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Abstract
In analogy to the various characterizations of Gromov hyperbolicity, we present a list of six
mutually equivalent higher rank conditions for metric spaces satisfying some assumption
reminiscent of global non-positive curvature.

Keywords Gromov hyperbolicity · Non-positive curvature · Asymptotic rank · Linear
isoperimetric inequality · Quasi-minimizer · Morse lemma · Filling radius
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1 Introduction

The concept of Gromov hyperbolicitymanifests itself inmany different ways.With onlymild
assumptions on the underlying metric space, the spectrum of equivalent properties includes
various thin triangle conditions, the stability of quasi-geodesics (the Morse lemma), a linear
isoperimetric filling inequality for closed curves, and a sub-quadratic isoperimetric inequality
[3–7, 9, 16, 20, 33–35, 38].We present a similar list of six equivalent properties in the context
of generalized non-positive curvature and higher asymptotic rank. This complements the
results in [40] and in the recent paper [28]. We give a largely self-contained proof, providing
some improvements and simplifications for the known part.

For an informal statement of the main result, let us focus on the special case that X is a
proper CAT(0) or Busemann convex space. In passing from Gromov hyperbolicity to rank
n ≥ 2, the role of closed curves and quasi-geodesics is transferred to n-cycles and n-chains
satisfying a suitable quasi-minimality condition, respectively. For the moment, the reader is
invited to think of the chain complex of Lipschitz singular chains with integer coefficients in
X . Some of the statements below involve a uniform polynomial mass bound of degree n in
large balls, and we shall thus speak of n-chains with controlled density. This condition holds

Research supported by Swiss National Science Foundation Grant 197090.

B Urs Lang
lang@math.ethz.ch

Tommaso Goldhirsch
tommaso.goldhirsch@math.ethz.ch

1 Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-023-03339-x&domain=pdf


13 Page 2 of 26 T. Goldhirsch, U. Lang

automatically for Lipschitz quasi-geodesics if n = 1 or, more generally, for Lipschitz quasi-
isometric embeddings of domains in Rn into X . We show that the following are equivalent:

• the asymptotic rank of X being at most n (see below for the definition);
• a sub-Euclidean isoperimetric inequality for n-cycles, corresponding to a sub-quadratic

inequality in the case n = 1;
• a linear isoperimetric inequality for n-cycles with controlled density;
• a version of the Morse lemma implying in particular a bound on the Hausdorff distance

between (the supports of) two quasi-minimizing n-chains with controlled density and
equal boundary;

• a slim (n + 1)-simplex property analogous to the slimness of quasi-geodesic triangles in
geodesic Gromov hyperbolic spaces;

• a bound on the filling radius of n-cycles with controlled density.

We now proceed to the details. The actual setup is as in [28]. Suppose that X = (X , d)

is a proper metric space, that is, closed bounded subsets are compact. We use the chain
complex I∗,c(X) of metric integral currents with compact support, which comprises the
singular Lipschitz chains but is more versatile and has suitable compactness properties. The
relevant prerequisites from the theory of metric currents will be discussed in Sect. 2. For
n ≥ 1, we say that X satisfies condition (CIn) if there is a constant c such that any two points
x, y in X can be joined by a curve of length ≤ c d(x, y), and for k = 1, . . . , n, every k-cycle
R ∈ Ik,c(X) in some r -ball is the boundary of an S ∈ Ik+1,c(X) with mass

M(S) ≤ c r M(R).

The cone inequalities (CIn) hold in particular, for all n, if X is a CAT(0) space or a space
with a conical geodesic bicombing [11, 36]. We remark that every hyperbolic group acts
geometrically on a proper polyhedral complexwith such a bicombing [30], and further classes
of groups with this property are discussed in [8, 22, 24, 32]. Moreover, condition (CIn) holds
if X is an n-connectedRiemannianmanifoldwith a geometric action of a (quasi-geodesically)
combable group; compare Theorem 10.3.5 in [13].

The asymptotic rank of X is the supremum of all k ≥ 0 for which there exist a sequence
0 < ri → ∞ and subsets Yi ⊂ X such that the rescaled sets (Yi , r

−1
i d) converge in the

Gromov–Hausdorff topology to the unit ball in some k-dimensional normed space. This is
a quasi-isometry invariant, and if X is a geodesic metric space satisfying (CI1), then the
asymptotic rank is at most 1 if and only if X is Gromov hyperbolic [40]. If X is a cocompact
CAT(0) space or a cocompact space with a conical geodesic bicombing, then the asymptotic
rank equals themaximal dimension of an isometrically embeddedEuclidean or normed space,
respectively [10, 27].

Let S ∈ In,c(X). For constants C ≥ 1 and a ≥ 0, we say that S has (C, a)-controlled
density if for all x ∈ X and r > a, the piece of S in the closed r -ball at x has mass at most
Crn , or

�x,r (S) := 1

rn
M(S Bx (r)) ≤ C .

For almost every r > 0, the boundary ∂(S Bx (r)) has finite mass and S Bx (r) is itself
an element of In,c(X) (see again Sect. 2). Suppose that Y ⊂ X is a closed set containing
the support spt(∂S) of ∂S. For Q ≥ 1 and a ≥ 0, we say that S is (Q, a)-quasi-minimizing
mod Y if for every point x ∈ spt(S) at a distance b > a from Y , the inequality

M(S Bx (r)) ≤ QM(T )
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holds for almost all r ∈ (a, b) and all T ∈ In,c(X) with ∂T = ∂(S Bx (r)). A current
S ∈ In,c(X) is called a (Q, a)-quasi-minimizer if S is (Q, a)-quasi-minimizingmod spt(∂S).
As for the analogy with quasi-geodesics, one can easily check that for a Lipschitz quasi-
isometric embedding γ : [0, l] → X of an interval, the associated current γ#�0, l� ∈ I1,c(X)

is a quasi-minimizer with controlled density (compare the case n = 1 of Proposition 6.1).
For n > 1, quasi-minimizers offer more flexibility than quasiflats.

We can now state the main result of this paper. Detailed comments and references are
given below.

Theorem 1.1 Suppose that X is a proper metric space satisfying condition (CIn) for some
n ≥ 1. Then the following six properties are equivalent:

(ARn) (asymptotic rank) the asymptotic rank of X is at most n;
(SIIn) (sub-Euclidean isoperimetric inequality) for all ε > 0 there is a constant M0 > 0

such that every cycle Z ∈ In,c(X) is the boundary of a V ∈ In+1,c(X) with mass
M(V ) < ε max{M0,M(Z)}(n+1)/n;

(LIIn) (linear isoperimetric inequality) there is a constant ν > 0, and for all C > 0 there
is a λ > 0, such that every cycle Z ∈ In,c(X) with (C, a)-controlled density bounds
a V ∈ In+1,c(X) with M(V ) ≤ max{λ, νa}M(Z);

(MLn) (Morse lemma) for all C > 0 and Q ≥ 1 there is a constant l ≥ 0 such that if
Z ∈ In,c(X) is a cycle with (C, a)-controlled density and Y ⊂ X is a closed set such
that Z is (Q, a)-quasi-minimizing mod Y , then spt(Z) is within distance at most
max{l, 4a} from Y ;

(SSn) (slim simplices) for all L ≥ 1 there is a constant D ≥ 0 such that if� is a Euclidean
(n+1)-simplex and f : ∂� → X is a map whose restriction to each facet of� is an
(L, a)-quasi-isometric embedding, then the image of every facet is within distance
at most D(1 + a) of the union of the images of the remaining ones;

(FRn) (filling radius) for all C > 0 there is a constant h > 0 such that every cycle
Z ∈ In,c(X) with (C, a)-controlled density bounds a V ∈ In+1,c(X) whose support
is within distance at most max{h, a} from spt(Z).

Note that for n = 1, (SIIn) corresponds to a sub-quadratic inequality. The equivalence
of (ARn) and (SIIn) was established in [40] in a more general setup for complete metric
spaces. The proof of the forward implication used an elaborate thick-thin decomposition for
integral cycles from [39] and also the non-trivial fact that a weakly convergent sequence
of cycles converges with respect to the filling volume [37]. We review the entire argument.
Employing an elegant new variational result from [23] and introducing a more quantitative
approach for the weak convergence of cycles, we reduce the overall complexity substantially.
In fact, we prove the sub-Euclidean isoperimetric inequality first in a somewhat restricted
form (Theorem 5.1, compare Theorem 4.4 in [28]) and then deduce (LIIn) and (SIIn).

The implication (ARn) ⇒ (LIIn) pertains to a long-standing open problem. In sym-
metric spaces of non-compact type or homogeneous Hadamard manifolds of rank ≤ n, a
linear isoperimetric inequality holds for all n-cycles (see [21, p. 105], [31], and [25]). It is
still unknown whether this generalizes, for instance, to cocompact Hadamard manifolds or
CAT(0) spaces of (asymptotic) rank≤ n. In our statement, the isoperimetric constant depends
on the density bound, so Theorem 1.1 does not resolve this question. Nevertheless, (LIIn)
turns out to be equivalent to the remaining properties. Examples of cycles with controlled
density include cycles lying near the union of finitely many quasiflats (see in particular the
proof of Theorem 7.2).

The proofs of Theorem 5.1 and Theorem 5.2 in [28] show that (SIIn) ⇒ (MLn) ⇒ (SSn),
except for a less explicit distance bound in the slim simplex property. The second step involves
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13 Page 4 of 26 T. Goldhirsch, U. Lang

an approximation result for quasiflats by quasi-minimizers. We go through the argument in
detail, keeping track of the dependence of constants, and thus showing that the bound is linear
in the coarseness parameter a. This fact is used in the proof of the backward implication
(SSn) ⇒ (ARn).

The statement of (MLn) differs formally from the usual stability assertion for quasi-
geodesics, but is versatile. If S ∈ In,c(X) with spt(∂S) ⊂ Y is quasi-minimizing mod Y ,
then the extra assumption we need in order to conclude that S is confined to a bounded
neighborhood of Y is that S can be closed up to a cycle Z = S − S′ with controlled
density and with spt(S′) ⊂ Y . Note that there is no (quasi-)minimality assumption on S′; the
density bound suffices. However, if S1, S2 ∈ In,c(X) are two (Q, a)-quasi-minimizers with
∂S1 = ∂S2, each with (C, a)-controlled density, then S1 is (Q, a)-quasi-minimizing mod
spt(S2) and vice-versa, so (MLn) implies that the Hausdorff distance between the supports
is bounded by max{l, 4a} for l = l(2C, Q).

The last assertion of Theorem 1.1 is yet another way of expressing that n-cycles with
controlled density (such as geodesic triangles ifn = 1) are thin.Weuse an iterative application
of the sub-Euclidean isoperimetric inequality to show that the conclusion of (FRn) holds for
every mass minimizing V with ∂V = Z . In [40], the filling radius was used to prove that
(SIIn) ⇒ (ARn). Similarly, (FRn) ⇒ (ARn).

