
Max Benedikt Paulus

Learning
with and for
discrete optimization

Diss. ETH No. 29328

diss . eth no. 29328

L E A R N I N G
W I T H A N D F O R

D I S C R E T E O P T I M I Z AT I O N

A dissertation submitted to attain the degree of

doctor of sciences
(Dr. sc. ETH Zurich)

presented by

max b . paulus
MSc ETH Statistics, ETH Zurich

born on 26 December 1993

accepted on the recommendation of

Prof. Dr. Andreas Krause
Prof. Dr. Daniel Tarlow
Prof. Dr. Tamir Hazan

Dr. Jan Poland

2023

Max B. Paulus: Learning with and for discrete optimization, © 2023

doi: 10.3929/ethz-b-000629004

To Clara

A B S T R A C T

Machine learning and discrete optimization are pillars of computer science
and both are widely used tools for analysis, prediction and decision-making
across business, science and technology. However, the premises on which
machine learning and discrete optimization methods are developed differ
fundamentally. Learning relies on data and often requires little if any man-
ual design. Its strengths are generalization and near universal applicability,
but many models cannot effectively integrate domain knowledge or specific
constraints, lack interpretability and their predictions are uncertain which
hinders adoption in practice. Conversely, algorithms for discrete optimiza-
tion are usually tailored to specific applications, such as combinatorial
problems. Their precise formulation affords insight and analysis and their
outputs often come with performance guarantees. However, in contrast
to machine learning, methods in discrete optimization do not generalize
between instances, which is a deficiency in practical applications.

In light of the complementary strengths and weaknesses of machine
learning and discrete optimization, it is natural to ask to what extent
methods from these two areas can be fruitfully combined. This is the
question we ask in this thesis and that we answer affirmatively by presenting
methods for learning with and for discrete optimization.

In learning with discrete optimization, we focus on gradient estimation
for models in non-supervised learning that involve discrete variables. Such
models are widespread and provide benefits in terms of regularization,
interpretability, model design and algorithmic integration. We rely on effi-
cient methods from discrete optimization to design new gradient estimators
for these models via relaxations and demonstrate experimentally that they
make learning more performant, useful and efficient.

In learning for discrete optimization, we focus on improving the perfor-
mance of branch and bound solvers for integer programming with machine
learning. We replace existing subroutines for cutting plane selection and
diving in these solvers with learnt models that are tailored to specific
applications. Our methods draw on ideas from imitation learning and
generative modeling, they are scalable and effective. In a range of exper-
iments, our models outperform existing heuristics as well as competing
machine learning approaches to facilitate overall improvements in solver
performance.

v

Z U S A M M E N FA S S U N G

Maschinelles Lernen und diskrete Optimierung sind Grundpfeiler der Infor-
matik. Beide werden zur Analyse und Entscheidungsfindung in Wirtschaft,
Wissenschaft und Technik eingesetzt. Die Prämissen, auf denen ihre Me-
thoden beruhen, unterscheiden sich jedoch grundlegend. Das maschinelle
Lernen stützt sich hauptsächlich auf Daten, was Generalisierung auf unbe-
kannte Instanzen und eine nahezu universellen Anwendbarkeit ermöglicht.
Aber viele Modelle können spezifische Einschränkungen nicht effektiv
integrieren, sind nicht interpretierbar und liefern unsichere Vorhersagen,
was ihren praktischen Einsatz erschwert. Umgekehrt sind Algorithmen
für die diskrete Optimierung in der Regel auf spezifische Anwendungen
zugeschnitten, zum Beispiel auf kombinatorische Probleme. Ihre präzise
Formulierung ermöglicht ein besseres Verständnis und ihre Ergebnisse
sind oft mit Garantien verbunden. Im Gegensatz zum maschinellen Lernen
behandelt die diskrete Optimierung aber neue Probleminstanzen isoliert,
was in der Praxis ein grosses Manko darstellt.

Angesichts ihrer komplementären Stärken und Schwächen stellen wir
in dieser Arbeit die Frage, ob sich Methoden des maschinellen Lernens
und der diskreten Optimierung kombinieren lassen, um ihre jeweiligen
Schwächen auszugleichen. Wir beantworten diese Frage positiv, indem wir
Methoden des Lernens mit und für die diskrete Optimierung vorstellen.

Beim Lernen mit diskreter Optimierung konzentrieren wir uns auf die
Gradientenschätzung in Modellen für nicht-überwachtes Lernen mit diskre-
ten Variablen. Solche Modelle bieten Vorteile in Bezug auf Regularisierung,
Interpretierbarkeit, Modelldesign und algorithmische Integration. Wir stüt-
zen uns auf effiziente Methoden aus der diskreten Optimierung, um neue
Gradientenschätzer für diese Modelle mit Hilfe von Relaxationen zu ent-
werfen, und zeigen experimentell, dass sie das Lernen besser, nützlicher
und effizienter machen.

Beim Lernen für die diskrete Optimierung verbessern wir das Lösungs-
verfahren branch and bound für die ganzzahlige Programmierung mittels
maschinellen Lernens. Wir ersetzen bestehende Subroutinen dieses Ver-
fahrens für die Auswahl von Schnittebenen und Tauchheuristiken durch
gelernte Modelle, die auf spezifischen Anwendungen trainiert werden. In
einer Reihe von Experimenten zeigen wir, dass unsere Methoden skalierbar
und effektiv sind.

vii

A C K N O W L E D G E M E N T S

I am grateful to my advisor, Andreas Krause, for providing me with the
opportunity to pursue research in machine learning at ETH Zürich. An-
dreas’ unconditional support and generosity have allowed me to pursue
my research with confidence, enthusiasm and liberty. I am grateful for his
patience, encouragement and guidance, which has helped me overcome the
challenges of conducting scientific research.

I am immensely grateful to my advisor, Chris J. Maddison. Chris has
been a magnificent mentor and close collaborator throughout my PhD stud-
ies. He has been a profound influence on my growth as both a researcher
and an individual. His exceptional creativity, curiosity, relentlessness, and
intellect have continuously inspired me. I am indebted to Chris for his trust
in me as a young doctoral student and for the incredible opportunity to
work with and learn from him. Visiting Chris in Oxford and Princeton for
research were undoubtedly the highlights of my doctoral studies.

I am grateful to Tamir Hazan, Daniel Tarlow, and Jan Poland for serving
on my doctoral committee and providing feedback on my work. Addi-
tionally, I am deeply grateful to all the individuals with whom I had the
pleasure of collaborating on research over the past years. Among them, I am
especially thankful to Dami Choi and Giulia Zarpellon for their close collab-
oration and invaluable contributions to the research presented in this thesis.

I also want to thank all the members of the Learning and Adaptive
Systems group, the Institute for Machine Learning, ETH Zürich, the Uni-
versity of Toronto and the Max Planck Institute for Intelligent Systems
with whom I have had the pleasure of interacting for work or leisure. I am
especially grateful to Philippe Wenk, Andisheh Amrollahi, Aytunç Şahin,
Djordje Miladinovic, Robin Geyer, Imant Daunhawer, Chris Wendler, Pa-
shootan Vaezipoor, Tobias Wekhof, and Sascha Langenbach for becoming
good friends over the years and sharing the joys and misery of graduate
studentship.

Finally, I gratefully acknowledge support from the Max Planck ETH Cen-
ter for Learning Systems and the Sustainable Chemical Processes through
Catalysis (Suchcat) National Center of Competence in Research (NCCR) for
funding part of my research.

ix

C O N T E N T S

List of Figures xv
List of Tables xv
List of Algorithms xvi

1 introduction 3
1.1 Thesis Organization 7
1.2 List of Publications 7
1.3 Collaborators 8

i learning with discrete optimization
2 background 13

2.1 Non-supervised machine learning 13
2.2 Learning with discrete distributions 15
2.3 Estimating gradients for discrete distributions 17

3 gradient estimation with stochastic softmax tricks 23
3.1 Structured embeddings of discrete variables 23
3.2 Stochastic Argmax Tricks 25
3.3 Stochastic Softmax Tricks 27

3.3.1 Implementing Relaxed Gradient Estimators 29
3.3.2 Stochastic Softmax Tricks for Variational Inference 31

3.4 Examples of Stochastic Softmax Tricks 31
3.4.1 Element Selection 32
3.4.2 Subset Selection 32
3.4.3 k-Subset Selection 33
3.4.4 Correlated k-Subset Selection 34
3.4.5 Perfect Bipartite Matchings 34
3.4.6 Undirected Spanning Trees 35
3.4.7 Rooted, Directed Spanning Trees 37

3.5 Related Work 40
3.6 Experiments 40

3.6.1 Neural Relational Inference (NRI) for Graph Lay-
out 41

3.6.2 Unsupervised Parsing on ListOps 43
3.6.3 Learning To Explain (L2X) Aspect Ratings 44

xi

xii contents

3.7 Discussion 46
4 the gumbel-rao gradient estimator 47

4.1 Revisiting gradient estimators for discrete variables 47
4.1.1 Straight-through estimators 49

4.2 Gumbel-Rao Gradient Estimator 50
4.2.1 Rao-Blackwellization of ST-Gumbel-Softmax 51
4.2.2 Monte Carlo Approximation 52
4.2.3 Variance Reduction in Minibatches 53

4.3 Related Work 56
4.4 Experiments 56

4.4.1 Quadratic Programming on the Simplex 57
4.4.2 Unsupervised Parsing on ListOps 58
4.4.3 Generative Modeling with Categorical Variational au-

toencoders 59
4.5 Discussion 62

ii learning for discrete optimization
5 background 67

5.1 Mixed Integer Linear Programs 67
5.2 Branch and bound search 68

5.2.1 Cutting Planes and Primal Heuristics 69
5.2.2 Solver Performance 70
5.2.3 SCIP solver 71

5.3 Machine Learning for Branch and Bound 72
5.3.1 Integer Programs as Graphs 74

6 learning to cut in branch and bound 77
6.1 Cutting Planes in Branch and Bound 77

6.1.1 Cutting Planes 77
6.1.2 Cutting Plane Selection 79

6.2 Learning To Cut 80
6.2.1 Cutting by Looking Ahead 80
6.2.2 Learning from Looking Ahead 82
6.2.3 Deployment 85

6.3 Related Work 86
6.4 Experiments 87

6.4.1 Cutting with NeuralCut 88
6.4.2 NeuralCut in branch and bound 92

6.5 Discussion 95
7 learning to dive in branch and bound 97

contents xiii

7.1 Diving heuristics in branch and bound 97
7.1.1 Generic Diving 97
7.1.2 Diving heuristics 98

7.2 Learning to Dive 100
7.2.1 Learning from feasible solutions 102
7.2.2 Using a generative model for diving 104
7.2.3 Deployment 106

7.3 Related Work 106
7.4 Experiments 106

7.4.1 Diving with L2Dive 107
7.4.2 L2Dive in branch and bound 109

7.5 Discussion 111

8 conclusion 115
8.1 Summary 115
8.2 Outlook 115

a proofs and definitions 119
a.1 Properties of Exponentials and Gumbels 119
a.2 Convex Conjugate 121
a.3 Convex Position 125
a.4 Variance Decomposition for Gradient Estimator in Mini-

batches 126
a.5 Dual Linear Program and Complementary Slackness 128

b experimental details 129
b.1 Neural Relational Inference (NRI) for Graph Layout 129

b.1.1 Data 129
b.1.2 Model 129
b.1.3 Training 131

b.2 Unsupervised Parsing on ListOps 131
b.2.1 Data 131
b.2.2 Model 131
b.2.3 Training 133

b.3 Learning To Explain (L2X) Aspect Ratings 133
b.3.1 Data 133
b.3.2 Model 133
b.3.3 Training. 134

b.4 Generative Modelling with Variational autoencoders 135
b.5 Learning To Cut In Branch and Bound 136

xiv contents

b.5.1 Data 136
b.6 Learning To Dive In Branch and Bound 136

b.6.1 Data 136
b.6.2 Data 136
b.6.3 Baselines 136

c additional results 141
c.1 Gradient Estimation with Stochastic Softmax Tricks 141

c.1.1 Neural Relational Inference with the Score Func-
tion 141

c.1.2 Learning To Explain Other Aspect Ratings 142
c.2 Gumbel-Rao 142
c.3 Learning To Cut In Branch and Bound 142

c.3.1 Model Ablation 142
c.3.2 Loss Ablation 143
c.3.3 Visuals for Table 6.3 143

bibliography 153

L I S T O F F I G U R E S

Figure 3.1 Illustration: Structured Embeddings 24
Figure 3.2 Illustration: Stochastic Argmax Tricks 25
Figure 3.3 Illustration: Stochastic Softmax Tricks 27
Figure 3.4 Example: SST for “Spanning Tree” 35
Figure 3.5 Algorithm: SMT for “Arborescence” 38
Figure 3.6 Neural Relational Inference for Graph Layout 42
Figure 3.7 Learning To Explain Aspect Ratings 45
Figure 4.1 Taxonomy of Gradient Estimators 48
Figure 4.2 Illustration: Straight-Through Gumbel-Softmax 50
Figure 4.3 Quadratic Programming on the Simplex 57
Figure 4.4 Gradient Estimation with Gumbel-Rao Monte-Carlo 60
Figure 6.1 Illustration: Cutting Plane 78
Figure 6.2 Cutting Plane Selection on MIPLIB 82
Figure 6.3 Illustration: Tripartite Graph in NeuralCut 84
Figure 6.4 Illustration: Graph Neural Network in NeuralCut 85
Figure C.1 Categorical VAEs: Variance decomposition 146
Figure C.2 Categorical VAEs: NU ablation 147
Figure C.3 Cutting with NeuralCut: Normalized Dual Gap 151

L I S T O F TA B L E S

Table 3.1 Neural Relational Inference for Graph Layout 41
Table 3.2 Unsupervised Parsing on ListOps 44
Table 3.3 Learning to Explain Aspect Ratings 46
Table 4.1 Unsupervised Parsing with Gumbel Tree-LSTMs 58
Table 4.2 Generative Modeling with Categorical VAEs 62
Table 6.1 Overview of cutting plane selection heuristics 80
Table 6.3 Cutting with NeuralCut 90
Table 6.4 Cutting with NeuralCut: Model ablation 91
Table 6.5 Cutting with NeuralCut: Transferability 92
Table 6.6 NeuralCut in branch and bound 94

xv

Table 7.1 Overview of diving heuristics 101
Table 7.3 Diving with L2Dive 108
Table 7.4 L2Dive in branch and bound 110
Table B.1 We use these features in our experiments with Neu-

ralCut in chapter 6. 138
Table B.2 We use these features in our experiments with L2Dive

in chapter 7. 139
Table C.1 Graph Layout: Score Function Estimators 142
Table C.2 Learning To Explain Aspect Ratings (Appearance) 143
Table C.3 Learning To Explain Aspect Ratings (Palate) 144
Table C.4 Learning To Explain Aspect Ratings (Taste) 145
Table C.5 Generative Modeling with Categorical VAEs: Nxsup 148
Table C.6 Cutting with NeuralCut: More model ablations 149
Table C.7 Cutting with NeuralCut: Loss ablation 150

L I S T O F A L G O R I T H M S

1 Maximum r-arborescence [140] 38
2 Equiv. for neg. exp. U . 38
3 Generic Diving Heuristic . 99

N O TAT I O N

general

We reserve calligraphic notation to denote sets, but for some sets including
e.g., the real numbers R or a polyhedron P ⇢ Rn we adhere to standard
notation. We denote matrices and vectors in bold font, e.g., A 2 Rm⇥n or
b 2 Rn, and scalar quantities in plain font, e.g., the temperature parameter
t in chapter 3. We always write random variables in upper-case letters, but
upper-case letters may also denote functions, such as the loss function L(·),
or matrices as above, depending on the context. We often use an upper-level

xvi

notation xvii

asterisk to denote the solution of a relaxation, e.g., X⇤ is the solution of
the stochastic softmax relaxation in chapter 3 and z⇤ is the solution to the
linear program relaxation in chapters 6 and 7. Similarly, we sometimes use
an upper-level star to denote the optimal solution of a discrete optimization
problem, e.g., z? or x? for the solution of the integer program in chapter 5,
but may omit the symbol in some cases to avoid notational clutter. We
summarize the most important symbols in the table below.

frequently used symbols

symbol meaning

X a discrete set containing the embeddings of a finite collection
of objects or the feasible solutions of an integer program

X ⇠ qq a discrete random variable with distribution qq whose domain
is X and whose parameters are q

x? 2 X an optimal solution to a discrete optimization problem with
domain X

P ⇢ Rn a continuous set which may be the convex hull of X or the
feasible solutions of a linear program

X⇤ ⇠ q⇤q a continuous random variable with distribution q⇤q whose
domain is P and whose parameters are q

x⇤ 2 P an optimal solution to the relaxed optimization problem with
domain P

q the learnable parameters of the distribution qq for which no
direct supervision is available

⌘ the gradient of the learnable parameters q as defined in
equation (2.3)

⌘̂ a gradient estimator, i.e, an estimator for ⌘

1

1
I N T R O D U C T I O N

Machine learning and discrete optimization are pillars of computer science.
Both are widely used tools for analysis, prediction and decision-making
across business, technology and science. The goal of machine learning
is to develop methods that can independently identify patterns in data
and make accurate predictions. Over the last decade machine learning has
progressed tremendously. Today, modern systems are capable of learning
from large amounts of data and successfully accomplish many diverse tasks.
For example, machine learning is routinely used to process visual data, for
example to reliably detect objects [1–3], for visual tracking [4, 5], semantic
segmentation [6, 7] or image restoration [8]. Generative models for vision
are capable of creating realistic and artistic images from few visual cues [9]
or free text descriptions [10, 11]. Large models for natural language have
recently demonstrated unprecedented capability. Apart from accomplishing
canonical task, such as sentiment prediction [12], natural language inference
[13], or reading comprehension [14], these models successfully learn to
answer questions [15], generate summaries [16] or are capable of free
dialogue [17]. Beyond, machine learning has aided the development of
systems that defeat professional players in strategic games, such as Go [18]
and poker [19], predict protein structures with atomic accuracy [20] or even
assist humans in formulating and proving mathematical conjectures [21].

The goal of discrete optimization is to develop efficient methods for solv-
ing problems that involve discrete decisions. Such problems are ubiquitous.
They arise in the design of reliable networks, for example in communication,
transportation or energy, the allocation of resources and scheduling of tasks
in various production processes and in a wide variety of combinatorial
problems. Applications of discrete optimization are countless and methods
for discrete optimization are widely used, from staffing airline personnel
[22], to balancing server loads in distributed computing or to laying out
printed circuit boards in electronics [23], to understanding gene expressions
in computational biology [24]. Curiously, there are some direct applications
of discrete optimization in machine learning, too, including in probabilistic
inference [25, 26] or the verification of neural networks [27, 28].

The propositions on which methods in machine learning and discrete
optimization are developed differ fundamentally. Methods in machine

3

4 introduction

learning rely on data and require little if any manual design to create
powerful predictive models that generalize well to unseen instances and
sometimes even across tasks [29]. Most methods in machine learning are
widely applicable or can be easily adapted to a large number of diverse
problems. In fact, the dominant method, i.e., learning deep neural net-
works with variants of gradient descent, is used universally (and nearly
exclusively) across computer vision, natural language processing and many
other areas of application in machine learning. However, the versatility
and performance of these methods comes at a cost. Many methods, in
particular neural networks, are opaque and it is difficult to interpret their
predictions. The outputs of these models lack guarantees and probabilistic
calibration can be brittle. In cases, where it is desirable, it is difficult to
effectively integrate domain knowledge. To illustrate, consider training a
convolutional neural network with stochastic gradient descent to predict
sentiment ratings from free text. This machine learning method is versatile;
it could easily be used in another domain or on other data, for example to
train models that make diagnostic predictions from medical records [30] or
with simple modifications from magnetic resonance imaging [31]. However,
in either case the model is black-box which hinders adoption in practice. A
user will find it more difficult to base decisions on the model predictions,
when he cannot understand what the prediction was based on, for example
which parts of the medical record or magnetic resonance image. In addition,
it is not clear how to best integrate domain knowledge, for example it may
be desirable to base predictions on key contiguous chunks of test or on
lesions of certain shape. This is essential in many real-world applications
where obtaining data for learning may be expensive.

In contrast, methods in discrete optimization are typically algorithms
tailored to specific applications. Their design is often entirely manual and re-
lies on human ingenuity to derive abstract formulations of a given problem.
For example, a number of algorithms have been designed to solve combina-
torial problems, such as Kruskal’s algorithm to find the best spanning tree
in a graph [32], or the Hungarian algorithm to find optimal matchings [33].
Even general-purpose methods for discrete optimization, such as branch
and bound search [34] can often significantly be improved, if they are
tailored to specific applications (Table 7.4 in chapter 7). Algorithms, by defi-
nition, prescribe exact and exhaustive rules for computation. These permit
rigorous analysis and afford interpretability, unlike most models in machine
learning. Methods in discrete optimization are known to produce exact or
approximate solutions and guarantees on their performance, runtime or

introduction 5

memory requirements are usually known. For example, Kruskal’s algorithm
is known to find the optimal solution, greedy algorithms for submodular
minimization are guaranteed to approximate the optimal solution well and
scale gracefully [35]. Branch and bound search is an exact method, but can
be terminated prematurely to yield lower and upper bounds on the optimal
solution. In contrast to machine learning, problem instances in discrete op-
timization are traditionally treated in isolation. When given a new problem
instance, algorithms in discrete optimization typically cannot leverage any
information from previous solves, and instead follow the exact same set of
rules as on previous instances. This is unlike to machine learning, where
the model uses information acquired during training to make predictions at
test time. It poses a serious deficiency in practical applications, where often
many similar problem instances must be solved and structural commonality
exists between them. For example, consider using discrete optimization to
optimize server loads in a distributed computing cluster at an hourly rate. It
is reasonable to expect that problem instances from different days or times
are similar, because they share the same servers and certain compute loads
may regularly occur. Thus, plausibly information from solving previous
instances may be used to improve any discrete optimization method for
solving new server load balancing problems. But methods such as branch
and bound will build a new search tree from scratch for every new problem
instance and disregard any previous solves.

In light of these observations and the complementary strengths and
weaknesses of machine learning and discrete optimization, it is natural to
ask to what extent methods from these two areas can be fruitfully combined.
Can we use discrete optimization to design machine learning models that
are more interpretable or to integrate domain knowledge? Can we use
machine learning models to improve discrete optimization in practical
application without sacrificing optimality guarantees? And above all, how
do we learn such models? These are the question we ask in this thesis and
that we answer affirmatively by presenting methods for learning with and
for discrete optimization.

learning with discrete optimization The first part of this the-
sis concentrates on learning with discrete optimization. Our focus is on
non-supervised machine learning which includes problems from unsu-
pervised, self-supervised and reinforcement learning. In non-supervised
learning, supervision is limited or may not exist at all and therefore the
design of probabilistic models is common. In chapter 2 we review the use

6 introduction

of discrete variables in these models and argue that they can facilitate
regularization, render models more interpretable and present opportunities
for model design and algorithmic integration of domain knowledge. The
main difficulty in learning these models is the estimation of gradients and
unfortunately only few estimators for models with discrete variables are
known. A key contribution of this thesis is the design of new gradient
estimators for discrete variables in non-supervised machine learning. Natu-
rally, discrete variables are closely tied to methods of discrete optimization
where combinatorial objects appear frequently. In chapter 3, we use this
to pose distributions over discrete variables using the perturbation model
framework [36]. These variables can be efficiently sampled with the aid
of discrete optimization routines and naturally facilitate gradient estima-
tion via continuous relaxations. Our work offers a unified perspective on
existing relaxed gradient estimators and contains many new gradient esti-
mators. In chapter 4 we extend this work by introducing another class of
gradient estimators that addresses some shortcomings of relaxed gradient
estimation and offers improved estimation properties. Experimentally, we
demonstrate that our gradient estimators facilitate learning models with
discrete variables variables that are more performant, useful and efficient.

learning for discrete optimization The second part of this thesis
addresses learning for discrete optimization. Our focus is on branch and
bound search. This is a general-purpose algorithm for integer programming
and can be used to solve a wide variety of discrete optimization problems.
Modern implementations of branch and bound search involve many heuris-
tic subroutines that guide the search and have a significant influence on the
overall performance of the solver. In chapter 5 we argue that this presents an
opportunity for machine learning. Existing heuristics designed by domain
experts for universal use can be replaced by learnt models that are tailored
to specific applications with the goal of improving solver performance. We
identify two key subroutines in branch and bound search, the selection
of cutting planes and the use of primal heuristics, and address both with
machine learning. In chapter 6 we present NeuralCut, a method to learn
models for cutting plane selection via imitation learning. Our models can be
used inside branch and bound to select better cuts than existing heuristics
and competing approaches based on reinforcement learning, they facilitate
improvements in branch and bound search. In chapter 7 we present L2Dive
to learn application-specific diving heuristics for branch and bound. L2Dive
learns a generative model for the solution of a given integer program, the

1.1 thesis organization 7

predictions of the model can be used to conduct guided dives that reliably
yield better solutions than existing diving heuristics. L2Dive improves over-
all solver performance in real-world applications and even outperforms a
tuned ensemble of existing divers.

1.1 thesis organization

The remainder of this thesis is organized into the following chapters.

• Chapter 2 introduces non-supervised machine learning, highlights the
opportunities that the use of discrete variables in non-supervised
models affords and reviews existing methods to estimate gradients in
these models.

• Chapter 3 presents gradient estimation with stochastic softmax tricks,
a unified framework to design gradient estimators for structured
discrete variables.

• Chapter 4 presents a simple but effective method to improve gradient
estimation properties for straight-through variants of relaxed gradient
estimators.

• Chapter 5 reviews integer programming, branch and bound search
and the role of cutting planes, primal heuristics and machine learning.

• Chapter 6 presents NeuralCut, a framework to learn models for cutting
plane selection that can be used to select better cuts for branch and
bound search.

• Chapter 7 presents L2Dive, a framework to learn application-specific
diving heuristics that improve the performance branch and bound
solvers.

• Chapter 8 concludes the thesis with a summary of the findings and
outlines several directions for future work.

1.2 list of publications

The thesis is based on the following publications.

1. Paulus, M. B. et al. Gradient Estimation with Stochastic Softmax Tricks in
Advances in Neural Information Processing Systems (2020)

8 introduction

2. Paulus, M. B., Maddison, C. J. & Krause, A. Rao-Blackwellizing the
Straight-Through Gumbel-Softmax Gradient Estimator in International
Conference on Learning Representations (2021)

3. Paulus, M. B. et al. Learning to Cut by Looking Ahead: Cutting Plane
Selection via Imitation Learning in Proceedings of the 39th International
Conference on Machine Learning (2022)

4. Paulus, M. B. & Krause, A. Learning To Dive In Branch and Bound in
Under submission. (2023)

The following work is relevant and related, but it was not directly included
into the thesis.

5. Valentin, R., Ferrari, C., Scheurer, J., Amrollahi, A., Wendler, C. &
Paulus, M. B. Instance-wise algorithm configuration with graph neural
networks. NeurIPS Machine Learning for Combinatorial Optimization
Competition (2021)

6. Huijben, I. A., Kool, W., Paulus, M. B. & Van Sloun, R. J. A Review
of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in
Machine Learning in (2022)

7. Miladinović, Ð., Shridhar, K., Jain, K., Paulus, M. B., Buhmann, J. M.
& Allen, C. Learning to Drop Out: An Adversarial Approach to Training
Sequence VAEs in Advances in Neural Information Processing Systems
(2022)

8. Duan, H., Vaezipoor, P., Paulus, M. B., Ruan, Y. & Maddison, C. J.
Augment with Care: Contrastive Learning for Combinatorial Problems in
Proceedings of the 39th International Conference on Machine Learning
(2022)

1.3 collaborators

For the better, research is often a collaborative effort. I had the pleasure
to work closely with numerous colleagues over the last years. Some have
contributed to the work I present in this thesis. Andreas Krause has encour-
aged me to pursue research at the intersection of machine learning and
discrete optimization. His unconditional support, generosity and valuable
feedback facilitated this research. I am grateful to him. Chris Maddison
contributed several key ideas to our work on gradient estimation. He has

1.3 collaborators 9

been a close collaborator and exceptional mentor to me during my PhD
studies. Dami Choi contributed important experimental results to our work
on gradient estimation with stochastic softmax tricks. Giulia Zarpellon
greatly helped to conceptualize and conduct machine learning research
for integer programming. Daniel Tarlow and Laurent Charlin provided
valuable feedback. It was a pleasure to work with all of them.

Part I

L E A R N I N G W I T H D I S C R E T E O P T I M I Z AT I O N

2
B A C K G R O U N D

2.1 non-supervised machine learning

We distinguish between supervised and non-supervised machine learning.
Supervised machine learning traditionally relies on labelled examples of
the form (xsup, y). The vector xsup contains features or covariates that de-
scribe the example and y is a corresponding label. The supervised learning
problem is to find good predictive models of the label y. Many learning
algorithms parameterize the predictive models and cast learning as an
optimization program,

min
qsup

Fsup(qsup) := L
�
y, xsup, qsup

�
(2.1)

where qsup are the learnable parameters, L(·) is a loss function and Fsup(·)
is the supervised objective. This framework covers many learning problems
in classification and regression. For example, in logistic regression the label
designates a binary class y 2 {0, 1}. The model predicts a conditional
probability from a linear combination of the features and a composition
with the sigmoid function ŷ = sigmoid

�
q|

supxsup
�
. The loss function is the

binary cross-entropy loss L(xsup, y, qsup) = � (y log ŷ + (1� y) log(1� ŷ)).
Typically, models are learnt over a collection of examples instead of a
single one and equation (2.1) can easily be modified to accommodate this
case. For simple models, the optimization problem in (2.1) may admit a
solution in closed form. However, most learning algorithms, including those
for logistic regression or neural networks, will rely on gradient methods.
These methods differentiate the objective Fsup(·) with respect to the model
parameters qsup and use the gradient to guide the optimization of (2.1).
Over the last decades supervised learning and in particular deep learning
has enjoyed great success. For example, supervised learning facilitates state-
of-the-art performance in computer vision [e.g., 45, 46]and natural language
processing [e.g., 47, 48].

Despite this success, many important problems in machine learning
cannot be addressed with the methods of supervised learning. Such prob-
lems are primarily found in unsupervised, reinforcement or self-supervised
learning. We collectively refer to these domains as non-supervised machine

13

14 background

learning. In non-supervised learning, supervision is limited or may not
exist at all, because it is too expensive to acquire or otherwise infeasible.
In the absence of supervision, it is natural to design probabilistic models
that capture uncertainty. Many of these models incorporate latent random
variables X ⇠ qq and pose the non-supervised learning problem,

min
q,qsup

F(q, qsup) := Eq
⇥
L
�
X, xsup, qsup

�⇤
where X ⇠ qq (2.2)

This framework captures the essence of a wide range of problems in
non-supervised learning, including for example clustering, representation
learning, generative modeling or stochastic control in discrete time. For
illustration, we survey an example from each of the three domains of
non-supervised learning below.

• Variational Autoencoders [49, VAEs] are a popular class of latent
variable models in unsupervised learning. VAEs use a neural network
encoder with parameters q and input xsup to parameterize a condi-
tional distribution qq over the latent variables. A sample from the
latent distribution X ⇠ qq is then drawn and decoded by another
neural network with parameters qsup to reconstruct the original input
xsup. The expected loss is a variational objective to train the model.

• Policy gradient methods [see e.g., 50] are a prominent class of tech-
niques in reinforcement learning. They are covered by the formulation
above, when the covariate xsup may contain a sequence of state repre-
sentations. The random variable X is a sequence of actions and the
parameters q specify a policy qq over actions. The parameters qsup are
void and the loss L may negate a reward signal.

• SimCLR [51] is a simple framework for self-supervised learning of
visual representations. This method applies two random data aug-
mentations to an input image and maps each perturbed image via
a base encoder to a latent representation. For SimCLR, the original
input image is xsup. The latent variable X ⇠ qq contains the latent rep-
resentations of the two perturbed images. They are random, because
the data augmentations are randomly sampled. The parameters of
the base encoder are q. The contrastive loss L is defined over a batch
of images. The parameters qsup include the projection head and the
temperature parameter in SimCLR.

As with supervised learning, most methods in non-supervised learn-
ing typically rely on gradient-based optimization. However, computing

2.2 learning with discrete distributions 15

gradients for the distributional parameters q in (2.2) is challenging. The
random variable X usually is high-dimensional and evaluations of the loss
function L are often expensive. In all but the simplest cases, we are not able
to analytically evaluate the expectation in (2.2). Instead, both the objective
and its gradient with respect to q

⌘ :=
d

dq
F(q, qsup) =

d
dq

Eq
⇥
L
�
X, xsup, qsup

�⇤
(2.3)

must be estimated to facilitate learning. As a result, gradient estimators
for non-supervised learning are of great interest, and the following two
chapters of this thesis contribute to this line of research. For clarity, we omit
the qsup and xsup from the loss L(·) and the objective F(·) in the remainder
of this thesis when this does not cause confusion.

2.2 learning with discrete distributions

In this thesis, we focus on cases of non-supervised learning where the
random variable X is discrete. Such models are of interest for applications
in computer vision and natural language processing as we demonstrate in
our experiments in Chapter 3 and 4. They also feature prominently in bioin-
formatics, where domains are often highly structured, and reinforcement
learning, where the control of systems with large discrete action spaces is a
long-standing goal [50]. Notably, state-of-the-art generative models [10, 52]
rely on discrete latent representations. In these models, discrete variables
may aid with the modeling of multimodal distributions and improve sample
diversity. More generally, discrete variables are useful, because the naturally
induce sparsity. This can provide an effective form of regularization, render
models more interpretable, facilitate conditional combination or give rise to
hybrid models that integrate traditional algorithmic procedures.

regularization Discrete variables naturally give rise to sparse rep-
resentations and it is well known that sparsity can regularize learning
effectively [53]. The earliest examples of this idea focussed on selecting
variables or features to reduce model cardinality [54]. More recently the
benefits of using structured sparsity [55, 56] have been demonstrated in
computer vision [57], natural language processing [58, 59] or bioinformatics
[60]. In our experiments in chapter 3, we learn distributions over highly
structured discrete objects, such as trees or correlated subsets. We show that
this may provide a useful prior in some applications and improves overall

16 background

performance, in particular if training data is scarce or model capacity must
be limited, such as in edge computing.

interpretability The ability to question, understand and trust ma-
chine learning models is central to enable their adoption and deployment
[e.g., 61, 62]. Unfortunately, the most performant models tend to be opaque
and black-box. Methods are needed that improve their interpretability or
provide explanations. The use of discrete variables can facilitate such meth-
ods. For example, Chen et al. [63] develop a variational framework for
model explanation that uses discrete variables to identify subsets of salient
input features. This method can guide the attention of a practitioner when
inspecting a model prediction. We adopt this framework for some of our
experiments in chapter 3. Another prominent direction is to use categorical
variables to learn disentangled and interpretable representations of data
[64].

model design Sometimes, the choice of discrete variables results from
considerations of model design. For example, Bengio, Léonard & Courville
[65] observed that the sparsity of discrete variables can facilitate conditional
computation. The idea is to condition part of the computation in a feed-
forward model on the value of a discrete variable. For example, sparse
gating units can be trained to select which part of a model is activated for a
particular input. This approach can give rise to models that are lightweight
and fast [66] or improve performance [67]. The idea has also been exploited
in dynamic [68] and routing neural networks [69], to design custom convo-
lutional layers [70–72] or to align computation along a learnt tree-structured
computational graph [73]. We use this model in some of our experiments
in chapter 4.

algorithmic integration A promising direction to apply machine
learning to increasingly complicated tasks is the design of hybrid models.
These are models that combine learnable components with classical algo-
rithms, for example for search [18], logical reasoning [74], planning [75] or
optimization [76]. Sometimes, these models involve discrete distributions
to facilitate end-to-end training. For example, the model in [75] learns a
distribution over propositional symbols from image pixels and processes
them with the aid of a classic planning algorithm. The model is trained
without supervision of the propositional symbols or expert plans.

2.3 estimating gradients for discrete distributions 17

In this thesis, we will particularly particularly focus on structured discrete
variables and formalize this notion in chapter 3. Such discrete variables
may for example include sets, permutations or other objects that can be
derived from undirected and directed graphs. In contrast to (unstructured)
categorical variables, structured variables often admit more compact repre-
sentations, as a result they typically scale better and may improve general-
ization. As machine learning is applied to relational data and increasingly
complex tasks, structured discrete variables are of growing importance and
have diverse applications. For example, in chapter 3 we consider structured
discrete variables for neural relational inference [77] and model explanation
[63].

2.3 estimating gradients for discrete distributions

As argued in Section 2.1, to facilitate non-supervised learning the gradient
of the distributional parameters q in equation (2.3) must be estimated. The
method of choice in machine learning is Monte Carlo, because it scales
favorably to higher dimensions. There are two general-purpose strategies to
design Monte Carlo gradient estimators, one is based on the score function
of the distribution qq and one is based on the reparameterization of the
random variable X. The vast majority of gradient estimators in machine
learning rely on either the score function or reparameterization, only few
alternatives exist and have been considered in some non-supervised settings
[e.g., 78]. Unfortunately, only the former strategy applies directly to discrete
distributions, while the latter must be modified. Below, we describe the two
strategies. We also note that a number of methods have been developed
for computing gradients of deterministic discrete variables, for example to
integrate optimization programs as layers in neural networks and train
these models end-to-end [76, 79–83]. However, our focus in this thesis is
on learning the parameters of discrete distributions and differentiating
through stochastic discrete variables.

score function The score function estimator [84, 85] is based on
the score function, which is the gradient of the log of the probability
distribution qq with respect to its distributional parameters. The estimator

18 background

relies on the properties of the score and on an interchange of differentiation
and integration that recasts the gradient in (2.3) as an expectation:

⌘ =
d

dq
Eq [L (X)] (2.4)

= Eq


L (X)

d
dq

log qq (X)

�
(2.5)

This interchange is valid under very general assumptions on the smoothness
of qq [see 86, and references therein]. In particular, these assumptions permit
the use of discrete distributions that our focus is on. Using the expression
above, an unbiased gradient estimator can be obtained by approximating
the expectation in equation (2.5) via Monte Carlo. The simplest instantiation
of this idea is the score function estimator with a single sample,

⌘̂VOID := L (X)
d

dq
log qq (X) (2.6)

Unfortunately, the variance of this estimator tends to be very large and it
cannot be used in non-supervised machine learning. As a result, several
gradient estimators have been developed that are based on the score func-
tion estimator but attempt to reduce is variance. Most of them center the
loss using a baseline B(·) to reduce variance,

⌘̂SCORE := (L (X)� B(·))
d

dq
log qq(X) (2.7)

This estimator remains unbiased, if the baseline B(·) does not depend on
the variable X, because the expectation of the score function is zero, i.e.,
E
h

d
dq log qq(X)

i
= 0. However, the baseline effectively reduces the variance

of the estimator, if its variance or the variance of the loss and the score are
not too large. Based on equation (2.7), several gradient estimators have been
proposed that choose different baselines. Most of them try to approximate
the expected loss. A simple and common choice is to compute a moving
average over past evaluations of the loss function when iteratively opti-
mizing equation (2.2) via gradient descent. More sophisticated approaches
consider Taylor approximations [87, 88] or consider input-dependent base-
lines B(xsup). For some applications, in particular variational inference,
specialized control variates have been designed [89]. Another approach is
to directly learn a good baseline Gregor et al. [90], Tucker et al. [91], and
Grathwohl et al. [92]. Finally, the combination of several baselines is possible
[93].

2.3 estimating gradients for discrete distributions 19

Other approaches to reduce variance exist. A straightforward approach
for variance reduction is to use multiple samples. Several gradient estima-
tors use multiple samples [94]. Because in principle the variance of any
Monte Carlo estimator can be reduced by repeated sampling, we view this
approach as complementary to our discussion and focus on single sample
estimation in this thesis. In addition, we note that in modern machine
learning, multiple evaluations of the loss function as a result of repeated
sampling can be costly and may be inappropriate for some applications.
Thus, there is a particular need for estimators that only require a single loss
evaluation to compute gradient estimates. In chapter 3 and chapter 4 we
develop such estimators.

reparameterization The reparameterization gradient estimator [49,
95–97] is based on a reparameterization of the random variable X in terms
of a standard random variable U0 ⇠ q0 and a deterministic transformation
Gq , such that

X ⇠ qq ⌘ X = Gq(U0) where U0 ⇠ q0 (2.8)

Several reparameterizations for common probability distributions are known
and different methods exist to derive reparameterizations [98]. As with
the score function estimator, the reparameterization estimator relies on an
interchange of differentiation and integration, but additionally requires the
loss function L to be differentiable with respect to X, such that

⌘ =
d

dq
Eq [L (X)] =

d
dq

E0 [L (Gq(U0))] (2.9)

= E0


∂L(X)

∂X
d

dq
Gq(U0)

�
(2.10)

Estimating the gradient via Monte Carlo is immediate from equation (2.10).
Such reparameterization estimators enjoy several favorable properties. In
particular, they are unbiased and low variance even in high dimensions [99].
As a result, they are widely used in machine learning and state-of-the-art
[100].

relaxation Unfortunately, gradient estimators based on (2.10) are
invalid for discrete variables that are our interest. This is, because any
reparameterization of a discrete variable X necessarily requires jump dis-
continuities in the deterministic transformation Gq. These discontinuities
violate the assumptions underlying the interchange of differentiation and

20 background

integration in equation (2.10) as discussed in Chapter 7.2 of [97]. A remedy
is to replace the discrete variable X with a continuous variable X⇤ at train
time to learn the distributional parameters q. The continuous variable X⇤

must admit a reparameterization gradient based on 2.10 and be coupled to
the distributional parameters q of the discrete variable X. At test time, the
discrete variable X is used. These estimators are known as relaxed gradient
estimators, because they relax the discrete random variable to a continuous
random variable.

The Gumbel-Softmax estimator [101, 102] is a relaxed gradient estimator
that has been proposed for categorical random variables. It is based on
the Gumbel-Max trick [103, 104] that recasts categorical sampling as an
optimization program. Let X ⇠ Categorical(q) be a categorical random
variable, such that P (X = i) µ exp(qi). Then, the Gumbel-Max tricks per-
turbs the log-mass q with Gumbel utilities U0 ⇠ Gumbel(0) and selects the
category with the largest perturbed mass,

X ⇠ Categorical(q) ⌘ X = arg max
i

(q + U0)i (2.11)

The equivalence is due to the properties of the Gumbel distribution [see e.g.,
36, Chapter 7]. As before, the Gumbel-Max does not admit a reparameteri-
zation gradient for X, because the arg max introduces jump discontinuities.
Therefore, the Gumbel-Softmax uses the tempered softmax1 in place of the
arg max and considers the relaxed variable

X⇤
t = softmaxt(q + U0) (2.12)

As t ! 0+, the approximation becomes more faithful, i.e., the relaxed
variable converges to a categorical variable (in a one-hot embedding). The
continuous random variable X⇤

t admits a reparameterization gradient that
can be used to devise the gradient estimator,

⌘̂GS :=
∂L(X⇤

t)
∂X⇤

t

d
dq

softmaxt(q + G) (2.13)

This relaxed estimator is the Gumbel-Softmax gradient estimator. The
estimator requires that the loss and its gradient can be evaluated for X⇤

t . It
is a biased estimator of the gradient of interest in equation (2.3), but it is an
unbiased2 estimator of the gradient of the surrogate objective

F⇤t (q, qsup) := Eq[L(X⇤
t , xsup, qsup)] (2.14)

1 softmaxt(u)i = exp(ui/t)/ Ân
j=1 exp(uj/t) for u 2 Rn, t > 0

2 Technically, one needs an additional local Lipschitz condition for L(X⇤
t) in q [86, Prop. 2.3,

Chap. 7].

2.3 estimating gradients for discrete distributions 21

Unfortunately, the Gumbel-Softmax estimator only handles categorical
variables. However, as previously argued, many applications of interest
involve structured discrete variables. The use of categorical variables in
these settings is undesirable, because they do not scale and their repre-
sentation are not distributed. To address this, a key contribution of this
thesis is the design of new relaxed gradient estimator for structured vari-
ables. In chapter 3, we present stochastic softmax tricks that generalize the
Gumbel-Softmax, offer a unified perspective on existing relaxed estimators
and contain many new relaxations.

Another shortcoming of relaxed gradient estimators is that the benefits
of discrete variables we surveyed in the previous section are lost at train
time. For example, to achieve regularization via sparsity, it may be required
to tune the temperature parameter carefully [101] and avoid a performance
loss due to the integrality gap at train and test time. Also, Choi, Yoo & Lee
[73] argues for the use of discrete variables in their model at train time
to facilitate conditional computation. The model they propose does not
admit the use of relaxed gradient estimators. To preserve the benefits of
discrete variables or facilitate the use of relaxed gradient estimation, straight-
through variants of relaxed gradient estimators have been proposed [see
e.g., 102]. In chapter 4, we revisit the straight-through variant of Gumbel-
Softmax estimator. We propose a simple scheme to provably reduce its
variance and improve its properties for gradient estimation which leads to
improved performance in our experiments.

