stabilizer
simulation functions, including measurement.



6
C O N C L U S I O N A N D O U T L O O K

In conclusion, this thesis has introduced the three novel tools Silq, Unqomp,
and Abstraqt with the aim of advancing the field of quantum computation.

These tools substantially lower the entrance barrier for non-expert quan-
tum programmers and enable experts to realize the full potential of quan-
tum computing. As a result, they can expedite the development of more ef-
ficient and correct quantum algorithms, as well as facilitate further progress
in the field of quantum computing.

For future work, several directions can be explored to further enhance
the capabilities of these tools. Developing a compiler for Silq is an ongoing
effort [33], which could lead to significantly more efficient compilation
results by exploiting the high-level information available in Silq. Similarly,
the high-level nature of Silq programs could also simplify the formal ver-
ification of quantum algorithms, by relying on guarantees offered by the
language [43, 44]. Additionally, we could improve the versatility of uncom-
putation synthesis by taking into account additional information such as
resource constraints (as demonstrated in our follow-up work Reqomp [14]),
or circuit identities (to generate more efficient circuits). Further, Abstraqt

lays the groundwork to explore the effect of abstract interpretation on
stabilizer simulation or other simulation techniques.

Overall, by continuing to leverage techniques from the programming
language community, we believe the quantum computation community
can further bridge the gap between classical and quantum programming,
thereby unlocking the full potential of quantum computing.
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A P P E N D I X : S I L Q

a.1 comparing silq to quipper and qwire

Fig. A.1 and Fig. A.2 provide full versions of the programs shown in Fig. 3.2.
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1 cTri <- foldM (\cTri j -> do

2 let tau_j = tau ! j

3 eed <- qinit (intMap_replicate rr False)

4 -- computing eed = ee[tau[j]]

5 (taub,ee,eed) <- a11_FetchE tau_j ee eed

6 cTri <- foldM (\cTri k -> do

7 let tau_k = tau ! k

8 eedd_k <- qinit False

9 -- eedd_k=eed[tau[k]]=ee[tau[j]][tau[k]]

10 (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k

11 -- using eedd_k as ctrl

12 cTri <- increment cTri ‘controlled‘ eedd_k .&&. (eew ! j) .&&. (eew ! k)

13 -- uncomputing eedd_k

14 (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k

15 qterm False eedd_k

16 return cTri)

17 cTri [j+1..rrbar-1]

18 -- uncomputing eed

19 (taub,ee,eed) <- a11_FetchE tau_j ee eed

20 qterm (intMap_replicate rr False) eed

21 return cTri)

22 cTri [0..rrbar-1]

Figure A.1: Quipper code from Fig. 3.2.

a.2 grover’s algorithm

Fig. A.3 shows an implementation of Grover’s algorithm, including Grover’s
diffusion operator in Silq.
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1index : ∏(n:Nat,i:Nat) . CIRC(t[n] ,t[n]⊗ t) = ...

2qindex : ∏(n:Nat,m:Nat) . CIRC(t[n]⊗qubit[m],t[n]⊗qubit[m]⊗t) = ...

3controlledInc : ∏(n:Nat). CIRC(qubit[n]⊗qubit,qubit[n]⊗qubit) = ...

4

5EvalCondition : ∏(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

6qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar],...⊗qubit
7) = box(ee,tau,eew) =>

8(tau,tauj) <- unbox (index rrbar j) tau; -- tauj=tau[j]

9(tau,tauk) <- unbox (index rrbar k) tau; -- tauk=tau[k]

10(ee, tauj, eed) <- unbox (qindex rrbar r) ee tauj; -- eed=ee[tauj]

11(eed,tauk,eedd_k) <- unbox (qindex rrbar r) eed tauk; -- eedk=eed[tauk]

12(eew,eewj) <- unbox (index rrbar j) eew; -- eewj=eew[j]

13(eew,eewk) <- unbox (index rrbar k) eew; -- eewk=eew[k]

14(eedd_k,eewj,eewk,c) <- unbox and eedd_k eewj eewk; -- condition

15output (ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) --output

16

17LoopBody : ∏(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

18qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar],
19qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar]
20) = box (ee,tau,eew,cTri) =>

21(ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) <- unbox (EvalCondition r rrbar j k)

ee tau eew; -- evaluate condition

22(cTri,c) <- unbox (controlledInc rrbar) cTri c; -- controlled increment

23(ee,tau,eew) <- unbox (reverseIsometric EvalCondition r rrbar j k) ee tau eew tauj

tauk eed eedd_k eewj eewk c -- uncompute

24output (ee,tau,eew,cTri) -- output

Figure A.2: QWire code from Fig. 3.2.
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1 def groverDiff[n:!N](cand:uint[n]){

2 for k in [0..n) { cand[k] := H(cand[k]); }

3 if cand!=0 {

4 phase(π);
5 }

6 for k in [0..n) { cand[k] := H(cand[k]); }

7 return cand;

8 }

9

10 def grover[n:!N](f:uint[n]!→ lifted B){

11 nIterations:= floor(π/4/asin(2^(-n/2)));
12 cand:=0:uint[n];

13 for k in [0..n) { cand[k] := H(cand[k]); }

14

15 for k in [0..nIterations){

16 if f(cand) { phase(π); }

17 cand:=groverDiff(cand);

18 }

19 return measure(cand);

20 }

Figure A.3: Grover’s diffusion operator in Silq.

a.3 uncomputing non-qfree expressions

Here, we show why uncomputing the condition in function nonQfree in
Fig. 3.5 is not possible (in particular also not by following Bennet’s con-
struction). Fig. A.4a provides a rewritten version of nonQfree that makes its
individual operations more explicit.

Without uncomputation, nonQfree produces x (implicitly duplicated be-
fore applying H), a modified y, and a temporary control t, hence uncompu-
tation should remove t without uncomputing x or the modified y.

The most natural way to try to uncompute t is running Bennett’s con-
struction by (i) running nonQfree, (ii) duplicating the modified y, and (iii) re-
versing nonQfree. However, this would result in x, the original y, and the
modified y, instead of just x and the modified y.

Fig. A.4 shows that more generally, dropping t from the state is unphys-
ical. Specifically, dropping t from the state (which is the goal of correct
uncomputation) can result in the invalid state 0.
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1 def nonQfree(const x:B,y:B){

2 t := dup(x);

3 t := H(t);

4 if t{

5 y := X(y);

6 }

7 // uncompute t

8 }

(a) Rewritten version of nonQfree that makes its individual operations more explicit.

1√
2
|1⟩x |0⟩y + 1√

2
|1⟩x |1⟩y

Line 2−−−→ 1√
2
|1⟩x |0⟩y |1⟩t + 1√

2
|1⟩x |1⟩y |1⟩t

Line 3−−−→ 1√
2
|1⟩x |0⟩y |−⟩t + 1√

2
|1⟩x |1⟩y |−⟩t

=
1
2
|1⟩x |0⟩y |0⟩t −

1
2
|1⟩x |0⟩y |1⟩t +

1
2
|1⟩x |1⟩y |0⟩t −

1
2
|1⟩x |1⟩y |1⟩t

Lines 4–6−−−−−→1
2
|1⟩x |0⟩y |0⟩t −

1
2
|1⟩x |1⟩y |1⟩t +

1
2
|1⟩x |1⟩y |0⟩t −

1
2
|1⟩x |0⟩y |1⟩t

Line 7−−−→1
2
|1⟩x |0⟩y −

1
2
|1⟩x |1⟩y +

1
2
|1⟩x |1⟩y −

1
2
|1⟩x |0⟩y = 0

(b) Semantics of nonQfree.

Figure A.4: Semantics of nonQfree on input 1√
2
|1⟩x |0⟩y + 1√

2
|1⟩x |1⟩y when un-

computing the condition.
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Γi ei : τi Γ′ e′ : ×n
i=1 τi → τ′

Γ1, . . . , Γn, Γ′ e′(e1, . . . , en) : τ′

x⃗ : τ⃗, y⃗ : τ⃗′ e : τ′′

y⃗ : τ⃗′ λ(x⃗ : τ⃗).e : ×n
i=1 τi → τ′′

Γc e : B Γ e1 : τ Γ e2 : τ

Γc, Γ if e then e1 else e2 : τ

Figure A.5: The basic patterns of our typing rules (ignoring annotations) are
standard for a linear type system.

a.4 typing rules

In the following, we provide additional information on typing rules of
Silq-Core.

a.4.1 Basic Pattern of Typing Rules

Fig. A.5 shows the basic patterns of our typing rules without annotations.
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H B ! mfree−−−→ B

phase !float ! mfree−−−→ 1

rotX, rotY, rotZ !float×B ! mfree−−−→ B

X B !
qfree,mfree−−−−−−→ B

Y, Z B ! mfree−−−→ B

dup const τ !
qfree,mfree−−−−−−→ τ

(·, . . . , ·) ×n
i=1 τi !

qfree,mfree−−−−−−→ ×n
i=1 τi

forget(· = ·) τ × const τ !
qfree,mfree−−−−−−→ 1

· ⊕ · const uint× const uint !
qfree−−−→ uint

Figure A.6: Types of selected built-in functions.

a.4.2 Types of Selected Built-in Functions

Fig. A.6 shows the type of some built-in functions. In the following, we
only discuss its most interesting aspects.

hadamard, phase The parameter of H is not const, meaning that
evaluating H consumes its argument (the argument is not available after the
call). In contrast, the parameters of ⊕ are const, meaning that adding two
expressions preserves them. Further, H is only mfree, while ⊕ is qfree and
mfree. The function phase requires a classical phase (!float), and does not
return anything (indicated by 1).

dup, tupling Function dup returns a copy of its argument, without
changing the argument (indicated by const τ). For tupling (·, . . . , ·), our typ-
ing rule relies on the implicit tupling by function calls (see Fig. 3.10). It con-
sumes its arguments and is qfree. As an implicit consequence, (e1, . . . , en)
is classical if all ei’s are classical.

forget Function forget(e1 = e2) leaves its second argument constant,
but consumes its first. This allows us to forget e1.

a.5 semantics

In the following, we provide additional information on semantics of Silq-
Core.
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[
∅

α
c : τ

∣∣∣∣ ψ

]
run−−→ ψ⊗ |c⟩c

const [
x : τ

α
x : τ

∣∣∣∣ ψ

]
run−−→ Ix→x(ψ)

var

[
const x : τ

α
x : τ

∣∣∣∣ ψ

]
run−−→ dupx→x,x(ψ)

var-const

Figure A.7: Semantics of constants and variables.

[
Γ

α
e : τ′

∣∣∣∣ drop(x) (ψ)

]
run−−→ ψ′[

Γ, x : !τ
α

e : τ′
∣∣∣∣ ψ

]
run−−→ ψ′

!W

[
Γ

α
e : τ′

∣∣∣∣ ψ

]
run−−→ ψ′[

Γ, const x : τ
α

e : τ′
∣∣∣∣ ψ

]
run−−→ ψ′

W

[
Γ, x : !τ, x : !τ

α
e : τ′

∣∣∣∣ dupx→x,x (ψ)

]
run−−→ ψ′[

Γ, x : !τ
α

e : τ′
∣∣∣∣ ψ

]
run−−→ ψ′

!C

[
Γ, const x : τ, const x : τ

α
e : τ′

∣∣∣∣ dupx→x,x(ψ)

]
run−−→ ψ′[

Γ, const x : τ
α

e : τ′
∣∣∣∣ ψ

]
run−−→ drop(x) (ψ′)

C

Figure A.8: Semantics of contraction and weakening.
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s
e

m
a

n
t

i
c

s
1

4
3

ψ = ∑
v

γv |v⟩e ⊗ ψ̃v v′ ∈ JτKc × JτKq[
measure(e) : τ ! α−→!τ

∣∣∣ ∅ : ∅
∣∣∣ ψ
]

eval−−→ γv′ |v′⟩ret⊗ ψ̃v′
measure [

c(⃗e) : ×n
i=1 βiτi ! α−→τ′

∣∣∣ ∅ : ∅
∣∣∣ ψ
]

eval−−→ JcK⃗e→(ei)i|const∈βi
,ret (ψ)

built-in-eval

Figure A.9: Semantics of function calls.
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q

ψ = |efunc, σ⟩e ⊗ ψ̃[
reverse(e) :

(
n×

i=1
const τi ×

m×
j=1

τ′j ! mfree,α−−−−→
l×

k=1
τ′′k

)
!
mfree,qfree−−−−−−→

(
n×

i=1
const τi ×

l×
k=1

τ′′k ! mfree,α−−−−→
m×

j=1
τ′j

) ∣∣∣∣∣ ∅

∣∣∣∣∣ ψ

]
eval−−→ |reverse(efunc), σ⟩ret⊗ ψ̃

rev

[
efunc (⃗ec, t⃗) :

n×
i=1

const τi ×
m×

j=1
τ′j ! mfree,α−−−−→

l×
k=1

τ′′k

∣∣∣∣∣ σ : Γ

∣∣∣∣∣ ψ′
]

eval−−→ I⃗ec→ret (ψ) ψ′ ∈
t

e⃗c :
n×

i=1
const τi , t⃗ :

m×
j=1

τ′j , ∆

|+

∆ according to ψ[
reverse(efunc)(⃗ec, e⃗c) :

n×
i=1

const τi ×
l×

k=1
τ′′k ! mfree,α−−−−→

m×
j=1

τ′j

∣∣∣∣∣ σ : Γ

∣∣∣∣∣ ψ

]
eval−−→ I⃗t→ret

(
ψ′
) call-rev

Figure A.10: Semantics of reverse.