The paper is organized as follows. In Sect. 2 we recall the definition of metric currents and
collect some basic results. In Sect. 3 we first review an approximation result for cycles from
[23] and then use this to give a short proof of a quantitative version of a result from [37],
showing that cycles with bounded mass and sufficiently small uniformly bounded density
at some fixed scale have small filling volume. We use this further in Sect. 4 to discuss the
convergence of cycles. Section 5 is then devoted to isoperimetric inequalities and shows in
particular that

(ARn) ⇒ (LIIn) ⇔ (SIIn).

In Sect. 6 we prove more explicit versions of two propositions from [28] relating quasiflats
and quasi-minimizers. The concluding Sect. 7 then shows in particular that

(SIIn) ⇒ (MLn) ⇒ (SSn) ⇒ (ARn) and (SIIn) ⇒ (FRn) ⇒ (ARn).

In fact, we prove all implications (and hence Theorem 1.1) in a stronger form, for any class
of proper metric spaces satisfying the respective assumptions uniformly, and with constants
depending only on the data involved and on the class, rather than on individual members (see
Sects. 5 and 7).

What is missing from the list in Theorem 1.1 is a rank n analog of Gromov’s quadruple
definition of δ-hyperbolicity [20, p. 89]. A 2(n+1)-point condition of this type is investigated
in [26].

2 Preliminaries

Currents with finite mass in complete metric spaces were introduced by Ambrosio and Kirch-
heim in [1]. Here, for consistency with [28], we will use the local theory described in [29].
For the class of integral currents with compact support, the principal objects in this paper, the
formal difference between the two approaches is marginal. Assuming the underlying metric
space to be proper, we will make frequent use of the existence of area minimizing integral
currents filling a given cycle (Theorem 2.3). Without this assumption, as an additional twist,
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one could still work with almost minimal currents instead (see, for example, Lemma 3.4
in [36]). In particular, Theorem 1.1 and most results in the paper hold more generally for
complete metric spaces and Ambrosio–Kirchheim integral currents.

Currents

An integral n-current may roughly be thought of as an oriented n-dimensional Lipschitz
surface equipped with a summable integer density function. Formally though, n-currents
are defined as functionals; on compactly supported differential n-forms in the classical case
(going back to de Rham), and on suitable (n + 1)-tuples of real-valued locally Lipschitz
functions for non-smooth ambient spaces. The relating principle (originally proposed by De
Giorgi) is that the tuple ( f0, . . . , fn), say if the fi are smooth functions on R

N , represents
the form f0 d f1 ∧ . . . ∧ d fn .

Let X = (X , d) be a proper metric space. For n ≥ 0, we let Dn(X) denote the set of
all (n + 1)-tuples ( f0, . . . , fn) of Lipschitz functions fi : X → R such that f0 has compact
support spt( f0) (in [29], f1, . . . , fn are merely locally Lipschitz, but the following definition
is equivalent). An n-dimensional current S in X is a function S : Dn(X) → R satisfying the
following three conditions:

(1) S is (n + 1)-linear;
(2) S( f0,k, . . . , fn,k) → S( f0, . . . , fn)whenever fi,k → fi pointwise on X with uniformly

bounded Lipschitz constants (i = 0, . . . , n) and with
⋃

k spt( f0,k) ⊂ K for some com-
pact set K ⊂ X ;

(3) S( f0, . . . , fn) = 0 whenever one of the functions f1, . . . , fn is constant on a neighbor-
hood of spt( f0).

It follows from these axioms that S is alternating in the last n arguments. The vector space
of all n-dimensional currents in X is denoted Dn(X). Every function w ∈ L1

loc(R
n) induces

a current �w� ∈ Dn(R
n) defined by

�w�( f0, . . . , fn) :=
∫

w f0 det
[
∂ j fi

]n
i, j=1 dx;

note that the partial derivatives ∂ j fi exist almost everywhere by Rademacher’s theorem. For
a Borel set W ⊂ R

n we put �W � := �χW �, where χW denotes the characteristic function.
(See Sect. 2 in [29] for details.)

Support, push-forward, and boundary

Let S ∈ Dn(X). There exists a smallest closed subset of X , the support spt(S) of S, such that
the value S( f0, . . . , fn) depends only on the restrictions of f0, . . . , fn to this set. Thus, for
any closed set D ⊂ X containing spt(S), S induces a current in Dn(D), still denoted by S.
For a proper Lipschitz map φ : D → Y into another proper metric space Y , the push-forward
φ#S ∈ Dn(Y ) is the current with support in φ(spt(S)) defined by

(φ#S)( f0, . . . , fn) := S( f0 ◦ φ, . . . , fn ◦ φ)

for all ( f0, . . . , fn) ∈ Dn(Y ). In the simplest case, if �a, b� := �[a, b]� is the current in
D1(R) (orD1([a, b])) associated with an interval, and if γ : [a, b] → X is a Lipschitz curve,
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13 Page 6 of 26 T. Goldhirsch, U. Lang

then

γ#�a, b�( f0, f1) = �a, b�( f0 ◦ γ, f1 ◦ γ ) =
∫ b

a
( f0 ◦ γ )( f1 ◦ γ )′ ds

for all ( f0, f1) ∈ D1(X). Similarly, every singular Lipschitz n-chain in X defines an element
of Dn(X); in fact, of In,c(X) (see below for the definition, and [2, 17] for some reverse
approximation results).

If S ∈ Dn(X) and n ≥ 1, then the boundary ∂S ∈ Dn−1(X) is defined by

(∂S)( f0, . . . , fn−1) := S(τ, f0, . . . , fn−1)

for all ( f0, . . . , fn−1) ∈ Dn−1(X) and for any τ ∈ D0(X) such that τ ≡ 1 in a neighborhood
of spt( f0). It follows from (1) and (3) that ∂S is well-defined and that ∂ ◦∂ = 0. Furthermore,
spt(∂S) ⊂ spt(S), and φ#(∂S) = ∂(φ#S) for φ : D → Y as above. In the example of a
Lipschitz curve, ∂(γ#�a, b�)( f0) = f0(γ (b)) − f0(γ (a)) by the fundamental theorem of
calculus. (See Sect. 3 in [29].)

Mass

Let S ∈ Dn(X). For an open setU ⊂ X , themass ‖S‖(U ) ∈ [0,∞] of S inU is defined as the
supremumof

∑
k S( f0,k, . . . , fn,k) over all finite families of tuples ( f0,k , . . . , fn,k) ∈ Dn(X)

such that
⋃

k spt( f0,k) ⊂ U ,
∑

k | f0,k | ≤ 1, and f1,k, . . . , fn,k are 1-Lipschitz. This extends
to a regular Borel measure ‖S‖ on X with spt(‖S‖) = spt(S), andM(S) := ‖S‖(X) denotes
the total mass. For Borel setsW , A ⊂ R

n , ‖�W �‖(A) equals the Lebesguemeasure ofW ∩A.
For S, T ∈ Dn(X),

‖S + T ‖ ≤ ‖S‖ + ‖T ‖.
If the measure ‖S‖ is locally finite, then

|S( f0, . . . , fn)| ≤
n∏

i=1

Lip( fi )
∫

X
| f0| d‖S‖

for all ( f0, . . . , fn) ∈ Dn(X), where Lip( fi ) denotes the Lipschitz constant. As a con-
sequence, S extends to tuples whose first entry is merely a bounded Borel function with
compact support, and if u : X → R is any bounded Borel function, one can define the
restriction S u ∈ Dn(X) by

(S u)( f0, . . . , fn) := S(u f0, f1, . . . , fn)

for all ( f0, . . . , fn) ∈ Dn(X). For a Borel set A ⊂ X , S A := S χA. Themeasure ‖S A‖
agrees with the restriction of ‖S‖ to A. If φ : D → Y is as above, and B ⊂ Y is a Borel set,
then (φ#S) B = φ#(S φ−1(B)) and

‖φ#S‖(B) ≤ Lip(φ)n ‖S‖(φ−1(B)).

(See Sect. 4 in [29].)

Integral currents

A current S ∈ Dn(X) is locally integer rectifiable if ‖S‖ is locally finite and concentrated
on the union of countably many Lipschitz images of compact subsets of Rn , and for every
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Borel set A ⊂ X with compact closure and every Lipschitz map φ : A → R
n , the current

φ#(S A) ∈ Dn(R
n) is of the form �w� for some integer valued w ∈ L1(Rn). Then ‖S‖

is absolutely continuous with respect to n-dimensional Hausdorff measure. Push-forwards
and restrictions to Borel sets of locally integer rectifiable currents are again locally integer
rectifiable.

A current S ∈ Dn(X) is called a locally integral current if S is locally integer rectifiable
and, for n ≥ 1, ‖∂S‖ is locally finite; then (by Theorem 8.7 in [29]) ∂S is itself locally integer
rectifiable. This gives a chain complex of abelian groups In,loc(X). The subgroups In,c(X) of
integral currents consist of the elements with compact support and, hence, finite total mass.
For X = R

N , there is a canonical chain isomorphism from I∗,c(R
N ) to the chain complex

of classical (Federer–Fleming) integral currents [15] in R
N .

For n ≥ 1, we put Zn,c(X) := {Z ∈ In,c(X) : ∂Z = 0}. For n = 0, an element of I0,c(X)

is an integral linear combination of currents of the form �x�, where �x�( f0) = f0(x). We let
Z0,c(X) ⊂ I0,c(X) denote the subgroup of linear combinations whose coefficients add up
to zero. The boundary of a current in I1,c(X) belongs to Z0,c(X). Given Z ∈ Zn,c(X), for
n ≥ 0, we will call V ∈ In+1,c(X) a filling of Z if ∂V = Z .

Slicing

Let S ∈ In,loc(X), n ≥ 1, and let π : X → R be a Lipschitz function. For s ∈ R, the slice
Ts ∈ Dn−1(X) of S with respect to π is the current

Ts := ∂(S {π ≤ s}) − (∂S) {π ≤ s}
with support in {π = s} ∩ spt(S). Note that the restrictions are defined since both ‖S‖ and
‖∂S‖ are locally finite. For a < b, the coarea inequality

∫ b

a
M(Ts) ds ≤ Lip(π) ‖S‖({a < π < b})

holds, and if π |spt(S) is proper, then Ts ∈ In−1,c(X) for almost all s ∈ R. (See Sect. 6 and
Theorem 8.5 in [29].)

