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Abstract

Creating synthetic images that are of high quality is a crucial step
for many deep learning projects, especially when real data are either
limited or too expensive to acquire. Despite its importance, there has
been a noticeable gap in the exploration of efficient techniques in the
synthetic image generation field, except for generating photo-realistic
samples of high cost. In this study, we bridge this gap by investigating
the key elements and features that should be maintained and aligned
in synthetic datasets to mirror the properties of real datasets. From
our findings, we have developed practical guidelines that simplify
the process of creating synthetic datasets that can stand up to their
real counterparts, particularly in the realm of object detection tasks.
We create a reusable framework that can guide future research and
developments in this area.
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Chapter 1

Introduction

Deep learning has significantly changed computer vision, leading to improve-
ments in image classification, object detection, and semantic segmentation
[1]. However, there’s still a big challenge—the ongoing need for a lot of high-
quality labeled data, especially for specialized areas like medical imaging
[1]. Machine learning and deep learning are highly dependent on having a
lot of labeled data and strong computing power. While there are methods
using unsupervised learning with unlabeled data, these models often aren’t
as effective as the supervised ones. This difference is especially clear in areas
like medical diagnostics [2].

Acquiring those large-scale, high-quality labeled datasets for computer vision
tasks can be a challenging and expensive endeavor [3]. Many real-world
applications, such as hand gesture labeling for sign language recognition,
involve labor-intensive efforts and expert annotators, making the data col-
lection process resource-intensive and time-consuming. Moreover, data in
practical scenarios often originates from multiple sources, leading to domain
shifts between the training and deployment environments. For instance, in a
task like car damage detection for insurance claims, data might come from
various sources, including smartphone images, surveillance cameras, and
professional photographs, resulting in variations in image quality, lighting
conditions, and perspectives.

One promising solution to tackle these challenges is the use of synthetic
data. Synthetic data can be generated using computer graphics or simulation
techniques, offering a cost-effective alternative to address data scarcity and
diversify datasets. For example in hospitals, synthetic data can be utilized
to augment the limited real-world dataset, creating a comprehensive set of
medical images with different patient conditions, as the example shown in
figure 1.1. This not only enhances the dataset’s diversity but also reduces
the need for manual labeling, as synthetic data can come with predefined
attributes and annotations [5]. In addition to that, using synthetic data also
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1.1. Synthetic Datasets: Benefits and Limitations

Figure 1.1: An example of synthetic medical images. From the image of a
healthy heart when its mitral valves open (a) and closed (b), a synthetic heart
image with the open mitral valve and thickened LV (c) is made.[4]

offers additional advantages, such as the ability to control the appearance,
lighting, and background of objects or scenes when we use handcrafting or
engine-based rendering pipelines, described in more detail in the related
works chapter 2.1. This level of control is especially valuable when simulating
complex or rare scenarios that are challenging to capture in real-world
datasets. Furthermore, synthetic data can provide ground truth labels for
free, allowing for large-scale data generation and model training without the
laborious annotation process [6]. Typical examples are camera-like image
data. These images range from digital alterations to ones from virtual settings
[7], and from combined images [8] to very realistic computer-made visuals
[9].

1.1 Synthetic Datasets: Benefits and Limitations

The benefit of synthetic data is its ability to speed up the data-making
and labeling process, often being faster and cheaper than manual methods.
However, it’s important to note that not all synthetic methods automatically
label data; some need a lot of human help [10]. For instance, a GAN [10]
may be able to produce realistic images of certain objects of interest, but it is
hard for them to produce the correct bounding box annotations alongside
when you perform an object detection task. Compared to traditional data
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1.1. Synthetic Datasets: Benefits and Limitations

collection, synthetic methods are usually quicker and more cost-effective.
Challenges in gathering real data include privacy issues, rules, and practical
hurdles. Manual labeling can be time-consuming, and human mistakes can
reduce data quality, affecting model training [11]. Interestingly, starting an
automated labeling system requires a lot of labeled data, leading to a kind of
loop. But synthetic data gives better control over data quality, allowing for
detailed labels and insights that might be hard to get in real situations.

The integration of synthetic data in deep computer vision has indeed pro-
vided a vital means to address the need for labeled data. However, it is
not without its limitations, particularly concerning the disparity between
synthetic data and real-world data [12]. One of the primary limitations lies
in the realism of synthetic images. Although synthetic images can be crafted
to resemble real-world counterparts, they often exhibit subtle discrepancies
in lighting, texture, and geometry, leading to a lack of perfect alignment
with real-world images. While it is possible to control those parameters
explicitly/implicitly, it often remains unclear what the essential attributes
and characteristics in those real data that need to be captured and preserved
when generating synthetic image samples and what are not essential and
could vary under different contexts. As a result, models trained on synthetic
data may excel on synthetic images but struggle to generalize effectively to
real-world scenarios [7]. Figuring out the most important attributes and giv-
ing a clear guideline to produce cheap but effective synthetic image samples
is the main focus and contribution of this thesis.

Another significant limitation arises from the restricted diversity of synthetic
images. The diversity of synthetic data generation depends on the virtual
environments and objects utilized in the process. Despite being able to
generate a large volume of synthetic images, they may not encompass the
full spectrum of variations present in real-world data. Consequently, models
trained solely on synthetic data may falter when confronted with unseen
variations or rare occurrences.

When considering the deployment of synthetic data in practical scenarios,
several factors must be accounted for. One of the foundational considerations
is the environment where the trained model will be deployed. For instance, a
model trained on synthetic data for traffic monitoring needs to be validated
against real-world traffic scenarios to ensure its robustness and accuracy.

Another lesser-discussed issue is the computing power needed to make syn-
thetic data. Making big synthetic datasets in a reasonable time requires strong
computing resources, which might not be available to everyone. While many
studies praise synthetic data, only a few discuss the computing needs and
time required to make such datasets. This point is crucial when considering
the use of synthetic data in different areas.

Thanks to many studies, computer vision has seen benefits by using synthetic
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1.2. Our Contribution: A Novel Data-Centric Approach

images to enhance real datasets. Efforts are also being made to lessen
the gap between training and testing datasets with model-centric domain
generalization methods as well as data-centric methods, see examples in the
related works section 2.2.1.

Moreover, given the rarity of real-world data, what little there is can be
reserved primarily for validation purposes. Models trained on synthetic data
can be tested iteratively against this small but invaluable set, ensuring that
learnings from each test phase are looped back to refine the training process
[13]. This iterative feedback can be pivotal in bridging the synthetic and
real-world data gap.

1.2 Our Contribution: A Novel Data-Centric Approach

As our exploration in the background section revealed, the demand for high-
quality labeled data remains a primary challenge, especially in specialized
domains [1]. Synthetic data emerges as a promising solution, offering con-
trolled data generation, a cost-effective alternative, and often, predefined
annotations [5, 6]. Despite these advantages, the gap between synthetic and
real-world data is palpable, with evident discrepancies in realism, diver-
sity, and intrinsic noise representation [12, 7]. Such disparities necessitate
approaches that can bring synthetic data more in line with real-world data.

To this end, we introduce a data-centric methodology to address the signifi-
cant challenge of reconciling the differences between synthetic and real-world
data in computer vision. The underpinning of our work is rooted in dataset
engineering techniques. Unlike many methods that often prioritize model
architectures or training techniques, our methodology delves deeply into the
essence of data itself, recognizing the foundational role it plays in the overall
performance and generalization of machine learning models. The following
encapsulates our contributions:

1. Novel Guidelines for Generating Synthetic Images: Rooted in real
dataset insights, our proposed approach optimizes synthetic data gen-
eration from two distinct angles: metadata and feature perspectives.
In particular, we align the distributions of metadata and feature rep-
resentations between the synthetic and real datasets, as an alternative
approach to directly align the data distribution of the synthetic and real
image samples, which is the idea behind generating synthetic images
that are as photo-realistic as possible. Through rigorous benchmark-
ing, we have established a set of guidelines aimed at refining future
synthetic image generation endeavors.

2. Enhanced Performance with Synthetic Datasets: We have created
synthetic datasets that, through meticulous refinement, exhibit per-
formance akin to models trained on real-world data across diverse
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computer vision algorithms. In particular, object detection algorithms
trained solely on generated synthetic datasets outperform the same
algorithms trained on real datasets 50% of the time and achieved
over 1000% improvement in MAP score [14] compared to the baseline
synthetic datasets. This achievement underscores our methodology’s
effectiveness in bridging the synthetic-real data performance chasm.

3. Efficient Synthetic Image Generation Pipeline: We introduce a semi-
automated pipeline tailored for synthetic image generation. This frame-
work semi-autonomously selects optimal sampling strategies based on
the inputs, consequently bridging the domain gap and bolstering the
generalizability of computer vision models. This pipeline can generate
synthetic datasets which possess a very similar distribution in selected
dataset attributes, e.g. the area of the objects of interest in the images,
given the desired distribution.

4. Correlation Analysis for Model Performance: Delving deep into syn-
thetic datasets, we explore the linkage between distribution distances
and model performance discrepancies. We observe negative correla-
tions between model predictions on the real samples in the test dataset
with the distances of real samples to the clusters in synthetic datasets
across different objects of interest. In particular, the prediction on the
test sample tends to be less accurate when the test sample does not
have enough similar samples in the training samples. This scrutiny
provides vital insights into factors affecting algorithm performance,
proving instrumental for informed dataset engineering.

5. Benchmarking of Feature Space Representations: Our investigation
extends to comparing various feature space representations omitted
from both synthetic and real samples. The differences in the quality
of feature extractors regarding the information the features contain
are significant, especially between pre-trained feature extractors and
trained extractors, where the difference could be over 500%. This
analysis unveils the intricacies of different feature representations and
their implications on domain alignment.

Our approaches to bridging the gap between real datasets and synthetic
datasets are novel and effective. These approaches, to our knowledge, have
neither been implemented nor thoroughly studied in the existing literature,
making our contributions both innovative and of importance for future pro-
gression. In particular, we focus on four critical aspects: metadata distribution
alignment, elaborated in 4.6, feature space distribution alignment, elaborated
in 4.7, cheap and easy-to-use semi-automated metadata alignment pipeline,
described in 4.6.3 and heuristic guidelines towards cheap but meaningful
synthetic image generation.
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Chapter 2

Related Works

We navigate the extensive landscape of relevant literature, dissecting contribu-
tions from two core areas that align with our objectives. Firstly, we delve into
the intricacies of synthetic image generation pipelines, tracing the evolution
of techniques and tools that have emerged over time. Secondly, we focus
on domain generalization underscored by data enhancement methodologies,
which offer insights into how diverse datasets can be harnessed to achieve
improved generalization. In the ensuing section, we articulate our distinctive
approach, underscoring the nuances that set our methodologies apart from
those prevalent in the existing literature. This dual examination not only sets
the stage for our research but also contextualizes our contribution within the
broader academic dialogue.

2.1 Methods of synthetic image generation

There are many means to generate synthetic data with different methodolo-
gies suited to different tasks and applications. However, most methods to
generate synthetic data for computer vision can be grouped into the following
categories.

2.1.1 Handcrafted synthetic images

Handcrafting synthetic images represents a foundational method of data
synthesis. Whether it’s a composite image or a 3D environment, each data
instance is produced one by one to compile a complete dataset [15]. This
technique is considerably time-intensive and restricts the amount of data that
can be crafted. The labeling and annotation of such handcrafted data typically
demand further hands-on efforts. This negates some of the main advantages
of synthetic data, which are large-scale production and automated feature
labeling. Still, handcrafting synthetic images has its place in certain scenarios.
Typically, the handcrafting is done by an artist who creates the 3D models
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2.1. Methods of synthetic image generation

from scratch and composes them in a meaningful way. However, in tasks
like object detection, the samples often focus on specific object subsets within
that realm. Therefore, handcrafting specific, smaller virtual spaces might
be more advantageous than auto-generating expansive ones that might go
underutilized.

2.1.2 Engine-based automated rendering pipeline

In recent times, there has been a noticeable shift towards leveraging engine-
based rendering pipelines for the generation of synthetic data. Research
is increasingly focusing on game engines like Unity and Unreal Engine,
alongside 3D modelling tools such as Blender [16]. These platforms, given
their advanced capabilities, provide a more efficient alternative to building
a 3D virtual environment from the ground up. They offer researchers the
convenience of using pre-existing assets, simulating diverse scenarios with
virtual cameras, implementing artificial lighting, and employing various other
functionalities that ease the process of virtual space creation. Owing to their
core design, game engines are adept at curating virtual realities. Furthermore,
continuous updates, extensions, and third-party tie-ups have made it possible
to directly link these engines with networks for training. This capability
allows for the generation of a substantial volume of realistic data, which
finds applications in areas like robot simulations, aerial aircraft identification
[17], vehicle detection, and identifying inattentive pedestrians [18]. Often,
these engines can auto-generate exhaustive ground truth information, such
as segmentation masks and depth maps.

Those engines usually have considerably elevated the process of synthetic
image sampling, largely due to the advanced scripting tools they encom-
pass. Tools like BlenderProc [19] in the Blender ecosystem and Replicator
for game engines have emerged as front-runners in this domain, enabling
users to automate intricate synthetic image generation workflows. These
tools facilitate comprehensive sampling strategies, ensuring that images are
not just synthesized, but also cater to a wide range of scenarios and envi-
ronmental conditions. For instance, BlenderProc effortlessly combines scene
creation, object manipulation, camera and light positioning, and rendering
into streamlined scripts, which significantly expedites the synthetic data gen-
eration process. On the other hand, Replicator offers versatility by producing
varied instances of objects, lighting conditions, and backgrounds, ensuring
a rich dataset. Such scripting capabilities underscore the potential of these
platforms to support large-scale and diverse synthetic dataset generation,
making them invaluable assets in the rapidly evolving landscape of computer
vision and machine learning.
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2.1. Methods of synthetic image generation

2.1.3 Generative Models

Over the past few years, significant strides have been made in the domain of
synthetic image generation, primarily due to the advent of deep generative
models. These models are designed to yield images that closely mirror
the distribution of a designated dataset. Three models that stand out in
driving this progress are the Variational Autoencoders (VAEs) [20], Generative
Adversarial Networks (GANs) [21], and Diffusion Models [22].

Variational Autoencoders (VAEs) operate by transforming an input image
into a compact latent representation, which is subsequently decoded to
regenerate an image. A hallmark of VAEs is the continuous and fluid nature
of their latent space, permitting the generation of images with nuanced
variations. Such a feature is instrumental for tasks that demand intricate
image variations. Nevertheless, a recurrent challenge with VAEs is their
tendency to yield slightly blurred images, which can be less than ideal for
scenarios that necessitate crisp and clear visual outputs.

On the other hand, Generative Adversarial Networks (GANs) rely on a
dual neural network setup involving a generator and a discriminator. The
generator is responsible for synthesizing images, while the discriminator’s
role is to differentiate between authentic and synthesized images. As the
training evolves, the generator refines its capability to render increasingly
realistic images. GANs have gained acclaim for their prowess in generating
high-fidelity images that adeptly encapsulate the nuances of the training data.
However, they’re not devoid of challenges. A notable one is their training
sensitivity, potentially leading to complications like mode collapse.

