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De Finetti Theorems for Quantum
Conditional Probability Distributions with
Symmetry

Sven Jandura and Ernest Y.-Z. Tan

Abstract. The aim of device-independent quantum key distribution (DIQKD)
is to study protocols that allow the generation of a secret shared key be-
tween two parties under minimal assumptions on the devices that produce
the key. These devices are merely modeled as black boxes and mathemat-
ically described as conditional probability distributions. A major obstacle
in the analysis of DIQKD protocols is the huge space of possible black
box behaviors. De Finetti theorems can help to overcome this problem
by reducing the analysis to black boxes that have an iid structure. Here
we show two new de Finetti theorems that relate conditional probability
distributions in the quantum set to de Finetti distributions (convex com-
binations of iid distributions) that are themselves in the quantum set. We
also show how one of these de Finetti theorems can be used to enforce
some restrictions onto the attacker of a DIQKD protocol. Finally we ob-
serve that some desirable strengthenings of this restriction, for instance
to collective attacks only, are not straightforwardly possible.

1. Introduction

The aim of quantum key distribution is to establish a shared key between
two parties, commonly called Alice and Bob, that is unknown to any third
party, commonly called Eve. To achieve this goal, Alice and Bob can share an
entangled quantum state and use the correlated outcomes of measurements
on this state to generate a secure key pair via a postprocessing protocol. If
Eve has tampered with the shared state, Alice and Bob either notice this and
abort the protocol, or are able to generate a secure key pair anyway [1–3]. In
device-independent quantum key distribution (DIQKD) we assume that Eve
not only has control over the shared state, but is also able to manipulate the
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devices that Alice and Bob use to measure the state. As long as the devices
are not manipulated in a way that sends information out of Alice’s and Bob’s
laboratories through channels other than those controlled by Alice and Bob,
there are still protocols that allow for the generation of a shared secret key
[4–8].

In the device-independent context, the devices of Alice and Bob are
treated as black boxes and modeled by a conditional probability distribution
PAB|XY . Alice and Bob can give inputs x and y, respectively, to the box,
and receive outputs a and b with probability PAB|XY (ab|xy). We will often
write P (ab|xy) instead of PAB|XY (ab|xy) when the random variables A, B,
X and Y are implicitly understood. In the device-dependent case, the inputs
correspond to the choice of measurement basis and the outputs to the results
of the measurement. We will denote the sets of possible inputs by X and Y,
and the sets of outputs by A and B. If the inputs and outputs are strings of
length n, i.e., they are of the form X = X̂ n (where X̂ denotes some set of
possible single-round inputs) and analogously for Y, A and B, we call PAB|XY

an n-round box. If QÂB̂|X̂Ŷ is a box with inputs and outputs in X̂ , Ŷ , Â, B̂, we
denote by Q⊗n

AB|XY the n-round iid box with

Q⊗n(ab|xy) =
n∏

i=1

Q(aibi|xiyi). (1)

Not all boxes PAB|XY describe processes that are physically possible if
we assume that no information can leave the laboratories of Alice and Bob. All
boxes must then be such that Bob gains no information about Alice’s input
from his output, and vice versa. We refer to boxes satisfying this constraint as
non-signaling:

Definition 1. A box PAB|XY is non-signaling if

∀b, y, x, x′ ∑

a

P (ab|xy) =
∑

a

P (ab|x′y) (2)

∀a, x, y, y′ ∑

b

P (ab|xy) =
∑

b

P (ab|xy′). (3)

If we furthermore assume that the boxes are described by quantum the-
ory, we can describe the distribution PAB|XY by some quantum state shared
between Alice and Bob and some POVMs describing their measurements.

Definition 2. A box PAB|XY is quantum if there are Hilbert spaces HA, HB ,
a state ρAB ∈ End (HA ⊗ HB), for each x a POVM {Ea,x|a} on HA and for
each y a POVM

{
F b,y|b} on HB such that

P (ab|xy) = tr
[
ρAB

(
Ea,x ⊗ F b,y

)]
. (4)

The set of quantum boxes is a proper subset of the set of non-signaling boxes.
That both sets are not identical is demonstrated by the Popescu–Rohrlich box
[9].
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When constructing DIQKD security proofs, often the analysis would be
simplified if there were some form of reduction from general box behavior to
the iid case, as it is substantially easier to construct security proofs for the
latter (as achieved in, e.g., [5,6,10]). To find such a reduction, so-called de
Finetti theorems may be a promising tool, as they have previously been used
to achieve this goal in the case of device-dependent QKD [3,11]. De Finetti
theorems allow us to relate the entries of an arbitrary permutation-invariant
box to the entries of a de Finetti box (a convex combination of iid boxes).
De Finetti theorems where originally developed for random variables [12] and
then extended to quantum states [3,13–15] and boxes [16,17]. For example,
in [16] it was shown that for each set of single-round inputs Â and outputs
X̂ there exists a de Finetti box τA|X such that for all permutation-invariant
boxes PA|X it holds that

∀a ∈ A, x ∈ X P (a|x) ≤ (n + 1)|X̂ |(|Â|−1)τ(a|x). (5)

(Here we treat the inputs and outputs of Alice and Bob as lumped together
to a single-round input and output.)

However, the de Finetti theorems for boxes derived in, e.g., [16,17] have
the drawback that the de Finetti boxes cannot be restricted to the quantum set
even if the original permutation-invariant boxes are quantum. This creates an
obstacle for applications, because many existing DIQKD security proofs under
the iid assumption exploit the properties of the quantum set [5,6,10]. This
implies that such proofs cannot be combined with the de Finetti theorems in
[16,17] to obtain security against non-iid attacks, as those de Finetti theorems
involve boxes that are not in the quantum set. (It is true that one could
aim to derive a security proof for all iid behaviors in the non-signaling rather
than quantum set, then apply the de Finetti theorems of [16,17] to obtain
security against non-iid attacks. However, this would give lower asymptotic
key rates and noise tolerance compared to security proofs against quantum
attackers, because non-signaling behaviors yield a significantly larger class of
possible attacks.) Ideally, we would like to find a de Finetti theorem that can
extend the iid security proofs against quantum attackers in [5,6,10] to cover
non-iid quantum attackers, while preserving the asymptotic key rates and noise
tolerance from those proofs, similar to the situation for device-dependent QKD
[11]. While we do not fully achieve this goal in this work, we do obtain a de
Finetti theorem that allows a partial reduction to the iid case (in a sense
described in Sect. 3), and we also highlight some concrete difficulties that may
be faced when aiming for a full reduction.

Regarding other existing approaches for reductions to the iid case, we
note that for DIQKD protocols that use only one-way communication for er-
ror correction [3], a proof technique known as the entropy accumulation theo-
rem (EAT) [18] can be used to essentially reduce the analysis of non-iid (but
time-ordered) boxes to the iid scenario [8]. Alternatively, the techniques in
[19,20] can be used to obtain security proofs for such protocols even when the
boxes accept all inputs in parallel, though the resulting asymptotic key rates
are lower than in the iid case. There are, however, protocols that don’t only
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use one-way error correction (broadly referred to as advantage distillation pro-
tocols [3,10,21–24], such as the Cascade protocol [25] or the repetition-code
protocol [3,21]), and these protocols do not admit a security proof via those
approaches.1 The significance of these protocols in DIQKD is that under an
iid assumption, it has been shown [10] that they can achieve higher noise tol-
erances than one-way error correction (i.e., they can achieve positive key rates
even when the key rate given by one-way error correction is zero), analogous
to results for device-dependent QKD [3,23,24]. However, for device-dependent
QKD these improved noise tolerances can be lifted to the non-iid case using de
Finetti arguments as mentioned above, whereas in DIQKD such an argument
is currently missing—in fact, there are currently no security proofs for DIQKD
advantage distillation protocols against non-iid attacks. Finding a way to re-
solve this would be useful in, for instance, tackling a foundational question
of characterizing which non-local box behaviors can be used for DIQKD [26]
(analogous to the question of bound information in device-dependent QKD
[27]), since advantage distillation can have higher noise tolerances than one-
way error correction.

Our main result in this work consists of two de Finetti theorems for
Clauser–Horne–Shimony–Holt (CHSH) symmetric quantum boxes (see Defini-
tion 4), such that the de Finetti box is quantum as well. We further show how
the first de Finetti theorem could be used in the security proofs of DIQKD
protocols, yielding a partial reduction to the iid case.

The rest of this paper is structured as follows: In Sect. 2.1, we show the
first de Finetti theorem (Theorem 6). It is similar to Eq. (5) and shows that
the entries of a CHSH symmetric quantum box are upper bounded, up to a
factor polynomial in n, by the entries of a fixed quantum de Finetti box. In
Sect. 2.2, we then show the second de Finetti theorem (Theorem 11), which is
closer to the original de Finetti theorems for random variables and quantum
states. It states that the marginal of the first k rounds of a n-round CHSH
symmetric quantum box is close to (and not just upper bounded by) a quantum
de Finetti box. Our results in this section rely on the existence of appropriate
threshold theorems (see, e.g., Theorem 7). A natural question is whether it
is possible to derive them without using the threshold theorems; however, we
show in Appendix B that proving a de Finetti theorem of the first form is
essentially equivalent to proving a threshold theorem; hence, it would be a
result of comparable difficulty.

1More specifically: the proof approaches in those works essentially rely on bounding the
conditional smooth min-entropy [3] of the “raw” box outputs (or a subset thereof), then
compensating for the additional information revealed during one-way error correction by
subtracting the number of bits communicated during that step. However, advantage distil-
lation protocols may perform a significant amount of processing on the box outputs before
the privacy amplification step (informally: the step in which the data is transformed into
the final key), and furthermore, they often communicate a very large number of bits in
the process as compared to one-way error correction (see, e.g., the repetition-code protocol
[3,21]). Hence, the proof techniques in [8,19,20] are difficult to extend to these advantage
distillation protocols.
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In light of this, our results cannot currently be used as an alternative
method to prove threshold theorems. However, our focus is more on the appli-
cation of these results for DIQKD security proofs. Hence, in Sect. 3, we present
an application of the first de Finetti theorem to bound the diamond distance
between two channels acting on boxes. The diamond distance measures how
well these two channels can be distinguished by an attacker. Since the security
of a DIQKD protocol is related to the diamond distance between the protocol
and an ideal channel [28,29], bounds on the diamond distance can be useful in
DIQKD security proofs. We show that to prove security of a DIQKD protocol
against arbitrary (so-called coherent [30]) quantum attacks it is sufficient to
prove security against an adversary who holds an extension of a fixed quantum
de Finetti box (Theorem 15). However, this extension may not be quantum
itself and can only be restricted to the non-signaling set.

