
ETH Library

Tropical Feynman integration in
the Minkowski regime

Journal Article

Author(s):
Borinsky, Michael ; Munch, Henrik J.; Tellander, Felix

Publication date:
2023-11

Permanent link:
https://doi.org/10.3929/ethz-b-000634663

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Computer Physics Communications 292, https://doi.org/10.1016/j.cpc.2023.108874

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0581-3276
https://doi.org/10.3929/ethz-b-000634663
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cpc.2023.108874
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Computer Physics Communications 292 (2023) 108874
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Tropical Feynman integration in the Minkowski regime ✩,✩✩

Michael Borinsky a,∗, Henrik J. Munch b, Felix Tellander c

a Institute for Theoretical Studies, ETH Zürich, 8092 Zürich, Switzerland
b Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padova, Italy
c Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2023
Received in revised form 5 June 2023
Accepted 27 July 2023
Available online 9 August 2023

Dataset link: https://
github .com /michibo /feyntrop

Keywords:
Feynman integrals
Monte Carlo integration
Tropical geometry
Epsilon-expansion
Contour deformation
Causal i-epsilon prescription

We present a new computer program, feyntrop, which uses the tropical geometric approach to
evaluate Feynman integrals numerically. In order to apply this approach in the physical regime,
we introduce a new parametric representation of Feynman integrals that implements the causal
iε prescription concretely while retaining projective invariance. feyntrop can efficiently evaluate
dimensionally regulated, quasi-finite Feynman integrals, with not too exceptional kinematics in the
physical regime, with a relatively large number of propagators and with arbitrarily many kinematic scales.
We give a systematic classification of all relevant kinematic regimes, review the necessary mathematical
details of the tropical Monte Carlo approach, give fast algorithms to evaluate (deformed) Feynman
integrands, describe the usage of feyntrop and discuss many explicit examples of evaluated Feynman
integrals.

Program summary
Program title: feyntrop.
CPC Library link to program files: https://doi .org /10 .17632 /k6r62hdgvd .1
Developer’s repository link: https://github .com /michibo /feyntrop.
Licensing provisions: MIT License.
Programming language: The tropical Monte Carlo code is written in C++. The high-level interface is
written in python.
Supplementary material: The repository includes installation and usage instructions (README.md),
a jupyter notebook tutorial (tutorial_2L_3pt.ipynb), the collection of examples presented in
section 6 (see the folder /examples), and a test suite to ensure a successful installation (see the folder
/tests).
Nature of problem: Sufficiently fast numerical integration of (dimensionally regularized) Feynman integrals
(also in the Minkowski regime of phase space).
Solution method: Tropical Monte Carlo integration of a manifestly iε-free parametric representation of
Feynman integrals.
Additional comments: The program feyntrop is based on previous code available at https://github .com /
michibo /tropical -feynman -quadrature, which was published as a proof-of-concept with, Michael Borinsky,
‘Tropical Monte Carlo quadrature for Feynman integrals’, Ann. Inst. Henri Poincaré Comb. Phys. Interact. (in
press) [1]. This previous code did not have features which are required for phenomenological studies in
high-energy physics. In particular, it only allowed for phase space points in the Euclidean regime, and
only computed the leading term in the ε expansion.
Restrictions: The Feynman integral must be quasi-finite and the momentum configuration must be
sufficiently generic. Numerators of Feynman integrals are not implemented.

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail address: michael.borinsky@eth-its.ethz.ch (M. Borinsky).
https://doi.org/10.1016/j.cpc.2023.108874
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108874
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108874&domain=pdf
https://github.com/michibo/feyntrop
https://github.com/michibo/feyntrop
https://doi.org/10.17632/k6r62hdgvd.1
https://github.com/michibo/feyntrop
https://github.com/michibo/tropical-feynman-quadrature
https://github.com/michibo/tropical-feynman-quadrature
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:michael.borinsky@eth-its.ethz.ch
https://doi.org/10.1016/j.cpc.2023.108874
http://creativecommons.org/licenses/by/4.0/

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
References
Eigen3 [2]. The xoshiro256+ pseudo-random-number generator [3]. python [4]. pybind11 [5].
sympy [6].

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).

Contents

1. Introduction . 2
2. Feynman integrals . 4

2.1. Momentum and parametric representations . 4
2.2. Kinematic regimes . 4
2.3. Contour deformation . 5
2.4. Dimensional regularization and ε expansions . 7

3. Tropical geometry . 7
3.1. Tropical approximation . 7
3.2. Tropical sampling . 8
3.3. Base polytopes and generalized permutahedra . 8
3.4. Generalized permutahedral tropical sampling . 10

4. Numerical integration . 12
4.1. Monte Carlo integration . 12
4.2. Fast evaluation of (deformed) Feynman integrands . 12

5. The program feyntrop . 13
5.1. Installation . 13
5.2. Basic usage of feyntrop . 14
5.3. Deformation parameter . 16

6. Examples of Feynman integral evaluations . 16
6.1. A 5-loop 2-point zigzag diagram . 17
6.2. A 3-loop 4-point envelope diagram . 17
6.3. A 2-loop 4-point μe-scattering diagram . 18
6.4. A QCD-like, 2-loop 5-point diagram . 19
6.5. Diagram contributing to triple Higgs production via gluon fusion . 19
6.6. A QED-like, 4-loop vacuum diagram . 20
6.7. An elliptic, conformal, 4-point integral . 21

7. Conclusions and outlook . 21
Declaration of competing interest . 22
Data availability . 22
Acknowledgements . 22
References . 22

1. Introduction

Feynman integrals are a key tool in quantum field theory. They are necessary to produce accurate predictions from given theoretical
input such as a Lagrangian. Applications are, for instance, the computations of virtual contributions to scattering cross-sections for particle
physics phenomenology [7], corrections to the magnetic moment of the muon or the half-life of positronium [8], critical exponents in
statistical field theory [9] and corrections to the Newton potential due to general relativity [10]. An entirely mathematical application of
Feynman integrals is the certification of cohomology classes in moduli spaces of curves or of graphs [11].

In this paper, we introduce feyntrop,1 a new tool to evaluate Feynman integrals numerically. In contrast to existing tools, feyntrop
can efficiently evaluate Feynman integrals with a relatively large number of propagators and with an arbitrary number of scales. Moreover,
feyntrop can deal with Feynman integrals in the physical Minkowski regime and automatically takes care of the usually intricate contour
deformation procedure. The spacetime dimension is completely arbitrary and integrals that are expanded in a dimensional regulator can
be evaluated. The main restriction of feyntrop is that it cannot deal with Feynman integrals having subdivergences, that means the
input Feynman integrals are required to be quasi-finite. Moreover, feyntrop is not designed to integrate Feynman integrals at certain
highly exceptional kinematic points. Outside the Euclidean regime, the external kinematics are required to be sufficiently generic. It is
worthwhile mentioning though that such highly exceptional kinematic points seem quite rare and feyntrop performs surprisingly well
in these circumstances—in spite of the lack of mathematical guarantees for functioning. In fact, we were not able to find a quasi-finite
integral with exceptional kinematics for which the integration with feyntrop fails. We only observed significantly decreased rates of
convergence in such cases.

The mathematical theory of Feynman integrals has advanced rapidly in the last decades. Corner stone mathematical developments for
Feynman integrals were, for instance, the systematic exploitation of their unitarity constraints (see, e.g., [12,13]), the systematic solution
of their integration-by-parts identities (see, e.g., [14,15]), the application of modern algebraic geometric and number theoretic tools for

1 feyntrop can be downloaded from https://github .com /michibo /feyntrop.
2

http://creativecommons.org/licenses/by/4.0/
https://github.com/michibo/feyntrop

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
the benefit of their evaluation (see, e.g., [16–18]) and the systematic understanding of the differential equations which they fulfill (see,
e.g., [19,20]).

Primarily, these theoretical developments were aimed at facilitating the analytic evaluation of Feynman integrals. All known analytic
evaluation methods are inherently limited to a specific class of sufficiently simple diagrams. Especially for high-accuracy collider physics
phenomenology, such analytic methods are often not sufficient to satisfy the demand for Feynman integral computations at higher loop
order, which frequently involve complicated kinematics with many scales. Even if an analytic expression for a given Feynman integral is
available, it is usually a highly non-trivial task to perform the necessary analytic continuation into the physical kinematic regime. On a
different tack, computations of corrections to the Newton potential in the post-Newtonian expansion of general relativity [10] require the
evaluation of large amounts of Feynman diagrams in three dimensional Euclidean space. As analytic evaluation is often more difficult in
odd-dimensional spacetime, tropical Feynman integration is a promising candidate to fulfill the high demand for large loop order Feynman
integrals in this field.

For this reason, numerical methods for the evaluation of Feynman integrals seem unavoidable once a certain threshold in precision has
to be overcome. In this paper, we will use tropical sampling that was introduced in [1] to evaluate Feynman integrals numerically. This
numerical integration technique is faster than traditional methods because the known (tropical) geometric structures of Feynman integrals
are employed for the benefit of their numerical evaluation. For instance, general Euclidean Feynman integrals with up to 17 loops and
34 propagators can be evaluated using basic hardware with the proof-of-concept implementation that was distributed by the first author
with [1]. The code of feyntrop is based on this implementation. The relevant mathematical structure is the tropical geometry of Feynman
integrals in the parametric representation [21,1]. This tropical geometry itself is a simplification of the intricate algebraic geometry Feynman
integrals display (see, e.g., [22]). Tropical Feynman integration was already used, for instance, in [23] to estimate the φ4 theory β function
up to loop order 11. Some ideas from [1] were already implemented in the FIESTA package [24]. Tropical sampling was extended to toric
varieties with applications to Bayesian statistics [25]. Moreover, the tropical approach was recently applied to study infrared divergences
of Feynman integrals in the Minkowski regime [26].

The tropical approach to Feynman integrals falls in line with the increasing number of fruitful applications of tools from convex
geometry in the context of quantum field theory. These include, for example, the discovery of polytopes in amplitudes (see, e.g. [27,28]).
Further, Feynman integrals can be seen as generalized Mellin-transformations [29–31]. As such they are solutions to GKZ-type differential
equation systems [32]. Tropical and convex geometric tools are central to this analytic approach towards Feynman integrals (see, e.g.,
[33–37]).

Tropical Feynman integration is closely related to the sector decomposition approach [38–40], which applies to completely general
algebraic integrals. State of the art implementations of sector decompositions are, for instance, pySecDec [41] and FIESTA [24]. Other
numerical methods that are tailored specifically to Feynman integrals are, for instance, difference equations [15], unitarity methods [42],
the Mellin-Barnes representation [43] and loop-tree duality [44,45]. With respect to potential applications to collider phenomenology, the
latter three have the advantage of being inherently adapted to Minkowski spacetime kinematics. A newer technique is the systematic
semi-numerical evaluation of Feynman integrals using differential equations [46,47], which is implemented, for instance, in AMFlow [48],
DiffExp [49] and SeaSyde [50]. A similar semi-numerical approach was put forward in [51]. This technique can evaluate Feynman
integrals quickly in the physical regime with high accuracy. A caveat is that it relies on the algebraic solution of the usually intricate
integration-by-parts system associated to the respective Feynman integral and (usually) on analytic boundary values for the differential
equations (see [48,52] for an exception where the boundary values are computed exclusively from algebraic input). We expect feyntrop,
which does not rely on any analytic or algebraic input, to be useful for computing boundary values as input for such methods.

feyntrop uses the parametric representation of Feynman integrals for the numerical evaluation, which we briefly review in Section 2.1.
This numerical evaluation has quite different characters in separate kinematic regimes. We propose a new classification of such kinematic
regimes in Section 2.2 which, in addition to the usual Euclidean and Minkowski regimes, includes the intermediate pseudo-Euclidean
regime. The original tropical Feynman integration implementation from [1] was limited to the Euclidean regime. Here, we achieve the
extension of this approach to non-Euclidean regimes.

In the Minkowski regime, parametric Feynman integrands can have a complicated pole structure inside the integration domain. For the
numerical integration an explicit deformation of the integration contour, which respects the desired causality properties, is needed. The
use of explicit contour deformation prescriptions for numerics was pioneered in [42] and was later applied in the sector decomposition
framework [53]. (Recently, a momentum space based approach for the solution of the deformation problem was put forward [54].) In
Section 2.3, we propose an explicit deformation prescription which, in its basic form, was employed in [55] in the context of cohomological
properties of Feynman integrals. This deformation prescription has the inherent advantage of retaining the projective symmetry of the
parametric Feynman integrand. We provide explicit formulas for the Jacobian and thereby propose a new deformed parametric representation
of the Feynman integral.

It is often desirable to evaluate a Feynman integral using dimensional regularization by adding a formal expansion parameter to the
spacetime dimension, e.g. D = D0 − 2ε , where D0 is a fixed number and we wish to evaluate the Laurent or Taylor expansion of the
integral in ε . We will explain how feyntrop deals with such dimensionally regularized Feynman integrals in Section 2.4. Moreover, we
will discuss one of the major limitations of feyntrop in this section: In its present form feyntrop can only integrate Feynman integrals
that are quasi-finite. That means, input Feynman integrals are allowed to have an overall divergence, but no subdivergences. Further
analytic continuation prescriptions (along the lines of [29,30,56]) would be needed to deal with such subdivergences and we postpone the
implementation of such prescriptions into feyntrop to a future publication. For now, the user of the program is responsible to render
all input integrals quasi-finite; for instance by projecting them to a quasi-finite basis [56]. Note, however, that within our approach, the
base dimension D0 is completely arbitrary and can even be a non-integer value if desired. The applicability in the case D0 = 3 makes
feyntrop a promising tool for the computation of post-Newtonian corrections to the gravitational potential [57].

