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We present a new computer program, feyntrop, which uses the tropical geometric approach to 
evaluate Feynman integrals numerically. In order to apply this approach in the physical regime, 
we introduce a new parametric representation of Feynman integrals that implements the causal 
iε prescription concretely while retaining projective invariance. feyntrop can efficiently evaluate 
dimensionally regulated, quasi-finite Feynman integrals, with not too exceptional kinematics in the 
physical regime, with a relatively large number of propagators and with arbitrarily many kinematic scales. 
We give a systematic classification of all relevant kinematic regimes, review the necessary mathematical 
details of the tropical Monte Carlo approach, give fast algorithms to evaluate (deformed) Feynman 
integrands, describe the usage of feyntrop and discuss many explicit examples of evaluated Feynman 
integrals.
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press) [1]. This previous code did not have features which are required for phenomenological studies in 
high-energy physics. In particular, it only allowed for phase space points in the Euclidean regime, and 
only computed the leading term in the ε expansion.
Restrictions: The Feynman integral must be quasi-finite and the momentum configuration must be 
sufficiently generic. Numerators of Feynman integrals are not implemented.
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1. Introduction

Feynman integrals are a key tool in quantum field theory. They are necessary to produce accurate predictions from given theoretical 
input such as a Lagrangian. Applications are, for instance, the computations of virtual contributions to scattering cross-sections for particle 
physics phenomenology [7], corrections to the magnetic moment of the muon or the half-life of positronium [8], critical exponents in 
statistical field theory [9] and corrections to the Newton potential due to general relativity [10]. An entirely mathematical application of 
Feynman integrals is the certification of cohomology classes in moduli spaces of curves or of graphs [11].

In this paper, we introduce feyntrop,1 a new tool to evaluate Feynman integrals numerically. In contrast to existing tools, feyntrop
can efficiently evaluate Feynman integrals with a relatively large number of propagators and with an arbitrary number of scales. Moreover,
feyntrop can deal with Feynman integrals in the physical Minkowski regime and automatically takes care of the usually intricate contour 
deformation procedure. The spacetime dimension is completely arbitrary and integrals that are expanded in a dimensional regulator can 
be evaluated. The main restriction of feyntrop is that it cannot deal with Feynman integrals having subdivergences, that means the 
input Feynman integrals are required to be quasi-finite. Moreover, feyntrop is not designed to integrate Feynman integrals at certain 
highly exceptional kinematic points. Outside the Euclidean regime, the external kinematics are required to be sufficiently generic. It is 
worthwhile mentioning though that such highly exceptional kinematic points seem quite rare and feyntrop performs surprisingly well 
in these circumstances—in spite of the lack of mathematical guarantees for functioning. In fact, we were not able to find a quasi-finite 
integral with exceptional kinematics for which the integration with feyntrop fails. We only observed significantly decreased rates of 
convergence in such cases.

The mathematical theory of Feynman integrals has advanced rapidly in the last decades. Corner stone mathematical developments for 
Feynman integrals were, for instance, the systematic exploitation of their unitarity constraints (see, e.g., [12,13]), the systematic solution 
of their integration-by-parts identities (see, e.g., [14,15]), the application of modern algebraic geometric and number theoretic tools for 

1 feyntrop can be downloaded from https://github .com /michibo /feyntrop.
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the benefit of their evaluation (see, e.g., [16–18]) and the systematic understanding of the differential equations which they fulfill (see, 
e.g., [19,20]).

Primarily, these theoretical developments were aimed at facilitating the analytic evaluation of Feynman integrals. All known analytic 
evaluation methods are inherently limited to a specific class of sufficiently simple diagrams. Especially for high-accuracy collider physics 
phenomenology, such analytic methods are often not sufficient to satisfy the demand for Feynman integral computations at higher loop 
order, which frequently involve complicated kinematics with many scales. Even if an analytic expression for a given Feynman integral is 
available, it is usually a highly non-trivial task to perform the necessary analytic continuation into the physical kinematic regime. On a 
different tack, computations of corrections to the Newton potential in the post-Newtonian expansion of general relativity [10] require the 
evaluation of large amounts of Feynman diagrams in three dimensional Euclidean space. As analytic evaluation is often more difficult in 
odd-dimensional spacetime, tropical Feynman integration is a promising candidate to fulfill the high demand for large loop order Feynman 
integrals in this field.

For this reason, numerical methods for the evaluation of Feynman integrals seem unavoidable once a certain threshold in precision has 
to be overcome. In this paper, we will use tropical sampling that was introduced in [1] to evaluate Feynman integrals numerically. This 
numerical integration technique is faster than traditional methods because the known (tropical) geometric structures of Feynman integrals 
are employed for the benefit of their numerical evaluation. For instance, general Euclidean Feynman integrals with up to 17 loops and 
34 propagators can be evaluated using basic hardware with the proof-of-concept implementation that was distributed by the first author 
with [1]. The code of feyntrop is based on this implementation. The relevant mathematical structure is the tropical geometry of Feynman 
integrals in the parametric representation [21,1]. This tropical geometry itself is a simplification of the intricate algebraic geometry Feynman 
integrals display (see, e.g., [22]). Tropical Feynman integration was already used, for instance, in [23] to estimate the φ4 theory β function 
up to loop order 11. Some ideas from [1] were already implemented in the FIESTA package [24]. Tropical sampling was extended to toric 
varieties with applications to Bayesian statistics [25]. Moreover, the tropical approach was recently applied to study infrared divergences 
of Feynman integrals in the Minkowski regime [26].

The tropical approach to Feynman integrals falls in line with the increasing number of fruitful applications of tools from convex 
geometry in the context of quantum field theory. These include, for example, the discovery of polytopes in amplitudes (see, e.g. [27,28]). 
Further, Feynman integrals can be seen as generalized Mellin-transformations [29–31]. As such they are solutions to GKZ-type differential 
equation systems [32]. Tropical and convex geometric tools are central to this analytic approach towards Feynman integrals (see, e.g., 
[33–37]).

Tropical Feynman integration is closely related to the sector decomposition approach [38–40], which applies to completely general 
algebraic integrals. State of the art implementations of sector decompositions are, for instance, pySecDec [41] and FIESTA [24]. Other 
numerical methods that are tailored specifically to Feynman integrals are, for instance, difference equations [15], unitarity methods [42], 
the Mellin-Barnes representation [43] and loop-tree duality [44,45]. With respect to potential applications to collider phenomenology, the 
latter three have the advantage of being inherently adapted to Minkowski spacetime kinematics. A newer technique is the systematic 
semi-numerical evaluation of Feynman integrals using differential equations [46,47], which is implemented, for instance, in AMFlow [48],
DiffExp [49] and SeaSyde [50]. A similar semi-numerical approach was put forward in [51]. This technique can evaluate Feynman 
integrals quickly in the physical regime with high accuracy. A caveat is that it relies on the algebraic solution of the usually intricate 
integration-by-parts system associated to the respective Feynman integral and (usually) on analytic boundary values for the differential 
equations (see [48,52] for an exception where the boundary values are computed exclusively from algebraic input). We expect feyntrop, 
which does not rely on any analytic or algebraic input, to be useful for computing boundary values as input for such methods.

feyntrop uses the parametric representation of Feynman integrals for the numerical evaluation, which we briefly review in Section 2.1. 
This numerical evaluation has quite different characters in separate kinematic regimes. We propose a new classification of such kinematic 
regimes in Section 2.2 which, in addition to the usual Euclidean and Minkowski regimes, includes the intermediate pseudo-Euclidean
regime. The original tropical Feynman integration implementation from [1] was limited to the Euclidean regime. Here, we achieve the 
extension of this approach to non-Euclidean regimes.

In the Minkowski regime, parametric Feynman integrands can have a complicated pole structure inside the integration domain. For the 
numerical integration an explicit deformation of the integration contour, which respects the desired causality properties, is needed. The 
use of explicit contour deformation prescriptions for numerics was pioneered in [42] and was later applied in the sector decomposition 
framework [53]. (Recently, a momentum space based approach for the solution of the deformation problem was put forward [54].) In 
Section 2.3, we propose an explicit deformation prescription which, in its basic form, was employed in [55] in the context of cohomological 
properties of Feynman integrals. This deformation prescription has the inherent advantage of retaining the projective symmetry of the 
parametric Feynman integrand. We provide explicit formulas for the Jacobian and thereby propose a new deformed parametric representation
of the Feynman integral.

It is often desirable to evaluate a Feynman integral using dimensional regularization by adding a formal expansion parameter to the 
spacetime dimension, e.g. D = D0 − 2ε , where D0 is a fixed number and we wish to evaluate the Laurent or Taylor expansion of the 
integral in ε . We will explain how feyntrop deals with such dimensionally regularized Feynman integrals in Section 2.4. Moreover, we 
will discuss one of the major limitations of feyntrop in this section: In its present form feyntrop can only integrate Feynman integrals 
that are quasi-finite. That means, input Feynman integrals are allowed to have an overall divergence, but no subdivergences. Further 
analytic continuation prescriptions (along the lines of [29,30,56]) would be needed to deal with such subdivergences and we postpone the 
implementation of such prescriptions into feyntrop to a future publication. For now, the user of the program is responsible to render 
all input integrals quasi-finite; for instance by projecting them to a quasi-finite basis [56]. Note, however, that within our approach, the 
base dimension D0 is completely arbitrary and can even be a non-integer value if desired. The applicability in the case D0 = 3 makes
feyntrop a promising tool for the computation of post-Newtonian corrections to the gravitational potential [57].

In Sections 3.1 and 3.2, we will review the necessary ingredients for the tropical Monte Carlo approach from [1]: The concepts of the 
tropical approximation and tropical sampling. In Section 3.3, we review the (tropical) geometry of parametric Feynman integrands and the 
particular shape that the Symanzik polynomials’ Newton polytopes exhibit. We will put special focus on the generalized permutahedron
property of the second Symanzik F polynomial. At particularly exceptional kinematic points, this property of the F polynomial can be 
3
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lost. In these cases the integration with feyntrop might fail. We discuss this limitation in detail in Section 3.3. The overall tropical 
sampling algorithm is summarized in Section 3.4.

In Section 4.2, we summarize the necessary steps for the efficient evaluation of (deformed) parametric Feynman integrands. The key 
step is to express the entire integrand in terms of explicit matrix expressions. Our method is more efficient than the naive expansion of 
the Symanzik polynomials, as fast linear algebra routines can be used for the evaluation of such matrix expressions.

The structure, installation and usage of the program feyntrop is described in Section 5. To illustrate its capabilities we give multiple 
detailed examples of evaluated Feynman integrals in Section 6. In Section 7, we conclude and give pointers for further developments of 
the general tropical Feynman integration method and the program feyntrop.