In Sect. 4, we show that the result from Sect. 3 cannot be strengthened to
restrict the attacker further to collective attacks [30] (attacks where the black
box can be described by an iid quantum state and iid measurements for Alice
and Bob, see Definition 16). For this, we construct two channels that cannot
be distinguished at all using boxes compatible with collective attacks, but can
be distinguished if arbitrary quantum boxes are available (Theorem 17). This
shows that the theorem from Sect. 3 cannot be immediately used to conclude
security against coherent attacks from security against collective attacks.

2. De Finetti Theorems for Boxes with CHSH Symmetry

2.1. The First de Finetti Theorem

Let us first define de Finetti boxes and CHSH symmetry:

Definition 3. A n-round box τAB|XY is called de Finetti if it is the convex
combination of iid boxes.

Definition 4. An n-round box PAB|XY with single-round inputs and outputs
in Â = B̂ = X̂ = Ŷ = {0, 1} is called CHSH symmetric if

P (ab|xy) = P (a′b′|x′y′) whenever ‖a ⊕ b ⊕ xy‖0 = ‖a′ ⊕ b′ ⊕ x′y′‖0 .

(6)

Here ‖x‖0 denotes the number of nonzero entries of a n-bit string x.

If for an index i we have ai ⊕ bi = xiyi, we say that the CHSH game is
won in round i [31]. Thus, Definition 4 basically states that a box is CHSH
symmetric if its entries P (ab|xy) only depends on how many indices the CHSH
game was won. Our definition of CHSH symmetry differs slightly from the
one in [16], where it is only required that P (ab|xy) = P (a′b′|x′y′) whenever
a ⊕ b ⊕ xy = a′ ⊕ b′ ⊕ x′y′. Our definition agrees with the definition in [16]
for permutation symmetric boxes—essentially, we have implicitly incorporated
the constraint of permutation symmetry into Definition 4 itself.

Of course, an attacker can initially manipulate the boxes of Alice and Bob
such that they do not possess CHSH symmetry. However, Alice and Bob can
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run the following procedure to enforce CHSH symmetry: First Alice chooses a
random permutation π and transmits it to Bob over the authenticated channel;
then, Alice and Bob permute their inputs and outputs according to π. If we
view the original box as a conditional probability distribution PABE|XY Z for
Alice, Bob and Eve we can view π as additional knowledge E′ of Eve and
describe the box after π has been applied by P̃ABEE′|XY Z . Alice and Bob
will not require π for the remainder of the protocol and can now discard it;
therefore, in the rest of our discussion we do not include it in the marginal
of the Alice–Bob boxes, whereas on Eve’s component we will simply absorb
E′ into E and no longer explicitly denote it. Then the marginal P̃AB|XY has
permutation symmetry. To go from permutation symmetry to CHSH symmetry
Alice and Bob apply the depolarization protocol described in appendix A of
[32] to each round. If the box in the honest implementation of the DIQKD
protocol has CHSH symmetry, it is unchanged by this depolarization protocol.
It is important to note that only the marginal box of Alice and Bob has
CHSH symmetry after this protocol: From the perspective of Eve, who knows
the permutation π and the random bits chosen in the depolarization protocol
in [32], the box may not have CHSH symmetry. However, we highlight that
in the case of device-dependent QKD, this did not prevent constructing a
security proof via de Finetti arguments [11], and hence, there still remains the
possibility of a similar result for DIQKD.

It was shown in [16] that a de Finetti theorem holds for CHSH symmetric
boxes:

Theorem 5 (Corollary 6 in [16]). For each number n of rounds, there is an
n-round CHSH symmetric de Finetti box τAB|XY such that for all CHSH sym-
metric boxes PAB|XY it holds that

P (ab|xy) ≤ (n + 1)τ(ab|xy). (7)

Theorem 5 was derived for all CHSH symmetric boxes PAB|XY , even if they are
not quantum. However, the de Finetti box τAB|XY constructed in the theorem
is also not quantum. The main result we derive in this section is a de Finetti
theorem for quantum CHSH symmetric boxes, hence resolving this issue:

Theorem 6. For each number n of rounds, there is an n-round CHSH symmet-
ric quantum de Finetti box τAB|XY such that for all CHSH symmetric quantum
boxes PAB|XY it holds that

P (ab|xy) ≤ (n + 1)2τ(ab|xy). (8)

The maximal probability with which any single-round quantum box can
win the CHSH game is w = 2+

√
2

4 [33]. This value is called the quantum value
of the CHSH game. To prove Theorem 6, we need the following specialization
of a theorem from [34] to the CHSH case. It says that the probability that
the fraction of won CHSH games is larger than a certain threshold (namely
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the value of the CHSH game) is exponentially small in n. Such theorems are
commonly referred to as threshold theorems.2

Theorem 7 (Theorem 5 in [34]). Let PAB|XY be an n-round box with single-
round inputs and outputs in {0, 1}. Let μ be the uniform probability distribution
on {0, 1}2 and K = ||A ⊕ B ⊕ XY ⊕ 1||0 the number of won instances of the
CHSH game. Let w = 2+

√
2

4 the quantum value of the CHSH game. Then for
k > wn

PrPAB|XY ,μ⊗n [K ≥ k] ≤ e−nD(k/n,1−k/n||w,1−w), (9)

where PrPAB|XY ,μ⊗n denotes the probability measure in which X and Y are
sampled from μ⊗n and A and B are sampled using PAB|XY and

D(p, 1 − p||q, 1 − q) = p ln
(

p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
(10)

denotes the relative entropy.

Note that the box PAB|XY in Theorem 7 does not have to be CHSH
symmetric. However, if PAB|XY is CHSH symmetric then we can describe it
completely by n+1 parameters {p0, p1, . . . , pn}, which we define as follows: For
each k ∈ {0, . . . , n}, take any a, b, x, y ∈ {0, 1}n such that k = ||a⊕b⊕xy⊕1||0
(in other words, a, b, x, y win exactly k instances of the CHSH game). Then
define

pk =
(

n

k

)
2nP (ab|xy). (11)

By CHSH symmetry, all combinations of a, b, x, y with the same value of k
have the same value of P (ab|xy), so the expression (11) is indeed well defined.
The normalization factor

(
n
k

)
2n is chosen to give these parameters a simple

interpretation: namely, pk is in fact equal to the probability of winning exactly
k CHSH games for the box P (ab|xy) (regardless of the input distribution). To
see this, notice that for fixed x, y and k there are exactly

(
n
k

)
2n pairs a, b such

that k = ||a ⊕ b ⊕ xy ⊕ 1||0 [16]. Therefore, for any probability measure μ on

2To be precise, Theorem 7 is a “perfect” threshold theorem, in that the exponent in the
bound (9) is such that the bound is, up to a factor polynomial in n, equal to

(n
k

)
wk(1−w)n−k,

the probability to win exactly k games if a single game is won with probability w. “Imperfect”
threshold theorems can be roughly described as giving bounds of the more general form
e−nΔ(k/n), where Δ is some potentially “looser” way to quantify the distance from k/n to

w [35]. Our first de Finetti theorem (Theorem 6) and its generalization (Theorem 22) both
require a perfect threshold theorem. However, the proof of our second de Finetti theorem
(Theorem 11) still holds with an imperfect threshold theorem, though the resulting bound
would be weaker.
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the n-round inputs x and y, we indeed have

PrPAB|XY ,μ[K = k] =
∑

a,b,x,y
k=||a⊕b⊕xy⊕1||0

P (ab|xy)μ(xy)

=
∑

xy

(
n

k

)
2n pk(

n
k

)
2n

μ(xy) (12)

= pk

where in the second equality we used that the summand does not depend
on a and b, and for a fixed x and y there are

(
n
k

)
2n possible a and b with

‖a ⊕ b ⊕ xy ⊕ 1‖0 = k. Theorem 7 then implies
∑

l≥k

pl ≤ e−nD(k/n,1−k/n||w,1−w). (13)

To prove Theorem 6, we need one further ingredient:

Lemma 8. Let a, b ∈ R with a < b and f : [a, b] → R
+
0 be a concave function

that attains its maximum at some x∗ ∈ [a, b]. Then ∀n ∈ N,

1
n + 1

(b − a)f(x∗)n ≤
∫ b

a

f(x)ndx ≤ (b − a)f(x∗)n (14)

The proof is given in Appendix A. Now we are ready to prove Theorem 6:

Proof of Theorem 6. Let w = 2+
√

2
4 be the quantum value of the CHSH game

and define for p ∈ [1 − w,w] the single-round box Q(p)ÂB̂|X̂Ŷ as

Q(p)(ab|xy) =

{
p/2 if a ⊕ b = xy

(1 − p)/2 if a ⊕ b 
= xy
(15)

Now set

τAB|XY =
1

2w − 1

∫ w

1−w

Q(p)⊗n
AB|XY dp. (16)

τAB|XY is quantum because each p ∈ [1−w,w] Q(p)⊗n
AB|XY is quantum. Further

τAB|XY is de Finetti by construction. Let a, b, x, y ∈ {0, 1}n and let k =
‖a ⊕ b ⊕ xy ⊕ 1‖0 be the number of won CHSH games of a, b, x, y. Let α = k/n
and set

f(p) =
1
2
pα(1 − p)1−α. (17)

Then

τ(ab|xy) =
1

2w − 1

∫ w

1−w

2−npk(1 − p)n−kdp =
1

2w − 1

∫ w

1−w

f(p)ndp. (18)

Note that

f ′(p) =
(

α

p
− 1 − α

1 − p

)
f(p) (19)



Vol. 25 (2024) De Finetti Theorems for Quantum 2221

and

f ′′(p) =

[(
α

p
− 1 − α

1 − p

)2

− α

p2
− 1 − α

(1 − p)2

]
f(p)

= − α(1 − α)
p2(1 − p)2

f(p) < 0. (20)

Therefore, f is concave and its maximum on the interval [0, 1] occurs at p = α.
Since f is concave, we can apply Lemma 8 to Eq. (18) and get

τ(ab|xy) ≥ 1
n + 1

sup
p∈[1−w,w]

f(p)n. (21)