Diffusion Models, which are relatively nascent compared to VAEs and GANs,
fabricate images by iteratively refining a preliminary random stimulus, echo-
ing a diffusion procedure. Such a method can be particularly pertinent for
tasks where there’s value in visualizing the gradual image evolution. But a
caveat with Diffusion Models is the extended duration for image generation
due to its iterative approach.

While deep generative models serve as potent instruments for synthetic image
generation, they also usher in certain challenges. For instance, the computa-
tional intensity of training, especially for GANs, often mandates substantial
resources. They also predominantly depend on voluminous training datasets,
and the uniformity in the quality of the produced images can occasionally
waver. Furthermore, ensuring precise control over particular image traits can
be intricate, and the resultant synthetic images may be devoid of annotations,
posing challenges for applications necessitating labeled datasets.
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2.1. Methods of synthetic image generation

2.1.4 Synthetic image collections from Games

Recently, realistic 3D video games have been recognized as an innovative
avenue for generating synthetic image samples across multiple sectors within
artificial intelligence research and deployment. Notable titles in this regard
include ”Counter-Strike: Global Offensive” (CSGO [23] and ”Grand Theft
Auto” (GTA) [24]. Both games, celebrated for their sophisticated graphics
and intricate world design, present a rich data source yet to be fully exploited.
An example of the GTA dataset is shown in figure 2.1.

Figure 2.1: GTA images used for segmentation [25]

Consider ”GTA,” a game marked by its vast open-world design. It exhibits
a plethora of scenarios, terrains, and in-game characters, all of which can
be harnessed to craft synthetic datasets [25]. Such ”GTA datasets” are espe-
cially potent for endeavors like simulating autonomous driving or analyzing
pedestrian behavior, thanks to the game’s bustling urban landscapes, intricate
traffic mechanics, and dynamic non-player character interactions. In contrast,
”CSGO,” distinguished by its comprehensive arsenal of weaponry and gear,
has facilitated the development of the ”CSGO weapon datasets.” These have
emerged as assets for research areas emphasizing object detection, especially
in contexts where weapon identification is paramount.

Leveraging datasets stemming from these video games bestows multiple
benefits. The cost-effectiveness stands out prominently. Procuring image data
from these platforms is considerably more economical than orchestrating
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2.2. Domain Generalization

real-world datasets, which entail extensive image acquisition, annotation, and
refinement processes [25]. The meticulous physics and lighting mechanics
integrated into these games, paired with their state-of-the-art graphics, guar-
antee the resultant images are of impeccable quality. Given the orchestrated
nature of these virtual environments, crafting specific situations or edge cases
becomes less cumbersome, fostering dataset diversity.

Nevertheless, this approach isn’t devoid of hurdles. A salient challenge is
annotation. Even though these games render meticulous visuals, they don’t
innately provide the nuanced labels pivotal for myriad machine learning
applications. This often necessitates auxiliary post-processing and hands-on
annotation, partially offsetting the cost advantages. However, the horizon
seems optimistic. Recent breakthroughs, like the advent of the Segment
Anything [26] model by Meta, suggest viable remedies to such annotation
dilemmas. Implementing this model empowers researchers to glean finer
object and environment labels from synthetic imagery, amplifying the worth
of game-sourced datasets.

2.2 Domain Generalization

In the realm of synthetic datasets, a pervasive challenge encountered when
adapting to real-world tasks is the discernible distribution disparity between
synthetic and actual data. At the heart of addressing this divergence lies
domain generalization [27]. This paradigm emphasizes training algorithms
across diverse domains, instilling in them the capacity to aptly adapt to and
function in unfamiliar territories. The overarching objective is to distil and
harness the collective knowledge spanning these domains, repurposing it to
navigate uncharted ones. Notably, this is executed without the need to tap
into the target domain’s data during the training phase, clearly demarcating
it from domain adaptation, which often resorts to using unlabelled data from
the intended domain.

This ethos underpinning domain generalization echoes the quintessential
aspiration of machine learning: devising models adept at generalizing to data
they haven’t encountered before. Strategies employed to this end encompass
meta-learning techniques [28], where models are primed to swiftly acclima-
tize to novel tasks, to architectural refinements that facilitate the extraction of
domain-agnostic features [29].

Of late, the applicability of domain generalization has become increasingly
salient in reconciling differences between synthetic and real-world data. The
challenge of synthetic-to-real generalization materializes when training on
simulated or computer-generated data, a preference due to its plentiful avail-
ability and annotation convenience, does not adequately capture real-world
intricacies. In this context, domain generalization offers a sturdy scaffold,
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2.2. Domain Generalization

ensuring models honed on synthetic datasets retain their effectiveness upon
real-world deployment. Such congruence is indispensable in domains like
robotics and medical imaging or autonomous driving [30], where obtaining
real-world data may be limited, costly, or fraught with risk. In such situations,
domain generalization emerges as a pivotal anchor, solidifying the tangi-
ble benefits of training on synthetic data without undermining a model’s
real-world proficiency. Broadly, the techniques under domain generalization
seeking to bridge the synthetic-real chasm can be stratified into two main
streams: model-centric strategies and dataset-centric methodologies.

2.2.1 Model-centric approaches

Model-centric approaches center on the model itself, aiming to enhance its
internal structure, functionality, and robustness. These methods emphasize
architectures, losses, and regularization techniques [31] that intrinsically im-
prove the model’s ability to understand underlying patterns across varying
domains, thereby reducing the domain-specific biases. The model-centric
paradigm advocates that if a model can be designed to inherently capture
universal patterns irrespective of the data domain, then it can robustly gen-
eralize to new, unseen domains. By focusing on the model’s design and
training process, researchers aim to ensure that the learned representations
are more invariant and less sensitive to domain-specific noise. Such ap-
proaches may employ techniques ranging from architectural modifications,
like adaptive layers or components, to regularization methods that encourage
domain-invariance in the learned features. In the context of synthetic-to-real
generalization, where models are trained on synthetic data and deployed
on real-world scenarios, it becomes possible to attenuate the discrepancies
between synthetic training data and real-world application scenarios by
emphasizing model structures and training methodologies that inherently
understand and prioritize domain-agnostic features.

Zdravko Marinov and Alina Roitberg proposed a novel approach to mini-
mizing gaps between synthetic and real domains using automatic modality
selection [32]. The authors propose an unsupervised modality selection
method, ModSelect, which emphasizes the importance of the right modal-
ity when designing multimodal systems. The intent is to determine which
modalities contribute positively to cross-domain activity recognition and
automatically select them without the need for ground-truth labels. This
unsupervised modality selection approach is built on the correlation between
predictions of different unimodal classifiers and the domain discrepancy of
their embeddings. It computes modality selection thresholds to choose only
those modalities that have a high correlation and a low domain discrepancy.
This highlights the method’s capability to distinguish between useful and
non-useful sources of information, especially when dealing with a significant
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2.2. Domain Generalization

distributional shift like the synthetic-to-real gap.

Wuyang Chen and Zhiding Yu [33] proposed an automated synthetic-to-real
generalization by doing knowledge distillation from ImageNet to synthetic
datasets and Reinforcement-learning-based optimization procedures. The
paper introduces a fresh angle to address synthetic-to-real generalization
by conceptualizing it as a lifelong learning challenge. By emphasizing the
representation similarities between models trained on synthetic data and
the ImageNet pre-trained model, the research posits this similarity as a
gauge for generalization capabilities. This is visualized in the figure 2.2.
In addition, the paper also proposes a novel automated hyperparameter
framework, a Reinforcement Learning-based learning-to-optimize strategy.
This technique aims to supersede the convoluted manual layer-wise learning
rate adjustments with an automated system. Comparative experiments vouch
for RL-L2O’s superiority over hand-crafted decisions, highlighting its capacity
to derive comprehensible learning rate strategies.

Figure 2.2: Knowledge Distillation in synthetic-to-real generalization

2.2.2 Data-centric approach

While the model-centric approach offers profound insights into tailoring
model architectures and training strategies for domain generalization, shift-
ing our gaze to the data itself unveils another avenue of exploration: the
data-centric approach. Focusing on the very essence of what our models
consume, data-centric strategies emphasize the modification, enhancement,
or expansion of training data to better equip models for unseen domains.
Techniques such as data augmentation, re-sampling, and domain random-
ization become the key players [34]. For instance, by introducing variations
in lighting, orientation, or background noise, data augmentation can make
the model invariant to such changes. Similarly, domain randomization might
scatter a spectrum of domain-specific features into training data, encourag-
ing the model to focus on the most consistent and generalizable patterns
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[35]. In this section, we’ll delve deeper into the related works regarding
how data enhancement techniques provide a robust foundation for domain
generalization, making models more adaptable to unfamiliar territories.

The most fundamental one among those data-centric approaches would be
using proper image preprocessing techniques. An example of using such
techniques is shown in figure 2.3.

For instance, Yichun Shi and Xiang Yu [36] proposed a domain-invariant
feature learning framework by doing carefully chosen data enhancements
on the training data using data synthesizing techniques. In particular, the
paper introduces techniques to make models better at recognizing images,
especially in unpredictable situations. They address challenges like when
faces are turned slightly away, are blurry, or partly hidden. To simulate
blurry photos, they used a technique that’s like smearing the image a bit. To
represent situations where parts of an image might be blocked or hidden,
they divided pictures into small sections and darkened some of them. Lastly,
for pictures where faces aren’t looking directly at the camera, they used a
tool called PRNet to adjust the angle of the face. To keep things random and
more lifelike, they mixed these changes, applying them to images with a
one-in-three chance.

Figure 2.3: Variation in image-preprocessing [27]

Another widely used approach is the adversarial data augmentation with
gradient information, inspired by the Goodfellow [37] because gradient
perturbation gives the most difficult perturbation for any deep learning
model. The paper from Riccardo Volpi and Hongseok Namkoong [38]
introduced an approach that uses adversarial data augmentation in domain
generalization. In simpler terms, they generate challenging, synthetic training
samples that push the model to learn more robust features. By doing so, the
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model becomes better equipped to handle diverse and previously unseen
data. The methodology behind this involves using a min-max optimization
strategy. An adversarial network generates difficult examples appending
gradient information to the samples, while the main network tries to correctly
classify these challenging samples. This continuous back-and-forth between
the two networks ensures the primary model becomes more versatile and
adaptive.

Other people try to do adversarial data augmentation with domain-specific
information, which is called domain-guided perturbation. Shiv Shankar
and Vihari Piratla introduced a Bayesian setting to this matter and viewed
adversarial data augmentation as a Bayesian sampling over the domain [39].
Instead of adding adversarial noises to samples solely using gradient infor-
mation from the task-specific classifier, they also used gradient information
from the domain-specific classifier. To generate new training instances that
mimic data from a different domain, the idea is to slightly modify or ”per-
turb” these causative domain-related features. Training this domain classifier,
the authors capture the gradient (rate of change) of the loss concerning the
input data. This gradient essentially points in the direction of the greatest
domain change. By perturbing the data in the direction of this gradient, they
can create new instances that look like they come from a different domain.
This novel method allows the direct perturbation of inputs without having
to separate or remix domain signals or make various assumptions about
distributions.
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Chapter 3

Overview

The universal approximation theorem states that a neural network can po-
tentially approximate any function within its training dataset [40]. While
this can be an advantage, it also makes the network vulnerable to unfamiliar
data distributions, especially when using synthetic data in computer vision
applications.

In this research, we shift our focus towards a data-centric approach, empha-
sizing the importance of dataset engineering over simply tweaking model
architectures. Our goal is to develop strategies that bridge the gap between
synthetic and real datasets, enhancing the performance and reliability of
computer vision algorithms in real-world scenarios.

3.1 Overview

Central to our proposal is a focus on advancing dataset engineering tech-
niques. Our objective is to enhance synthetic datasets so that they mirror
the complexities encountered in real-world scenarios, thereby narrowing the
divergence between these two domains. The ambition here is dual-faceted:
firstly, to elevate the authenticity of synthetic data in line with real-world
data, and secondly, to boost the adaptability and resilience of computer
vision algorithms. An overview of our approach is shown in figure 3.1. We
will explain each component in this figure further in the following sections
and chapters.

As the overview figure 3.1 shown, we propose a four-fold method to im-
prove dataset quality and alignment between generated synthetic and given
real datasets: using heuristic Metadata Distribution Alignment to better
understand and organize data, implementing Feature Space Distribution
Alignment to create a smoother transition between synthetic and real data
feature spaces, and employing Correlation Analysis to study the relation-
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Figure 3.1: A high-level overview of our approaches. We begin with aligning
metadata and feature distributions in the synthetic generation pipeline(an
explanation of alignments can be found in 3.1, 4.7 and 4.6), verify the ef-
fectiveness with benchmarking and compare the final results with the real
dataset. The outcomes of benchmarks would then be used for correlation
analysis and dataset quality evaluation.

ships between different data attributes. For exploring the distributions, we
use different approaches. For one-dimensional metadata distributions, we
view the distribution as histograms and align the histograms between syn-
thetic and real datasets. For high-dimensional feature distributions, we fit
the distribution with the non-parametric model and align the distributions
by enclosing the distances between the fitted non-parametric models. By
integrating these elements, we aim to create computer vision algorithms
that are more robust and adaptable to real-world applications, while being
straightforward to develop and implement.

1. Metadata Distribution Alignment
Visual semantics and the spatial relationships found in images are
largely influenced by metadata, which includes attributes such as
bounding box areas, rotations, positional coordinates, and background
congruity. Addressing the existing disparity between domains, we
focus on harmonizing the metadata distributions between synthetic
and real image datasets. Using dataset engineering tools like data
augmentation and filtering, we aim to make the metadata distribution
of synthetic images closely resemble that of real images. This approach
is proving vital in enhancing the algorithm’s ability to generalize across
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various domains.

2. Feature Space Distribution Alignment
Moving to Feature Space Distribution Alignment, our goal is to align
feature space representations that are often based on pre-trained mod-
els. We examine a range of feature extractors, including CLIP, Data2Vec,
Dino, YOLO, and Faster R-CNN, to harmonize the feature space distri-
bution between synthetic and real datasets. We are particularly focused
on analyzing how different feature extraction techniques affect the
alignment process, exploring both comprehensive and embedded fea-
ture sets. By methodically benchmarking these methods, we identify
the strengths of each in closing the gap between domains, consequently
improving generalization capabilities.

3. Sample-wise Correlation Analysis
In addition to just achieving alignment, it is crucial to deeply under-
stand the effectiveness of our alignment strategies. We undertake a
detailed evaluation focused on the features and metadata of datasets,
shedding light on the correlation between feature space closeness and
detailed performance metrics. This aspect of evaluation provides clear
insights into the capabilities and limitations of focusing on feature
attributes, analyzed at different levels - from bounding box details to
broader image-level diagnostics. These thorough analyses are vital in
guiding the direction of future dataset engineering efforts, helping to
pinpoint areas for improvement and innovation.

