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Preface 

The present Doctoral Dissertation Thesis deals with an important issue in hydraulic and 
river engineering, namely the computation of sediment transport or, more precisely, of 
bed-load transport in watercourses. The estimation of transport rates and river bed level 
development is crucial for the dimensioning of river works, such as river corrections or 
local river widenings, and for an appropriate protection of hydraulic structures. In recent 
years, ecological aspects in combination with morphological changes of the river bed 
have become more and more important, too. For decades, bed-load transport has been 
a central research topic mainly tackled experimentally in the beginning, whereas it is 
more and more studied with numerical methods nowadays. Regarding the latter, the 
conventional mesh-based models are by far predominant. The mesh-free particle model 
underlying the present study is an original method which is still in the fledgling stages 
for river engineering applications. 
 
In his thesis, Mr. Vetsch gives an overview of the modeling of sediment transport and 
the underlying physical processes between the fluid and sediment grains. The numerical 
methods used here, i.e. the Smoothed Particle Hydrodynamics (SPH) to simulate the fluid 
flow and the Discrete Element Method (DEM) to model the bed-load as granular 
material, are presented, and the fluid-structure interaction between these two methods 
is discussed in detail. 
 
Mr. Vetsch applied the numerical methods by means of the software tool PASIMODO. 
To calibrate and validate the numerical model, he simulated several fundamental 
experiments like a sphere under buoyancy, a sphere in a settling tank, or an aligned 
channel flow. The calibrated numerical model has then been applied to compute erosion 
processes such as bridge scour and bed scouring due to free-falling jets. 
 
The results are promising as they clearly demonstrate that the method used is basically 
well-suited to simulate sediment transport in river applications. However, today’s 
limitations, particularly the high computational effort of the present mesh-free model, 
are not spared in this report. Although the decisive drawback of long computing times 
may be attenuated to some extent by parallelization technique and high-performance 
computing in basic research applications, the considerable cost attributed to this will still 
be an insurmountable obstacle for engineering applications in the foreseeable future. 
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Abstract 

The assessment of sediment transport and involved processes is a major issue in 
hydraulic and river engineering. The estimation of erosion and deposition in terms of 
transport rates is crucial for the dimensioning of river works, such as river corrections or 
local river widenings, and for an appropriate protection of hydraulic structures. In recent 
years, also ecological aspects in combination with morphological changes of the river 
bed have become more and more important. The common approaches for the 
determination of sediment transport rates are mostly based on empirical relations, which 
were obtained by evaluation of field measurements or laboratory experiments. Because 
of their empirical nature, these rather simple approaches are useful for the practical 
estimation of transport rates based on averaged quantities. However, their application is 
generally subject to more or less laborious and expensive calibration. Furthermore, they 
are not suitable to study the generally complex sediment transport processes since the 
empirical approaches are not able to describe the underlying physics in detail. Hence, 
numerous experimental investigations by various research groups using state-of-the-art 
measuring techniques have been carried out in the past to gain an in-depth insight into 
the processes involved in sediment transport. To complement the corresponding 
findings also numerical investigation into the subject would be desirable. However, 
numerical models which are able to reproduce and to resolve the involved processes are 
not very common, since they would have to imply the rather complex fluid-sediment 
interaction. 
 
In the present work, a numerical model which is based on two meshfree particle 
methods is presented. The fluid is modelled by a continuum approach which is 
discretised by the Smoothed Particle Hydrodynamics (SPH) method. The sediment 
particles are represented by the Discrete Element Method (DEM), where the interactions 
between the discrete sediment grains are modelled by a force law, which is also able to 
account for various kinds of friction. A similar approach is applied to the interaction 
between the fluid and sediment particles. The definition of the interface and the 
exchange of forces between the fluid and sediment grains are inherent to the applied 
approaches. Thus, the application of special techniques to describe a movable or 
deformable interface as used for grid-based methods is not necessary. 
 
For the application of the combined methods, two different modelling approaches are 
pursued. On the one hand, the fluid particles are chosen distinctly smaller than the 
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sediment particles to simulate detailed interaction forces. The study of the influence of 
the particle resolution, a hydrostatic and a dynamic experiment, namely the simulation 
of buoyancy effects and the determination of the settling velocity, have been carried out. 
The simulations show convergence of the results for increasing particle resolution and 
turned out to be a reliable concept to validate the chosen numerical approaches. On the 
other hand, the fluid particles are chosen of similar size or larger than the sediment 
particles. Due to the less detailed resolution of the fluid forces acting on a solid particle, 
the model parameters have to be calibrated to match the desired sediment transport 
processes; this applies to the spatial as well as to the temporal scale. Furthermore, the 
solid particles may no longer only represent a single sediment grain, but rather a small 
volume of sediment or a chunk of soil. This modelling approach was successfully applied 
to scour caused by a freefalling water jet and to clear-water scour at a bridge pier. 
 
The satisfying simulation results demonstrate the potential of the presented model for 
the detailed investigation of sediment transport processes as well as for complex 
practical applications. However, besides some shortcomings which still are to overcome, 
the main restriction of the applied method is their computational cost which makes the 
use of high performance computing infrastructure inevitable. Nevertheless, the 
combination of the presented numerical methods is a promising modelling approach, 
which may serve as an appropriate simulation tool for many hydraulic and river 
engineering problems in the future. 
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Kurzfassung 

Die Erfassung von Sedimenttransport und den dabei involvierten Prozessen ist eine 
wichtige Aufgabe im Wasser- und Flussbau. Die Bestimmung von Erosion und 
Ablagerungen im Sinne von Transportmengen ist entscheidend für die Dimensionierung 
von flussbaulichen Massenahmen, wie etwa Flusskorrekturen oder lokale 
Flussaufweitungen, sowie für eine angemessene Auslegung von Massnahmen zum 
Schutz wasserbaulicher Strukturen. Ebenfalls hat in den letzten Jahren die Bedeutung 
ökologischer Aspekte in Kombination mit morphologischen Veränderungen des 
Gerinnes zugenommen. Die gängigen Ansätze zur Bestimmung der Sedimentfracht 
beruhen vorwiegend auf empirischen Formeln, welche anhand der Auswertung von 
Feldmessungen oder Laborexperimenten hergeleitet wurden. Aufgrund ihrer 
empirischen Natur sind diese eher einfachen Ansätze gut geeignet für eine praktische 
Abschätzung des Sedimenttransports basierend auf gemittelten Grössen. Jedoch ist mit 
deren Anwendung grundsätzlich eine mehr oder weniger aufwändige Kalibrierung 
verbunden. Des Weiteren sind diese Ansätze zu einer Untersuchung der 
unterschiedlichen und oftmals komplizierten Vorgänge bei Sedimenttransport nicht 
geeignet, da die empirischen Ansätze die grundlegenden physikalischen Vorgänge nicht 
wiedergeben. Daher wurde in der Vergangenheit eine Vielzahl an experimentellen 
Untersuchungen von verschiedenen Forschungsgruppen unter Verwendung moderner 
Messtechniken durchgeführt, um einen vertieften Einblick in die dem Sedimenttransport 
zugrundeliegenden Prozesse zu erhalten. Zur Ergänzung der daraus entstandenen 
Erkenntnisse wären ebenfalls numerische Untersuchungen wünschenswert. Jedoch sind 
entsprechende numerische Modelle, welche fähig sind, die wesentlichen Vorgänge 
aufzulösen und wiederzugeben, eher selten, da ein solches Simulationsmodel auch 
Ansätze für die komplexe Fluid-Struktur-Koppelung beinhalten muss. 
 
In der vorliegenden Arbeit wird ein numerisches Modell basierend auf zwei gitterfreien 
Partikelmethoden präsentiert. Dabei wird das Fluid als Kontinuum mittels der Smoothed-
Particle-Hydrodynamics (SPH) Methode diskretisiert. Das Sediment wird mit der Discrete-
Element-Methode (DEM) wiedergegeben, wobei die Interaktion zwischen den einzelnen 
Sedimentkörnern mittels eines Kraftgesetztes modelliert wird, welches ebenfalls 
verschiedene Arten von Reibung mit einschliesst. Ein gleichartiger Ansatz wird für die 
Interaktion zwischen dem Fluid und den Sedimentpartikeln verwendet. Die Bestimmung 
der entsprechenden Kontaktflächen und der Austausch von Kräften zwischen dem Fluid 
und den Sedimentkörnern ist dem gewählten Ansatz inhärent. Daher ist die 
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Verwendung von speziellen Verfahren zur Behandlung einer beweglichen oder 
verformbaren Kontaktfläche, wie dies bei gitterbasierten Verfahren der Fall ist, nicht 
notwendig. 
 
Zur Anwendung der kombinierten Methoden wurden zwei unterschiedliche 
Modellierungsansätze verfolgt. Einerseits wurden die Fluidpartikel deutlich kleiner als die 
Sedimentpartikel gewählt, um die detaillierten Interaktionskräfte zu simulieren. Um den 
Einfluss der Partikelauflösung zu analysieren, wurden ein hydrostatisches und ein 
hydrodynamisches Experiment, d.h. die Simulation des Auftriebseffekts und die 
Bestimmung der Sinkgeschwindigkeit, durchgeführt. Die Simulationen zeigen die 
Konvergenz der verwendeten Verfahren mit zunehmender Partikelauflösung. Zudem 
stellte sich heraus, dass die gewählte Vorgehensweise ein zuverlässiges Konzept zur 
Validierung solcher Verfahren ist. Andererseits wurden Versuche durchgeführt, bei 
welchen die Fluidpartikel von der gleichen Grösse oder grösser als die Sedimentpartikel 
sind. Aufgrund der dabei weniger detaillierten Auflösung der Interaktionskräfte müssen 
die zugehörigen Modellparameter kalibriert werden, um die gewünschten Vorgänge des 
Sedimenttransports wiederzugeben. Die Kalibrierung betrifft sowohl die räumliche als 
auch die zeitliche Skala der Prozesse. Des Weiteren entsprechen in diesem Fall die 
Sedimentpartikel nicht mehr einem einzelnen Korn, sondern eher einem kleinen 
Sedimentvolumen oder einer Handvoll Substrat. Dieser Modellansatz wurde erfolgreich 
auf die Kolkbildung durch einen auftreffenden Freistrahl und die Kolkvorgänge bei 
einem Brückenpfeiler angewendet. 
 
Die zufriedenstellenden Simulationsresultate demonstrieren das Potential des 
verwendeten Modells zur detaillierten Untersuchung von Sedimenttransportvorgängen 
und für komplexe praktische Anwendungen. Nebst einigen überwindbaren Schwächen 
des Modells stellt jedoch der erforderliche Rechenaufwand das grösste Hindernis dar, 
welches nur durch Einsatz von Hochleistungsrechnern überwunden werden kann. 
Gleichwohl ist die Kombination der präsentierten numerischen Verfahren ein 
vielversprechender Modellierungsansatz, welcher zukünftig als zweckdienliches 
Simulationswerkzeug für verschiedene Fragestellungen im Bereich des Fluss- und 
Wasserbaus dienen kann. 
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1 INTRODUCTION 

1.1 Motivation 
Sediment transport in rivers is studied for more than a century with the goal to estimate 
transport rates and the corresponding change of the river-bed topography. Unforeseen 
aggradations of the river bed may compromise flood safety due to the reduction of the 
flow section. In contrast, degradations and local erosion can lead to destabilisations of 
embankments or bridge piers, for example. Thus, a reliable prediction of the erosion and 
deposition of sediment in an alluvial river is an important issue related to river correction 
works or the design of hydraulic structures. In recent years, ecological aspects in 
combination with revitalisation measures like local river widenings reveal new challenges 
for river engineering, especially with regard to sediment transport. 
 
Investigations of river morphology have mainly an experimental background. The 
studied processes involved in sediment transport, as the inception of motion, the 
transport itself and the deposition of sediment, are usually reduced to empirical relations 
and are combined in the form of a transport formula. Especially the common concept of 
incipient motion, where motion of sediment depends on a threshold condition, has to 
be questioned. Alternative approaches based on probability distributions used to 
describe the state of the sediment seem to be more reliable, since their concept 
corresponds to the natural continuous motion of sediment. Furthermore, the driving 
forces acting on the sediment, which actually cause the transport, are usually derived 
from averaged flow quantities. These approaches are useful and of great importance for 
engineering practice, but they only allow for the determination of a temporally and 
spatially averaged sediment transport. 
 
For river engineering problems, where the morphological development plays an 
important role, a variety of numerical tools exists. These are able to simulate sediment 
transport from a local to a regional scale with satisfying accuracy as far as sufficient data 
for their calibration is available. By the application of modern numerical tools it is 
nowadays possible to resolve the flow field, i.e. the water phase, in detail. However, 
depending on the resolved scales, the gained advantage will be lost due to the rather 
approximate approach for sediment transport, i.e. the solid phase of the water-sediment 
mixture flow. 
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In the last decades, many researchers tried to overcome the shortcomings of physics in 
the common approaches, however, with limited success. Despite investigations using 
state-of-the-art measuring techniques and providing an in-depth view of acting forces at 
the sediment bed, a reasonable approach, which does not need calibration but is still 
convenient for practical application, does not seem to be available in the near future. 
However, such kinds of investigations highlight the complexity of the involved processes 
and the sediment transport per se. Furthermore, the detailed experimental data may 
serve for the validation of advanced numerical models. 
 
Because of the availability of increasing computational resources, the application of 
numerical models for the investigation of the mechanics of sediment transport becomes 
more and more popular. Such numerical tools are rather sophisticated, since they have 
to be able to model the interaction between the fluid and the sediment grains as well as 
the interactions between the grains themselves. Furthermore, such models have to 
include friction to correctly reproduce the constitutional behaviour of the sediment and 
the different modes of bed load transport, as sliding, rolling and saltating. One of the 
main challenges in developing such approaches is the appropriate modelling of the 
movable interfaces between the fluid and the sediment grains and the exchange of 
forces. Although several different numerical techniques exist which are suitable for such 
problems, they often have deficits concerning efficiency or accuracy. Furthermore, many 
common numerical approaches for the simulation of fluid flow use computational grids 
for the spatial discretisation, which may reduce the flexibility for the modelling of 
arbitrary geometries and lead to quite complex schemes for movable boundaries. 
However, when it comes to three dimensional applications, the main handicap of these 
approaches is the computational expense necessary to obtain qualitatively good results, 
and the use of high performance computing seems to be inevitable. 
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1.2 Contribution of this Thesis 
The main goal of this thesis is to evaluate novel numerical methods which are able to 
simulate sediment transport and reproduce the involved processes in detail. To reduce 
the complexity of this challenging task, the primary focus of this work is on bed load 
transport. Since the involved physical processes rely on fluid and rigid body dynamics, 
numerical discretisation techniques are applied, which account for the distinct 
characteristics of these disciplines and which allow for flexible modelling of fluid-
structure interaction. Thus, the application of two meshfree particle methods is 
considered. These are able to model the different properties of the fluid and the 
sediment as well as their interaction without the need for a computational grid. 
Furthermore, this hybrid approach allows for the description of the processes of bed 
load and the corresponding transport modes by discrete forces. The successful 
application of the model to various problems shows the potential of this approach for 
the numerical simulation of bed load transport. The model is a suitable numerical 
research tool and may serve for future investigations, especially with regard to 
increasing computing power. 
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2 LITERATURE REVIEW 

2.1 Modelling of Bed Load Transport 

2.1.1 Definition of Bed Load Transport  

Sediment transport in rivers can be classified by two types referring to their transport 
mechanism, suspended sediment and bed load transport. Suspended sediment transport, 
as the term denotes, is the part of the load which is carried in suspension by the 
movement of the water. Thus, the transported sediment mainly consists of fine material 
like sand or silt.  
 
The mechanism of bed load transport is described by processes occurring in the upper-
most layer of the river bed. Sediment particles and grains are moved in different forms 
due to stream forces or strikes of other grains in motion (Bagnold (1941)). The transport 
modes are comparable with Aeolian transport which can be observed at sand dunes in 
deserts; grains move in flow direction by saltating, or, which is less usual, by rolling or 
even by sliding along the bed (Fig. 2-1). The distinction between transport in the form of 
saltation or in suspension is not obvious. Bagnold (1973) defines transport of a solid in 
suspension as a state in which the excess weight of the solid is compensated by a 
random succession of upward impulses due to eddy currents of fluid turbulence moving 
upwards relative to the bed. Therefore, the solid may remain out of contact with the 
bed for an indefinite period depending on the random nature of turbulence. In contrast, 
saltation as well as bed load transport in general may be characterised as motion with 
successive contacts between the solid and the bed. 
 

saltating rolling sliding
 

Fig. 2-1: Modes of bed load transport 

It should be noted that the early approach of du Boys (1879), which assumes that bed 
load occurs as stacked layers moving in a “carpet like” form has nothing in common 
with today’s view (see e.g. Yalin (1977)). The approach of du Boys is rather applicable to 
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granular flow, which can be observed in fluidized beds or high-concentration granular-
liquid mixtures (Armanini et al. (2005)) under shear flow. 
 
The grain size of transported material in alpine rivers covers a wide range and is 
described by the smaller diameter sd  of a non-uniformly shaped grain. The size varies 
from sand (0.062 < sd  < 2 mm) over gravel (2  < sd  < 60 mm) to stones and small rocks. 
Finer sediment than the sand fraction is termed wash load, which is considered to be 
moved in suspension only. 
 
Church (2006) gives an overview on the different sediment transport regimes, on the 
categorization of fluvial sediments as well as on the relation of bed load transport and 
morphology in alluvial rivers. A quantitative distinction between bed load and 
suspended load can be found in Murphy and Aguirre (1985). 
 
The focus of this thesis is on the process of bed load transport in alluvial gravel-bed 
rivers, typical examples of which are the Swiss rivers Aare, Thur or the Alpine Rhine and 
many other mountainous rivers worldwide. 

2.1.2 Incipient Motion 

The topic of incipient motion - the onset of transport of sediment - has been studied by 
many researchers in the last hundred years or so. In most cases, the goal was to define a 
threshold for sediment motion which is an essential premise for the estimation of 
sediment transport in alluvial rivers. The main motivation for the investigations was and 
still is the development of a transport relation to asses bed load discharge in rivers that 
serves as essential tool for river engineering works. The methodology to find a criterion 
for the threshold is usually based on theoretical investigations or visual observations as 
well as measured reference bed load transport rates, acquired in a laboratory flume or in 
a natural river. 
 
Some results of investigations into threshold of sediment motion are shown in Fig. 2-2, 
whereas the abscissa denotes the grain Reynolds number of the sediment and the 
ordinate indicates the threshold stream force in terms of critical shear stress. Based on 
the consideration of equilibrium of moments of a spherical grain, Shields (1936) defined 
the dimensionless critical shear stress *

ct  for a grain of size sd  as 
 

 * * * *(Re ) , Rec c s
c c c

s

u d
f

gd

t
t

r n
= = =


 , (2.1) 

 
where ( )s fr r r= -  is the density difference between sediment (subscript s) and fluid 
(subscript f), g  is the gravitational acceleration, *Rec  is the critical particle Reynolds 
number, n  is the kinematic viscosity. The dimensionless critical shear stress *

ct  (also 
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denoted as the critical Shields parameter cq ) and the critical shear velocity *cu  were 
determined by observations in a laboratory flume. 
 
However, the definition of the point of inception is not clear and varies considerably 
among the various studies. This means that in practical cases of turbulent flow there is 
no single criterion for the beginning of movement of sediment. Buffington and 
Montgomery (1997) give an extensive review on the issue. There is also a large data 
collection available by Brownlie (1985) and Brownlie and Brooks (1981). 
 

τ*c

Re*c

Shields (1936)

Meyer-Peter & Müller (1948)

Yalin &  Karahan (1979) (turbulent)

Yalin & Karahan (1979) (laminar)

Bathurst (1987) et al.

Bathurst (1987) et al. corr

Yalin & da Silva (2001)

0.01

0.1

1

0.1 1 10 100 1000 10000

NO MOTION

MOTION

 

Fig. 2-2: Selected results of investigations into incipient motion 

Some principal aspects of the concept of incipient motion or critical shear stress derived 
from empirical investigations are given by Paintal (1971):  

 a distinct condition for the beginning of movement does not exist, i.e. there is no 
single value of bed shear stress below which not a single particle will move; 

 bed load transport in the proximity of the so called critical shear stress is 
governed by certain laws; 

 a limiting shear stress for a bed material can be defined below which the bed 
load transport rate is of no practical importance. 

 
Consequently, in engineering practice the rate of sediment transport is calculated with 
empirically based transport equations (see chapter 2.1.3) which are usually defined as a 
function of a certain threshold. From a physical point of view it is obvious to express a 
threshold condition in terms of stream force. Thus, approaches based only on the mean 
flow velocity seem not to be reasonable because they do not account for flow depth 
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and turbulence. Thus, the criterion for incipient motion is usually determined by 
threshold quantities like the critical bed shear stress ct , the critical shear velocity *cu or 
the amount of the critical lift force 

c cL LF F=


. Dey and Papanicolaou (2008) provide a 
review on the different concepts. The threshold conditions with respect to the effective 
bed shear stress bt , velocity *u or amount of the lift force L LF F=


are shown in Tab. 

2-1. 
 

Tab. 2-1: Different concepts for threshold of bed load transport 

Threshold Condition  Shear Stress  Shear Velocity  Lift Force 

Bed Load Transport  b ct t³  * *cu u³  
cL LF F³  

NO Bed Load Transport  b ct t<  * *cu u<  
cL LF F<  

 

2.1.2.1 Conventional Threshold Criterion 

One of the most cited works on sediment threshold was carried out by Shields (1936). 
Within the scope of his doctoral thesis he developed the Shields diagram, which is still 
widely used in engineering practice. His results are based on theoretical considerations 
and laboratory flume experiments with steady flow conditions and near-uniform 
noncohesive grains. Unlike previous researchers, he correlated the particle (or grain) 
Reynolds number *Re to the dimensionless shear stress *

bt  by application of dimensional 
analysis. Shields obtained his data mostly by extrapolating curves of sediment transport 
rates versus applied shear stress to the zero transport condition. The results of Shields 
experiments are approximated by a single curve shown in the Shields diagram Fig. 2-3 
and can be expressed in simplified terms in the following way:  
 

 

* * *

* *

* *

Re 2 : 0.1 Re ,

Re 10 : 0.03 ,

Re 500 : 0.056 .

c c c

c c

c c

t

t

t

£ »

= »

³ »

 (2.2) 

 
Since the original work of Shields (1936), many researchers acquired additional data to 
cover a wider range of *Rec and to arrive at an improved threshold condition (see Fig. 
2-2 for selected results). For non-cohesive sediments mainly consisting of gravel, Meyer-
Peter and Müller (1948) ran laboratory experiments at VAW1 to develop a formula for 
bed load transport in gravel bed rivers like the Alpine Rhine, and Bathurst et al. (1987) 
studied the threshold condition for steep mountain streams, for example. To point out 
the sensitivity of the approach for the calculation of the dimensionless shear stress, the 
results of the latter are drawn in Fig. 2-2 based on their formula and according to that 
of Shields (denoted as “Bathurst (1987) corr”). A similar but more refined approach 

                                            
1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of the Swiss Federal Institute of Technology 
(ETH) in Zurich 
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including the ratio of flow depth fh  to the roughness height sk , f sh k , is presented by 
Bettess (1984). Furthermore, a new theoretical model proposed by Recking (2009) for 
small relative flow depth f sh d and steep slopes is able to adequately reproduce the 
increase of the critical Shields stress with increasing slope. 
 

0.01

0.1

1

0.1 1 10 100 1000 10000

lower

upper

mean

Re*c

τ*c

0.086

0.03

NO MOTION

MOTION

transitional roughroughsmooth

Cheng (2004)

Mantz (1977): Grains

Mantz (1977): Flakes

Shields (1936)

Paphi�s (2001)

Yalin & da Silva (2001)

Zanke (1982)

van Rijn (1984) (2007)

 

Fig. 2-3: Shields diagram with threshold curves of experimental data acquired by different researchers. The 

colorized area covers the data collected by Buffington and Montgomery (1997). The empirical threshold 

curves presented by Paphitis (2001) are denoted by “upper”, “mean” and “lower” (see section 2.1.3). 

In agreement with the results of Shields, Meyer-Peter and Müller (1948) found that the 
lower limit for absolute rest is about * 0.03ct = . Furthermore, they determined the 
threshold value for gravel with grain diameters ranging from 5 to 30 mm by 
extrapolation of their data to a zero transport state and obtained * 0.047ct = . 
Zanke (1982) 
Investigations into fine sediments such as sand and silt, with non-cohesive or cohesive 
response, cover the left part of the Shields diagram. Mantz (1977) studied the transport 
of fine cohesionless grains and flakes in a laboratory flume based on a flat bed at 
condition of maximum stability arriving at the “extended Shields diagram”. Mantz 
defined a flat bed of maximum stability as one for which a small stress increment above 
that for incipient transport will cause a change in bed configuration, i.e. the 
development of bed forms. This feature is characteristic for the left part of the Shields 
diagram. Shields also observed such bed forms and annotated them directly above the 
experimental points of his diagram. For sand bed rivers the kind of bed form varies from 
ripples to bars, dunes and anti dunes depending on the flow conditions (van Rijn (1984)). 
 
As noted above, the Shields diagram depends on the dimensionless critical particle 
Reynolds number *Rec  and the critical shear stress *

ct . Both quantities depend on the 
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the shear velocity *cu  that can either be derived from the energy slope or the mean flow 
velocity of a cross section or can be approximated based on measurements with modern 
apparatus. The bottom shear stress is related to the shear velocity as 
 

 2
*b f f e fgh S ut r r= =  , (2.3) 

 
where eS  is the slope of the energy grade line which for uniform flow is equal to the 
bed slope bS . For flume conditions where the friction of the side walls can be neglected 
due to very small roughness, fh  is the flow depth (also valid for very wide channels). 
Based on the shear stress velocity *u , the steady vertical velocity profile for channel flow 
can be determined using the general law for wall-bounded turbulent flows (see e.g. 
Schlichting et al. (2000)) 
 

 * * *
1 2

*

( ) 1 1 1
ln lnRe (Re ) ln (Re )

s s

u z z z
C C

u k kk k k
= + + = +  , (2.4) 

 
where 0.4k »  is the von Kármán constant, z  is the distance from the wall and ( )u z  is 
the averaged flow velocity parallel to the wall at z  (an example is depicted in Fig. 3-5 on 
page 49). The constants 1C  and 2C  (see Tab. 2-2) have to be determined experimentally 
and can be found in Nikuradse (1933). By integration of equation (2.4) over the flow 
depth fh  one may deduce the average flow velocity ( )m mu u z=  and the location of its 
centre: 1 0.368m f fz e h h-= » . A detailed derivation is provided by Yalin (1977) for 
example. Furthermore, the wall roughness is expressed in terms of Nikuradse’s sand 
roughness sk , which for a flat bed covered by uniform spheres is equal to the grain 
diameter sd . Accordingly, the grain or roughness Reynolds number can be written as 
 

 * * *Re s su d u k

n n
= =  . (2.5) 

 
Schlichting (1936) provides roughness values for several kinds of surfaces, termed 
“equivalent sand roughness” ,s eqk , that are more global and suitable for practical use. 
According to the grain Reynolds number, or the sand roughness height, the roughness 
flow regimes for spherical particles can be divided into three sections as summarised in 
Tab. 2-2 by Schlichting et al. (2000), which also leads to a meaningful subdivision of the 
Shields diagram, as depicted in Fig. 2-3. 
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Tab. 2-2: Roughness flow regimes for spherical particles 

*0 Re 5£ £  1 5C »  smooth  Roughness  elements  are  completely  covered  by 

the  laminar  boundary  layer,  i.e.  the  viscous 

sublayer 
*5 Re 70< <  ( )sC k  transitional   

*70 Re£  2 8C »  rough  Roughness  elements  are  completely  exposed  to 

turbulent  flow  and  the  laminar  boundary  layer 

almost vanishes.  

From original work of Nikuradse  2 8.48C =  

 
Besides the investigations and considerations for turbulent channel flow presented 
above, Yalin and Karahan (1979) extended the Shields diagram based on measurements 
with focus on viscous dominated flow conditions. They carried out flume experiments 
with a glycerine-water mixture to obtain laminar flow and with water for turbulent flow. 
For laminar flow with a free surface the law of the wall reads 
 

 *

*

( )
Re 1 0.5

f f

u z z z

u h h

é æ öù÷çê ú÷ç= - ÷çê ú÷÷çè øê úë û
 , (2.6) 

 
and the value of the average flow velocity mu  can be evaluated at 

(1 3 3) 0.422m f fz h h= - » . Their results (depicted in Fig. 2-2) led to the hypothesis, 
that in laminar flows there is a distinct curve for the inception of sediment transport. 
More recent contributions to bed load transport in laminar flows by Pilotti and Menduni 
(2001) confirm this hypothesis. Their results are depicted in Fig. 2-3 in the form of a 
linear fit by Cheng (2004). 

2.1.2.2 Explicit Formulas for Threshold Curves 

For engineering purposes, one drawback of the Shields diagram is the inter-dependency 
of the diagram axes, i.e. the shear stress velocity *u  appears on both axes. This implies 
that for given stream forces and grain material the critical shear stress has to be 
determined by iteration, which can be laborious. To overcome this fact, some 
researchers provide approximations of the experimental data by explicit formulas, 
presented below. The resulting single curves are depicted in Fig. 2-3).  
 
For numerical models, the following expressions by van Rijn (1984) and van Rijn (2007), 
are frequently used to calculate the critical shear stress 
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where *D  is the dimensionless grain diameter 
 

 

11
3* 2 3

*
* 2

(Re )
s

c f

g
D d

r

t r n

æ öæ ö ÷ç÷ç ÷ç÷ç= X = = ÷÷ çç ÷÷ ç÷ç ÷çè ø è ø


 , (2.8) 

 
in *u  which does not arise. Based on their data collection Yalin and da Silva (2001) 
provide one explicit equation as an approximation, namly 
 

 
2* 0.392 0.015 0.0680.13 0.045(1 )c crY e et - - X - X= = X + -  , (2.9) 

 
where the Yalin parameter X  is a dimensionless variable, which is equal to the 
dimensionless grain diameter *D  given in equation (2.8). 
 
Empirical threshold curves where also assessed by Paphitis (2001), who considered 29 
different data sets from the last century. The data cover the range * 50.01 Re 10< < . 
He provides different explicit expressions for combinations of dimensionless parameters 

*
ct  versus *Re or *D  as well as dimensional parameters ct  or *cu versus sd . Below, only 

the traditional Shields relation is given, plus the lower and upper limits of the collected 
data. 
 

mean threshold values: 
** 0.015Re

*

0.188
0.0475(1 0.699 )

1 Re
c et -= + -

+
  (2.10) 

lower limit: 
** 0.015Re

*

0.075
0.03(1 0.699 )

0.5 Re
c et -= + -

+
  (2.11) 

upper limit: 
** 0.015Re

*

0.28
0.075(1 0.699 )

1.2 Re
c et -= + -

+
  (2.12) 

 

2.1.2.3 Stochastic or Probabilistic Approaches 

In consideration of Fig. 2-3 the ambiguity in the determination of a value for the critical 
shear stress is obvious. Due to this and to account for the random nature of turbulence 
and sediment movement, some researchers developed approaches which describe and 
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quantify an observable state of motion, rather than a hypothetical state of zero 
movement. These kinds of approaches are termed probabilistic or stochastic. 
 
One of the first derivations of a stochastic concept for bed load transport was presented 
by Einstein (1937) within his doctoral thesis. Einstein (1950) defined the pickup 
probability for a particle as “the probability of the dynamic lift force on the particle 
being larger than its weight (under water)”. For the evaluation of the pickup probability 

ep , he derived theoretically the following formula: 
 

 
2* * 0

* * 0

1

1

1
1

B
t

e B
p e dt

h

hp

+ Y - -

- Y -
= - ò  (2.13) 

 
where *

* 1Y = bt  is the flow intensity, 0 0.5h =  is the standard deviation and t  is the 
only variable of integration. The constant * 1 7B =  was obtained for uniform sediment 
by using the data of Meyer-Peter et al. (1934) and others. The non-central probability 
density function (abbreviated as pdf) on the right hand side of equation (2.13), i.e. the 
definite integral of the Gaussian normalized by its total area p , can be interpreted as 
the probability for a particle being stationary for a given flow intensity *Y . 
A solution for the integral in closed form in terms of elementary functions does not exist 
but can be gained by approximation. Cheng and Chiew (1998) reviewed approximations 
of different authors and present their own equation for the probability p  as a function 
of the dimensionless shear stress *

bt  and the lift coefficient LC  for hydraulically rough 
flow. Assuming a mean critical value * * 0.05b ct t= =  for the horizontal part 
( *Re 500c ³ ) of the Shields curve, they arrive at a probability of about 0.6 % for 

0.25LC = . By their interpretation, this implies that 0.6 % of all the particles, on a given 
bed area, are in motion. A summary of appropriate values ranging from 0.008 % to 
0.3 % obtained by models of other researchers is provided by Papanicolaou (1999), 
indicating over-prediction of the former approach. In comparison, the theory of Einstein 
(1950) with 0.178LC =  gives a value of approximately 13 % for the same *

bt . 
Furthermore, Gessler (1965), and subsequently Günter (1971), concluded from their 
deliberations on the effective shear stress that the values for the critical mean shear 
stress gained by extrapolation to zero bed load transport as applied by Shield or Meyer-
Peter (e.g. * 0.047ct = ) correspond to a state with approximately 50% particles in 
motion. This agrees with the conjecture of Meyer-Peter that for * 0.047ct =  bed load 
could be already expected. Gessler and Günter take up the position that the mean shear 
stress acting continuously on the particles on the bed is distinctly smaller than the local 
instantaneous shear stress due to turbulent fluctuations. It follows that particle motion 
or bed load transport can occur for a smaller effective shear stress than the critical one. 
 
The remarkable differences in the results may be further explained by the different 
determinations of the probability. On the one hand Einstein tuned his approach to cover 
sediment transport rates of flume experiments available at that time. Unfortunately his 
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fit is quite poor but also very sensitive to the flow intensity in the range of small bed 
load transport intensity. On the other hand the newer approaches mentioned in this 
thesis are based on statistical analyses of experimental data (e.g. Jain (1992)) resulting in 
explicit probabilities for acting instantaneous forces like lift or drag, leading to an 
isolated view not including the whole spectrum of the processes. Consequently, a better 
interpretation of the above result by Cheng and Chiew (1998) would be that ‘for 0.6 % 
of all particles the critical lift force is exceeded’, because the amount of particles in 
motion is obviously much larger. 
 
Wu and Lin (2002) provide improved approximations for the probability distribution with 
application of a log-normal pdf for the instantaneous velocity at the bed and 
appropriate values for LC  best fitting experimental data. Further enhancements for 
smooth turbulent flows were contributed by Wu and Chou (2003), who, apart from 
lifting also considered rolling probabilities and defined the mean total probability of 
entrainment as the sum of both2. The results reveal that a distinct probability for the 
critical state of sediment entrainment cannot be found, i.e. a critical shear stress does 
not exist. This finding is also acknowledged by other researchers (see review by McEwan 
and Heald (2001)). A further refinement of the approaches noted above was presented 
by Wu and Yang (2004), incorporating near-bed coherent flow structures in terms of a 
higher-order Gram-Charlier type pdf of near-bed streamwise velocity. Their approach 
accounts for turbulent bursting and mixed-size sediment and is applicable for 
hydraulically smooth and rough turbulent flow conditions. Also Hofland and Battjes 
(2006) derived a pdf for instantaneous drag forces and shear stress in turbulent rough 
and smooth flow that is in good agreement with the measurements. Cheng (2004) 
provides a formula for the estimation of the erosion probability especially for laminar 
flow that depends on the dimensionless shear stress and dimensionless particle diameter 
or the grain Reynolds number (see Fig. 2-3). 
 
The stochastic model of Papanicolaou et al. (2002) accounts for the role of near-bed 
turbulent structures and various bed packing conditions of uniformly-sized particles on a 
flat bed. Based on a theoretical derivation and on experimental measurements, they 
provide values for the probability of the first displacement of a single sphere, which is, 
according to their hypothesis, equal to the probability of the exceedance of strong 
turbulent episodic events dislodging a sphere. Subsequently, Dancey et al. (2002) 
introduced a new criterion for the threshold of motion of uniformly sized spherical 
particles with regard to the sediment bed packing density. Their new criterion describes 
the threshold of motion by means of a dimensionless parameter, which they interpreted 
as the probability of individual grain movement. Furthermore, they declare that for the 
condition of inception of motion, a specific, low, but nonzero value of the probability of 
grain movement applies. The topic of stream forces acting on a particle and the 
influence of turbulence is discussed in detail in chapter 3.4. 
                                            
2 This implies mathematically that lifting and rolling are statistically independent processes. 
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2.1.2.4 Concluding Remarks 

The fundamental different views of the two approaches described above for incipient 
motion - the conventional threshold criterion according to Shields and the stochastic or 
probabilistic approach - are depicted in Fig. 2-4. The first is most commonly applied in 
river engineering due to its simple use. However its correct application requires 
calibration and experience, especially because of the explicit form of the motion 
threshold. Besides Einstein’s or comparable subsequent work, the latter is still subject to 
current research driven by new measurement techniques allowing for a more and more 
detailed insight into the flow properties. For both, useful bed load transport formulas 
exist. Selected transport relations are presented in the next chapter. 
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Fig. 2-4:.Comparison of the two different concepts for particle motion 

In addition, Fig. 2-4 shows a classification according to the state of the majority of the 
particles in direction of the flow intensity and the motion probability, respectively, which 
is valid for both models. In Bagnold’s sense (Bagnold (1936)), the expression 
‘undisturbed’ describes a particle which has not been displaced, whereas a particle that 
is displaced and then is resting is called ‘disturbed’. Furthermore, the rather undefined 
state of permanent motion, where max=bt t  and 1ep = , can be interpreted as 
transition from bed load to suspended transport, ending up in hyperconcentrated (e.g. 
Shu and Fei (2008)) or debris flow (e.g. Rickenmann (1999), Tognacca et al. (2000)).  
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2.1.3 Empirical Relations for Bed Load Transport 

In engineering practice, a common approach to estimate sediment discharge in rivers is 
the application of empirical transport relations or sampling devices. The former are able 
to predict the transport rates only approximately and the latter require a large effort and 
may still not be very accurate. One of the first mechanistic relations was introduced by 
du Boys (1879). Subsequent flume experiments showed that du Boys’ notion of the 
transport process as moving shearing layers of sediment to be fallacious (Ettema and 
Mutel (2004)). Nevertheless, the concept of a critical stream force exerted on the river 
bed causing sediment transport was appealing. Since then many researchers have 
contributed to the topic, resulting in a vast variety of bed load transport relations, but 
still no formulation can be claimed to be of universal applicability. Two basic kinds of 
transport relations have to be distinguished: total load formulas including suspended 
sediment load (e.g. Yang (2005) with emphasis on the Yellow River) and formulas 
considering exclusively bed load, which has been the focus in this chapter. 
 