Convergence and compactness

A sequence (Si ) in Dn(X) converges weakly to a current S ∈ Dn(X) if Si → S pointwise as
functionals on Dn(X). Then, for every open set U ⊂ X ,

‖S‖(U ) ≤ lim inf
i→∞ ‖Si‖(U ),

thus the mass is lower semicontinuous with respect to weak convergence. Furthermore, weak
convergence commutes with the boundary operator and with push-forwards. For locally
integral currents, the following compactness theorem holds (see Theorem 8.10 in [29]).

Theorem 2.1 Let X be a proper metric space, and let n ≥ 1. If (Si ) is a sequence in In,loc(X)

such that

sup
i

(‖Si‖ + ‖∂Si‖)(K ) < ∞

for every compact set K ⊂ X, then some subsequence (Sik ) converges weakly to a current
S ∈ In,loc(X).
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Isoperimetric inequality and Plateau problem

Recall condition (CIn) from the introduction. Cone inequalities are instrumental for the proof
of isoperimetric inequalities of Euclidean type (compare Sect. 3.4 in [19]). For n ≥ 1, we
say that X satisfies (EIIn) if there is a constant γ > 0 such that every cycle Z ∈ Zn,c(X) has
a filling V ∈ In+1,c(X) with mass

M(V ) ≤ γ M(Z)(n+1)/n .

To make the constants in (CIn) and (EIIn) explicit, we will write (CIn)[c] and (EIIn)[γ ]. The
following result was established in a more general form in Theorem 1.2 in [36].

Theorem 2.2 For all n ≥ 1 and c > 0 there is a constant γ > 0 such that for every proper
metric space X, (CIn)[c] implies (EIIn)[γ ].

(Here the quasi-convexity condition (CI0) is actually not needed.) By Theorem 2.1 and
a well-known application of (EIIn) one gets the following existence result for minimizing
integral currents (see the proof of Theorem 2.4 in [28]).

Theorem 2.3 Let Z ∈ Zn,c(X), where X is a proper metric space satisfying (CI0) if n = 0
and (EIIn)[γ ] if n ≥ 1. Then there is a filling V ∈ In+1,loc(X) of Z with mass

M(V ) = inf{M(V ′) : V ′ ∈ In+1,loc(X), ∂V ′ = Z} < ∞.

In fact, every such minimizing V has compact support due to the following lower density
bound: if x ∈ spt(V ), r > 0, and Bx (r) ∩ spt(Z) = ∅, then

�x,r (V ) := ‖V ‖(Bx (r))

rn+1 ≥ δ0 :=
{
2 if n = 0,

(n + 1)−(n+1)γ −n if n ≥ 1;
thus spt(V ) is within distance (M(V )/δ0)

1/(n+1) from spt(Z).

3 A variational argument

We start with a slight modification and extension of an effective recent approximation result,
Proposition 4.2 in [23]. The main conclusion is that for a cycle Z and any η > 0 there is a
cycle Z ′ with mass ≤ M(Z) such that Z − Z ′ has a minimizing filling with mass ≤ ηM(Z)

and Z ′ satisfies a uniform lower density bound at scales � η. This will be used in the proofs
of Theorems 3.2 and 5.1. We show in addition that if Z satisfies a uniform upper density
bound above some threshold radius, then the same holds for Z ′; see assertion (5) below. This
will be employed in Theorem 5.3 (linear isoperimetric inequality).

Proposition 3.1 Let n ≥ 1 and γ > 0. Suppose that X is a proper metric space satisfying
(EIIn)[γ ] and, if n ≥ 2, also (EIIn−1)[γ ]. Then for every Z ∈ Zn,c(X) and η > 0 there
exists a minimizing V ∈ In+1,c(X) such that the following holds for

Z ′ := Z − ∂V , μ := η−1‖V ‖ + ‖Z ′‖,
and some constants α, θ > 0 depending only on n and γ :

(1) μ(X) ≤ M(Z), in particularM(Z ′) ≤ M(Z) and M(V ) ≤ ηM(Z);
(2) �x,r (Z ′) ≥ θ for all x ∈ spt(Z ′) and r ∈ (0, αη];
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(3) if B ⊂ X is a closed set and T := ∂(V B) − (∂V ) B is in In,c(X), then μ(B) ≤
‖Z‖(B) + M(T );

(4) if M(Z) < m := θ(αη)n, then Z ′ = 0, and if M(Z) ≥ m, then spt(Z ′) is within distance
at most η(α + ln(M(Z)/m)) from spt(Z);

(5) if there exist C > 0, a ≥ 0, and p ∈ X such that �p,r (Z) ≤ C for all r > a, then
μ(Bp(r)) ≤ 2n+1Crn for all r > max{a, 2n+1η}.

Proof Given Z ∈ Zn,c(X) and η > 0, consider the functional

F : In+1,loc(X) → [0,∞], F(V ′) = η−1M(V ′) + M(Z − ∂V ′).

Notice that F is lower semicontinuous with respect to weak convergence, likeM. Moreover,
M(V ′) ≤ ηF(V ′) and M(∂V ′) ≤ F(V ′) + M(Z) for all V ′, and F(0) = M(Z) < ∞. We
can thus pick a minimizing sequence for F and use Theorem 2.1 to find a V ∈ In+1,loc(X)

that minimizes F . Now if Z ′ := Z − ∂V and μ := η−1‖V ‖ + ‖Z ′‖, then
μ(X) = η−1M(V ) + M(Z ′) = F(V ) ≤ F(0) = M(Z),

so (1) holds. However, we still have to show that in fact V ∈ In+1,c(X).
We proceed with (2). Let x ∈ spt(Z ′). Put f (s) := ‖Z ′‖(Bx (s)) > 0 for all s > 0. For

almost every s, the slice Rs := ∂(Z ′ Bx (s)) is in Zn−1,c(X) and satisfies M(Rs) ≤ f ′(s).
Suppose first that n ≥ 2. Then by the isoperimetric inequality there exists a filling Ts ∈
In,c(X) of Rs such that

M(Ts) ≤ γ M(Rs)
n/(n−1) ≤ γ f ′(s)n/(n−1).

Furthermore, the cycle Z ′ Bx (s) − Ts has a filling Ws ∈ In+1,c(X) with

M(Ws) ≤ γ
(
f (s) + M(Ts)

)(n+1)/n
.

Since Z − ∂(V + Ws) = Z ′ − ∂Ws = Z ′ (X\Bx (s)) + Ts , we have

F(V + Ws) = η−1M(V + Ws) + M(Z ′ (X\Bx (s)) + Ts)

≤ η−1(M(V ) + M(Ws)) + ‖Z ′‖(X\Bx (s)) + M(Ts).

It follows that 0 ≤ F(V + Ws) − F(V ) ≤ η−1M(Ws) − f (s) + M(Ts) and

η
(
f (s) − M(Ts)

) ≤ M(Ws) ≤ γ
(
f (s) + M(Ts)

)(n+1)/n
.

Hence, ifM(Ts) ≤ f (s)/2, then η f (s)/2 ≤ γ (3 f (s)/2)(n+1)/n and thus

f (s) ≥ θ ′ηn

for θ ′ := 2/(3n+1γ n). Now if f (r) < θ ′ηn for some r , then f (s) < θ ′ηn for all s ∈ (0, r),
thus f (s)/2 < M(Ts) ≤ γ f ′(s)n/(n−1) and

f ′(s) f (s)(1−n)/n ≥ (2γ )(1−n)/n

for almost every such s, and integration from 0 to r yields

f (r) ≥ θrn

where θ := n−n(2γ )1−n . This shows that f (r) ≥ min{θ ′ηn, θrn} for all r > 0. Hence (2)
holds with α := (θ ′/θ)1/n in case n ≥ 2. Suppose now that n = 1. Then every non-zero
slice Rs ∈ Z0,c(X) has mass at least 2. If Rs = 0 for some s, then Z ′ Bx (s) is a cycle,
and repeating the above argument with Ts = 0 we get that η f (s) ≤ M(Ws) ≤ γ f (s)2, thus
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f (s) ≥ η/γ . Hence, if f (r) < η/γ for some r , then f ′(s) ≥ M(Rs) ≥ 2 for almost every
s ∈ (0, r) and so f (r) ≥ 2r . We conclude that in case n = 1, (2) holds with θ := 2 and
α := 1/(2γ ).

SinceM(Z ′) < ∞, it now follows from (2) that Z ′ has compact support. Hence spt(∂V )

is compact, and since V has finite mass and is evidently minimizing, by Theorem 2.3 spt(V )

is compact as well.
We prove (3). Let W := V B. If T = ∂W − (Z − Z ′) B ∈ In,c(X), then also

(Z−Z ′) B ∈ In,c(X) andW ∈ In+1,c(X). Since Z−∂(V−W ) = Z ′+∂W = Z ′ (X\B)+
Z B + T , we have

F(V − W ) = η−1M(V − W ) + M
(
Z ′ (X\B) + Z B + T

)

≤ μ(X\B) + ‖Z‖(B) + M(T ).

Since μ(X) = F(V ) ≤ F(V − W ), it follows that μ(B) = μ(X) − μ(X\B) ≤ ‖Z‖(B) +
M(T ) as claimed.

The first assertion of (4) is clear from (1) and (2). Suppose now thatM(Z) ≥ m = θ(αη)n

and x ∈ spt(Z ′) is a point at distance D > αη from spt(Z). Set g(s) := μ(Bx (s)) for all
s ∈ (0, D). For almost every such s, the slice Ts := ∂(V Bx (s)) + Z ′ Bx (s) is in In,c(X)

and satisfiesM(Ts) ≤ d
ds ‖V ‖(Bx (s)) as well as M(∂Ts) ≤ d

ds ‖Z ′‖(Bx (s)). Hence, by (3),

g(s) ≤ M(Ts) ≤ M(Ts) + ηM(∂Ts) ≤ η g′(s).

Integrating the inequality 1 ≤ η g′(s)/g(s) from αη to t < D we get that

t ≤ η
(
α + ln(g(t)) − ln(g(αη))

)
.

By (1) and (2), g(t) ≤ μ(X) ≤ M(Z) and g(αη) ≥ ‖Z ′‖(Bx (αη)) ≥ m. As this holds for
all t < D, (4) follows.

It remains to prove (5). We will write Br for Bp(r). First we choose a sufficiently large
r0 > 0 so that

‖V ‖(Br0) ≤ 2n+1ηCr n
0 ,

then we put ri := 2−i r0 for every integer i ≥ 1. There exists an s ∈ (r1, r0) such that the
slice Ts := ∂(V Bs) − (∂V ) Bs ∈ In,c(X) satisfies

μ(Bs) ≤ ‖Z‖(Bs) + M(Ts)

by (3), as well as M(Ts) ≤ ‖V ‖(Br0)/(r0 − r1) ≤ 2n+1ηCr n
0 /r1. Now if r1 >

max{a, 2n+1η}, then ‖Z‖(Bs) ≤ Csn and M(Ts) ≤ Cr n
0 , hence

μ(Br1) ≤ μ(Bs) ≤ 2Cr n
0 = 2n+1Cr n

1 .