In Sections 3.1 and 3.2, we will review the necessary ingredients for the tropical Monte Carlo approach from [1]: The concepts of the
tropical approximation and tropical sampling. In Section 3.3, we review the (tropical) geometry of parametric Feynman integrands and the
particular shape that the Symanzik polynomials’ Newton polytopes exhibit. We will put special focus on the generalized permutahedron
property of the second Symanzik F polynomial. At particularly exceptional kinematic points, this property of the F polynomial can be
3

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
lost. In these cases the integration with feyntrop might fail. We discuss this limitation in detail in Section 3.3. The overall tropical
sampling algorithm is summarized in Section 3.4.

In Section 4.2, we summarize the necessary steps for the efficient evaluation of (deformed) parametric Feynman integrands. The key
step is to express the entire integrand in terms of explicit matrix expressions. Our method is more efficient than the naive expansion of
the Symanzik polynomials, as fast linear algebra routines can be used for the evaluation of such matrix expressions.

The structure, installation and usage of the program feyntrop is described in Section 5. To illustrate its capabilities we give multiple
detailed examples of evaluated Feynman integrals in Section 6. In Section 7, we conclude and give pointers for further developments of
the general tropical Feynman integration method and the program feyntrop.

2. Feynman integrals

2.1. Momentum and parametric representations

Let G be a one-particle irreducible Feynman graph with edge set E and vertex set V . Each edge e ∈ E comes with a mass me and an
edge weight νe . Each vertex v ∈ V comes with an incoming spacetime momentum pv . Vertices without incoming momentum, i.e. where
pv = 0, are internal. Let E by the incidence matrix of G which is formed by choosing an arbitrary orientation for the edges and setting
Ev,e = ±1 if e points to/from v and Ev,e = 0 if e is not incident to v . The Feynman integral associated to G reads

I =
∫ ∏

e∈E

dDqe

iπ D/2

(−1

q2
e − m2

e + iε

)νe ∏
v∈V \{v0}

iπ D/2δ(D)

(
pv +

∑
e∈E

Ev,eqe

)
, (1)

where we integrate over all D-dimensional spacetime momenta qe and we extracted the δ function that accounts for overall momentum
conservation by removing the vertex v0 ∈ V . We compute the squared length q2

e = (q0
e)

2 − (q1
e)

2 − (q2
e)

2 − . . . using the mostly-minus
signature Minkowski metric.

To evaluate I numerically, we will use the equivalent parametric representation (see, e.g., [58])

I = 	(ω)

∫
P E+

φ with φ =
(∏

e∈E

xνe
e

	(νe)

)
1

U(x)D/2

(
1

V(x) − iε
∑

e∈E xe

)ω

�. (2)

We integrate over the positive projective simplex P E+ = {x = [x0, . . . , x|E|−1] ∈RP E−1 : xe > 0} with respect to its canonical volume form

� =
|E|−1∑
e=0

(−1)|E|−e−1 dx0

x0
∧ · · · ∧ d̂xe

xe
∧ · · · ∧ dx|E|−1

x|E|−1
. (3)

Note that in the scope of this article we make the unusual choice to start the indexing with 0 for the benefit of a seamless notational
transition to our computer implementation. So, the edge and vertex sets are always assumed to be given by E = {0, 1, . . . , |E| − 1} and
V = {0, 1, . . . , |V | − 1}.

The superficial degree of divergence of the graph G is given by ω = ∑
e∈E νe − DL/2, where L = |E| −|V | + 1 is the number of loops of G .

We use V(x) = F(x)/U(x) as a shorthand for the quotient of the two Symanzik polynomials that can be defined using the reduced
graph Laplacian L(x), a (|V | − 1) × (|V | − 1) matrix given element-wise by L(x)u,v = ∑

e∈E Eu,eEv,e/xe for all u, v ∈ V \ {v0}. We have the
identities

U(x) = detL(x)

(∏
e∈E

xe

)
, F(x) = U(x)

⎛⎝−
∑

u,v∈V \{v0}
Pu,v L−1(x)u,v +

∑
e∈E

m2
e xe

⎞⎠ , (4)

where Pu,v = pu · pv with the scalar product being computed using the Minkowski metric.

Combinatorial Symanzik polynomials We also have the combinatorial formulas for U and F

U(x) =
∑

T

∏
e/∈T

xe , F(x) = −
∑

F

p(F)2
∏
e/∈F

xe + U(x)
∑
e∈E

m2
e xe , (5)

where we sum over all spanning trees T and all spanning two-forests F of G , and p(F)2 is the Minkowski squared momentum running
between the two-forest components. From this formulation it can be seen that U and F are homogeneous polynomials of degree L and
L + 1 respectively. Hence, V is a homogeneous rational function of degree 1.

We will give fast algorithms to evaluate U(x) and F(x) in Section 4.2.

2.2. Kinematic regimes

By Poincaré invariance, the value of the Feynman integral (1) only depends on the |V | × |V | Gram matrix Pu,v = pu · pv and not on
the explicit form of the vectors pv . In fact, it is even irrelevant in which ambient dimension the vectors pv are defined. The following
characterization of the different kinematic regimes that we propose will therefore only take the input of a symmetric |V | × |V | matrix P
with vanishing row and column sums (i.e. the momentum conservation conditions

∑
v∈V pu · pv = ∑

v∈V Pu,v = 0 for all u ∈ V), without
requiring any explicit knowledge of the pv vectors. In fact, we will not even require that there are any vectors pv for which Pu,v = pu · pv .
4

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Euclidean regime We say a given Feynman integral computation problem is in the Euclidean regime if the matrix P is negative semi-
definite. In this regime, F(x) ≥ 0 for all x ∈ P E+ . We call this the Euclidean regime, because the integral (1) is equivalent to an analogous
Feynman integral where scalar products are computed with the Euclidean all-minus metric. To see this, note that as −P is positive
semi-definite, there is a |V | × |V | matrix Q such that P = −QTQ. We can think of the column vectors p̃1, . . . , ̃p|V | of Q as an auxiliary
set of incoming momentum vectors. Elements of P can be interpreted as Euclidean, all-minus metric, scalar products of the p̃v -vectors:
Pu,v = −p̃ T

u p̃v = −
∑

w∈V Qw,uQw,v . Translating this back to (1) means that we can change the signature of the scalar products to the
all-minus metric if we replace the external momenta with the p̃v vectors which are defined in an auxiliary space R|V | . We emphasize
that this way of relating Euclidean and Minkowski space integrals is inherently different from the typical Wick rotation procedure and that
the p̃v -vectors will in general be different from the original pv vectors.

Pseudo-Euclidean regime In fact, F(x) ≥ 0 for all x ∈ P E+ in a larger kinematic regime, where P is not necessarily negative semi-definite.
If for each subset V ′ ⊂ V of the vertices the inequality(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v ≤ 0 (6)

is respected, then we are in the pseudo-Euclidean regime. The first two equalities in (6) are only included as mnemonic devices; knowledge
of P is sufficient to check the inequalities. Equivalently, we can require the element sums of all principle minor matrices of the P matrix
to be ≤ 0.

By (5) and (6), the coefficients of F are non-negative in the pseudo-Euclidean regime. Our choice of normalization factors ensures that
(1) and (2) are real positive in this case.

We remark that there is a commonly used alternative definition of a kinematic regime which, on first sight, is similar to the condition
above. This alternative definition requires the inequalities pu · pv ≤ 0 to be fulfilled for all u, v ∈ V (see, e.g., [59, Sec. 2.5]). This is more
restrictive than our condition in (6). In fact, it is too restrictive for our purposes, as not even entirely Euclidean Feynman integrals can
generally be described in this regime. The reason for this is that not all negative semi-definite matrices P fulfill this more restrictive
condition.

In our case, the Euclidean regime is contained in the pseudo-Euclidean regime. To verify this, we have to make sure that a negative
semi-definite P fulfills the conditions in (6). Such a P can be represented with an appropriate set of ̃pv vectors as above: Pu,v = −p̃ T

u p̃v .
For each V ′ ⊂ V we get the principle minor element sum

∑
u,v∈V ′

Pu,v = −
∑

u,v∈V ′
p̃ T

u p̃v = −
(∑

v∈V ′
p̃v

)T (∑
v∈V ′

p̃v

)
≤ 0 . (7)

Minkowski regime If we are not in the pseudo-Euclidean regime (and thereby also not in the Euclidean regime), then we are in the
Minkowski regime.

Generic and exceptional kinematics Without any resort to the explicit incoming momentum vectors pv , we call a vertex v internal if
Pu,v = 0 for all u ∈ V and external otherwise. Let V ext ⊂ V be the set of external vertices. Complementary to the classification above, we
say that our kinematics are generic if for each proper subset V ′ � V ext of the external vertices of G and for each non-empty subset E ′ ⊂ E
of the edges of G we have(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v 	=
∑
e∈E ′

m2
e . (8)

For example, the kinematics are always generic in the pseudo-Euclidean regime if me > 0 for all e ∈ E or if
∑

u,v∈V ′ Pu,v < 0 for all
V ′ � V ext. Note that generic kinematics also exclude on-shell external momenta, i.e. cases where p2

v = P v,v = 0 for some v ∈ V ext as long
as not all me > 0, for then there exists at least one edge e ∈ E such that p2

v = 0 = m2
e , thus violating (8). Genericity, for instance, guarantees

that there will be no cancellation between the momentum and the mass part of the F -polynomial as defined in (5).
Kinematic configurations that are not generic are called exceptional.
As above, only the statements on Pu,v are sufficient for the classification. The other equalities are added to enable a seamless compar-

ison to the literature.
The discussed kinematic regimes and their respective overlaps are illustrated in Fig. 1. In contrast to what the figure might suggest,

the exceptional kinematics only cover a space that is of lower dimension than the one of the generic regime. The Minkowski regime
is not explicitly shown as it covers the whole area that is not pseudo-Euclidean. Note that Minkowski, pseudo-Euclidean and Euclidean
kinematics can be exceptional.

feyntrop detects the relevant kinematic regime using the conditions discussed above.

2.3. Contour deformation

In the pseudo-Euclidean (and thereby also in the Euclidean) regime, F(x) stays positive and the integral (2) cannot have any simple
poles inside the integration domain.

In the Minkowski regime however, simple propagator poles of the integrand (1) and simple poles associated to zeros of F in (2)
are avoided using the causal iε prescription (see, e.g., [60]). This prescription tells us to which side of the pole the integration contour
needs to be deformed. When evaluating integrals such as (1) numerically, we have to find an explicit choice for such an integration
5

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Fig. 1. Partition of kinematics into different regimes.

contour. Finding such an explicit contour deformation, which also has decent numerical stability properties, is a surprisingly complicated
task. Explicit contour deformations for numerical evaluation were pioneered by Soper [42] and later refined [53,61]. This original type
of contour deformation has the caveat that the projective symmetry of the integral (2) is lost as these deformations are inherently non-
projective and usually formulated in affine charts, i.e. ‘gauge fixed’ formulations of (2). Experience, e.g. from [1], shows that the projective
symmetry of (2) is a treasured good that should not be given up lightly.

To retain projective symmetry we will hence use a different deformation than established numerical integration tools. We will use
the embedding ιλ : P E+ ↪→ CP |E|−1 (recall that P E+ is a subset of RP |E|−1) of the projective simplex into |E| − 1 complex dimensional
projective space given by

ιλ : xe �→ xe exp

(
−iλ

∂V
∂xe

(x)

)
. (9)

This deformation prescription was proposed in [55, eq. (43)] in the context of the cohomological viewpoint on Feynman integrals (see also
[62, Sec. 4.3]). As U and F are homogeneous polynomials of degree L and L + 1 respectively and V(x) =F(x)/U(x), the partial derivative
∂V
∂xe

is a rational function in x of homogeneous degree 0, so ιλ indeed respects projective equivalence.

We want to deform the integration contour P E+ of (2) into ιλ
(
P E+

) ⊂CP |E|−1. The deformation ιλ does not change the boundary of P E+
as each boundary face of P E+ is characterized by at least one vanishing homogeneous coordinate xe = 0. So, ιλ

(
∂P E+

) = ∂P E+ . By Cauchy’s
theorem, we can deform the contour as long as we do not hit any poles of the integrand φ. Supposing that λ is small enough such that
no poles of φ are hit by the deformation, we have

I = 	(ω)

∫
ιλ

(
P E+

) φ = 	(ω)

∫
P E+

ι∗λφ , (10)

where ι∗λφ denotes the pullback of the differential form φ. A computation on forms reveals that ι∗λ � = det(Jλ(x)) �, where the Jacobian
Jλ(x) is the |E| × |E| matrix given element-wise by

Jλ(x)e,h = δe,h − iλxe
∂2V

∂xe∂xh
(x) for all e,h ∈ E . (11)

Thus, we arrive at the desired deformed parametric Feynman integral by making (10) explicit,

I = 	(ω)

∫
P E+

ι∗λ φ = 	(ω)

∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
detJλ(x)

U (X)D/2 · V (X)ω
�, (12)

where X = ιλ(x), that means X = (X0, . . . , X|E|−1) and Xe = xe exp
(− iλ ∂V

∂xe
(x)

)
for all e ∈ E .