[
Γc

αc ec : B

∣∣∣∣ ψ

]
run−−→ ψt ⊗ |1⟩ec

+ ψ f ⊗ |0⟩ec

[
Γ

αt et : τ

∣∣∣∣ ψt

]
run−−→ ψ′t

[
Γ

α f e f : τ

∣∣∣∣ ψ f

]
run−−→ ψ′fΓc, Γ

α
if ec then et else e f︸ ︷︷ ︸

e

: τ

∣∣∣∣∣∣∣ ψ

 run−−→ Iet→e (ψ
′
t) + Ie f→e

(
ψ′f
) ite-q

Figure A.11: Semantics of control flow. The rule is analogous for ec : !B.
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(
JXK x→ y

)(
|b⟩ x ⊗ |w⃗⟩⃗z

)
(A.1)

= JXK x→ y
(
|b⟩ x

)
⊗ I

(
|w⃗⟩⃗z

)
(A.2)

= JXK x→ y
(
|b⟩ x

)
⊗ |w⃗⟩⃗z I (A.3)

=

(
JXK
(
|b⟩
))

y
⊗ |w⃗⟩⃗z x → y (A.4)

= |1− b⟩ y ⊗ |w⃗⟩⃗z X (A.5)

Figure A.12: Operating on named states with context.

a.5.1 Semantics of Expressions

In the following, we provide formal semantics for Silq-Core expressions.

constants , variables Fig. A.7 first shows the rule for constants,
which adds the constant to the state. Then, it shows the rules for variables.
For consumed variables, Ix→x renames x to x in ψ without affecting other
variables in ψ (shortly discussed in more detail). In contrast, the rule for
constant variables preserves x and introduces an explicit duplicate x by
JdupK, which maps |v⟩ to |v, v⟩ (cp. Fig. A.14).

operating on named states with context We provide a more
detailed example demonstrating the effect of subscript “x → x” in Fig. A.12,
which shows how to apply JXK x→ y to state |b⟩ x ⊗ |w⃗⟩⃗z, where the formal

definition of JXK is JXK (|b⟩) = |1− b⟩ (see App. A.5.2).
Here, the subscript x → y of X ensures that we (i) preserve |w⃗⟩⃗z

(cp. Eqs. (A.2)–(A.3)) and (ii) run X on |b⟩ x and name the output y (cp.
Eq. (A.4)).

Here, it is crucial that we assume the standard representation introduced
in Fig. 3.16, which ensures that classical and quantum components of
variable x are stored together as |(v, v′)⟩x. As a consequence, we know that
if z⃗ contains one or more occurrences of x, these represent duplicates of x,
as opposed to classical or quantum components of x.

contraction, weakening Next, Fig. A.8 shows the semantics of
contraction and weakening.
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If the weakening rule drops a classical variable x from the context (rule

!W), the semantics drops x from the state, using drop(x)
(
|v⟩x |w⃗⟩y⃗

)
= |w⃗⟩y⃗.

If the context contains multiple occurrences of x, only the first occurrence
of x is dropped.

If the rule drops a constant variable (rule W), the semantics ignores this.
Instead, it waits until the end of the function to uncompute all constant
variables.

The contraction rule for classical variables (rule !C) duplicates the con-
tracted variable x. In contrast, the contraction rule for quantum variables
(rule C), duplicating the contracted variable x, and removes the duplicate
after evaluating e. This removal of duplicates is not needed for classical
variables, as only constant variables are preserved after their last usage.

function calls The first rule in Fig. A.9 shows the semantics of a
generic function call e′ (⃗e). First, the rule evaluates all arguments, resulting
in state ψn. Second, the rule evaluates e′, resulting in state ψn+1 containing
the function e′′ to be evaluated, which may capture variables σ. We note that
the rule implicitly assumes that the function to be evaluated is classically
known — a property guaranteed by our type system. Third, it evaluates the

function using a transition rule of the form [e′′ (⃗e) | σ | ψn+1]
eval−−→ ψn+2. In

contrast to run-transitions, eval-transitions assume that all arguments e⃗ are
already evaluated in ψn+1 (as guaranteed by run-transitions). Finally, the
rule drops the const arguments of e′′ by uncomputing them, and renames
the output value from ret to e′ (⃗e).

eval-transitions All remaining rules in Fig. A.9 are eval-transitions.
The rules modify their input state ψ according to the called function, and
then store the result in ret.

measurement The rule for measurement selects one possible measure-
ment v′ and collapses the state to this value. Note that measurement allows
multiple transitions, one for each possible measured value v′. Here, and in
various other eval-transitions, the state of captured variables is σ = ∅, as
measurement cannot capture variables.

built-in functions The rule for evaluating built-in functions c relies
on the semantics JcK of these functions, as discussed in App. A.5.2. The
subscript to JcK ensures that the function operates on input values named
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e1, . . . , en, and names the output values ei (if the ith argument of c is const)
and ret (to indicate the return value).

evaluating lambda abstraction The last rule in Fig. A.9 evaluates
a lambda abstraction. First, it adds the variables captured in e′′ to the
current state ψ. Second, it renames the values of the evaluated arguments
to the names of the parameters of e′′. Third, it runs e′′ on the resulting state,
obtaining ψ′. Finally, it resets the variable names of constant parameters to
e′′ back to ei and names the return value ret.

reverse Fig. A.10 shows the semantics of reverse. Expression reverse(e)
does not immediately reverse e (which evaluates to function efunc), but
instead records that efunc should be reversed, by storing reverse(efunc) and
the state σ captured by efunc under ret.

The actual reversal is performed upon a call to the reversed function,
also shown in Fig. A.10. Here, we explicitly split the arguments into e⃗c

(the const arguments) and e⃗c (the non-const arguments), as assumed by
Fig. 3.12. Intuitively, rule call-reversed maps ψ to ψ′, if running efunc on ψ′

yields ψ. However, it must also account for naming mismatches: Running
efunc on ψ′ yields ret instead of e⃗c, and the name of the returned value must
be ret.

We note that it is possible that there is no ψ′ satisfying the premise
of call-reversed, when efunc is not surjective. In this case, reverse(efunc) is
undefined on ψ, which intuitively happends if ψ is not in the range of efunc).

control flow Fig. A.11 shows the semantics of control flow, handling
both classical and quantum control flow. The rule (i) evaluates condition
e and (ii) splits the resulting state into two states based on the value of e.
Then, it evaluates e1 in the first state and e2 in the second. Finally, it adds
both resulting states and drops e from the state.

a.5.2 Semantics of Built-in Functions

Fig. A.13a shows the semantic space of built-in functions f in terms of
partial linear functions J f K, where being a partial function allows us to
support undefined behavior for some inputs.

Note that the function space of J f K in principle admits functions (i) vio-
lating const by modifying constant arguments and even (ii) violating the
rules of quantum physics as in α |0⟩+ β |1⟩ 7→ (α + β) |0⟩. Thus, we must
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For f :
n×

i=1
const τi ×

m×
i=1

τ′i
α−→ τ′′ , we have

J f K :
s

n×
i=1

τi ×
m×

i=1
τ′i

{+ lin.
̸→

s
n×

i=1
τi × τ′′

{+

(a) Semantics of a general built-in function f .

JXK |b⟩ = |1− b⟩ (A.6)

JXK

(
1

∑
b=0

γb |b⟩
)

=
1

∑
b=0

γb JXK |b⟩ =
1

∑
b=0

γb |1− b⟩ (A.7)

(b) Semantics of X.

Figure A.13: Semantic of built-in functions.

ensure that these violations do not occur for the built-in functions defined
by Silq-Core.

As an example, Fig. A.13b shows the semantics of X on basis states
(Eq. (A.6)), the quantum semantics are given by linear extension (Eq. (A.7)).
For simplicity, the semantics in Fig. A.13a (i) operates on states with un-
named indices and (ii) does not take context into account. However, our
operational semantics operates on states with named indices involving
context. Fig. A.12 shows how to bridge this gap when applying X to state
|b⟩ x ⊗ |w⃗⟩⃗z. The subscript x → y of X ensures (i) we preserve |w⃗⟩⃗z (cp.
Eqs. (A.2)–(A.3)) and (ii) we run X on |b⟩ x and name the output y (cp.
Eq. (A.4)).

semantics of selected built-in functions Fig. A.13 shows the
semantics of selected built-in functions in Silq-Core.

The semantics of forget(· = ·) is only defined if its two arguments
evaluate to the same value.

a.5.3 Semantics Example

We provide an example semantic derivation tree in Fig. A.15. It demon-
strates weakening, contraction, and function evaluation.



A.6 proofs 149

JHK |b⟩ = 1√
2

(
|0⟩+ (−1)b |1⟩

)
JphaseK |r⟩ = eir · |()⟩

JrotXK |r⟩ |b⟩ =
(

cos
r
2
|b⟩ − i sin

r
2
JXK |b⟩

)
JXK |b⟩ = |1− b⟩

JrotYK |r⟩ |b⟩ =
(

cos
r
2
|b⟩ − i sin

r
2
JYK |b⟩

)
JYK |b⟩ = i · (−1)b |1− b⟩

JrotZK |r⟩ |b⟩ =
(

cos
r
2
|b⟩ − i sin

r
2
JZK |b⟩

)
JZK |b⟩ = (−1)b |b⟩

JdupK |v⟩ = |v, v⟩
J(·, . . . , ·)K |v1⟩ · · · |vn⟩ = |v1, . . . , vn⟩

Jforget(· = ·)K |v⟩ |w⟩ =
{
|v⟩ v = w
undefined v ̸= w

J· ⊕ ·K |v1, v2⟩ = |v1, v2, v1 ⊕ v2⟩

Figure A.14: Example semantics of built-in functions. Most definitions are taken
from [47, §4.2]. All definitions can be linearly extended.

a.6 proofs

Here, we provide proofs for key results.

a.6.1 Theorems

We recall all theorems presented in §3.6 in the following.

Theorem 3.6.1 (Type Preservation). If we have

Γ = const x⃗ : τ⃗, y⃗ : τ⃗′,[
Γ

α
e : τ′′

∣∣∣ ψ
]

run−→ ψ′, and

ψ ∈ ι (JΓ, ∆K) ,

then ψ′ lies in ι (Jconst x⃗ : τ⃗, e : τ′′, ∆K).
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1 =

[
const x : B

α
x : B

∣∣∣∣ |0⟩x |0⟩x |1⟩y ] run−−→ |0⟩x |0⟩x |0⟩x |1⟩y
var

2 =

[
const x : B

α
x : B

∣∣∣∣ |0⟩x |0⟩x |0⟩x |1⟩y ] run−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y
var

3 =

[
∅

α · || · : const B× const B ! α−→ B

∣∣∣∣ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y ] run−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y ⊗ |· || ·, ∅⟩·||·
const

(a) Subtrees of full semantic derivation tree (provided separately due to space
constraints).

1 2 3

Assuming: J· || ·K |a⟩ |b⟩ = |a⟩ |b⟩ |a || b⟩[
(· || ·)(x, x) : const B× const B ! α−→ B

∣∣∣ ∅ : ∅
∣∣∣ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y ] eval−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y |0⟩ret

built-in-eval

[
const x : B, const x : B

α
x || x : B

∣∣∣∣ |0⟩x |0⟩x |1⟩y ] run−−→ |0⟩x |0⟩x |1⟩y |0⟩x||x
func-eval

[
const x : B

α
x || x : B

∣∣∣∣ |0⟩x |1⟩y ] run−−→ |0⟩x |1⟩y |0⟩x||x
C

[
const x : B, const y : B

α
x || x : B

∣∣∣∣ |0⟩x |1⟩y ] run−−→ |0⟩x |1⟩y |0⟩x||x
W

(b) Full semantic derivation tree for const x : B, const y : B
α

x || x : B.

const x : B
α

x : B

var
const x : B

α
x : B

var
(assuming || is built-in)

∅
α · || · : const B× const B ! α−→ B

const x : B, const x : B
α

x || x : B

func-eval

const x : B
α

x || x : B

C

const x : B, const y : B
α

x || x : B

W

(c) Type derivation tree for const x : B, const y : B
α

x || x : B.

