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Trajectory Optimization for Wheeled-Legged
Quadrupedal Robots Driving in Challenging Terrain

Vivian S. Medeiros1, Edo Jelavic2, Marko Bjelonic2, Roland Siegwart3, Marco A. Meggiolaro1 and Marco
Hutter2

Abstract—Wheeled-legged robots are an attractive solution for
versatile locomotion in challenging terrain. They combine the
speed and efficiency of wheels with the ability of legs to traverse
challenging terrain. In this paper, we present a trajectory op-
timization formulation for wheeled-legged robots that optimizes
over the base and wheels’ positions and forces and takes into
account the terrain information while computing the plans. This
enables us to find optimal driving motions over challenging
terrain. The robot is modeled as a single rigid-body, which allows
us to plan complex motions and still keep a low computational
complexity to solve the optimization quickly. The terrain map,
together with the use of a stability constraint, allows the optimizer
to generate feasible motions that cannot be discovered without
taking the terrain information into account. The optimization
is formulated as a Nonlinear Programming (NLP) problem and
the reference motions are tracked by a hierarchical whole-body
controller that computes the torque actuation commands for
the robot. The trajectories have been experimentally verified
on quadrupedal robot ANYmal equipped with non-steerable
torque-controlled wheels. Our trajectory optimization framework
enables wheeled quadrupedal robots to drive over challenging
terrain, e.g., steps, slopes, stairs, while negotiating these obstacles
with dynamic motions.

Index Terms—Legged robots, wheeled robots, motion planning,
optimization and optimal control.

I. INTRODUCTION

LEGGED robots, such as ANYmal [1], have excellent
mobility to cope with challenging terrain and are able

to overcome large obstacles. Wheeled robots, on the other
hand, exhibit high maneuverability on flat terrain, moving
faster and more efficiently than legged systems. One attractive
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Fig. 1. The quadrupedal robot ANYmal equipped with four non-steerable,
torque-controlled wheels, driving up a step 0.2m high (over 40% of the legs
length) and a 65◦ slope using our TO framework.

solution is to combine the advantages of both locomotion
systems into a wheeled-legged system, that can cope with
challenging environments at higher speeds [2]. Tasks where the
execution time is important would greatly benefit from driving
motions over challenging terrains, such as payload delivery or
search and rescue. To this end, this work presents a Trajectory
Optimization (TO) framework that generates dynamic driving
motions for wheeled-legged quadrupedal robots with actuated
wheels that allows the robot to overcome challenging obstacles
by using the terrain map.

A. Related Work

In the field of wheeled-legged locomotion, most of the
previous work focuses on robots performing motions in a
purely reactive fashion. A number of authors have proposed
reactive controller frameworks for wheeled-legged locomotion
over uneven terrain. One example is extra-planetary rovers [3]–
[7], that employ a purely reactive controller that can adapt
to terrain variations by maintaining the desired base pose.
These controllers are typically able to execute statically-stable1

driving motions at low speeds, where the legs act as a sophis-
ticated active suspension system. In [8] and [9], step-climbing
strategies are presented for wheeled-legged robots using wheel
traction optimization and posture reconfiguration, but both
limited to a quasi-static condition. In [9], only simulation
results are presented.

The motion planning framework presented in [10]–[11]
for the CENTAURO robot switches between walking and

1Statically stable locomotion requires the moving body to be stable at all
times, which means that motion is not needed for maintaining balance. More
specifically, the vertical projection of the center of gravity of the moving body
will be contained within the convex hull of the body’s points of contact with
the ground at all times.
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driving employing heuristics based on the terrain complexity.
Experimental results show the robot overcoming obstacles like
stones and steps with slow static maneuvers. Moreover, their
approach does not consider solutions where the robot uses
its wheels and legs simultaneously, which limits its ability
to overcome obstacles compared to considering the whole-
body in a single planning problem. In contrast, the motion
planner presented by [12] solves the whole-body planning
problem combining driving and stepping motions. The frame-
work, however, focuses on generating kinematically feasible
motions for heavy wheeled-legged vehicles performing slow
maneuvers.

