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Karma Priority lanes for fair and efficient bottleneck congestion management

Ezzat Elokda, Carlo Cendese, Kenan Zhang, Andrea Censi, John Lygeros and Emilio Frazzoli

Abstract— A popular remedy for the morning commute
bottleneck congestion is to split the highway capacity into a
managed lane that is kept in free-flow and a general purpose
lane that is subject to congestion. A classical theoretical result
is that the more capacity is allocated to the managed lane the
less the resulting congestion. However, existing approaches to
restrict access to the managed lane are primarily monetary, e.g.,
tolls, which severely limits the public willingness to accept them
due to equity concerns. Following up on recent work which
introduces karma as a completely non-monetary credit used to
control access to a so-called Karma Priority (KP) lane, we first
review the strategic problem of the commuters which is modeled
as a dynamic population game. We then numerically investigate
the effect of varying the KP lane capacity. The karma scheme
is equitable with respect to different income classes irrespective
of the capacity split, meanwhile achieving near-optimal traffic
reduction. Thus, managing a larger fraction of the bottleneck
could be more socially feasible under a karma scheme than a
monetary scheme.

I. INTRODUCTION

For decades, traffic congestion has been causing tremen-
dous social cost to major cities around the world. According
to the INRIX 2019 Global Traffic Scorecard report, drivers
lost an average of 99 hours a year in the U.S. and 115 hours
a year in the U.K. due to congestion [1]. To manage rush
hour traffic, a wide variety of tools have been proposed in
the literature as well as implemented in practice. Among
them, congestion pricing is the most widely known due
to its theoretical efficiency [2]–[5]. However, the classical
congestion pricing is often arguably politically and socially
infeasible [6] as it tends to favor wealthier travelers [7]–
[9]. For this reason, a growing attention has been drawn
to alternative quantity- and credit-based approaches. The
former directly limit the number of vehicles on the road,
e.g., through license-plate rationing [10], [11] or highway
reservation [12], [13], while the latter assign a limited
number of travel credits/permits to road users which can
be traded in a monetary market [14]–[16]. While these
approaches are preferable to classical congestion pricing as
they avoid a net financial flow from road users to authorities,
they nevertheless fail to fundamentally address the equity
issue. For instance, the license-plate rationing implemented
in China has induced wealthy travelers to purchase additional
vehicles [17]. Moreover, wealthy travelers can also take
advantage of the credit-based schemes since they have a
larger capacity to buy credits than others [18].

All authors are with ETH Zurich, 8092 Zurich, Switzerland.
{elokdae,ccenedese,kenzhang,acensi,jlygeros,
efrazzoli}@ethz.ch

Research supported by NCCR Automation, a National Centre of Compe-
tence in Research, funded by the Swiss National Science Foundation (grant
number 180545).

During the morning commute bottleneck congestion [3],
[19]–[21], commuters travel between a single origin-
destination pair and arrive at a bottleneck forming a queue
due to its limited capacity. A popular solution is to partially
keep the bottleneck in free-flow by managing the access
to some of its lanes, e.g., using High Occupancy Vehicle
(HOV) lanes that are exclusive for carpoolers [22] or High
Occupancy Toll (HOT) lanes that charge monetary tolls [23].
A well-known theoretical result is that if the managed lanes
are successfully kept at their free-flow capacity, then the
more lanes are managed the less the overall traffic conges-
tion [23]. To this end, both HOV and HOT lanes face serious
limitations. To ensure they are not wastefully under-filled,
only a few lanes can be dedicated to HOV [24]. Due to
the equity issue of congestion pricing and related monetary
schemes, allocating more HOT lanes will likely lead to severe
public dismay [9]. Moreover, it is practically difficult to
determine the optimal toll charges as it requires authorities to
have accurate measures of the commuters’ private monetary
Value of Time (VOT) [4], [25], [26].

