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Quantum computers require high-fidelity quantum gates. These gates are obtained by routine calibration tasks
that eat into the availability of cloud-based devices. Restless circuit execution speeds up characterization and
calibration by foregoing qubit reset between circuits. Postprocessing the measured data recovers the desired
signal. However, since the qubits are not reset, leakage—typically present at the beginning of the calibration—
may cause issues. Here we develop a simulator of restless circuit execution based on a Markov chain to study
the effect of leakage. In the context of error-amplifying single-qubit gates sequences, we show that restless
calibration tolerates up to 0.5% of leakage, which is large compared to the 10−4 gate fidelity of modern single-
qubit gates. Furthermore, we show that restless circuit execution with leaky gates reduces by 33% the sensitivity
of the ORBIT cost function developed by J. Kelly et al. which is typically used in closed-loop optimal control
[Phys. Rev. Lett. 112, 240504 (2014)]. Our results are obtained with standard qubit state discrimination showing
that restless circuit execution is resilient against misclassified noncomputational states. In summary, the restless
method is sufficiently robust against leakage in both standard and closed-loop optimal control gate calibration to
provided accurate results.

DOI: 10.1103/PhysRevA.108.022614

I. INTRODUCTION

The performance of a quantum computer is benchmarked
by its scale, quality, and speed. These metrics are measurable
by the number of qubits, the quantum volume [1,2], and the
circuit layer operations per second [3], respectively. Crucially,
the quantum gates that implement a quantum algorithm must
be precisely calibrated to reach a high quality. However, many
quantum architectures, such as transmons [4], embed a qubit
in a large Hilbert space. These extra states must be considered
when calibrating gates [5,6]. Fast gates speed up quantum
computations [7,8] as long as they do not compromise quality,
for example, by leaking qubit population out of the computa-
tional subspace [5].

On noisy quantum systems with weakly anharmonic
qubits, leakage in single-qubit gates is avoided by DRAG
pulses [5]. However, even DRAG pulses do not fully mitigate
leakage if they are too short. Optimal control can further
reduce the duration of single-qubit gates [6,7,9]. In error-
correcting codes, leakage has recently become a focal point
of research since it propagates to neighboring qubits and
degrades logical error rates [10]. For example, Ref. [10]
shows how leakage spreads in the surface code [11] and
demonstrates that active leakage removal enables quantum
error correction. Leakage removal schemes for quantum error-
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correcting codes have thus been designed, e.g., by emptying
a frequency-tunable qubit through a resonator [12], or by
depopulating leakage states with an active reset [13–16]. If
leakage were not an issue, syndrome reset may not be needed
as postprocessing the measured outcomes accounts for the
initial states [17]. Foregoing reset increases the error cor-
rection cycle rate. This may be necessary to demonstrate
a practical advantage with quantum algorithms that offer a
quadratic speed up [18]. Similarly, restless circuit execution
for characterization and calibration does not reset the qubits
between circuit executions [19,20]. This enables closed-loop
optimal control based on the measurement of sequences of
Clifford gates [9,19,21]. Indeed, the large amount of data
needed is prohibitive if not gathered rapidly. Restless circuit
execution also speeds up standard error-amplifying gate cal-
ibration sequences, randomized benchmarking [22,23], and
quantum process tomography [24].

While leakage and its propagation in quantum error correc-
tion is the subject of intense research, little is known about its
impact on restless characterisation and calibration. Since rest-
less foregoes reset one may thus wonder: “How does leakage
impact restless circuit execution?” Here we therefore study
the impact of leakage in restless calibration with a restless
simulator that models measurement outcomes with a Markov
chain. The simulator accounts for both unitary and nonunitary
dynamics to capture processes such as T1 decay that reduce
leakage build-up. We design single-qubit DRAG gates with
a varying degree of leakage by changing the gate duration.
These gates are used in simulations of error-amplifying rest-
less calibration experiments where we seek to determine if
gate errors are accurately measurable. We observe that when
leakage is too strong, first restless circuit execution fails to
properly measure errors closely followed by standard circuit
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FIG. 1. Restless simulator. (a) Depiction of the transition matrix Tk with a basis B = {|0〉, |1〉, |2〉}. The elements of Tk and B are shown as
edges and nodes, respectively. (b) Circuit to illustrate the notation describing the restless simulator. (c) Depiction of the cyclic Markov chain
of a restless simulation of six circuits C0,..., C5. The arrows in each sector correspond to the transition function S[PkS(Tk ·)] which is applied
to �Ik, j , for example, S[P2S(T2 �I2 j )]. Each sector corresponds to a circuit Ck .

execution. We also study the effect of leakage on restless
closed-loop pulse shaping where we find that leakage reduces
the sensitivity of the ORBIT cost function [21] by a maximum
of 1/3 compared to standard circuit execution with reset.

In Sec. II we present the restless circuit execution sim-
ulator. In Sec. III we study the impact of leakage on
error-amplifying gate sequences measured with restless and
standard circuit execution. In Sec. III C we investigate leakage
in randomized benchmarking-based cost functions as used in
optimal control [9,19]. We conclude in Sec. IV.

II. RESTLESS SIMULATOR

As opposed to simulating quantum circuits that reset the
qubits to |0〉 before each circuit, simulating a restless exe-
cution of quantum circuits requires that we (1) allow initial
states other than |0〉 and (2) account for and define the order
in which the quantum circuits are executed. Throughout this
work, we assume that a list [C0, . . .,CK−1] of quantum circuits
is measured N times. Each measurement of a circuit is called
a shot. Crucially, each circuit is measured once before the next
round of shots is acquired, i.e., the jth shot for each circuit is
executed before proceeding to the jth + 1 shot. In restless, the
readout of shot j for quantum circuit Ck is not followed by a
reset of the qubits, and the projected state serves as the initial
state of the next circuit Ck+1. The simulator must therefore
produce time-ordered measurement outcomes Mk j , with k and
j the circuit and shot indices, respectively. We denote the
time-ordered circuit execution number by ζ , which is given
by ζ = jK + k with k = 0, . . ., K − 1 and j = 0, . . ., N − 1.
The bitwise exclusive OR of two consecutive outcomes, i.e.,
bit strings, indicates which qubits underwent a state change
due to the execution of a quantum circuit. For example, if
two consecutive bit strings are ‘0101’ and ‘1100’, then
only qubits 0 and 3 changed state. (We use a little-endian
qubit ordering.) The probability of observing a state change

is sufficient to perform many characterization and calibration
tasks as discussed in Ref. [24].