Figure A.15: Semantics of const x : B, const y : B
α

x || x : B on input state

|0⟩x |1⟩y . Here, α = qfree, mfree and gray parts of states corre-

spond to the additional context ∆.
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Theorem 3.6.2 (Const Semantics). If we have

Γ = const x⃗ : τ⃗, y⃗ : τ⃗′,[
Γ

α
e : τ′′

∣∣∣ ψ
]

run−→ ψ′, and

ψ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗,

then ψ′ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ χv⃗,w⃗⊗ ψ̃v⃗,w⃗ for some χv⃗,w⃗.

Theorem 3.6.3 (Mfree Semantics). If mfree ∈ α, σ ∈ JΓ, ∆Kc,[
Γ

α
e : τ′′

∣∣∣ ι(σ, ψ1)
]

run−→ ψ′1 for ψ1 ∈ H (JΓ, ∆Kq) , and[
Γ

α
e : τ′′

∣∣∣ ι(σ, ψ2)
]

run−→ ψ′2 for ψ2 ∈ H (JΓ, ∆Kq) ,

then ⟨ψ1| |ψ2⟩ = ⟨ψ′1| |ψ′2⟩.

Theorem 3.6.4 (Qfree Semantics). If Γ
α

e : τ′′ for qfree ∈ α and context Γ =

const x⃗ : τ⃗, y⃗ : τ⃗′, then there exists a function f̄ : JΓKs → Jconst x⃗ : τ⃗, e : τ′′Ks

on ground sets such thatΓ
α

e : τ′′

∣∣∣∣∣∣ ∑
σ∈JΓKs

γσ |σ⟩ ⊗ ψ̃σ

 run−→ ∑
σ∈JΓKs

γσ | f̄ (σ)⟩ ⊗ ψ̃σ,

where JΓKs is a shorthand for the ground set JΓKc × JΓKq on which the Hilbert
space JΓK+ = H (JΓKs) is defined.

We will prove a different formulation of this theorem to improve presenta-
tion. Because of Thm. 3.6.2, we know that the constant part of Γ is preserved,
hence it suffices to prove that there exists a function f̄ : J⃗τ, τ⃗′Ks → Jτ′′Ks

such that
ψ = ∑

v⃗,w⃗
γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗

gets mapped to

ψ′ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ | f̄ (⃗v, w⃗)⟩y⃗⊗ ψ̃v⃗,w⃗.

Theorem 3.6.5 (Physicality). The semantics of well-typed Silq programs is
physically realizable on a QRAM.
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We use the following helper lemma to prove Thm. 3.6.5.

Lemma 1. Any well-typed mfree expression e can be implemented on a QRAM

which maps ψ ∈ ι (JΓ, ∆K) to ψ′ if
[
Γ

α,mfree
e : τ′

∣∣∣ ψ
]

run−→ ψ′.

Proof. Let Γ = const x⃗ : τ⃗, y⃗ : τ⃗′ and σ ∈ JΓ, ∆Kc. From Thm. 3.6.3, we know
that there exists a linear isometry Mσ

Mσ : A → ι
(r

const x⃗ : τ⃗, e : τ, ∆
z)

,

where A := {ι(σ, ψ̃) | ψ̃ ∈ H (JΓ, ∆Kq)}. Hence, given ψ, a QRAM can (i) ex-
tract the classical components of ψ, (ii) determine Mσ based on those
classical components σ, and (iii) run Mσ on ψ, yielding ψ′.

a.6.2 Proofs for Run

To improve presentation, we prove all theorems simultaneously in one large
inductive proof. In the following, we discuss each semantic rule, e.g., the
rules in Fig. A.7. For each rule, we will mark the part for type-preservation
(Thm. 3.6.1) by [T], the part for preserving constants (Thm. 3.6.2) by [C], the
part for mfree expressions (Thm. 3.6.3) by [M], the part for qfree expressions
(Thm. 3.6.4) by [Q], and the part for physicality (Thm. 3.6.5) by [P].

a.6.2.1 [const]

The rule [
∅

α
c : τ

∣∣∣ ψ
]

run−−→ ψ⊗ |c⟩c
maps ψ to ψ⊗ |c⟩c.

[T] Since Γ = ∅ we have that ψ ∈ ι (J∆K). Hence we have immediately

ψ′ = ψ⊗ |c⟩c ∈ ι
(r

c : τ, ∆
z)

.

[C] Since Γ = ∅ we have that ψ = ψ̃. Hence we have immediately ψ′ =
ψ̃⊗ χ = ψ⊗ |c⟩c, where χ = |c⟩c.

[M] We have
(ψ†

1 ⊗ ⟨c|c)(ψ2⊗ |c⟩c) = ψ†
1ψ2,

where ψ†
1ψ2 denotes the inner product ⟨ψ1| |ψ2⟩.
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[Q] Function f̄ (·) = c has the correct behavior.

[P] A QRAM can prepare prepare state c in variable c.

a.6.2.2 [var]

The rule [
x : τ

α
x : τ

∣∣∣ ψ
]

run−−→ Ix→x(ψ)
var

maps ψ = ∑w γw |w⟩x ⊗ ψ̃w to ∑w γw |w⟩x ⊗ ψ̃w.

[T] Since Γ = x : τ and ψ ∈ ι (Jx : τ, ∆K), we have that ψ′ ∈ ι
(r

x : τ, ∆
z)

.

[C] We have that ψ′ = ∑w γw |w⟩x ⊗ ψ̃w, hence the claim.

[M] This is straightforward as renaming does not change the inner prod-
uct.

[Q] Function f̄ (v) = v has the correct behavior.

[P] A QRAM can simply rename variable x to x.

a.6.2.3 [var-const]

The rule is [
const x : τ

α
x : τ

∣∣∣ ψ
]

run−−→ dupx→x,x(ψ)
var-const

mapping ψ = ∑v γv |v⟩x ⊗ ψ̃v to ψ′ = ∑v γv |v⟩x |v⟩x ⊗ ψ̃v

[T] Since ψ ∈ ι (Jconst x : , ∆K), we have that the state ψ′ ∈ ι
(r

const x : τ, x : τ, ∆
z)

.

[C] The claim follows immediately.

[M] We have

ψ′†1 ψ′2 = ∑
v

γ1∗
v ⟨v|x ⟨v|x ⊗ ψ̃1†

v ∑
w

γ2
w |w⟩x |w⟩x ⊗ ψ̃2

w

= ∑
v

γ1∗
v γ2

vψ̃1†
v ψ̃2

v

= ψ†
1ψ2.
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[Q] Function f̄ (v) = v has the correct behavior.

[P] A QRAM can run the linear isometry dup.

a.6.2.4 [!W]

The rule is [
Γ

α
e : τ′

∣∣∣ drop(x) (ψ)
]

run−−→ ψ′[
Γ, x : !τ

α
e : τ′

∣∣∣ ψ
]

run−−→ ψ′
!W.

The general state for ψ ∈ ι (JΓ, x : !τ, ∆K) is

ψ = |v⟩x ⊗∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗,

where Γ = const x⃗ : τ⃗, y⃗ : τ⃗′. Note that

drop(x) (ψ) = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗.

[T] As drop(x) (ψ) ∈ ι (JΓ, ∆K), the claim follows from the induction hy-
pothesis.

[C] The claim follows from the induction hypothesis.

[M] By the induction hypothesis, we know that

drop(x) (ψ1)
† drop(x) (ψ2) = ψ′†1 ψ′2.

Further, because x : !τ, ψ1 = |v⟩x ⊗drop(x) (ψ1) and similarly ψ2 =

|v⟩x ⊗drop(x) (ψ2). Thus the claim

ψ†
1ψ2 = drop(x) (ψ1)

† drop(x) (ψ2) = ψ′†1 ψ′2.

[Q] By the induction hypothesis, we know that there is an f̄ ′ satisfying

ψ′ = ∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ | f̄ ′ (⃗v, w⃗)⟩e⊗ ψ̃v⃗,w⃗,

hence f̄ (v, v⃗, w⃗) := f̄ ′ (⃗v, w⃗) suffices.
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[P] A QRAM can remove x from consideration (which has the semantics of
drop(x) (·) for classical values), and then compute ψ′ by the induction
hypothesis.

a.6.2.5 [W]

The rule is [
Γ

α
e : τ′′

∣∣∣ ψ
]

run−−→ ψ′[
Γ, const x : τ

α
e : τ′′

∣∣∣ ψ
]

run−−→ ψ′
W.

The general form for ψ ∈ ι (JΓ, const x : τ, ∆K) is

ψ = ∑
v,⃗v,w⃗

γv,⃗v,w⃗ |v⟩x ⊗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v,⃗v,w⃗

[T] We can apply the induction hypothesis by considering const x : τ as
part of the remainder ∆′ = const x : τ, ∆, yielding ψ′ ∈ ι (const x⃗ : τ⃗, e : τ′′, ∆′),
hence the claim.

[C] Similarly, this claim follows immediately by applying the induction
hypothesis after grouping |v⟩x with ψ̃v,⃗v,w⃗.

[M] The induction hypothesis immediately yields the claim.

[Q] Here f̄ (v, v⃗, w⃗) := f̄ ′ (⃗v, w⃗), where f̄ ′ is the function from the induction
hypothesis.

[P] A QRAM can compute ψ′ by the induction hypothesis.

a.6.2.6 [!C]

The rule is [
Γ, x : !τ, x : !τ

α
e : τ′′

∣∣∣ dupx→x,x (ψ)
]

run−−→ ψ′[
Γ, x : !τ

α
e : τ′′

∣∣∣ ψ
]

run−−→ ψ′
!C.

The general form for ψ ∈ ι (JΓ, x : !τ, ∆K) is

ψ = |v⟩x ⊗∑
v⃗,w⃗

γv⃗,w⃗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v⃗,w⃗,
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[T] It is clear that dupx→x,x(ψ) ∈ ι (JΓ, x : !τ, x : !τ, ∆K). Applying the in-
duction hypothesis to dupx→x,x(ψ), yields that ψ′ ∈ ι (Jconst x⃗ : τ⃗, e : τ′′, ∆K),
hence the claim.

[C] The claim follows from the induction hypothesis.

[M] The induction hypothesis yields the claim.

[Q] Here f̄ (v, v⃗, w⃗) := f̄ ′(v, v, v⃗, w⃗), where f̄ ′ is the function from the
induction hypothesis.

[P] A QRAM can duplicate x (which has the semantics of dup for classical
values) and then compute ψ′ by the induction hypothesis.

a.6.2.7 [C]

The rule is[
Γ, const x : τ, const x : τ

α
e : τ′′

∣∣∣ dupx→x,x(ψ)
]

run−−→ ψ′[
Γ, const x : τ

α
e : τ′′

∣∣∣ ψ
]

run−−→ drop(x) (ψ′)
C.

The general form for ψ ∈ ι (JΓ, const x : τ, ∆K) is

ψ = ∑
v,⃗v,w⃗

γv,⃗v,w⃗ |v⟩x ⊗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ ψ̃v,⃗v,w⃗.

[T] It is clear that

dupx→x,x(ψ) ∈ ι (JΓ, const x : τ, const x : τ, ∆K) .

Thus, the induction hypothesis yields

ψ′ ∈ ι
(r

const x : τ, const x : τ, const x⃗ : τ⃗, e : τ′′, ∆
z)

.

The claim follows by applying drop(x) (·) to ψ′.

[C] The induction hypothesis yields the claim.

[M] A straightforward calculation and the induction hypothesis yield the
claim.

[Q] Similar to before, f̄ (v, v⃗, w⃗) := f̄ ′(v, v, v⃗, w⃗), where f̄ ′ is the function
from the induction hypothesis.
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[P] A QRAM can duplicate x using the linear isometry JdupK, yielding
a state of the form ∑v γv |v⟩x |v⟩x ⊗ ψ̃v. By the induction hypothesis,
the QRAM can then compute ψ′ of the form ψ′ = ∑v γv |v⟩x |v⟩x ⊗ χv
(Thm. 3.6.2). Hence, reversing dup yields

JdupK−1
x,x→x (ψ

′) = ∑
v

γv |v⟩x ⊗ χv = drop(x) (ψ′) .

a.6.2.8 [ite]

The rule is depicted in Fig. A.11.

[T] We first consider quantum control flow (ec : B).

Using the induction hypothesis, we know that the state after evaluat-
ing the condition is

ψ′ ∈ ι
(r

Γc, ec : B, Γ, ∆
z)

,

hence we can write

ψ′ = ψt⊗ |1⟩ec
+ ψ f ⊗ |0⟩ec

.