Recently, several approaches have been presented for dy-
namic motion generation with wheeled-legged systems. The
wheeled bipedal robot Handle from Boston Dynamics [13]
uses the wheels for driving over flat terrain and the legs for
jumping over obstacles. The robot Ascento [14] presents a
similar behavior, but a pre-defined jump motion is triggered
by the user and no trajectory optimization is employed. A
motion control and planning framework for ANYmal equipped
with actuated wheels is presented in [15]-[16], in which the
reference trajectories for the robot’s center of mass (CoM)
are continuously computed by a Zero-Moment Point (ZMP)
optimization and are tracked by a hierarchical whole-body
controller (WBC). Although this approach presented good
experimental results, the planner uses a flat terrain assumption,
which violates the validity of the ZMP model when moving
over non-flat terrain and renders the approach not amenable
for overcoming more challenging terrains, such as steep steps.
Indeed, we tried to drive up steep slopes using the approach
above with no success.

Hybrid driving-walking motions are shown for the ANYmal
robot equipped with actuated wheels in [17], and for the
robot Robosimian equipped with passive wheels in [18]. Both
approaches have shown results only in simulations and over
flat terrain. Skaterbots [19] uses a general TO framework
for wheeled-legged robots that optimizes over several types
of motions by solving a NLP problem, but the motions are
performed only in flat terrain. All of the above approaches do
not take into account terrain information and the flat terrain
assumption makes them not very well suited for cases where
the terrain contains steps or steep slopes.

B. Contribution

The main contribution with respect to the previous work
is introducing a planning and control pipeline capable of
negotiating rough terrain such as steep slopes with dynamic
motions. On one hand, earlier work has presented navigation
in challenging terrain, but only at low speeds (quasi-static
conditions), less than 0.15 m s−1. On the other hand, other
planning and control algorithms have produced dynamic mo-
tions, but employing a flat terrain assumption. In this work,
we aim to bridge the gap between fast motions and motions
in rough terrain. Our planning and control setup breaks the
navigation in rough terrain problem into two subproblems:
terrain aware motion planning and perceptive whole-body
control. By adding the offline planning component we are

able to execute faster motions over steep steps compared to
previous approaches. Our algorithm is a TO framework for
wheeled-legged robots that optimizes over the 6D base motion
(position and orientation) as well as the wheels’ positions and
contact forces in a single planning problem, accounting for
the terrain map and the robot’s dynamics. This allows the
robot to traverse a variety of challenging terrain, including
large steps and drops, with dynamic driving motions that
could not be generated without taking into account the terrain
information. Moreover, our approach is general for all terrain
types and the robot’s base is not restricted to a desired
height or orientation, which expands the range of achievable
motions, especially for more complex terrains. Furthermore,
we evaluated the proposed approach on ANYmal equipped
with actuated non-steerable wheels in both simulations and
real-world experiments. We show that ANYmal is able to
traverse a variety of terrains, including steep inclinations 0.2 m
high with 45◦ and 65◦ slopes at an average speed of 0.5 m s−1

and a maximum speed of 0.9 m s−1, which is over three times
faster than previous approaches. To the best of our knowledge,
such a fast negotiation of challenging obstacles using purely
driving motions has not been shown before.

II. TRAJECTORY OPTIMIZATION

This section formalizes the TO problem for wheeled-legged
robots and discusses its formulation as a NLP problem, as
well as details of its collocation method. The goal of our
motion planner is to solve an Optimal Control Problem (OCP)
described as

find x(t), ẋ(t)

subject to x(0) = x0, x(T ) = xf ,

h(x(t), ẋ(t), ẍ(t)) ≥ 0,

g(x(t), ẋ(t), ẍ(t)) = 0

where x(t) is the set of decision variables, given by the robot’s
CoM linear position and orientation (Euler angles), the wheels’
contact positions and contact forces.

x(t) =
[
r(t) θ(t) pi(t) fi(t)

]T
The high-level user inputs are the initial and final state of
the robot and the total time duration T of the trajectory. The
duration T is defined based on the desired average speed for
the robot’s base.