This also yields the above inequality for the next smaller scale,

‖V ‖(Br1) ≤ 2n+1ηCr n
1 .

Finally, given any r > max{a, 2n+1η}, we can choose r0 initially such that r = rk = 2−kr0
for some k ≥ 1. When k ≥ 2, we repeat the above slicing argument successively for
i = 2, . . . , k, with (ri , ri−1) in place of (r1, r0). This eventually shows that

μ(Br ) ≤ 2n+1Crn

for any r > max{a, 2n+1η}. ��
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As a first application of parts (1)–(3) of Proposition 3.1 we give a short proof of a variant
of Proposition 5.8 in [37] regarding fillings of thin cycles. This result will play a key role in
the next section (see Theorem 4.4). The assumptions on X are as above. The conclusion is
that for a cycle Z ∈ Zn,c(X), the filling volume

FillVolX (Z) := inf{M(V ) : V ∈ In+1,c(X), ∂V = Z}
can be forced to be arbitrarily small by imposing a sufficiently small bound on the supremal
mass

m�(Z) := sup
x∈X

‖Z‖(Bx (�))

in all closed balls of some fixed radius � > 0. The proof gives an explicit constant involving
a mass bound for Z .

Theorem 3.2 For all n ≥ 1andγ, M, �, ν > 0 there exists a constant δ = δ(n, γ, M, �, ν) >

0 such that if X is a proper metric space satisfying (EIIn)[γ ] and, in case n ≥ 2, also
(EIIn−1)[γ ], then every Z ∈ Zn,c(X)withM(Z) ≤ M andm�(Z) ≤ δ has FillVolX (Z) < ν.

Proof Let α and θ be the constants from Proposition 3.1, depending on n and γ . Given
M, �, ν > 0, fix η > 0 such that both ηM and γ (4ηM/�)(n+1)/n are less than ν/2, then put

r := min
{
αη,

�

4

}
, δ := 1

2
θrn .

Suppose now that Z ∈ Zn,c(X) satisfies M(Z) ≤ M and m�(Z) ≤ δ. By Proposition 3.1
there exists V ∈ In+1,c(X) such that, for Z ′ := Z − ∂V ,

(1) M(V ) ≤ ηM(Z) ≤ ηM < ν/2;
(2) ‖Z ′‖(Bx (r)) ≥ θrn = 2δ for all x ∈ spt(Z ′);
(3) ‖Z ′‖(B) ≤ ‖Z‖(B) + M(T ) whenever B ⊂ X is a closed set and T := ∂(V B) −

(∂V ) B is in In,c(X).

If Z ′ = 0, then ∂V = Z , and (1) yields the result. Now let Z ′ �= 0. It remains to show that
FillVolX (Z ′) < ν/2. Pick a maximal set N ⊂ spt(Z ′) of distinct points at mutual distance
> 2r , and put Bs := ⋃

x∈N Bx (s) for all s > 0. By (2), since the balls Bx (r) with x ∈ N are
pairwise disjoint, we have 2δ |N | ≤ ‖Z ′‖(Br ) ≤ M(Z ′), and so

‖Z‖(B�) ≤ |N |m�(Z) ≤ δ |N | ≤ 1

2
M(Z ′).

Furthermore, since N is maximal, spt(Z ′) ⊂ B2r ⊂ B�/2. Hence, for almost every
s ∈ (�/2, �), the slice Ts := ∂(V Bs) − (∂V ) Bs ∈ In,c(X) satisfies

M(Z ′) = ‖Z ′‖(Bs) ≤ ‖Z‖(Bs) + M(Ts) ≤ 1

2
M(Z ′) + M(Ts)

by (3). We conclude thatM(Ts) ≥ M(Z ′)/2 and

M(V ) ≥ ‖V ‖(B�) ≥
∫ �

�/2
M(Ts) ds ≥ �

4
M(Z ′).

It now follows from (1) that M(Z ′) ≤ 4ηM/�, and by the isoperimetric inequality and the
choice of η we get that FillVolX (Z ′) < ν/2. ��
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4 Convergence of cycles

A central result in geometric measure theory says that a weakly convergent sequence Si → S
of integral n-currents with supports in a fixed compact set and with supi (M(Si )+M(∂Si )) <

∞ converges in the flat metric topology. This means that there exist integral n-currents Ti
and integral (n + 1)-currents Vi such that Si − S = Ti + ∂Vi and M(Ti ) + M(Vi ) → 0.
In R

N , this property can be deduced from the deformation theorem (see Theorem 5.5 and
Theorem 7.1 in [15]). The result was generalized in [37] to Ambrosio–Kirchheim currents
in complete metric spaces satisfying condition (CIn) locally. It essentially suffices to show
that FillVolX (Zi ) → 0 for any bounded sequence of cycles Zi converging weakly to 0. In
this section we prove a somewhat amplified version of this fact for proper metric spaces
satisfying (CIn) globally, so as to facilitate the proof of the sub-Euclidean isoperimetric
inequality in the next section. The argument relies on Theorem 3.2 and proceeds along the
same lines as [37], but is simplified by the use of a uniform notion of weak convergence.

Let S ∈ Dn(X), n ≥ 0, and suppose that spt(S) is compact. Note that every such S extends
canonically to tuples of Lipschitz functions whose first entry is no longer required to have
compact support. We define

W(S) := sup{S( f0, . . . , fn) : f0, . . . , fn are 1-Lipschitz, | f0| ≤ 1}.
Evidently W(S) ≤ M(S), and if n ≥ 1, thenW(∂S) ≤ W(S).

The following auxiliary result is an adaptation of Proposition 6.6 in [29] to sequences of
cycles in possibly distinct proper metric spaces.

Lemma 4.1 Suppose that n ≥ 1, Zi ∈ Zn,c(Xi ), supi M(Zi ) < ∞, W(Zi ) → 0, and
πi : Xi → R is 1-Lipschitz. Then for almost every s ∈ R there is a sequence (ik) such that
Zik ,s := Zik {πik ≤ s} ∈ In,c(Xik ) and

sup
k

M(∂Zik ,s) < ∞, W(∂Zik ,s) ≤ W(Zik ,s) → 0 (k → ∞).

Proof Consider the Borel measures μi := πi#‖Zi‖. Since supi μi (R) < ∞, some subse-
quence (μik ) converges weakly to a finite Borel measure μ on R. Furthermore, for the slices
∂Zik ,s ,

∫

R

lim inf
k→∞ M(∂Zik ,s) ds ≤ lim inf

k→∞

∫

R

M(∂Zik ,s) ds ≤ sup
i

M(Zi ) < ∞.

We now take s so that μ({s}) = 0 and lim infk→∞ M(∂Zik ,s) < ∞, then we adjust the
sequence (ik), if necessary, to arrange that supk M(∂Zik ,s) < ∞. Note that Zik ,s ∈ In,c(Xik )

for all k. Let ε > 0, and choose δ > 0 such that μ([s, s + δ]) < ε. Let γs,δ : R → R denote
the piecewise affine δ−1-Lipschitz function that is 1 on (−∞, s] and 0 on [s + δ,∞), and
put uk := γs,δ ◦ πik and vk := χ(−∞,s] ◦ πik . If k is sufficiently large, then

W(Zik (uk − vk)) ≤ μik ([s, s + δ]) < ε,

W(Zik uk) ≤ (1 + δ−1)W(Zik ) < ε

(note that if f0 : Xik → R is a 1-Lipschitz function with | f0| ≤ 1, then uk f0 is (1 + δ−1)-
Lipschitz), thusW(Zik ,s) = W(Zik vk) < 2ε. This gives the result. ��

Next, recall that a 0-cycle Z ∈ Z0,c(X) is of the form Z( f ) = ∑
i ai f (xi ) for finitely

many points xi ∈ X and weights ai ∈ Z with
∑

i ai = 0. Note that Z( f + c) = Z( f ) for all
c ∈ R. We define

W (Z) := sup{Z( f ) : f is 1-Lipschitz};
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in general W (Z) ≥ W(Z). We have the following optimal result for n = 0 (compare
Theorem 1.2 in [37]).

Proposition 4.2 Let X be a proper metric space satisfying (CI0)[c], that is, any two points
x, y ∈ X can be connected by a curve of length ≤ c d(x, y). Then every cycle Z ∈ Z0,c(X)

has FillVolX (Z) ≤ cW (Z), and if W(Z) < 2, then W (Z) = W(Z).

Proof We can write Z �= 0 in the form

Z( f ) =
k∑

i=1

( f (xi ) − f (yi )) =
∫

X
f dμ −

∫

X
f dν

for some (not necessarily distinct) points x1, . . . , xk and y1, . . . , yk in X and the correspond-
ing measures μ := ∑

i δxi and ν := ∑
i δyi . Hence, by the Kantorovich–Rubinstein theorem

(see [12]), W (Z) equals the Wasserstein distance W1(μ, ν). It is well-known that for such
measures the latter agrees with the minimum of

∑
i d(xi , yπ(i)) over all permutations π of

{1, . . . , k}. Thus, some such sum is equal to W (Z). We will give an alternative direct proof
of this identity in Lemma 4.3 below. It now follows from condition (CI0)[c] that Z has a
filling with mass less than or equal to cW (Z).

For the second assertion of the proposition, consider the metric δ := min{d, 2} on X and
letWδ denote the corresponding functional. Note thatWδ(Z) = W(Z). If Z is as above, then
for some 1-Lipschitz function f : (X , δ) → R and some permutation π , we have

Wδ(Z) = Z( f ) =
∑

i

( f (xi ) − f (yπ(i))) =
∑

i

δ(xi , yπ(i)),

in particular f (xi ) − f (yπ(i)) = δ(xi , yπ(i)) ≥ 0 for all i . We can assume that the set⋃
i [ f (yπ(i)), f (xi )] is connected; otherwise f can easily be modified so that this holds.

Hence, ifWδ(Z) = W(Z) < 2, then we can further arrange that | f | < 1. It follows that there
is no 1-Lipschitz function g : X → R with Z(g) > W(Z) = Z( f ), for otherwise a suitable
convex combination h = (1 − ε) f + εg would satisfy Z(h) > W(Z) and |h| ≤ 1. ��

We now provide the alternative argument mentioned above. It is convenient to consider
pairwise distinct points but to allow distances to be zero.

Lemma 4.3 Let (V , d) be a finite pseudo-metric space with a partition V = V+ ∪ V−,
where |V+| = |V−|. If f : V → R is a 1-Lipschitz function that maximizes the quantity∑

x∈V+ f (x) − ∑
y∈V− f (y), then there exists a bijection π : V+ → V− such that f (x) −

f (π(x)) = d(x, π(x)) for all x ∈ V+.