3
G R A D I E N T E S T I M AT I O N W I T H S T O C H A S T I C S O F T M A X
T R I C K S

synopsis In the previous chapter, we reviewed gradient estimation
in non-supervised machine learning. In particular, we discussed relaxed
gradient estimators as a promising approach to estimate gradients for
discrete variables. We introduced the Gumbel-Softmax estimator that is
based on the Gumbel-Max trick for categorical variables. In this chapter
we generalize this estimator to other discrete structured variables. We
present stochastic argmax tricks that are perturbation models that naturally
extend the Gumbel-Max trick to other discrete structured variables. As
the Gumbel-Max, they can be relaxed to emit a gradient estimator based
on reparameterization. We call these relaxations stochastic softmax tricks.
They generalize the Gumbel-Softmax, offer a unified perspective on existing
relaxed estimators and contain many new relaxations. We design structured
relaxations for subset selection, spanning trees, arborescences, and others
with stochastic softmax tricks. Experimentally, when compared to less
structured baselines, we find that stochastic softmax tricks can be used to
train latent variable models that perform better and discover more latent
structure.

attribution This chapter is largely based on the following publication
that was jointly authored with Dami Choi, Daniel Tarlow, Andreas Krause
and Chris J. Maddison.

• Paulus, M. B. et al. Gradient Estimation with Stochastic Softmax Tricks in
Advances in Neural Information Processing Systems (2020)

3.1 structured embeddings of discrete variables

In the previous chapter, we reviewed the Gumbel-Softmax gradient estima-
tor for categorical distributions. In principle, any discrete distribution may
be represented as a categorical distribution and the Gumbel-Softmax could
be used to estimate gradients. However in practice, this approach is usually
undesirable, because it cannot scale to large sets of discrete objects and
standard representations carry no semantic information across categories.

23

24 gradient estimation with stochastic softmax tricks

One-hot vector

k-hot vector
Permutation

matrix
Spanning tree

adjacency matrix
Arborescence

adjacency matrix

Figure 3.1: Structured discrete objects can be represented by binary arrays. In
these graphical representations, color indicates 1 and no color in-
dicates 0. For example, “Spanning tree” is the adjacency matrix of
an undirected spanning tree over 6 nodes; “Arborescence” is the
adjacency matrix of a directed spanning tree rooted at node 3.

To illustrate, let S be a non-empty, finite set of discrete objects. For
example, S could contain all spanning trees of a graph G = (V , E). In
general, we can represent the objects s 2 S with the use of an embedding
function rep : S ! Rn, such that X = {rep(s) | s 2 S} ✓ Rn is convex
independent1 and contains the embedded objects. If we choose to model
a categorical distribution over the objects s 2 S , we need to enumerate
s1, . . . , s|S| in S and we can let rep(s) be the one-hot binary vector of
length |S|, with rep(s)i = 1 iff s = si to use the Gumbel-Softmax estimator.
Unfortunately, this requires a very large ambient dimension n = |S| that
scales unfavorably with the size of the graph. For example, the number of
distinct spanning trees in a complete graph grows super-exponentially with
the number of vertices. In addition, the categorical representation of the
objects is local and not distributed [105]. The categories do not encode any
notion of similarity between the discrete objects that in many applications is
likely present and would aid generalization. For example, if two spanning
trees share a large number of edges, we may often reasonably expect them
to incur a loss of similar size. But in the categorical encoding, any two
spanning trees are equally similar or dissimilar regardless of how many
edges they share.

We can overcome these disadvantaged by choosing a more structured
embedding function. For example, in the case of spanning trees we could
use a structured representation where rep(s) is a binary indicator vector of
length |E | ⌧ |S|, with rep(s)e = 1 iff edge e is in the tree s. The number
of edges in a complete graph only grows quadratically with the number
of vertices of the graph. Using this representation, spanning trees that

1 Convex independence is the analog of linear independence for convex combinations.

3.2 stochastic argmax tricks 25

are similar, because they share a large number of edges, are embedded
more closely together, i.e., their embeddings have a larger cosine similarity.
Depending on the application, many choices for rep(s) naturally emerge
and we give some additional examples in Figure 3.1.

Our goal is now to design relaxed gradient estimators for discrete distri-
butions over these structured domains X . Our strategy will be to develop
stochastic programs that extend the Gumbel-Max trick to structured do-
mains and identify a method to relax those programs to emit gradient
estimators based on reparameterization.

3.2 stochastic argmax tricks

Recall the Gumbel-Max from chapter 2 that recasts categorical sampling as
identifying a category with the largest perturbed probability mass. When
we use one-hot embeddings X 3 x to represent each category, we can
rewrite the Gumbel-Max trick as a random linear program

X = arg max
x2X

(q + U0)
|x where U0 ⇠ Gumbel(0) (3.1)

where X ⇠ Categorical(q). This is revealing, because we can identify gener-
alizations to the Gumbel-Max trick by considering random linear programs
of the same form, but for other structured embeddings X . We call these
stochastic argmax tricks (SMTs), because they are perturbation models [106,
107], which we relax into stochastic softmax tricks in the next section.

X

Finite set

U

Random utility

X

Stochastic Argmax Trick

Figure 3.2: Stochastic argmax tricks are random linear programs that parame-
terize discrete probability distributions. A stochastic argmax trick
is defined over the finite set X and with the aid of a random util-
ity U with distributional parameters q. The solution X of the linear
program is a sample from the discrete distribution.

26 gradient estimation with stochastic softmax tricks

Definition 1. Given a non-empty, convex independent, finite set X ✓ Rn and
a random utility U whose distribution is parameterized by q 2 Rm, a stochastic
argmax trick for X is the linear program,

X = arg maxx2X U|x (3.2)

Of course, the Gumbel-Max trick is recovered with one-hot X and U ⇠
Gumbel(q). We illustrate stochastic argmax tricks in Figure 3.2. We assume
that (3.2) is a.s. unique, which is guaranteed if U a.s. never lands in any
particular lower dimensional subspace.

Proposition 1. If P(U|x = 0) = 0 for all x 2 Rn such that x 6= 0, then X in
Definition 1 is a.s. unique.

Proof. It suffices to show that for all subsets X 0 ✓ X with |X 0| > 1, the
event {X 0 = arg maxx2X U|x} has zero measure. Let Z = maxx2X U|x. If
|X 0| > 1, then we can pick two distinct points x1, x2 2 X 0 with x1 6= x2.
Now,

P

✓
X
0 = arg max

x2X

U|x
◆

= P(8x 2 X
0, U|x = Z) (3.3)

 P
⇣

U|(x1
� x2) = 0

⌘
= 0. (3.4)

Because efficient linear solvers are known for many structured X , SMTs
are capable of scaling to very large S [108–110]. For example, if X are
the edge indicator vectors of spanning trees S , then (3.2) is the maximum
spanning tree problem, which is solved by Kruskal’s algorithm [32].

The role of the SMT in our framework is to reparameterize qq in (2.2).
Ideally, given qq, there would be an efficient (e.g., O(n)) method for simu-
lating some U such that the marginal of X in (3.2) is qq. The Gumbel-Max
trick shows that this is possible for one-hot X , but the situation is not so
simple for structured X . Characterizing the marginal of X in general is
difficult [106, 111], but U that are efficient to sample from typically induce
conditional independencies in qq [107]. Therefore, we are not able to repa-
rameterize an arbitrary qq on structured X . Instead, for structured X we
assume that qq is reparameterized by (3.2), and treat U as a modeling choice.
Thus, we caution against the standard approach of taking U ⇠ Gumbel(q)
or U ⇠ Normal(q) without further analysis. Practically, in experiments
we show that the difference in noise distribution can have a large impact

3.3 stochastic softmax tricks 27

on quantitative results. Theoretically, we show in section 3.4 that an SMT
over directed spanning trees with negative exponential utilities has a more
interpretable structure than the same SMT with Gumbel utilities.

3.3 stochastic softmax tricks

If we assume that X ⇠ qq is reparameterized as an SMT, then a stochastic
softmax trick (SST) is a random convex program with a solution that relaxes
X. An SST has a valid reparameterization gradient estimator. Thus, we
propose using SSTs as surrogates for estimating the gradients in (2.3), a
generalization of the Gumbel-Softmax approach we presented in chapter 2.
Because we want gradients with respect to q, we assume that U is also
reparameterizable.

Given an SMT, an SST incorporates a strongly convex regularizer to
the linear objective, and expands the state space to the convex hull of the
embeddings X = {x1, . . . , xm} ✓ Rn,

P := conv(X) :=
n
Âm

i=1 lixi
��� l � 0, Âm

i=1 li = 1
o

. (3.5)

Expanding the state space to a convex polytope makes it path-connected,
and the strongly convex regularizer ensures that the solutions are continu-
ous over the polytope.

U

Random utility

X

Stochastic Argmax Trick

X�
�

Stochastic Softmax Trick

Figure 3.3: Stochastic softmax tricks relax discrete distributions that are defined
via stochastic argmax tricks. X is the solution of the stochastic argmax
trick for the random utility U with distributional parameters q. To
design relaxed gradient estimators with respect to q, X⇤

t is the solution
of a random convex program that continuously approximates X from
within the convex hull of X . The Gumbel-Softmax [101, 102] is an
example of a stochastic softmax trick.

28 gradient estimation with stochastic softmax tricks

Definition 2. Given a stochastic argmax trick (X , U) where P := conv(X)
and a proper, closed, strongly convex function R : Rn ! {R, •} whose domain
contains the relative interior of P, a stochastic softmax trick for X at temperature
t > 0 is the convex program,

X⇤
t = arg max

x2P
U|x� tR(x) (3.6)

We illustrate stochastic softmax tricks in Figure 3.3. For one-hot X , the
Gumbel-Softmax is a special case of an SST where P is the probability
simplex, U ⇠ Gumbel(q), and R(x) = Âi xi log(xi). Objectives like (3.6)
have a long history in convex analysis [e.g., 112, Chap. 12] and machine
learning [e.g., 113, Chap. 3]. In general, the difficulty of computing the SST
will depend on the interaction between R and X .

X⇤
t is suitable as an approximation of X. At positive temperatures t, X⇤

t
is a function of U that ranges over the faces and relative interior of P. The
degree of approximation is controlled by the temperature parameter, and
as t ! 0+, X⇤

t converges a.s. to X.

Proposition 2. If X in Definition 1 is a.s. unique, then for X⇤
t in Definition

2, limt!0+ X⇤
t = X a.s. If additionally the loss L : P ! R is bounded and

continuous, then
lim

t!0+
F⇤t (q) = F(q)

where F⇤t (q) = Eq[L(X⇤
t)] as in equation (2.14) and F(q) := Eq[L(X)] as in

equation (2.2).

Proof. Let H⇤t be defined as in (A.19). We have by Lemma 3 in Appendix A.2,

X⇤
t = arg max

x2P
U|x� tR(x) = rH⇤t (U). (3.7)

If X is a.s. unique, then again by Lemma 3,

P

✓
lim

t!0+
X⇤

t = X
◆

= P

✓
lim

t!0+
rH⇤t (U) = arg max

x2X

U|x
◆

� P (X is unique)
= 1

The last part of the proof follows from the dominated convergence theorem,
since the loss in bounded on P by assumption, so |L(X⇤

t)| is surely bounded.

3.3 stochastic softmax tricks 29

It is common to consider temperature parameters that interpolate be-
tween marginal inference and a deterministic, most probable state. While
superficially similar, our relaxation framework is different; as t ! 0+, an
SST approaches a sample from the SMT model as opposed to a deterministic
state.

X⇤
t also admits a reparameterization trick. The SST reparameterization

gradient estimator given by,

⌘̂SST =
∂L(X⇤

t)
∂X⇤

t

∂X⇤
t

∂U
dU
dq

. (3.8)

If L is differentiable on P, then this is an unbiased estimator2 of the gradient
of the surrogate F⇤t (q), because X⇤

t is continuous and a.e. differentiable:

Proposition 3. X⇤
t in Definition 2 exists, is unique, and is a.e. differentiable and

continuous in U.

Proof. For H⇤t defined in (A.19), we have by Lemma 3 in Appendix A.2,

X⇤
t = arg max

x2P
U|x� tR(x) = rH⇤t (U). (3.9)

Our result follows by the other results of Lemma 3.

Taken together, Proposition 2 and Proposition 3 suggest our proposed
use for SSTs: optimize F⇤t (q) at a positive temperature, where unbiased
gradient estimation is available, but evaluate F(q) at test time. We find that
this works well in practice if the temperature used during optimization is
treated as a hyperparameter and selected over a validation set. It is worth
emphasizing that the choice of relaxation is unrelated to the distribution
qq of X in the corresponding SMT. R is not only a modeling choice; it is a
computational choice that will affect the cost of computing (3.6) and the
quality of the gradient estimator.

3.3.1 Implementing Relaxed Gradient Estimators

In general, the Jacobian ∂X⇤
t /∂U will need to be derived separately given a

choice of R and X . For implementing the relaxed gradient estimator given in
(3.8), several options are available. For example, the forward computation
of X⇤

t may be unrolled, such that the estimator can be computed with

2 Technically, one needs an additional local Lipschitz condition for L(X⇤
t) in q [86, Prop. 2.3,

Chap. 7].

30 gradient estimation with stochastic softmax tricks

the aid of modern software packages for automatic differentiation [114–
116]. Moreover, as pointed out by [117], because the Jacobian of X⇤

t is
symmetric [118, Cor. 2.9], local finite difference approximations can be used
to approximate ⌘̂SST

dL(X⇤
t)

dU
⇡

X⇤
t (U + e∂L(X⇤

t)/∂X⇤
t)� X⇤

t (U � e∂L(X⇤
t)/∂X⇤

t)
2e

(3.10)

with equality in the limit as e ! 0 and where X⇤
t (u) = arg maxx2P x|u�

tR(x) as in (3.6) This approximation is valid, because the Jacobian of X⇤
t is

symmetric [118, Corollary 2.9]. It is derived from the vector chain rule and
the definition of the derivative of X⇤

t in the direction ∂L(X⇤
t)/∂X⇤

t . This
method only requires two additional calls to a solver for (3.6) and does not
require additional evaluations of L(·). We found this method helpful in a
few experiments (c.f., Section 3.6).

In addition, for some specific choices of R and X , it may be more efficient
to compute the estimator exactly via a custom backward pass [see e.g., 119,
120]. There are many, well-studied R for which (3.6) is efficiently solvable. If
R(x) = kxk2/2, then X⇤

t is the Euclidean projection of U/t onto P. Efficient
projection algorithms exist for some convex sets [see 121–124, and references
therein]. Moreover, there are generic algorithms that only call linear solvers
as subroutines [125]. In some of the settings we consider, generic negative-
entropy-based relaxations are also applicable. We refer to relaxations with
R(x) = Ân

i=1 xi log(xi) as categorical entropy relaxations [e.g., 124, 126]. We
refer to relaxations with R(x) = Ân

i=1 xi log(xi) + (1 � xi) log(1 � xi) as
binary entropy relaxations [e.g., 119].

Marginal inference in exponential families is a rich source of SST relax-
ations. Consider an exponential family over the finite set X with natural
parameters u/t 2 Rn such that the probability of x 2 X is proportional
to exp(u|x/t). The marginals µt : Rn ! conv(X) of this family are solu-
tions of a convex program in exactly the form (3.6) [113], i.e., there exists
R0 : conv(X)! {R, •} such that,

µt(u) := Âx2X
x

exp(u|x/t)

Âx02X exp(u|x0/t)
= arg max

x2P
u|x� tR0(x) (3.11)

The definition of R0, which generates µt in (3.11), can be found in [113,
Thm. 3.4]. R0 is a kind of negative entropy and in our case it satisfies the
assumptions in Definition 2. Computing µt amounts to marginal inference
in the exponential family, and efficient algorithms are known in many
cases [see 110, 113], including those we consider. We call X⇤

t = µt(U) the
exponential family entropy relaxation.

3.4 examples of stochastic softmax tricks 31

3.3.2 Stochastic Softmax Tricks for Variational Inference

Some objectives in non-supervised machine learning involve the density of
X. Variational inference with the evidence lower bound is a classic example
where the objective includes the Kullback-Leibler divergence between the
a prior and the model qq distribution. In the case of variational inference
with discrete latent variables and relaxed gradient estimators, there are at
least three possible options for relaxing the objective [see e.g., 101, Section
C.3]. We may define the Kullback-Leibler divergence with respect to X
(using a prior over X), with respect to X⇤

t (using a prior over conv(X))
or with respect to U (using a prior over Rn). In general, we do not an
explicit tractable density of X⇤

t or X and therefore suggest to compute the
Kullback-Leibler divergence with respect to a prior for U. The Kullback-
Leibler divergence with respect to U is an upper-bound to the Kullback-
Leibler divergence with respect to X⇤

t due to a data processing inequality.
Therefore, the evidence lower bound that we are optimizing is a lower bound
to the relaxed variational objective where the Kullback-Leibler divergence
is defined with respect to X⇤

t . Whether or not this is a good choice is an
empirical question. Note, that when optimizing the relaxed objective, using a
Kullback-Leibler divergence with respect to X does not result in a lower
bound to the relaxed variational objective, as it is not necessarily an evidence
lower bound for the continuous relaxed model [see again e.g., 101, Section
C.3].

3.4 examples of stochastic softmax tricks

The Gumbel-Softmax [101, 102] introduced neither the Gumbel-Max trick
nor the softmax. The novelty of this work is neither the pertubation model
framework nor the relaxation framework in isolation, but their combined
use for gradient estimation. Here, we layout some example SSTs, organized
by the set S with a choice of embeddings X . For each S , we identify
an appropriate set X ✓ Rn of structured embeddings. We also discuss
utility distributions for which in some cases we can provide a simple,
“closed-form”, categorical sampling process for X, i.e., a generalization
of the Gumbel-Max trick. We also cover potential relaxations used in the
experiments as well as bespoke relaxations that have previously been
described but are not SSTs.

32 gradient estimation with stochastic softmax tricks

3.4.1 Element Selection

one-hot binary embeddings . Given a finite set S with |S| = n, we
can associate each s 2 S with a one-hot binary embedding. Let X ✓ Rn be
the following set of one-hot embeddings,

X =

(
x 2 {0, 1}

n

�����Âi
xi = 1

)
. (3.12)

For u 2 Rn, a solution to the linear program x? 2 arg maxx2X u|x is given
by setting x?

j? = 1 for some j? 2 arg maxi ui and x?
i = 0 otherwise.

random utilities . If U ⇠ Gumbel(q), then X ⇠ Categorical(q). This
recovers the by now familiar Gumbel-Max trick [103, 104], which follows
from Propositions 6 and 7.

relaxtions . If R(x) = Âi xi log xi, then the SST solution X⇤
t is given by

X⇤
t =

exp(Ui/t)

Ân
j=1 exp(Uj/t)

!n

i=1

. (3.13)

In this case, the categorical entropy relaxation and the exponential family
relaxation coincide. When U ⇠ Gumbel(q), this recovers the Gumbel-
Softmax trick from the previous chapter. If R(x) = kxk2/2, then X⇤

t can
be computed using the sparsemax operator [127]. In analogy, we name this
relaxation with U ⇠ Gumbel(q) the Gumbel-Sparsemax trick.

3.4.2 Subset Selection

binary vector embeddings . Given a finite set V with |V| = n, let S

be the set of all subsets of V , i.e., S = 2V := {s ✓ V}. The indicator vector
embeddings of S is the set,

X = {xs : s 2 2V
} = {0, 1}

|V| (3.14)

For u 2 Rn, a solution to the linear program x? 2 arg maxx2X u|x is given
by setting x?

i = 1 if ui > 0 and x?
i = 0 otherwise, for all i  n.

random utilities . If U ⇠ Logistic(q), then X ⇠ Bern(sigmoid(q)),
where sigmoid(·) is the sigmoid function. This corresponds to an ap-
plication of the Gumbel-Max trick independently to each element in V .

3.4 examples of stochastic softmax tricks 33

U ⇠ Logistic(q) has the same distribution as q + log U 00 � log(1�U 00) for
U 00 ⇠ Uniform(0, 1).

relaxations . For this case, the exponential family and the binary
entropy relaxation, where R(x) = Ân

i=1 xi log(xi) + (1� xi) log(1� xi), co-
incide. The SST solution X⇤

t is given by

X⇤
t = (sigmoid(Ui/t))n

i=1 (3.15)

where sigmoid(·) is the sigmoid function. For the categorical entropy re-
laxation with R(x) = Ân

i=1 xi log(xi), the SST solution is given by X⇤
t =

(min(1, exp(Ui/t)))n
i=1 [124].

3.4.3 k-Subset Selection

k-hot binary embeddings . Given a finite set V with |V| = n, let
S be the set of all subsets of V with cardinality 1  k < n, i.e., S =
{s ✓ V | |s| = k}. The indicator vector embeddings of S is the set,

X = {xs : s ✓ V , |s| = k} (3.16)

For u 2 Rn, let arg topk u be the operator that returns the indices of
the k largest values of u. For u 2 Rn, a solution to the linear program
x? 2 arg maxx2X u|x is given by setting x?

i = 1 for i 2 arg topk u and
x?

i = 0 otherwise.

random utilities . If U ⇠ Gumbel(q), this induces a Plackett-Luce
model [103][128] over the indices that sort U in descending order. In par-
ticular, X may be sampled by sampling k times without replacement from
the set {1, . . . , n} with probabilities proportional to exp(qi), setting the
sampled indices of X to 1, and the others to 0 [129]. This can be seen as a
consequence of Corollary 2.

relaxations . For the Euclidean relaxation with R(x) = kxk2/2, we
computed X⇤

t using a bisection method to solve the constrained quadratic
program, but note that other algorithms are available [124]. For the cate-
gorical entropy relaxation with R(x) = Ân

i=1 xi log(xi), the SST solution X⇤
t

can be computed efficiently using the algorithm described in [120]. For the
binary entropy relaxation with R(x) = Ân

i=1 xi log(xi) + (1� xi) log(1� xi),
the SST solution can be computed using the algorithm in [119]. Finally, for
the exponential family relaxation, the SST solution can be computed using

34 gradient estimation with stochastic softmax tricks

dynamic programming as described in [130]. L2X [63] and SoftSub [131] are
two bespoke relaxations for subset selection that cannot be described with
our framework.

3.4.4 Correlated k-Subset Selection

correlated k-hot binary embeddings . Given a finite set V with
|V| = n, let S be the set of all subsets of V with cardinality 1  k < n,
i.e., S = {s ✓ V | |s| = k}. We can associate each s 2 S with a (2n � 1)-
dimensional binary embedding with a k-hot cardinality constraint on the
first n dimensions and a constraint that the n � 1 dimensions indicate
correlations between adjacent dimensions in the first n, i.e. the vertices of
the correlation polytope of a chain [113, Ex. 3.8] with an added cardinality
constraint [132]. Let X ✓ R2n�1 be the set of all such embeddings,

X =
n

x 2 {0, 1}
2n�1

���Ân
i=1 xi = k; xi = xi�nxi�n+1 for all n < i  2n� 1

o
.

(3.17)

For u 2 Rn, a solution to the linear program x? 2 arg maxx2X u|x can be
computed using dynamic programming [130, 132].

random utilities . In our experiments for correlated k-subset selection
we considered Gumbel unary utilities with fixed pairwise utilities. This is,
we considered U1:n ⇠ Gumbel(q1:n) and U(n+1):(2n�1) = q(n+1):(2n�1).

relaxations . The exponential family relaxation for correlated k-subsets
can be computed using dynamic programming as described in [130, 132].

3.4.5 Perfect Bipartite Matchings

permutation matrix embeddings . Given a complete bipartite graph
G = (V , V 0, E), let S be the set of all perfect matchings. We can associate
each s 2 S with a permutation matrix and let X be the set of all such
matrices,

X =

(
x 2 {0, 1}

n⇥n

����� for all 1  i, j  n, Â
i

xij = 1, Â
j

xij = 1

)
. (3.18)

For u 2 Rn⇥n, a solution to the linear program x? 2 arg maxx2X u|x can be
computed using the Hungarian method [33].

3.4 examples of stochastic softmax tricks 35

random utilities . Previously, [133] considered U ⇠ Gumbel(q) and
[134] uses correlated Gumbel-based utilities that induce a Plackett-Luce
model [103][128].

relaxations . For the categorical entropy relaxation with R(x) = Ân
i=1 xi log(xi),

the SST solution X⇤
t can be computed using the Sinkhorn algorithm [135].

When choosing Gumbel utilities, this recovers Gumbel-Sinkhorn [133]. This
relaxation can also be used to relax the Plackett-Luce model, if combined
with the utility distribution in [134]. Grover et al. [134] proposed a bespoke
relaxation.

<latexit sha1_base64="jvrwKhRgoGgy1lTIJs0dJMpRFMM=">AAACKXicbVDLSgNBEJz1Gd+rghcvg1HwFHaDqEfBi8eI5gFJCLOTTjI4M7vM9Aphzc941Z/xpl79DQ9Okj0YY0FDUdVNd1eUSGExCD68hcWl5ZXVwtr6xubW9o6/u1ezcWo4VHksY9OImAUpNFRRoIRGYoCpSEI9erge+/VHMFbE+h6HCbQV62vRE5yhkzr+wV3CtBa6T9EA0ONWpLLG6LjjF4NSMAGdJ2FOiiRHpeN/t7oxTxVo5JJZ2wyDBNsZMyi4hNF6K7WQMP7A+tB0VDMFtp1N7h/RE6d0aS82rjTSifp7ImPK2qGKXKdiOLB/vbH4n9dMsXfZzoROUgTNp4t6qaQY03EYtCsMcJRDRxg3wt1K+YAZxtFFNrNl8pTgOAAr7Mw7WaRGLq7wbzjzpFYuheels9ty8aqUB1cgh+SInJKQXJArckMqpEo4eSLP5IW8ei/em/fufU5bF7x8Zp/MwPv6AeJjp4w=</latexit>

Spanning tree X
<latexit sha1_base64="NaXlbTV62abi93HCM+irzKHUTkU=">AAACLXicbVBNSwMxFMz6Wb+r3vQSrIKnZbeIeix48VjFqtCWks2+tsEkuyRvhbIU/DVe65/xIIhX/4QH020PVh0IDDPv8TITpVJYDII3b25+YXFpubSyura+sblV3t65tUlmODR4IhNzHzELUmhooEAJ96kBpiIJd9HDxdi/ewRjRaJvcJBCW7GeFl3BGTqpU967ZjpOFIW4BzRDIX162IpU3hgedsqVwA8K0L8knJIKmaLeKX+14oRnCjRyyaxthkGK7ZwZFFzCcLWVWUgZf2A9aDqqmQLbzosMQ3rklJh2E+OeRlqoPzdypqwdqMhNKoZ9+9sbi/95zQy75+1c6DRD0HxyqJtJigkdF0JjYYCjHDjCuBHur5T3mWEcXW0zV4pQgmMfrLAzcfJIDV1d4e9y/pLbqh+e+idX1UrNnxZXIvvkgByTkJyRGrkkddIgnDyRZzIiL97Ie/XevY/J6Jw33dklM/A+vwFfwajF</latexit>

Random edge util. U
<latexit sha1_base64="k63PvQs20oFDDxP2zIQFwDSp5sE=">AAACN3icbVA9SwNBFNzz2/gVtbRZTASxCHdB1FKwsVQ0JpDEsLd5lyzu7h2774Rw3B/w19jqP7GyE1t7CzcxhUkcWBhm3uPtTJhIYdH337y5+YXFpeWV1cLa+sbmVnF7587GqeFQ47GMTSNkFqTQUEOBEhqJAaZCCfXw4WLo1x/BWBHrWxwk0Fasp0UkOEMndYrlmzhCahOmtdA9igaAlluhyhr5/VEnayFL83KnWPIr/gh0lgRjUiJjXHWK361uzFMFGrlk1jYDP8F2xgwKLiEvtFILCeMPrAdNRzVTYNvZKE1OD5zSpVFs3NNIR+rfjYwpawcqdJOKYd9Oe0PxP6+ZYnTWzoROUgTNfw9FqaQY02E1tCsMcJQDRxg3wv2V8j4zjKMrcOLKKJTg2Acr7EScLFS5qyuYLmeW3FUrwUnl+LpaOq+Mi1she2SfHJKAnJJzckmuSI1w8kSeyQt59V68d+/D+/wdnfPGO7tkAt7XD4tOrXk=</latexit>

Soft spanning tree X⇤
t

<latexit sha1_base64="T2Byh1V5tgezezMPh24l8lKp/zQ=">AAACRXicbVDLSgMxFM34rPVVdekmWHysykwRdVlwI7ipYB/QKSWT3nZCk8yQZIQy9D/8Grf1F/wId+JK0ExbwbYeuHA451wu9wQxZ9q47puzsrq2vrGZ28pv7+zu7RcODus6ShSFGo14pJoB0cCZhJphhkMzVkBEwKERDG4zv/EESrNIPpphDG1B+pL1GCXGSp1C2Q+gz2RKQRpQI3yvEj0g/Fxj38eE9yPFTCiwD7L7m+kUim7JnQAvE29GimiGaqfw5Xcjmgi7TjnRuuW5sWmnRBlGOYzyfqIhJnRA+tCyVBIBup1OfhvhU6t0cS9SdqTBE/XvRkqE1kMR2KQgJtSLXib+57US07tpp0zGiQFJp4d6CccmwllRuMsUUMOHlhBqW2AU05AoQm0H81cmTzFqQtBMz72TBiKry1ssZ5nUyyXvqnT5UC5WzmbF5dAxOkEXyEPXqILuUBXVEEXP6AWN0aszdt6dD+dzGl1xZjtHaA7O9w+ol7QH</latexit>

Kruskal’s
algorithm

<latexit sha1_base64="Ldn1IbWXPt7snP5HJ0g5S/D9nuk=">AAACR3icbVDLSgMxFM3UV62vqks3weJjVWZKUZcFN4KbCtYWOqVk0jud0CQzJBmhDP0Rv8Zt/QO/wp24cGH6EGzrhcC559zDzT1Bwpk2rvvu5NbWNza38tuFnd29/YPi4dGTjlNFoUFjHqtWQDRwJqFhmOHQShQQEXBoBoPbid58BqVZLB/NMIGOIH3JQkaJsVS3WPUD6DOZUZAG1AjfM0WjKA7DC419HwuirEq4bUD2fqe6xZJbdqeFV4E3ByU0r3q3+O33YpoKa6ecaN323MR0MqIMoxxGBT/VkBA6IH1oWyiJAN3JpteN8JllejiMlX3S4Cn715ERofVQBHZSEBPpZW1C/qe1UxPedDImk9SApLNFYcqxifEkKtxjCqjhQwsIVcz+FdOIKEJtBotbpkcxaiLQTC+ckwViEpe3HM4qeKqUvaty9aFSqp3Pg8ujE3SKLpGHrlEN3aE6aiCKXtArGqM3Z+x8OJ/O12w058w9x2ihcs4PPCKzyg==</latexit>

Kirchhoff’s
marginals

<latexit sha1_base64="Ezd5s0KdsXFUAwjPbFgO7oRaxvw=">AAACKXicbVBNS8NAEN3Ur1q/qoIXL4utIAghKaIeC148VrAf0NSy2W7bpbtJ2J0oJfbPeK1/xpt69W94cJvmYKsPBh7vzTAzz48E1+A4H1ZuZXVtfSO/Wdja3tndK+4fNHQYK8rqNBShavlEM8EDVgcOgrUixYj0BWv6o5uZ33xkSvMwuIdxxDqSDALe55SAkbrFo7IHJMae4oMhEKXCJ+w8nJe7xZJjOynwX+JmpIQy1LrFb68X0liyAKggWrddJ4JOQhRwKtik4MWaRYSOyIC1DQ2IZLqTpPdP8KlRergfKlMB4FT9PZEQqfVY+qZTEhjqZW8m/ue1Y+hfdxIeRDGwgM4X9WOBIcSzMHCPK0ZBjA0hVHFzK6ZDoggFE9nClvQpTmHINNcL7yS+nJi43OVw/pJGxXYv7Yu7SqlqZ8Hl0TE6QWfIRVeoim5RDdURRc/oBU3RqzW13qx363PemrOymUO0AOvrBzWTpyc=</latexit>

t ! 0+

Figure 3.4: An example realization of a spanning tree SST for an undirected
graph. Middle: Random undirected edge utilities. Left: The random
soft spanning tree X⇤

t , represented as a weighted adjacency matrix,
can be computed via Kirchhoff’s Matrix-Tree theorem. Right: The
random spanning tree X, represented as an adjacency matrix, can be
computed with Kruskal’s algorithm.

3.4.6 Undirected Spanning Trees

edge indicator embeddings . Given a undirected graph G = (V , E),
let S be the set of spanning trees of G represented as subsets of the edges.
The indicator vector embeddings of S is the set,

X = [s2S{xs} ✓ {0, 1}
|E| (3.19)

We assume that G has at least one spanning tree, and thus X is non-empty.
A linear program over X is known as a maximum weight spanning tree
problem. It is efficiently solved by Kruskal’s algorithm [32].

random utilities . In our experiments, we used U ⇠ Gumbel(q). In
this case, there is a simple, categorical sampling process that describes the

36 gradient estimation with stochastic softmax tricks

distribution over X. The sampling process follows Kruskal’s algorithm [32].
The steps of Kruskal’s algorithm are as follows: sort the list of edges e 2 E

in non-increasing order according to their utilities Ue, greedily construct
a tree by adding edges to s as long as no cycles are created, and return
the indicator vector xs. Using Corollary 2 and Proposition 6, for Gumbel
utilities this is equivalent to the following process: sample edges e 2 E

without replacement with probabilities proportional to exp(qe), add edges
e to s in the sampled order as long as no cycles are created, and return the
indicator vector xs.

relaxations . The exponential family relaxation for spanning trees can
be computed using Kirchhoff’s Matrix-Tree Theorem. Here we present a
quick informal review. Consider an exponential family with natural param-
eters u 2 R|E | over X such that the probability of x 2 X is proportional to
exp(u|x). Define the weights,

wij =

8
<

:
exp(ue) if i 6= j and 9 e 2 E connecting nodes i and j

0 otherwise
. (3.20)

Consider the graph Laplacian A 2 R|V|⇥|V| defined by

Aij =

8
<

:
Âk 6=j wkj if i = j

�wij if i 6= j
(3.21)

Let Ak,k be any submatrix of A obtained by deleting the kth row and kth
column. The Kirchhoff Matrix-Tree Theoreom states that

log det Ak,k = log

Â
s2S

exp (u|xs)

!
. (3.22)

See [136, p. 14] for a reference. We can use this to compute the marginals of
the exponential family via its derivative [113]. In particular,

µ(u) :=

∂ log det Ak,k

∂ue

!

e2E

= Â
s2S

xs
exp (u|xs)

Âs02S exp (u|xs0)
. (3.23)

These partial derivatives can be computed with standard software for
automatic differentiation. All together, we may define the exponential family
relaxation via X⇤

t = µ(U/t). Notably, we can compute the expression in

3.4 examples of stochastic softmax tricks 37

(3.23) from the inverse of Ak,k [see e.g., 137, Section A.4.1]. In practice,
matrix inversion may suffer from numerical instability when entries A vary
widely. Since (3.23) is valid for any submatrix Ak,k, we suggest to use the
index k to be the row in which A has its maximum entry. In addition,
numerical stability can be improved by clipping entries from below using a
maximum range and by using the log-sum-exp trick.

3.4.7 Rooted, Directed Spanning Trees

edge indicator embeddings . Given a directed graph G = (V , E),
consider the set of r-arborescences for some root r 2 V . An r-arborescence
is a subgraph of G that is a spanning tree if the edge directions are ignored
and that has a directed path from r to every node in V . For an r-arborescence
s 2 S(r), let xs be the indicator vector of its edges and define the indicator
vector embeddings of S(r) as,

X = [s2S(r){xs} ✓ {0, 1}
|E| (3.24)

We assume that G has at least one r-arborescence, and thus X is non-empty.
A linear program over X is known as a maximum weight r-arborescence
problem. It is efficiently solved by the Chu-Liu-Edmonds algorithm (CLE)
[138, 139], see Algorithm 1 for an implementation by [140].

random utilities . In the experiments, we tried U ⇠ Gumbel(q),
�U ⇠ Exp(q) with q > 0, and U ⇠ Normal(q). As far as we know X does
not have any particularly simple closed-form categorical sampling process
in the cases U ⇠ Gumbel(q) or U ⇠ Normal(q).

In contrast, for negative exponential utilities �U ⇠ Exp(q), X can be
sampled using the sampling process given in Algorithm 2. In some sense,
Algorithm 2 is an elaborate generalization of the Gumbel-Max trick to
arborescences.

We will argue that Algorithm 2 produces the same distribution over its
output as Algorithm 1 does on negative exponential Ue. To do this, we
will argue that joint distribution of the sequence of edge choices (lines 2-4
colored red in Algorithm 1), after integrating out U, is given by lines 2-4
(colored blue) of Algorithm 2. Consider the first call to CLE: all Ue are
negative and distinct almost surely, for each node v 6= r the maximum
utility edge is picked from the set of entering edges Ev, and all edges have
their utilities modified by subtracting the maximum utility. The argmax of
Ue over Ev is a categorical random variable with mass function proportional

38 gradient estimation with stochastic softmax tricks

Algorithm 1: Maximum r-
arborescence [140]
Init: graph G, node r, Ue 2 R,

T = ∆;
1 foreach node v 6= r do
2 Ev = {edges entering v};
3 U0e = Ue �maxe2Ev Ue,

8e 2 Ev;
4 Pick e 2 Ev s.t. U0e = 0;

T = T [{e};
5 end
6 if T is an arborescence then

return xT ;
7 else there is a directed cycle

C ✓ T
8 Contract C to supernode,

form graph G0;
9 Recurse on (G0, r, U0) to get

arbor. T0;
10 Expand T0 to subgraph of

G and add
11 all but one edge of C;

return xT0 ;
12 end

Algorithm 2: Equiv. for neg.
exp. U
Init: graph G, node r, qe > 0,

T = ∆;
1 foreach node v 6= r do
2 Ev = {edges entering v};
3 Sample e ⇠ qe1Ev(e);

T = T [{e};
4 l0a = la if a 6= e else •,

8a 2 Ev;
5 end
6 if T is an arborescence then

return xT ;
7 else there is a directed cycle

C ✓ T
8 Contract C to supernode,

form graph G0;
9 Recurse on (G0, r, l0) to get

arbor. T0;
10 Expand T0 to subgraph of

G and add
11 all but one edge of C;

return xT0 ;
12 end

Figure 3.5: Algorithm 1 and Algorithm 2 have the same output distribution for
negative exponential U, i.e., Algorithm 2 is an equivalent categorical
sampling process for X. Algorithm 1 computes the maximum point
of a stochastic r-arborescence trick with random utilities Ue [140].
When �Ue ⇠ Exp(qe), it has the same distribution as Algorithm 2.
Algorithm 2 samples a random r-arborescence given rates qe > 0 for
each edge. Both algorithms assume that G has at least one r-arbor.
Color indicates the main difference.

3.4 examples of stochastic softmax tricks 39

to the rates qe, and it is independent of the max of Ue over Ev by Prop. 7. By
Corollary 1, the procedure of modifying the utilities leaves the distribution
of all unpicked edges invariant and sets the utility of the argmax edge to 0.
Thus, the distribution of U 0 passed one level up the recursive stack is the
same as U with the exception of a randomly chosen subset of utilities U 0

E

whose rates have been set to •. The equivalence in distribution between
Algorithm 1 and Algorithm 2 follows by induction.

relaxations . The exponential family relaxation for r-arborescences can
be computed using the directed version of Kirchhoff’s Matrix-Tree Theorem.
Here we present a quick informal review. Consider an exponential family
with natural parameters u 2 R|E | over X such that the probability of x 2 X

is proportional to exp(u|x). Define the weights,

wij =

8
<

:
exp(ue) if i 6= j and 9 e 2 E from node i! j

0 otherwise
. (3.25)

Consider the graph Laplacian A 2 R|V|⇥|V| defined by

Aij =

8
<

:
Âk 6=j wkj if i = j

�wij if i 6= j
(3.26)

Let Ar,r be the submatrix of A obtained by deleting the rth row and rth
column. The result by Tutte [136, p. 140] states that

log det Ar,r = log

0

@ Â
s2S(r)

exp (u|xs)

1

A (3.27)

We can use this to compute the marginals of the exponential family via its
derivative [113]. In particular,

µ(u) :=
✓

∂ log det Ar,r

∂ue

◆

e2E

= Â
s2S(r)

xs
exp (u|xs)

Âs02S(r) exp (u|xs0)
. (3.28)

Again, these partial derivatives can be computed with standard software
for automatic differentiation. All together, we may define the exponential
family relaxation via X⇤

t = µ(U/t).

40 gradient estimation with stochastic softmax tricks

3.5 related work

Here we review perturbation models (PMs) and methods for relaxation
more generally. SMTs are a subclass of PMs, which draw samples by op-
timizing a random objective. Perhaps the earliest example comes from
Thurstonian ranking models [141], where a distribution over rankings is
formed by sorting a vector of noisy scores. Perturb & MAP models [142,
143] were designed to approximate the Gibbs distribution over a combina-
torial output space using low-order, additive Gumbel noise. Randomized
Optimum models [106, 107] are the most general class, which include non-
additive noise distributions and non-linear objectives. Recent work [78]
uses PMs to construct finite difference approximations of the expected loss’
gradient. It requires optimizing a non-linear objective over X , and making
this applicable to our settings would require significant innovation.

Using SSTs for gradient estimation requires differentiating through a
convex program. This idea is not ours and is enjoying renewed interest
in [81, 82, 144]. In addition, specialized solutions have been proposed
for quadratic programs [76, 127, 145] and linear programs with entropic
regularizers over various domains [119, 120, 133, 145, 146]. In graphical
modeling, several works have explored differentiating through marginal
inference [83, 117, 147–150] and our exponential family entropy relaxation
builds on this work. The most superficially similar work is [151], which
uses noisy utilities to smooth the solutions of linear programs. In [151], the
noise is a tool for approximately relaxing a deterministic linear program.
Our framework uses relaxations to approximate stochastic linear programs.

3.6 experiments

Our goal in these experiments was to evaluate the use of SSTs for learning
distributions over structured latent spaces in deep structured models. We
chose frameworks (NRI [77], L2X [63], and a latent parse tree task) in which
relaxed gradient estimators are the methods of choice, and investigated
the effects of X , R, and U on the task objective and on the unsupervised
structure discovery. For NRI, we also implemented the standard single-loss-
evaluation score function estimators (REINFORCE [85] and NVIL [152]),
and the best SST outperformed these baselines both in terms of average
performance and variance, see results in Table C.1 in Appendix C. All SST
models were trained with the “soft” SST and evaluated with the “hard”
SMT. We optimized hyperparameters (including fixed training temperature

3.6 experiments 41

t) using random search over 20 (NRI, unsupervised parsing) or 25 (L2X)
independent runs. For each method, we selected the best model on a vali-
dation set and report its test set performance. To obtain standard errors, we
bootstrap over the model selection process. Specifically, we randomly sam-
pled with replacement 20 (NRI, unsupervised parsing) or 25 (L2X) times
from the available runs and select the best model from the sampled runs on
the validation set. We repeat this procedure 100,000 times to compute stan-
dard deviations over the set set metrics. We give more experimental details
in B. The experiments on with NRI on graph layout were conducted entirely
by Dami Choi with code available at https://github.com/choidami/sst.
They are included in this thesis for completion and with permission. The
experiments on unsupervised parsing were conducted together by Dami
Choi and me.

3.6.1 Neural Relational Inference (NRI) for Graph Layout

ELBO (") Edge Prec. (") Edge Rec. (")

T = 10
Indep. Dir. Edges [77] �1370 ± 20 48 ± 2 93 ± 1
E.F. Ent. Top |V|� 1 �2100 ± 20 41 ± 1 41 ± 1
Spanning Tree �1080 ± 110 91 ± 3 91 ± 3

T = 20
Indep. Dir. Edges [77] �1340 ± 160 97 ± 3 99 ± 1
E.F. Ent. Top |V|� 1 �1700 ± 320 98 ± 6 98 ± 6
Spanning Tree �1280 ± 10 99 ± 1 99 ± 1

Table 3.1: Spanning Tree performs best on structure recovery, despite being trained
on the ELBO. The differences are more pronounced when data is more
scarce (T = 10). Test ELBO and structure recovery metrics are shown
from models selected on validation ELBO.

With NRI we investigated the use of SSTs for latent structure recovery
and final performance. NRI is a graph neural network (GNN) model that
samples a latent interaction graph G = (V , E) and runs messages over the
adjacency matrix to produce a distribution over an interacting particle sys-
tem. NRI is trained as a variational autoencoder to maximize a lower bound

42 gradient estimation with stochastic softmax tricks

Ground Truth Independent Directed Edges

E.F. Entropy Top |V|� 1 Spanning Tree

Figure 3.6: The stochastic softmax trick Spanning Tree recovers the ground truth
latent graph perfectly on a test sample in neural relational inference
for graph layout, while the less structured relaxations Independent
Directed Edges and E.F. Entropy Top |V|� 1 fail.

(ELBO) on the marginal log-likelihood of the time series. We experimented
with three SSTs for the encoder distribution: Indep. Binary over directed
edges, which is the baseline NRI encoder [77], E.F. Ent. Top |V|� 1 over
undirected edges, and Spanning Tree over undirected edges. We computed
the KL with respect to the random utility U for all SSTs; see Appendix B for
details. Our dataset consisted of latent prior spanning trees over 10 vertices
sampled from the Gumbel(0) prior. Given a tree, we embed the vertices
in R2 by applying T 2 {10, 20} iterations of a force-directed algorithm
[153]. The model saw particle locations at each iteration, not the underlying
spanning tree.

We found that Spanning Tree performed best (Table 3.1), improving on
both ELBO and the recovery of latent structure over the baseline [77].
For structure recovery, we measured edge precision and recall against
the ground truth adjacency matrix. It recovered the edge structure well
even when given only a short series (T = 10, Figure 3.6). Less structured
baselines were only competitive on longer time series.