Graf (1971) provides a classification of bed load transport relations into three different 
types. One class defines du Boys-type equations which have a shear stress relationship 
describing the occurrence of bed load discharge only if the critical shear stress is 
exceeded, i.e. transport is a function of the residual shear stress = -r b ct t t . The 
second class is made up of Schoklitsch-type equations (Schoklitsch (1926)) which are 
quite similar to those of the du Boys-type, but instead of shear stress, they are based on 
a flow discharge relationship, i.e. r cq q q= -  where q  is the actual flow discharge, cq  is 
the water discharge at which the sediment begins to move and rq  is the residual 
discharge available for bed load transport. The third class are Einstein-type equations, 
based on statistical considerations of the lift forces. There are also other kinds of bed 
load transport formulas which are a combination of the above types or which relate the 
bed load discharge to a certain flow variable in terms of a power law with or without 
considering a threshold value. The latter may be interpreted as maximum idealisation of 
the relevant processes for sediment transport which provides an estimate for the bed 
load discharge. 
 
An overview of the different types of bed load discharge formulas and their applicability 
to conditions of alpine rivers is presented by Habersack and Laronne (2002). Based on 
comparing sampling data of the gravel-bedded Drau River to calculated discharge they 
provide a ranking of the equations applied and suggest that a small, minimal number of 
bed load transport measurements should be undertaken in the field in order to check 
the empirical parameters used in the equations. Barry et al. (2007) provide a similar 
overview for gravel-bed rivers in the USA and present a general power law equation in 
terms of a flow discharge relationship to predict the bed load transport rates. Some 
examples of the different types will be discussed below. 
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Since the sediment in natural rivers consists of grains with almost continuous size, the 
sediment mixture has to be discretised to allow for discharge calculations. Hence, the 
corresponding grain size distribution is usually characterised by grain-size classes or by 
typical grain diameters, e.g. the mean diameter of the sediment mixture. This leads to 
another classification of bed load transport equations, namely relations for uniform and 
nonuniform sediment transport. Most of the available transport formulas were 
developed for uniform sediment because the complexity of the resulting relation could 
be significantly reduced and their application is quite handy. Furthermore, many of the 
bed load transport formulas have been derived from experimental flume data for near-
equilibrium sediment transport and steady uniform flow conditions, e.g. Meyer-Peter 
and Müller (1948), Bagnold (1956), Camenen and Larson (2005) and many more.  
 
The formula of Meyer-Peter and Müller (MPM) is currently widely used and was 
developed at VAW. It has its origin in the early correction works at the Alpine Rhine. The 
straightening of the channel led to a higher transport capacity but also caused 
aggradations in the lower river reach. This problem initiated an extensive laboratory 
study conducted at VAW under the guidance of Professor Meyer-Peter during a period 
of 16 years. The aim of that work was to provide a new channel design that is able to 
prevent further aggradations and ensures flood safety. To estimate the bed load 
transport for the given conditions and new channel geometries, the few existing 
formulas were far from being dependable or useful. Thus a better understanding of the 
fundamental processes and a new approach was needed. After the first series of 
laboratory flume experiments and field measurements in the Alpine Rhine by Meyer-
Peter et al. (1934) in the early 1930ies, Meyer-Peter and Müller (1948) carried out 
additional investigations leading to their widely used MPM formula, 
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where bq  is the volume bed load transport rate (volume flux of pure sediment without 
pore space per unit time) per unit channel width, rk  is the Manning-Strickler coefficient 
relative to the representative grain diameter of the mixture md , bk is the Manning-
Strickler coefficient including bed forms, wq is the volume discharge of water per unit 

�channel width with sidewall correction and wq ¢  that without any sidewall correction (see 
e.g. Wong and Parker (2006)). Moreover, s fs r r=  is the sediment specific density. 
The experiments were performed for different slopes of 0.1‰ to 2.3% and with 
different uniform bed-material with grain diameters ranging from 5 mm to 28 mm. The 
formula is considered most appropriate for wide channels (for which 1w wq q¢  ) and 
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coarse material. Meyer-Peter and Müller proposed in their original work a constant 
Shields parameter of * 0.047ct =  for fully turbulent flow (Re* 70> ). For smaller values 
of Re* , the Shields parameter *

ct  can be evaluated according to section 2.1.2.2 or a 
different transport formula may be applied. There exist various modifications and 
extensions of the MPM formula. For plane beds without bed forms, Wong and Parker 
(2006) present two simpler power law equations based on the reanalysis of the original 
MPM data, since the form drag correction is not necessary for such situations. Smart 
and Jäggi (1983) extended the MPM formula for channels and rivers with steeper slopes 
than those used in the MPM experiments. They studied bed load transport for slopes in 
the range from 3% to 20%. Another extended formula for the entire slope range, 
which can also be used for hyperconcentrated flows, was developed by Rickenmann 
(1991). 
 
The application of uniform sediment transport relations to predict the bed load 
discharge is very common in engineering practice because they are quite simple and 
handy. However, the uniform approach is unable to account for sorting effects due to 
different grain sizes, so that uniform sediment transport formulas, such as the MPM 
formula, may over-predict the transport rate when applied to sediment mixtures as 
reported by Hunziker and Jaeggi (2002). For an initially flat bed which consists of a 
sediment mixture, the finer grains are eroded faster than the coarse ones. This leads to a 
stronger exposure of the coarse grains at the bed surface and the mobility of fine grains 
is reduced due to the shielding by coarser ones. To account for these rather complex 
processes occurring at the surface of a channel bed, Egiazaroff (1965) suggested the 
reduction of the critical shear stress by a so-called hiding factor and Ashida and Michiue 
(1971) proposed an evaluation of the hiding factor depending on the ratio of the 
individual grain diameter to the mean value of the sediment mixture at the surface. This 
approach may be used in combination with a uniform sediment transport formula 
applied to the individual grain diameters of the sediment mixture. A more sophisticated 
model for fractionwise sediment transport is presented by Hunziker (1995), where the 
sediment transport rate is calculated according to an extended MPM formula as 
described in Hunziker and Jaeggi (2002), which is also appropriate for poorly graded 
sediments. Other surface-based transport models for mixed-size sediment are e.g. Parker 
(1990) or Wu et al. (2000b) or Wilcock and Crowe (2003). Furthermore, fractional 
sediment transport may be predicted by stochastically based formulas, as originally 
proposed by Einstein (1950). More recent approaches are presented e.g. by Sun and 
Donahue (2000) or Kleinhans and van Rijn (2002). 
 
Another classification of sediment transport equations corresponds to the basic 
experimental conditions under which the relations were developed. Most of the 
common sediment transport formulas are developed based on equilibrium sediment 
transport where the bed load discharge is equal to the sediment transport capacity and 
where the flow is steady and uniform. For an alluvial reach this means that the sediment 
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input is equal to the sediment output over a sufficiently long time interval. However, 
during unsteady flow conditions like floods or due to the change in sediment supply, the 
sediment transport may not correspond to equilibrium conditions for a certain period. 
Non-equilibrium sediment transport also occurs for other unsteady processes, such as 
scouring as observed at hydraulic structures or due to channel contracting or a 
discontinuous bed, or they may be caused by a rapid change of bed topography. The 
shortcomings of an equilibrium transport model used under non-equilibrium conditions 
has been studied by Bell and Sutherland (1983). They observed that the transport rate 
shows a spatial variation because the flow requires a finite length of bed to erode 
sufficient sediment to achieve equilibrium transport capacity. A concept to account for 
this effect is to relate the time rate of change of the bed level to the difference between 
the local non-equilibrium bed load bQ  and the equilibrium transport rate eQ , see e.g. 
Phillips and Sutherland (1989). This concept can be formulated in terms of the special 
rate of change of the effective bed load flux (see e.g. Bui and Rodi (2008)), 
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where sL  is the so-called non-equilibrium adaption length. The equilibrium sediment 
transport rate eQ  is determined corresponding to an empirical relation as introduced 
above. Empirical formulas are also available for the adaption length sL , see e.g. Van Rijn 
(1987) and Phillips and Sutherland (1989). Equation (2.16) can be solved by a common 
analytic approach for nonhomogeneous ordinary differential equations. For the two-
dimensional case usually a numerical approach is preferred. Applications of the non-
equilibrium model show that changes in the bed level due to non-uniform flow can be 
better reproduced than by the equilibrium model, see e.g. Bui and Rutschmann (2010). 
However, the quality of the results depends on an appropriate choice of the non-
equilibrium adaption length. 
 
This section is concluded by a statement of Habersack and Laronne (2002), who point 
out that for Alpine gravel-bedded rivers fractional bed load discharge formulas perform 
well and the most promising are formulas capable of being used for both equilibrium 
and non-equilibrium or partial transport conditions that incorporate stochastic concepts. 

2.1.4 Numerical Modelling of Sediment Transport in Rivers 

A common approach for the modelling of bed load transport in research and 
engineering practice is to treat the water and the sediment as two immiscible phases, 
where the fluid and the sediment are considered as continua, as depicted in Fig. 2-5. 
This allows for the application of common numerical simulation models for fluid flow in 
combination with an empirically based approach for the determination of the sediment 
transport rate as outlined in the previous section 2.1.3. 
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Fig. 2-5: a) vertical section in flow direction of a river where bed load transport occurs at the upper-most 

part of the river bed; b) common modelling approach for bed load transport; the water flow and the 

motion of the sediment are idealised by two separate continuum approaches. 

Due to limited computational resources, one-dimensional models derived from the de 
Saint-Venant equations (see e.g. Cunge et al. (1980)), which use cross-sections for the 
discretisation of the channel or river reach, were preferred in the past. This approach is 
still very popular, especially when it comes to large-scale or long-term simulations. The 
two-dimensional de Saint-Venant equations are often termed shallow water equations. 
They use a horizontal mesh for the discretisation of the computational domain and the 
bed topography is usually based on a digital elevation model. Since the mentioned 
models are based on an integration of the three-dimensional Euler equations over the 
flow depth with the assumption of a hydrostatic pressure distribution, their applicability 
is restricted to flows where the streamlines are almost parallel and where the vertical 
component of the velocity can be neglected. Models using this approach are also 
termed “depth-averaged”. Nevertheless, this simplification leads to governing flow 
equations where the flow depth or the water surface elevation is part of their solution; 
this is one of the reasons why they are so attractive for the modelling of free surface 
flows. However, their solution may be subject to numerical instabilities, which can be 
avoided by appropriate numerical techniques such as the introduction of numerical 
damping (see e.g. Chaudhry (2008)) or the application of Riemann solvers (see e.g. Toro 
(1997)). A corresponding simulation model which includes sediment transport and the 
coupling of the 1D and 2D models is proposed by Faeh et al. (2011). To account for 
density gradients, wind- and wave-driven currents or the curvature of streamlines, the 
two-dimensional shallow water equations can be extended to three-dimensions, still 
presupposing hydrostatic pressure conditions. Corresponding simulation models 
including sediment transport are proposed e.g. by Gessler et al. (1999) or Lesser et al. 
(2004). 
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With increasing performance of computer hardware and the use of parallelisation 
techniques, applications of three-dimensional models including sediment transport, 
which are based on the Navier-Stokes equations in combination with appropriate 
turbulence models, are now becoming popular. However, their application is limited to 
local scales and is only reasonable when three dimensional flow features play an 
important role. Turbulence models based on the Reynolds-Averaged Navier-Stokes 
equations (RANS), e.g. the -k e  model, are established in hydraulic engineering practice 
(see e.g. Rodi (1995)). For scientific research, also more sophisticated turbulence models 
such as the Detached Eddy Simulation (DES) (e.g. Spalart (2009)) or the Large Eddy 
Simulation (LES) (e.g. Rodi (2006)) are applied. Corresponding simulation models based 
on RANS, which include sediment transport and a -k e  turbulence model, are proposed 
e.g. by Wu et al. (2000a) or Olsen (2003). Spatially high-resolution models which include 
sediment transport are mainly used for research, e.g. the large-eddy simulation based 
model presented by Zedler and Street (2001). An approach using a meshfree method 
(SPH) for the simulation of the fluid flow in combination with a simple boundary shear 
stress erosion model and computed on the GPU (Graphics Processing Unit) is presented 
by Krištof et al. (2009). 
 
The exerted force or rather the load due to the flowing fluid at the interface between 
the water and the sediment can be derived based on the properties of the flow. For 
depth-averaged hydrodynamic models, the boundary force may be expressed in terms of 
the bottom shear stress, which is obtained based on equation (2.3). To account for the 
various concepts for wall roughness, e.g. Manning-Strickler, Darcy-Weissbach or Chézy, 
the shear velocity *u  can be expressed in terms of the Chézy coefficient *f mc u u=  
and the mean or depth-averaged flow velocity mu . The resulting equation for the 
bottom shear stress reads 
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For the more advanced hydrodynamic models which include turbulent closure, the 
bottom shear stress may be obtained based on the turbulent quantities right at the 
boundary and/or within the turbulent boundary layer using a wall function. 
 
To model sediment transport by a continuum approach, the soil stratum is horizontally 
discretised by cells and in the vertical direction by one or a few layers (see Fig. 2-5). If 
uniform sediment transport is considered, only one layer is necessary which corresponds 
to the whole soil stratum. For the sediment balance and the calculation of the temporal 
variation of the bed level bz , equation (2.20) with gn = 1 is solved, where gn  denotes 
the total number of grain size classes. 
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For non-uniform sediment transport with multiple grain size classes, two or more layers 
are used. To account for bed surface processes, bed load transport is considered to 
occur only in the surface layer and the subjacent layer, also called sublayer or active 
stratum, serves as sediment supply or deposit. This approach is also termed mixing layer 
or active layer concept, see e.g. Armanini (1995). As a distinctive feature, the surface 
layer is not fixed but vertically moves depending on erosion or deposition of sediment, 
which results in the change of the bed level bz . Thus, the surface layer corresponds to a 
movable control volume for the bed load transport. To allow for bed material sorting, 
the conservation equation for sediment with constant density in one dimension,  
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is applied to the active layer, where p  is the porosity of the sediment, gb  is the volume 
fraction of grain size class g , mh  is the height of the active layer, ,b gq  is the bed load 
transport rate of grain size class g  per unit width and gn  is the total number of grain 
size classes. A similar equation holds for two-dimensional sediment transport. The 
source term ,f gS  describes the exchange of sediment with the active stratum due to the 
vertical dislocation of the active layer, i.e. the deposition of sediment from the active 
layer or the supply of sublayer sediment. The height mh  is constant or may be 
determined depending on the sediment mixture in the active layer (see e.g. Borah et al. 
(1982)). The exchange of sediment from the surface layer with the sublayer may also 
lead to a change of the sediment mixture in the active stratum. Thus, for the mass 
conservation in the sublayer with datum 0 0z =  holds 
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The global conservation equation for the bed load, also termed Exner equation (Exner 
(1925)), relates the time rate of change of the bed level to the spatial variation of the 
volume rate of sediment transport per unit width. The corresponding control volume 
covers all sediment layers, i.e. the complete substrate of one cell. Hence, the global mass 
conservation reads: 
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A similar equation holds for two-dimensional sediment transport. The bed load flux ,b gq  
may consist of several contributions, where the common bed load transport rate can be 
determined by an empirical approach as outlined in the previous section 2.1.3. Other 
contributions, such as transport due to transverse bed slope (see e.g. Ikeda (1982)) or 
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gravitational transport due to slope collapse (see e.g. Volz et al. (2011)) may also be 
included. A numerical simulation model comprising the above approaches including 
suspended sediment transport is presented e.g. by Faeh et al. (2011). 
 
An alternative to the active layer concept is proposed by Parker et al. (2000). They 
present a more general formulation of the erodible bed consisting in terms of a 
probabilistic Exner equation without the use of an active layer for mixed sized sediments. 
The temporal change of the bed level is described based on a probability density 
function of the bed elevation and elevation-specific sediment densities. However, this 
new approach requires additional data and a first closure for uniform sediment is 
presented by Elhakeem and Mran (2007). Another generalised form of the Exner 
equation is presented by Paola and Voller (2005), which includes e.g. soil formation, 
creep and compaction. 
 
An overview comprising most of the above mentioned approaches and methods for 
hydrodynamics and sediment transport is given by Wu (2008). For the sake of 
completeness, the approach presented by Murray and Paola (1994) to model sediment 
transport in rivers has to be mentioned. They use quite a simple model based on cellular 
automata to simulate flow and sediment transport. The application of the model to the 
development of braided streams led to fairly realistic results. Based on this pioneering 
work, Thomas et al. (2007) developed a more advanced model. They used the cellular 
automata model to simulate the aggradations and degradations in braided river systems 
over a period of 200 years and obtained results consistent with those reported in the 
literature. Despite the rudimental hydraulics and the use of a simple power law for 
sediment transport, the results illustrate the potential of such models to simulate the 
behaviour of braided rivers for large spatial and temporal scales. However, when the 
morphological development depends on more complex flow features, such models may 
fail. 

2.2 Numerical Methods and Investigations 

2.2.1 Numerical Methods for Fluid Flow 

Consideration of a fluid as a continuum is a common approach in physics and 
engineering. For the description of the dynamics of the fluid, caused by the change of 
internal and external quantities, appropriate conservation laws are postulated, where 
the quantities themselves are considered as infinitesimal parts of the continuum (see 
chapter 3). For the numerical solution of the conservation laws, the governing equations 
are transformed into a discretised form corresponding to an appropriate numerical 
method, where two basically different approaches have to be distinguished. From the 
Eulerian viewpoint, the time rates of change of the quantities are evaluated at spatially 
fixed points. The other approach is based on the Lagrangian viewpoint, where the 
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discretisation points move depending on the flow. Notice that also the governing 
equations of the two approaches have a different form (see chapter 3.2.4.3). The first is 
the traditional approach for grid-based numerical methods for the solution of the 
governing equations of fluid dynamics. However, also grid-based methods with a 
combined Eulerian-Lagrangian approach exist, where the grid follows the deformation 
of the fluid. The latter is the usual approach for meshfree methods. Some common 
methods considering these approaches are subsequently outlined. 

2.2.1.1 Grid-Based Methods 

The Finite Difference Method (FDM) is the oldest method for the numerical solution of 
partial differential equations. For the application of the FDM, the differential form of the 
conservation equations is used, where the derivatives of the equations are replaced by 
ratios of finite differences in terms of the grid spacing. For the discretisation of the 
computational domain, structured grids are preferred, since these allow for the 
application of simple difference terms and the implementation of accurate higher order 
schemes. However, for the representation of arbitrary geometries special approaches are 
necessary. A detailed description of the FDM can be found in e.g. Roache (1998). 
Another widely used method for computational fluid dynamics is the Finite Volume 
Method (FVM). For the approximation with the FVM the integral form of the 
conservation laws is used, thus the method is intrinsically conservative. The 
computational domain is subdivided into control volumes of polygonal shape, usually 
triangles or quadrilaterals, and the governing equations are applied to each control 
volume. Due to the unstructured grid, the FVM is suitable for the representation of 
complex geometries. An overview of FVM can be found in e.g. Eymard et al. (2000). 
A similar method is the Finite Element Method (FEM), where also unstructured grids and 
discrete volumes in terms of finite elements are used. The main difference is that the 
equations are multiplied by a weight function before they are integrated over the 
domain. The main field of application of the FEM is structural mechanics and its 
application based on a Lagrangian description of the governing equations is popular. For 
its application to fluid dynamics see e.g. Glowinski (2003). 
Another grid based method that has become more and more popular in recent years is 
the Lattice Boltzmann Method (LBM) (see e.g. Wolf-Gladrow (2000), Sukop and Thorne 
(2006)). This method is based on a simplification of the original concept of Boltzmann 
for the description of the dynamics of gas molecules. The governing equations for fluid 
flow are approximated by the use of a spatial lattice, or a grid, where the momentum 
exchange between the nodes is described by distribution functions. This approach has 
been successfully applied to various engineering problems primarily of fluid dynamics 
(see e.g. Mohamad (2011)). 
 
One of the main difficulties which arise by the application of grid-based methods is due 
to the fact that a mesh is used for the simulation. Depending on the situation, the 
generation of an appropriate computational grid may be complicated and time 
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consuming. Another challenge arises when movable or free boundaries have to be 
simulated. Both aspects are very common in hydraulic and river engineering. The 
hydraulic structures have a rather complex surface geometry and the flow in rivers is 
characterised by its free surface. In addition, when sediment transport is considered also 
the bottom becomes a movable boundary. For situations where local flow features are 
of interest, simplifications of the governing equation such as the shallow water 
equations are no longer applicable and a more complex flow equation such as the Euler 
or Navier-Stokes equations (see chapter 3.2.4) in combination with an appropriate 
treatment of the movable boundaries have to be solved.  
Two basic approaches for the simulation of movable boundaries may be distinguished, 
namely interface capturing and interface tracking. In the first approach, the interface is 
captured based on a scalar marker quantity which changes according to the motion or 
deformation of the material, e.g. the fluid. This approach corresponds to an implicit 
formulation of the interface. A common interface capturing method for fluid interfaces 
of two-phase flows is the Volume-Of-Fluid (VOF) method (see e.g. Hirt and Nichols 
(1981), Rider and Kothe (1998)), where the marker quantity describes the volume-
fraction of one fluid phase relating to a computational cell. Thus, the interface lies in 
cells where the volume-fraction is between 0 and 1. An approach used for fluid-solid 
interfaces, which is similar to the VOF method, is the Fractional-Area-Volume Obstacle 
Representation (FAVOR) method, which is also a fractional volume method; see Hirt 
(1993) for an overview on volume-fraction techniques. Another approach is the use of 
marker particles to identify different phases, e.g. fluid and solid, which corresponds to 
the Marker-And-Cell (MAC) method as proposed by Harlow and Welch (1965). Because 
the advection of the marker particles is computationally rather expensive, the application 
of this method is not very popular. However, due to increasing computing power, the 
method received new attention, see e.g. McKee et al. (2004) and Raad and Bidoae 
(2005). A more recent interface capturing method with application to many kinds of 
interface problems is the level-set method (see e.g. Adalsteinsson and Sethian (1995), 
Sethian and Smereka (2003)), where the marker quantity corresponds to a function 
describing the distance from the interface. For interface tracking methods, the 
deformation of the interface is explicitly described. Thus, the interface consists of 
discrete points. If these points are connected to the computational grids of the adjacent 
materials, the grids have to be adapted to follow the deformation of the materials. This 
approach is often used for the simulation of fluid-structure interaction problems in 
combination with an adaptive finite-element method (see e.g. Rannacher and Richter 
(2010)). Another approach where the surface points are not connected to the 
computational grids is the immersed boundary method (Peskin (1972)). This allows for 
the use of the above mentioned grid based discretisation technique, e.g. FDM, for the 
solution of the governing equations without the need of any special grid types (e.g. 
body-fitted) or grid adaption. However, the formulation of the boundary conditions in 
the vicinity of the interfaces is not straightforward. Mittal and Iaccarino (2005) give an 
overview on the subject and present applications to fluid-structure interaction problems. 
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Depending on the approach, the above methods can be used for the simulation of free 
surface flows or the modelling of the interaction of a fluid with a rigid or deformable 
solid. However, the numerical modelling of Fluid-Structure Interaction (FSI) is quite a 
challenging task and still an open topic with regard to the flexibility in the application of 
the approaches; see e.g. Bungartz et al. (2010). The main difficulty is to ensure that the 
applied temporal and spatial coupling techniques are energy-conserving and stable. For 
modelling of FSI, the pressure forces at the interface have to be passed to the 
deformable surface or the rigid body, and the corresponding response of the body has 
to be transferred to the fluid. Based on the preferred flow solver, the time integration 
may be explicit which may result in an unstable simulation or implicit to ensure stability. 
Furthermore, the accuracy and the level of detail of the acting fluid forces depend on 
the grid resolution and on the applied turbulence model. The application of eddy-
resolving schemes to FSI is presented e.g. by Münsch and Breuer (2010). 

2.2.1.2 Meshfree Methods 

The term “meshfree methods”, also called particle methods, corresponds to a wide field 
of numerical methods which are used either for the discretisation of a continuum or the 
representation of a discrete body; both kinds are used in the scope of this work. The 
first is discussed in the present section and the latter is outlined in section 2.2.2. 
 
The basic difference between grid-based methods and meshfree methods is that no grid 
is necessary for the discretisation of the computational domain. For meshfree methods, 
a set of arbitrary distributed particles is used which represent the nodes required for the 
spatial discretisation. This permits to overcome many of the problems arising from the 
use of a computational mesh, especially the treatment of movable boundaries and the 
generation of grids as discussed in the previous section. Furthermore, meshfree methods 
seem to be a promising approach for the simulation of fluid-structure interaction as 
applied in this work. The approximation of the derivatives of the governing equations 
varies depending on the specific method, e.g. integral interpolation, finite differences or 
moving least squares, just to name a few. An overview on some common meshfree 
methods is given by Huerta et al. (2004), Nguyen et al. (2008) and Koumoutsakos 
(2005) shows the potential of particle methods for multi-scale flow simulations. 
 
One of the first meshfree methods which also has a long continuous history is 
Smoothed Particle Hydrodynamics (SPH), originally presented by Lucy (1977) and 
Gingold and Monaghan (1977) for astrophysical simulations. With regard to hydraulic 
and environmental engineering, the method is well suited for the simulation of related 
problems. The application of the method to free surface flows is very common, see e.g. 
Monaghan (1994), Violeau and Issa (2007b), Crespo et al. (2007) and Fang et al. (2009). 
Lee et al. (2010) used the method for the simulation of the water collapse in 
waterworks and flow in a river dam spillway. The method was extended by Monaghan 
and Kocharyan (1995) for the simulation of multi-phase flows. SPH is also popular for 
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the investigation of wave propagation and wave breaking, e.g. Monaghan and Kos 
(2000), Dalrymple and Rogers (2006) and Shao (2006). Various applications of SPH to 
fluid-structure interaction exist; the fluid motion due to the impact of a geometrical 
body distinctly larger than the particles has been simulated e.g. by Monaghan et al. 
(2003), Shao (2009) or by Ataie-Ashtiani and Shobeyri (2008) and Qiu (2008) in terms of 
landslide-generated waves. Recent overviews on SPH are presented e.g. by Gomez-
Gesteira et al. (2010a) or Liu and Liu (2010). The SPH method is also popular in the field 
of computer graphics and animations, where the realistic representation of fluid flow or 
the behavior of bodies in the presence of a fluid is of interest (see e.g. Stam and Fiume 
(1995), Muller et al. (2003), Muller et al. (2004)). SPH is one of the methods applied in 
this work and a detailed description of the method can be found in chapter 4.2. 
 
Another meshfree particle method which has been successfully applied to fluid dynamics 
are vortex methods (see e.g. Chorin and Bernard (1973), Leonard (1980)). The governing 
flow equations are based on the velocity-vorticity formulation of the Navier-Stokes 
equations, where the velocity field is obtained using a Poisson equation in combination 
with suitable boundary conditions (Cottet and Koumoutsakos (2000)). The particles used 
for the discretisation of the flow field represent so-called “blobs” of vorticity (Baker and 
Beale (2004)) and hence a vortex-blob approximation is used for the numerical 
interpolation. However, the formulation of appropriate solid boundary conditions 
(Koumoutsakos et al. (1994)) is not as straightforward as e.g. for FDM. The application 
of a vortex method in combination with a level set approach for the simulation of fluid-
structure interaction is presented by Coquerelle and Cottet (2008). 
 
For the sake of completeness, some combinations of Lagrangian und Eulerian 
approaches are briefly outlined. The Particle-In-Cell (PIC) method was developed in the 
middle of the last century (see e.g. Harlow (1964)) for the simulation of problems where 
a soil behaves like a fluid. For the PIC method, the deformation of the material is 
described by Lagrangian particles which carry mass and other information and an 
Eulerian mesh is used for the interpolation of the field variables. An improvement of the 
interpolation approaches used for PIC and the extension of PIC to SPH are presented by 
Monaghan (1985). 
 
For FSI problems where detailed local forces may play an important role, meshfree 
particle methods are sometimes blamed to be of insufficient accuracy due to particle 
distortion. Thus, some methods propose a combination of grid-based and meshfree 
approaches with the aim to improve accuracy. Onate et al. (2004) presented the particle 
finite element method, where the nodes are freely movable particles and the governing 
equations are solved by a FEM based on a mesh constructed from the nodes. 
Corresponding applications to FSI problems are presented in Onate et al. (2008). 
Another approach termed remeshed SPH (rSPH), where SPH particles are remeshed by a 
moment conserving scheme to prevent the disordering of particles is presented by 



2 Literature Review 

28 

Chaniotis et al. (2002). The application of rSPH in combination with immersed boundary 
and level set techniques to self-propelled swimmers is presented by Hieber and 
Koumoutsakos (2008). 

2.2.2 Modelling of Granular Material 

Granular materials consist of a large number of individual grains of similar or 
nonuniform size. For the simulation of its dynamic behaviour, continuum or discrete 
approaches are used. One simple continuum approach in terms of sediment transport, 
where only changes concerning the surface of the granular material are considered and 
where the motion of the material is reduced to mass transport due to boundary shear 
stresses or gravitational forces, has been introduced in the previous chapter 2.1.4. To 
model more complex processes, where the granular material behaves like a fluid, e.g. as 
for debris flows or landslides, different approaches have to be applied. Reviews on the 
topic are given e.g. by Savage (1984) or Hutter and Rajagopal (1994). An appealing 
approach for this kind of flows is based on the shallow water equations, where the 
material is treated as a single phase with movable boundaries and where the material 
behaviour is described by constitutive relations (see e.g. Savage and Hutter (1989), 
Iverson (1997), Douady et al. (1999), Pudasaini and Hutter (2007)). These constitutive 
relations comprise the internal friction, which can be motivated e.g. from rheological 
experiments and so-called kinetic theories, which consider the interactions between the 
grains (see e.g. Hutter and Schneider (2010a), Hutter and Schneider (2010b)). 
Alternative approaches are presented e.g. by Snider et al. (1998), who use the equations 
for fluid dynamics in combination with a particle probability distribution function or by 
Cummins and Brackbill (2002), who applied the standard equations of continuum 
mechanics; for both approaches the numerical models are based on the PIC method. 
 
A more natural way for the modelling of granular materials is to treat the granular 
material as a conglomerate of discrete particles or bodies. Unlike the continuum 
approach, the corresponding models consider the interaction between soft or hard 
particles based on detailed interaction forces and are based mainly on a Lagrangian 
description. An overview of such approaches is given e.g. by Herrmann and Luding 
(1998) and with special focus on computational aspects by Pöschel and Schwager 
(2005). One such approach is the Discrete Element Method (DEM) as applied in this 
work and described in detail in chapter 4.3. 
 
The discrete or distinct element method was originally developed by Cundall in the early 
seventies for the analysis of rock mechanics problems and has been extended by Cundall 
and Strack (1979) for geotechnical modelling of granular soils idealised by discs or 
spheres. Its further extension to polyhedral shaped particles is presented by Cundall 
(1988) and Hart et al. (1988). Since then, the DEM has served as an efficient numerical 
tool for solving many scientific and technological problems in various fields of 
engineering. An overview of applications in mechanical engineering is presented by 
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Fleissner et al. (2007). Lanru and Ove (2007) present the application of DEM to rock 
engineering, and Tavarez and Plesha (2007) demonstrate the capabilities of the method 
for the modelling of solid materials. The simulation of material tests are presented e.g. 
by Kacianauskas et al. (2007) or by Gaugele et al. (2008). Simulations of industrial 
application include e.g. mixing processes in vessels (Bertrand et al. (2004)), ball mills 
(Powell et al. (2011)) and hoppers (Balevicius et al. (2011)), plug flow in pipes (Tsuji et al. 
(1992)) or fluidized beds (Kawaguchi et al. (1998)). In the scope of an uncertainty 
analysis for a particle model of granular chute flow, Fleissner et al. (2009b) used DEM 
for the simulation of landslides. Furthermore, Teufelsbauer et al. (2009) and 
Teufelsbauer et al. (2011) investigated the interaction between granular flow and rigid 
obstacles by application of DEM and experiments. Examples of FSI simulations based on 
DEM in combination with various approaches for fluid dynamics are presented in the 
subsequent section. 
 
Cleary and Prakash (2004) point out the potential of discrete element modelling and 
SPH for applications in the environmental sciences. They show a variety of applications 
of both methods (not combined), e.g. to landslides, dam-breaks, tsunamis and volcanic 
lava flow. 

2.2.3 Simulation of Fluid and Sediment Particles 

In this section, some numerical investigations into the interaction of sediment particles 
and fluid flow are outlined. A brief overview on experimental investigations into the 
forces acting on particles with special focus on the processes at the channel bed is given 
in chapter 3.4.2.3. 
 
Because of the complexity of the processes involved in the interaction of fluid and 
particles, corresponding numerical models are usually based on simplifications. A 
common approach is to use fixed particles, i.e. to study a porous medium such as filters. 
For movable particles, a reasonable simplification for some situations is to consider only 
the momentum exchange from the fluid to the particles and to determine the fluid 
forces acting on the particles by a simple drag law. Successful simulations based on such 
simplifications using a conventional Navier-Stokes solver were carried out; Tsuji et al. 
(1993) present the simulation of fluidized beds, Herrmann et al. (2007) for porous media 
and aeolian transport, where also the simulation of propagating sand dunes 
(Schwammle and Herrmann (2003)) has to be mentioned. 
 
Another approach to model water-sediment mixtures is to consider the fluid and the 
sediment as two fluids with distinct properties which consist of particles. In contrast to 
the former approach, models of this kind include two-way coupling, i.e. the momentum 
exchange between the fluid and the sediment, and vice versa is considered. Applications 
based on this approach, where the sediment phase is represented by SPH particles, are 
presented e.g. by Monaghan et al. (1999), who studied gravity currents descending a 
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ramp in a stratified fluid. Bui et al. (2007) simulated the soil-water interaction due to a 
vertical jet and examples with special focus on sediment transport are the simulation of 
waves generated by granular landslides by Falappi and Gallati (2007) or the modelling of 
rapid scour by Manenti et al. (2009). Numerical simulation of liquid-solid interaction in 
terms of a suspension using SPH is presented by Xiong et al. (2011). Shakibaeinia and 
Jin (2011) used this kind of approach to simulate the sediment transport due to a dam 
break, where a numerical method similar to SPH and constitutive laws for the sediment 
are applied. 
 
In the last two decades, several investigations with regard to the interaction of sediment 
particles and fluid flow where the sediment particles are modelled by the discrete 
element method were carried out. Jiang and Haff (1993) used an experimental setup 
where the sediment bed consists of DEM particles and the fluid is modelled by a moving 
layer which exerts a velocity-dependent drag force on the embedded particles to study 
the micromechanics of bed load transport. A refined approach is presented by 
Schmeeckle and Nelson (2003). They studied three-dimensional bed load transport 
processes of mixed-size spheres and used a model similar to DEM to account for the 
interaction between particles. The exerted fluid forces on the spheres have been derived 
from the near-bed turbulent velocity field measured in laboratory experiments using 
detailed Laser Doppler Velocimetry (LDV).  
 
Investigations into sediment transport based on the numerical simulation of the fluid 
flow in combination with the discrete element method for sediment particles were also 
accomplished. Cook et al. (2004) present a simulation method for a particle-fluid system 
which uses the lattice Boltzmann method to model fluid flow and an immersed 
boundary approach for the treatment of the interface. They show a two-dimensional 
simulation of the lateral erosion of elliptically shaped sediment grains at a flow 
contraction. They point out that despite the numerical efficiency of LBM and DEM 
(editor’s note: at least for two-dimensional models), the simulation of large three-
dimensional systems will be computationally expensive and a massively parallel 
implementation of the model is necessary. Feng et al. (2007) present a similar two-
dimensional model which includes a LES model to account for small-scale turbulent 
effects. They show an application of the model to the sediment transport of spherical 
particles in a vertical pipe due to suction. Feng et al. (2010) extended this model to 
three-dimensions; the obtained simulation results are in good agreement with 
experimental data. A similar model using GPU acceleration is applied to the 3D flow past 
an array of spheres and to the settling of a multibody ensemble in a quiescent fluid by 
Owen et al. (2011). The direct numerical simulation, i.e. where all the details of the 
turbulent fluctuating fluid motion are resolved and thus no turbulence model is 
nescessary, of a settling sphere by application of the LBM combined with an approach 
for local adaptive grid refinement is presented by Yu and Fan (2010). 
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Last but not least, Potapov et al. (2001) present a strictly meshfree Lagrangian model 
based on a combination of DEM and SPH. They used the two-dimensional model to 
simulate the flow around a cylinder and the shear flow of particles between two parallel 
plates at low Reynolds numbers. 
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3 PHYSICS OF FLUIDS AND RIGID BODIES 

3.1 Basic Description of a Conservation Law 
For the derivation of a basic conservation law, consider an arbitrary spatially fixed 
domain W  with boundary or surface G , surface normal dG


 and an infinitesimal quantity 

per unit volume Y  (Fig. 3-1). 
 