Proof Given f , define a relation� on V such that x � y if and only if f (x)− f (y) = d(x, y).
Note that if x � y � z, then

f (x) − f (z) = d(x, y) + d(y, z) ≥ d(x, z),

and since f is 1-Lipschitz, x � z. Thus the relation is transitive. For a set A ⊂ V+, let �(A)

denote the set of all y ∈ V− for which there is an x ∈ A with x � y. Suppose first that A
is maximal in V+ in the sense that there is no pair (x, y) ∈ A × (V+\A) with x � y. Note
that f (x) − f (y) < d(x, y) whenever x ∈ A and y ∈ C := (V+\A) ∪ (V−\�(A)). By
transitivity, the same strict inequality holds whenever x ∈ �(A) and y ∈ C . Hence, for some
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ε > 0, the function fε obtained from f by increasing the values on A ∪ �(A) by ε is still
1-Lipschitz. It follows from the maximality property of f that

ε |A| =
∑

x∈V+
( fε(x) − f (x)) ≤

∑

y∈V−
( fε(y) − f (y)) = ε |�(A)|,

thus |A| ≤ |�(A)|. Let now A ⊂ V+ be arbitrary. Again by transitivity, the set A′ of all points
in V+ with a precursor in A is maximal, and �(A′) = �(A), so that |A| ≤ |A′| ≤ |�(A′)| =
|�(A)|. This shows that the bipartite graph with edge set {(x, y) ∈ V+ × V− : x � y}
satisfies the assumption of Hall’s marriage theorem. Hence, there is a matching (bijection)
π as claimed. ��

In general, for n ≥ 0, an analog of Proposition 4.2 holds as follows.

Theorem 4.4 If Xi satisfies (CIn)[c] for i ∈ N, and if the cycles Zi ∈ Zn,c(Xi ) satisfy
supi M(Zi ) < ∞ and W(Zi ) → 0, then FillVolXi (Zi ) → 0.

Proof The proof is by induction on n. For n = 0, the result holds by Proposition 4.2. Assume
now that n ≥ 1 and the assertion holds in dimension n − 1. It suffices to show that for
every sequence (Zi )i∈N as in the statement and for every ν > 0 there is an index j with
FillVolX j (Z j ) < ν. By Theorem 2.2 there is a constant γ = γ (n, c) such that every Xi

satisfies (EIIn)[γ ] and, if n ≥ 2, also (EIIn−1)[γ ]. Put M := supi M(Zi ) and choose � > 0
such that

18c�M < ν.

Let δ := δ(n, γ, M, �, ν/2) be the constant from Theorem 3.2. If there is an index j with
m�(Z j ) ≤ δ, then FillVolX j (Z j ) < ν/2 and we are done.

Suppose now that m�(Zi ) > δ for all i . Choose points xi ∈ Xi such that

‖Zi‖(Bxi (�)) ≥ δ.

By Lemma 4.1 there is an s ∈ (�, 2�) and an infinite set I1 ⊂ N such that Zi,s :=
Zi Bxi (s) ∈ In,c(Xi ) for all i ∈ I1 and

sup
i∈I1

M(∂Zi,s) < ∞, W(∂Zi,s) ≤ W(Zi,s) → 0 (I1 � i → ∞).

By the induction assumption there exist fillings Ti ∈ In,c(Xi ) of ∂Zi,s such thatM(Ti ) → 0.
By reducing the index set further, if necessary, we arrange that M(Ti ) ≤ δ/2 and spt(Ti ) ⊂
Bxi (3�) for all i ∈ I1 (Theorem 2.3). Then S1i := Zi,s −Ti is a cycle with support in Bxi (3�),
and

FillVolXi (S
1
i ) ≤ 3c�M(S1i )

by the cone inequality. Let Z1
i := Zi − Zi,s + Ti and consider the splitting

Zi = S1i + Z1
i .

Notice that M(S1i ) ≤ M(Zi,s) + δ/2 and M(Z1
i ) ≤ M(Zi ) − M(Zi,s) + δ/2, moreover

M(Zi,s) ≥ ‖Zi‖(Bxi (�)) ≥ δ. Hence, for all i ∈ I1, we have

M(S1i ) ≤ M(Zi ) − M(Z1
i ) + δ,

M(Z1
i ) ≤ M(Zi ) − δ

2
≤ M .
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Note further that W(Z1
i ) ≤ W(Zi ) + W(Zi,s) + M(Ti ) → 0 as i → ∞.

If m�(Z1
i ) > δ for all i ∈ I1, then we repeat the above argument (with the same constants

M, �, δ) and produce similar splittings Z1
i = S2i + Z2

i for all i in an infinite set I2 ⊂ I1. If
m�(Z2

i ) > δ for all i ∈ I2, we iterate this step, and continue in this manner. This eventually
yields an infinite set Ik ⊂ N, for some k ≥ 1, and a decomposition

Zi = S1i + · · · + Ski + Zk
i

for every i ∈ Ik , such that m�(Zk
j ) ≤ δ for some j ∈ Ik . In fact, k ≤ 2M/δ, because

M(Zk
i ) ≤ M(Zi ) − kδ/2 for all i ∈ Ik . It follows that

M(S1i ) + · · · + M(Ski ) ≤ M(Zi ) − M(Zk
i ) + kδ ≤ 3M,

FillVolXi (S
1
i ) + · · · + FillVolXi (S

k
i ) ≤ 9c�M <

ν

2
,

and FillVolX j (Z
k
j ) < ν/2 by Theorem 3.2. Hence, FillVolX j (Z j ) < ν. ��

The desired result for sequences of cycles with supports in a fixed compact set now follows
easily.

Theorem 4.5 Let X be a proper metric space satisfying condition (CIn) for some n ≥ 0. If
anM-bounded sequence of cycles Zi ∈ Zn,c(X) with supports in a fixed compact set K ⊂ X
converges weakly to 0, then W(Zi ) → 0 and FillVolX (Zi ) → 0.

Proof Suppose that M(Zi ) ≤ M for all i . Let F denote the collection of all 1-Lipschitz
functions f : X → R with | f | ≤ diam(K )/2. Let ε > 0. There is a finite subcollection
G ⊂ F such that for all f0, . . . , fn ∈ F there exist g0, . . . , gn ∈ G with supx∈K | fk(x) −
gk(x)| ≤ ε/M for k = 0, . . . , n; then

|Zi ( f0, . . . , fn) − Zi (g0, . . . , gn)| ≤ (n + 1)ε

for all i by Lemma 5.2 in [29]. As Zi → 0 weakly, if i is sufficiently large, then
Zi (g0, . . . , gn) ≤ ε for all tuples (g0, . . . , gn) ∈ G n+1, thus Zi ( f0, . . . , fn) ≤ (n + 2)ε
whenever f0, . . . , fn ∈ F . Hence W(Zi ) → 0, and FillVolX (Zi ) → 0 by Theorem 4.4. ��

5 Isoperimetric inequalities

This section is devoted to isoperimetric inequalities and shows in particular the implications
(ARn) ⇒ (LIIn) ⇔ (SIIn) in Theorem 1.1. In fact we prove some stronger uniform state-
ments. To this end we first extend the notion of asymptotic rank to sequences of metric spaces
Xi = (Xi , di ). A compact metric space � is called an asymptotic subset of the sequence
(Xi )i∈N if there exist positive numbers ri → ∞ and subsets Yi ⊂ Xi such that the rescaled
sets (Yi , r

−1
i di ) converge to � in the Gromov–Hausdorff topology. The asymptotic rank of

the sequence (Xi ) is the supremum of all k ≥ 0 such that there exists an asymptotic sub-
set bi-Lipschitz homeomorphic to a compact subset of Rk with positive Lebesgue measure.
The asymptotic rank of a single metric space X , as defined in the introduction, equals the
asymptotic rank of the constant sequence Xi = X (see Definition 1.1 and Proposition 3.1 in
[40]).

From now on, throughout this section, we assume thatX is a class of proper metric spaces
such that for some n ≥ 1 and c > 0, all members ofX satisfy (CIn)[c], and every sequence
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(Xi )i∈N in X has asymptotic rank ≤ n. The sub-Euclidean isoperimetric inequality for n-
cycles in spaces of asymptotic rank at most n was established in greater generality in [40]
(Theorem 1.2), and a slightly restricted version was used as a key tool in [28] (Theorem 4.4).
First we give a proof of a uniform version of the latter statement.

Theorem 5.1 For all C, ε > 0 there is a constant �0 = �0(X , n, c,C, ε) > 0 such that if
X belongs to X , and Z ∈ Zn,c(X) satisfies M(Z) ≤ Crn and spt(Z) ⊂ Bp(r) for some
p ∈ X and r ≥ �0, then FillVolX (Z) < εrn+1.

Proof Suppose to the contrary that there exist C, ε > 0, a sequence of positive radii (ri )i∈N
tending to infinity, and cycles Zi ∈ Zn,c(Xi ), where Xi = (Xi , di ) belongs toX , each with
mass M(Zi ) ≤ Cr n

i and support in some ball Bpi (ri ), such that

FillVolXi (Zi ) ≥ εr n+1
i .

By Theorem 2.2 there is a constant γ = γ (n, c) such that every Xi satisfies (EIIn)[γ ] and,
if n ≥ 2, also (EIIn−1)[γ ]. Put ηi := εri/(2C) and apply Proposition 3.1 to Zi to get
Vi ∈ In+1,c(Xi ) and Z ′

i := Zi − ∂Vi such that

(1) M(Z ′
i ) ≤ Cr n

i and M(Vi ) ≤ ηiCr n
i = εr n+1

i /2;
(2) �x,r (Z ′

i ) ≥ θ whenever x ∈ spt(Z ′
i ) and 0 < r ≤ αηi = αεri/(2C), where α, θ depend

only on n, γ ;
(3) spt(Z ′

i ) ⊂ Bpi (λri ) for some constant λ > 1 depending only on n, γ,C, ε (this uses
part (4) of Proposition 3.1).

By (1), (3) and the coning inequality (CIn)[c] there exists a filling V ′
i ∈ In+1,c(Xi ) of Z ′

i
with mass

M(V ′
i ) ≤ cλri M(Z ′

i ) ≤ cλCr n+1
i .