In our approach, we employ a Direct Collocation
method [20]-[21], where the OCP is transcribed into a NLP
problem by optimizing over the decision variables in discrete
times tk sampled at a fixed interval ∆T along the trajectory,
called nodes. All the optimization variables define each node
at the time tk = k∆T of the trajectory, including the initial
state, generating n = floor(T/∆T )+1 nodes. Each dimension
of the variables is then represented in continuous time by
connecting the nodes with third order polynomials, that can be
fully defined by the value x and its derivative at the adjacent
nodes and its time duration ∆T :

x(t) = a0 + a1t+ a2t
2 + a3t

3,

ai = f(xk, ẋk, xk+1, ẋk+1,∆T ) ∀ k ∈ [0, n− 1]
(1)
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Fig. 2. Hermite spline parametrization. Decision variables inside the opti-
mization are the black dots (nodes) and the red lines (state derivatives at each
node). The blue curves are the polynomials defined by two consecutive nodes
and their derivatives.

where xk is the state of the robot at the kth node. This is called
the Hermite parametrization, illustrated by Fig. 2, and allows
to optimize over the state of the robot directly instead of the
polynomials coefficients. This simplifies the formulation and
the implementation of the NLP. The procedure to obtain the
polynomial coefficients through the robot’s state can be found
in [22].

III. NLP FORMULATION

This section describes in detail the NLP problem solved to
compute the motion plans, which formulation is summarized
in Fig. 3. The right superscript denotes a component of the
vector and the left superscript indicates the coordinate frame:
I denotes the inertial frame, B denotes the base frame, Wi

denotes the ith wheel frame, located on the wheel’s center and
rotates with the wheel, and Ci denotes the ith wheel contact
frame, located on the wheels contact point on the ground.
Fig. 4 shows the coordinate frames on the robot.

The formulation of the NLP was based on the one proposed
in [22] for legged robots with point feet. In comparison
with our formulation for wheeled robots performing driving
motions, the main differences are that the velocity of the
end-effector’s contact point is no longer forced to zero and
the rolling direction of the wheels is included to ensure
consistency with wheeled locomotion. Additionally, since we
focus on planning driving motions, the contact between the
wheels and the ground is enforced during the entire trajectory.

A. Dynamic and kinematic constraints

The robot’s dynamic model used for the TO is a Single
Rigid Body model, in which the robot is approximated by
a single rigid-body with mass and inertia located at the
robot’s CoM. This model assumes that the mass of the legs is
negligible compared to its base, which makes the dynamics
of the robot independent of the joint configuration of the
legs, keeping the formulation simpler and enabling faster
convergence of the optimizer compared to the full-rigid body
dynamics. This assumption is reasonable for most quadrupedal
robots since a large portion of the mass is in the base of the
robot. Each leg is up to an order of magnitude lighter than the
base.

Using this simplified model, the robot’s CoM linear accel-
eration r̈(t) ∈ R3 is determined by the sum of all the contact
forces on the wheels and the gravitational force; and the CoM

find Ir(t) ∈ R3 (CoM linear position)
Iθ(t) ∈ R3 (base Euler angles)
for every wheel i :

Ipi(t) ∈ R3 (wheels’ motion)
If i(t) ∈ R3 (wheels’ forces)

s.t. [Ir, Iθ](0) = [Ir0,
Iθ0] (initial state)

[Ir, Iθ](T ) = [Irg,
Iθg] (goal state)

Fd(Ir, Iθ, Ipi,
If i) = 0 (dynamic model)

s(Ir, Iθ, Ipi,
If i) > βmin (stability measure)

for every wheel i :
Ipi(t) ∈ Ri(

Ir(t), Iθ(t)) (kinematic model)
Ipzi (t) = hterrain(Ipx,yi (t)) (terrain height)
Cifz

i (t) ≥ 0 (normal force)

||Cifx
i (t)|| ≤ fmax (maximum torque)

If i(t) ∈ F(µ,n, Ipx,yi (t)) (friction cone)
Ci ṗyi (t) = 0 (rolling constraint)
for k = 1..n :

I p̈i(tk)− I p̈i(tk−1) = 0 (acc continuity)

Fig. 3. Decision variables and constraints of our TO formulation. The use
of a stability constraint and the constraints marked as blue are specific for
optimizing driving motions over rough terrain.