Now we turn to the box PAB|XY . Following the earlier notation, let pk

denote the probability of winning exactly k CHSH games with this distribution.
We observe that

• If α > w, then the threshold Theorem 7 implies

pk ≤ e−nD(α,1−α||w,1−w). (22)

• If α < 1 − w, we can use the threshold theorem to get a bound on the
minimal number of won games, because the CHSH game has the property
that winning exactly k games is just as hard as losing exactly k games
(and thus winning n − k games). Hence, we have

pk ≤ e−nD(α,1−α||1−w,w). (23)

• If α ∈ [1 − w,w], we can rewrite the trivial bound pk ≤ 1 in the form

pk ≤ 1 = e−nD(α,1−α||α,1−α). (24)

Hence, we can summarize the implications of the threshold theorem as

pk ≤ sup
p∈[1−w,w]

e−nD(α,1−α||p,1−p). (25)

We can simplify the term in the supremum by inserting the definition of relative
entropy:

e−nD(α,1−α||p,1−p) =
( p

α

)αn
(

1 − p

1 − α

)(1−α)n

=
f(p)n

f(α)n
. (26)

Now recall that by Eq. (11), P (ab|xy) is related to pk by

P (ab|xy) =
pk

2n
(
n
k

) . (27)

It is a well-known identity of the Beta function that
(

n

k

)−1

= (n + 1)
∫ 1

0

tk(1 − t)n−kdt = 2n(n + 1)
∫ 1

0

f(p)ndp

≤ 2n(n + 1)f(α)n (28)
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where for the last inequality we used Lemma 8 and the fact that the maximum
of f on [0, 1] is f(α). Inserting Eq. (28) followed by Eqs. (25)–(26) into Eq. (27)
gives

P (ab|xy) ≤ (n + 1)pkf(α)n ≤ (n + 1) sup
p∈[1−w,w]

f(p)n. (29)

Combining Eqs. (21) and (29) yields P (ab|xy) ≤ (n + 1)2τ(ab|xy), as de-
sired. �

The arguments in the proof of Theorem 6 are not specific to CHSH sym-
metry. In fact, in Appendix B we show that we get such a de Finetti theorem
whenever a threshold theorem analogous to Theorem 7 holds.

2.2. The Second de Finetti Theorem

The de Finetti theorem discussed in the previous section is similar to the de
Finetti theorems for boxes shown in [16]; they show that the entries of some
given box are upper bounded by the entries of a de Finetti box. The original de
Finetti theorems for random variables and quantum states are of a different
flavor: They show that the marginal on the first k rounds of an arbitrary n-
round permutation-invariant state is close to a de Finetti state if k � n. In
this section, we show a theorem of this type for CHSH symmetric boxes. We
use the following distance measure on the space of boxes:

Definition 9. Let PA|X and QA|X be two boxes with the same input set X and
output set A. Their distance is

∥∥PA|X − QA|X
∥∥ = max

x∈X

∑

a∈A
|P (a|x) − Q(a|x)|. (30)

This distance is just the �1 distance of the probability distributions of
a, maximized over the input x. To state the de Finetti theorem, we need
to introduce the notion of the marginal of an n-round box. In general, this
marginal may not be well defined without some kind of non-signaling condition
across different rounds (since otherwise the output distribution of one round
could potentially depend on the input in another round). However, it turns out
that for CHSH symmetric boxes this is indeed well defined, as we now show.

Lemma 10. Let PAB|XY be an n-round CHSH symmetric quantum box and let
1 ≤ k ≤ n be an integer. Then the expression

P k(a1 . . . ak, b1 . . . bk|x1 . . . xk, y1 . . . yk)

:=
∑

ak+1...an

bk+1...bn

P (a1 . . . an, b1 . . . bn|x1 . . . xn, y1 . . . yn) (31)

is independent of the choice of xk+1 . . . xn and yk+1 . . . yn, and we shall refer
to it as the marginal of the first k rounds. Furthermore, P k

AB|XY is a CHSH
symmetric quantum box (of k rounds).
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Proof. We shall use the notation a = (a1 . . . ak) and a′ = (ak+1 . . . an), and
define b, b′, x, x′, y, y′ analogously. To see that P k

AB|XY is independent of the
choice of x′ and y′, we calculate

P k(ab|xy) =
∑

a′b′
P (aa′, bb′|xx′, yy′)

=
∑

a′b′
P (aa′, b(b′ ⊕ x′y′)|x0, y0)

=
∑

a′b′
P (aa′, bb′|x0, y0), (32)

where in the second equality we used the CHSH symmetry of PAB|XY and in
the third equality we shifted the summation variable b′ by x′y′.

To see the CHSH symmetry of P k
AB|XY , note that by CHSH symmetry

of PAB|XY , P (aa′, bb′|x0, y0) only depends on a ⊕ b ⊕ xy and a′ ⊕ b′. Hence,
P k(ab|xy) only depends on a⊕b⊕xy. Furthermore, the permutation invariance
of PAB|XY immediately implies that P k

AB|XY is also permutation-invariant,
and hence, we conclude that P k

AB|XY is CHSH symmetric. Finally, the fact
that P k

AB|XY is a quantum box immediately follows from the fact that PAB|XY

is quantum. �

Now we can state the de Finetti theorem:

Theorem 11. Let PAB|XY be an n-round CHSH symmetric quantum box and
let P k

AB|XY be the marginal of the first k rounds as defined in Eq. (31). There
is a k-round CHSH symmetric quantum de Finetti box τAB|XY such that

∥∥∥P k
AB|XY − τAB|XY

∥∥∥ ≤
(
C
√

ln(n/k) + 4
)√k

n
+

4k

n
= O

(√
ln(n/k)

k

n

)

(33)

with C = 2√
2−√

2
≈ 2.6.

For the proof of Theorem 11, we first note that the distance between two
CHSH symmetric boxes is just the �1 distance between the distributions of the
wins and losses of the CHSH game, which are independent from the input into
the box.

Lemma 12. Let PAB|XY and QAB|XY be CHSH symmetric n-round boxes and
W = A ⊕ B ⊕ XY ⊕ 1 ∈ {0, 1}n be the random variable that indicates in
which rounds the CHSH game was won. Let PW and QW the distribution of
W . Then

∥∥PAB|XY − QAB|XY

∥∥ = ‖PW − QW ‖1 . (34)

Proof. For all x, y

P (ab|xy) = 2−nPW (a ⊕ b ⊕ xy ⊕ 1) (35)
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so
∑

a,b

|P (ab|xy) − Q(ab|xy)| =
∑

a,w

2−n|PW (w) − QW (w)| = ‖PW − QW ‖1 .

(36)

�

Another ingredient for the proof of Theorem 11 is a bound on the �1-
distance between two binomial distributions:

Lemma 13. Let k ∈ N and p, q ∈ (0, 1). Denote by P = Binom(k, p) and Q =
Binom(k, q) the binomial distributions with k trials and success probabilities p
and q. Then

‖P − Q‖1 ≤ 2
√

n

min{q, 1 − q} |p − q|. (37)

Proof. Denote by P0 and Q0 the Bernoulli distributions with success probabil-
ity p and q, respectively. We use Pinsker’s inequality and the reverse Pinsker’s
inequality (Lemma 4.1 in [36]) to calculate

‖P − Q‖1 ≤
√

2D(P ||Q) Pinsker’s inequality

=
√

2nD(P0||Q0) additivity of relative entropy

≤
√

n ‖P0 − Q0‖2
1

min{q, 1 − q} reverse Pinsker’s inequality

= 2
√

n

min{q, 1 − q} |p − q|. (38)

�

Now we are ready to prove the de Finetti theorem:

Proof of Theorem 11. Denote by pN the probability that Alice and Bob win
exactly N CHSH games on the box PAB|XY . Then W = A ⊕ B ⊕ XY ⊕ 1 has
a permutation-invariant distribution PW with

∑

w:
∑

i wi=N

PW (w) = pN . (39)

By the de Finetti theorem for random variables [12], we have
∥∥∥∥∥P

k
W −

n∑

N=0

pNBinom
(

k,
N

n

)∥∥∥∥∥ ≤ 4k

n
, (40)

where P k
W denotes the distribution of the first k bits of W .

For p ∈ [0, 1], denote by Q(p)ÂB̂|X̂Ŷ the single-round box with CHSH
winning probability p. Then by Lemma 12 and Eq. (40),

∥∥∥∥∥P
k
AB|XY −

n∑

N=0

pNQ

(
N

n

)⊗k
∥∥∥∥∥ ≤ 4k

n
(41)
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The box
∑n

N=0 pNQ
(

N
n

)⊗k
is CHSH symmetric and de Finetti, but not quan-

tum. The problems are the terms with N > nw and N < n(1 − w), where
w = 2+

√
2

4 . We define a quantum CHSH symmetric de Finetti box as

τAB|XY =
n∑

N=0

pN

⎧
⎪⎨

⎪⎩

Q(w)⊗k if N > wn

Q
(

N
n

)⊗k
if N ∈ [(1 − w)n,wn]

Q(1 − w)⊗k if N < (1 − w)n

. (42)

We will show
∥∥∥∥∥τAB|XY −

n∑

N=0

pNQ

(
N

n

)⊗k
∥∥∥∥∥ ≤

(
C
√

ln(n/k) + 4
)√k

n
. (43)

The statement of Theorem 11 then follows by combining this bound and the
bound in Eq. (41) using the triangle inequality.