Although the prescription (9) was proposed before in a more formal context, the deformed formulation of the parametric Feynman
integral (12) with the explicit Jacobian factor given by (11) appears not to have been considered previously in the literature.

In Section 4.2, we provide fast algorithms and formulas to evaluate ∂V
∂xe

(x) and Xe .

Landau singularities In the formulation (12), the iε prescription is taken care of by the deformation of the rational function V . To see this,
consider the Taylor expansion of V(X) in λ,

V (X) = V(x) − iλ
∑
e∈E

xe

(
∂V
∂xe

(x)

)2

+O(λ2) . (13)

The iε prescription in (2) is ensured if the imaginary part of V(X) is strictly negative for sufficiently small λ. This is the case for all x ∈P E+
as long as there are no solutions of the Landau equations

0 = xe
∂V
∂xe

(x) for each e ∈ E , for any x ∈ P E+ , (14)
6

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
whose solutions are the Landau singularities. We will assume that our Feynman integral is always free of Landau singularities.
Even though we require that λ is small enough, we can give it, in contrast to the ε in (2), an explicit finite value. Hence, eq. (12) is

finally an explicit form of the original Feynman integral (1) that is going to serve as input for the tropical numerical integration algorithm.

2.4. Dimensional regularization and ε expansions

So far, we did not make any restrictions on the finiteness properties of the integrals (1), (2) and (12). We say a Feynman integral is
quasi-finite if the integral in the parametric representation (2) (or equivalently (12)) is finite. Only the integral needs to be finite. The 	
function prefactor is allowed to give divergent contributions. Note that this is more permissive than requiring that (1) is finite, which is
already divergent, e.g., for the 1-loop bubble in D = 4 with unit edge weights.

In this paper, we will restrict our attention to such quasi-finite Feynman integrals. If an integral is not quasi-finite, it can be expanded
as a linear combination of quasi-finite integrals [29,30,56].

Quasi-finiteness allows overall divergences due to the 	(ω) factor that becomes singular if ω is an integer ≤ 0. Such divergences are
easily taken care of by using dimensional regularization. As usual we will perturb the dimension by ε in the sense that

D = D0 − 2ε , (15)

where D0 is a fixed number and ε is an expansion parameter.2 Analogously, we define ω0 = ∑
e∈E νe − D0 L/2. Using this notation, we

may make the ε dependence in (12) explicit and expand,

I = 	(ω0 + εL)

∞∑
k=0

εk

k!
∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
detJλ(x)

U (X)D0/2 · V (X)ω0
logk

(
U(X)

V(X)L

)
�. (16)

If the k = 0 integral is finite, all higher orders in ε are also finite as the logk factors cannot spoil the integrability. The 	 factor can be
expanded in ε using 	(z + 1) = z	(z) and the expansion

log 	(1 − ε) = γEε +
∞∑

n=2

ζ(n)

n
εn , (17)

with Euler’s γE and Riemann’s ζ function.
Together, eqs. (16) and (17) give us an explicit formulation of the ε expansion of the Feynman integral (1) in the quasi-finite case. In

the remainder of this article we will explain how to evaluate the expansion coefficients in (16) using the tropical sampling approach.

3. Tropical geometry

3.1. Tropical approximation

We will use the tropical sampling approach which was put forward in [1] to evaluate the deformed parametric Feynman integrals in
(12) and (16). Here we briefly review the basic concepts.

For any homogeneous polynomial in |E| variables p(x) = ∑
k∈supp(p) ak

∏|E|−1
e=0 xke

e , the support supp(p) is the set of multi-indices for
which p has a non-zero coefficient ak . For any such polynomial p, we define the tropical approximation ptr as

ptr(x) = max
k∈supp(p)

|E|−1∏
e=0

xke
e . (18)

If, for example, p(x) = x2
0x1 − 2x0x1x2 + 5ix3

2, then ptr(x) = max{x2
0x1, x0x1x2, x3

2}. Note that the tropical approximation forgets about
the explicit value of the coefficients; it only depends on the fact that a specific coefficient is zero or non-zero. This way, the tropical
approximation only depends on the set supp(p) ⊂ Z|E|

≥0. In fact, it only depends on the shape of the convex hull of supp(p), which is the
Newton polytope of p. For this reason, ptr is nothing but a function avatar of this polytope. Indeed, we can write ptr(x) as follows,

ptr(x) = exp

(
max

v∈N[p] vT y
)

, (19)

where y = (y0, . . . , y|E|−1) with ye = log xe , vT y = ∑
e∈E ve ye and we maximize over the Newton polytope N[p] of p. The exponent above

is the tropicalization Trop[p] of p over C with trivial valuation. It plays a central role in tropical geometry (see, e.g., [63]). For us, the key
property of the tropical approximation is that it may be used to put upper and lower bounds on a polynomial:

Theorem 3.1 ([1, Theorem 8]). For a homogeneous p ∈ C[x0, . . . , x|E|−1] that is completely non-vanishing on P E+ there exist constants C1, C2 > 0
such that

C1 ≤ |p(x)|
ptr(x)

≤ C2 for all x ∈ P E+ . (20)

2 Note that the causal iε and the regularization/expansion parameter ε are (unfortunately) usually referred to with the same Greek letter. We will follow this tradition, but
use different versions of the letter for the respective meanings consistently.
7

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
A polynomial p is completely non-vanishing on P E+ if it does not vanish in the interior of P E+ and if another technical condition is
fulfilled (see [29, Definition 1] for a precise definition).

The U polynomial is always completely non-vanishing on P E+ and in the pseudo-Euclidean regime also F is completely non-vanishing
on P E+ . We define the associated tropical approximations U tr , F tr and V tr =F tr/U tr.

Our key assumption for the integration of Feynman integrals in the Minkowski regime is that the approximation property can also be
applied to the deformed Symanzik polynomials.

Assumption 3.2. There are λ dependent constants C1(λ), C2(λ) > 0 such that for small λ > 0,

C1(λ) ≤
∣∣∣∣∣
(
U tr(x)

U(X)

)D0/2 (
V tr(x)

V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ P E+ , (21)

where we recall that X = (X1, . . . , X|E|) and Xe = xe exp
(− iλ ∂V

∂xe
(x)

)
.

In the pseudo-Euclidean regime the assumption is fulfilled, as we are allowed to set λ = 0 and use the established approximation
property from [1] on U and F . In the Minkowski regime, Assumption 3.2 can only be fulfilled if there are no Landau singularities,
i.e. solutions to (14). After extensive numerical testing we conjecture that Assumption 3.2 is fulfilled if there are no Landau singularities.
It would be very interesting to give a concise set of conditions for the validity of Assumption 3.2 and how it interplays with such
singularities. We leave this to future research.

Another highly promising research question is to find a value for λ such that the constants C1(λ) and C2(λ) tighten the bounds as
much as possible. Finding such an optimal value for λ would result in the first entirely canonical deformation prescription which does not
depend on free parameters.

3.2. Tropical sampling

Intuitively, Assumption 3.2 tells us that the integrands in (12) and (16) are, except for phase factors, reasonably approximated by the
tropical approximation of the undeformed integrand. To evaluate the integrals (16) with tropical sampling, as in [1, Sec. 7.2], we define the
probability distribution

μtr = 1

I tr

∏
e∈E xνe

e

U tr(x)D0/2 V tr(x)ω0
�, (22)

where I tr is a normalization factor, which is chosen such that
∫
P E+ μtr = 1. As of Assumption 3.2 and the requirement that the integrals

in (16) shall be finite, the factor I tr must also be finite. If ω0 = 0, this normalization factor is equal to the associated Hepp bound of the
graph G [21]. Because μtr > 0 for all x ∈P E+ , μtr gives rise to a proper probability distribution on this domain.

Using the definition of μtr to rewrite (16) results in

I = 	(ω0 + εL)∏
e∈E 	(νe)

∞∑
k=0

εk

k! Ik, with

Ik = I tr
∫
P E+

(∏
e∈E(Xe/xe)

νe
)

detJλ(x)(
U (X) /U tr (x)

)D0/2 · (V (X) /V tr (x)
)ω0

logk
(

U(X)

V(X)L

)
μtr . (23)

We will evaluate the integrals above by sampling from the probability distribution μtr .
In [1], two different methods to generate samples from μtr were introduced. The first method [1, Sec. 5], which does not take the

explicit structure of U and F into account, requires the computation of a triangulation of the refined normal fans of the Newton polytopes
of U and F . Once such a triangulation is computed, arbitrarily many samples from μtr can be generated with little computational effort.
Unfortunately, obtaining such a triangulation is a highly computationally demanding process.

The second method [1, Sec. 6] to generate samples from the probability distribution μtr makes use of a particular property of the
Newton polytopes of U and F which allows to bypass the costly triangulation step. This second method additionally has the advantage
that it is relatively straightforward to implement. This faster method of sampling from μtr relies on the Newton polytopes of U and F
being generalized permutahedra.

For the program feyntrop we will make use of this second method. Our tropical sampling algorithm to produce samples from μtr is
essentially equivalent to the one published with [1].

3.3. Base polytopes and generalized permutahedra

A fantastic property of generalized permutahedra is that they come with a canonical normal fan which greatly facilitates the sampling
of μtr, see [1, Theorem 27 and Algorithm 4]. Here, we briefly explain the necessary notions. As a start, we define a more general class of
polytopes first and discuss restrictions later.

Base polytopes Consider a function z : 2E → R that assigns a number to each subset of E , the edge set of our Feynman graph G . In the
following we often identify a subset of E with a subgraph of G and use the respective terms interchangeably. So, z assigns a number to
each subgraph of G . We define P[z] to be the subset of R|E| that consists of all points (a0, . . . , a|E|−1) ∈R|E| which fulfill

∑
e∈E ae = z(E)

and the 2|E| − 1 inequalities
8

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
∑
e∈γ

ae ≥ z(γ) for all γ � E . (24)

Clearly, these inequalities describe a convex bounded domain, i.e. a polytope. This polytope P[z] associated to an arbitrary function z :
2E →R is called the base polytope.

Generalized permutahedra The following is a special case of a theorem by Aguiar and Ardila who realized that numerous seemingly
different structures from combinatorics can be understood using the same object: The generalized permutahedron which was initially
defined by Postnikov [64].

Theorem 3.3 ([65, Theorem 12.3] and the references therein). The polytope P[z] is a generalized permutahedron if and only if the function z is
supermodular. That means, z fulfills the inequalities

z(γ) + z(δ) ≤ z(γ ∪ δ) + z(γ ∩ δ) for all pairs of subgraphs γ , δ ⊂ E . (25)

Because other properties of generalized permutahedra are not of central interest in this paper, we will take Theorem 3.3 as our
definition of these special polytopes. Important for us is that for many kinematic situations the Newton polytopes of the Symanzik
polynomials are of this type.

Let Lγ denote the number of loops of the subgraph γ , then we have the following theorem due to Schultka [31]:

Theorem 3.4. The Newton polytope N[U] of U is equal to the base polytope P[zU] with zU being the function zU (γ) = Lγ . Moreover, zU is super-
modular. Hence, by Theorem 3.3, N[U] is a generalized permutahedron.

Proof. See [31, Sec. 4] and the references therein. In [21], it was observed that N[U] is a matroid polytope, which by [65, Sec. 14] also
proves the statement. �

Because N[U] is a generalized permutahedron, we also say that U has the generalized permutahedron property.

Generalized permutahedron property of the F polynomial For the second Symanzik F polynomial the situation is more tricky. We need
the notion of mass-momentum spanning subgraphs which was defined by Brown [22] (see also [31, Sec. 4] for an interesting relationship
to the concept of s-irreducibility [66] or [67] where related results were obtained or [68] for relations to the R� operation). We use the
following slightly generalized version of Brown’s definition (see also [1, Sec. 7.2]): We call a subgraph γ ⊂ E mass-momentum spanning if
the second Symanzik polynomial of the cograph G/γ vanishes identically FG/γ = 0.

Theorem 3.5. In the Euclidean regime with generic kinematics, the Newton polytope N[F] is a generalized permutahedron. It is equal to the base
polytope P[zF] with the function zF defined for all subgraphs γ by zF (γ) = Lγ + 1 if γ is mass-momentum spanning and zF (γ) = Lγ otherwise.
Consequently, this function zF : 2E →R is supermodular, i.e. it fulfills (25).

Proof. This has also been proven in [31, Sec. 4]. The proof relies on a special infrared factorization property of F that was discovered by
Brown [22, Theorem 2.7]. �

We explicitly state the following generalization of Theorem 3.5:

Theorem 3.6. Theorem 3.5 holds in all regimes if the kinematics are generic.

Proof. The F polynomial has the same monomials (with different coefficients) as in the Euclidean regime with generic kinematics.
To verify this, note that the conditions for generic kinematics prevent cancellations between the mass and momentum part of the F
polynomial as given in eq. (5). So, the respective Newton polytopes coincide. �

There is also the following further generalization of Theorem 3.5 to Euclidean but exceptional kinematics. This generalization is very
plausible (see [22, Example 2.5]), but it is a technical challenge to prove it. We will not attempt to include a proof here for the sake of
brevity. So, we state this generalization as a conjecture:

Conjecture 3.7. Theorem 3.5 holds in the Euclidean regime for all (also exceptional) kinematics.