Next we show that Iet→e (ψ
′
t) + Ie f→e

(
ψ′f
)

is in

ι
(r

const x⃗c : τ⃗c, const x⃗ : τ⃗, e : τ, ∆
z)

.

The induction hypothesis yields that

ψ′t ∈ ι
(q

const x⃗ : τ⃗, et : τ, const x⃗c : τ⃗c, ∆
y)

,

ψ′f ∈ ι
(r

const x⃗ : τ⃗, e f : τ, const x⃗c : τ⃗c, ∆
z)

.

Because τ does not have any classical components, the classical com-
ponents of ψ′t and ψ′f coincide, hence they can be added. This yields,
after renaming, the claim.

Next we consider classical control flow (ec : !B). It is clear that ψ′

originating from [
Γc

αc ec : !B
∣∣∣ ψ
]

run−−→ ψ′,
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where ψ ∈ ι (JΓc, Γ, ∆K), can be written as

ψ′ = ψt⊗ |1⟩ec
+ ψ f ⊗ |0⟩ec

∈ ι
(r

const x⃗c : τ⃗c, ec : !B, Γ, ∆
z)

.

We assume w.l.o.g. ec evaluates to true, thus the ψ f part has amplitude
0.

The induction hypothesis yields that

ψ′t ∈ ι
(r

const x⃗ : τ⃗, et : τ, const x⃗c : τ⃗c, ∆
z)

,

which is exactly what we would like to have after renaming et to e.
The second summand can be neglected due to having 0 amplitude.

[C] From the induction hypothesis for ec, we know that ψt⊗ |1⟩ec
+

ψ f ⊗ |0⟩ec
are of the correct form. Thus, due to the induction hy-

potheses for et and e f , ψ′t + ψ′f is of the correct form. This proves the
claim, up to renaming of variables.

[M] First, we consider quantum control flow. The induction hypothesis on
ec yields that

ψ†
1ψ2 =

(
ψ1†

t ⊗ ⟨1|ec
+ ψ1†

f ⊗ ⟨0|ec

) (
ψ2

t ⊗ |1⟩ec
+ ψ2

f ⊗ |0⟩ec

)
= ψ1†

t ψ2
t + ψ1†

f ψ2
f

The induction hypothesis on et and e f yields that

ψ1†
t ψ2

t = ψ1′†
t ψ2′

t

ψ1†
f ψ2

f = ψ1′†
f ψ2′

f ,

thus
ψ†

1ψ2 = ψ1†
t ψ2

t + ψ1†
f ψ2

f = ψ1′†
t ψ2′

t + ψ1′†
f ψ2′

f .

This proves the claim after renaming.

Next, we consider classical control flow. If the classical components of
ψ1 and ψ2 coincide, then also ec

1 = ec
2. Using the induction hypothe-
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sis, we see that the term for ec preserves the inner product between
ψ1 and ψ2. Furthermore, because ec : !B, we get ψ†

1ψ2 = ψ1†
t ψ2

t , w.l.o.g.
assuming ec = 1. Thus with the induction hypothesis on the term for
et, we get that ψ†

1ψ2 = ψ1′†
t ψ2′

t . Renaming does not change the inner
product, hence the claim.

[Q] First, we consider quantum control flow. If qfree ∈ α then by the
typing rule qfree ∈ αc ∩ αt ∩ α f .

Let Γc = const x⃗c : τ⃗c and Γ = const x⃗ : τ⃗, y⃗ : τ⃗′. The general form of
ψ is

ψ = ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩x⃗c
⊗ |⃗v⟩x⃗ ⊗ |w⃗⟩y⃗⊗ψv⃗c ,⃗v,w⃗

Using the induction hypothesis, we get the functions f̄ec , f̄et and
f̄e f . For the next step we only suppress variable names that are not
immediately clear to lighten the notation. Thus evaluating ec yields

ψ′ = ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ | f̄ec (⃗vc)⟩ec
⊗ |⃗v⟩ ⊗ |w⃗⟩ ⊗ψv⃗c ,⃗v,w⃗

= ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ |0⟩ec
⊗ |⃗v⟩ ⊗ |w⃗⟩ ⊗ψv⃗c ,⃗v,w⃗

+ ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ |1⟩ec
⊗ |⃗v⟩ ⊗ |w⃗⟩ ⊗ψv⃗c ,⃗v,w⃗

Further, evaluating et and e f yields

ψ′′ = ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ |0⟩ec
⊗ |⃗v⟩ ⊗ | fe f (⃗v, w⃗)⟩ ⊗ψv⃗c ,⃗v,w⃗

+ ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ |1⟩ec
⊗ |⃗v⟩ ⊗ | fet (⃗v, w⃗)⟩ ⊗ψv⃗c ,⃗v,w⃗.

Thus the final state can be described by

ψ′′′ = ∑
v⃗c ,⃗v,w⃗

γv⃗c ,⃗v,w⃗ |⃗vc⟩ ⊗ |⃗v⟩ ⊗ | f̄ (⃗vc, v⃗, w⃗)⟩e⊗ψv⃗c ,⃗v,w⃗,

where f̄ is defined by

f̄ (⃗vc, v⃗, w⃗) :=

{
f̄et (⃗v, w⃗) if f̄ec (⃗vc) = 1
f̄e f (⃗v, w⃗) otherwise.



160 appendix : silq

The proof works analogously for the case where ec : !B.

[P] For quantum control flow (ec : B), expression

if ec then et else e f

is mfree (ensured by our type system), hence Lemma 1 applies.

For classical control flow (ec : !B), a QRAM can first evaluate ec (by
the induction hypothesis). Then, as ec : !B, by Thm. 3.6.1, its value
is classical, meaning the QRAM can classically determine what this
value is, and run the appropriate branch (by induction hypothesis).
This yields the correct state up to renaming of variables.

a.6.3 Proofs for Eval

In order to prove our theorems for rules involving eval−−→, we strengthen our
theorems to also cover the following:

For e⃗ = e⃗c, e⃗c, split into constant and non-constant arguments, assume[
e′ (⃗e) :

n×
i=1

αiτi!
α−→τ′

∣∣∣∣ σ : Γ
∣∣∣∣ ψ

]
eval−−→ ψ′,

where the general form of ψ is

ψ = ∑
v⃗,w⃗

γv⃗,w⃗⊗ |⃗v⟩⃗ec ⊗ |w⃗⟩⃗ec ⊗ ψ̃v⃗,w⃗.

Then, we have the following:

[T] If ψ ∈ ι
(r

e⃗ : τ⃗, ∆
z)

, then

ψ′ ∈ ι
(r

e⃗c : τ⃗c, ret : τ′, ∆
z)

.

[C]
ψ′ = ∑

v⃗,w⃗
γv⃗,w⃗⊗ |⃗v⟩⃗ec ⊗ χv⃗,w⃗⊗ ψ̃v⃗,w⃗.

[M] If mfree ∈ α, ρ ∈
r

e⃗ : τ⃗, ∆
zc

,

[
Γ

α
e : τ′′

∣∣∣ σ : Γ
∣∣∣ ι(ρ, ψ1)

]
eval−−→ ψ′1
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for ψ1 ∈ H (J⃗e : τ⃗, ∆Kq) and[
Γ

α
e : τ′′

∣∣∣ σ : Γ
∣∣∣ ι(ρ, ψ2)

]
eval−−→ ψ′2

for ψ2 ∈ H (J⃗e : τ⃗, ∆Kq), then it holds that

ψ†
1ψ2 = ψ′†1 ψ′2.

[Q] If qfree ∈ α, then there exists f̄ : J⃗τKs → Jτ′Ks, such that

ψ′ = ∑
v⃗,w⃗

γv⃗,w⃗⊗ |⃗v⟩⃗ec ⊗ | f̄ (⃗v, w⃗)⟩ret⊗ ψ̃v⃗,w⃗,

where f̄ can depend on σ.

[P] Then there exists a QRAM implementing this, i.e., maps input ψ⊗ |e′′, σ⟩e′
to the correct output ψ′.

a.6.3.1 [built-in-eval]

We require that all built-ins behave correctly, thus no further reasoning is
needed.

a.6.3.2 [measure]

The rule is provided in Fig. A.9. The general form of ψ is

ψ = ∑
w

γw |w⟩e⊗ ψ̃w

[T] Let w′ ∈ JτKc × JτKq. Then immediately

ψ′ = γw′ |w′⟩ret⊗ ψ̃w′ ∈ ι (Jret : !τ, ∆K) .

[C] The claim follows immediately from the semantics of measure.

[M] Nothing to prove as measure is not mfree.

[Q] Nothing to prove as measure is not qfree.

[P] Measuring the appropriate value yields the correct semantics.
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a.6.3.3 [rev]

[T] We see that

reverse(efunc) :
n×

i=1
const τi ×

l×
k=1

τ′′k ! mfree,α−−−−→
m×

j=1
τ′j ,

hence the claim.

[C] The claim follows immediately from the semantics of reverse.

[M] The classical components of ψ1 and ψ2 coincide, hence in particular
the expression e and the captured values σ coincide. The non-classical
part of ψ1 and ψ2 does not get modified, thus the inner product is
preserved.

[Q] The appropriate f̄ is

f̄ (efunc, σ) = (reverse(efunc), σ).

[P] A QRAM can prepare the correct state by purely classical operations,
replacing efunc by reverse(efunc).

a.6.4 [call-rev]

[T] Using the induction hypothesis, we know that

ψ′ ∈
q

e⃗c : τ⃗c, t⃗ : t⃗′, ∆
y+

.

We need to show ψ′ ∈ ι
(q

e⃗c : τ⃗c, t⃗ : τ⃗′, ∆
y)

, then the claim follows
immediately after renaming.

By contradiction: Let ψ′ /∈ ι
(q

e⃗c : τ⃗c, t⃗ : τ⃗′, ∆
y)

, then there exists a clas-
sical component of ψ′ which is in superposition. The typing rule of
reverse enforces that the arguments and the return value of reversed
function are not classical, hence the classical component in superposi-
tion needs to lie in context ∆. By the induction hypothesis (specifically
[C]), we know that evaluating efunc(⃗ec ,⃗t) leaves ∆ unchanged, hence the
classical component in superposition is also a classical component in
superposition of ψ, which is a contradiction to ψ ∈ ι

(r
e⃗ : τ⃗, ∆

z)
.
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[C] We know that ψ′ ∈
q

e⃗c : τ⃗c, t⃗ : τ⃗′, ∆
y+

. Further, the linear map sending
ψ′ to ψ is

∑
v⃗
|⃗v⟩ ⟨⃗v| ⊗Mv⃗;⃗t→ret⊗ I∆,

where Mv : J⃗τ′K→ J⃗τ′′K is an isometry. The map becomes unitary by
restricting the codomain to its image, which can be inverted resulting
in

∑
v⃗
|⃗v⟩ ⟨⃗v| ⊗M−1

v⃗;⃗t→ret
|Mv;t→ret(J⃗τ′K)⊗ I∆,

which preserves e⃗c : τ⃗c and ∆, hence the claim.

[M] As renaming does not change the inner product, this claim follows
from the induction hypothesis.

[Q] Let qfree ∈ α. By the induction hypothesis, we get that

ψ′ = ∑
v⃗,w⃗′

γv⃗,w⃗′ |⃗v⟩⃗ec ⊗ |w⃗′ ⟩⃗t⊗ ψ̃v⃗,w⃗′

and that there exists an f̄ ′ such that after renaming ret to e⃗c we have

ψ = ∑
v⃗,w⃗′

γv⃗,w⃗′ |⃗v⟩⃗ec ⊗ | f̄ ′ (⃗v, w⃗′)⟩⃗ec ⊗ ψ̃v⃗,w⃗′ .

We note that f̄ is injective by Thm. 3.6.3, since non-injectivity would
violate the semantics of the mfree efunc being a linear isometry. Thus,
there exists a function f̄ = f̄ ′−1 satisfying f̄ ′−1

(⃗v, f̄ ′ (⃗v, w⃗′)) = w⃗′,
hence the claim.

[P] As efunc is mfree, a QRAM can implement it, according to Lemma 1.
As efunc has no classical components in its type, the implementation
depends only on efunc, not on classical components of the input state.
Then, applying the reverse of the implementation to ψ yields the
correct result (up to renaming).

a.6.4.1 [eval-λ-abs]

[T] We know that ψ ∈ ι (J⃗e : τ⃗, ∆K), thus

ψ⊗ |σ⟩ ∈ ι (J⃗e : τ⃗, Γ, ∆K) ,
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which leads to I⃗e→x⃗(ψ⊗ |σ⟩) ∈ ι (J⃗x : τ⃗, Γ, ∆K). The induction hypoth-
esis yields now that

ψ′ ∈ ι
(q

α⃗c x⃗c : τ⃗c, e′′ : τ′, ∆
)y

,

thus after renaming, ψ′ ∈ ι
(r

e⃗c : τ⃗c, ret : τ′, ∆
z)

.