3.6 experiments 43

3.6.2 Unsupervised Parsing on ListOps

We investigated the effect of X ’s structure and of the utility distribution in
a latent parse tree task. We used a simplified variant of the ListOps dataset
[154], which contains sequences of prefix arithmetic expressions, e.g., max[
3 min[8 2]], that evaluate to an integer in [0, 9]. The arithmetic syntax
induces a directed spanning tree rooted at its first token with directed
edges from operators to operands. We modified the data by removing
the summod operator, capping the maximum depth of the ground truth
dependency parse, and capping the maximum length of a sequence. This
simplifies the task considerably, but it makes the problem accessible to GNN
models of fixed depth. Our models used a bi-LSTM encoder to produce a
distribution over edges (directed or undirected) between all pairs of tokens,
which induced a latent (di)graph. Predictions were made from the final
embedding of the first token after passing messages in a GNN architecture
over the latent graph. For undirected graphs, messages were passed in
both directions. We experimented with the following SSTs for the edge
distribution: Indep. Undirected Edges, Spanning Tree, Indep. Directed Edges,
and Arborescence (with three separate utility distributions). Arborescence was
rooted at the first token. For baselines we used an unstructured LSTM
and the GNN over the ground truth parse. All models were trained with
cross-entropy to predict the integer evaluation of the sequence.

The best performing models were structured models whose structure
better matched the true latent structure (Table 3.2). For each model, we
measured the accuracy of its prediction (task accuracy). We measured both
precision and recall with respect to the ground truth parse’s adjacency
matrix. 3 Both tree-structured SSTs outperformed their independent edge
counterparts on all metrics. Overall, Arborescence achieved the best perfor-
mance in terms of task accuracy and structure recovery. We found that
the utility distribution significantly affected performance (Table 3.2). For
example, while negative exponential utilities induce an interpretable distri-
bution over arborescences as demonstrated in Section 3.4, we found that
the multiplicative parameterization of exponentials made it difficult to train
competitive models. Despite the LSTM baseline performing well on task
accuracy, Arborescence additionally learns to recover much of the latent
parse tree.

git

3 We exclude edges to and from the closing symbol “]”. Its edge assignments cannot be learnt
from the task objective, because the correct evaluation of an operation does not depend on the
closing symbol.

44 gradient estimation with stochastic softmax tricks

Task Acc. (") Edge Prec. (") Edge Rec. (")

LSTM
— 92.1 ± 0.2 — —

GNN on latent graph
Indep. Undirected Edges 89.4 ± 0.6 20.1 ± 2.1 45.4 ± 6.5
Spanning Tree 91.2 ± 1.8 33.1 ± 2.9 47.9 ± 5.2

GNN on latent digraph
Indep. Directed Edges 90.1 ± 0.5 13.0 ± 2.0 56.4 ± 6.7
Arborescence

Neg. Exp. 71.5 ± 1.4 23.2 ± 10.2 20.0 ± 6.0
Gaussian 95.0 ± 2.2 65.3 ± 3.7 60.8 ± 7.3
Gumbel 95.0 ± 3.0 75.5 ± 7.0 71.9 ± 12.4

Ground Truth 98.1 ± 0.1 100 100

Table 3.2: Matching ground truth structure (non-tree ! tree) improves perfor-
mance on ListOps. The utility distribution impacts performance. Test
task accuracy and structure recovery metrics are shown from models
selected on valid. task accuracy. Note that because we exclude edges
to and from the closing symbol “]”, recall is not equal to twice of
precision for Spanning Tree and precision is not equal to recall for
Arborescence.

3.6.3 Learning To Explain (L2X) Aspect Ratings

With L2X we investigated the effect of the choice of relaxation. We used the
BeerAdvocate dataset [155], which contains reviews comprised of free-text
feedback and ratings for multiple aspects (appearance, aroma, palate, and
taste (Figure 3.7). Each sentence in the test set is annotated with the as-
pects that it describes, allowing us to define structure recovery metrics. We
considered the L2X task of learning a distribution over k-subsets of words
that best explain a given aspect rating.4 Our model used word embeddings
from [156] and convolutional neural networks with one (simple) and three

4 While originally proposed for model interpretability, we used the original aspect ratings. This
allowed us to use the sentence-level annotations for each aspect to facilitate comparisons
between subset distributions.

3.6 experiments 45

(complex) layers to produce a distribution over k-hot binary latent masks.
Given the latent masks, our model used a convolutional net to make predic-
tions from masked embeddings. We used k in {5, 10, 15} and the following
SSTs for the subset distribution: {Euclid., Cat. Ent., Bin. Ent., E.F. Ent.} Top
k and Corr. Top k. For baselines, we used bespoke relaxations designed for
this task: L2X [63] and SoftSub [131]. We trained separate models for each
aspect using mean squared error (MSE).

We found that SSTs improve over bespoke relaxations (Table 3.3 for
aspect aroma, and show the results for other aspects in Appendix C).
For unsupervised discovery, we used the sentence-level annotations for
each aspect to define ground truth subsets against which precision of
the k-subsets was measured. SSTs tended to select subsets with higher
precision across different architectures and cardinalities and achieve modest
improvements in MSE. We did not find significant differences arising from
the choice of regularizer R. Overall, the most structured SST, Corr. Top k,
achieved the lowest MSE, highest precision and improved interpretability:
The correlations in the model allowed it to select contiguous words, while
subsets from less structured distributions were scattered (Figure 3.7).

Pours a slight tangerine orange and straw yellow. The head is

nice and bubbly but fades very quickly with a little lacing.

Smells like Wheat and European hops , a little yeast in there too. There

is some fruit in there too, but you have to take a good whiff to get it.

The taste is of wheat, a bit of malt, and a little fruit flavour in there too.

Almost feels like drinking Champagne , medium mouthful otherwise. Easy

to drink, but not something I’d be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

Figure 3.7: For k-subset selection on the aroma aspect in learning to explain
aspect ratings, the more structured stochastic softmax trick Correlation
Top k selects contiguous words that are easier to parse and more
relevant (in red), while Top k picks scattered words on a test sample
(in blue).

46 gradient estimation with stochastic softmax tricks

k = 5 k = 10 k = 15

Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple model
L2X [63] 3.6 ± 0.1 28.3 ± 1.7 3.0 ± 0.1 25.5 ± 1.2 2.6 ± 0.1 25.5 ± 0.4
SoftSub [131] 3.6 ± 0.1 27.2 ± 0.7 3.0 ± 0.1 26.1 ± 1.1 2.6 ± 0.1 25.1 ± 1.0

Euclid. Top k 3.5 ± 0.1 25.8 ± 0.8 2.8 ± 0.1 32.9 ± 1.2 2.5 ± 0.1 29.0 ± 0.3
Cat. Ent. Top k 3.5 ± 0.1 26.4 ± 2.0 2.9 ± 0.1 32.1 ± 0.4 2.6 ± 0.1 28.7 ± 0.5
Bin. Ent. Top k 3.5 ± 0.1 29.2 ± 2.0 2.7 ± 0.1 33.6 ± 0.6 2.6 ± 0.1 28.8 ± 0.4
E.F. Ent. Top k 3.5 ± 0.1 28.8 ± 1.7 2.7 ± 0.1 32.8 ± 0.5 2.5 ± 0.1 29.2 ± 0.8

Corr. Top k 2.9 ± 0.1 63.1 ± 5.3 2.5 ± 0.1 53.1 ± 0.9 2.4 ± 0.1 45.5 ± 2.7

Complex model
L2X [63] 2.7 ± 0.1 50.5 ± 1.0 2.6 ± 0.1 44.1 ± 1.7 2.4 ± 0.1 44.4 ± 0.9
SoftSub [131] 2.7 ± 0.1 57.1 ± 3.6 2.3 ± 0.1 50.2 ± 3.3 2.3 ± 0.1 43.0 ± 1.1

Euclid. Top k 2.7 ± 0.1 61.3 ± 1.2 2.4 ± 0.1 52.8 ± 1.1 2.3 ± 0.1 44.1 ± 1.2
Cat. Ent. Top k 2.7 ± 0.1 61.9 ± 1.2 2.3 ± 0.1 52.8 ± 1.0 2.3 ± 0.1 44.5 ± 1.0
Bin. Ent. Top k 2.6 ± 0.1 62.1 ± 0.7 2.3 ± 0.1 50.7 ± 0.9 2.3 ± 0.1 44.8 ± 0.8
E.F. Ent. Top k 2.6 ± 0.1 59.5 ± 0.9 2.3 ± 0.1 54.6 ± 0.6 2.2 ± 0.1 44.9 ± 0.9

Corr. Top k 2.5 ± 0.1 67.9 ± 0.6 2.3 ± 0.1 60.2 ± 1.3 2.1 ± 0.1 57.7 ± 3.8

Table 3.3: For k-subset selection on aroma aspect, SSTs tend to outperform base-
line relaxations. Test set MSE (⇥10�2) and subset precision (%) is
shown for models selected on validation MSE.

3.7 discussion

We introduced stochastic softmax tricks, which are random convex pro-
grams that capture a large class of relaxed distributions over structured,
combinatorial spaces. We designed stochastic softmax tricks for subset se-
lection and a variety of spanning tree distributions. We tested their use in
deep latent variable models, and found that they can be used to improve
performance and to encourage the unsupervised discovery of true latent
structure. There are future directions in this line of work. The relaxation
framework can be generalized by modifying the constraint set or the utility
distribution at positive temperatures. Some combinatorial objects might
benefit from a more careful design of the utility distribution, while others,
e.g., matchings, are still waiting to have their tricks designed.

4
T H E G U M B E L - R A O G R A D I E N T E S T I M AT O R

synopsis The relaxed gradient estimators presented in the previous
chapter are often effective for non-supervised machine learning with dis-
crete variables. However, as argued in chapter 2, there are applications
where the relaxation of the forward-pass is undesirable and they cannot be
used. For this reason, in this chapter we propose the Gumbel-Rao estimator,
a relaxed gradient estimator for categorical variables that does not relax
the forward pass. Our estimator is based on the straight-through variant of
the Gumbel-Softmax estimator, but uses Rao-Blackwellization to provably
reduce its variance. This offers improved properties for gradient estimation
in particular when bias and variance are traded off via the temperature t. In
contrast to many other estimators that avoid relaxing the forward pass, it is
easy to implement, requires minimal tuning and is cheaper. Experimentally,
we demonstrate that our estimator lead to faster convergence and generally
improved performance in two unsupervised latent variable tasks.

attribution This chapter is largely based on the following publication
that was jointly authored with Chris J. Maddison and Andreas Krause.

• Paulus, M. B., Maddison, C. J. & Krause, A. Rao-Blackwellizing the
Straight-Through Gumbel-Softmax Gradient Estimator in International
Conference on Learning Representations (2021)

4.1 revisiting gradient estimators for discrete variables

In chapter 2 we reviewed gradient estimators for non-supervised machine
learning. We broadly distinguished between estimators that are based on
the score function and those that are based on reparameterization. Now,
we consider a finer categorization that positions the gradient estimator
we develop in this chapter. In Figure 4.1 we broadly partition existing
estimation techniques, based on whether they require one loss evaluation
or multiple loss evaluations [88, 91, 94] per estimate. Those estimators
that require only a single evaluation of the loss function are particularly
desirable, because loss evaluations can be costly across many applications
in non-supervised machine learning. Single-evaluation estimators may be

47

48 the gumbel-rao gradient estimator

<latexit sha1_base64="Sc8Su2mReoYXC42/4IyTH25RfT4=">AAACJXicbVBNS8NAEN3Urxq/ql4EL4tF8FSSHtSDh4KIHivYD2hK2Wwm7dLNJuxuhBL6Z7z4V7x4sIjgyb/ito2grQMDj/dmmDfPTzhT2nE+rcLK6tr6RnHT3tre2d0r7R80VZxKCg0a81i2faKAMwENzTSHdiKBRD6Hlj+8nuqtR5CKxeJBjxLoRqQvWMgo0Ybqla48H/pMZBSEBjm2PRWGJGJ8hG8lCZhhsefZN0qziOhYKtsDEfxM90plp+LMCi8DNwdllFe9V5p4QUzTyKxTTpTquE6iuxmRmlEO5nqqICF0SPrQMVCQCFQ3m305xqeGCXAYS9PG1oz9vZGRSKlR5JtJ43WgFrUp+Z/WSXV42c2YSFINgs4PhSnHOsbTyHDAJFBtIgkYoZIZr5gOiCTUZKBsE4K7+PIyaFYr7nnFva+Wa0d5HEV0jE7QGXLRBaqhO1RHDUTRE3pBb2hiPVuv1rv1MR8tWPnOIfpT1tc3xtOl6Q==</latexit>

Gradient
Estimators

<latexit sha1_base64="/XFzN9ZSNyxcQgS9QJkQz6lTSnM=">AAACKHicbVDLSsNAFJ34rPFVdSO4GSyCq5J0oe4suHFZwT6gCWUyuUmHTiZhZlIooZ/jxl9xI6JIt36J04egrQcGDufcw9x7gowzpR1nYq2tb2xubZd27N29/YPD8tFxS6W5pNCkKU9lJyAKOBPQ1Exz6GQSSBJwaAeDu6nfHoJULBWPepSBn5BYsIhRoo3UK996AcRMFBSEBjm2PRVFJGF8hBUTMQfseTZPlcIwJDyfhWwPRPgT6JUrTtWZAa8Sd0EqaIFGr/zmhSnNExOnnCjVdZ1M+wWRmlEOZoFcQUbogMTQNVSQBJRfzA4d4wujhDhKpXlC45n6O1GQRKlREpjJhOi+Wvam4n9eN9fRjV8wkeUaBJ1/FOUc6xRPW8Mhk0C1aSVkhEpmdsW0TyShpgNlmxLc5ZNXSatWda+q7kOtUj9d1FFCZ+gcXSIXXaM6ukcN1EQUPaEX9I4+rGfr1fq0JvPRNWuROUF/YH19A2hwp0k=</latexit>

single
loss evaluation

<latexit sha1_base64="UeOiaYyagyCLVFT+eXujwKXa1QU=">AAACXXicbZDRSxtBEMb3ztpqajXqg4W+LA0FC+1xF6jxUfDFRy1GhWwIc3tzccne3rE7J8Yj/6Rv9qX/ipuYQhs7sPDxfTPM7C+ttHIUx09BuPZm/e27jc3W+60P2zvt3b0rV9ZWYl+WurQ3KTjUymCfFGm8qSxCkWq8Tien8/z6Dq1TpbmkaYXDAsZG5UoCeWvUJpHiWJlGoiG0M0F4T41weQ6F0lP+E1PwruDizlUgsfkeR70feL/aKJy0qiKnHpAfXtZygpYjcdDRN96Nk97XmUCT/dkyanfiKF4Ufy2SpeiwZZ2P2o8iK2Vd+HGpwblBElc0bMCSkhpnLVE79OdNYIwDLw0U6IbNgs6Mf/FOxvPS+meIL9y/JxoonJsWqe8sgG7dajY3/5cNasqPh40yVU1o5MuivNacSj5HzTNlUZKnmCnwePytXN6CBekZuJaHkKx++bW46kbJUZRcdDsnH5c4Ntgn9pkdsoT12Ak7Y+eszyT7FbBgM2gFv8P1cCvcfmkNg+XMPvunwoNnChe13Q==</latexit>

Rebar
(Tucker et al., 2017)<latexit sha1_base64="rBdb394sGflEkX3RF0ZeonMEttg=">AAACX3icbZBNa9tAEIZXSlqnTpqq6SWll6WmJYXWSIYmPRp8SQ8hH9ROwGvMajWyl6xWYndk4gj9yd4KueSfdO040DoZWHjnnRlm9okLJS2G4R/P39h88bKx9aq5vfN6903wdm9g89II6Itc5eYq5haU1NBHiQquCgM8ixVcxte9Rf1yBsbKXP/CeQGjjE+0TKXg6KxxMGMxTKSuBGgEUzOEG6yYTVOeSTWng58nvdOaMcpmtuACqm9h++g73Kw3MiuMLNDKW6AHJ1pOKftML+AWdAJfaSeMDr/UzCWPe8ZBK2yHy6BPRbQSLbKKs3HwmyW5KDM3LhS3dhiFBY4qblAKBXWTlRbcgdd8AkMnNc/Ajqoln5p+ck5C09y4p5Eu3X8nKp5ZO89i15lxnNr12sJ8rjYsMf0xqqQuSgQtHhalpaKY0wVsmkgDAh3HRHIHyN1KxZQbLhwD23QQovUvPxWDTjs6bEfnnVZ3f4Vji3wgH8kBicgR6ZJjckb6RJA7z/e2vR3v3m/4u37w0Op7q5l35L/w3/8Fw0S2Gw==</latexit>

VIMCO
(Mnih & Rezende, 2016)

<latexit sha1_base64="yl1TPnCfeWL9QsKqZ6GLkMITfug=">AAACWnicbZBfSxtBFMVnV+ufaNvU9kHwZTAIFtplN1Djo9AH+1KIYFTIhDA7ezcOzs5uZ+5K4rJf0hcR/CpCJzGCRi8MHM65l3vnFxdKWgzDe89fWv6wsrq23tjY/Pjpc/PL1pnNSyOgJ3KVm4uYW1BSQw8lKrgoDPAsVnAeX/2e5ufXYKzM9SlOChhkfKRlKgVHZw2b/1gMI6krARrB1AxhjBWzacozqSb0b9k1eVEzRtm1LbiA6mcYdH7BeLGTWWFkgVbeAN0/Likg5Sr4QdthdPC9ZqCT5xXDZisMwlnRtyKaixaZV3fYvGVJLsrMjQvFre1HYYGDihuUQkHdYKUFd9oVH0HfSc0zsINqhqame85JaJob9zTSmftyouKZtZMsdp0Zx0u7mE3N97J+ienhoJK6KBG0eFqUlopiTqecaSINCHQIE8kdGncrFZfccOEY2IaDEC1++a04awfRQRCdtFtH23Mca2SH7JJ9EpEOOSJ/SJf0iCB35NFb8Va9B9/31/2Np1bfm898Ja/K//YfYsy1gg==</latexit>

MuProp
(Gu et al., 2016)

<latexit sha1_base64="ev+yc2XjsRzQnvO6bfD17vLX6ik=">AAACK3icbVDLSgMxFM34rOOr6kZwEyyCqzLThbosunFZwT6gU0omc6cNTTJDkimUof/jxl9xoQsfuPU/TB+Cth4IHM65h9x7wpQzbTzv3VlZXVvf2Cxsuds7u3v7xYPDhk4yRaFOE56oVkg0cCahbpjh0EoVEBFyaIaDm4nfHILSLJH3ZpRCR5CeZDGjxFipW7wOQugxmVOQBtTYDXQcE8H4CIuMG5ZywEHg8kRrDEPCs2lMuwHI6CfTLZa8sjcFXib+nJTQHLVu8TmIEpoJG6ecaN32vdR0cqIMoxzsDpmGlNAB6UHbUkkE6E4+vXWMz6wS4ThR9kmDp+rvRE6E1iMR2klBTF8vehPxP6+dmfiqkzOZZgYknX0UZxybBE+KwxFTQI0tJmKEKmZ3xbRPFKG2A+3aEvzFk5dJo1L2L8r+XaVUPZ7XUUAn6BSdIx9doiq6RTVURxQ9oCf0it6cR+fF+XA+Z6MrzjxzhP7A+foGOoioxA==</latexit>

multiple
loss evaluations

<latexit sha1_base64="mMniVrlOt4hrSNG3SAE5LX3JQy4=">AAACqniclVHbihNBEO0Zb2u8bNQXwZfGIK6wO8wE3PVxwQdFWFgvSVYyIdT01GSb7cvQXbMkDvk4f8E3/8ZONoJmfbGg4XCqTlX1qaJW0lOa/oziGzdv3b6zc7dz7/6Dh7vdR4+H3jZO4EBYZd1ZAR6VNDggSQrPaoegC4Wj4uLtKj+6ROelNV9oUeNEw8zISgqgQE273/MCZ9K0Ag2hW+aEc2pzX1WgpVrwd40uUB18thVpmC/znOeXvgaB7UGaHL3G+bYi98LJmrz8hnzvBMpSems4EgeV7PN+mh2++t8uH8DMtjugKX+vPO320iRdB78Osg3osU2cTrs/8tKKRge5UOD9OEtrmrTgSAqFy07eeAzLXcAMxwEa0Ogn7drqJX8RmJJX1oVniK/ZPxUtaO8XugiVGujcb+dW5L9y44aqN5NWmrohNOJqUNUoTpav7sZL6VBQOEkpIZgTduXiHByI4IHvBBOy7S9fB8N+kh0m2cd+7/jpxo4d9ow9Z3ssY0fsmL1np2zARPQyOomG0Sjejz/FX+PxVWkcbTRP2F8Rl78A74LSOA==</latexit>

Gumbel-Softmax
(Maddison et al., 2016)

(Jang et al., 2016)

<latexit sha1_base64="G6sa6kKfE3KpaVhH01tLr5dBNX4=">AAACKHicbVDLSsNAFJ34Nr6ibgQ3g0VwVZIu1J0FNy4VrApNKJPJTR06jzAzUUro57jxV9yIKNKtX+L0Ifi6MHA49xzm3JMWnBkbhkNvZnZufmFxadlfWV1b3wg2t66MKjWFFlVc6ZuUGOBMQssyy+Gm0EBEyuE67Z2O9td3oA1T8tL2C0gE6UqWM0qsozrBSZxCl8mKgrSgB35s8pwIxvtYqMzpIMNx7OdK3xOdYapEUfdjkNmXoRPUwno4HvwXRFNQQ9M57wQvcaZoKZydcmJMOwoLm1REW0Y5uAClgYLQHulC20FJBJikGh86wPuOybBL4560eMx+d1REGNMXqVMKYm/N792I/G/XLm1+nFRMFqUFSScf5SXHVuFRazhjGqh1rWSMUM1cVkxviSbUdWB8V0L0++S/4KpRjw7r0UWj1tyZ1rGEdtEeOkAROkJNdIbOUQtR9ICe0Ct68x69Z+/dG06kM97Us41+jPfxCcYKpuE=</latexit>

modified
forward comp.

<latexit sha1_base64="85ninZnngRNFdVtoNMP82hmwn58=">AAACKnicbVDLSgMxFM34rOOr6kZwEyyCqzLjQl1W3LisYFuhU0omc6cG8xiSjFKGfo8bf8VNF0px64eYPgRtvRA4nHsOOffEGWfGBsHIW1peWV1bL234m1vbO7vlvf2mUbmm0KCKK30fEwOcSWhYZjncZxqIiDm04sfr8b71BNowJe9sP4OOID3JUkaJdVS3fBXF0GOyoCAt6IEfmTQlgvE+zqVQiVNCgqPIT5V+JjrBVIms6kcgkx9Lt1wJqsFk8CIIZ6CCZlPvlodRomgunJ1yYkw7DDLbKYi2jHJwEXIDGaGPpAdtByURYDrF5NQBPnFMgl0a96TFE/a3oyDCmL6InVIQ+2Dmd2Pyv107t+llp2Ayyy1IOv0ozTm2Co97wwnTQK3rJWGEauayYvpANKGuA+O7EsL5kxdB86wanlfD27NK7XBWRwkdoWN0ikJ0gWroBtVRA1H0gt7QO/rwXr2hN/I+p9Ilb+Y5QH/G+/oGntGn2A==</latexit>

unmodified
forward comp.

<latexit sha1_base64="QerIuC2QSh01JsjRqJcyEhqf2kA=">AAACpniclVFdSxtBFJ1dW2uj1agvhb4MDUIK7bIbqB9vgtjWF2ujMUImpLOzd5PB2dll5q6YLvlp/RN967/pJEaw0RcvDBzO/TpzblwoaTEM/3r+0ouXy69WXtdW196sb9Q3ty5tXhoBHZGr3FzF3IKSGjooUcFVYYBnsYJufH00zXdvwFiZ6wscF9DP+FDLVAqOjhrUf7MYhlJXAjSCmTCEW6yYTVOeSTWm7eOT0y/f20fHE8You7EFF1B9CoO9z3C7WMysMLJAK38BbX5VY60pIOUq+Eijg4Pww3NHdKVSkmf24ZSWmwI6uZc7qDfCIJwFfQyiOWiQeZwN6n9Ykosyc+1CcWt7UVhgv+IGpVAwqbHSghN4zYfQc1DzDGy/mtk8oTuOSWiaG/c00hn7sKNyYu04i11lxnFkF3NT8qlcr8R0v19JXZQIWtwtSktFMafTm9FEGhDozpFI7gxyWqkYccOF88DWnAnR4pcfg8tWEO0G0Y9W4/Dt3I4V8o68J00SkT1ySL6RM9Ihwmt4J17bO/eb/qnf8bt3pb4379km/4X/8x901M/z</latexit>

REINFORCE
(Glynn et al., 1990)

(Williams et al., 1992)<latexit sha1_base64="RC/tFzhPNeqIAdrt5u/hwQlN3hQ=">AAACXHicbZDRaxNBEMb3zqppajVakEJfFkOlPhjuglofCz6oUKWCSQvZEPb25pKle3vHzlxpPO6f7Ftf/Fd0k0ZoU+fp45sZ5ptfUhqNFEXXQfhg4+Gjx63N9taT7afPOs9fDLGonIKBKkzhzhKJYLSFAWkycFY6kHli4DQ5/7Ton16AQ13YnzQvYZzLqdWZVpK8NemgSGCqba3AErhGEFxSLTDLZK7NnH8ffj1uhODiAkupoH4b9Q7fw+X6nEDldEmofwH/ZvWMi9f8s4Np4fhBP4rfvWkE2PTfkUmnG/WiZfH7Il6JLlvVyaRzJdJCVblfV0YijuKopHEtHWlloGmLCsHHO5dTGHlpZQ44rpdwGr7vnZRnPkpWWOJL9/ZGLXPEeZ74yVzSDNd7C/N/vVFF2cdxrW1ZEVh1cyirDKeCL0jzVDtQ5CGmWno8PitXM+mk8gyw7SHE6y/fF8N+L/7Qi3/0u0e7KxwttsdesQMWs0N2xL6wEzZgil2zP0Er2Ax+hxvhVrh9MxoGq50ddqfCl38Bvcm2Ig==</latexit>

NVIL
Mnih & Gregor (2014)

<latexit sha1_base64="uN64R8DrR9/hAoWffvXqgzSezE8=">AAACYHicbZBBb9NAEIXXLtAQWprCBcFlRYRUJLDsSNAeK3Eox4JIWykbReP1OFl1vbZ2x22C5T/JjUMv/SXdpEGClJFWenozo3n7pZVWjuL4dxBuPXr8ZLvztPtsZ/f5Xm//xZkraytxKEtd2osUHGplcEiKNF5UFqFINZ6nl1+W/fMrtE6V5gctKhwXMDUqVxLIW5PetUhxqkwj0RDaVhDOqREuz6FQesG/o4Z5KwQXV64Cic3HODr8hPPNQeGkVRU59RP5wYkFml2XM82ROOjoAx/EydH7VqDJ/hya9PpxFK+KPxTJWvTZuk4nvV8iK2Vd+HWpwblRElc0bsCSkhrbrqgd+oSXMMWRlwYKdONmBajl77yT8by0/hniK/fvjQYK5xZF6icLn91t9pbm/3qjmvKjcaNMVRMaeX8orzWnki9p80xZlORBZgo8IZ+VyxlYkJ6B63oIyeaXH4qzQZR8jpJvg/7xqzWODnvD3rIDlrBDdsy+slM2ZJLdBFvBTrAb3IadcC/cvx8Ng/XOS/ZPha/vAA71t04=</latexit>

Relax
(Grathwohl et al., 2018)

<latexit sha1_base64="g84ByXEcu4u8eWhpe7SZITTC8Zc=">AAACK3icbVDLSsNAFJ34rPEVdSO4GSyCCylJF+pSdOOygq1CU8rN5KYdnEzCzKRQgv/jxl9xoQsfuPU/nD4EXwcGDufec+feE+WCa+P7r87M7Nz8wmJlyV1eWV1b9zY2WzorFMMmy0SmriPQKLjEpuFG4HWuENJI4FV0czaqXw1QaZ7JSzPMsZNCT/KEMzBW6nqnYYQ9LkuG0qC6dUOdJJByMaSFjLgdHB/QMHT7vNdHRQegOEiGbogy/vJ0vapf88egf0kwJVUyRaPrPYZxxorU2pkArduBn5tOCcpwJtDuUGjMgd1AD9uWSkhRd8rxrbd0zyoxTTJlnzR0rH53lJBqPUwj25mC6evftZH4X61dmOS4U3KZFwYlm3yUFIKajI6CozFXyIwNJubAFLe7UtYHBcxmoF0bQvD75L+kVa8Fh7Xgol492Z7GUSE7ZJfsk4AckRNyThqkSRi5Iw/kmbw4986T8+a8T1pnnKlni/yA8/EJNqOoIw==</latexit>

unbiased,
higher variance

<latexit sha1_base64="CNaL5WSOzvOT2fRPI99DDeqAH60=">AAACXXicbZBfSxtBFMVn1z+N0WqsDxZ8GQwFC3XZDVT7KAilj5EaFTIhzM7ejUNmZ5eZu8Fk2S/pm770q3QSI7TRCwOHc+7l3vnFhZIWw/DJ89fWNzY/NLaa2zsfd/da+59ubF4aAT2Rq9zcxdyCkhp6KFHBXWGAZ7GC23h8Oc9vJ2CszPU1TgsYZHykZSoFR2cNW8hiGEldCdAIpmYID1gxm6Y8k2pKf+bl7+uaMcomtuACqtMwOP8OD6uNzAojC7RyBvSkC2YCMwpIuQq+0U7YCb/WDHTyumXYaodBuCj6VkRL0SbL6g5bjyzJRZm5caG4tf0oLHBQcYNSKKibrLTgzhvzEfSd1DwDO6gWdGr6xTkJTXPjnka6cP+dqHhm7TSLXWfG8d6uZnPzvaxfYvpjUEldlAhavCxKS0Uxp3PUNJEGBDqKieQOj7uVintuuHAMbNNBiFa//FbcdILoLIiuOu2Lz0scDXJEjskJicg5uSC/SJf0iCDPHvG2vKb3x9/wd/zdl1bfW84ckP/KP/wL5c21yg==</latexit>

FouST
(Pervez et al., 2020)

<latexit sha1_base64="yttiJ7NmyLfPpVUMhudTzhfW4F8=">AAACpXiclVFNa9tAEF2pX6n7Eae9FHpZYkpTaITkkqbHkF58KSSt7QS8xqxWI2nJalfsjkJc4X+WX5Fb/k3Xjgut00sHFh5v5s3MvklrJR3G8W0QPnj46PGTraedZ89fvNzu7rwaO9NYASNhlLHnKXegpIYRSlRwXlvgVargLL34usyfXYJ10ughzmuYVrzQMpeCo6dm3WuWQiF1K0Aj2AVDuMKWuTznlVRz+gMtl0WJ+8PSmqYoF4xRdulqLqDdj6PDA7ja1DAnrKzRyZ9A9wZSo9EfaT9O+h/+V3wMupCGAlKuolWPT74H6Oz3trNuL47iVdD7IFmDHlnHyax7wzIjmsrLheLOTZK4xmnLLUqhYNFhjQO/3gUvYOKh5hW4abtyeUHfeSajubH+aaQr9k9Fyyvn5lXqKyuOpdvMLcl/5SYN5l+mrdR1g6DF3aC8URQNXZ6MZtKCQH+NTHJvj9+VipJbLrwHruNNSDa/fB+M+1HyOUpO+72jN2s7tshbskv2SEIOyREZkBMyIiLYDQbBafA9fB9+C4fh+K40DNaa1+SvCGe/AFne0Ok=</latexit>

Straight-Through
(Hinton, 2012)

(Bengio et al., 2013)

<latexit sha1_base64="PcYxfRCxHeg3fNENeZT3HcS4grM=">AAACiHicbVFdb9MwFHUyBqN8lfGCxItFhTQEjZKKrfA2wQOIp6Gt26S6qhznJrFmO5F9M7VE+S38J974N7hdkaDjSpaOzj33+vg4rZV0GMe/gnDnzu7de3v3ew8ePnr8pP90/9xVjRUwEZWq7GXKHShpYIISFVzWFrhOFVykV59W/YtrsE5W5gyXNcw0L4zMpeDoqXn/B0uhkKYVYBBsxxAW2DKX51xLtaSnaLksShyelbZqirJjjG5rPjc6BTU8rXLUfLFWXLuaC2iHcTQ+hMX2VuaElTU6+R3owVduCgpIuYre0lGcHL3uGJjsj6F5fxBH8brobZBswIBs6mTe/8mySjTajwvFnZsmcY2zlluUQkHXY40Db+6KFzD10HANbtaug+zoK89kNK+sPwbpmv17ouXauaVOvVJzLN12b0X+rzdtMH8/a6WpGwQjbi7KG0WxoqtfoZm0INCHmUnuw/FeqSi55cJn4Ho+hGT7ybfB+ShKjqLk22hw/HwTxx55QV6SA5KQMTkmX8gJmRAR7AZvgnfBYdgL43AcfriRhsFm5hn5p8KPvwF24sY5</latexit>

Straight-Through
Gumbel-Softmax

(Jang et al., 2016)

<latexit sha1_base64="bCtuWKx3ItEq4u96ZqfxS7hfn0k=">AAACKHicbVDJSsRAEO24G7eoF8FL4yB4kCGZg3pT8OJRwVlgMgyVTmWmmU4ndHeUIfg5XvwVLyKKePVL7FkEtwcNj1f1qqtelAuuje+/OzOzc/MLi0vL7srq2vqGt7nV0FmhGNZZJjLVikCj4BLrhhuBrVwhpJHAZjQ4H9WbN6g0z+S1GebYSaEnecIZGCt1vdMwwh6XJUNpUN25oU4SSLkY0ojbsfEhDUNXZLeo6A0oDpKhG6KMvwxdr+JX/THoXxJMSYVMcdn1nsM4Y0Vq7UyA1u3Az02nBGU4E2gXKDTmwAbQw7alElLUnXJ86B3dt0pMk0zZJw0dq98dJaRaD9PIdqZg+vp3bST+V2sXJjnplFzmhUHJJh8lhaAmo6PUaMwVMmNTiTkwxe2ulPVBAbMZaNeGEPw++S9p1KrBUTW4qlXOdqZxLJFdskcOSECOyRm5IJekThi5J4/khbw6D86T8+a8T1pnnKlnm/yA8/EJq4Sm1A==</latexit>

biased,
lower variance

<latexit sha1_base64="LeTzlkvSw1d8nWbzXnmprIHu3zQ=">AAACa3icbVBNTxsxEPVuP6AppQEORW0PphESPRDtIgE9IvUAR1oRQIqjyOudTaz4Y+XxAulqL/2JvfUf9NL/UCekVRs6kqU3b+bNjF9WKok+Sb5H8aPHT56urD5rPV97sf6yvbF5ibZyAnrCKuuuM46gpIGel17BdemA60zBVTb5OKtf3YBDac2Fn5Yw0HxkZCEF94Eatr+yDEbS1AKMB9cwD3e+ZlgUXEs1pfM8K+rTSmeg9j9z2zSMUXaDJRdQ7yfd40O4W5YxFE6WHuUX+DNh72Iskd5aN9l5H2aAyX/vHLY7STeZB30I0gXokEWcD9vfWG5FpYNcKI7YT5PSD2ruvBQKmharEMJ5Ez6CfoCGa8BBPfeqobuByWlhXXjG0zn7t6LmGnGqs9CpuR/jcm1G/q/Wr3zxYVBLU1YejLhfVFSKektnxtNcOhA+eJpLHuwJt1Ix5o6L4AG2ggnp8pcfgsuDbnrUTT8ddE62F3askjfkHdkjKTkmJ+SMnJMeEeRHtB69irajn/FW/Dp+e98aRwvNFvkn4t1fYLC97g==</latexit>

Gumbel-Rao
(This work!)

Figure 4.1: We taxonomize existing gradient estimators. First, we group gradient
estimators by their computational overhead, distinguishing between
estimators that only require a single loss evaluation and those that
require multiple loss evaluations [e.g., 88, 91, 94]. Second, we distin-
guish between estimators that modify the forward computation [e.g.,
101, 102, other relaxed estimators] and those that do not. Finally, we
group estimators based on their statistical properties and distinguish
between estimators that are unbiased and often higher variance [e.g.,
84, 85, 92, 94, 152, score function estimators] and estimators that are bi-
ased, but often lower variance [e.g., 65, 102, 157, 158, straight-through
estimators]

further categorized into those that do and do not modify the forward
computation of the model. In the previous chapter, we introduced several
estimators in the former group for different structured domains. These
estimators relax the discrete random variable to a continuous random
variable at train time. For categorical random variables, the most popular
such estimator is the Gumbel-Softmax estimator from chapter 2. However,
as we described there, in some applications it is desirable or required to
leave the forward pass unmodified. For example, because this avoids the
accumulation of errors in the forward direction or allows the model to
exploit the sparsity of discrete computation [65, 73, 159]. Thus, there is
a particular need for single evaluation estimators that do not modify the
loss computation. These estimators may be grouped based on whether or

4.1 revisiting gradient estimators for discrete variables 49

not they introduce bias to reduce variance. Those estimators that do not
introduce bias are generally based on the score function and tend to be
higher variance. We reviewed several such estimators in chapter 2. The
other estimators reduce variance by introducing bias and are generally
known as straight-through estimators [65, 102, 158, 159]. They differ in the
strategies they employ to trade off bias for variance with the overall goal
being to reduce the total mean squared error in gradient estimation.

4.1.1 Straight-through estimators

Straight-through estimators are single-evaluation estimators that leave the
forward computation unmodified, but introduce bias to reduce variance and
improve overall gradient estimation. Generally, the strategy is to evaluate the
loss function on the discrete variable, but to perform backpropagation and
estimate gradients “through” a surrogate. Thus, in the case of categorical
variables X ⇠ Categorical(q), they do not require the loss function to
be defined on the interior of the simplex, but they do require it to be
differentiable at the corners. The original straight-through estimator was
introduced by [65, 159]. For categorical distribution, this estimator takes as
a surrogate the tempered probabilities of X, resulting in the slope-annealed
straight-through estimator (ST):

⌘̂ST :=
∂L(X)

∂X
d

dq
softmaxt(q). (4.1)

For binary variables, a lower bias variant of this estimator (FouST) was
proposed by Pervez, Cohen & Gavves [158].

Arguably, the most popular straight-through estimator for categorical
variables is known as the straight-through Gumbel-Softmax gradient estimator
[ST-GS, 160]. This estimator is based on the Gumbel-Softmax estimator we
previously considered. But it replaces the continuous relaxation X⇤

t with
the discrete variable X in the forward pass to evaluate the loss function.
Both the discrete variable X⇤ and the relaxed variable X⇤

t are coupled,
because they share the same U. For n-ary categorical distributions, the
discrete variable is X = arg maxx2X

U|x for one-hot embeddings X =
{x 2 {0, 1}n

| Âi xi = 1} as given in (3.1) and the relaxed variable is X⇤
t =

softmaxt(U) as given in (2.13) for U ⇠ Gumbel(q). The ST-GS estimator is
given by

⌘̂STGS :=
∂L(X)

∂X
d

dq
softmaxt(U). (4.2)

50 the gumbel-rao gradient estimator

In Figure 4.2 we illustrate the ST-GS estimator for a variational autoencoder
with categorical variables on the MNIST dataset. We experimented with this
model in section 4.4. The ST-GS estimator uses the discrete random variable
in the forward pass to compute the loss, but uses the relaxed sample as a
surrogate in the backward pass to propagate gradients.

DecoderEncoder

<latexit sha1_base64="g2X9x/eD/g/r1dn46ELEy4o2Fkg=">AAACMnicbVA9SwNBFNzz2/h1amnhYiJYhbsgahmwsVQwJpALYW/zLlmye3fsvhPDkdJfYxt/jHZi60+wcBNTmMSBhWHmPd7OhKkUBj3vzVlaXlldW9/YLGxt7+zuufsHDybJNIcaT2SiGyEzIEUMNRQooZFqYCqUUA/712O//gjaiCS+x0EKLcW6sYgEZ2iltntMA4QnzAMTRUwJOaClIFR5gD1ANiwN227RK3sT0EXiT0mRTHHbdr+DTsIzBTFyyYxp+l6KrZxpFFzCsBBkBlLG+6wLTUtjpsC08kmQIT21SodGibYvRjpR/27kTBkzUKGdVAx7Zt4bi/95zQyjq1Yu4jRDiPnvoSiTFBM6boV2hAaONn1HMK6F/SvlPaYZR9vdzJVJKMFtP0aYmTh5qMZ1+fPlLJKHStm/KJ/fVYpVOi1ugxyRE3JGfHJJquSG3JIa4eSZvJAReXVGzrvz4Xz+ji45051DMgPn6wc7+6vU</latexit>

q
<latexit sha1_base64="plLL26gYJ16aSXup9Nvyq0Ks3mA=">AAACNnicbVC7SgNBFJ31Gd9RS5vBRBCLsBtELQUbywgmBrIxzE7uJoMzu8vMXTEs+wF+ja1+io2d2PoBFk4ehUk8MHA4517unBMkUhh03XdnYXFpeWW1sLa+sbm1vVPc3WuYONUc6jyWsW4GzIAUEdRRoIRmooGpQMJd8HA19O8eQRsRR7c4SKCtWC8SoeAMrdQplqiP8ISZb8KQKSEHtOwHKmvm9yedzEeW5uXcTrkVdwQ6T7wJKZEJap3ij9+NeaogQi6ZMS3PTbCdMY2CS8jX/dRAwvgD60HL0ogpMO1sFCanR1bp0jDW9kVIR+rfjYwpYwYqsJOKYd/MekPxP6+VYnjRzkSUpAgRHx8KU0kxpsNmaFdo4Ggb6ArGtbB/pbzPNONo+5u6EqipDNkopODYByPMsC5vtpx50qhWvLPK6U21dEknxRXIATkkx8Qj5+SSXJMaqRNOnskLeSVvzqvz4Xw6X+PRBWeys0+m4Hz/Al65rWc=</latexit>

X⇤
t

<latexit sha1_base64="P4KXzNDbFUDzZjihDJdfDWGsor8=">AAACLXicbVDLSsNAFJ34rPUVdaebwVZwVZIi6rLgxmUF+4CmlMn0ph06k4SZG7GEgl/jtv6MC0Hc+hMuTB8L23pg4HDOvdw5x4+lMOg4H9ba+sbm1nZuJ7+7t39waB8d102UaA41HslIN31mQIoQaihQQjPWwJQvoeEP7iZ+4wm0EVH4iMMY2or1QhEIzjCTOvYp9RCeMfVMEDAl5JAWPV+lzVFx1LELTsmZgq4Sd04KZI5qx/7xuhFPFITIJTOm5ToxtlOmUXAJo7yXGIgZH7AetDIaMgWmnU4zjOhFpnRpEOnshUin6t+NlCljhsrPJhXDvln2JuJ/XivB4LadijBOEEI+OxQkkmJEJ4XQrtDAMQveFYxrkf2V8j7TjGNW28KVaSjBsQ9GmIU4qa8mdbnL5aySernkXpeuHsqFCp0XlyNn5JxcEpfckAq5J1VSI5y8kFcyJm/W2Hq3Pq2v2eiaNd85IQuwvn8BwuSpiA==</latexit>

X

Figure 4.2: We sketch a categorical variational autoencoder that is trained with
the Straight-Through Gumbel-Softmax estimator on the MNIST
dataset [161]. The estimator uses the discrete categorical variable
X in the forward pass, but uses a corresponding relaxed variable X⇤

t
in the backward pass to estimate gradients for the parameters of the
encoder.

Previously, we observed that relaxed gradient estimators are biased es-
timators for the gradient of the objective F(q), but unbiased estimators
for the gradient of the surrogate objective F⇤t (q). Notably, straight-through
estimators are not known to be unbiased estimators of any gradient. In spite
of this, they are easily implemented in any software for automatic differ-
entiation that standardly lets users detach variables from the computation
graph to interrupt gradient flow.

In the next section, we introduce a new straight-through estimator for
categorical distributions that is based on a Rao-Blackwellization scheme
for the straight-through variant of the Gumbel-Softmax estimator above.
It enjoys all the benefits of straight-through estimators including single
evaluation, unmodified forward computation and ease of implementation,
but in addition provably reduces the variance of ST-GS to improve overall
mean squared error in gradient estimation.

4.2 gumbel-rao gradient estimator

In this section, we describe our new straight-through gradient estimator for
categorical distributions. We first derive a Rao-Blackwelization scheme for
the ST-GS estimator. Our approach is based on the observation that there is
a many-to-one relationship between realizations of U and X in the Gumbel-
Max trick and that the variance introduced by U can be marginalized out.
The resulting estimator, which we call the Gumbel-Rao (GR) estimator, is

4.2 gumbel-rao gradient estimator 51

guaranteed by the Rao-Blackwell theorem to have lower variance than the
ST-GS estimator. Unfortunately, in general it is not possible to analytically
integrate out the utilities U. However, in practice the Gumbel-Rao estimator
can be efficiently approximated via Monte Carlo. Finally, we analyze our
estimator in the minibatch and multi-sample setting.

4.2.1 Rao-Blackwellization of ST-Gumbel-Softmax

Recall that in the Gumbel-max trick, the categorical random variable is
obtained via an argmax operation, i.e., X = arg maxx2X

U|x. As previously
observed, this argmax operation is non-invertible. As a result there are many
input configurations of U that correspond to the same X solution. Consider
an alternate factorization of the joint distribution of (U, X). Instead of
sampling U ⇠ Gumbel(q), we could first sample X ⇠ Categorical(q), and
then sample U given X. In this view, the utilities are auxiliary random
variables, at which the Jacobian of the tempered softmax is evaluated and
which locally increase the variance of the estimator. This local variance can
be removed by marginalization, i.e., by considering Eq

h
d

dq softmaxt(U)
���X

i
.