We emphasize that N[F] is generally not a generalized permutahedron outside of the Euclidean regime. This was observed in [31,
Remark 4.16] (see also [69, Sec. 4.2], [70, Sec. 2.2.3] or [1, Remark 35]). Explicit counter examples are encountered while computing the
massless on-shell boxes depicted in Fig. 2. The F polynomials of the completely massless box with only on-shell external momenta, the
massless box with one off-shell momentum and the massless box with two adjacent off-shell momenta (depicted in Figs. 2a, 2b and 2c)
do not fulfill the generalized permutahedron property. On the other hand, the F polynomial does fulfill the generalized permutahedron
property for the massless box with two or more off-shell legs such that two off-shell legs are on opposite sides (as depicted in Fig. 2d).

Therefore, we have to make concessions in the Minkowski regime with exceptional kinematics.
An observation of Arkani-Hamed, Hillman, Mizera is helpful (see [26, eq. (8)] and the discussion around it): the facet presentation of

N[F] given in Theorem 3.5 turns out to hold in a quite broad range of kinematic regimes, even if N[F] is not a generalized permutahedron.
9

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Fig. 2. Massless box with different external legs on- or off-shell. On-shell (p2 = 0) legs are drawn as dashed lines and off-shell (p2 	= 0) legs with solid lines. Internal
propagators are massless.

Fig. 3. Triangle Feynman graph relevant in QED. The two solid propagators have mass m and the solid legs have incoming squared momentum m2. The dashed propagator is
massless and the doubled leg has incoming squared momentum Q 2.

Observation 3.8. The Newton polytope of F is often equal to the base polytope P[zF] with the function zF defined as in Theorem 3.5.

This is significant since feyntrop uses the polytope P[zF] internally as a substitute for N[F] as the former is easier to handle and
faster to compute than the latter.

For instance, all massless boxes depicted in Fig. 2 have the property that the Newton polytopes of their F polynomial are base
polytopes described by the respective zF functions, i.e. N[F] = P[zF]. In the first three cases (Figs. 2a, 2b, 2c) the zF function does not
fulfill the inequalities (25). For the graph in Fig. 2d these inequalities are fulfilled and the associated Newton polytope N[F] = P[zF] is a
generalized permutahedron.

It would be very beneficial to have precise conditions for when P[zF] indeed is equal to N[F], we leave this for a future project.
Empirically, we have observed that it is valid for quite a wide range of exceptional kinematics. We know, however, that this condition
is not fulfilled for arbitrary exceptional kinematics [71]. An explicit counter example3 is depicted in Fig. 3. For this triangle graph with
the indicated exceptional kinematic configuration, the polytope N[F] is different from P[zF]. We find that F(x) = m2(x2

1 + x2
2) + (2m2 −

Q 2)x1x2 which implies that N[F] is a one-dimensional polytope. On the other hand, P[zF] can be shown to be a two-dimensional
polytope. In D = 4, the Feynman integral associated to Fig. 3 is infrared divergent and therefore not quasi-finite. In D = 6, feyntrop can
evaluate the integral without problems. Nonetheless, we expect there to be more complicated Feynman graphs with similarly exceptional
external kinematics, that are quasi-finite, but which cannot be evaluated using feyntrop. We did not, however, manage to find such a
graph.

Even if N[F] 	= P[zF], the Newton polytope N[F] is bounded by the base polytope P[zF]. The reason for this is that F can only lose
monomials if we make the kinematics less generic.

Theorem 3.9. We have N[F] ⊂ P[zF].

Efficient check of the generalized permutahedron property of a base polytope Naively, it is quite hard to check if the base polytope P[z] associ-
ated to a given function z : 2E →R is a generalized permutahedron. There are of the order 22|E| many inequalities to be checked for (25).
A more efficient way is to only check the following inequalities

z(γ ∪ {e}) + z(γ ∪ {h}) ≤ z(γ) + z(γ ∪ {e,h}) (26)

for all subgraphs γ ⊂ E and edges e, h ∈ E \ γ . The inequalities (26) imply the ones in (25). For (26) less than |E|22|E| inequalities need to
be checked. So, (26) is a more efficient version of (25).

3.4. Generalized permutahedral tropical sampling

feyntrop uses a slightly adapted version of the generalized permutahedron tropical sampling algorithm from [1, Sec. 6.1 and Sec. 7.2]
to sample from the distribution given by μtr in eq. (22).

The algorithm involves a preprocessing and a sampling step.

Preprocessing The first algorithmic task to prepare for the sampling from μtr is to check in which regime the kinematic data are located.
The kinematic data are provided via the matrix Pu,v as it was defined in Section 2.1 and via a list of masses me for each edge e ∈ E .
If the symmetric |V | × |V | matrix Pu,v is negative semi-definite (which is easy to check using matrix diagonalization), then we are in

3 We thank Erik Panzer for sharing this (counter) example with us.
10

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Table 1
Table of the necessity of a deformation (def.) and the fulfillment of the generalized permutahedron property of F (GP) in each kinematic regime.

Euclidean Pseudo-Euclidean Minkowski

Generic no def. / always GP no def. / always GP def. / always GP
Exceptional no def. / always GP no def. / not always GP def. / not always GP

the Euclidean regime. Similarly we check if the defining (in)equalities for the other kinematic regimes given in Section 2.2 are fulfilled or
not. Depending on the kinematic regime, we need to use a contour deformation for the integration or not. Further, if the kinematics are
Euclidean or generic, we know that the generalized permutahedron property of F is fulfilled (also thanks to the unproven Conjecture 3.7).
Table 1 summarizes this dependence of the algorithm on the kinematic regime.

If we find that we are at an exceptional and non-Euclidean kinematic point, N[F] might not be a generalized permutahedron and it
might not even be equal to P[zF]. In this case, the program prints a message warning the user that the integration might not work. The
program then continues under the assumption that N[F] = P[zF]. In any other case, N[F] is a generalized permutahedron and equal to
P[zF]. Hence, the tropical sampling algorithm is guaranteed to give a convergent Monte Carlo integration method by [1, Sec. 6.1].

The next task is to compute the loop number Lγ and check if γ is mass-momentum spanning (by asking if FG/γ = 0) for each
subgraph γ ⊂ E . Using these data, we can compute the values of zU (γ) and zF (γ) for all subgraphs γ ⊂ E using the respective formulas
from Theorems 3.4 and 3.5.

If we are at an exceptional and non-Euclidean kinematic point, we check the inequalities (26) for the zF function. If they are all
fulfilled, then P[zF] is a generalized permutahedron and we get further indication that the tropical integration step will be successful.
The program prints a corresponding message in this case. Also assuming that Assumption 3.2 is fulfilled, we can compute all integrals in
(23) efficiently.

Note that even in the pseudo-Euclidean and the Minkowski regimes with exceptional kinematics, the integration is often successful. For
instance, we can integrate all Feynman graphs depicted in Fig. 2 regardless of the fulfillment of the generalized permutahedron property.
In fact, we did not find a quasi-finite example where the algorithm fails (even though the convergence rate is quite bad for examples in
highly exceptional kinematic regimes). We emphasize, however, that the user should check the convergence of the result separately when
integrating at a manifestly exceptional and non-Euclidean kinematic point. For instance, by running the program repeatedly with different
numbers of sample points or by slightly perturbing the kinematic point. Recall that for generic kinematics N[F] is always a generalized
permutahedron by Theorem 3.6 and the integration is guaranteed to work if the finiteness assumptions are fulfilled.

The next computational step is to compute the generalized degree of divergence (see [1, Sec. 7.2]) for each subgraph γ ⊂ E . It is defined
by

ω(γ) =
∑
e∈γ

νe − DLγ /2 − ωδm.m.
γ , (27)

where Lγ is the loop number of the subgraph γ and δm.m.
γ = 1 if γ is mass-momentum spanning and 0 otherwise. The prefactor ω of

δm.m.
γ is the usual superficial degree of divergence of the overall graph G as it was defined in Section 2.1, ω = ∑

e∈E νe − DL/2.
If ω(γ) ≤ 0 for any proper subgraph γ , then we discovered a subdivergence. This means that all integrals (16) are divergent. Tropical

sampling is not possible in this case and the program prints an error message and terminates. An additional analytic continuation step
from (16) to a set of quasi-finite integrals (see Section 2.4) would resolve this problem. Translating a divergent integral into a linear
combination of quasi-finite integrals is always possible, but we will leave the implementation of this step into feyntrop to a future
research project.

If we have ω(γ) > 0 for all γ ⊂ E , we can proceed to the key preparatory step for generalized permutahedral tropical sampling:
We use ω(γ) to compute the following auxiliary subgraph function J (γ), which is recursively defined by setting J (∅) = 1, agreeing that
ω(∅) = 1 and

J (γ) =
∑
e∈γ

J (γ \ e)

ω(γ \ e)
for all γ ⊂ E , (28)

where γ \ e is the subgraph γ with the edge e removed. The terminal element of this recursion is the subgraph that contains all edges E
of G . We find that J (E) = I tr, where I tr is the normalization factor in (22) and (23) (see [1, Proposition 29] for a proof and details).

In the end of the preprocessing step we compile a table with the information Lγ , δm.m.
γ , ω(γ) and J (γ) for each subgraph γ ⊂ E and

store it in the memory of the computer.

Sampling step The sampling step of the algorithm repeats the following simple algorithm to generate samples x ∈P E+ that are distributed
according to the probability density (22). It is completely described in Algorithm 1. The runtime of our implementation of the algorithm
grows roughly quadratically with |E|, but a linear runtime is achievable. The validity of the algorithm was proven in a more general setup
in [1, Proposition 31]. The additional computation of the values of U tr(x) and V tr(x) is an application of an optimization algorithm by
Fujishige and Tomizawa [72] (see also [1, Lemma 26]).

The key step of the sampling algorithm is to interpret the recursion (28) as a probability distribution for a given subgraph over its
edges. That means, for a given γ ⊂ E we define pγ

e = 1
J (γ)

J (γ \e)
ω(γ \e) . Obviously, pγ

e ≥ 0 and by (28) we have
∑

e∈γ pγ
e = 1. So, for each γ ⊂ E ,

pγ
e gives a proper probability distribution on the edges of the subgraph γ .
11

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Algorithm 1 Generating a sample distributed as μtr from (22).
Initialize the variables γ = E and κ, U = 1.
while γ 	= ∅ do

Pick a random edge e ∈ γ with probability pγ
e = 1

J (γ)
J (γ \e)
ω(γ \e) .

Set xe = κ .
If γ is mass-momentum spanning but γ \ e is not, set V = xe .
If Lγ \e < Lγ , multiply U with xe and store the result in U , i.e. set U ← xe · U .
Remove the edge e from γ , i.e. set γ ← γ \ e.
Pick a uniformly distributed random number ξ ∈ [0, 1].
Multiply κ with ξ1/ω(γ) and store the result in κ , i.e. set κ ← κξ1/ω(γ) .

end while
Return x = [x0, . . . , x|E|−1] ∈P E+ , U tr(x) = U and V tr(x) = V .

The algorithm can also be interpreted as iteratively cutting edges of the graph G: We start with γ = E and pick a random edge with
probability pγ

e . This edge is cut and removed from γ . We continue with the newly obtained graph and repeat this cutting process until
all edges are removed. In the course of this, Algorithm 1 computes appropriate random values for the coordinates x ∈P E+ .

4. Numerical integration

4.1. Monte Carlo integration

We now have all the necessary tools at hand to evaluate the integrals in (23) using Monte Carlo integration. In this section, we briefly
review this procedure. The integrals in (23) are of the form

I f =
∫
P E+

f (x)μtr , (29)

where, thanks to the tropical approximation property, f (x) is a function that is at most log-singular inside, or on the boundary of, P E+ .
To evaluate such an integral, we first use the tropical sampling Algorithm 1 to randomly sample N points x(1), . . . , x(N) ∈ P E+ that are
distributed according to the tropical probability measure μtr . By the central limit theorem and as f (x) is square-integrable,

I f ≈ I(N)

f where I(N)

f = 1

N

N∑
i=1

f (x(i)) . (30)

For sufficiently large N , the expected error of this approximation of the integral I f is

σ f =
√

I f 2 − I2
f

N
where I f 2 =

∫
P E+

f (x)2μtr , (31)

which itself can be estimated (as long as f (x)2 is square-integrable) by

σ f ≈ σ
(N)

f where σ
(N)

f =
√

1

N − 1

(
I(N)

f 2 − (
I(N)

f

)2
)

and I(N)

f 2 = 1

N

N∑
i=1

f (x(i))2 . (32)

To evaluate the estimator I(N)

f and the expected error σ (N)

f it is necessary to evaluate f (x) for N different values of x. As the random
points x(1), . . . , x(N) ∈ P E+ can be obtained quite quickly using Algorithm 1, this evaluation becomes a bottleneck. In the next section, we
describe a fast method to perform this evaluation, which is implemented in feyntrop to efficiently obtain Monte Carlo estimates and
error terms for the integrals in (23).

4.2. Fast evaluation of (deformed) Feynman integrands

To evaluate the integrals in (23) using a Monte Carlo approach we do not only have to be able to sample from the distribution μtr , but
we also need to rapidly evaluate the remaining integrand (denoted as f (x) in the last section). Explicitly for the numerical evaluation of
(23), we have to be able to compute Xe = xe exp

(− iλ ∂V
∂xe

(x)
)

as well as U(X), V(X) and detJλ(x) for any x ∈P E+ .