2. Feynman integrals

2.1. Momentum and parametric representations

Let G be a one-particle irreducible Feynman graph with edge set E and vertex set V . Each edge e ∈ E comes with a mass me and an 
edge weight νe . Each vertex v ∈ V comes with an incoming spacetime momentum pv . Vertices without incoming momentum, i.e. where 
pv = 0, are internal. Let E by the incidence matrix of G which is formed by choosing an arbitrary orientation for the edges and setting 
Ev,e = ±1 if e points to/from v and Ev,e = 0 if e is not incident to v . The Feynman integral associated to G reads

I =
∫ ∏

e∈E

dDqe

iπ D/2

( −1

q2
e − m2

e + iε

)νe ∏
v∈V \{v0}

iπ D/2δ(D)

(
pv +

∑
e∈E

Ev,eqe

)
, (1)

where we integrate over all D-dimensional spacetime momenta qe and we extracted the δ function that accounts for overall momentum 
conservation by removing the vertex v0 ∈ V . We compute the squared length q2

e = (q0
e )

2 − (q1
e )

2 − (q2
e )

2 − . . . using the mostly-minus 
signature Minkowski metric.

To evaluate I numerically, we will use the equivalent parametric representation (see, e.g., [58])

I = 	(ω)

∫
P E+

φ with φ =
(∏

e∈E

xνe
e

	(νe)

)
1

U(x)D/2

(
1

V(x) − iε
∑

e∈E xe

)ω

�. (2)

We integrate over the positive projective simplex P E+ = {x = [x0, . . . , x|E|−1] ∈RP E−1 : xe > 0} with respect to its canonical volume form

� =
|E|−1∑
e=0

(−1)|E|−e−1 dx0

x0
∧ · · · ∧ d̂xe

xe
∧ · · · ∧ dx|E|−1

x|E|−1
. (3)

Note that in the scope of this article we make the unusual choice to start the indexing with 0 for the benefit of a seamless notational 
transition to our computer implementation. So, the edge and vertex sets are always assumed to be given by E = {0, 1, . . . , |E| − 1} and 
V = {0, 1, . . . , |V | − 1}.

The superficial degree of divergence of the graph G is given by ω = ∑
e∈E νe − DL/2, where L = |E| −|V | + 1 is the number of loops of G .

We use V(x) = F(x)/U(x) as a shorthand for the quotient of the two Symanzik polynomials that can be defined using the reduced 
graph Laplacian L(x), a (|V | − 1) × (|V | − 1) matrix given element-wise by L(x)u,v = ∑

e∈E Eu,eEv,e/xe for all u, v ∈ V \ {v0}. We have the 
identities

U(x) = detL(x)

(∏
e∈E

xe

)
, F(x) = U(x)

⎛⎝−
∑

u,v∈V \{v0}
Pu,v L−1(x)u,v +

∑
e∈E

m2
e xe

⎞⎠ , (4)

where Pu,v = pu · pv with the scalar product being computed using the Minkowski metric.

Combinatorial Symanzik polynomials We also have the combinatorial formulas for U and F

U(x) =
∑

T

∏
e/∈T

xe , F(x) = −
∑

F

p(F )2
∏
e/∈F

xe + U(x)
∑
e∈E

m2
e xe , (5)

where we sum over all spanning trees T and all spanning two-forests F of G , and p(F )2 is the Minkowski squared momentum running 
between the two-forest components. From this formulation it can be seen that U and F are homogeneous polynomials of degree L and 
L + 1 respectively. Hence, V is a homogeneous rational function of degree 1.

We will give fast algorithms to evaluate U(x) and F(x) in Section 4.2.

2.2. Kinematic regimes

By Poincaré invariance, the value of the Feynman integral (1) only depends on the |V | × |V | Gram matrix Pu,v = pu · pv and not on 
the explicit form of the vectors pv . In fact, it is even irrelevant in which ambient dimension the vectors pv are defined. The following 
characterization of the different kinematic regimes that we propose will therefore only take the input of a symmetric |V | × |V | matrix P
with vanishing row and column sums (i.e. the momentum conservation conditions 

∑
v∈V pu · pv = ∑

v∈V Pu,v = 0 for all u ∈ V ), without 
requiring any explicit knowledge of the pv vectors. In fact, we will not even require that there are any vectors pv for which Pu,v = pu · pv .
4
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Euclidean regime We say a given Feynman integral computation problem is in the Euclidean regime if the matrix P is negative semi-
definite. In this regime, F(x) ≥ 0 for all x ∈ P E+ . We call this the Euclidean regime, because the integral (1) is equivalent to an analogous 
Feynman integral where scalar products are computed with the Euclidean all-minus metric. To see this, note that as −P is positive 
semi-definite, there is a |V | × |V | matrix Q such that P = −QTQ. We can think of the column vectors p̃1, . . . , ̃p|V | of Q as an auxiliary 
set of incoming momentum vectors. Elements of P can be interpreted as Euclidean, all-minus metric, scalar products of the p̃v -vectors: 
Pu,v = −p̃ T

u p̃v = − 
∑

w∈V Qw,uQw,v . Translating this back to (1) means that we can change the signature of the scalar products to the 
all-minus metric if we replace the external momenta with the p̃v vectors which are defined in an auxiliary space R|V | . We emphasize
that this way of relating Euclidean and Minkowski space integrals is inherently different from the typical Wick rotation procedure and that 
the p̃v -vectors will in general be different from the original pv vectors.

Pseudo-Euclidean regime In fact, F(x) ≥ 0 for all x ∈ P E+ in a larger kinematic regime, where P is not necessarily negative semi-definite. 
If for each subset V ′ ⊂ V of the vertices the inequality(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v ≤ 0 (6)

is respected, then we are in the pseudo-Euclidean regime. The first two equalities in (6) are only included as mnemonic devices; knowledge 
of P is sufficient to check the inequalities. Equivalently, we can require the element sums of all principle minor matrices of the P matrix 
to be ≤ 0.

By (5) and (6), the coefficients of F are non-negative in the pseudo-Euclidean regime. Our choice of normalization factors ensures that 
(1) and (2) are real positive in this case.

We remark that there is a commonly used alternative definition of a kinematic regime which, on first sight, is similar to the condition 
above. This alternative definition requires the inequalities pu · pv ≤ 0 to be fulfilled for all u, v ∈ V (see, e.g., [59, Sec. 2.5]). This is more 
restrictive than our condition in (6). In fact, it is too restrictive for our purposes, as not even entirely Euclidean Feynman integrals can 
generally be described in this regime. The reason for this is that not all negative semi-definite matrices P fulfill this more restrictive 
condition.

In our case, the Euclidean regime is contained in the pseudo-Euclidean regime. To verify this, we have to make sure that a negative 
semi-definite P fulfills the conditions in (6). Such a P can be represented with an appropriate set of ̃pv vectors as above: Pu,v = −p̃ T

u p̃v . 
For each V ′ ⊂ V we get the principle minor element sum

∑
u,v∈V ′

Pu,v = −
∑

u,v∈V ′
p̃ T

u p̃v = −
(∑

v∈V ′
p̃v

)T (∑
v∈V ′

p̃v

)
≤ 0 . (7)

Minkowski regime If we are not in the pseudo-Euclidean regime (and thereby also not in the Euclidean regime), then we are in the 
Minkowski regime.

Generic and exceptional kinematics Without any resort to the explicit incoming momentum vectors pv , we call a vertex v internal if 
Pu,v = 0 for all u ∈ V and external otherwise. Let V ext ⊂ V be the set of external vertices. Complementary to the classification above, we 
say that our kinematics are generic if for each proper subset V ′ � V ext of the external vertices of G and for each non-empty subset E ′ ⊂ E
of the edges of G we have(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v 	=
∑
e∈E ′

m2
e . (8)

For example, the kinematics are always generic in the pseudo-Euclidean regime if me > 0 for all e ∈ E or if 
∑

u,v∈V ′ Pu,v < 0 for all 
V ′ � V ext. Note that generic kinematics also exclude on-shell external momenta, i.e. cases where p2

v = P v,v = 0 for some v ∈ V ext as long 
as not all me > 0, for then there exists at least one edge e ∈ E such that p2

v = 0 = m2
e , thus violating (8). Genericity, for instance, guarantees 

that there will be no cancellation between the momentum and the mass part of the F -polynomial as defined in (5).
Kinematic configurations that are not generic are called exceptional.
As above, only the statements on Pu,v are sufficient for the classification. The other equalities are added to enable a seamless compar-

ison to the literature.
The discussed kinematic regimes and their respective overlaps are illustrated in Fig. 1. In contrast to what the figure might suggest, 

the exceptional kinematics only cover a space that is of lower dimension than the one of the generic regime. The Minkowski regime 
is not explicitly shown as it covers the whole area that is not pseudo-Euclidean. Note that Minkowski, pseudo-Euclidean and Euclidean 
kinematics can be exceptional.

feyntrop detects the relevant kinematic regime using the conditions discussed above.

2.3. Contour deformation

In the pseudo-Euclidean (and thereby also in the Euclidean) regime, F(x) stays positive and the integral (2) cannot have any simple 
poles inside the integration domain.

In the Minkowski regime however, simple propagator poles of the integrand (1) and simple poles associated to zeros of F in (2)
are avoided using the causal iε prescription (see, e.g., [60]). This prescription tells us to which side of the pole the integration contour 
needs to be deformed. When evaluating integrals such as (1) numerically, we have to find an explicit choice for such an integration 
5
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Fig. 1. Partition of kinematics into different regimes.

contour. Finding such an explicit contour deformation, which also has decent numerical stability properties, is a surprisingly complicated 
task. Explicit contour deformations for numerical evaluation were pioneered by Soper [42] and later refined [53,61]. This original type 
of contour deformation has the caveat that the projective symmetry of the integral (2) is lost as these deformations are inherently non-
projective and usually formulated in affine charts, i.e. ‘gauge fixed’ formulations of (2). Experience, e.g. from [1], shows that the projective 
symmetry of (2) is a treasured good that should not be given up lightly.

To retain projective symmetry we will hence use a different deformation than established numerical integration tools. We will use 
the embedding ιλ : P E+ ↪→ CP |E|−1 (recall that P E+ is a subset of RP |E|−1) of the projective simplex into |E| − 1 complex dimensional 
projective space given by

ιλ : xe �→ xe exp

(
−iλ

∂V
∂xe

(x)

)
. (9)

This deformation prescription was proposed in [55, eq. (43)] in the context of the cohomological viewpoint on Feynman integrals (see also 
[62, Sec. 4.3]). As U and F are homogeneous polynomials of degree L and L + 1 respectively and V(x) =F(x)/U(x), the partial derivative 
∂V
∂xe

is a rational function in x of homogeneous degree 0, so ιλ indeed respects projective equivalence.