[C] The claim follows from the induction hypothesis.

[M] It is immediate that ψ†
1ψ2 = ψ†

1 ⊗ ⟨σ|ψ2⊗ |σ⟩. Further, renaming does
not change the inner product, hence by the induction hypothesis,
we get that ψ†

1ψ2 = ψ′†1 ψ′2. Renaming again leaves the inner product
invariant, hence the claim.

[Q] The f̄ obtained from the induction hypothesis behaves correctly, up
to adding σ to the state and renaming variables.

[P] Given input ψ⊗ |e′′, σ⟩e′ , a QRAM can rename variables (⃗e→ x⃗), run

e′′ (by induction hypothesis), and rename variables in the result again.

a.6.4.2 [func-eval]

[T] After applying the induction hypothesis from left to right on all terms
on top, we get

ψn+2 ∈ ι
(q

e⃗c : τ⃗c, ret : τ′, ∆n+2
y)

,

where ∆n+2 accumulated additionally to the ∆ of ψ0 all constant parts
of Γ⃗ and Γ′. Thus

drop(⃗ec) (ψn+2) ∈ ι
(q

ret : τ′, ∆n+2
y)

,

which leads to

Iret→e′ (⃗e) ◦ drop(⃗ec) (ψn+2) ∈ ι
(r

e′ (⃗e) : τ′, Γ⃗c, Γ′c, ∆
z)

.

[C] The claim follows from the induction hypotheses.

[M] Using the induction hypothesis iteratively, we get that ψ†
0,1ψ0,2 =

ψ†
i,1ψi,2 for all 1 ≤ i ≤ n. Using the induction hypothesis on the other

parts yields ψ†
0,1ψ0,2 = ψ†

n+2,1ψn+2,2. The type system guarantees that
sub-expressions which are not consumed, that is const ∈ α′i are qfree,
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Silq Q# reference solution Q# average of top 10

S18 W19 Both S18 W19 Both S18 W19 Both
Lines of code 99 168 267 251 242 493 282.9 372.7 655.6

Quantum primitives 8 10 10 12 19 22 8.1 12.0 -
Annotations 2 3 3 3 6 6 1.0 4.0 -

Low-level quantum gates 14 23 37 33 54 87 38.2 102.9 141.1

Table A.1: Silq compared to Q#. Two entries in the last column are missing,
because the top 10 contestants are not the same for both competitions
and the number of used annotation and built-in and library functions
where calculated per contestant.

and thus they can be uncomputed similarly to the case for ite where
we uncomputed the expression ec. Thus drop(⃗ec) (ψn+2) preserves the
inner product, and hence the claim.

[Q] An appropriate composition of all f̄ from the induction hypotheses,
drop(ei), and variable renamings yields the claim.

[P] We can evaluate all arguments, and determine the function itself by the
induction hypothesis, yielding ψn+1⊗ |e′′, σ⟩e′ . By the strengthened
induction hypothesis, we have

ψn+2 = ∑
v⃗,w⃗1,...,w⃗n

γv⃗ |⃗v⟩x⃗ ⊗
⊗

{i|const∈α′i}
| f̄i (⃗v, w⃗i)⟩ei

⊗ ψ̃v⃗,

where x⃗ consists of all constant variables in Γ⃗, Γ′. This is due to
Thm. 3.6.4 (which ensures this holds after evaluating all arguments)
and Thm. 3.6.2 (which ensures this form is preserved).

Hence, a QRAM can reverse f̄i, to implement drop(ei) (·) for each
i with const ∈ α′i. This yields the correct result up to renaming of
variables.

a.7 evaluation

a.7.1 Evaluation against Q#

In this section, we provide a detailed evaluation of the Q# Summer 2018

[63] and Winter 2019 [64] coding contests.
Table A.1 summarizes the comparison of our solutions written in Silq

against the solutions written by (i) the Q# language designers and (ii) the
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respective top 10 contest participants. Our results demonstrate that Silq
requires significantly fewer lines of code and only requires roughly half the
built-in features and library functions. The remaining tables contain more
detailed results.

lines of code When counting lines of code, we did not count empty
lines, lines that only consist of comments, contain import or namespace
statements or code that is unreachable for the solving operation.

quantum primitives and annotations We counted both the num-
ber of quantum primitives and annotations. Note that annotations are called
functors in Q#. The summary in Table A.1 shows how many quantum primi-
tives and annotations were used at least once, measuring how many concepts
a programmer needs to know.

low-level quantum gates We also counted low-level quantum gates,
which are marked as ♣ in the detailed results. The summary in Table A.1
shows how many low-level quantum gates were used in total, measuring
how often the programmer has to resort to low-level operations.

For Q#, we did not include the counts of operations like ControlledOnInt,
as they are more high-level. For the same reason, for Silq, we did not include
phase, if, or forget.

Further, we did not add the counts for M or Measure (Q#) or measure (Silq),
because measure can be applied to any data structure, and is thus more
high-level, but gets often used similarly to M in Q#.

top 10 contestants In order to compare the Silq solutions against
the solutions of the top 10 contestants of the Q# Summer 2018 and Winter
2019 coding contest, we evaluate the submissions of the top 10 contestants
using the same methods as before. We provide detailed results in Table A.6,
Table A.7, Table A.8, and Table A.9.
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Summer 2018 Winter 2019

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2 A1 A2 B1 B2 C1 C2 C3 D1 D2 D3 D4 D5 D6 Sum
Quantum primitives

ApplyToEach 3 2 1 2 8

ApplyToEachC 1 1

ApplyToEachCA 1 1

CCNOT♠ 3 1 4

CNOT♠ 1 1 1 1 2 3 2 2 3 2 18

ControlledOnBitString 2 2 4

ControlledOnInt 1 1 1 2 1 1 7

H♠ 1 1 1 1 2 1 1 3 1 2 1 1 1 1 2 1 21

M 1 1 2 2 1 2 1 1 1 12

MResetZ 1 1

MeasureInteger 1 1

PrepareUniformSuperposition 1 1

R1♠ 2 2

ResetAll 1 1 2

ResultAsInt 1 1 2

Ry♠ 1 1 1 3

S♠ 1 1

SWAP♠ 1 1 1 3

With 1 1

WithA 1 1

X♠ 2 1 2 2 1 1 3 1 1 2 3 3 5 2 4 33

Z♠ 1 1 2

Annotations
Adjoint 1 1 1 1 4

Controlled 1 1 2 1 1 3 1 2 12

adjoint self 1 1 2

adjoint auto 1 2 2 1 2 2 1 11

controlled auto 1 1 1 3

controlled adjoint auto 1 1 2

Low-level quantum gates (marked by ♠) 1 2 4 4 2 5 1 1 1 4 3 4 1 4 4 9 2 5 3 1 1 3 6 8 8 87

Lines of code 9 12 32 24 12 16 9 19 11 28 11 15 9 23 21 3 20 21 30 18 27 19 3 12 5 21 10 53 493

Table A.2: Evaluation of the solutions provided by the Q# language designers for the Summer 2018 and Winter 2019 coding
contest.
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Summer 2018 Winter 2019

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2 A1 A2 B1 B2 C1 C2 C3 D1 D2 D3 D4 D5 D6 Sum
Quantum primitives

dup 1 1

forget 1 1 1 1 2 1 2 1 10

H♠ 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 2 1 24

if 1 1 1 1 1 3 3 5 1 2 2 2 4 27

measure 1 1 1 1 1 3 1 1 2 1 1 14

phase 1 1 2 2 6

reverse 1 1

rotY♠ 1 1 1 3

X♠ 1 1 1 2 3 2 10

[] 1 1 2

Annotations
mfree 1 1

lifted 1 1 1 1 1 1 1 1 1 1 10

! (classical) 1 2 2 1 1 1 2 2 3 3 2 2 1 1 1 1 1 1 1 16 45

Low-level quantum gates (marked by ♠) 1 1 1 2 2 2 1 2 2 2 1 2 4 1 1 3 4 4 1 37

Lines of code 5 6 12 12 3 9 4 5 3 7 7 7 7 7 5 10 10 17 15 7 11 7 4 15 18 17 15 22 267

Table A.3: Evaluation of the Silq solutions for Q# Summer 2018 and Winter 2019 coding contest.
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1 2 3 4 5 6 7 8 9 10 average
Quantum primitives

ApplyToEach 4 3 5 5 5 2.2
BoolArrFromResultArr 3 0.3

BoolFromResult 1 0.1
CCNOT♠ 6 3 3 3 12 3 3 3.3
CNOT♠ 7 8 9 7 7 9 8 9 6 6 7.6
H♠ 14 11 12 12 13 13 12 14 13 12 12.6

IsResultZero 1 0.1
M 12 11 12 16 12 18 10 12 3 12 11.8

MultiM 6 0.6
R♠ 1 0.1

Reset 3 0.3
ResetAll 2 2 5 3 2 2 2 1.8

ResultAsInt 5 1 2 0.8
Ry♠ 1 1 1 2 3 3 1 1 2 1.5
SWAP♠ 1 2 0.3
X♠ 7 12 15 5 42 11 9 10 6 10 12.7
Z♠ 1 1 0.2

Annotations
Controlled 2 5 1 8 3 2 2 2.3

controlled auto 1 1 1 0.3
Quantum primitives (number of non-zero rows) 7 6 10 6 6 6 7 10 13 10 8.1

Annotations (number of non-zero rows) 2 1 1 1 1 2 2 1.0
Low-level quantum gates (marked by ♠) 35 35 39 29 65 39 30 46 30 34 38.2

Lines of code 181 312 259 313 313 387 228 271 280 285 282.9

Table A.4: Summer 2018: Overview of the evaluation of the Q# solution provided by the top 10 contestants.
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a.7.2 Evaluation against Quipper

In order to compare the amount of features, we counted the definitions
provided in Quipper’s core library 1 and list them by rubric and type in
Table A.10.

1 https://www.mathstat.dal.ca/~selinger/quipper/doc/Quipper.html

https://www.mathstat.dal.ca/~selinger/quipper/doc/Quipper.html
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1 2 3 4 5 6 7 8 9 10 average
Quantum primitives

ApplyPauliFromBitString 4 0.4
ApplyToEach 2 7 6 1.5
ApplyToEachA 8 3 1.1
ApplyToEachC 1 0.1
ApplyToEachCA 1 5 7 6 1.9

CCNOT♠ 6 10 1 2 9 31 1 4 6.4
CNOT♠ 5 15 12 14 20 17 13 23 18 15 15.2

ControlledOnBitString 2 6 2 1.0
ControlledOnInt 4 6 1.0

H♠ 13 11 13 14 13 10 13 12 13 15 12.7
IntegerIncrementLE 2 4 0.6

M 3 3 12 3 5 4 8 3.8
Measure 1 0.1

MeasureInteger 1 2 0.3
MultiM 2 1 0.3
MultiX 9 2 1.1
QFT 1 0.1
R1♠ 2 2 2 5 1.1
Reset 1 1 2 1 0.5

ResetAll 1 3 0.4
ResultAsInt 2 1 0.3

Rx♠ 1 1 0.2
Ry♠ 2 3 3 2 3 4 4 8 6 2 3.7
Rz♠ 4 1 5 1 2 2 1.5
S♠ 2 1 1 1 0.5

SWAP♠ 1 1 1 1 5 1 1 1.1
StatePreparationComplexCoefficients 2 1 0.3
StatePreparationPositiveCoefficients 1 0.1

WithA 1 0.1
X♠ 18 62 50 36 98 65 119 64 58 27 59.7
Z♠ 1 1 2 4 0.8

Annotations
Adjoint 2 1 8 2 1 2 3 1.9

Controlled 14 26 27 25 37 27 30 57 36 12 29.1
adjoint self 1 3 1 0.5
adjoint auto 2 5 23 15 5 8 3 4 9 8 8.2

controlled auto 2 10 28 2 4 6 5.2
controlled adjoint auto 2 2 1 4 0.9

Quantum primitives (number of non-zero rows) 15 9 10 21 10 8 8 12 12 15 12.0
Annotations (number of non-zero rows) 4 4 4 6 2 5 2 5 4 4 4.0
Low-level quantum gates (marked by ♠) 47 107 84 72 143 111 182 115 102 66 102.9

Lines of code 163 322 461 298 367 358 543 610 323 282 372.7

Table A.5: Winter 2019: Overview of the evaluation of the Q# solution provided
by the top 10 contestants.
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Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 1 0.2

H 1 1 1 1 1 1 1 1 1 1 1.0
ResetAll 1 0.1

Lines of code 7 11 9 10 10 10 5 7 12 10 9.1

(a) Summer 18: A1

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 1 1 1 1 1 1 1 1 1 1.0
H 1 1 1 1 1 1 1 2 1 1 1.1
M 1 0.1
X 1 0.1