We now present a methodology to simulate restless circuit
execution capable of including noncomputational states to
model leakage. We denote the basis of quantum states by
Bnq , for example, B = {|0〉, |1〉, |2〉} to simulate transmons
modeled by three levels. nq is the number of transmons. Our
restless simulator samples from a Markov chain to produce
a list of measurement outcomes Mk j ∈ Mnq , for each shot
j = 0, . . ., N − 1 and circuit Ck with k = 0, . . ., K − 1. Here
M is the set of possible outcomes such as {‘0’, ‘1’} for
qubits or {‘0’, ‘1’, ‘2’} if qutrit discrimination is enabled.

Before drawing shots, the restless simulator first computes
a transition matrix Tk for each quantum circuit Ck . Since
we assume that Ck is followed by a strong measurement,
we ignore any coherence in the postmeasurement states. The
transition matrix element [Tk]μν is thus the probability that the
measurement will project the quantum state into state |μ〉 ∈ B
given the input basis state |ν〉 ∈ B, i.e., the entries of Tk are

[Tk]μν = Tr{|μ〉〈μ|Ck (|ν〉〈ν|)}; (1)

see Fig. 1(a). Here it is understood that Ck is a completely
positive trace preserving map of the kth circuit.

Next, to draw time-ordered shots we describe the input
state to the jth shot of the kth circuit as an input vector �Ik j

where all entries are zero other than the one corresponding to
the input state |ν〉, [�Ik j]ν = 1. We assume that the very first
input state is the ground state, [�I00]0 = 1. The probability pμ

to measure state |μ〉 ∈ B for circuit Ck is stored in a vector
�Ok j with entries [ �Ok j]μ = pμ that satisfy

∑
μ pμ = 1. The two

probability vectors �Ik j and �Ok j are related by the transition
matrix �Ok j = Tk �Ik j .

To create a measurement outcome for shot j of circuit k
we (1) sample a basis state from B, now corresponding to and
labeled by �φk j , according to the probabilities in �Ok j and (2)
apply a basis state to shot labeling function. Step 1 captures
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Algorithm 1. Restless simulation of K circuits on a single
transmon modeled as a qutrit. Note that we do not store the interme-
diate variables �Ik j , �Ok j , and �φk j and simply reuse the same memory
location �I , �O, and �φ, respectively.

the collapse of the wave function that occurs during a strong
measurement. Measurement assignment errors are captured
by step 2 in which we multiply �φk j by a |M| × |B| dimen-
sional matrix A. A shot Mk j ∈ M is created by sampling from
the probabilities A �φk j .

Finally, to create the input state to the next circuit Ck+1

we add postmeasurement errors, such as relaxation [25] or
measurement-induced state transitions [26,27], modeled by an
additional transition matrix Pk . The input basis state to circuit
Ck+1 is thus described by �Ik+1, j = S (Pk �φk j ). Here S denotes
a sampling that converts a vector of probabilities to a vector
that corresponds to a basis state. The steps of the restless
simulator are summarized in Algorithm 1 and illustrated in
Fig. 1(b). Note that the size of the transition matrices scale as
2nq . This is acceptable since the simulator is designed to study
characterization and calibration experiments which run on a
small number of transmons.

To clarify the notation, depicted in Fig. 1(b), we now
provide a simple qubit-based example, i.e., B = {|0〉, |1〉} and
M = {‘0’, ‘1’}. Suppose that circuit Ck applies an ideal
Hadamard gate. Its transition matrix is thus [Tk]μν = 1/2 with
μ, ν ∈ {0, 1}. If the input state is |1〉 for shot j, i.e., �Ik j =
(0, 1)T , then the output vector is �Ok j = (1/2, 1/2)T . There is
therefore a 50% probability of sampling either |0〉 or |1〉 after
a strong measurement. Furthermore, if this sampling yields
state |1〉 and the readout assignment is perfect, i.e., A is the
2 × 2 identity matrix, then the measurement outcome is ‘1’.
Without postmeasurement errors, the input to the next circuit
is state |1〉 described by �Ik+1, j = (0, 1)T . As example, the
Markov chain for six circuits running on a transmon modeled
as a qubit is depicted in Fig. 1(c).

III. LEAKAGE IN RESTLESS CALIBRATION

Since qubits are not reset to the ground state during rest-
less execution leakage may impact performance. For instance,
when calibrating a gate with a low level of leakage transitions
to |2〉 occur infrequently, but if a transition does occur, then
the probability to return to the computational subspace is also
low. State relaxation induced by T1 mitigates the impact of
such leakage events. However, calibration circuits typically
have few gates each lasting on the order of 10–100 ns. The
duration of the circuits we are interested in is therefore orders
of magnitude shorter than current T1 times, which are well in
excess of 100 μs [28].

We now simulate calibration experiments for both stan-
dard and restless circuit execution with the restless simulator
described in Sec. II. To model standard circuit execution in-
cluding the reset, we chose a postmeasurement matrix

Pk =
⎛
⎝1 1 1

0 0 0
0 0 0

⎞
⎠ (2)

that always results in the ground state. This assumes an ideal
reset and a three-level model of the transmon. Pk is the identity
matrix for ideal restless circuit execution, i.e., without deco-
herence and measurement-induced state transitions.