To address these issues, in recent work [27], we propose
a new kind of non-monetary mobility credits, called karma,
that are used in an auction-like mechanism to fill a managed
lane up to its free-flow capacity (hereafter referred to as the
Karma Priority (KP) lane), while all commuters who fail
to enter the managed lane use a General Purpose (GP) lane
subject to congestion. We demonstrate that for a particular
capacity split between the two lanes, the karma scheme
gives rise to near-optimal traffic reduction without requir-
ing any private information about the travelers, meanwhile
addressing the equity issue because karma is completely
decoupled from money. In this paper, our main contribution
is in extending [27] to investigate the effect of increasing
the relative capacity of the KP lane in order to maximize
the benefit of the karma scheme. Our main findings is that
near-optimal efficiency is robustly observed for most values
of the capacity split, and significant traffic reduction can be
achieved by dedicating up to 75% of the bottleneck capacity
to the KP lane. We conjecture that due to the equity of the
karma scheme, the public would be more willing to accept
managing such high proportions of the bottleneck than under
a monetary scheme. However, when the KP lane occupies
the vast majority of the bottleneck (i.e., ≥ 80%), we observe
equilibrium computation difficulties that point to potential
limitations on how small the GP lane can be.

In the remainder of the paper, we first present a dynamic
population game [28] model for the commuters’ strategic
problem under the presence of a KP lane, as first introduced
in [27] (Section II). We then perform a numerical investiga-



tion of the effect of the KP lane capacity, demonstrating the
achieved efficiency and equity of the karma scheme in com-
parison to an optimal monetary tolling scheme (Section III).
We finally conclude with a discussion in Section IV.

A. Notation

Let a, d ∈ D ⊆ N and let c ∈ C ⊆ Rn, then for
a function f : D × C → R, we distinguish discrete
and continuous arguments through the notation f [d](c).
Alternatively, we write f : C → R|D| as the vector-
valued function f(c), with f [d](c) denoting its dth ele-
ment. Similarly, g[a | d](c) denotes the conditional prob-
ability of a given d and c. Specifically, g[d+ | d](c)
denotes one-step transition probabilities for d. We denote
by p ∈ ∆(D) :=

{
σ ∈ R|D|

+

∣∣∣∑d∈D σ[d] = 1
}

a probability
distribution over the elements of D, with p[d] denoting
the probability of element d. Finally, when considering
heterogeneous commuter types, we denote by xτ a quantity
associated to type τ .

II. MODEL

A. Description of CARMA scheme

We briefly recap CARMA, the karma-based bottleneck
congestion management scheme first proposed in [27]. We
consider N commuters that travel daily through a bottle-
neck with total capacity s [veh/min], which is split into a
KP lane with capacity sfast and a GP lane with capacity
sslow = s− sfast. The commuters are heterogeneous in their
VOT process (denoted by ϕτ [u+ | u] for commuters of type
τ ∈ Γ = {1, . . . , nτ}), that is, the process by which their
daily VOT (denoted by u ∈ U = {u1, . . . , uM}) changes.
We discretize the feasible departure times into T intervals of
length ∆t [min]. Therefore, on every morning, commuters
featuring state [u, k] make a decision on their departure time
t ∈ T = {1, . . . , T} and place a karma bid to enter the
KP lane b ∈ B[k] = {0, . . . , k}, where k ∈ N denotes their
current budget in karma credits. Consequently, the highest
sfast ∆t bidders departing at t are allowed to enter the KP
lane, while all others have to use the GP lane, as illustrated
in Figure 1. Moreover, participation in the CARMA scheme
is not mandatory; commuters not willing to participate can
directly use the GP lane.

bid for KP lane KP lane

GP lane

Fig. 1: Karma auction to enter KP lane.

B. Commuters’ strategic model

We build upon the seminal Vickrey bottleneck conges-
tion model [29] to incorporate it in the general karma
dynamic population game model introduced in [30]. Let
g ∈ ∆(Γ) be the distribution of VOT types in the popu-
lation, d ∈ D = {d ∈ R|Γ|×|U|×∞ | ∑u,k dτ [u, k] = gτ} be

the joint distribution of types and states, and π ∈ Π be the
policy, with πτ [t, b | u, k] ∈ [0, 1] denoting the probability
that commuters of type τ and state [u, k] choose action
[t, b]. The social state is (d, π) ∈ D × Π, which gives the
distribution of commuter types and states as well as their
actions, thereby providing a macroscopic description of the
competitive landscape. The individual commuter faces a δ-
discounted Markov decision process (MDP) that is coupled
to others through the social state (d, π). In what follows,
we specify the key elements of this MDP, those are, the
immediate reward function ζ(d, π) and the karma transition
function κ(d, π).