Let δ > 0. We split the sum in the definition of τAB|XY to obtain
∥∥∥∥∥τAB|XY −

n∑

N=0

pN Q

(
N

n

)⊗k
∥∥∥∥∥ ≤

∑

N∈[wn,n]

pN

∥∥∥∥∥Q(w)
⊗k − Q

(
N

n

)⊗k
∥∥∥∥∥

+
∑

N∈[0,(1−w)n]

pN

∥∥∥∥∥Q(1 − w)
⊗k − Q

(
N

n

)⊗k
∥∥∥∥∥

≤
∑

N∈[wn,(w+δ)n]

pN

∥∥∥Q(w)
⊗k − Q(w + δ)

⊗k
∥∥∥

+
∑

N∈[(1−w−δ)n,(1−w)n]

pN

∥∥∥Q(1 − w)
⊗k − Q(1 − w − δ)

⊗k
∥∥∥

+ 2
∑

N∈[0,(1−w−δ)n]∪[(w+δ)n,n]

pN (44)

where in the last line we used
∥∥PAB|XY − QAB|XY

∥∥ ≤ 2 for all normalized
boxes PAB|XY and QAB|XY . We start by bounding the terms with N ∈
[wn, (w + δ)n] and N ∈ [(1 − w − δ)n, (1 − w)n] using Lemma 13:

∥∥Q(w)⊗k − Q(w + δ)⊗k
∥∥ ≤ 2√

1 − w

√
kδ = 2C

√
kδ (45)

where we used 2√
1−w

= 4√
2−√

2
= 2C. Analogously we find

∥∥Q(1 − w)⊗k − Q(1 − w − δ)⊗k
∥∥ ≤ 2C

√
kδ (46)

so that by
∑

N pN = 1
∑

N∈[wn,(w+δ)n]

pN

∥∥Q(w)⊗k − Q(w + δ)⊗k
∥∥

+
∑

N∈[(1−w−δ)n,(1−w)n]

pN

∥∥Q(1 − w)⊗k − Q(1 − w − δ)⊗k
∥∥

≤ 2C
√

kδ. (47)
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Now we turn to the terms with N > (w + δ)n and N < (1 − w − δ)n. By
the threshold theorem for the CHSH game (Theorem 7), it holds that

∑

N>(w+δ)n

pN ≤ e−nD(w+δ,1−w−δ||w,1−w) (48)

≤ e−2nδ2
(49)

where in the last step we used Pinsker’s inequality, i.e D(p, 1 − p||q, 1 − q) ≥
2|p − q|2. Analogously also

∑

N<(1−w−δ)n

pN ≤ e−2nδ2
. (50)

Putting together the bounds for N ∈ [wn, (w + δ)n] and N > (w + δ)n, we
find ∥∥∥∥∥τAB|XY −

n∑

N=0

pNQ

(
N

n

)⊗k
∥∥∥∥∥ ≤ 2C

√
kδ + 4e−2nδ2

. (51)

Now we choose

δ =
1
2

√
ln(n/k)

n
(52)

and obtain∥∥∥∥∥τAB|XY −
n∑

N=0

pNQ

(
N

n

)⊗k
∥∥∥∥∥ ≤

(
C
√

ln(n/k) + 4
)√k

n
. (53)

This completes the proof. �

The choice of δ in Eq. (52) is not optimal, and it does not give the min-
imal possible error term in Theorem 11. However, the improvement that can
be achieved by choosing δ optimally does not change the O

(√
ln(n/k)k/n

)

behavior. To see this, choose

δ =
1/2
√

ln(n/k) + β√
n

(54)

for some β > −√ln(n/k)/2. Then the error term is given by

ε := 2C
√

kδ + 4e−2nδ2
=
(
C
√

ln(n/k) + 2Cβ + 4e−2β2−2β
√

ln(n/k)
)√

k/n.

(55)

The optimal β is such that C ′ = 2Cβ + 4e−2β2−2β
√

ln(n/k) is minimized. A
numerical optimization indicates that for ln(n/k) = 0 the minimum of C ′

is achieved at β = 0, so C ′ = 4. As ln(n/k) increases the minimum of C ′

decreases slowly, at ln(n/k) = 10 it is given by C ′ ≈ 2.03, and at ln(n/k) = 100
by C ′ ≈ 0.96. As ln(n/k) → ∞, it converges C ′ → 0, which can be seen by
choosing β = (ln(n/k))−1/4. Regardless of the choice of β, the error is always
at least C

√
ln(n/k)k/n.



Vol. 25 (2024) De Finetti Theorems for Quantum 2227

3. Applications

In this section, we show how our first de Finetti theorem (Theorem 6) has
applications in DIQKD security proofs, by first using it to derive a bound on
channel distinguishability, then discussing its implications for security proofs.
This result and the proof of it are analogous to theorem 25 in [16], except
that we use Theorem 6 as the de Finetti theorem, rather than the statement
in Eq. (5). We remark that the works [19,20] also used threshold theorems
(of somewhat different forms) to obtain DIQKD security proofs. However,
as discussed in Introduction, their proof techniques currently only apply to
protocols using one-way error correction and yield lower asymptotic key rates
compared to the iid case. In contrast, the results we derive here could be
applied to all protocols having the appropriate symmetry properties. While
they currently do not yield a full reduction to the iid case, our hope is that it
would be possible to develop them further to obtain security proofs that are
more generally applicable and yield higher asymptotic key rates compared to
[19,20], as was the case for de Finetti theorems in device-dependent QKD [11].

3.1. Bound on the Diamond Distance Between Channels

Here we consider channels on boxes of the following form: A channel E that
acts on boxes of the form PA|X and outputs a random variable R as its result is
described by a probability distribution P E

X on X and a conditional probability
distribution P E

R|AX which determines the result R given A and X. When acting
on PA|X , the channel produces a distribution on R given by

E(PA|X)(r) =
∑

x,a

P E
X(x)PA|X(a|x)P E

R|AX(r|ax). (56)

This definition is general enough to capture all protocols in a parallel DIQKD
scenario, where all bits of the n-bit input X are entered at the same time
into the box. It does not cover all protocols that are possible in a sequential
DIQKD scenario [8], where some of the input bits are only given to the box
after some output bits have been received. In such a sequential scenario, it is
in principle possible to construct channels where the input to the box in some
round depends on the output of the box in previous rounds.

If we consider boxes PAE|XZ , where the additional E,Z interface is held
by Eve, we can also apply the channel E only to the A,X interface to ob-
tain a box with input Z and outputs R and E. We will denote this box by
(E ⊗ id) (PAE|XZ)RE|Z .

We define the distance between two channels E and F by how well Eve
can distinguish the boxes (E ⊗ id) (PAE|XZ)RE|Z and (F ⊗ id) (PAE|XZ)RE|Z
if she is also given access to R. Then she can choose her input Z dependent
on R. This leads to the following definition [16,37]:
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Definition 14. Let E and F be two channels acting on boxes of the form PA|X .
The distinguishability of E and F using the box PAE|XZ is given by
∥∥(E − F) ⊗ id

(
PAE|XZ

)∥∥

=
∑

r

max
z

∑

e

∣∣∣∣∣
∑

a,x

PAE|XZ(ae|xz)
(
P E
X(x)P E

R|AX(r|ax) − P F
X (x)P F

R|AX(r|ax)
)∣∣∣∣∣ .

(57)

We define the diamond distance between the channels with respect to some
set P of boxes to be the following:

||E − F||P♦ = sup
PAE|XZ∈P

∥∥(E − F) ⊗ id
(
PAE|XZ

)∥∥ . (58)

Similarly to the usual diamond distance between quantum channels, the
above definition of diamond distance with respect to some set P is a measure
of how distinguishable the channels are with respect to a distinguisher that
can only use boxes from P. Simple choices of P include, for instance, the sets
of quantum or non-signaling boxes. For the following main theorem of this
section we will, however, take P to be the set of quantum boxes PABE|XY Z

such that the marginal PAB|XY has CHSH symmetry, and denote the diamond
distance with respect to this P as ||E −F||quantum,CHSH

♦ . Note that if the action
of the channels E ,F can be described by Alice and Bob first performing the
depolarizing procedure described above, this restriction causes no change in the
diamond distance as compared to choosing P to be the entire set of quantum
boxes PABE|XY Z .

Theorem 15. Let E and F two channels on n-round boxes of the form PAB|XY ,
and let τAB|XY be the de Finetti box from Theorem 6. Then

||E − F||quantum,CHSH
♦ ≤ (n + 1)2 sup

τABE|XY Z

∥∥(E − F) ⊗ id(τABE|XY Z)
∥∥ (59)

where the supremum is taken over all non-signaling boxes that have the mar-
ginal τAB|XY .

Proof of Theorem 15. Let PABE|XY Z be a quantum box whose marginal PAB|XY

has CHSH symmetry. Let RAB|XY be such that

τAB|XY =
1

(n + 1)2
PAB|XY +

(
1 − 1

(n + 1)2

)
RAB|XY . (60)

By Theorem 6 all entries of RAB|XY are positive. Because the non-signaling
condition is linear and τAB|XY and PAB|XY are non-signaling, RAB|XY is also
non-signaling. Now we define an extension τABE|XY Z of τAB|XY as follows: The
box has one more possible outcome for Eve then the box PABE|XY Z . We will
call this additional outcome e∗. The box τABE|XY Z then works as follows: With
probability (n + 1)−2, the box acts just like PABE|XY Z , and with probability
1 − (n + 1)−2, it always returns e∗ to Eve and acts like RAB|XY for Alice and
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Bob. Formally, this is given by

τ(abe|xyz) =

⎧
⎨

⎩

1
(n+1)2 P (abe|xyz) if e 
= e∗
(
1 − 1

(n+1)2

)
R(ab|xy) if e = e∗

. (61)

Since τABE|XY Z is the linear combination of two non-signaling boxes, it is
non-signaling itself. Furthermore, by Eq. (60) it is an extension of τAB|XY .
Finally, it holds that

||(E − F) ⊗ id(τABE|XY Z)||

=
∑

r

max
z

∑

e

∣∣∣∣∣∣

∑

a,b,x,y

τ(abe|xyz)
(
P E(xy)P E(r|abxy) − P F (xy)P F (r|abxy)

)
∣∣∣∣∣∣

≥
∑

r

max
z

∑

e �=e∗

∣∣∣∣∣∣

∑

a,b,x,y

τ(abe|xyz)
(
P E(xy)P E(r|abxy) − P F (xy)P F (r|abxy)

)
∣∣∣∣∣∣

= (n + 1)−2
∑

r

max
z

∑

e �=e∗

∣∣∣∣∣∣

∑

a,b,x,y

P (abe|xyz)
(
P E(xy)P E(r|abxy) − P F (xy)P F (r|abxy)

)
∣∣∣∣∣∣

= (n + 1)−2||(E − F) ⊗ id(PABE|XY Z)||. (62)

Hence, for all PABE|XY Z

||(E − F) ⊗ id(PABE|XY Z)|| ≤ (n + 1)2 sup
τABE|XY Z

||(E − F) ⊗ id(τABE|XY Z)||.