We want to deform the integration contour P E+ of (2) into ιλ
(
P E+

) ⊂CP |E|−1. The deformation ιλ does not change the boundary of P E+
as each boundary face of P E+ is characterized by at least one vanishing homogeneous coordinate xe = 0. So, ιλ

(
∂P E+

) = ∂P E+ . By Cauchy’s 
theorem, we can deform the contour as long as we do not hit any poles of the integrand φ. Supposing that λ is small enough such that 
no poles of φ are hit by the deformation, we have

I = 	(ω)

∫
ιλ

(
P E+

) φ = 	(ω)

∫
P E+

ι∗λφ , (10)

where ι∗λφ denotes the pullback of the differential form φ. A computation on forms reveals that ι∗λ � = det(Jλ(x)) �, where the Jacobian 
Jλ(x) is the |E| × |E| matrix given element-wise by

Jλ(x)e,h = δe,h − iλxe
∂2V

∂xe∂xh
(x) for all e,h ∈ E . (11)

Thus, we arrive at the desired deformed parametric Feynman integral by making (10) explicit,

I = 	(ω)

∫
P E+

ι∗λ φ = 	(ω)

∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
detJλ(x)

U (X)D/2 · V (X)ω
�, (12)

where X = ιλ(x), that means X = (X0, . . . , X|E|−1) and Xe = xe exp
( − iλ ∂V

∂xe
(x)

)
for all e ∈ E .

Although the prescription (9) was proposed before in a more formal context, the deformed formulation of the parametric Feynman 
integral (12) with the explicit Jacobian factor given by (11) appears not to have been considered previously in the literature.

In Section 4.2, we provide fast algorithms and formulas to evaluate ∂V
∂xe

(x) and Xe .

Landau singularities In the formulation (12), the iε prescription is taken care of by the deformation of the rational function V . To see this, 
consider the Taylor expansion of V(X) in λ,

V (X) = V(x) − iλ
∑
e∈E

xe

(
∂V
∂xe

(x)

)2

+O(λ2) . (13)

The iε prescription in (2) is ensured if the imaginary part of V(X) is strictly negative for sufficiently small λ. This is the case for all x ∈P E+
as long as there are no solutions of the Landau equations

0 = xe
∂V
∂xe

(x) for each e ∈ E , for any x ∈ P E+ , (14)
6
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whose solutions are the Landau singularities. We will assume that our Feynman integral is always free of Landau singularities.
Even though we require that λ is small enough, we can give it, in contrast to the ε in (2), an explicit finite value. Hence, eq. (12) is 

finally an explicit form of the original Feynman integral (1) that is going to serve as input for the tropical numerical integration algorithm.

2.4. Dimensional regularization and ε expansions

So far, we did not make any restrictions on the finiteness properties of the integrals (1), (2) and (12). We say a Feynman integral is 
quasi-finite if the integral in the parametric representation (2) (or equivalently (12)) is finite. Only the integral needs to be finite. The 	
function prefactor is allowed to give divergent contributions. Note that this is more permissive than requiring that (1) is finite, which is 
already divergent, e.g., for the 1-loop bubble in D = 4 with unit edge weights.

In this paper, we will restrict our attention to such quasi-finite Feynman integrals. If an integral is not quasi-finite, it can be expanded 
as a linear combination of quasi-finite integrals [29,30,56].

Quasi-finiteness allows overall divergences due to the 	(ω) factor that becomes singular if ω is an integer ≤ 0. Such divergences are 
easily taken care of by using dimensional regularization. As usual we will perturb the dimension by ε in the sense that

D = D0 − 2ε , (15)

where D0 is a fixed number and ε is an expansion parameter.2 Analogously, we define ω0 = ∑
e∈E νe − D0 L/2. Using this notation, we 

may make the ε dependence in (12) explicit and expand,

I = 	(ω0 + εL)

∞∑
k=0

εk

k!
∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
detJλ(x)

U (X)D0/2 · V (X)ω0
logk

(
U(X)

V(X)L

)
�. (16)

If the k = 0 integral is finite, all higher orders in ε are also finite as the logk factors cannot spoil the integrability. The 	 factor can be 
expanded in ε using 	(z + 1) = z	(z) and the expansion

log 	(1 − ε) = γEε +
∞∑

n=2

ζ(n)

n
εn , (17)

with Euler’s γE and Riemann’s ζ function.
Together, eqs. (16) and (17) give us an explicit formulation of the ε expansion of the Feynman integral (1) in the quasi-finite case. In 

the remainder of this article we will explain how to evaluate the expansion coefficients in (16) using the tropical sampling approach.

3. Tropical geometry

3.1. Tropical approximation

We will use the tropical sampling approach which was put forward in [1] to evaluate the deformed parametric Feynman integrals in 
(12) and (16). Here we briefly review the basic concepts.

For any homogeneous polynomial in |E| variables p(x) = ∑
k∈supp(p) ak

∏|E|−1
e=0 xke

e , the support supp(p) is the set of multi-indices for 
which p has a non-zero coefficient ak . For any such polynomial p, we define the tropical approximation ptr as

ptr(x) = max
k∈supp(p)

|E|−1∏
e=0

xke
e . (18)

If, for example, p(x) = x2
0x1 − 2x0x1x2 + 5ix3

2, then ptr(x) = max{x2
0x1, x0x1x2, x3

2}. Note that the tropical approximation forgets about 
the explicit value of the coefficients; it only depends on the fact that a specific coefficient is zero or non-zero. This way, the tropical 
approximation only depends on the set supp(p) ⊂ Z|E|

≥0. In fact, it only depends on the shape of the convex hull of supp(p), which is the 
Newton polytope of p. For this reason, ptr is nothing but a function avatar of this polytope. Indeed, we can write ptr(x) as follows,

ptr(x) = exp

(
max

v∈N[p] vT y
)

, (19)

where y = (y0, . . . , y|E|−1) with ye = log xe , vT y = ∑
e∈E ve ye and we maximize over the Newton polytope N[p] of p. The exponent above 

is the tropicalization Trop[p] of p over C with trivial valuation. It plays a central role in tropical geometry (see, e.g., [63]). For us, the key 
property of the tropical approximation is that it may be used to put upper and lower bounds on a polynomial:

Theorem 3.1 ([1, Theorem 8]). For a homogeneous p ∈ C[x0, . . . , x|E|−1] that is completely non-vanishing on P E+ there exist constants C1, C2 > 0
such that

C1 ≤ |p(x)|
ptr(x)

≤ C2 for all x ∈ P E+ . (20)

2 Note that the causal iε and the regularization/expansion parameter ε are (unfortunately) usually referred to with the same Greek letter. We will follow this tradition, but 
use different versions of the letter for the respective meanings consistently.
7
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A polynomial p is completely non-vanishing on P E+ if it does not vanish in the interior of P E+ and if another technical condition is 
fulfilled (see [29, Definition 1] for a precise definition).

The U polynomial is always completely non-vanishing on P E+ and in the pseudo-Euclidean regime also F is completely non-vanishing 
on P E+ . We define the associated tropical approximations U tr , F tr and V tr =F tr/U tr.

Our key assumption for the integration of Feynman integrals in the Minkowski regime is that the approximation property can also be 
applied to the deformed Symanzik polynomials.

Assumption 3.2. There are λ dependent constants C1(λ), C2(λ) > 0 such that for small λ > 0,

C1(λ) ≤
∣∣∣∣∣
(
U tr(x)

U(X)

)D0/2 (
V tr(x)

V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ P E+ , (21)

where we recall that X = (X1, . . . , X|E|) and Xe = xe exp
( − iλ ∂V

∂xe
(x)

)
.

In the pseudo-Euclidean regime the assumption is fulfilled, as we are allowed to set λ = 0 and use the established approximation 
property from [1] on U and F . In the Minkowski regime, Assumption 3.2 can only be fulfilled if there are no Landau singularities, 
i.e. solutions to (14). After extensive numerical testing we conjecture that Assumption 3.2 is fulfilled if there are no Landau singularities. 
It would be very interesting to give a concise set of conditions for the validity of Assumption 3.2 and how it interplays with such 
singularities. We leave this to future research.

Another highly promising research question is to find a value for λ such that the constants C1(λ) and C2(λ) tighten the bounds as 
much as possible. Finding such an optimal value for λ would result in the first entirely canonical deformation prescription which does not 
depend on free parameters.

3.2. Tropical sampling

Intuitively, Assumption 3.2 tells us that the integrands in (12) and (16) are, except for phase factors, reasonably approximated by the 
tropical approximation of the undeformed integrand. To evaluate the integrals (16) with tropical sampling, as in [1, Sec. 7.2], we define the 
probability distribution

μtr = 1

I tr

∏
e∈E xνe

e

U tr(x)D0/2 V tr(x)ω0
�, (22)

where I tr is a normalization factor, which is chosen such that 
∫
P E+ μtr = 1. As of Assumption 3.2 and the requirement that the integrals 

in (16) shall be finite, the factor I tr must also be finite. If ω0 = 0, this normalization factor is equal to the associated Hepp bound of the 
graph G [21]. Because μtr > 0 for all x ∈P E+ , μtr gives rise to a proper probability distribution on this domain.

Using the definition of μtr to rewrite (16) results in

I = 	(ω0 + εL)∏
e∈E 	(νe)

∞∑
k=0

εk

k! Ik, with

Ik = I tr
∫
P E+

(∏
e∈E(Xe/xe)

νe
)

detJλ(x)(
U (X) /U tr (x)

)D0/2 · (V (X) /V tr (x)
)ω0

logk
(

U(X)

V(X)L

)
μtr . (23)

We will evaluate the integrals above by sampling from the probability distribution μtr .
In [1], two different methods to generate samples from μtr were introduced. The first method [1, Sec. 5], which does not take the 

explicit structure of U and F into account, requires the computation of a triangulation of the refined normal fans of the Newton polytopes 
of U and F . Once such a triangulation is computed, arbitrarily many samples from μtr can be generated with little computational effort. 
Unfortunately, obtaining such a triangulation is a highly computationally demanding process.

The second method [1, Sec. 6] to generate samples from the probability distribution μtr makes use of a particular property of the 
Newton polytopes of U and F which allows to bypass the costly triangulation step. This second method additionally has the advantage 
that it is relatively straightforward to implement. This faster method of sampling from μtr relies on the Newton polytopes of U and F
being generalized permutahedra.

For the program feyntrop we will make use of this second method. Our tropical sampling algorithm to produce samples from μtr is 
essentially equivalent to the one published with [1].

3.3. Base polytopes and generalized permutahedra

A fantastic property of generalized permutahedra is that they come with a canonical normal fan which greatly facilitates the sampling 
of μtr, see [1, Theorem 27 and Algorithm 4]. Here, we briefly explain the necessary notions. As a start, we define a more general class of 
polytopes first and discuss restrictions later.

Base polytopes Consider a function z : 2E → R that assigns a number to each subset of E , the edge set of our Feynman graph G . In the 
following we often identify a subset of E with a subgraph of G and use the respective terms interchangeably. So, z assigns a number to 
each subgraph of G . We define P[z] to be the subset of R|E| that consists of all points (a0, . . . , a|E|−1) ∈R|E| which fulfill 

∑
e∈E ae = z(E)

and the 2|E| − 1 inequalities
8
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∑
e∈γ

ae ≥ z(γ ) for all γ � E . (24)

Clearly, these inequalities describe a convex bounded domain, i.e. a polytope. This polytope P[z] associated to an arbitrary function z :
2E →R is called the base polytope.