4. Dataset Evaluation During the previous alignment and correlation
analysis pipelines, we methodically benchmark metadata and feature
representations across diverse datasets. A good side job would be
to devise a streamlined method to evaluate the dataset’s quality and
reliability, comparing metadata and feature distributions with those
observed in validated real-world datasets. This strategy is geared not
only towards gaining a finer understanding of dataset attributes but
also toward promoting informed and strategic choices during the early
phases of model training. This endeavor reflects our dedication to
improving the initial stages of data analysis, thereby advancing the
overall efficacy and progression of machine learning approaches.

3.2 Motivation

In this section, we aim to provide a deeper understanding of the method-
ologies we’ve outlined earlier. Our objective is to convey the reasoning that
guided our choice of approaches and why we anticipate them to potentially
be successful. This discussion isn’t just about highlighting what we included
but also shedding light on the paths we chose not to explore in this study. We
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feel that understanding the reasons behind the exclusion of certain methods
is equally important to comprehend the full scope of our research strategy.
We aspire to offer a clear and balanced view, enabling readers to grasp the
essence of our methodological framework in its entirety.

3.2.1 Motivation for Aligning Synthetic and Real Data

In the realm of deep computer vision, algorithms are inherently designed to
grasp the data distribution present in the training dataset. Thus, aligning
the distributions of synthetic and real datasets can significantly enhance
the generalizability of these algorithms across diverse domains and refine
performance on real-world data. However, it’s imperative to understand that
alignment does not equate to rendering synthetic images wholly realistic.
This is mainly because computer vision models perceive images distinctively
from humans. Moreover, generating ultra-realistic images is both compu-
tationally intensive and time-consuming, given the intricacies of physical
simulations and comprehensive ray tracing. Additionally, domain general-
ization issues, prevalent even among real datasets, further complicate the
alignment endeavor. Examples of this phenomenon can be found in related
works chapter 2.2.1, as well as in experiments chapter 5.2.1, where naively
sampled synthetic datasets lead to very poor generalization results on real
datasets.

3.2.2 Complementing the Logic of Distribution Alignment

Historically, the consensus has been straightforward: if the distributions of
synthetic and real datasets align, then the metadata attributes and feature
space representations would naturally align as well. However, achieving
explicit distribution alignment is extremely challenging. In this context, we
explore the promise of utilizing metadata and features as pivotal anchor
points to shape data distribution. The thrust of our experiments focuses
on identifying metadata attributes that encapsulate a significant amount of
information about dataset distribution, to minimize the disparity between
synthetic and real datasets.

But why emphasize metadata and feature alignment? Our observations
suggest that metadata serves as efficient abstractions, encapsulating the
essential information derived from an image, even if its nuances might be
elusive to human comprehension. It stands to reason that certain metadata
can profoundly reflect the underlying distributions. Aligning them, thus,
becomes a logical step. On the topic of features, it is widely accepted that
feature extractors in deep learning models extract comprehensive information
about the images they process. Even if these features aren’t always intuitive to
human analysts, their importance cannot be understated, especially given that
many deep learning models are predominantly feature-based. A substantial
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portion of these models is dedicated to feature extraction, underscoring the
necessity for the extracted features to be information-rich. As such, aligning
these features becomes crucial in steering the underlying distribution in the
desired direction. The metadata we studied in this work is listed in sections
4.6.1 and 4.6.2, and the feature space representations we study are described
in sections 4.7 and 5.3.1.

3.2.3 Experimental Methodology

Our methodological design is thorough and is centred around assessing the
influence of various metadata attributes and feature space representations on
computer vision algorithms. This data-centric approach encompasses both
quantitative and qualitative evaluations. We utilize an array of metrics to
assess the efficiency of computer vision models, particularly when trained
on synthetic datasets with varying levels of metadata and feature alignment.

By holding other parameters constant and modulating the alignment degree,
we are equipped to ascertain which metadata and features most significantly
impact the underlying data distribution. This offers a foundation for propos-
ing guidelines on which attributes should be prioritized for alignment and
which may not be of paramount importance. To ensure a robust and unbiased
understanding, benchmarks will be conducted across a spectrum of deep
learning algorithms, datasets, and diverse objects of interest. This compre-
hensive evaluation strategy aims to furnish a well-rounded insight into the
intricacies of metadata and feature alignment in the realm of computer vision.
A high-level benchmark pipeline illustration can be found in figure 4.1.

A more concrete example can be found in the experiment chapter in section
5.2.1, where we benchmark one specific metadata attribute on datasets: the
bounding-box area, which is essentially the size of the objects of interest in
images in the context of object detection. In particular, we propose 3 different
versions of the dataset, in which the alignment degrees in bounding-box
area distribution are highly different, but the other configuration parameters,
such as light, and shapes of the objects in the generation pipeline, are fixed
in all three datasets. For benchmarking those three datasets, we train the
same set of computer vision algorithms on those three datasets separately
and evaluate the trained models on the real test dataset. We then check the
correlation between alignment degrees and model performances. Only if
there is a strong correlation across different datasets and computer vision
algorithms, we would conclude that this metadata is an important attribute
of synthetic datasets and its distribution should be aligned.
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3.2.4 Deep Generative Model: A Viable Solution?

The idea of employing Generative Adversarial Networks (GANs) or similar
deep learning methodologies to produce synthetic images that replicate real
data distribution is tempting. GANs have indeed showcased exceptional
capabilities in image synthesis. However, when scrutinized in the context of
our study, they present certain limitations.

On a theoretical plane, GANs can be fine-tuned to generate images that
align closely with the distribution of genuine images. However, a significant
impediment with Deep Generative Models is their lack of precision in con-
trolling the attributes of the images they generate. Such granular control
becomes critical, especially when iterative processes are in play. If a defi-
ciency is identified within a dataset, producing additional images tailored
to that niche often becomes a challenge with these models. This limitation
persists even in light of recent progress in prompt engineering, particularly
with large-scale diffusion models.

Further complicating the prospect of deep generative models is the chal-
lenge of annotations. Many of these models do not incorporate modules to
embed or predict annotations in the synthesized images. The subsequent
effort required to annotate these images can be considerable, thereby raising
concerns about the cost-effectiveness of using synthetic data. While tools
like the ’segment-anything’ model from Matter may offer a solution, they
often fall short in providing intricate details such as depth maps or lighting
conditions, critical aspects for our research considerations.

20



Chapter 4

Methodology

In this chapter, we set the stage by laying out the specific settings associated
with the problem under investigation. This entails a formal definition of the
task, emphasizing the elements we aspire to optimize. A formal definition is
needed not only for the formality but also for generalizing the two different
problem contexts we studied in the following chapters since they follow
the same problem structure and can be viewed as different instantiations
of the problem defined in 4.1. The first problem is to generate the best
synthetic datasets given the real dataset, which is thoroughly discussed in
the previous chapters. The second problem context is to modify the train
datasets given a distribution shift in the test dataset when both train and test
datasets could be real datasets, which is explained in sections 5.4.4 and 4.7.
The following sections will detail the methodologies employed, underpinned
by the rationale guiding our choices. Furthermore, the chapter underscores a
systematic strategy tailored for the alignment of synthetic and real images.
The motivation and rigorous analysis supporting this strategy are covered
herein, with empirical findings reinforcing its validity to be presented in
subsequent chapters.

4.1 Formal Problem Statement and Definitions

Let D be the distribution of data samples and let X ⇠ D be a set of data
samples drawn from distribution D, where |X| ⌧ N with N being a certain
constant. Let F : X ⇠ D 7! O be the function that takes a single data point
x 2 X ⇠ D as input and maps it to the output space O 2 R

d. Further,
suppose Y(·) : X ⇥ O 7! R is the evaluation metric that takes a single data
point x 2 X ⇠ D and o 2 O as an inputs and output a real value r 2 R for
evaluating the outcomes of the function F based on this data point x. Let
F ⇤

X0 denote the function F that optimizes Y(·) over an arbitrary dataset X0,
i.e. F⇤

X0 = argmax f EX0 [Y(X0, F(X0))]. Now based on those definitions and
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notations, our problem setting can be formalized as follows:

Definition 4.1 Given dataset X ⇠ D sampled from implicit distribution D, |X| ⌧
N, a function F : X ⇠ D 7! O and an evaluation metric Y(·) : X ⇠ D⇥ O 7! R,
find eD⇤, such that:

eD⇤ = argmax eD EX⇠D [Y(X, F⇤
eX⇠ eD(X))]

where F⇤
eX = argmax f E eX⇠ eD [Y( eX, F( eX))].

Instantiations

In terms of synthetic and real datasets/distributions and under the context
defined in 3.1, the target distribution D is viewed as the implicit real data
distribution, X ⇠ D as the real dataset we have with limited size, eX ⇠ eD as
the generated synthetic dataset and eD as the implicit synthetic distribution.
The problem reduces to finding the best synthetic datasets eX given the
real dataset X. And the best synthetic dataset eX is defined as the one that
maximizes 4.1, i.e. given F which is a deep learning algorithm, eX should
be the synthetic dataset that maximizes the metric function Y over the real
dataset X when F is optimized(trained, under the context of deep learning)
over eX. Note that X is used as a test dataset here, and Y is the evaluation
metric for the deep learning model on the test dataset. In the context of
supervised learning, when F is an image classification or object detection
algorithm that takes as input a sample x 2 X and outputs the prediction
o 2 O, Y is typically the Accuracy or MAP [14] metric. In the context of
unsupervised learning, when F is for instance a clustering algorithm that
takes x and outputs o as the assigned cluster to x, which is however not
covered in this work, Y is typically the silhouette score used for clustering
evaluation [41].

Of course, the benefit of generalized definition is that it gives us wider room
for interpretation, not necessarily restricted to synthetic and real datasets.
Another interpretation of 4.1 could be found in 5.4.4, where we interpret D as
the implicit test data distribution in the COCO dataset, and eD as the implicit
train data distribution. The problem there becomes finding the best-modified
train dataset eX from the original train dataset given the test dataset X.

4.2 Limitations

As we already mentioned in the overview chapter, it is extremely hard to
optimize over a general distribution eD. The standard trick for optimizing
that is using parameterization. Let P be the parameter space and F be
a parameterized distribution over the same sample space as eD. Then we
assume
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eD = F(Q)

for some certain parameters Q 2 P, with F fixed. Then the optimization
problem now becomes to :

F⇤, Q⇤ = argmaxQ2P ,F EX⇠D [Y(X, F⇤
eX⇠F(Q)

(X))]

In terms of synthetic data generation, we could view the parameter space
P as the space of all possible configurations for the synthetic data genera-
tion pipeline, and the parameterized distribution F is implicitly defined by
the implementation of the pipeline and the sampling strategies. Even if the
pseudo-distribution eD can be parameterized, the optimization problem is still
extremely hard, since it is almost impossible to parameterize the given distri-
bution D in a meaningful way generally. Further, the optimization problem
to obtain F⇤

X⇠D and F⇤
eX⇠ eD is usually highly non-convex and difficult to solve.

Therefore, to obtain meaningful results, we need to make approximations
and assumptions.

4.3 Approximations

To optimize the utility function in actual experimental settings, we make the
following approximation:

1. EX⇠D [Y(X, F(X))] would be approximated empirically with the sam-
pled dataset X̂ ⇠ D with |X̂| = n and approximate with EX⇠D [Y(X, F(X))] ⇡
1
n Âx̂2X̂ Y(x̂, F(x̂))

2. F ⇤
X = argmax f EX⇠D [Y(X, F(X))] would be approximated using an

optimizer J, which guarantees to converge in a local maximum, e.g.
SGD [42] or Adam [43]. We would assume that F ⇤

X ⇡ F J
X, where F J

X is
the F obtained by optimizing EX⇠D [Y(X, F(X))] using J.

3. The pseudo-distribution eD can be parameterized with eD = F(Q)

Putting it all together, we change the optimization problem defined in Defini-
tion 4.1 to the following approximated optimization problem:

Definition 4.2 Given dataset X ⇠ D sampled from implicit distribution D, a
function F : X 7! O and an evaluation metric Y(·) : X ⇥ O 7! R, find F⇤, Q⇤ 2
P such that P is the parameter space, F(P) forms a probability distribution over
certain sample space, and

F⇤, Q⇤ = argmaxQ,F
1
|X| Âx2X Y(x, FJ

eX⇠F(Q)
(x))
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where FJ
eX⇠F(Q)

is the optimized solution obtained by using optimizer J.

In the scope of this work, the approximated value for performance metric
Y(X, F) = 1

|X| Âx2X Y(x, FJ
eX⇠F(Q)

(x)) is typically the value of performance
metric computed on the real test dataset with the pre-defined metric function
Y using the model FeX⇠F(Q) trained on eX.

4.4 Optimization Approaches

Given a parameterized distribution F, parameter space P and an optimizer
J, Definition 4.2 gives us a computable utility function. However, this utility
function is not end-to-end differentiable, which disallows us from using nu-
merical optimization algorithms which are typically gradient-based. Further,
in practise, it is very costly to optimize FJ

eX⇠F(Q)
at each step. Typically, when

F is a deep learning algorithm, the optimizer J would take a few hours, even
a few days to converge to a local minima/maxima. Therefore, we have to find
efficient heuristic approaches. In this section, we will propose two different
heuristic approaches: Bottom-Up and Top-Down approaches, and evaluate
their advantages and limitations. The bottom-up approach starts with match-
ing the target data distribution D and producing realistic samples by directly
learning D from the dataset X ⇠ D. Top-down approaches optimize its eD by
an iterative process using the evaluation metric Y. At each step, the approach
evaluates the currently generated pseudo-distribution eD, then improves it in
the next step. In the end, we will present our approach.

4.4.1 Bottom-Up Approach

The most direct way would be to align F(Q) with target distribution D,
i.e. F(Q) ⇡ D. Further, the search space for F(Q) is too big and typically
leaves no trace for us to directly optimize over the entire space. Therefore, an
empirical approach would be to first select a relatively simple parameterized
distribution space S , where each distribution F 2 S can be fully described by
its Parameter Space P . The choice of S is typically based on strong prior and
observation on the target distribution D. By fixing F 2 S , we can optimize
the parameters Q 2 P by heuristic approaches like grid search, and forward
sampling that are typically used in hyperparameter search for machine
learning algorithms [44]. For evaluating the alignment, we can use some
empirical metric for measuring distances in high-dimensional distributions,
like approximated KL-Divergence [45], kernel density estimation [46].
The biggest advantage of this approach is that it arises naturally and is
very straightforward. Aligning the pseudo distribution eD with the target
distribution D is indeed the ultimate solution to the optimization problem
in the definition 4.1, because it is easy to see that if eD = D, 4.1 must be
optimized. However, it has the following limitations:
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1. By pre-selecting a certain parameterised distribution S, we introduce
a strong bias a prior, which almost solely determines the optimized
solution. Further, there is almost no guarantee that the pre-selected
parameterised distribution family contains any distribution that is even
close to the implicit target distribution D underneath. We could find
the optimised parameters and the evaluation metric Y(·) is still bad.