Evaluation of the U and F polynomials Surprisingly, the explicit polynomial expression for U and F from eq. (5) are harder to evaluate than
the matrix and determinant expression (4) if the underlying graph exceeds a certain complexity. The reason for this is that the number of
monomials in (5) increases exponentially with the loop number (see, e.g., [73] for the asymptotic growth rate of the number of spanning
tress in a regular graph), while the size of the matrices in (4) only increases linearly. Standard linear algebra algorithms as the Cholesky
or LU decompositions [74] provide polynomial time algorithms to compute the inverse and determinant of L(x) and therefore values of
U(x) and F(x) (see, e.g., [1, Sec. 7.1]). In fact, the linear algebra problems on graph Laplacian matrices that need to be solved to compute
U(x) and F(x) fall into a class of problems for which nearly linear runtime algorithms are available [75].
12

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Explicit formulas for the V derivatives We need explicit formulas for the derivatives of V . These formulas provide fast evaluation methods
for X and the Jacobian Jλ(x).

Consider the (|V | − 1) × (|V | − 1) matrix M(x) = L−1(x) P L−1(x) with L(x) and P as defined in Section 2.1. For edges e and h that
connect the vertices ue, ve and uh, vh respectively, we define

A(x)e,h = 1

xexh

(
M(x)ue,uh +M(x)ve,vh −M(x)ue,vh −M(x)ve,uh

)
B(x)e,h = 1

xexh

(
L−1(x)ue,uh +L−1(x)ve,vh −L−1(x)ue,vh −L−1(x)ve,uh

)
,

(33)

where we agree that L−1(x)u,v = M(x)u,v = 0 if any of u or v is equal to v0, the arbitrary vertex that was removed in the initial
expression of the Feynman integral (1). It follows from (4) and the matrix differentiation rule ∂

∂xe
L−1(x)u,v =

(
−L−1(x) ∂L

∂xe
(x)L−1(x)

)
u,v

that

∂V
∂xe

(x) = −A(x)e,e + m2
e ,

∂2V
∂xe∂xh

(x) = 2δe,h
A(x)e,e

xe
− 2(A(x) ◦ B(x))e,h , (34)

where we use the Hadamard or element-wise matrix product, (A(x) ◦B(x))e,h =A(x)e,h ·B(x)e,h .

Computation of the relevant factors in the integrands of (23) We summarize the necessary steps to compute all the factors in the deformed
and ε-expanded tropical Feynman integral representation (23).

1. Compute the graph Laplacian L(x) as defined in Section 2.1.
2. Compute the inverse L−1(x) (e.g. by Cholesky decomposing L(x)).
3. Use this to evaluate the derivatives of V(x) via the formulas in (33) and (34).
4. Compute the values of the deformed X parameters: Xe = xe exp

(− iλ ∂V
∂xe

(x)
)
.

5. Compute the Jacobian Jλ(x) using the formula in (11).
6. Evaluate detJλ(x) (e.g. by using a LU decomposition of Jλ(x)).
7. Compute the deformed graph Laplacian L(X).
8. Compute L−1(X) and detL(X) (e.g. by using a LU decomposition of L(X) as a Cholesky decomposition is not possible, because L(X)

is not a hermitian matrix in contrast to L(x)).
9. Use the formulas (4) to obtain values for U(X), F(X) and V(X) =F(X)/U(X).

The computation obviously simplifies if we set λ = 0, in which case we have X = x. We are allowed to set λ = 0 if we do not need the
contour deformation. This is the case, for instance, in the Euclidean or the pseudo-Euclidean regimes. In our implementation we check if
we are in these regimes and adjust the evaluation of the integrand accordingly.

5. The program feyntrop

We have implemented the contour-deformed tropical integration algorithm, which we discussed in the previous sections, in a C++
module named feyntrop. This module is an upgrade to previous code developed by the first author in [1].

feyntrop was checked against AMFlow [48] and pySecDec [41] for roughly 15 different diagrams with 1-3 loops and 2-5 legs
at varying kinematics points, in both the Euclidean and Minkowski regimes, finding agreement in all cases within the given uncertainty
bounds. In the Euclidean regime, the original algorithm was checked against numerous analytic computations that were obtained at high
loop order using conformal four-point integral and graphical function techniques [76].

Note that our prefactor convention, which we fixed in eqs. (1) and (2), differs from the one in AMFlow and pySecDec by a factor of
(−1)|ν| , where |ν| = ∑|E|−1

e=0 νe . In comparison to FIESTA [24], our convention differs by a factor of (−1)|ν| exp (−LγEε).

5.1. Installation

The source code of feyntrop is available in the repository https://github .com /michibo /feyntrop on github. It can be downloaded
and built by running the following sequence of commands

git clone --recursive https://github.com/michibo/feyntrop.git
cd feyntrop
make

in a Linux environment. feyntrop is interfaced with python [4] via the library pybind11 [5]4. Additionally, it uses the optimized
linear algebra routines from the Eigen3 package [2], the OpenMP C++ module [77] for the parallelization of the Monte Carlo sampling
step and the xoshiro256+ pseudo random number generator [3].

4 Note added in proof: Due to compatibility issues on some hardware, the newest version of feyntrop available and described at https://github .com /michibo /feyntrop
does not make use of pybind11 anymore. This new version also provides a low-level command-line interface that works without any dependency on python. This interface
enables the easy use of feyntrop in high-performance computing environments.
13

https://github.com/michibo/feyntrop
https://github.com/michibo/feyntrop

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
feyntrop can be loaded in a python environment by importing the file py_feyntrop.py, located in the top directory of the
package. To ensure that feyntrop was built correctly, one may execute the python file /tests/test_suite.py. This script com-
pares the output of feyntrop against pre-computed values. To do so, it will locally compute six examples with 1-2 loops and 2-5 legs,
some in the Euclidean and others in the Minkowski regime.

The file py_feyntrop.py includes additional functionality for the python interface serving three purposes. Firstly, it simplifies the
specification of vertices and edges of a Feynman diagram in comparison to the C++ interface of feyntrop. Secondly, it allows for self-
chosen momentum variables given by a set of replacement rules, instead of having to manually specify the full scalar product matrix Pu,v

from (4). Lastly, the output of the ε expansion can be printed in a readable format. To do so, the py_feyntrop.py program uses the
sympy [6] library.

As already indicated in Section 2.1, we employ zero-indexing throughout. This means that edges and vertices are labeled as {0, 1, . . .}.
This facilitates seamless interoperability with the programming language features of python.

5.2. Basic usage of feyntrop

In this section, we will illustrate the basic workflow of feyntrop with an example. The code for this example can be executed and
inspected with jupyter [78] by calling

jupyter notebook tutorial_2L_3pt.ipynb

within the top directory of the feyntrop package.
We will integrate the following 2-loop 3-point graph in D = 2 − 2ε dimensional spacetime:

3

1

0

2

p1

p0

p2

1

0

3

2

4
.

The dashed lines denote on-shell, massless particles with momenta p0 and p1 such that p2
0 = p2

1 = 0. The solid, internal lines each have
mass m. The double line is associated to some off-shell momentum p2

2 	= 0. For the convenience of the reader, both vertices and edges
are labeled explicitly in this example. feyntrop requires us to label the external vertices (as defined in Section 2.2) before the internal
vertices. In the current example, the vertices are V = V ext � V int = {0, 1, 2} � {3}.

The momentum space Feynman integral representation (1) with unit edge weights reads

I = π−2+2ε

∫
d2−2εk0 d2−2εk1(

q2
0 − m2 + iε

)(
q2

1 − m2 + iε
)(

q2
2 − m2 + iε

)(
q2

3 − m2 + iε
)(

q2
4 − m2 + iε

) , (35)

where we integrated out the δ functions in eq. (1) by requiring that q0 = k0, q1 = k0 + p1, q2 = k0 +k1 + p1, q3 = p0 −k0 −k1 and q4 = k1.
We choose the phase space point

m2 = 0.2 , p2
0 = p2

1 = 0 , p2
2 = 1 , (36)

which is in the Minkowski regime because p2
2 > 0 - see Section 2.2. To begin this calculation, first open a python script or a jupyter

notebook and import py_feyntrop:

from py_feyntrop import *

Here we are assuming that feyntrop.so and py_feyntrop.py are both in the working directory.
To define the graph, we provide a list of edges with edge weights νe and squared masses m2

e :((
u0, v0

)
, ν0 , m2

0

)
, . . . ,

((
u|E|−1, v |E|−1

)
, ν|E|−1 , m2|E|−1

)
. (37)

The notation (ue, ve) denotes an edge e incident to the vertices ue and ve . We therefore write

edges = [((0,1), 1, ’mm’), ((1,3), 1, ’mm’), ((2,3), 1, ’mm’),
((2,0), 1, ’mm’), ((0,3), 1, ’mm’)]
14

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
in the code to input the graph which is depicted above. The ordering of vertices
(
ue, ve

)
in an edge is insignificant. Here we set νe = 1

for all e. The chosen symbol for m2 is mm, which will be replaced by its value 0.2 later on. It is also allowed to input numerical values for
masses already in the edges list, for instance by replacing the first element of the list by ((0,1), 1, ’0.2’).

Next we fix the momentum variables. Recall that the external vertices are required to be labeled {0, 1, . . . , |V ext| − 1}, so the external
momenta are p0, . . . , p|V ext|−1. Moreover, the last momentum is inferred automatically by feyntrop using momentum conservation,
leaving p0, . . . , p|V ext|−2 to be fixed by the user. A momentum configuration is then specified by the collection of scalar products,

pu · pv for all 0 ≤ u ≤ v ≤ |V ext| − 2 . (38)

In the code, we must provide replacement rules for these scalar products in terms of some variables of choice. For the example at hand,
|V ext| = 3, so we must provide replacement rules for p2

0, p2
1 and p0 · p1. In the syntax of feyntrop we thus write

replacement_rules = [(sp[0,0], ’0’), (sp[1,1], ’0’), (sp[0,1], ’pp2/2’)]

where sp[u,v] stands for pu · pv , the scalar product of pu and pv . We have immediately set p2
0 = p2

1 = 0 and also defined a variable
pp2 which stands for p2

2, as, by momentum conservation,

p2
2 = 2p0 · p1 . (39)

Eventually, we fix numerical values for the two auxiliary variables pp2 and mm. This is done via

phase_space_point = [(’mm’, 0.2), (’pp2’, 1)]

which fixes m2 = 0.2 and p2
2 = 1. It is possible to obtain the Pu,v matrix (as defined in Section 2.1) and a list of all the propagator masses,

which are computed from the previously provided data, by

P_uv_matrix, m_sqr_list = prepare_kinematic_data(edges, replacement_rules,
phase_space_point)

The final pieces of data that need to be provided are

D0 = 2
eps_order = 5
Lambda = 7.6
N = int(1e7)

D0 is the integer part of the spacetime dimension D = D0 − 2ε . We expand up to, but not including, eps_order. Lambda denotes the
deformation parameter from (9). N is the number of Monte Carlo sampling points.

Tropical Monte Carlo integration of the Feynman integral, with the kinematic configuration chosen above, is now performed by running
the command

trop_res, Itr = tropical_integration(
N,
D0,
Lambda,
eps_order,
edges,
replacement_rules,
phase_space_point)

If the program runs correctly (i.e. no error is printed), trop_res will contain the ε-expansion (16) without the prefactor 	(ω)/((ν1) · · ·
	(ν|E|)) = 	(2ε + 3). Itr is the value of the normalization factor in (22). Running this code on a laptop, we get, after a couple of seconds,
the output

Prefactor: gamma(2*eps + 3).
(Effective) kinematic regime: Minkowski (generic).
Generalized permutahedron property: fulfilled.
Analytic continuation: activated. Lambda = 7.6
Started integrating using 8 threads and N = 1e+07 points.
Finished in 6.00369 seconds = 0.00166769 hours.

-- eps^0: [-46.59 +/- 0.13] + i * [87.19 +/- 0.12]
-- eps^1: [-274.46 +/- 0.55] + i * [111.26 +/- 0.55]
-- eps^2: [-435.06 +/- 1.30] + i * [-174.47 +/- 1.33]
-- eps^3: [-191.72 +/- 2.15] + i * [-494.69 +/- 2.14]
-- eps^4: [219.15 +/- 2.68] + i * [-431.96 +/- 2.67]
15

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
These printed values for the ε expansion are contained in the list trop_res in the following format:[(
(re0, σ re

0) , (im0,σ
im
0)

)
, . . . ,

(
(re4,σ

re
4) , (im4,σ

im
4)

)]
,

where re0 ± σ re
0 is the real part of the 0th order term, and so forth.

The ε-expansion, with prefactor included, can finally be output via

eps_expansion(trop_res, edges, D0)

giving

174.3842115*i - 93.17486662 + eps*(-720.8731714 + 544.3677186*i) +
eps**2*(-2115.45025 + 496.490128*i) + eps**3*(-3571.990969 - 677.5254794*i) +
eps**4*(-3872.475723 - 2726.965026*i) + O(eps**5)

If the tropical_integration command fails, for instance because a subdivergence of the input graph is detected, it prints an
error message. The command also prints a warning if the kinematic point is too exceptional and convergence cannot be guaranteed due
to the F polynomial lacking the generalized permutahedron property (see Section 3.3).