Generalized permutahedra The following is a special case of a theorem by Aguiar and Ardila who realized that numerous seemingly 
different structures from combinatorics can be understood using the same object: The generalized permutahedron which was initially 
defined by Postnikov [64].

Theorem 3.3 ([65, Theorem 12.3] and the references therein). The polytope P[z] is a generalized permutahedron if and only if the function z is
supermodular. That means, z fulfills the inequalities

z(γ ) + z(δ) ≤ z(γ ∪ δ) + z(γ ∩ δ) for all pairs of subgraphs γ , δ ⊂ E . (25)

Because other properties of generalized permutahedra are not of central interest in this paper, we will take Theorem 3.3 as our 
definition of these special polytopes. Important for us is that for many kinematic situations the Newton polytopes of the Symanzik 
polynomials are of this type.

Let Lγ denote the number of loops of the subgraph γ , then we have the following theorem due to Schultka [31]:

Theorem 3.4. The Newton polytope N[U ] of U is equal to the base polytope P[zU ] with zU being the function zU (γ ) = Lγ . Moreover, zU is super-
modular. Hence, by Theorem 3.3, N[U ] is a generalized permutahedron.

Proof. See [31, Sec. 4] and the references therein. In [21], it was observed that N[U ] is a matroid polytope, which by [65, Sec. 14] also 
proves the statement. �

Because N[U ] is a generalized permutahedron, we also say that U has the generalized permutahedron property.

Generalized permutahedron property of the F polynomial For the second Symanzik F polynomial the situation is more tricky. We need 
the notion of mass-momentum spanning subgraphs which was defined by Brown [22] (see also [31, Sec. 4] for an interesting relationship 
to the concept of s-irreducibility [66] or [67] where related results were obtained or [68] for relations to the R� operation). We use the 
following slightly generalized version of Brown’s definition (see also [1, Sec. 7.2]): We call a subgraph γ ⊂ E mass-momentum spanning if 
the second Symanzik polynomial of the cograph G/γ vanishes identically FG/γ = 0.

Theorem 3.5. In the Euclidean regime with generic kinematics, the Newton polytope N[F ] is a generalized permutahedron. It is equal to the base 
polytope P[zF ] with the function zF defined for all subgraphs γ by zF (γ ) = Lγ + 1 if γ is mass-momentum spanning and zF (γ ) = Lγ otherwise. 
Consequently, this function zF : 2E →R is supermodular, i.e. it fulfills (25).

Proof. This has also been proven in [31, Sec. 4]. The proof relies on a special infrared factorization property of F that was discovered by 
Brown [22, Theorem 2.7]. �

We explicitly state the following generalization of Theorem 3.5:

Theorem 3.6. Theorem 3.5 holds in all regimes if the kinematics are generic.

Proof. The F polynomial has the same monomials (with different coefficients) as in the Euclidean regime with generic kinematics. 
To verify this, note that the conditions for generic kinematics prevent cancellations between the mass and momentum part of the F
polynomial as given in eq. (5). So, the respective Newton polytopes coincide. �

There is also the following further generalization of Theorem 3.5 to Euclidean but exceptional kinematics. This generalization is very 
plausible (see [22, Example 2.5]), but it is a technical challenge to prove it. We will not attempt to include a proof here for the sake of 
brevity. So, we state this generalization as a conjecture:

Conjecture 3.7. Theorem 3.5 holds in the Euclidean regime for all (also exceptional) kinematics.

We emphasize that N[F ] is generally not a generalized permutahedron outside of the Euclidean regime. This was observed in [31, 
Remark 4.16] (see also [69, Sec. 4.2], [70, Sec. 2.2.3] or [1, Remark 35]). Explicit counter examples are encountered while computing the 
massless on-shell boxes depicted in Fig. 2. The F polynomials of the completely massless box with only on-shell external momenta, the 
massless box with one off-shell momentum and the massless box with two adjacent off-shell momenta (depicted in Figs. 2a, 2b and 2c) 
do not fulfill the generalized permutahedron property. On the other hand, the F polynomial does fulfill the generalized permutahedron 
property for the massless box with two or more off-shell legs such that two off-shell legs are on opposite sides (as depicted in Fig. 2d).

Therefore, we have to make concessions in the Minkowski regime with exceptional kinematics.
An observation of Arkani-Hamed, Hillman, Mizera is helpful (see [26, eq. (8)] and the discussion around it): the facet presentation of 

N[F ] given in Theorem 3.5 turns out to hold in a quite broad range of kinematic regimes, even if N[F ] is not a generalized permutahedron.
9
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Fig. 2. Massless box with different external legs on- or off-shell. On-shell (p2 = 0) legs are drawn as dashed lines and off-shell (p2 	= 0) legs with solid lines. Internal 
propagators are massless.

Fig. 3. Triangle Feynman graph relevant in QED. The two solid propagators have mass m and the solid legs have incoming squared momentum m2. The dashed propagator is 
massless and the doubled leg has incoming squared momentum Q 2.

Observation 3.8. The Newton polytope of F is often equal to the base polytope P[zF ] with the function zF defined as in Theorem 3.5.

This is significant since feyntrop uses the polytope P[zF ] internally as a substitute for N[F ] as the former is easier to handle and 
faster to compute than the latter.

For instance, all massless boxes depicted in Fig. 2 have the property that the Newton polytopes of their F polynomial are base 
polytopes described by the respective zF functions, i.e. N[F ] = P[zF ]. In the first three cases (Figs. 2a, 2b, 2c) the zF function does not 
fulfill the inequalities (25). For the graph in Fig. 2d these inequalities are fulfilled and the associated Newton polytope N[F ] = P[zF ] is a 
generalized permutahedron.

It would be very beneficial to have precise conditions for when P[zF ] indeed is equal to N[F ], we leave this for a future project. 
Empirically, we have observed that it is valid for quite a wide range of exceptional kinematics. We know, however, that this condition 
is not fulfilled for arbitrary exceptional kinematics [71]. An explicit counter example3 is depicted in Fig. 3. For this triangle graph with 
the indicated exceptional kinematic configuration, the polytope N[F ] is different from P[zF ]. We find that F(x) = m2(x2

1 + x2
2) + (2m2 −

Q 2)x1x2 which implies that N[F ] is a one-dimensional polytope. On the other hand, P[zF ] can be shown to be a two-dimensional 
polytope. In D = 4, the Feynman integral associated to Fig. 3 is infrared divergent and therefore not quasi-finite. In D = 6, feyntrop can 
evaluate the integral without problems. Nonetheless, we expect there to be more complicated Feynman graphs with similarly exceptional 
external kinematics, that are quasi-finite, but which cannot be evaluated using feyntrop. We did not, however, manage to find such a 
graph.

Even if N[F ] 	= P[zF ], the Newton polytope N[F ] is bounded by the base polytope P[zF ]. The reason for this is that F can only lose 
monomials if we make the kinematics less generic.

Theorem 3.9. We have N[F ] ⊂ P[zF ].

Efficient check of the generalized permutahedron property of a base polytope Naively, it is quite hard to check if the base polytope P[z] associ-
ated to a given function z : 2E →R is a generalized permutahedron. There are of the order 22|E| many inequalities to be checked for (25). 
A more efficient way is to only check the following inequalities

z(γ ∪ {e}) + z(γ ∪ {h}) ≤ z(γ ) + z(γ ∪ {e,h}) (26)

for all subgraphs γ ⊂ E and edges e, h ∈ E \ γ . The inequalities (26) imply the ones in (25). For (26) less than |E|22|E| inequalities need to 
be checked. So, (26) is a more efficient version of (25).

3.4. Generalized permutahedral tropical sampling

feyntrop uses a slightly adapted version of the generalized permutahedron tropical sampling algorithm from [1, Sec. 6.1 and Sec. 7.2]
to sample from the distribution given by μtr in eq. (22).

The algorithm involves a preprocessing and a sampling step.

Preprocessing The first algorithmic task to prepare for the sampling from μtr is to check in which regime the kinematic data are located. 
The kinematic data are provided via the matrix Pu,v as it was defined in Section 2.1 and via a list of masses me for each edge e ∈ E . 
If the symmetric |V | × |V | matrix Pu,v is negative semi-definite (which is easy to check using matrix diagonalization), then we are in 

3 We thank Erik Panzer for sharing this (counter) example with us.
10
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Table 1
Table of the necessity of a deformation (def.) and the fulfillment of the generalized permutahedron property of F (GP) in each kinematic regime.

Euclidean Pseudo-Euclidean Minkowski

Generic no def. / always GP no def. / always GP def. / always GP
Exceptional no def. / always GP no def. / not always GP def. / not always GP

the Euclidean regime. Similarly we check if the defining (in)equalities for the other kinematic regimes given in Section 2.2 are fulfilled or 
not. Depending on the kinematic regime, we need to use a contour deformation for the integration or not. Further, if the kinematics are 
Euclidean or generic, we know that the generalized permutahedron property of F is fulfilled (also thanks to the unproven Conjecture 3.7). 
Table 1 summarizes this dependence of the algorithm on the kinematic regime.

If we find that we are at an exceptional and non-Euclidean kinematic point, N[F ] might not be a generalized permutahedron and it 
might not even be equal to P[zF ]. In this case, the program prints a message warning the user that the integration might not work. The 
program then continues under the assumption that N[F ] = P[zF ]. In any other case, N[F ] is a generalized permutahedron and equal to 
P[zF ]. Hence, the tropical sampling algorithm is guaranteed to give a convergent Monte Carlo integration method by [1, Sec. 6.1].

The next task is to compute the loop number Lγ and check if γ is mass-momentum spanning (by asking if FG/γ = 0) for each 
subgraph γ ⊂ E . Using these data, we can compute the values of zU (γ ) and zF (γ ) for all subgraphs γ ⊂ E using the respective formulas 
from Theorems 3.4 and 3.5.

If we are at an exceptional and non-Euclidean kinematic point, we check the inequalities (26) for the zF function. If they are all 
fulfilled, then P[zF ] is a generalized permutahedron and we get further indication that the tropical integration step will be successful. 
The program prints a corresponding message in this case. Also assuming that Assumption 3.2 is fulfilled, we can compute all integrals in 
(23) efficiently.

Note that even in the pseudo-Euclidean and the Minkowski regimes with exceptional kinematics, the integration is often successful. For 
instance, we can integrate all Feynman graphs depicted in Fig. 2 regardless of the fulfillment of the generalized permutahedron property. 
In fact, we did not find a quasi-finite example where the algorithm fails (even though the convergence rate is quite bad for examples in 
highly exceptional kinematic regimes). We emphasize, however, that the user should check the convergence of the result separately when 
integrating at a manifestly exceptional and non-Euclidean kinematic point. For instance, by running the program repeatedly with different 
numbers of sample points or by slightly perturbing the kinematic point. Recall that for generic kinematics N[F ] is always a generalized 
permutahedron by Theorem 3.6 and the integration is guaranteed to work if the finiteness assumptions are fulfilled.