A. System and setup

We study a fixed-frequency transmon with Hamiltonian

Ĥ = ωâ†â + �

2
â†â†ââ + λ�(t )(â† + â) (3)

and retain the first three levels, i.e., B = {|0〉, |1〉, |2〉}. Here ω

is the transition frequency between the |0〉 and |1〉 states of the
transmon. â† and â are the creation and annihilation operators,
respectively. The anharmonicity � is −300 MHz, and the
control-line-qubit coupling rate λ is 100 MHz. �(t ) is the
dimensionless control pulse. We design single-qubit DRAG
pulses [5] of different durations τ to implement X rotations
with a varying amount of leakage. The in-phase component
�x(t ) of �(t ) is a Gaussian function with standard deviation
σ . The quadrature is the derivative of �x scaled by the DRAG
parameter β. The ratio τ/σ is fixed at 4. For each pulse, we
compute the time-evolution operator Uτ in the qutrit space
B by computing the time-ordered integral of Eq. (3) in the
rotating frame of the qubit with Qiskit Dynamics [29]. We
calibrate the amplitude of �x and the DRAG parameter β by
maximizing the process fidelity

� = 1
4 |Tr{PU †

τ P
†Utarget}|2. (4)

Here P is the projector onto the computational subspace
{|0〉, |1〉}. As target unitary Utarget we chose a π rotation
around the x axis labeled by Rx(π ) or X . The optimized
DRAG pulses have monotonically decreasing leakage, mea-
sured as |〈2|Uτ |0〉|2, ranging from 5.46 × 10−2 at τ = 3 ns
to 1.35 × 10−5 at τ = 20 ns; see Fig. 2. This allows us to
vary the amount of leakage in the experiments we study by
changing the pulse duration τ .

We assume that the readout of the quantum computer is
setup to discriminate qubit states. Therefore, the discriminator
in the readout chain of the transmon erroneously classifies the
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|2〉 state as a ‘1’ outcome and thus M = {‘0’, ‘1’}. The
assignment matrix is thus

A =
(

1 0 0
0 1 1

)
. (5)

This corresponds to the default operation of a superconduct-
ing qubit processor. The measurement process that results in
Eq. (5) is discussed in Appendix A.

B. Amplitude calibration

We study leakage in an amplitude-error-amplifying gate
sequence done with standard and restless circuit execution.
The amplitude of the X gate is calibrated by the gate sequence√

X –[X ]n followed by a measurement for varying n. This
creates states that ideally lie on the equator of the Bloch sphere
thereby maximizing the sensitivity to small rotation errors
when measured in the Z basis.

1. Leakage build-up in restless execution

To study leakage we consider the amplitude-error-
amplifying experiment with 1000 shots and K = 17 circuits.
We compute the time-ordered probabilities p(2)

ζ with which
each shot j = 0, . . . , 999 and circuit k = 0, . . . , 16 results in
�φζ = (0, 0, 1)T corresponding to a |2〉 state. p(2)

ζ is given as a
function of the circuit execution number ζ given by jK + k.
Since the restless simulator is a Markov chain the probability
p(2)

ζ depends only on the previous outcome. Therefore, to

obtain the behavior of p(2)
ζ we simulate 512 realizations of

the experiment, and for each shot and circuit we estimate p(2)
ζ

as n2/512 with n2 the number of times circuit execution ζ

produced state |2〉. The simulation is repeated for pulses with
a duration of 5 ns, 10 ns, and 20 ns to change the amount of
leakage in accordance with Fig. 2. We observe a build-up of
leakage over the course of a restless experiment. p(2)

ζ increases
over time for all pulse durations and fluctuates around a fixed
average for short pulses and high circuit execution numbers;
see Fig. 3. The 5 ns and 10 ns pulses both oscillate at p(2) =
1/3. Though the population of the |2〉 state for the 20 ns
pulse—which has a leakage of 10−5—does not settle within
1000 circuit executions, the probability p(2) is approximately
20% towards the last measured shots.

In hardware, energy dissipates from the transmons relaxing
the quantum states towards |0〉 thereby suppressing leakage.
To account for this leakage suppression, we repeat the sim-
ulation with an amplitude-damping channel, as described in
Ref. [30], with relaxation times between the qutrit states of
100 μs and 71 μs for the 1 → 0 and 2 → 1 transitions, re-
spectively. The rate of the 2 → 0 transition is set to 0 in
accordance with experimental observations [28]. Appendix B
describes how the amplitude-damping channel is included in
the restless simulator. The amplitude-damping channel re-
duces the |2〉 state population, and even suppresses it for
the longest pulse duration; see Fig. 3. Though amplitude
damping does not fully suppress the |2〉 state population for
the shorter pulse durations, it does reduce the level at which
p(2) settles; compare the damping and no damping lines in
Fig. 3. The amplitude-damping channel reduces the fixed av-
erage for the 10 ns pulse to 21.7%. This reduction with an

FIG. 2. Simulated performance of DRAG pulses with different
durations τ . The amplitude and DRAG parameter are found by
minimizing the infidelity 1 − � of the resulting unitary in the qubit
subspace. (a) The infidelity of Uτ and population of the |2〉 state,
|〈2|Uτ |0〉|2. (b) The optimized pulse amplitudes and DRAG parame-
ters β.

amplitude-damping channel is not observed for 5 ns pulses.
The amplitude-damping channel effectively suppresses p(2)

for 20 ns pulses.