2. The heuristic approaches could be very time-consuming. To evalu-
ate the alignment, one would need to sample eX ⇠ eD, and use a
high-dimensional distribution measure to compare eX and X ⇠ D. In
high-dimensional cases, e.g. with image samples, a single iteration
of sampling and computing would already be time-costly, and a grid
search/forward-sampling/backward-sampling would take numerous
iterations to complete.

3. In a practical data generation pipeline using a renderer, there is almost
no explicit control over the distribution of the generated samples. There
is no possibility to first choose a certain explicit distribution from
mathematical space, pass it to the render and get the desired samples
generated from this input distribution.

Using deep generative models, such as VAE [20], GAN [21] and Diffusion
Model [47] to reconstruct samples from D given the dataset X ⇠ D can also
be viewed as examples of such Bottom-Up Approach because they aim to
directly learn the generative target distribution. From the problem definition
4.2, we know that an optimal solution can be achieved by alignment(if we
can align eD with D, we can achieve the global optimum), though it might not
necessarily be the only optimal solution. We call it the bottom-up approach
because it starts with the basic fundamental characteristics of the problem: the
pseudo-distribution and the target distribution. However, a direct alignment
in distribution is practically infeasible, because the target D can be arbitrarily
complex, and we do not have access to the target distribution itself. Even in
the case of deep generative models, where the learned distribution may also
be implicit and even arbitrarily complex, the alignments often turn out to
be insufficient, as shown in [48]. Further, training a deep generative model
requires a lot of data samples, which is infeasible in our setting, as we assume
the dataset X is small, i.e. |X| ⌧ N.

4.4.2 Top-Down Approach

A second approach would be to not make any assumptions on the distribution
underneath and optimize the parameters, but use an iterative approach
based on the observations on Y(x, FJ

eX⇠F(Q)
(x)), x 2 X ⇠ D. Suppose we

have an initial sample generation pipeline that follows certain distribution
F0(Q0) and the generated dataset is fX0. Then we follow a heuristic iterative
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optimization approach, i.e. based on Y(x, FJ
fX0⇠F0(Q0)

(x)), we find the under-

performing samples x 2 X ⇠ D, denoted as X̂0. Then for evolving into
the next iteration, we sample in a certain set of F and parameter space P
to generate fX⇤

0 ⇡ X̂0. Then we evolve the dataset with fX1 = fX0 [ fX⇤
0 . We

call it a top-down approach because it uses the top-layer information from
the optimization problem: the metric function Y(·) itself. By finding the
”blind spots” from Y(·), the distribution underneath is implicitly improved
by keep adding new samples into the generated dataset. The process would
stop when Y(x, FJ

fX0⇠F0(Q0)
(x)) are above a certain threshold or when the

differences in the last two iterations are negligible.
In the context of generating synthetic object detection datasets, the top-down
approach would work as follows: first, generate a baseline dataset fX0, then
evaluate the object detection model F trained on fX0 using e.g. the Average
Precision Y, on the test real dataset. Then a subset of X, denoted as X̂0, is
selected from X, where the model F performs poorly on this subset, i.e. the
average precision on that subset, Y(X̂0, F(X̂0) is below a certain threshold.
Then another set of synthetic images fX⇤

0 is generated based on X̂0, and
merged into fX0. The process then repeats itself. The limitations of this
approach are the following:

1. The iteration could potentially be much more time-costly than the
bottom-up approach since one would not only need to sample eX ⇠ eD,
but also fit FJ

eX. When F is a complicated algorithm, the fitting would be
very time-consuming and dominate the overall time consumption in
the iteration. In a real-world scenario where time is usually limited, we
could potentially only proceed few iterations from the beginning.

2. The process is not easily generalizable since it is an iterative process
based on one specific starting point fX0 and one target dataset X. If we
have a next target dataset X0 that is drawn from a different distribution,
the whole process must be repeated and the previous iterations would
give zero insight into the new iterations.

3. There is no guarantee that the iterative process will ever converge or
meet the stopping threshold. Further, there is also no guarantee that
the evaluation metric Y(·) would be monotonic increasing through the
iterations. If Y(·) decreases after certain steps, it then becomes clueless
whether the iterations should be kept proceeding or not.

4. It remains unclear how to sample the parameter space and distribution
space to find a good fX⇤

0 ⇡ X̂0 within each iteration step. However, the
quality of the dataset eX in the end is almost solely dependent on the
quality of each iteration step.
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4.4.3 Our approach

Our innovative approach to minimizing the gap between the pseudo and
target distributions combines the principles of both top-down and bottom-
up methodologies, creating a synergistic framework that overcomes the
limitations of these conventional strategies. It can be summarized as follows:

1. We capitalize on the strengths of bottom-up distribution alignment,
while elegantly sidestepping the constraints of explicit parameter opti-
mization. In our pursuit of aligning the pseudo and target distributions,
we seek to identify a set of attributes that, when aligned, effectively
reduce the distribution gap. Rather than pursuing explicit optimization,
our approach leverages implicit alignment. We select these attributes as
anchor points, allowing us to exert control over the underlying distri-
butions. This method hinges on identifying and harnessing attributes
with significant influence over the distribution alignment process. More
details can be found in section 4.6.

2. To discern the ideal set of attributes for distribution alignment, we
engage in extensive benchmarking. Through systematic experimen-
tation with diverse datasets, each characterized by unique attributes,
we evaluate the contributions of these attributes to the distribution
alignment process. The goal is to uncover a set of attributes that holds
relevance across a range of datasets, enabling a generalized approach to
metadata distribution alignment. More details can be found in section
5.2.1.

3. Our optimization strategy harmonizes the virtues of both top-down
and bottom-up approaches, offering a unified and potent solution. We
initiate by creating an initial pseudo-distribution, fD0, through pre-
liminary attribute alignment in the data generation pipeline. This
pseudo-distribution acts as a foundational platform for iterative refine-
ment. Our iterative steps encompass the continuous enhancement of fD0,
guided by its proximity to the target distribution and insights gleaned
from evaluation metrics. These iterations involve a dynamic interplay
of filtering and augmentation techniques, contributing to the gradual
and effective alignment of the pseudo-distribution. More details can be
found in 4.3 and 5.4.4.

4. To assess the distribution gap between the pseudo and target distribu-
tions, we adopt a dual-pronged approach that harmonizes the benefits
of both top-down and bottom-up perspectives. While evaluation met-
rics offer precision, they may also consume considerable time. Instead,
we undertake an empirical exploration of the relationship between
evaluation metrics and distribution distance measures. By thoughtfully
combining these measures, we extract relevant information that em-
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powers the optimization process. This streamlined evaluation process
enhances the efficiency of distribution alignment efforts. More details
can be found in 5.4.6.

An illustration of using our approach on synthetic distribution alignment is
illustrated in figure 3.1.

4.5 Problem Settings

As mentioned in the previous chapters, we would restrict ourselves to a
smaller subset of the optimization problem defined above in this project. It
is harder to evaluate when the setting is too broad and not specific at all.
More specifically, we would focus on object detection problems, which have
a wide range of applications and great importance in real life. Therefore, the
function F : X ⇠ D 7! O would be a deep object detection algorithm such as
YOLO [49], Faster R-CNN [50] and FCOS [51], and the metric function Y(·) :
X ⇠ D ⇥ O 7! R would be some widely used evaluation metrics for object
detection algorithms such as MAP, AP50, AP75, bbox-iou etc [14]. Further,
as described beforehand, our target distribution D would be interpreted as
the real image sample distribution, and the pseudo distribution eD would be
interpreted as the synthetic image sample distribution. Therefore, we could
view the optimization problem with closing gaps between synthetic datasets
and real datasets as a special case of the generalized optimization problem
defined in 4.1. Such restrictions give us insights into how to approach the
generalized optimization problems, and the generalization also empowers
those approaches to be reused in other cases of the optimization problem
4.1, since the problems themselves would have the same inherent structures.
Further, as described in the introduction chapter, we would proceed with
a realistic setting. In real-world scenarios, synthetic datasets are usually
introduced when the real dataset is very limited. Therefore, in our setting,
we would also assume that we have no direct access to the target distribution
D underneath. Instead, we only have access to a small dataset X ⇠ D with
|X| ⌧ N, where typically N  100.

4.6 Metadata Alignment for Underlying Distribution

To identify pivotal anchor points for the underlying distribution, we initially
focus on the metadata alignment and benchmarking the results of the align-
ment as well as the performance of the models trained on those datasets,
with/without the alignments. An illustration of the benchmark pipeline is
shown in the figure 4.1.

Within the realm of object detection, both real datasets, represented as X ⇠ D,
and the synthetic one, eX ⇠ eD, contain also annotations respectively. For
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Figure 4.1: The real dataset is split into two parts, one is exposed and the
other one is for testing. The exposed part feeds its metadata distribution to
the image generation pipeline, which produces a few baseline datasets as
well as metadata-aligned datasets, which are then used for training various
deep learning algorithms. The models are then benchmarked as well as the
effect of the alignment.

the sake of consistency and relevance, our focus remains primarily on bbox-
format annotations, which are employed across object detection datasets, i.e.
we would assume that the real datasets do not contain any other annotations
than the bounding box annotations.

While we operate under the assumption of the absence of more detailed
annotations on the real datasets, including segmentation information, the
synthetic datasets provide a broader scope. Given that these datasets are
crafted and rendered via our proprietary pipeline, they enable us to access
the supplementary details. This includes the segmentation masks of objects,
their distances to the camera, and more.

4.6.1 Exploring Basic Metadata

To begin, we examine the fundamental metadata that can be directly derived
from the image samples along with their associated annotations, including
attributes like image blurriness and brightness. Both real and synthetic
datasets readily provide these attributes. Detailed methods to compute these
characteristics are available in the appendix, primarily involving the use of
filters.
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Image-Level Metadata

Image-level metadata pertains to the inherent properties of the images them-
selves and represents the foundational attributes of any image. For bench-
marking, we have identified key image-level metadata: image sharpness,
image blur, image entropy, image brightness, and image contrast. Importantly,
these attributes are computed without the need for bounding-box(bbox) an-
notations. However, this also signifies that these metrics lack object-detection
relevant information, potentially rendering them less valuable for specific
use cases.

Bounding Box (Bbox)-Level Metadata

Bbox-level metadata, on the other hand, relates to properties extracted from
the bounding boxes as specified in the annotations. Contrasting with image-
level metadata, these attributes are more granular but packed with infor-
mation relevant to object detection. This relevance stems from the fact that
advanced object detection algorithms heavily utilize annotation data when
defining their loss functions. For benchmarking, we have zeroed in on sev-
eral bbox-level metadata: bbox sharpness, bbox blur, bbox entropy, bbox
brightness, bbox contrast, bbox area, and bbox aspect ratio. The methods
to calculate sharpness, entropy, blur, and contrast mirror those employed
for image-level metadata. Bbox area represents the space occupied by the
bounding box, while bbox aspect ratio is determined by comparing the width
to the height of the bounding box.

4.6.2 Advanced Metadatas in Object Detection

Traditional metadata offers utility in both real and synthetic datasets. These
types of metadata, which can be categorized as ”basic”, are relatively simple
to compute. A common example is the computation of entropy from pixel
values. However, these calculations only provide a superficial understanding
since they lack spatial contextual information such as the position or relational
position of pixels. For instance, the reordering of pixels inside an image or
bounding box (bbox) wouldn’t change its entropy even though the semantic
content might have drastically shifted. This highlights the limitations of rely-
ing solely on basic metadata. Consequently, there’s a clear need to introduce
and analyze advanced metadata which offers deeper insights. Notably, some
of these sophisticated metadata types, such as background similarity, object
occlusion, shape, and depth, rely on information from rendering engines.
This dependency predominantly ties them to synthetic datasets. Neverthe-
less, this section will detail methods to both extract this information from
renderers and estimate similar metrics for real-world datasets. Subsequent
chapters will delve into the evaluation of these proposed methodologies.
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Background Similarity

The concept of background similarity revolves around comparing an object
to its immediate surroundings. The underlying hypothesis is straightforward:
objects closely resembling their background can be more challenging for
detection algorithms. To derive this metric, especially in synthetic datasets,
we require a segmentation mask from the rendering engine. A typical
bounding box might include both the object of interest and some of its
surroundings, rendering it suboptimal for this specific task. The computation
method is as follows:

1. Extract pixels on the boundary of objects, along with their adjacent
background pixels.

2. Compute the cosine similarity between these extracted objects and
background boundary vectors.

3. The concrete mathematical formulation is cos(vbackground, vobject), where
vobject =

L
i,j2O pi,j,

L
being the vector concatenation function, O is

the set of object boundary pixel coordinates that have neighbouring
background pixels, p being pixel RGB vector and vbackground =

L
i,j2B pi,j,

where B is the coordinate set of a background corresponding to O.

To find all pixels on the boundaries of the objects and their neighbouring back-
ground pixels, we deploy the morphological dilation [52] with a square mask
of size 3. Notably, the computation of background similarity is restricted to
bbox-level because it necessitates individual object instance details.

Object Shape

Object shape is an integral feature that depicts the contour and form of an
object, serving as one of its foundational characteristics. Primarily classified
at the bounding box (bbox) level, it is imperative to preserve this metadata for
analysis. To capture this information, we fetch the object’s name directly from
the rendering engine. Throughout the synthetic data generation pipeline,
every distinct object is assigned a unique identifier. This identifier is subse-
quently registered within the renderer. During the image sample creation
process, this identifier is stored in tandem with its corresponding bounding
box.

Depth

Depth represents the spatial distance between an object and the camera. A
principal consideration behind measuring depth stems from the understand-
ing that objects farther from the camera are inherently more challenging to
detect compared to proximate ones. Parallel to the mechanism employed for
object shape, the renderer is capable of generating a depth map for every
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image sample, along with its segmentation mask. By integrating information
from both the depth map and the segmentation mask, the depth of each
object encapsulated by a bounding box can be ascertained. It’s pivotal to
understand that an object’s depth does not invariably correlate with the area
of its bounding box. Such instances arise when the object is only partially
visible due to intervening obstructions. Consequently, despite being situated
closer to the camera, its bounding box might appear diminutive. This ob-
servation further informs our calculation of occlusion metrics for individual
objects.

Occlusion

The occlusion of an object is defined as how much of the object is occluded
by another object/obstacle that is between it and the camera. For, a chair
could be occluded by a table and by other chairs near it. In those cases, the
shape of the object can not be fully observed, which could be challenging for
the object detection algorithm. However, there is no straightforward way to
record the occlusion of the object, even with information from the renderer,
because the segmentation mask does not contain information on how many
pixels an object should spread over an image without occlusion. To that end,
we would use the following insight:

The number of visible pixels of an object should be correlated with the depth
and shape of the object if it is not occluded.