5.3. Deformation parameter

The uncertainties on the integrated result may greatly vary with the value of the deformation parameter λ from (9) (what was called
Lambda above). Moreover, the optimal value of λ might change depending on the phase space point. It is up to the user to pick a suitable
value by trial and error, for instance by integrating several times with a low number of sampling points N . In Section 6, this method is
used to evaluate multiple examples of Feynman integrals in the Minkowski regime. Typical values for the parameter λ can be found there.
It would be beneficial to automate this procedure, possibly by minimizing the sampling variance with respect to λ, for instance by solving
∂λσ f = 0 with σ f defined in (31), or by tightening the bounds in Assumption 3.2 (see the discussion after this assumption). We leave the
exploration of such ideas to future research.

Note that λ has mass dimension 1/mass2. Heuristically, this implies that the value of λ should be of order O(1/�2), where � is the
maximum physical scale in the given computation.

6. Examples of Feynman integral evaluations

In this section, we use feyntrop to numerically evaluate certain Feynman integrals of interest. The first two examples, 6.1 and 6.2,
show that feyntrop is capable of computing Feynman integrals at high loop-orders involving many kinematic scales. The four examples
that follow, 6.4, 6.3, 6.6 and 6.5, demonstrate that feyntrop is capable of computing phenomenologically relevant diagrams. The final
example, 6.7, is an invitation to study conformal integrals with our code, as they are important for, e.g., N = 4 SYM and the cosmological
bootstrap.

We have chosen phase space points which are not close to thresholds to insure good numerical convergence, and expand up to and
including ε2L in all but up the last example.

Each of the following examples can be computed with feyntrop using 108 sampling points within a few minutes on a consumer
laptop with 16 GBs of RAM. To crosscheck, we used the same machine to evaluate the examples using both AMFlow5 and pySecDec.
All computations agreed within the indicated error bounds. Our computations using AMFlow and pySecDec did not always terminate.
Particularly for the Examples 6.1 and 6.6, neither software finished due to memory constraints of 16 GB on our test laptop. After the
initial version of this article became available, Vitaly Magerya informed us that he was able to reproduce also Example 6.6 and verify our
numbers using pySecDec with an only slightly more powerful computer. He also found indication that Example 6.1 is reproducible using
a new version of pySecDec that was made available three months after the initial version of the present article was posted [83].

We emphasize that these additional computations using AMFlow and pySecDec should be seen as a crosscheck and not a benchmark
comparison. A comparison of feyntrop and AMFlow is difficult as the former directly integrates via Monte Carlo while the latter
integrates via differential equations. To integrate a Feynman integral using AMFlow an IBP system needs to be solved. Finding this solution
is a memory constrained problem and a 16 GB laptop is not appropriate to systematically perform computations within this approach.
If the IBP system is solved, AMFlow provides the evaluated integral at an accuracy which is almost unachievable using a Monte Carlo
approach. The comparison to pySecDec is similarly flawed as it can also deal with inherently divergent integrals. To do so it has to check
for divergences in each sector which takes time. Moreover, it can deal with completely general algebraic integrals, whereas feyntrop
completely relies on the inherent mathematical structure of Feynman integrals. We postpone a proper benchmark comparison with the
new version of pySecDec and updated versions of AMFlow to a future research project.

To further highlight the capabilities of feyntrop, we computed every example on a high-performance machine, namely a single AMD
EPYC 7H12 64-core processor using all cores. For each example we use 108 sample points to get a relative accuracy of the order of
10−2 to 10−4. The output for each example includes the total evaluation time that feyntrop needs to compute the respective diagram.
This evaluation time includes all steps of the computation. The time needed for the preprocessing step is negligible in comparison to the
sampling time as long as the number of edges is relatively small (i.e. |E| ≤ 15). Hence, for such moderate numbers of propagators, the
evaluation time is proportional to the number of sample points. The sampling step is completely parallelizable. So, doubling the number
of CPUs, halfs the evaluation time. As the evaluation is based on Monte Carlo, increasing the relative accuracy is costly: one additional
digit costs a 100-fold increase in CPU-time.

The code for each example can be found on the github repository in the folder examples.

5 As AMFlow relies on DEQs for Feynman integrals, it is necessary to link it to IBP software. In our examples, we tried the following two options for IBP software: 1) FIRE
[79] combined with LiteRed [80,81], and 2) Blade [82].
16

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
6.1. A 5-loop 2-point zigzag diagram

We evaluate the following 5-loop 2-point function with all masses different in D = 3 − 2ε dimensions

0 1

6

5

4

3

2

corresponding to the edge set

edges = [((0,6), 1, ’1’) , ((0,5), 1, ’2’), ((5,6), 1, ’3’),
((6,4), 1, ’4’) , ((5,3), 1, ’5’), ((5,4), 1, ’6’),
((4,3), 1, ’7’) , ((4,2), 1, ’8’), ((3,2), 1, ’9’),
((3,1), 1, ’10’), ((2,1), 1, ’11’)]

Here we already input the chosen values for masses, namely m2
e = e + 1 for e = 0, . . . , 10.

There is only a single independent external momentum p0, whose square we set equal to 100 via

replacement_rules = [(sp[0,0], ’pp0’)]
phase_space_point = [(’pp0’, 100)]

The value λ = 0.02 turns out to give small errors, which is of order O(1/p2
0) in accordance with the comment at the end of the previous

section. Using N = 108 Monte Carlo sampling points, feyntrop’s tropical_integration command gives

Prefactor: gamma(5*eps + 7/2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 9.62 seconds.
-- eps^0: [0.0001976 +/- 0.0000016] + i * [0.0001415 +/- 0.0000018]
-- eps^1: [-0.004961 +/- 0.000023] + i * [-0.000802 +/- 0.000024]
-- eps^2: [0.04943 +/- 0.00017] + i * [-0.01552 +/- 0.00017]
-- eps^3: [-0.25468 +/- 0.00083] + i * [0.24778 +/- 0.00093]
-- eps^4: [0.5909 +/- 0.0033] + i * [-1.7261 +/- 0.0038]
-- eps^5: [1.048 +/- 0.012] + i * [7.410 +/- 0.013]
-- eps^6: [-14.652 +/- 0.037] + i * [-20.933 +/- 0.038]
-- eps^7: [65.87 +/- 0.10] + i * [35.25 +/- 0.11]
-- eps^8: [-190.90 +/- 0.27] + i * [-4.91 +/- 0.26]
-- eps^9: [393.08 +/- 0.70] + i * [-182.56 +/- 0.59]
-- eps^10:[-558.01 +/- 1.64] + i * [685.62 +/- 1.29]

We have not been able to compute this expansion with AMFlow for the sake of verification. The memory constraints of 16 GB were
insufficient. pySecDec applied to this example exhausted the available memory while building the sector decomposition library on our
test laptop, but Vitaly Magerya informed us that he was able to create the integration library on a 32 GB 8-core Intel i7 computer
in a couple of hours. We again emphasize that, for a proper benchmark comparison, our AMFlow and pySecDec code should be put on
a machine with more memory. Still, this example illustrates that feyntrop can operate at high loop order with little memory, CPU and
time resources.

6.2. A 3-loop 4-point envelope diagram

Here, we evaluate a D = 4 − 2ε dimensional, non-planar, 3-loop 4-point, envelope diagram:

21

0 3

The dots on the crossed lines represent squared propagators, i.e. edge weights equal to 2, rather than vertices. The weighted edge set with
corresponding mass variables is thus
17

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
edges = [((0,1), 1, ’mm0’), ((1,2), 1, ’mm1’), ((2,3), 1, ’mm2’),
((3,0), 1, ’mm3’), ((0,2), 2, ’mm4’), ((1,3), 2, ’mm5’)]

Let us define the two-index Mandelstam variables si j = (pi + p j)
2, which are put into feyntrop’s replacement rules in the form

(sp[i,j], ’(sij - ppi - ppj)/2)’) for 0 ≤ i < j ≤ 2. The chosen phase space point is

p2
0 = 1.1 , p2

1 = 1.2 , p2
2 = 1.3 , s01 = 2.1 , s02 = 2.2 , s12 = 2.3 , (40)

m2
0 = 0.05 , m2

1 = 0.06 , m2
2 = 0.07 , m2

3 = 0.08 , m2
4 = 0.09 , m2

5 = 0.1 .

With additional settings λ = 1.24 and N = 108, we find

Prefactor: gamma(3*eps + 2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 5.12 seconds.
-- eps^0: [-10.8335 +/- 0.0084] + i * [-12.7145 +/- 0.0083]
-- eps^1: [47.971 +/- 0.059] + i * [-105.057 +/- 0.059]
-- eps^2: [413.05 +/- 0.23] + i * [7.29 +/- 0.23]
-- eps^3: [372.07 +/- 0.65] + i * [947.82 +/- 0.65]
-- eps^4: [-1412.36 +/- 1.45] + i * [1325.74 +/- 1.45]
-- eps^5: [-2726.00 +/- 2.67] + i * [-1295.36 +/- 2.69]
-- eps^6: [287.25 +/- 4.28] + i * [-3982.04 +/- 4.30]

We verified these numbers using pySecDec. The test machine’s memory of 16 GBs was exhausted before AMFlow could finish the
calculation. The examples in [84] indicate that using a computer with more memory might also make this 3-loop diagram accessible using
AMFlow.

6.3. A 2-loop 4-point μe-scattering diagram

We evaluate a non-planar, 2-loop 4-point diagram appearing in muon-electron scattering [85], which is finite in D = 6 −2ε dimensions.
It was previously evaluated for vanishing electron mass in [86].

25

4 3

1

0

The dashed lines represent photons, the solid lines are electrons with mass m, and the double lines are muons with mass M (which is
approximately 200 times larger than m). The edge set is

edges = [((0,1), 1, ’0’), ((0,4), 1, ’MM’), ((1,5), 1, ’mm’), ((5,2), 1, ’mm’),
((5,3), 1, ’0’), ((4,3), 1, ’MM’), ((4,2), 1, ’0’)]

where MM and mm stand for M2 and m2 respectively. With a phase space point similar to that of [86, Section 4.1.2]

p2
0 = M2 = 1 , p2

1 = p2
2 = m2 = 1/200 , s01 = −1/7 , (41)

s12 = −1/3 , s02 = 2M2 − 2m2 − s01 − s12 = 2.49

and settings λ = 1.29 , N = 108, the result becomes

Prefactor: gamma(2*eps + 1).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 6.53 seconds.
-- eps^0: [1.16483 +/- 0.00083] + i * [0.24155 +/- 0.00074]
-- eps^1: [5.5387 +/- 0.0086] + i * [2.2818 +/- 0.0093]
-- eps^2: [15.171 +/- 0.058] + i * [10.079 +/- 0.064]
-- eps^3: [28.02 +/- 0.32] + i * [28.17 +/- 0.28]
-- eps^4: [38.20 +/- 1.42] + i * [56.94 +/- 0.85]

The momentum configuration is exceptional, so we cannot be sure that the generalized permutahedron property holds - see Section 3.3.
In spite of that, feyntrop gives the correct numbers, which we confirmed using both AMFlow and pySecDec.

The leading order term differs from [86, eq. (4.20)] by roughly 10% due to our inclusion of the electron mass. We do, however,
reproduce the computation in this reference if we set this mass to 0 in the feyntrop configuration.
18

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
6.4. A QCD-like, 2-loop 5-point diagram

This example is a QCD-like, D = 6 − 2ε dimensional, 2-loop 5-point diagram:

36

5 4

2

0

1

The dashed lines represent gluons, the solid lines are quarks each with mass m, and the double line is some off-shell momentum p2
4 	= 0

fixed by conservation. The edge data are

edges = [((0,1), 1, ’0’), ((1,2), 1, ’mm’), ((2,6), 1, ’0’), ((6,3), 1, ’mm’),
((3,4), 1, ’0’), ((4,5), 1, ’mm’), ((5,0), 1, ’0’), ((5,6), 1, ’mm’)]

where mm stands for m2. Let us choose the phase space point

p2
0 = 0 , p2

1 = p2
2 = p2

3 = m2 = 1/2 , s01 = 2.2 , s02 = 2.3 , (42)

s03 = 2.4 , s12 = 2.5 , s13 = 2.6 , s23 = 2.7 ,

where again si j = (pi + p j)
2. Finally, setting λ = 0.28 , N = 108, we obtain

Prefactor: gamma(2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 8.20 seconds.
-- eps^0: [0.06480 +/- 0.00078] + i * [-0.08150 +/- 0.00098]
-- eps^1: [0.4036 +/- 0.0045] + i * [0.3257 +/- 0.0035]
-- eps^2: [-0.7889 +/- 0.0060] + i * [0.957 +/- 0.016]
-- eps^3: [-1.373 +/- 0.030] + i * [-1.181 +/- 0.034]
-- eps^4: [1.258 +/- 0.088] + i * [-1.205 +/- 0.036]

The kinematic configuration is again exceptional. Nevertheless, feyntrop returns the correct numbers, which we verified with py-
SecDec.6 We were not able to compute this diagram with AMFlow due to our memory constraints. As similarly intricate Feynman
integrals can be evaluated with AMFlow using more memory (see [84]), these constraints are very likely the only obstruction for a
crosscheck with AMFlow.