2. Calibration

We now investigate if the observed leakage build-up pre-
vents accurately measuring rotation errors δθ and calibrating
the pulse amplitude. We create a set of Uτ rotations, as
described in Sec. III A, with Utarget = Rx(π [1 + ε]) to inten-
tionally introduce a rotation error ε. We measure ε with the
error-amplifying gate sequence under varying degrees of leak-
age controlled by changing τ from 3 ns to 20 ns, in accordance
with Fig. 2. The restless measured shots, with outcome ‘2’
erroneously classified as ‘1’, are postprocessed by taking the
exclusive OR between two consecutive outcomes [24]. The re-
sulting signal, in the absence of leakage, gives the probability
that a circuit changed the state of a qubit. A fit of the signal to
the function

a cos
[
(θt + δθ )n − π

2

]
+ b (6)

reveals the rotation error δθ , which we compare to ε. Here a
and b are fit parameters and θt = π is the target rotation angle
per gate.

Below a duration threshold of 10/�, i.e., for leakage
greater than 0.5%, discrepancies between the measured angle
error δθ and the actual error ε emerge; see Fig. 4(a). The 10/�

duration threshold is also used as an indicator in prior work
as a point below which DRAG pulses suffer from significant
leakage [5,9]. When run with standard execution, discrep-
ancies between δθ and ε are also observed but for pulses
with more then 1% leakage; see Fig. 4(b). This indicates
that restless execution makes the error-amplification sequence
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FIG. 3. Probability to measure the |2〉 state over time, as determined by 512 realizations of a restless error-amplification sequence of 17
individual circuits. The probabilities are taken as the moving average of the qutrit measurement outcomes over all realizations with a window
size of 16 in ζ . The standard deviation of the mean is shown as shaded areas. For the shortest pulse duration in the right axis, only the standard
deviation is plotted, as its probabilities are very noisy and diminish the readability of the figure. The results for the 5 ns pulse without damping
are similar to the results with damping and are not shown for readability purposes. Though only 20 circuits have been executed by ζ = 20, per
realization, this includes 146 leaky gates, which all contribute to the accumulated leakage, which is higher than indicated by the single-gate
leakage level in Fig. 2; see explanation in Appendix E.

only a little more sensitive to leakage than standard execution;
see Fig. 4(c). For the example considered here, restless and
standard measurements can tolerate 0.5% and 1% leakage,
respectively. In both cases this is a large amount of leakage
since current superconducting systems achieve single-qubit
gate errors of 10−4 after calibration.

In practice, error-amplifying calibration sequences are
done iteratively. At each iteration, δθ is measured and the
pulse amplitude is updated by multiplying it by θt/(θt + δθ ).
The calibration stops when δθ falls below a set threshold. We
numerically investigate this convergence with rotation errors
ε ∈ {0%, 1%, 5%} and pulses that last 3 ns, 3.5 ns, 4.5 ns, and
10 ns corresponding to a leakage of 5.46%, 3.71%, 1.47%,
and 0.0179%, respectively. At each iteration we calculate
the infidelity of the pulse E = 1 − � and compare it to the
infidelity Eopt of the best possible pulse designed with ε = 0%
rotation error.

For all levels of leakage, the infidelity of the pulses con-
verge to a higher level than that of the pulse designed with
ε = 0; i.e., all data points in Fig. 5, except at iteration zero
with ε = 0, have a finite value. Unsurprisingly, this implies
that an imperfect calibration experiment makes an ideal pulse
worse. For example, the infidelity of 4.5 ns pulses designed
with ε = 0 increases with iteration number while the infi-
delity of pulses with ε = 5% decreases; compare the black
and light green (light gray) markers in Figs. 5(e) and 5(f).
As the pulse duration increases and leakage decreases, the
recalibrated pulses are closer to those designed without an
error, i.e., ε = 0; compare the infidelity of the final iteration
in Figs. 5(a), 5(c), 5(e), and 5(g). Interestingly, there is little
difference between standard and restless circuit execution;
compare the round and cross markers in Fig. 5, with restless
execution requiring a few more iterations to converge in some
cases, e.g., Fig. 5(e). The presence of an amplitude-damping

channel does not impact these results; compare the right and
left panels in Fig. 5. The relative infidelities plotted in Fig. 5
are normalized to the optimal infidelity Eopt. This makes the
variance of the 10 ns pulses appear larger since their optimal
infidelity is 1.8 × 10−4, i.e., two orders of magnitude lower
than the shorter pulses. This fine-amplitude calibration ex-
ample shows that in the presence of leakage restless circuit
execution can still calibrate pulses.

C. ORBIT gate calibration

In Sec. III we studied error-amplifying gate sequences
which typically have a small number of gates. To explore
sequences with many gates, we turn to a quantum optimal con-
trol use case. A typical application of quantum optimal control
is pulse shaping to implement a target gate [31–36]. Parameter
drift and model inaccuracies in superconducting qubit systems
render open-loop optimal control inaccurate in practice [37].
One must therefore improve model identification [38] and use
closed-loop optimisation directly on the hardware [21,37].
Evaluating a fidelity with randomized benchmarking (RB)
[22] or quantum process tomography requires [39] a large
number of circuit executions. Consider, for example, RB. The
Error per Clifford rc for a given RB sequence is obtained by
fitting

Fseq(m) = Aαm + B (7)

to a qubit population measured after random sequences of
Clifford gates of variable length m. The ideal sequences com-
pose to the identity. Here A and B absorb state preparation
and measurement (SPAM) errors, and the Error per Clifford
rc is linearly related to the depolarizing parameter α, e.g.,
α = 1 − 2rc for single-qubit gates. Optimized Randomized
Benchmarking for Immediate Tune-up (ORBIT) recognizes
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FIG. 4. Measured angle error δθ as a function of leakage. The
leakage strength is varied by changing the duration τ of the pulse
implementing Rx (π [1 + ε]). The error-amplification sequence is run
using restless (a) and standard circuit execution (b). The vertical line
indicates the leakage of a pulse with a duration of 10/�. The bottom
panel combines restless and leakage results at ε = 5% rotation error,
where the standard execution method markers are made slightly
lighter to improve contrast.

that Fseq monotonically decreases with increasing rc. ORBIT
thus calibrates gates by evaluating multiple sequences of Clif-
ford gates with the same fixed depth [21]; i.e., Fseq(m) at fixed
m is a hardware efficient cost function for closed-loop optimal
control. ORBIT evaluates changes in gate fidelities faster than
RB, especially when combined with restless circuit execution
[9,19]. ORBIT can optimize single- and two-qubit gates on
superconducting transmon quantum hardware [9,19,21]. In
Ref. [9] a short high-leakage DRAG pulse initializes a closed-
loop ORBIT calibration in which pulse samples are further
optimized to reduce leakage. We therefore study the effect of
leakage on restless ORBIT and its sensitivity to variations in
gate fidelities.