The insight comes from the fact that for objects with the same shape, the
area shown in an image is linearly dependent on the square its distance
to the camera, due to fundamental optical property, i.e. a ⇠ 1

d2 , with a as
the number of visible pixels of the object, and d as the depth of that object.
This implies that the product of visible pixels and the squared depth should
be a constant if there is no occlusion, i.e. a · d2 ⇡ C, C constant across all
the objects, regardless of its depth to the camera because its area on the
image is solely dependent on the depth when no occlusion exists. Therefore,
an indicator for occlusion would be the case when the visible area of the
object is surprisingly small compared to all other objects of roughly the same
depth to the camera, in which case a · d2 ⌧ C. Further, the depth of an
object to the camera is purely objective and irrelevant to occlusion, since it
is directly obtained from the renderer. It encourages us to use a · d2 as an
indicator for occlusion. More specifically, if for some objects, a · d2 = eC is
much smaller than other objects, we would know that the visible area of those
objects is much smaller than it should be, which can only be explained by
an occlusion. This object must be occluded by another object, and its visible
area is therefore restricted. Further, a · d2 could also tell us how much of
the object is occluded. More concretely, if we have the ground truth C, then

32



4.6. Metadata Alignment for Underlying Distribution

a·d2

C should be roughly the percentage of the object visible from the camera,
and the rest is occluded. To conclude, we would use a · d2 as the metric for
occlusion. The lower the value, the more the occlusion. In particular, the
correlation is linear, as emphasized beforehand.

Computing advanced metadatas for real dataset

As previously discussed, one of the main challenges faced in this domain per-
tains to the computation of advanced metadata on real datasets. Historically,
the reliance has been on renderer-generated information for such computa-
tions. To address this limitation, we introduce a methodology to estimate
these metadata in real-world datasets. Our approach hinges on leveraging
a regressor or classifier, trained specifically to compute this metadata from
real image samples. Notably, feature extractors play a pivotal role, as they
often encapsulate data related to shapes, occlusion, and background contexts.
Herein, we outline the steps involved in calculating this metadata for real
datasets:

1. Begin by identifying a robust feature extractor, primed to extract intri-
cate metadata details from synthetic samples.

2. Utilize the derived features to train a regressor or classifier. The training
will be supervised using the metadata labels extracted from synthetic
samples.

3. Implement cross-validation to assess the outputs of the regressor or
classifier in tandem with the feature selection process. Should the
outcomes not meet predefined thresholds, we advocate for a transition
to an alternative feature extractor. This cycle of extraction, assess-
ment, and replacement continues until satisfactory results are obtained.
This iterative approach ensures an optimal feature extractor-regressor
combination.

4. Finally, real image samples are fed into the finalized feature extractor.
Subsequently, the trained regressor or classifier is employed to generate
predictive metadata values.

The figure for illustrating the described pipeline is shown in figure 4.2.

An in-depth evaluation of this proposed methodology, along with its efficacy
and nuances, will be expounded upon in the ”Experiments” chapter, under
section 5.3.

4.6.3 Aligning metadata distributions

In line with the methodology highlighted in 4.4.3, our objective is to align
the metadata, leveraging them as reference points for the underlying data

33



4.6. Metadata Alignment for Underlying Distribution

Figure 4.2: For predicting advanced metadata values on a real dataset, we
compute the desired metadata from the synthetic dataset, fit a regressor using
the synthetic features labeled with the metadata values, and then predict the
values on a real dataset with the real features.

distribution. Aligning the metadata distribution presents fewer challenges
compared to data distribution due to its one-dimensional nature and explicit
capturability. Here, we detail a heuristic method for metadata alignment:

1. For all samples in the real dataset X, compute metadata values. These
are introduced to the synthetic image generation pipeline and sub-
sequently adjusted to fit a parameterized model, such as a Gaussian
Mixture Model (GMM) [53].

2. Identify a modifiable set of configs within the image generation pipeline.

3. Execute a grid search over these configs for synthetic image genera-
tion. Each config yields a synthetic dataset generated using this config
paired with its respective metadata values, computed from renderer
information.

4. To approximate the real metadata distribution, we employ optimal
combinations derived from the grid search. This involves the selection
of a config subset, synthesis of samples using these configs, and their
consolidation into an aggregated dataset. The resultant dataset is
projected as the closest representation of the real metadata distribution.

Shifting the focus to the strategy for configuration subset selection, the idea
is to fit the real metadata distribution with some clustering algorithms and
then find the best config from the grid search for each cluster. The clustering
algorithm could be K-Means [54], Gaussian Mixture Models [53], and the
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number of clusters is automatically chosen by the silhouette score [41], which
is widely used for determining the proper number of clusters. The motivation
for using cluster algorithms is explained in the following paragraphs. To
select the best config, we feed the sampled config to the image generator
which produces a small set of generated synthetic image samples, with
metadata labeled. Then we compare the synthetic metadata distributions
of these sampled configs with the cluster parameters and find out the best
config for each cluster. The figure for illustrating the described metadata
alignment pipeline in synthetic image generation is shown in figure 4.3.

Figure 4.3: The metadata alignment pipeline consists of the following steps:
Firstly, the pipeline manager feeds the real metadata to a clustering algorithm,
and receives the parameters of the clusters. Secondly, it sends the parameters
to the config manager, which selects the best config for each cluster by
sampling configs and synthetic samples that are best matched with the
metadata clusters. In the end, the subset of best configs is fed to the image
generator and a final dataset is produced.

The first motivation behind this approach is that a standard clustering algo-
rithm can almost fit any 1-dimensional distribution and it is easier to select
the best config for each simple cluster than directly select the subset of configs.
Another motivation stems from our observation: synthetic image metadata
distribution consistently exhibits a Gaussian trend when a single fixed con-
fig is applied. Given the efficiency of GMM in capturing one-dimensional
metadata distribution, we can emulate it using a configuration subset; each
configuration represents a Gaussian component of the GMM.
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Testing every configuration combination isn’t practical due to the steep
computational overhead. However, understanding that each GMM cluster
is defined by its mean and variance, and given the Gaussian nature of the
synthetic image metadata distribution under a singular configuration, the
ideal configuration can be pinpointed based on proximity in mean and
variance to the actual metadata distribution. After these configurations
are finalized, the volume of samples generated from each becomes pivotal.
GMM offers specific weights for its components, indicating the proportion
of samples linked to each. These weights thus guide the determination of
samples per configuration.

4.7 Feature Space Alignment

Aside from metadata, sample features derived from feature extractors serve
as an alternative set of anchor points. Features often encapsulate both overt
and covert data-specific details. This essentially gives insight into the model’s
perspective of the samples. Notably, deep learning algorithms might discern
information in samples that transcend mere comprehensible metadata. One
must recognize that the way a model perceives samples could be substantially
different from human interpretation. This aspect has been discussed in depth
within the domain of deep learning interpretability and explainability [55].
This insight necessitates aligning the feature distribution of the target data
set, denoted as D, with the surrogate distribution, eD.

Another merit of leveraging features lies in their potential for an enhanced
signal-to-noise ratio compared to raw image samples. This enhancement
stems from the fact that the details get refined through the feature extractors.
Several renowned deep learning architectures, including YOLO and Faster R-
CNN [50], essentially consist of a feature-extraction backbone, complemented
by simplistic regressor heads, usually with fully connected layers or 1D
convolution layers. Given this structure, one can infer that the features
must harbor crucial data, as the efficacy of these algorithms hinges on it.
Nevertheless, it’s imperative to judiciously choose an apt feature extractor
and an evaluation scheme; not every extractor might align with the intended
application. To facilitate this, we propose our methodology for evaluating
various feature extractors. Another potential hurdle is aligning the high-
dimensional distribution, a challenge we address in this segment. Subsequent
chapters will shed light on the empirical results.

Feature Extractors Selection

The field of machine learning offers a plethora of feature extractors, each
catering to distinct requirements. Broadly, these extractors can be classified
into two categories:
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1. General vs. Specialized: General feature extractors such as the ResNet
Backbone and the RetinaNet Backbone are designed to be versatile,
suitable for a wide range of applications, especially in the domains of
transfer learning and representation-based learning [56]. In contrast,
specialized feature extractors, exemplified by the backbones used in
Faster R-CNN and YOLO, are tailored specifically for niches such as
object detection.

2. Pre-trained vs. Custom-trained: The initial weight configurations of
feature extractors are pivotal to their performance. Pre-trained weights,
commonly derived from expansive datasets like ImageNet or method-
ologies like contrastive learning, offer a robust starting point. Alterna-
tively, custom-trained weights, fine-tuned on specific tasks or datasets
like X ⇠ D for object detection, can also be employed.

It’s imperative to thoroughly benchmark these feature extractors to discern
their appropriateness for specific applications.

Benchmarking Methodologies

The intricacy of feature and feature extractor selection predominantly hinges
on establishing benchmarking and evaluation mechanisms. For our purpose,
we need to select the best subset of feature extractors which contain the most
information regarding object detection. To address this, we introduce the
following evaluation technique:

1. Metadata Fitting: An informative feature extractor should extract
enough information regarding the attributes from the objects of in-
terest, e.g. shape, size, its similarity to the background etc., which are
effectively the advanced metadatas we collected in the section 4.6.2.
The evaluation of feature extractors is therefore based on supervised
learning. Assuming access to a comprehensive set of informative meta-
data attributes (e.g., background similarity, object shape, contrast), the
underlying expectation is that the features produced by chosen feature
extractors should encapsulate these attributes effectively. To evaluate,
a regressor or classifier is appended to these features, trained to pre-
dict the aforementioned metadata, with the features remaining static
during this training. For regression, we use linear regression [57] as
the regressor and for classification, we use logistic regression [57]. For
feature selection, we use Random Forest [58]. Performance metrics
derived from this model offer insights into feature quality. The compu-
tation methodologies for these metadata attributes are detailed in the
preceding sections.

The simple illustration of this benchmark is shown in the figure 4.4.
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Figure 4.4: In the benchmark, the feature extractors produce features from
synthetic samples. The features, along with the annotated metadata with
the features, are fed into a simple classifier/regressor head, which uses
cross-validation to select the best feature extractors.

Aligning Feature Distributions

Aligning high-dimensional feature distributions poses a greater challenge
compared to metadata alignment due to computational cost and complexity.
Direct alignment during sample generation within the pipeline remains
impractical. Leveraging non-parametric methods, such as kernel density
estimation or K-nearest neighbours, can aid in addressing this challenge.
Consequently, we introduce two post-processing strategies to align these
distributions:

1. Feature Filtering: This entails the removal of synthetic samples that
deviate significantly from the real feature distributions. Non-parametric
techniques, namely Kernel Density Estimation and K-Nearest Neigh-
bours, facilitate the computation of likelihoods for each sample. Sam-
ples with the lowest likelihoods can be excluded entirely or their bound-
ing boxes can be masked. An essential component of this method is
setting an optimal likelihood threshold, which is established through
the automatic elbow method [59].

2. Feature Augmentation: The objective here is to enrich the synthetic
dataset, eX ⇠ eD, with samples closely resembling real feature distribu-
tions. Generating such samples directly can be daunting. To circumvent
this, we suggest a two-step strategy:

a) From the generated synthetic dataset, identify a subset with high
likelihood scores, employing non-parametric models combined
with thresholding techniques.
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b) Generate more samples from this subset using the image genera-
tion pipeline for augmenting the synthetic dataset.

Figure 4.5 illustrates the feature alignment pipeline as post-processing steps
on the existing datasets. Note that this technique can be used on any dataset,
not only synthetic ones. An example of using feature distribution alignment
between real datasets can be found in section 5.4.4.

Figure 4.5: An overview of the feature alignment pipeline. The selected
feature extractors extract features from the real dataset, fit the distribution
with a non-parametric density estimator, then use it to evaluate each sample
from the existing synthetic dataset, assign a quality score to it computed as
the probability of its being drawn from the real feature distribution, which is
then used for further filtering/augmenting to produce the updated dataset.
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Chapter 5

Experiments

This chapter describes the experimental framework, benchmarks, configura-
tions, and results performed as part of this work. We introduce the methods
detailed in the methodology chapter and subject them to rigorous evaluation.

Reverting to our problem definitions detailed in 4.1, our experiments focus
on object detection algorithms using deep learning models. The target distri-
bution D signifies the real data distribution, while the pseudo distribution
eD represents the synthetic data distribution, X ⇠ D being the real dataset.

The function F : X 7! O is a deep object detection algorithm. In our study,
we would choose algorithms such as YOLO [49], Faster R-CNN[50], and
FCOS[51], which have established their reputation as state-of-the-art object
detection algorithms for real-world applications, as our candidates for F. As
for our evaluation metric Y(·) : X ⇥ O 7! R, our primary choice is the MAP
(Mean Average Precision) [14], the most widely used metric for evaluating
object detection algorithms. However, certain scenarios necessitate the use
of auxiliary metrics, including AP50, and AP75 [14], among others, to gain
more insights into the results. For the synthesis of data, Blender serves as
our rendering tool, supplemented by Blenderproc for scripting, to streamline
our rendering pipelines.

5.1 Settings

Our experimental setting operates on the assumption that our real dataset is
restricted in terms of sample size. Nonetheless, for empirical study and an
unbiased performance assessment, a bigger dataset becomes indispensable,
as it mitigates the potential for significant variance in results. Consequently,
while we employ a comprehensive real dataset, only a minuscule fraction is
made accessible to the training apparatus.

The training pipeline adopts the conventional train/validation/test data
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split. Additionally, to distinguish between the datasets, data labels are split
into synthetic and real. Emphasizing the use of real data exclusively for
validation and testing purposes ensures that only synthetic data contributes
to the training partition. Furthermore, model selection and the termination
criterion are dependent on metric performance on the validation subset.
This validation portion comprises a handful of real samples (approximately
50), establishing a controlled environment. Conversely, the test subset is
significantly expansive, ensuring a comprehensive and reliable approximation
of the evaluation metric across the real sample distribution.

Throughout the study, we have used primarily three real datasets: the real
chair dataset, the real table dataset and the real bag dataset. Each of them
contains roughly 500 samples, where around 50-60 of them are randomly
selected and used in the validation set, and the rest is used in the test dataset.
For each real dataset, we generated many versions of synthetic datasets for
different purposes. All of them have around 2,500 samples, where the train,
validation and test set are randomly split with probability 0.7, 0.15 and 0.15.
Although we also have the synthetic validation and test splits, we only use
them for monitoring the training and sanity check. They are never used in
the evaluation.

5.2 Basic Metadata

Building upon the preceding discussions describing our methodology in
metadata alignment 4.6, this section explores and benchmarks the results in
aligning metadata. We first analyze basic metadata types before advancing
to more complex variants, systematically presenting our evaluative findings.

Our evaluation follows a two-step strategy: assessing model performance
and evaluating the alignment. To judge model performance, we use the
benchmark described in the prior ”Settings” section and illustrated in figure
4.1. This involves training models on a synthetic dataset, validating them
using a subset of the real dataset, and finally testing them on the entire real
dataset, and evaluating both the model performance and the alignment. The
evaluation metrics are then computed based on the results from this test
dataset.