 Γ

 Ω

 dΓ
�

 QΓ
�

 
VQ  Φ

�

 dΨ Ω

 

Fig. 3-1: Domain description for the derivation of a general conservation law 

The variation per unit time of Y  within the domain W  should be equal to the 
contribution of incoming fluxes F


of quantity Y  normal to the surface G  plus 

contributions of boundary and volume sources of quantity Y , QG


 and VQ . 

Consequently, the general form of the conservation equation for the quantity Y  reads  
 

 · · Vd d dQ Q
t

dG
W G G W

¶
Y W = - F G + G + W

¶ ò ò ò ò
   

   . (3.1) 

 
With Gauss’ theorem for continuous fluxes and surface sources3 and for an arbitrary 
volume W , equation (3.1) can be written in the differential form 
 

 VQ Q
t G

¶Y
+  ⋅ F = +  ⋅

¶

   
 . (3.2) 

 

                                            
3 dF F d

G W

⋅ G =  ⋅ Wò ò
   

  
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The flux consists of two contributions: the convective flux C uF = Y
 

 that is the amount 
of Y  transported with the flow of velocity u


 and the diffusive flux DF


 due to 

molecular, thermal agitation. 
 
If the quantity itself is a vector Y


, the flux vector and the boundary source vectors 

become tensors, F  and GQ , and the scalar volume source a vector VQ


. Thereby the 
convective flux is C u= Ä Y


F . Analogous to equation (3.1) the conservation law then 

reads 
 

 Vd d d Q d
t G

W G G W

¶
Y W = - ⋅ G + ⋅ G + W

¶ ò ò ò òQ
   

 F  , (3.3) 

 
and equation (3.2) becomes 
 

 VQt G
¶Y

+  ⋅ = +  ⋅
¶

Q

   
F  . (3.4) 

 
Note that the two equations (3.1) and (3.3) are generally valid and are to be considered 
as the basic formulation of a conservation law. They remain valid even if discontinuities 
exist in the variation of the conserved quantity. On the contrary, the formulations (3.2) 
and (3.4) are only valid if continuity and/or differentiability of the properties can be 
assumed. 

3.2 Governing Equations for Fluid Flow 

3.2.1 Conservation of Mass 

In Galileian mechanics, for a compressible fluid in a closed system, the total sum of mass 
will be constant since mass cannot be created nor disappear. In the absence of sources 
or sinks, the variation of mass over time is exclusively due to flux across the boundary. 
With regard to the formerly introduced conservation law, density is actually the quantity 
to be conserved, i.e. frY = . Since no diffusive flux exists for mass transport, mass will 
only be transferred by convection. Thus the flux term for a fluid with velocity u


 reads 

C furF =
 

. The resulting conservation law of mass can be written as follows: 
 

 f fd u d
t

r r
W G

¶
W = - ⋅ G

¶ ò ò
  , (3.5) 

 
and the corresponding differential form reads 
 

 ( ) 0 0f f
f f

D
u or u

t Dt

r r
r r

¶
+  ⋅ = +  ⋅ =

¶

  
 , (3.6) 
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in which 
 

 
(.) (.)

: (.)
D

u
Dt t

¶
= + ⋅ 

¶


 (3.7) 

 
is the substantive or material derivative. 

3.2.2 Conservation of Momentum 

The fundamental equations describing the motion of a viscous Newtonian fluid are the 
conservation equations of momentum. They are based on the work of Navier at the 
beginning of the 19th century. Investigations of Poisson, de Saint-Venant and Stokes at a 
time only a little later led to the same results. Hence, they are known as the Navier-
Stokes equations. 
 
The physical background of the momentum equations are Newton’s laws of motion as 
introduced later in section 3.3.1. The motion of a fluid is caused by applied external 
volume forces ef


 per unit mass, i.e. ( )e e ff F dr= W

 
, and its deformation is related to 

internal stresses s . The internal stresses have two contributions namely viscous stresses 
t  and pressure p  
 
 p= - +Is t  , (3.8) 

 
where I  is the unit tensor. For a Newtonian fluid, the internal stresses can be related to 
the rate of strain. When applying a linear stress law that can be expressed in three 
dimensions by the stress tensor 
 

 ( ) ( )ij i j j i iju u ut m l d= = ¶ + ¶ +  ⋅
 

t  , (3.9) 

 
where m  is the dynamic viscosity of the fluid and 2 3l m= -  according to the Stokes 
relation. Since the internal stresses act as surface sources and the external forces as 
forces per unit volume f efr


, the sum of the sources, i.e. the applied forces in the given 

case, can be written as: 
 

 f ed f dr
G W

⋅ G + Wò ò
 

 s  . (3.10) 

 
The quantity to be conserved is momentum and thus f urY =

 
 (momentum per unit 

volume) and with conservation of mass, the flux only consists of its convective part. 
According to Newton’s second law, the time rate of change of momentum has to be 
equal to the applied forces. By application of Gauss’ theorem and by inserting (3.8) into 
(3.10) this leads to the following conservation equation: 
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 ( )f f f eu d u u d p d d f d
t

r r r
W W W W W

¶
W +  ⋅ Ä W = -  W +  ⋅ W + W

¶ ò ò ò ò ò
     

t  ,  (3.11) 

 
where the time rate of change of momentum is written on the left-hand side and the 
applied forces are on the right. Equation (3.11) can be written in non-conservative 
divergence form as 
 

 ( )f f f e
u

u u p f
t

r r r
¶

+ ⋅  = - +  ⋅ +
¶

     
t  (3.12) 

 
and is called the Navier-Stokes equations for t  according to equation (3.9). Note that 
an equivalent equation may be derived by combination of equations (3.27), (3.6) and 
(3.10). Detailed derivation of the Navier-Stokes equations can be found in any book on 
continuum mechanics and e.g. in Hirsch (1988), Schlichting et al. (2000) or Hutter and 
Jöhnk (2004). 

3.2.3 Conservation of Energy 

Since the Navier-Stokes equations, in their original form as above, are formulated for a 
compressible fluid like a gas (in which case 2 3l m¹ - ), the state of the corresponding 
thermodynamic system has to be considered. For energy the fundamental law holds that 
it cannot be created nor disappear, it just can be transformed into another form of 
energy. The total energy per unit mass of a fluid is the sum of its internal energy e  per 
unit mass and its kinetic energy per unit mass, 
 

 
2

2
u

E e= +


 . (3.13) 

 
The internal energy is a state variable of the system that is related to temperature T . 
Hence, the time rate of change of total energy is due to the convective energy and 
momentum fluxes, the flux due to heat conduction, the power of internal forces and the 
power of external forces f f eP f ur= ⋅

 
 as well as sources Hq  other than conduction (e.g. 

chemical reactions). This results in the conservation equation of energy that can be 
written in differential form as 
 

 ( ) ( ) ( ) ( ) ( )f f v f HE uE q pu u P q
t

r r
¶

+  ⋅ = - ⋅ - ⋅ +  ⋅ ⋅ + +
¶

      
t  ,  (3.14) 

 
where vq k T= - 


 is the heat flux vector expressed in terms of Fourier’s law and k  is 

the thermal conductivity coefficient. 
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There are three equations, the continuity equation (3.6), the momentum equation (3.12) 
and the energy equation (3.14), but five unknowns: density fr , velocity u


, pressure p , 

internal energy e  and temperature T . The system can be closed by considering a 
simplification of a real gas, e.g. a perfect gas. Hence an equations of state, namely the 
ideal gas law, holds which relates p  to fr , 
 
 ( 1)a fp eg r= -  , (3.15) 

 
where ag  is the adiabatic index. Furthermore, for a perfect gas the internal energy can 
be related to temperature by ve C T= , where the specific heat vC  is constant. With 
these additional equations the governing equations of fluid flow are complete. 

3.2.4 Simplifications 

3.2.4.1 Incompressible Navier-Stokes equations 

For liquids, one important characteristic is their great resistance to compression and as 
far as fluid dynamics is concerned, this allows to regard them as being incompressible 
for most purposes with high accuracy. A fluid can be considered incompressible if its 
Mach number is Ma 1 . The Mach number is defined as Ma ref su c= , where refu  is 
the reference flow velocity and sc  is the speed of sound of the fluid. For an ideal gas, 
the speed of sound is ( )1 2

sc RTg= , where R  is the specific gas constant. Typical 
values are: 330sc »  m/s for air and 1500sc »  m/s for water. See the discussion in 
Batchelor (2005) or Panton (2005) for the limits of applicability of the assumption of 
incompressibility. 
 
If a fluid is incompressible there will be no or negligible variation of the density over the 
domain of interest. Thus fD Dtr  in equation (3.6) equals zero and only u ⋅

 
 remains. 

The emerging differential equation then reads 
 

 0u ⋅ =
 

 . (3.16) 
 
Furthermore, considering isothermal processes, the conservation law of energy can be 
neglected. By combination of equations (3.16) and (3.9) the expression for the stress 
tensor can be simplified. Thus, equation (3.12) can be rearranged which leads to the 
momentum conservation equation for incompressible flow 
 

 ( ) 1
e

f

u
u u p u f

t
n

r
¶

+ ⋅  = -  + D +
¶

     
 , (3.17) 

 
where n  is the kinematic viscosity and 2D = 


 is the Laplacian. 
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Since there are two equations, (3.16) and (3.17), for two unknowns, a straightforward 
solution of equations would be expected. However, the system of equations is nonlinear 
due to the convective term of the momentum equation. For some simplified one- and 
two-dimensional cases with appropriate initial and boundary conditions analytical 
solutions exist (see e.g. Schlichting et al. (2000)). However, the approximate solution of 
the equations by a numerical approach is most common. 

3.2.4.2 Euler equations 

Another simplification, often applied, is to consider the fluid to be inviscid. The 
assumption of an inviscid fluid may be appropriate for convectively dominated flows 
with large Reynolds number (ratio of inertial force to viscous force) where laminar 
boundary layer effects do not have a significant influence. The corresponding equations 
are called Euler equations. Note that their general formulation is for a compressible fluid. 
 
They consist of the conservation of mass and the conservation of momentum without 
the viscous term, 
 

 ( ) 0f
f ut

r
r

¶
+  ⋅ =

¶

 
 , (3.18) 

 
( ) ( )f

f f e

u
u u p f

t

r
r r

¶
+  ⋅ Ä = - +

¶

    
 . (3.19) 

 
Furthermore, heat conduction is neglected in the energy equation which leads to the 
following form of the conservation equation of energy, 
 

 ( ) ( ) ( )¶
+  ⋅ = - ⋅ +

¶

  
f f fE uE pu P

t
r r  . (3.20) 

 
Similar to the general equations for fluid flow, equations (3.18), (3.19) and (3.20) can be 
closed by an appropriate equation of state, e.g. equation (3.15). 

3.2.4.3 Lagrangian Form of the Euler equations 

For the derivation of the conservation laws in the previous sections the time-dependent 
quantities, i.e. density, velocity and total energy, were considered as infinitesimal parts 
of a continuum. From the Eulerian viewpoint which is well-established in computational 
fluid dynamics, their time rate of change has to be evaluated at fixed points, e.g. at 

( )i jx y  as depicted in Fig. 3-2. Hence, the history of a quantity is limited to these points 
and it is generally not possible to track the path of a fluid particle. 
 
An alternative viewpoint is the Lagrangian description; it can be regarded as a natural 
extension of particle mechanics. The fluid is considered to consist of material particles 
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that move with the flow. Each particle is identified by its initial position ,0ir


 and a 
quantity carried with the particle is given in Lagrangian variables by 
 
 ( ),0,L ir tY = Y


 . (3.21) 

 
The position ir


 of a particle can be obtained by its path function or trajectory ir  (Fig. 

3-2b) 
 
 ( ),0,i i ir r r t=

   . (3.22) 

 
Based on the path function, the velocity, i iu r t= ¶ ¶

   and acceleration, 2 2
i ia r t= ¶ ¶
   

of a particle can be defined. 
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Fig. 3-2: Eulerian (a) and Lagrangian (b) viewpoint. 

With this approach, the history of a particle can easily be tracked. However, since the 
Lagrangian analysis of fluid flow is usually quite difficult it is rarely applied (see e.g. 
Andrew (2005)). Nevertheless, when the fluid is discretised by particles as applied in this 
work, the use of the Lagrangian approach is reasonable (see chapter 4.2). Therefore, a 
time derivative for Eulerian variables is introduced that can be evaluated for a moving 
particle, called the substantive or material derivative (see definition equation (3.7)). By 
application of the substantial derivative, the Euler equations can be written in 
Lagrangian form as 
 

 f
D

u
Dt

r
r= -  ⋅
 

 , (3.23) 

 
1

e
f

Du
p f

Dt r
= -  +

  
 . (3.24) 

 
The energy conservation equation has been omitted, since for the present work the fluid 
is considered to be isothermal water at 20° C. Thus, the fluid is a liquid that generally 
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can be regarded as incompressible. Nevertheless, under specific circumstances it may be 
necessary to take the small variation of density with change of pressure into account. 
Therefore, Batchelor (2005) presents an equation of state for water that is valid over a 
wide range of pressures, 
 

 
01
fp B

B

g
r

r

æ ö+ ÷ç ÷ç= ÷ç ÷÷ç+ è ø
 , (3.25) 

 
where 0r  is a reference density, B  and g  are parameters4. For 3000B =  and 7g = , 
equation (3.25) agrees with the physical properties of water to within a few per cent for 
pressures less than 1010 Pa. This relation is useful to obtain an approximate solution of 
the Euler equations as discussed in chapter 4.2. 

3.3 Motion of Rigid Bodies 

3.3.1 Equations of Motion 

For moving bodies Newton’s laws apply. The three laws describe the relation between 
the acting forces and the motion of the body. 
 
Newton’s first law states that a body with mass m  at rest or the same body with 
velocity v


 will stay at rest or will not change its velocity, if no unbalanced force acts on 

the body. The state of a body in motion can be described by its linear momentum as 
 
 p mv=


 . (3.26) 

 
Accordingly, the time rate of change of linear momentum, if not zero, demands an 
acting, non-balanced force aF


. This fact is postulated by Newton’s second law and 

reads (for the sake of consistency, Leibniz’s notation will be used from now on) 
 

 
( )

a
dp d mv dv dm

m v F
dt dt dt dt

= = + =
  

 . (3.27) 

 
Note that Newton’s law generally applies for variable mass. The last term in the middle 
of the equation describes the time rate of change of mass which is of importance to 
describe the motion of a rocket for example. For constant mass Newton’s second law 
reads 
 

 a
dv
m ma F
dt

= =
 

 , (3.28) 

                                            
4 Fluids, whose equation of state is given by ( )=p p r  are called barotropic. 
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where 

a  is the acceleration of the body. This special form is known as “mass times 

acceleration equals the sum of the forces”. 
 
Newton’s third law describes the interaction of two bodies in contact; it is also called the 
law of action and reaction. Based on this third law, Newton derived the conservation of 
linear momentum that is elementary for the description of colliding bodies. In the 
absence of dissipative forces due to deformation, it states that the sum of linear 
momentum of the colliding bodies before and after collision is constant, i.e. linear 
momentum is conserved.  
 
Newton’s laws are said to deal with point masses; they describe the translational motion 
of an extended body only, while its rotation is not covered. Therefore, Euler introduced 
equations that describe the time rate of change of angular momentum; they are called 
Euler’s equations (not to be confused with the homonymous equations for fluid 
dynamics from the same author discussed in chapter 4.2.3).  
 
In analogy to equation (3.26) for linear momentum, angular momentum reads 
 

 L w= I
 

 , (3.29) 
 
where w


 is the angular velocity and T=I I  is the tensor of moment of inertia. There is 

a Cartesian coordinate system (the fixed principal frame of the body) for which the 
inertia tensor is diagonal, 
 

 

0 0

0 0

0 0

x

y

z

I

I

I

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

I  . (3.30) 

 
For a rotationally symmetric body the inertia tensor can be further simplified, e.g. for a 
sphere the moment of inertia is = = = 2 10x y z sI I I md . 
 
Similar to Newton’s second law, the time rate of change of angular momentum is 
caused by the applied torque aM


. Accordingly, the dynamic Euler equations read in the 

general vector form 
 

 ( ) a
d

M
dt

w
w w⋅ + ´ ⋅ =I I

  
 (3.31) 

 
where T=I I  is the tensor of moment of inertia in the fixed principal frame of the body. 
 
Equations (3.28) and (3.31) are the equations of motion and actually the conservation 
laws for linear and angular momentum (for the basic description of a conservation law 
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please refer to chapter 3.1.). They describe the time dependent motion of a body due to 
applied forces and torques and can be solved for their time dependent terms, i.e. the 
linear, dv dt


, and angular, d dtw


, accelerations.  

3.3.2 Applied Forces and Torques 

For a modelling approach like the discrete element method as used in this work, the 
forces ,


a iF  and contact torques ,


a iM  applied on a particle i  are the sum of contact 

forces ,c ijF


 and torques ,


c ijM  due to interacting particles j  plus external forces ,


e iF  or 

torques ,


e iM , respectively 

 

 , , ,a i c ij e i
j

F F F= +å
  

 , (3.32) 

 = +å, , ,

  
a i c ij e i

j

M M M  . (3.33) 

 
The forces acting on a sphere surrounded by other spheres are depicted in Fig. 3-3. 

3.3.2.1 Contact Forces 

Contact forces are split into components normal and tangential to the contact surface 
and are treated differently depending on their orientation. 
 
Normal forces: 
The primary contact or interaction forces act normally to the contact surface. If the body 
is a sphere, they will only apply as a concentric force and thus not cause a torque at the 
centre. Several force laws used to model the interaction of rigid bodies in terms of 
spheres are discussed in chapter 4.3.2. 
 
Tangential forces: 
The secondary contact forces act tangentially to the contact surface and are due to 
friction. In most cases they lead to a torque. Two kinds of friction are distinguished, 
namely static and kinetic friction. In a static system, tangential forces due to static 
friction may be of importance, e.g. for a block on an inclined ramp. This effect can also 
be observed at sand piles. Kinetic or slip friction occurs when bodies interact with 
relative lateral velocities. Kinetic friction depends on the material properties of the 
interacting bodies and the normal force acting between them. Friction forces as used in 
this work are discussed in detail in chapter 4.3.4. 

3.3.2.2 External Forces 

The main external force is due to gravity. Assuming a constant acceleration of gravity of 

( )0,0,g g= -


 with 9.81g =  [m/s2], the weight of a rigid body is given by 
 

 = =
  
gF V g mgr  , (3.34) 
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where m  is the mass of the body, V  is its volume and r  its density; for a sphere 
3 6sV d p=  with diameter sd . 

 
Other external forces and torques may be defined based upon the scope of the model, 
i.e. external forces and torques by virtue of initial and boundary conditions. 

3.3.3 State of a Rigid Body 

The translational state of a rigid body or particle i  can be described by its position 
vector ir


 and its velocity iv


. According to the fundamentals of mechanics, these 

variables are related by 
 

 
2

2
;i i i
i i

dr dv d r
v a

dt dt dt
= = =

 
 

 . (3.35) 

 
The rotational state of a particle can be described in a similar but more complicated way. 
This is because the three-dimensional Euler equations are generally nonlinear. The 
counterpart of the position of a particle is its orientation that can be described by its 
rotation unit quaternion 0, 1, 2, 3,i i i i iq q q qé ù= ê úë ûq , i.e. 1i =q , in three dimensions. 
Furthermore, its angular velocity is described by iw


. The time derivative of the angular 

velocity d dtw


 can be obtained directly from equation (3.31) (see e.g. Fleissner (2010)). 
The time derivative of the quaternion can be obtained by 
 

 
1

( )
2

i
i i

d

dt
= ⋅

q
Q q W  , (3.36) 

 
where ( )iQ q  is the orthogonal quaternion matrix and 0i iwé ù= ê úë û

W  is a pure quaternion 
of the angular velocity (see Omelyan (1998)). Consequently, the second time derivative 
can be written as 
 

 
2

2

1
( )

2
i i i

i i

d d d

dt dtdt

æ æ ö ö÷ ÷ç ç ÷ ÷= ⋅ + ⋅ç ç ÷ ÷ç ç ÷ ÷ç çè è ø ø

q q
Q Q q

W
W  . (3.37) 

 
Further details on the solution of the Euler equations using quaternions and quaternion 
calculus are given by Shabana (2010) or Vince (2008). 

3.4 Fluid and Rigid Bodies 
Two effects are crucial for a correct simulation of the different transport modes of rigid 
bodies in fluids. On the one hand, applied forces and torques on spheres occur due to 
their interaction, as introduced in the previous chapter (see Fig. 2-1). On the other hand, 
the applied forces and torques due to the presence of a fluid like water and its flow also 
play an important role. By way of illustration, both effects are composed in Fig. 3-3. In 
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this chapter the basic hydro-mechanical forces are presented from an integral and 
partially empirical point of view. The approaches for the modelling of the detailed 
particle interaction forces are introduced in chapter 4.4. Besides general considerations 
of the interaction of a fluid with rigid bodies such as spheres, the relevant case of 
channel flow will briefly be discussed here. 
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Fig. 3-3: Acting forces at a river bed consisting of spheres. 

For channels with an inclined bed in the direction of the flow as depicted in Fig. 3-3, the 
slope is defined as tanbS g= . In this work, the considered channel slopes are smaller 
than 0.01 which corresponds to alluvial rivers in Switzerland. This allows for 
simplification since for small values of g , sin tang g»  and cos 1g » . According to 
vector projection (see appendix A.5) the unit vectors tangential (streamwise) and normal 
(upwards) to the channel bed can now be written as ( )ˆ 1, 0,x be S» -


 and ( )ˆ , 0,1z be S»


. 

Furthermore, the components of the weight gF


 in the x̂ - and ẑ -directions read 
 

 ˆ ˆ ˆ ˆ
2

0 , ; 0 ,

1

b b

gx s gx s b gz s gz s

b

S S

F m g F m gS F m g F m g

S
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   
 . (3.38) 
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3.4.1 Hydrostatic Pressure and Buoyancy 

Pressure is a fundamental property of a fluid that corresponds to a force F


 exerted on 
the surface A  of an immersed body or a boundary by the fluid, i.e. p F A=


 with 

units [N/m2]. Since pressure is a scalar quantity, its effect is independent of direction and 
it always acts in the normal direction to the boundary of the fluid. 
 
Considering a static fluid of density fr  with a free surface and taking the atmospheric 
pressure as a datum, i.e. 0atmp = , the pressure at an arbitrary point in the fluid 
depends on the water depth ( )h z  at that point and is called hydrostatic pressure 

( )= fp gh zr . The effect of hydrostatic pressure on a half sphere (sphere set onto the 
bottom of the channel) is schematically depicted in Fig. 3-4a). The resultant force hF


 on 

a surface due to hydrostatic pressure is the sum of the forces on all surface elements of 
area dA  
 

 ( )h f hx hy hz

A

F g h z dA F F Fr= = + +ò
   

 . (3.39) 

 
The partition of the resultant force into its components often allows for simplification of 
geometrical bodies by the use of vector projection. In cases when the bottom is parallel 
to the water surface, the direction of the resultant hydrostatic pressure force is normal 
to the water surface. For the depicted half sphere with diameter sd , the horizontal 
forces vanish, 0hx hyF F= =

  
, because of symmetry and the vertical component is equal 

to the weight of the fluid on top of the sphere 
 

 
2

ˆ4 3
s s

h hz f f z

d d
F F g h e

p
r

æ ö÷ç ÷= = - -ç ÷ç ÷çè ø

  
 , (3.40) 

 
where fh  is the maximum water depth referring to the wetted surface of the sphere. 
The resultant force acting on the sphere in Fig. 3-4a) is 
 

 = +
  
gh g hF F F  . (3.41) 

 
The effect of buoyancy, also known as Archimedes’ principle, occurs when a body has 
surfaces in contact with the fluid which have a normal in downward direction as 
depicted in Fig. 3-4b) for example. The buoyancy force is due to the pressure difference 
above and below the immersed body and is equivalent to the weight of the fluid 
displaced by the body 
 

 ˆb f s zF gV er=
 

 , (3.42) 
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where sV  is the volume of the body. The buoyancy force will act through the centroid of 
the volume of the displaced fluid which is equal to the centre of gravity if the body 
consists of homogenous material. 
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Fig. 3-4: Effect of hydrostatic pressure and resulting buoyancy. 

With regard to the hydrostatic equilibrium of an immersed body, the buoyancy force can 
be seen as a reduction of its weight and is called submerged weight of the body 
 

 ( )ˆ ˆ*g gz b s f s zF F F gV er r= + = - -
   

 , (3.43) 

 
where ˆgz gF F=

 
 for a plane channel bed. Furthermore, the difference between the 

forces acting on the sphere for the two situations depicted in Fig. 3-4 is 
 

 
( )2

*

3

12
s s f

gh g h b f

d d h
F F F F g

p
r

+
- = - =

   
 , (3.44) 

 
and the ratio between them is 
 

 
( )

( )*

3 2

2
gh f f s s f

s s fg

F h d

dF

r r r

r r

+ -
=

-



  . (3.45) 

 
For example: for a sphere with 0.03sd =  m, 2800sr =  kg/m3 and 0.5fh =  m, 

1000fr =  kg/m3, the ratio * 15gh gF F »
 

. Thus, use of an appropriate model allowing 
for fluid between the spheres of the channel bed (as illustrated in Fig. 3-3) and including 
buoyancy effects correctly may be crucial in order to obtain reliable simulations of bed 
load transport. This is also affirmed by the fact that the hydrostatic pressure distribution 
is implicit in the definition of the Shields parameter. The effect of non-hydrostatic 
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pressure distributions on bed load transport has been pointed out by Francalanci et al. 
(2008) and is discussed in the next section based on occurring forces. 

3.4.2 Hydrodynamic Forces 

3.4.2.1 Drag of a Single Sphere 

The force acting in the direction of relative motion of a body immersed in a fluid is 
called drag or fluid resistance. In other words, drag is the force in the direction of 
relative motion that has to be applied to move a body through a stagnant fluid or to 
keep the same body at rest in case of fluid flow (the weight of the body is neglected). 
The drag is made up of two contributions, namely the pressure drag arising from the 
non-uniform pressure distribution on the body and the skin friction drag due to shear 
stresses on the body surface. In a general form (see e.g. Douglas et al. (2001), the drag 
force is given as 
 

 

2

2
f f

dr D f
f

u u
F C A

u
r^=

 
  , (3.46) 

 
where Â  is the area obtained by projection of the body on a plane perpendicular to 
the flow direction (i.e. 2

sA r p^ =  for a sphere), DC  is the drag coefficient and fu


 the 
free stream velocity (i.e. the uniform flow velocity upwind of the body). Note that 

2
2f fur


 is reminiscent the hydrodynamic pressure term of the Bernoulli equation. 

 
A well-known solution for the drag of a sphere in steady uniform flow is that by Stokes, 
who obtained 6dr s fF r upm=

 
 by simplification of the Navier-Stokes equations. Inserting 

this into (3.46) leads to a drag coefficient of 24 ReDC = . However, Stokes’ expression 
is restricted to laminar flow with Re 0.2< , also known as Stokes flow.  
 
For higher Reynolds numbers, Karamanev (1996) states that one of the best relations to 
determine the drag coefficient is that by Turton and Levenspiel (1986) as it exhibits high 
precision and accuracy. Furthermore, he proposes a simplification of the original 
equation by introducing the Archimedes number Ar  leading to a linear equation for the 
estimation of the final settling velocity (see chapter 1.1). Accordingly, the drag 
coefficient can be obtained in the form 
 

 ( )2/3
1 3

432 0.517
1 0.047Ar

Ar 1 154Ar
DC -

= + +
+

 , (3.47) 

 
where the Archimedes number for solid spheres is given by 
 

 3 2Ar s fd g r r m=   , (3.48) 



3 Physics of Fluids and Rigid Bodies 

48 

where s fr r r= -  and m  is the dynamic viscosity. For the regime of Newtonian flow, 
i.e. 5500 Re 10< < , the drag coefficient for a sphere is practically constant and has the 
value 0.44DC = . 

3.4.2.2 Lift Force 

Besides the drag force, the second component of the force exerted on an immersed 
body due to fluid flow is the lift force acting perpendicular to the direction of relative 
motion. It has the same origin as the drag force and can be defined in a similar way 
 

 

2

2
f

l L f

u
F C A r= 


 , (3.49) 

 
where LC  is the lift coefficient and A  is the projected area for lift. In contrast to an 
airfoil in plane motion, where values for LC  depend on the angle of attack, the lift force 
for a sphere vanishes when fu


 is uniform. 

3.4.2.3 Forces Acting at the Channel Bed 

For the flow over a channel bed made of spheres, as depicted in Fig. 3-3, the drag and 
lift forces may have different forms. Close to the rough boundary, the velocity is not 
uniform and the flow is turbulent. Since the acting pressure is a combination of 
hydrostatic and hydrodynamic pressure, the lift force may be reduced to a pressure 
difference that occurs due to the turbulent effects on the side of the sphere facing the 
flow; which has been measured by Einstein and Elsamni (1949) for hemispheres, by 
Dwivedi et al. (2010) for spheres, by Detert et al. (2010) for spherical as well as mixed 
sediments and by Smart and Habersack (2007) for natural gravel in a river, for example. 
Nevertheless, to allow for the application of equation (3.49) values for LC  are provided 
based on a stochastic analysis of experimental data (see e.g. Wu and Lin (2002)), as 
already introduced in chapter 2.1.2.3. 
 
Investigations into the drag force exerted on a sphere set on top of a bed of closely 
packed spheres have been carried out by Coleman (1972). He concludes that the drag 
coefficient function for this situation corresponds with the function for a sphere in free 
fall. Schmeeckle et al. (2007) studied the situation of a sphere surrounded by other 
spheres without contact and for different exposure of the sphere to the flow. They 
obtained a drag coefficient of 0.76DC =  which is independent of flow variability or 
particle exposure and is in agreement with the results of other studies. For decreasing 
exposure the drag force also decreases due to sheltering by the other particles while the 
lift force increases. The residual drag which exerts forces on the sphere can cause 
angular momentum; this is not covered in the mentioned study, but may be of 
importance in the process of particle entrainment.  
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For open channel flow, the most common engineering approach is to express the forces 
close to the bed by temporally and spatially averaged quantities, i.e. the bottom shear  
stress bt  or the shear velocity *u , as introduced in section 0. As a considerable 
generalisation the law for wall-bounded turbulent flows holds and can be written for 
rough channel flow by considering Nikuradse’s original parameterisation with 0.4k =  
as 
 

 
*

( ) 1 1 29.7
ln 8.48 ln

s s

u z z z

u k kk k
= + =  . (3.50) 

 
For a velocity profile according to equation (3.50), the velocity is zero at 0 29.7sz k= . 
The distribution of the shear stress t  over the flow depth for the two dimensional case 
is given by (see e.g. Yalin and da Silva (2001)) 
 

 ( ) 1b
f

z
z

h
t t

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
 . (3.51) 

 
Equations (3.50) and (3.51) are depicted in Fig. 3-5. The offset of the frame of reference 
in the z-direction related to the tangential plane through the tips of the roughness 
elements is z . According to Bezzola (2002) 0.25 sz d»  for uniform grains. 
 

 
fh

x

 ( )zτ

 
bτ

z

 
0z

 
fh

 z�
x

 ( )u z

z

 
mu

 

Fig. 3-5: Logarithmic law for turbulent channel flow 

The shear stress expressed by the slope of the energy grade line or by the shear velocity 
as in equation (2.3) is an integral quantity that describes the flow resistance of the 
channel bed. Thus, it acts in opposite flow direction tangential to the bed. However, the 
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quantities which entrain and move sediment are neither bed shear stress nor any other 
average characteristic of the flow, but instead the fluctuating forces, such as lift and 
drag, exerted directly by the flow on the particles, as stated by Schmeeckle et al. (2007). 
Thus, a force expressed in terms of bF At=  is a rough simplified model of reality. 
 
Nonetheless, some researchers related their measurements of fluctuations of local forces 
or pressure to mean flow quantities. For example, Apperley and Raudkivi (1989) 
expressed the drag force in terms of the shear velocity as 2

* *dr fF C ur=


, where *C  is a 
constant of proportionality relating the drag force to the shear velocity. By further 
analysis of their results, Schmeeckle et al. (2007) obtained for a sphere exposed to the 
flow the relation 2( ) 2dr D f sF C A u dr^=


 where 0.68DC =  and ( )su d  is the average 

flow velocity one particle diameter above the bed. Another approach that relates the 
shear stress to an indicator ps  of the fluctuating lift is reported by Detert et al. (2010) 
and reads ( )2.88 exp 2p b sz ks t = . 
 
The hydrodynamic forces discussed herein certainly play an important role for the 
incipient motion or entrainment of sediment particles, but peak values of the forces may 
not be sufficient. The duration of the peak values is also a significant factor as pointed 
out by Valyrakis et al. (2010). Therefore, they conjectured that impulse, rather than just 
the magnitude of hydrodynamic forcing, is relevant to the description of the incipient 
motion phenomenon. 
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4 NUMERICAL METHODS 

4.1 Introduction 

4.1.1 Methodology 

The modelling approach applied in this thesis comprises the representation of the gravel 
bed and the water flow by particles which interact with each other. Therefore, 
Lagrangian methods, also called meshfree or particle methods, are applied to both the 
hydrodynamics and the bed load transport, which allows for a homogeneous 
discretisation of the underlying equations of motion. In other words, for discretisation of 
the computational domain and the multi-phase system, basically the same kind of 
approach is used; however with respect to the distinct properties of each phase, 
different methods are applied. The single grains of the gravel bed are modelled by 
discrete elements in the form of rigid spheres and their motion and interactions are 
resolved by application of the DEM. For the water flow, i.e. the hydrodynamic equations, 
the SPH method is applied. The modelling approach used is depicted in Fig. 4-1. 

a

gravel
DEM particles

hydrodynamics
SPH particles

water flow

gravel bed

b
 

Fig. 4-1: Representation of (a) water flow and gravel bed by (b) SPH and DEM particles, respectively. 

The primary advantage of this approach relies on the fact that any phase interface or 
fluid-structure coupling as well as interaction between solid objects is treated on a 
particle to particle basis, which makes the application of complex and expensive 
numerical methods as they are used for grid-based Eulerian approaches obsolete. 
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4.1.2 Software Framework PASIMODO 

The numerical software used in this work is called PASIMODO (“PArticle SImulation and 
MOlecular Dynamics in an Object oriented fashion”) which is a multi-purpose particle 
simulation tool developed by Fleissner (2010) at the Institute of Engineering and 
Computational Mechanics of the University of Stuttgart. The part for fluid dynamics 
simulation with SPH was mainly contributed by Lehnart (2008). The software is subject 
to continuous improvement and is applied by several academic collaborators. 
 
The original purpose of PASIMODO was to simulate granular media in a dynamic 
environment. However, over the years, the software was extended by many features to 
allow for applications in a very wide reach of engineering problems. Besides granular 
media, the software can be used to model the dynamics and interaction of arbitrary 
shaped bodies, plastic-elastic rods, multi-body systems and fluids just to name a few of 
its capabilities. Some recent applications are: simulation of the cutting process or 
behaviour of an elastic membrane (Fleissner et al. (2007)), simulation of ductile cohesive 
material like aluminium (Gaugele et al. (2008)), tumbling sieving to separate different 
sized granular materials, such as sediments used in laboratory flume experiments, into 
different fractions (Alkhaldi et al. (2008)), landslides and granular chute flow in alpine 
regions (Fleissner et al. (2009b)), cargo sloshing in silo and tank vehicles (Fleissner et al. 
(2009a), Fleissner et al. (2010)). 
 
For the definition and configuration of simulations PASIMODO uses XML input files that 
can be parameterized, also by time-dependent variables. Furthermore, the software is 
programmed in C++ following a transparent object-oriented design. The software can 
be extended or adapted to specific requirements by its coherent and effective plug-in 
environment. 
 
A simulation with PASIMODO usually consists of the main components, particles, 
interactions and integrators. The main simulation components used in this work are 
briefly discussed below. In addition, there are auxiliary objects like frames of reference, 
particle filters or data output. 

4.1.2.1 Particles 

The particles used to model granular materials are spheres, either with three (only 
translation) or six (translation and rotation) degrees of freedom (DOF). A sphere is 
defined by radius, mass and its state by position, velocity and angular velocity in the case 
of 6 DOF. Another important group of particles are triangles that may be used to define 
triangulated surfaces such as walls or structures. In general they are massless. To obtain 
particles of arbitrary shape, triangles may be aggregated as particle compounds which 
also carry mass. Spheres and triangles may also be termed DEM particles (see chapter 
4.3). 
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The third kind of particles, so-called SPH-particles, are used to represent a fluid, e.g. 
water. This approach fundamentally differs from that for granular materials using 
spheres, discussed in detail in chapter 4.2. 

4.1.2.2 Interactions 

In dynamical systems as considered in this work, the interaction between the different 
kinds of particles is decisive for the behaviour of the systems and thus the reproduction 
of the physical processes. The constitutive nature of the interactions controls the overall 
behaviour of the modelled materials. Thus, the kind of interaction and its 
parameterisation may be crucial for the outcome of a simulation. 
 

SPH fluid

body with 
triangulated 

surface
gravel bed

fluid-fluid
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sphere-sphere
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fluid-structure
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Fig. 4-2: Different kinds of particles and interactions applied in this work. 