By Theorem 2.3 we can assume that V ′
i is minimizing and has support in Bpi (λ

′ri ) for some
λ′ > λ independent of i . Let Yi denote the set spt(V ′

i ) equipped with the metric induced
by r−1

i di . Note that M(Z ′
i ) ≤ C and M(V ′

i ) ≤ cλC with respect to this metric, and Yi
has diameter at most 2λ′. It follows from (2) and the lower density bound for V ′

i that the
family of all Yi is uniformly precompact. By Gromov’s compactness theorem [18], after
passage to subsequences and relabelling, there exist a compact metric space Y and isometric
embeddings φi : Yi → Y such that the images φi (Yi ) converge to some compact set � ⊂ Y
in the Hausdorff distance. By Theorem 2.1 we can further assume that the push-forwards
φi#V ′

i ∈ In+1,c(Y ) convergeweakly to a currentV ∈ In+1,c(Y ). Evidently spt(V ) ⊂ �. Since
the (sub)sequence (Xi )i∈N has asymptotic rank≤ n, and� is an asymptotic subset, it follows
that there is no bi-Lipschitz embedding of a compact subset of Rn+1 with positive Lebesgue
measure into�, and thereforeV must be zero (compareTheorem8.3 in [29] and the comments
thereafter). Hence, the cycles φi#Z ′

i ∈ Zn,c(Y ) converge weakly to ∂V = 0. We can assume
that Y satisfies condition (CIn); for example, the injective hull of Y admits a conical geodesic
bicombing [30] and is still compact. It then follows from Theorem 4.5 thatW(φi#Z ′

i ) → 0.
As this is an intrinsic property of the currents, we conclude thatW(Z ′

i ) → 0 with respect to
the metrics r−1

i di . However, it follows from the inequality FillVolXi (Zi ) ≥ εr n+1
i and (1)

that FillVolXi (Z
′
i ) ≥ ε/2 with respect to r−1

i di . This contradicts Theorem 4.4 (note that
(Xi , r

−1
i di ) still satisfies (CIn)[c]). ��

As a first application of Theorem 5.1 we derive a density bound for minimizing fillings.
This is similar to assertion (5) of Proposition 3.1 and to Proposition 4.5 in [28].
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Proposition 5.2 For all C, δ > 0 there is a � = �(X , n, c,C, δ) > 0 such that if X belongs
toX , and Z ∈ Zn,c(X) is a cycle with �p,r (Z) ≤ C for some p ∈ X and for all r > a ≥ 0,
then every minimizing filling V ∈ In+1,c(X) of Z satisfies

�p,r (V ) = ‖V ‖(Bp(r))

rn+1 < δ

for all r > max{�, a}.
Proof Let V ∈ In+1,c(X) be a minimizing filling of Z , and set Br := Bp(r) for all r > 0.
Choose a sufficiently large radius r0 > 0 such that

δr n+1
0 > M(V ) ≥ ‖V ‖(Br0),

and put ri := 2−i r0 for every integer i ≥ 1. There exists an s ∈ (r1, r0) such that the slice
Ts := ∂(V Bs)− Z Bs is in In,c(X) and has massM(Ts) ≤ ‖V ‖(Br0)/(r0 − r1) < 2δr n

0 .
Furthermore, if r1 > a, then M(Z Bs) ≤ Csn by assumption, thus the cycle Zs :=
Z Bs + Ts satisfies

M(Zs) ≤ Csn + 2δr n
0 ≤ (C + 2δ)r n

0 ,

and spt(Zs) ⊂ Br0 . Note that V Bs is a minimizing filling of Zs . By Theorem 5.1 there
is a constant � := 2−1�0(X , n, c,C + 2δ, 2−(n+1)δ) > 0 such that if r1 > max{�, a} and,
hence, r0 ≥ 2�, then

‖V ‖(Br1) ≤ M(V Bs) < 2−(n+1)δr n+1
0 = δr n+1

1 .

Finally, given any r > max{�, a}, we can choose r0 initially such that r = rk = 2−kr0 for
some k ≥ 1.When k ≥ 2,we repeat the above slicing argument successively for i = 2, . . . , k,
with (ri , ri−1) in place of (r1, r0). This eventually shows that

‖V ‖(Br ) < δrn+1

for all r > max{�, a}. ��
Next we prove a linear isoperimetric inequality for cycles with controlled density. This

yields the implication (ARn) ⇒ (LIIn) in Theorem 1.1.

Theorem 5.3 (Linear isoperimetric inequality) There is a constant ν = ν(n, c) > 0, and for
all C > 0 there is a λ = λ(X , n, c,C) > 0, such that if X belongs to X and Z ∈ Zn,c(X)

is a cycle with (C, a)-controlled density, a ≥ 0, then FillVolX (Z) ≤ max{λ, νa}M(Z).

Proof Note again that for some γ = γ (n, c), every member of X satisfies (EIIn)[γ ] and,
if n ≥ 2, also (EIIn−1)[γ ]. Suppose that Z ∈ Zn,c(X) has (C, a)-controlled density. For
any η > 0, to be specified below, Proposition 3.1 provides a V ∈ In+1,c(X) such that, for
Z ′ := Z − ∂V ∈ Zn,c(X) and some constants α, θ > 0 depending only on n and γ ,

(1) η−1M(V ) + M(Z ′) ≤ M(Z);
(2) �x,r (Z ′) ≥ θ for all x ∈ spt(Z ′) and r ∈ (0, αη];
(3) Z ′ has (2n+1C,max{a, 2n+1η})-controlled density.

By Theorem 2.3 there exists a minimizing filling V ′ ∈ In+1,c(X) of Z ′, and there is
a δ0 = δ0(n, γ ) > 0 such that �x,r (V ′) ≥ δ0 whenever x ∈ spt(V ′), r > 0, and
Bx (r) ∩ spt(Z ′) = ∅. On the other hand, by (3) and Proposition 5.2, there is a con-
stant �′ := �(X , n, c, 2n+1C, δ0) > 0 such that �p,r (V ′) < δ0 for all p ∈ X and
r > max{�′, a, 2n+1η}. We now fix η so that

2n+1η = max{�′, a}.
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Then spt(V ′) is within distance at most 2n+1η from spt(Z ′). Pick a maximal set N ⊂ spt(Z ′)
of distinct points at mutual distance > 2αη. The collection of all balls Bx (2αη) with x ∈ N
covers spt(Z ′), and the corresponding balls with radius

r := 2(α + 2n)η

cover spt(V ′). Furthermore, the balls Bx (αη) with x ∈ N are pairwise disjoint, and
‖Z ′‖(Bx (αη)) ≥ θ(αη)n by (2). Hence, |N | ≤ M(Z ′)/(θαnηn), and since r > 2n+1η,
we have ‖V ′‖(Bx (r)) < δ0rn+1 for all x ∈ N . (Possibly V ′ = 0 and |N | = 0.) Thus

M(V ′) ≤ |N | δ0rn+1 ≤ δ0rn+1

θαnηn
M(Z ′) ≤ ν′ηM(Z ′)

for some ν′ = ν′(n, c) ≥ 1. Now V + V ′ is a filling of Z with mass

M(V + V ′) ≤ ν′(M(V ) + ηM(Z ′)) ≤ ν′ηM(Z)

by (1). In view of the choice of η, this gives the result. ��
We now turn to the sub-Euclidean isoperimetric inequality as stated in Theorem 1.1. The

proof below shows that (LIIn) ⇒ (SIIn).

Theorem 5.4 (Sub-Euclidean isoperimetric inequality) For all ε > 0 there is a constant
M0 = M0(X , n, c, ε) > 0 such that if X belongs to X and Z ∈ Zn,c(X), then
FillVolX (Z) < ε max{M0,M(Z)}(n+1)/n.

Proof Given Z ∈ Zn,c(X), note that if t > 0 and r > t M(Z)1/n , then M(Z) < t−nrn , thus
Z has (t−n, t M(Z)1/n)-controlled density. For ε > 0, let ν = ν(n, c) and λ = λ(X , n, c,C)

be the constants from Theorem 5.3, where now C := t−n for any fixed t < ε/ν. Let M0 > 0
be such that λ < εM1/n

0 . Then

max{λ, νt M(Z)1/n}M(Z) < ε max{M0,M(Z)}(n+1)/n,

and the result follows from Theorem 5.3. ��
Finally, we show that Theorem 5.1 follows easily from Theorem 5.4. Given C, ε > 0, put

ε′ := ε/C (n+1)/n . If Z ∈ Zn,c(X) is a cycle with M(Z) ≤ Crn , and r is sufficiently large,
so that Crn ≥ M0 = M0(ε

′), then

FillVolX (Z) < ε′(Crn)(n+1)/n = εrn+1

by Theorem 5.4. Since the asymptotic rank assumption in Theorem 5.3 is only used through
Theorem 5.1, this also shows that (SIIn) ⇒ (LIIn).

6 Quasiflats and quasi-minimizers

Amap f : W → X from another metric spaceW into X is an (L, a)-quasi-isometric embed-
ding, for constants L ≥ 1 and a ≥ 0, if

L−1d(x, y) − a ≤ d( f (x), f (y)) ≤ L d(x, y) + a

for all x, y ∈ W . Propositions 3.6 and 3.7 in [28] show that quasi-isometric embeddings
of domains W ⊂ R

n into X give rise to quasi-minimizing currents with controlled density,
as defined in the introduction. An inspection of the proofs reveals that the statements hold
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in a stronger form, in particular with a quasi-minimality constant Q independent of the
parameter a. We provide the details for convenience, and also because parts of the proof will
be used later. The first result refers to the simpler case when the map is actually Lipschitz.

Proposition 6.1 For all n ≥ 1 and L ≥ 1 there exist C > 0 and Q ≥ 1 such that the
following holds. Let W ⊂ R

n be a compact set with finite perimeter, so that the associated
current E := �W � (with spt(E) ⊂ W and spt(∂E) ⊂ ∂W) is in In,c(R

n). Suppose that
a ≥ 0 and f : W → X is an L-Lipschitz, (L, a)-quasi-isometric embedding into a proper
metric space X. Then S := f#E ∈ In,c(X) has (C, a)-controlled density and is (Q, Qa)-
quasi-minimizing mod f (∂W ), furthermore d( f (x), spt(S)) ≤ Qa for all x ∈ W with
d(x, ∂W ) > Qa.

Proof Let B := Bp(r) for some p ∈ X and r > a. Then

‖ f#E‖(B) ≤ Ln ‖E‖( f −1(B)),

and f −1(B) has diameter ≤ L(2r + a) ≤ 3Lr , thus ‖S‖(B) ≤ Crn for some constant
C = C(n, L). This shows that S has (C, a)-controlled density.