In our simulation, each Clifford gate in the ORBIT se-
quence is built from the four gates {Rx(±π/2), Ry(±π/2)}.
These gates have nonzero infidelity and leakage owing
to limitations of the DRAG pulse shape and the finite
pulse duration. We engineer leakage by varying the pulse
durations and DRAG parameter. For each duration in
{3, 3.5, 4, 4.5, 5, 10, 20} ns we numerically optimize the pro-
cess fidelity � of Eq. (4). Next, by scaling the resulting
optimal DRAG parameter βopt for each pulse by 30 prefactors

FIG. 5. Normalized relative infidelity Enorm for iterative fine-
amplitude experiments for different pulse durations τ . The computed
infidelities E = 1 − � are normalized with respect to the optimal
infidelity Eopt obtained by optimizing � at ε = 0, i.e., Enorm = (E −
Eopt )/Eopt. The optimal infidelity Eopt corresponds to the zeroth-
iteration infidelity for ε = 0. Simulations were carried out for each
pulse duration without (a), (c), (e), (g) and with (b), (d), (f), (h)
an amplitude-damping channel, as well as with and without restless
circuit execution.

equidistant in [−2, 2], we further create variations in � that
restless ORBIT should be sensitive to. We measure Fseq(m) by
averaging 100 random single-qubit Clifford gate sequences of
depth m + 1 with m ∈ {30, 60, 90, 120} that ideally compose
to the identity [40]. We sample 1000 shots from the resulting
circuits with the restless simulator, with and without restless
circuit execution, and with and without a damping channel
as described in Appendix B. Next we compare the sequence
fidelity Fseq to the average Error per Clifford gate rc which
we compute from the process fidelity �, averaged over the
four rotations Rx(±π/2), Ry(±π/2). The average Error per
Clifford is related to the average fidelity of the rotations by
rc � 1 − Favg(�)Nc . Here Nc ≈ 2.1666 is the average number
of Rx,y rotations per Clifford gate in our sequences of Clifford
gates. The average gate fidelity Favg is related to the process
fidelity � by Favg = (d� + 1)/(d + 1) = (2� + 1)/3 where
we assume d = 2 for single-qubit gates [41,42]. Therefore,
we compare Fseq to rc(�) = 1 − [(2� + 1)/3]Nc for various
pulse durations and DRAG parameters.

As expected, we observe a decrease in the ORBIT se-
quence fidelity as rc increases [40]; see Fig. 6. Crucially,
we do not observe a change in the functional form of the
relationship between Fseq and rc with restless circuit execu-
tion, both cases follow Eq. (7). Interestingly, we find that
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FIG. 6. ORBIT cost function Fseq at m = 120 vs Error per Clif-
ford rc for various pulse durations, with an amplitude-damping
channel. Each point is the result of a single ORBIT experiment for
a given pulse duration, DRAG parameter β, and circuit execution
method. The lines are the ideal qubit sequence fidelities obtained
from fully depolarized qutrit states without SPAM error. The 10 and
20 ns pulses do not extend across the full rc range since their narrow
bandwidth implies a lower leakage than the high bandwidth 4.5 ns
and shorter pulses.

the high levels of accumulated leakage occurring with short
pulse durations, <5 ns, impact the level at which Fseq settles.
Standard and restless circuit execution settle at B = 1/3 and
B = 5/9, respectively; see Fig. 6. We would naively assume
that the sequence fidelity settles at 1/3 for high-infidelity
leaky Clifford gates, as the circuit is equivalent to a fully
depolarizing channel in the qutrit basis. However, this is only
the case for standard circuit execution and not for restless
circuit execution. This difference is a result of the restless
postprocessing.

Consider K single-qutrit ORBIT circuits, constructed from
high-leakage gates, that are sufficiently deep to fully depolar-
ize the qutrit, i.e., the state immediately prior to measurement
is ρd = 1

3

∑2
i=0 |i〉〈i|. Therefore, the measured outcomes do

not depend on the initial state. Our measurement outcome
probabilities are thus the same regardless of the circuit exe-
cution method. With standard circuit execution, the sequence
fidelity is the probability to measure |0〉, which for ρd is
1/3. In the absence of SPAM errors, the fit parameters are
A = 2/3 and B = 1/3 given estimates of the boundary condi-
tions at m = 0 and m → ∞ from Eq. (7). By contrast, restless
postprocessing computes Fseq as the probability that the mea-
surement outcome Mk j is the same as the previous outcome
Mk−1, j [24]:

F (restless)
seq = Pr[Mk j = Mk−1, j]

= Pr[Mk j = ‘0’]Pr[Mk−1, j = ‘0’]

+ Pr[Mk j �= ‘0’]Pr[Mk−1, j �= ‘0’],

F (restless)
seq

∣∣
rc→1

= (
1
3

)2 + (
1 − 1

3

)2 = 5
9 . (8)

Note that the shots are time ordered: We interpret shot MK, j

as M0, j+1 owing to the sequence in which the circuits are
run. Equation (8) explains why restless measurements settle at
5/9 in Fig. 6 instead of 1/3. The inferred ideal fit parameters
are thus Aleak. = 4/9 and Bleak. = 5/9. These “ideal” sequence
fidelities with and without restless postprocessing are shown
as black solid and dashed lines in Fig. 6. An alternative to Clif-
ford sequences that compose to the identity are sequences that
compose to X . These sequences result in different values of A
and B and can be more sensitive to leakage; see Appendix D.