The different interactions applied in this work are depicted in Fig. 4-2. They may be 
categorised into ‘internal’ and ‘external’ interactions corresponding to the matter they 
actually represent and the interaction with other materials. ‘Internal’ refers to the 
interactions between SPH particles inside the fluid, i.e. fluid-fluid interaction, or between 
spheres with 6 DOF that represent the gravel bed (sphere-sphere interaction). The SPH 
interaction consists actually of the discretisation of the governing fluid equations by the 
use of a smoothing kernel and its influence on neighbouring particles (see chapter 4.2). 
For the interaction between spheres different force laws can be applied to prevent 
penetration; they are described in section 4.3.2 in detail. ‘External’ interactions on the 
one hand are sphere-triangle interactions that are treated in a similar way as sphere-
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sphere interactions, but the triangular particle is usually regarded as fixed, because 
triangles are used to model walls or static structures in this work. On the other hand, 
fluid-structure interactions are termed external comprising the interaction between SPH 
fluid particles and spheres or triangles. Details can be found in section 4.4. 

4.1.2.3 Integrators 

Another basic component of dynamic simulations is the integrator. It is responsible for 
the advancement of the particles in time by discrete time steps based on various stability 
criteria. For the time integration of the motion of DEM particles, several integrators are 
available; their application depends on the particularity of the problem and on accuracy 
requirements. For hybrid simulations with SPH and DEM particles as applied in the 
current work, for both methods the same kind of integrator is preferred to prevent 
problems due to asynchronism. For details see section 4.2.7 and 4.3.5. 

4.2 Smoothed Particle Hydrodynamics 

4.2.1 Introduction 

4.2.1.1 General 

Monaghan (2005b) describes the basic idea behind SPH as replacing the fluid by a set of 
points that follow the motion of the fluid and carry information about the properties of 
the fluid. These points can be seen either as interpolation points for the discretisation of 
the governing equations or as real material particles. This approach for fluid flow, where 
particles typically have fixed mass, allows for the advection of contact discontinuities 
while preserving Galilean invariance and reducing computational diffusion of various 
fluid properties including momentum. 
 
Monaghan (1994) applied the method to free surface flows and demonstrated that SPH 
requires no explicit treatment of the free surface. In contrast, other methods like finite 
difference or finite volume schemes need special approaches that would require very 
fine meshes or adaptive grids for the modelling of complex flow with one or several 
convoluted free surfaces. Furthermore, the interaction with rigid bodies or boundaries 
can be handled as particle to particle interaction without the need of additional tracking 
or capturing of the movable interface. Overviews about SPH can be found in Monaghan 
(2005a), Monaghan (1992) or Liu and Liu (2003) for example. 
 
Compared to established numerical schemes like FDM, the SPH method is still under 
development. It has been improved by contributions of many researchers during the last 
two decades and the number of applications increases continuously. Nevertheless, one 
of the main and well-recognised drawbacks is the high computational cost when it 
comes to 3D applications, especially when a fine special resolution is desired (Gomez-
Gesteira et al. (2010b)). 
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4.2.1.2 Different Kinds of SPH 

The standard SPH method (Monaghan (2005a)) used in this work is also termed “weakly 
compressible SPH” (WCSPH), because the computation of the pressure is based on an 
equation of state for water. This approach is suitable for flows where relative density 
variations range within 1% (see Monaghan (1992)). Some draw backs are for instance 
pressure fluctuations and very long computation times. The latter are due to the used 
CFL condition that depends on the velocity of sound instead of the fluid velocity. The 
velocity of sound is usually many times larger than the maximum velocity of the fluid.  
 
To circumvent these problems, a different approach has been introduced by Cummins 
and Rudman (1999) for flows without free surfaces and has been extended by Shao and 
Lo (2003) to free surface flows. This alternative approach is often termed “truly 
incompressible SPH” (ISPH). Instead of an equation of state, a Poisson equation is used 
to predict the pressure. For the discretisation of the Laplacian in the pressure Poisson 
equation a combination of a standard SPH derivative and a finite difference 
approximation may be applied. The approach to solve the Poisson equation is similar to 
grid-based Navier-Stokes solvers, i.e. application of the Chorin-type projection method 
(Chorin (1968)) and suitable linear solvers such as Bi-CGSTAB. Another method to cope 
with incompressibility without the need of solving a Poisson equation for the pressure is 
presented by Ellero et al. (2007). Their model requires that the volume of the fluid 
particles remains constant which is obtained by the solution of an additional set of non-
linear equations. 
 
The different approaches to treat the compressibility of the fluid are still an open topic in 
the SPH community. By comparison of the approaches, Hughes and Graham (2010) 
reach the conclusion that WCSPH performs as well as ISPH does and in some respects 
even better. Alternetively, Lee et al. (2010) show that ISPH is superior for some cases. 

4.2.2 Representation of Fluids by Particles 

4.2.2.1 Particle Approximation 

Since SPH has some properties in common with a Lagrangian model for fluid flow, each 
particle i  with position vector ir


 moves with the fluid flow and carries quantities such as 

the velocity iu


, the density ,f ir  and its mass im . In other words, these quantities are 
only known at the location of the particle itself. From a mathematical point of view, this 
situation can be represented with the help of the mathematical construct of Dirac, the 
Dirac delta function5, ( )xd , defined as 
 
 
 
                                            
5 The Dirac delta function has an infinitely large value at its origin 0x  where 0=x  and is zero 
everywhere else. A further property is that its total integral over the space of its definition is equal to 1. 
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Actually, the Dirac delta is not a strict function, but can be approximated by a well 
behaved function that has the following properties: 
 
 

0
lim ( , ) ( )


=
h
W x h xd  , (4.2) 

 0( , ) 1- =òW x x h dx  , (4.3) 

 
where W  is called kernel function and integration is over s , where s  is the dimension. 
An example for such a kernel function in the form of a Gaussian is given in Fig. 4-3, 
where h  is the smoothing length. For decreasing h , the function tends to a single peak 
while the area or volume below the function course remains equal to unity, which 
corresponds to conditions (4.2) and (4.3). 
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Fig. 4-3: Gaussian kernel function depending on smoothing length h , here in one dimension. The volume 

below each curve is equal to 1. 

Based on equation (4.3) an interpolation at 0r


 for any quantity or function ( )rA r


 can be 
obtained by the integral interpolant 
 

 0 0( ) ( ) ( , )I rA r A r W r r h dr= -ò
    

 . (4.4) 
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For numerical discretisation, the integral interpolant has to be approximated by a 
summation interpolant. Considering particles (interpolation points) with mass m , 
density r  and position r


 identified by indices a  and b , where a  identifies the particle 

of interest and b  the neighboring particles with masses according to a volume element 
of the fluid ( )b b b bm r drr=

 
 and ( )b r bA A r=


, the summation interpolant can be written 

as 
 

 ( ) ( , )b
a a b a b

b b

A
A r m W r r h

r
= -å  

 . (4.5) 

 
For example, the density can be estimated by 
 
 ( ) ( , )a a b a b

b

r mW r r hr = -å  
 . (4.6) 

 
By using a kernel function that is differentiable, the derivative of aA  can be obtained by 
ordinary differentiation as 
 

 ( ) b
a a b a ab

b b

A
A r m W

r
 = å
 

 . (4.7) 

 
For the sake of clarity, the notation a abW


 was introduced to denote the gradient 

( , )a bW r r h -
  

 taken with respect to the position of particle a . Since the derivative in 
form of equation (4.7) is not very accurate even for a constant function, it should not be 
used for practical applications. According to Lehnart (2008), other forms of the 
derivative are used that are more accurate; they depend on the properties of the 
equation to be discretised. Their application to the Euler equations for fluid flow is 
introduced in section 4.2.3.1. 

4.2.2.2 Kernel Functions 

A general formulation of a kernel function is provided by Morris et al. (1997): 
 

 
1

( , ) ab
ab

r
W r h f

hhs
æ ö÷ç ÷= ç ÷ç ÷çè ø

 , (4.8) 

 
where s  is the dimension of the system, h  is the smoothing length and ab a br r r= -

 
 

is the distance between particles a  and b . Note that the dimension of the kernel 
function is 1/length.  
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Fig. 4-4: Gaussian kernel function and its derivative for different smoothing lengths h . 

According to Monaghan (1992), the first golden rule of SPH is the use of a Gaussian as 
kernel function when a physical interpretation of an SPH equation is desired. The 
Gaussian kernel is given by 
 

 
2 2

( , ) abr h
abW r h esa

-=  (4.9) 

 
where sa  is 

1 2
1 ( )hp , 21 ( )h p  and 

3 231 ( )h p  in one-, two- and three-dimensional 
space, respectively (index { }1,2,3s Î  denotes the dimension of the problem). For the 
one-dimensional case, the derivative of the Gaussian reads 
 

 
2

( , ) 2
( , )ab ab
ab

ab

dW r h r
W r h

dr h
= -  , (4.10) 

 
and its second derivative is 
 

 
2

2

2

4

2( , )
(

2( 2 )
, )aab
b

ab

b
a

hd W r h
W r h

dr

r

h
=

-
-  , (4.11) 

 
which vanishes at 2=abr h  and also holds for the 2D and 3D case. 
 
Equations (4.9) and (4.10) are depicted in Fig. 4-4 for different smoothing lengths 
depending on the ratio abr h . The Gaussian kernel has no compact support, i.e. it will 
not vanish outside a finite interval, but it rapidly falls off with distance and tends to zero 
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for 2³abr h . Other popular kernel functions are kernels based on splines (see e.g. 
Monaghan and Lattanzio (1986)) that have compact support. The Gaussian kernel has 
proved to be a good choice with regard to accuracy and efficiency and has been 
successfully applied in many simulations. For the present work, the Gaussian kernel with 
a cut-off at distance 2=abr h  is preferred. 

4.2.3 Governing Equations 

4.2.3.1 Euler Equations and Discretisation 

By discretisation of the fluid with SPH particles, the equations describing fluid flow as a 
continuum, as the Euler equations in section 3.2.4.2, can be written in Lagrangian form 
according to section 3.2.4.3. Thus, the original partial differential equations reduce to a 
set of ordinary differential equations which can be discretised for particles according to 
the approaches introduced in section 4.2.2.1, i.e. index a  denotes the actual particle 
and index b  its neighbours within the cut-off distance. The properties of particle a  are 
mass am , density ar , velocity au


 and position ar


 and similar for neighbouring particles 

with index b . 
 
The conservation of mass reads 
 

 f
D

u
Dt

r
r= -  ⋅
 

 , (4.12) 

 
and can be discretised according to equation (4.7) as follows: 
 

 ( )ˆ a b
a a b a ab
b b

D m
D u u W

Dt

r
r

r
= = - ⋅å

 
 . (4.13) 

 
According to Monaghan (2005a), this approach also allows for accurate results in the 
presence of strong density variations. 
 
Conservation of momentum 
 

 
1

e
f

Du
p f

Dt r
= -  +

  
 (4.14) 

 
leads to its discretised form 
 

 
2 2

ˆ a a b
a a ab e

b a b

Du p p
F m W f

Dt r r

æ ö÷ç ÷ç= = - +  +÷ç ÷÷çè ø
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 . (4.15) 
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The particles are moved by 
 

 =


a
a

Dr
u

Dt
 , (4.16) 

 
and its discrete form will be introduced in the section on time integration, page 69. 
 
Equations (4.13) and (4.15) are the Euler equations discretised by the SPH method 
according to Monaghan (1992). The equation system is closed by an appropriate 
equation of state for the pressure p  (see section 4.2.3.2) and can be solved with initial 
conditions and advanced in time by the integration scheme presented in section 4.2.7.1. 

4.2.3.2 Equation of State 

Since the speed of sound in water is usually large compared with fluid velocities, i.e. the 
Mach number is quite low, the flow of water is modelled as incompressible (see section 
3.2.4.1 on incompressible Navier-Stokes equations). However, for SPH, the motion of 
the fluid particles is simulated based on the compressible Euler equations, i.e. particles 
may be regarded as the molecules of a gas and their motion is driven by local density 
gradients. According to the laws of thermodynamics, the pressure can be related to the 
density by an equation of state for a compressible fluid to close the governing equations. 
Thus a quasi-incompressible equation of state is used for SPH. It may be noted that this 
approach of considering a compressible fluid is similar to Chorin’s artificial 
compressibility method (Chorin (1967)) that can be used for the grid-based numerical 
solution of the incompressible Navier-Stokes equations. 
 
For free surface flows, an equation of state similar to that introduced in section 3.2.4.3 
is often applied. By omitting the addition of one in the dominator for large values of B , 
Equation (3.25) can be rewritten as 
 

 
0

1
p

a
ap B

g
r
r

æ öæ ö ÷ç ÷ ÷çç ÷ ÷= -çç ÷ ÷çç ÷ç ÷è øç ÷è ø
 , (4.17) 

 
where 0r  is the reference density of the fluid, ar  is the particle density and usually 

7pg = . Actually, the parameter pg  (between 1 and 7) and the form of the equation of 
state may be chosen depending on the problem at hand. The use of equation (4.17) 
with large values of pg  causes pressure to respond strongly to variations in density 
which may not be desired for low Reynolds number flows. Thus, for such situations 

1pg =  and a modified form of the equation of state 2
a s ap c r=  is preferred, as 

suggested e.g. by Morris et al. (1997). 
 
In equation (4.17) the choice of B  determines the speed of sound sc . Since the time-
step size of the simulation may depend on the speed of sound (as introduced later in 
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section 4.2.7.2), a rather small value of sc  compared to its effective value of ~1500 m/s 
is preferred to gain a faster simulation progress. The parameter B  can be related to sc  
as follows 

 
2

0s

p

c
B

r
g

=  . (4.18) 

 
In order to limit density variations to a maximum of 1%, Monaghan (1994) argues that 
the sound velocity has been chosen so that the Mach number of the flow should be 0.1 
or less; this yields 
 
 10s refc u=  , (4.19) 

 
i.e. Ma 0.1ref su c= = . Nevertheless, Morris et al. (1997) obtained reasonable results 
for moderate flow conditions where density varies by at most 3%. It may be added that, 
although the compressibility effect for a Mach number of 0.1 is generally considered 
acceptable as a nearly-incompressible flow approximation, SPH behaves as a rarefied gas 
in regions of low pressure (see Issa et al. (2005)). 
 
The reference velocity refu  depends on the problem, i.e. for a dam break problem with 
initial water depth 0H  the approximate upper bound to the velocity is 02refu gH=  
whereas for shallow water flows, where the ratio of wavelength to water depth tends to 
zero, the reference velocity is equal to the wave propagation velocity ref fu gh= . 

4.2.4 Enhancements 

4.2.4.1 Artificial Viscosity 

Since the fluid is considered to be inviscid in the present work (compare section 3.2.4.2), 
the term in the Navier-Stokes equations that depends on viscosity has been omitted. 
Nevertheless, the introduction of some sort of damping similar to finite difference 
schemes may be necessary for the stability of the numerical scheme. Therefore an 
artificial viscosity in terms of an artificial pressure is introduced in the momentum 
equation (see e.g. Monaghan (2005a)). This approach has been successfully applied for 
the simulation of shocks (e.g. Liu and Liu (2003) or Monaghan (2005b)) to avoid 
superficial oscillations of the velocity and pressure field. 
 
The artificial viscosity term has two contributions. The first produces a bulk viscosity and 
is expressed as a volume-viscous pressure in relation to the velocity gradient: 
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0 ,
f s

v

hc u if u
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otherwise
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 (4.20) 
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where h  is the smoothing length. The second is based on the von Neumann-Richtmyer 
pressure and is necessary to handle high Mach number shocks where complete 
penetration of particles has to be reduced (see Monaghan (1985)), 
 

 
( )22 0,

0 .

f
v

h u if u
q

otherwise

br
ìïï  ⋅  ⋅ <ï= íïïïî

  
 (4.21) 

 
In the equations above , 0a b ³  are constants. Even though the values of a  and b  are 
not critical, good results were obtained for free surface flows by a choice of 0.01a =  
and 0b =  (compare Monaghan (1994)). The above expressions are introduced in the 
momentum equation by 2

ab v fq rP   implying 
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According to Monaghan and Gingold (1983), the usual discretisation approaches for the 
velocity gradient as used for the discretisation of the Euler equations are leading to 
unsatisfying results with oscillations especially for shock tube problems. As alternative 
they suggest the use of 
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r r h
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for the discretisation of equations (4.20) and (4.21), where 2

vh  prevents singularities and 

v hh  . For the current work 0.1v hh =  as suggested by Monaghan (2005a). To 
ensure symmetry of viscosity and conservation of momentum the sound velocity sc  and 
density fr  are determined by averaging, 
 

 ( ) ( ), ,
1 1

,
2 2ab s a s b ab a bc c c r r r= + = +  . (4.24) 

 
Combination of the two artificial pressure terms, i.e. equations (4.20) and (4.21), and 
application of expressions (4.23) and (4.24) leads to the discrete form of the artificial 
viscosity term, 
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where 
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For low Reynolds number flows or fluids with large viscosity differences real viscosity as 
appearing in the Navier-Stokes equations may be included according to Morris et al. 
(1997) (see e.g. Issa et al. (2005) or Monaghan (2006) for applications). 

4.2.4.2 Artificial Stress 

 

Fig. 4-5: Tensile instability observed at a backward facing step. Flow direction is from left to right and 

acuity indicates the occurrence of negative pressure. 

The forces between SPH particles in a fluid are derived from the momentum equation 
depending on pressure and the first derivative of the kernel (see equation (4.15)). As 
depicted in Fig. 4-4, the kernel derivative has its maximum at a particle distance larger 
than zero. Thus, if particles come very close, the interaction force between them will 
decrease. This may lead to unphysical clumping of particles (see Fig. 4-5) and is called 
tensile instability.  
According to Monaghan (2000), this instability can be removed by adding an artificial 
pressure term n

ab abR f  to the momentum equation, 
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The function n
abf  increases as the particle distance decreases 
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,

,
abn

ab

W r h
f

W s h
=


 , (4.28) 

 
where W  is the kernel function, abr  the distance between particles a  and b , h  is the 
smoothing length and s  the initial particle spacing. For fluid dynamical simulations 

4n = . For negative pressure, the factor abR  has contributions of both interacting 
particles 
 
 ab a bR R R= +  (4.29) 

 
and depends on the pressure in the following way: 
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where 0.2se =  is a typical value. Artificial stress is also introduced for positive pressure 
to prevent the formation of local linear structures in liquids. Hence, for 0ap >  and 

0bp >  the factor abR  is parameterised as 
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In the example of a backward facing step depicted in Fig. 4-5, where a tensile instability 
was observed, the particle cluster stays intact after formation and moves along with the 
flow. A value of 0.5se >  was necessary to prevent the occurrence of the instability in 
the given example. 

4.2.4.3 Correction for Free Surface Flows 

The intuition of Monaghan (1989) to prevent penetration of fluids impinging each other 
is termed XSPH (where “X” is the unknown factor). The XSPH correction is useful to 
obtain better results for free surface flows (see Monaghan (1994)) or for immiscible 
multiphase flows. A correction for the velocity is introduced that leads to an adaptation 
of the particle velocity to the mean velocity of the surrounding particles, which keeps 
the particles to move more orderly. The correction term, added to the right-hand side of 
equation (4.16) is 
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where ( ) 2ab a br r r= + . The parameter 0 1Xe£ £  was introduced by Monaghan 
(1992) and is usually chosen as 0.5Xe = . 

4.2.4.4 Variable Smoothing Length 

The smoothing length h  controls the number of neighbouring particles that contribute 
to the solution of the momentum and continuity equations and thus exerts an influence 
on the accuracy of the simulation. Thus, the idea is to introduce a smoothing length that 
varies according to local conditions, and increased spatial resolution seems to be obvious 
(Hernquist and Katz (1989)). In areas with higher particle density a smaller smoothing 
length is necessary than in regions with small particle density; this leads to a definition 
of the particle smoothing length ah depending on its density ar  
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here s  is the number of spatial dimensions. According to Benz (1990), a simple 
approach for the time rate of change of the smoothing length is by using the time 
derivative of equation (4.33), 
 

 
æ ö÷ç ÷= -ç ÷ç ÷çè ø

a a a

a

Dh h D

Dt Dt

r
sr

 . (4.34) 

 
Since the kernel function depends on the smoothing length, the time derivate of the 
kernel function has to be considered in the momentum and continuity equations, 
leading to an iterative solution procedure. A simpler and explicit approach is to use 
simple averaging of the kernels and kernel gradients (Monaghan (1992) 
 

 ( ) ( )( )1
, ,

2ab a b a a b bW W r r h W r r h= - + -  , (4.35) 

 ( ) ( )( )1
, ,

2a ab a a b a a a b bW W r r h W r r h =  - +  -
  

 . (4.36) 

 
Price (2004) used this simplified approach for some of his test problems and obtained 
satisfactory results with a substantially improved accuracy. 

4.2.4.5 Turbulence Models 

The standard formalism of SPH was successfully applied to complex flow types such as 
wave breaking, e.g. by Landrini et al. (2007). It was shown that detailed properties of 
vortices can be recovered. According to Cottet (1996), artificial viscosity models can be 
seen as eddy viscosity models but parameters have no explicit reference to any 
regularization of motion, i.e. the parameters have to be calibrated according to the 
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problem at hand. However, in general the approach allows for taking into account 
turbulent effects in a similar way as algebraic turbulence models. 
 
An advanced turbulence model is presented by Monaghan (2002). He introduced a fully 
Lagrangian turbulence model based on the Lagrangian averaged alpha model that is a 
powerful extension to the XSPH algorithm and is similar to the Large Eddy Simulation 
(LES) method. 
 
Other advanced approaches are based on the adaptation of traditional turbulence 
models to the SPH method. The use of Reynolds-averaged flow equations is very 
common in engineering. This approach can also be adopted for SPH equations and has 
been successfully used recently for various applications, especially wave braking, with 
different eddy viscosity models such as the mixing length closure or the -k e  model (see 
e.g. Violeau and Issa (2007a), Shao (2006)). Also the concept of LES is applied to the 
SPH method in terms of the sub-particle scale (SPS) turbulence model introduced by 
Shao and Gotoh (2005). An overview of these approaches is given by Violeau and Issa 
(2007b).  

4.2.5 Initial Conditions 

Simulations with SPH are initialised by providing appropriate values for all particles. Thus, 
the following properties of a particle a  are set at the beginning of the simulation: the 
mass am  that is the only constant property of a particle (besides the kernel for 
constant h ), the density of the particle ,0ar  and its initial velocity ,0au


, where the index 

0  denotes initial values. Furthermore, the initial particle spacing s  and the initial time 
step are important values.  
 
If the fluid is considered to have no initial pressure variation, the mass of a particle can 
be obtained by 
 

 ( )0am s
s

r=   , (4.37) 

 
in which for water usually 0 1000r =  kg/m3. For free surface flows, such as open 
channel flows, a hydrostatic pressure distribution is usually a good choice as initial 
condition. The hydrostatic pressure condition reads 
 
 0 0( ) ( )p z g H zr= -  , (4.38) 

 
where 0H  is the initial water depth. By combination of (4.38) with the equation of state 
(4.17), i.e. setting ( ) ap z p= , the initial density of particle a  at height z  corresponding 
to a hydrostatic pressure distribution can be set as (compare Lehnart (2008)) 
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By evaluating equation (4.37) for the resulting density, the mass of the particles is 
obtained. 
 
It may be noted that due to difficulties in obtaining appropriate open boundary 
conditions for SPH models (see next section), initial conditions are applied instead in 
many cases, e.g. a tank filled with water and a bottom outlet which generates an inflow 
to a subsequent model section. 

4.2.6 Boundary Conditions 

To set or obtain appropriate boundary conditions for particle methods is a demanding 
task. For grid based methods the values at the boundary can be obtained directly, either 
by explicit definition of the value of a variable at the boundary or by use of boundary 
cells. The latter approach can also be applied to particle methods in the sense of ghost 
particles as used at rigid boundaries for example (see section 4.2.6.3). For open 
boundaries, such as in- and outflows, neither approach is applicable because the 
particles themselves define the computational domain and its boundary, i.e. particles 
have to be created or erased at open boundaries. 

4.2.6.1 Inflow Boundary 

A simple inflow boundary condition is to continuously generate particles at the 
boundary with a given velocity as depicted in Fig. 4-6. Since particles carry density, this is 
actually a mass flow and not a velocity boundary condition.  
 

Г

inflow

z

x  

Fig. 4-6: Example of channel inflow as boundary condition: constant mass flow over boundary and 

velocity profile at distant section of the channel. 

However, this approach is rather tricky, because regardless of the positions and 
momenta of the particles already existing in the domain new particles are created. This 
may lead to severe instabilities close to the boundary, if positions of existing and newly 
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created particles become very close. Thus, it is recommended to choose the parameters 
and geometry of the inflow in a way that the flow close to the boundary is as 
continuous as possible (see e.g. section 5.4.2). As an alternative, applications with SPH 
often use a water tank with an outlet as inflow boundary. 

4.2.6.2 Outflow and Pressure Boundary 

There is no true outflow boundary for particle methods, except the removal of particles. 
Such a boundary consists of a defined domain where particles are erased as soon as 
they enter it, i.e. a particle sink. The extent of the domain has to be chosen sufficiently 
large according to the velocity of the particles close to the boundary and the size of the 
time step to prevent the skipping of particle sink. 
 
For particle methods such as SPH it would be very difficult to prescribe the pressure of 
particles at a preferred location as a boundary condition and to obtain the desired effect. 
Nevertheless, appropriate pressure boundaries are very important in hydraulic 
engineering. Thus, approaches to model outflow boundaries as applied in laboratory 
experiments such as a weir or a permeable wall are also useful for SPH. However, 
implementation of these approaches requires calibration. 

4.2.6.3 Rigid Boundaries 

Monaghan and Kajtar (2009) note that “SPH is a flexible robust method for simulating 
problems involving fluids interacting with rigid or elastic bodies. Despite its widespread 
application, the appropriate modelling of boundaries, fixed or moving is still not clear.”  
 
One of the major problems with SPH concerning fluid-structure interaction is the 
encounter of fluid particle with a rigid boundary; the interpolant will be incomplete if no 
particles are present that identify the boundary. Therefore, different solutions that 
include the creation of virtual boundary particles are available to avoid boundary 
problems. Gomez-Gesteira et al. (2010a) distinguish three different kinds of boundary 
particles: ghost particles, repulsive particles and dynamic particles. 
 
The first approach involves the creation of a ghost or mirror particle when a fluid particle 
comes into contact with the boundary as proposed by Libersky et al. (1993). The ghost 
particle has the same density and pressure as the fluid particle, but its velocity is 
opposite to introduce a repulsive effect. According to Morris et al. (1997) this procedure 
works well for straight channels, but introduces density errors for curved surfaces. 
 
The use of repulsive particles was introduced by Monaghan (1994). The boundary 
particles are fixed and exert a repulsive force according to a Lennard-Jones potential for 
a given distance to the fluid particle. This approach has been refined by Monaghan and 
Kos (1999) and Monaghan et al. (2003). A further modification of this approach 
includes the adjustment of the repulsive force according to the magnitude of the local 
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flow depth as presented by Rogers and Dalrymple (2008). However, for irregular free 
surfaces this approach may lead to numerical instabilities since the flow depth is not 
easy to predict. 
 
For dynamic particles, the boundary particles are initially arranged as fluid particles, i.e. 
also inside an obstacle, but their position does not change with time or is externally 
influenced. The density and the pressure of the dynamic particles are evaluated by the 
continuity equation and the equation of state as for the fluid. This approach was applied 
by Morris et al. (1997) to ensure no-slip conditions for laminar wake flow. Potapov et al. 
(2001) used this approach for the combination of the SPH method with the DEM, where 
dynamic particles were placed inside the DEM particles without affecting the density of 
the DEM particle. For open channel flows, Issa (2005) used several rows of fixed 
dynamic particles to achieve appropriate boundary conditions. However the main 
problem of this kind is the evolution from the initial condition, where fluid particles 
move away from the wall causing a pressure decrease. This leads to a so-called pseudo-
viscosity where small groups of particles remain stuck to the boundary. Furthermore, this 
approach does not necessarily prevent the penetration of the boundary by fluid particles. 
 
According to Gomez-Gesteira et al. (2010a) the creation of realistic boundary conditions 
remains an open topic in SPH methods. The approaches for rigid or wall boundary 
conditions applied in this work are actually a combination of the first two concepts. A 
detailed description in terms of fluid-structure interaction is given in section 4.4.1. 

4.2.7 Time Integration and Solution Algorithm 

4.2.7.1 Integration Scheme 

The fluid particles are advanced in time by the solution of the Lagrangian form of the 
Euler equations, i.e. the continuity (4.12) and the momentum equation (4.14). Since 
both equations are ordinary differential equations, theoretically any stable time-stepping 
scheme for ordinary differential equations can be used. However, for non-dissipative 
systems Monaghan (2005b) recommends the use of a symplectic Verlet integrator of 
second order accuracy since it conserves angular momentum exactly and conserves 
energy better in comparison with a Runge-Kutta scheme.  
 
For dissipative systems, Lehnart (2008) implemented a predictor-corrector method based 
on the leapfrog scheme (PC-leapfrog) as presented by Monaghan et al. (2003). 
Introducing the variables of particle a  at the beginning of time step n  as 
ˆ ˆ, , ,n n n n
a a a aD F ur


 and nr


, the predictor step can be described as 
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1

n n
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+
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 


 , (4.40) 

 21 ˆ
2

n n n
a a ar r tu t F= + +

     , (4.41) 

 ,
ˆn n

a p a atDr r= +  , (4.42) 

 
where pcg  controls the damping of the velocity that is usually set to 0pcg =  and t  is 
the size of the time-step n  that is determined by the conditions given in the next 
section. It may be noted that the position vector r


 is not corrected, i.e. 1n

a pr r r+ = =
  

. 
Based on the predicted density ,a pr  and velocity ,a pu


, the values of ,

ˆ
a pF  and ,

ˆ
a pD  are 

predicted by evaluation of the corresponding continuity and momentum equations. 
Finally, the corrected values for the new time-step can be obtained by 
 

 ( )1
, ,

1 ˆ ˆ
2

n n
a a p a p au u t F F+ = + -
    , (4.43) 

 ( )1
, ,

1 ˆ ˆ
2

n n
a a p a p at D Dr r+ = + -  . (4.44) 

 
Now, the particles can be advanced to the new positions 1n

ar
+  and initialized with the 

new values for 1n
au
+  and 1n

ar
+ . 

4.2.7.2 Time-step size 

For the SPH method applied here, three characteristic time scales exist, namely 
 

 
2

max

, ,
ref

h h h

u an
 (4.45) 

 
The first corresponds to the general stability condition for numerical problems where 
advection is dominant, i.e. the CFL-condition (Courant et al. (1928)). It means that in the 
time step t  a quantity must not advance further than a given length scale. For SPH, 
the relevant length scale is the smoothing length h  and the reference velocity refu  is the 
higher of the maximum flow velocity or the specified sound velocity sc , i.e. 

( )max
max ,ref su u c=


. The second and the third characteristic time scales restrict the 

time step to the maximum of acting internal and external forces, i.e. the viscous forces 
and the applied forces in terms of the maximum particle acceleration maxa , whereas the 
former is only relevant for flows with low Reynolds numbers. 
 
According to these considerations, the size of a time step can be obtained by the 
assignment 
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2

max

min , ,s
ref

h h h

u a
t

n
a

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
  , (4.46) 

 
where sa  is a safety factor similar to the CFL number. According to the results reported 
by other researchers, sa  lies in the range of 0.125 and 0.5 (see e.g. Lee et al. (2008) or 
Monaghan et al. (2003)). Values around 0.25 may be preferred for flows with strongly 
varying boundary forces like those in the present work.  

4.2.7.3 Solution Algorithm 

The solution algorithm for the SPH method can be outlined as follows: 
 

 
 

4.2.8 Considerations of Accuracy 

According to Monaghan (2005b), the integral interpolant is approximated very 
accurately by the summation interpolant using a Gaussian kernel for equi-spaced 
particles. Furthermore, a smoothing length larger than the particle spacing, i.e. h s>  , 
results in a very good approximation, but for h s<  the accuracy is poor. For 2D 
simulations Graham and Hughes (2008) show that with a ratio of 1.5h s =  the 
approximations are convergent for regularly spaced particles and are less sensitive to 
particle disorder than with ratios of 1.25 or 1. Thus, the common choice of a Gaussian 
kernel and a smoothing length 1.5h s=   based on the initial particle spacing seems to 
be reasonable. 
 
When the particles are disordered, as it will occur in almost any dynamic simulation with 
SPH, the errors could be estimated by a Monte-Carlo estimate. However, since the 
moderate disorder of particles occurring in SPH simulations is not comparable with the 
large fluctuations included in the Monte-Carlo estimate, the error is actually much 

I. set initial conditions 

II. while time endt t£  
 1. set boundary conditions 
 2. determine time-step size t  according to (4.46) 
 3. for each particle i :  

3.1. determine interacting particles j  and compute right-hand 
sides of the continuity (4.13) and momentum equation (4.15), 
i.e. F̂  and D̂ . 

3.2. compute new values for time t t+  according to the time 
integration scheme, i.e. equations (4.40) to (4.44) 

 4. advance particles to their new positions and increment time by t  
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smaller. Furthermore, due to the disorder depending on the dynamics, traditional error 
estimates as used for FDMs or FEMs are not applicable. Thus, the best way to determine 
the accuracy of a SPH simulation is by comparing the results with known solutions, 
experimental data or the outcome of other numerical schemes. 
 
As far as consistency is concerned, an increasing number of particles N  will not 
necessarily lead to a higher accuracy. According to Rasio (2000), also the number of 
neighbouring particles NN  has to be increased in a way that N  increases faster than 

NN  while the smoothing length h  decreases. Furthermore, he states that the SPH 
method is consistent in the limit when N  ¥ , NN  ¥  and 0h   and says that 
convergence can be accelerated significantly by increasing the smoothness of the kernel. 
This implies that particles must overlap at all times in order to guarantee the 
convergence of the method. 

4.3 Discrete Element Method 

4.3.1 Basic Concepts 

4.3.1.1 Introduction 

For simulations of interacting rigid bodies, the focus is on their contact and the 
balancing of the occurring contact forces. Cundall and Hart (1992) distinguish between 
hard contacts where interpenetration of the bodies is regarded as non-physical and soft 
contacts that allow for interpenetration (see Fig. 4-7). For solids, the first seems to be 
reasonable from a physical point of view since a collision results in surface deformation. 
However, a simulation model for hard contacts at least has to exactly track the moment 
of contact (the deformation of the surface would be a further task, if required). This 
usually requires the application of an iterative scheme. Hence, corresponding 
applications are commonly restricted to a rather small number of interacting bodies.  
 
If soft contacts are considered, the interpenetration is regarded to be an equivalent for 
the surface deformation. The contact forces are related to the displacement or the 
amount of interpenetration d  in general. A well-known example for that is the Hertz 
contact theory (see 4.3.2.2) which describes the contact between two deformable 
spheres. Furthermore, the approach of soft contacts is the basic concept of the discrete 
element method, since it allows for stable and accurate interaction modelling of rigid 
bodies and can be applied to an almost unlimited number of particles as far as 
computational resources are available (see section 2.2.2 for an overview of current 
applications).  
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hard contact
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with

penetration

before
collision

δ
 

Fig. 4-7: Modelling approaches of interacting rigid bodies: collisions with and without penetration of the 

colliding bodies. 

The procedure of a DEM simulation may be outlined as follows. In a first step it has to 
be detected for each particle whether collisions with neighbouring particles will take 
place or not, i.e. whether interpenetration occurs or not. If a collision occurs, a so-called 
penalty force depending on the amount of interpenetration will be applied. With regard 
to a pair of colliding particles, the penetration continues until the forces exerted by the 
particles are balanced by the penalty force, i.e. when maximum penetration is reached. 
The detailed approach includes different penalty force laws and is presented and 
illustrated with examples in the following sections. 

4.3.1.2 Spring-Damper System 

A common approach to model penalty forces between two colliding rigid objects is the 
implementation of a spring-damper system (e.g. Cundall and Strack (1979), Tsuji et al. 
(1992) and Tavarez and Plesha (2007)). For the case of two spheres, iP  and jP , the 
state of the spring-damper system is defined depending on their overlapping or 
penetration depth d , respectively 
 

 ( )
0 : ,

0 : ,i j ij

inactive
r r r

active
d

ì £ïï= + - íï >ïî
 (4.47) 

 
where ir , jr  are the radii and ijr  is the distance between the two spheres. Please see 
appendix A.2 for general definitions used in this chapter. Fig. 4-8 shows an active 
spring-damper system.  
 
The spring is responsible for putting back the spheres to the state of contact. It exerts a 
penalty force ( )( )nF k d


 depending on material properties and penetration depth d  in 

the direction of the spring-damper system axis 

sde , i.e. normal to the contact surface, 

 

 ( )( ) ( )= -
 
n sdF k k ed d  . (4.48) 
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The penalty force ( )( )nF k d


 can be determined using different approaches, either linear 
or nonlinear depending on ( )k d . Chapter 4.3.2 gives a brief overview. 
 

δ

c

d

damper

spring

mi mj

ri rj

Pi Pj

 

Fig. 4-8: Spring-damper system for the modelling of penalty forces due to overlapping. 