1) Immediate reward function ζ[u, t, b](d, π): Following
the classical bottleneck model, we define the immediate
reward in two parts: queuing delay tq and early or late sched-
ule delay (te or tl, respectively). Given the departure time
and bid, how much delay each commuter endures depends
on the outcome of the karma auction. Let ψ[o | t, b](d, π)
denote the probability of an ego commuter finally entering
lane o ∈ {fast, slow}, given its choice of t, bid b and the
other commuters’ actions (function of the social state (d, π)).
Then, the immediate reward can be written as

ζ[u, t, b](d, π) = −u
∑
o

ψ[o | t, b]
(
α tq + β te + γ tl

)
,

(1)

where tq, te and tl are given by (in (1) the dependency on
the arguments [t, o](d, π) is omitted for brevity):

tq[t, o](d, π) =

{
0, o = fast,
q[t](d,π)

sslow
, o = slow,

(2a)

te[t, o](d, π) = max{0, t∗ − t− tq[t, o](d, π)}, (2b)

tl[t, o](d, π) = max{0, t+ tq[t, o](d, π)− t∗}. (2c)

In (1), the negation is to denote reward instead of cost, and
β < α < γ give the sensitivity to the different delays. In (2a),
q[t](d, π) gives the queue length on the GP lane at time t,
which is a function of the previous queue length q[t−1](d, π)
and the ratio of the GP lane departures to capacity. In (2b)–
(2c), t∗ is the commuters’ desired arrival time.

To complete the definition of (1), we now derive
ψ[o | t, b](d, π). We define a threshold bid b∗[t] such that

• if b > b∗[t], the commuter enters the KP lane for sure,
i.e., o = fast;

• if b < b∗[t], the commuter enters the GP lane for sure,
i.e., o = slow;

• if b = b∗[t], the commuter ties with others and enters the
KP lane via a random draw on the remaining capacity.

Let ν[t, b](d, π) be the mass of commuters departing at t and
bidding b, i.e.,

ν[t, b](d, π) =
∑
τ,u,k

dτ [u, k] πτ [t, b | u, k]. (3)

Then, the threshold bid is given by

b∗[t](d, π) = max

b ∈ N

∣∣∣∣∣∣
∑
b′≥b

ν[t, b′] ≥ sfast

N

 . (4)



Accordingly, the probability of entering the KP lane is
derived as

ψ[o = fast | t, b](d, π) =


1, b > b∗,

0, b < b∗,
sfast/N−

∑
b′>b∗ ν[t,b′]

ν[t,b] , b = b∗.

(5)

Note that ψ[o = fast | t, b](d, π) is continuous in (d, π)
except where ν[t, b](d, π) = 0. To guarantee the existence of
a Stationary Nash Equilibrium (SNE) (see Section II-C), we
approximate it with a function that is continuous everywhere,
given by

ψϵ[o = fast | t, b](d, π)

=


1,

∑
b′>b ν[t, b

′] ≤ sfast
N − ν[t, b]− ϵ,

0,
∑

b′>b ν[t, b
′] ≥ sfast

N ,
sfast/N−

∑
b′>b ν[t,b′]

ν[t,b]+ϵ , otherwise,
(6)

where ϵ > 0 is an arbitrarily small approximation parameter.
2) Karma transition function κ[k+ | k, t, b](d, π): We

consider a simple scheme where all commuters entering the
KP lane pay their bids, and at the end of each day, the
total payments are uniformly redistributed to all commuters
in the system (refer to [27] for a treatment of different
redistribution schemes). Let p[b, o] be the karma payment
made by a commuter who bids b, then we have

p[b, o] =

{
b, o = fast,
0, o = slow.