6.5. Diagram contributing to triple Higgs production via gluon fusion

In this example, we evaluate the following diagram contributing to the process7 gg → H H H in D = 4 − 2ε dimensions:

1 6

50

2

4

3

The dashed lines are massless propagators (representing gluons), the single solid lines are propagators containing the top quark mass, and
the three external double lines are put on-shell to the Higgs mass. In this case, the list of edges reads

edges = [((0,1), 1, ’mm_top’), ((1,6), 1, ’mm_top’), ((5,6), 1, ’0’),
((6,2), 1, ’mm_top’), ((2,3), 1, ’mm_top’), ((3,4), 1, ’mm_top’),
((4,5), 1, ’mm_top’), ((5,0), 1, ’mm_top’)]

6 An earlier version of this article wrongly stated that this computation was not verifiable with pySecDec. We thank both an anonymous referee and Vitaly Magerya for
pointing this out to us.

7 We thank Babis Anastasiou for suggesting this example.
19

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
with mm_top being the square of the top quark mass, m2
t .

Given si j := (pi + p j)
2, we employ the following kinematic setup:

p2
0 = p2

1 = 0 , p2
2 = p2

3 = p2
4 = m2

H ,

s01 = 5m2
H − s02 − s03 − s12 − s13 − s23 . (43)

The kinematic space is then parameterized by (s02, s03, s12, s13, s23, m2
t , m2

H).
Let us evaluate this integral at the phase space point

m2
t = 1.8995 , m2

H = 1 , (44)

s02 = −4.4 , s03 = −0.5 , s12 = −0.6 , s13 = −0.7 , s23 = 1.8 ,

which lies in the physical region, and has the physically relevant mass ratio m2
t /m2

H = 1.8995. The remaining Mandelstam invariants are
then fixed by momentum conservation to

(s01, s04, s14, s24, s34) = (9.4, −1.5, −5.1, 7.2, 3.4).

Setting λ = 0.64 and N = 108, we get

Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082] + i * [0.0035991 +/- 0.0000068]
-- eps^1: [0.003250 +/- 0.000031] + i * [-0.035808 +/- 0.000041]
-- eps^2: [0.046575 +/- 0.000098] + i * [0.016143 +/- 0.000088]
-- eps^3: [-0.01637 +/- 0.00017] + i * [0.03969 +/- 0.00016]
-- eps^4: [-0.02831 +/- 0.00023] + i * [-0.00823 +/- 0.00024]

We were unable to evaluate this example in reasonable time with AMFlow. Again, adding more memory would likely solve this
problem. With pySecDec we were able to confirm feyntrop’s numbers within 3 hours8 on a laptop, with relative errors around 10−2.
Running feyntrop on the same laptop with 108 sampling points, we obtain the same numbers within 2.5 minutes and with relative
errors of order 10−3.

6.6. A QED-like, 4-loop vacuum diagram

Next we evaluate a QED-like, 4-loop vacuum diagram in D = 4 − 2ε dimensions:

4

5 3

1

0 2

The dashed lines represent photons, and the solid lines are electrons of mass m. No analytic continuation is required in this case since
there are no external momenta - the final result should hence be purely real. We specify

replacement_rules = []

in the code to indicate that all scalar products are zero.
The collection of edges is

edges = [((0,1), 1, ’mm’), ((1,2), 1, ’mm’), ((2,0), 1, ’mm’),
((0,5), 1, ’0’), ((1,4), 1, ’0’), ((2,3), 1, ’0’),
((3,4), 1, ’mm’), ((4,5), 1, ’mm’), ((5,3), 1, ’mm’)]

where mm stands for m2. Choosing

phase_space_point = [(’mm’, 1)]

and setting λ = 0 , N = 108, we then find

8 Three months after the initial version of this article was posted, a new version of pySecDec became available which is, in some cases, up to four times as efficient as
the former version [83]. We postpone a systematic comparison of feyntrop with this new version to a future research project.
20

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
Prefactor: gamma(4*eps + 1).
(Effective) kinematic regime: Euclidean (generic).
Finished in 3.58 seconds.
-- eps^0: [3.01913 +/- 0.00047] + i * [0.0 +/- 0.0]
-- eps^1: [-7.0679 +/- 0.0021] + i * [0.0 +/- 0.0]
-- eps^2: [20.5399 +/- 0.0074] + i * [0.0 +/- 0.0]
-- eps^3: [-27.895 +/- 0.024] + i * [0.0 +/- 0.0]
-- eps^4: [62.043 +/- 0.074] + i * [0.0 +/- 0.0]
-- eps^5: [-59.46 +/- 0.23] + i * [0.0 +/- 0.0]
-- eps^6: [155.27 +/- 0.73] + i * [0.0 +/- 0.0]
-- eps^7: [-90.81 +/- 2.26] + i * [0.0 +/- 0.0]
-- eps^8: [403.78 +/- 6.71] + i * [0.0 +/- 0.0]

We were not able to verify this example with AMFlow or pySecDec within our memory constraints. However, Vitaly Magerya in-
formed us that he was able to verify these numbers with pySecDec in under one hour using an only slightly larger computer.

6.7. An elliptic, conformal, 4-point integral

The final example is a 1-loop 4-point conformal integral with edge weights ν1,...,4 = 1/2 in D = 2 dimensions, the result of which was
computed in terms of elliptic K functions in [87, Sec. 7.2]:

x0

x3

x2

x1 = 4√
−p2

2

[K (z)K (1 − z̄) + K (z̄)K (1 − z)] (45)

The denominator above differs from [87, eq. (7.6)] because we have used conformal symmetry to send x3 → ∞, thereby reducing the
kinematic space to that of a 3-point integral. After identifying dual momentum variables xi in terms of ordinary momenta as pi = xi −xi+1,
the conformal cross ratios, with the usual single-valued complex parameterization in terms of z and z̄, read

zz̄ = p2
0

p2
2

, (1 − z)(1 − z̄) = p2
1

p2
2

. (46)

In feyntrop we specify the associated 1-loop 3-point momentum space integral as

edges = [((0,1), 1/2, ’0’), ((1,2), 1/2, ’0’), ((2,0), 1/2, ’0’)]

where all internal masses are zero and edge weights are set to 1/2.
We choose a momentum configuration in the Euclidean regime:

p2
0 = −2 , p2

1 = −3 , p2
2 = −5 . (47)

Although feyntrop can compute integrals with rational edge weights in the Minkowski regime, it is most natural to study conformal
integrals in the Euclidean regime.

With λ = 0 and N = 108, we then obtain

(Effective) kinematic regime: Euclidean (generic).
Finished in 1.34 seconds.
-- eps^0: [9.97192 +/- 0.00027] + i * [0.0 +/- 0.0]

The result agrees with the analytic expression (45). This example also illustrates the high efficiency of feyntrop in the Euclidean
regime where very high accuracies can be obtained quickly.

7. Conclusions and outlook

With this article we introduced feyntrop, a general tool to numerically evaluate quasi-finite Feynman integrals in the physical
regime with sufficiently general kinematics. To do so, we gave a detailed classification of different kinematic regimes that are relevant for
numerical integration. Moreover, we presented a completely projective integral expression for concretely iε-deformed Feynman integrals
and their dimensionally regularized expansions. We used tropical sampling for the numerical integration, which we briefly reviewed, and
we discussed the relevant issues on facet presentations of the Newton polytopes of Symanzik polynomials in detail. To be able to perform
the numerical integration efficiently, we gave formulas and algorithms for the fast evaluation of Feynman integrals. To give a concise usage
manual for feyntrop and to illustrate its capabilities, we gave numerous, detailed examples of evaluated Feynman integrals.
21

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
The most important restrictions of feyntrop are 1) it is not capable of dealing with Feynman integrals that have subdivergences
(i.e. non-quasi-finite integrals) and 2) it is not capable of dealing with certain highly exceptional kinematic configurations.

The first restriction can be lifted by implementing an analytic continuation of the integrand in the spirit of [29,30,56] into feyntrop.
Naively, preprocessing input integrals with such a procedure increases the number of Feynman integrals and thereby also the necessary
computer time immensely. However, this proliferation of terms comes from the expansion of the derivatives of the U and F polynomials
as numerators. This expansion can be avoided, because also the derivatives of U and F (mostly) have the generalized permutahedron
property, and because we have fast algorithms to evaluate such derivatives. For instance, we derived a fast algorithm to evaluate the first
and second derivatives of F in Section 4.2. We postpone the elaboration and implementation of this approach to future work.

A promising approach to lift the second restriction is to try to understand the general shape of the F polynomial’s Newton polytope.
Outside of the Euclidean and generic kinematic regimes, this polytope is not always a generalized permutahedron. In these exceptional
kinematic situations, it can have new facets that cannot be explained by known facet presentations. It might be possible to explain
these new facets with the help of the Coleman–Norton picture of infrared divergences [88] (see, e.g., [89] where explicit per-diagram
factorization of Feynman integrals was observed in a position space based framework). An alternative approach to fix the issue is to
implement the tropical sampling approach that requires a full triangulation of the respective Newton polytopes (see [1, Sec. 5]).

Besides this there are numerous, desirable, gradual improvements of feyntrop that we also postpone to future works. The most
important such improvement would be to use the algorithm in conjunction with a quasi-Monte Carlo approach. The runtime to obtain the
value of an integral up to accuracy δ currently scales as δ−2, as is standard for a Monte Carlo method. Changing to a quasi-Monte Carlo
based procedure would improve this scaling to δ−1.

Another improvement would be to find an entirely canonical deformation prescription. Currently, our deformation still relies on an
external parameter that has to be fine-tuned to the respective integral. A canonical deformation prescription that does not depend on a
free parameter would lift the burden of this fine-tuning from the user and would likely also produce better rates of convergence.

A more technical update of feyntrop would involve an implementation of the tropical sampling algorithm on GPUs or on distributed
cluster systems. The current implementation of feyntrop is parallelized and can make use of all cores of a single computer. Running
feyntrop on multiple computers in parallel is not implemented, but there are no technical obstacles to write such an implementation,
which we postpone to a future research project.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code is submitted as a tar.gz file and is made available at https://github .com /michibo /feyntrop.

Acknowledgements

We thank Nima Arkani-Hamed, Aaron Hillman, Sebastian Mizera and Erik Panzer for helpful exchanges on facet presentations of
Newton polytopes of Symanzik polynomials, Pierpaolo Mastrolia for stimulating discussions on applications to phenomenology, Yan-Qing
Ma for helpful comments on the manuscript and Vitaly Magerya for comments and independently verifying our numbers in Example 6.6
using pySecDec. FT thanks Georgios Papathanasiou for continued support. HJM and FT thank the Institute for Theoretical Studies at the
ETH Zürich for hosting the workshop ‘Tropical and Convex Geometry and Feynman integrals’ in August 2022, which was beneficial for
the completion of this work. All authors thank the Institute for Advanced Studies, Princeton US, for hospitality during a stay in May 2023
where parts of this work were completed. MB was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich
Foundation. Some of our calculations were carried out on the ETH Euler cluster.

References

[1] M. Borinsky, Ann. Inst. Henri Poincaré Comb. Phys. Interact. (2023), https://doi .org /10 .4171 /AIHPD /158, in press, arXiv:2008 .12310.
[2] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen .tuxfamily.org, 2010.
[3] D. Blackman, S. Vigna, ACM Trans. Math. Softw. 47 (2021) 36, 32.
[4] G. Van Rossum, F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.
[5] W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – seamless operability between C++11 and python, https://github .com /pybind /pybind11, 2017.
[6] A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, et al., PeerJ Comput. Sci. 3 (2017) e103.
[7] G. Heinrich, Phys. Rep. 922 (2021) 1, arXiv:2009 .00516.
[8] S.G. Karshenboim, Phys. Rep. 422 (2005) 1, arXiv:hep -ph /0509010.
[9] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, vol. 171, Oxford University Press, 2021.