A simple approach for modelling dissipation is the application of a viscous damper. The 
exerted force of the damper depends on the collision velocity = -

 
i jv vd  in the 

direction of the spring-damper system axis, 
 

 = -
 
d sdF d ed  , (4.49) 

 
where d  is the viscous damping coefficient with units [Ns/m].  
By adding equations (4.48) and (4.49) the collision force cF


 results as 

 

 ( )( )c n dF F k Fd= +
  

 . (4.50) 

 
Assume that the spring-damper in Fig. 4-8 is fixed to the two horizontally aligned 
spheres with initial position 0d = . Physically, this is a one-dimensional problem. 
Furthermore, for a system of two bodies approaching each other, the reduced or 
effective mass is defined as (e.g. Brilliantov and Pöschel (2004)) 
 

 i j
m

i j

m m

m m
m =

+
 . (4.51) 

 
Applying Newton’s second law to the colliding pair one obtains 
 

  =


m sd ce Fm d  . (4.52) 
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This leads to the following equation of motion depending on a penalty force model 
based on ( )k d : 
 
 ( ) 0m d km d d d+ + =   (4.53) 

 

4.3.2 Penalty Force Models 

4.3.2.1 Linear Force Model 

The most common model for determination of the force necessary to displace a spring is 
Hooke’s law. The spring is assumed to be perfectly elastic and thus the model is 
considered to be conservative. For a spring with stiffness c  [N/m] and displacement 
d  [m] acting in the direction of the spring-damper system axis sde


 the linear force law 

reads 

 ( ) ( ( ))s ij nF c e F kd d d= - =
 

 , i.e. ( )k cd d= . (4.54) 

 
The behaviour of a corresponding spring-damper system can be illustrated by the one-
dimensional problem depicted in Fig. 4-14 a), where the lower sphere jP  is fixed and 
the upper one has initial position 0d =  as well as mass m imm = . Due to gravity 

(0, 0, )Tg g= -


, the upper sphere iS  will oscillate around an equilibrium position for 
which  

 0 ( )g m ij sF g c e Fm d d= = - =
  

 , (4.55) 

 0 = mg

c

m
d  (4.56) 

 
holds. This leads to an equation equivalent to (4.53) but with displacement of the 
equilibrium position to 0d  
 0z d d= -  , (4.57) 

 0m d cm z z z+ + =   . (4.58) 

 
Introducing the definitions 

 :
2

d
m

d

c
g

m
=  and 2

0 :
m

c
w

m
=  (4.59) 

 
one obtains 

 2
0 02 0dz g w z w z+ + =   (4.60) 

 
Equation (4.60) is a homogeneous linear second-order differential equation with 
constant coefficients that corresponds to a damped harmonic oscillator. Its solution can 
be characterized by the attenuation factor or damping ratio dg : 
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0 1dg< <  weakly damped oscillations with angular frequency dw , 

1dg >  strong damping, no oscillations at all, 
1dg =  critical damping.  

 
For no damping, i.e. 0dg = , the angular frequency of the system is 0w  and the period 

oT  is obtained by 

 
0

2
2 m

oT c

mp
p

w
= =  . (4.61) 

 
The ordinary frequency of the system is 
 

 0
1 1

2o m

c
f

T p m
= =  . (4.62) 

 
For the above mentioned cases, the response of a spring-damper system with a sphere 

iS  ( r = 0.05 m, r = 2800 kg/m3, m » 1.5 kg), spring constant 236c mp= »  521 N/m 
and frequency 0f = 3 is depicted in Fig. 4-9. The damping ratios are given as 0.025dg =  
( d » 1.4 Ns/m) for weak damping 0dw w» ; 5dg =  ( d » 276.4 Ns/m) for strong 
damping and 1dg =  (d »55.3 Ns/m) for critical damping. 
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Fig. 4-9: Response of spring-damper system for various damping ratios. 

A further discussion of the solution of equation (4.60) and examples can e.g. be found 
in Knudsen and Hjorth (2000). 
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4.3.2.2 Hertz Force Model 

A more physically motivated approach for modelling the interaction of two perfectly 
elastic spheres with frictionless surfaces is based on the contact theory of Hertz (1882). 
The nonlinear force law is written as 
 

 ( ( )) n
n ijF k K ed d= -
 

 , (4.63) 

 
i.e. ( ) nk Kd d= , where K  is the generalised stiffness constant. The exponent n  
depends on the distribution of the contact stresses and is set to 1.5, as in the original 
work by Hertz. For two colliding spheres i  and j , the stiffness parameter depends on 
the radii and the material properties, 
 

 

1
24

3( )
i j

i j i j

r r
K

r rs s

é ù
ê ú= ê ú+ +ê úë û

 , (4.64) 

 
with material parameters is  and js : 
 

 
21
, ( , )k

k
k

k i j
E

n
s

-
= =  , (4.65) 

 
where kn  is Poisson’s ratio and kE  is Young’s modulus. An in-depth description of the 
Hertz contact theory is e.g. given by Popov (2010).  
 
To compare the different approaches, the progression of the penalty force during 
impact for linear and Hertz law is depicted in Fig. 4-10. 
 
The equivalent linear spring stiffness for a Hertzian contact can be obtained by its force 
potential. By integration of the penalty force (4.63) along the path of penetration ds  
one obtains the potential energy for the Hertz force law with 1.5n =  as 
 

 5 2

0

2
( ( ))

5hU F k ds K
d

d d= - =ò


 . (4.66) 

 
A similar equation holds for the force potential sU  of a displaced linear spring (see 
equation (4.80)). For identical maximum penetration the potentials are equal; this leads 
to 
 

 
5 2 2
max 1 max

2 1
5 2

= = =h sU U K cd d  . (4.67) 
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Fig. 4-10: Comparison of the linear and Hertz force laws, where ( ( ))nF F k d=


 and 

max max( ( ))nF F k d=


, respectively. For the curve “linear*” the linear force is normalized by the 

maximum force corresponding to the Hertz solution. 

Rearranging equation (4.67) one obtains the spring stiffness 1c  that is equivalent to the 
Herzian contact for similar maximum penetration maxd  
 

 1 max
4
5

=c K d  . (4.68) 

 
This implies that the application of the linear law with equivalent spring stiffness 
according to (4.68) instead of the Hertz law results in a 20% reduced penalty force at 
maximum penetration. This fact is also depicted in Fig. 4-10 by the curve denoted as 
“linear*”, where the linear force is normalized by the maximum force corresponding to 
the Hertz solution. Furthermore, the impact time is smaller and because of the 
nonlinearity of the Hertz force law, a corresponding spring-damper system will not 
oscillate around its equilibrium position. This is apparent from Fig. 4-11, where in 
addition the penetration depth of the Hertzian contact, normalized by the equilibrium 
penetration depth of the linear spring 0,lind , is shown; it implies similar penetration 
depths for both systems.  
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Fig. 4-11: Oscillation of a spring-damper with a linear and a Hertz force law and similar penetration depth 
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Fig. 4-12: Oscillation of a spring-damper with a linear and a Hertz force law and approximately similar 

frequency 

Replacing the spring-damper system based on the Hertz force law by a harmonic 
oscillator with appropriate stiffness, a system with approximately the same frequency 
can be obtained. The momentum of an impact with duration ct  has to be equal for the 
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linear and Hertz laws and is here estimated by a linear approximation depending on 

maxd  of the Hertz interaction 
  

 
3 2 3 2

2 2 max max
0 0

2 2

c ct t

c ct t
c dt K dt c Kd d d d= » =ò ò  , (4.69) 

implying 
 

 1 2
2 maxc Kd=  , (4.70) 

 
where 2c  is the stiffness of a harmonic oscillator that has approximately the same 
frequency as a spring-damper with Hertz interaction given by the properties K  and 

maxd . An example of the approximation is depicted in Fig. 4-12. The approximated 
frequency of the linear law compared to the Hertz law is about 1% smaller for impact 
without velocity and about 5 to 10% larger for the more general case with impact 
velocity. The deviation slightly increases with smaller impact time. 
 

4.3.2.3 Models with Dissipation  

The penalty force models described in the previous sections do not consider energy 
dissipation during the process of impact. Observed energy loss is assumed to be due to 
material damping of the bodies, which would dissipate energy in the form of heat. 
Lankarani and Nikravesh (1994) studied impact in multibody systems and developed a 
contact model with hysteresis damping. They suggested separating the normal contact 
force into elastic and dissipative components. That approach corresponds to equation 
(4.53) with a nonlinear damping coefficient 
  

 nd cd=  (4.71) 

 
where n  is set according to the contact law (see equation (4.63)) and the hysteresis 
factor is given by 

 
23 (1 )

4
r

c

K e

v
c

-
=  , (4.72) 

 
in which cv  is the velocity at initial contact. The restitution factor re  depends on the 
velocity before, cv  and after, cv ¢  contact and is defined as 
 

 c
r

c

v
e

v

¢
= -  , (4.73) 
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where 1re =  corresponds to an elastic and 0re =  to a completely inelastic collision. 
Further details on the restitution factor as well as a general formulation of a nonlinear 
spring-damper model can be found in Luding (1998). 

4.3.2.4 Lennard-Jones Potential 

Another approach to model the interaction of particles employs the Lennard-Jones 
Potential, that emerges from molecular dynamics (see e.g. Young (2002)). Compared to 
the former contact force models, not only a repulsive force is considered but also an 
attractive force is taken into account. The exerted force depends on the distance 
between the interacting particles, i.e. the force is not limited to contact in general. Due 
to its behaviour, the Lennard-Jones potential may be rather termed an interaction model 
than a contact force model. Furthermore, the Lennard-Jones potential is conservative. 
 
For two interacting particles the Lennard-Jones potential is given as a function of their 
distance ijr  by 
 

 ( ) ,
é ùæ ö æ öê ú÷ ÷ç ç÷ ÷ç ç= - >ê ú÷ ÷ç ç÷ ÷÷ ÷ê úç çè ø è øê úë û

n m

p p
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ij ij

U r n m
r r

s s
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where 

 

1

1 n n m

m

n

n m m
a

-æ ö÷ç ÷= ç ÷ç ÷ç- è ø
 , 

 
(see e.g. Griebel et al. (2007)). The parameters of the potential are pe  and ps . The 
depth of the potential, i.e. the intensity of the repulsive and attractive forces, can be 
given by pe  [Nm], which may be also considered as the strength of a matter or material 
compound (see Fig. 4-13). For 0=pe  Nm or 0=ps  m the potential vanishes and 

0ijr =  m is physically not possible. Examples of two different potentials with 1=ps  m 
and depth 0.5=pe  Nm as well as 0.01=pe  Nm are depicted in Fig. 4-13.  
A common approach is to set 6m =  as used in the definition of the van der Waals 
force; moreover 12n = , however this choice does not stem from physical 
considerations but merely from considerations of mathematical simplicity, yielding 

4a = . 
 
The force acting between two particles at distance ijr  can be obtained by differentiating 
equation (4.74). For 6m =  and 12n =  the derivative reads 
 

 

6 6
1

( ) ( ) 24 1 2
é ùæ ö æ öê ú÷ ÷ç ç÷ ÷ç ç= - = -ê ú÷ ÷ç ç÷ ÷÷ ÷ê úç çè ø è øê úë û
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The point where the force changes from repulsion to attraction, i.e. 0F =


, is given for 
non-zero values of pe , ps  and ijr  as 
 

 
1 6

0 2= pr s  . (4.76) 
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Fig. 4-13: Lennard-Jones potential for two different sets of parameters (potential: red, force: black) 

 
Thus, equation (4.74) or (4.75) can be expressed in terms of 0r  by inserting 1 6

02
-=p rs  

(see appendix A.4.1).This is useful to provide appropriate initial conditions which 
correspond to the equilibrium state.  
 
For non-molecular models with rigid hulls as considered in this work, the binary mode 
described by equation (4.47) is introduced to describe collisions. Furthermore, for a 
collision model a formulation of the potential or force depending on the equilibrium 
penetration depth zerod  is preferred.  
 
 0 ( )i j zeror r r d= + -  . (4.77) 

 
If 0zerod = , only repulsive forces will act; this corresponds to a pure penalty force 
model; for 0zerod >  also attraction may occur.  
 
Due to the possibility of modelling attraction by use of the Lennard-Jones potential as 
interaction law, also adhesive forces of materials may be considered. However, for dry 
granular material they are not of importance, except e.g. for clays. 
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4.3.3 Modelling of Collisions 

To illustrate the collision process, two examples how to calculate the penetration depth 
and thus the collision penalty force based on conservation of energy are given below. 
The cases discussed are depicted in Fig. 4-14. They represent the occurring kinds of 
collisions of the DEM model used in this work. On the one hand, the collision of a 
sphere with a fixed sphere is discussed (Fig. 4-14a), case A); this represents e.g. the 
interaction of a saltating sediment particle with a bed particle that is at rest. On the 
other hand, two colliding spheres with opposite velocity according to Fig. 4-14b) (case 
B) are studied. This case shows how the interaction of a sphere with a triangulated 
surface of a structure, e.g. a wall, is modelled and may be regarded as the general case 
of the interaction of two spheres where the exerted collision force reaches a maximum. 
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Fig. 4-14: Two different approaches for modelling the collision of a sphere with another rigid object, e.g. 

a wall or a sphere. 

Consider two spheres iP  and jP  with identical radii r , mass m and one degree of 
freedom (1 DOF) in the z-direction. Gravity is given as (0, 0, )Tg g= -


. Displacement of 

the spring-damper system only takes place for positions ( )Pz t r< . Furthermore, the 
systems are assumed to be conservative, i.e. dissipative forces such as damping and 
friction are neglected.  
 
Case A: collision with fixed sphere 

In this classic example, the sphere is released at a given height and after a certain time it 
hits the floor or wall, respectively. The sphere has an initial centre position 

0 0( ) 1Pz t z r= = +  and initial velocity 0( ) 0Pv t = . At the starting time 0t  right before 
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dropping the sphere only potential energy 0 0 0= =U E mgz  exists due to zero velocity. 
After a short free fall the sphere encounters the other rigid object at centre position 

1 1( )Pz t z r= =  and at time 1t . The initial impact velocity 1( )P cv t v= at the time of 
contact of the sphere and the rigid object can be determined by evaluation of the 
system energy 
 

 2
1 0 1 1 0 0

1
0

2 cE E U T E mgr mv mgz- = + - = + - =  , (4.78) 

 02 ( ) 2 = - =cv g z r g 6 , (4.79) 

 
where 1T  is the kinetic energy, 1U  the potential energy at time 1t  and 0E  the total 
energy at time 0t . At time 1t  the displacement of the spring-damper is zero. After the 
contact of the two objects they start to penetrate each other and the penalty force 
increases due to the displacement of the spring. At the state of maximum penetration, 

maxd at time 2t , the position of the sphere is 2 2 max( )Pz t z r d= = -  and the velocity of 
the sphere vanishes: 2 2( ) 0Pv t v= = .  

 
In this case the spring is used to prevent further penetration of the sphere with the wall, 
as depicted in Fig. 4-14a). The force of the spring with stiffness c  and displacement d  is 
given by equation (4.54). By integration of (4.54) along the path of penetration ds  one 
obtains the potential energy of the displaced spring at maximum penetration, 
 

 
max

2
max

0

1
( )

2s sU F ds c
d

d d= - =ò


 . (4.80) 

 
Evaluating the energy of the system at time 2t  leads to 
 

 
2 1 2 1 1

2 2
max max

0

1 1
( ) 0

2 2

s

c

E E U U U T

mg r c mgr mvd d

- = + - - =

= - + - - =
 (4.81) 

 
The same result can be obtained by evaluation of 2 0-E E  of course. Equation (4.81) 
can be written as a quadratic equation for maxd  for a given initial impact velocity cv , but 
only the positive solution is relevant, 
 

 2 2
max max

2
0c

mg m
v

c c
d d- - =  . (4.82) 

 

                                            
6 Note that the quantity below the square root on the right hand side of equation is in units [m∙m/s2]. 
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By inserting cv  from (4.79) into (4.82) yields 
 

 2
max max

2 2
0

mg mg

c c
d d- - =  . (4.83) 

 
Case B: collision of two spheres 

A more complex situation is depicted in Fig. 4-14b). Assume symmetry and the sphere 
P  collides with its mirrored counterpart P ¢  that has identical properties but opposite 
velocity P Pv v¢ ¢= - , and position ¢ = -r r . Since gravity acts as external force for the 
given situation, a constant force of 2mg  is applied to sphere P ¢  which results in a 
corresponding acceleration of ¢ = -g g . Furthermore, sphere P  has a given velocity 

1( )P cv t v=  right before contact. The systems energy for time 1t  reads 
 

 2 2
1 ,1 ,1 ,1 ,1

1 1
2 ( )

2 2P P P P c cE U T U T mgr mv m v¢ ¢= + + + = + + -  . (4.84) 

 
For positions ( )Pz t r< , the spheres overlap until all kinetic energy is absorbed by the 
spring. The potential energy of the displaced spring sE  at maximum penetration is 
analogous to case A (see equation (4.80)), but the spheres’ potential energy at the time 
of maximum penetration 2t  is smaller than in the former case, 
 

 ,2 ,2 max
1

( )
2P PU U mg r d¢= = -  . (4.85) 

 
Evaluation of the system energy for times 1t  and 2t  leads to 
 

 
2 1 ,2 ,2 ,1 ,1

2 2
max max

2( )

1 1
2 ( ) 2 0 .

2 2

P P s P P

c

E E U U E U T

mg r c mgr mvd d

¢- = + + - +

= - + - - =
  (4.86) 

 
Rearranging equation (4.86) one obtains the resulting quadratic equation for maxd  
 

 2 2
max max

2 2
0c

mg m
v

c c
d d- - =  (4.87) 

 
By comparison of both cases for the same collision velocity, it is obvious that in case B 
the maximum penetration depth and thus also the maximum penalty force are reached 
faster, resulting in a shorter collision time. Hence, the interaction of a sphere with a 
triangle (case B) is the decisive case with regard to stability considerations as discussed 
later in this chapter (see section 4.3.6.2). 
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4.3.4 Friction 

4.3.4.1 Coulomb’s Law of Friction 

Although friction between solid bodies is a very complicated physical phenomenon, 
there exists a simple law for dry friction that is an appropriate approximation for 
engineering applications. Based on experimental investigations, Coulomb proposed the 
frictional force as a function of the normal force multiplied by a friction coefficient. He 
distinguished two kinds of friction: static and kinetic friction. 
 
Static Friction (also termed sticking friction) 

To set a body at rest on a plane surface into motion the static friction force has to be 
applied, 
 

 Rs s n tF F em= -
  

 , (4.88) 

 
where sm  is the static friction coefficient (dependent on the interacting materials but 
hardly on contact area or roughness) and te


 is the unit vector of the tangential 

component of the relative velocity perpendicular to the normal force nF


. 
 
Kinetic Friction (also termed dynamic or slipping friction) 

After the force of static friction has been overcome, the resisting force of kinetic friction 
acts on the body. It has the same form 
 

 Rk k n tF F em= -
  

 (4.89) 

 
where km  is the kinetic friction coefficient that has similar properties as sm  and is 
independent of the sliding velocity. 
 

/ ( | |)Rk k nF Fm
 

 
 
It may be noted, that according to Popov (2010) the static and dynamic forces are not 
able to be considered separately in many mechanical problems as they actually have the 
same origin. However, to resolve the friction process in detail and considering all 
interdependences with static forces at once would be very inefficient for numerical 
models like DEM. Hence, for such models both kinds are treated independently or in 
sequence depending on the application (see e.g. Brendel and Dippel (1998)). 
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Fig. 4-15: One dimensional consideration of kinetic friction: discontinuity of the friction force at zero 

velocity and approximations. 

One difficulty in numerical modelling of kinetic friction is the discontinuity of the friction 
force at zero velocity, where it changes its sign (see Fig. 4-15). Close to the discontinuity, 
in reality already for small tangential velocities tv , relatively large forces occur. It may 
lead to numerical instabilities. To overcome this problem, the discontinuity is 
approximated by a continuous sigmoidal function, e.g. the hyperbolic tangent (e.g. 
Andersson et al. (2007)) 
 

 { }( )tanhRk k n t tF F v em h= -
  

 , (4.90) 

 
where h  is the slope of the function at tv = 0. For different values of the friction slope h  
the course of the function is depicted in Fig. 4-15. If the body is a sphere, it will rather 
start to roll than to slide. In this case, the tangential velocity at the contact point is 
decisive. This velocity is called creep speed csv  and is the difference between the 
translational velocity of the body and the circumferential velocity cwd  of the sphere 
 
 cs t cv v wd= -  , (4.91) 

 
where cd  is the distance between the sphere centre and the contact point and w w=


 

is the norm of the angular velocity of the sphere (for the case of two rotating bodies w


 
is the relative angular velocity). Due to cs tv v<  the resulting friction force is smaller 
than for pure sliding, i.e. sliding without rolling. In Fig. 4-16 pure sliding and kinetic 
friction with rolling are compared. Both examples are for a sphere on a plane surface 
with acceleration due to a constant tangential force of 1 N, 


nF = 1 N and km = 0.7 for 

similar friction slopes as above. For rolling, the angular acceleration will become 
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approximately constant after some time; this limits the creep speed to a maximum value. 
In the given example, the velocity of the rolling sphere at t  = 0.2 s is approx. 1.5 m/s. 
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Fig. 4-16: Progression of the kinetic friction force of a body set into motion on a plane surface for 

different friction slopes. The special case of a sphere starting to roll is shown by the straight line. 

Static friction is more complicated to model than kinetic friction. Cundall and Strack 
(1979) proposed a penalty sticking friction model that inserts a tangential spring-damper 
system between the bodies in contact as depicted in Fig. 4-17 (note: for sphere to 
triangle interactions, the mirrored sphere is fixed). Thus, the bodies will actually not 
statically stick at the contact point but will move constrained by the spring-damper 
system. The elastic force of the tangential spring-damper system is 
 

 ,s t t t tF c ed= -
 

 , (4.92) 

 
where tc  is the stiffness of the tangential spring, also termed tangential elasticity, and 

td  is the tangential displacement.  
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Fig. 4-17: Schematic model of interacting spheres with friction. 

The maximum retaining force of the spring-damper system is given by the static friction 
force according to equation (4.88). Thus the behaviour of a stick friction contact can be 
described as 
 

 , 1 : sticking ,

1 : release and re-stick or slide .
s t

Rs

F

F

ì £ïïíï >ïî



  (4.93) 

 
Damping of the system is introduced according to equation (4.59) and controlled by the 
attenuation factor dg  via 

 2t d td mcg=  , (4.94) 

 
where m  is the mass of the heavier of the two interacting bodies. The resulting 
dissipative force of the stick friction contact can be written as 
 

 ( ),D t t t t t tF c d v ed= - +
 

 . (4.95) 

 
The main purpose of including damping in a static friction contact is to prevent 
oscillations of the interacting bodies if the acting force is smaller than the retaining force. 
Furthermore, damping leads to a slower displacement of the spring, i.e. it takes longer 
to reach the maximum retaining force and thus to a delayed release of the contact. 
 
An example, rather illustrative than realistic, of a pure static friction contact is shown in 
Fig. 4-18 with constant tangential force of 1 N, 


nF = 1 N, sm = 0.7 and for different 

values of td  as well as tc . 
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Fig. 4-18: Pure static friction for different attenuation factors and tangential elasticities. Left: 100tc = , 

right: 0dg =  

As mentioned above, the case of pure stick friction for a body with constant 
acceleration as depicted in Fig. 4-18 is not very realistic. On the one hand this is so 
because the body does not return to a state of no motion and the static friction is 
permanently acting. On the other hand this is so because according to Coulomb’s model 
stick friction is an instantaneous force, i.e. the stiffness of the tangential spring should 
be large, e.g. tc = 106 N/m.  
 
The combination of static and kinetic friction is called stick-slip friction, i.e. sticking and 
slipping occur in sequence. 

4.3.4.2 Rolling Resistance 

According to Popov (2010), stick-slip friction is the basic process at the contact zone 
when rolling occurs. However, pure slip friction is already a simple approach for rolling 
resistance, since a sphere will not roll without an eccentrically acting force causing a 
torque. To account for the rather complex process of rolling resistance, a friction torque 
may in addition be considered according to Zhou et al. (1999). By application of the 
same considerations as for slip friction the friction torque reads 
 

 { }( )tanhf r nM F
w

m h w
w

= -
  
  , (4.96) 

 
where rm  is the rolling resistance coefficient with units [m] and w


 is the angular velocity 

(for two rotating bodies w


 is the relative angular velocity). Quoted numerical values for 
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rm  are in the range of 0.0002 to 0.015 m. In this work, the spheres are considered to 
be rigid, hence the choice of rm = 0.001 m seems to be reasonable. The impact of 
rolling friction is depicted in Fig. 4-19 for a constant tangential force of 1 N, nF


= 1 N, 

km = 0.7, h = 10 s/m and rm = 0.001 m. 
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Fig. 4-19: Comparison of pure slip friction and friction with additional rolling resistance, where 

DF  and 

maxDF


 are the total dissipative force and its maximum, respectively ( 0.7km = , 0.001rm = m, 

10h = ). 

The friction models discussed here are considered to be suitable for modelling the basic 
stick, slip and rolling friction interactions between spherical particles and are numerically 
stable if appropriate parameters are chosen. Some advanced friction models are 
presented by Andersson et al. (2007). 

4.3.5 Time Integration 

4.3.5.1 Integration Scheme 

A system of rigid bodies that is simulated by the introduced models can be advanced in 
time by solution of the equations of motion, (3.28) and (3.31), with an appropriate 
scheme for time integration. The main goal of the time integration is to resolve 
accurately every collision occurring in an interval (i.e. during a discrete time step t ) and 
to preserve stability. The first is fulfilled, if the size of the time step will not be larger 
than the smallest diameter of a particle divided by the maximum occurring velocity; this 
is comparable to the CFL condition in computational fluid dynamics (see section 4.2.7.2). 
The latter is quite challenging since the contact forces are generally non-smooth and 
large discontinuities may arise at the right hand sides of the equations of motion. 
 
One of the most common time integration schemes in molecular dynamics is the 
integrator presented by Verlet (1967). The scheme is reversible and quite simple, 



4 Numerical Methods 

92 

 

 2( ) 2 ( ) ( )i i i ir t t r t r t t t a+ = - - +
       , (4.97) 

 
where the two first terms on the right-hand side describe the translation of the particle 
by constant velocity and the last term its correction due to applied forces. The velocity 
can be evaluated by the finite difference term 
 

 
( ) ( )

( )
2

i i
i

r t t r t t
v t

t

+ - -
=
  


 . (4.98) 

 
Note that the velocity is one step behind. To overcome this drawback, derivatives of the 
Verlet integrator are available, such as the so-called Velocity-Verlet scheme where 
positions, velocities and accelerations at time t t+  are estimated based on their values 
at time t . Another similar approach is the leap-frog algorithm, where the position 
depends on intermediate values of the velocity (see e.g. Fincham (1992)), that can also 
be used in combination with a predictor-corrector scheme (for a PC-leapfrog scheme see 
section 4.2.7.1). These schemes can be modified to be used for the time integration of 
rotational dynamics with quaternions, as proposed e.g. by Omelyan (1998). However, all 
Verlet-derivates are only conditionally stable. 
 
According to Fleissner (2010), another group of time integration routines was found to 
be more suitable for applications of a dissipative DEM as used in this work. He proposes 
the use of the Newmark-b  methods which range from fully explicit to fully implicit 
depending on parameters b  and g , i.e. for the former 0b g= =  and for the latter 

1 2, 1b g= = . For intermediate values 1 4b =  and 1 2g = , an unconditionally 
stable implicit scheme results that is of second order accuracy and has negligible 
numerical damping. For the use with particle systems, the implicit schemes can be 
solved by a predictor-corrector method. Furthermore, Fleissner and co-workers extended 
the scheme by a modification of Omelyan’s approach to be used for the integration of 
rotational dynamics. 

4.3.5.2 Time-step size 

By application of implicit, unconditionally stable schemes for time integration such as 
the Newmark-b  methods, there is per se no correlation between time-step size and 
stability. The size of the overall time step actually depends on the desired accuracy. This 
may not go hand in hand with little computational efforts and a fast simulation progress. 
Therefore, use of the largest possible time step that meets the accuracy requirements is 
desired. This can be achieved by time step control algorithms that dynamically adjust the 
time step for a corresponding state of the system. Fleissner (2010) successfully adopted 
the approach by Zohdi (2005) for Newmark- b  methods and the Generalized- a  
methods (not discussed herein).  
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For the explicit PC-leapfrog scheme, the size of a time step can be obtained by similar 
conditions as for the SPH method. The relevant length scale is the radius of the smallest 
sphere minr  and the maximum occurring velocity is taken as the reference velocity, i.e. 

maxrefu u=


. Furthermore, viscous forces are not considered. Including a safety factor 

sa , this leads to the following conditions for the time-step size 
 

 min min

max

m ,in
ref

s

r r

u a
t a

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
  . (4.99) 

 

4.3.5.3 Solution Algorithm 

The solution algorithm for the DEM can be outlined as follows: 
 

 
 
For a detailed description of the simulation algorithm including the handling of discrete 
events please refer to Fleissner (2010). 

4.3.6 Considerations of Accuracy 

4.3.6.1 Contact Time 

From a physical point of view, the error of the method depends on how precisely the 
maximum penetration can be reached, i.e. how well the impact and exerted penalty 
forces are balanced. This implies a theoretical maximum size of the time step that is half 
the contact time or a fraction of it for real model conditions. An estimate for the impact 
time may be derived from an equivalent model of a harmonic oscillator, i.e. the path of 
impact can be regarded as a sectional motion of a corresponding harmonic oscillator 
(see Fig. 4-20). Therefore, equation (4.53) for the collision of two identical spheres as 

I. Set initial conditions 

II. While time endt t£  
 1. set boundary conditions, 
 2. determine time-step size t  according to section 4.3.5.2, 
 3. for each particle i :  

3.1. determine interacting particles j  and compute applied forces 

,a iF


 and torques ,a iM


 according to equations (3.32) and 
(3.33). 

3.2. solve equations (3.28), (3.31), (3.36) and (3.37) with an 
appropriate time integration scheme (see 4.3.5.1), resulting in 
temporally advanced translational and rotational state of 
particle i . 

 4. advance particles to their new positions and increment time by t . 



4 Numerical Methods 

94 

depicted in Fig. 4-8 with the linear force law, without damping and without constraint 
according to equation (4.47) is considered 
 

 2
0 0z w z+ =  . (4.100) 

 
This equation is similar to (4.60) with 0g = . For a harmonic oscillator with only one 
mass as in Fig. 4-14a) the mass is m mm =  (sphere-sphere interaction) and for a 
harmonic oscillator with two masses as in Fig. 4-14b) its mass has to be reduced 
according to (4.51) (sphere-triangle interaction). The solution to (4.100) is 
 
 0cos( )oA tz w q= +  . (4.101) 

 
The maximum penetration maxd  of two identical spheres with impact velocity cv  is given 
by (4.87). For the derivation of the impact time, only the penetration path of one sphere 
is of interest. Thus, the maximum displacement of one sphere is max max

ˆ 2d d= . 
Furthermore, the equilibrium position 0d  can be obtained from equation (4.56). As 
introduced in section 4.3.2.1, a harmonic oscillator will move around the equilibrium 
position, leading to an amplitude max 0

ˆ= -oA d d . 
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t

ct

0−δ
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Fig. 4-20: Definition sketch for the equivalent model of a harmonic oscillator. The paths of the oscillator 

with zero impact velocity (grey line) and the equivalent model with impact velocity cv  are shown. 

The other parameters of equation (4.101) can be found with appropriate initial 
conditions for the problem of interest. At the time of impact 0t =  s, the impact 
velocity is c cv v=


 and the offset from the equilibrium position is 0-d  and the 

corresponding amplitude is ( )max 0
ˆ= - -oA d d ; thus the initial conditions are 

 
 0(0) = -z d  , (4.102) 

 (0) = cv v  . (4.103) 

 
The corresponding phase angle (in radians) can be obtained by evaluation of equation 
(4.101) with initial condition (4.102); the resulting phase angle is 
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 0

max 0

arccos ˆ

æ ö÷ç ÷= ç ÷ç ÷ç -è ø

d
q

d d
 . (4.104) 

 
Evaluating the time derivative of z  given in equation (4.101) for the second initial 
condition (4.103) leads to 
 

 0
0

(0) sin( )
=

æ ö÷ç= = =÷ç ÷÷çè ø o c
t

d
v A v

dt

z
w q  , (4.105) 

 
where 0 2 oTw p=  and oT  [s] is the period of the harmonic oscillator. Inserting the 
phase angle q , angular frequency 0w  and amplitude oA  into equation (4.105), one 
obtains by rearranging 
 

 
( )max 0
ˆ 2 sin( )

o
c

T
v

d d p q-
=  , (4.106) 

 
which is the period of the equivalent model. This result is similar to the simpler form of 
equation (4.61), since 0w  is constant for given mass and stiffness and hence oT  is 
constant as well. Nevertheless, equation (4.106) can be used to obtain an expression for 
the phase angle independent of 0d  and maxd̂ . By rearranging equations (4.106) and 
substituting (4.104) into expressions for sin( )q  and cos( )q , as well as inserting equation 
(4.56) for 0d , the tangent of the phase angle can be written as 
 

 0tan( ) c c

m

v vc

g g
q w

m
= =  . (4.107) 

 
According to the initial condition (4.102), the impact starts at offset 0d , corresponding 
to a phase angle q , and it will end at 2p q- . Thus the collision time ct  is 

0
2( )p q w-  

or by inserting 0 2 oTw p=  
 

 1c ot T
q
p

æ ö÷ç= - ÷ç ÷÷çè ø
 (4.108) 

 
with period 2o mT cp m= . 
 
Equation (4.108) allows for a reasonable estimation of the contact time of a collision 
modelled by the linear force law. With regard to the similarity considerations made in 
section 4.3.2.2, i.e. by choice of the stiffness according to equation (4.70), this approach 
may be used for the Hertz force model as well.  
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4.3.6.2 Error Depending on Size of Time Step 

As introduced in the previous section, the choice of an appropriate size of the simulation 
time step is important for a correct capturing of the impact process. If the time step is 
too large, the maximum penetration that corresponds to equilibrium conditions may be 
exceeded, and linear momentum will not be conserved. To prevent such situations, the 
size of the time step t  is usually chosen to be much smaller than the contact time ct , 
i.e. 2ct t  . Note that the effective maximum simulation time step is a property of 
the time integration scheme and is based on numerical considerations as introduced in 
section 4.3.5.2. Thus the resulting maximum size of the time step does not necessarily 
avoid situations as mentioned above, and the accuracy of the simulation depends still 
strongly on the kind of scheme as well as on the choice of appropriate parameters. This 
can be illustrated by the following example where the PC-leapfrog integration has been 
used. Consider a similar setup as depicted in Fig. 4-14, with a sphere of diameter 

0.03sd =  m, density 2800sr =  kg/m3 and impact velocity 0.16cv =  m/s. The material 
of the sphere is granite ( 960 10kE ´=  N/m2, 0.25kn = ) and the stiffness of the linear 
law is obtained from equation (4.68), i.e. an equal maximum penetration depth is 
assumed for comparison of the penalty force laws. 
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Fig. 4-21: Comparison of linear and Hertz law for different time-step sizes as well as for sphere to sphere 

(S-S) and sphere to triangle (S-T) collisions. 

The error in terms of the standard deviation Fs  of the penalty force depending on the 
simulation time step t  are depicted in Fig. 4-21 for sphere-sphere (S-S) and sphere-
triangle (S-T) interactions with the penalty force according to the linear and the Hertz 
laws. Moreover, the ratio of the mean penalty force meanF  and the reference penalty 
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force refF  that corresponds to equilibrium conditions is shown. Furthermore, the ratio 
2ct t , i.e. the number of time steps used to achieve maximum penetration, is 

diagrammed in Fig. 4-22 for the given example. As can be seen, for the chosen realistic 
model parameters the error as well as the deviation of the mean penalty force rapidly 
increases for a time-step size larger than 10-5 s. This is not particularly remarkable since 
for the given case a time step 510t -³  s is quite close to half the interaction time, i.e. 

2 10ct t £ .  
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0.
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t c / 
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Fig. 4-22: Number of time steps used to achieve maximum penetration for the given example. The lower 

ends of the lines indicate that the maximum time-step size has been reached. 

The conclusion made in the last paragraph of section 4.3.3, “that the sphere-triangle 
interaction is the relevant case with regard to stability considerations” is confirmed by 
the above presented results. For the S-T interaction, the error increases faster and the 
maximum time-step size is smaller than for sphere-sphere interaction. This is due to its 
shorter collision time as shown in Fig. 4-22. Furthermore, the difference between the 
two force laws may be pointed out. With regard to the standard deviation of the 
penalty force, the Hertz force law seems to be more docile than the linear law for the 
same configuration, as can be seen from Fig. 4-21. The reason for this is the larger 
penalty force of the nonlinear Hertz law for penetration ratios maxd d  greater than 
approximately 0.65 (see Fig. 4-10). 

4.3.7 Choice of Appropriate Simulation Models and Parameters 

4.3.7.1 Force Model 

From the physical point of view, linear or Hertz laws are most suitable for modelling 
collisions of rigid spheres. Based on the insights gained in the previous section, use of 
the Hertz law is preferred. Moreover, the parameters of the Hertz law, i.e. Poisson’s 
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ratio kn  and Young’s modulus kE , are material properties commonly used in 
engineering practice. However, this connection to real materials has to be used with 
care, since the emphasis in this work is on the interaction forces between rigid spheres 
and the corresponding conservation of momentum and not on the contact of real 
material in detail. Although, the Hertz law is a reasonable model for the latter, the size 
of the time step would be very small already for moderate accuracy when it comes to 
very stiff materials such as granite (see previous section). Thus, use of modified material 
properties which allow for larger time steps while still maintaining the accuracy 
requirements seems to be a useful approach. However, in such a case a larger 
penetration, i.e. a larger displacement of the sphere, has to be accepted. 
 