(7)

Accordingly, the average payment is computed by aggregat-
ing (7) over all commuters, i.e.,

p̄(d, π) =
∑
t,b

ν[t, b]
∑
o

ψϵ[o | t, b] p[b, o]

=
∑
t,b

ν[t, b] ψϵ[o = fast | t, b] b. (8)

To preserve the integer value of karma, ⌈p̄(d, π)⌉ is randomly
distributed to a fraction of f(d, π) = p̄(d, π)− ⌊p̄(d, π)⌋ of
the commuters, and ⌊p̄(d, π)⌋ to the others. This yields the
following karma transition probabilities, conditional on the
outcome o:

P[k+ | k, b, o](d, π)

=



f, o = fast and k+ = k − b+ ⌈p̄⌉ ,
1− f, o = fast and k+ = k − b+ ⌊p̄⌋ ,
f, o = slow and k+ = k + ⌈p̄⌉ ,
1− f, o = slow and k+ = k + ⌊p̄⌋ ,
0, otherwise.

(9)

Finally, we can construct the karma transition function as

κ[k+ | k, t, b](d, π) =
∑
o

ψϵ[o | t, b]P[k+ | k, b, o]. (10)

C. Existence of Stationary Nash Equilibrium (SNE)

The Stationary Nash Equilibrium (SNE) is a social state
(d∗, π∗) in which π∗ is optimal for each individual com-
muter’s MDP and additionally, d∗ is stationary under the
dynamics induced by π∗. Formally, it holds for all τ ∈ Γ,

d∗τ = Pτ (d
∗, π∗)⊤ d∗, (11a)

π∗
τ ∈ Bτ (d

∗, π∗), (11b)

where Pτ (d, π) is the stochastic matrix for type τ ’s state
and Bτ is the best response correspondence denoting the
set of optimal policies for type τ ’s MDP, see [27], [28]
for more details. As per [30], in order to guarantee the
existence of a SNE, it must hold that ζ(d, π) and κ(d, π)
are continuous in (d, π), and additionally that the average
amount of karma in the system is preserved in expectation.
The former is straightforward to verify considering the
continuous approximation (6), while the latter holds since
all the karma payments are redistributed to the commuters,
see [27] for a formal proof.

It follows that the karma economy for bottleneck conges-
tion management is well-posed, i.e., a SNE is guaranteed to
exist. The equilibrium can be computed using an evolution-
ary dynamics [31] inspired algorithm, as described in detail
in [28], [30].

III. EFFECT OF KARMA PRIORITY LANE CAPACITY

In this section, we compare the effect of the managed
lane capacity between the KP scheme, a classical monetary
HOT scheme, as well as the nominal benchmark in which
no lane is managed (referred to as NOM). We first define
the performance measures considered, then two numerical
case studies that highlight the effect of varying the KP lane
capacity are presented.

A. Performance measures

The performance measures can be divided into two cate-
gories: system level and user-type level. Specifically, we in-
vestigate the queuing delay and travel cost at the equilibrium
traffic assignment. Table I summarizes the performance mea-
sures, where those associated with the benchmark (NOM)
and the optimal tolling (HOT) are derived from the classical
bottleneck model [21], [29], see [27] for more details. There,
c∗ is the equilibrium cost in the nominal case (normalized by
the VOT multiplier u), ū is the system level average VOT, ūτ
is the average VOT of type τ , and Pτ [u] is the probability
that commuters of type τ have VOT u (derived from the
VOT process ϕτ [u+ | u]). The default values of the model
parameters are reported in Table II.

B. Homogeneous commuters

The purpose of this case study is to demonstrate the
efficiency of the karma scheme with respect to HOT and
NOM under the assumption that all commuters are homo-
geneous (and therefore there is no equity issue with HOT).
We consider that all commuters have the same independent
and identically distributed (i.i.d.) VOT process, namely, they
have low VOT (ul = 1) 80% of the time and high VOT



TABLE I: Performance measures.