The insights gained for the ideal fit parameters A and B
allow us to understand the sensitivity of ORBIT with restless
circuit execution. Kelly et al. define the sensitivity of the
ORBIT cost function as dFseq/drc [21]. For the single-qubit
case, α = 1 − 2rc, the sensitivity is −2Am(1 − 2rc)m−1. The
maximum sensitivity occurs at a sequence length m∗, defined
in Ref. [21], and is given by dFseq/drc|m∗ ≈ −A/(erc). There-
fore, with high leakage levels the restless ORBIT cost function
is 33.3% less sensitive than in the absence of leakage, i.e.,
1 − Aleak./A.

We hypothesize that sufficiently low accumulated leakage,
during an ORBIT experiment, would recover the 1/2 settling
point for Fseq and sufficiently deep Clifford sequences (m 
1) as the ORBIT gate sequences would result in a depolarizing
channel for the qubit subspace instead of the qutrit space.
If the levels of accumulated leakage are sufficiently low, the
probability to measure ‘2’ would be negligible, and thus the
probability to measure ‘0’ would be 50% by normalization.

IV. DISCUSSION AND CONCLUSION

Advanced control methods help us design better quantum
gates [43]. Furthermore, methods like restless circuit execu-
tion reduce the footprint of characterization and calibration
tasks [24]. It is also crucial to understand how reliable these
new methods are. In this work we present a restless circuit
execution simulator as a Markov chain to investigate how
much leakage restless measurements tolerate. Leakage affects
both standard and restless calibration experiments with rest-
less circuit execution being only slightly more sensitive to
leakage. For example, fine-amplitude calibration experiments
can tolerate 0.5% and 1% leakage in restless and standard
execution, respectively. Crucially, these large leakage levels
may be present only at the beginning of a set of calibration
experiments.

The high leakage levels we investigate are only present in
short pulses. Such pulses are often encountered when pushing
for faster gates, as exemplified by Refs. [7,9]. In Ref. [9]
short single-qubit pulses with closed-loop restless optimal
control are designed by starting from a DRAG pulse. Here
it is important that the cost function is sensitive to changes in
the pulse shape. The analysis in Sec. III C complements the
experimental observations of Refs. [9,19] that restless ORBIT
can optimize pulses even under high leakage levels. Crucially,
the observations of Sec. III C show a 1/3 decrease in the
sensitivity of ORBIT due to the restless circuit execution and
leakage.

Ultimately, under typical operating conditions of super-
conducting qubit hardware leakage is minimal and does not
impact restless characterization and calibration. It is thus
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FIG. 7. Example of a qubit discriminator classifying the first
three levels of a transmon. The color of each shot indicates the state
that is ideally prepared. The black dashed line shows a possible
separation between the ground and higher excited states. Note that
this is not the actual discriminator employed by the backend.

neither necessary to employ leakage reset nor employ dis-
criminators that classify more than the first two levels of the
transmon. This is in stark contrast with error correction where
leakage is detrimental to code performance.

The code for the restless simulator is available at [44].

APPENDIX A: QUBIT DISCRIMINATION

Superconducting qubits are measured by probing a readout
resonator dispersively coupled to the qubit [45]. The qubit
state imparts a frequency shift on the resonator which changes
the transmission and reflection properties of a probe signal.
This signal, when down-converted and digitized, results in a
point in the complex plan (IQ plane). Discriminators that map
complex IQ points to labels of the transmon state are trained
by individually preparing the states of the transmon. Discrim-
inators to classify the first four levels of the transmon have
been created [10,28,46]. However, by default, most quantum
computers employ a 0/1 discriminator, as exemplified by IBM
Quantum backends.

Here we illustrate how a qubit discrimination creates the
measurement matrix given in Eq. (5). To this end we calibrate
an X gate between the |1〉 and |2〉 states of the transmon with
a Rabi experiment implemented in Qiskit Experiments [47].
Next, we create three circuits that prepare the |0〉, |1〉, and
|2〉 states. We run these circuits with 1024 shots twice on an
IBM Quantum backend: Once requesting IQ points and once
requesting classified data. The IQ points show three clusters
indicating that we successfully prepared the first three states
of the transmon; see Fig. 7. However, the classified data return
only ‘0’ and ‘1’ counts. When the second excited state is
prepared the backend identifies 1023 of the IQ points as ‘1’.
Therefore, up to SPAM errors, this discriminator classifies
the transmon levels as |0〉 →‘0’, |1〉 →‘1’, |2〉 →‘1’. We
model this classification with the matrix in Eq. (5).

APPENDIX B: ENERGY RELAXATION

T1 energy relaxation in superconducting transmon qutrits
can be modeled as a sequential process between neighboring

states [28]. States decay from |n〉 to |n − 1〉, and the relaxation
of |2〉 into |0〉 is suppressed. A single-qutrit amplitude-
damping channel can be described in the operator-sum
representation with four Kraus operators Ki, i = {0, 1, 2, 3}
[30] as

�(ρ) =
3∑

i=0

KiρK†
i , (B1)

where

K0 =

⎡
⎢⎣

1 0 0

0
√

1 − �0,1 0

0 0
√

1 − �1,2 − �2,0

⎤
⎥⎦, (B2)

K1 =

⎡
⎢⎣

0
√

�0,1 0

0 0 0

0 0 0

⎤
⎥⎦, (B3)

K2 =

⎡
⎢⎣

0 0 0

0 0
√

�1,2

0 0 0

⎤
⎥⎦, and (B4)

K3 =

⎡
⎢⎣

0 0
√

�0,2

0 0 0

0 0 0

⎤
⎥⎦. (B5)

The decay rates �i, j describe the strength of the decoherence
path from | j〉 to |i〉. The sequential relaxation process for
superconducting transmons implies that �0,2 = 0.