The next computational step is to compute the generalized degree of divergence (see [1, Sec. 7.2]) for each subgraph γ ⊂ E . It is defined 
by

ω(γ ) =
∑
e∈γ

νe − DLγ /2 − ωδm.m.
γ , (27)

where Lγ is the loop number of the subgraph γ and δm.m.
γ = 1 if γ is mass-momentum spanning and 0 otherwise. The prefactor ω of 

δm.m.
γ is the usual superficial degree of divergence of the overall graph G as it was defined in Section 2.1, ω = ∑

e∈E νe − DL/2.
If ω(γ ) ≤ 0 for any proper subgraph γ , then we discovered a subdivergence. This means that all integrals (16) are divergent. Tropical 

sampling is not possible in this case and the program prints an error message and terminates. An additional analytic continuation step 
from (16) to a set of quasi-finite integrals (see Section 2.4) would resolve this problem. Translating a divergent integral into a linear 
combination of quasi-finite integrals is always possible, but we will leave the implementation of this step into feyntrop to a future 
research project.

If we have ω(γ ) > 0 for all γ ⊂ E , we can proceed to the key preparatory step for generalized permutahedral tropical sampling: 
We use ω(γ ) to compute the following auxiliary subgraph function J (γ ), which is recursively defined by setting J (∅) = 1, agreeing that 
ω(∅) = 1 and

J (γ ) =
∑
e∈γ

J (γ \ e)

ω(γ \ e)
for all γ ⊂ E , (28)

where γ \ e is the subgraph γ with the edge e removed. The terminal element of this recursion is the subgraph that contains all edges E
of G . We find that J (E) = I tr, where I tr is the normalization factor in (22) and (23) (see [1, Proposition 29] for a proof and details).

In the end of the preprocessing step we compile a table with the information Lγ , δm.m.
γ , ω(γ ) and J (γ ) for each subgraph γ ⊂ E and 

store it in the memory of the computer.

Sampling step The sampling step of the algorithm repeats the following simple algorithm to generate samples x ∈P E+ that are distributed 
according to the probability density (22). It is completely described in Algorithm 1. The runtime of our implementation of the algorithm 
grows roughly quadratically with |E|, but a linear runtime is achievable. The validity of the algorithm was proven in a more general setup 
in [1, Proposition 31]. The additional computation of the values of U tr(x) and V tr(x) is an application of an optimization algorithm by 
Fujishige and Tomizawa [72] (see also [1, Lemma 26]).

The key step of the sampling algorithm is to interpret the recursion (28) as a probability distribution for a given subgraph over its 
edges. That means, for a given γ ⊂ E we define pγ

e = 1
J (γ )

J (γ \e)
ω(γ \e) . Obviously, pγ

e ≥ 0 and by (28) we have 
∑

e∈γ pγ
e = 1. So, for each γ ⊂ E , 

pγ
e gives a proper probability distribution on the edges of the subgraph γ .
11
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Algorithm 1 Generating a sample distributed as μtr from (22).
Initialize the variables γ = E and κ, U = 1.
while γ 	= ∅ do

Pick a random edge e ∈ γ with probability pγ
e = 1

J (γ )
J (γ \e)
ω(γ \e) .

Set xe = κ .
If γ is mass-momentum spanning but γ \ e is not, set V = xe .
If Lγ \e < Lγ , multiply U with xe and store the result in U , i.e. set U ← xe · U .
Remove the edge e from γ , i.e. set γ ← γ \ e.
Pick a uniformly distributed random number ξ ∈ [0, 1].
Multiply κ with ξ1/ω(γ ) and store the result in κ , i.e. set κ ← κξ1/ω(γ ) .

end while
Return x = [x0, . . . , x|E|−1] ∈P E+ , U tr(x) = U and V tr(x) = V .

The algorithm can also be interpreted as iteratively cutting edges of the graph G: We start with γ = E and pick a random edge with 
probability pγ

e . This edge is cut and removed from γ . We continue with the newly obtained graph and repeat this cutting process until 
all edges are removed. In the course of this, Algorithm 1 computes appropriate random values for the coordinates x ∈P E+ .

4. Numerical integration

4.1. Monte Carlo integration

We now have all the necessary tools at hand to evaluate the integrals in (23) using Monte Carlo integration. In this section, we briefly 
review this procedure. The integrals in (23) are of the form

I f =
∫
P E+

f (x)μtr , (29)

where, thanks to the tropical approximation property, f (x) is a function that is at most log-singular inside, or on the boundary of, P E+ . 
To evaluate such an integral, we first use the tropical sampling Algorithm 1 to randomly sample N points x(1), . . . , x(N) ∈ P E+ that are 
distributed according to the tropical probability measure μtr . By the central limit theorem and as f (x) is square-integrable,

I f ≈ I(N)

f where I(N)

f = 1

N

N∑
i=1

f (x(i)) . (30)

For sufficiently large N , the expected error of this approximation of the integral I f is

σ f =
√

I f 2 − I2
f

N
where I f 2 =

∫
P E+

f (x)2μtr , (31)

which itself can be estimated (as long as f (x)2 is square-integrable) by

σ f ≈ σ
(N)

f where σ
(N)

f =
√

1

N − 1

(
I(N)

f 2 − (
I(N)

f

)2
)

and I(N)

f 2 = 1

N

N∑
i=1

f (x(i))2 . (32)

To evaluate the estimator I(N)

f and the expected error σ (N)

f it is necessary to evaluate f (x) for N different values of x. As the random 
points x(1), . . . , x(N) ∈ P E+ can be obtained quite quickly using Algorithm 1, this evaluation becomes a bottleneck. In the next section, we 
describe a fast method to perform this evaluation, which is implemented in feyntrop to efficiently obtain Monte Carlo estimates and 
error terms for the integrals in (23).

4.2. Fast evaluation of (deformed) Feynman integrands

To evaluate the integrals in (23) using a Monte Carlo approach we do not only have to be able to sample from the distribution μtr , but 
we also need to rapidly evaluate the remaining integrand (denoted as f (x) in the last section). Explicitly for the numerical evaluation of 
(23), we have to be able to compute Xe = xe exp

( − iλ ∂V
∂xe

(x)
)

as well as U(X), V(X) and detJλ(x) for any x ∈P E+ .

Evaluation of the U and F polynomials Surprisingly, the explicit polynomial expression for U and F from eq. (5) are harder to evaluate than 
the matrix and determinant expression (4) if the underlying graph exceeds a certain complexity. The reason for this is that the number of 
monomials in (5) increases exponentially with the loop number (see, e.g., [73] for the asymptotic growth rate of the number of spanning 
tress in a regular graph), while the size of the matrices in (4) only increases linearly. Standard linear algebra algorithms as the Cholesky 
or LU decompositions [74] provide polynomial time algorithms to compute the inverse and determinant of L(x) and therefore values of 
U(x) and F(x) (see, e.g., [1, Sec. 7.1]). In fact, the linear algebra problems on graph Laplacian matrices that need to be solved to compute 
U(x) and F(x) fall into a class of problems for which nearly linear runtime algorithms are available [75].
12
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Explicit formulas for the V derivatives We need explicit formulas for the derivatives of V . These formulas provide fast evaluation methods 
for X and the Jacobian Jλ(x).

Consider the (|V | − 1) × (|V | − 1) matrix M(x) = L−1(x) P L−1(x) with L(x) and P as defined in Section 2.1. For edges e and h that 
connect the vertices ue, ve and uh, vh respectively, we define

A(x)e,h = 1

xexh

(
M(x)ue,uh +M(x)ve,vh −M(x)ue,vh −M(x)ve,uh

)
B(x)e,h = 1

xexh

(
L−1(x)ue,uh +L−1(x)ve,vh −L−1(x)ue,vh −L−1(x)ve,uh

)
,

(33)

where we agree that L−1(x)u,v = M(x)u,v = 0 if any of u or v is equal to v0, the arbitrary vertex that was removed in the initial 
expression of the Feynman integral (1). It follows from (4) and the matrix differentiation rule ∂

∂xe
L−1(x)u,v =

(
−L−1(x) ∂L

∂xe
(x)L−1(x)

)
u,v

that

∂V
∂xe

(x) = −A(x)e,e + m2
e ,

∂2V
∂xe∂xh

(x) = 2δe,h
A(x)e,e

xe
− 2(A(x) ◦ B(x))e,h , (34)

where we use the Hadamard or element-wise matrix product, (A(x) ◦B(x))e,h =A(x)e,h ·B(x)e,h .

Computation of the relevant factors in the integrands of (23) We summarize the necessary steps to compute all the factors in the deformed 
and ε-expanded tropical Feynman integral representation (23).

1. Compute the graph Laplacian L(x) as defined in Section 2.1.
2. Compute the inverse L−1(x) (e.g. by Cholesky decomposing L(x)).
3. Use this to evaluate the derivatives of V(x) via the formulas in (33) and (34).
4. Compute the values of the deformed X parameters: Xe = xe exp

( − iλ ∂V
∂xe

(x)
)
.

5. Compute the Jacobian Jλ(x) using the formula in (11).
6. Evaluate detJλ(x) (e.g. by using a LU decomposition of Jλ(x)).
7. Compute the deformed graph Laplacian L(X).
8. Compute L−1(X) and detL(X) (e.g. by using a LU decomposition of L(X) as a Cholesky decomposition is not possible, because L(X)

is not a hermitian matrix in contrast to L(x)).
9. Use the formulas (4) to obtain values for U(X), F(X) and V(X) =F(X)/U(X).

The computation obviously simplifies if we set λ = 0, in which case we have X = x. We are allowed to set λ = 0 if we do not need the 
contour deformation. This is the case, for instance, in the Euclidean or the pseudo-Euclidean regimes. In our implementation we check if 
we are in these regimes and adjust the evaluation of the integrand accordingly.

5. The program feyntrop

We have implemented the contour-deformed tropical integration algorithm, which we discussed in the previous sections, in a C++
module named feyntrop. This module is an upgrade to previous code developed by the first author in [1].

feyntrop was checked against AMFlow [48] and pySecDec [41] for roughly 15 different diagrams with 1-3 loops and 2-5 legs 
at varying kinematics points, in both the Euclidean and Minkowski regimes, finding agreement in all cases within the given uncertainty 
bounds. In the Euclidean regime, the original algorithm was checked against numerous analytic computations that were obtained at high 
loop order using conformal four-point integral and graphical function techniques [76].

Note that our prefactor convention, which we fixed in eqs. (1) and (2), differs from the one in AMFlow and pySecDec by a factor of 
(−1)|ν| , where |ν| = ∑|E|−1

e=0 νe . In comparison to FIESTA [24], our convention differs by a factor of (−1)|ν| exp (−LγEε).