Name Benchmark (“NOM”) Optimal tolling (“HOT”) Karma scheme (“KP”)⋆

System average queuing delay t̄q c∗

2α
sslow
s

c∗

2α

∑
t,b ν[t, b]

∑
o ψ

ϵ[o|t, b] tq[t, o]

System average travel cost c̄ ū c∗
∑

τ gτ c̄τ −
∑

τ,u,k dτ [u, k]Rτ [u, k]

Type average queuing delay t̄
q
τ

c∗

2α

∑
u Pτ [u] t̄q[u]

1
gτ

∑
t,b ντ [t, b]

∑
o ψ

ϵ[o|t, b] tq[t, o]

Type average travel cost c̄τ ūτ c∗
∑

u Pτ [u] c̄[u] − 1
gτ

∑
u,k dτ [u, k]Rτ [u, k]

Type normalized travel cost c̄n
τ c̄τ/ūτ

⋆all measures are computed at the SNE.

TABLE II: Default values of model parameters.

Name Notation Unit Value
Number of commuters N 9000

Bottleneck capacity s veh/min 60

Length of discrete time step ∆t min 15

Normalized VOT cost/hour⋆

- queuing delay α 6.4
- early arrival β 4
- late arrival γ 16

Desired arrival time t∗ min 120

Discount factor δ 0.99

Parameter for model continuity ϵ 10−4

Average karma per commuter k̄ 10
⋆in HOT the unit is $/hour.
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Fig. 2: System average queuing delay (a) and average travel
cost (b) as a function of the fraction of the managed lane
sfast/s for homogeneous commuters. The values for NOM
are computed at sfast/s = 0 and displayed for reference.

(uh = 6) 20% of the time. This is represented by a Markov

chain with stochastic matrix ϕ =

(
0.8 0.2
0.8 0.2

)
.

Figure 2 shows the system average queuing delay (Fig-
ure 2a) and average travel cost (Figure 2b) as a func-
tion of the fraction of the managed lane to total capacity
sfast/s ∈ {0.05, . . . , 0.95}. We observe the classical theoret-
ical result that under the optimal monetary tolling (HOT),
both performance measures monotonically decrease as the
managed lane capacity increases; hence it is most efficient
to toll as much of the bottleneck capacity as possible. The
average queuing delay decreases linearly, while the marginal
decrease in the average travel cost is higher at small sfast,
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Fig. 3: Departure rate (a) and queueuing delay (b) in the
KP and GP lane as a function of the departure time t for
homogeneous commuters and sfast/s = 0.5.

up to roughly when the managed lane can accommodate
all the high VOT commuters (i.e., sfast/s = 0.2 in this
case). Remarkably, for most considered values of sfast/s,
the karma scheme (KP) closely follows the optimal queuing
delay and travel cost reduction of HOT. For example, at
sfast/s = 0.75, KP (HOT) achieves an average queuing
delay reduction of 71.5% (75%) and an average travel
cost reduction of 60.5% (62.1%) with respect to NOM,
hence there is insignificant loss in efficiency by restricting
access to the managed lane using karma instead of money.
However, when the KP lane occupies the vast majority of
the bottleneck (i.e., sfast/s ≥ 80%), we observe fluctuations
in the performance of KP which we attribute to convergence
difficulties of the SNE algorithm in this regime. This points
to potential limitations on how small the GP lane can be
made.

To shed light on the efficiency of KP, Figure 3 shows the
departure rates (Figure 3a) and queuing delays (Figure 3b)
in both lanes at the SNE of KP for the bottleneck capacity
split of sfast/s = 0.5, compared to the equilibrium of HOT.
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Fig. 4: User-type average queuing delay (a) and normalized
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lane sfast/s for heterogeneous commuters. The values for
NOM are computed at sfast/s = 0 and displayed for ref-
erence.
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Fig. 5: Relative advantage of the high income group τh
compared to the low income group τl in terms of the average
queuing delay (a) and normalized travel cost (b) as a function
of the fraction of the managed lane sfast/s.

As expected, the KP lane does not experience queuing
delays, whereas the queuing delays in the GP lane follow
the characteristic shape of the classical bottleneck model.
Similarly to HOT, the least costly departures, viz. those
closest to t∗ on the KP lane, are dominated by the high
VOT commuters. Thus the KP lane is allocated efficiently.
In fact, the future-sighted commuters prefer to yield the KP
lane when having low VOT to save karma for future high
VOT events.