Fig. 4. Coordinate frames used for the motion planning. The frame B is
attached to the CoM of the robot and each wheel has a frame attached to
their center. On the right, there is a detailed view of the wheel’s frame Wi

and the contact frame Ci. The rotation axis of the wheels is the wy . The axis
cz on the contact frame is aligned with the terrain normal n and the cx axis
is aligned with the rolling direction of the wheel. In the wheels’ frames, the
first letter indicates the left (L) or right (R) and the second indicates front (F)
or hind (H).

angular acceleration ω̇(t) ∈ R3 is given by the Euler’s rotation
equation [23]. The dynamic equations are

m I r̈(t) =

4∑
i=1

If i(t)−m Ig

I Iω̇(t) + Iω(t)× I Iω(t) =

4∑
i=1

If i(t)× (Ir(t)− Ipi(t))

(2)
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Fig. 5. The robot model for the optimization. The joint limits of the robot
are assumed not violated if the wheel’s contact point pi is in inside the
parallelepiped Ri. The contact forces fi on the wheels are constraint to
remain inside the friction cone.

where Iω(t) ∈ R3 represents the angular velocity of the
robot’s base in the world frame, m denotes the robot’s mass,
Ig ∈ R3 the gravity vector and I ∈ R3×3 the inertia matrix of
the robot, computed around the nominal stance position. The
transformation from the Euler angles that define the orientation
of the base (yaw, pitch, roll) to the angular velocities in world
frame can be found in [23].

As for the kinematic constraints, we constrain the wheels
positions to remain within a feasible workspace that moves to-
gether with the robot’s base, approximated by a parallelepiped
with fixed size located on the nominal position of the wheel
relative to the robot’s base, as depicted in Fig. 5. Such an
approximation is common for robots with knee joints and fully
articulated legs (at least 3 degrees-of-freedom per leg) [15],
[22], [24]. The size of the parallelepiped must defined by the
user by taking into account the position limits of the joints.
The constraint is given by

−b ≤ RBI(θ(t))(Ipi(t)− Ir(t))− Bpin ≤ b, (3)

where RBI ∈ R3×3 is the rotation matrix from the inertial
frame to the base frame, Bpin ∈ R3 is the nominal position
of the ith wheel in the base frame and b =

[
bx by bz

]T
is

the vector of parallelepiped dimensions.

B. Wheels’ contact constraints

For the entire trajectory, the robot is assumed to be in
driving phase, i.e., the robot is not stepping, which imposes
physical constraints on the wheels’ motion and contact forces.
Firstly, all the wheels must be in contact with the ground,
which is enforced by

Ipzi (t) = hterrain(Ipx,yi (t)) (4)

where hterrain is the continuous 2.5D height map of the
terrain [25].

Assuming constant contact also implies that the normal
force on the wheels must always be positive. Since the contact
forces are explicit decision variables, the forces can be directly

constrained as
Ifni

(t) = Cifz
i (t) ≥ 0, (5)

where Cifz
i (t) is the z component of the contact force on the

ith wheel expressed in the contact frame.
To ensure no slippage of the wheels’ contact points, we

constrain the tangential forces to remain inside the Coulomb
friction cone defined by the terrain friction coefficient µ. In
our implementation, the friction cone is approximated by a
friction pyramid, which makes the constraint linear and thus,
speeds up the computation. The constraint is given by

− µ Ifni(t) ≤
Cifx

i (t) ≤ µ Ifni(t)

− µ Ifni
(t) ≤ Cify

i (t) ≤ µ Ifni
(t)

(6)

Additionally, the traction forces are limited to a saturation
value correspondent to the maximum torque of the wheel’s
motor, which is equivalent to limit the component of the
contact force aligned with the rolling direction of the wheels:

−τmax/wr ≤ Cifx
i (t) ≤ τmax/wr, (7)

Since we constrain the contact forces in a way that there is no
slippage on the wheels, the maximum traction force is defined
by the maximum torque on the wheel’s motor τmax ∈ R
divided by the wheel’s radius wr.

Unlike for the robots with point feet, contact points for
wheeled-legged robots can have a non-zero speed or accelera-
tion. This introduces a rolling constraint, necessary to ensure
the consistency of a driving motion. Motion of a wheel is
consistent if the y-velocity of the wheels’ contact point in the
contact frame is zero:

Ci ṗyi (t) = 0 (8)

The Hermite parametrization (Fig. 2) ensures continuously
differentiable velocities and positions profiles for the base
and the wheels. The accelerations, however, are not explicit
decision variables and are computed from the derivative of
the velocity polynomials, which allows for discontinuities in
the acceleration profile. To avoid that, we constrain the wheel’s
accelerations to be equal at the polynomial junctions nodes, so
there are no jumps in the wheels’ acceleration that could cause
jumps in the wheels’ contact forces, which is not desired. The
base’s linear and angular accelerations are also constrained to
be equal between the nodes, as they are in [22]. Finally, to
prevent abrupt motions, the acceleration in the world frame
on all wheels is limited to a maximum value.