In terms of alignment, we utilize the 1-dimensional Bhattacharyya distance
[60] to measure the overlap between two 1-dimensional distributions, where
a smaller Bhattacharyya distance indicates a higher degree of alignment
between the examined distributions. This is practical because all metadata
distributions are 1-dimensional. This method serves as an effective tool in
quantifying the degree of similarity between the metadata distributions in
question, thereby facilitating a nuanced assessment of alignment accuracy
within the datasets under review.
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5.2.1 Bounding-box Area

Our preliminary metadata alignment effort pertains to the bounding-box
area. Analyzing benchmark results from diverse datasets, it’s discernible
that models trained on synthetic datasets manifest a limitation when the
real dataset includes close-ups not present in the synthetic counterparts.
Specifically, these models often discern only segments of the object within its
close-ups. An illustrative example is provided in figure 5.1.

Figure 5.1: Predictions on chair’s close-up

In addition, subsequent observations indicate a tendency for models trained
on synthetic datasets, which contain a high concentration of small objects at
their boundaries, to predict an excessive number of small bounding boxes at
the edges of the test dataset. This phenomenon highlights the necessity to
align the bounding box areas between the synthetic and real distributions
more closely.

To address this, we propose an empirical assessment that incorporates three
distinct versions of the synthetic dataset. These variations are crafted to
facilitate a deeper exploration into the effects of bounding box distribution
harmonization, thereby aiding in the optimization of model predictions when
transitioning from synthetic to real-world data environments. This analytical
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progression paves the way for a more grounded and practical approach
to evaluating and enhancing the interoperability and alignment between
synthetic and real datasets in machine learning applications.

1. Baseline Dataset: This straightforward dataset encompasses objects
sampled at random, with an equivalently random camera placement.
No explicit control is exercised over object size within image samples.
As a result, numerous tiny object fragments are detectable on image
boundaries due to artefacts resulting from random sampling, often oc-
cupying merely a handful of pixels but yet denoted as objects of interest
in annotations. Notably, such tiny annotated objects on boundaries are
almost absent in the real dataset.

2. Filtered Dataset: Mirroring the baseline dataset, albeit with a crucial
distinction. Here, we remove tiny objects on the boundary captured
by the camera with scant pixels. A concrete threshold (50 pixels) is set,
and all objects whose area falls below this threshold are omitted from
the images.

3. Aligned Dataset: This dataset is constructed utilizing our automated
metadata alignment process during data generation, as expounded in
the methodology chapter. We first ascertain the bounding-box area
distribution using the real validation dataset, subsequently integrate
this into the generation process, and meticulously align the synthetic
bounding-box area with it.

For these delineated scenarios, we instituted experiments across diverse
problem constructs, namely: chair, table, and bag. Each problem construct is
paired with a congruent real test dataset, consistent throughout the experi-
mentation. The trio of dataset versions listed above are utilized for evaluative
purposes.

Conclusive evaluative outcomes are tabled in 5.1. Values external to the
brackets denote the MAP (Mean Average Precision) values for Faster R-CNN
while those internal to brackets correspond to the YOLO model.

Chair Bag Table

Baseline 0.072(0.1511) 0.1957(0.2404) 0.1458(0.1734)
Filtered 0.088(0.1547) 0.2276(0.2377) 0.2120(0.2221)
Aligned 0.125(0.1635) 0.4540(0.3130) 0.2427(0.2709)

Table 5.1: MAP with aligning bbox area

Additionally, plot 5.2 also shows the benchmark results of the three versions
of synthetic datasets with Faster R-CNN and YOLO and the behaviour of
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(a) Fasterrcnn (b) Yolo

Figure 5.2: MAP from Bounding-box Area benchmarks

Chair Bag Table

Baseline 0.357 0.4727 0.4183
Filtered 0.0584 0.1064 0.1217

Aligned 0.076 0.0912 0.1447

Table 5.2: Percentage of False Positives
with small bbox area in predictions

Chair Bag Table

Baseline 0.5182 0.5497 0.4970
Filtered 0.4805 0.4774 0.4153
Aligned 0.1616 0.1088 0.1368

Table 5.3: Bh Distance in
Bounding-box Area

models before/after alignments are shown more intuitively. The evaluation
of alignment is shown in table 5.3.

Interpretation The alignment metrics show that the distributions after fil-
tering and aligning match better with the real bbox-area distribution. Further,
we can also observe that there is a significant performance gap between
the aligned and unaligned datasets, especially with the Faster R-CNN and
Bag datasets. Additionally, the table 5.7 shows the percentage of small
bounding boxes in the predictions. The small bounding-boxes are defined
as the False Positives in predictions with a bounding box area smaller than
a certain threshold. From those evaluation results, we may conclude that
the bounding-box area is essential metadata that should be aligned between
synthetic and real distribution. An intuition behind this phenomenon could
be that if the synthetic datasets consist of too many small objects, the model
becomes too sensitive to signals in the background, which increases the
number of false positives in predictions.

5.2.2 Image blur

The second metadata we benchmark is the image blur. Our experimental
endeavors revealed a simple observation: incorporating blurring steps within
the pre-processing sequence consistently enhanced model efficacy, a phe-
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nomenon witnessed even when models were exclusively trained on synthetic
datasets. This discernment underscored the potential benefits of meticulously
aligning image blur in the context of synthetic image generation.

With this motivation as our backdrop, we introduce three distinct datasets,
tailored for rigorous benchmark evaluation:

1. Baseline Dataset: It is the baseline dataset generated without aligning
blur or augmenting with certain pre-processing steps.

2. Pre-processed Dataset: It is the same as the baseline dataset, but with
blurring steps in the preprocessing pipeline using albumentation, i.e. in
each randomly loaded data batch, a certain fraction of samples would
be blurred randomly.

3. Aligned Dataset: It is the dataset with aligning blur on the image level
by the automated pipeline described in the methodology section. The
blurring is achieved by blurring out the image using Gaussian filters
with standard deviation and probability of blurring as free parameters
and the values for aligning are chosen. These images are preserved in
this dataset and no extra blurring is done in the pre-processing steps.

The results are shown in the tables:

Chair Bag

Baseline 0.3783 0.4105
Filtered 0.4169 0.4459

Aligned 0.2609 0.4377

Table 5.4: MAP with aligning image
blur

Chair Bag

Baseline 0.2148 0.5180
Filtered 0.2126 0.4510
Aligned 0.2045 0.4187

Table 5.5: BH-distance with image
blur

Interpretation From table 5.5 we see that the alignment isn’t working as
significantly as aligning bounding-box area. It is expected because controlling
blur by Gaussian filter is too coarse and fails to capture the actual semantic
information underneath. Further, we can see that there is no correlation
between the metric MAP and the alignment in blur. Note that adding
blurring in the pre-processing step did increase the overall results because
it increases the difficulty in training by varying the samples from batch to
batch in the training pipeline. However, manually blurring a portion of
the synthetic datasets didn’t work well in both chair and bag datasets, as
it did not increase the difficulty in training, since such blurred samples are
fixed and the model could just memorize those cases. Therefore, we do not
consider image-blur as meaningful metadata for aligning the distribution.
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(a) Fasterrcnn (b) Yolo

Figure 5.3: MAP from Bounding-box Position benchmarks

Bounding-box Position and Object Orientation We now study the bounding-
box positions and object orientations within datasets. Upon close inspection
of various generated datasets and subsequent model evaluations, we iden-
tified significant discrepancies in object orientations and their respective
bounding-box positions between synthetic and real datasets. Notably, this
issue was markedly evident in datasets of chairs.

To illustrate, in real-world datasets, chairs predominantly appear grounded,
which is a stark contrast to the synthetically generated datasets created
through naive sampling methodologies. In the latter, chairs frequently man-
ifested in the air or showcased unconventional orientations, such as an
inverted stance. This discrepancy is depicted in figure 5.4.

To conquer this limitation in naive sampling strategy, efforts must be chan-
nelled towards ensuring both the orientation and position of objects accu-
rately reflect the patterns found in real datasets. Consequently, we propose
the evaluation of two specific datasets designed to benchmark the efficacy of
methods aimed at achieving this alignment.

1. Baseline Dataset: the dataset with random sampling strategy for both
object orientation and the location of the objects.

2. On-surface Dataset: the dataset with position sampling over a sur-
face and object orientation only along the z-axis. Note that this is not
generated with the automatic data pipeline, because we completely
re-implement the sampling strategy and not only change a set of pa-
rameters.

The benchmarking results are shown in the table 5.6, where the one outside
bracket is the MAP with Faster R-CNN, and the one inside is the MAP with
YOLO. The Bhattacharyya distance only accepts only 1-dimensional distri-
bution, and position distributions of objects are two-dimensional. However,
since we did not change the sampling strategy along the horizontal axis, we
only need to compute the Bhattacharyya distance on the vertical axis. Further,
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Figure 5.4: A flipped and floating synthetic chair

Chair Bag Table

Baseline 0.088(0.1547) 0.2276(0.2377) 0.1021(0.1743)
On-Surface 0.4452(0.3889) 0.2895(0.2766) 0.3045(0.3721)

Table 5.6: MAP with aligning bounding-box position

we use the middle point of the bounding box as the reference point for object
coordination. The evaluation result is shown in the following table:

Chair Bag Table

Baseline 0.2739 0.1334 0.2516
On Surface 0.0775 0.1113 0.0932

Table 5.7: BH-distance in vertical axis

Interpretation Plot 5.3 shows more intuitively the performance of the mod-
els(Faster R-CNN and YOLO) before and after the alignments. We can see
that gain in performance significantly differs from dataset to dataset. How-
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ever, the performance did increase overall after the alignments. An intuition
behind this phenomenon is that the relative position between the camera
and the object of interest matters. For instance, if the objects in the synthetic
samples are mostly sampled above the camera, and the camera looks at the
objects from a lower angle, it can be expected that the model trained on
those samples would not be able to recognise those objects if the shots are
taken above the objects from a higher angle, since the shape of the objects
may dramatically different from a huge change in relative positions between
camera and objects.

5.2.3 Evaluation of Other Basic Metadatas

Beyond the aforementioned metadata, a plethora of others warrants discus-
sion, including but not limited to ’image sharpness’, ’image entropy’, ’bbox
sharpness’, ’bbox blur’, and ’bbox entropy’. Nevertheless, the alignment
of these metadata does not appear to offer tangible improvements when
optimizing the Mean Average Precision (MAP) metric.

At an intuitive level, certain metadata, such as image entropy, offer limited
insight into the distributions of our primary objects of interest. This is
primarily due to its exclusion of object-specific or positional information.
Moreover, the computation of image entropy does not consider the orders of
pixels, thereby lacking the ability to encapsulate meaningful semantic content.
Consequently, efforts expended on aligning such metadata would not help
generate better synthetic image samples.

A similar sentiment extends to ’image contrast’ and certain other metadata.
On the other hand, another illustrative perspective on this matter can be
garnered from specific histograms that detail metadata distribution across
an assortment of datasets, each generated with distinct sampling strategies
via our synthetic image creation pipeline. These image and bounding-box
level metadata are visualized in histogram plots referenced as 5.5 and 5.6
respectively. The varying hues within these histograms correspond to the dif-
ferent dataset sampling strategies, annotations for which can be found at the
histogram’s top left corner. A consistent observation across these visual repre-
sentations is the almost identical distribution of these metadata, regardless of
the sampling strategy employed or the results garnered when benchmarking
object detection algorithms on the respective synthetic datasets. However, the
quality of those synthetic datasets varies, and the model performance varies
a lot as well when training on those datasets. This again gives us hints that
aligning those metadata explicitly in the training pipeline would not work
out as desired.

Thus, the alignment of such metadata neither appears necessary nor seems to
exert any substantial influence on model performance, primarily due to the
dearth of meaningful information they encapsulate. As a concluding note,
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Figure 5.5: Image-level metadata distribution examples

Figure 5.6: Bounding-box-level metadata distribution examples

we ascertain that these metadata may not be the most prudent choices for
alignment endeavors.

5.3 Advanced Metadatas

Together with our Methodology section regarding advanced metadata 4.6.2,
our exploration extended to the derivation of more sophisticated and in-
sightful metadata from the synthetic datasets. These metadata capitalize on
information harnessed directly from the rendering processes. One challenge,
however, arises from the fact that real datasets lack explicit labels for these
advanced metadata. To bridge this gap, as delineated in the Methodology,
we used a feature-based approach, detailed in section 4.6.2. In line with
this approach, our initial efforts were dedicated to benchmarking potential
feature extractors. This was imperative to discern and subsequently adopt
extractors that were performant enough to encapsulate the most meaningful
information.
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5.3.1 Benchmarking feature extractors

We would benchmark the feature extractors by fitting the features of the
samples to the available metadata from the synthetic datasets and doing
cross-validation for computing the evaluation metric. If the metadata are
numeric values, the R2 score is used for evaluation, otherwise, we use the
accuracy. As described in the section 4.7, we benchmarked both feature
extractors for general purposes and object detections. In particular, we bench-
mark the Clip, Data2Vec and Dino feature extractors as examples of feature
extractors with general purpose, as they are widely used in the industry. We
benchmark the feature extractors for Faster R-CNN and YOLO, as they are
representative of feature extractors from deep object detection models. We
would also benchmark both pre-trained and trained feature extractors, as
described in 4.7. The results of benchmarking are presented in table 5.9 and
5.8. The plot is shown in 5.7.

Interpretation We can make the following observations based on the out-
comes:

1. The pre-trained feature extractors outperform the trained feature ex-
tractors on all metadata predictions. Therefore, we conclude that their
features contain more information than the trained ones. An expla-
nation for that is the trained feature extractors tend to view those
attributes as invariant. In fact, in datasets and annotations, all those
objects of interest are treated the same, and the model is trained to find
out all such objects, regardless of their shape, depth, occlusion, and
background similarity. Therefore, the trained feature extractors would
map those objects close to each other in the feature space, which leads
to poor predictions in those metadata values.

2. The pre-trained object detection feature extractors, Faster R-CNN
and YOLO, outperform the general purposed feature extractors Clip,
Data2Vec and Dino on predicting shape and occlusion, however fall
short on depth and background similarity. An explanation for that is
feature extractors specialized for object detection are good at extracting
objects from the background. Therefore, it contains more information
regarding the object rather than the background around it.