To include amplitude damping in a qutrit circuit, we in-
sert an error-channel instruction after each qutrit gate. The
restless simulator, which leverages Qiskit [48], supports uni-
tary as well as completely positive trace-preserving maps.
This allows us to model decoherence as a quantum circuit
instruction that occurs after every gate. The decay rates for the
amplitude-damping instructions are computed based on the
pulse duration τ of the prior qutrit unitary gate and relaxation
times for the first- and second-excited states of the qutrit. We
used relaxation times of T0,1 = 100 μs and T1,2 = 73 μs for
the first- and second-excited states, respectively [28]. Given
the qutrit relaxation times, the decay rates are computed as
�i, j = 1 − exp(−τ/Ti, j ).

APPENDIX C: ORBIT MEASUREMENTS
AS FUNCTION OF m

In addition to the results at m = 120 of Fig. 6, we studied
an ORBIT sequence at depth m ∈ {30, 60, 90}. These results
were obtained in the same manner as those in the main text
and confirm the same settling values at large rc; see Fig. 8.
As expected, as m increases, the value of Fseq(m) decreases,
thereby moving the curves in Fig. 8 towards the left.

APPENDIX D: CLIFFORD SEQUENCES
THAT COMPOSE TO X

In Ref. [19], Rol et al. optimized DRAG pulses with
Clifford sequences that compose to the X gate. We find that
the settling values for ORBIT experiments, with standard
and restless circuit execution, are different if the Clifford
sequences compose to the X gate instead of the identity.
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FIG. 8. ORBIT cost function Fseq at m = {30, 60, 90} vs Error per Clifford rc for various pulse durations, with an amplitude-damping
channel. Each point is the result of a single ORBIT experiment for a given pulse duration, DRAG parameter β, and circuit execution method.
The lines are the ideal qubit sequence fidelities obtained from fully depolarized qutrit states without SPAM errors.

Standard and restless measurements settle at 2/3 and 4/9,
respectively; see Fig. 9. This differs from the 1/3 and 5/9
for compose-to-identity shown in Fig. 6. Furthermore, restless
ORBIT does not have a sequence fidelity close to one when
the Error per Clifford is low.

An ORBIT experiment with Clifford sequences that com-
pose to X uses the probability to measure the excited state
|1〉, instead of the ground state |0〉, as the sequence fidelity.
Combining this with a fully depolarized state and restless

FIG. 9. ORBIT cost function Fseq at m = 10 vs Error per Clifford
rc for various pulse durations, with an amplitude-damping channel
and a Clifford sequence that commutes to X instead of the identity.
Each point is the result of a single ORBIT experiment with 1000
shots and K = 100 instances of Clifford gate sequences for a given
pulse duration, DRAG parameter β, and circuit execution method.
The lines are the ideal qubit sequence fidelities obtained from fully
depolarized qutrit states and the simulation results, without SPAM
error.

postprocessing fully explains the different settling values seen
in Fig. 9.

For a fully depolarized state and a compose-to-X Clifford
sequence, the expected value at which standard circuit exe-
cuted ORBIT experiments settle is Pr[Mk j = ‘1’] = Pr[φ =
|1〉] + Pr[φ = |2〉] = 2/3 since the discriminator classifies |2〉
as ‘1’. The equivalent for restless circuit execution is

Fseq = Pr[Mk j �= Mk−1, j]

= Pr[Mk j = ‘0’]Pr[Mk−1, j = ‘1’]

+ Pr[Mk j = ‘1’]Pr[Mk−1, j = ‘0’]

= 2 Pr[Mk j = ‘0’]Pr[Mk−1, j = ‘1’], (D1)

F (restless)
seq

∣∣
rc→1

= 2 × 1
3 × 2

3 = 4
9 . (D2)

The values of Fseq for low rc and compose-to-X also differ
from the results with compose-to-identity sequences in Fig. 6.
The accumulated leakage studied in Sec. III B 1 explains this.
We assume that the accumulated levels of leakage in ORBIT
are similar to those observed in the fine-amplitude calibration
experiments. For a given pulse duration τ restless circuit ex-
ecution accumulates leakage over time and settles at p(2)

τ . We
observe that the sequence fidelity for low rc pulses with rest-
less circuit execution and a compose-to-X Clifford sequence
are less than one by approximately p(2)

τ :

F (τ )
seq

∣∣
rc→0

≈ 1 − p(2)
τ . (D3)

For example, the population in the |2〉 state created by the
10 ns pulse settles at p(2)

10 ns ≈ 0.217 in Fig. 3. The max-
imum sequence fidelity Fseq = 0.79 ≈ 1 − p(2)

10 ns coincides
with the data in Fig. 9. These observations help us explain
the offset from Fseq = 1 for rc → 0 in compose-to-X Clifford
sequences.

As the Error per Clifford gate is low, we assume that
the effect of the Clifford sequence is “perfect” in the qubit
subspace; that is, the probability to measure ‘0’ and ‘1’
conditioned on no leakage having occurred is the same as
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for an ideal X gate without leakage. Therefore, on average
and once the leakage has settled as in Fig. 3, the two possible
premeasurement states are the fully mixed states

ρ
(a)
X =

⎡
⎢⎣

1 − p(2)
τ 0 0

0 0 0

0 0 p(2)
τ

⎤
⎥⎦ and

ρ
(b)
X =

⎡
⎢⎣

0 0 0

0 1 − p(2)
τ 0

0 0 p(2)
τ

⎤
⎥⎦.

Under compose-to-X Clifford sequences, the qubit subspace
alternates between |0〉 and |1〉, and thus the premeasurement
states alternate between ρ

(a)
X and ρ

(b)
X . Since the pulses with a

low Error per Clifford have a very low leakage (see Fig. 2),
if the qubit leaks into the |2〉 state, it will stay there with
high probability. For a compose-to-X Clifford sequence, the
premeasurement states will alternate between ρ

(a)
X and ρ

(b)
X .