Lines of code 11 17 12 24 12 23 11 16 24 20 17.0

(b) Summer 18: A2

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 2 1 1 2 1 1 1 1 2 1.3
H 1 1 1 1 1 1 1 1 1 2 1.1
M 1 0.1
X 2 3 3 2 5 1 1 3 2 2 2.4

Lines of code 24 46 38 35 39 30 22 33 40 42 34.9

(c) Summer 18: A3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

CCNOT 3 2 0.5
CNOT 1 1 1 1 3 2 1 1 1.1
H 1 1 1 1 1 1 1 0.7
M 1 0.1
Ry 2 2 1 0.5
SWAP 2 0.2
X 1 3 1 1 2 1 3 1 1 3 1.7

Controlled 2 1 1 1 2 1 1 0.9
controlled auto 1 1 1 0.3

Lines of code 24 25 22 46 17 19 25 24 13 47 26.2

(d) Summer 18: A4

Rank 1 2 3 4 5 6 7 8 9 10 average
BoolFromResult 1 0.1

M 1 1 1 1 1 1 1 1 1 0.9
MultiM 1 0.1
ResetAll 1 0.1

X 1 0.1
Lines of code 8 16 12 12 13 16 25 13 9 13 13.7

(e) Summer 18: B1

Rank 1 2 3 4 5 6 7 8 9 10 average
BoolArrFromResultArr 1 0.1

CNOT 1 0.1
H 1 0.1
M 2 1 1 1 1 1 1 1 2 1.1

MultiM 1 0.1
Lines of code 9 22 18 17 16 24 15 17 19 14 17.1

(f) Summer 18: B2

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

H 2 2 1 2 2 2 2 2 2 2 1.9
M 2 2 2 3 2 2 2 2 2 1.9

MultiM 1 0.1
ResultAsInt 2 1 1 0.4

Lines of code 10 20 10 20 16 34 10 9 15 15 15.9

(g) Summer 18: B3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 0.2

CNOT 1 1 1 1 1 1 1 0.7
H 4 2 2 3 3 2 2 2 2 2 2.4
M 2 2 2 3 2 2 2 2 2 1.9

MultiM 1 0.1
ResetAll 1 0.1

ResultAsInt 1 1 0.2
SWAP 1 0.1
X 6 2 0.8
Z 1 1 0.2

Controlled 1 1 1 0.3
Lines of code 13 21 12 24 26 35 14 17 13 18 19.3

(h) Summer 18: B4

Table A.6: Evaluation of the submissions of the top 10 contestants of the Q#
Summer 2018 coding contest.
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Rank 1 2 3 4 5 6 7 8 9 10 average
IsResultZero 1 0.1

M 1 1 1 1 1 1 1 1 1 1 1.0
R 1 0.1

ResultAsInt 1 0.1
Ry 1 1 1 1 1 1 1 1 1 0.9

Lines of code 5 15 9 12 14 14 10 11 13 11 11.4

(a) Summer 18: C1

Rank 1 2 3 4 5 6 7 8 9 10 average
H 1 1 2 2 2 1 2 1 1 1.3
M 2 2 2 2 3 5 1 3 2 2 2.4

Reset 2 0.2
ResetAll 1 1 0.2

ResultAsInt 1 0.1
Ry 1 0.1
X 2 0.2

Controlled 1 0.1
Lines of code 10 26 22 20 29 40 13 23 24 18 22.5

(b) Summer 18: C2

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 1 1 1 1 1 1 1 1 1 1.0

Lines of code 7 13 12 11 11 13 10 12 14 12 11.5

(c) Summer 18: D1

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 0.2

CNOT 2 2 2 2 2 2 2 2 2 1 1.9
X 2 2 2 1 2 2 2 2 1 2 1.8

Lines of code 13 18 17 14 16 19 17 23 19 16 17.2

(d) Summer 18: D2

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 2 0.4

CCNOT 3 3 3 3 10 3 3 2.8
CNOT 3 1 1 0.5
X 5 26 1 3 3.5

Controlled 2 6 1 0.9
Lines of code 7 9 14 9 33 9 9 22 10 9 13.1

(e) Summer 18: D3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 2 2 0.6

BoolArrFromResultArr 1 0.1
H 3 2 3 3 3 4 3 2 2 2 2.7
M 1 1 2 1 1 3 1 1 1 1.2

MultiM 1 0.1
Reset 1 0.1

ResetAll 1 1 1 1 1 0.5
X 1 3 3 1 3 1 1 1 1 1.5

Lines of code 19 30 33 32 30 45 20 25 27 21 28.2

(f) Summer 18: E1

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 3 0.4

BoolArrFromResultArr 1 0.1
H 3 0.3
M 1 1 1 1 1 3 1 1 1 1.1

MultiM 1 0.1
ResetAll 1 1 1 1 2 1 1 0.8

X 1 1 1 2 1 0.6
Controlled 1 0.1

Lines of code 14 23 19 27 31 56 22 19 28 19 25.8

(g) Summer 18: E2

Table A.7: Evaluation of the submissions of the top 10 contestants of the Q#
Summer 2018 coding contest.
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1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1
ApplyToEachC 1 0.1

CNOT 1 0.1
H 1 1 2 2 1 1 1 1 1.0
M 2 0.2

Reset 1 0.1
Ry 1 1 1 1 1 1 1 0.7

StatePreparationPositiveCoefficients 1 0.1
X 1 2 8 1 2 1 2 2 1.9

Controlled 1 1 2 2 1 1 1 1 1 1.1
Lines of code 5 6 27 10 21 5 6 8 6 6 10.0

(a) Winter 19: A1

1 2 3 4 5 6 7 8 9 10 average
ApplyPauliFromBitString 4 0.4

ApplyToEach 1 6 0.7
CCNOT 4 4 4 1 1.3

ControlledOnBitString 2 4 0.6
ControlledOnInt 1 0.1

H 2 2 2 1 2 2 2 2 4 1.9
M 1 3 0.4

ResetAll 2 0.2
Ry 2 0.2
X 3 18 3 8 23 18 18 5 20 5 12.1

Controlled 4 1 4 8 4 4 2 8 3.5
Lines of code 22 66 78 19 72 65 89 63 56 33 56.3

(b) Winter 19: A2

1 2 3 4 5 6 7 8 9 10 average
CCNOT 1 1 1 0.3
CNOT 1 2 3 4 2 1.2
H 1 1 1 1 0.4
M 1 1 2 1 3 3 3 1.4

MeasureInteger 1 0.1
MultiM 1 1 0.2
MultiX 4 0.4
R1 2 2 2 2 0.8

ResultAsInt 1 1 0.2
Ry 1 1 1 1 1 1 2 1 0.9
Rz 2 2 1 2 0.7
S 1 0.1

StatePreparationComplexCoefficients 2 1 0.3
X 4 6 1 2 4 1 1.8
Z 1 0.1

Adjoint 2 1 1 1 1 0.6
Controlled 2 4 2 1 1 4 2 1 1 1.8

adjoint auto 1 1 2 0.4
controlled auto 1 1 0.2

controlled adjoint auto 1 0.1
Lines of code 16 24 86 18 11 33 13 28 11 18 25.8

(c) Winter 19: B1

1 2 3 4 5 6 7 8 9 10 average
CNOT 4 5 4 3 2 1.8
H 2 2 2 2 1 2 2 4 1.7
M 2 2 6 2 2 1 2 1.7

Measure 1 0.1
MeasureInteger 1 1 0.2

MultiM 1 0.1
QFT 1 0.1
R1 3 0.3

Reset 1 2 1 0.4
ResetAll 1 1 0.2

ResultAsInt 1 0.1
Rx 1 1 0.2
Ry 1 1 1 1 1 1 2 1 1 1 1.1
Rz 2 1 3 2 0.8
S 1 1 1 1 0.4

SWAP 1 0.1
X 1 3 1 5 2 1 2 6 2.1
Z 1 2 4 0.7

Controlled 1 4 3 2 6 4 1 1 3 3 2.8
adjoint auto 4 2 2 1 0.9

controlled auto 1 3 1 1 0.6
controlled adjoint auto 1 1 1 0.3

Lines of code 12 34 44 28 50 48 27 31 30 40 34.4

(d) Winter 19: B2

1 2 3 4 5 6 7 8 9 10 average
CNOT 2 2 4 2 1.0

ControlledOnBitString 2 1 0.3
ControlledOnInt 1 0.1

X 4 1 2 2 6 2 5 5 1 4 3.2
Adjoint 1 0.1

Controlled 1 1 1 2 1 2 2 1 1.1
adjoint self 1 0.1
adjoint auto 1 1 2 1 1 1 1 1 1 1.0

controlled auto 2 0.2
Lines of code 13 13 25 23 28 26 25 23 13 19 20.8

(e) Winter 19: C1

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachA 6 3 0.9

CCNOT 24 2.4
CNOT 4 2 2 2 4 4 2 2 2.2

ControlledOnBitString 1 0.1
ControlledOnInt 1 2 0.3

WithA 1 0.1
X 1 10 6 3 7 11 60 10 6 1 11.5

Adjoint 1 0.1
Controlled 3 2 2 3 5 3 2 2.0
adjoint self 1 2 0.3
adjoint auto 1 2 2 1 1 1 3 1 1.2

controlled auto 4 0.4
Lines of code 19 46 22 33 31 48 116 46 34 17 41.2

(f) Winter 19: C2

Table A.8: Evaluation of the submissions of the top 10 contestants of the Q#
Winter 2018 coding contest.
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1 2 3 4 5 6 7 8 9 10 average
ApplyToEachA 2 0.2
ApplyToEachCA 2 0.2

CCNOT 5 5 4 1 1.5
CNOT 2 4 0.6

ControlledOnInt 4 0.4
IntegerIncrementLE 1 0.1

M 1 0.1
SWAP 4 1 0.5
X 4 12 6 5 10 13 4 6 7 4 7.1

Adjoint 1 1 1 1 0.4
Controlled 5 3 3 1 2 3 3 1 2.1

adjoint self 1 0.1
adjoint auto 1 1 3 2 2 1 1 2 3 3 1.9

controlled auto 2 3 2 4 1.1
controlled adjoint auto 1 1 0.2

Lines of code 20 27 40 32 35 31 33 36 39 31 32.4

(a) Winter 19: C3

1 2 3 4 5 6 7 8 9 10 average
H 1 1 1 1 1 1 1 1 1 0.9
Ry 1 0.1

adjoint auto 1 1 0.2
controlled auto 2 0.2

Lines of code 3 3 7 8 3 3 3 4 3 3 4.0

(b) Winter 19: D1

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 1 1 1 2 0.5

ControlledOnInt 1 0.1
H 1 1 1 1 1 1 1 1 1 0.9
Ry 1 0.1
X 2 2 2 2 2 2 2 2 1.6

Controlled 1 2 2 1 1 1 1 1 1 1.1
adjoint auto 1 1 0.2

controlled auto 1 2 0.3
Lines of code 5 14 16 13 14 17 14 9 10 9 12.1

(c) Winter 19: D2

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 2 2 0.4

CNOT 2 2 2 2 2 2 2 1.4
H 1 1 1 1 1 1 1 1 1 1 1.0

MultiX 2 0.2
X 2 2 0.4

Controlled 2 2 2 0.6
adjoint auto 1 1 0.2

controlled auto 2 0.2
Lines of code 5 10 14 12 10 11 11 11 6 9 9.9

(d) Winter 19: D3

1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 6 0.6
ApplyToEachCA 2 4 0.6

CNOT 2 1 3 2 2 8 4 2.2
H 1 1 1 1 1 1 1 4 1 1 1.3

IntegerIncrementLE 2 2 0.4
MultiX 3 2 0.5

X 1 7 5 4 10 7 7 15 8 3 6.7
Adjoint 2 0.2

Controlled 3 2 3 4 4 2 4 7 7 2 3.8
adjoint auto 4 3 0.7

controlled auto 2 6 1 0.9
Lines of code 10 29 44 38 35 28 51 153 25 22 43.5

(e) Winter 19: D4

1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

CCNOT 1 2 3 1 2 0.9
CNOT 3 5 1 4 6 5 2 2 4 4 3.6
H 3 3 3 3 2 3 2 3 3 3 2.8

IntegerIncrementLE 1 0.1
SWAP 1 1 1 1 1 0.5
X 2 2 7 5 22 2 5 5 2 2 5.4

Adjoint 1 0.1
Controlled 3 4 3 4 5 4 1 3 3 4 3.4
adjoint auto 2 3 0.5

controlled auto 6 0.6
Lines of code 11 13 25 38 17 13 14 19 13 15 17.8

(f) Winter 19: D5

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 2 0.2

CNOT 2 2 1 2 1 3 1.1
H 1 1 2 1 1 2 0.8
Ry 1 1 3 1 0.6
X 2 3 2 2 9 3 15 13 4 6 5.9

Adjoint 1 1 1 1 0.4
Controlled 1 2 3 1 4 2 7 33 4 1 5.8

adjoint auto 2 2 1 1 2 2 1.0
controlled auto 2 2 1 0.5

controlled adjoint auto 1 2 0.3
Lines of code 22 37 33 26 40 30 141 179 77 60 64.5

(g) Winter 19: D6

Table A.9: Evaluation of the submissions of the top 10 contestants of the Q#
Winter 2018 coding contest.
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funcs data type class
The Circ monad 1

Basic types 2 2

Basic gates 76 1

Other circuit-building functions 17

Notation for controls 4 1 1

Signed items 2 1

Comments and labelling 4 1

Hierarchical circuits 4

Block structure 17

Operations on circuits 17 2

Circuit transformers 3 2 5

Circuit generation from classical code 2

Extended quantum data types 8 8

Sum 154 9 8 10

Table A.10: The number of functions, data types, types and classes provided by
Quippers core library in the respective category.
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a.7.3 Further Algorithms

In the following, we provide further algorithms implemented in Silq.