[10] J.F. Donoghue, Phys. Rev. D 50 (1994) 3874, arXiv:gr-qc /9405057.
[11] F. Brown, SIGMA 17 (2021) 103, arXiv:2101.04419.
[12] Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425 (1994) 217, arXiv:hep -ph /9403226.
[13] Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 73 (2006) 065013, arXiv:hep -ph /0507005.
[14] K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192 (1981) 159.
[15] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087, arXiv:hep -ph /0102033.
[16] S. Bloch, H. Esnault, D. Kreimer, Commun. Math. Phys. 267 (2006) 181, arXiv:math /0510011.
[17] F. Brown, Commun. Math. Phys. 287 (2009) 925, arXiv:0804 .1660.
[18] E. Panzer, Comput. Phys. Commun. 188 (2015) 148, arXiv:1403 .3385.
[19] E. Remiddi, Nuovo Cimento A 110 (1997) 1435, arXiv:hep -th /9711188.
[20] J.M. Henn, Phys. Rev. Lett. 110 (2013) 251601, arXiv:1304 .1806.
[21] E. Panzer, Ann. Inst. Henri Poincaré Comb. Phys. Interact. 10 (2023) 31, arXiv:1908 .09820.
[22] F. Brown, Commun. Number Theory Phys. 11 (2017) 453, arXiv:1512 .06409.
22

https://github.com/michibo/feyntrop
https://doi.org/10.4171/AIHPD/158
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib63749F8CFA82226F965DCE95E8BFB73Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib23EEEB4347BDD26BFC6B7EE9A3B755DDs1
https://github.com/pybind/pybind11
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib31475CD03926B96F2E8C2F282EE0B1F0s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib8BE5D75D423B6AF0A1EEBAF5E6988379s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibCBBE0E66DD658570A5637F1465DCE4F5s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibB2A2123508483BA1698A9C2827324B24s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib015FAC30A63623EBF66C14810C942052s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibB8D35831D7673904C0ABD4EA32F9083Bs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibE3F725FA58E7E30E13B0B7D9A2DABB55s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib868067A797FA34DEE21B31A98AA779B0s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib77AC1EE015E5DA5600484BB202F092DEs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib1880807CC7D8D2225BFBED4A0AF8DE04s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibE58E8E390A7D73CC15762840938F39DBs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibA7386ED3E36B3256D0F9B8DE73E13D7Fs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib36F1DF03F8076D242B9659900B0DA63Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibF9CC8792F89E1C27B7883BE59EAA172Fs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib8F003887BD4C78E5E626B5A330BB0AF4s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib39E3992904EF17AD3DD42960669793DDs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibD4E8E4321832B33261FA29FDB469030As1

M. Borinsky, H.J. Munch and F. Tellander Computer Physics Communications 292 (2023) 108874
[23] G.V. Dunne, M. Meynig, Phys. Rev. D 105 (2022) 025019, arXiv:2111.15554.
[24] A.V. Smirnov, N.D. Shapurov, L.I. Vysotsky, Comput. Phys. Commun. 277 (2022) 108386, arXiv:2110 .11660.
[25] M. Borinsky, A.-L. Sattelberger, B. Sturmfels, S. Telen, SIAM J. Appl. Algebra Geom. (2022), https://doi .org /10 .1137 /22M1490569, in press, arXiv:2204 .06414.
[26] N. Arkani-Hamed, A. Hillman, S. Mizera, Phys. Rev. D 105 (2022) 125013, arXiv:2202 .12296.
[27] N. Arkani-Hamed, J. Trnka, J. High Energy Phys. 10 (2014) 030, arXiv:1312 .2007.
[28] N. Arkani-Hamed, Y. Bai, T. Lam, J. High Energy Phys. 11 (2017) 039, arXiv:1703 .04541.
[29] L. Nilsson, M. Passare, J. Geom. Anal. 23 (2013) 24.
[30] C. Berkesch, J. Forsgård, M. Passare, Mich. Math. J. 63 (2014) 101.
[31] K. Schultka, Toric geometry and regularization of Feynman integrals, arXiv:1806 .01086.
[32] I.M. Gel’fand, M.M. Kapranov, A.V. Zelevinsky, Adv. Math. 84 (1990) 255.
[33] L. de la Cruz, J. High Energy Phys. 12 (2019) 123, arXiv:1907.00507.
[34] R.P. Klausen, J. High Energy Phys. 04 (2020) 121, arXiv:1910 .08651.
[35] A. Klemm, C. Nega, R. Safari, J. High Energy Phys. 04 (2020) 088, arXiv:1912 .06201.
[36] V. Chestnov, F. Gasparotto, M.K. Mandal, P. Mastrolia, S.J. Matsubara-Heo, H.J. Munch, et al., J. High Energy Phys. 09 (2022) 187, arXiv:2204 .12983.
[37] F. Tellander, M. Helmer, Commun. Math. Phys. 399 (2023) 1021, arXiv:2108 .01410.
[38] T. Binoth, G. Heinrich, Nucl. Phys. B 585 (2000) 741, arXiv:hep -ph /0004013.
[39] C. Bogner, S. Weinzierl, Comput. Phys. Commun. 178 (2008) 596, arXiv:0709 .4092.
[40] T. Kaneko, T. Ueda, Comput. Phys. Commun. 181 (2010) 1352, arXiv:0908 .2897.
[41] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, et al., Comput. Phys. Commun. 222 (2018) 313, arXiv:1703 .09692.
[42] D.E. Soper, Phys. Rev. D 62 (2000) 014009, arXiv:hep -ph /9910292.
[43] C. Anastasiou, A. Daleo, J. High Energy Phys. 10 (2006) 031, arXiv:hep -ph /0511176.
[44] S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo, J.-C. Winter, J. High Energy Phys. 09 (2008) 065, arXiv:0804 .3170.
[45] Z. Capatti, V. Hirschi, D. Kermanschah, B. Ruijl, Phys. Rev. Lett. 123 (2019) 151602, arXiv:1906 .06138.
[46] X. Liu, Y.-Q. Ma, C.-Y. Wang, Phys. Lett. B 779 (2018) 353, arXiv:1711.09572.
[47] M.K. Mandal, X. Zhao, J. High Energy Phys. 03 (2019) 190, arXiv:1812 .03060.
[48] X. Liu, Y.-Q. Ma, Comput. Phys. Commun. 283 (2023) 108565, arXiv:2201.11669.
[49] M. Hidding, Comput. Phys. Commun. 269 (2021) 108125, arXiv:2006 .05510.
[50] T. Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vicini, Comput. Phys. Commun. 282 (2023) 108545, arXiv:2205 .03345.
[51] I. Dubovyk, A. Freitas, J. Gluza, K. Grzanka, M. Hidding, J. Usovitsch, Phys. Rev. D 106 (2022) L111301, arXiv:2201.02576.
[52] Z.-F. Liu, Y.-Q. Ma, Phys. Rev. Lett. 129 (2022) 222001, arXiv:2201.11637.
[53] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert, J. High Energy Phys. 10 (2005) 015, arXiv:hep -ph /0504267.
[54] R. Pittau, B. Webber, Eur. Phys. J. C 82 (2022) 55, arXiv:2110 .12885.
[55] S. Mizera, S. Telen, J. High Energy Phys. 08 (2022) 200, arXiv:2109 .08036.
[56] A. von Manteuffel, E. Panzer, R.M. Schabinger, J. High Energy Phys. 02 (2015) 120, arXiv:1411.7392.
[57] B. Kol, M. Smolkin, Class. Quantum Gravity 25 (2008) 145011, arXiv:0712 .4116.
[58] N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971.
[59] S. Weinzierl, Feynman Integrals, Springer, Cham, 2022, arXiv:2201.03593.
[60] R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, 1966.
[61] Z. Nagy, D.E. Soper, Phys. Rev. D 74 (2006) 093006, arXiv:hep -ph /0610028.
[62] H.S. Hannesdottir, S. Mizera, What Is the iε for the S-Matrix?, Springer, 2023, arXiv:2204 .02988.
[63] D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015.
[64] A. Postnikov, Int. Math. Res. Not. (2009) 1026.
[65] M. Aguiar, F. Ardila, Hopf monoids and generalized permutahedra, arXiv:1709 .07504.
[66] K.G. Chetyrkin, V.A. Smirnov, Theor. Math. Phys. 56 (1983) 770.
[67] E. Speer, Ann. IHP, Phys. Théor. 23 (1975) 1.
[68] R. Beekveldt, M. Borinsky, F. Herzog, J. High Energy Phys. 07 (2020) 061, arXiv:2003 .04301.
[69] V.A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts in Modern Physics, vol. 250, Springer, Heidelberg, 2012.
[70] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt U, 2015, arXiv:1506 .07243.
[71] A. Hillman, S. Mizera, E. Panzer, Personal communication, January–February 2023.
[72] S. Fujishige, N. Tomizawa, J. Oper. Res. Soc. Jpn. 26 (1983) 309.
[73] B.D. McKay, Eur. J. Comb. 4 (1983) 149.
[74] R.A. Horn, C.R. Johnson, Matrix Analysis, second ed., Cambridge University Press, Cambridge, 2013.
[75] D.A. Spielman, S.-H. Teng, SIAM J. Matrix Anal. Appl. 35 (2014) 835, arXiv:cs /0607105.
[76] M. Borinsky, O. Schnetz, J. High Energy Phys. 08 (2022) 291, arXiv:2206 .10460.
[77] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, J. McDonald, Parallel Programming in OpenMP, Morgan Kaufmann, 2001.
[78] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, et al., in: F. Loizides, B. Schmidt (Eds.), Positioning and Power in Academic Publishing: Players,

Agents and Agendas, IOS Press, 2016, pp. 87–90.
[79] A.V. Smirnov, F.S. Chuharev, Comput. Phys. Commun. 247 (2020) 106877, arXiv:1901.07808.
[80] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212 .2685.
[81] R.N. Lee, J. Phys. Conf. Ser. 523 (2014) 012059, arXiv:1310 .1145.
[82] X. Guan, X. Liu, Y.-Q. Ma, W.-H. Wu, https://gitlab .com /multiloop -pku /blade/. (Accessed 17 May 2023).
[83] G. Heinrich, S.P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical scattering amplitudes with pySecDec, arXiv:2305 .19768.
[84] X. Liu, Y.-Q. Ma, Phys. Rev. D 105 (2022) L051503, arXiv:2107.01864.
[85] A. Broggio, et al., J. High Energy Phys. 01 (2023) 112, arXiv:2212 .06481.
[86] S. Di Vita, S. Laporta, P. Mastrolia, A. Primo, U. Schubert, J. High Energy Phys. 09 (2018) 016, arXiv:1806 .08241.
[87] L. Corcoran, F. Loebbert, J. Miczajka, J. High Energy Phys. 04 (2022) 131, arXiv:2112 .06928.
[88] S. Coleman, R.E. Norton, Nuovo Cimento 38 (1965) 438.
[89] M. Borinsky, Z. Capatti, E. Laenen, A. Salas-Bernárdez, J. High Energy Phys. 01 (2023) 172, arXiv:2210 .05532.
23

http://refhub.elsevier.com/S0010-4655(23)00219-9/bibA6A9F4790B5A35856187DFFFB3C7227Bs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibFE3674CCA6F6E09D42C8CD7345063CCAs1
https://doi.org/10.1137/22M1490569
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib1EA39E80711B5DD91722396E7D7C63A7s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib06B79ED5607D53B6F88F712916CDA704s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibDA274EEC7FCBBFF729CBBE5C28D135AFs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib59A43CDB7139931C26CA6952065C05C9s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibCEA5F90D0F66775B0030AB50D906FEF1s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibABAF43571747230EC07AC5B76253BF0Es1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibFB7898004544C9C8C0ED517430B90502s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibC798A1E8DC5729281CB9D9139B2CDC6Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibEAE97DF37E90763F500CC0D8FE42E93Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib7FC17832B2F88F86B7F378CC7E4DFC0Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibA3C884AE9319AE2ACBC658F82B1BDBA3s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib3EB81CD542176CB63F39A880F009B395s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib5078FE9CBB1A5B527AFEC3012E164A24s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib04F15BFFB5BC7203C5759AA0D3E4968Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibA9157692B62D344E7BA2F0F56313EE6Es1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib09A024CB01F596F080BD9F7ED71DB8F7s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib73E21346CF8B2F5E5DADC7A5ACE877A8s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibB06966CF324A9FF66F3EA858EBF5CCBEs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib13020806F66FA5522C8AE8E68EE903CAs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib758CB5690FB282E1F3ECBE41220C2960s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib661FDB7AADDFA299C0393968B8FD3320s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibAF97F0C8F0BA22DBEF947F2E0C880213s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibACEF661A1532E0F2404BBD0B260B37F0s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibEFC54329533A3BC896419296CD6541C6s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibFC8C72E47E6CEF11DA0301C435E54377s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib8E8DF76892FCA2B35A5C43DA2444EC0Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibF8774A9537A545AD766A9BAEEEB94FD5s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib4106E54A2312D711AD5C6B5B4C5BA0CDs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib9C9B68C19BF99ABF3DE56FF6E0F4B335s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib73A841E10C52710836A6C64DF4792D43s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib883F5936FCEAAF14384F6FD7D541C9A4s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib4821FC874FAA922090DFCE75F571B8F7s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib4E568C313415DC1C97572BA15304F754s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib63C2E56970608DACC9E8A3C52E4B9BCFs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib433B034A75B73FD702E39F4E4383A3FBs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib90C591D1C4C3A4041A46BBDFA7FFA211s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib871D747201FC08C18A936D46158D34E5s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib74E581905893B8F6038B82785246952Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibF9D75A0C9E7E08D2759690F970C46D19s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibD127350021117283C44B5697C72B83DFs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib57022640EFE602B1960ED73D24B2D5F5s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibBC461195AA2056AEE1BB7C4956C5F060s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib2E9B56C50E8E941CBA74A65842059A4Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib65E1728B49668AD7D84C329B9A8BD529s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib31D0E5D3C034A3EFCBC03D1550E6B69Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibF112D077F28E8010F5199699F6175A66s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibA67F9205D54AD36923104C38C78A8F9Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib954FE21E47EA1FFCCAE65A023BF1D6FAs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib2AB73BA93EF3E656F860EAA52D21A28Bs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibEFE1E471A8FA014DA2D9A92A7028A12As1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibDD24FE3D59C9D940D5EB8551294024DBs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib7CA45798638D196CCF0C011340D99067s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib187ED54B5C9A274C414F90A73D2CA09Cs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib23F9845E988E8CAA2F4B21F74AF6E7C2s1
https://gitlab.com/multiloop-pku/blade/
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib9AA01BBF9DF7CDCA7C28316EF1D307B8s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib8D6A5B19EA7DCAEA14D021E83643815Ds1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib99C826D57951A96511AB8E0FA70E8B7Fs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibBC4236C27CDD54C997407268C09C7198s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib3E1F2747E0E8C775BD92DC75D0E332A5s1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bib4702528660C66AA38D3AFAED665614BDs1
http://refhub.elsevier.com/S0010-4655(23)00219-9/bibCC35D908206BA3B94F871686EA74BA83s1