(63)

Taking the supremum over all PABE|XY Z with CHSH symmetric marginal
PAB|XY yields the claim. �

3.2. Implications for DIQKD Security Proofs

Theorem 15 can be seen as a version of the postselection theorem for quantum
channels [11]. It allows us to bound the distance between two channels by
the distinguishability of the channels when Eve is restricted to extensions of a
fixed de Finetti box. This could potentially be a useful tool in security proofs of
DIQKD protocols, because a protocol can be defined to be secure if its diamond
distance to an ideal protocol is small [28,29]. In particular, Theorem 15 implies
that to prove security against coherent quantum attacks, it is sufficient to prove
security for the case where the marginal of Alice and Bob is given by τAB|XY ,
and Eve possesses a non-signaling extension of this box. This helps to simplify
the task of a DIQKD security proof, because it means that it suffices to analyze
(extensions of) the specific box τAB|XY , which has the convenient property of
being a convex combination of iid quantum boxes.

However, there is a caveat: Although the box τAB|XY is quantum, the
extensions τABE|XY Z in the theorem statement here are allowed to be general
non-signaling boxes. Furthermore, we will show in the next section that an
adversary who has access to arbitrary non-signaling extensions of τAB|XY can
actually be strictly better at distinguishing channels than an adversary who has
only access to collective attack boxes. Hence, Theorem 15 does not immediately
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yield security against coherent attacks from security against collective attacks
—still, since it does allow a “partial” reduction to the latter (namely, allowing
us to focus on extensions of a quantum de Finetti box τAB|XY ), it may still
simplify DIQKD security proofs.

We also remark that for our second de Finetti theorem (Theorem 11),
we currently do not have in mind an explicit application of it in DIQKD
security proofs. Still, we presented it in this work in case it has applications
in other contexts—for instance, it might be useful in proving properties that
only depend on the box PAB|XY itself, rather than involving its extensions
as in DIQKD security proofs. It is also more similar to the original de Finetti
theorem for classical random variables, or the early versions for quantum states
developed in, e.g., [14].

4. Difficulties in Bounding the Diamond Distance by
Restriction to Collective Attacks

Theorem 15 shows that to bound the diamond distance between two channels
E and F it is sufficient to restrict the attacker to non-signaling extensions of
a fixed de Finetti box. There are many desirable strengthenings of this result:
For example, one could restrict the attacker only to quantum extensions of the
de Finetti box. One could also further restrict the attacker to use only quan-
tum extensions of iid boxes, instead of the fixed de Finetti box. Finally, one
could also restrict the attacker to collective attack boxes (defined below), as
would be desirable to conclude security against coherent attacks directly from
security against collective attacks. In this section, we will see that a theorem
like Theorem 15 does not hold for this strongest restriction; more precisely,
we show that it is impossible for the bound (59) to hold if the supremum is
instead restricted to collective attack boxes (which we define later below). It
remains open whether such a theorem holds for one of the other strengthenings
mentioned above, or whether a reduction to collective attacks in a somewhat
different form is possible. (We note that the answers to these questions do not
straightforwardly follow from existing no-go theorems on non-signaling privacy
amplification [38,39], since in our result τAB|XY is restricted to a convex com-
bination of quantum distributions rather than non-signaling distributions.)

We start by defining the boxes that an attacker is allowed to use in
collective attacks. While there is potentially some flexibility in defining this,
here we use a definition that essentially corresponds to the boxes considered
in the security proofs of [5,10], up to a collective measurement on Eve’s side
information:

Definition 16. An n-round quantum box PABE|XY Z is a collective attack box
if there are

• single-round Hilbert spaces HA and HB for Alice and Bob and a Hilbert
space HE for Eve and

• a state ρABE ∈ End
(H⊗n

A ⊗ H⊗n
B ⊗ HE

)
such that the marginal ρAB is

iid and
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• for each x a POVM {Ea,x ∈ End(HA)|a} on HA, for each y a POVM
{F b,y ∈ End(HB)|b} on HB and for each z a POVM {Ge,z ∈ End(HE)|e}
on HE

such that

P (abe|xyz) = tr
[
ρABE

(
Ea1,x1 ⊗ . . . ⊗ Ean,xn ⊗ F b1,y1 ⊗ . . . ⊗ F bn,yn ⊗ Ge,z

)]
.

(64)

We remark on two aspects of the above definition. Firstly, note that we
assume the Hilbert spaces of Alice and Bob can be split into n rounds, but
assume no internal structure of Eve’s Hilbert space. However, since the state
ρAB is iid and thus has an iid purification, the state ρABE is related by a local
operation on Eve’s system to this iid purification. Since we assume nothing
about Ge,z except that it is a valid POVM, we can absorb this local operation
into Ge,z and thus describe any collective attack box also with a state ρABE

that is iid. Collective attack boxes can thus be seen as boxes that are essentially
iid, up to Eve performing a local operation on her systems followed by a joint
measurement. Secondly, the fact that the definition inherently incorporates
this measurement means that Eve’s system is forced to be a box rather than
a genuine quantum state. However, for the purposes of computing diamond
distance, this in fact does not make a difference (as long as arbitrary POVMs
Ge,z are allowed in the definition)—observe that the process of a distinguisher
producing a guess for the channel can be described as it performing a POVM
on its systems, and the optimal such POVM essentially induces a valid choice
of Ge,z in the above definition.

A crucial observation on collective attack boxes is the following: Consider
the box P e,z

AB|XY which described the outcomes of Alice and Bob conditioned
on Eve inputting z and getting outcome e. It is given by

P e,z
AB|XY (ab|xy) =

PABE|XY Z(abe|xyz)
PE|Z(e|z)

= tr
[
ρe,z

AB

(
Ea1,x1 ⊗ . . . ⊗ Ean,xn ⊗ F b1,y1 ⊗ . . . ⊗ F bn,yn

)]

(65)

where ρe,z
AB is a valid state,

ρe,z
AB =

trE [ρABE (idA ⊗ idB ⊗ Ge,z)]
tr [ρABE (idA ⊗ idB ⊗ Ge,z)]

. (66)

Because
∑

a Ea,x =
∑

b F b,y = id, we see that P e,z
AB|XY is not only non-

signaling between Alice and Bob, but also between the individual rounds. This
means that for example

∑
a1

P e,z
AB|XY (a1a2 . . . anb|xy) does not depend on x1.

The following main result of this section exploits this insight:

Theorem 17. For each n > 1, there exist two channels E and F acting on
n-round boxes of the form PAB|XY such that ||(E − F) ⊗ id(PABE|XY Z)|| = 0
for all collective attack boxes PABE|XY Z , but ||E − F||quantum,CHSH

♦ 
= 0.
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Theorem 17 shows that a statement like Theorem 15 cannot hold if we
maximize only over collective attack boxes instead of all non-signaling exten-
sions of the fixed de Finetti box (not even for, say, an exponential prefactor
instead of (n + 1)2). This shows that an attacker who has access to any non-
signaling extension of the fixed de Finetti box is stronger than an attacker who
has only access to collective attack boxes.

In the proof of Theorem 17, we will use that all collective attack boxes
are non-signaling between the rounds of Alice and Bob, and that the non-
signaling condition is linear. The following lemma will be crucial. It states that
for each linear subspace of the probability distributions on some set, there are
two channels (which act on probability distributions, not yet on boxes) that
cannot be distinguished by any probability distribution in the linear subspace:

Lemma 18. Let X be some finite set. We treat the unnormalized probability
distributions on X as an orthant of an |X |-dimensional real vector space. Let
P be some linear subspace in this vector space, and Q = (Q(x))x∈X 
∈ P. Then
there are two conditional probability distributions P E

R|X and PF
R|X such that

the following holds: Denote for a probability distribution P on X by E(P ) and
F(P ) the distributions on R which are obtained by first sampling x using P
and the sampling r using P E

R|X and PF
R|X , i.e., E(P )(r) =

∑
x P (x)P E(r|x).

Then

E(P ) = F(P ) (67)

for all P ∈ P and

E(Q) 
= F(Q). (68)

Proof. There exists a vector Δ = (Δx)x∈X with |Δx| ≤ 1 for all x and Δ·P = 0
for all P ∈ P and Δ · Q 
= 0. Take R = {0, 1} and

P E(0|x) =
1 + Δx

2
(69)

P E(1|x) =
1 − Δx

2
(70)

PF (0|x) =
1 − Δx

2
(71)

PF (1|x) =
1 + Δx

2
. (72)

Then for P any probability distribution on X

||E(P ) − F(P )||1 =
∑

r

∣∣∣∣∣
∑

x

P (x)(P E(r|x) − PF (r|x))

∣∣∣∣∣
= |P · Δ| + |P · (−Δ)|
= 2|P · Δ|. (73)

Hence, for all P ∈ P
||E(P ) − F(P )||1 = 0 (74)
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and

||E(Q) − F(Q)||1 
= 0. (75)

�

We will now construct two channels E and F that act on boxes PA|X
(i.e., we consider only Alice) that cannot be distinguished by any collective
attack box, but that can be distinguished by a certain quantum box that is
not a collective attack box. We will then see how to modify this construction
to include Bob and to ensure that the box used to distinguish both channels
has CHSH symmetry on the marginal of Alice and Bob.

Lemma 19. For each n > 1, there are two channels E and F that act on n-
round boxes PAE|XZ such that ||(E − F) ⊗ id(PAE|XZ)|| = 0 for all collective
attack boxes PAE|XZ , but ||E − F||quantum,CHSH

♦ 
= 0

Proof. We first construct the channels E and F , then show that Eve cannot
distinguish them if she is restricted to collective attack boxes, and finally show
that there is a quantum box (naturally not a collective attack box) that can
be used to distinguish both channels. We construct the channels E and F as
follows, depending on a parameter m > n/2. For both channels, Alice does the
following steps:

1. She enters uniformly random inputs x1, . . . , xn into the inputs of her box.
2. She collects the outputs a1, . . . , an.
3. She calculates

t =
m∑

i=1

xi (76)

and

w =
n∑

i=m+1

ai. (77)

Now consider the linear subspace P of probability distributions on the (w, t)
given by the linear constraints

P (w, t)
2−m

(
m
t

) =
P (w, t′)
2−m

(
m
t′
) (78)

for all w, t, t′ and take a Q 
∈ P (a specific Q will be constructed below).
Alice constructs the channels E and F by applying the conditional probability
distributions P E

R|WT and PF
R|WT from Lemma 18 to her result (w, t) from

step 3.
Now we prove that Eve cannot distinguish E and F if she uses a collective

attack box PAE|XZ . For this, we use that for all e and z P e,z
A|X is non-signaling

between the rounds of Alice. In particular, the outputs of the rounds m +
1, . . . n cannot depend on the inputs in the rounds 1, . . . ,m, so W and T are
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independent when generated using P e,z
A|X . Hence,

P e,z
WT (wt)

2−m
(
m
t

) = P e,z
W |T (w|t) = P e,z

W |T (w|t′) =
P e,z

WT (wt′)
2−m

(
m
t′
) (79)

The box P e,z therefore satisfies Eq. (78), and hence, ||(E−F)(P e,z
A|X)|| = 0

by Lemma 18. Since this holds for all e and z, we have also ||(E − F) ⊗
id(PAE|XZ)|| = 0.