This is the key insight of our GR estimator, which is given by,

⌘̂GR :=
∂L(X)

∂X
Eq


d

dq
softmaxt(U)

����X
�

= Eq [⌘̂STGS|X] (4.3)

where the expectation is taken over the utilities U out. The GR estimator
only depends on X, while the ST-GS estimator depends on (U, X). By the
law of iterated expectations, GR has the same expected value as ST-GS and
is an instance of a Rao-Blackwell estimator [162, 163]. However, the variance
of GR estimator is generally lower than the variance of the ST-GS estimator
resulting in a improved mean squared error for gradient estimation.

Proposition 1 (MSE of GR). Let ⌘̂STGS and ⌘̂GR be the estimators defined
in (4.2) and (4.3). Let ⌘ be the gradient defined in (2.3) that we seek to
estimate. We have

Eq

h
k⌘̂GR � ⌘k2

i
 Eq

h
k⌘̂STGS � ⌘k2

i
. (4.4)

Proof. The proposition follows from Jensen’s inequality. By (4.3), we have
Eq

h
k⌘̂GR � ⌘k2

i
= Eq

h
kEq [⌘̂STGS � ⌘|X]k2

i
where we moved ⌘ inside

the inner expectation. By Jensen’s inequality, we have

Eq

h
kEq [⌘̂STGS � ⌘|X]k2

i
 Eq

h
Eq

h
k⌘̂STGS � ⌘k2

|X
ii

52 the gumbel-rao gradient estimator

and Eq
⇥
Eq

⇥
k⌘̂STGS � ⌘k2|X

⇤⇤
= Eq

⇥
k⌘̂STGS � ⌘k2⇤ by the law of iterated

expectations. The inequality is strict whenever V [⌘̂STGS|X] > 0, where V(·)
denotes the trace of the covariance matrix. This is the case if t < • and
|qi| < • for all i.

While GR is only guaranteed to reduce the variance of ST-GS, Proposition
1 guarantees that, as a function of t, the MSE of GR is a pointwise lower
bound on ST-GS. This means GR can be used for estimation at temperatures,
where ST-GS has low bias but prohibitively high variance. Thus, GR extends
the region of suitable temperatures over which one can tune. This allows
a practitioner to explore an expanded set when trading-off of bias and
variance. Empirically, lower temperatures tend to reduce the bias of ST-
GS, but we are not aware of any work that studies the convergence of
the derivative in the temperature limit. In our experiments in section 4.4,
we observe that our estimator facilitates training at lower temperatures to
improve in both bias and variance over ST-GS. Thus, our estimator retains
the favourable properties of ST-GS (single, unmodified evaluation of loss
L(·)) while improving its performance.

4.2.2 Monte Carlo Approximation

The GR estimator requires computing the expected value of the Jacobian
of the tempered softmax over the distribution U|X. Unfortunately, an
analytical expression for this is only available in the simplest cases.1 In this
section we provide a simple Monte Carlo (MC) estimator with sample size
NU for Eq

h
d

dq softmaxt(U)
���X

i
, which we call the Gumbel-Rao Monte Carlo

Estimator (GR-MC). This estimator can be computed locally at a cost that
only scales like O(nNU) (the arity of X times the number of Monte Carlo
samples NU).

They key property exploited by GR-MC is that U|X can be reparameter-
ized in the following closed form. Given a realization of X where Xj? = 1
and U0 ⇠ Exp(1), we have the following equivalence in distribution [91,
164, 165].

Uj|X
d
=

8
><

>:

� log
�
Uj
�
+ log Ân

i=1 exp(qi) if j = j?

� log
⇣ Uj

exp(qj)
+

Uj?

Ân
i=1 exp(qi)

⌘
otherwise

(4.5)

1 For example, in the case of n = 2 (binary) and t = 1 an analytical expression for the GR
estimator is available.

4.2 gumbel-rao gradient estimator 53

With this in mind, we define the GR-MC estimator with NU samples as:

⌘̂GRMC :=
∂L(X)

∂X

"
1

NU

NU

Â
i=1

d
dq

softmaxt(U i)

#
=

1
NU

NU

Â
i=1

⌘̂i
STGS (4.6)

where X ⇠ Categorical(q) and U i|X are sampled with the reparameteriza-
ton in (4.5) above, such that ⌘̂i

STGS are only conditionally on X independent.
For the case NU = 1, our estimator reduces to the standard ST-GS esti-
mator. The computational cost for drawing multiple samples U i|X scales
only linearly in the arity of X and is usually negligible in modern appli-
cations, where the bulk of computation accrues from the computation of
the loss L(·). Moreover, drawing multiple samples of U i|X can easily be
parallelized on modern accelerated workstations. Our estimator remains
a single-evaluation estimator under this scheme, because the loss func-
tion L(·) is still only evaluated at X. Finally, as with GR, the GR-MC is
guaranteed to improve in MSE over ST-GS.

Proposition 2. [MSE of GR-MC] Let ⌘̂STGS and ⌘̂GRMC be the estimators
defined in (4.2) and (4.6). Let ⌘ be the gradient defined in (2.3) that we seek
to estimate. For all NU � 1, we have

Eq

h
k⌘̂GRMC � ⌘k2

i
 Eq

h
k⌘̂STGS � ⌘k2

i
(4.7)

Proof. The proof is similar to the proof for Proposition 1, but directly uses
the linearity of expectation. Using (4.6), we have Eq

h
k⌘̂GRMC � ⌘k2

i
=

Eq

��� 1
NU

ÂNU
i=1 ⌘̂

i
STGS � ⌘

���
2
�

. By Jensen’s inequality we have

Eq

2

4
�����

1
NU

NU

Â
i=1

⌘̂i
STGS � ⌘

�����

2
3

5  Eq

"
1

NU

NU

Â
i=1

���⌘̂i
STGS � ⌘

���
2
#

and Eq


1

NU
ÂNU

i=1

���⌘̂i
STGS � ⌘

���
2
�

= Eq

h
k⌘̂STGS � ⌘k2

i
by the linearity of

expectation. The inequality is strict under the same conditions as previously
and if NU > 1.

4.2.3 Variance Reduction in Minibatches

The variance of the GR-MC estimator can be reduced by increasing the
number of Monte Carlo samples NU . In addition, as for any other gradient

54 the gumbel-rao gradient estimator

estimator, variance may also be reduced by averaging the gradient estimator
over NX samples of the random variable X instead of a single one as we
observed in chapter 2. This comes at the cost of additional function evalu-
ations of the loss L(·). Finally, variance may be reduced by minibatching
when q depends on an additional source of randomness, i.e., q = h(xsup)
where xsup is sampled from the data distribution. This was the case in our
experiments in the previous chapter and is also true for our experiments on
unsupervised parsing and generative modeling in the next section of this
chapter. We can sample Nxsup examples of xsup with replacement from our
dataset and average the resultant gradient estimators. Again, this comes at
the cost of additional function evaluations, for both h(·) and L(·).

We consider the effectiveness of the GR-MC estimator when multiple
samples or minibatches are used. We study the effect of increasing Nxsup ,
NX and NU separately. The ⌘̂STGS estimator becomes a random variable that
depends on the supervised input xsup, the categorical variable X|xsup and
the utilities U|X. The ⌘̂GR becomes a random variable that depends on the
categorical variable X|xsup and on the supervised input xsup. Expectations
are taken over all the randomness and samples from the same distribution
are drawn independently and identically.

Let ⌘̂B-GRMC be the following “batched” GR-MC gradient estimator

⌘̂B-GRMC :=
1

Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

⌘̂
ij
GRMC =

1
Nxsup NX NU

Nxsup

Â
i=1

NX

Â
j=1

NU

Â
k=1

⌘̂
ijk
STGS

(4.8)
where ⌘̂

ijk
STGS is as in (4.2) for utilities U ijk|X ij, xi

sup, categorical variable
X ij|xi

sup and supervised input xi
sup. Proposition 4 decomposes the variance

of (4.8) and affords insight how it scales with the number of samples.

Proposition 4. Let ⌘̂STGS, ⌘̂GR and ⌘̂B-GRMC be the estimators defined in (4.2),
(4.3) and (4.8). We have

V [⌘̂B-GRMC] =
E
⇥
V
⇥
⌘̂STGS|X, xsup

⇤⇤

Nxsup NX NU

+
E
⇥
V
⇥
⌘̂GR|xsup

⇤⇤

Nxsup NX
+

V
⇥
E
⇥
⌘̂GR|xsup

⇤⇤

Nxsup
(4.9)

where V is the trace of the covariance matrix.

Proof. The proposition follows a generalization of the law of total variance
and is given in Appendix A.4.

4.2 gumbel-rao gradient estimator 55

The total variance of the batched GR-MC gradient estimator decomposes
into three terms. The first term in (4.9) is the average variance in gradi-
ent estimation with ST-GS due to the utilities U|X, xsup. This variance is
effectively reduced by increasing the number of Monte Carlo samples for
GR-MC and approaches zero as NU ! •. However, it can also be reduced
by increasing the number of categorical samples NX or by increasing the
number of supervised examples Nxsup , albeit at a higher cost, because this
will require additional function evaluations. The second term in (4.9) is
the average variance in gradient estimation with the GR estimator due to
the categorical sample X. This variance can be reduced by increasing the
number of categorical samples NX or by increasing the number of super-
vised examples Nxsup , because categorical samples X are drawn for every
q = h(xsup). This variance cannot be reduced by increasing the number
of Monte Carlo samples NU . The third term in (4.9) is the variance due
to the covariate xsup. This variance can only be reduced by increasing the
number of supervised examples Nxsup . It cannot be reduced by increasing
the number of Monte Carlo samples or the number of categorical samples.

Proposition 4 illustrates the practical trade-offs in variance reduction. In-
creasing the batchsize Nxsup is most effective, because it reduces all variance
terms in (4.9), but it is also the most expensive choice, because it requires
additional function evaluations of both h(·) and L(·). In contrast, increasing
the number of discrete samples NX only requires an additional evaluation
of the loss function L(·), but does not reduce the variance due to the co-
variate xsup. Finally, using GR-MC and increasing the number of Monte
Carlo samples is the only choice that reduces variance without additional
function evaluations. But naturally it can only reduce the variance due to
the utilities U|X, xsup. This illustrates that the effectiveness of our estimator
will depend on the relative size of the three variance terms. It suggests that
our estimator GRMC will tend to be more effective at small batchsizes and
when a single sample X is used. It also highlights that there are diminishing
returns to increasing NU for fixed NX and Nxsup as is expected with Monte
Carlo. In our experiments in the next section, we explore various choices for
NU and Nxsup and study the effect on gradient estimation in more detail.

Finally, we note that the choice of a Monte Carlo scheme to approximate
Eq

h
d

dq softmaxt(U)
���X

i
permits the use of additional well-known variance

reduction methods to improve the estimation properties of our gradient
estimator. For example, antithetic variates or importance sampling are sen-
sible methods to explore in this setting [166]. For low-dimensional discrete
random variables, Gaussian quadrature or other numerical methods could

56 the gumbel-rao gradient estimator

be employed. However, we found the simple Monte Carlo scheme described
above effective in practice and report results based on this procedure.

4.3 related work

The idea of using Rao-Blackwellization to reduce the variance of gradient
estimators for discrete latent variable models has been explored in machine
learning. For example, Liu et al. [167] describe a sum-and-sample style
estimator that analytically computes part of the expectation to reduce
the variance of the gradient estimates. The favorable properties of their
estimator are due to the Rao-Blackwell theorem. Kool, van Hoof & Welling
[168] describe a gradient estimator based on sampling without replacement.
Their estimator emerges naturally as the Rao-Blackwell estimator of the
importance-weighted estimator [169] and the estimator described by Liu
et al. [167]. Both of these estimators rely on multiple function evaluations to
compute a gradient estimate. In contrast, our work is the first to consider
Rao-Blackwellization in the context of a single-evaluation estimator.

.

4.4 experiments

In this section, we study the effectiveness of our gradient estimator in
practice. In particular, we evaluate its performance with respect to the
temperature t, the number of MC samples NU and the batch size Nxsup .
We measure the variance reduction and improvements in MSE our esti-
mator achieves in practice, and assess whether its lower variance gradient
estimates accelerate the convergence on the objective or improve final test
set performance. Our focus is on single-evaluation gradient estimation
and we compare against other non-relaxing estimators. This includes the
tempered straight-through estimator (ST), the FouST estimator [158] for
binary variables, the straight-through Gumbel-Softmax estimator (ST-GS),
and the score function estimator in (2.7) (SCORE) with a running mean as a
baseline. We also compare against the relaxing Gumbel-Softmax estimator
(GS) where possible.

First, we consider a toy example which allows us to explore and visualize
the variance of our estimator and suggests that it is particularly effective at
low temperatures. Next, we evaluate the effect of t and NU in a latent parse
tree task which does not permit the use of relaxed gradient estimators. For
ease of notation, we abbreviate the Gumbel-Rao estimator with NU Monte

4.4 experiments 57

Carlo samples as GR-MCNU . Here, our estimator facilitates training at low
temperatures to improve overall performance and is effective even with few
MC samples. Finally, we train variational autoencoders with categorical
latent variables [49, 95]. Our estimator yields improvements at small batch
sizes and obtains competitive or better performance than the GS estimator
at the largest arity.

4.4.1 Quadratic Programming on the Simplex

Objective
function

D log10(V)
(t=0.1)

D log10(V)
(t=0.5)

D log10(V)
(t=1.0)

Figure 4.3: Our estimator (GR-MC) effectively reduces the variance over the entire
simplex and is particularly effective at low temperatures. Contours
for the quadratic program in three dimensions (left) and difference in
log10-trace of the covariance matrix between ST-GS and GR-MC1000
at different temperatures. Warmer means difference is larger.

As a toy problem, we consider the problem of minimizing a quadratic
program (x� b)|Q(x� b) over the probability simplex P = {x 2 Rn : xi �

0, Ân
i=1 xi = 1} for Q 2 Rn⇥n positive-definite and b 2 Rn. This problem

can be cast as the following stochastic optimization problem,

min
p2P

Ep[L(X, p)] = min
p2P

Ep[(X � b)|Q0(p, b)(X � b)]

where X ⇠ Categorical(q) with q = log(p). The stochastic objective matrix
Q0 is defined as

Q0ij =

8
><

>:

(pi�bi)
2

pi�2pibi+b2
i

Qii if i = j
(pi�bi)(pj�bj)
bibj�pibj�bi pj

Qij if i 6= j

While solving the above problem is simple using standard methods, it
provides a useful testbed to evaluate the effectiveness of our variance

58 the gumbel-rao gradient estimator

T  10 T  50

Estimator t = 0.01 t = 0.1 t = 1.0 t = 0.01 t = 0.1 t = 1.0

ST-GS 38.8 59.3 65.8 46.8 56.8 59.6
GR-MC10 66.4 66.9 66.7 58.7 59.1 59.6
GR-MC100 65.6 66.3 65.9 59.6 59.1 59.6
GR-MC1000 66.5 67.1 67.0 60.0 59.8 59.9

Table 4.1: Our estimator (GR-MCK) facilitates training at lower temperatures
with improved performance on the latent parse tree task. Best test
classification accuracy on the ListOps dataset selected on the validation
set. Best estimator at given temperature in bold, best estimator across
temperatures in italics. Higher is better.

reduction scheme. For this purpose, we consider Qij = exp (�2|i� j|) and
bi = 1

3 in three dimensions.
Our estimator reduces the variance in the gradient estimation over the

entire simplex and is particularly effective at low temperatures in this
problem. In Figure 4.3, we compare the log10-trace of the covariance matrix
of ST-GS and GR-MC1000 at three different temperatures and display
their difference over the entire domain. The improvement is universal. The
pattern is not always intuitive (oval bull’s eyes), despite the simplicity
of the objective function. Compared with ST-GS, our estimator on this
example appears more effective closer to the corners and edges, which is
important for learning discrete distributions. At lower temperatures, the
difference between the two estimators becomes particularly acute. This
suggests that our estimator may train better at lower temperatures and be
more responsive to optimizing over the temperature to successfully trade
off bias and variance.

4.4.2 Unsupervised Parsing on ListOps

Straight-through estimators feature prominently in NLP [170] where latent
discrete structure arises naturally, but the use of relaxations is often infea-
sible. Therefore, we evaluate our estimator in a latent parse tree task on
subsets of the ListOps dataset [154]. This dataset contains sequences of pre-
fix arithmetic expressions xsup (e.g., max[3 min[8 2]]) that evaluate to

4.4 experiments 59

an integer y 2 {0, 1, . . . 9}. The arithmetic syntax induces a latent parse tree
X. We consider the model by [73] that learns a distribution over plausible
parse trees of a given sequence and use the following objective

min
q,qsup

Eq[L(X, xsup, qsup, y)] = Eq
⇥
� log p̂(y|X, qsup)

⇤

Both the conditional distribution over parse trees qq(X|y) and the classifier
p̂qsup(y|X, xsup) are parameterized using neural networks. In this model,
a parse tree X for a given sentence is sampled bottom-up by successively
combining the embeddings of two tokens that appear in a given sequence
until a single embedding for the entire sequence remains. This is then used
for performing the subsequent classification. Because it is computationally
infeasible to marginalize over all trees, Choi, Yoo & Lee [73] rely on the ST-
GS estimator for training. The decision which two (consecutive) embeddings
to combine is modeled as a categorical random variable. We compare this
estimator against our estimator GR-MCNU with NU 2 {10, 100, 1000}. We
consider temperatures t 2 {0.01, 0.1, 1.0} and experiment with shallow and
deeper trees by considering sequences of length T up to 10, 25 and 50. All
models are trained with stochastic gradient descent with a batch size equal
to the maximum T. Because we are interested in a controlled setting to
investigate the effect of t and NU , our experimental set-up is significantly
simpler than elsewhere [e.g., 171]. We give details and highlight important
differences in Appendix B.

Our estimator facilitates training at lower temperatures and achieves bet-
ter final test set accuracy than ST-GS (Table 4.1). Increasing NU improves the
performance at low temperatures, where the differences between the esti-
mators are most pronounced. Overall, across all temperatures this results in
modest improvements, particularly for shallow trees and small batch sizes.
We also find evidence for diminishing returns: The differences between
ST-GS and GR-MC10 are larger than between GR-MC100 or GR-MC1000,
suggesting that our estimator is effective even with few MC samples.

4.4.3 Generative Modeling with Categorical Variational autoencoders

Finally, we train variational autoencoders [49, 95] with categorical latent ran-
dom variables on the MNIST dataset of handwritten digits [161]. We used

60 the gumbel-rao gradient estimator

(a)log
10 (V

)
vs

Iterations
(b)log

10 (m
se)

vs
t

(c)Iterations
vs

ELBO

Figure
4.4:O

ur
estim

ator
(G

R
-M

C
K

)effectively
reduces

the
variance

over
the

entire
training

trajectory
(4.4a),achieves

a
low

er
m

ean
squared

error
ata

low
er

tem
perature

(4.4b)and
converges

faster
than

ST
and

ST-G
S

on
the

discrete
VA

E
objective

(4.4c).Log10-trace
ofthe

covariance
m

atrix
over

a
training

trajectory
(4.4a)and

log10-M
SE

(4.4b)
at

different
tem

peratures
during

training,average
num

ber
of

iterations
and

standard
error

to
reach

various
thresholds

ofthe
objective

on
the

validation
set(4.4c).

4.4 experiments 61

the fixed binarization of [172] and the standard split into train, validation
and test sets. Our objective is

min
q,qsup

Eq[L(X, xsup, qsup, y)] = Eq

"
log

1

NX

NX

Â
i=1

p̂(xsup|X i, qsup)

qq(X i|xsup)

!#

where xsup denotes the input image and X i ⇠ qq(X|xsup) denotes a vec-
tor of categorical latent random variables. This variational objective is an
upper bound on the negative log-likelihood for all choices of NX � 1
[173]. For training, the bound is approximated using only a single sample
(NX = 1). For final validation and testing, we use 5000 samples (NX = 5000).
Both the generative model p̂(xsup|X i, qsup) and the variational distributions
qq(X i|xsup) were parameterized using neural networks. We experiment
with different batch sizes and categorical random variables of arities in
{2, 4, 8, 16} as in Maddison, Mnih & Teh [174]. To facilitate comparisons, we
do not alter the total dimension of the latent space and train all models for
50,000 iterations using stochastic gradient descent with momentum. Hyper-
parameters are optimised for each estimator using random search [175] over
twenty independent runs. Additional details are given in Appendix B.4.

Our estimator effectively reduces the variance over the entire training
trajectory (Figure 4.4a). Even a small number of MC samples (NU = 10)
results in sizable variance reductions. The variance reduction compares
favorably to the magnitude of the minibatch variance (Figure C.1 in Ap-
pendix C). Empirically, we find that lower temperatures tend to reduce bias.
Our estimator facilitates training at lower temperatures and thus features a
lower MSE (Figure 4.4b). During training our estimator can trade off bias
and variance to improve the gradient estimation. Empirically, we observed
that on this task, the best models using ST-GS trained at an average tem-
perature of 0.65, while the best models using GR-MC1000 trained at an
average temperature of 0.35. This is interesting, because it indicates that our
estimator may make the use of temperature annealing during training more
effective. We find lower variance gradient estimates improve convergence
of the objective (Figure 4.4c). GR-MC1000 reaches various performance
thresholds on the validation set with reliably fewer iterations than ST or
ST-GS. This effect is observable at different arities and persistent over the
entire training trajectory.

For final test set performance, our estimator outperforms REINFORCE
and all other straight-through estimators (Table 4.2). The improvements
over ST-GS extend up to two nats (for batch size 20, 16-ary) at small batch
sizes and are more modest at large batch sizes as expected (Table C.5 in Ap-

62 the gumbel-rao gradient estimator

Binary 4-ary 8-ary 16-ary

Nxsup 20 200 20 200 20 200 20 200

GS 98.2 96.4 95.7 93.8 95.5 92.3 96.8 94.3

SCORE 202.6 121.4 173.7 122.2 203.9 124.9 169.4 129.5
ST 105.5 103.1 106.2 104.5 107.2 105.1 108.2 104.5
FouST 101.5 97.8 - - - - - -
ST-GS 100.7 97.1 99.1 93.7 98.0 92.8 98.8 92.6
GR-MC10 100.7 97.4 97.8 93.8 97.4 93.1 97.9 92.4
GR-MC100 100.6 96.8 97.5 94.0 96.8 92.2 97.3 92.4
GR-MC1000 100.5 97.0 97.6 93.5 96.5 92.5 96.8 92.2

Table 4.2: Our estimator (GR-MCK) outperforms other straight-through estima-
tors for discrete-latent-space VAE objectives on the MNIST dataset
and is competitive with the Gumbel-Softmax (GS) at large arities. Best
bound on the test negative log-likelihood selected on the validation
set. Best straight-through estimator in bold, best estimator in italics.
Lower is better.

pendix C). This confirms that our estimator might be particularly effective
in settings, where training at high batch sizes is prohibitively expensive.
The improvements from increasing the number of MC samples tend to
saturate at NU = 100 on this task. Further, our results suggest that relaxed
estimators may be preferred (if they can be used) for categorical random
variables of smaller arity. For example, the GS estimator outperforms all
straight-through estimators for binary variables for both batch sizes. For
large arities however, we find that straight-through estimators can perform
competitively: Our estimator GR-MC1000 achieves the best performance
overall and outperforms the GS estimator for 16-ary variables.

4.5 discussion

In this chapter, we presented the Gumbel-Rao estimator, a new single-
evaluation non-relaxing gradient estimator for non-supervised machine
learning with categorical random variables. Our estimator is a Rao-Blackwellization

4.5 discussion 63

of the state-of-the-art straight-through Gumbel-Softmax estimator. It en-
joys lower variance and can be implemented efficiently using Monte Carlo
methods. In particular and in contrast to most other work, it does not
require additional evaluations of the loss function. Experimentally, we
demonstrated that our estimator improved final test set performance in an
unsupervised parsing task and on a variational autoencoder loss. It acceler-
ated convergence on the objective and compared favorably to other standard
gradient estimators. Even though the gains were sometimes modest, they
were persistent and particularly pronounced when models must be trained
at low temperatures or with small batch sizes. We expect that our estimator
will be most effective in these settings and that further improvements may
be achieved when combining Gumbel-Rao with an annealing schedule for
the temperature.

The approach we presented in this chapter may be extended to the
gradient estimators for structured domains we introduced in the previous
chapter. It is possible to use Rao-Blackwellization to reduce the variance
of their corresponding straight-through variants, whenever an efficient
reparameterization of the perturbation conditional on the discrete structure
X is available [107]. For example, this is the case for the stochastic softmax
trick for subset selection (on the unit cube) we presented. In other cases,
it may be possible to achieve partial variance reduction by conditioning
both X and U on an auxiliary random variable. For example, in the case
of k-subset selection with U ⇠ Gumbel(q) it is difficult to simulate U|X
efficiently, but easier to simulate U|s where s is the order in which elements
are added to X if X is sampled from the Plackett-Luce model. Finally, the
results in this chapter have inspired subsequent work in gradient estimation
for categorical variables. On the theoretical side, [176] derives an analytic
expression of the Gumbel-Rao estimator as t ! 0+ and shows that it
recovers the arithmetic mean of the ST estimator and the DARN [87]
estimator. On the practical side, [177] develops an estimator based on the
GR estimator that eliminates the variance from sampling U without the
need for a Monte Carlo approximation.

Part II

L E A R N I N G F O R D I S C R E T E O P T I M I Z AT I O N

5
B A C K G R O U N D

5.1 mixed integer linear programs

Mixed integer linear programs are optimization problem in which some
variables are restricted to take integer values and others are continuous,
while the objective and constraints are linear. They are important, because
many real-world problems involve indivisible choices or discrete decisions
that can be modeled using integer variables. As a result, integer programs
are applied broadly across numerous industrial areas, including operations
research, energy and finance, among many others. For example, the operator
of a distributed compute cluster may be required to balance incoming
workloads robustly across as few servers as possible. This server load
balancing problem can be formulated as a mixed integer linear program
and we will consider it in some of our experiments in the following chapters.
In energy, deciding which power generation units to commit (operate) in
order to satisfy the demand for electricity at low cost over a given time
horizon is known as the unit commitment problem. It is also a mixed integer
linear program. In finance, mixed integer programs can be used to optimize
portfolio allocation and make investment decisions. Apart from industrial
applications, integer programs include various classes of combinatorial
problems, e.g., finding set covers or determining the largest independent
set in a graph. Here, general-purpose methods for integer programming
complement exact or approximate procedures that are known for special
problem classes. Finally, mixed integer programs have attracted interest in
machine learning, where they can be used for MAP estimation [25], object
recognition [178], clustering [179] or to verify the robustness of a neural
network to adversarial examples [27, 28].

In this thesis, we write a mixed integer linear program in standard form
with variable bounds as

z? := min
x2X

c|x, X = {x 2 Rn
| Ax = b, p  x  p, xj 2 Z 8j 2 I}

(5.1)
The linear objective is c 2 Rn and the m linear constraints are specified

by A 2 Rm⇥n and b 2 Rm. In addition, the n variables may be lower or
upper-bounded as determined by p j 2 R [{�•} and p j 2 R [{•}, but

67

68 background

a bound may be void, i.e., p j = �• or p j = • or both. Finally, the set
I ✓ {1, . . . , n} indexes the integer variables that are restricted to be integral.
Unfortunately, mixed integer linear programs are generally NP-hard to
solve. A variety methods exists to solve them, either approximately or
exactly, including cutting plane methods, heuristics and specific methods for
particular problem classes [e.g., 180]. In this thesis, we focus on variants of
branch and bound search which is universally applicable and the backbone
of state-of-the-art solvers for integer programming [181, 182].

5.2 branch and bound search

Branch and bound search [34] is a general-purpose method for integer
programming. Branch and bound recursively builds a search tree, whose
root represents the original problem in (5.1). Child nodes are created via
branching, this means by introducing additional constraints to partition the
set of feasible solutions. Typically, branching creates two children from any
of the tree’s leaf nodes by splitting the domain of a single integer variable.
Thus, any descendant node constitutes a mixed integer linear program
itself, but deeper nodes have a smaller feasible set, because more variables
are restricted to tighter domains. Branch and bound uses bounds on the
optimal solution z? to prune the tree and direct the search. A (local) lower
bound can be obtained from the linear program (LP) relaxation for any
node in the tree. The LP relaxation of any integer program is obtained
simply by removing the integrality constraints xj 2 Z for all j 2 I . For
example, the LP relaxation for the root node is

z⇤ := min
x2P

c|x, P = {x 2 Rn
| Ax = b, p  x  p} (5.2)

Naturally, this gives a global lower bound on z?. After branching and
at any time during the search, a tighter bound may be obtained from the
minimum bound over all leaf nodes. This bound is also known as the
dualbound and we will denote it by z̆. Moreover, any feasible solution for
the program in (5.1) provides a global upper bound on the optimal solution
z?. The best such bound available at any time during the search is known
as the primalbound and we will denote it by z̊. Branch and bound search is
powerful, because nodes with a high lower bound can be pruned and must
not be explored, if a lower or equal primalbound is known.

5.2 branch and bound search 69

5.2.1 Cutting Planes and Primal Heuristics

In practice, the performance of branch and bound is closely tied to the
quality of its bounds. Therefore, modern solvers implement variants of
branch and bound that aim at improving the primal- and dualbound.
Arguably, the two most important such variations are the use of cutting
planes [183] and primal heuristics [184].

Cutting plane methods are used to improve the dualbound of the solver.
A cutting plane is a linear inequality constraint that for a given mixed
integer linear program separates the convex hull of feasible solutions from
the LP solution of its relaxation. For example, at the root node a cutting
plane c := (a, b) satisfies a|z⇤ > b and a|x  b for all x 2 X . Naturally,
adding a cutting plane to the linear programming relaxation shrinks its
feasible region and thus may tighten the bound. However, it also increases
the size of the linear program and makes it more costly to resolve. Therefore,
while a variety of separation methods to generate cutting planes exist, it is
undesirable to add all the cuts they produce. In practice, modern solvers
rely on a heuristic procedure to select only some cutting planes and add
them to the relaxation. In chapter 6, we show how learning can be leveraged
to design application-specific procedures for cutting plane selection that
yield tangible improvements over existing selection procedures.

In contrast, primal heuristics are procedures that are designed to find
integer feasible solutions. Hence, they may improve the primalbound and
a variety of primal heuristics has been developed for this purpose. The
most important ones are problem-specific methods [e.g., 185, 186], rounding
procedures [e.g., 187, 188], variants of large neighborhood search [e.g., 189–
192] or diving heuristics. Berthold [184] gives a broad overview. Again,
the design of these methods has been mostly ad-hoc. Primal heuristics are
usually generic and fail to exploit structural commonality between similar
problem instances that often arise in practice. In chapter 7, we show how
learning can be leveraged to design application-specific diving heuristics
that can improve the overall performance of branch and bound solvers.

Thus, in this thesis we present methods that leverage learning for im-
proving both the primal- and the dualbound of the solver. These methods
are complementary; they may be combined with each other or with addi-
tional (learnt) components. This sets the stage for the design of increasingly
learning-based methods for solving mixed integer linear programs that we
believe will expand the capacity of today’s branch and bound solvers.

70 background

5.2.2 Solver Performance

Branch and bound search is guaranteed to terminate and find the optimal
solution when given enough computational resources (time and memory).
Unfortunately, the computational requirements of branch and bound may
grow exponentially with the size of the problem. Nevertheless, branch
and bound is widely used. Modern implementations of branch and bound
are capable of efficiently solving problems of large scale and industrial
relevance. Even when this is not possible, branch and bound remains a
valuable approach, because the search can be terminated prematurely and
still yield guarantees on the optimal solution via the primal- and dualbound.

primal-dual gap When a program can be solved to completion, the
most intuitive way to assess the overall performance of the solver is by
measuring solving time, i.e., the average time it takes to solve an instance or
a set of instances. In the cases, where this is not possible, it is common to
consider the primal-dual gap1

gpd(z̊, z̆) =

8
<

:

|z̊�z̆|
max(|z̊|,|z̆|) if 0 < z̊z̆ < •

1 else
(5.3)

where z̊ and z̆ are the primal- and dualbound respectively as before. Perfor-
mance can be measured by solving instances with a fixed cutoff time T and
then computing the primal-dual gap gpd(z̊T , z̆T), where z̊t and z̆t denote
the solver’s primal- and dualbound at time t (if non-existent, then �• and
+• respectively).

primal-dual integral Unfortunately, measuring the primal-dual
gap at time T is susceptible to the particular choice of cutoff time. This is
particularly troublesome, because the lower and upper bounds of branch
and bound solvers tend to improve in a stepwise fashion. In order to
alleviate this issue, it is common to integrate the primal-dual gap over the
solving time and measure the primal-dual integral

Gpd(T) =
Z T

t=0
gpd(z̊t, z̆t)dt (5.4)

1 Note that we use a definition of the primal-dual gap that is used in SCIP 7.0.2 for the
computation of the integral and do not quantify the gap or the integral in per cent.

5.2 branch and bound search 71

Sometimes, we may not be interested in measuring overall solver perfor-
mance, but want to specifically consider primal performance or dual perfor-
mance instead. This may be, because a particular application only requires a
lower or an upper bound on the optimal solution, or because we want to
isolate the effect of a particular innovation that is designed to improve the
primal- or dualbound.

primal gap To assess primal performance and the quality of the feasible
solution x 2 X with z̊ = c|x, we can measure the primal gap

gp(z̊) = |z̊� z?
| (5.5)

Sometimes, the primal gap is normalized by |z?| or |z̊| which can be useful
when gp(·) is averaged across disparate instances. We will use the primal
gap to compare the primal performance of different diving heuristics in
chapter 7, but do not normalize the primal gap.

dual gap To assess dual performance of a solver or method, for any
dualbound z̆ we can measure the dual gap:

gd(z̆) = |z?
� z̆| (5.6)

Sometimes, the dual gap gd(·) is normalized by z? or z̆. We will use the dual
gap to compare different methods for cutting plane selection in chapter 6.
These methods will iteratively improve the dual gap over multiple rounds
and we will normalize the dual gap over all rounds against its initial value.
There, we will also consider the dual integral from summing the dual gap
over all rounds.

5.2.3 SCIP solver

Unfortunately, state-of-the-art solvers for integer programming are closed-
source [181, 182]. This obstructs research to integrate machine learning into
branch and bound search. In this thesis, we use the branch and bound solver
SCIP [193] for our experiments. This solver is open-source and performant.
We extend the source and interface of the solver to expose separation
algorithms and cutting plane selection in chapter 6 and the diving heuristic
plug-in in chapter 7. We compare our methods against default and tuned
versions of this solver. We reasonably expect that solver performance could
further improve, if our methods were integrated into state-of-the-art solvers
and hope that this will be facilitated in the future.

72 background

5.3 machine learning for branch and bound

Branch and bound solvers are general-purpose and as such they are typ-
ically calibrated on large sets of diverse classes of mixed integer linear
programs. However, in most practical applications of interest it is common
to repeatedly solve similar problems of the same type. For example, the
operator of the distributed computer cluster has the same servers at his
disposal and at least some workloads may be regularly recurring. Likewise,
the energy provider will optimize demand over the same grid each day
and the investment advisory makes decision subject to the same constraints
on portfolio allocation. In machine learning too, applications of integer
programming are both many and related by design. This is because it is
common to deploy a model to several examples. The underlying assumption
is that these examples are sampled from the same data generating distribu-
tion. As each example gives rise to an integer programming instance and all
instances share the same model, integer programming instances in machine
learning are necessarily many and related. This presents an opportunity
to improve the performance of branch and bound solvers by considering
specific applications with similar and multiple instances. This focus of this
thesis is on this highly practical setting where as we demonstrate in the
following two chapters the use of machine learning can yield substantial
improvements.

In principle, branch and bound solvers are highly customizable and
therefore could be tailored to particular applications. For example, the open-
source solver SCIP 7.0.2 contains over 2,500 parameters that can be set by the
user to govern the brand and bound search. A plausible approach to tailor
the solver to a specific application and improve performance is therefore to
find a better configuration of these parameters. Because performing this task
manually is difficult, several strategies for the automatic configuration of
branch and bound solvers have been developed, among the most promising
ones are those that are based on learning [see e.g., 41, 194, 195]. However,
these strategies suffer from at least two shortcomings. First, the parameters
that are exposed by the solver immediately restrict the variants of branch
and bound that may be explored by algorithm configuration. For example,
the SCIP 7.0.2 solver selects cutting planes based on a score for each cut that
is restricted to be the weighted average of a cut’s efficacy, integral support
and parallelism with the objective. Algorithm configuration may vary the
corresponding composite weights, but cannot explore alternative criteria
for cutting plane selection. This is made worse, because a configuration

5.3 machine learning for branch and bound 73

is rarely adapted during a solver call, even though this may be beneficial
[196]. With respect to primal heuristics, algorithm configuration in SCIP
7.0.2 may explore an ensemble of heuristics by varying the criteria for
calling them. But it cannot design novel heuristics that may be particularly
suited for a specific application. Second, most approaches for automatic
algorithm configuration are difficult to scale. They are inherently sequential:
Typically, they propose several promising configurations, test them by
calling the solver and update the proposals based on measures of solver
performance, e.g., runtime or primal- and dualbounds. This procedure must
often be repeated many times and is difficult to parallelize, while solver
calls are expensive and incur a significant cost (computation and time)
at each iteration. This is made worse when these methods are employed
on distributed compute clusters as tends to be necessary with modern
applications of interest. There, measures of solver performance can vary
significantly [197] which may increase the number of solver calls that is
required to identify a good configuration. In this thesis, we explore an
alternative strategy that addresses these shortcomings. Instead of learning
to configure the solver, our focus is on learning to perform specific sub-
routines in branch and bound. We directly incorporate our models into the
solver where they replace existing ad-hoc methods. In contrast to algorithm
configuration, this approach offers two advantages. First, it is not limited
by the existing parameterization of the solver. For example, in chapter 6
we consider cutting plane selection. Our model predicts a score for each
cut based on the current state of the solver and features of the respective
cutting plane. Naturally, this score is not required to be a composite as
above and dynamically changes with the current solver state. In chapter 7
we use machine learning to design custom diving heuristics for specific
applications. They find better solutions than existing divers and outperform
a tuned diving ensemble to improve overall solver performance on real-
world applications. Second, this approach can be much easier to scale. This
is, because it is possible to learn models for sub-routines without relying on
complete solver calls. In the following two chapters, we demonstrate that
models for both cutting plane selection and diving may be learnt from data
that can be collected more accurately and often at a lower cost than solver
performance measures. Moreover, data collection is embarrassingly parallel.
The data can be collected offline and only once ahead of model training.
There is no need to call the solver during training.

The idea to use machine learning inside branch and bound has been
considered by others. Several works learn models for variable selection

74 background

in branching [198–203]. Others focus on node selection in the search tree
[204, 205], deal with cutting plane management [39, 206–209] or consider
primal heuristics [e.g., 12, 197, 210–212]. A popular approach is to use
imitation learning. For example, Khalil et al. [198], Alvarez, Louveaux &
Wehenkel [199], Gasse et al. [200], and Gupta et al. [201] learn models
for variable selection by imitating the strong branching rule. For each
candidate variable, this rule computes the dual bound improvements that
would result from branching on it, and then selects the best candidate.
While this rule typically yields trees of small size, it is too expensive for
deployment and cheaper heuristics are typically used instead. Learning
to imitate strong branching offers the opportunity to amortize the cost of
strong branching; these models can deliver performant branching decisions
at lower cost than strong branching. In chapter 6 we propose an approach
for cutting plane selection that is based on imitation learning. Several other
methods are based on supervised learning. For example, some authors
train generative models to predict solutions of an integer program that
can be used to design primal heuristics [197, 212, 213]. They integrate the
model into large neighborhood search or local branching [189] procedures.
In chapter 7 we propose a method that trains generative models to design
new diving heuristics. Yet, some authors consider reinforcement learning.
For example, in variable selection for branching, Sun et al. [202] argues
that the effectiveness of strong branching is mainly due to solving the
auxiliary linear programs as opposed to the selected variable. Therefore,
an approach based on reinforcement learning is proposed, but the results
are mixed. Other work considers reinforcement learning in cutting plane
selection [207] or primal heuristics [e.g., 211]. In this thesis, we do not
consider reinforcement learning approaches, but emphasize that our models
could potentially benefit from as in other work that improves imitation or
supervised models using reinforcement learning [210, 213, 214].

5.3.1 Integer Programs as Graphs

A key concern that machine learning approaches for integer programming
and specifically branch and bound must address is the covariate represen-
tation of an integer program and the model choice. Of course, it would be
possible to naïvely concatenate the matrices and vectors in equation (5.1) to
completely describe any integer program and use any model that accepts a
vector input. However, this choice is undesirable for several reasons. First, it
is wasteful, because the matrices and vectors of integer programs typically

5.3 machine learning for branch and bound 75

tend to be very sparse and large in size. Second, the ordering of variables
and constraints in any program is arbitrary. This induces symmetries and
it is likely desirable for any model to be invariant to them. Finally, it may
be desirable for the model to be applicable to programs of different sizes.
Even when all instances under consideration are equally sized, this is a
necessity in branch and bound. There, the model may be applied across
different nodes in the search tree, but the number of constraints or variables
of the corresponding node program may vary as a result of cutting planes
or variable fixings.

One design choice that addresses the considerations above is the rep-
resentation of mixed integer linear programs as bipartite graphs and the
use of graph neural networks [215]. Each variable and each constraint in
equation (5.1) gives rise to a node in a bipartite graph. Each variable node
is joined by an undirected edge to the nodes of the constraints in which the
variable appears. Both variable nodes and constraint nodes can be associ-
ated with different features. For variables, these may include for example its
objective coefficient, bounds or solver information, such as the the variable
value in the current LP solution. For constraints, these may include bounds,
types and sparsity or solver information, such as activity. In particular,
any mixed integer program may be completely described as a bipartite
graph. While previous work has adopted the bipartite graph description
from Gasse et al. [200], we propose a new variant in chapter 6 that extends
the representation to include cutting planes. We also expand the set of
features for both variables and constraints throughout both chapters which
improves performance. The bipartite graph can be processed by a graph
neural network to make predictions on the graph or the node level. The
graph neural network is naturally invariant to the arbitrary ordering of
variables and constraints and can handle graphs of different sizes. Many
graph neural networks exist [see e.g., 216]. Gasse et al. [200] proposed a
model whose core are bipartite graph convolutions between the variable
and constraint nodes and that is widely adopted in machine learning for
branch and bound [217]. It first embeds both variable and constraint nodes
using a multi-layer perceptron with a single hidden layer and layer normal-
ization. We use 64-dimensional embeddings in all our experiments. The
model then uses two bipartite graph convolutions After embedding both
variable and constraint nodes, first from variables to constraints and then
from constraints to variables. Finally, the model makes predictions from the
convolved variable embedding using another multi-layer perceptron with a
single hidden layer. We build on this model but propose modifications in

76 background

chapter 6 and chapter 7 that improve performance. This includes the use of
batch normalization instead of layer normalization, changing the order of
convolutions where appropriate and tailoring the output layers to various
applications of interest. In chapter 6 we propose an extension of the model
in Gasse et al. [200] that can handle cutting planes explicitly and be used
for cut selection.

6
L E A R N I N G T O C U T I N B R A N C H A N D B O U N D

synopsis In this chapter, we propose a method for cutting plane se-
lection in branch and bound. As described in chapter 5, cutting planes
are an important component of modern solvers, because they facilitate
bound improvements on the optimal solution value, i.e., they may tighten
the dualbound. In practice, this helps to prune the tree and direct the
search. For selecting cuts, modern solvers today rely on manually designed
heuristics that are tuned to gauge the potential effectiveness of cuts. In
this chapter, we show that these heuristics may be ineffective and that a
greedy lookahead selection rule that incrementally adds cuts yields better
bound improvements. Unfortunately, this rule is too expensive to deploy in
practice. Therefore, our approach trains graph neural networks that learn
to imitate the expensive lookahead rule and can be deployed for cutting
plane selection inside branch and bound at lower cost. Experimentally, we
demonstrate that our models select better cuts than standard heuristics
and a competing approach based on reinforcement learning on a range of
integer programs. Within branch and bound and, the cuts our model selects
at the root speed up the remaining tree search to improve the residual time
of the solver for neural network verification.

attribution This chapter is largely based on the following publication
that was authored jointly with Giulia Zarpellon, Andreas Krause, Laurent
Charlin and Chris J. Maddison.