Next, let V ⊂ W be a maximal subset of distinct points at mutual distance > 2La
(V = W in case a = 0). Note that d( f (x), f (y)) ≥ (2L)−1d(x, y) for any x, y ∈ V , thus
f |V has a 2L-Lipschitz inverse, which we can extend to an L̄-Lipschitz map f̄ : X → R

n

for some L̄ = L̄(n, L). Put h := f̄ ◦ f : W → R
n . For every x ∈ W there is a y ∈ V with

d(x, y) ≤ 2La; then h(y) = y and

d(h(x), x) ≤ d(h(x), h(y)) + d(y, x) ≤ (L̄ L + 1) d(x, y) ≤ Na,

where N := 2(L̄ L + 1)L .
Let x ∈ W . Suppose that r > 2LNa and Br := B f (x)(r) is disjoint from f (∂W ). For

almost every such r , both Sr := S Br and Er := E f −1(Br ) are integral currents, and
f#Er = Sr . Since f −1(Br )∩spt(∂E) = ∅, the support of ∂Er lies in the boundary of f −1(Br )
and is thus at distance at least L−1r from x . The geodesic homotopy from the inclusion map
W → R

n to h provides a current R ∈ In,c(R
n)with ∂R = h#(∂Er )−∂Er such that spt(R) is

within distance Na from spt(∂Er ). In fact, R = f̄#Sr − Er , because h#(∂Er ) = ∂(h#Er ) =
∂( f̄#Sr ) and Zn,c(R

n) = {0}. By the choice of r we have L−1r − Na > (2 L)−1r , thus
spt(R) lies outside Bx ((2L)−1r). It follows that

M( f̄#Sr ) = M(Er + R) ≥ ‖E‖(Bx ((2L)−1r)) ≥ εrn

for some ε = ε(n, L) > 0. Now if T ∈ In,c(X) is such that ∂T = ∂Sr , then f̄#T = f̄#Sr ,
and

M(Sr ) ≤ Crn ≤ Cε−1M( f̄#T ) ≤ Q′ M(T )

for Q′ := Cε−1 L̄n . This holds for all x ∈ W and almost all r > 2LNa as long as B f (x)(r) is
disjoint from f (∂W ). In particular, since spt(S) ⊂ f (W ), S is (Q′, 2LNa)-quasi-minimizing
mod f (∂W ).

Finally, put Q := max{Q′, L(2LN + 1)}. Let x ∈ W with d(x, ∂W ) > Qa. Then
w := d( f (x), f (∂W )) > L−1Qa − a ≥ 2LNa. For almost every r ∈ (2LNa, w), the
above argument shows thatM( f̄#Sr ) > 0, thus Sr = S B f (x)(r) �= 0, and this implies that
d( f (x), spt(S)) ≤ 2LNa ≤ Qa. ��

For the second result, we suppose that the compact set W ⊂ R
n is a triangulated

polyhedral set, that is, W has the structure of a finite simplicial complex all of whose max-
imal cells are Euclidean n-simplices. We write W 0 and (∂W )0 for the set of vertices and
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boundary vertices of the triangulation, respectively. Furthermore, [ · ]a stands for the closed
a-neighborhood of a subset of X .

Proposition 6.2 For all n ≥ 1, c > 0, and K , L ≥ 1 there exist C > 0 and Q ≥ 1 such that
the following holds. Let X be a proper metric space satisfying condition (CIn−1)[c]. Suppose
that a > 0, and W ⊂ R

n is a triangulated polyhedral set with simplices of diameter ≤ a
such that every ball inRn of radius r > a intersects at most Ka−nrn maximal simplices. Let
P∗(W ) denote the corresponding chain complex of simplicial integral currents. If f : W →
X is an (L, a)-quasi-isometric embedding, then there exists a chain map ι : P∗(W ) →
I∗,c(X) such that

(1) ι maps every vertex �x0� ∈ P0(W ) to � f (x0)� and, for 1 ≤ k ≤ n, every basic
oriented simplex �x0, . . . , xk� ∈ Pk(W ) to a minimizing current with support in
[ f ({x0, . . . , xk})]Qa;

(2) S := ι�W � ∈ In,c(X) has (C, a)-controlled density and is (Q, Qa)-quasi-minimizing
mod [ f ((∂W )0)]Qa;

(3) d( f (x), spt(S)) ≤ Qa for all x ∈ W with d(x, (∂W )0) > Qa.

Note that by (1), spt(S) ⊂ [ f (W 0)]Qa and spt(∂S) ⊂ [ f ((∂W )0)]Qa .

Proof Put S∗ := ⋃n
k=0 Sk , where Sk denotes the set of all basic oriented simplices s =

�x0, . . . , xk� ∈ Pk(W ) (compare p. 365 in [14] for the notation). We define a map ι : S∗ →
I∗,c(X) by induction on k. For �x0� ∈ S0, we put ι�x0� := f#�x0� = � f (x0)�. Suppose now
that k ∈ {1, . . . , n} and ι is defined onSk−1. For every k-cell ofW , we choose an orientation
s = �x0, . . . , xk� ∈ Sk , then we let ι(s) ∈ Ik,c(X) be a minimizing filling of the cycle

k∑

i=0

(−1)i ι�x0, . . . , xi−1, xi+1, . . . , xk� ∈ Zk−1,c(X),

and we put ι(−s) := −ι(s). The resulting map on S∗ readily extends to a chain map
ι : P∗(W ) → I∗,c(X). Note that f maps the vertex set of any cell ofW to a set of diameter at
most (L + 1)a. It follows inductively from condition (CIn−1)[c] and Theorem 2.3 (if n ≥ 2,
then X satisfies (EIIn−1) by Theorem 2.2) that for all s = �x0, . . . , xk� ∈ Sk ,

M(ι(s)) ≤ Mak

and spt(ι(s)) ⊂ [ f ({x0, . . . , xk})]Ma for some constant M ≥ L + 1 depending only on
n, c, L .

Let now S +
n ⊂ Sn be the set of all positively oriented n-simplices, whose sum is �W �.

Put S := ι�W �. To show that S has controlled density, let p ∈ X and r > a, and consider
the set of all s ∈ S +

n for which spt(ι(s)) ∩ Bp(r) �= ∅. Every such s has a vertex xs with
f (xs) ∈ Bp(r + Ma), thus the set of all xs has diameter at most L(2(r + Ma) + a) ≤
L(2M + 3)r . It follows that there are at most Ka−n(L(2M + 3)r)n such simplices and that

�p,r (S) ≤ C := K Ln(2M + 3)nM

for p ∈ X and r > a.
Similarly as in the proof of Proposition 6.1, there exists an L̄-Lipschitz map f̄ : X → R

n

such that h := f̄ ◦ f : W → R
n satisfies

d(h(x), x) ≤ Na

123



Characterizations of higher rank hyperbolicity Page 21 of 26 13

for all x ∈ W , where L̄ and N depend only on n, L . Then

ῑ := f̄# ◦ ι : P∗(W ) → I∗,c(R
n)

is a chainmap that sends every �x0� ∈ S0 to �h(x0)� and every �x0, . . . , xk� ∈ Sk to a current
with support in [{x0, . . . , xk}](L̄M+N )a . Let P∗(∂W ) be the complex of simplicial integral
currents in ∂W . A similar inductive construction as above, usingminimizing fillings of cycles
in Rn , produces a chain homotopy between the inclusion mapP∗(∂W ) → I∗,c(R

n) and the
restriction of ῑ toP∗(∂W ). This yields an R ∈ In,c(R

n)with boundary ∂R = ῑ(∂�W �)−∂�W �

and support spt(R) ⊂ [(∂W )0]M̄a for some constant M̄ = M̄(n, c, L) ≥ 1. In fact,

R = f̄#S − �W �,

because ῑ(∂�W �) = ∂(ῑ�W �) = ∂( f̄#S).
Note that spt(S) ⊂ [ f (W 0)]Ma . Let x̄ ∈ [ f (W 0)]Ma and r > 0 be such that Bx̄ (r) ∩

f ((∂W )0) = ∅ and Sr := S Bx̄ (r) ∈ In,c(X). We want to show that if r > Pa, for
some sufficiently large constant P = P(n, c, L) ≥ 1, then M( f̄#Sr ) ≥ εrn for some
ε = ε(n, L) > 0. Choose x ∈ W 0 with d( f (x), x̄) ≤ Ma, and put Bx := Bx ((2L)−1r). For
all y ∈ (∂W )0,

r < d(x̄, f (y)) ≤ d( f (x), f (y)) + Ma ≤ L d(x, y) + (M + 1)a

and thus d(x, y) > (2L)−1r + M̄a for sufficiently large P; then

(spt(R) ∪ ∂W ) ∩ Bx = ∅.

Moreover, for every ȳ ∈ spt(S−Sr ) ⊂ spt(S) there is a vertex y ∈ W 0 such thatd( f (y), ȳ) ≤
Ma,

r ≤ d(x̄, ȳ) ≤ d( f (x), f (y)) + 2Ma ≤ L d(x, y) + (2M + 1)a,

and d(x, y) ≤ d(x, f̄ (ȳ)) + d( f̄ (ȳ), h(y)) + Na ≤ d(x, f̄ (ȳ)) + (L̄M + N )a; thus
d(x, f̄ (ȳ)) > (2L)−1r for sufficiently large P , implying that

spt( f̄#(S − Sr )) ∩ Bx = ∅.

Since f̄#Sr = �W � + R − f̄#(S − Sr ), it then follows that

M( f̄#Sr ) ≥ ‖�W �‖(Bx ) ≥ εrn

for some ε = ε(n, L) > 0, as desired. Now if T ∈ In,c(X) is such that ∂T = ∂Sr , then
f̄#T = f̄#Sr , and

M(Sr ) ≤ Crn ≤ Cε−1M( f̄#T ) ≤ Q′ M(T )

for Q′ := Cε−1 L̄n . Since spt(S) and spt(∂S) are within distance Ma from f (W 0) and
f ((∂W )0), respectively, this shows in particular that S is (Q′, Pa)-quasi-minimizing mod
[ f ((∂W )0)]Ma .

Finally, put Q := max{M, Q′, L(P + 1)}. Let x ′ ∈ W with d(x ′, (∂W )0) > Qa. Then
w := d( f (x ′), f ((∂W )0)) > L−1Qa − a ≥ Pa. Note that f (x ′) ∈ [ f (W 0)]Ma , as
M ≥ L + 1. For x̄ = f (x ′) and almost every r ∈ (Pa, w), the above argument shows
that M( f̄#Sr ) > 0, thus Sr = S Bx̄ (r) �= 0, and this implies that d( f (x ′), spt(S)) ≤
Pa ≤ Qa. ��
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7 Morse lemma, slim simplices, and filling radius

We now turn to the remaining assertions in Theorem 1.1. For the first three results, we assume
as in Sect. 5 thatX is a class of proper metric spaces such that for some n ≥ 1 and c > 0, all
members ofX satisfy condition (CIn)[c], and every sequence (Xi )i∈N inX has asymptotic
rank≤ n. We begin with a uniform version of theMorse lemma, analogous to Theorem 5.1 in
[28]. The asymptotic rank assumption is only used through Proposition 5.2, or Theorem 5.1,
which in turn follows from Theorem 5.4. Hence, (SIIn) ⇒ (MLn).