Finally we construct a box QA|X that allows Eve to distinguish the chan-
nels E and F with a nonzero advantage over guessing. Notice that here Eve
does not keep any system (neither quantum not classical) for herself and can
distinguish the channels only from their result R. QA|X can then be an arbi-
trary conditional probability distribution. Take QA|X such that the result is
surely a = (1, 1, . . . , 1) if

∑
i xi > n/2 and surely a = (0, 0, . . . , 0) otherwise.

Then if t > n/2,

QWT (n − m, t)
2−m

(
m
t

) = QW |T (n − m|t) = 1, (80)

and if t < m − n/2,

QWT (n − m, t)
2−m

(
m
t

) = QW |T (n − m|t) = 0 (81)

so Eq. (78) does not hold. �

Now we can adapt the statement of Lemma 19 to prove Theorem 17.

Proof of Theorem 17. First we generalize the construction in Lemma 19 to
boxes for which also Bob has an input, i.e., boxes of the form PAB|XY . For
this, we take the channels E and F such that they act like in Lemma 19 on
Alice’s inputs and outputs, and give an arbitrary input Y and ignore the output
B for Bob. Clearly, both channels still cannot be distinguished with collective
attack boxes, but can be distinguished by a box QAB|XY , which acts like the
box QA|X from Lemma 19 on A and X and arbitrarily on B and Y . However,
QAB|XY does not have CHSH symmetry. Using the depolarizing procedure
in [32], we can construct a box Q̃ABE|XY such that the marginal Q̃AB|XY

has CHSH symmetry and there is an output e∗ for Eve (corresponding to the
case in which the depolarizing protocol does nothing), such that Q̃e∗

AB|XY =
QAB|XY . Then to distinguish E and F using Q̃ABE|XY Eve first checks E.
If E = e∗, she distinguishes E and F as in Lemma 19; otherwise, she just
guesses randomly. Because the probability that E = e∗ is nonzero, we have∥∥∥(E − F) ⊗ id(Q̃ABE|XY )

∥∥∥ > 0. �

Several remarks are in order. Firstly, the diamond norm ||E−F||quantum,CHSH
♦

between the channels E and F from Theorem 17 is exponentially small in n,
because Eve only tries to distinguish E and F in the case when the depolariz-
ing protocol does nothing. This means that while a theorem in the same form
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as Theorem 15 cannot hold for collective attack boxes, it is entirely possible
that there is, for example, a theorem that yields a bound of the form

||E − F||quantum,CHSH
♦ ≤ f(n) sup

PABE|XY Z

∥∥(E − F) ⊗ id(PABE|XY Z)
∥∥+ g(n),

(82)

where g(n) → 0 as n → ∞. Such a result could be sufficient to allow security
proof reductions to collective attacks.

Secondly, the results of this section relied only on the fact that collective
attack boxes are non-signaling between the rounds. This property arose entirely
from the fact that Alice and Bob’s measurements act on different Hilbert
spaces in different rounds, and hence also hold more generally, i.e., even if the
measurements in each round are different, or the states are entangled across
rounds. This seems to suggest that in DIQKD, imposing an assumption that
different rounds have different Hilbert spaces may already be a fairly strong
restriction by itself,3 even if we allow many other non-iid behaviors across
states in different rounds, such as classical correlations or even entanglement.
(In fact, security proof reductions to the iid case under this assumption were
indeed previously studied in [40,41], though the latter was restricted to one-
way protocols.) Whether this assumption seems reasonable may depend on the
protocol—for instance, it seems unsatisfactory if each honest party has to use
a single device for all inputs/outputs (as in [8], which used the EAT to avoid
this assumption for one-way protocols), but if each honest party has access to
n devices that are “well isolated” from each other, it might be more plausible.

Thirdly, we remark that all sequential DIQKD protocols naturally fulfill
a certain form of non-signaling constraints between the individual rounds of
Alice and Bob: Alice and Bob’s inputs in one round cannot influence the
outputs in preceding rounds. Theorem 17 does not rule out that a result like
Theorem 15 exists for channels with such a sequential structure. However,
preserving such a sequential structure for the purposes of a security proof
appears rather incompatible with permutation symmetry, so exploiting such
sequential structures might require different techniques from those used in this
paper.

5. Conclusion

In this paper, we proved two de Finetti theorems for quantum conditional
probability distributions with CHSH symmetry. The advantage of these theo-
rems over similar de Finetti theorems [16,17] is that the de Finetti boxes are
in the quantum set. The first de Finetti theorem states that the entries of a
CHSH symmetric box are upper bounded, up to a polynomial factor in n, by

3For comparison, in device-dependent QKD, this assumption is often implicitly imposed by

default. This perhaps suggests a possible source of what appear to be greater challenges in

non-iid DIQKD security proofs as compared to device-dependent QKD. It may also indicate

that the default assumptions in device-dependent QKD could be stronger than they initially

appear.
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the entries of a fixed de Finetti box. This theorem is actually not restricted to
boxes with CHSH symmetry but can be applied to arbitrary symmetries if a
corresponding threshold theorem is available. The second de Finetti theorem
states that the marginal of the first k rounds of an n round CHSH symmetric
box is close to (and not just upper bounded by) a de Finetti box.

We further showed that the first de Finetti theorem can be used to ob-
tain a bound on the diamond distance between two channels acting on boxes.
Specifically, an attacker who tries to distinguish two channels E and F can
be restricted to non-signaling extensions of a fixed quantum de Finetti box
without decreasing the distinguishability between both channels by more than
a polynomial factor. Because the security of DIQKD protocols is defined in
terms of the distance between the channel given by the protocol and an ideal
channel, this statement might be useful in security proofs. However, our theo-
rem does not immediately allow to conclude security against coherent attacks
from security against collective attacks: A straightforward strengthening of
it to bound the diamond distance between two channels by the distinguisha-
bility using collective attack boxes does not hold. Based on some insights in
our proof approach, we speculate that in DIQKD, assuming that boxes in dif-
ferent rounds act on different Hilbert spaces may already be a fairly strong
constraint, even if we allow correlations or entanglement between states in
different rounds.
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A. Proof of Lemma 8

Proof of Lemma 8. The second inequality follows directly because f is non-
negative and attains its maximum at x∗. The idea for the first inequality is to
replace f by a piecewise linear function that equals 0 at a and b, and equals
f(x∗) at x∗. By concavity, this piecewise linear function is always smaller than
f itself. Writing this out explicitly: By concavity and non-negativity, we have
for all x ∈ [a, x∗]

f(x) = f

(
x − a

x∗ − a
x∗ +

x∗ − x

x∗ − a
a

)

≥ x − a

x∗ − a
f(x∗) +

x∗ − x

x∗ − a
f(a)

≥ x − a

x∗ − a
f(x∗). (83)

Therefore, we have
∫ x∗

a

f(x)ndx ≥ f(x∗)n

∫ x∗

a

(
x − a

x∗ − a

)n

dx =
1

n + 1
(x∗ − a)f(x∗)n. (84)

Analogously it follows
∫ b

x∗
f(x)ndx ≥ 1

n + 1
(b − x∗)f(x∗)n, (85)

so together
∫ b

a

f(x)ndx =
∫ x∗

a

f(x)ndx +
∫ b

x∗
f(x)ndx ≥ 1

n + 1
(b − a)f(x∗)n. (86)

�

B. A de Finetti Theorem for General Symmetries

In this section, we will show that for arbitrary games a threshold theorem
such as Theorem 7 can always be used to prove a de Finetti theorem similar
to Theorem 6. Conversely, we will also see that a de Finetti theorem implies
a threshold theorem. This means that proving a de Finetti theorem for some
symmetry is just as hard as proving a threshold theorem for the game associ-
ated with that symmetry.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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B.1. Statement of the Main Theorem

Throughout this section, we will only consider boxes with a single interface
and with a single-round input set X̂ , a single-round output set Â, and corre-
sponding n-round input and out sets X = X̂ n and Y = Ŷn. CHSH symmetric
boxes can be described like this by treating the two parties Alice and Bob
as one, so the input and output sets are Â = X̂ = {0, 1}2. We consider the
following generalization of CHSH symmetry:

Definition 20. 1. Let d ∈ N and let w : Â × X̂ → {1, . . . , d} be some
function. We will call w the predicate function of the symmetry. For
a ∈ A and x ∈ X , we define freqw(a, x) = (k1

n , . . . , kd

n ) ∈ Δd with
kr = | {i|w(ai, xi) = r} |. Here Δd denotes the d-dimensional simplex.

2. We say an n-round box PA|X has w-symmetry if P (a|x) = P (a′|x′) when-
ever freqw(a, x) = freqw(a′, x′), for all a, a′ ∈ An and x, x′ ∈ X n.

CHSH symmetry is an example of w-symmetry with w((a, b), (x, y)) = 1 if
a⊕b = xy and w((a, b), (x, y)) = 2 if a⊕b 
= xy. The definition of w-symmetry
is an extension of the symmetries considered in [16] for permutation-invariant
boxes, where only certain predicate functions w where considered, namely
those where for each pair x, x′ either the images of w(·, x) and w(·, x′) are
disjoint or w(·, x) and w(·, x′) are identical up to a permutation of the elements
of Â.

Instead of the set of quantum single-round CHSH boxes, we will in this
section consider a general convex set Q of single-round boxes QÂ|X̂ . If we view

Q as a convex subset in R
|Â||X̂ | we can consider its affine hull: the smallest

affine superset of Q. Throughout this section, we will denote the dimension
of the affine hall by d′. For the CHSH symmetric case, Q is the set of CHSH
symmetric quantum boxes, and d′ = 1.