1// Wiesner’s quantum money: Conjugate coding, Stephen Wiesner, https://dl.acm.org/

citation.cfm?id=1008920

2

3def create_bill[n:!N](){

4// generate new bill and verifier

5secret:=uniform[4,n]();

6bill:=encode(secret)(0:uint[n]);

7verifier:=λ(b:uint[n]). verify(b,secret);

8return (bill,verifier);

9}

10

11def verify[n:!N](bill:uint[n],secret:!N̂ n):uint[n]×!B{
12// verify a given bill

13check:=reverse(encode(secret))(bill);

14if measure(check)==0{ // ok, give money back

15return (encode(secret)(0:uint[n]),true);

16}else{ // forged!

17return (0:uint[n],false);

18}

19}

20

21// ENCODING FUNCTIONS

22

23def encode[n:!N](secret:!N̂ n)(bill:uint[n])mfree{

24for k in [0..n){

25bill[k]:=encode_B[secret[k]](bill[k]);

26}

27return bill;

28}

29def encode_B[state:!N](b:B)mfree{

30// 0 7→ 0, 1 7→ 1, 2 7→ +, 3 7→ -

31if state%2==1{ b:=X(b); }

32if state>=2 { b:=H(b); } // switch basis to +/-

33return b;

34}

35

36// SIMPLE TEST

37

38def verify_new_test[n:!N](){

39// verify a new bill twice

40

41// create new bill

42(bill,verifier):=create_bill[n]();

43// verify twice it is genuine

44(bill,ok1):=verifier(bill);

45assert(ok1);
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46(bill,ok2):=verifier(bill);

47assert(ok2);

48// discard the bill

49measure(bill);

50}

51def main(){

52verify_new_test[3]();

53}

54

55// HELPER FUNCTIONS

56

57def uniform[range:!N,length:!N](){

58// returns (x1,...,x_length) with x i~{0,...range-1}
59n:=round(log(range)/log(2)) coerce !N;

60assert(2^n==range);

61r:=vector(length,0:!N);

62for l in [0..length){

63for k in [0..n){

64r[l]+=2^k*rand();

65}

66}

67return r;

68}

69def rand(){

70// quantum number generator

71return measure(H(false));

72}

1import quantum_money;

2

3// PRIMITIVE FORGE ATTEMPT

4// The attempt does not work due to the no-cloning theorem

5

6def forge_primitive[n:!N](bill:uint[n]){

7forged:=dup(bill);

8return (bill,forged);

9}

10

11// SIMPLE TEST

12

13def forge_primitive_test[n:!N](){

14// create new bill

15(bill,verifier):=create_bill[n]();

16// try to duplicate it

17(bill,forged):=forge_primitive(bill);

18// verify both

19(bill,ok_original):=verifier(bill);

20(forged,ok_forged):=verifier(forged);

21assert(!ok_original || !ok_forged);

22// discard bills
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23measure(bill);

24measure(forged);

25}

26def main(){

27forge_primitive_test[4]();

28}

1// An adaptive attack on Wiesner’s quantum money, https://arxiv.org/abs/1404.1507

2

3import quantum_money;

4

5def forge_nagaj[n:!N](bill:uint[n],verifier:uint[n]!→ uint[n]×!B){
6secret:=vector(n,0);

7for k in [0..n){

8(bill,is_plus):=determine(bill,verifier,k,true);

9if is_plus{

10secret[k]=2;

11}else{

12(bill,is_minus):=determine(bill,verifier,k,false);

13if is_minus{

14secret[k]=3;

15}else{

16secret[k]=measure(bill[k]);

17}

18}

19}

20return (bill, encode(secret)(0:uint[n]));

21}

22

23def determine[n:!N](bill:uint[n],verifier:uint[n]!→ uint[n]×!B,k:!N,check_plus:!B):

uint[n]×!B{
24// determine the value of the k-th bit of the quantum bill

25// - check_plus=true: return 1 iff bit is plus

26// - check_plus=false: return 1 iff bit is minus

27fail_prob:=0.01;

28N:=ceil(π^2*n/(2*fail_prob)); // choose N

29if N%2==1{ N+=1; } // ensure N is even

30// choose δ
31δ:=π/(2*N);
32

33probe:=0:B;

34repeat N{

35probe:=rotY(δ*2,probe); // rotate slightly towards 1

36if probe{ // entangle

37bill[k]:=X(bill[k]);

38if !check_plus{ phase(π); }

39}

40(bill,ok):=verifier(bill); // project back by verification

41assert(ok==1); // we should not be caught

42}
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43return (bill, measure(probe));

44}

45

46// SIMPLE TEST

47def forge_nagaj_test[n:!N](){

48// create a new bill

49(bill,verifier):=create_bill[n]();

50// forge

51(bill,forged):=forge_nagaj(bill,verifier);

52// verify both bills

53(bill,ok_original):=verifier(bill);

54assert(ok_original);

55(forged,ok_forged):=verifier(forged);

56assert(ok_forged);

57// discard both bills

58measure(bill);

59measure(forged);

60}

61

62def main(){

63forge_nagaj_test[2]();

64}
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Figure B.1: Operations on circuit graphs.
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b.1 operations on circuit graphs

In this section, we introduce the operations of circuit graph splitting and
composition. These are key operations in our proof of Thm. 4.2.1 of Unqomp
(see App. B.2).

b.1.1 Splitting

At a high level, the split operation divides a circuit graph G into two graphs
G1 and G2 such that all gates in G2 can be evaluated after G1. The graph G2
is extended by missing init nodes for all qubits involved in G2.

splitting example Fig. B.1c shows the graphs G1 and G2 obtained by
splitting G along the indicated cut. The graph G1 is simply the subgraph
induced by {a0, b0, a1, b1}. The graph G2 includes the node b1 because of
the edge b1 → b2 in G. While b1 is a gate node in G1, it is an init node in
G2. The anti-dependency edge a1 99K b2 is not present in neither graph.

splitting formalization More formally, consider an arbitrary graph
cut (V′, V′′) in the circuit graph G = (V, E), such that there are no edges
in E from a node in V′′ to a node in V′. That is, we partition the nodes
V into V′ and V′′ such that all nodes in V′′ come after all nodes in V′

according to the partial order induced by E. Fig. B.1b illustrates such a cut
for V′ = {a0, b0, a1, b1} and V′′ = {c0, c1, b2}.

The operation Split(G, V′, V′′) first checks whether the given cut satisfies
the above constraints and returns an error if not. Otherwise, it returns two
graphs G1 and G2, where G1 is the subgraph induced by V′, and G2 is the
graph induced by P ∪V′′, where P ⊆ V′ are the control and target parents
of nodes in V′′. The nodes P are init nodes in G2. Formally, the graph
G2 = (V(2), E(2)) is built as follows.

V(2)
gates = Vgates ∩V′′

V(2)
init = (Vinit ∩V′′) ∪ P

P := {u ∈ V′ | ∃v ∈ V′′. (u→ v) ∈ E ∨ (u •→ v) ∈ E}
E(2) are the edges from E induced by V(2)

init ∪V(2)
gates

We note that for u ∈ P, u is an init node in G2 but may be a gate node in
G1. In both graphs, qbit(u) is the same qubit.
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b.1.2 Composing

The composition operation G1 •G2 can be thought of as the inverse of Split.
It composes two graphs G1 = (V(1), E(1)) and G2 = (V(2), E(2)) such that
init nodes in G2 are merged with the “output nodes” in G1, and any missing
anti-dependency edges are introduced.

composing example Fig. B.1b shows the graph G obtained by com-
posing G1 and G2. Node b1 ∈ V(1)

gate is merged with b1 ∈ V(2)
init to the gate

node b1 ∈ Vgate (see highlighted). This corresponds to evaluating the H
gate in G1 first, before using the result as an input to the H gate in G2. The
anti-dependency edge a1 99K b2 is not present in G1 or G2, but introduced
during composition.

composing formalization For any node u, we say that u is a last
node if u is the last node along the target edge path including u. In other
words, u is the last gate node targeting qbit(u). Upon composing G1 and G2,
we merge the last nodes in G1 with the corresponding init node in G2 (if
any such node exists). More formally, we union the graphs and perform an
edge contraction along the following set of edges E′: 1

E′ =
{
(u, v0) ∈ V(1) ×V(2)

init

∣∣∣∣ qbit(u) = qbit(v0),
u is a last node

}
.

When contracting an edge (u, v0), we retain the node u and discard v0. In
particular, if u is a gate node in G1, it is a gate node in G. The resulting set
of edges E is extended by any missing anti-dependency edges.

semantics of composed graphs A key property of the composition
operation is the natural composition of semantics. More precisely, it is
JG1 • G2K = JG2K ◦ JG1K for any circuit graphs G1, G2. This follows from the
definition of circuit graph semantics, that allows any total order respecting
the edges of G1 • G2 when defining its semantics. As the definition of
composition makes sure that there are no edges from nodes in V(2) to
nodes in V(1), we can pick a total order on G1 •G2 such that all nodes in G1
come before all nodes in G2. The composition of the gates semantics then
yields JG1 • G2K = JG2K ◦ JG1K.

1 Technically, we would need to temporarily rename nodes occurring in both graphs, such
that the graph union leaves the graphs disconnected.
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b.2 correctness proof of unqomp

In the following, we provide a proof for Thm. 4.2.1:

Theorem 4.2.1 (Correctness). Let Unqomp(G, A) = G for circuit graph G
with n qubits of which m are ancilla qubits. Without loss of generality, assume that
those ancillae A =

(
a(1), . . . , a(m)

)
are the first m qubits of G. If

|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |k⟩A ⊗ ϕk, then (4.4)

|0 · · · 0⟩A⊗ φ
JGK7−−→ ∑

k∈{0,1}m
γk |0 · · · 0⟩A⊗ ϕk. (4.5)

Proof. Our proof proceeds by induction on the number of gate nodes in G
and relies on the operations from App. B.1.

base case In the base case, G and therefore also G consist of zero gate
nodes, and Thm. 4.2.1 follows because the left-hand side and the right-hand
side of Eq. (4.4) and Eq. (4.5) are all the same.

induction step For the induction step, we consider graph G with n+ 1
gate nodes. We then select the first gate node v according to the total order
in Line 3, and split G according to (Gv, G−v) = Split(G, {v}, V\{v}). Note
that the induction hypothesis holds for G−v with Unqomp(G−v, A) = G−v,
as G−v consists of n gate nodes.

case i If qbit(v) /∈ A, then JvK preserves A, and hence

|0 · · · 0⟩A ⊗ φ
JvK7−−→ |0 · · · 0⟩A ⊗ χ

JG−vK7−−−→ ∑
k∈{0,1}n

γk |k⟩A ⊗ ϕk .

We then use the induction hypothesis to show Eq. (4.5) by

|0 · · · 0⟩A ⊗ φ
JvK7−−→ |0 · · · 0⟩A ⊗ χ

JG−vK7−−−→∑
k

γk |0 · · · 0⟩A ⊗ ϕk .

case ii If qbit(v) ∈ A, then v = an and Unqomp inserted a gate node
a⋆n−1 into G. In the following, we refer to a⋆n−1 as v†, because v† uncomputes
v.