Theorem 7.1 (Morse lemma) For all C > 0 and Q ≥ 1 there is a constant l =
l(X , n, c,C, Q) ≥ 0 such that if X belongs to X , and Z ∈ Zn,c(X) has (C, a)-controlled
density and is (Q, a)-quasi-minimizing mod Y , where Y ⊂ X is a closed set and a ≥ 0, then
the support of Z is within distance at most max{l, 4a} from Y .

Proof Let x ∈ spt(Z)\Y . Essentially the same argument as for the second part of Theorem2.3
(using (EIIn−1) if n ≥ 2) shows that there is a constant δ′

0 = δ′
0(n, c) > 0 such that

�x,s(Z) ≥ δ′
0 Q

1−n whenever s > 2a and Bx (s) ∩ Y = ∅ (see Lemma 3.3 in [28]). Now let
V ∈ In+1,c(X) be a minimizing filling of Z , and suppose that r > 4a and Bx (r) ∩ Y = ∅.
For almost every s ∈ (2a, r), the slice Ts = ∂(V Bx (s)) − Z Bx (s) ∈ In,c(X) satisfies

QM(Ts) ≥ M(Z Bx (s)) ≥ δ′
0 Q

1−nsn,

and integrating the inequalityM(Ts) ≥ δ′
0 Q

−nsn from r/2 > 2a to r we get that�x,r (V ) ≥
δ for some δ = δ(n, c, Q) > 0 (compare Lemma 3.4 in [28]). On the other hand, by
Proposition 5.2 there is a constant l := �(X , n, c,C, δ) > 0 such that �x,r (V ) < δ for all
r > max{l, a}. Hence, r ≤ max{l, 4a}. ��

The next statement strengthens Theorem 5.2 in [28]. The proof shows that (MLn) ⇒
(SSn). A facet of an (n + 1)-simplex is an n-dimensional face.

Theorem 7.2 (Slim simplices) For all L ≥ 1 there is a constant D = D(X , n, c, L) ≥ 0
such that the following holds. Let � be a Euclidean (n + 1)-simplex, X a member of X ,
and a ≥ 0. Suppose that f : ∂� → X is a map whose restriction to each facet of � is an
(L, a)-quasi-isometric embedding. Then the image of every facet is within distance at most
D(1 + a) from the union of the images of the remaining ones.

Proof Let W0, . . . ,Wn+1 ⊂ ∂� be an enumeration of the (closed) facets of �, and let
Ei := (∂���) Wi ∈ In,c(R

n+1) denote the corresponding currents, whose sum is the
boundary cycle ∂��� ∈ Zn,c(R

n+1).
Suppose that a > 0. Choose a triangulation of ∂� with simplices of diameter ≤ a such

that, for some constant K = K (n) and for each i , any ball in Rn+1 of radius r > a intersects
at most Ka−nrn maximal simplices inWi . LetP∗(∂�) be the corresponding chain complex
of simplicial integral currents. A slight adaptation of Proposition 6.2 provides a chain map
ι : P∗(∂�) → I∗,c(X) such that the following properties hold for each Si := ι(Ei ) ∈ In,c(X)

and for some constants C, Q depending only on n, c, L:

(1) spt(Si ) ⊂ [ f (Wi )]Qa and spt(∂Si ) ⊂ [ f (∂Wi )]Qa ;
(2) Si has (C, a)-controlled density and is (Q, Qa)-quasi-minimizing mod [ f (∂Wi )]Qa ;
(3) d( f (x), spt(Si )) ≤ Qa for all x ∈ Wi with d(x, ∂Wi ) > Qa.

Here [ · ]Qa stands again for the closed Qa-neighborhood, and ∂Wi denotes the rel-
ative boundary of Wi . Let Mi denote the union of all Wj with j �= i . The cycle
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Z := ι(∂���) = ∑n+1
i=0 Si has ((n + 2)C, a)-controlled density and is (Q, Qa)-quasi-

minimizing mod [ f (Mi )]Qa for every i . It then follows from Theorem 7.1 that the set
spt(Si )\[ f (Mi ))]Qa = spt(Z)\[ f (Mi )]Qa is within distance at most max{l ′, 4Qa} from
[ f (Mi )]Qa for some l ′ = l ′(X , n, c, L). Hence, for any x ∈ Wi , it follows from (3) that
d( f (x), f (Mi )) is less than or equal to 2Qa + max{l ′, 4Qa} if d(x, ∂Wi ) > Qa and less
than or equal to LQa + a otherwise.

Note that if the restriction of f to each facet of � is L-Lipschitz in addition, or if a = 0,
then the proof can be simplified by using Proposition 6.1 instead of Proposition 6.2. ��

The proof of the following result relies again on Proposition 5.2; thus (SIIn) ⇒ (FRn).

Theorem 7.3 (Filling radius) For all C > 0 there is a constant h = h(X , n, c,C) > 0 such
that if X belongs to X and Z ∈ Zn,c(X) has (C, a)-controlled density for some a ≥ 0,
then the support of every minimizing filling V ∈ In+1,c(X) of Z is within distance at most
max{h, a} from spt(Z).

Proof Suppose that x ∈ spt(V )\ spt(Z). By Theorems 2.2 and 2.3 there are constants γ =
γ (n, c) and δ0 = δ0(n, γ ) > 0 such that�x,r (V ) ≥ δ0 whenever r > 0 and Bx (r)∩spt(Z) =
∅. On the other hand, Proposition 5.2 shows that there is a constant h = �(X , n, c,C, δ0) > 0
such that �x,r (V ) < δ0 for all r > max{h, a}. Thus there is no point x ∈ spt(V ) at distance
bigger than max{h, a} from spt(Z). ��

We now prove the implication (SSn) ⇒ (ARn), which holds without further assumptions
on the metric space X .

Proposition 7.4 Let (Xi )i∈N be a sequence of metric spaces Xi = (Xi , di ), let n ≥ 1, and
suppose that for every L ≥ 1 there exists D ≥ 0 such that every Xi satisfies (SSn) with
constant D = D(L). Then the sequence (Xi )i∈N has asymptotic rank ≤ n.

Proof Suppose to the contrary that the sequence (Xi )i∈N has asymptotic rank > n. Then
there exist a compact set K ⊂ R

n+1 with positive Lebesgue measure, an L-bi-Lipschitz map
φ : K → � onto somemetric space�, and a sequence of (1, δi )-quasi-isometric embeddings
hi : � → (Xi , r

−1
i di ), where L ≥ 1, δi → 0, and ri → ∞. We can assume that 0 ∈ R

n+1

is a Lebesgue density point of K . Let B := B0(1) ⊂ R
n+1. For all k ∈ N there is a λk > 0

such that every point in λk B is at distance ≤ (2k)−1λk from some point in K , thus there
exist (1, k−1λk)-quasi-isometric embeddings ψk : λk B → K . Choose i(k) ∈ N such that
sk := λkri(k) → ∞ and εk := λ−1

k δi(k) + k−1L → 0. It is straightforward to check that the
map

fk : sk B → (Xi(k), di(k))

defined by fk(sk x) = hi(k) ◦ φ ◦ ψk(λk x) for all x ∈ B is an (L, εksk)-quasi-isometric
embedding.

Now let � be any (n + 1)-simplex inscribed in B, and pick a point x in a facet of � such
that x is a distance δ > 0 away from the union M of the remaining facets. For every k, the
point fk(sk x) is at distance at least L−1δsk − εksk from fk(skM). On the other hand, by
assumption, there is a constant D = D(L) such that the distance is at most D(1+εksk). This
leads to the inequality L−1δ − εk ≤ D(s−1

k + εk), which contradicts the fact that sk → ∞
and εk → 0. ��

Lastly, we show that (FRn) ⇒ (ARn). This is similar to Theorem 6.1 in [40].
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Proposition 7.5 Let n ≥ 1 and c > 0, and let (Xi )i∈N be a sequence of proper metric spaces
Xi = (Xi , di ) satisfying (CIn)[c]. Suppose further that for every C > 0 there exists h > 0
such that every Xi satisfies (FRn) with constant h = h(C). Then the sequence (Xi )i∈N has
asymptotic rank ≤ n.

Proof Suppose to the contrary that (Xi )i∈N has asymptotic rank > n. Let L, sk, εk and
fk : sk B → Xi(k) be given as in the first part of the proof of Proposition 7.4. Let again �

be any (n + 1)-simplex inscribed in B. For every k, fix a triangulation of ∂� with simplices
of diameter at most εk such that, for some constant K = K (n), every ball in Rn+1 of radius
r > εk meets at most K (r/εk)n maximal simplices in each facet of�. It then follows as in the
proof of Proposition 6.2 that for every k, and for some constants C, L̄, M̄ depending only on
n, c, L , there exist a cycle Zk ∈ Zn,c(Xi(k))with (C, εksk)-controlled density, an L̄-Lipschitz
map f̄k : Xi(k) → R

n+1, and a current Rk ∈ In+1,c(R
n+1) such that ∂Rk = f̄k#Zk − ∂�sk��

and

spt(Rk) ∪ f̄k(spt(Zk)) ⊂ [∂(sk�)]M̄εk sk
.

Fix a point x ∈ � a distance δ > 0 away from ∂�. Suppose that k is so large that M̄εk <

δ, and Vk ∈ In+1,c(Xi(k)) is any filling of Zk . Then ∂�sk�� = ∂( f̄k#Vk) − ∂Rk , hence
�sk�� = f̄k#Vk − Rk and sk� ⊂ spt( f̄k#Vk)∪ spt(Rk). Since sk x /∈ spt(Rk), there is a point
yk ∈ spt(Vk) such that f̄k(yk) = sk x . For every zk ∈ spt(Zk), we have

skδ = d(sk x, sk�) ≤ d(sk x, f̄k(zk)) + M̄εksk ≤ L̄ di(k)(yk, zk) + M̄εksk .

On the other hand, by assumption, there exists a filling Vk of Zk whose support is within
distance max{h, εksk} from spt(Zk), where h = h(C). This leads to the inequality δ ≤
L̄ max{s−1

k h, εk} + M̄εk , which contradicts the fact that sk → ∞ and εk → 0. ��
The uniform statements in Sect. 5 and above can be combined to show that the implications

in Theorem 1.1 that we proved through (ARn) hold with constants independent of X . We
exemplify this for (FRn) ⇒ (SIIn). If X denotes the class of all proper metric spaces
satisfying (CIn)[c] and (FRn) for some fixed c > 0 and h = h(C), then Proposition 7.5
shows that every sequence (Xi )i∈N inX has asymptotic rank ≤ n. Hence, by Theorem 5.4,
(SIIn) holds for some constant M0 = M0(X , n, c, ε) > 0, which depends only on n, c, ε
and the function h = h(C).
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