• Paulus, M. B. et al. Learning to Cut by Looking Ahead: Cutting Plane
Selection via Imitation Learning in Proceedings of the 39th International
Conference on Machine Learning (2022)

6.1 cutting planes in branch and bound

6.1.1 Cutting Planes

In integer programming, a cutting plane is a linear inequality constraint
that separates the convex hull of feasible solutions from the LP solution of
its relaxation. This is illustrated in Figure 6.1. Let c := (a, b) be a cutting

77

78 learning to cut in branch and bound

<latexit sha1_base64="VIFhnOYwfY1aBdqR58YM+JFTALE=">AAAB8nicbVBNTwIxEO3iF+IX6tFLI5h4IrvEqEeMF4+YCJgsG9Its9DQbde2ayQbfoYXDxrj1V/jzX9jgT0o+JJJXt6bycy8MOFMG9f9dgorq2vrG8XN0tb2zu5eef+grWWqKLSo5FLdh0QDZwJahhkO94kCEoccOuHoeup3HkFpJsWdGScQxGQgWMQoMVbyq1dPuMvhAYfVXrni1twZ8DLxclJBOZq98le3L2kagzCUE619z01MkBFlGOUwKXVTDQmhIzIA31JBYtBBNjt5gk+s0seRVLaEwTP190RGYq3HcWg7Y2KGetGbiv95fmqiyyBjIkkNCDpfFKUcG4mn/+M+U0ANH1tCqGL2VkyHRBFqbEolG4K3+PIyaddr3nnt7LZeaVTzOIroCB2jU+ShC9RAN6iJWogiiZ7RK3pzjPPivDsf89aCk88coj9wPn8Amd+QEg==</latexit>

Ax  b

<latexit sha1_base64="Vhil+FgPVoUR8Kf1ych/QwTPxkc=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4KrtF1GPBi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqpVenREa/0S2Wv6s2BV4mfkzLkaPRLX72BomnMpKWCGNP1vcQGGdGWU8GmxV5qWELomAxZ11FJYmaCbH7tFJ87ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNboKMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUdCH4yy+vklat6l9VL+9r5Xolj6MAp3AGF+DDNdThDhrQBAqP8Ayv8IYUekHv6GPRuobymRP4A/T5A7I8jnc=</latexit>�

<latexit sha1_base64="Mk7KKOm3z1NfoXb3PIql+9wxpfc=">AAACkHicbVFNbxMxEHWWr5IWSMuRi0VSqQcU7VYFKpCgiAvqKZWatlJ3iWadSWPV9hp7FhGt8l/4NVzhyr/Bu6SHTTuS5ac38+Yzt0p6iuO/neje/QcPH2087m5uPXn6rLe9c+aL0gkci0IV7iIHj0oaHJMkhRfWIehc4Xl+/bn2n39H52VhTmlhMdNwZeRMCqBATXrvBmmuqx9LnkrDR694+p7XRArKzmH5NbCEToDiN2EKvwWMBINJrx8P48b4bZCsQJ+tbDTZ7nxIp4UoNRoSCry/TGJLWQWOpFC47KalRwviGq7wMkADGn1WNUMu+W5gpnxWuPAM8YZtKeC1BYsuCOrcUtAcvfTtrKdJVtVyNKLlqEB7v9B5KKOB5n7dV5N3+nLdLtBEiNAEluGTltamotlhVkljy6aFZqhZqTgVvL4On0qHgtQiAAjysBcu5uBAhCv4bth4sr7f2+Bsf5i8GR6c7PePBqvdb7AX7CXbYwl7y47YFzZiYybYT/aL/WZ/op3oMPoYffofGnVWmuesZdHxP1dWyv0=</latexit>

x 2 P, a|x  b

<latexit sha1_base64="cethCEAcWlA7AwzQM4Ckqh3Ic44=">AAACG3icbVBNT8JAEN3iF+IX6tFLI5gYD6QlRj2SePGIiXxEqGS7DLBhd9vsbo2k6b/win/Gm/Hqwf/iwaX0IOBLJnl5M5OZ9/yQUaUd59vKra1vbG7ltws7u3v7B8XDo6YKIkmgQQIWyLaPFTAqoKGpZtAOJWDuM2j549tZv/UMUtFAPOhJCB7HQ0EHlGBtpMdy1+fxS/J0Ue4VS07FSWGvEjcjJZSh3iv+dPsBiTgITRhWquM6ofZiLDUlDJJCN1IQYjLGQ+gYKjAH5cXpx4l9ZpS+PQikKaHtVP27EWOu1IT7ZpJjPVLLvZn4X68T6cGNF1MRRhoEmR8aRMzWgT2zb/epBKLZxBBMJDW/2mSEJSbahLRwJTVFiR6BomrBTuzzxMTlLoezSprVintVubyvlmrlLLg8OkGn6By56BrV0B2qowYiSKBXNEVv1tR6tz6sz/lozsp2jtECrK9fw86iUw==</latexit>

x⇤

Figure 6.1: In integer programming, a cutting plane is a linear inequality con-
straint that separates the convex hull of feasible solutions from the LP
solution of its relaxation. In this figure, black dots represent integer
feasible solutions. The linear constraints of the integer program give
rise to the feasible region in red and grey. The optimal solution of
the LP relaxation is x⇤. The cutting plane (in green) cuts off a part of
the feasible region that includes x⇤ but none of the integer feasible
solutions.

plane, then it holds that

a|x  b for all x 2 X and a|x⇤ > b (6.1)

where x⇤ is the current solution of the LP relaxation, for example at the
root node as in (5.2).

Cutting planes are useful for branch and bound, because they facilitate
bound improvements. Specifically, the LP relaxation may be tightened by
adding a cutting plane. This is because the cut reduces reduces the feasible
region of the linear program and invalidates its current solution. Thus, the
solution to the relaxation that additionally includes the cutting plane may
improve the dualbound. We write the improvement in the dualbound as a
result of adding a cut to the LP relaxation at the root node with dualbound
z̆ as

ỹc = |gd(z̆c)� gd(z̆)| (6.2)

where z̆c is the bound after adding the cutting plane c to the relaxation.
The bound will not worsen, i.e., ỹc � 0, but bound improvements are not
guaranteed.

6.1 cutting planes in branch and bound 79

6.1.2 Cutting Plane Selection

Many procedures to generate cutting planes have been developed [see e.g.,
218]. Some well-known classes of cutting plane algorithms include Comple-
mented Mixed Integer Rounding [219] or Gomory [183] cuts. Modern solvers
implement numerous algorithms that are called frequently to separate a
variety of cutting planes and improve the dualbound. Naturally, adding
all available cutting planes c 2 C to the LP relaxation would result in the
tightest bound. However, this is rarely done, because each additional cut
increases the size of and cost to resolve the linear program. It also makes it
more likely to encounter numerical instabilities. Thus, there exists a trade-
off in cutting plane selection between facilitating bounds improvements and
restraining the computational cost for resolving the relaxation. In practice,
it is desirable to select only a handful of cuts that yield sizable improve-
ments in the dualbound without significantly increasing the complexity of
resolving the linear program.

The open-source branch and bound solver SCIP addresses this problem
with an iterative procedure. It first assigns a heuristic score to each cut ŷc.
As described in chapter 5 the default score is a weighted average of a cut’s
efficacy, integral support and parallelism with the objective. It then selects
the cut with the highest score,

c?
2 arg max

c2C

ŷc (6.3)

and discards some of the remaining cuts from C based on their heuristic
score and their parallelism with the selected, before selecting the next best
cut of the remaining ones. This procedure is repeated until a maximum
number of cuts has been selected or no cuts remain. Many heuristic scores
ŷc for cut selection have been proposed and we briefly list and describe the
most common ones in Table 6.1. Wesselmann & Stuhl [220] gives a good
overview. Unfortunately, these existing heuristics to score cutting planes
are generic and fail to exploit problem-specific characteristics. As a result,
they may perform poorly in practice and do not select the cutting planes
that facilitate the best bound improvements as we show in section 6.2. In
applications where similar problem instances are solved repeatedly and
structural commonality exists this creates an opportunity to improve over
existing methods for cut selection with machine learning. We develop such
a method in the next section.

80 learning to cut in branch and bound

Heuristic Description

Efficacy ŷ = |a|x⇤ � b| /kak
Objective Parallelism ŷ = a|c/kckkak
Violation ŷ = |a|x⇤ � b|

Relative Violation ŷ = |a|x⇤ � b| /|b|

Support ŷ = n�
���j | aj 6= 0

 ��

Integer Support ŷ =
���j | aj 6= 0, j 2 I

 �� /
���j | aj 6= 0

 ��

Expected Improvement ŷ = (a|c/kak) (|a|x⇤ � b| /kak)
Default ŷ is a weighted average of Efficacy, Objective

Parallelism and Integral Support.

Table 6.1: Existing standard heuristics to score a cut c = (a, b) based on [220].
Ties are broken at random for all methods. In our experiments, we use
native functions of SCIP 7.0.2 where available to compute each score.

6.2 learning to cut

We propose NeuralCut to learn application-specific models that score cutting
planes and can replace existing heuristics for cut selection. Our approach is
based on the finding that a simple rule for cut selection that looks ahead to
explicitly compute bound improvements outperforms existing heuristics.
Because this rule is too expensive to be used in practice, we train graph
neural networks that learn to imitate this rule. At test time, our models may
be called to estimate (in parallel) the bound improvements of all available
cuts c 2 C and provide a score for cut selection in (6.3). NeuralCut is extends
on the model described in chapter 5 to cut selection and features several
innovations including a novel objective for cut selection and a tripartite
graph to represent both integer programs and cutting planes.

6.2.1 Cutting by Looking Ahead

As argued previously, it is desirable in branch and bound to select only a
few cutting planes from a pool of available cuts that facilitate sizable bound
improvements. With this objective, it is natural to consider the following

6.2 learning to cut 81

rule: From all available cuts, select the cutting plane that facilitates the
largest bound improvement,

c?
2 arg max

c2C

ỹc (6.4)

where ties are broken at random to select a single cut. This rule can be
used repeatedly to select multiple cuts as in the selection procedure of the
SCIP solver. It then gives rise to a greedy algorithm that scores cuts directly
on the bound improvement they yield. Of course, this rule is prohibitively
expensive. The rule must look ahead and compute the bound improvement
for each available cut c 2 C, if it was added to the relaxation. For this
reason, we call the rule Lookahead. Its high computational cost is likely the
reason why Lookahead has to the best of our knowledge not been previously
described for cut selection, despite the fact that effectively approximating
bound improvements is a recognized goal for the heuristic design of cut
scores [220, 221].

We compare the performance of Lookahead against existing heuristics
for cut selection on 510 bounded and feasible instances from the ‘easy’
collection of MIPLIB 2017 [222]. After pre-solving each instance, we perform
T = 30 separation rounds and add a single cut per round to the LP
relaxation. We discard the instances for which thirty such separation rounds
could not be completed within 24 hours with our available hardware. Each
method selects the cutting plane it assigns the highest score to and methods
only differ in the function they use to score cuts c 2 C. Lookahead uses ỹc for
scoring cuts as described above. For any method, let z̆t be the dualbound
after performing t separation rounds and adding a single cut in each. The
initial dualbound after presolving is z̆0 which is the same for all methods.
For each method and each round, we compute the integrality gap closed
(IGC) defined as

IGCt := 1�
gd(z̆t)
gd(z̆0)

(6.5)

In Figure 6.2, the IGC is averaged over all instances for each method at
each round. Lookahead clearly outperforms other rules for cut selection
throughout. It achieves larger IGC with fewer cuts than all baselines. The
margin over the default rule of the SCIP solver is sizable; Lookahead achieves
mean 0.25 IGC (compared to ⇠0.15 IGC of the default rule) after 30 cuts
and reaches 0.15 IGC after adding only five cuts on average. Further, since
MIPLIB contains diverse instances that vary in size, complexity and struc-
ture, this suggest that Lookahead may be a universally strong criterion for
cut selection, potentially useful to improve performance in general-purpose

82 learning to cut in branch and bound

MILP solvers. This is an interesting avenue for future work, but in this
chapter we will focus on designing application-specific models for cut
selection.

0 10 20 30
Number of Cuts

0.00

0.05

0.10

0.15

0.20

0.25
IG

C

Lookahead
Exp. Improv.
Default (SCIP)
Efficacy

Violation
Rel. Violation
Int. Support

Random
Obj. Parall.
Support

Figure 6.2: Lookahead clearly outperforms common heuristics for cut selection
on 510 instances from the MIPLIB (easy) collection. It achieves higher
mean IGC throughout when performing 30 consecutive separation
rounds and adding a single cut per round.

6.2.2 Learning from Looking Ahead

Lookahead is a strong criterion for cutting plane selection, but it is too
expensive to be deployed in a branch and bound solver. In order to select a
single cut, Lookahead computes the bound improvement for each cut c 2 C.
Therefore, our strategy is to learn a model that approximates the the bound
improvement ỹc that Lookahead uses and can be used for cut selection
instead. To learn such a model, our objective is to minimize the following
loss function

L (ŷ, y) := �
1

|C|
Â

c2C

yc log ŷc + (1� yc) log(1� ŷc) (6.6)

6.2 learning to cut 83

where yc = ỹc/ỹc? is the bound fulfillment of the cut c 2 C and c? is the
cut that Lookahead selects as in (6.4). Our model predicts ŷ to approximate
the bound fulfillment for each cut in the pool conditional on the integer
program, the cut pool and the current solver state, but we have suppressed
the dependence of ŷ on xsup and qsup above for notational convenience.
Notably, we target bound fulfillment y as opposed to bound improvement
ỹ, the dualbound z̆ or (P(c = c?))c2C for each cut and there are several
advantages of this choice. First, bound fulfillment is invariant to the scale of
the objective and the absolute improvement a cut facilitates. This prevents
the loss from being dominated by only few training examples that admit
large bound improvements and instead uniformly weights all training ex-
amples. Second, the bound fulfillment of a cut is comparative; it depends on
the bound improvement that the best available cut in the cutpool facilitates.
Thus, to achieve low loss, the model only needs to learn how well a cut
performs relative to the other available cuts but is freed from learning how
well it performs overall. This is arguably easier and aligns well with the
goal of selecting the best available cut. Third, our model makes prediction
for each available cut and jointly learns from all bound fulfillments. This
provides a richer signal than for example predicting which cut Lookahead se-
lects and gracefully handles cases where several cuts achieve the same best
improvement. At test time, NeuralCut selects the cut for which it predicts
the highest bound fulfillment

c?
2 arg max

c2C

ŷc(xsup, qsup) (6.7)

tripartite graph Our model makes prediction from the linear pro-
gram relaxation of a node in the branch and bound tree and the pool of
available cuts. For this purpose, we propose a variant of the bipartite graph
representation that was discussed in section 5.3.1. Our model extends the
bipartite to a tripartite graph where the available cuts form a third group
of nodes (Figure 6.3). Each cut node is joined by an undirected edge to the
nodes of the variables that appear in the respective cut. This is analogous
to how variables and constraints are joined in the bipartite graph described
in chapter 5. In addition, each cut node is connected to each constraint
node with a weight that measures the degree of parallelism between the
corresponding cut and constraint. The intuition for this is if a cut and
a constraint are exactly parallel to each other than either the constraint
or the cut may be redundant. Additionally, in a graph neural network
connecting constraints and cuts will facilitate skip connections between
constraints and cut. Intuitively, the model is not forced to communicate

84 learning to cut in branch and bound

information between cuts and constraints only via the variable nodes, but
can communicate information directly. We also expand and adapt the set of
features for the nodes of the graph. In particular, we include more struc-
tural information about variables, constraint and cuts, use binary variables
to encode information. We give a complete list of the features we use in
Appendix B.6.2.

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·

<latexit sha1_base64="o7RDGCRHqyZJS6MNxwdKIPaQ3xI=">AAACX3icbVDLrtMwEHXDo6UXeltYIVhEtEhISFVSXXHvsogNyyLRh9SEynGmrVU7juwJUmXlI/gatvAZLPkTnLSL25aRrDk6Z2Y8c5JccINB8KfhPXj46HGz9aR99fRZ57rbez4zqtAMpkwJpRcJNSB4BlPkKGCRa6AyETBPdp8qff4dtOEq+4r7HGJJNxlfc0bRUavu+0GUSPuxXFkeJUqkZi9dshFLFZZlpUVU5FtaftsNVt1+MAzq8C9BeAR9cozJqtd4HaWKFRIyZIIaswyDHGNLNXImoGxHhYGcsh3dwNLBjEowsa2vKv23jkn9tdLuZejX7P0OS6Wp1nWVkuLWnGsV+T9tWeD6LrY8ywuEjB0+WhfCR+VXFvkp18BQ7B2gTHO3q8+2VFOGzsiTSfVspmMLhUs8x5OTbH0zZ7gFw82plMiy7fwMz927BLPRMPwwvPky6o8HR2db5BV5Q96RkNySMflMJmRKGPlBfpJf5Hfjr9f0Ol73UOo1jj0vyEl4L/8BEhC6Ew==</latexit>

Ai·ak
<latexit sha1_base64="W1Bw10BbYL6J/czqdC8Ib2HIZ5I=">AAACO3icbVDLSgMxFM3UVx1fVTeCm2ARXJWZIuqy4MZlBfuAzlAy6W0bmskMSUYpw/yHP6Nb/QXX7sSV4N50WsG2Xgg5nHvPuckJYs6Udpw3q7Cyura+Udy0t7Z3dvdK+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYyuJ/3WPUjFInGnxzH4IRkI1meUaEN1S1UvgAETKQWhQWZ2TCTh3NipEHsefgA2GGpleyB6vzPdUtmpOHnhZeDOQBnNqt4tfXm9iCahkVNOlOq4Tqz9lEjNKIfM9hIFMaEjMoCOgYKEoPw0/1uGTw3Tw/1ImiM0ztm/ipSESo3DwEyGRA/VYm9C/tfrJLp/5adMxIkGQaeL+gnHOsKToHCPSaCajw0gVDLzVkyHJh1qMph3yr2p9FNIzMVindm2CcldjGQZNKsV96Jyflst145mcRXRMTpBZ8hFl6iGblAdNRBFj+gZvaBX68l6tz6sz+lowZppDtFcWd8/Zr2vWQ==</latexit>

parallelism
weights

<latexit sha1_base64="hOISnp7XznQswuvEBbXzCePuT28=">AAACOXicbVDLTsJAFJ3iC/EFumTTCCauSGuMusS4cYmJPBJoyHS4hZHpIzO3JqThJ9zqn/glLt0Zt/6AQ+nCgjeZzMk593ncSHCFlvVhFDY2t7Z3irulvf2Dw6Ny5bijwlgyaLNQhLLnUgWCB9BGjgJ6kQTquwK67vRuoXefQSoeBo84i8Dx6TjgHmcUNdWr3w4T/jSvD8s1q2GlYa4DOwM1kkVrWDGqg1HIYh8CZIIq1betCJ2ESuRMwLw0iBVElE3pGPoaBtQH5STpwnPzTDMj0wulfgGaKfu3IqG+UjPf1Zk+xYla1Rbkf1o/Ru/GSXgQxQgBWw7yYmFiaC6uN0dcAkMx04AyyfWuJptQSRlqj3Kd0t5MOgnE+uMR5k5K0ps5wwkorvKS68+1nfaqeeugc9GwrxqXDxe1Zj0ztkiq5JScE5tckya5Jy3SJowI8kJeyZvxbnwaX8b3MrVgZDUnJBfGzy9yE63Y</latexit>

Aij

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·
<latexit sha1_base64="g1IJoFs0QM1Mjs1/QID6Bi7qB1E=">AAACC3icbVDLSgMxFM3UVx1fVZduQovgqswUUZeFblxWsA9oh5JJM21o5kFyI5Shn6Bb/Q934taP8Df8AjPTWdjWAyGHc+69uTl+IrgCx/m2SlvbO7t75X374PDo+KRyetZVsZaUdWgsYtn3iWKCR6wDHATrJ5KR0Bes589amd97YlLxOHqEecK8kEwiHnBKIJNaGtSoUnPqTg68SdyC1FCB9qjyMxzHVIcsAiqIUgPXScBLiQROBVvYQ61YQuiMTNjA0IiETHlpvusCXxpljINYmhMBztW/HSkJlZqHvqkMCUzVupeJ/3kDDcGdl/Io0cAiunwo0AJDjLOP4zGXjIKYG0Ko5GZXTKdEEgomnpVJ+WwqvZRpc/EEFrZtQnLXI9kk3UbdvalfPzRqzWoRVxldoCq6Qi66RU10j9qogyiaohf0it6sZ+vd+rA+l6Ulq+g5Ryuwvn4BApCbgg==</latexit>

Cuts

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·

<latexit sha1_base64="vZVBVSwka00YqyABfiMQsuI9+bU=">AAACEnicbVDLSgMxFM3UVx1fVZduhhbBVZkpoi4L3bisYB8wHUomzbShmWRI7ghl6F/oVv/Dnbj1B/wNv8B0OgvbeiDkcM69NzcnTDjT4LrfVmlre2d3r7xvHxweHZ9UTs+6WqaK0A6RXKp+iDXlTNAOMOC0nyiK45DTXjhtLfzeE1WaSfEIs4QGMR4LFjGCwUh+SwoNCjMBelipuXU3h7NJvILUUIH2sPIzGEmSxlQA4Vhr33MTCDKsgBFO5/Yg1TTBZIrH1DdU4JjqIMtXnjuXRhk5kVTmCHBy9W9HhmOtZ3FoKmMME73uLcT/PD+F6C7ImEhSoIIsH4pS7oB0Fv93RkxRAnxmCCaKmV0dMsEKEzAprUzKZxMVZDQ1F0tgbtsmJG89kk3SbdS9m/r1Q6PWrBZxldEFqqIr5KFb1ET3qI06iCCJXtArerOerXfrw/pclpasouccrcD6+gX6w57B</latexit>

Constraints

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

· · ·

<latexit sha1_base64="Ri+ACKQv7xTmHw3960sEuT7TvTg=">AAACEHicbVDLTgIxFO3gC8cX6tJNAzFxRWaIUZckblxiIg8DE3KndKCh7UzajgmZ8BO61f9wZ9z6B/6GX2AZWAh4kqYn59x7e3vChDNtPO/bKWxsbm3vFHfdvf2Dw6PS8UlLx6kitEliHqtOCJpyJmnTMMNpJ1EURMhpOxzfzvz2E1WaxfLBTBIaCBhKFjECxkqPLVAMbK3ulype1cuB14m/IBW0QKNf+ukNYpIKKg3hoHXX9xITZKAMI5xO3V6qaQJkDEPatVSCoDrI8oWn+NwqAxzFyh5pcK7+7chAaD0Roa0UYEZ61ZuJ/3nd1EQ3QcZkkhoqyfyhKOXYxHj2ezxgihLDJ5YAUczuiskIFBBjM1qalM8mKshoai+WmKnr2pD81UjWSatW9a+ql/e1Sr28iKuIzlAZXSAfXaM6ukMN1EQECfSCXtGb8+y8Ox/O57y04Cx6TtESnK9fBgqdrg==</latexit>

Variables

<latexit sha1_base64="T97Qa9Ig/geqIFEgxNcIS4c8B5g=">AAACGXicbVDLSsNAFJ3UV42vqEs3g0XoqiRF1GXBhS4r9AVtKJPpbTt0kgwzk0IJ/RLd6n+4E7eu/A2/wEmbhW29MMzh3HvOvZxAcKa0635bha3tnd294r59cHh0fOKcnrVUnEgKTRrzWHYCooCzCJqaaQ4dIYGEAYd2MLnP+u0pSMXiqKFnAvyQjCI2ZJRoQ/UdpyGZINIoAT9IIsZ9p+RW3EXhTeDloITyqvedn94gpkkIkaacKNX1XKH9NPOkHOZ2L1EgCJ2QEXQNjEgIyk8Xl8/xlWEGeBhL8yKNF+xfRUpCpWZhYCZDosdqvZeR//W6iR7e+SmLRKIhostFw4RjHeMsBjxgEqjmMwMIlczciumYSEK1CWvFaeFNpZ9CYj4m9Ny2TUjeeiSboFWteDeV66dqqVbO4yqiC3SJyshDt6iGHlEdNRFFU/SCXtGb9Wy9Wx/W53K0YOWac7RS1tcv+UCgzA==</latexit>

Tripartite Graph

<latexit sha1_base64="f1KQBmFlCIPq5YmXIRZbttQz2n8=">AAACQHicbVDLTsJAFJ3iC/EFutRFI5i4Ii0x6pLEjUtM5JFAIdPhFkamj8zcmpCG/3Crn+Jf+AfujFtXDoWFBW8ymZNz7vO4keAKLevDyG1sbm3v5HcLe/sHh0fF0nFLhbFk0GShCGXHpQoED6CJHAV0IgnUdwW03cndXG8/g1Q8DB5xGoHj01HAPc4oaqpf6VERjekgeZr1J5VBsWxVrTTMdWAvQZksozEoGWe9YchiHwJkgirVta0InYRK5EzArNCLFUSUTegIuhoG1AflJOnaM/NCM0PTC6V+AZop+7ciob5SU9/VmT7FsVrV5uR/WjdG79ZJeBDFCAFbDPJiYWJozj0wh1wCQzHVgDLJ9a4mG1NJGWqnMp3S3kw6CcT64xFmTkrSmznDMSiuspLrzwraT3vVvXXQqlXt6+rVQ61cryydzZNTck4uiU1uSJ3ckwZpEkYkeSGv5M14Nz6NL+N7kZozljUnJBPGzy+UJbCl</latexit>

�k
j

<latexit sha1_base64="UeUFLB2l4AwspoKzJeR1bU+T6pc=">AAAEsXicrVPfb9MwEHbbAFv4sXV7hIeIQoWENDUBAVKFVLQXHodEt6E6K7bjtlZtJ9gOonLzh/LMP4KTpVLbbQwhHFm+3H33feeTD2ecadPr/Ww0W96du/d2dv37Dx4+2ttvH5zqNFeEDknKU3WOkaacSTo0zHB6nimKBOb0DM+Py/jZd6o0S+Vns8hoLNBUsgkjyDjXuN1cwpEPMZ0yaZFSaFFYNbDFanO3C//D2IZhAfs/xiHsBy9hvwv7kCep0fVvCZAVQDpP9z3s4woK4QgKmug5y5BIc2nikiu6jSva5oqu54KkzOvWR0m0+ioPhKWauE1NbKuJWg2z6YYa4tkMXdiwcLf9E+c6cI0bcvrNITE16OKG5qwyo7+ViG6W+OeerbiX9rhY/odCaqKqHB9SmdQPzYfxeL/TO+pVK7hqhLXRAfU6GbcbT2CSklxQaQhHWo/CXmZix2gY4dRx5ppmiMzRlI6cKZGgOrbVnBTBc+dJgkmq3JYmqLzrGRYJrRcCO6RAZqa3Y6XzutgoN5N3sWUyyw2V5FJokvPApEE5dEHCFCWGL5yBiGKu1oDMkELEuNHcYKq4iYotzd3BMrNxJVvdmREzo5rpzRAWhe/6GW5376pxGh2Fb45ef4o6g2d1Z3fAY/AUvAAheAsG4CM4AUNAmr9au62D1qH3yvviffXwJbTZqHMOwcby5r8BuHmDkw==</latexit>

A11 x1 + . . . + A1n xn = b1

A21 x1 + . . . + A2n xn = b2

· · · · · · · · ·

Am1 x1 + . . . + Amn xn = bm

�1
1 x1 + . . . + �1

n xn  b1

�2
1 x1 + . . . + �2

n xn  b2

· · · · · · · · ·

�
|C|

1 x1 + . . . + �2
n xn  b|C|

Figure 6.3: We encode the linear program relaxation of a node in the search
tree and the pool of available cuts using a tripartite graph. Each
constraint, variable and candidate cut gives rise to a node in this
graph. Constraints and cuts are joined by undirected edges to their
variables with non-zero coefficients. In addition, cuts and constraints
are joined by edges that are weighted by their degree of parallelism.

model Our model predicts the bound fulfillment for each cut in the pool.
For this purpose, we adapt the model from Gasse et al. [200] discussed in
chapter 5 to cutting plane selection (Figure 6.4). First, our model embeds the
features of all nodes. Then, our model uses convolutions between variables
and constraints, cuts and variables, and cuts and constraints to update the
embedding and pass information about the program and the available cuts.
Finally, our model uses an attention between the cuts in the pool before
predicting the bound fulfillment for each cut from the embedding of its
node. The use of the attention layer between the cuts is motivated by the
need of the model to predict the bound fulfillment of each cut which is a
comparative quantity as discussed earlier.

Our model differs from the model in chapter 5 in several ways, including
the use of a tripartite graph to explicitly represent the pool of available
cuts, the choice of features for variable, constraint and cut nodes, the use of

6.2 learning to cut 85

batch normalization [223] instead of layer normalization [224] throughout
and the use of an attention layer. We validate our design choices in the
experimental section where we show that they improve performance.

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="EhMHDcdybmIEgtZib6DCK1uD3g8=">AAAB9HicbVDLSgNBEOz1GeMr6tHLkCB4CrtB1GMkF48RzAOSJcxOZpMhsw9negNhyXd48aCIVz/Gm3/jbLIHTSwYqKnuorvLi6XQaNvf1sbm1vbObmGvuH9weHRcOjlt6yhRjLdYJCPV9ajmUoS8hQIl78aK08CTvONNGlm9M+VKiyh8xFnM3YCOQuELRtFIbiNBcofIw+w3KFXsqr0AWSdOTiqQozkoffWHEUsCY2eSat1z7BjdlCoUTPJ5sZ9oHlM2oSPeMzSkAdduulh6Ti6MMiR+pMwLkSzU346UBlrPAs90BhTHerWWif/Vegn6t24qwjgxd7HlID+RBCOSJUCGQnGGcmYIZUqYXQkbU0UZmpyKJgRn9eR10q5Vnevq1UOtUi/ncRTgHMpwCQ7cQB3uoQktYPAEz/AKb9bUerHerY9l64aVe87gD6zPH5fXkeU=</latexit>

Cut Attention

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="g1IJoFs0QM1Mjs1/QID6Bi7qB1E=">AAACC3icbVDLSgMxFM3UVx1fVZduQovgqswUUZeFblxWsA9oh5JJM21o5kFyI5Shn6Bb/Q934taP8Df8AjPTWdjWAyGHc+69uTl+IrgCx/m2SlvbO7t75X374PDo+KRyetZVsZaUdWgsYtn3iWKCR6wDHATrJ5KR0Bes589amd97YlLxOHqEecK8kEwiHnBKIJNaGtSoUnPqTg68SdyC1FCB9qjyMxzHVIcsAiqIUgPXScBLiQROBVvYQ61YQuiMTNjA0IiETHlpvusCXxpljINYmhMBztW/HSkJlZqHvqkMCUzVupeJ/3kDDcGdl/Io0cAiunwo0AJDjLOP4zGXjIKYG0Ko5GZXTKdEEgomnpVJ+WwqvZRpc/EEFrZtQnLXI9kk3UbdvalfPzRqzWoRVxldoCq6Qi66RU10j9qogyiaohf0it6sZ+vd+rA+l6Ulq+g5Ryuwvn4BApCbgg==</latexit> C
u
ts

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="bG8ZQfJmOSs3CRVSRUChoZzRfYY=">AAACD3icbVBLTsMwFHTKr4RfgSWbiBaJVZVUCFhWYsOySPQjtVHlOE5r1bEj+wWpinoI2MI92CG2HIFrcALcNAvaMpLl0cx7z88TJJxpcN1vq7SxubW9U9619/YPDo8qxycdLVNFaJtILlUvwJpyJmgbGHDaSxTFccBpN5jczf3uE1WaSfEI04T6MR4JFjGCwUi92oCEEnRtWKm6dTeHs068glRRgdaw8jMIJUljKoBwrHXfcxPwM6yAEU5n9iDVNMFkgke0b6jAMdV+lu87cy6MEjqRVOYIcHL1b0eGY62ncWAqYwxjverNxf+8fgrRrZ8xkaRABVk8FKXcAenMP++ETFECfGoIJoqZXR0yxgoTMBEtTcpnE+VnNDUXS2Bm2yYkbzWSddJp1L3r+tVDo9qsFXGV0Rk6R5fIQzeoie5RC7URQRy9oFf0Zj1b79aH9bkoLVlFzylagvX1C3ponM4=</latexit>

·
·
·

<latexit sha1_base64="vZVBVSwka00YqyABfiMQsuI9+bU=">AAACEnicbVDLSgMxFM3UVx1fVZduhhbBVZkpoi4L3bisYB8wHUomzbShmWRI7ghl6F/oVv/Dnbj1B/wNv8B0OgvbeiDkcM69NzcnTDjT4LrfVmlre2d3r7xvHxweHZ9UTs+6WqaK0A6RXKp+iDXlTNAOMOC0nyiK45DTXjhtLfzeE1WaSfEIs4QGMR4LFjGCwUh+SwoNCjMBelipuXU3h7NJvILUUIH2sPIzGEmSxlQA4Vhr33MTCDKsgBFO5/Yg1TTBZIrH1DdU4JjqIMtXnjuXRhk5kVTmCHBy9W9HhmOtZ3FoKmMME73uLcT/PD+F6C7ImEhSoIIsH4pS7oB0Fv93RkxRAnxmCCaKmV0dMsEKEzAprUzKZxMVZDQ1F0tgbtsmJG89kk3SbdS9m/r1Q6PWrBZxldEFqqIr5KFb1ET3qI06iCCJXtArerOerXfrw/pclpasouccrcD6+gX6w57B</latexit> C
on

st
ra

in
ts

<latexit sha1_base64="Ri+ACKQv7xTmHw3960sEuT7TvTg=">AAACEHicbVDLTgIxFO3gC8cX6tJNAzFxRWaIUZckblxiIg8DE3KndKCh7UzajgmZ8BO61f9wZ9z6B/6GX2AZWAh4kqYn59x7e3vChDNtPO/bKWxsbm3vFHfdvf2Dw6PS8UlLx6kitEliHqtOCJpyJmnTMMNpJ1EURMhpOxzfzvz2E1WaxfLBTBIaCBhKFjECxkqPLVAMbK3ulype1cuB14m/IBW0QKNf+ukNYpIKKg3hoHXX9xITZKAMI5xO3V6qaQJkDEPatVSCoDrI8oWn+NwqAxzFyh5pcK7+7chAaD0Roa0UYEZ61ZuJ/3nd1EQ3QcZkkhoqyfyhKOXYxHj2ezxgihLDJ5YAUczuiskIFBBjM1qalM8mKshoai+WmKnr2pD81UjWSatW9a+ql/e1Sr28iKuIzlAZXSAfXaM6ukMN1EQECfSCXtGb8+y8Ox/O57y04Cx6TtESnK9fBgqdrg==</latexit>

V
ar

ia
b
le

s

<latexit sha1_base64="JyXJ3caaO2vnhvVjpQ2gdZpivPk=">AAAB8XicbVBNS8NAEJ34WetX1aOXpUXwVJIi6rEggscK9gPbUDabSbt0swm7G6GU/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7cJOcXdv/+CwdHTc0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28HoZua3n1BpnsgHM07Rj+lA8ogzaqz0eBsHGIZcDnS/VHGr7hxklXg5qUCORr/01QsTlsUoDRNU667npsafUGU4Ezgt9jKNKWUjOsCupZLGqP3J/OIpObNKSKJE2ZKGzNXfExMaaz2OA9sZUzPUy95M/M/rZia69idcpplByRaLokwQk5DZ+yTkCpkRY0soU9zeStiQKsqMDaloQ/CWX14lrVrVu6xe3Ncq9XIeRwFOoQzn4MEV1OEOGtAEBhKe4RXeHO28OO/Ox6J1zclnTuAPnM8fgWeQtw==</latexit>

Embeddings
<latexit sha1_base64="oHjiZ8zOvo1ntZj2XRqDVZOyEms=">AAAB+3icbVBNSwMxEJ2tX7V+1Xr0EloET2W3iHos9KDHCvYD2qVk02wbmk2WJFssS/+KFw+KePWPePPfmG170NYHA4/3ZpiZF8ScaeO6305ua3tndy+/Xzg4PDo+KZ6W2lomitAWkVyqboA15UzQlmGG026sKI4CTjvBpJH5nSlVmknxaGYx9SM8EixkBBsrDYqlO4XjMWpIMZU8yTQ9KFbcqrsA2iTeilRgheag+NUfSpJEVBjCsdY9z42Nn2JlGOF0XugnmsaYTPCI9iwVOKLaTxe3z9GFVYYolMqWMGih/p5IcaT1LApsZ4TNWK97mfif10tMeOunTMSJoYIsF4UJR0aiLAg0ZIoSw2eWYKKYvRWRMVaYGBtXwYbgrb+8Sdq1qnddvXqoVerlVRx5OIcyXIIHN1CHe2hCCwg8wTO8wpszd16cd+dj2ZpzVjNn8AfO5w8jl5Rr</latexit>

Graph Convolutions

Figure 6.4: Our model for NeuralCut is a graph neural network. First, it embeds
all nodes in the tripartite graph from Figure 6.3. Then, our model
uses convolutions between variables and constraints, cuts and vari-
ables, and cuts and constraints to update the embeddings and pass
information about the program and the available cuts. Finally, our
model uses an attention layer between the cuts and the pool before
predicting the bound fulfillment for each cut from the embedding of
its node.

6.2.3 Deployment

We conduct our experiments with the open-source solver SCIP 7.0.2 [193].
Unfortunately, this solver does not directly expose control over separation
algorithms and cutting plane selection to the user. This makes it difficult
to study cutting plane selection. To compare NeuralCut against various
heuristics for cutting plane selection in section 6.4.1, we extend the solver’s
source in C and directly interface the most important separators of SCIP
in Python. This includes Clique, Complemented Mixed Integer Rounding, Dis-
junctive, Flow Cover, Gomory, Implied Bounds, Multi-Commodity Flow Network,
Odd-Cycle, Strong Chvátal-Gomory and Zero-half separators. This allows us
to enforce separation rounds with any subset of separators at our own
discretion. Cuts are accumulated into a separate pool, where they can be
inspected and applied to the LP relaxation. To test NeuralCut for branch

86 learning to cut in branch and bound

and bound, we integrate it into the open-source solver SCIP 7.0.2 [193]. This
solver exposes a plug-in for separation algorithms that we abuse to control
cutting plane selection in branch and bound. Our approach is inspired by
https://github.com/avrech/learning2cut. Via the plug-in, we directly
enforce the cut selection our trained models predict and give more details
in section 6.4.2. Finally, we note that for future research on cutting plane
selection, it may be more convenient to use the cut selection plug-in that
was made available with SCIP 8.0.0 [225] after this work was completed.

6.3 related work

NeuralCut relies on training a model to imitate a strong but expensive
expert, in our case the Lookahead rule. This is a common approach in ma-
chine learning for branch and bound. For example, in variable selection
for branching, several works [200] learn to imitate the Strong Branching
heuristic. Interestingly, this heuristic performs a lookahead step to com-
pute the bound improvements that result from branching on a particular
variable. In contrast, Lookahead performs a lookahead step to compute the
bound improvements that result from selecting a particular cutting plane.
In analogy to Strong Branching, our Lookahead rule could be dubbed Strong
Cutting.

Some other works considers machine learning for cutting plane selection.
Tang, Agrawal & Faenza [207] propose an approach to select Gomory cut-
ting planes. This approach casts cut selection as a reinforcement learning
problem and uses bound improvements to reward a model that scores
cuts and is trained with evolutionary strategies. Turner et al. [209] also
adopt reinforcement learning, but consider specialized integer programs
and cutting planes. Their model that adapts the weights of existing heuristic
scores. Huang et al. [226] cast cut selection as multiple instance learning and
apply it to a proprietary solver, but they only perform a single separation
round. In contrast, our approach is based on imitation learning. It is a
generic recipe to learn cut selection tailored to any specific application and
can be called in any separation round. Berthold, Francobaldi & Hendel
[208] consider cutting plane management. They train a regression forest
to predict improvements in solving time from separating cutting planes at
nodes other than the root.

6.4 experiments 87

6.4 experiments

We evaluated the effectiveness of NeuralCut in two different experiments
and on a total of five datasets. The first set of experiments (Section 6.4.1) was
designed to study the cut selection performance of NeuralCut in isolation
and compare it against existing heuristics for selecting cutting planes. On
a benchmark of four classes of synthetic integer programs from previous
work [207], we performed thirty consecutive separation rounds and added
a single cut per round. We measured both the bound fulfillment of selected
cuts and integrated the normalized dual gap over the thirty rounds. We
found that NeuralCut outperformed existing heuristics for cut selection
and a competing RL approach [207] and approximated the performance
of Lookahead closely. We also performed ablations to validate the design
choices we made for NeuralCut and found they improve performance
Finally, we tested the transferability of the models we trained and found
that NeuralCut mostly learns to exploit application-specific patterns for cut
selection. The second set of experiments (Section 6.4.2) directly included
NeuralCut into the branch and bound process of the open source solver
SCIP. The solver used NeuralCut to select cuts at the root node of the tree.
Our goal was to demonstrate that NeuralCut selects better cutting planes
than the default procedure of the solver and that its selection facilitates
improvement in branch and bound search downstream. We considered
instances from neural network verification [197] and measured the residual
solving time after resolving the root node. We found that NeuralCut could
achieve sizable improvements in the dualbound by selecting only a small
number of cuts relative to the default solver and observed that this selection
resulted in improvements of residual solving time. The results highlight the
potential of machine learning methods to improve cutting plane selection
in branch and bound solvers.

We collected data for training and validation: In all experiments, we
extracted the tripartite graph input representation described in the previous
section and representations of the available cuts C with the features listed
in Appendix B.6.2. We also compute the bound improvement for each cut
c 2 C without any spill-over effects on the state of the solver with the aid of
the built-in diving or probing mode. For each instance, we collect data from
several separation rounds and give more details below. We trained separate
models for each dataset. We trained each model with ADAM [227] for 100
epochs in the first set of experiments and for 32 epochs in the second set
of experiments. For each dataset, we chose the batch size to exhaust the

88 learning to cut in branch and bound

memory of a single NVIDIA GeForce GTX 1080 Ti device. We validated
after every epoch and chose the model that achieved the best validation
loss. We did not use any accelerators at test time.

6.4.1 Cutting with NeuralCut

With this first set of experiments, we studied the cutting plane selection
performance of NeuralCut and compared it against existing heuristics for
cut selection. We used the same benchmark as previous work [207]. This
benchmark consists of four different classes of integer programs, including
Packing, Binary Packing and Planning problems as well as finding the max-
imum cut in a graph (Max Cut). For each class, Tang, Agrawal & Faenza
[207] generates problems in three different sizes, snall, medium and large. We
find that the snall- and medium-sized problems are often very easy and may
be entirely presolved. Therefore, we only consider problems of the large size,
but note that these are still relatively small. For each class, we trained on
1000 instances and validated and tested on 500 instances. We compare Neu-
ralCut against existing standard cut selection heuristics listed in Table 6.1.
For comparison, we also report results for Lookahead and Random that selects
a cut from the pool randomly. Finally, we considered a competing approach
based on reinforcement learning [207]. This approach cast cut selection
as a reinforcement learning problem and uses bound improvements to
reward a model for cut selection trained with evolutionary strategies. Tang,
Agrawal & Faenza [207] consider only Gomory cuts and use the Gurobi
solver [228]. To compare, we reimplemented their method and expose it to
all available cutting planes. We presolved all instances, but did not branch
and disabled primal heuristics and the the default separation procedure
of the solver, because we enforce separation rounds manually. We resolve
the LP relaxation which gives the initial dualbound z̆0 and the initial dual
gap gd(z̆0). At test time, we perform up to thirty discretionary separation
rounds where we use all available separators as described in section 6.2.3.
In each round 1  t  T = 30, we select a single cut with the highest
score and break ties at random for each selection rule. We then measure the
dualbound z̆t and compute the normalized the dual gap against the initial
dual gap gd(z̆0) to compute the normalized dual integral

Gd :=
T

Â
t=1

gd(z̆t)
gd(z̆0)

(6.8)

6.4 experiments 89

To collect data for training NeuralCut, we only perform ten separation
rounds. We collect the tripartite graph representation of the node program
and the bound improvement for each available cut. We then select with
equal probability either a cut with the highest bound fulfillment (Lookahead)
or a cut with the highest default solver score (Default) or a random cut
(Random) and trigger the next separation round. This exploration rule is
designed to increase the diversity of the training samples. We collect this
data also for the test instances and report the average bound fulfillment
each cut selects. This is useful, because it facilitates comparison between
all selection rules on the same cut pools and LP relaxations. This is not the
case for the normalized dual integral, where comparison is confounded if
any two heuristics selected different cutting planes in previous rounds.

NeuralCut clearly outperforms existing heuristics for cut selection on
three out of four datasets (Maximum Cut, Binary Packing and Planning). It
achieves a lower dual integral on the test instances over the thirty separation
rounds (Table 6.3, right panel with visuals in Appendix C.3.3) indicating
that it selects better cuts that reduce the dual gap further and earlier. Its
performance nearly matches the performance of Lookahead which validates
our approach. Overall, the results suggest that learning to imitate Lookahead
is viable. The cuts NeuralCut selects on the test set achieve much higher
bound fulfillment than for the other heuristics (Table 6.3, left). On Plan-
ning and Maximum Cut, its bound fulfillment is (nearly) optimal. On the
Packing dataset, NeuralCut statistically achieves the same performance as
several other heuristics (Default, Efficacy, Rel. Violation). The performance
is comparable to Lookahead, but the improvement over Random is relatively
small. This could suggest that the Packing instances are not very discrim-
inatory for cut selection, perhaps because the separated cutting planes
are homogenous. NeuralCut also clearly outperforms the competing RL
approach [207]. The models we trained outperform the Random heuristic
as in the original publication, but failed to outperform more sophisticated
heuristics for cut selection against which Tang, Agrawal & Faenza [207] did
not compare. Overall, we found it difficult to train their model, but believe
our approach based on imitation rather than reinforcement learning may
be a more promising approach to design models for cut selection.

model ablation We validate the design choices we made in the pre-
vious section and test several variants of NeuralCut on the Binary Packing
dataset (Table 6.4). Specifically, we begin with the basic model from Gasse
et al. [200] that was described in chapter 5 minimally adapted for cut se-

90 learning to cut in branch and bound

B
ound

fulfillm
ent("),m

ean
N

orm
alized

dualintegral(#),m
ean

(ste)

M
ax.C

ut
Packing

Bin.Packing
Planning

M
ax.C

ut
Packing

Bin.Packing
Planning

Lookahead
1.0

1.0
1.0

1.0
15.1

(0.1)
26.4

(0.1)
9.9

(0.3)
10.3

(0.1)

N
euralC

ut
0.96

0.61
0.78

1.0
15.6

(0.1)
26.3

(0.1)
11.0

(0.3)
10.4

(0.1)
Tang

etal.[207]
0.58

0.27
0.22

0.49
19.0

(0.1)
27.6

(0.1)
16.1

(0.4)
15.0

(0.1)

D
efault(SC

IP)
0.71

0.60
0.33

0.64
16.7

(0.1)
26.3

(0.1)
15.4

(0.3)
14.0

(0.1)
Exp.Im

prov.
0.69

0.60
0.32

0.85
19.0

(0.1)
26.3

(0.1)
15.1

(0.3)
11.2

(0.1)
Efficacy

0.65
0.60

0.32
0.46

17.0
(0.1)

26.3
(0.1)

15.2
(0.3)

14.5
(0.1)

O
bj.Parall.