In the CHSH symmetric case, it was crucial that the expected number
of wins of n-rounds of the CHSH games is between 2−√

2
4 and 2+

√
2

4 when the
games are played with iid quantum boxes. In our generalization, the interval
[2−√

2
4 , 2+

√
2

4 ] will be replaced by a set of expected frequencies Fμ:

Definition 21. Let μ be a probability distribution on X , Q a convex set of
single-round boxes and w a predicate function. The set of expected frequencies
is

Fμ =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝
∑

a,x
w(a,x)=r

Q(a|x)μ(x)

⎞

⎟⎠

r=1...d

∣∣∣∣∣∣∣∣
QÂ|X̂ ∈ Q

⎫
⎪⎪⎬

⎪⎪⎭
⊆ Δd. (87)

In the CHSH symmetric case, it is Fμ = {(p, 1 − p)|p ∈ [(2 − √
2)/4, (2 +√

2)/4]} regardless of μ. We can now state the main theorem of this section:

Theorem 22. Let w : Â × X̂ → [d] be a predicate function and Q a con-
vex subset of single-round boxes with an affine hull of dimension d′. Let Fμ
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be the set of expected frequencies. There exists a de Finetti state τA|X ∈
conv

({
Q⊗n

A|X |QÂ|X̂ ∈ Q
})

independent of w such that the following hold:

1. Let PA|X be an n-round box, let μ be a probability measure on X , and
take any f ∈ Δd. Suppose there exists some C > 0 such that

PrPA|X ,μ⊗n [freqw(A,X) = f ] ≤ C exp
(

− inf
f ′∈Fμ

D(f ||f ′)n
)

. (88)

Then

PrPA|X ,μ⊗n [freqw(A,X) = f ]

≤ C

(
n + d′

d′

)
(n + 1)d−1PrτA|X ,μ⊗n [freqw(A,X) = f ] . (89)

2. Let PA|X be an n-round box with w-symmetry and let each box QÂ|X̂ ∈ Q
have w-symmetry. Let C be such that for all f ∈ Δd there is a μ > 0
such that Eq. (88) holds. Then

P (a|x) ≤ C

(
n + d′

d′

)
(n + 1)d−1τ(a|x) ∀a ∈ An, x ∈ X n. (90)

3. Let PA|X be an n-round box for which Eq. (90) holds. Then

PrPA|X ,µ⊗n [freqw(A, X) = f ] ≤ C

(
n + d′

d′

)
(n + 1)d−1 exp

(
− inf

f ′∈Fμ

D(f ||f ′)n
)

.

(91)

Qualitatively, we can interpret the equations and statements in Theo-
rem 22 as follows:

• The condition (88) is a perfect threshold theorem, written in a form
similar to Eq. (25) (which was for the CHSH case). It states that the
probability to obtain a frequency distribution f outside of the set Fμ of
expected frequencies decays exponentially with n and with the distance
from f to Fμ, as measured by the relative entropy.

• Part 1 of Theorem 22 states that if we have such a threshold theorem,
then the probability of obtaining the frequencies f using the box PA|X
can be bounded by the probability of obtaining f using the de Finetti box
τA|X , up to a polynomial factor. We have chosen to state this part of the
theorem separately because it does not require PA|X to be w-symmetric.

• Part 2 asserts that if we have the further condition that PA|X and all
boxes in Q are w-symmetric, then we can get a de Finetti theorem analo-
gous to Theorem 6 in the CHSH case. We will derive part 2 from part 1 by
expressing the entries of PA|X and τA|X in terms of their respective prob-
abilities of obtaining freqw(a, x) = f , which is possible by w-symmetry.

• Finally part 3 shows the other direction of the equivalence between a
threshold theorem and a de Finetti theorem: A box PA|X satisfying the de
Finetti theorem statement (90) also satisfies a threshold theorem, albeit
with a larger prefactor than in Eq. (88).
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To prove Theorem 22, we first show some preparatory lemmas in Sects. B.2
and B.3, then combine them in Sect. B.4. Some insight can be gained into the
proof structure by writing a slightly different proof of Theorem 6 (the CHSH
case), in order to draw analogies to parts 1 and 2 of Theorem 22 separately.
This version of the proof proceeds as follows: First prove Eq. (21) as before,
giving a lower bound on τ(a|x). However, we reorder the proof after that point.
Namely, observe that combining (25), (26) and (28) gives

pk ≤ (n + 1)2n

(
n

k

)
sup

p∈[1−w,w]

f(p)n. (92)

Putting together (21) and (92) gives

pk ≤ (n + 1)22n

(
n

k

)
τ(ab|xy). (93)

The symmetry condition has not been used up to this point. We now use it to
relate pk to P (ab|xy) via (11), which yields the desired inequality P (ab|xy) ≤
(n + 1)2τ(ab|xy).

The proof in the subsequent sections basically follows the same structure
as the above version. First, Eq. (21) is generalized to Lemma 26 in Sect. B.2.
Next, Eq. (92) is replaced by Lemma 28 in Sect. B.3, bounding the probability
of obtaining some outcome frequency in terms of a supremum over iid boxes.
(The 2n

(
n
k

)
factor in (92) counts different ways to achieve the specified fre-

quency.) These lemmas are combined to obtain part 1 of Theorem 22, which
is the generalization of (93). Finally, the symmetries are invoked to relate the
box distribution to the probabilities of obtaining some outcome frequencies,
analogous to (11), to yield part 2 of Theorem 22.

B.2. Construction and Properties of the de Finetti Box

In this section, we will construct the de Finetti box τA|X and show that this
τ(a|x) is at most polynomially smaller then Q⊗n(a|x), for all Q ∈ Q. Before
that, we need to prove some preparatory lemmas:

The following lemma and proof are adopted from [42].

Lemma 23. (Matrix Determinant Lemma) Let A ∈ R
n×n be an invertible ma-

trix and v ∈ R
n. Then

det(A − vvT ) = det(A)(1 − vT A−1v) (94)

Proof. We calculate det(A − vvT ) as the determinant of a block matrix:

det(A − vvT ) = det
(

A v
vT 1

)

= det
[(

A 0
vT 1

)(
I A−1v
0 I − vT A−1v

)]

= det(A)(1 − vT A−1v) (95)

�
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Lemma 24. Let α1, . . . αn ≥ 0 with
∑

i αi ≤ 1. The map f :
(
R

+
0

)n → R
+
0

given by

f(x1, .., xn) =
n∏

i=1

xαi
i (96)

is concave.

Proof. First assume that all αi > 0 and
∑

i αi < 1. To show that f is concave,
we compute the Hesse matrix:

(Hf)ij =
∂2

∂xi∂xj
f =

∂

∂xj

(
αi

xi
f

)
=
(

−αi

x2
i

δij +
αiαj

xixj

)
f =: −Aijf (97)

with A =
(

αi

x2
i
δij − αiαj

xixj

)

1≤i,j≤1
. To show that f is concave it is sufficient

to show that A is positive definite. Let A(k) be the upper left k × k block
of A. By Sylvester’s criterion, A is positive definite if det(A(k)) > 0 for all
k ∈ {1, . . . , n}.

Let B(k) =
(

αi

x2
i
δij

)

1≤i,j≤k
and v(k) =

(
αi

xi

)

1≤i≤k
. Then

A(k) = B(k) − v(k)(v(k))T . (98)

By Lemma 23, we calculate

det(A(k)) = det(B(k))
(
1 − (v(k))T (B(k))

−1
v(k)
)

= det(B(k))

(
1 −

k∑

i=1

(
αi

xi

)2
x2

i

αi

)

= det(B(k))

(
1 −

k∑

i=1

αi

)
> 0 (99)

where the last inequality follows from det(B(k)) > 0 and
∑k

i=1 αi ≤∑n
i=1 αi <

1. Hence, f is concave.
Now assume the general setting where also αi = 0 and

∑
i αi = 1

is allowed. For each i, choose a sequence (α(m)
i )m∈N such that α

(m)
i > 0,∑

i α
(m)
i < 1 and α

(m)
i

m→∞−−−−→ αi. Let

f (m)(x1 . . . xn) =
n∏

i=1

x
α

(m)
i

i . (100)

By continuity,

f (m)(x1 . . . xn) m→∞−−−−→ f(x1 . . . xn). (101)

Now let x = (x1, . . . xn), y = (y1 . . . yn) ∈ (R+
0

)n
and λ ∈ [0, 1]. Then

f(λx + (1 − λ)y) = lim
m→∞ f (m)(λx + (1 − λ)y)

≥ lim
m→∞ λf (m)(x) + (1 − λ)f (m)(y)

= λf(x) + (1 − λ)f(y). (102)
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�
The following lemma is the generalization of Lemma 8.

Lemma 25. Let C ⊆ R
d be a bounded convex set, and denote by vol(C) the

volume of C (under the Lebesgue measure). Then for any n ∈ N and any
concave function f : C → R

+
0 , we have

∫

C

f(x)ndx ≥ vol(C)
(

n + d

d

)−1(
sup
x∈C

f(x)
)n

. (103)

The proof idea is similar to that of Lemma 8 (assuming for simplicity
that f attains its supremum at some point x∗ ∈ C): We will lower bound f by
a function that is zero on the boundary of C, takes the value f(x∗) at x∗, and
is determined on the rest of C by “interpolating linearly” between the values
at x∗ and the boundary of C. (Geometrically, the graph of this new function
is basically the surface of a convex cone.)