Then, consider a split of G into subgraphs Gv (containing gate node v),
G□v† (containing gate nodes before v†), Gv† (containing gate node v†), and
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Gv†□ (containing all other gate nodes). Omitting gate nodes inserted by
Unqomp from Gv†□ and Gv†□ yields graphs Gv†□ and Gv†□, respectively.
Overall, this yields two decompositions of G and G, respectively:

G = Gv • G−v = Gv • G□v† • Gv†□ and (B.1)

G = Gv • G□v† • Gv† • Gv†□. (B.2)

First, we show the semantics of G, according to the graph split of G in
Eq. (B.1). Here, a is the qubit targeted by v, C are non-ancilla control qubits
of v, A′ are ancilla qubits controlling v, and A′′ are other ancilla qubits.
Further, to avoid notational clutter, we write 000 for 0 · · · 0 in the following.

∑
i

γi |i⟩C |000⟩A′ |0⟩a |000⟩A′′ ⊗φ
(1)
i (B.3)

JGvK7−−→∑
i

γi |i⟩C |000⟩A′ | fi,000(0)⟩a |000⟩A′′ ⊗φ
(1)
i (B.4)

JG□v† K7−−−−→∑
i

γi ψi (B.5)

JGv†□K7−−−−→∑
i

γi ∑
i′ jkl

γ
(3)
ii′ jkl |i′⟩C |j⟩A′ |k⟩a |l⟩A′′ ⊗φ

(3)
ii′ jkl (B.6)

Eq. (B.4) follows by observing that v is qfree and controlled by C and
A′. Eq. (B.5) and Eq. (B.6) describe arbitrary quantum states that can be
generated from Eq. (B.4) by a linear transformations.

Now, we show the semantics of Gv • G□v† • Gv†□:

∑
i

γi |i⟩C |000⟩A′ |0⟩a |000⟩A′′ ⊗φ
(1)
i (B.7)

JGvK7−−→∑
i

γi |i⟩C |000⟩A′ | fi,000(0)⟩a |000⟩A′′ ⊗φ
(1)
i (B.8)

JG□v† K7−−−−→∑
i

γi |i⟩C ⊗ χi (B.9)

JGv†□K7−−−−→∑
i

γi ∑
i′ jkl

γ
(3)
ii′ jkl |i′⟩C |000⟩A′ | fi,000(0)⟩a |000⟩A′′ ⊗φ

(3)
ii′ jkl (B.10)

Eq. (B.8) follows analogously to Eq. (B.4). Eq. (B.9) is an arbitrary quantum
state generated from Eq. (B.8) by preserving C. We note that C must be
preserved, as G□v† only contains nodes occurring before v†, and no gate
node targeting a control qubit C can come before v†. To get to Eq. (B.10),
we use the induction hypothesis and Eq. (B.6). To apply the induction
hypothesis here, we first need to show that G□v† • Gv†□ = G−v. Using
Lemma 2, we can pick a total order on G such that v is first. We can then
assume that this total order was used to get G, and the same total order
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minus v was used by Algorithm 1, Line 3 to get G−v from G−v. Each step
of uncomputation on G and G−v would then have been exactly the same
up until the uncomputation of v that inserted v† in G, that is to say G−v is
exactly G without v and v†, and all edges pointing to and from those nodes
i.e., G−v = G□v† • Gv†□ .

In order to apply the induction hypothesis in the case where fi,000(0) ̸=
0, we strengthen Thm. 4.2.1 to not only hold for ancillae initialized to
0 · · · 0, but for arbitrary bit strings b1 · · · bn ∈ {0, 1}n (our proof naturally
generalizes to this case).

Next, we observe that Gv†□ neither targets a (as v† is the last node
operating on a) nor A′. The latter is because all ancilla controls of v must be
init nodes a′0 (as v is the first node). Now, if a′0 is not the last node on qubit
a′, it must be targeted by a gate node a′1, such that v 99K a′1. According to
Line 3, a′1 has then been uncomputed before v, and v† is hence controlled
by a′⋆0 , which is the last operation on qubit a′.

From this, we conclude that χi must be of the form

χi = ∑
l

γ
(4)
il |000⟩A′ | fi,000(0)⟩a|l⟩A′′⊗φ

(4)
il . (B.11)

This allows us to derive the semantics of G by continuing from Eq. (B.9) as:

JG□v† K7−−−−→∑
i

γi ∑
l

γ
(4)
il |i⟩C |000⟩A′ | fi,000(0)⟩a |l⟩A′′ ⊗φ

(4)
il (B.12)

JGv† K7−−−→∑
i

γi ∑
l

γ
(4)
il |i⟩C |000⟩A′ |0⟩a |l⟩A′′ ⊗φ

(4)
il (B.13)

JGv†□K7−−−−→∑
i

γi ∑
i′ jkl

γ
(3)
ii′ jkl |i′⟩C |000⟩A′ |0⟩a |000⟩A′′ ⊗φ

(3)
ii′ jkl (B.14)

Here, Eq. (B.12) follows by plugging Eq. (B.11) into Eq. (B.9). Then, Eq. (B.13)
follows because gate(v†) = gate(v)† inverts the actions of v. Finally, Eq. (B.14)
follows analogously to Eq. (B.10), by observing that no gate node in Gv†□
relies on the value of a.

Observing that Eq. (B.14) demonstrates Eq. (4.5) concludes the proof.

Lemma 2. For a given circuit graph and set of ancillae, for any choice of total
order in Algorithm 1, Line 3, the result of the Unqomp procedure will be the same.

Proof. We first prove a restriction of this lemma: for a given circuit graph
and set of ancillae, for two total orders in Algorithm 1 that only differ by a
swap of two adjacent nodes, the result of the Unqomp procedure will be
the same.
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Take such a circuit graph G, set of ancillae A and two total orders <1
and <2. <1 and <2 are the same except for two nodes v and w: v <1 w but
w <2 v. We now consider the application of Unqomp using those two total
orders on G and A. Up to the uncomputation of v and w, both applications
of the procedure are exactly the same and fail iff the other fails. Besides,
as both <1 and <2 respect the edges of G yet order v and w differently,
we know that there is no path in G between v and w. Specifically, v and
w target different qubits, and cannot be controls of one another. Hence in
both applications of the procedure, v⋆, w⋆ and their updated ctrl sets are
the same. After the uncomputation of both v and w, the resulting graphs
hence have the same nodes and set of control and target edges. They are
exactly the same, and have cycles iff the other has one as well. The rest
of the uncomputation is then again the same, concluding the proof of the
restricted lemma.

Using the restricted lemma, we can prove the more general one: for any
two total orders on G, we can go from one to the other through swap of
adjacent nodes, and applying the restricted lemma at each step.

b.3 evaluation details

For the code comparison, no comments or blank lines were counted. All
programs contain the initialization of quantum registers and circuits, and
an extra line for uncomputation when necessary.

For circuit size comparison to Qiskit, the parameters for each of the
examples are:

• Adder: 12 qubits for each operand, and 12 for the result as well

• Deutsch-Jozsa: 10 control qubits, MCX as an oracle, returning true iff
the value is 1111111111;

• Grover’s algorithm: 10 control qubits, MCX as an oracle, returning
true iff the value is 1111111111;

• IntegerComparator: 12 control qubits, comparing to i = 40;

• MCRY: 12 control qubits, rotation angle θ = 2;

• MCX: 12 control qubits;

• Multiplier: 12 qubits for each operand, and 12 for the result as well
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• PiecewiseLinearR: 12 control qubits, function breakpoints are [1, 2, 3,
4, 5, 6, 7, 8, 9, 12, 14], both coefficients and offsets are [1, 2, 3, 4, 3, 4, 3,
4, 5, 6, 4];

• PolynomialPauliR: 8 control qubits, polynomial coefficients are [1, 2,
3, 4, 5, 4, 1, 2, 3, 4, 5];

• WeightedAdder: 12 control qubits, values for sum are [1, 2, 3, 2, 5, 6,
5, 3, 4, 5, 8, 2];

For circuit size comparison to Quipper, the parameters for each of the
examples are:

• Adder: 4 qubits for each operand, and 4 for the result as well

• Deutsch-Jozsa: 10 control qubits, MCX as an oracle, returning true iff
the value is 1111111111;

• Grover’s algorithm: 10 control qubits, MCX as an oracle, returning
true iff the value is 1111111111;

• IntegerComparator: 4 control qubits, comparing to i = 4;

• MCX: 10 control qubits;

• Multiplier: 4 qubits for each operand, and 4 for the result as well

• WeightedAdder: 4 control qubits, 6 for the output, values for sum are
[15, 15, 15, 15];

The complete gate and qubits counts used in Table 4.2 are shown in
Table B.1 and Table B.2.
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Benchmark Qiskit library Unqomp

qubits all gates CX gates qubits all gates CX gates
Adder 36 706 310 36 464 200

Deutsch-Jozsa 19 181 54 19 181 54

Grover 19 8562 2550 19 8562 2550

IntegerComparator 24 390 126 24 270 66

MCRY 23 49144 24568 24 202 68

MCRY ∗
23 392 132 24 202 68

MCX 23 195 66 23 195 66

Multiplier 60 10812 4656 59 6972 2868

PiecewiseLinearR 35 14082 4926 25 8328 2870

PolynomialPauliR 18 76361 37192 16 14863 5124

PolynomialPauliR ∗
18 26729 9244 16 14863 5124

WeightedAdder 24 5406 2394 27 3090 1086

WeightedAdder ∗ 24 4446 1626 27 3090 1086

WeightedAdder alt. impl. 24 5406 2394 24 3738 1302

WeightedAdder alt. impl. ∗ 24 4446 1626 24 3738 1302
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Table B.2: Number of gates and qubits in Quipper and Unqomp circuits.
Benchmark Quipper Unqomp

qubits all gates CX gates qubits all gates CX gates
Adder 23 388 150 19 171 57

Deutsch-Jozsa 20 293 109 19 181 54

Grover 20 14262 5150 19 8562 2550

IntegerComparator 8 111 37 8 66 18

MCX 20 271 109 19 159 54

Multiplier 29 552 226 19 692 284

WeightedAdder 87 2630 948 19 1300 448

WeightedAdder alt. impl. 87 2630 948 16 1372 472
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c.1 abstract transformers soundness

Here, we prove the soundness of the trace transformer Eq. (5.38):

Theorem C.1.1 (Trace). For all ρ ∈ D we have γ ◦ tr (ρ) ⊇ tr ◦ γ(ρ).

Proof. The over-approximation F# follows closely the form of F, where the
first term f(P) over-approximates the prefactors of P and second term over-
approximates the prefactors originating from the solution space for y of
b(P) = b(∏n

j=1 Q
yj
j ). Overall, we have:

tr ◦ γ (ρ)

=tr

({
r

∑
i=1

ciPi

n

∏
j=1

1
2

(
I + (−1)bij Qj

) ∣∣∣∣∣ ci ∈ c, Pi ∈ P, bij ∈ bj

})

=

{
tr

(
r

∑
i=1

ciPi

n

∏
j=1

1
2

(
I + (−1)bij Qj

)) ∣∣∣∣∣ ci ∈ c, Pi ∈ P, bij ∈ bj

}

=

{
r

∑
i=1
ℜ
(

cii
F(P,Q,bij)

) ∣∣∣∣∣ ci ∈ c, Pi ∈ P, bij ∈ bj

}
Concrete trace, §5.5.4

=
r

∑
i=1
ℜ
(
{ci ∈ c} · iF({Pi∈P},Q,{bij∈bj})

)
⊆γ

(
r

∑
i=1
ℜ
(

c · iF♯(P,Q,bj)
))

Soundness of transf.

=γ
(

r · ℜ
(

c · iF♯(P,Q,bj)
))

Property of intervals

=γ ◦ tr (ρ) .
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Table C.1: States stabilized by Pauli matrices P and also −P, where X :=
( 0 1

1 0
)
,

Y :=
(

0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, and I2 :=

( 1 0
0 1
)
.

Stab. State vec. Dens. mat. Stab. State vec. Dens. mat.

X 1√
2

(
1
1
)

=∧ |+⟩ 1
2

(
1 1
1 1

)
−X 1√

2

(
1
−1

)
=∧ |−⟩ 1

2

(
1 −1
−1 1

)
Y 1√

2

(
1
i
) 1

2

(
1 i
−i 1

)
−Y 1√

2

(
1
−i

)
1
2

(
1 −i
i 1

)
Z

(
1
0
)

=∧ |0⟩
(

1 0
0 0

)
−Z

(
0
1

)
=∧ |1⟩

(
0 0
0 1

)
I2 (any vec.) - −I2 (no vec.) -

Table C.2: Multiplication of Pauli matrices.

II = I IX = X IY = Y IZ = Z
XI = X XX = I XY = iZ XZ = −iY
YI = Y YX = −iZ YY = I YZ = iX
ZI = Z ZX = iY ZY = −iX ZZ = I

c.2 stabilizers and pauli matrices

Table C.1 shows the states stabilized by each Pauli matrix, together with
the density matrix of the stabilized state. Further, Table C.2 shows the
multiplication table for the Pauli matrices.
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