0.47
0.34

0.27
0.44

24.0
(0.1)

28.3
(0.1)

22.2
(0.3)

27.7
(0.1)

R
el.V

iolation
0.50

0.60
0.33

0.48
18.0

(0.1)
26.3

(0.1)
14.9

(0.3)
15.4

(0.1)
V

iolation
0.64

0.35
0.21

0.26
23.2

(0.1)
28.8

(0.1)
19.4

(0.3)
25.8

(0.1)
Support

0.57
0.18

0.13
0.29

19.3
(0.1)

28.8
(0.1)

24.8
(0.2)

18.4
(0.1)

Int.Support
0.62

0.18
0.21

0.34
21.9

(0.1)
28.8

(0.1)
21.1

(0.3)
23.3

(0.1)
R

andom
0.41

0.15
0.16

0.25
22.0

(0.1)
28.7

(0.1)
21.2

(0.3)
23.3

(0.1)

Table
6.3:N

euralC
utselects

cuts
w

ith
high

average
bound

fulfillm
ent(left)and

sm
aller

average
reversed

IG
C

integralon
four

benchm
arks.Itoutperform

s
both

a
com

peting
R

L
approach

[207]and
m

anualheuristics
for

cutselection.It
approxim

ates
the

perform
ance

ofLookahead
closely.Perform

ance
on

testinstances
for

30
consecutive

separation
rounds

and
adding

a
single

cutper
round.Bestm

odelor
heuristic

is
bold-faced,bestoverallis

in
italics.

6.4 experiments 91

lection. This basic variant uses cutting plane nodes instead of constraint
nodes and switches the order in which half-convolutions are applied. After
training, this model achieves an average test bound fulfillment of 0.54 and
a dual integral of 16.09. It outperforms the simplest heuristics for cutting
plane selection, but falls short of more sophisticated heuristics, e.g., Expected
Improvement or Efficacy. We then improve this model by using the features
of NeuralCut (+ our features) for both cuts and variables instead of the
original features from Gasse et al. [200]. This improves bound fulfillment
to 0.66 and the dual integral to 12.77. This model already outperforms all
existing heuristics for cut selection, but falls short of the final performance
of NeuralCut. Performance is further improved by making architectural
changes (+ our architecture). Specifically, we replace layer normalization
with batch normalization and add the attention layer for the cut pool to
the model. Finally, we use the tripartite graph representation and model
variables, constraints and cut nodes jointly which gives the full NeuralCut
model. We observe that our architectural choices boost performance signifi-
cantly, bound fulfillment increased from 0.76 to 0.78 and the dual integral
is reduced from 12.77 to 10.96. Including constraint nodes as in NeuralCut
improved bound fulfillment, but did not significantly change the dual in-
tegral. We found this surprising, but it is plausible that bound fulfillment
and the dual integral are not perfectly correlated, the dual integral is more
noisy and a model that does not explicitly model constraint nodes can still
reasonably learn, because the variable features may implicitly carry some
information about the constraints via their features, e.g., their value in the
current LP solution. The ablation on Binary Packing was most discriminative,
but ablations for the other benchmarks are in Appendix C.3.1. In addition,
an ablation on the choice of the loss function is in Appendix C.3.2.

Bound fullfilment Normalized dual integral

Gasse et al. [200] 0.54 16.09 (0.31)

+ our features 0.66 12.77 (0.32)

+ our architecture 0.76 10.73 (0.33)

NeuralCut (+ our graph) 0.78 10.96 (0.33)

Table 6.4: Our model choices tend to improve tend to improve both bound
fulfillment on test samples and reversed IGC integral on test instances
for binary packing. Ablations for the other benchmarks are in Table C.6
in Appendix C.

92 learning to cut in branch and bound

transferability Finally, we test the transferability of NeuralCut mod-
els across different domains of integer programs (Table 6.5). For this pur-
pose, each of the four NeuralCut models in Table 6.3 is additionally evaluated
on the test instances of the other three domains. For example, the entry
in the second row (Packing) and fourth column (Planning) of Table 6.5 cor-
responds to the NeuralCut model trained on Packing instances, but tested
on Planning instances. We find that NeuralCut models do not transfer well
to other domains: On all benchmarks, the test performance of transferred
models is significantly worse than the performance of the model that was
trained on instances of the respective domain. This suggests that NeuralCut
learns to exploit application-specific patterns to select good cuts.

Normalized dual integral (#), mean (ste)

Max. Cut Packing Bin. Packing Planning

Max. Cut 15.55 (0.09) 28.96 (0.03) 26.33 (0.16) 17.07 (0.07)

Packing 25.03 (0.06) 26.30 (0.08) 16.29 (0.27) 29.67 (0.01)

Bin. Packing 21.75 (0.08) 27.66 (0.06) 10.96 (0.33) 25.01 (0.12)

Planning 19.13 (0.08) 28.98 (0.03) 22.83 (0.27) 10.42 (0.04)

Table 6.5: Training NeuralCut on a single domain (row) does not generalize well
to other domains (columns). On all four benchmarks, the model that
was trained on the same domain as it is tested on (i.e., main diagonal)
performs best. Models that were trained on another domain when they
are tested on perform significantly worse. The performance drop tends
to be less severe when domains are more similar, e.g., packing and
binary packing.

6.4.2 NeuralCut in branch and bound

With this second set of experiments, our goal was to use NeuralCut within
branch and bound. The goal of this experiment was to demonstrate that im-
proved cutting plane selection via NeuralCut can improve the performance
of branch and bound downstream. To this end, we included NeuralCut into
the open-source solver SCIP via a plug-in as described in section 6.2.3 to
select cutting planes at the root node. It is common to select multiple cuts
from a cut pool. As previously described, this is accomplished in SCIP

6.4 experiments 93

with an iterative selection procedure. This selection procedure involves
various stopping criteria to terminate the selection and prevent the solver
from adding additional cutting planes in any separation round. The criteria
have been optimized for the solver’s default configuration and its heuristic
cut score and this may confound comparison when the score NeuralCut
predicts is simply used instead. To select multiple cuts with NeuralCut, we
therefore equip NeuralCut with a simple stopping rule parameterized by a
threshold parameter e 2 {10�5, 10�4, 10�3, 10�2, 10�1, 1} to detect stalling:
The selection procedure is terminated after the bound improvement from
adding cuts has not exceeded e for 10 consecutive rounds. We report results
for all e we tried. We do not use the additional stopping criteria that are
part of SCIP, but this may improve performance. The loop to select multiple
cutting planes with NeuralCut in a single separation round (i.e., from a
given cut pool) is implemented entirely in Python and the final selection
(of multiple cuts) is then enforced via plug-in. This is not performant, but
sufficient for measuring downstream performance improvements result-
ing from improved cut selection which is the goal of this experiment. For
training, for each instance we collect the tripartite graph representation
and bound improvements for up to (a total of) fifty iterations across all
separation rounds at the root node. We select these fifty samples uniformly
at random for each instance and use reservoir sampling [229] to accomplish
this, since the number of separation rounds and iterations is unknown a
priori. We use the Default rule of the solver for data collection.

As an application, we consider verifying the robustness of neural net-
works. These instances are particularly interesting for cut selection, because
the relaxation is notoriously weak and can be significantly improved with
cutting planes. We use the instances from Nair et al. [197], but we discard
instances that are trivial and infeasible or numerically unstable. We also
exclude the few instances that could not be solved within a time limit of
one hour with the default SCIP solver to give a total of 2384 instances for
training, 519 instances for validation and 545 instances for testing.

We measure residual solving time to assess downstream branch and bound
performance. This is the time the branch and bound solver requires after
resolving the root node until an instance is completely solved, i.e. the
optimal solution is provably found. We leave all other solver parameters
unchanged and compare NeuralCut with various e against the default solver
to isolate the effect the of improved cutting plane selection on branch
and bound. Our experiments were conducted on a shared distributed
compute cluster. To reduce measurement variability, we ran all test time

94 learning to cut in branch and bound

Cut selection at root Residual solve
Cuts Norm. dualbound Time Nodes LP iters.

SCIP 279 1.00 23.65 745 21933
NeuralCut

e = 10�5 105 1.00 22.35 671 18846
e = 10�4 81 0.99 20.89 756 19310
e = 10�3 48 0.98 22.73 803 18048
e = 10�2 27 0.94 24.06 861 18048
e = 10�1 11 0.76 25.09 998 21996
e = 1 10 0.53 23.35 952 21611

Table 6.6: NeuralCut in a B&C solver – Median metrics for NN verification test
instances and different values for the threshold parameter e. NeuralCut
improves the dualbound at the root at a fraction of the number of cuts
the default solver SCIP selects. When subsequently branching from
the root node, this can reduce the remaining solving time by lowering
the number of LP iterations or expanded nodes in the search tree. Best
are bold-faced.

evaluations repeatedly on machines equipped with the same Intel Intel
Xeon Gold 51118 CPU 2.3 GHz processor for three different seedings of the
solver. We batched evaluations randomly across instance and methods to be
processed sequentially on the same machine. We report test set means and
standard errors over the three different random seeds. NEED TO CLEAN
UP RESULTS (MEDIAN ETC.) In addition to residual solving time, we
report the number of cuts selected at the root node, the bound improvement
at the root relative to the default solver, the mean number of nodes of the
search tree and the residual number of LP iterations.

NeuralCut improves residual solving time against the default solver from
an average by nearly 10% (Table 6.6). It selects more effective cutting
planes at the root node, where it achieves similar bound improvements by
only adding a fraction of the cuts the default solver selects. For example,
the best performing variant (e = 10�4) selects only 30% as many cuts
as the default solver, but achieves nearly the same bound improvements.
The most aggressive variant selects only 10 cutting planes on average
compared to 279 cutting planes, but still achieves more than half of the

6.5 discussion 95

bound improvement. Selecting fewer cutting planes without compromising
the dualbound facilitates improvements in residual solving time. We find
that these improvements are likely because the number of LP iterations in
the branch and bound search is reduced, but the search tree does not grow
significantly in size, because the node dualbounds are still tight.

However, we stress that residual solving time does not account for the
in-service overhead of NeuralCut, because it excludes the time required to
resolve the root node where the model is deployed. While calling NeuralCut
to predict bound fulfillment is much cheaper than computing bound fulfill-
ment exactly as Lookahead does, it is still expensive to call the model once
for every cut that is selected. Our experimental results are encouraging,
because they highlight that improved cutting plane selection via machine
learning can indeed facilitate improvements in branch and bound search.
To improve overall solver performance however, we believe that future
work must holistically address cutting plane management instead of cutting
plane selection. We discuss various opportunities for future work in the
next section.

6.5 discussion

In this chapter we presented NeuralCut to learn application-specific cutting
plane selection in branch and bound. We considered a lookahead rule that
greedily selects cuts that yield the best bound improvement. This rule is
effective, but too expensive to be deployed in practice. In response, we
proposed NeuralCut and presented a method for learning to imitate the
Lookahead rule. Our model is trained to predict the bound fulfillment of
any cut under consideration with a novel objective for cut selection. It is
based on a tripartite graph representation of integer programs and cut
pools that we developed as well as a graph neural network that includes
several innovations over previous work. We tested NeuralCut on a range of
integer programs a real-world application from neural network verification.
NeuralCut closely approximated the performance of Lookahead at a fraction
of its costs and clearly outperformed existing heuristics for cut selection
and a competing reinforcement learning approach. In branch and bound,
NeuralCut facilitated improvements in downstream solving time and clearly
highlights the potential for improving solver performance via learnt models
for improved cut selection.

There are exciting avenues for future work to extend the methods we
presented in this chapter. For example, our findings suggest that in order to

96 learning to cut in branch and bound

improve overall solver performance it is likely desirable to select multiple
cuts with a single model call. To this end, a model could learn to predict the
cut selection after applying Lookahead repeatedly to the same cut pool and
pairing it with a stopping criterion. This is in analogy to how we deployed
NeuralCut in section 6.4.2. Alternatively, a strong selection of multiple
cuts may be derived by considering the following minimax optimization
problem,

max
x2{0,1}|C|

min
x2P0

c|x� # Â
c2C

xc (6.9)

where P0 = P \ {a|
cx  bc + Mc(1� xc) 8c 2 C}. The decision variables

x 2 {0, 1}|C| are used to select cutting planes. If xc = 1, the correspond-
ing cutting plane is active and x⇤ 2 arg minx2P0 c|x will be such that
a|

cx  bc. If xc = 0, the corresponding cutting plane is active. This is
ensured by choosing a large constant Mc which is guaranteed to render
the cutting plane inactive, because a|

cx  bc + Mc is guaranteed to hold
for the optimal LP solution. The hyperparameter # > 0 is a penalty that is
incurred for every cutting plane that is activated. For the optimal selection
x? 2 arg maxx2{0,1}|C| minx2P0 c|x� # Âc2C xc, this ensures that the bound
improvement from the selected cuts is at least # Âc2C x?

c. Larger # will tend
to select fewer cutting planes, while smaller # will tend to select more
cuts. Solving the minimax problem above may be more expensive than
repeatedly using Lookahead on the same cutpool C to select multiple cuts,
but could result in improved selection.

Overall, any model for multi-cut selection will have a significantly lower
in-service overhead than NeuralCut and it is plausible that this may fa-
cilitate improvements in overall solver performance. In the next chapter,
we will pursue such overall performance improvements, albeit from a dif-
ferent angle, namely by considering heuristics methods to improve the
primalbound.

7
L E A R N I N G T O D I V E I N B R A N C H A N D B O U N D

synopsis In this chapter, we propose a primal heuristic method to
find feasible solutions for mixed integer linear programs. As with cutting
planes, feasible solutions provide bounds on the optimal solution value
that facilitate branch and bound. But while cutting planes may tighten the
dualbound, feasible solutions strengthen the primalbound (chapter 5). Our
method is based on diving heuristics that are a prominent group of primal
heuristics in branch and bound. Diving heuristics iteratively modify and
resolve linear programs to conduct a depth-first search from any node in
the search tree. Existing divers rely on generic decision rules that fail to
exploit structural commonality between similar problem instances that often
arise in practice. Therefore, we propose L2Dive to learn application-specific
diving heuristics with graph neural networks: We train generative models to
predict variable assignments and leverage the duality of linear programs to
make diving decisions based on the model’s predictions. Experimentally, we
demonstrate that L2Dive outperforms standard divers to find better feasible
solutions on a range of combinatorial optimization problems. Within branch
and bound, L2Dive improves overall solver performance. For real-world
applications from server load balancing and neural network verification,
L2Dive improves the primal-dual integral by up to 7% (35%) on average
over a tuned (default) solver baseline and reduces average solving time by
20% (29%).

attribution This chapter is largely based on the following preprint
that was authored jointly with Andreas Krause.

• Paulus, M. B. & Krause, A. Learning To Dive In Branch and Bound in
Under submission. (2023)

7.1 diving heuristics in branch and bound

7.1.1 Generic Diving

Diving heuristics are a prominent group of primal heuristics (chapter 5).
They are based on the linear program relaxation that was given in (5.2) for

97

98 learning to dive in branch and bound

the root node and attempt to drive the LP solution x⇤ towards integrality.
Diving heuristics conduct a depth-first search in the branch and bound tree
to explore a single root-leaf path. They iteratively modify and solve linear
programs to find feasible solutions. Algorithm 3 illustrates a generic diving
heuristic. A dive can be initiated from any node in the branch and bound
tree and will return a (possibly empty) set of feasible solutions Xdiv for the
original mixed integer linear program in (5.1). Typically, diving heuristics
alternate between tightening the bound of a single candidate variable xj
with j 2 D ✓ I (line 5) and resolving the modified linear program (line 7),
possibly after propagating domain changes [230]. The resultant solution
may be integral (xj 2 Z, 8j 2 I) or admit an integral solution via rounding
[line 9, 230]. Eventually, the procedure is guaranteed to result in at least one
primal-feasible solution (line 10) or an infeasible program (line 6). However,
in practice solvers may prematurely abort a dive to curb its computational
costs, for example by imposing a maximal diving depth (line 2), an iteration
limit on the LP solver or a bound on the objective value. Diving heuristics
may also leverage sophisticated rounding methods in each iteration which
makes them more likely to be successful.

Diving heuristics feature prominently in integer programming. In contrast
to methods for large neighborhood search, they only require repeatedly
solving linear programs (in complexity class P) instead of small integer
programs (NP-hard). As a result, they tend to be considerably faster and
more applicable in practice. Diving heuristics are an integral part of modern
branch and bound solvers.

7.1.2 Diving heuristics

Various diving heuristics have been proposed and Berthold [184] gives
a good overview. We list and briefly describe the most common ones in
Table 7.11. Most diving heuristics only differ in how they select variables
for bound tightening in line 3:

j? = arg max
j2D

ŷj (7.1)

where ŷ heuristically scores variables for diving with examples in Table 7.1.
The set D is the set of divable variables that typically excludes integer

1 SCIP’s diving ensemble includes a few additional divers which we did not directly compare
against in Section 7.4.1, because they either choose from the other heuristics (adaptive), were in-
effective (conflict), require a feasible solution (guided) or do not use the generic diving algorithm
(objective pseudocost). However, these divers are active for the baselines in Section 7.4.2.

7.1 diving heuristics in branch and bound 99

Algorithm 3: Generic Diving Heuristic
Input: An integer program as in (5.1) and a LP relaxation as in (5.2),

maximal depth dmax
Output: Xdiv ✓ X , a (possibly empty) set of feasible solutions
Require : ŷ, a heuristic score to select variables for bound tightening

1 d = 1
2 while d  dmax do
3 j? = arg maxj2D ŷj
4 Either p j? dx⇤j?e or p j? bx⇤j?c
5 P P \ {p j?  xj?  p j?}

6 if P is infeasible then break;
7 x⇤ = arg minx2P c|x
8 if x⇤ is roundable then
9 x = round(x⇤)

10 Xdiv Xdiv [{x}

11 end
12 d d + 1
13 Possibly update candidates D

14 end

100 learning to dive in branch and bound

variables that are slack variables [231, Chapter 1.1] or that have already
been fixed (p j = p j). The heuristic scores standard divers use are generic
and fail to exploit problem-specific characteristics. For example, Fractional
diving simply selects the variable with the lowest fractionality in the LP
solution, i.e., ŷj = �|x⇤j � bx

⇤

j + 0.5c|. While standard divers generally
applicable to any mixed integer program, they are not universally effective.
For example, we found Farkas diving to deliver good results on a class of
facility location problems, but to be ineffective for instances of maximum
independent set (Section 7.4.1). This non-specificity is particularly severe in
applications, where similar problem instances are solved repeatedly and
structural commonality exists. As a result, modern solvers use an array of
different diving heuristics during branch and bound. Selectively tuning
this diving ensemble can be effective in improving solver performance
on particular applications (Section 7.4). In contrast, our approach that we
discuss in the next section is to directly learn problem-specific diving
heuristics for particular applications. We demonstrate in our experiments
that this yields improvements over using a (tuned) ensemble of divers as is
common practice.

7.2 learning to dive

We propose L2Dive to learn application-specific diving heuristics with graph
neural networks. L2Dive uses a generative model to predict an assignment
for the integer variables of a given mixed integer linear program. This model
is learnt from a distribution of good feasible solutions collected initially for
a set of training instances of a particular application. The model is a graph
neural network closely related to the model in we described in chapter 5. It
is trained to minimize a variational objective. At test time, L2Dive leverages
insights from the duality of linear programs to select variables and tighten
their bounds based on the model’s predictions. We fully integrate L2Dive
into the open-source solver SCIP.

7.2 learning to dive 101

Diver Description

Coefficient Selects the variable with the minimal number of (posi-
tive) up-locks or down-locks and bounds it in the cor-
responding direction; ties are broken using Fractional
diving.

Distribution Selects a variable based on the solution density follow-
ing [232].

Farkas Attempts to construct a Farkas proof, Farkas diving
bounds a variable in the direction that improves the
objective value and selects the variable for which the
improvement in the objective is largest.

Fractional Selects the variable with the lowest fractionality |x⇤j �
bx⇤j + 0.5c| in the current LP solution x⇤ and bounds it
in the corresponding direction.

Linesearch Considers the ray originating at the LP solution of the
root and passing through the current node’s LP solution
x⇤, selects the variable j whose coordinate hyperplane
xj = bx⇤j c or xj = dx⇤j e is first intersected by the ray.

Pseudocost Selects and bounds a variable based on its branching
pseudocosts, its fractionality and the LP solutions at
the root and the current node.

Vectorlength Inspired by set partition constraints, selects a variable
for which the quotient between the objective cost from
bounding it and the number of constraint it appears in
is smallest.

Table 7.1: Overview of standard diving heuristics.

102 learning to dive in branch and bound

7.2.1 Learning from feasible solutions

We propose to learn a generative model to predict good feasible solutions
for any given integer program. For this purpose, we first pose a conditional
probability distribution over the variables x:

log p̃t(x | c, A, b, p, p) :µ

8
<

:
�c|x/t if x 2 X 0

�• else
(7.2)

The distribution p̃t(x|·) is conditioned on a given instance as in equation
(5.1) with (c, A, b, p, p) and defined with respect to a set of good feasible
solutions X 0 ✓ X for this instance. Solutions x 2 X 0 with a better objective
are given larger mass as regulated by the temperature t, while solutions
that are not known to be feasible or are not good (x /2 X 0) are given no
probability mass. In practice, a model for diving will only need to make
predictions on the divable variables xD that are integral, non-fixed and not
slack (Section 7.1). Hence, our model will target the marginal distribution
pt(xD|·) := Âx02X 0 I(xD = x0

D
) p̃t(x0|·).

Our goal is to learn a generative model p̂(xD|·) that closely approxi-
mates the distribution pt(xD|·). The model p̂(xD|·) will be used to make
predictions on unseen test instances for which pt(xD|·) and X 0 are un-
known. To learn a good generative model, our objective is to minimize the
Kullback-Leibler divergence between pt(xD|·) and p̂(xD|·),

L(pt , p̂) := KL(pt || p̂) = Â
xD

pt(xD|·) log
✓

pt(xD|·)
p̂(xD|·)

◆
(7.3)

jointly over all training instances. The sum in (7.3) can be evaluated ex-
actly, because the number of good feasible solutions in X 0 3 xD (for which
pt(xD|·) > 0) tends to be small. Our model predicts a probability p̂(xD|·)
for any assignment of the divable variables xD based on the integer program
and the current solver state, but we suppress the dependence of p̂(xD|·)
on xsup and qsup for notational convenience as before. We choose to make
conditionally independent predictions. For each variable, we choose an ap-
propriate probability distribution and our model outputs its parameters. For
binary variables, we choose a Bernoulli distribution, i.e. xj ⇠ Bern(µj) and
the model outputs its mean parameter µj = µj(xsup, qsup). Binary variables
are the most common variables in integer programs and all the instances we
considered feature exclusively binary divable variables. Nevertheless, for
general integer variables we suggest to consider the bitwise representation

7.2 learning to dive 103

of the integer domain. For example, the domain of a variable that can
assume no more than eight unique integer values can be represented using
at most four bits. Each of these bits can be parameterized with its own
Bernoulli distribution and the model outputs a mean for each. When the
maximum size of the domain of any divable variable is known a priori, the
model can output an array of fixed size for each variable and superfluous
bits may be ignored for variables with smaller domains. This is more likely
to be the case for diving than for other applications, because slack variables
from cutting plane constraints (whose domains are not known initially and
may be large) are not divable. In cases where outputting a fixed-size array
of Bernoulli parameters is not applicable, a variable length array could be
outputted by using a recurrent layer, such as an LSTM [233], as is proposed
in Nair et al. [197]2. Although conditionally independent predictions for
each variable limit our model to unimodal distributions, this design choice
delivered strong empirical performance in our experiments (Section 7.4). It
is possible to choose more delicate models for p̂(xD|·), such as autoregres-
sive models, but those will typically impose a larger cost for evaluations.
Our model is a variant of the graph neural network described in chapter 5.
As in chapter 6, we use an extended feature set (Appendix B.6.1) and batch
normalization instead of layer normalization. We adapt the output layer
to parameterize a probability distribution over variable assignments as
described above.

solution augmentation At train time, we rely on the availability
a set of good feasible solutions X 0 for each instance. This is required to
evaluate pt(xD|·) and the objective in (7.3). Several choices for X 0 are
possible, and the effectiveness of our approach may depend on them. For
example, if X 0 only contains trivial solutions, we cannot reasonably hope to
learn any non-trivial integer variable assignments. The most obvious choice
perhaps is to let X 0 = {x?}, where x? is the best solution the solver finds
within a given time limit T. However, solvers are typically configured to not
only store x?, but also a set number of its predecessors. Thus, alternatively
some or all of the solutions in store could be used to define X 0 at no
additional expense. Lastly, many instances of combinatorial optimization
(e.g., set cover, independent set) exhibit strong symmetries and multiple

2 Alternatively, a fixed size array could still be used with an additional bit to indicate integer
overflow that must be handled appropriately. For example in diving, variables for which the
model predicts overflow may be ignored. Further, the frequency with which overflow would
be encountered in practice could plausibly be reduced by making predictions relative to the
current solution bx⇤j c rather than with respect to the lower variable bound p j.

104 learning to dive in branch and bound

solutions with the same objective value may exist as a result. These can
be identified by using a standard solver to enumerate the solutions of an
additional auxiliary mixed integer linear program,

min
x2X ?

c|x, X
? = X \ {x 2 Rn

| c|x = z?
} (7.4)

where the optimal objective z? is identified from a previous call to the solver
on the program in (5.1). Standard solvers can enumerate the set X ? in (7.4)
with the aid of a constraint handler that is used whenever a new feasible
integer variable assignment is found to continue the solving process. We
used this method to augment solutions and chose X 0 = X ? for some of
our experiments. This technique may be of independent interest, because
the problem of handling symmetries is ubiquitous in machine learning
for combinatorial optimization [234]. While it can be expensive to collect
feasible solutions for each training instance regardless of the choice of X 0,
this cost may be curbed, because we do not require X 0 to contain the optimal
solution. Moreover, the cost is incurred only once and ahead of training,
such that all solver calls are embarassingly parallelizable across instances.
In some cases, a practitioner may be able to draw on previous solver logs
and not be required to expend additional budget for data collection. Finally,
any training expense will be ultimately amortized in test time service.

7.2.2 Using a generative model for diving

At test time, we use our generative model p̂(xD|·) to predict an assignment
for the divable integer variables xD of a given instance. We choose x̂D =
arg max p̂(xD|·), but assignments could also be sampled from the model,
for example if multiple dives are attempted in parallel. To use the prediction
for diving, we need to decide which variable to select (line 3 in Algorithm 3)
and how to tighten its bounds (line 4). Ideally, our decision rules will
admit a feasible solution at shallow depths, i.e., only a few bounds must be
tightened to result in an integral or roundable solution to the diving linear
program. Which variables should we tighten for this purpose and how?
Compellingly, the theory of linear programming affords some insight:

Proposition 5. Let x0 2 X be a feasible solution for a mixed integer linear
program as in (5.1) with relaxation as in (5.2). For (5.2), the dual linear program
is as defined in (A.28) in Appendix A.5. Let u⇤ := (u⇤b , u⇤p , u⇤p) be an optimal

7.2 learning to dive 105

solution for this dual program. Let J (x0) and J (x0) index the set of variables that
violate complementary slackness (A.29) for x0 and u⇤, such that

J (x0) := {j |

⇣
x0j � p j

⌘
u⇤p j > 0}

J (x0) := {j |

⇣
x0j � p j

⌘
u⇤p j > 0}

and define J (x0) := J (x0) [J (x0). Now consider the linear program

arg min
x2P

J (x0)
c|x (7.5)

where the bounds of all variables indexed by J (x) are tightened, such that

PJ (x0) = P \ {x 2 Rn
| xj � x0j 8j 2 J (x0), xj  x0j 8j 2 J (x0)}

Then, x0 2 arg minx2P
J (x0)

c|x.

Proof. x0 is clearly a feasible solution for the program in (7.5). u⇤ is a feasible
solution for the dual linear program of (7.5), because it is feasible for the
dual linear program of (5.2). The additional bound changes in (7.5) only
change the objective of the dual. x0 and u⇤ satisfy complementary slackness,
hence x0 is optimal for (7.5).

This suggests that for a prediction x̂D , variables in J (x̂D) should be
tightened. If the integer variable assignment x̂D is feasible and the candidate
set includes all integer variables, this will yield a diving linear program for
which the assignment is optimal and that may be detected by the LP solver.
Unfortunately, this is not guaranteed in the presence of slack variables
(where typically D ⇢ I) or if multiple optimal solutions exist (some of
which may not be integer feasible). In practice, it may thus be necessary
to tighten additional variables in D and we propose the following rule to
select a variable j? 2 D for tightening

j? = arg max
j2D

ŷj := p̂(x̂j|·) + I(j 2 J (x̂D)) (7.6)

This rule will select any variables in J (x̂D) before considering other vari-
ables for tightening and favors those variables in whose predictions the
model is most confident in. Conveniently, the set J (x̂) can be easily com-
puted on the fly from the dual values u⇤, which standard LP solvers readily
emit on every call at no additional expense.

106 learning to dive in branch and bound

7.2.3 Deployment

We fully integrate L2Dive into the open-source solver SCIP 7.0.2 [193]. The
solver exposes a plug-in for diving heuristics that implements an optimized
version of Algorithm 3 in the programming language C. We extend the
solver’s Python interface [235] to include this plug-in and use it to realize
L2Dive. This integration facilitates direct comparison to all standard divers
implemented in SCIP (Section 7.4.1) and makes it easy to include L2Dive in
SCIP for use in branch and bound (Section 7.4.2). Importantly, we call our
generative model only once at the initiation of a dive to predict a variable
assignment. While predictions may potentially improve with additional
calls at deeper depths, this limits the in-service overhead of our method. It
also simplifies the collection of training data and produced good results in
our experiments (Section 7.4).

7.3 related work

Nair et al. [197] propose a method that learns to tighten a subset of the vari-
able bounds. It spawns a smaller sub-integer program which is then solved
with an off-the-shelf branch and bound solver to find feasible solutions for
the original program. Sonnerat et al. [213] improve this approach using imi-
tation learning. Others explore reinforcement learning [211] or hybrids [210],
but only focus on improving primal performance. All of these methods are
variants of large neighborhood search [236–238], where a neighborhood for
local search is not proposed heuristically, but learnt instead. In contrast,
our approach L2Dive does not propose a fixed neighborhood and it does
not require access to a branch and bound solver to run. Instead, we use
our model’s predictions to iteratively modify and solve linear programs
instead of sub-integer programs. In practice, linear programs tend to solve
significantly faster which makes L2Dive more applicable.

7.4 experiments

We evaluated the effectiveness of L2Dive in two different experiments
and on a total of six datasets. The first set of experiments (Section 7.4.1)
was designed to study the diving performance of L2Dive in isolation and
compare it against existing diving heuristics. On a benchmark of four
synthetic combinatorial optimization problems from previous work [200],
we performed single dives with each diver and measured the average

7.4 experiments 107

primal gap. We found that L2Dive outperformed all existing divers on every
dataset and produced the best solutions amongst all divers. The second set
of experiments (Section 7.4.2) directly included L2Dive into the branch and
bound process of the open-source solver SCIP. The solver called L2Dive
in place of existing diving heuristics and our goal was to improve overall
performance on real-world mixed integer linear programs. We considered
instances from neural network verification [197] and server load balancing
in distributed computing [215]. We measured performance with L2Dive
against the default configuration and a highly challenging baseline that
tuned the solver’s diving ensemble. We found that L2Dive improved the
average primal-dual integral by 7% (35%) on load balancing and improved
average solving time by 20% (29%) on neural network verification over the
tuned (default) solver.

We collected data for training and validation: In all experiments, we
extracted the bipartite graph input representation described in chapter 5
with the features listed in Appendix B.6.1 at each instance’s root node. On
all but two datasets, we chose X 0 = {x?} where x? is the best solution
the solver finds within a given time limit T. For set cover and maximum
independent set only, we observed strong symmetries and used the solution
augmentation described in section 7.2. We trained separate models for each
dataset. We trained each model with ADAM [227] for 100 epochs in the
first set of experiments and for 10 epochs in the second set of experiments.
We individually tuned the learning rate from a grid of [10�2, 10�3, 10�4].
For each dataset, we chose the batch size to exhaust the memory of a single
NVIDIA GeForce GTX 1080 Ti device. We validated after every epoch and
chose the model that achieved the best validation loss. In all experiments,
we use the mode prediction of the generative model and only perform a
single dive from a given node. We do not attempt multiple dives in parallel
and did not use any accelerators at test time. In all experiments, we only
call L2Dive’s generative model once at the beginning of a dive to limit the
in-service overhead from serving the graph neural network.

7.4.1 Diving with L2Dive

With this first set of experiments, we studied the diving performance
of L2Dive and compared it against existing diving heuristics. We used
the same benchmark as previous work [200]. This benchmark consists of
four different classes of combinatorial optimization problems, including set
covering, combinatorial auctions, capacitated facility location and maximum

108 learning to dive in branch and bound

Set Cover Comb. Auction Fac. Location Ind. Set

L2Dive 55 (3) 222 (7) 160 (10) 5 (1)
Best heuristic 95 (3) 256 (8) 484 (7) 18 (2)

Coefficient 3,700 (55) 671 (11) 762 (9) 246 (4)
Distributional 3,900 (50) 1,504 (12) 760 (9) 196 (3)
Farkas 105 (3) 476 (9) 484 (7) -
Fractional 3,726 (57) 672 (10) 1,058 (11) 232 (4)
Linesearch 1,269 (24) 467 (10) 1,036 (15) 77 (1)
Pseudocost 195 (9) 256 (8) 505 (11) 32 (2)
Vectorlength 95 (3) 832 (20) 840 (19) 18 (1)

Random 416 (13) 704 (12) 902 (14) 78 (2)
Lower 2,918 (63) 1,587 (11) 623 (8) 171 (5)
Upper 239 (6) 611 (11) 828 (14) 62 (2)

Table 7.3: L2Dive finds better feasible solution on all four problem classes than
existing diving heuristics. Average primal gap with standard error on
test set. Best diver is in bold and best heuristic is in italics.

independent sets. For each class, we trained on 1000 instances and validated
and tested on 500 instances. We presolved all instances before diving, but
did not branch and disabled cutting planes and other primal heuristics
as our interest is solely in diving. We compared L2Dive against all other
standard diving heuristics in Table 7.1. This includes Coefficient, Fractional,
Linesearch, Pseudocost, Distributional, Vectorlength [184] and Farkas diving
[239]. For all of these divers, we use the optimized implementation made
available in the SCIP solver. In addition, we considered three trivial divers
that respectively fix integer variables to their lower (Lower) or upper limit
(Upper) or either with equal probability (Random). All divers ran with the
same diving budget (dmax = 100) and their execution was enforced after
resolving the root node. We ignore the few test instance that were solved
directly at root by SCIP before we could initiate a dive.

L2Dive outperformed all other standard divers (Table 7.3). It achieved the
lowest average test primal gap on each of the four problem classes. The
improvements over the best heuristic diver ranged from roughly 15% for
combinatorial auctions to more than 70% for independent sets. The trivial

7.4 experiments 109

divers only found solutions that are significantly worse, which indicates
that L2Dive learnt to exploit more subtle patterns in the problem instances
to find better feasible solutions. Some baseline divers (e.g., Linesearch, Dis-
tributional) failed to consistently outperform the trivial divers across all
problem classes and best heuristic diver varied (Pseudocost diving for com-
binatorial auctions, Farkas diving for facility location, Vectorlength diving
for set cover, independent set). This confirms that in practice most diving
heuristics while generic tend to only work well for some problem classes.
L2Dive is a generic recipe to design effective divers for any specific appli-
cation. Finally, we found that the mode predictions of our learnt models
were rarely feasible (e.g., set cover, combinatorial auctions) or yielded poor
solutions (e.g., independent set). This highlights that learning a generative
model for diving may be a more promising approach than trying to predict
feasible solutions directly.

7.4.2 L2Dive in branch and bound

With this second set of experiments, our goal was to use L2Dive within
branch and bound to improve solver performance on real-world mixed
integer linear programs. To this end, we included L2Dive into the open-
source solver SCIP. We disabled all other diving heuristics in SCIP and dive
with L2Dive from the root node. We found this to work well, but results for
L2Dive may improve further with a more subtle schedule for L2Dive or by
integrating L2Dive into the solver’s diving ensemble.

We considered two strongly contrasting applications from previous work.
The first application deals with safely balancing workloads across servers
in a large-scale distributed compute cluster. This problem is an instance of
bin packing with apportionment and can be formulated as a mixed integer
linear program. We used the dataset from Gasse et al. [215] which contains
9900 instances for training and 100 instances for validation and testing
respectively. Solving these instances to optimality is prohibitively hard3

and we therefore set a time limit of Tlimit = 900 seconds for data collection
and test time evaluations. The second application deals with verifying the
robustness of neural networks as in chapter 6. We use the same instances as
previously and set a limit of Tlimit = 3600 seconds for data collection and
test time evaluations.

3 Using a Xeon Gold 5118 CPU processor with 2.3 GHz and 8 GB of RAM, none of the instances
could be solved with SCIP 7.0.2 at default settings within an hour.

110 learning to dive in branch and bound

To assess solver performance, we measure solving time T for neural
network verification and the primal-dual integral Gpd(T) for server load
balancing. Both measures fully account for the entire in-service overhead
of L2Dive (e.g., computing the bipartite graph representation from the tree
node, forward-propagating the generative model, diving etc.), because the
L2Dive diver is directly included into SCIP and called by the solver during
the branch and bound process. Our experiments were conducted on a
shared distributed compute cluster. To reduce measurement variability, we
ran all test time evaluations repeatedly on machines equipped with the
same Intel Xeon Gold 5118 CPU 2.3 GHz processors for three different
seedings of the solver. We batched evaluations randomly across instances
and methods to be processed sequentially on the same machine. We report
test set means and standard errors over the three different random seeds.

Load Balancing Neural Network Verif.

Primal-dual Integral Wins Solving Time Wins

SCIP
Default 4,407 (34) 0 (0) 55.8 (2.3) 54 (5)
No diving 4,221 (21) 0 (0) 53.7 (0.6) 40 (4)
Tuned 3,067 (10) 7 (3) 49.9 (2.8) 164 (3)

L2Dive 2,863 (13) 93 (3) 39.8 (2.3) 287 (5)

Table 7.4: L2Dive improves the performance of the branch and bound solver SCIP
on real-world applications. When using L2Dive instead of standard
divers, the average primal-dual integral for load balancing improves
by 7% (35%) and solving time on neural network verification shrinks
by 20% (29%) against the tuned (default) solver.

L2Dive improved solver performance ad-hoc (Table 7.4, L2Dive). On load
balancing, L2Dive improved the average primal-dual integral by over 30%
from the solver at default settings (Table 7.4, Default). On neural network
verification, L2Dive reduced the average solving time from approximately
56 seconds to less than 40 seconds (35%). As a control, we also ran SCIP
without any diving and surprisingly found small improvements on both
datasets (Table 7.4, No diving). The solver’s default setting are calibrated
on a general purpose set of mixed integer programs and are typically a
challenging baseline to beat. However, our results suggests that SCIP’s

7.5 discussion 111

divers are either ineffective or may be poorly calibrated for these two
applications. For this reason, we decided to tune the diving heuristics
of the solver to seek an even more challenging baseline for comparison.
We leveraged expert knowledge and random search to find strong diving
ensembles in the the vicinity of the default configuration. Then, we selected
the best tuned solver configuration on a validation set using the same
budget of solver calls that L2Dive expended for data collection. Details are
in Appendix B.6.3. Our tuned solver baseline (Table 7.4, Tuned) significantly
improved performance over Default, but was still outperformed by L2Dive.
This highlights that our approach to learn specific divers may be more
promising than fitting ensembles of generic diving heuristics to a particular
application. Overall, L2Dive achieved the best average performance on
93 (out of 100) test instances for load balancing, and achieved the best
average performance on 287 (out of 545) test instances for neural network
verification, more than the three SCIP configurations collectively.

7.5 discussion

In this chapter we presented L2Dive to learn application-specific diving
heuristics in branch and bound. Our approach combines ideas from gen-
erative modeling and relational learning with a profound understanding
of integer programs and their solvers. We tested L2Dive on a range of
applications including combinatorial optimization problems, workload
apportionment and neural network verification. It found better feasible
solutions than existing diving heuristics and facilitated improvements in
overall solver performance. We view our work as yet another example
that demonstrates the fruitful symbiosis of learning and search to design
powerful algorithms.

There are limitations in learning diving heuristics for specific applications.
For example, in some cases the set of training instances may be small
or collecting feasible solutions could be prohibitively expensive. In such
cases, it may be desirable to transfer models from other applications or to
utilize self-supervised representations that require fewer labelled examples
for training [44]. This is a natural direction to explore in the future, for
this and other work at the intersection of machine learning and integer
programming.

113

8
C O N C L U S I O N

8.1 summary

We presented methods for learning with and for discrete optimization.
Our contributions are two-fold. In learning with discrete optimization,
we focussed on gradient estimation for models in non-supervised learn-
ing that involve discrete variables. Such models appear in unsupervised,
self-supervised and reinforcement learning and discrete variables provide
benefits in terms of regularization, interpretability, model design and algo-
rithmic integration. Relying on efficient methods in discrete optimization,
we designed new gradient estimators for non-supervised machine learning
via relaxations. We demonstrated experimentally that these facilitate learn-
ing models that are more performant, useful and efficient. In learning for
discrete optimization, we focussed on improving the performance of branch
and bound solvers with machine learning. We identified opportunities to
replace existing heuristic subroutines designed by domain experts with
learnt models that are tailored to specific applications. In particular, we
developed methods to learn models for cutting plane selection and diving.
Our methods combine ideas from imitation learning and generative model-
ing on relational data with a profound understanding of integer programs
and modern branch and bound solvers. Experimentally, we demonstrated
that our methods outperform existing heuristics and competing machine
learning approaches and can facilitate overall improvements in solver per-
formance.

8.2 outlook

There are opportunities for future research in this thesis. In the preced-
ing chapters, we discussed some immediate ideas to extend the methods
presented there. Beyond this, there are other exciting directions. With re-
gard to our work on learning with discrete optimization, these include the
use of approximate methods to compute relaxations and applications in
reinforcement learning.

115

116 conclusion

relaxations via approximations Our gradient estimators for non-
supervised learning with discrete variables require methods to compute
the solution of the relaxation exactly. As we demonstrated in chapter 3, this
is possible for a variety of problems. However, in some cases methods that
approximate the solution instead of computing it exactly could be easier to
implement or computationally more efficient. For example, our gradient
estimator for correlated k-subsets is computed via dynamic programming
which scales unfavorably on accelerators and we could consider heuristics
to reduce the size of the program or approximate its solution. Thus, it may
be desirable if we could rely on approximations to design relaxed gradient
estimators instead. This raises interesting theoretical and practical questions.
What approximations admit a valid reparameterization gradient? How can
it be computed (or approximated)? Do estimators that use approximations
suffer from larger bias and variance or can they improve gradient estimation
in some cases? Do they suffer from a larger integrality gap? Can we retain
control over the faithfulness of the relaxation when we use approximations?

reinforcement learning Relaxed gradient estimators require that
the loss function can be evaluated on and differentiated with respect to
the solution of the relaxation. This is typically not the case in reinforce-
ment learning, if the model learns a policy solely from interactions with
a black-box environment whose dynamics are unknown and unmodelled.
However, in cases where a model for the environment is known or learnt
and differentiable, there are opportunities for the use of relaxed gradient
estimation. For example, Ha & Schmidhuber [240] learn generative models
of reinforcement learning environments and use these to train a policy
via evolutionary strategies. Instead, relaxed gradient estimators could be
considered. In addition, several authors recently presented differentiable
simulators for rigid body physics [see e.g., 241, 242] that are suitable for
relaxed gradient estimation in some cases. Finally, Christiano et al. [243]
align large language models with the aid of a learnt reward model. They
use traditional algorithms from reinforcement learning, but the reward
model is differentiable and relaxed gradient estimation may be a promising
alternative. As in other applications, this offers the opportunity to leverage
the differentiability of the loss function and may more effectively trade off
bias and variance to learn powerful models.