C. Stability constraint

Since the contact forces are decision variables of our TO,
it is possible to include a stability measure for the robot in
the formulation. In this work, we define stability based on the
measure proposed by [26], called the Force-Angle Stability
Measure, illustrated for a quadrupedal robot in Fig. 6. The
stability measure β is given by

β = min (φi), i = 1, . . . , 4, (9)

Critical tipover stability occurs when β approaches zero,
which happens when the force fi is aligned with one of the
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Fig. 6. Illustration of the Force-Angle Stability Measure for a quadrupedal
robot, where pi denotes the wheels’ contact points; ai denotes the tipover
axes, defined as the vectors joining the contact points; li are the tipover axes
normals, that intersect the tipover axis and the robot’s CoM, which position
is given by r; f is the sum of all forces and angular loads acting on the CoM
and f1 is the component of f that acts on the 1st tipover axis; φ1 is the
stability angle w.r.t. to the first tipover axis. Same procedure is carried out to
determine the correspondent fi and φi for all tipover axes. All the vectors
are represented in the inertial frame.

tipover axes li. If f lies outside the polygon defined by the
contact points, β becomes negative and the robot starts to tip
over. Hence, for the vehicle to remain in a stable condition,
β must be positive. This measure is not limited to flat terrain
and it can be applied to vehicles with any number of end-
effectors, including manipulators. We incorporate the stability
criterion into the TO as a constraint. The use of an objective
function usually comes with higher computational effort and
the amount of tuning parameters increases. Therefore, we
limit ourselves to solving feasibility problems, similar to the
approach presented in [22].

IV. RESULTS

This section discusses the implementation and testing of
several motions generated by our TO framework. We verify
our planning and control pipeline in physical simulation on
a variety of different terrains such as half-pipe terrain and
stairs. We also perform experiments using ANYmal robot
equipped with non-steerable torque-controlled wheels for steps
with 45◦ and 65◦ slopes. All the motions are showed in
details in the accompanying video, also available at https:
//youtu.be/DlJGFhGS3HM.

A. Implementation
The TO framework is implemented in C++ using the

Ifopt [27] interface for the interior-point solver Ipopt [28].
The implementation is based on the software TOWR [22] for
legged robots. The simulations are carried out in the robot
simulation environment Gazebo with ODE [29] as the physics
engine, using the full rigid body dynamics of the real ANYmal
robot equipped with actuated wheels. Its legs feature three ac-
tuated joints arranged as a successive hip abduction/adduction,
hip flexion/extension, and knee flexion/extension. The non-
steerable torque controlled wheels are placed at the end of the
legs.

The base and wheel motions are provided as input to the
hierarchical WBC described in [15], that generates the actua-
tion torques for the joints and the wheels while accounting for
several constraints, such as actuator limits and friction cone
constraints. We extend the existing controller (WBC) with the
capability to leverage terrain normals. In [15] a unique plane is
fitted through the most recent wheels’ positions to estimate the
terrain normal and the wheels’ contact points. We extend that
approach to use the knowledge of the terrain map to compute
the terrain normal and contact point for each wheel separately.
Since the friction cone axis is defined from the terrain normal,
this mitigates incorrect estimation of the friction cones when
traversing steep obstacles, as shown in Fig. 7. In this case, the
lack of a terrain-aware motion or a contact force optimization
prevents the robot from driving up the step, which is enabled
by our framework.

The presented formulation requires a continuous 2.5D
height map of the terrain. The height map can be either
manually specified if the objects in the environment are known
or generated from on-board sensors. Grid map representations
such as Octomap [30] or a Gridmap [31] can be adapted to
comply with the planner interface. Since our tests were carried
out in known scenarios, the terrain map was analytically
defined for each of the terrains.

For both simulations and experimental tests, the motion
planner first reads the current state of the robot and then
computes the trajectories for the desired time horizon. Fig. 8
gives an overview of the motion planning framework. The
extended WBC tracks the reference trajectories, along with
the robot state estimator, in a 400 Hz loop. The state estimator
module [32] fuses kinematic measurements from each actuator
with the data from an inertial measurement unit (IMU).