5.1. Installation

The source code of feyntrop is available in the repository https://github .com /michibo /feyntrop on github. It can be downloaded 
and built by running the following sequence of commands

git clone --recursive https://github.com/michibo/feyntrop.git
cd feyntrop
make

in a Linux environment. feyntrop is interfaced with python [4] via the library pybind11 [5]4. Additionally, it uses the optimized 
linear algebra routines from the Eigen3 package [2], the OpenMP C++ module [77] for the parallelization of the Monte Carlo sampling 
step and the xoshiro256+ pseudo random number generator [3].

4 Note added in proof: Due to compatibility issues on some hardware, the newest version of feyntrop available and described at https://github .com /michibo /feyntrop
does not make use of pybind11 anymore. This new version also provides a low-level command-line interface that works without any dependency on python. This interface 
enables the easy use of feyntrop in high-performance computing environments.
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feyntrop can be loaded in a python environment by importing the file py_feyntrop.py, located in the top directory of the 
package. To ensure that feyntrop was built correctly, one may execute the python file /tests/test_suite.py. This script com-
pares the output of feyntrop against pre-computed values. To do so, it will locally compute six examples with 1-2 loops and 2-5 legs, 
some in the Euclidean and others in the Minkowski regime.

The file py_feyntrop.py includes additional functionality for the python interface serving three purposes. Firstly, it simplifies the 
specification of vertices and edges of a Feynman diagram in comparison to the C++ interface of feyntrop. Secondly, it allows for self-
chosen momentum variables given by a set of replacement rules, instead of having to manually specify the full scalar product matrix Pu,v

from (4). Lastly, the output of the ε expansion can be printed in a readable format. To do so, the py_feyntrop.py program uses the
sympy [6] library.

As already indicated in Section 2.1, we employ zero-indexing throughout. This means that edges and vertices are labeled as {0, 1, . . .}. 
This facilitates seamless interoperability with the programming language features of python.

5.2. Basic usage of feyntrop

In this section, we will illustrate the basic workflow of feyntrop with an example. The code for this example can be executed and 
inspected with jupyter [78] by calling

jupyter notebook tutorial_2L_3pt.ipynb

within the top directory of the feyntrop package.
We will integrate the following 2-loop 3-point graph in D = 2 − 2ε dimensional spacetime:

3

1

0

2

p1

p0

p2

1

0

3

2

4
.

The dashed lines denote on-shell, massless particles with momenta p0 and p1 such that p2
0 = p2

1 = 0. The solid, internal lines each have 
mass m. The double line is associated to some off-shell momentum p2

2 	= 0. For the convenience of the reader, both vertices and edges 
are labeled explicitly in this example. feyntrop requires us to label the external vertices (as defined in Section 2.2) before the internal 
vertices. In the current example, the vertices are V = V ext � V int = {0, 1, 2} � {3}.

The momentum space Feynman integral representation (1) with unit edge weights reads

I = π−2+2ε

∫
d2−2εk0 d2−2εk1(

q2
0 − m2 + iε

)(
q2

1 − m2 + iε
)(

q2
2 − m2 + iε

)(
q2

3 − m2 + iε
)(

q2
4 − m2 + iε

) , (35)

where we integrated out the δ functions in eq. (1) by requiring that q0 = k0, q1 = k0 + p1, q2 = k0 +k1 + p1, q3 = p0 −k0 −k1 and q4 = k1. 
We choose the phase space point

m2 = 0.2 , p2
0 = p2

1 = 0 , p2
2 = 1 , (36)

which is in the Minkowski regime because p2
2 > 0 - see Section 2.2. To begin this calculation, first open a python script or a jupyter 

notebook and import py_feyntrop:

from py_feyntrop import *

Here we are assuming that feyntrop.so and py_feyntrop.py are both in the working directory.
To define the graph, we provide a list of edges with edge weights νe and squared masses m2

e :((
u0, v0

)
, ν0 , m2

0

)
, . . . ,

((
u|E|−1, v |E|−1

)
, ν|E|−1 , m2|E|−1

)
. (37)

The notation (ue, ve) denotes an edge e incident to the vertices ue and ve . We therefore write

edges = [((0,1), 1, ’mm’), ((1,3), 1, ’mm’), ((2,3), 1, ’mm’),
((2,0), 1, ’mm’), ((0,3), 1, ’mm’)]
14
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in the code to input the graph which is depicted above. The ordering of vertices 
(
ue, ve

)
in an edge is insignificant. Here we set νe = 1

for all e. The chosen symbol for m2 is mm, which will be replaced by its value 0.2 later on. It is also allowed to input numerical values for 
masses already in the edges list, for instance by replacing the first element of the list by ((0,1), 1, ’0.2’).

Next we fix the momentum variables. Recall that the external vertices are required to be labeled {0, 1, . . . , |V ext| − 1}, so the external 
momenta are p0, . . . , p|V ext|−1. Moreover, the last momentum is inferred automatically by feyntrop using momentum conservation, 
leaving p0, . . . , p|V ext|−2 to be fixed by the user. A momentum configuration is then specified by the collection of scalar products,

pu · pv for all 0 ≤ u ≤ v ≤ |V ext| − 2 . (38)

In the code, we must provide replacement rules for these scalar products in terms of some variables of choice. For the example at hand, 
|V ext| = 3, so we must provide replacement rules for p2

0, p2
1 and p0 · p1. In the syntax of feyntrop we thus write

replacement_rules = [(sp[0,0], ’0’), (sp[1,1], ’0’), (sp[0,1], ’pp2/2’)]

where sp[u,v] stands for pu · pv , the scalar product of pu and pv . We have immediately set p2
0 = p2

1 = 0 and also defined a variable
pp2 which stands for p2

2, as, by momentum conservation,

p2
2 = 2p0 · p1 . (39)

Eventually, we fix numerical values for the two auxiliary variables pp2 and mm. This is done via

phase_space_point = [(’mm’, 0.2), (’pp2’, 1)]

which fixes m2 = 0.2 and p2
2 = 1. It is possible to obtain the Pu,v matrix (as defined in Section 2.1) and a list of all the propagator masses, 

which are computed from the previously provided data, by

P_uv_matrix, m_sqr_list = prepare_kinematic_data(edges, replacement_rules,
phase_space_point)

The final pieces of data that need to be provided are

D0 = 2
eps_order = 5
Lambda = 7.6
N = int(1e7)

D0 is the integer part of the spacetime dimension D = D0 − 2ε . We expand up to, but not including, eps_order. Lambda denotes the 
deformation parameter from (9). N is the number of Monte Carlo sampling points.

Tropical Monte Carlo integration of the Feynman integral, with the kinematic configuration chosen above, is now performed by running 
the command

trop_res, Itr = tropical_integration(
N,
D0,
Lambda,
eps_order,
edges,
replacement_rules,
phase_space_point)

If the program runs correctly (i.e. no error is printed), trop_res will contain the ε-expansion (16) without the prefactor 	(ω)/(	(ν1) · · ·
	(ν|E|)) = 	(2ε + 3). Itr is the value of the normalization factor in (22). Running this code on a laptop, we get, after a couple of seconds, 
the output

Prefactor: gamma(2*eps + 3).
(Effective) kinematic regime: Minkowski (generic).
Generalized permutahedron property: fulfilled.
Analytic continuation: activated. Lambda = 7.6
Started integrating using 8 threads and N = 1e+07 points.
Finished in 6.00369 seconds = 0.00166769 hours.

-- eps^0: [-46.59 +/- 0.13] + i * [ 87.19 +/- 0.12]
-- eps^1: [-274.46 +/- 0.55] + i * [111.26 +/- 0.55]
-- eps^2: [-435.06 +/- 1.30] + i * [-174.47 +/- 1.33]
-- eps^3: [-191.72 +/- 2.15] + i * [-494.69 +/- 2.14]
-- eps^4: [219.15 +/- 2.68] + i * [-431.96 +/- 2.67]
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These printed values for the ε expansion are contained in the list trop_res in the following format:[(
(re0, σ re

0 ) , (im0,σ
im
0 )

)
, . . . ,

(
(re4,σ

re
4 ) , (im4,σ

im
4 )

)]
,

where re0 ± σ re
0 is the real part of the 0th order term, and so forth.

The ε-expansion, with prefactor included, can finally be output via

eps_expansion(trop_res, edges, D0)

giving

174.3842115*i - 93.17486662 + eps*(-720.8731714 + 544.3677186*i) +
eps**2*(-2115.45025 + 496.490128*i) + eps**3*(-3571.990969 - 677.5254794*i) +
eps**4*(-3872.475723 - 2726.965026*i) + O(eps**5)

If the tropical_integration command fails, for instance because a subdivergence of the input graph is detected, it prints an 
error message. The command also prints a warning if the kinematic point is too exceptional and convergence cannot be guaranteed due 
to the F polynomial lacking the generalized permutahedron property (see Section 3.3).

5.3. Deformation parameter

The uncertainties on the integrated result may greatly vary with the value of the deformation parameter λ from (9) (what was called
Lambda above). Moreover, the optimal value of λ might change depending on the phase space point. It is up to the user to pick a suitable 
value by trial and error, for instance by integrating several times with a low number of sampling points N . In Section 6, this method is 
used to evaluate multiple examples of Feynman integrals in the Minkowski regime. Typical values for the parameter λ can be found there. 
It would be beneficial to automate this procedure, possibly by minimizing the sampling variance with respect to λ, for instance by solving 
∂λσ f = 0 with σ f defined in (31), or by tightening the bounds in Assumption 3.2 (see the discussion after this assumption). We leave the 
exploration of such ideas to future research.

Note that λ has mass dimension 1/mass2. Heuristically, this implies that the value of λ should be of order O(1/�2), where � is the 
maximum physical scale in the given computation.

6. Examples of Feynman integral evaluations

In this section, we use feyntrop to numerically evaluate certain Feynman integrals of interest. The first two examples, 6.1 and 6.2, 
show that feyntrop is capable of computing Feynman integrals at high loop-orders involving many kinematic scales. The four examples 
that follow, 6.4, 6.3, 6.6 and 6.5, demonstrate that feyntrop is capable of computing phenomenologically relevant diagrams. The final 
example, 6.7, is an invitation to study conformal integrals with our code, as they are important for, e.g., N = 4 SYM and the cosmological 
bootstrap.

We have chosen phase space points which are not close to thresholds to insure good numerical convergence, and expand up to and 
including ε2L in all but up the last example.

Each of the following examples can be computed with feyntrop using 108 sampling points within a few minutes on a consumer 
laptop with 16 GBs of RAM. To crosscheck, we used the same machine to evaluate the examples using both AMFlow5 and pySecDec. 
All computations agreed within the indicated error bounds. Our computations using AMFlow and pySecDec did not always terminate. 
Particularly for the Examples 6.1 and 6.6, neither software finished due to memory constraints of 16 GB on our test laptop. After the 
initial version of this article became available, Vitaly Magerya informed us that he was able to reproduce also Example 6.6 and verify our 
numbers using pySecDec with an only slightly more powerful computer. He also found indication that Example 6.1 is reproducible using 
a new version of pySecDec that was made available three months after the initial version of the present article was posted [83].