Proof. Take any ε > 0. There exists some x∗ ∈ C such that f(x∗) ≥ supx∈C f(x)
− ε. We evaluate the integrals using spherical coordinates centered on this
point: Let Sd−1 ⊆ R

d be the (d − 1)-sphere, and let μ be the surface measure
on Sd−1 with respect to the usual Lebesgue measure on R

d. Since integrals are
unchanged by including points on the boundary, we can evaluate the integrals
using the closure of C instead, denoted as cl(C). This is a convex compact set;
hence, there is a “radius function” R : Sd−1 → R

+
0 such that

cl(C) = {x∗ + rΩ|Ω ∈ Sd−1, r ∈ [0, R(Ω)]}. (104)

Then

vol(C) =
∫

Sd−1

∫ R(Ω)

0

rd−1drμ(dΩ) =
1
d

∫

Sd−1
R(Ω)dμ(dΩ). (105)

Since

f(x∗ + rΩ) = f

(
r

R(Ω)
(x∗ + R(Ω)Ω) +

R(Ω) − r

R(Ω)
x∗
)

≥ r

R(Ω
f(x∗ + R(Ω)Ω) +

R(Ω) − r

R(Ω)
f(x∗) Concavity of f

≥ R(Ω) − r

R(Ω)
f(x∗) Positivity of f

(106)

we have
∫

C

f(x)ndx =
∫

Sd−1

∫ R(Ω)

0

rd−1f(x∗ + rΩ)drμ(dΩ)

≥ f(x∗)n

∫

Sd−1

∫ R(Ω)

0

rd−1

(
R(Ω) − r

R(Ω)

)n

drμ(dΩ) by Eq. (106)

= f(x∗)n

∫

Sd−1
R(Ω)d

∫ 1

0

ud−1(1 − u)nduμ(dΩ). (107)
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Using the property of the beta function
∫ 1

0

ud−1(1 − u)n =
1

n + d

(
n + d − 1

d − 1

)−1

=
1
d

(
n + d

d

)−1

(108)

we find by Eqs. (107) and (105)
∫

C

f(x)ndx ≥ 1
d

(
n + d

d

)−1

f(x∗)n

∫

Sd−1
R(Ω)dμ(dΩ)

=
(

n + d

d

)−1

vol(C)f(x∗)n. (109)

Recalling that f(x∗) ≥ supx∈C f(x) − ε, and ε > 0 was arbitrary, this implies
the desired result. �

When we maximize Q⊗n(a|x) over Q ∈ Q while keeping a and x fixed,
the maximum is achieved for a different Q for each a and x. However, the next
lemma states that if we average over Q we are at most a polynomial factor
below that maximal value of Q⊗n(a|x), no matter what a and x are.

Lemma 26. There is a de Finetti state τA|X ∈ conv ({Q⊗n|Q ∈ Q}) such that
for all a ∈ A, x ∈ X

τ(a|x) ≥
(

n + d′

d′

)−1

sup
Q∈Q

Q⊗n(a|x), (110)

where d′ is the dimension of the affine hull of Q.

Proof. We view Q as a bounded convex subset of R|Â||X̂ |. Because the affine
hull of Q has dimension d′, there exists a bounded convex set C ⊆ R

d′
and a

bijective linear map C � φ �→ Qφ ∈ Q. Choose

τA|X =
1

vol(C)

∫

C

Q⊗n
φ dφ. (111)

Now fix a ∈ A and x ∈ X , and for a′ ∈ Â and x′ ∈ X̂ , let fa′x′ = |{i|ai =
a′ and xi = x′}|/n be the frequency of the pair (a′, x′) in (a, x). Then

φ �→
(
Q⊗n

φ (a|x)
)1/n

=
∏

a′∈A,x′∈X
Qφ(a′|x′)fa′x′ (112)

is a concave map by Lemma 24 and by the linearity of φ �→ Qφ. Hence, by
Lemma 25

τ(a|x) =
1

vol(C)

∫

C

Q⊗n
φ (a|x)dφ

≥
(

n + d′

d′

)−1

sup
φ∈C

Q⊗n
φ (a|x)

=
(

n + d′

d′

)−1

sup
Q∈Q

Q⊗n(a|x). (113)

�
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B.3. Bounding PA|X by iid Boxes

In this section, we will show that a threshold theorem of the form of Eq. (88)
implies that P (a|x) can be bound by Q⊗n(a|x) up to a polynomial factor.
Together with Lemma 26, this will yield the proof for Theorem 22 in the next
section.

Lemma 27. Let n = k1 + k2 + . . . + kd with k1, .., kd ∈ N. Then

(n + 1)−(d−1)
d∏

r=1

(
n

kr

)kr

≤
(

n

k1, k2, . . . , kd

)
≤

d∏

r=1

(
n

kr

)kr

. (114)

Here
(

n
k1,k2,...,kd

)
= n!/(k1! . . . kd!) is the multinomial coefficient.

Proof. Let us first prove the inequality for d = 2, when the multinomial co-
efficient is just a binomial coefficient. It is a property of the Beta function
that

∫ 1

0

xk1(1 − x)k2 =
1

n + 1

(
n

k1

)−1

(115)

The integrand on the left-hand side is maximized at x = k1
n . Hence,

1
n + 1

(
k1

n

)k1
(

k2

n

)k2

≤
∫ 1

0

xk1(1 − x)k2 ≤
(

k1

n

)k1
(

k2

n

)k2

, (116)

by Lemma 8. Combining Eqs. (115) and (116) gives

1
n + 1

(
n

k1

)k1
(

n

k2

)k2

≤
(

n

k1

)
≤
(

n

k1

)k1
(

n

k2

)k2

. (117)

Now we prove the lemma for general d ≥ 2. For this, observe that
(

n

k1, . . . , kd

)
=
(

n

k1

)(
n − k1

k2

)(
n − k1 − k2

k3

)
. . .

(
n − k1 − . . . − kd−2

kd−1

)

=
d−1∏

r=1

(
n −∑r−1

i=1 ki

kr

)
. (118)

Applying Eq. (117) to each binomial coefficient completes the proof since

d−1∏

r=1

(
n −∑r−1

i=1 ki

kr

)kr
(

n −∑r−1
i=1 ki

n −∑r
i=1 ki

)n−∑r
i=1 ki

=
1

∏d−1
r=1 kkr

r

∏d−1
r=1

(
n −∑r−1

i=1 ki

)n−∑r−1
i=1 ki

∏d−1
r=1 (n −∑r

i=1 ki)
n−∑r

i=1 ki
(119)

=
d∏

r=1

(
n

kr

)kr

(120)

by a telescoping product argument. �
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Lemma 28. Let PA|X be a n-round box. If

PrPA|X ,μ⊗n [freqw(A,X) = f ] ≤ C exp
(

− inf
f ′∈Fμ

D(f ||f ′)n
)

(121)

then

PrPA|X ,µ⊗n [freqw(A, X) = f ] ≤ C(n + 1)d−1 sup
Q∈Q

PrQ⊗n,µ⊗n [freqw(A, X) = f ] .

(122)

Proof. This is actually just a statement on the two right-hand sides. Let f =
(k1

n , . . . kd

n ) ∈ Δd, let Q ∈ Q and let

f ′ =

⎛

⎜⎝
∑

a,x
w(a,x)=r

Q(a|x)μ(x)

⎞

⎟⎠

r=1...d

∈ Δd

(123)

be the element of Fμ belonging to Q. Then

PrQ⊗n,μ⊗n [freqw(A,X) = f ] =
(

n

k1, . . . , kd

) d∏

r=1

(f ′
r)

kr

≥ 1
(n + 1)d−1

d∏

r=1

(
nf ′

r

kr

)kr

by Lemma 27

=
1

(n + 1)d−1
exp(−D(f ||f ′)n) (124)

where the last equality follows directly from the definition of the relative en-
tropy

D(f ||f ′) =
d∑

r=1

fr(ln(fr) − ln(f ′
r)). (125)

Taking the supremum over Q gives

sup
Q∈Q

PrQ⊗n,μ⊗n [freqw(A,X) = f ] ≥ 1
(n + 1)d−1

exp
(

− inf
f ′∈Fμ

D(f ||f ′)n
)

(126)

which completes the proof. �

B.4. Proof of Theorem 22

Now we are ready to prove the general Theorem 22. For this, we use Lemma 26
to show that the entries of the de Finetti box are at most smaller by a poly-
nomial factor then the corresponding entries of any iid box. Then we use
Lemma 28 to show that the threshold theorem implies that the probability
of a frequency f under PA|X can be bounded, up to a polynomial factor, by
probability of f under some iid box (but possibly a different iid box for each
f). Combining both lemmas yields the proof of part 1. Part 2 will follow from
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part 1 by using the definition of w-symmetry, and part 3 will follow directly
from Lemma 27.

Proof of Theorem 22. 1. This part follows directly by combining Lemmas 28
and 26. Suppose

PrPA|X ,μ⊗n [freqw(A,X) = f ] ≤ C exp
(

− inf
f ′∈Fμ

D(f ||f ′)n
)

. (127)

By Lemma 28, we have

PrPA|X ,μ⊗n [freqw(A,X) = f ]

≤ C(n + 1)d−1 sup
Q∈Q

PrQ⊗n,μ⊗n [freqw(A,X) = f ] . (128)

Since by Lemma 26

PrQ⊗n,μ⊗n [freqw(A,X) = f ] ≤
(

n + d′

d′

)
Prτ,μ⊗n [freqw(A,X) = f ]

(129)

it follows

PrPA|X ,μ⊗n [freqw(A,X) = f ]

≤ C

(
n + d′

d′

)
(n + 1)d−1Prτ,μ⊗n [freqw(A,X) = f ] . (130)

2. For this part, we have by hypothesis that PA|X and every box in Q has
w-symmetry. Then also τA|X has w-symmetry. Take any a ∈ A, x ∈ X ,
and define f = freqw(a|x). Then we have

PrPA|X ,μ⊗n [freqw(A,X) = f ] = P (a|x)
∑

a∈An,x∈X n

freqw(a,x)=f

μ⊗n(x), (131)

and similarly

PrτA|X ,μ⊗n [freqw(A,X) = f ] = τ(a|x)
∑

a∈An,x∈X n

freqw(a,x)=f

μ⊗n(x). (132)

From Eqs. (131), (132) and part 1, it follows that

P (a|x) ≤ C

(
n + d′

d′

)
(n + 1)d−1τ(a|x). (133)

3. Now assume

P (a|x) ≤ C̃τ(a|x) (134)
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with C̃ = C
(
n+d′

d′
)
(n + 1)d−1. Since τ(a|x) ≤ supQ∈Q Q⊗n(a|x) it follows

for f =
(

k1
n . . . kd

n

)
that

PrPA|X,μ⊗n [freqw(A, X) = f ] ≤ C̃ sup
Q∈Q

PrQ⊗n,μ⊗n [freqw(A, X) = f ]

= C̃ sup
f ′∈Fμ

( n

k1, . . . , kd

) d∏

r=1

(f ′
r)kr

≤ C̃ sup
f ′∈Fμ

d∏

r=1

(
nf ′

r

kr

)kr

by Lemma 27

= C̃ exp

(
− inf

f ′∈Fμ

D(f ||f ′)n
)

. (135)

�
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