For the motion planning, all the constraints are enforced
in a time interval of 0.1 s, which is short enough to ensure
physically feasible and dynamically consistent motions. Con-
sequently, a trajectory with a 4.0 s time horizon has 2269
optimization variables, 1290 equality constraints and 2262
inequality constraints. The solver computation time depends
on the complexity of the terrain and the optimization param-

Fig. 7. Our extended WBC uses the terrain information to estimate the wheels
contact points. (a) The approach described in [15] estimates the shape of the
terrain by fitting a plane through the most recent wheels’ positions. Note that
the frictions cones are oriented with the normal plane, which is not accurate
in this case. (b) Using the knowledge of the terrain normals, we are able to
predict the contact points and the friction cones along the terrain map.
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Fig. 8. Overview of the motion planning framework. The motion planner
computes the reference trajectories for a specified time horizon that is given
as input to the WBC, that computes the reference torques for the robot.

eters, but remained in average 2.1 times2 shorter than the
planning horizon. All the derivatives of the constraints are
provided analytically to the solver, which improves the solver’s
performance.

The position of the base is initialized by a linear interpo-
lation between the initial and desired final position and the
positions of the wheels are initialized assuming the default
stance position of the robot’s legs with respect to the base
along the entire trajectory. The velocities on each node are
initialized with the average speed of the robot, given by the
total displacement of the trajectory divided by the total time
duration.

B. Simulations

The simulations were carried out in the robot simulation
environment Gazebo with different terrain types. We verify
the effect of the tipover stability criterion introduced in Sec-
tion III-C as well as the ability to traverse various challenging
terrain. The effect of the stability constraint on the robot’s mo-
tion is shown in Fig. 9, where snapshots of the robot driving on
a slope with 30◦ inclination at an average speed of 1.0 m s−1

with different stability thresholds are shown. As expected, as
the stability angle threshold increases, the trajectory presents
a higher pitch angle for the base and the wheels position are
adjusted to minimize the difference between the normal forces
on the front and hind wheels. As the threshold increases,
the size of the feasible solution set is reduced, the joint
positions are closer to its limits and the computation cost for
the optimization increases proportionally. As a compromise,
the minimum stability angle was constrained to 10◦ for all
trajectories.

Fig. 10 shows snapshots for the robot crossing a 0.5 m deep
half-pipe at an average speed of 1.2 m s−1. For this terrain,
our TO takes 1.32 s to optimize the motion for a 3.0 s time
horizon. Note that the robot maintains a kinematic feasible
leg configuration by pitching the torso, which is only possible
because we consider the whole body planning problem in our
approach.

Our approach can handle multiple obstacles in succession
such as stairs shown in Fig. 11. The stairs are composed by
steps with 0.2 m in height, 0.4 m distance between them and

2The times stated in this work for the TO computation times were obtained
on a 2.7 GHz dual-core Intel Core i7 laptop.

Fig. 9. ANYmal drives on a steep incline with a 30◦ inclination at average
speed of 1.0m s−1. The light blue arrows on the wheels are the contact forces
and the red arrow on the base is its linear velocity. Results for: (1) β > 0;
(2) β > 10◦; (3) β > 20◦.

Fig. 10. The ANYmal robot driving over a 0.5m half-pipe at an average
speed of 1.2m s−1.

Fig. 11. ANYmal drives over stairs composed by steps with 0.2m in height
and a 0.4m distance between them.

transition with a 65◦ slope. A set of five steps is completed
with an average speed of 0.5 m s−1, which is faster than a
legged robot with point feet could do. We achieve such a speed
only because we compute plans for the robot before starting
the maneuver which gives the controller more information
for tracking compared to just reactive locomotion with flat
terrain assumption. Trying to go up the steps with a reactive
controller [15] has shown no success, even in simulation, as
it can be seen in the accompanying video.

C. Experimental Results

We conducted experimental tests in four different configu-
rations: two steps 0.2 m high (40 % of the legs length) with a
45◦ and a 65◦ incline either in the center of the path or only on
the right side of the robot. The optimization parameters were
the same in all tests, with the exception of the robot’s goal
pose. All the obstacles are overcome with an average speed
of 0.5 m s−1.