This approach is investigated for the preferred Hertz law and the relevant sphere-
triangle interaction, with the same parameters as used for the example in the previous 
section except that Young’s modulus is varied. Consider a maximum penetration maxd , 
or the ratio of maxd  and the sphere radius 
 
 max sa rd=  (4.109) 

 
as a measure of displacement. For the given model parameters, the sphere mass sm  and 
estimated impact velocity cv , a corresponding stiffness can be obtained by rearranging 
equation (4.87): 
 

 ( )2
max

max

2 s
c

m
c g vd

d
= +  . (4.110) 

 
The material parameter K  for the Hertz law can be determined by rearranging equation 
(4.68): 
 

 
max

5
4
c

K
d

=  . (4.111) 

 
For a given Poisson ratio kn , the corresponding Young’s moduli kE  can be obtained by 
combination of equations (4.64) and (4.65) for two identical spheres. This yields 
 

 
( )23 1

2

k
k

s

K
E

r

n-
=  . (4.112) 

 
Finally, the contact time can be estimated by evaluation of equations (4.70), (4.107) and 
(4.108). The numerical results for different Young’s moduli are summarized in Tab. 4-1. 
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Tab. 4-1: Numerical results of S-T interaction with Hertz’ law for different Young’s moduli kE , where 

maxd  is the maximum penetration, ct  is the contact time and sr  the sphere radius. 

 
 
The error in terms of the standard deviation of the penalty force which depends on the 
time-step size for the cases listed in Tab. 4-1 is shown in Fig. 4-23. For the given 
example, a ratio of 1a =  % and a maximum standard deviation of 1Fs =  N results for 
a time-step size of approximately 43 10t -» ⋅  s; this is one order of magnitude larger 
than for real material conditions ( 0.09a = %).  
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Fig. 4-23: Standard deviation of the penalty force depending on the time-step size for the cases listed in 

Tab. 4-1. 

The procedure outlined above, i.e. equations (4.109) to (4.112) in combination with Fig. 
4-23, can be used to estimate the time-step size for a desired accuracy in terms of the 

maxd   max sa rd=     kE   ct   

[m]  [%]  [N/m2]  [s] 

1.37E‐05  0.091  6.00E+10  1.26E‐04 

1.50E‐05  0.1  4.75E+10  1.38E‐04 

7.50E‐05  0.5  8.69E+08  6.86E‐04 

1.50E‐04  1  1.58E+08  1.36E‐03 

3.00E‐04  2  2.94E+07  2.70E‐03 

7.50E‐04  5  3.44E+06  6.52E‐03 
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standard deviation of the penalty force and given model parameters. If only sphere-
sphere interactions are considered, the standard deviations will be approximately half of 
those for sphere-triangle interactions (compare Fig. 4-21). 

4.3.7.2 Stiffness 

If both spheres have identical positions, the displacement of the spring is maximum, i.e. 

( )i jr rd = + . If interpenetration is not intended, the stiffness has to be chosen larger 
than the minimum stiffness minc . Based on equation (4.87) the minimum stiffness for 
which the two spheres do not interpenetrate can be determined by the formula 
 

 
2

max max max
min 2

max

( 2 )

2

+
=
m v gr

c
r

 , (4.113) 

 
or when expressed in terms of the density r  
 

 2
min max max max

2
( 2 )

3
= +c r v grpr  . (4.114) 

4.3.7.3 Damping 

The introduction of damping is reasonable to avoid high frequency oscillations that may 
enforce small time steps (see Gaugele et al. (2008)). Furthermore, it is a simple approach 
to account for the discrepancy of the collision force for non-uniformly shaped particles, 
such as real gravel and spherical particles as considered in this work. 

4.4 Fluid-Structure Interaction 
The interaction between fluid and structures, such as spheres or bodies with a 
triangulated surface, can be modelled in a similar way as the interaction of two spheres 
or a sphere with a triangle, respectively (see chapter 4.3.3). Therefore, in a collision of a 
fluid with a triangulated surface, e.g. a wall, the mirrored boundary particle is a fluid 
particle. Different laws for the penalty as well as the friction force at the interaction 
boundary are presented below. Some alternative approaches found in the literature are 
briefly discussed in chapter 4.2.6.3. 
 
To determine the state of the interaction of a fluid particle with a rigid boundary, i.e. a 
triangle or a sphere, a condition similar to (4.47) is introduced: 
 

 ( )
0 : ,

0 : .i ij

inactive
h r r

active
d

ì £ïï= + - íï >ïî
 (4.115) 

 
Here h  is the smoothing length of the SPH fluid particle and ijr  is the distance between 
the two particles. If the interacting partner is a sphere, ir  is equal to the radius of the 
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sphere. For interaction with a triangle, 0ir =  and ijr  is the distance of the fluid particle 
normal to the triangle surface. 

4.4.1 Normal Forces 

4.4.1.1 Modified Lennard-Jones Potential 

To model the interaction of fluid particles with a rigid body in the same manner as 
molecular interaction seems to be a reasonable approach. In chapter 4.3.2.4, the force 
law for interacting molecules, the Lennard-Jones (LJ) potential, has been introduced. 
Monaghan (1994) used a LJ potential as wall boundary condition for simulating free 
surface flows (for details see appendix A.4.2). Unlike the original form, Monaghan 
defined the potential to be positive for repulsive forces and negative for attraction, i.e. 
for the exponents m n> . He noticed, that the approach by Peskin (1977) using a delta 
function as force law is another way to model rigid boundaries, but in his work the use 
of forces based on known molecular forces produced better results. 
 
A further modification of the use of the LJ potential with SPH is suggested by Muller et 
al. (2004) and may be called Modified Lennart-Jones (MLJ) potential. Other than the 
original LJ potential that leads to an infinitely large force for a particle distance towards 
zero ( 0( )n ijF r ¥ 


), they propose a force law with a finite value of the force at 

the boundary ( ( 0)n ijF r k= =


) 
 

 
( )4 2 2

02
0 0

( ) ( ) ( )
(2 )

, ,

0 .
( ) ij ij ij ij
n ij

k
R r R r R r

R R r r
e if r R

otherwi
F

s
r

e

- - - -
-

ìïï <ïï= íïïïïî

 
 (4.116) 

 
The maximum force value k  at the boundary may be also denoted as stiffness of the 
boundary. Furthermore, the influence of the potential is limited to a given distance R , 
i.e. ( ) 0n ijF r =


 for ijr R³ . The point where the force changes from repulsion to 

attraction, i.e. ( ) 0n ijF r =


, can be set equal to 0r . The authors argue that this 
approach is important for numerical robustness, especially for real time simulations. See 
appendix A.4.3 for further details. 
 
For the investigation of wall bounded flows, an approach depending on the particle 
distance to the boundary wd  is preferable. For the interaction of a fluid particle with a 
triangle the following transformation is defined: 
 
 0 0: : 2, : 2, : 2w ij w wfluid triangle r r D Rd d- = = =  . (4.117) 

 
In what follows, for the sake of clarity, only relations for the fluid particle to triangle 
interaction are discussed. In appendix A.3 the transformation and derived equations for 
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the interaction of a fluid particle with a sphere are summarised for later reference. By 
insertion of (4.117) into (4.116) one obtains 
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(4.118) 

 
and the corresponding potential reads 
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 (4.119) 

 
An example of the progression of the MLJ potential and force for 0w wDd = 0.2 and 
k = 100 N is depicted in Fig. 4-24. 
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Fig. 4-24: Behaviour of the modified Lennard-Jones potential for parameters 0 0.2w wDd =  and 

100k =  N and ( )n wF F d=


. 

When considering only repulsive forces, i.e. 0w wD d= , equation (4.118) becomes 
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The corresponding potential reads 
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The maximum of the exclusively repulsive potential is at distance 0wd  from the wall and 
has the value 
 

 0 0
1

( )
5w wU kd d=  . (4.122) 

 
The progression of a repulsive MLJ potential and force is depicted in Fig. 4-25. 
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Fig. 4-25: Behaviour close to the wall of an exclusively repulsive modified Lennard-Jones potential with 

100k =  N and ( )n wF F d=


. 

To balance a given external static force of amount F , e.g. the weight mg  of a fluid 
body with mass m , the equilibrium distance to the wall can be determined by 
 

 
1 4

0 1weq w k

F
d d

æ öæ ö ÷ç ÷ ÷çç= - ÷ ÷çç ÷ ÷÷çç ÷è ø ÷çè ø
 , (4.123) 
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and the corresponding potential is 
 

 
1 4

0( )
5
w

weqU k
F

F
k

d
d

æ öæ ö ÷ç ÷ ÷çç= - ÷ ÷çç ÷ ÷÷çç ÷è ø ÷çè ø
 . (4.124) 

 
If a certain equilibrium distance to the wall is preferred, the appropriate stiffness could 
be obtained by rearranging (4.123), 
 

 

4

0

0

w

w weq

k F
d
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. (4.125) 

 
The situation of a SPH particle close to a wall at an equilibrium position is depicted in Fig. 
4-26. 
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Fig. 4-26: SPH particle iP  with smoothing length h  close to a wall at equilibrium position weqd . The 

counter particle iP ¢  is used to obtain appropriate boundary conditions. 

The minimum stiffness mink  of the boundary for non-static conditions depends on the 
dynamic load that can be expressed by its total energy at the point 0wd  where the 
interaction starts, 
 

 2
0 0

1
( )

2tot w w wE mg mud d= +  , (4.126) 

 
where m  is the mass of an approaching body and wu  its velocity perpendicular to the 
boundary. This energy has to be balanced with the MLJ potential if no penetration is 
desired. Combining (4.126) and (4.122) yields 
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For a potential with 0 2weq wd d= , equations (4.125) and (4.124) reduce to 
 

 16 ;
16
k

k F F= =  , (4.128) 

 0 0
31 31

( )
160 10weq w wU k Fd d d= =  . (4.129) 

 

4.4.1.2 Force Based on Kernel Gradient 

In the previous approach the boundary collision is modelled as an interaction of a 
particle with its mirrored counterpart and penetration was prevented by a force based 
on a MLJ potential. Another approach for modelling the interaction of a fluid particle 
with a rigid body was introduced by Monaghan et al. (2003). They propose to use a 
fixed boundary particle with given mass and density plus a kernel function. Thus, the 
repulsive force may act as that between a pair of fluid particles. Furthermore, they also 
consider particles tangential to the boundary for the calculation of the boundary force. 
The original approach has been adapted by Lehnart (2008) in the context of her work 
for normal interaction with the boundary particle only, i.e. without taking tangential 
boundary particles into account. This approach is restricted to the interaction of fluid 
particles with triangles. The corresponding boundary force reads 
 

 ) (
1

( )g
w g w in jw

g

m eF
a

a
d d

æ ö÷ç ÷ç= G÷ç ÷÷ç +è ø


 , (4.130) 

 
where g f wa r r=  is the ratio of the fluid density fr  and the density of the boundary 
particle wr  and wm  is its mass. The function ( )g wdG  has the form of the gradient of a 
cubic spline kernel and is defined in terms of g wq hd=  as 
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 (4.131) 

 
where 20.02k s wcb d= , and sc  is the sound velocity, see Monaghan et al. (2003). 
 
To balance a given external static force of amount F  at distance weqd  from the 
boundary, the density of the boundary particle can be determined by 
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For hydrostatic pressure conditions, the choice of fr = 1005 kg/m3 is recommended, and 
the mass wm  of the boundary particle can be approximated by the average mass of a 
fluid particle. 

4.4.2 Friction 

4.4.2.1 Tangential Force 

The friction between the fluid and the surface of a sphere or triangle can be modelled in 
a similar way as the friction between solid bodies as described in chapter 4.3.4. However, 
the exerted tangential force is actually a viscous shear force plus effects due to the 
character of the surface. Thus, the friction coefficient depends rather on the viscosity of 
the fluid and the surface roughness than on dry material-to-material properties. 
 
With respect to the above introduced approaches for the boundary normal force ( )n wF d


 

the viscous friction force can be written as 
 

 { }( )( ( ) tanh) v n w tR w tv F vF ed m d h= -
  

 , (4.133) 

 
where vm  [-] is the coefficient of viscous friction. The hyperbolic tangent of { }tvh , 
where h  is the friction slope and { }tv  is the value of relative tangential velocity, has the 
purpose to smooth the discontinuous stick-slip behaviour (compare equation (4.90)).  

4.4.2.2 Terminal Velocity 

Since the hyperbolic tangent has a maximum value of 1 that is approximately reached 
for arguments equal to or larger than approx. 4, the maximum of the viscous friction 
force is given by 
 

 max ( )( )Rw ww nvF Fd m d=


 . (4.134) 

 
As for kinetic friction, viscous friction only occurs if a tangential force is applied that acts 
in opposite direction of the friction force, i.e. { } 0tv ¹ . Furthermore, the exerted 
friction force cannot be larger than the applied force. Consider an applied tangential 
force of amount tF  acting on a fluid particle for which the ratio between tF  and the 
maximum viscous friction force is defined as 
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F

F
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d
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Thus, for 1Ry >  a fluid particle of mass m  will be continuously accelerated by the 
amount ( )max( )t Rw wF F md- , and for 1Ry £  the friction force will be limited to 
 
 { }( )max( ) tanht Rw w tF vF d h=  . (4.136) 

 
Rearranging equation (4.136) and introducing Ry  leads to the terminal velocity of the 
fluid particle for 1Ry £  in the form 
 

 { } ( )1
atanh , 1end R Rv y y

h
= £  . (4.137) 

 
Furthermore, equation (4.136) can be rearranged to obtain a viscous friction coefficient 
that corresponds to a desired tangential velocity endv  and a given friction slope h , 
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t
v end R

n w end

F
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F vd
m h y

h
= £  . (4.138) 

 
Rearranging equation (4.138) with 1Ry =  leads to the minimum friction coefficient 
that is necessary to obtain a desired terminal velocity for given forces tF


 and nF


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 . (4.139) 
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Fig. 4-27: Terminal velocity due to boundary friction for constant tangential acceleration 1ta =  m/s2, 

( ) 50n wF d =


 N, 1.0033vm =  

For example, consider a tangential force of amount 5tF =  N, a normal force of amount 
( ) 50n wF d =


 N and a constant tangential acceleration of 1ta =  m/s2. The friction 
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slope is then given as { }0.1 endvh = , i.e. { } 0.1endvh = , yielding a viscous friction 
coefficient vm »  1.0033. Various combinations of h  and tv  are depicted in Fig. 4-27. 
 
Note that the acceleration of a particle under the influence of friction is controlled by 
the friction slope and is generally limited by the applied force as indicated by the straight 
line “no friction” in Fig. 4-27. However, bear in mind that the terminal velocity may be 
reached fastest with small values of h  because of little resistance due to friction at the 
beginning. By contrast, large values of h  may lead to a rapid increase of friction for 
small velocities already. Large values of the friction slope h , e.g. { }4 tvh =  
corresponding to tanh(4) 1» , are not preferred since there will be only a small 
temporal lag in the build-up of the friction force, possibly leading to undesired 
behaviour. 

4.4.2.3 Wall Bounded Flow 

For wall bounded flow that can be described by a logarithmic velocity profile as 
introduced in section 3.4.2.3, the specification of the terminal velocity of a fluid particle 
closest to the wall based on the characteristics of the flow may be desired. According to 
equation (3.50), the velocity 0( )t wv u d=  at an equilibrium distance 0wd  from the wall 
for a given roughness sk  can be obtained by 
 

 0
0 * *

29.7
( , ) 2.5 ln w
t w

s

v d u u
k

dæ ö÷ç ÷= ç ÷ç ÷çè ø
 . (4.140) 

 
Furthermore, consider uniform open channel flow with flow depth fh  and slope bS  
both together corresponding to roughness sk . According to equation (2.3), the bottom 
shear stress is b f f bh gSt r=  and ( )1 2

* b fu t r= . With regard to the weight of the 
water column above the particle and in accordance with equation (3.38), the tangential 
shear force and the normal force at the channel bottom are given by 
 

 1( ) n
t weq b f f bF A h gS sd t r -= =


  , (4.141) 

 ( )n weqF mgd =


 , (4.142) 

 
where s  is the initial particle spacing, n  is the dimension of the problem and  

1n
fm h sr -=  .  
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Fig. 4-28: Path of a fluid particle under the influence of a frictional boundary  

for different initial velocity 0v .  

For the present work, uniform flow conditions are of major importance. To reduce the 
extent of the computational domain, they may be obtained fastest by setting 
appropriate initial conditions. Nevertheless, in most cases some distance from the 
channel inlet is needed for the flow to be fully developed. This fact can be illustrated 
based on the above considerations with focus on a single fluid particle at an equilibrium 
distance weqd  from the boundary and with initial velocity 0v  as depicted in Fig. 4-28. 
There, the terminal velocity is assumed to be 0.64endv =  m/s, 1h = , 1fh =  m and 

0.003bS = . 
 
As can be seen, the terminal velocity is reached at 70x »  m in all four cases. However, 
if the initial velocity is smaller than the desired terminal velocity, a good approximation 
will be obtained at 35x » m already, whereas the approach from a larger initial velocity 
still has sizeable deviation at that position. Thus, from this point of view, initial 
conditions based on a velocity smaller than, or equal to the terminal friction velocity at 
the boundary are preferable. 

4.4.3 Damping 

For a fluid particle interacting with a structure, damping can be included in a similar way 
as for the interaction of two spheres as introduced and illustrated in sections 4.3.1.2 
and 4.3.2.1, respectively. However, the case of a fluid particle moving close to a 
boundary with a relative tangential velocity tv  that is moved out of its equilibrium 
position deserves some attention. Such a case is depicted in Fig. 4-29 in terms of the 
ratio of an instantaneous dissipative force D DF F=


 to the maximum dissipative force 

,max ,maxD DF F=


 as well as the ratio of the tangential to terminal velocity endv , 
whereas the dissipative force consists of friction and damping. Thus, the particle is 
moved out of its initial equilibrium position by a velocity nv  in the normal direction 
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towards the boundary, i.e. perpendicular to tv . The size of nv  has been chosen 
sufficiently large so that the particle loses contact with the boundary during rebound, 
which is indicated by piecewise vanishing values of ,maxD DF F . As expected, with 
application of damping the oscillations will disappear after some time and the terminal 
velocity will be reached. However, rather surprising is the fact that also without damping 
(and only with partial contact) a similar state is reached where the particle oscillates 
around the terminal velocity. This may be explained by an integral consideration of the 
dissipative forces, a topic not studied further in this work. 
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Fig. 4-29: Fluid particle oscillating close to a boundary with and without damping. The ratio of the 

instantaneous dissipative force to the total dissipative force as well as the ratio of the tangential to 

terminal velocity is shown. 

 

4.4.4 Time Integration and Solution Algorithm 

For the combination of DEM and SPH, the use of different time integration algorithms 
can lead to an asynchronism, resulting in an unstable simulation. Hence, the same 
integration scheme with identical parameters is preferred. Therefore, the use of the PC-
leapfrog integrator of SPH (as introduced in section 4.2.7.1) for both methods is 
suggested. The solution algorithm for fluid-structure simulations is a fusion of that for 
SPH and the algorithm for DEM, where the original steps remain the same and the time-
step size is determined by a combination of conditions (4.46) and (4.99). 
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5 MODEL CALIBRATION AND VALIDATION 

5.1 Introduction 
In the present chapter the combination of the two numerical methods, SPH and DEM, is 
applied to study fundamental fluid-structure problems and to evaluate the numerical 
methods in terms of their capabilities and limits. The applied models are validated by 
comparing the results of the test cases with reference solutions obtained by physical or 
empirical relations from the literature. If necessary, the relevant model parameters will 
be varied in terms of a model calibration until the result of the numerical experiment is 
in reasonable agreement with reference data. The applications comprise a hydrostatic 
buoyancy experiment, the settling of a rigid body in a tank filled with water and the 
simulation of shear flow in an open channel. For the experiments, the size of the fluid 
particles in terms of their initial particle spacing s  is chosen several times smaller than 
the diameter sd  of the corresponding DEM particle. In the present work, this modelling 
approach where fluid particles are smaller than the rigid body, say 3ss d£ , is termed 
High Resolution Force Model (HRFM). However, SPH is a continuum scale particle 
method and thus the fluid forces acting on the rigid body remain an averaged quantity. 
 

Tab. 5-1: Main model parameters used for model calibration and validation. 

 
 
The main model parameters which are used for the numerical experiments studied in 
this chapter are listed in Tab. 5-1; exceptions occur when specific experiments are 
considered. The initial particle spacing s  and other parameters vary according to the 

parameter  symbol  value/type  units 

sphere radius  sr   0.015  m 

smoothing length  h      m 

artificial viscosity coeff.  a   0.01  ‐ 

artificial viscosity coeff.  b   0  ‐ 

exponent in equ. of state  pg   7  ‐ 

XPH coefficient  Xe   0.5  ‐ 

artificial stress coeff.  se   0  ‐ 

kernel function  abW   Gaussian  1/m 
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configuration. The size of the smoothing length is chosen to be 1.5h s=  , which 
corresponds to 29 and 123 neighbouring particles in two and three dimensions, 
respectively. Since the accuracy of SPH depends on the relation between the number of 
neighbours and the smoothing of local quantities, this is a good choice but also has its 
computational cost. 

5.2 Buoyancy 
The effect of buoyancy has been introduced in section 3.4.1, where also the importance 
of correct modelling of the buoyancy force is pointed out. Improper representation of 
the buoyancy force may lead to an incorrect weight of the submerged body. Thus, the 
resistance of the body against acting fluid dynamic forces may be misleading as well. 
Therefore, the model behaviour for different particle resolutions in two and three 
dimensional space is studied as well as relevant model parameters are identified in this 
section. 

5.2.1 Configurations 

The numerical buoyancy experiments are carried out in a small tank filled with an initially 
quiescent fluid, i.e. particles are at rest. The dimensions of the water body are: length 

0.2fl =  m and height 0.1fh =  m for the two-dimensional (2D) discretisation and 
0.1f f fh l w= = =  m in the three dimensional (3D) case. Thus, as a conservative 

estimate the sound velocity is 10 2 14s fc gh= »  m/s, see section 4.2.3.2. As 
submerged particle, a sphere with three degrees of freedom and radius 0.015sr = m is 
used. Three model configurations have to be distinguished: for case A the sphere is 
located in the middle of the tank at height 0.5s fz h= , for cases B and C the sphere sits 
on top of fixed spheres arranged in a close packing as depicted in Fig. 5-2 and Fig. 5-3.  
 

Tab. 5-2: Initial particle spacing used for buoyancy experiments and resulting number of fluid particles 

including boundary particles. The second column indicates the number of fluid particles per sphere 

diameter. 

 
 

s   2 1sr s +   number of particles  average  t  

[m]  [‐]  2D  3D  [s] 

0.01  4  266 2456 2.10E‐04 

0.005  7  920 13018 1.10E‐04 

0.0025  13  3376 82116 5.30E‐05 
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Fig. 5-1: Initially evenly spaced fluid particles in the vicinity of the sphere for case A. The particle spacing is 

s =0.01, 0.005 and 0.0025 m from left to right. The colour indicates the hydrostatic pressure, where 

red corresponds to larger values than blue. 

 

   
 

   

Fig. 5-2: Experimental setup and initially evenly spaced fluid particles in the vicinity of the sphere for case 

B (upper row) and case C (lower row). The colour indicates hydrostatic pressure, where red corresponds to 

larger values than blue. 

For the given cases, experiments with different resolution of fluid particles in terms of 
the initial particle distance s , hereafter referred to as particle resolution, are carried 
out as listed in Tab. 5-2. In addition, the ratio of the number of fluid particles per sphere 
diameter is given (column 2); it can be seen as an alternative indicator for the level of 
discretisation. Furthermore, the average size of the computational time step t  is listed 
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since it depends on the smoothing length (compare section 4.2.7.2). The initial particle 
discretisation for the studied cases are illustrated in Fig. 5-1 and Fig. 5-2. 

 

Fig. 5-3: Experimental setup for the three dimensional variant of case B. 

The influence of the buoyancy force is studied by varying the density of the sphere, and 
the resultant submerged weight of the sphere is measured by a kind of load cell 
connected to the sphere. Actually, the load cell is modelled as a fixed special particle 
that interacts only with the sphere and not with fluid particles. This special particle 
overlaps with the sphere, and its initial position corresponds to a penalty force that is 
equal to the submerged weight. For their interaction, the linear force law is applied with 
stiffness lcc  corresponding to the initial overlap 0lcd  and the submerged weight 

* *g gF F=


, i.e. * 0lc g lcc F d= . 
 

Tab. 5-3: Summary of buoyancy experiments: for case A the density of the sphere is varied to study ascent 

and descent motion of the sphere. The investigations for cases B and C are limited to experiments with 

the heaviest sphere. 

 
 
For case A, the density of the sphere is varied from 500 to 2800 kg/m3 to study ascent 
and descent behaviour in 2D. For the heaviest sphere that has the density of granite, 
cases A and B are also studied in 3D. Situation C is only investigated in two dimensions. 
The configurations are summarised in Tab. 5-3. Besides the varying arrangement of the 
sphere of interest in the given cases, the simulation time and progress also differ. For 
case A, the sphere is free to move from the beginning of the simulation to the end of 
the measuring period at time 2 s. Alternatively, for cases B and C the sphere is initially 
fixed and released after half of the simulation time of 4 s. This is so done because in 
case A the fluid particles are already more or less in place at the initial time compared to 

density of sphere  case  dim 

[kg/m3]       

  500  A  2 

  700  A  2 

  900  A  2 

  2800  A, B  2, 3 

  2800  C  2 
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the cases B and C where the fluid particles close to the boundary of the solid sphere will 
rearrange first, trying to fill the gaps between the spheres. 
 
The interaction of the fluid particles with the sphere is modelled by a MLJ potential, 
since the latter is the preferred force law for fluid-structure interaction. The potential is 
restricted to repulsive forces and the distance to the sphere surface where the penalty 
force is zero is set equal to the smoothing length, i.e. 0w hd = , which corresponds to an 
active penalty force as soon as interaction takes place (compare condition (4.115)). The 
stiffness of the potential is obtained by evaluating a slightly modified form of equation 
(8.28) in appendix A, namely 
 

 
( )

4

1 eq

h r
k F

h y

æ ö+ ÷ç ÷ç= ÷ç ÷ç ÷-è ø
, (5.1) 

 
where eq weq hy d=  and the amount of the force is equal to the median pressure acting 
on the sphere, i.e. at the middle of the sphere ( ) 1

f s fF h z g ssr -= -  , where s  is the 
dimension of the problem. The parameter eqy  actually determines the characteristics of 
the potential and thus the gradient of the repulsive force. As will be shown later, eqy  is 
the main calibration parameter for this experiment. For the given case with almost no 
fluid motion other force laws would also work, but they may not be able to prevent 
particle penetration with the estimated parameters when it comes to dynamic problems 
with larger flow velocities. 

5.2.2 Boundary and Initial Conditions 

Obtaining appropriate initial conditions for the given case of a quiescent fluid in a tank 
is quite a challenging task. Despite the fact that all fluid particles are initialized according 
to a hydrostatic pressure distribution as introduced in section 4.2.5, the initial positions 
of the fluid particles may not correspond exactly to equilibrium conditions, e.g. in the 
corners of the tank or at locations where boundary conditions change. Furthermore, the 
properties of particles, such as the density and consequently the velocity, in contact with 
a boundary may change since the initial values do not comprise a balance of all local 
variables. Due to the applied Lagrangian approach, this leads to small displacements of 
initially evenly distributed fluid particles resulting in equilibrium after some time. Based 
on these considerations, it seems to be obvious that in such a case, the introduction of 
damping which consequently generates dissipation leads to a different balanced state 
that may not represent the physics of the system as desired. The small rearrangement of 
the fluid particles also affects the forces exerted on the sphere. Thus, use of a load cell 
seems to be a good choice because after decay of initial disturbances an almost 
constant value of the force can be measured. 
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The rigid walls of the tank are modelled by different approaches. The side walls are 
made of two layers of fixed fluid particles to allow for identical initial hydrostatic 
pressure conditions as for the fluid particles, since use of triangles would require a 
scaling of the penalty force according to local pressure which is currently not considered. 
For the bottom of the tank, three different kinds of boundary particles are briefly 
examined as follows: (i) two layers of fixed fluid particles, (ii) triangles with penalty force 
according to a MLJ potential and (iii) with penalty force based on a kernel gradient. In 
the first case, the boundary particles are initialised with similar properties as the values 
set for adjacent fluid particles. In the latter cases, the parameters of the force laws are 
obtained by equations (4.125) and (4.132), respectively: for the MLJ potential 

0 2weq wd d= , 0w hd =  and for the force based on the kernel gradient 1 2q =  as well 
as the mass wm  is set equal to the mass of an adjacent fluid particle. The force to be 
balanced corresponds to the weight of the water column on top of a boundary particle, 
i.e. 1

f fF h g ssr -=  . 
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Fig. 5-4: Initial hydrostatic pressure conditions and distributions after a simulation time of 5 s for different 

boundary conditions at the bottom of the tank. 

As noted above, the fluid particles are initialised according to the hydrostatic pressure 
resulting in the expected distribution (see Fig. 5-4, init hydr. stat. pres.). After starting 
the simulation, the density of the fluid particles right at the bottom boundary increases; 
this consequently leads to a rise in pressure until a new local balance is obtained. This 
effect occurs only at boundaries where the interaction between the particles is treated 
by a force law. Furthermore, the rise in density is modest compared to that in pressure, 
which corresponds to the nature of the applied slightly compressible SPH approach 
using an equation of state. The resulting pressure distributions at a simulation time of 
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5 s and for the different approaches are depicted in Fig. 5-4. According to the used 
equation of state, a slight increase of density and corresponding pressure over the 
whole fluid domain is inevitable. The rise in pressure of fluid particles close to the 
boundary is only observed for the MLJ potential and the force based on the kernel 
gradient and not for boundary particles, where only the boundary particles themselves 
are affected by the pressure increase (not visible in Fig. 5-4). 
 
For the buoyancy experiments, the approach with the penalty force based on kernel 
gradient is used as bottom boundary condition. Despite the higher pressure at the 
bottom the disorder of the fluid particles close to the boundary is smaller than for the 
case with the MLJ potential. Furthermore, an approach with defined boundary force is 
more generally applicable than the use of boundary particles, especially when it comes 
to collisions with spheres for example. 

5.2.3 Results 

Case A : sphere located in the middle of the pool 

For the numerical experiments with a configuration according to case A, the parameter 

eqy  was varied until the difference F  of the exact submerged weight *gF  and the 
force measured by the load cell lcF  was within a few per cent, denoted as error in Tab. 
5-4. 
 
According to equation (5.1) the force law depends on the parameter eqy  which actually 
defines the equilibrium distance between the fluid particles and the sphere by 

weq eqhd y= . Thus, the parameter eqy  indirectly controls the amount of displaced fluid 
and, consequently, the buoyancy force. Furthermore, the mass of the fluid particles is 
set according to equation (4.37) wherein the term ( )s s

  corresponds to a finite area or 
volume of fluid. Hence, it could be expected that weqd  converges to 2s  for decreasing 
values of s  and 1 3eqy   for the present case with 1.5h s=  . This tendency was 
quite well reproduced by the experiments. However, the determined value for eqy  varies 
from experiment to experiment with different density of the sphere. The reason for this 
is subsequently discussed. 
 
By taking a closer look at the results, it can be seen that the fluid particles arrange in a 
corona like manner around the sphere as depicted in Fig. 5-5 and Fig. 5-6. This 
corresponds to the expected behaviour since the pressure acts in the normal direction of 
the curved surface. However, the resulting pressure distribution around the sphere, i.e. 
the pressure of the fluid particles in contact with the sphere, is not in agreement with 
the surrounding fluid particles and is incorrect. Although the final pressure distribution 
corresponds to an equilibrium state, there are large pressure gradients in the particle 
corona and fluid particles with relatively small pressure are squeezed. This leads to a 
slightly different particle arrangement for every experiment resulting in partially 
inconsistent values for eqy . 
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Fig. 5-5: Case A: final arrangement of the fluid particles in the vicinity of the sphere for the two 

dimensional experiments with s =0.01 m (left) and s = 0.005 m (right). 

 

 

Fig. 5-6: Case A: final arrangement of the fluid particles in the vicinity of the sphere for the two 

dimensional experiments with s = 0.0025 m. In the picture on the right with transparent particles also 

the centres of the SPH particles are visible. 
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Tab. 5-4: Summary of buoyancy experiments for case A with the sphere located in the middle of the tank. 

The error corresponds to the difference between the exact and measured submerged weight of the 

sphere, where negative values indicate “lighter than” and positive values “heavier than”. 

 
 
Cases B and C: sphere located on top of fixed spheres 

In comparison with case A, the sphere is initially not completely surrounded by fluid 
particles as depicted in Fig. 5-2. Thus, for the configurations B and C the exact 
submerged weight of the sphere is a priori not known. Nevertheless, for case C it could 
be expected that the resulting submerged weight is close to the exact value. The force 
law between the fluid particles and the sphere is configured in the same way as for case 
A. Since the situation is similar to the experiments of case A, the above determined 
parameters eqy are also used for the present cases. 
 
According to the results of case A, the pressure distribution around the sphere is 
incorrect for the cases B and C; this also holds true for the pressure around the fixed 
boundary spheres, as expected based on the consideration in section 5.2.2. In Fig. 5-7 
and Fig. 5-8, it can be seen that local pressure values of some fluid particles are clearly 
larger than the expected maximum value at the bottom of 981 N/m2.  

                 

sr   s  
eq

y   *gF   F   error  comp. time 

[kg/m3]  [m]  [‐]  [N]  [N]  [%]  [min] 

                    

Case A: 2D experiments                

900  0.01  0.52  0.693 ‐0.008 1.14 

0.005  0.4  0.693 0.004 ‐0.56 

   0.0025  0.43  0.693 0.058 ‐8.34   

700  0.01  0.518  2.080 ‐0.024 1.16 

0.005  0.4  2.080 ‐0.024 1.17 

   0.0025  0.4  2.080 0.068 ‐3.28   

500  0.01  0.516  3.467 0.055 ‐1.60 

0.005  0.41  3.467 ‐0.073 2.11 

   0.0025  0.39  3.467 0.033 ‐0.96   

2800  0.01  0.51  12.482 0.028 ‐0.22  1.5

0.005  0.38  12.482 0.090 ‐0.72  7.5

   0.0025  0.365  12.482 0.154 ‐1.23  48

  

Case A: 3D experiments             

2800  0.01  0.49  0.250 ‐0.001 0.21  48

   0.005  0.405  0.250 0.005 ‐1.83  650
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To allow for the measurement of the submerged weight, no interaction has been 
specified between the sphere and the fixed spheres at the bottom. Thus, in case B, the 
sphere sinks a little after its release at t =2 s due to the smaller buoyancy force and the 
larger submerged weight, respectively. In case C, the sphere is raised a bit due to the 
fluid particles which squeeze into the gap between the spheres. This behaviour is 
illustrated in Fig. 5-9, where the displacement of the sphere for different experiments of 
cases B and C is shown. 

  

Fig. 5-7: Case B: final arrangement of the fluid particles in the vicinity of the sphere for the two 

dimensional experiments with s = 0.0025 m. In the picture on the right with transparent particles also 

the centres of the SPH particles are visible. 

 

Fig. 5-8: Case C: final arrangement of the fluid particles in the vicinity of the sphere for the two 

dimensional experiments with s = 0.0025 m. In the picture on the right with transparent particles also 

the centres of the SPH particles are visible. 
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Fig. 5-9: Displacement of the sphere after release at t=2 s. The results of case B are shown on the left: 2D 

experiment with s = 0.0025 m (BBB) and 3D with s = 0.01 m (B3D) and s = 0.005 m (BB3D). On the 

right the results for case C with initial particle spacing s =0.01 m (C), s = 0.005 m (CC) and 

s = 0.0025 m (CCC) are depicted. 

 

Tab. 5-5: Summary of buoyancy experiments for cases B and C with the sphere located on top of fixed 

spheres. For the ratio *lc gF F  between the measured force by the load cell and the submerged weight 

of the sphere, values lower than unity indicate “lighter than” and higher values “heavier than”. 

 

           

s   *gF   lcF   *lc gF F   comp. time 

[m]  [N]  [N]  [‐]  [min] 

              

Case B: 2D experiments         

0.01  12.482 31.128 2.49 2.5 

0.005  12.482 32.853 2.63 14 

0.0025  12.482 30.875 2.47 114 

Case B: 3D experiments       

0.01  0.250 0.561 2.25 94 

0.005  0.250 0.283 1.13 1300 

Case C: 2D experiments       

0.01  12.482 6.006 0.48 2.5 

0.005  12.482 9.629 0.77 14 

0.0025  12.482 11.058 0.89 110 
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For the buoyancy experiments more than 400 simulations have been carried out. 
Depending on the configuration, the required computing time is within the range of 1 
to 1300 min on a workstation equipped with Intel Xeon X5680@3.3GHz processors. 
The detailed computing times for some cases are listed in Tab. 5-4 and Tab. 5-5. 
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5.3 Settling Velocity 
A known approach to calibrate and validate the model for fluid-structure interaction is a 
test case with a sphere falling into a tank of quiescent fluid (compare e.g. Kern and 
Koumoutsakos (2006)). The calibration comprises the variation of model parameters 
until the estimated terminal settling velocity can be reproduced by the experiments. 
 
The terminal settling velocity of a sphere in a fluid is reached when the drag force acting 
on the sphere is balanced by its submerged weight. This can be expressed by addition of 
equation (3.46) and (3.43) leading to 
 

 
2

2 3
*

4
0 ,

2 3
+ = - = = -

 
 s

dr g D s f s s f

w
F F C r r gpr p r r r r  . (5.2) 

 
By rearranging equation (5.2), the terminal settling velocity for a solid sphere is obtained 
as 
 

 ,

8

3
s

s s sphere
f D

r g
w w

C

r

r
= =


 . (5.3) 

 
The drag coefficient can be estimated by equation (3.47), resulting in 0.458DC »  for a 
sphere with density 2800sr =  kg/m3 and radius 0.015sr =  m. This value of the drag 
coefficient is an estimate which can be used for the determination of the flow regime, 
i.e. the estimated terminal settling velocity is 1.24sw »  m/s which corresponds to 

4Re 3.7 10» ⋅ . This indicates Newtonian flow for which the drag coefficient has the 
constant value 0.44DC = . Finally, this results in a terminal settling velocity of 

, 1.27s spherew »  m/s for a sphere with the given properties. 
 