We emphasize that these additional computations using AMFlow and pySecDec should be seen as a crosscheck and not a benchmark 
comparison. A comparison of feyntrop and AMFlow is difficult as the former directly integrates via Monte Carlo while the latter 
integrates via differential equations. To integrate a Feynman integral using AMFlow an IBP system needs to be solved. Finding this solution 
is a memory constrained problem and a 16 GB laptop is not appropriate to systematically perform computations within this approach. 
If the IBP system is solved, AMFlow provides the evaluated integral at an accuracy which is almost unachievable using a Monte Carlo 
approach. The comparison to pySecDec is similarly flawed as it can also deal with inherently divergent integrals. To do so it has to check 
for divergences in each sector which takes time. Moreover, it can deal with completely general algebraic integrals, whereas feyntrop
completely relies on the inherent mathematical structure of Feynman integrals. We postpone a proper benchmark comparison with the 
new version of pySecDec and updated versions of AMFlow to a future research project.

To further highlight the capabilities of feyntrop, we computed every example on a high-performance machine, namely a single AMD 
EPYC 7H12 64-core processor using all cores. For each example we use 108 sample points to get a relative accuracy of the order of 
10−2 to 10−4. The output for each example includes the total evaluation time that feyntrop needs to compute the respective diagram. 
This evaluation time includes all steps of the computation. The time needed for the preprocessing step is negligible in comparison to the 
sampling time as long as the number of edges is relatively small (i.e. |E| ≤ 15). Hence, for such moderate numbers of propagators, the 
evaluation time is proportional to the number of sample points. The sampling step is completely parallelizable. So, doubling the number 
of CPUs, halfs the evaluation time. As the evaluation is based on Monte Carlo, increasing the relative accuracy is costly: one additional 
digit costs a 100-fold increase in CPU-time.

The code for each example can be found on the github repository in the folder examples.

5 As AMFlow relies on DEQs for Feynman integrals, it is necessary to link it to IBP software. In our examples, we tried the following two options for IBP software: 1) FIRE
[79] combined with LiteRed [80,81], and 2) Blade [82].
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6.1. A 5-loop 2-point zigzag diagram

We evaluate the following 5-loop 2-point function with all masses different in D = 3 − 2ε dimensions

0 1

6

5

4

3

2

corresponding to the edge set

edges = [((0,6), 1, ’1’) , ((0,5), 1, ’2’), ((5,6), 1, ’3’),
((6,4), 1, ’4’) , ((5,3), 1, ’5’), ((5,4), 1, ’6’),
((4,3), 1, ’7’) , ((4,2), 1, ’8’), ((3,2), 1, ’9’),
((3,1), 1, ’10’), ((2,1), 1, ’11’)]

Here we already input the chosen values for masses, namely m2
e = e + 1 for e = 0, . . . , 10.

There is only a single independent external momentum p0, whose square we set equal to 100 via

replacement_rules = [(sp[0,0], ’pp0’)]
phase_space_point = [(’pp0’, 100)]

The value λ = 0.02 turns out to give small errors, which is of order O(1/p2
0) in accordance with the comment at the end of the previous 

section. Using N = 108 Monte Carlo sampling points, feyntrop’s tropical_integration command gives

Prefactor: gamma(5*eps + 7/2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 9.62 seconds.
-- eps^0: [0.0001976 +/- 0.0000016] + i * [0.0001415 +/- 0.0000018]
-- eps^1: [-0.004961 +/- 0.000023 ] + i * [-0.000802 +/- 0.000024 ]
-- eps^2: [ 0.04943 +/- 0.00017 ] + i * [-0.01552 +/- 0.00017 ]
-- eps^3: [-0.25468 +/- 0.00083 ] + i * [ 0.24778 +/- 0.00093 ]
-- eps^4: [ 0.5909 +/- 0.0033 ] + i * [ -1.7261 +/- 0.0038 ]
-- eps^5: [ 1.048 +/- 0.012 ] + i * [ 7.410 +/- 0.013 ]
-- eps^6: [ -14.652 +/- 0.037 ] + i * [ -20.933 +/- 0.038 ]
-- eps^7: [ 65.87 +/- 0.10 ] + i * [ 35.25 +/- 0.11 ]
-- eps^8: [ -190.90 +/- 0.27 ] + i * [ -4.91 +/- 0.26 ]
-- eps^9: [ 393.08 +/- 0.70 ] + i * [ -182.56 +/- 0.59 ]
-- eps^10:[ -558.01 +/- 1.64 ] + i * [ 685.62 +/- 1.29 ]

We have not been able to compute this expansion with AMFlow for the sake of verification. The memory constraints of 16 GB were 
insufficient. pySecDec applied to this example exhausted the available memory while building the sector decomposition library on our 
test laptop, but Vitaly Magerya informed us that he was able to create the integration library on a 32 GB 8-core Intel i7 computer 
in a couple of hours. We again emphasize that, for a proper benchmark comparison, our AMFlow and pySecDec code should be put on 
a machine with more memory. Still, this example illustrates that feyntrop can operate at high loop order with little memory, CPU and 
time resources.

6.2. A 3-loop 4-point envelope diagram

Here, we evaluate a D = 4 − 2ε dimensional, non-planar, 3-loop 4-point, envelope diagram:

21

0 3

The dots on the crossed lines represent squared propagators, i.e. edge weights equal to 2, rather than vertices. The weighted edge set with 
corresponding mass variables is thus
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edges = [((0,1), 1, ’mm0’), ((1,2), 1, ’mm1’), ((2,3), 1, ’mm2’),
((3,0), 1, ’mm3’), ((0,2), 2, ’mm4’), ((1,3), 2, ’mm5’)]

Let us define the two-index Mandelstam variables si j = (pi + p j)
2, which are put into feyntrop’s replacement rules in the form

(sp[i,j], ’(sij - ppi - ppj)/2)’) for 0 ≤ i < j ≤ 2. The chosen phase space point is

p2
0 = 1.1 , p2

1 = 1.2 , p2
2 = 1.3 , s01 = 2.1 , s02 = 2.2 , s12 = 2.3 , (40)

m2
0 = 0.05 , m2

1 = 0.06 , m2
2 = 0.07 , m2

3 = 0.08 , m2
4 = 0.09 , m2

5 = 0.1 .

With additional settings λ = 1.24 and N = 108, we find

Prefactor: gamma(3*eps + 2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 5.12 seconds.
-- eps^0: [-10.8335 +/- 0.0084] + i * [-12.7145 +/- 0.0083]
-- eps^1: [ 47.971 +/- 0.059 ] + i * [-105.057 +/- 0.059 ]
-- eps^2: [ 413.05 +/- 0.23 ] + i * [ 7.29 +/- 0.23 ]
-- eps^3: [ 372.07 +/- 0.65 ] + i * [ 947.82 +/- 0.65 ]
-- eps^4: [-1412.36 +/- 1.45 ] + i * [1325.74 +/- 1.45 ]
-- eps^5: [-2726.00 +/- 2.67 ] + i * [-1295.36 +/- 2.69 ]
-- eps^6: [ 287.25 +/- 4.28 ] + i * [-3982.04 +/- 4.30 ]

We verified these numbers using pySecDec. The test machine’s memory of 16 GBs was exhausted before AMFlow could finish the 
calculation. The examples in [84] indicate that using a computer with more memory might also make this 3-loop diagram accessible using
AMFlow.

6.3. A 2-loop 4-point μe-scattering diagram

We evaluate a non-planar, 2-loop 4-point diagram appearing in muon-electron scattering [85], which is finite in D = 6 −2ε dimensions. 
It was previously evaluated for vanishing electron mass in [86].
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The dashed lines represent photons, the solid lines are electrons with mass m, and the double lines are muons with mass M (which is 
approximately 200 times larger than m). The edge set is

edges = [((0,1), 1, ’0’), ((0,4), 1, ’MM’), ((1,5), 1, ’mm’), ((5,2), 1, ’mm’),
((5,3), 1, ’0’), ((4,3), 1, ’MM’), ((4,2), 1, ’0’)]

where MM and mm stand for M2 and m2 respectively. With a phase space point similar to that of [86, Section 4.1.2]

p2
0 = M2 = 1 , p2

1 = p2
2 = m2 = 1/200 , s01 = −1/7 , (41)

s12 = −1/3 , s02 = 2M2 − 2m2 − s01 − s12 = 2.49

and settings λ = 1.29 , N = 108, the result becomes

Prefactor: gamma(2*eps + 1).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 6.53 seconds.
-- eps^0: [1.16483 +/- 0.00083] + i * [0.24155 +/- 0.00074]
-- eps^1: [5.5387 +/- 0.0086 ] + i * [2.2818 +/- 0.0093 ]
-- eps^2: [15.171 +/- 0.058 ] + i * [10.079 +/- 0.064 ]
-- eps^3: [ 28.02 +/- 0.32 ] + i * [ 28.17 +/- 0.28 ]
-- eps^4: [ 38.20 +/- 1.42 ] + i * [ 56.94 +/- 0.85 ]

The momentum configuration is exceptional, so we cannot be sure that the generalized permutahedron property holds - see Section 3.3. 
In spite of that, feyntrop gives the correct numbers, which we confirmed using both AMFlow and pySecDec.

The leading order term differs from [86, eq. (4.20)] by roughly 10% due to our inclusion of the electron mass. We do, however, 
reproduce the computation in this reference if we set this mass to 0 in the feyntrop configuration.
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6.4. A QCD-like, 2-loop 5-point diagram

This example is a QCD-like, D = 6 − 2ε dimensional, 2-loop 5-point diagram:

36

5 4

2

0

1

The dashed lines represent gluons, the solid lines are quarks each with mass m, and the double line is some off-shell momentum p2
4 	= 0

fixed by conservation. The edge data are

edges = [((0,1), 1, ’0’), ((1,2), 1, ’mm’), ((2,6), 1, ’0’), ((6,3), 1, ’mm’),
((3,4), 1, ’0’), ((4,5), 1, ’mm’), ((5,0), 1, ’0’), ((5,6), 1, ’mm’)]

where mm stands for m2. Let us choose the phase space point

p2
0 = 0 , p2

1 = p2
2 = p2

3 = m2 = 1/2 , s01 = 2.2 , s02 = 2.3 , (42)

s03 = 2.4 , s12 = 2.5 , s13 = 2.6 , s23 = 2.7 ,

where again si j = (pi + p j)
2. Finally, setting λ = 0.28 , N = 108, we obtain

Prefactor: gamma(2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 8.20 seconds.
-- eps^0: [0.06480 +/- 0.00078] + i * [-0.08150 +/- 0.00098]
-- eps^1: [0.4036 +/- 0.0045 ] + i * [ 0.3257 +/- 0.0035 ]
-- eps^2: [-0.7889 +/- 0.0060 ] + i * [ 0.957 +/- 0.016 ]
-- eps^3: [-1.373 +/- 0.030 ] + i * [ -1.181 +/- 0.034 ]
-- eps^4: [ 1.258 +/- 0.088 ] + i * [ -1.205 +/- 0.036 ]

The kinematic configuration is again exceptional. Nevertheless, feyntrop returns the correct numbers, which we verified with py-
SecDec.6 We were not able to compute this diagram with AMFlow due to our memory constraints. As similarly intricate Feynman 
integrals can be evaluated with AMFlow using more memory (see [84]), these constraints are very likely the only obstruction for a 
crosscheck with AMFlow.