Fig. 12 top row shows the robot driving over the step with
a 45◦ slope moving both front wheels up at the same time.
In this case, the base of the robot is kept in a lower position
and with a higher distance between the front and the hind
wheels to improve stability. On the bottom row, the robot
successfully drives up a step with a 65◦ slope. For this motion,
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Fig. 12. Snapshots of the robot driving up a step 0.2m high (40% of the legs length) using our TO framework. On the top row, ANYmal drives over the
step with a 45◦ slope by driving both wheels up at the same time. On the bottom, the robot drives up a 65◦ slope by moving one front wheel at a time over
the platform.

the robot drives up the left wheel first and, once both front
wheels are on the platform, the hind wheels are driven up
together to complete the motion. In this case, the transition
over the step is more stable and the robot’s CoM is maintained
in a higher position. It is relevant to point out that the two
different motions can only be obtained by providing an initial
solution with a small shift between the left and right wheels’
trajectories. This is due to the absence of a cost function in our
formulation and the fact that the initial solution provided to
the solver is a linear interpolation between the initial and final
position of the wheels. In this case, the initial solution had the
left wheels’ positions shifted forwards 0.1 m in relation to the
right wheels.

In Fig. 13, the platform with a 65◦ slope is now positioned
on the right side of the robot, that drives up the obstacle in
less than 4.0 s, showing that terrains with different heights
in the y−direction are also successfully negotiated with our
TO. To go up, the robot shifts and rolls its base to respect the
kinematic limits. Fig. 14 depicts the desired motions compared
with the measured positions obtained from the experiments for
ANYmal driving up the 65◦ ramp in the center of its path.
Our extended version of WBC is able to track the desired
motions for the base and the wheels with an average Root-
Mean-Square-Error (RMSE) of 4 mm for the base and 15 mm
for the wheels. The errors are computed using the robot’s state
computed by the state estimator module, which can present
some drift if compared to ground truth measurements. Note
that the base moves slower while the front wheels go up to
maintain enough traction on the hind wheels; and moves faster
when the hind wheels are going up, achieving a maximum
speed of 0.88 m s−1.

Considering the successful experiments with the 65◦ slope
crossing, it is expected that the robot be able to traverse
the stairs presented in Fig. 11. However, since the planning
horizon is larger for such task, the lack of online adaptation
of the trajectories and accumulated errors in the tracking
controller could prevent the robot of climbing all the steps.
One way to mitigate these problems is an implementation of

Fig. 13. The ANYmal robot drives up a platform with a 65◦ slope positioned
in the right side of it’s path.

Fig. 14. The desired motions of the robot’s base and wheels provided as
input to the WBC (dashed line) and the measured positions (full line) obtained
during the experiments for the 65◦ step.

the planner in a receding horizon fashion.
Generating base and wheels motions in a single planning

problem using terrain information and without restrictions in
speed or pose offer the advantage of an increased range of
achievable motions for more complex terrains as a trade-off
for the increased size of the optimization and its computational
cost. Relaxation of some constraints and a decrease in the
number of variables would reduce the cost for the optimiza-
tion, but could decrease its applicability.
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V. CONCLUSIONS AND OUTLOOK

We present a TO based planning and control pipeline that
generates driving motions for wheeled quadrupedal robots,
optimizing over the base motion and the wheels’ positions,
velocities and contact forces. Our framework consists of a
terrain-aware planner and a terrain-aware controller that is an
extension of the WBC presented in earlier work. Computing
plans with terrain information enables us to generate driving
motions over steep obstacles in a non-static manner, achieving
an average speed of 0.5 m s−1 or higher. The feasibility of the
trajectories are demonstrated in experiments with the ANYmal
robot equipped with wheels driving over different terrains. The
results show that we are able to achieve perceptive motion
planning over multiple seconds horizons in challenging terrain.

Our trajectories are planned for a long time horizon in
complex terrains which can be sensitive to drift and tracking
error. In the future, we plan to investigate the implementation
of our motion planner in a receding horizon fashion by using
on-board state estimation of the robot. A major concern for
making this possible is reducing the cost of the NLP solving.
This could be achieved by employing smarter initialization
strategies, similar to [33], that showed a significantly lower
computational cost for a similar NLP formulation. Finally,
we plan to extend the formulation to allow the generation of
hybrid walking-driving motions including gait optimization,
similar to [22].
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