To conclude, for labelling the real datasets with advanced metadata, we use
pre-trained feature extractors from object detection models for fitting shape
and occlusion on synthetic datasets and for inferencing the metadata on real
datasets. We use general-purpose feature extractors for fitting depth and
background similarity on synthetic datasets and inferencing on real datasets.
The trained feature extractors will not be used.
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Figure 5.7: Benchmark Results of Feature Extractors with metadata
prediction

Shape Depth Occlusion Background Similarity

Fasterrcnnpretrained 0.6962 0.6479 0.7547 0.1398
Fasterrcnntrained 0.4450 -0.4291 -0.6080 -0.1225

Yolopretrained 0.4691 0.6566 0.6857 0.2926
Yolotrained 0.4740 0.5562 0.6566 0.2567

Clip 0.3529 0.5689 0.3801 0.6191
Data2Vec 0.3472 0.6411 0.4161 0.7567

Dino 0.2447 0.6522 0.4842 0.7343

Table 5.8: Evaluation of Feature Extractors on chair datsets
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Shape Depth Occlusion Background Similarity

Fasterrcnnpretrained 0.8103 0.2164 0.6640 -0.0227
Fasterrcnntrained 0.8053 -6.5910 -3.8544 -9.8300

Yolopretrained 0.7235 0.1110 0.6657 0.1432
Yolotrained 0.6355 0.2696 0.5735 -0.1618

Clip 0.4454 0.2456 0.3326 0.4418
Data2Vec 0.5012 0.2894 0.3785 0.6399

Dino 0.6112 0.3813 0.4791 0.4600

Table 5.9: Evaluation of Feature Extractors on bag datsets

Accurately assessing the quality of predicted labels on real-world datasets
presents a significant challenge, primarily due to the absence of ground-
truth labels for direct comparison. Given this limitation, human evaluation
emerges as a robust alternative to gauge the label quality.

For this study, we collected feedback from eight individual evaluators, ex-
posing them to real samples adorned with the predicted labels. These labels
were organized and presented based on their assigned values. The setup is
simple: We use the widget in jupyter notebooks to visualize all real image
samples, each annotated with the predicted metadata values. The evaluator
goes through all real samples and evaluates whether the predicted values
are accurate or not. Evaluators were then tasked with rating the accuracy
of the labelling on a scale ranging from 0 to 5, where a score of 0 signifies
poor labelling, while a score of 5 denotes exceptional accuracy. Since our real
datasets are small, the process didn’t take long. The aggregated results of
this evaluation can be found in Figure 5.8.

Upon inspecting the histograms corresponding to the human evaluations,
several observations come to the forefront. The predicted labels relating
to background similarity, occlusion, and depth garnered favourable scores,
indicating a satisfactory alignment with human expectations. However, a
deviation in this trend is evident when evaluating the labels for shapes, which
received notably lower scores.

A pivotal factor contributing to this discrepancy arises from the inherent
challenges associated with achieving a one-to-one mapping between object
shapes in synthetic datasets and their real-world counterparts. The synthetic
objects utilized for this study were sourced from online 3D repositories.
However, these repositories do not assure an exhaustive representation of all
object shapes present in real datasets. Given this lack of comprehensive over-
lap, models trained on synthetic datasets exhibit limitations when predicting
shapes in real datasets.

To address this challenge, a refined approach to object shape alignment is
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(a) Background Similarity (b) Occlusion

(c) Shape (d) Depth

Figure 5.8: Human Evaluation for metadata prediction

essential. Detailed strategies for this alignment will be elucidated in the
subsequent ”feature alignment” section. For other metadata attributes, our
proposed metadata alignment technique, as outlined in the Methodology
section, remains pertinent.

5.3.2 Background Similarity

As elaborated in the preceding chapter, the metric used to determine back-
ground similarity is derived from computing the cosine similarities between
pixels located on the object boundaries and the surrounding background pix-
els. In this context, a lower similarity value implies a pronounced dissimilarity
with the background, while a higher value suggests a closer resemblance.

Through rigorous benchmarking, the Data2Vec feature extractor emerged
as the preferred choice for gauging background similarity in real-world
datasets. Illustrative examples of these inferred background similarities can
be viewed in Figure 5.9. A cursory inspection of the results underscores
the high accuracy of the predicted labels. With the predicted labels we can
now benchmark the background similarities. We propose the following three
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(a) Low Similarity Score

(b) High Similarity Score

Figure 5.9: Predicted Similarity Scores across samples
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versions of datasets:

1. White-background: The objects are all sampled on a white background.

2. Baseline: The objects are sampled using the same strategy but with
selective backgrounds additionally sampled.

3. Styled: The sampling strategies are the same as baseline, but a style
transfer is provided so that the objects are more similar to the back-
grounds. The style transfer is done by the neural style transfer algo-
rithm [61], with real samples as a reference for doing style transfer. The
style transfer is done for the whole image.

Chair Table

White 0.0082(0.1011) 0.0260(0.0912)
Baseline 0.4211(0.4006) 0.2640(0.2883)
Styled 0.4512(0.3969) 0.2572(0.2544)

Table 5.10: MAP of chair and bag Datasets
Chair Table

White 0.7492 0.7246
Baseline 0.1557 0.2508
Styled 0.1026 0.2236

Table 5.11: Bh Distance in Background Similarity

The results are shown in the tables 5.10 and 5.11. In our assessment of object
detection algorithms, the Mean Average Precision (MAP) values were gath-
ered for both YOLO and Faster R-CNN. Observations point towards a notable
discrepancy when considering datasets with white backgrounds. Specifically,
these datasets seem to diverge significantly from the real distribution, leading
to subpar MAP scores for both detection algorithms.

Interpretation On comparing the baseline datasets with styled ones, no
evident correlation between background alignment and performance emerges.
In particular, YOLO’s performance downgrades on the styled datasets, even
though their background similarities appear more aligned with the real
distribution. This outcome is further highlighted in figure 5.10, showcasing a
sample from the styled dataset. Despite feeding authentic image samples to
the neural style transfer mechanism, the resultant image projects an artistic
flavour rather than a realistic depiction. However, the background similarities
align more closely with expectations, because there is an artistic harmony
between the objects with the background behind them after the style transfer,
although a human would view it otherwise: he would say that the image is

55



5.3. Advanced Metadatas

less realistic after the style transfer. This example shows that background
similarity can not be used standalone as an effective metadata. However,
the examples with white-background datasets show us that the background
similarities are very unaligned with the real images. In those cases, the model
would just classify any signal changes in the images as an object of interest,
which leads to extremely poor results.

Figure 5.10: An example of image samples in the styled datasets

5.3.3 Depth

In the progression of our research, an interesting observation about the depth
was identified. We noticed that close-up views of objects were frequently
misclassified as multiple entities by the object detection algorithms, as shown
in figure 5.1. To address this anomaly, we incorporated a subset of specifically
generated close-ups into our datasets and subsequently evaluated the models.

For this particular evaluation, we diverged from the conventional MAP metric.
Instead, we define a new metric which counts the number of overlapping
predicted bounding-boxes appearing on the same close-up within the test
datasets. To establish a comprehensive understanding, we introduced a
comparative evaluation with the FCOS model [51], a model renowned for its
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wide practical application, as well as Faster R-CNN and YOLO. The compiled
results are encapsulated in the table below:

Baseline With close-ups augmented
Faster R-CNN 307 75

FCOS 812 156

YOLO 34 28

Table 5.12: Number of overlapping predictions on close-up test samples

Interpretation An evident decline in the number of overlapping predictions
on close-up test samples is observed upon augmenting the datasets with
close-ups. Notwithstanding, it is imperative to note the considerable variance
in outcomes based on the choice of object detection algorithms. The FCOS
model, for instance, exhibited a high number of bounding box predictions
in close-up scenarios, emphasizing the efficacy of dataset augmentation. In
contrast, the YOLO model showcased minimal discrepancies before and after
the augmentation, suggesting that the impact of close-ups is relatively muted
in its application.

5.3.4 Other Advanced Metadata

Beyond the commonly utilized metadata, there exist more intricate ones,
such as the object’s pixel area and its shape. While we approached the shape
using a feature-based methodology, which will be elaborated upon in the
subsequent section, the results for other metadata types were not promising.
Taking occlusion as an example: even though occluded objects generally
register the highest prediction errors compared to other test samples, aligning
the occlusions in the datasets - whether by augmenting them or through a
semi-automated approach - did not notably improve the model’s performance
on our benchmarks, which is counter-intuitive. A possible explanation
might be the intrinsic difficulty in deciphering partially hidden samples.
Augmenting datasets to accommodate these challenges may not provide a
significant advantage, as the model would simply memorize those difficult
examples in the training dataset since the occlusions do not vary in pre-
processing steps. As such, we deduced that these metadata types are not
instrumental for aligning the underlying data distribution. However, for
object shape, we would have another study in section 5.4.2, because we take
a completely different approach to reducing gaps between the distribution
of shapes in synthetic and real datasets. The reason for that is, as described
above, the predicted shape values on real datasets are not good enough
according to human evaluation.
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5.4 Feature Distribution Alignment

Pre-trained feature structures, when applied to data samples, usually produce
information-rich features. Owing to their comprehensive training on expan-
sive datasets, these feature extractors encompass prior knowledge of image
analysis, object detection, and related domains. The content within these
features typically surpasses the richness of human-generated or computed
metadata. As a result, aligning the feature distributions of data samples
becomes imperative. This alignment could be much easier and more effective
than directly aligning the image distribution due to its lower dimensions and
favourable signal-to-noise ratio, as the pre-trained feature extractors filter out
the irrelevant noises in embedding and preserve primarily necessary image
semantics. Nevertheless, it poses its challenges, especially when compared to
metadata alignment, because it still has higher dimensions, usually varying
from 512 to 2048.

5.4.1 Overview

The underlying principle of feature alignment rests on approximating the
feature distribution. Direct alignment is a complex task given the high-
dimensional nature of features. An effective workaround involves utilizing
heuristic measures like K nearest neighbours (KNN) [62] and kernel density
estimation models [46]. Specifically, we train either the KNN or kernel density
estimation model on real datasets. Leveraging this, we can evaluate synthetic
samples against the model by calculating the probability it is drawn from
the real feature distribution, deducing whether a given synthetic sample is
proximal to the real distribution based on its likelihood of being drawn from
the actual feature distribution. Consequently, this could be viewed as the
closeness of each synthetic sample to real distribution and be assigned as a
pseudo-quality score. With this piece of information, we can filter out images
that are less likely drawn from the real data distribution, or augment the
dataset with samples that are more likely drawn. This could be viewed as a
post-processing step.

5.4.2 Feature-based Metadata Alignment

Shape

For feature-based metadata alignment, we leverage features to assign a
pseudo-quality score using density estimation to each synthetic data sample,
as described above. Afterwards, we can aggregate those pseudo-quality
scores according to certain metadata, i.e. we group the samples according to
their metadata values and take the mean of the score for each metadata value.
The interesting case occurs when a certain metadata value has a much lower
average score than other metadata values. A plausible deduction from such
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an observation could be: that these metadata values may not be represented
in the real distributions. Hence, discarding these metadata values during
generation may achieve better alignment.

This methodology is especially relevant for categorical metadata values
such as shape. It’s crucial to note that the shapes of objects in synthetic
datasets might not necessarily mirror those in real-world datasets. Traditional
prediction mechanisms, which rely on fitting and predicting using synthetic
datasets and feature structures, fall short in such instances, as we saw from
the human evaluation plot 5.8. Although the trained classifier is very good at
predicting shape on synthetic datasets, as shown in table 5.9 and 5.8, they fall
short when the domain changes to the real dataset, as the classes of shapes
changes. To overcome this limitation, a feature-based KDE model is employed
to implement the approach described above in 5.4.2. For every distinct shape,
the quality score of samples in the synthetic dataset corresponding to that
shape is aggregated. Our prime focus is to identify specific metadata sets
that consistently register poorer quality scores relative to others. In our cases,
we remove the worst two shapes from the synthetic datasets based on the
aggregated quality scores.

Interpretation In Table 5.13, we detail our findings before and after the
exclusion of shapes that deviate substantially from the real feature distri-
bution. For each dataset scrutinized, the two most aberrant shapes were
eliminated. A comparative analysis reveals that the model’s Mean Average
Precision (MAP) escalates appreciably post-alignment for both Faster R-CNN
and YOLO algorithms across all synthetic datasets. From this analysis, it
is evident that object shapes are pivotal metadata attributes demanding
alignment.

Chair Table Bag
Baseline 0.4293(0.3675) 0.3168(0.3685) 0.4540(0.3130)
Aligned 0.4626(0.4104) 0.3349(0.3883) 0.4579(0.3223)

Table 5.13: MAP before and after aligning shapes with features

5.4.3 Interlude

Dealing with high-dimensional feature distributions directly poses certain
challenges. In light of this, we have identified two key strategies to mitigate
these complexities, filtering and augmentation, as described in 5.4. The
filtering approach involves critically examining our synthetic data. It’s about
filtering out the noise and retaining only the most representative samples.
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5.4.4 Filtering

The underlying principle of the filtering strategy is relatively direct. Employ-
ing a feature extractor, features are extracted from real data. Subsequently,
models like the K-Nearest-Neighbour [62] or the Kernel Density Estimation
[63] are fitted using these features. For each synthetic data sample, the
probability of its derivation from the real feature distribution is computed.
Once all samples have associated probabilities, a portion of them is discarded
using the automated elbow method. It’s essential to understand that this
filtering technique isn’t exclusively reserved for juxtaposing synthetic ver-
sus real datasets. Notably, it is versatile enough for scenarios where test
datasets exhibit divergent distributions from their training counterparts. Con-
sequently, this strategy’s efficacy will also be assessed on established real
datasets, including the COCO dataset [64].

Two distinct levels of filtering come into play here. On one hand, we have
image-level filtering, wherein each bounding box’s probability is amalga-
mated at the image level. Using the elbow method, the least representative
portion of images in the training datasets is then filtered out. On the other
hand, bounding box-level filtering focuses on the direct elimination or modi-
fication of specific bounding boxes. In practice, this means making the least
representative bounding boxes invisible in the datasets by removing their
annotations or rendering them in black.

Synthetic Datasets

In our analysis of synthetic datasets, we label our datasets as ”Baseline”,
”Filtered”, and ”Black-boxed”. The outcomes of our experiments are tabu-
lated for easy reference. We initiated our investigation with data filtering,
specifically focusing on the ’chair’ and ’bag’ categories. The performance
metrics were subsequently ascertained on real test data, which remained
unfiltered. The results are displayed in Table 5.14.

Interpretation Upon reviewing the results, we observe a discernible en-
hancement in dataset performance post-filtration. However, the black-boxing
technique yielded mixed outcomes. A plausible reason for this variation
might be the degradation of the semantic quality of the images upon black-
boxing. Furthermore, the presence of overlapping objects complicates matters;
black-boxing one object inadvertently impacts the adjacent ones.

Real Datasets

To evaluate our filtering method using the COCO datasets, it’s imperative
to discern the distribution differences between objects of interest in the test
datasets as compared to the training sets. To achieve this, we modified the
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Chair Bag
Baseline 0.4293 0.4540
Filtered 0.4647 0.4601

Black-boxed 0.4388 0.4490

Table 5.14: MAP before and after filtering and black-boxing

annotations, preserving only one class in the test dataset. Consequently, this
makes the test object distribution notably distinct from the training object
distributions.