The above considerations are valid for the general three-dimensional case where the 
body is a sphere. If the situation is reduced to a two dimensional problem, the sphere is 
replaced by a cylinder with distinct properties. Thus, the drag coefficient and the drag 
force are also different. Analogous to equation (5.2), the force balance for a cylinder 
holds 
 

 
2

2
* 0

2
s

dr g D c f c

w
F F C d r gr p r+ = - =
 

  , (5.4) 

 
where cd  is the diameter and cr  is the radius of the cylinder (see e.g. Jayaweer and 
Mason (1965)). The corresponding equation for the terminal settling velocity reads 
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 ,
s

s s cyl
f D

r g
w w

C

p r

r
= =


 . (5.5) 

 
According to Roshko (1961), the drag coefficient for a cylinder has a constant value 

1.2DC =  in the range 4 52 10 Re 1 10⋅ < < ⋅ . The resulting terminal settling velocity is 

, 0.83s cylw »  m/s for a cylinder with the given properties and Reynolds number 
4Re 2.5 10» ⋅ . 

 
For both cases, the cylinder and the sphere, the boundary layer around the body is 
laminar for the determined Reynolds numbers and the maximum settling velocity. The 
dominant contribution to the drag force is the pressure drag (compare e.g. Douglas et al. 
(2001)). The minor importance of the friction drag in the considered range of Re  is also 
indicated by the practically constant drag coefficient, where DC  is independent of Re . 
The influence of the friction drag due to skin friction increases for smaller Reynolds 
numbers, say 3Re 10< , and also plays a role for the transition of the boundary layer, 
say around 5Re 10» , where the boundary layer becomes turbulent. Thus, for the 
current experiments the influence of the friction drag is not considered. In the present 
work, the aspects of the initial particle spacing and the fluid-structure interaction are 
studied. 

5.3.1 Configurations 

For the settling velocity experiments, a tank filled with initially quiescent water is 
considered. The dimensions of the water body are length fl =  0.15 m and height 

fh =  0.3 m in the case of 2D discretisation and in addition width fw =  0.15 m for 3D. 
Thus, as a conservative estimate the sound velocity is 10 2s fc gh= »  24 m/s. The 
radius of the cylinder and the sphere is c sr r= =  0.015 m and the particle-to-tank 
width ratio is 2 0.2w c fr ll = = . To account for the effect of wall interference on the 
settling velocity of the body, the unaffected terminal velocity sw  is reduced to ˆsw  
according to the empirical relation 
 

 1.5ˆ
1s

w w
s

w

w
l g= - =  (5.6) 

 
(see e.g. DiFelice (1996)). For 0.91wg = , the resulting corrected values for the terminal 
settling velocity of the cylinder and the sphere are ,ˆs cylw = 0.76 m/s and 

,ˆs spherew =  1.16 m/s, respectively.  
 
Some tests were carried out in advance of the experiments. The effect of the wall 
interference was tested for case AA by varying the length of the tank, i.e. fl =  0.2 m, 

0.94wg =  and fl =  0.3 m 0.97wg = , and the results are in good agreement with the 
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empirical approach above. Different heights of the tank were studied as well, showing 
no significant effect on the terminal settling velocity. Of course, the height of the tank is 
increased for the cases with larger settling velocity to prevent premature termination of 
the experiment due to contact of the body with the tank bottom. 
 

Tab. 5-6: Initial particle spacing used for settling velocity experiments and resulting number of fluid 

particles including boundary particles. 

 
 
To study the influence of the spatial discretisation, two and three dimensional 
experiments with different resolution of fluid particles in terms of the initial particle 
distance s  are carried out as listed in Tab. 5-6. Similar to the buoyancy experiments, 
the interaction of the fluid particles with the sphere is modelled by a MLJ potential. Thus, 
the stiffness of the potential is obtained by equation (5.1), where eqy  is chosen 
corresponding to the initial particle distance and the dimensionality according to the 
parameters obtained by the calibration of the buoyancy experiments (see Tab. 5-4). 
Since there will be no hydrostatic pressure distribution around the settling body, the 
reference pressure is not known a priori. Hence, the dynamic pressure is taken as 
reference and the amount of the reference force is obtained by 2 10.5 f sF w ssr -=  . 
 
Furthermore, the role of the artificial viscosity and the force law is investigated. The first 
is studied for four different cases (A, AA, AAA and A3D) by choosing the coefficient 

0.0a =  (instead of the standard value 0.01), which means that there is no damping of 
the motion of the fluid particles at all. For the latter, experiments based on case AA with 
a scaled force law as depicted in Fig. 5-10 are carried out. Compared to the standard 
configuration of the force law where the influence distance from the wall is equal to the 
smoothing length, 0wd h= , the course of the force law is scaled by choosing 0wd  equal 
to 2h , 3h  and 0.5h . For 0 3wd h= , the MLJ potential behaves almost as the linear force 
law (compare Fig. 5-10). 
 

case  dim  s   number  average  t  

      [m]  of particles  [s] 

A  2  0.01  620 1.20E‐04 

AA  2  0.005  2135 6.20E‐05 

AAA  2  0.0025  7865 3.10E‐05 

AAAA  2  0.00125  45125 1.50E‐05 

A3D  3  0.01  12400 1.20E‐04 

AA3D  3  0.005  74725 6.20E‐05 
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Fig. 5-10: Scaling of the MLJ force law by varying 0wd , the distance from the sphere surface where the 

penalty force is zero. The maximum of the abscissa corresponds to the threshold for interaction of a fluid 

particle with a sphere, sr h+ , according to condition (4.115). 

 

5.3.2 Boundary and Initial Conditions 

Similar boundary conditions as those used for the tank of the buoyancy experiments are 
used for the present experiments. Thus, the walls are made of fixed boundary particles 
and the penalty force based on kernel gradient is used as bottom boundary condition. 
The fluid particles are initialised according to a hydrostatic pressure distribution. 
The sphere is initially located at height f sh r+ , right above the water surface. To allow 
for calming of the fluid particles and to minimize the influence of initial perturbations (as 
discussed in section 5.2.2), the sphere is released after a simulation time of 2 s. 

5.3.3 Results 

The experiments are evaluated by averaging the settling velocity over time. For a certain 
time interval t , where the settling velocity is approximately constant, the distance 
covered by the sphere (difference in height fh ) is determined; this leads to the 
observed terminal velocity s fw h t=   . 
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Fig. 5-11: Case AA: contour plot of vertical velocity (left), where points indicate SPH-particle centres, and 

velocity vectors (right), where the colour indicates magnitude. 

 
Initial particle spacing and dimensionality 

With increasing number of particles, i.e. smaller initial particle spacing, larger terminal 
settling velocities sw  are observed. The measured settling velocity for the coarsest two 
dimensional particle resolution (case A) is sw =  0.262 m/s which increases up to 

sw =  0.733 m/s for the finest resolution (case AAAA) studied in this work. 
 
For increasing particle resolution, the measured terminal velocity approaches the 
intended value of ,ˆs cylw = 0.76 m/s, which indicates convergence of the applied 
methods. Similar behaviour is rudimentary observed for the three dimensional cases, 
where ,ˆs spherew =  1.16 m/s The results are summarized in Tab. 5-8, p. 134. Furthermore, 
the flow around the sphere can be reasonably reproduced already for the coarser 
resolutions; moreover, with smaller initial particle spacing the features of the flow 
become more detailed, as expected. This is shown by Fig. 5-11 and Fig. 5-12, where the 
vertical component of the velocity is depicted as contour plot (including particle 
positions) and the velocity vectors are plotted for selected cases AA and AAA. The topic 
of how particle data can be interpolated onto a regular grid, to obtain e.g. contour plots, 
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is briefly discussed in section 5.4.3. It has to be mentioned, that besides the different 
particle resolution, the pictures for the two cases also show distinct flow situations since 
the velocity of the sphere varies. Despite the reliable results of the flow field, spurious 
numerical oscillations in the pressure field are observed. This corresponds to results 
obtained by other researchers (e.g. Colagrossi et al. (2010)), since the standard SPH is 
known to be noisy. 
 
As already observed in connection with the buoyancy experiments, the fluid particles in 
the vicinity of the sphere arrange in a corona-like manner. These fluid particles have 
approximately the same velocity as the sphere for a moment before they move past the 
body and become part of the wake. 
 

 

Fig. 5-12: Case AAA: contour plot of vertical velocity (left), where points indicate SPH-particle centres, and 

velocity vectors (right), where the colour indicates magnitude. 

This behaviour is also shown quite plainly by Fig. 5-13, where the vertical velocity for 
case A3D is illustrated by iso-surfaces. In the vicinity of the sphere, the fluid particles 
move downwards with the sphere, indicated by the blue drop-like iso-surfaces. These 
are followed in outward direction of the sphere by a gap of almost zero velocity (no 
colour) and a belt-like region, where the fluid moves upwards (red). 
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Fig. 5-13: Case A3D: Iso-surface plots of vertical velocity, side view (left) and top view (right). 

Based on the above observations, it may be considered that the fluid particles which 
interact and move with the body downwards are forming together some kind of “meta-
particle”7 with distinct properties. Consider the radius of the “meta-particle” to be 

m sr r s= +  . For the two dimensional case, where the meta-particle is a circular disc, 
this leads to an averaged density of 
 

 
( )2 2 2
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r r r
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r r
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=  . (5.7) 

 
The corresponding density difference is m s mr r r= - . The results for the meta-
particles are summarised in Tab. 5-7. The terminal settling velocity ˆsmw  for different 
sizes of the “meta-particle” is obtained by equation (5.5), where the drag coefficient is 

1.2DC =  for the determined settling velocities (compare ˆRe( , )m smr w  in Tab. 5-7) and 
the wall interference is considered by appropriate values for wl . As expected, the 
calculated terminal velocities ˆsmw  of the “meta-particle” become larger with decreasing 
radius mr  and increasing density mr , showing the same trend as for the experiments. 
However, the range of the terminal velocity is not reproduced and for the case AAAA, 
the calculated terminal velocity ˆsmw  is even smaller than the measured velocity smw . 
This indicates that there is actually no such effect due to a “meta-particle” and the 
dependency of the observed settling velocity on the particle spacing must have another 
reason. 
 
 
                                            
7 This larger ’particle’ is reminiscent of an added mass. 
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Tab. 5-7:.Calculation of terminal velocity for different sizes of “meta-particles”. 

 
 
 
 

     
 
 

     

 

Fig. 5-14: Examples of momentum exchange between a large sphere and smaller rigid particles. In figure 

b), the velocity vector of the large sphere is not visible on this scale. 

A more reasonable explanation can be derived from a more detailed view of the 
momentum exchange between the sphere and the fluid particles. To this end, consider 
the collision of a larger sphere with smaller rigid particles which are semi-circularly 

                 

case  mr   mr   wg   ˆsmw   ˆRe( , )m smr w   smw  

   [m]  [kg/m3]  [‐]  [m/s]  [‐]  [m/s] 

                    

A  0.0250  1648 0.808 0.521 25787  0.262 

AA  0.0200  2013 0.862 0.622 24628  0.475 

AAA  0.0175  2322 0.887 0.684 23705  0.622 

AAAA  0.0162  2534 0.899 0.719 23148  0.733 

 a) t = 0 s b) t = 0.06 s 

 c) t = 0 s d) t = 0.06 s 
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arranged as depicted in Fig. 5-14. The sphere has the same properties as used for the 
settling velocity experiments ( sm =  1.98 kg for the two dimensional cases) and an initial 
velocity of 1 2v v= =  0.5 m/s at time t = 0 s. The smaller particles have the density of 
water and are initially at rest. Two examples of the momentum exchange are studied: 
case 1 with five small spheres of radius 0.01 m and mass 0.31 kg (Fig. 5-14 a) and b)), 
and case 2 with seven even smaller spheres with radius 0.005 m and mass 0.08 kg (Fig. 
5-14 c) and d)). As can be seen from Fig. 5-14, in the first case the velocity of the large 
sphere after collision, 1v , is distinctly smaller than the velocity 2v  in the second case. 
This fact is also depicted in Fig. 5-15, where the change of the velocity of the sphere is 
plotted. In addition, the course of the conservative force acting on the sphere is 
depicted. The maximum of the conservative force occurring and the duration of the 
impact is smaller in case 2 than in case 1, i.e. also the difference in momentum is 
smaller: 2 1c cF dt F dt<ò ò . This is because also the sum of the mass of the small 
particles is smaller in the second case, resulting in a reduced momentum exchange 
compared to the first case. Furthermore, the velocity of the small sphere in direction of 
the collision is distinctly larger in the second case than in the first case, which can be 
seen as another indication for the faster progress of the large sphere in the second case.  
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Fig. 5-15: Change of the velocity of the sphere due to collision with smaller particles and course of the 

conservative forces. The indices indicate cases 1 (five small particles) and 2 (seven small particles). 

These findings can now be transferred to the settling-velocity experiment and 
reasonably summarized in the following way: for larger initial particle spacing, where 
also the mass of the fluid particles is larger, the settling of the sphere is hindered more 
than in the cases with smaller and lighter fluid particles. Furthermore, the instantaneous 
momentum exchange is also smaller for smaller fluid particles. This fact can also be 
confirmed by a Fourier transform of the time varying conservative force of the settling 
sphere, which shows for smaller fluid particles an increasing dominant frequency while 
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the magnitude decreases. This can also be seen from the course of the conservative 
forces depicted in Fig. 5-15. 
 

Influence of artificial viscosity 

Application of artificial viscosity in the momentum equation is a possibility to introduce 
damping in SPH (compare section 4.2.4.1) and thus to increase the stability of the 
simulation. However, depending on the choice of the parameters, it may also cause the 
fluid to be more viscous than desired which influences the motion of the settling body. 
For the present experiments, the standard values of the artificial viscosity coefficients for 
free surface flows are used, 0.01a =  and 0.0b = . This conservative choice leads to a 
basic stabilization of the simulation and seems to have no negative effect on the fluid 
flow. Nevertheless, for the cases A, AA, AAA and A3D, simulations are carried out with 
no artificial viscosity at all, i.e. 0.0a b= = . As expected, this leads to a slower decay of 
the initial perturbations and to less calming of the fluid before the release of the sphere. 
The desired effect of a reduced drag is only observed for cases A and AA, where for the 
latter the measured terminal velocity sw  increases from 0.475 m/s to 0.536 m/s. For 
case AAA the opposite effect is observed and the resulting velocity is smaller than with 
application of artificial viscosity. This may be due to the still distinct perturbations of the 
flow field when the sphere is released. 
 
The artificial viscosity may play a role concerning the terminal settling velocity. However, 
it seems only reasonable to study a possible effect by a parameter variation when the 
terminal velocity resulting from an experiment with standard configuration is close to 
the desired value. However, this would require an even higher particle resolution than 
case AAAA and thus more time or computational power, which would exceed the scope 
of the present work. 
 
Scaling of force law 

The influence of the scaling of the force law on the terminal settling velocity is studied 
for case AA. In this case, the force law is scaled by varying 0wd , the wall distance of the 
point where the repulsive force becomes zero. Besides the standard configuration with 

0wd h= , three different setups are studied: 0 2wd h=  and 0 3wd h= , resulting in a 
boundary condition with a smaller maximum repulsive force and slower increase for 
decreasing particle distance, and 0 0.5wd h= , which has the opposite effect (compare 
Fig. 5-10). Notice that the amount of the reference force at wall distance weqd  does not 
change for the investigated cases. 
 
The reference force which also defines the characteristic of the MLJ potential is assumed 
to be equal to the maximum hydrodynamic pressure, as introduced in section 5.3.1. 
However, the total pressure acting on the sphere is actually larger, because the a priori 
unknown ambient pressure is not considered. For the case with the standard 
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configuration, 0wd h= , the difference of the reference force and the total effective 
pressure is less important, since the deviation is compensated by the force law in terms 
of a slightly smaller wall distance than the supposed equilibrium distance. For this 
configuration, the fluid particles are arranged around the sphere in the expected 
manner and the majority of the particles do not penetrate the sphere surface, as 
depicted in Fig. 5-16.  
 
In the two cases where 0wd h> , the increase of the repulsive force is slower than for 
the standard configuration and the deviation mentioned before becomes more apparent. 
The fluid particles are now able to penetrate the surface of the sphere. Thus, the 
equilibrium distance is smaller than the radius of the sphere and corresponds to a 
repulsive force which is equal to the local effective pressure. This has the effect, that the 
buoyancy force of the sphere is reduced and the terminal settling velocity is larger than 
for the standard configuration, i.e. the measured terminal velocity sw  increases from 
0.475 m/s ( 0wd h= ) to 0.593 m/s ( 0 3wd h= ). 
 

    

Fig. 5-16: Positions of fluid particles for different scaling of the MLJ force law. The pictures show the 

sphere at a position of approximately 0.5 fh . 

The increase of the stiffness of the MLJ potential, as in the case where 0 0.5wd h= , has 
only a marginal effect on the settling velocity. The measured terminal velocity sw  slightly 
increases from 0.475 m/s ( 0wd h= ) to 0.489 m/s ( 0 0.5wd h= ) (see Tab. 5-8). A 
possible explanation for the larger terminal velocity may be that the rebound of the fluid 
particles interacting with the sphere is faster due to the larger penalty force at the 
boundary. However, the larger stiffness is also a potential source of numerical instability, 
since very large pressure gradients between fluid particles of the corona around the 
sphere are observed. 
 

0wd h=  0 2wd h=  0 3wd h=  0 0.5wd h=  
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Tab. 5-8: Summary of settling velocity experiments, where a  is the artificial viscosity coefficient, 0wd  is 

the distance from the surface of the sphere where the penalty force is zero, and sw  is the observed 

settling velocity. 

 
 
For the settling-velocity experiments more than 170 simulations have been carried out. 
Depending on the configuration, the required computing time is within the range of 10 
to 27600 min on a workstation equipped with Intel Xeon X5680@3.3GHz processors. 
The detailed computing times for some cases are listed in Tab. 5-8. 
 
Impacting of sphere on free surface 

For the sake of completeness and to exemplify one of the strengths of the applied 
methods, namely SPH, for case AAA the immersion of the sphere after its release is 
shown in Fig. 5-17. The sphere is released from height f sh r+ , i.e. the velocity at the 
initial impact is zero; this leads to a smooth plunge of the sphere. For the presented 

           

case  a   0wd   sw   comp. time 

   [‐]  [m]  [m/s]  [min] 

              

initial particle spacing and dimensionality    

A  0.01 h 0.262 12 

AA  0.01 h 0.475 83 

AAA  0.01 h 0.622 537 

AAAA  0.01 h 0.733 *1660 

A3D  0.01 h 0.167 1497 

AA3D  0.01 h **0.16 27626 

artificial viscosity        

A  0.00 h 0.359   

AA  0.00 h 0.536   

AAA  0.00 h 0.545   

A3D 

AA3D 

0.00

0.00

h

h

0.229

0.294   

scaling of force law        

AA  0.01 2h 0.506   

AA  0.01 3h 0.593   

AA  0.01 0.5h 0.489   

*) without initial calming; simulation time = 0.6 s 

**) no constant settling velocity achieved after simulation time of 4.5 s 



  5.3 Settling Velocity 

  135 

experiment, neither surface tension nor the correction for free surface flows (XSPH) is 
considered. Despite the rather coarse particle resolution, the deformation of the initially 
plane water surface and the splashing are reproduced in a characteristic manner for a 
sphere with hydrophobic surface as observed by other researchers (see e.g. Do-Quang 
and Amberg (2010)). The hydrophobic behaviour (see e.g. Duez et al. (2007) leads to a 
cavity behind the impacting sphere. This may be expected, since the present 
configuration of the applied force law between the sphere and the fluid particles only 
considers repulsive forces. 

    

Fig. 5-17: Case AAA: Impacting of a sphere on a free surface after its release at t=3 s. From left to right: 

t=3.56. 3.65, 3.7 and 3.78 s. Colour indicates the vertical velocity: lighter negative, darker positive with 

respect to the z-direction. 
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5.4 Open Channel Flow 
A common approach for the experimental investigation of sediment transport is to 
provide steady uniform flow conditions in a straight laboratory flume to obtain a 
constant and calculable situation for the experiment. For such a situation and with 
respect to the cross-sectional flow velocity, it is considered that the flow conditions 
neither change with time (steady) nor with position (uniform) along the channel. For an 
open channel with a rough bottom boundary, steady uniform flow conditions can be 
obtained by slight inclination of the channel bed to balance the energy loss due to 
friction by the reduction of the potential energy. Thus, the slope of the water surface 
and the energy grad line will become equal to the slope of the channel bed bS . The 
resulting flow depth is called normal or uniform depth nh .  
 
With regard to a cross-section of the channel, the corresponding distribution of the 
velocity component parallel to the channel bed can be described by the logarithmic law 
for turbulent channel flow given by equation (3.50) in general. However, since a small 
flow depth fh  compared to the roughness height sd , i.e. a small relative flow depth 

f sh d , is preferred for the present experiments (compare next section 5.4.1) a modified 
form of the log law has to be applied. Bezzola (2002) presents a modified log law for 
such situations, which reads for a very wide channel where side wall effects are 
negligible 
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The corresponding average flow velocity is given by 
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For 2f Rh y > , the coefficient Rc  in equations (5.8) and (5.9) is 1R R fc y h= - , 
where the height of the roughness sublayer for a plane bed with uniform grains is 

1.0R sy d» . 

5.4.1 Configurations 

To enable a reasonable parameter study for the simulation of open channel flow, the 
configuration has to match with the available computational and temporal resources. 
Since the simulation time and the total number of particles are the primary factors 
which determine the computing time, the particle resolution and the geometric variables 
defining the computational domain, i.e. the flow depth and the channel length, have to 
be chosen appropriately. Furthermore, the experiments are reduced to a vertical two-
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dimensional configuration and two different particle resolutions are studied, namely 
=s  0.01 m (case A) and =s  0.005 m (case AA). 

 
For the open channel flow experiments, the slope of the channel bed is bS =  0.0035 
and the proposed flow depth is 0.09fh =  m. Thus, as a conservative estimate the 
sound velocity is 10 2s fc gh= »  13 m/s. For the standard grain or sphere diameter, 

sd =  0.03 m, the relative flow depth is f sh d =  3, the height of the roughness sublayer 
is 1.0R sy d» =  0.03 m and the parameter Rc »  0.82. According to equation (5.9), this 
leads to an average flow velocity of mu =  0.4 m/s. 
 
Based on preliminary test experiments, the length of the channel is chosen to be 1.5 m. 
It is observed that this length is large enough to enable the development of the 
characteristic vertical velocity distribution and to minimize the boundary influence. In 
combination with a special inflow condition (see section 5.4.2), approximate uniform 
flow conditions are obtained after a flow distance of 8 to 10 fh  and the influence of the 
outflow boundary is 2 to 4 fh , both depending on the particle resolution. As observed 
in the test experiments, steady flow conditions are obtained after a simulation time of 
approximately 20 s. Thus, the total simulation time is 30 s, chosen so as to allow for 
time averaging of the results. 

5.4.2 Boundary and Initial Conditions 

Three different boundary conditions are used for the channel flow experiments. At the 
upper end of the channel, an inflow boundary condition according to section 4.2.6.1 is 
defined, where particles are continuously moved into the domain with uniform velocity 

mu . The channel bottom at the inflow boundary has the form of a small ramp as 
depicted in Fig. 5-18, which has the effect that the flow is locally accelerated in the 
direction away from the boundary. This is very important to prevent numerical 
instabilities in the area of the inflow boundary, which may be caused by local squeezing 
of fluid particles. The squeezing originates from the deceleration of the flow due to 
bottom friction, and the backwater effects due to the weir at the outflow boundary 
before the flow reaches a steady state. 
The weir at the outflow boundary serves as pressure boundary and minimises the extent 
of the backwater curve. Right after the weir, at the end of the channel, a particle sink is 
located, which eliminates any fluid particles. To obtain a continuous outflow of the 
particles, a weir with an inclination of 45 degrees is used (see Fig. 5-18). An estimate for 
the weir height can be obtained based on Poleni’s formula, 
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where (2 3) 2w wC gm= . The discharge coefficient wm for a sharp crested weir with 45 
degrees streamwise inclination is 0.84wm »  (see e.g. Bollrich (1996)); thus the 



5 Model Calibration and Validation 

138 

coefficient 2.48wC » . The specific discharge for the present experiments is 

we m fq u h= =  0.036 m2/s. Evaluating equation (5.10) for the given values leads to an 
estimated weir height of wh »  0.03 m.

 
 

 

       

Fig. 5-18: Geometry of the channel bed at the in- and outflow boundaries. At the inflow boundary, a 

ramp is used (left) to accelerate the flow and at the outflow boundary, a weir is used to achieve an 

appropriate flow depth at the boundary. 

The bottom of the channel consists of triangles. The interaction between the triangles 
and the fluid particles is modelled by a MLJ potential. The stiffness of the potential is 
obtained from equation (4.125). For the present experiments, the distance from the wall 
where the repulsive force is zero is 0wd h=  and the equilibrium distance is chosen as 

0.5=weqd h  ( weqd =  0.0075 m for case A and weqd =  0.00375 m for case AA). The 
amount of the reference force corresponds to the proposed maximum hydrostatic 
pressure at the channel bottom, i.e. = f fF h g sr . 
 
The channel roughness is modelled by the friction law according to equation (4.133). An 
estimate for the friction coefficient vm  can be obtained based on the considerations 
described in chapter 4.4.2.2. The velocity wu  close to the channel bottom at distance 

= weqz d  is obtained by evaluation of equation (5.8), where the shear velocity is 

* = f bu gh S , i.e. wu »  0.23 m/s for case A and wu »  0.15 m/s for case AA. Thus, by 
solving equation (4.138) for a normal force =nF F , velocity =t wv u  and =h 0.1, 
leads to an estimated friction coefficient of vm »  0.154 for case A and vm »  0.235 for 
case AA. 
 
Due to the special channel geometries at the in- and outflow boundaries, a proper 
initialisation of the channel by fluid particles with initial velocity is quite complicated. 
Thus, an empty channel was considered as initial condition. 
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5.4.3 Results 

For the two particle resolutions and the given geometry of the channel, the weir height 

wh , the coefficient vm  controlling the boundary friction at the channel bottom and the 
coefficient a  for the artificial viscosity are varied until the desired velocity profile is 
achieved. In the scope of the open channel flow experiments, more than 70 simulations 
were carried out with an average computing time ranging from 360 min (case A) to 
2370 min (case AA) for a simulation time of 30 s. Based on the findings obtained from 
the experiments, the different effects of the varied model parameters can be categorised 
as depicted in Fig. 5-19. The velocity of the fluid particles close to the channel bottom is 
controlled by the parameters for the boundary friction. The upper half of the velocity 
profile significantly responds to changes of the weir height and the intermediate part of 
the profile is sensitive to variations of the artificial-viscosity coefficient. 
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Fig. 5-19: Effect of the different model parameters which are varied to obtain the desired velocity 

distribution of open channel flow. 

As pointed out by Jang et al. (2009), the evaluation of SPH data is not as 
straightforward as for grid based data. To generate profile or contour plots the 
properties of fluid particles, such as the velocity, have to be interpolated onto a regular 
set of points by scattered data approximation. A common approach for that is inverse 
distance weighted interpolation. In this work, Shepard’s method is preferred (see e.g. 
Holger (2009)). Another approach is to use SPH particles as described by Jang et al. 
(2010), which is only useful if the particles are well arranged and the particle density is 
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sufficiently large. For disordered particles the interpolation error increases; this limits the 
significance of the results.  
 
For both cases, the particle data is interpolated onto a vertical profile located at a 
distance of 1.2 m from the inflow boundary. Since the fluid particles at the boundaries, 
i.e. the channel bottom and the free surface, only have neighbouring particles on one 
side, the interpolation is poor at these locations. Close to the free surface, the 
interpolation error is small because of the almost uniform velocity distribution in this 
region. However, the interpolation data of the fluid particle right at the free surface is 
discarded, which leads to an offset of approximately 2s  at the top of the profile. At 
the channel bottom where the velocity gradients are large, the interpolation error leads 
to misleading profile data. Thus, only profile data above a certain offset from the 
bottom boundary are considered. Since the fluid particles which move closest to the 
channel bottom already have an offset of weqd , the total offset at the bottom boundary 
is approximately 2weqd s+ . 
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Fig. 5-20: Calculated velocity profiles of the open channel flow experiment, case A and case AA. The 

simulation results are marked by circles which correspond to interpolation points and not to fluid particles. 

 
Furthermore, the profile data are temporally averaged to obtain a smoother velocity 
profile. Since the flow becomes steady after a simulation time of 20 s, the interpolated 
velocities are averaged from 20 to 30 s. The resulting velocity profiles for cases A and 
AA are depicted in Fig. 5-20 and are in good agreement with the theoretical velocity 
profile according to equation (5.8). The results show that in case AA the region of the 
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velocity profile with large velocity gradients can be better reproduced than in case A 
with coarser particle resolution. The corresponding model parameters obtained by 
calibration are for case A, wh =  0.0275 m, vm =  0.16, a =  0.005 and for case AA, 

wh =  0.025 m, vm =  0.21, a =  0.03. Comparison of the calibrated model parameters 
with the above estimates for the weir height and the friction coefficients confirm the 
usefulness of the approaches used for the estimation.  
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5.5 Discussion 
The chosen experiments have proven to be a reliable concept to evaluate the numerical 
methods which are used to model the fluid-structure interaction. For the applied high 
resolution force model (HRFM), several model parameters which are decisive to obtain 
reliable simulation results were identified. Besides the parameters defining the 
interaction between SPH and DEM particles, the particle resolution plays a major role, 
especially when it comes to dynamic problems. Also numerical parameters such as the 
coefficient for artificial viscosity are important for the stability of the simulation as well 
as for boundary layer flows. Furthermore, the expected convergence of the SPH method 
is demonstrated and approved by the results of the experiments. 
 
Nevertheless, some drawbacks of the applied methods have to be pointed out. As 
shown by the validation experiments, the computational cost is already quite high for 
two-dimensional simulations with a moderate number of particles. This limits the scope 
of parameter studies, and three-dimensional investigations become very time-consuming. 
Hence, in the present work the influence of the boundary friction and the artificial 
viscosity on the terminal settling velocity was for example not further investigated. To 
overcome these limitations, parallelisation of the software is necessary to allow for the 
use of high performance computing infrastructure. Another common approach to 
essentially reduce the computing time and to study local flow phenomena would be the 
implementation of periodic boundary conditions. However, the implementation of these 
approaches is challenging for particle methods because the exchange of information 
across contiguous boundaries is quite sophisticated (see e.g. Fleissner (2010)). 
 
Furthermore, the significance of the pressure increase at the boundaries between fluid 
particles and rigid walls (fixed and movable) is not clear. For the present work, this 
particularly applies to the settling velocity experiments where the pressure drag results 
from the pressure distribution around the sinking body. The problem may have two 
contributions, namely the spurious numerical oscillations in the pressure field and the 
fluid-structure boundary condition itself. Some recent contributions by other researchers 
provide approaches which may be useful to overcome this shortcoming. The pressure 
oscillations are typical for standard SPH and are due to the weakly compressible 
approach. Colagrossi and Landrini (2003) suggest the filtering of the density with a 
moving-least-square integral interpolation, which leads to a smooth and reliable 
pressure distribution for free surface flows (compare Colagrossi et al. (2010)). Their 
corrected SPH approach has been further improved by Molteni and Colagrossi (2009). A 
similar approach is presented by Bonet and Kulasegaram (2002), and Becker et al. 
(2009) point out its advantage over the standard SPH in combination with a special 
boundary treatment for fluid-structure interaction. An alternative approach may be the 
application of truly incompressible SPH (iSPH), as outlined in chapter 4.2.1.2, where the 
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incompressibility of the fluid is ensured by additional constraints which lead to a correct 
pressure distribution. An approach how to capture the local pressure for a point of a 
rigid movable boundary based on the adjacent fluid particles is presented e.g. by 
Maruzewski et al. (2010). 
 
Boundary conditions for fluid-structure interaction are still an open and challenging task 
for movable arbitrary shaped bodies as discussed in 4.2.6.3. For piece-wise straight fixed 
boundaries, the use of boundary particles (dynamic particles) with copied properties of 
the adjacent fluid properties leads to exact free-slip conditions (see e.g. Colagrossi and 
Landrini (2003)). However, this approach may lead to undesired behaviour for models 
where flow separation occurs due to possible attractive effects at the boundary as 
already mentioned in section 4.2.6.3. A more promising approach, suitable for the 
recent applications, is presented by Monaghan and Kajtar (2009). For arbitrarily shaped 
particles, they suggest to use boundary particles which exert forces on the fluid particles. 
By appropriate choice of these forces and of the spacing of the boundary particles they 
obtain good results for various experiments with a cylindrical body. 
 
Another inconsistency of the applied methods arises due to the force law used to model 
the interaction between the fluid particles and the rigid bodies. For the present 
experiments, the parameters of the force law depend on the particle resolution and on a 
reference force. The latter corresponds to a specific equilibrium condition which is 
different for the buoyancy and the settling velocity experiments. As can be seen from 
the experiments, appropriate boundary forces are crucial to correctly describe either 
situation. However, for the modelling of sediment transport both situations are 
appearing at the same time in a simulation. Thus, a boundary force which adapts to the 
effective conditions would be preferable. According to the convergence of the SPH 
method, the difference in the parameters may vanish with increasing particle resolution. 
However, this limits the application of the methods to a certain particle resolution. This 
problem may be solved by implementation of a dynamic force calculation based on the 
current flow variables or by application of a different boundary condition as discussed 
above. 
 
It seems to be obvious that as long as the shortcomings of the current modelling 
approach are not adequately solved, numerical experiments with focus on detailed local 
forces are not reasonable. However, these kinds of experiments are necessary to 
investigate the fundamental physical processes occurring during incipient motion and 
sediment transport. Possible experiments to validate an improved version of the model 
would be e.g. the determination of the drag coefficient of a sphere sitting on a 
boundary of similar spheres as investigated by Coleman (1972) or the incipient motion 
experiments carried out by Fenton and Abbott (1977). 
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6 APPLICATION TO SEDIMENT TRANSPORT 

6.1 Introduction 
To demonstrate the capabilities of the present model for the simulation of sediment 
transport, a slightly different modelling approach as used in the previous chapter is 
applied in the following. The applications to sediment transport comprise a two-
dimensional simulation of the development of a scour caused by a freefalling water jet 
and a three-dimensional pier scour experiment. For the present experiments, the size of 
the fluid particles in terms of their initial particle spacing s  is intentionally chosen 
larger than for the model-verification experiments, i.e. 2ss d= , where sd  is the 
diameter of the corresponding DEM particle. This modelling approach where fluid 
particles are larger than the rigid body, say 3ss d> , is termed Low Resolution Force 
Model (LRFM). With the LRFM, simulations on a larger scale than with the HRFM are 
made possible. However, due to the usually larger computational domain and because 
the sediment layer also consists of particles, no “miracles” concerning the 
computational costs have to be expected.  
 
Due to the less detailed resolution of the fluid forces acting on a solid particle, the 
model parameters have to be calibrated to match the desired sediment transport 
processes; this relates to the spatial as well as the temporal scale. Depending on the 
complexity of the experiment, the calibration can be quite extensive. For the present 
experiments only marginal calibration of the model parameters was carried out. Thus, 
the presented simulation results are rather of qualitative nature and primarily serve for 
illustration purposes.  

6.2 Scour Caused by a Freefalling Water Jet 
In the present experiment, the development of a scour due to a freefalling water jet is 
studied. This kind of scour is typical for a natural waterfall, where at the bottom of the 
subsequent plunge pool a scour hole develops caused by the impact of the freefalling 
water. Similar processes can also be observed in the plunging jet pool downstream of 
hydraulic structures, such as a weir in a river or the spillway of a dam, where the 
protection of the in-situ river bed is inadequate. Plunge pool scour is an important topic 
in hydraulic engineering since increasing and uncontrolled scour may lead to a 
destabilisation of embankments or of the hydraulic structure itself by backcutting 
erosion. 
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For the experiment, the specific discharge is 0.04 m2/s and the head drop is 0.16 m. 
Since the experiment is carried out as a two-dimensional simulation, the sediment 
consists of circular particles with diameter 2s sd r= =  0.01 m and density 

sr  = 2800 kg/m3. As mentioned in the introduction, the ratio of the sediment diameter 
to the initial fluid particle spacing is 2, i.e. s  = 0.005 m. The density of the fluid is 

fr  = 1000 kg/m3 and the sound velocity is sc »  14 m/s. With a safty coefficient for the 
CFL condition of sa = 0.3 and a reference flow depth of fh = 0.1 m, the estimated 
hydrodynamic time-step size is 32 10s f st h ca -= » ⋅  s and the estimated sediment 
time-step is 41 10s s st r ca -= » ⋅  s; thus the latter is relevant. The total simulation 
time is 15 s and the corresponding computing time for the experiment was 
approximately 1060 min on the same hardware used as for the model-verification 
experiments. 
 
For the interaction between the sediment particles, Hertz’s law is applied.  Based on the 
considerations of section 4.3.7, Young’s modulus for the sediment particles is chosen as 

84 10kE = ⋅  N/m2. This results in a practicable size of the time step and a realistic 
behaviour of the sediment particles. The effective time-step size is 53 10t -» ⋅  s, 
because it is determined based on the external forces. The sediment particles are 
considered to consist of granite which has a Poisson’s ratio of 0.25kn =  (see appendix 
A.1.2). The internal friction properties of the sediment layer are chosen according to 
appendix A.1.4, i.e. equal coefficients for sticking and slipping friction 0.7s km m= = . 
 