6.5. Diagram contributing to triple Higgs production via gluon fusion

In this example, we evaluate the following diagram contributing to the process7 gg → H H H in D = 4 − 2ε dimensions:

1 6

50

2

4

3

The dashed lines are massless propagators (representing gluons), the single solid lines are propagators containing the top quark mass, and 
the three external double lines are put on-shell to the Higgs mass. In this case, the list of edges reads

edges = [((0,1), 1, ’mm_top’), ((1,6), 1, ’mm_top’), ((5,6), 1, ’0’),
((6,2), 1, ’mm_top’), ((2,3), 1, ’mm_top’), ((3,4), 1, ’mm_top’),
((4,5), 1, ’mm_top’), ((5,0), 1, ’mm_top’)]

6 An earlier version of this article wrongly stated that this computation was not verifiable with pySecDec. We thank both an anonymous referee and Vitaly Magerya for 
pointing this out to us.

7 We thank Babis Anastasiou for suggesting this example.
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with mm_top being the square of the top quark mass, m2
t .

Given si j := (pi + p j)
2, we employ the following kinematic setup:

p2
0 = p2

1 = 0 , p2
2 = p2

3 = p2
4 = m2

H ,

s01 = 5m2
H − s02 − s03 − s12 − s13 − s23 . (43)

The kinematic space is then parameterized by (s02, s03, s12, s13, s23, m2
t , m2

H ).
Let us evaluate this integral at the phase space point

m2
t = 1.8995 , m2

H = 1 , (44)

s02 = −4.4 , s03 = −0.5 , s12 = −0.6 , s13 = −0.7 , s23 = 1.8 ,

which lies in the physical region, and has the physically relevant mass ratio m2
t /m2

H = 1.8995. The remaining Mandelstam invariants are 
then fixed by momentum conservation to

(s01, s04, s14, s24, s34) = (9.4, −1.5, −5.1, 7.2, 3.4).

Setting λ = 0.64 and N = 108, we get

Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082] + i * [0.0035991 +/- 0.0000068]
-- eps^1: [ 0.003250 +/- 0.000031 ] + i * [-0.035808 +/- 0.000041 ]
-- eps^2: [ 0.046575 +/- 0.000098 ] + i * [0.016143 +/- 0.000088 ]
-- eps^3: [ -0.01637 +/- 0.00017 ] + i * [ 0.03969 +/- 0.00016 ]
-- eps^4: [ -0.02831 +/- 0.00023 ] + i * [-0.00823 +/- 0.00024 ]

We were unable to evaluate this example in reasonable time with AMFlow. Again, adding more memory would likely solve this 
problem. With pySecDec we were able to confirm feyntrop’s numbers within 3 hours8 on a laptop, with relative errors around 10−2. 
Running feyntrop on the same laptop with 108 sampling points, we obtain the same numbers within 2.5 minutes and with relative 
errors of order 10−3.

6.6. A QED-like, 4-loop vacuum diagram

Next we evaluate a QED-like, 4-loop vacuum diagram in D = 4 − 2ε dimensions:

4

5 3

1

0 2

The dashed lines represent photons, and the solid lines are electrons of mass m. No analytic continuation is required in this case since 
there are no external momenta - the final result should hence be purely real. We specify

replacement_rules = []

in the code to indicate that all scalar products are zero.
The collection of edges is

edges = [((0,1), 1, ’mm’), ((1,2), 1, ’mm’), ((2,0), 1, ’mm’),
((0,5), 1, ’0’ ), ((1,4), 1, ’0’ ), ((2,3), 1, ’0’ ),
((3,4), 1, ’mm’), ((4,5), 1, ’mm’), ((5,3), 1, ’mm’)]

where mm stands for m2. Choosing

phase_space_point = [(’mm’, 1)]

and setting λ = 0 , N = 108, we then find

8 Three months after the initial version of this article was posted, a new version of pySecDec became available which is, in some cases, up to four times as efficient as 
the former version [83]. We postpone a systematic comparison of feyntrop with this new version to a future research project.
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Prefactor: gamma(4*eps + 1).
(Effective) kinematic regime: Euclidean (generic).
Finished in 3.58 seconds.
-- eps^0: [3.01913 +/- 0.00047] + i * [0.0 +/- 0.0]
-- eps^1: [-7.0679 +/- 0.0021 ] + i * [0.0 +/- 0.0]
-- eps^2: [20.5399 +/- 0.0074 ] + i * [0.0 +/- 0.0]
-- eps^3: [-27.895 +/- 0.024 ] + i * [0.0 +/- 0.0]
-- eps^4: [62.043 +/- 0.074 ] + i * [0.0 +/- 0.0]
-- eps^5: [-59.46 +/- 0.23 ] + i * [0.0 +/- 0.0]
-- eps^6: [155.27 +/- 0.73 ] + i * [0.0 +/- 0.0]
-- eps^7: [-90.81 +/- 2.26 ] + i * [0.0 +/- 0.0]
-- eps^8: [403.78 +/- 6.71 ] + i * [0.0 +/- 0.0]

We were not able to verify this example with AMFlow or pySecDec within our memory constraints. However, Vitaly Magerya in-
formed us that he was able to verify these numbers with pySecDec in under one hour using an only slightly larger computer.

6.7. An elliptic, conformal, 4-point integral

The final example is a 1-loop 4-point conformal integral with edge weights ν1,...,4 = 1/2 in D = 2 dimensions, the result of which was 
computed in terms of elliptic K functions in [87, Sec. 7.2]:

x0

x3

x2

x1 = 4√
−p2

2

[K (z)K (1 − z̄) + K (z̄)K (1 − z)] (45)

The denominator above differs from [87, eq. (7.6)] because we have used conformal symmetry to send x3 → ∞, thereby reducing the 
kinematic space to that of a 3-point integral. After identifying dual momentum variables xi in terms of ordinary momenta as pi = xi −xi+1, 
the conformal cross ratios, with the usual single-valued complex parameterization in terms of z and z̄, read

zz̄ = p2
0

p2
2

, (1 − z)(1 − z̄) = p2
1

p2
2

. (46)

In feyntrop we specify the associated 1-loop 3-point momentum space integral as

edges = [((0,1), 1/2, ’0’), ((1,2), 1/2, ’0’), ((2,0), 1/2, ’0’)]

where all internal masses are zero and edge weights are set to 1/2.
We choose a momentum configuration in the Euclidean regime:

p2
0 = −2 , p2

1 = −3 , p2
2 = −5 . (47)

Although feyntrop can compute integrals with rational edge weights in the Minkowski regime, it is most natural to study conformal 
integrals in the Euclidean regime.

With λ = 0 and N = 108, we then obtain

(Effective) kinematic regime: Euclidean (generic).
Finished in 1.34 seconds.
-- eps^0: [9.97192 +/- 0.00027] + i * [0.0 +/- 0.0]

The result agrees with the analytic expression (45). This example also illustrates the high efficiency of feyntrop in the Euclidean
regime where very high accuracies can be obtained quickly.

7. Conclusions and outlook

With this article we introduced feyntrop, a general tool to numerically evaluate quasi-finite Feynman integrals in the physical 
regime with sufficiently general kinematics. To do so, we gave a detailed classification of different kinematic regimes that are relevant for 
numerical integration. Moreover, we presented a completely projective integral expression for concretely iε-deformed Feynman integrals 
and their dimensionally regularized expansions. We used tropical sampling for the numerical integration, which we briefly reviewed, and 
we discussed the relevant issues on facet presentations of the Newton polytopes of Symanzik polynomials in detail. To be able to perform 
the numerical integration efficiently, we gave formulas and algorithms for the fast evaluation of Feynman integrals. To give a concise usage 
manual for feyntrop and to illustrate its capabilities, we gave numerous, detailed examples of evaluated Feynman integrals.
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The most important restrictions of feyntrop are 1) it is not capable of dealing with Feynman integrals that have subdivergences 
(i.e. non-quasi-finite integrals) and 2) it is not capable of dealing with certain highly exceptional kinematic configurations.

The first restriction can be lifted by implementing an analytic continuation of the integrand in the spirit of [29,30,56] into feyntrop. 
Naively, preprocessing input integrals with such a procedure increases the number of Feynman integrals and thereby also the necessary 
computer time immensely. However, this proliferation of terms comes from the expansion of the derivatives of the U and F polynomials 
as numerators. This expansion can be avoided, because also the derivatives of U and F (mostly) have the generalized permutahedron 
property, and because we have fast algorithms to evaluate such derivatives. For instance, we derived a fast algorithm to evaluate the first 
and second derivatives of F in Section 4.2. We postpone the elaboration and implementation of this approach to future work.

A promising approach to lift the second restriction is to try to understand the general shape of the F polynomial’s Newton polytope. 
Outside of the Euclidean and generic kinematic regimes, this polytope is not always a generalized permutahedron. In these exceptional 
kinematic situations, it can have new facets that cannot be explained by known facet presentations. It might be possible to explain 
these new facets with the help of the Coleman–Norton picture of infrared divergences [88] (see, e.g., [89] where explicit per-diagram 
factorization of Feynman integrals was observed in a position space based framework). An alternative approach to fix the issue is to 
implement the tropical sampling approach that requires a full triangulation of the respective Newton polytopes (see [1, Sec. 5]).

Besides this there are numerous, desirable, gradual improvements of feyntrop that we also postpone to future works. The most 
important such improvement would be to use the algorithm in conjunction with a quasi-Monte Carlo approach. The runtime to obtain the 
value of an integral up to accuracy δ currently scales as δ−2, as is standard for a Monte Carlo method. Changing to a quasi-Monte Carlo 
based procedure would improve this scaling to δ−1.

Another improvement would be to find an entirely canonical deformation prescription. Currently, our deformation still relies on an 
external parameter that has to be fine-tuned to the respective integral. A canonical deformation prescription that does not depend on a 
free parameter would lift the burden of this fine-tuning from the user and would likely also produce better rates of convergence.

A more technical update of feyntrop would involve an implementation of the tropical sampling algorithm on GPUs or on distributed 
cluster systems. The current implementation of feyntrop is parallelized and can make use of all cores of a single computer. Running
feyntrop on multiple computers in parallel is not implemented, but there are no technical obstacles to write such an implementation, 
which we postpone to a future research project.
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