For a comprehensive evaluation, we compared our approach against multiple
baselines. The unaltered dataset, labeled the ”original dataset,” served as our
primary point of reference. The first baseline termed the ”subsampled train
dataset,” involved randomly removing 20% of the images from the training
set. Next, the ”single class dataset” retained only the class present in the test
set from the training annotations. The third baseline, the ”cleaned dataset,”
randomly removed 20% of the training images, ensuring the elimination of
images devoid of any class present in the test set. An illustration is shown in
figure 5.11

Figure 5.11: The baselines and proposed datasets for evaluating
feature-based filtering approach on COCO dataset [64]
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Contrasting these baselines, we proposed two filtered datasets. The first
filters the least representative 20% of images, and the second black-boxes re-
move annotations corresponding to the least representative 20% of bounding
boxes. We standardized the removal percentage at 20% to ensure equitable
comparison. Post-filtration, we observed a reduction of approximately two
thousand samples in comparison to the original datasets.

Interpretation The results of this benchmarking exercise are tabulated in
Table 5.15. Two test set scenarios were considered: one preserving only
’cars’ and the other retaining only ’people.’ Our filtration methods not only
surpassed the performance of the subsampled train dataset but also exhibited
superior results compared to the manually curated datasets, and on occasions,
even the full datasets. A possible rationale for this could be the inadvertent
benefit of retaining certain challenging samples that share similarities with
classes in the test dataset. For instance, in distinguishing between a car and a
bus, it’s beneficial to retain images of buses that resemble cars. Such nuanced
distinctions, which manual filtration might overlook, are capably handled by
our filtering method.

Person Car
Full 0.2599 0.1650

Baselinesingleclass 0.2694 0.1460
Baselinesubsampled 0.1742 0.0843

Baselinecleaned 0.2627 0.1547
Filtered 0.2846 0.1665

Black � boxed 0.2654 0.1604

Table 5.15: MAP with Car and Person in COCO

5.4.5 Augmentation

Augmenting synthetic datasets through insights from true feature distribution
augmentation is notably more challenging than simple filtering processes.
It proves tough to generate samples that are more likely to be sampled
real distributions using non-parametric distribution fitting, instead of just
eliminating outliers. Efforts have been made and the process took a long time
since we need to iteratively generate new samples based on evaluation of the
previous version of datasets. Unfortunately, these augmentation techniques
have not demonstrated a notable performance improvement when tested on
our proposed datasets.

Although our current investigations have not achieved the desired outcomes,
we believe potential advancements may still be uncovered in the domain
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of dataset augmentation. Based on our current data, we advise a cautious
approach to utilizing these techniques.

5.4.6 Sample-wise Performance and Feature Distribution Distance

During our experiments and benchmarking, an intriguing observation emerged:
there appears to be a relationship between prediction quality for data samples
and their proximity to the training dataset’s distribution. Specifically, when a
test sample aligns closely with the synthetic distribution used for training,
the model tends to produce more accurate predictions for that sample. Con-
versely, if a test sample deviates significantly from the training distribution,
the prediction quality tends to decline.

This observation has encouraged us to explore feature-based approaches. We
have undertaken a systematic evaluation to quantify the correlation between
individual data sample predictions and their distance from the training dis-
tribution. To measure this distance, we employed the K-Nearest Neighbors
(K-NN) distance as our distance metric for quantifying the distance from
the real sample to the synthetic clusters. Concurrently, we utilized the Inter-
section over Union (IoU) of bounding boxes as the sample-wise prediction
evaluation metric. Note that this evaluation metric is limited, because it only
focuses on the True Positives and False Negatives, as it is only calculated
around the true objects of interest. However, we didn’t find a way to also
consider False Positives. Our analysis, visualized through bin plots and
scatter plots, is detailed in Figures 5.12 and 5.13.

The visual data presented in the figures provides insight into the relationship
between sample-wise performance and their respective distances to real
samples. Specifically, for the chair dataset, a strong correlation is evident. On
the other hand, while the correlation is less pronounced for the bag dataset,
it remains discernible.

Upon closer examination, particularly when considering the scatter plot,
several nuances become apparent. Despite the bin-wise plots indicating a
clear correlation, the scatter plot reveals significant variability within each
bin. This suggests high noise levels, overshadowing the underlying trend.
The signal-to-noise ratio is notably low, which poses challenges in drawing
definitive conclusions for individual samples based solely on their distances
in the feature space. This observation underscores the complexities inherent
in leveraging distribution distances in the feature space as a predictor of
sample-wise performance.
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(a) Bin Plot

(b) Satter Plot

Figure 5.12: Chair dataset sample-wise performance vs distance to real
distribution

5.5 Evaluating the quality of synthetic datasets without
training

In the course of our study, after benchmarking both the metadata and the
features vital for gauging distribution distances between synthetic and real
datasets, we recognized a potential approach for synthetic data quality
evaluation. Specifically, by inspecting the alignment of pertinent metadata in
the datasets under consideration, we can deduce information about dataset
quality. Additionally, by leveraging the feature distribution distances between
synthetic and real datasets, we can compute a composite distance for each
dataset, which is computed as the mean of the metadata distribution distances
among the metadata we benchmarked as significant and sample-wise KNN
distances in feature space, extracted from pre-trained feature extractors,
which is referred as distance in the following paragraphs.

The rationale behind this distance metric is its potential to provide insights
into the quality of individual datasets without the necessity of model training.
To validate this, we plot the distance against the Mean Average Precision
(MAP). Here, the MAP of a synthetic dataset denotes the MAP attained on
the real dataset when a model trained on synthetic data is tested.
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(a) Bin Plot

(b) Satter Plot

Figure 5.13: Bag dataset sample-wise performance vs distance to real
distribution

However, our results present a nuanced picture. While there exists a dis-
cernible correlation between the distance and the algorithmic performance
on those datasets, the strength of this correlation is variable. Specifically,
for datasets where the model performance (i.e., MAP) exhibits stark differ-
ences, a conspicuous gap in the distances can be detected. Conversely, for
datasets with closely aligned MAP values, the distance metric offers little to
no discernment, and the correlation can even appear locally the other way
around.

Refer to Figure 5.14 for a graphical representation of these findings. In this
plot, the blue curve represents the MAP, and the green curve represents the
distance. Because the distance is computed by taking the mean, we can also
compute its variance for each dataset, which is denoted with the orange
bar for each point on the green curve. A noteworthy observation is the
considerable variance in these estimates, adding another layer of complexity
to the interpretation of results.

5.5.1 Limitations of feature-based approaches

In our exploration of feature-based methods, we encountered a limitation
tied to the dependency of feature extractors on the object class existing in
their pre-training datasets. This implies that if a specific object class is absent
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(a) Chair

(b) Bag

Figure 5.14: Dataset Evaluation on synthetic bag and chair datasets with
predictions and ground truths

Shape Depth Occlusion Background Similarity

Fasterrcnnpretrained 0.1368 0.3243 0.2292 0.1178
Yolopretrained 0.1031 0.3319 0.2854 0.1552

Table 5.16: Evaluation of pre-trained feature extractors on pistol dataset

during the pre-training phase, such as within datasets like coco or ImageNet,
the feature extractor will likely struggle to garner meaningful insights related
to that class. A concrete example of this limitation arose with pistols. Notably,
our pre-trained feature extractors had no prior exposure to pistols within the
coco dataset, leading to ineffectiveness when the object of interest spanned
both real and synthetic data distributions. We evaluated feature extractors
on pistol datasets, and as illustrated in the table 5.16, the outcomes were far
from satisfactory. This underperformance was anticipated given the feature
extractor’s unfamiliarity with the object class in question.
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Chair Table Bag

Synthetic 0.4647(0.4216) 0.3349(0.3883) 0.4601(0.3928)
Real 0.4528(0.4702) 0.3664(0.4225) 0.4543(0.4416)

Table 5.17: Synthetic Dataset Performance vs Real Dataset Performance

5.6 Final results

Through extensive experimentation and benchmarking, we arrived at several
key conclusions. Vital metadata, such as bounding box dimensions, positions,
orientations, background similarities, and the objects’ shape and occlusion,
provide critical insights about the underlying data distribution. Hence, ensur-
ing the alignment of these metadata distributions is crucial when fabricating
synthetic datasets. Additionally, feature-based methodologies have exhibited
notable performance enhancements. Specifically, feature-based distances
disclose pivotal details about distributional disparities between synthetic and
real datasets. Techniques like filtering and augmentation, rooted in feature
distributions, can effectively adjust the synthetic feature distribution to align
more closely with the real distribution. We also noted that applying the
filtering technique to real datasets yielded appreciable performance boosts,
as evidenced in the coco dataset evaluations.

When we combine these metrics, insights into dataset quality can be gleaned
without necessitating algorithmic training. Our concluding results juxtapose
the performance of our synthetic datasets against that of comprehensive real
datasets. Here, ”full real datasets” denotes models that were trained not
merely on a subset but on a predominant fraction of the 500 real samples.
Table 5.17 provides a detailed breakdown of these findings. Parenthetical
values denote the MAP of YOLO, while non-parenthetical ones pertain to
Faster R-CNN,. Encouragingly, our refined approach delivered results that
rival those obtained on genuine datasets, with the Faster R-CNN model
being especially commendable. It is worth noting, however, that the YOLO
model exhibited a minor performance disparity compared to its real dataset-
trained counterpart. In summation, models trained on both synthetic and
real datasets offer largely analogous performances.
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Chapter 6

Conclusion

6.1 Summary

In this study, we have addressed several critical aspects of synthetic image
generation and dataset augmentation, elucidating potential paths to nar-
row the disparity between synthetic and real data distributions. Here, we
summarize the primary findings of our research:

1. Guidelines for Synthetic Image Generation: We have devised guide-
lines for generating synthetic images when only a limited real dataset
is available. A typical procedure encompasses the creation of a base-
line dataset, which is utilized to fit and predict metadata on the real
dataset. Subsequently, the inferred metadata aids in generating a sec-
ond synthetic dataset characterized by aligned metadata distribution
and curated object shapes. Applying this procedure across various syn-
thetic datasets yielded results comparable to real datasets, specifically
when evaluated using the Faster R-CNN and YOLO algorithms.

2. Effectiveness of Metadata in Bridging Synthetic and Real Distribu-

tions: Our study evaluated the efficacy of metadata in mitigating the
gaps between synthetic and real data distributions. Notably, several
metadata aspects such as bounding-box area, object position and orien-
tation, background similarity, and depth and shape attributes emerged
as potent factors in this regard, across different object detection algo-
rithms and datasets.

3. Feature-Based Filtering: Our investigations have revealed that filtering
based on sampling likelihood within the feature space is an effective
strategy across diverse datasets, encompassing both synthetic and real
samples. This is particularly valid when there is a distribution shift
between the training and testing datasets. This technique can serve as
a standard method for post-processing existing datasets or as a tool to
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evaluate the quality of individual samples.

4. Correlation between Sample Distances and Bounding-Box IoU: A
notable correlation has been observed between the distances of synthetic
image samples to the synthetic feature distribution and the sample-wise
bounding-box IoU in model predictions. Specifically, a real sample that
closely aligns with the synthetic distribution in the training datasets is
more likely to be accurately predicted by the model.

5. Development of Synthetic Image Generation Pipeline: We also es-
tablished a sophisticated synthetic image generation pipeline, which
leverages a semi-automated sampling strategy to effectively align the
metadata distribution.

6. Quantitative Analysis and Benchmarking Tools: We developed meth-
ods for the quantitative analysis of datasets and the ensuing model out-
comes. This includes the formulation of comprehensive benchmarking,
metadata inferencing, and post-processing pipelines. These developed
systems stand as instrumental tools in evaluating and enhancing the
overall quality and reliability of synthetic datasets.

6.2 Limitations

While this study illuminates several significant avenues for advancing syn-
thetic data generation and utilization, it is not without its limitations, as
enumerated below:

1. Interpretability of Feature-Based Approaches: One of the prominent
limitations observed was the lack of interpretability ingrained in the
feature-based approaches, which can potentially restrict the compre-
hensive understanding and further refinement of the methodologies
employed.

2. Suboptimal Outcomes with Synthetic Dataset Augmentation: The
study witnessed a lack of success in augmenting synthetic datasets
based on feature distributions. This endeavor did not yield the an-
ticipated improvements, signalling a need for further research and
optimization in this area.

3. Constraints in Sample Generation: The sample generation in this
study was confined to the use of Blender and BlenderProc. The ex-
ploration did not extend to other potent engine-based renderers and
replicators, such as the Nvidia Omniverse Replicators, which might
offer different perspectives and possibly enhanced outcomes.

4. Absence of Feature Distribution Alignment in the Generation Pipeline:

A significant gap in the current study is the non-incorporation of feature
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distribution alignment within the synthetic image generation pipeline.
This omission might potentially hinder the attainment of higher accu-
racy and alignment with real datasets.

5. Lack of Effective Evaluation Strategy: Despite the considerable progress
achieved, the study did not manage to devise an effective strategy for
evaluating the quality of datasets without the necessity to train algo-
rithms on them. This indicates a crucial area where future research can
focus on fostering a more nuanced and efficient evaluation framework.
Nonetheless, it is prudent to acknowledge a pivotal assumption under-
lying our research— the inherent scepticism towards the existence of
a universally effective strategy. We posit that the discovery of such a
strategy would essentially enable the circumvention of the complexities
associated with deep learning.

These limitations represent avenues for potential future work, where further
innovation and refinement can lead to the development of more robust and
reliable techniques in the synthetic data generation and analysis domain.

6.3 Outlooks

In the nascent field of synthetic image generation centered around a data-
centric perspective, we stand on the threshold of numerous discoveries
waiting to be unearthed. The potential for breaking new ground is substantial,
especially when we consider the viable research avenues presented by the
limitations detailed in the preceding sections. Alongside these, there lies the
possibility of pioneering entirely novel approaches to address the current
challenges:

1. Venturing into Other Computer Vision Tasks: The present study ex-
clusively hones in on object detection algorithms. There is a palpable
need to broaden this scope and extend similar investigative paradigms
to other realms within computer vision, encompassing anomaly detec-
tion, image classification, and semantic segmentation. Expanding the
research dimensions in this manner could unveil nuanced strategies
and solutions, pushing the boundaries of our current understanding
and applications.

2. Incorporating Deep Generative Models into the Synthetic Image

Pipeline: At present, deep generative models are restricted in their
ability to offer annotations and precise configurability. However, their
proficiency in discerning and capturing implicit distributions stands
as an untapped resource. It is proposed that future studies explore the
integration of these models into the synthetic image pipeline, utilizing
their strengths in grasping complex distributions to enhance alignment
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strategies, potentially bringing about a paradigm shift in synthetic
image generation methodologies.

3. Exploring the Integration of Synthetic and Real Datasets: This re-
search maintained a purist approach, concentrating solely on training
models using synthetic datasets. A logical and potentially rewarding
progression would be to delve into studies examining the complemen-
tary roles synthetic and real datasets can play when integrated within a
training framework. Such initiatives could illuminate critical facets that
govern the synergistic interaction between synthetic and real samples,
potentially laying the groundwork for more robust and comprehensive
training datasets.

As we navigate forward, we must remain adaptable and open to uncovering
innovative pathways. We contend that pursuing the avenues outlined above
may not only circumvent current limitations but potentially spawn a new era
of research, rich in depth and breadth, in the dynamic landscape of synthetic
image generation and machine learning.
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