With regard to our work on learning for discrete optimization, exciting
directions for future research include the use of machine learning for other

8.2 outlook 117

components of branch and bound solvers and learning models that are not
application-specific but general-purpose.

neural branch and bound In this thesis, we presented methods to
learn models for cutting plane selection and diving in branch and bound.
Our work complements existing work that has considered variable selection,
node selection or primal heuristics and that we surveyed in chapter 5. Yet,
there are many components in modern branch and bound solvers that
remain for machine learning to explore. For example, with respect to cutting
planes, we focussed on the problem of cutting plane selection, i.e., choosing
a cutting plane from a pool of available candidates. However, cutting plane
management in branch and bound also entails numerous other decisions,
among them choosing how many cutting planes to add or which ones to
remove and scheduling separation rounds or individual separators. All of
these components present opportunities for machine learning to improve
the performance of branch and bound solvers. Based on the results of
this thesis, we believe that the most promising methods are those that
impose a limited computational overhead from model evaluations and can
learn from the rich data that solvers produce and integer programming
facilitates. Ultimately, the integration of an increasingly larger number of
learnt components may result in neural branch and bound solvers. Today,
with the exception of [197], there is little work that combines multiple
learnt components to improve solver performance, but this is a promising
direction for future research.

general-purpose components Most previous work, including the
methods we presented, considers learning application-specific models for
branch and bound. As we argued, this is relevant in practice, because
numerous applications involve solving many similar integer programs.
However, a case can be made for learning general-purpose components for
use in branch and bound that could outperform existing heuristics broadly
on diverse sets of integer programs. This could make machine learning for
integer programming universally available or allow solving problems of
unprecedented scale. From a learning perspective, learning general-purpose
components instead of application-specific ones is more challenging for
multiple reasons. When instances are more diverse, it is likely that larger
data sets and models with larger capacity are required, while signal-noise
ratios may be poorer. Moreover, instances that vary widely in size present
unique challenges when graph neural networks are used as is common.

118 conclusion

Many of these scale unfavorably with the size of the input graph and
require careful management. There is hope to address these challenges
in the future. With regard to data, the MIPLIB 2017 collection [222] is a
benchmark of diverse integer programs, unfortunately it only contains 1065
instances. But, integer programs can easily be synthetically generated, and
solvers can be used to collect labelled data. Thus, larger data sets may be
facilitated. With regard to modeling, alternative architectures are subject
to ongoing research in machine learning for integer programming [201].
While previous research focused on computational efficiency with respect to
available hardware, model scalability with respect to the program instance
is an equally important consideration.

A
P R O O F S A N D D E F I N I T I O N S

a.1 properties of exponentials and gumbels

The properties of Exponential and Gumbel random variables are central to
SMTs that have simple descriptions for the marginal qq. We review the
important ones here. These are not new; many have been used for more
elaborate algorithms that manipulate Gumbels [e.g., 104].

A Gumbel random variable U ⇠ Gumbel(q) for q 2 Rn is a location
family distribution, which can be simulated from U0 ⇠ Uniform(0, 1) using
the identity

U d
= q� log(� log U0) (A.1)

An exponential random variable U ⇠ Exp(q) for rate q > 0 can be
simulated from U0 ⇠ Uniform(0, 1) using the identity

U d
= � (1/q) log U0 (A.2)

Any result for Exponentials immediately becomes a result for Gumbels,
because they are monotonically related:

Proposition 6. If U ⇠ Exp(q), then � log U ⇠ Gumbel(log q).

Proof. Let U d
= � (1/q) log U0. Now,

� log U = � log (�1/q log U0)

= � (log(1/q) + log (� log U0))

= log q� log (� log U0) ⇠ Gumbel(log q)

Although we prove results for Exponentials, using their monotonic rela-
tionship, all of these results have analogs from Gumbels.

The properties of Exponentials are summarized in the following proposi-
tion.

Proposition 7. For Ui ⇠ Exp(qi) independent for qi > 0 and i 2 {1, . . . , n}, let
j? = arg mini Ui and Uj? = mini Ui, then

119

120 proofs and definitions

1. P(i = j?) µ qi

2. Uj? ⇠ Exp(Ân
i=1 qi)

3. j? and Uj? are independent

4. Given j? and Uj? , Ui for i 6= j? are conditionally, mutually independent;
exponentially distributed with rates qi; and truncated to be larger than Uj? .

Proof. We can manipulate the joint density of j? = arg mini Ui and Uj? as
follows

n

’
i=1

qi exp(�qiuj?) I(ui � uj?)

= qj? exp(�qj? uj?) ’
i 6=j?

qi exp(�qiui) I(ui � uj?)

=
qj?

Ân
i=1 qi

n

Â
i=1

qi

!
exp(�qj? uj?) ’

i 6=j?
qi exp(�qiui) I(ui � uj?)

=


qj?

Ân
i=1 qi

� " n

Â
i=1

qi

!
exp

�

n

Â
i=1

qiuj?

!# "

’
i 6=j?

qi exp(�qiui)
exp(�qiuj?)

I(ui � uj?)

#

(A.3)
While hard to parse, this manipulation reveals the all of the assertions of
the proposition.

Proposition 7 has a couple of corollaries. First, subtracting the minimum
Exponential from a collection only affects the distribution of the minimum,
leaving the distribution of the other Exponentials unchanged.

Corollary 1. If Ui ⇠ Exp(qi) independent for qi > 0 and i 2 {1, . . . , n}, then
Ui �Uj? are mutually independent and

Ui �Uj? ⇠

8
<

:
Exp(qi) i 6= j?

0 i = j?
, (A.4)

where j? = arg mini Ui as before.

Proof. Consider the change of variables u0i = ui � uj? in the joint (A.3). Each
of the terms in the right hand product over i 6= j? of (A.3) are transformed
in the following way

qi exp(�qi(u0i + uj?))

exp(�qiuj?)
I(u0i + uj? � uj?) �! qi exp(�qiu0i) (A.5)

A.2 convex conjugate 121

This is essentially the memoryless property of Exponentials. Thus, the
U0i = Ui �Uj? for i 6= j? are distributed as Exponentials with rate qi and
mutually independent. U0j? is the constant 0, which is independent of any
random variable. Our result follows.

Second, the process of sorting the collection Ui is equivalent to sampling
from {1, . . . , n} without replacement with probabilities proportional to qi.

Corollary 2. Let Ui ⇠ Exp(qi) independent for qi > 0 and i 2 {1, . . . , n}. Let
argsortx be the argsort permutation of x 2 Rn, i.e., the permutation such that xsi
where s = argsortx is in non-decreasing order. We have

P(argsortU = s) =
n

’
i=1

qsi

Ân
j=i qsj

(A.6)

Given argsortU = s, the sorted vector Us = (Usi)
n
i=1 has the following distribu-

tion,
Us1 ⇠ Exp

⇣
Ân

j=1 qsj

⌘

Usi �Usi�1 ⇠ Exp
⇣
Ân

j=i qsj

⌘ (A.7)

Proof. This follows after repeated, interleaved uses of Corollary 1 and
Proposition 7.

a.2 convex conjugate

Lemma 1. Let X ✓ Rn be a finite, non-empty set, P := conv(X), and u 2 Rn.
We have,

max
x2X

u|x = max
x2P

u|x = sup
x2relint(P)

u|x (A.8)

If maxx2X u|x has a unique solution x?, then x? is also the unique solution of
maxx2P u|x.

Proof. Assume w.l.o.g. that X = {x1, . . . , xm}. Let x? 2 arg maxx2X u|x.
First, let us consider the linear program over X vs. P. Clearly, maxx2X u|x 

maxx2P u|x. In the other direction, for any x0 2 P, we can write x0 = Âi lixi

for li � 0 such that Âi li = 1, and

u|x? = Â
i

liu|x?
�Â

i
liu|xi = u|x0 (A.9)

Hence maxx2X u|x � maxx2P u|x. Thus x? 2 arg maxx2P u|x.

122 proofs and definitions

Second, let us consider the linear program over P vs. relint(P). The
cases x? 2 relint(P) or u = 0 are trivial, so assume otherwise. Since
u|x? � u|x for x 2 relint(P), it suffices to show that for all e > 0 there exists
xe 2 relint(P) such that u|xe > u|x? � e. To that end, take x 2 relint(P)
and 0 < l < min(e, kukkx� x?k), and define

xe := x? +
l

kukkx� x?k
(x� x?) (A.10)

xe 2 relint(P) by [112, Thm 6.1]. Thus, we get

u|xe = u|x? + l
u|(x� x?)
kukkx� x?k

> u|x?
� e (A.11)

Finally, suppose that x? = arg maxx2X u|x is unique, but arg maxx2P u|x
contains more than just x?. We will show this implies a contradiction. Let
i? be the index i 2 {1, . . . , m} such that x? = xi? . Let x0 2 arg maxx2P u|x
be such that y 6= x?. Then we may write x0 = Âi lixi for li � 0 such that
Âi li = 1. But this leads to a contradiction,

u|x? = Â
i 6=i?

li
1� li?

u|xi < Â
i 6=i?

li
1� li?

u|x? = u|x? (A.12)

Lemma 2. Let P ✓ Rn be a non-empty convex polytope and x0 an extreme point
of P. Define the set,

U (x) =
�

u 2 Rn : u|x > u|x, 8x 2 P \ {x0}

(A.13)

This is the set of utility vectors of a linear program over P whose argmax is the
minimal face {x0} ✓ P. Then, for all u 2 U (x), there exists an open set O ✓ U (x)
containing u.

Proof. Let u 2 U (x). Let {x1, . . . , xm} ✓ P be the set of extreme points
(there are finitely many), and assume w.l.o.g. that x0 = xm. For each xi 6= xm

there exists ei > 0 such that u|(xm � xi) > ei. Thus, for all u0 in the open
ball Bri (u) of radius ri = ei/kxm � xik centered at u, we have

u0|(xm
� xi) = u|(xm

� xi) + (u0 � u)|(xm
� xi) > u|(xm

� xi)� ei > 0
(A.14)

A.2 convex conjugate 123

Define O = \m�1
i=1 Bri (u). Note, u0|xm > u0|xi for all u0 2 O, xi 6= xm. Now,

let x00 2 P \ {xm}. Because P is the convex hull of the xi [231, Thm. 2.9], we
must have

x00 =
m

Â
i=1

lixi (A.15)

for li � 0, Âm
i=1 li = 1 with at least one li > 0 for i < m. Thus, for all

u0 2 O

u0|xm =
m

Â
i=1

liu0|xm >
m

Â
i=1

liu0|xi = u0|x00 (A.16)

This implies that O ✓ U (xm), which concludes the proof, as O is open,
convex, and contains u.

Lemma 3 (Convex Conjugate). Given a non-empty, finite set X ✓ Rn and a
proper, closed, strongly convex function R : Rn ! {R, •} whose domain contains
the relative interior of P := conv(X), let R? = minx2Rn R(x), and dP(x) be the
indicator function of the polytope P,

dP(x) =

8
<

:
0 x 2 P

• x /2 P
(A.17)

For t � 0, define

Ht(x) := t(R(x)� R?) + dP(x), (A.18)
H⇤t (u) := sup

x2Rn
u|x� Ht(x). (A.19)

The following are true for t > 0,

1. (A.19) has a unique solution, H⇤t is continuously differentiable, twice differ-
entiable a.e., and

rH⇤t (u) = arg max
x2Rn

u|x� Ht(x) (A.20)

2. If maxx2X u|x has a unique solution, then

lim
t!0+

rH⇤t (u) = arg max
x2X

u|x (A.21)

Proof. Note, relint(P) ✓ dom(Ht) ✓ P.

124 proofs and definitions

1. Since Ht is strongly convex [244, Lem. 5.20], (A.19) has a unique
maximum [244, Thm. 5.25]. Moreover, H⇤t is differentiable every-
where in Rn and its gradient rH⇤t is Lipschitz continuous [244, Thm.
5.26]. By [112, Thm 25.5] rH⇤t is a continuous function on Rn. By
Rademacher’s theorem, rH⇤t is a.e. differentiable. (A.20) follows by
standard properties of the convex conjugate [112, Thm. 23.5, Thm.
25.1].

2. First, by Lemma 1,

H⇤0 (u) = max
x2P

u|x = sup
x2relint(P)

u|x = max
x2X

u|x. (A.22)

Since u is such that u|x is uniquely maximized over P, H⇤0 is differ-
entiable at u by [112, Thm. 23.5, Thm. 25.1]. Again by Lemma 1 we
have

rH⇤0 (u) = arg max
x2P

u|x = arg max
x2X

u|x (A.23)

Hence, our aim is to show limt!0+ rH⇤t (u) = rH⇤0 (u). This is equiv-
alent to showing that limi!•rH⇤ti

(u) = rH⇤0 (u) for any ti > 0 such
that ti ! 0. Let ti be such a sequence.

We will first show that H⇤ti
(u)! H⇤0 (u). For any x0 2 relint(P),

lim inf
i!•

H⇤ti
(u) = lim

i!•
inf
j�i

sup
x2Rn

u|x� Htj(x)

� lim
i!•

inf
j�i

u|x0 � Htj(x0)

= u|x0

Thus,

lim inf
i!•

H⇤ti
(u) � sup

x02relint(P)
u|x0 = H⇤0 (u)

Since t(R(x)� R?) � 0 for all x 2 Rn, we also have

lim sup
i!•

H⇤ti
(u) = lim sup

i!•
sup
x2Rn

u|x� Hti (x)

 lim sup
i!•

sup
x2P

u|x = H⇤0 (u)

Thus limi!• H⇤ti
(u) = H⇤0 (u).

By Lemma 2, there exists an open convex set O containing u such that
for all u0 2 O, rH⇤0 (u) = arg maxx2P u0|x. Again, H⇤0 is differentiable

A.3 convex position 125

on O [112, Thm. 23.5, Thm. 25.1]. Using this and the fact that H⇤ti
(u)!

H⇤0 (u), we get rH⇤ti
(u)! rH⇤0 (u) [112, Thm. 25.7].

a.3 convex position

Proposition 8. Let X ✓ Rn be a non-empty finite set. If X is convex independent,
i.e., for all x 2 X , x /2 conv(X \ {x}), then X is the set of extreme points of
conv(X). In particular, any non-empty set of binary vectors X ✓ {0, 1}n is
convex independent and thus the set of extreme points of conv(X).

Proof. Let X = {x1, . . . , xm}. The fact that the extreme points of conv(X)
are in X is trivial. In the other direction, it is enough to show that xm is an
extreme point. Assume xm 2 X is not an extreme point of conv(X). Then
by definition, we can write xm = lx0 + (1� l)x00 for x0, x00 2 conv(X),
l 2 (0, 1) with x0 6= xm and x00 6= xm. Then, we have that

xm =
m�1

Â
i=1

ll0i + (1� l)l00i
1� ll0m � (1� l)l00m

xi (A.24)

for some sequences l0i, l00i � 0 such that Âm
i=1 l0i = Âm

i=1 l00i = 1 and
l0m, l00m < 1. This is clearly a contradiction of our assumption that xm /2
conv(X \ {xm}), since the weights in the summation (A.24) sum to unity.
This implies that X are the extreme points of conv(X).

Let X ✓ {0, 1}n. It is enough to show that xm /2 conv({x1, . . . , xm�1}).
Assume this is not the case. Let c = xm � (0.5)n

i=1 2 Rn, and note that
c|xi < c|xm for all i 6= m when xi are distinct binary vectors. But, this
leads to a contradiction. By assumption we can express xm as a convex
combination of x1, . . . , xm�1. Thus, there exists li � 0 such that Âm�1

i=1 li = 1,
and

c|xm =
m�1

Â
i=1

lic|xi <
m�1

Â
i=1

lic|xm = c|xm (A.25)

126 proofs and definitions

a.4 variance decomposition for gradient estimator in mini-
batches

Proposition 4. Let ⌘̂STGS, ⌘̂GR and ⌘̂B-GRMC be the estimators defined in (4.2),
(4.3) and (4.8). We have

V [⌘̂B-GRMC] =
E
⇥
V
⇥
⌘̂STGS|X, xsup

⇤⇤

Nxsup NX NU

+
E
⇥
V
⇥
⌘̂GR|xsup

⇤⇤

Nxsup NX
+

V
⇥
E
⇥
⌘̂GR|xsup

⇤⇤

Nxsup
(4.9)

where V is the trace of the covariance matrix.

Proof. Let ⌘̂B-GRMC be defined as in 4.8. By the law of total variance, we
have

V [⌘̂B-GRMC] = E

2

4V

2

4 1
Nxsup NX NU

Nxsup

Â
i=1

NX

Â
j=1

NU

Â
k=1

⌘̂
ijk
STGS

������
X ij, xi

sup

3

5

3

5

+ V

2

4E

2

4 1
Nxsup NX NU

Nxsup

Â
i=1

NX

Â
j=1

NU

Â
k=1

⌘̂
ijk
STGS

������
X ij, xi

sup

3

5

3

5

(A.26)

The inner variance in the first term of (A.26) is over U ijk | X ij, xi
sup which

are all identically and independently distributed given X ij and xi
sup. The

outer expectation is over
⇣

X ij, xi
sup

⌘
. Hence, this term simplifies to

E

2

4V

2

4 1
Nxsup NX NU

Nxsup

Â
i=1

NX

Â
j=1

NU

Â
k=1

⌘̂
ijk
STGS

������
X ij, xi

sup

3

5

3

5

E

2

4 1
N2

xsup N2
X

Nxsup

Â
i=1

NX

Â
j=1

V

"
1

NU

NU

Â
k=1

⌘̂
ijk
STGS

�����X ij, xi
sup

#3

5

=
1

Nxsup NX NU
E
h
V
h
⌘̂STGS

���X ij, xi
sup

ii

A.4 variance decomposition for gradient estimator in minibatches 127

In the second term of (A.26), the inner expectation is again over the utilities
and thus simplifies which the Gumbel-Rao estimator for X ij and xi

sup.
Accordingly, the second term simplifies to

V

2

4E

2

4 1
Nxsup NX NU

Nxsup

Â
i=1

NX

Â
j=1

NU

Â
k=1

⌘̂
ijk
STGS

������
X ij, xi

sup

3

5

3

5

= V

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

E

"
1

NU

NU

Â
k=1

⌘̂
ijk
STGS

�����X ij, xi
sup

#3

5

= V

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
3

5

where the variance is over
⇣

X ij, xi
sup

⌘
and can be decomposed again by

another application of the law of total variance:

V

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
3

5

= E

2

4V

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
������

xi
sup

3

5

3

5

+ V

2

4E

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
������

xi
sup

3

5

3

5 (A.27)

The inner variance in the first term of (A.27) is over X ij | xi
sup which are all

identically and independently distributed given xi
sup. The outer expectation

is over xi
sup. Hence, this term simplifies to

E

2

4V

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
������

xi
sup

3

5

3

5

= E

2

4 1
N2

xsup

Nxsup

Â
i=1

V

"
1

NX

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i ����� xi
sup

#3

5

=
1

Nxsup NX
E
⇥
V
⇥
⌘̂GR

�� xsup
⇤⇤

128 proofs and definitions

In the second term of (A.27), the inner expectation is again over the cate-
gorical variables and accordingly

V

2

4E

2

4 1
Nxsup NX

Nxsup

Â
i=1

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i
������

xi
sup

3

5

3

5

= V

2

4 1
Nxsup

Nxsup

Â
i=1

E

"
1

NX

NX

Â
j=1

h
⌘̂

ij
GR

���X ij, xi
sup

i ����� xi
sup

#3

5

=
1

Nxsup
V
h
E
h
⌘̂GR

��� xi
sup

ii

This completes the proof.

a.5 dual linear program and complementary slackness

Definition 3 (Dual linear program). The dual linear program of the program
given in 5.2 is

max
ub ,up ,up

u|
bb + u|

pp + u|
pp subject to A|ub + up + up = c, up � 0, up  0,

(A.28)
where ub 2 Rm, up 2 Rn and up 2 Rn.

Theorem 1 (Complementary Slackness). Let x be a feasible solution to the
linear program in (5.2) and let u := (ub, up , up) be a feasible solution to its
corresponding dual linear program given in (A.28). Then, x and u are optimal
solutions for the two respective problems if and only if

(x�p)� up = 0 (A.29)
(x�p)� up = 0 (A.30)

where� denotes the Hadamard product. The additional conditions ub� (A|x� b) =
0 and (c� A|ub � up � up)� x = 0 are satisfied because both x and u are fea-
sible.

Proof. The conditions are derived from the definition of the dual program
and strong duality in linear programming [see e.g., 231].

B
E X P E R I M E N TA L D E TA I L S

b.1 neural relational inference (nri) for graph layout

b.1.1 Data

Our dataset consisted of latent prior spanning trees over 10 vertices. La-
tent spanning trees were sampled by applying Kruskal’s algorithm [32] to
U ⇠ Gumbel(0) for a fully-connected graph. Note that this does not result
in a uniform distribution over spanning trees. Initial vertex locations were
sampled from Normal(0, I) in R2. Given initial locations and the latent tree,
dynamical observations were obtained by applying a force-directed algo-
rithm for graph layout [153] for T 2 {10, 20} iterations. We then discarded
the initial vertex positions, because the first iteration of the layout algorithm
typically results in large relocations. This renders the initial vertex positions
an outlier which is hard to model. Hence, the final dataset used for training
consisted of 10 respectively 20 location observations in R2 for each of the
10 vertices. By this procedure, we generated a training set of size 50,000 and
validation and test sets of size 10,000.

b.1.2 Model

The NRI model consists of encoder and decoder graph neural networks.
Our encoder and decoder architectures were identical to the MLP encoder
and MLP decoder architectures, respectively, in [77].

encoder The encoder GNN passes messages over the fully connected
directed graph with n = 10 nodes. We took the final edge representation of
the GNN to use as q. The final edge representation was in R90⇥m, where
m = 2 for Indep. Directed Edges and m = 1 for E.F. Ent. Top |V| � 1 and
Spanning Tree, both over undirected edges (90 because we considered all
directed edges excluding self-connections). We had m = 2 for Indep. Directed
Edges, because we followed [77] and applied the Gumbel-Max trick inde-
pendently to each edge. This is equivalent to using U ⇠ Logistic(q), where
q 2 R90. Both E.F. Ent. Top |V|� 1 and Spanning Tree require undirected

129

130 experimental details

graphs, therefore, we “symmetrized” q such that qij = qji by taking the
average of the edge representations for both directions. Therefore, in this
case, q 2 R45.

decoder Given previous timestep data, the decoder GNN passes mes-
sages over the sampled graph adjacency matrix X and predicts future node
positions. As in [77], we used teacher-forcing every 10 timesteps. X 2 Rn⇥n

in this case was a directed adjacency matrix over the graph G = (V, E)
where V were the nodes. Xij = 1 is interpreted as there being an edge from
i! j and 0 for no edge. For the SMTs over undirected edges (E.F. Ent. Top
|V|� 1 and Spanning Tree) X was the symmetric, directed adjacency matrix
with edges in both directions for each undirected edge. The decoder passed
messages between both connected and not-connected nodes. When consid-
ering a message from node i! j, it used one network for the edges with
Xij = 1 and another network for the edges with Xij = 0, such that we could
differentiate the two edge “types”. For the SST relaxation, both messages
were passed, weighted by (Xt)ij and 1� (Xt)ij, respectively. Because of the
parameterization of our model, during evaluation, it is ambiguous whether
the sampled hard graph is in the correct representation (adjacency matrix
where 1 is the existence of an edge, and 0 is the non-existence of an edge).
Therefore, when measuring precision and recall for structure discovery,
we selected whichever graph (the sampled graph versus the graph with
adjacency matrix of one minus that of the sampled graph) that yielded the
highest precision, and reported precision and recall measurements for that
graph.

objective Our ELBO objective consisted of the reconstruction error and
KL divergence. The reconstruction error was the Gaussian log likelihood
of the predicted node positions generated from the decoder given ground
truth node positions. As mentioned in 3.3, we computed the KL divergence
with respect to U instead of the sampled graph for all methods, because
computing the probability of a Spanning Tree, or Top k sample is not compu-
tationally efficient. We chose our prior to be Gumbel(0). The KL divergence
between a Gumbel distribution with location q and a Gumbel distribution
with location 0, is q + exp(�q)� 1.

B.2 unsupervised parsing on listops 131

b.1.3 Training

All graph layout experiments were run with batch size 128 for 50000
steps. We evaluated the model on the validation set every 500 training
steps, and saved the model that achieved the best average validation
ELBO. We used the Adam optimizer with a constant learning rate, and
b1 = 0.9, b2 = 0.999, e = 10�8. We tuned hypermarameters using random
uniform search over a hypercube-shaped search space with 20 trials. We
tuned the constant learning rate, and temperature t for all methods. For
E.F. Ent. Top k, we additionally tuned e, which is used when computing
the gradients for the backward-pass using finite-differences. The ranges
for hyperparameter values were chosen such that optimal hyperparameter
values (corresponding to the best validation ELBO) were not close to the
boundaries of the search space.

b.2 unsupervised parsing on listops

b.2.1 Data

We considered a simplified variant of the ListOps dataset [154]. Specifi-
cally, we used the same data generation process as [154] but excluded the
summod operator and used rejection sampling to ensure that the lengths
of all sequences in the dataset ranged only from 10 to 50 and that our
dataset contained the same number of sequences of depths d 2 {1, 2, 3, 4, 5}.
Depth was measured with respect to the ground truth parse tree. For each
sequence, the ground truth parse tree was defined by directed edges from
all operators to their respective operands. We generated 100,000 samples
for the training set (20,000 for each depth), and 10,000 for the validation
and test set (2,000 for each depth).

b.2.2 Model

We used an embedding dimension of 60, and all neural networks had 60
hidden units.

lstm We used a single-layered LSTM going from left to right on the input
embedding matrix. The LSTM had hidden size 60 and includes dropout
with probability 0.1. The output of the LSTM was flattened and fed into a

132 experimental details

single linear layer to bring the dimension to 60. The output of the linear
layer was fed into an MLP with one hidden layer and ReLU activations.

gnn on latent (di)graph Our models had two main parts: an LSTM
encoder that produced a graph adjacency matrix sample (X or Xt), and a
GNN that passed messages over the sampled graph.

The LSTM encoder consisted of two LSTMs– one representing the “head”
tokens, and the other for “modifier” tokens. Both LSTMs were single-
layered, left-to-right, with hidden size 60, and include dropout with prob-
ability 0.1. Each LSTM outputted a single real valued vector for each
token i of n tokens with dimension 60. To obtain q 2 Rn⇥n, we defined
qij = vheadT

i vmod
j , where vhead

i is the vector outputted by the head LSTM for
word i and vmod

i is the vector outputted by the modifier LSTM for word j.
As in the graph layout experiments, we symmetrized q for the SSTs that
require undirected edges (Indep. Undirected Edges, and Spanning Tree). For
exponential U ⇠ Exp(q), q was parameterized as the softplus function of
the Rn⇥n matrix output of the encoder. We used the Torch-struct library
[245] to obtain soft samples for arborescence.

X 2 Rn⇥n in this case was a directed adjacency matrix over the graph
G = (V, E) where V were the tokens. Xij = 1 is interpreted as there being
an edge from i ! j and 0 for no edge. For the SMTs over undirected
edges (Indep. Undirected Edges and Spanning Tree) X was the symmetric,
directed adjacency matrix with edges in both directions for each undirected
edge. For Arborescence, we assumed the first token is the root node of the
arborescence.

Given X, the GNN ran 5 message passing steps over the adjacency
matrix, with the initial node embeddings being the input embedding. The
GNN architecture was identical to the GNN decoder in the graph layout
experiments, except we did not pass messages on edges with Xij = 0 and
we did not include the last MLP after every messaging step. For the SST, we
simply weighted each message from i! j by (Xt)ij. We used dropout with
probability 0.1 in the MLPs. We used a recurrent connection after every
message passing step. The LSTM encoder and the GNN each had their own
embedding lookup table for the input. We fed the node embedding of the
first token to an MLP with one hidden layer and ReLU activations.

B.3 learning to explain (l2x) aspect ratings 133

b.2.3 Training

All ListOps experiments were run with batch size 100 for 50 epochs. We
evaluated the model on the validation set every 800 training steps, and saved
the model that achieved the best average validation task accuracy. We used
the AdamW optimizer with a constant learning rate, and b1 = 0.9, b2 =
0.999, e = 10�8. We tuned hypermarameters using random uniform search
over a hypercube-shaped search space with 20 trials. We tuned the constant
learning rate, temperature t, and weight decay for all methods. The ranges
for hyperparameter values were chosen such that optimal hyperparameter
values (corresponding to the best validation accuracy) were not close to the
boundaries of the search space.

b.3 learning to explain (l2x) aspect ratings

b.3.1 Data

We used the BeerAdvocate dataset [155], which contains reviews com-
prised of free-text feedback and ratings for multiple aspects, including
appearance, aroma, palate, and taste. For each aspect, we used the same
de-correlated subsets of the original dataset as [156]. The training set for the
aspect appearance contained 80k reviews and for all other aspects 70k re-
views. Unfortunately, [156] do not provide separate validation and test sets.
Therefore for each aspect, we split their heldout set into two evenly sized
validation and test sets containing 5k reviews each. We used pre-trained
word embeddings of dimension 200 from [156] to initialize all models. Each
review was padded/ cut to 350 words. For all aspects, subset precision
was measured on the same subset of 993 annotated reviews from [155].
The aspect ratings were normalized to the unit interval [0, 1] and MSE is
reported on the normalized scale.

b.3.2 Model

Our model used convolutional neural networks to parameterize both the
subset distribution and to make a prediction from the masked embeddings.
For parameterizing the masks, we considered a simple and (a more) complex
architecture. The simple architecture consisted of a Dropout layer (with
p = 0.1) and a convolutional layer (with one filter and a kernel size of one)
to parameterize qi 2 R for each word i, producing a the vector q 2 Rn. For

134 experimental details

Corr. Top k, q 2 R2n�1. The first n dimensions correspond to each word i
and are parameterized as above. For dimensions i 2 {n + 1, . . . , 2n� 1}, qi
represents a coupling between words i and i + 1, so we denote this qi,i+1.
It was parameterized as the sum of three terms, qi,i+1 = fi + f0i + fi,i+1:
fi 2 R computed using a seperate convolutional layer of the same kind as
described above, f0i 2 R computed using yet another convolutional layer
of the same kind as described above, and fi,i+1 2 R obtained from a third
convolutional layer with one filter and a kernel size of two. In total, we
used four separate convolutional layers to parameterize the simple encoder.
For the complex architecture, we used two additional convolutional layers,
each with 100 filters, kernels of size three, ReLU activations to compute
the initial word embeddings. This was padded to maintain the length of a
review.

X was a k-hot binary vector in n-dimensions with each dimension
corresponding to a word. For Corr. Top K, we ignored dimensions i 2
{n + 1, . . . , 2n� 1}, which correspond to the pairwise indicators. Predic-
tions were made from the masked embeddings, using Xi to mask the
embedding of word i. Our model applied a soft (at training) or hard (at
evaluation) subset mask to the word embeddings of a given review. Our
model then used two convolutional layers over these masked embeddings,
each with 100 filters, kernels of size three and ReLU activations. The result-
ing output was max-pooled over all feature vectors. Our model then made
predictions using a Dropout layer (with p = 0.1), a fully connected layer
(with output dimension 100, ReLU activation) and a fully connected layer
(with output dimension one, sigmoid activation) to predict the rating of a
given aspect.

b.3.3 Training.

We trained all models for ten epochs at minibatches of size 100. We used the
Adam optimizer [246] and a linear learning rate schedule. Hyperparameters
included the initial learning rate, its final decay factor, the number of epochs
over which to decay the learning rate, weight decay and the temperature of
the relaxed gradient estimator. Hyperparameters were optimized for each
model using random search over 25 independent runs. The learning rate and
its associated hyperparameters were sampled from {1, 3, 5, 10, 30, 50, 100}⇥

10�4, {1, 10, 100, 1000}⇥ 10�4 and {5, 6, . . . , 10} respectively. Weight decay
was sampled from {0, 1, 10, 100}⇥ 10�6 and the temperature was sampled
from [0.1, 2]. For a given run, models were evaluated on the validation set

B.4 generative modelling with variational autoencoders 135

at the end of each epoch and the best validated model was was retained.
For E.F. Ent. Top k and Corr. Top k, we trained these methods with e 2
{1, 10, 100, 1000}⇥ 10�3 and selected the best e on the validation set. We
believe that it may be possible to improve on the results we report with an
efficient exact implementation of the backward pass for these two methods.
We found the overhead created by automatic differentiation software to
differentiate through the unrolled dynamic program was prohibitively large
in this experiment.

b.4 generative modelling with variational autoencoders

We trained variational autoencoders with n-ary discrete random variables
with values on the corners of the hypercube {�1, 1}log2(n). The model with
arity {2, 4, 8, 16} included {240, 120, 80, 60} random variables respectively.

All models were optimized using stochastic gradient descent with mo-
mentum for 50000 steps on minibatches of size 20 and 200 respectively.
Hyperparameters were randomly sampled and the best setting was selected
from twenty independent runs. Learning rate and momentum were ran-
domly sampled from {5, 6, . . . 50}⇥ 10�4 and (0, 1) respectively. We did not
anneal the learning rate during training. For regularising the network, we
used weight-decay, which was randomly sampled from {0, 10�1, 10�2 . . . , 10�6}.
The temperature was randomly sampled from [0.1, 1.0] and not annealed
throughout training.

All models were evaluated on the validation and test set using the
importance-weighted bound on the log-likelihood described by Burda,
Grosse & Salakhutdinov [173] with 5000 samples.

To estimate the variance of a gradient estimator in the VAE experiment
we used 5000 randomly sampled minibatches of size 20, for each of which
we performed 100 independent forward passes and then computed the
associated gradient for the parameters of the inference network. We then
summed the variance to get a singe scalar measurement.

To estimate the bias of a gradient estimator in the VAE experiment, we
proceeded as above to approximate the expectation for a gradient estimator.
We approximated the true gradient by following this procedure for the
REINFORCE algorithm.

To assess training speed, we measured the average number of iterations
needed to achieve a prespecified loss threshold on the validation set. In
particular, we ran multiple independent runs under the same experimental
conditions for all gradient estimators. Among only runs that achieved

136 experimental details

the threshold within the total budget, we report the average number of
iterations taken to cross the threshold.

b.5 learning to cut in branch and bound

b.5.1 Data

b.5.1.1 Features

b.6 learning to dive in branch and bound

b.6.1 Data

b.6.1.1 Features

b.6.2 Data

b.6.2.1 Features

b.6.3 Baselines

We leveraged expert knowledge and used random search to optimize the
use of diving heuristics in SCIP 7.0.2 for our baseline Tuned. The most
important parameters to control the standard divers in SCIP are freq and
freqofs. For each diving heuristic, these parameters control the depth at
which the heuristic may be called or not called. By varying these param-
eters, diverse diving ensembles can be realized that call different heuris-
tics at different stages of the branch and bound search. We randomly
sample solver configurations by setting either freq = �1 (no diving), or
freq = b0.5⇥ freqdefaultc (double frequency) or freq = freqdefault (leave fre-
quency at default) or freq = b2⇥ freqdefaultc (halve frequency) with equal
probability and setting either freqofs = 0 or freqofs = freqofsdefault with equal
probability independently for each diving heuristic. We run the solver with
the usual time limits for each configuration and each validation instance
and pick the configuration with the lowest primal-dual integral for server
load balancing and with the lowest solving time for neural network verifi-
cation. For server load balancing, since the original validation dataset was
relatively small, we created a new validation dataset of 625 instances from
the original training and validation sets. We optimized over 16 random
configurations and thus used a budget of 10,000 solver calls for load balanc-
ing. For neural network verification, we used the original validation dataset

B.6 learning to dive in branch and bound 137

of 505 validation instances. We considered six random configurations and
thus used a budget of 3,030 solver calls which is slightly more than what
L2Dive used for data collection (2903).

We did not tune any parameters to optimize the use of L2Dive, but this
might improve performance.

138 experimental details

Nodes Feature Description

V
ar

ia
bl

es

norm_coef Objective coefficient, normalized by objective norm

type Type (binary, integer, impl. integer, continuous) one-hot

has_lb Lower bound indicator

has_ub Upper bound indicator

norm_redcost Reduced cost, normalized by objective norm

solval Solution value

solfrac Solution value fractionality

sol_is_at_lb Solution value equals lower bound

sol_is_at_ub Solution value equals upper bound

norm_age LP age, normalized by total number of solved LPs

basestat Simplex basis status (lower, basic, upper, zero) one-hot

C
on

st
ra

in
ts

,C
ut

s

is_cut Indicator to differentiate cut vs. constraint

type Separator type, one-hot

rank Rank of a row

norm_nnzrs Fraction of nonzero entries

bias Unshifted side normalized by row norm

row_is_at_lhs Row value equals left hand side

row_is_at_rhs Row value equals right hand side

dualsol Dual LP solution of a row, normalized by row and objective norm

basestat Basis status of a row in the LP solution, one-hot

norm_age Age of row, normalized by total number of solved LPs

norm_nlp_creation LPs since the row has been created, normalized

norm_intcols Fraction of integral columns in the row

is_integral Activity of the row is always integral in a feasible solution

is_removable Row is removable from the LP

is_in_lp Row is member of current LP

violation Violation score of a row

rel_violation Relative violation score of a row

obj_par Objective parallelism score of a row

exp_improv Expected improvement score of a row

supp_score Support score of a row

int_support Integral support score of a row

scip_score SCIP score of a row for cut selection

Table B.1: We use these features in our experiments with NeuralCut in chapter 6.

B.6 learning to dive in branch and bound 139

Nodes Feature Description

V
ar

ia
bl

es

norm_coef Objective coefficient, normalized by objective norm

type Type (binary, integer, impl. integer, continuous) one-hot

has_lb Lower bound indicator

has_ub Upper bound indicator

norm_redcost Reduced cost, normalized by objective norm

solval Solution value

solfrac Solution value fractionality

sol_is_at_lb Solution value equals lower bound

sol_is_at_ub Solution value equals upper bound

norm_age LP age, normalized by total number of solved LPs

basestat Simplex basis status (lower, basic, upper, zero) one-hot

C
on

st
ra

in
ts

,C
ut

s

is_cut Indicator to differentiate cut vs. constraint

rank Rank of a row

norm_nnzrs Fraction of nonzero entries

bias Unshifted side normalized by row norm

row_is_at_lhs Row value equals left hand side

row_is_at_rhs Row value equals right hand side

dualsol Dual LP solution of a row, normalized by row and objective norm

basestat Basis status of a row in the LP solution, one-hot

norm_age Age of row, normalized by total number of solved LPs

norm_nlp_creation LPs since the row has been created, normalized

norm_intcols Fraction of integral columns in the row

is_integral Activity of the row is always integral in a feasible solution

is_removable Row is removable from the LP

is_in_lp Row is member of current LP

Table B.2: We use these features in our experiments with L2Dive in chapter 7.

C
A D D I T I O N A L R E S U LT S

c.1 gradient estimation with stochastic softmax tricks

c.1.1 Neural Relational Inference with the Score Function

We experimented with 3 variants of REINFORCE estimators, each with
a different baseline. The EMA baseline is an exponential moving average
of the ELBO. The Batch baseline is the mean ELBO of the current batch.
Finally, the Multi-sample baseline is the mean ELBO over k multiple samples,
which is a local baseline for each sample (See section 3.1 of [247]). For
NVIL, the input-dependent baseline was a one hidden-layer MLP with
ReLU activations, attached to the GNN encoder, just before the final fully
connected layer. We did not do variance normalization. We used weight
decay on the encoder parameters, including the input-dependent baseline
parameters. We tuned weight decay and the exponential moving average
constant, in addition to the learning rate. For Multi-sample REINFORCE, we
additionally tuned k = {2, 4, 8}, and following [247], we divided the batch
size by k in order to keep the number of total samples constant.

We used U as the “action” for all edge distributions, and therefore,
computed the log probability over U. We also computed the KL divergence
with respect to U as in the rest of the graph layout experiments. This was
because computing the probability of X is not computationally efficient for
Top |V|� 1 and Spanning Tree. In particular, the marginal of X in these cases
is not in the exponential family. We emphasize that using U as the “action”
for REINFORCE is atypical.

We found that both NVIL and REINFORCE with Indep. Directed Edges
and Top |V| � 1 perform similarly to their SST counterparts, struggling
to learn the underlying structure. This is also the case for REINFORCE
with Spanning Tree. On the other hand, NVIL with Spanning Tree, is able
to learn some structure, although worse and higher variance than its SST
counterpart.

141

142 additional results

REINFORCE (EMA) NVIL

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

Indep. Directed Edges �1730 ± 60 41 ± 4 92 ± 7 �1550 ± 20 44 ± 1 94 ± 1

Top |V|� 1 �2170 ± 10 42 ± 1 42 ± 1 �2110 ± 10 42 ± 2 42 ± 2

Spanning Tree �2250 ± 20 40 ± 7 40 ± 7 �1570 ± 300 I 83 ± 20 83 ± 20

REINFORCE (Batch) REINFORCE (Multi-sample)

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

Indep. Directed Edges �1780 ± 20 39 ± 3 90 ± 6 �1710 ± 30 38 ± 3 88 ± 6

Top |V|� 1 �2180 ± 0 39 ± 1 39 ± 1 �2150 ± 10 40 ± 0 40 ± 0

Spanning Tree �2260 ± 0 41 ± 1 41 ± 1 �2230 ± 20 42 ± 1 42 ± 1

Table C.1: NVIL and REINFORCE struggle to learn the underlying structure
wherever their SST counterparts struggle. NVIL with Spanning Tree is
able to learn some structure, but it is still worse and higher variance
than its SST counterpart. This is for T = 10.

c.1.2 Learning To Explain Other Aspect Ratings

c.2 gumbel-rao

c.3 learning to cut in branch and bound

c.3.1 Model Ablation

In Table C.6, we perform model ablations to better assess the effectiveness
of our modelling choices. We begin with a simple GNN model that is based
on Gasse et al. [200], but adapted to cut selection by using cuts in place
of constraints in the original model formulation of Gasse et al. [200] and
switching the order in which half-convolutions are applied. Second, we
use the features of NeuralCut (+ our features) for both cuts and variables
instead of the features of Gasse et al. [200]. Third, we additionally make
architectural choices, i.e. we replace layer normalization with batch normal-
ization and add the attention module to the model. Finally, we leverage the
tri-partite graph formulation to model constraints explicitly in addition to
the cuts and variables, which gives the full NeuralCut model.

C.3 learning to cut in branch and bound 143

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [63] 3.1 ± 0.1 48.7 ± 0.6 2.6 ± 0.1 41.9 ± 0.6 2.5 ± 0.1 38.6 ± 1.5

SoftSub [131] 3.2 ± 0.1 43.9 ± 1.1 2.7 ± 0.1 41.9 ± 2.1 2.5 ± 0.1 38.0 ± 2.4

Euclid. Top k 3.0 ± 0.1 49.4 ± 1.7 2.6 ± 0.1 48.8 ± 1.2 2.4 ± 0.1 42.9 ± 1.0

Cat. Ent. Top k 3.0 ± 0.1 53.2 ± 1.7 2.6 ± 0.1 46.3 ± 1.9 2.4 ± 0.1 41.3 ± 0.8

Bin. Ent. Top k 3.0 ± 0.1 54.5 ± 5.6 2.6 ± 0.1 48.9 ± 1.7 2.4 ± 0.1 43.1 ± 0.6

E.F. Ent. Top k 3.0 ± 0.1 53.2 ± 0.9 2.5 ± 0.1 50.6 ± 2.1 2.4 ± 0.1 43.3 ± 0.3

Corr. Top k 2.7 ± 0.1 71.6 ± 1.1 2.4 ± 0.1 69.7 ± 1.7 2.3 ± 0.1 66.7 ± 1.7

Complex

L2X [63] 2.6 ± 0.1 76.6 ± 0.4 2.4 ± 0.1 69.3 ± 0.9 2.4 ± 0.1 62.6 ± 3.0

SoftSub [131] 2.6 ± 0.1 79.4 ± 1.1 2.5 ± 0.1 69.5 ± 2.0 2.4 ± 0.1 60.2 ± 7.0

Euclid. Top k 2.6 ± 0.1 81.6 ± 0.9 2.4 ± 0.1 76.9 ± 1.7 2.3 ± 0.1 69.7 ± 2.2

Cat. Ent. Top k 2.5 ± 0.1 83.7 ± 0.8 2.4 ± 0.1 76.5 ± 0.9 2.2 ± 0.1 65.9 ± 1.4

Bin. Ent. Top k 2.6 ± 0.1 81.9 ± 0.7 2.4 ± 0.1 75.7 ± 1.2 2.2 ± 0.1 65.7 ± 1.1

E.F. Ent. Top k 2.6 ± 0.1 82.3 ± 1.4 2.4 ± 0.1 72.9 ± 0.7 2.3 ± 0.1 65.8 ± 1.3

Corr. Top k 2.5 ± 0.1 85.1 ± 2.4 2.3 ± 0.1 77.8 ± 1.3 2.2 ± 0.1 74.5 ± 1.5

Table C.2: For k-subset selection on appearance aspect, SSTs select subsets with
high precision and outperform baseline relaxations. Test set MSE
(⇥10�2) and subset precision (%) is shown for models selected on
valid. MSE.

c.3.2 Loss Ablation

In Table C.7, we experimented with different loss functions on the bound
fulfillment surrogate. In addition to the binary entropy loss (which was
used to train all NeuralCut models), we explored the effectiveness of mean
squared error (MSE), both with linear and sigmoid activations as well as a
cross entropy loss function.

c.3.3 Visuals for Table 6.3

In Figure C.3, we visualize the IGC trajectories of Lookahead, NeuralCut
and common heuristics for cut selection on the four benchmarks Maximum
Cut, Packing, Binary Packing and Planning. The NeuralCut models corre-
spond to those in Table 6.3. All models and heuristics were evaluated on
the 500 test instances of the respective domain. 30 separation rounds were
performed in each a single cut was added.