C. Heterogeneous commuters

This case study demonstrates the equity of KP in compari-
son to HOT and how the capacity of the KP lane exacerbates
this gap. We consider two groups of commuters: τl has
VOT u = 1 all the time, and τh has VOT u = 6 all the
time, i.e., Pτl [u = 1] = 1 and Pτh [u = 6] = 1. Empirical
evidence has shown that the individual (monetary) VOT is
highly correlated with the income level [32]. Hence, we may
consider commuters in group τh as wealthier than those in
group τl. The low income group τl occupies 80% of the
population and the high income group τh the remaining 20%.

Figure 4 shows the average queuing delay (Figure 4a)
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Fig. 6: Departure rate in the KP lane (a) and GP lane (b) as a
function of the departure time t for heterogeneous commuters
and sfast/s = 0.5.

and the normalized travel cost1 (Figure 4b) of each income
group as a function of the fraction of the managed lane to
total capacity sfast/s ∈ {0.1, . . . , 0.7}2. We observe a stark
contrast in the equity of KP and HOT. Under HOT the low
income group is significantly disadvantaged, as is further
demonstrated in Figure 5 showing the relative advantage
of the high income group compared to the low income
group for the same performance measures in Figure 4. When
the managed lane can accommodate all the high income
commuters, i.e., sfast/s ≥ gτh = 0.2, those commuters do
not incur any queuing delays which are instead entirely
experienced by the low income commuters (see Figures 4a
and 5a). Moreover, the relative disparity in the normalized
travel cost is monotonically increasing with the fraction of
the managed lane (see Figure 5b); at sfast/s = 0.7 the high
income commuters incur 81.2% less travel cost than the low
income commuters.

In contrast, KP is invariant to income and does not
discriminate against the low income group: both groups
experience the same average queuing delay and travel cost
reduction irrespective of the bottleneck capacity split. Fig-
ure 6 sheds light on this by showing the departure rates in
both lanes when sfast/s = 0.5. Under HOT, the most desired
times on the managed lane are occupied by the high income
group (see Figure 6a), whereas under KP, the managed lane
capacity is split between the two groups in the same ratio as
their proportions in the population. This is because under KP,
both groups essentially face the same optimization problem,
up to a constant difference in the scaling of the VOT.

IV. CONCLUSIONS

We consider the morning commute bottleneck congestion
problem and introduce the concept of Karma Priority (KP)
lanes to control access to part of the bottleneck capacity.
KP lanes are similar in principle to High Occupancy Toll
(HOT) lanes, which are well known to lead to significant
traffic reduction if the toll charges are set optimally. The

1The normalization is with respect to the average VOT/income level of
each group and brings the costs of both groups on the same scale.

2The SNE algorithm did not converge for sfast/s ≥ 0.8.



distinguishing feature of our approach is that we use a
completely non-monetary karma economy to manage access
to the KP lanes. Commuters participate in karma auctions
to enter the KP lane, and the total karma payments of those
entering the lane get redistributed to all commuters at the
end of each day.

Through numerical analysis we demonstrate that our pro-
posed karma scheme achieves near-optimal traffic reduction,
both in terms of the average travel time and the average
user travel cost. Thus there is negligible loss in efficiency
by adapting a karma scheme instead of a monetary one.
Importantly, however, there is a significant gain in the equity
with respect to different income classes. While a monetary
scheme severely discriminates against low income groups,
the karma scheme is invariant to income and thus equitable.
Therefore, we conjecture that the public would be willing to
dedicate more of the bottleneck capacity as KP lanes, leading
to more traffic reduction.

Future work includes performing an in-depth analysis of
the limiting regime when the vast majority of the bottleneck
capacity is used as a KP lane. Our macroscopic model does
not capture practical limitations in how small the General
Purpose (GP) lane can be. We suspect that this could be
related to our observed equilibrium computation instabilities
for very high KP lane capacity. Moreover, it is interesting to
extend our model to account for multi-occupancy vehicles
and investigate karma policies that incentivize carpooling,
e.g., by combining the karma of carpoolers.
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