Therefore, the restlessly postprocessed sequence fidelity is the
probability to have different measurement outcomes on both
ρ

(a)
X and ρ

(b)
X . That is, assuming that the state corresponding to

circuit k − 1 is ρ
(b)
X , then

Fseq = Pr
[
Mk j = ‘0’|ρ (a)

X

]
Pr

[
Mk−1, j = ‘1’|ρ (b)

X

]
+ Pr

[
Mk j = ‘1’|ρ (a)

X

]
Pr

[
Mk−1, j = ‘0’|ρ (b)

X

]
= (

1 − p(2)
τ

) + 0 = 1 − p(2)
τ . (D4)

The same result is obtained if the state corresponding to a
shot of circuit k − 1 was ρ

(a)
X since the shot of circuit k − 1

should then ideally correspond to ρ
(b)
X . If we use standard

circuit execution, the qutrit is reset at each shot so that the
state prior to measurement is ρ

(b)
X . The sequence fidelity is

thus one. This explains why the restless sequence fidelities for

low rc in Fig. 9 are lower than those we observed in Fig. 3
by approximately p(2)

τ and why the sequence fidelities with
standard circuit execution did not change.

As the fit parameter A for the compose-to-X measurements
is smaller than for the compose-to-identity measurements,
the compose-to-X sequences are less sensitive to variations
in the Error per Clifford. If the accumulated leakage does
not change during ORBIT optimization, then variations in
the Error per Clifford are dominated by the fidelity of the
qubit-subspace operation. If instead the infidelity of the gate is
dominated by the level of accumulated leakage, then ORBIT
with compose-to-X sequences and restless is more sensitive
than compose-to-identity sequences. In fact, a short compose-
to-X sequence, e.g., m = 10, and restless circuit execution
may make a good ORBIT cost function to minimize small
leakage levels and further optimize a high-fidelity gate. By
contrast, standard circuit execution may be less sensitive to
small leakage amounts as the |2〉 state population is only a
function of a single shot and not accumulated over time.

APPENDIX E: EXAMPLE TRANSITION MATRICES

Here we give a few concrete examples of unitary matrices
and the resulting transition matrices with which we studied
leakage in restless measurements. The fine-amplitude exper-
iment shown in Fig. 3 executes 17 circuits, each with an
increasing number of leaky X gates. Each circuit Ck , with
0 � k < 17, contains one ideal

√
X gate followed by k leaky

X gates. Without decoherence, the effect of Ck is

Ck (|ν〉〈ν|) = U k
XU√

X |ν〉〈ν|U †√
X

(U †
X )

k
. (E1)

The leaky X gate unitaries for the 5 ns and 10 ns duration
pulses, as discussed in Sec. III A, are computed from the
time-order exponential of the Hamiltonian with a DRAG pulse
which results in

U (5 ns)
X =

⎡
⎢⎣

2.62 × 10−2 − 3.43 × 10−4 j 1.00 −2.08 × 10−2 + 8.66 × 10−2 j

1.00 − 4.14 × 10−5 j −3.08 × 10−2 + 6.04 × 10−3 j 5.72 × 10−2 + 6.74 × 10−2 j

5.14 × 10−2 − 7.39 × 10−2 j −2.85 × 10−2 − 8.26 × 10−2 j −9.89 × 10−1 + 7.36 × 10−2 j

⎤
⎥⎦ and (E2)

U (10 ns)
X =

⎡
⎢⎣

−7.33 × 10−6 + 8.05 × 10−5 j 1.00 −10.00 × 10−4 + 1.33 × 10−2 j

1.00 − 5.86 × 10−8 j 7.68 × 10−5 − 8.44 × 10−5 j −1.19 × 10−2 − 6.10 × 10−3 j

−5.88 × 10−3 + 1.20 × 10−2 j −8.79 × 10−3 − 1.01 × 10−2 j −8.01 × 10−1 + 0.60 j

⎤
⎥⎦. (E3)

Note that the fidelity function in Eq. (4) which produced the
underlying pulses is insensitive to the global phase. Here we
display UX with a phase such that the |0〉〈1| entry is real.
We compute the transition matrix Tk for each circuit Ck with
Eq. (1) and Eqs. (E1) to (E3). The resulting transition matrices
T (τ )

k for τ = 5 ns and k = 1 and 16 are

T (5 ns)
1 =

⎡
⎢⎣

0.50 0.50 7.93 × 10−3

0.50 0.49 7.81 × 10−3

1.52 × 10−3 1.42 × 10−2 0.98

⎤
⎥⎦,

(E4)

T (5 ns)
16 =

⎡
⎢⎣

0.34 0.43 0.23

0.37 0.30 0.33

0.29 0.27 0.44

⎤
⎥⎦. (E5)

The transition matrices for 10 ns and k = 1 and 16 are

T (10 ns)
1 =

⎡
⎢⎣

0.50 0.50 1.79 × 10−4

0.50 0.50 1.79 × 10−4

3.44 × 10−4 1.40 × 10−5 1.00

⎤
⎥⎦,

(E6)
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T (10 ns)
16 =

⎡
⎢⎣

0.50 0.50 1.53 × 10−3

0.50 0.50 6.24 × 10−4

1.08 × 10−3 1.08 × 10−3 1.00

⎤
⎥⎦.

(E7)

The column i of the last row of a transition matrix is the
probability to transition from state |i〉 to state |2〉. As can

be seen from the values in the bottom rows, multiple appli-
cations of a leaky X gate accumulates leakage to a higher
level than simply indicated by the stand-alone unitary; e.g.,
see Fig. 2. Furthermore, the longer 10 ns pulse accumulates
leakage at a much lower rate than the shorter 5 ns pulse,
which is substantiated by the simulation results discussed in
Sec. III B 1.
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