The interaction between the fluid and sediment particles is modelled by an MLJ potential. 
Due to the applied LRFM approach also the concept for the parameters of the force law 
is different to that used for the model verification. For the present experiments, the 
distance from the sediment-particle surface where the repulsive force is zero is 

0w sd h r= -  and the equilibrium distance is chosen as 00.5weq wd d= . The stiffness of 
the potential is 600 N. With this configuration, the sediment particle may behave like a 
heavy fluid particle when it encounters true fluid particles (notice that this only concerns 
the fluid-sediment interaction). The parameters for the friction between the fluid and 
sediment particles are 0.1vm h= = . 
 
The results of the simulation at selected times are shown in Fig. 6-1. At the beginning of 
the simulation, the sediment erosion advances quickly due to the unimpeded impact of 
the water jet on the sediment surface. Already after some seconds a scour hole develops 
and the water depth at the impact location increases. The resulting plunge pool now 
alleviates the momentum of the water jet and sediment erosion diminishes. After a 
simulation time of about 10 s, the extent of the scour hole will barely change. The 
development of the scour, i.e. the profile of the bed level, is reproduced in a 
characteristic manner by the numerical model (compare e.g. D'Agostino and Ferro 
(2004). 
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Fig. 6-1: Numerical simulation of a scour caused by a freefalling water jet. 

t = 0.5 s t = 1 s 

t = 2 s t = 5 s 

t = 10 s t = 15 s 
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As can be seen from Fig. 6-1, the fluid particles are able to enter the sediment layer up 
to a certain depth, which is similar to seepage. This behaviour is depicted on the left in 
Fig. 6-2 in detail where the black dots indicate the locations of fluid particles. The fluid 
particles fill up the voids between the sediment particles. The exerted forces by the fluid 
particles in the pores may be interpreted as a mix of buoyancy and lift forces. 
 

     

Fig. 6-2: Influence of interaction law on the erosion process. In the left picture, the result of a simulation 

with an interaction law based on 0w sd h r= -  is depicted (compare Fig. 6-1), where the black dots 

indicate the locations of the fluid particles. On the right, the simulation result for a different configuration 

with 0w sd h r= +  is shown. 

The major importance of the possibility for fluid particles to enter the sediment layer for 
the present experiments can be illustrated by varying the parameters of the force law for 
the fluid-sediment interaction. For this purpose, consider a different configuration: the 
distance from the sediment-particle surface where the repulsive force is zero is increased 
to 0w sd h r= +  while the stiffness, i.e. the size of the maximum repulsive force, is kept 
constant. This leads to a repulsive force which already acts at a distance between a fluid 
particle and the sediment-particle surface which is larger than for the previous 
configuration with 0w sd h r= - . Furthermore, a reduced sediment density of 

sr  = 1800 kg/m3 is considered to emphasize the distinct behaviour. The simulations 
show that the fluid particles are no longer able to move between the sediment particles 
(compare Fig. 6-2, on the right), which is due to the scaling of the force law. Despite the 
reduced mass of the sediment, no scour is observed at all. 
 
For the given situation, the basic difference between the present model and a 
Lagrangian two-fluid-continuum approach is how seepage and buoyancy effects are 
taken into account. For the first, seepage is controlled by the parameters of the 
interaction force law between fluid and sediment particles, as discussed above. For the 
latter, where the sediment and the water are treated as separate fluid phases with 
different densities, seepage effects have to be considered in the continuum description, 
e.g. by adding a force term to the momentum equation (see e.g. Bui et al. (2007)). 
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6.3 Clear-Water Scour at Bridge Pier 
Another well-known kind of scour is the erosion of sediment observed at bridge piers. 
Some part of the water which impinges the pier is vertically deflected in the downward 
direction. This leads to formation of a horseshoe vortex close to the bottom which 
extends along the pier. Right downstream of the pier the formation of a wake vortex is 
observed. The deflection of the water at the pier and the resulting vortices lead to an 
erosion of sediment and the development of a characteristic scour hole around the pier 
(see e.g. Unger and Hager (2007)). The understanding of the erosion process at bridge 
piers is important to apply effective protection measures and consequently prevent a 
possible failure of the structure. 
 

 

Fig. 6-3: Configuration of the pier-scour experiment. 

The channel used for the three-dimensional pier-scour experiment is 0.7 m long and 
0.15 m wide. The slope of the channel is 3.5 ‰. The quadratic pier with a side length of 
0.05 m is located at a distance of 0.25 m from the inflow boundary. It is placed adjacent 
to the wall as depicted in Fig. 6-3. The bottom of the channel consists of two parts: a 
fixed inflow section of 0.15 m length is followed by a movable sediment bed. The 
sediment consists of five layers of particles which results in a total of 2484 sediment 
particles. For the three-dimensional simulation, the sediment consists of spheres with 
diameter sd  = 0.01 m and density sr  = 2500 kg/m3. The ratio of the sediment diameter 
to the initial fluid particle spacing is two. The initial water height at the inflow boundary 
is 0.1 m and the inflow velocity is 0.4 m/s, i.e. the discharge is 0.04 m3/s. The initial 
spacing of the fluid particles is s  = 0.005 m and the density of the fluid is 

fr  = 1000 kg/m3. Based on the chosen particle resolution the total number of fluid 
particles during the simulation is approximately 70’000. To obtain appropriate outflow 
boundary conditions, a weir is placed at the end of the channel which is only effective 
for fluid particles. The size of the time step is similar to that observed in the jet scour 
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experiments. Furthermore, the simulation starts from an initially dry channel bed as 
depicted in Fig. 6-3. 
 
Similar to the jet scour experiment, Hertz’s law is used to model the interaction between 
the sediment particles. The corresponding parameters are 84 10kE = ⋅  N/m2 and 

0.25kn = . Since the energy of the flow is distinctly smaller than in the previous 
experiment, the friction between the sediment particles is reduced to trigger a faster 
erosion process, i.e. 0.45s km m= = . For the interaction between the fluid and 
sediment particles a MLJ potential is applied. The parameters of the force law are 

0w sd h r= -  and 00.5weq wd d= . For the three-dimensional case the stiffness of the 
potential has to be strongly reduced compared to the previous 2D experiment and is 3 N. 
The parameters for the friction between the fluid and sediment particles are 

0.1vm h= = . The interaction of fluid particles with the sidewalls is modelled as a MLJ 
potential without friction (no-slip condition). For the interaction with the pier friction is 
considered. 
 
The results of the experiment at different times of the simulation are depicted in Fig. 6-4 
and Fig. 6-5, where the sidewalls, the inflow section and the outflow weir are omitted 
to improve visibility. At the beginning of the simulation, the waterfront moves across the 
domain and the weight of the water causes a small depression of the sediment-bed 
surface. However, no significant transport of sediment particles takes place at this point. 
At the pier, some part of the water which impinges the pier is vertically deflected in the 
downward direction. With increasing flow depth also this effect amplifies. The 
downward flow exerts larger contact forces on the sediment particles than on those 
exposed mainly to tangential flow. At the first, this leads to initial transport of some 
sediment particles and to local erosion in front of the pier. Subsequently, due to the 
initial erosion the transport of sediment particles is amplified and the erosion extends 
around the pier and along the channel with time. 
 
Due to numerical instabilities the computation was aborted after a simulation time of 
1.6 s, which corresponds to a computing time of 17 days. The origin of the instabilities 
is similar to that observed at the open channel-flow experiments. The pier causes a 
backwater effect at the left side of the channel, which leads to the instabilities close to 
the left part of the inflow boundary. To prevent these instabilities the inflow section 
would have to be extended to a multiple of its present length, which consequently 
would lead to a significant increase in computing time. Nevertheless, the simulation 
results show the initial phase of the erosion process, which is reproduced in a reliable 
manner and which is comparable to experimental observations (see e.g. Radice et al. 
(2006), Radice et al. (2008)). 
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Fig. 6-4: Numerical simulation of a clear-water scour at bridge pier. A lighter colour of the sediment 

particles indicates “higher above datum”. The sidewalls, the inflow section and the outflow weir are 

omitted to improve visibility. 

t = 0.5 s 

t = 0.7 s 

t = 1.0 s 
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Fig. 6-5: Numerical simulation of clear-water scour at bridge pier. A lighter colour of the sediment 

particles indicates “higher above datum”. The sidewalls, the inflow section and the outflow weir are 

omitted to improve visibility. 

 
 

t = 1.3 s 

t = 1.6 s 
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7 CONCLUSION 

7.1 Summary 
In the present work, a novel numerical model for the simulation of sediment transport 
with regard to different spatial resolutions is presented. The model consists of the 
combination of two strictly meshfree Lagrangian methods which allow for the 
simulation of fluid-structure interaction problems. The interaction between the fluid and 
the sediment particles and between the sediment particles themselves is modelled by a 
well-defined force law also accounting for various kinds of friction between the grains. 
For the present work, the sediment grains are modelled as spherical particles. The 
applied model is able to reproduce the constitutive behaviour of sediment mixtures and 
the different transport modes of bed load, such as sliding, rolling and saltating. 
 
The modelling of the fluid is based on a continuum approach which is discretised by the 
Smoothed Particle Hydrodynamics (SPH) method. The sediment particles are represented 
by the Discrete Element Method (DEM), where the interactions between the discrete 
sediment grains are modelled by a force law, which is also able to account for various 
kinds of friction. A similar approach is applied to the interaction between the fluid and 
sediment particles. The definition of the interface and the exchange of forces between 
the fluid and sediment grains are inherent to the applied approaches. Thus, the use of a 
computational grid or of techniques for the tracking or capturing of the interface is not 
necessary. 
 
The different force laws relevant for the present subject are presented in detail. To 
simplify their configuration and to provide appropriate equilibrium conditions, relations 
derived from the force laws, in terms of the distance of the fluid particle from the solid 
boundary and a reference force, are provided. These can be used for the determination 
of relevant model parameters and allow for an expedient configuration of the 
simulations. Furthermore, a procedure to estimate the material stiffness depending on 
characteristic simulation quantities and the standard deviation of the penalty force is 
presented. The reason for this is that the SPH method requires an explicit scheme for 
time stepping. Thus, to limit the corresponding restriction of the time-step size a certain 
error may be taken into account, while allowing for a faster progression of the 
simulation. Moreover, a procedure is presented for the estimation of the friction 
parameters for wall-bounded shear flows depending on a proposed near wall velocity. 
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Two basically different approaches to model sediment transport with the proposed 
method are presented. On the one hand, the application of the combined methods as a 
High Resolution Force Model (HRFM) is investigated. For the HRFM, the fluid particles 
are chosen distinctly smaller than the sediment particles to simulate detailed interaction 
forces. To study the interaction forces on a spherical particle depending on the 
resolution of the fluid particles a hydrostatic and a dynamic experiment, namely the 
simulation of buoyancy effects and the determination of the settling velocity, are carried 
out. The simulations show convergence of the results for increasing particle resolution; 
they turned out to be a reliable concept to validate the chosen numerical approaches. 
Furthermore, the importance of the possibility to account for the effect of buoyancy is 
pointed out. In addition, channel flow experiments are carried out and the relevant 
model parameters for wall bounded shear flow have been identified. The simulation 
results show the potential of the HRFM to be used for detailed investigations of bed 
load processes. 
 
On the other hand, the use of the model in terms of a Low Resolution Force Model 
(LRFM) is studied. For the LRFM, the fluid particles are chosen of similar size or larger 
than the sediment particles. This requires a basically different approach for the 
determination of the interaction-force law parameters. Due to the less detailed 
resolution of the fluid forces acting on a solid particle, the model parameters have to be 
calibrated to match the desired sediment transport processes; this concerns the spatial 
as well as the temporal scale. Furthermore, the solid particles may no longer only 
represent a single sediment grain, but rather a small volume of sediment or a chunk of 
soil. Depending on the complexity of the experiment, their calibration may become quite 
extensive. Hence, the presented simulations are only marginally calibrated. The LRFM 
was applied to scour caused by a freefalling water jet and to clear-water scour at a 
bridge pier. The qualitative simulation results are in satisfying agreement with 
experimental observations and illustrate the use of the applied methods for practical 
applications. 
 
However, the methods also have some shortcomings. The force law used for the 
interaction of the fluid and the sediment grains depend on a reference force, which may 
not correspond to the actual and local fluid forces in a dynamical simulation. This may 
affect the accuracy of the results. However, this effect mainly applies to the HRFM, and 
its influence is expected to diminish for increasing particle resolution. Its role with regard 
to the forces on a sediment particle embedded or close to the sediment bed has to be 
investigated in subsequent research. Moreover, boundary conditions between the fluid 
and solids for SPH are still an open topic. Another problem arises due to the pressure 
field, which shows spurious oscillations inherent to the weakly compressible SPH 
method. There are several approaches to overcome this issue, either by the introduction 
of appropriate filtering or by the implementation of a truly incompressible variant of the 
SPH method. The mentioned shortcomings are discussed in detail in section 5.5. 
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As also pointed out by other researchers, the main drawback of the presented model is 
due to its extensive computational cost for detailed and three-dimensional simulations. 
For example, the three-dimensional pier-scour experiment with a total particle number 
of about 80’000 requires about 25 days for a simulation time of 1.5 seconds on a 
modern high-end processor using one core. The common way to overcome this 
restriction is to implement parallelisation techniques to be able to use high performance 
computing infrastructure. However, as far as engineering practice is concerned, the use 
of the present model in the near future is not realistic, since its appropriate application is 
still a challenging task and the corresponding computation time requirement may not be 
affordable. 

7.2 Recommendations for Future Research 
Subsequent research may include the extension of the present model in two directions. 
On the one hand, further investigation of problems concerning the numerical 
approaches on a very detailed level (as with the HRFM) is important. On the other hand, 
research work with the main focus on engineering applications (as with the LRFM) 
should be carried out. 
 
With regard to the HRFM, alternative approaches concerning calculation of the pressure 
field and the boundary conditions may be implemented. The approaches which use 
filtering in combination with appropriate boundary conditions may be expedient. A 
viable alternative to this would be the implementation of a truly incompressible variant 
of the SPH method. Another important topic would be the elimination of numerical 
instabilities by effective approaches to enable faster and more flexible applications of the 
model. A model which includes these extensions is expected to serve as a research tool 
for the investigation of the drag and lift forces acting on a sphere exposed to three-
dimensional channel flow. 
 
When it comes to the LRFM, the determination of reasonable force law parameters 
depending on the resolution and the sediment properties is of basic interest. The main 
question is: “What are the matching parameters for a certain scale?” However, the 
LRFM is a promising approach in combination with experimental data and may serve as 
a reliable simulation tool for many hydraulic and environmental engineering problems. 
 
The successful combination of both tasks could bridge the gap between the two 
modelling approaches and would open the way to true multi-scale modelling. 
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List of Symbols 

Latin Capitals 

A  [m-1] surface area 

IA  [.] integral interpolant of any quantity or function rA  

oA  [m] amplitude of harmonic oscillator 

rA  [.] any quantity or function 
Â  [m-1] projected area for drag force 
A  [m-1] projected area for lift force 
Ar  [-] Archimedes number 
B  [N/m-1] coefficient in equation of state 

*B  [-] constant in Einstein formula 
C ¢  [N] cohesion 

DC  [-] drag coefficient 

LC  [-] lift coefficient 

wC  [-] weir coefficient 
*D  [-] dimensionless grain diameter 

wD  [m] influence distance from wall of MLJ potential 
D̂  [kg/(sm3)] discretised form of continuity equation 
E  [J/kg] total energy per unit mass 

totE  [J] total energy 

kE  [N/m2] Young’s modulus 
F̂  [m2/s2] discretised form of momentum equation 

aF


 [N] applied forces 

bF


 [N] buoyancy force 

cF


 [N] contact force 

dF


 [N] damping force 

drF


 [N] drag force 

DF


 [N] total dissipative force 

,D tF


 [N] tangential dissipative force 

gF


 [N] weight of body 

*gF


 [N] submerged weight of body 

ghF


 [N] sum of hydrostatic pressure force and weight of body 

hF


 [N] hydrostatic pressure force 

lF


 [N] lift force 

nF


 [N] normal force 
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RkF


 [N] kinetic friction force 

RsF


 [N] static friction force 

RvF


 [N] viscous friction force 

sF


 [N] spring force 

,s tF


 [N] force of tangential spring 

tF


 [N] tangential force 

0H  [m] initial water depth 
I  [kg m2] tensor of moment of inertia 
K  [N/m] generalised stiffness constant, material parameter of Hertz law 
L


 [N m s] angular momentum 

sL  [m] non-equilibrium adaption length 

aM


 [N m] applied torques 

cM


 [N m] contact torque 

eM


 [N m] external torque 

fM


 [N m] friction torque 
Ma  [-] Mach number 
Q  [-] orthogonal quaternion matrix 

bQ  [m3/s] non-equilibrium bed load 

eQ  [m3/s] equilibrium transport rate 
QG


 [1/m-1] boundary source vector 

VQ  [1/m] volume source 
R  [m] influence distance of LJ potential 

abR  [m2/s2] influence distance of LJ potential 

rR  [-] coefficient of roundness 
Re  [-] Reynolds number 

*Re  [-] grain or bed particle Reynolds number 
*
cRe  [-] critical particle Reynolds number 

bS  [-] channel or bed slope 

eS  [-] slope of energy grade line 

,f gS  [m2/s] active stratum source term 
T  [J] kinetic energy 

oT  [s] period of harmonic oscillator 
U  [J] potential energy 

sU  [J] potential energy of displaced spring 

hU  [J] potential energy of Hertz force law 
V  [m] volume of body 

sV  [m] volume of sphere 
W  [1/m] kernel function 

abW  [1/m] average of kernel functions 

fW  [J/kg] work of external forces per unit mass 
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Latin Minuscules 

a  [m] measure of displacement 

ta  [m/s2] tangential acceleration 

maxa  [m/s2] maximum particle acceleration 

ia


 [m/s2] acceleration of particle i  
c  [N/m] stiffness of spring 

abc  [m/s] averaged sound velocity of SPH particles a  and b  

fc  [-] Chézy coefficient 

Rc  [-] coefficient of logarithmic law for small relative flow depth  

sc  [m/s] sound velocity 

tc  [N/m] stiffness of tangential spring 
d  [Ns/m] viscous damping coefficient 

td  [Ns/m] tangential damping coefficient 

sd  [m] grain diameter 
e  [J/kg] internal energy per unit mass 

re  [-] restitution factor 
e


 [-] unit vector 

ije


 [-] interaction unit vector 

sde  [-] unit vector of the spring-damper system 

te


 [-] tangential unit vector 

abf  [-] kernel dependant scaling function 

ef


 [N/m] external volume forces` 

0f  [1/s] ordinary frequency 
g  [m/s2] gravitational acceleration 
g


 [m/s2] gravitational acceleration vector 
h  [m] smoothing length of SPH kernel 

ah  [m] smoothing length of SPH particle a  

fh  [m] flow depth 

mh  [m] height of active layer 

wh  [m] weir height 
k  [N] stiffness of LJ potential 

bk  [m1/3/s] Manning-Strickler coefficient including bed forms 

rk  [m1/3/s] Manning-Strickler coefficient based on grain diameter 
m  [kg] mass 

sm  [kg] mass of sphere 

wm  [kg] mass of boundary particle 

gn  [-] number of grain size classes 
p  [N/m-1] pressure 

ap  [N/m-1] pressure of SPH particle a  

ep  [-] pickup probability 

bq  [m2/s] volume bed load transport rate per unit channel width 
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,b gq  [m2/s] bed load rate per unit channel width of grain size class g  

Hq  [1/m] sources other than conduction 

iq  [-] rotation unit quaternion of particle i  

vq  [N/m2] contribution to artificial viscosity term 

wq  [m2/s] water discharge per unit channel width with sidewall correction 

wq ¢  [m2/s] water discharge per unit channel width without correction 

weq  [m/s] specific weir discharge  
r  [m] distance from origin 

abr  [m] distance between SPH particles a  and b  

ar


 [m] position vector of SPH particle a  

ir  [m] radius of particle i  

ir


 [m] position vector of particle i  

ijr  [m] distance between particles i  and j  

minr  [m] radius of smallest particle of simulation 

sr  [m] sphere radius 

0r  [m] point where the LJ force changes from repulsion to attraction 
s  [-] sediment specific density, s fs r r=  

ct  [s] collision time 

*u  [m/s] shear stress velocity 

*cu  [m/s] critical shear stress velocity 
u


 [m/s] velocity vector 

au


 [m/s] velocity vector of SPH particle a  

fu


 [m/s] free stream velocity 

mu  [m/s] depth-averaged flow velocity 

refu  [m/s] reference velocity 

cv  [m/s] contact or impact velocity 

cv ¢  [m/s] velocity after collision 

csv  [m/s] creep speed 

endv  [m/s] terminal velocity 

iv


 [m/s2] velocity of particle i  

tv  [m/s] tangential velocity 

0v  [m/s] initial velocity 

sw  [m/s] terminal settling velocity 
ˆsw  [m/s] reduced terminal settling velocity 

sw  [m/s] observed terminal settling velocity 

Ry  [m] height of roughness sublayer 

bz  [m] bed level 

0z  [m] datum 
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Greek Symbols 

a  [-] artificial viscosity coefficient for volume-viscous pressure 

ga  [-] coefficient for kernel gradient force law 

sa  [-] safety factor for time step conditions 

sa  [1/m] coefficient for Gaussian kernel function 
b  [-] artificial viscosity coefficient for Von Neumann-Richtmyer pressure 

kb  [-] coefficient for kernel gradient force law 

gb  [-] volume fraction of grain size class g  
G  [m-1] domain boundary 

gG  [m/s2] gradient force function 
s  [m] initial particle spacing 
t  [s] size of time step 

g  [°] inclination of channel bed 

ag  [-] adiabatic index 

dg  [-] attenuation factor or damping ratio 

pg  [-] exponent in equation of state 

pcg  [-] damping coefficient of PC-leapfrog scheme 

wg  [-] reduction coefficient to account for wall interference 
d  [m] penetration depth or displacement of spring 

td  [m] displacement of tangential spring 

wd  [m] distance to boundary or wall 

weqd  [m] equilibrium distance to boundary or wall 

0wd  [m] distance from wall of zero force point of MLJ potential 

0d  [m] offset from equilibrium position 

pe  [Nm] stiffness of Lennard-Jones potential 

se  [-] artificial stress coefficient 

Xe  [-] XSPH coefficient 
h  [-] friction slope 

vh  [m] term for artificial viscosity to prevent singularities 

0h  [-] standard deviation in Einstein formula 
q  [°] phase angle 

cq  [-] dimensionless critical shear stress, Shields parameter 
k  [-] von Kármán constant 

wl  [-] particle to tank width ratio 
m  [Ns/m2] dynamic viscosity 

abm  [m/s] term for artificial viscosity 

km  [-] kinetic friction coefficient 

mm  [-] reduced or effective mass 

sm  [-] static friction coefficient 

vm  [-] viscous friction coefficient 

wm  [-] weir discharge coefficient 



List of Symbols 

178 

n  [m2/s] kinematic viscosity 

kn  [-] Poisson’s ratio 
X  [-] Yalin parameter 

abP  [N/m2] artificial viscosity term 

ar  [kg/m3] density of SPH particle a  

abr  [kg/m3] averaged density of SPH particles a  and b  

0r  [kg/m3] initial or reference density of the fluid 

fr  [kg/m3] density of the fluid 

sr  [kg/m3] density of the sediment or granular material 

wr  [kg/m3] density of boundary particle 
r  [kg/m3] density difference between sediment and fluid 

s  [N/m2] internal stress tensor 
s  [-] dimension 

ks  [-] material parameter of Hertz force law 

ps  [-] parameter of Lennard-Jones potential 
t  [N/m2] viscous stress tensor 

ijt  [N/m2] shear stress 

bt  [N/m2] bed shear stress 
*
bt  [N/m2] dimensionless bed shear stress 

ct  [N/m2] critical bed shear stress 
*
ct  [-] dimensionless critical shear stress, Shields parameter 
f  [deg] angle of repose 

cvf  [deg] constant volume critical state friction angle 
F


 [1/m] flux vector 

CF


 [1/m] convective flux vector 

DF


 [1/m] diffusive flux vector 
F  [1/m] flux tensor 

CF  [1/m] convective flux tensor 

DF  [1/m] diffusive flux tensor 
c  [-] hysteresis factor 
y  [deg] dilation angle 

Ry  [-] ratio between tangential force and maximum viscous friction force 

eqy  [-] force potential parameter 
Y  [1/m] quantity per unit volume 

*Y  [m2/N] flow intensity 
Y


 [1/m] vector quantity per unit volume 
W  [m] domain 

iW  [-] pure quaternion of angular velocity 

0w  [1/s] angular frequency 
w  [rad/s] angular velocity 
w


 [rad/s] angular velocity vector 
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General Mathematical Expressions and Symbols 

t  [s] time 
x  [m] Cartesian coordinate, main flow direction 
y  [m] Cartesian coordinate, horizontally perpendicular to x  
z  [m] Cartesian coordinate, vertical direction in general 
x̂  [N] coordinate parallel to channel bottom 
ẑ  [N] coordinate perpendicular to channel bottom 
z  [m] coordinate for harmonic oscillator 
( )rd   Dirac delta function 

ijd   Kronecker delta, 1 for , otherwise 0ij iji jd d= = =  

x   Euclidean norm of vector 


x  

{ }P  [-] numerical quantity of P  
 

abaW


  kernel gradient with respect to SPH particle a  
 



  nabla operator: 1 2 3( , , )x x x = ¶ ¶ ¶ ¶ ¶ ¶


 
 
D   Laplacian: 

32 2 2
1 jj

x
=

D =  =  ⋅  = ¶ ¶å
  
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List of Acronyms 

Bi-CGSTAB BiConjugate Gradient Stabilised Method 
DEM Discrete/Distinct Element Method 
DES Detached Eddy Simulation 
DNS Direct Numerical Simulation 
FAVOR Fractional-Area-Volume Obstacle Representation 
FDM Finite Difference Method 
FEM Finite Element Method 
FSI Fluid-Structure Interaction 
FVM Finite Volume Method 
GPU Graphics Processing Unit 
HRFM High Resolution Force Model 
ISPH truly Incompressible Smoothed Particle Hydrodynamics 
LBM Lattice Boltzmann Method 
LDV Laser Doppler Velocimetry 
LES Large Eddy Simulation 
LJ Lennard-Jones 
LRFM Low Resolution Force Model 
MAC Marker-And-Cell 
MLJ Modified Lennard-Jones 
PIC Particle-In-Cell 
PASIMODO PArticle SImulation and MOlecular Dynamics in an Object oriented fashion 
RANS Reynolds-Averaged Navier-Stokes 
rSPH remeshed Smoothed Particle Hydrodynamics 
SPH Smoothed Particle Hydrodynamics 
VOF Volume Of Fluid 
WCSPH Weakly Compressible Smoothed Particle Hydrodynamics 
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Appendix 

A.1 Material Properties 

A.1.1 Stiffness and Young’s Modulus 

For an isotopic elastic material, Hooke’s law holds, 
 
 = Es e  (8.1) 
 
where the Young’s modulus is defined as 
 

 0

0

/

/
= =


AF A

E
l l

s
e

 , (8.2) 

 
with s  the tensile normal stress, e  the tensile normal strain and the force A AF F n= ⋅

 
 

acting in the normal direction on the cross-sectional area 0A  leading to an 
increase/decrease of the original length 0l  by l . Appropriate values for Young’s 
modulus of real materials can be found in the literature, e.g. from Ashby and Jones 
(2005).  
Equation (8.2) can be rearranged for a linear elastic spring with force =s AF F , stiffness 

0 0=c E A l and displacement ld = : 
 
 sF cd=  . (8.3) 

 
In practice, the constant c  is usually determined by the physical properties of the spring.  

A.1.2 Poisson Ratio 

For a linear elastic, and density preserving material the Poisson ratio is 0.5n = , i.e. 
deformation does not cause a change in volume and the material is termed “elastic 
incompressible”. For real materials the Poisson ratio is 0.5n < , e.g. the mean value for 
metal is approximately 0.3 and for granite approximately 0.25. Details on the 
determination of the Poisson ratio for rocks can be found in Burshtein (1968). According 
to Mitchell and Soga (2005) the Poisson ration for geomaterials varies in the range of 0 
– 0.35. 
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A.1.3 Viscosity 

According to Newton’s law of viscosity, the shear stress acting between two parallel 
fluid layers is defined as 

 
du

dy
t m=  , (8.4) 

 
where u  is the velocity component perpendicular to y  and m  is the dynamic viscosity of 
the fluid, a material property, 
 

 
2

[N][s]Force Velocity
Area Distance [m ]

m = =  . (8.5) 

 
The ratio of the dynamic viscosity to the mass density defines the kinematic viscosity of 
the fluid: 
 

 
m

n
r

=  (8.6) 

A.1.4 Friction Coefficients of Granular Materials 

The coefficient of static friction, sm  of a granular material can be approximated by its 
angle of repose f  (also termed angle of internal friction),  
 
 tan( )sm f=  . (8.7) 

 
According to Santamarina and Cho (2004), the angle of repose depends on the 
roundness of the particles, and the following linear fit for the constant volume critical 
state friction angle cvf  is proposed 
 
 42 17cv rRf = -  , (8.8) 

 
where rR  is the coefficient of roundness defined in Mitchell and Soga (2005), with 

rR =1 for spherical particles. A similar result was obtained by Sukumaran and Ashmawy 
(2001). They present friction angles from drained triaxial tests for different particle 
shapes. Furthermore, for a granular material of dense packing the dilation can be an 
important component of the shear strength (see e.g. Santamarina and Cho (2004)). 
Thus, the peak friction angle can be expressed by 
 
 max 0.8cvf f y= +  , (8.9) 
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where y  is the dilation angle. E.g. for locked sands values of the dilation angle about 
30° have been measured. The effect of dilation on the shear strength is also known as 
cohesion and the corresponding shear or friction force reads 
 

 tan( )s N cvF F Cf ¢= +
 

, (8.10) 

 
where C ¢  is the cohesion that is usually set to zero for granular materials with large 
grain sizes (see Potapov and Campbell (1996)). This seems to be reasonable since the 
granular material is modelled by discrete particles and hence dilation can explicitly take 
place. Therefore only the part for constant volume friction is of relevance, i.e. the static 
friction coefficient of the modelled granular material is tan( )s cvm f= . Furthermore it is 
assumed, that the coefficient of kinematic friction is equal to that of static friction, i.e. 

k sm m= . For a given roundness 0.7rR »  of the grains, equations (8.8) and (8.7) result 
in 30f =   and 0.58sm = . Schellart (2000) observed that the physical handling 
technique to deposit the sediment piles has a major influence on the angle of repose. 
According to his results, the former values are rather at the lower boundary. For very 
well rounded grains with very high sphericity values of 41f =   and 0.87sm =  were 
also observed.  
 
Due to the inconsistency reported above, intermediate values are suggested for the 
present work, 
 
 35 , 0.7s kf m m=  = =  . (8.11) 
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A.1.5 Summary 

The subsequently listed values are used for this work and are approximate values. They 
may vary depending on the composition of the material or environmental influences 
such as temperature. 
 

 
 

 
 

Fluid: water at 20°celsius 

property  symbol  value  units 

density  fr   998.21  kg/m3 

dynamic viscosity  m   1.0 x10‐3  Ns/m2 

kinematic viscosity  n   1.01 x10‐6  m2/s 

sound velocity  sc   1484  m/s 

 

Bed material: gravel consisting of granite 

property  symbol  value  units 

density  sr   2800  kg/m3 

Young’s modulus  kE   60 x109  N/m2 

Poisson ratio  kn   0.25  ‐ 

static friction coefficient  sm   0.7  ‐ 

kinetic friction coefficient  km   0.7  ‐ 

rolling resistance coefficient  rm   0.001  ‐ 
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A.2 General Definitions for DEM 
The following definitions are used for the description of the discrete element method in 
chapter 4.3. Consider two particles i  and j  with position vectors ir


 and jr


. Note that in 

the used model also rigid walls are made of particles, i.e. triangles. 
 
The distance vector between two particles always depends on the particle considered at 
a time, 
 

 
( )
( )

,
:

,
b a

ij
a b

r r for particle a
r

r r for particle b

ì -ïï= íï -ïî

 


   (8.12) 

 
and the distance between the two particles is given by the Euclidean norm 
 
 :ij ijr r=


 . (8.13) 

 
For spheres, where the distance vector is normal to the contact surface, the interaction 
unit vector can be defined as 
 

 : ij
ij

ij

r
e

r
=



 . (8.14) 

 
Note that for arbitrarily shaped bodies the interaction unit vector has to be derived from 
the contact normal and not from the connection between the centres. 
 
The velocities of the particles are defined as iv


 and jv


. In compliance with equation 

(8.13) the norm of the velocity reads 
 
 :i iv v=


 . (8.15) 

 
For a collision ¹

 
i jv v  holds. The velocity components in normal and tangential 

direction of the collision are obtained by projection onto the interaction unit vector. 
Thus, the interaction velocity is defined as 
 

 ( )i ij
ij ij i ij ij

ij

v r
v e v e e

r

⋅
= = ⋅
 

   
 . (8.16) 
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Similar relations hold for particle j . The relative velocity of the two particles is 
 
 r i jv v v= -

  
 (8.17) 

 
and the relative tangential velocity is obtained by 
 
 ( )t r r ij ijv v v e e= - ⋅

    
 , (8.18) 

 
leading to the tangential unit vector 
 

 t
t

t

v
e

v
=



 , (8.19) 

 
where :t tv v=


. 
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A.3 MLJ Potential for Sphere to Sphere Interaction 
For the interaction of a fluid particle with a sphere of radius sr  the following 
transformation is defined 
 
 0 0: : , : , :w ij s w s w sfluid to sphere r r r r D R rd d= - = - = -  . (8.20) 

 
By insertion of (8.20) into (4.116) one obtains 
 

 

2
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0 0

0 0
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w
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otherwi e

F
e

s

d d d d d

d d
d

d
- - - +
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 (8.21) 

 
and the corresponding potential reads 
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(8.22) 

 
Considering only repulsive forces, i.e. 0w wD d= , equation (8.22) becomes 
 

 4
0 04

0

( )
)

(
(

,) ij wn w w w w
w s

k
F e

r
d d d d d

d
-

+
= £


 . (8.23) 

 
The corresponding potential reads 
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The maximum of the repulsive-only potential is at distance 0wd  from the wall and has 
the value 
 

 ( )0 0
1

( )
5w w sU k rd d= +  . (8.25) 

 
To balance a given external static force of amount F , e.g. the weight mg  of a fluid 
body with mass m , the equilibrium distance to the wall can be determined by 
 

 ( )
1 4

0 0weq w w s
F

r
k

d d d
æ ö÷ç= - + ÷ç ÷÷çè ø

 (8.26) 

 
and the corresponding potential is 
 

 
1 4

0( )
5q

sw
we

r
U k F

k

Fd
d

æ öæ ö ÷+ ç ÷ ÷çç= - ÷ ÷çç ÷ ÷÷çç ÷è ø ÷çè ø
 . (8.27) 

 
If a certain equilibrium distance to the wall is preferred, the appropriate stiffness could 
be obtained by rearranging (8.26), 
 

 

4

0

0

w

w weq

srk F
d
d d

æ ö+ ÷ç ÷ç= ÷ç ÷÷ç -è ø
. (8.28) 

 
The minimal stiffness mink  to prevent penetration of an approaching body with mass m  
and velocity wu  is 
 

 
2

min 0
0

5
2
w

w
w s

um
k g

r
d

d

æ ö÷ç ÷ç= + ÷ç ÷÷ç+ è ø
 . (8.29) 

 
For a potential with 0 2weq wd d= , equation (8.28) can be written as 
 

 
4 4

0 0

0 0

16 ;
16

w
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k F F
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A.4 Different Forms of Lennard-Jones Potentials 

A.4.1 Form Depending on Equilibrium Distance 

Inserting equation 1 6
02 rs -= into (4.75) leads to 

 

 

6 12

0 01
( ) 12n ij ij

ij ij ij

r r
F r e

r r r
e

é ùæ ö æ öê ú÷ ÷ç ç÷ ÷ç ç= -ê ú÷ ÷ç ç÷ ÷÷ ÷ê úç çè ø è øê úë û

 
 . (8.31) 

 

A.4.2 Form According to Monaghan 

Monaghan (1994) uses as impermeable boundary condition a Lennard-Jones potential 
of the form 
 

 
1 2

0 0( )

p p

ij ij i
n ij

j
ijF r e

r rk
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 
 , (8.32) 

 
with corresponding potential 
 

 
2 1

0 0

2 1

(
1 1

)

p p

ij i
i

j
jU r

r r
k
p r p r
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He sets 1 4p =  and 2 2p =  for most of his simulations, but found similar results for 

1 12p =  and 2 6p = . 
 

A.4.3 Form According to Müller 

The Lennard-Jones potential according to the force law presented by Muller et al. (2004) 
can be obtained by integration of equation (4.116); one obtains 
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 (8.34) 

 
Considering only repulsive forces, i.e. 0R r= , equation (4.116) becomes 
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The corresponding potential reads 
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Fig. A-1: Lennard-Jones potential as boundary force law with the particle resting at equilibrium position. 

 
To balance a given external force of amount F , e.g. the weight mg  of a body with 
mass m , the equilibrium position can be determined by 
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Furthermore, rearranging (8.37) yields 
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Defining a potential with 0 2eqr r=  leads to 
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The recommended SPH parameters are (see Fig. A-1): 
 
 , 1.5eqs r h s= =   . (8.40) 

A.4.4 Approximations 

The polynomial (4.121) describing the potential ( )wU d  can be approximated by 
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where 0( )wU d  is given by equation (4.122). 
 
 
 

A.5 Vector Projection 
Consider a vector ( )0 0

xyz
r z=


 given in a Cartesian coordinate system with axes , ,x y z  
and a similar coordinate system with axes ˆ ˆ ˆ, ,x y z  that is clockwise rotated around the y-
axis by angle g , i.e. g  is negative. The projection of r


 onto the axis of ˆ ˆ ˆ, ,x y z  reads 
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The corresponding unit vectors are 
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