144 additional results

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [63] 3.5 ± 0.1 27.8 ± 3.7 3.2 ± 0.1 21.0 ± 1.8 3.0 ± 0.1 20.5 ± 0.7

SoftSub [131] 3.7 ± 0.1 23.9 ± 1.4 3.3 ± 0.1 23.5 ± 3.7 3.1 ± 0.1 20.0 ± 1.7

Euclid. Top k 3.5 ± 0.1 36.0 ± 5.7 3.2 ± 0.1 27.1 ± 0.7 3.0 ± 0.1 23.7 ± 0.8

Cat. Ent. Top k 3.6 ± 0.1 25.4 ± 3.6 3.0 ± 0.1 28.5 ± 2.9 3.0 ± 0.1 21.7 ± 0.4

Bin. Ent. Top k 3.6 ± 0.1 25.2 ± 1.7 3.2 ± 0.1 27.2 ± 2.6 3.0 ± 0.1 23.4 ± 1.7

E.F. Ent. Top k 3.6 ± 0.1 26.0 ± 3.0 3.1 ± 0.1 27.0 ± 1.6 2.9 ± 0.1 23.4 ± 0.6

Corr. Top k 3.2 ± 0.1 54.3 ± 1.0 2.8 ± 0.1 50.0 ± 1.7 2.7 ± 0.1 46.0 ± 2.0

Complex

L2X [63] 3.1 ± 0.1 47.4 ± 1.7 2.8 ± 0.1 40.8 ± 0.6 2.7 ± 0.1 34.8 ± 0.8

SoftSub [131] 3.1 ± 0.1 44.4 ± 1.1 2.8 ± 0.1 44.2 ± 2.0 2.8 ± 0.1 38.7 ± 1.0

Euclid. Top k 2.9 ± 0.1 56.2 ± 0.7 2.7 ± 0.1 43.9 ± 1.7 2.6 ± 0.1 38.0 ± 1.1

Cat. Ent. Top k 2.9 ± 0.1 55.1 ± 0.7 2.7 ± 0.1 45.2 ± 0.8 2.6 ± 0.1 40.2 ± 0.9

Bin. Ent. Top k 2.9 ± 0.1 55.6 ± 0.8 2.7 ± 0.1 47.6 ± 1.0 2.7 ± 0.1 39.1 ± 1.0

E.F. Ent. Top k 2.9 ± 0.1 56.3 ± 0.3 2.7 ± 0.1 48.1 ± 1.3 2.6 ± 0.1 40.3 ± 1.0

Corr. Top k 2.8 ± 0.1 60.4 ± 1.5 2.6 ± 0.1 53.5 ± 2.9 2.6 ± 0.1 46.8 ± 1.5

Table C.3: For k-subset selection on palate aspect, SSTs tend to outperform base-
line relaxations. Test set MSE (⇥10�2) and subset precision (%) is
shown for models selected on valid. MSE.

C.3 learning to cut in branch and bound 145

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [63] 3.1 ± 0.1 28.5 ± 0.6 2.9 ± 0.1 24.1 ± 1.3 2.7 ± 0.1 26.8 ± 0.8

SoftSub [131] 3.1 ± 0.1 29.9 ± 0.8 2.9 ± 0.1 27.7 ± 0.7 2.7 ± 0.1 27.8 ± 1.9

Euclid. Top k 3.0 ± 0.1 30.2 ± 0.4 2.7 ± 0.1 28.0 ± 0.4 2.6 ± 0.1 26.5 ± 0.5

Cat. Ent. Top k 3.1 ± 0.1 28.5 ± 0.6 2.8 ± 0.1 28.9 ± 0.6 2.6 ± 0.1 30.5 ± 1.6

Bin. Ent. Top k 3.0 ± 0.1 29.2 ± 0.4 2.9 ± 0.1 24.6 ± 1.7 2.6 ± 0.1 27.9 ± 0.9

E.F. Ent. Top k 3.0 ± 0.1 29.7 ± 0.3 2.7 ± 0.1 29.0 ± 1.5 2.6 ± 0.1 26.5 ± 0.5

Corr. Top k 2.8 ± 0.1 31.7 ± 0.5 2.5 ± 0.1 37.7 ± 1.6 2.4 ± 0.1 37.8 ± 0.5

Complex

L2X [63] 2.5 ± 0.1 40.3 ± 0.7 2.4 ± 0.1 42.4 ± 2.0 2.4 ± 0.1 39.7 ± 1.1

SoftSub [131] 2.5 ± 0.1 43.3 ± 0.9 2.4 ± 0.1 41.3 ± 0.5 2.3 ± 0.1 40.5 ± 0.7

Euclid. Top k 2.4 ± 0.1 43.8 ± 0.7 2.3 ± 0.1 43.1 ± 0.6 2.2 ± 0.1 42.2 ± 0.8

Cat. Ent. Top k 2.4 ± 0.1 46.5 ± 0.6 2.3 ± 0.1 44.6 ± 0.3 2.2 ± 0.1 45.5 ± 1.1

Bin. Ent. Top k 2.4 ± 0.1 40.9 ± 1.3 2.3 ± 0.1 46.3 ± 0.9 2.2 ± 0.1 44.7 ± 0.5

E.F. Ent. Top k 2.4 ± 0.1 45.3 ± 0.6 2.2 ± 0.1 46.1 ± 0.8 2.2 ± 0.1 46.6 ± 1.1

Corr. Top k 2.4 ± 0.1 45.9 ± 1.3 2.2 ± 0.1 47.3 ± 0.6 2.1 ± 0.1 45.1 ± 2.0

Table C.4: For k-subset selection on taste aspect, MSE and subset precision tend
to be lower for all methods. This is because the taste rating is highly
correlated with other ratings making it difficult to identify subsets
with high precision. SSTs achieve small improvements. Test set MSE
(⇥10�2) and subset precision (%) is shown for models selected on
valid. MSE.

146 additional results

Figure C.1: Our estimator (GR-MCK) effectively reduces the variance over the en-
tire training trajectory at all arities. The variance reduction compares
favorable to the minibatch variance. Columns correspond to arities,
i.e. (a) binary, (b) 4-ary, (c) 8-ary, (d) 16-ary. First row, log10-trace
of MC covariance matrix for various gradient estimators over itera-
tions. Second row, log10-trace of MB covariance matrix over iterations
(same for all gradient estimators).

C.3 learning to cut in branch and bound 147

Figure C.2: Increasing the number of Monte Carlo samples K to reduce variance
in gradient estimation tends to improve performance. The perfor-
mance difference tends to be larger at smaller batch sizes. Row
correspond to arities, i.e. binary, 4-ary, 8-ary, 16-ary. First column,
IWAE on test set for best validated model trained at various batch
sizes. Second column, IWAE on test set for best validated model
trained at various K at batch size 20.

148 additional results

binary 4-ary 8-ary 16-ary

Estimator Valid. Test Valid. Test Valid. Test Valid. Test

batch-
size 5

ST-GS 107.7 106.7 107.8 106.7 107.5 106.4 108.1 107.0

GR-MC1000 106.7 105.7 104.7 103.8 105.1 104.1 107.0 105.9

batch-
size 10

ST-GS 104.4 103.5 103.2 102.2 103.5 102.4 104.1 103.1

GR-MC1000 103.7 102.9 100.8 99.8 100.9 99.9 101.8 100.7

batch-
size 15

ST-GS 103.4 102.4 100.4 99.5 100.3 99.3 101.9 101.0

GR-MC1000 102.3 101.4 99.0 98.0 99.2 98.3 100.2 99.1

batch-
size 20

ST-GS 101.5 100.7 100.0 99.1 99.0 98.0 99.8 98.8

GR-MC1000 101.3 100.5 98.4 97.6 97.5 96.5 97.8 96.8

batch-
size 25

ST-GS 101.7 100.9 98.6 97.6 98.8 97.8 99.0 98.1

GR-MC1000 100.7 99.8 97.2 96.3 96.6 95.7 97.1 96.2

batch-
size 50

ST-GS 101.2 100.2 96.7 95.9 95.7 94.8 98.0 97.0

GR-MC1000 99.5 98.7 96.0 95.1 95.9 95.1 95.9 95.0

batch-
size 100

ST-GS 98.8 97.9 96.3 95.4 95.7 94.8 94.4 93.6
GR-MC1000 98.5 97.7 95.0 94.1 94.3 93.4 94.6 93.7

batch-
size 200

ST-GS 97.9 97.1 94.5 93.7 93.6 92.8 93.4 92.6

GR-MC1000 97.8 97.0 94.3 93.5 93.2 92.5 93.1 92.2

Table C.5: Our estimator, GR-MCK, consistently achieves better performance
across arities and batchsizes. The outperformance tends to be larger at
smaller batchsizes. Best bound on the negative log-likelihood selected
on the validation set from 20 independent runs at randomly searched
hyperparameters.

C.3 learning to cut in branch and bound 149

Bound fulfillment (") on test samples, mean

Max. Cut Packing Bin. Packing Planning

Gasse et al. [200] 0.90 0.42 0.54 0.95

+ our features 0.93 0.26 0.66 0.99
+ our architecture 0.93 0.62 0.76 1.00

NeuralCut (+ our graph) 0.96 0.61 0.78 1.00

Reversed IGC integral (#) on test instances, mean (ste)

Max. Cut Packing Bin. Packing Planning

Gasse et al. [200] 16.68 (0.10) 27.30 (0.07) 16.09 (0.31) 11.26 (0.06)

+ our features 15.54 (0.09) 28.54 (0.04) 12.77 (0.32) 10.66 (0.04)

+ our architecture 15.72 (0.09) 26.44 (0.07) 10.73 (0.33) 10.55 (0.04)

NeuralCut (+ our graph) 15.55 (0.09) 26.30 (0.08) 10.96 (0.33) 10.42 (0.04)

Table C.6: Our model choices tend to improve both bound fulfillment (left) and
test reversed IGC integral (right) on all four benchmarks. The improve-
ments tend to be clearer for bound fulfillment and binary packing.
Gasse et al. [200] is the model and features described in [200] and
adapted to cut selection by replacing constraints with cuts in the bi-
partite graph. For the purpose of this ablation, this base model is first
augmented with the features of NeuralCut. Second, structural changes
are made to the model by adding the attention module and using
batch normalization. Finally, constraints are explicitly modelled in the
tripartite graph giving the full NeuralCut model.

150 additional results

Bound fulfillment (") on test samples, mean

Max. Cut Packing Bin. Packing Planning

Binary Ent. (NeuralCut) 0.96 0.61 0.78 1.00
MSE (linear act.) 0.96 0.60 0.70 0.99
MSE (sigmoid act.) 0.97 0.61 0.69 1.00

Cross Entropy 0.96 0.30 0.73 1.00

Reversed IGC integral (#) on test instances, mean (ste)

Max. Cut Packing Bin. Packing Planning

Binary Ent. (NeuralCut) 15.55 (0.09) 26.30 (0.08) 10.96 (0.33) 10.42 (0.04)
MSE (linear act.) 15.59 (0.09) 26.37 (0.08) 11.66 (0.33) 10.54 (0.05)

MSE (sigmoid act.) 15.63 (0.09) 26.30 (0.08) 12.65 (0.32) 10.47 (0.04)

Cross Entropy 15.71 (0.09) 28.73 (0.04) 11.36 (0.34) 10.59 (0.04)

Table C.7: Different choices for the training objective (where bound fulfillment
is used as surrogate) tend to produce models with comparable test
performance. Notable exception are binary packing and the choice
of cross entropy for packing. Binary entropy (as was used to train
NeuralCut) tends to be a good choice across all four benchmarks. Best
are bold-faced.

C.3 learning to cut in branch and bound 151

0 10 20 30
Number of Cuts

0.0

0.2

0.4

0.6

IG
C

Lookahead
Efficacy
NeuralCut
Default (SCIP)

Rel. Violation
Exp. Improv.
Support
Int. Support

Random
Violation
Obj. Parall.

(a) Max Cut

0 10 20 30
Number of Cuts

0.000

0.025

0.050

0.075

0.100

0.125

0.150

IG
C

Rel. Violation
Exp. Improv.
Efficacy
Default (SCIP)

NeuralCut
Lookahead
Obj. Parall.
Violation

Random
Support
Int. Support

(b) Packing

0 10 20 30
Number of Cuts

0.0

0.2

0.4

0.6

0.8

IG
C

Lookahead
NeuralCut
Rel. Violation
Efficacy

Exp. Improv.
Default (SCIP)
Violation
Int. Support

Random
Obj. Parall.
Support

(c) Binary Packing

0 10 20 30
Number of Cuts

0.0

0.2

0.4

0.6

0.8

1.0

IG
C

Lookahead
NeuralCut
Exp. Improv.
Default (SCIP)

Efficacy
Rel. Violation
Support
Int. Support

Random
Violation
Obj. Parall.

(d) Planning

Figure C.3: Mean test IGC curves for NeuralCut models trained on Max Cut,
Packing, Binary Packing and Planning.

B I B L I O G R A P H Y

1. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once:
Unified, real-time object detection in Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), 779.

2. Girshick, R. Fast r-cnn in Proceedings of the IEEE international conference
on computer vision (2015), 1440.

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A. &
Zagoruyko, S. End-to-end object detection with transformers in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16 (2020), 213.

4. Wang, N. & Yeung, D.-Y. Learning a deep compact image represen-
tation for visual tracking. Advances in neural information processing
systems 26 (2013).

5. Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau,
R. W. & Yang, M.-H. Vital: Visual tracking via adversarial learning in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(2018), 8990.

6. Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for
semantic segmentation in Proceedings of the IEEE conference on computer
vision and pattern recognition (2015), 3431.

7. Noh, H., Hong, S. & Han, B. Learning deconvolution network for seman-
tic segmentation in Proceedings of the IEEE international conference on
computer vision (2015), 1520.

8. Dong, C., Loy, C. C., He, K. & Tang, X. Image super-resolution using
deep convolutional networks. IEEE transactions on pattern analysis and
machine intelligence 38, 295 (2015).

9. Zhang, L. & Agrawala, M. Adding Conditional Control to Text-to-
Image Diffusion Models. arXiv preprint arXiv:2302.05543 (2023).

10. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical
text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 (2022).

11. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-
Resolution Image Synthesis with Latent Diffusion Models 2021.

153

154 bibliography

12. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng,
A. Y. & Potts, C. Recursive deep models for semantic compositionality over
a sentiment treebank in Proceedings of the 2013 conference on empirical
methods in natural language processing (2013), 1631.

13. Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge
corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426 (2017).

14. Levesque, H. J., Davis, E. & Morgenstern, L. The Winograd schema
challenge. KR 2012, 13th (2012).

15. Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du,
N., Dai, A. M. & Le, Q. V. Finetuned language models are zero-shot
learners. arXiv preprint arXiv:2109.01652 (2021).

16. Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Rad-
ford, A., Amodei, D. & Christiano, P. F. Learning to summarize with
human feedback. Advances in Neural Information Processing Systems 33,
3008 (2020).

17. Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A.,
Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. Lamda: Language
models for dialog applications. arXiv preprint arXiv:2201.08239 (2022).

18. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., et al. Mastering the game of Go with deep neural net-
works and tree search. Nature 529, 484 (2016).

19. Brown, N. & Sandholm, T. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science 359, 418 (2018).

20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,
O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.
Highly accurate protein structure prediction with AlphaFold. Nature
596, 583 (2021).

21. Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D.,
Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.
Advancing mathematics by guiding human intuition with AI. Nature
600, 70 (2021).

22. Schaefer, A. J., Johnson, E. L., Kleywegt, A. J. & Nemhauser, G. L.
Airline crew scheduling under uncertainty. Transportation science 39,
340 (2005).

bibliography 155

23. Barahona, F., Grötschel, M., Jünger, M. & Reinelt, G. An application
of combinatorial optimization to statistical physics and circuit layout
design. Operations Research 36, 493 (1988).

24. Reményi, A., Schöler, H. R. & Wilmanns, M. Combinatorial control of
gene expression. Nature structural & molecular biology 11, 812 (2004).

25. Hendrik Kappes, J., Speth, M., Reinelt, G. & Schnorr, C. Towards
efficient and exact MAP-inference for large scale discrete computer vision
problems via combinatorial optimization in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (2013), 1752.

26. Djolonga, J. & Krause, A. From map to marginals: Variational infer-
ence in bayesian submodular models. Advances in Neural Information
Processing Systems 27 (2014).

27. Cheng, C.-H., Nührenberg, G. & Ruess, H. Maximum resilience of artifi-
cial neural networks in International Symposium on Automated Technology
for Verification and Analysis (2017), 251.

28. Tjeng, V., Xiao, K. Y. & Tedrake, R. Evaluating Robustness of Neural
Networks with Mixed Integer Programming in International Conference on
Learning Representations (2018).

29. Torrey, L. & Shavlik, J. in Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques 242 (IGI
global, 2010).

30. Ford, E., Carroll, J. A., Smith, H. E., Scott, D. & Cassell, J. A. Extracting
information from the text of electronic medical records to improve
case detection: a systematic review. Journal of the American Medical
Informatics Association 23, 1007 (2016).

31. Pereira, S., Pinto, A., Alves, V. & Silva, C. A. Brain tumor segmentation
using convolutional neural networks in MRI images. IEEE transactions
on medical imaging 35, 1240 (2016).

32. Kruskal, J. B. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
society 7, 48 (1956).

33. Kuhn, H. W. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 83 (1955).

34. Land, A. H. & Doig, A. G. in 50 Years of Integer Programming 1958-2008
105 (Springer, 2010).

35. Fujishige, S. Submodular functions and optimization (Elsevier, 2005).

156 bibliography

36. Hazan, T., Papandreou, G. & Tarlow, D. Perturbations, optimization,
and statistics (MIT Press, 2016).

37. Paulus, M. B., Choi, D., Tarlow, D., Krause, A. & Maddison, C. J.
Gradient Estimation with Stochastic Softmax Tricks in Advances in Neural
Information Processing Systems (2020).

38. Paulus, M. B., Maddison, C. J. & Krause, A. Rao-Blackwellizing the
Straight-Through Gumbel-Softmax Gradient Estimator in International
Conference on Learning Representations (2021).

39. Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L. & Maddison, C.
Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation
Learning in Proceedings of the 39th International Conference on Machine
Learning (2022).

40. Paulus, M. B. & Krause, A. Learning To Dive In Branch and Bound in
Under submission. (2023).

41. Valentin, R., Ferrari, C., Scheurer, J., Amrollahi, A., Wendler, C. &
Paulus, M. B. Instance-wise algorithm configuration with graph neu-
ral networks. NeurIPS Machine Learning for Combinatorial Optimization
Competition (2021).

42. Huijben, I. A., Kool, W., Paulus, M. B. & Van Sloun, R. J. A Review
of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in
Machine Learning in (2022).

43. Miladinović, Ð., Shridhar, K., Jain, K., Paulus, M. B., Buhmann, J. M.
& Allen, C. Learning to Drop Out: An Adversarial Approach to Training
Sequence VAEs in Advances in Neural Information Processing Systems
(2022).

44. Duan, H., Vaezipoor, P., Paulus, M. B., Ruan, Y. & Maddison, C. J.
Augment with Care: Contrastive Learning for Combinatorial Problems in
Proceedings of the 39th International Conference on Machine Learning
(2022).

45. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image
Recognition 2015.

46. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification
with deep convolutional neural networks. Communications of the ACM
60, 84 (2017).

47. Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du,
N., Dai, A. M. & Le, Q. V. Finetuned Language Models Are Zero-Shot
Learners 2022.

bibliography 157

48. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
Zhou, Y., Li, W. & Liu, P. J. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning
Research 21, 5485 (2020).

49. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv
e-prints, arXiv:1312.6114 (2013).

50. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction
(MIT press, 2018).

51. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework
for contrastive learning of visual representations in International conference
on machine learning (2020), 1597.

52. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen,
M. & Sutskever, I. Zero-shot text-to-image generation in Proceedings of
the Intern. Conf. on Mach. Learn. (ICML) (2021), 8821.

53. Hastie, T., Tibshirani, R. & Wainwright, M. Statistical learning with
sparsity. Monographs on statistics and applied probability 143, 143 (2015).

54. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 267 (1996).

55. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. Convex optimiza-
tion with sparsity-inducing norms. Optimization for Machine Learning
5, 19 (2011).

56. Huang, J., Zhang, T. & Metaxas, D. Learning with structured sparsity
in Proceedings of the 26th Annual International Conference on Machine
Learning (2009), 417.

57. Xu, D., Wang, W., Tang, H., Liu, H., Sebe, N. & Ricci, E. Structured
attention guided convolutional neural fields for monocular depth estimation
in Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), 3917.

58. Kim, Y., Denton, C., Hoang, L. & Rush, A. M. Structured attention
networks. arXiv preprint arXiv:1702.00887 (2017).

59. Niculae, V. & Blondel, M. A regularized framework for sparse and
structured neural attention. Advances in neural information processing
systems 30 (2017).

60. Kim, S. & Xing, E. P. Tree-guided group lasso for multi-response
regression with structured sparsity, with an application to eQTL
mapping (2012).

158 bibliography

61. Kim, B. Interactive and interpretable machine learning models for human
machine collaboration PhD thesis (Massachusetts Institute of Technol-
ogy, 2015).

62. Ribeiro, M., Singh, S. & Guestrin, C. “Why Should I Trust You?”:
Explaining the Predictions of Any Classifier in Proceedings of the 2016
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Demonstrations (Association for Computational
Linguistics, San Diego, California, 2016), 97.

63. Chen, J., Song, L., Wainwright, M. & Jordan, M. Learning to Explain: An
Information-Theoretic Perspective on Model Interpretation in International
Conference on Machine Learning (2018).

64. Dupont, E. Learning Disentangled Joint Continuous and Discrete Repre-
sentations in Proceedings of the Conf. on Neur. Inf. Process. Syst. (NIPS)
(2018).

65. Bengio, Y., Léonard, N. & Courville, A. Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computation.
arXiv e-prints, arXiv:1308.3432 (2013).

66. Bengio, E., Bacon, P.-L., Pineau, J. & Precup, D. Conditional com-
putation in neural networks for faster models. arXiv preprint
arXiv:1511.06297 (2015).

67. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G.
& Dean, J. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

68. Han, Y., Huang, G., Song, S., Yang, L., Wang, H. & Wang, Y. Dynamic
neural networks: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44, 7436 (2021).

69. Rosenbaum, C., Klinger, T. & Riemer, M. Routing networks: Adaptive
selection of non-linear functions for multi-task learning. arXiv preprint
arXiv:1711.01239 (2017).

70. Yang, B., Bender, G., Le, Q. V. & Ngiam, J. Condconv: Conditionally
parameterized convolutions for efficient inference. Advances in Neural
Information Processing Systems 32 (2019).

71. Veit, A. & Belongie, S. Convolutional networks with adaptive inference
graphs in Proceedings of the European Conference on Computer Vision
(ECCV) (2018), 3.

bibliography 159

72. Verelst, T. & Tuytelaars, T. Dynamic convolutions: Exploiting spatial
sparsity for faster inference in Proceedings of the ieee/cvf conference on
computer vision and pattern recognition (2020), 2320.

73. Choi, J., Yoo, K. M. & Lee, S. Unsupervised Learning of Task-Specific Tree
Structures with Tree-LSTMs in CoRR (2017).

74. Wang, P.-W., Donti, P., Wilder, B. & Kolter, Z. Satnet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver in
International Conference on Machine Learning (2019), 6545.

75. Asai, M. & Fukunaga, A. Classical planning in deep latent space: Bridging
the subsymbolic-symbolic boundary in Proceedings of the Conf. on Artif.
Intell. (AAAI) 32 (2018).

76. Amos, B. & Kolter, J. Z. Optnet: Differentiable optimization as a layer
in neural networks in Proceedings of the 34th International Conference on
Machine Learning-Volume 70 (2017), 136.

77. Kipf, T., Fetaya, E., Wang, K.-C., Welling, M. & Zemel, R. Neural
relational inference for interacting systems in International Conference on
Machine Learning (2018).

78. Lorberbom, G., Gane, A., Jaakkola, T. & Hazan, T. Direct Optimization
through argmax for Discrete Variational Auto-Encoder in Advances in
Neural Information Processing Systems (2019), 6200.

79. Petersen, F. Learning with Differentiable Algorithms. arXiv preprint
arXiv:2209.00616 (2022).

80. Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P. & Bach,
F. Learning with differentiable perturbed optimizers. arXiv preprint
arXiv:2002.08676 (2020).

81. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S. & Kolter, Z.
Differentiable Convex Optimization Layers in Advances in Neural Informa-
tion Processing Systems (2019).

82. Agrawal, A., Barratt, S., Boyd, S., Busseti, E. & Moursi, W. M. Differ-
entiating through a conic program. arXiv preprint arXiv:1904.09043
(2019).

83. Djolonga, J. & Krause, A. Differentiable learning of submodular models
in Advances in Neural Information Processing Systems (2017), 1013.

84. Glynn, P. W. Likelihood ratio gradient estimation for stochastic sys-
tems. Communications of the ACM 33, 75 (1990).

160 bibliography

85. Williams, R. J. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 229 (1992).

86. Asmussen, S. & Glynn, P. W. Stochastic simulation: algorithms and
analysis (Springer Science & Business Media, 2007).

87. Gregor, K., Danihelka, I., Mnih, A., Blundell, C. & Wierstra, D. Deep
autoregressive networks in International Conference on Machine Learning
(2014), 1242.

88. Gu, S., Levine, S., Sutskever, I. & Mnih, A. Muprop: Unbiased back-
propagation for stochastic neural networks in International Conference on
Learning Representations (2016).

89. Paisley, J., Blei, D. & Jordan, M. Variational Bayesian inference with
stochastic search. arXiv preprint arXiv:1206.6430 (2012).

90. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D.
DRAW: A recurrent neural network for image generation in International
Conference on Machine Learning (2015).

91. Tucker, G., Mnih, A., Maddison, C. J., Lawson, J. & Sohl-Dickstein, J.
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable
models in Advances in Neural Information Processing Systems (2017),
2627.

92. Grathwohl, W., Choi, D., Wu, Y., Roeder, G. & Duvenaud, D. Backprop-
agation through the Void: Optimizing control variates for black-box gradient
estimation in International Conference on Learning Representations (2018).

93. Geffner, T. & Domke, J. Using large ensembles of control variates for
variational inference. Advances in Neural Information Processing Systems
31 (2018).

94. Mnih, A. & Rezende, D. J. Variational inference for Monte Carlo objectives
in International Conference on Machine Learning (2016), 2188.

95. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropaga-
tion and approximate inference in deep generative models in International
Conference on Machine Learning (2014), 1278.

96. Titsias, M. & Lázaro-gredilla, M. Doubly Stochastic Variational Bayes for
non-Conjugate Inference in International Conference on Machine Learning
(2014).

97. Glasserman, P. & Ho, Y.-C. Gradient estimation via perturbation analysis
(Springer Science & Business Media, 1991).

bibliography 161

98. Devroye, L. Nonuniform random variate generation. Handbooks in
operations research and management science 13, 83 (2006).

99. Fan, K., Wang, Z., Beck, J., Kwok, J. & Heller, K. A. Fast second
order stochastic backpropagation for variational inference. Advances
in Neural Information Processing Systems 28 (2015).

100. Mohamed, S., Rosca, M., Figurnov, M. & Mnih, A. Monte Carlo
Gradient Estimation in Machine Learning. J. Mach. Learn. Res. 21,
132:1 (2020).

101. Maddison, C. J., Mnih, A. & Teh, Y. W. The concrete distribution: A con-
tinuous relaxation of discrete random variables in International Conference
on Learning Representations (2017).

102. Jang, E., Gu, S. & Poole, B. Categorical reparameterization with gumbel-
softmax in International Conference on Learning Representations (2016).

103. Luce, R. D. Individual Choice Behavior: A Theoretical Analysis (New
York: Wiley, 1959).

104. Maddison, C. J., Tarlow, D. & Minka, T. A⇤ Sampling in Advances in
Neural Information Processing Systems (2014).

105. Hinton, G. E. Distributed representations (1984).

106. Tarlow, D., Adams, R. & Zemel, R. Randomized Optimum Models for
Structured Prediction in Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics (eds Lawrence, N. D. &
Girolami, M.) 22 (PMLR, La Palma, Canary Islands, 2012), 1221.

107. Gane, A., Hazan, T. & Jaakkola, T. Learning with maximum a-posteriori
perturbation models in Artificial Intelligence and Statistics (2014), 247.

108. Schrijver, A. Combinatorial optimization: polyhedra and efficiency (Springer
Science & Business Media, 2003).

109. Kolmogorov, V. Convergent tree-reweighted message passing for
energy minimization. IEEE transactions on pattern analysis and machine
intelligence 28, 1568 (2006).

110. Koller, D. & Friedman, N. Probabilistic graphical models: principles and
techniques (2009).

111. Hazan, T., Maji, S. & Jaakkola, T. On Sampling from the Gibbs Distribu-
tion with Random Maximum A-Posteriori Perturbations in Advances in
Neural Information Processing Systems (2013).

112. Rockafellar, R. T. Convex Analysis (Princeton University Press, 1970).

162 bibliography

113. Wainwright, M. J. & Jordan, M. I. Graphical models, exponential
families, and variational inference. Foundations and Trends in Machine
Learning 1, 1 (2008).

114. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng,
X. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv e-prints, arXiv:1603.04467 (2016).

115. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin,
Z., Desmaison, A., Antiga, L. & Lerer, A. Automatic differentiation in
PyTorch (2017).

116. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclau-
rin, D. & Wanderman-Milne, S. JAX: composable transformations of
Python+NumPy programs version 0.1.55. 2018.

117. Domke, J. in Advances in Neural Information Processing Systems 23 (eds
Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S. &
Culotta, A.) 523 (Curran Associates, Inc., 2010).

118. Rockafellar, R. T. Second-order convex analysis. J. Nonlinear Convex
Anal 1, 84 (1999).

119. Amos, B., Koltun, V. & Zico Kolter, J. The Limited Multi-Label Projec-
tion Layer. arXiv e-prints, arXiv:1906.08707 (2019).

120. Martins, A. F. & Kreutzer, J. Learning what’s easy: Fully differentiable
neural easy-first taggers in Proceedings of the 2017 conference on empirical
methods in natural language processing (2017), 349.

121. Wolfe, P. Finding the nearest point in a polytope. Mathematical Pro-
gramming 11, 128 (1976).

122. Duchi, J., Shalev-Shwartz, S., Singer, Y. & Chandra, T. Efficient projec-
tions onto the l 1-ball for learning in high dimensions in Proceedings of the
25th international conference on Machine learning (2008), 272.

123. Liu, J. & Ye, J. Efficient Euclidean projections in linear time in Proceedings
of the 26th Annual International Conference on Machine Learning (2009),
657.

bibliography 163

124. Blondel, M. Structured Prediction with Projection Oracles in Advances in
Neural Information Processing Systems (2019), 12145.

125. Niculae, V., Martins, A. F., Blondel, M. & Cardie, C. Sparsemap: Dif-
ferentiable sparse structured inference. arXiv preprint arXiv:1802.04223
(2018).

126. Blondel, M., Martins, A. F. & Niculae, V. Learning with fenchel-young
losses. Journal of Machine Learning Research 21, 1 (2020).

127. Martins, A. & Astudillo, R. From softmax to sparsemax: A sparse model
of attention and multi-label classification in International Conference on
Machine Learning (2016), 1614.

128. Plackett, R. L. The analysis of permutations. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 24, 193 (1975).

129. Kool, W., van Hoof, H. & Welling, M. Ancestral Gumbel-Top-k Sam-
pling for Sampling Without Replacement. Journal of Machine Learning
Research 21, 1 (2020).

130. Tarlow, D., Swersky, K., Zemel, R. S., Adams, R. P. & Frey, B. J. Fast
exact inference for recursive cardinality models in 28th Conference on
Uncertainty in Artificial Intelligence, UAI 2012 (2012), 825.

131. Xie, S. M. & Ermon, S. Reparameterizable subset sampling via continu-
ous relaxations in International Joint Conference on Artificial Intelligence
(2019).

132. Mezuman, E., Tarlow, D., Globerson, A. & Weiss, Y. Tighter linear
program relaxations for high order graphical models in Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013),
421.

133. Mena, G., Belanger, D., Linderman, S. & Snoek, J. Learning Latent
Permutations with Gumbel-Sinkhorn Networks in International Conference
on Learning Representations (2018).

134. Grover, A., Wang, E., Zweig, A. & Ermon, S. Stochastic Optimization of
Sorting Networks via Continuous Relaxations in International Conference
on Learning Representations (2019).

135. Sinkhorn, R. & Knopp, P. Concerning nonnegative matrices and
doubly stochastic matrices. Pacific Journal of Mathematics 21, 343 (1967).

136. Tutte, W. T. Graph Theory (Addison-Wesley, 1984).

137. Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge univer-
sity press, 2004).

164 bibliography

138. Chu, Y. & Liu, T. H. On the shortest arborescence of a directed graph.
Scientia Sinica 14, 1396 (1965).

139. Edmonds, J. Optimum Branchings”. Journal of Research of the National
Bureau of Standards: Mathematics and mathematical physics. B 71, 233
(1967).

140. Kleinberg, J. & Tardos, E. Algorithm Design (Pearson Education, 2006).

141. Thurstone, L. L. A law of comparative judgment. Psychological review
34, 273 (1927).

142. Papandreou, G. & Yuille, A. Perturb-and-MAP Random Fields: Using
Discrete Optimization to Learn and Sample from Energy Models in Interna-
tional Conference on Computer Vision (2011).

143. Hazan, T. & Jaakkola, T. On the partition function and random maximum
a-posteriori perturbations in International Conference on Machine Learning
(2012).

144. Amos, B. Differentiable optimization-based modeling for machine learning
PhD thesis (PhD thesis. Carnegie Mellon University, 2019).

145. Blondel, M., Teboul, O., Berthet, Q. & Djolonga, J. Fast Differentiable
Sorting and Ranking. arXiv preprint arXiv:2002.08871 (2020).

146. Adams, R. P. & Zemel, R. S. Ranking via sinkhorn propagation. arXiv
preprint arXiv:1106.1925 (2011).

147. Ross, S., Munoz, D., Hebert, M. & Bagnell, J. A. Learning Message-
Passing Inference Machines for Structured Prediction in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2011).

148. Poon, H. & Domingos, P. Sum-product networks: A new deep architecture
in 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops) (2011), 689.

149. Domke, J. Learning graphical model parameters with approximate
marginal inference. IEEE transactions on pattern analysis and machine
intelligence 35, 2454 (2013).

150. Swersky, K., Sutskever, I., Tarlow, D., Zemel, R. S., Salakhutdinov, R. R.
& Adams, R. P. Cardinality restricted boltzmann machines in Advances in
neural information processing systems (2012), 3293.

151. Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P. & Bach, F.
Learning with Differentiable Perturbed Optimizers. arXiv e-prints,
arXiv:2002.08676 (2020).

bibliography 165

152. Mnih, A. & Gregor, K. Neural variational inference and learning in
belief networks in Proceedings of the 31st International Conference on
International Conference on Machine Learning-Volume 32 (2014), II.

153. Fruchterman, T. M. & Reingold, E. M. Graph drawing by force-
directed placement. Software: Practice and experience 21, 1129 (1991).

154. Nangia, N. & Bowman, S. R. Listops: A diagnostic dataset for latent
tree learning. arXiv preprint arXiv:1804.06028 (2018).

155. McAuley, J., Leskovec, J. & Jurafsky, D. Learning attitudes and attributes
from multi-aspect reviews in 2012 IEEE 12th International Conference on
Data Mining (2012), 1020.

156. Lei, T., Barzilay, R. & Jaakkola, T. Rationalizing neural predictions.
arXiv preprint arXiv:1606.04155 (2016).

157. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine 29, 82
(2012).

158. Pervez, A., Cohen, T. & Gavves, E. Low Bias Low Variance Gradient
Estimates for Hierarchical Boolean Stochastic Networks in ICML (2020).

159. Chung, J., Ahn, S. & Bengio, Y. Hierarchical multiscale recurrent neural
networks in International Conference on Learning Representations (2017).

160. Jang, E., Gu, S. & Poole, B. Categorical Reparametrization with Gumble-
Softmax in International Conference on Learning Representations (ICLR
2017) (2017).

161. LeCun, Y. & Cortes, C. MNIST handwritten digit database. URL
http://yann. lecun. com/exdb/mnist (2010).

162. Blackwell, D. Conditional Expectation and Unbiased Sequential Esti-
mation. Ann. Math. Statist. 18, 105 (1947).

163. Rao, C. R. Information and the Accuracy Attainable in the Estimation of
Statistical Parameters in Breakthroughs in Statistics: Foundations and Basic
Theory (eds Kotz, S. & Johnson, N. L.) (Springer New York, New York,
NY, 1992), 235.

164. Maddison, C. J., Tarlow, D. & Minka, T. A* Sampling in Advances in
Neural Information Processing Systems 27 (2014).

165. Maddison, C. J. in Perturbation, Optimization, and Statistics (eds Hazan,
T., Papandreou, G. & Tarlow, D.) (MIT Press, 2016).

166 bibliography

166. Kroese, D. P., Taimre, T. & Botev, Z. I. Handbook of Monte Carlo methods
(John Wiley & Sons, 2013).

167. Liu, R., Regier, J., Tripuraneni, N., Jordan, M. I. & McAuliffe, J. Rao-
blackwellized stochastic gradients for discrete distributions. arXiv
preprint arXiv:1810.04777 (2018).

168. Kool, W., van Hoof, H. & Welling, M. Estimating Gradients for Dis-
crete Random Variables by Sampling without Replacement in International
Conference on Learning Representations (2020).

169. Vieira, T. Estimating means in a finite universe, 2017. URL https://timvieira.
github. io/blog/post/2017/07/03/estimating-means-in-a-finite-universe
(2017).

170. Martins, A. F. T., Mihaylova, T., Nangia, N. & Niculae, V. Latent
Structure Models for Natural Language Processing in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics:
Tutorial Abstracts (Association for Computational Linguistics, Florence,
Italy, 2019), 1.

171. Havrylov, S., Kruszewski, G. & Joulin, A. Cooperative learning of
disjoint syntax and semantics. arXiv preprint arXiv:1902.09393 (2019).

172. Salakhutdinov, R. & Murray, I. On the quantitative analysis of deep belief
networks in Proceedings of the 25th international conference on Machine
learning (2008), 872.

173. Burda, Y., Grosse, R. & Salakhutdinov, R. Importance weighted autoen-
coders in International Conference on Learning Representations (2016).

174. Maddison, C. J., Mnih, A. & Teh, Y. W. The Concrete Distribution:
A Continuous Relaxation of Discrete Random Variables in International
Conference on Learning Representations (2017).

175. Bergstra, J. & Bengio, Y. Random search for hyper-parameter opti-
mization. Journal of machine learning research 13, 281 (2012).

176. Shekhovtsov, A. Cold Rao-Blackwellized Straight-Through Gumbel-
Softmax Gradient Estimator 2023.

177. Fan, T.-H., Chi, T.-C., Rudnicky, A. I. & Ramadge, P. J. Training Dis-
crete Deep Generative Models via Gapped Straight-Through Estimator in
International Conference on Machine Learning (2022), 6059.

178. Kokkinos, I. Rapid deformable object detection using dual-tree
branch-and-bound. Advances in Neural Information Processing Systems
24 (2011).

bibliography 167

179. Komodakis, N., Paragios, N. & Tziritas, G. Clustering via lp-based
stabilities. Advances in neural information processing systems 21 (2008).

180. Christofides, N. Worst-case analysis of a new heuristic for the travel-
ling salesman problem tech. rep. (Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976).

181. Gurobi Optimization, L. Gurobi optimizer reference manual 2021.

182. Cplex, I. I. User Manual for CPLEX. International Business Machines
Corporation 46, 157 (2009).

183. Gomory, R. An algorithm for the mixed integer problem tech. rep. RM-
2597 (The Rand Corporation, 1960).

184. Berthold, T. Primal Heuristics for Mixed Integer Programs in (2006).

185. Ong, H. L. & Moore, J. Worst-case analysis of two travelling salesman
heuristics. Operations Research Letters 2, 273 (1984).

186. Lin, S. & Kernighan, B. W. An effective heuristic algorithm for the
traveling-salesman problem. Operations research 21, 498 (1973).

187. Wallace, C. ZI round, a MIP rounding heuristic. Journal of Heuristics
16, 715 (2010).

188. Balas, E., Schmieta, S. & Wallace, C. Pivot and shift—a mixed integer
programming heuristic. Discrete Optimization 1, 3 (2004).

189. Fischetti, M. & Lodi, A. Local branching. Mathematical programming
98, 23 (2003).

190. Danna, E., Rothberg, E. & Pape, C. L. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming
102, 71 (2005).

191. Berthold, T. RENS-relaxation enforced neighborhood search (2007).

192. Rothberg, E. An evolutionary algorithm for polishing mixed inte-
ger programming solutions. INFORMS Journal on Computing 19, 534
(2007).

193. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L.,
Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al.
The SCIP optimization suite 7.0 (2020).

194. Hutter, F., Hoos, H. H. & Leyton-Brown, K. Sequential model-based
optimization for general algorithm configuration in International conference
on learning and intelligent optimization (2011), 507.

168 bibliography

195. Hutter, F., Xu, L., Hoos, H. H. & Leyton-Brown, K. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206, 79 (2014).

196. Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F. & Lindauer, M.
in ECAI 2020 427 (IOS Press, 2020).

197. Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I.,
O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., et al.
Solving mixed integer programs using neural networks. arXiv preprint
arXiv:2012.13349 (2020).

198. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G. & Dilkina, B. Learning
to branch in mixed integer programming in Proceedings of the AAAI
Conference on Artificial Intelligence 30 (2016).

199. Alvarez, A. M., Louveaux, Q. & Wehenkel, L. A machine learning-
based approximation of strong branching. INFORMS Journal on Com-
puting 29, 185 (2017).

200. Gasse, M., Chételat, D., Ferroni, N., Charlin, L. & Lodi, A. Exact
Combinatorial Optimization with Graph Convolutional Neural Networks
in Advances in Neural Information Processing Systems 32 (2019).

201. Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A. & Bengio, Y.
Hybrid models for learning to branch. Advances in neural information
processing systems 33, 18087 (2020).

202. Sun, H., Chen, W., Li, H. & Song, L. Improving learning to branch
via reinforcement learning (2020).

203. Zarpellon, G., Jo, J., Lodi, A. & Bengio, Y. Parameterizing branch-and-
bound search trees to learn branching policies in Proceedings of the AAAI
Conference on Artificial Intelligence 35 (2021), 3931.

204. He, H., Daume III, H. & Eisner, J. M. Learning to search in branch and
bound algorithms. Advances in neural information processing systems 27
(2014).

205. Yilmaz, K. & Yorke-Smith, N. Learning efficient search approximation
in mixed integer branch and bound. arXiv preprint arXiv:2007.03948
(2020).

206. Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan, M., Hao,
J., Yu, Y. & Wang, J. Learning to select cuts for efficient mixed-integer
programming. Pattern Recognition 123, 108353 (2022).

bibliography 169

207. Tang, Y., Agrawal, S. & Faenza, Y. Reinforcement Learning for Integer
Programming: Learning to Cut in Proceedings of the 37th International
Conference on Machine Learning (eds III, H. D. & Singh, A.) 119 (PMLR,
2020), 9367.

208. Berthold, T., Francobaldi, M. & Hendel, G. Learning to use local cuts.
arXiv preprint arXiv:2206.11618 (2022).

209. Turner, M., Koch, T., Serrano, F. & Winkler, M. Adaptive Cut Selection
in Mixed-Integer Linear Programming. arXiv preprint arXiv:2202.10962
(2022).

210. Song, J., Yue, Y., Dilkina, B., et al. A general large neighborhood search
framework for solving integer linear programs. Advances in Neural
Information Processing Systems 33, 20012 (2020).

211. Wu, Y., Song, W., Cao, Z. & Zhang, J. Learning large neighborhood
search policy for integer programming. Advances in Neural Information
Processing Systems 34, 30075 (2021).

212. Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y. & Song, L.
Accelerating primal solution findings for mixed integer programs based
on solution prediction in Proceedings of the aaai conference on artificial
intelligence 34 (2020), 1452.

213. Sonnerat, N., Wang, P., Ktena, I., Bartunov, S. & Nair, V. Learning
a large neighborhood search algorithm for mixed integer programs.
arXiv preprint arXiv:2107.10201 (2021).

214. Liu, D., Fischetti, M. & Lodi, A. Learning to search in local branching
in Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022),
3796.

215. Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat,
D., Chmiela, A., Dumouchelle, J., Gleixner, A., Kazachkov, A. M., et al.
The machine learning for combinatorial optimization competition (ml4co):
Results and insights in NeurIPS 2021 Competitions and Demonstrations
Track (2022), 220.

216. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y. A
comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems 32, 4 (2020).

170 bibliography

217. Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I.,
O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki,
R., Hapuarachchi, T., Keck, T., Keeling, J., Kohli, P., Ktena, I., Li, Y.,
Vinyals, O. & Zwols, Y. Solving Mixed Integer Programs Using Neural
Networks 2020.

218. Marchand, H., Martin, A., Weismantel, R. & Wolsey, L. Cutting planes
in integer and mixed integer programming. Discrete Applied Mathe-
matics 123, 397 (2002).

219. Marchand, H. & Wolsey, L. A. Aggregation and mixed integer round-
ing to solve MIPs. Operations research 49, 363 (2001).

220. Wesselmann, F. & Stuhl, U. Implementing cutting plane management and
selection techniques tech. rep. (Technical report, University of Pader-
born, 2012).

221. Dey, S. S. & Molinaro, M. Theoretical challenges towards cutting-
plane selection. Math. Program. 237–266 (2018).

222. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M.,
Berthold, T., Christophel, P., Jarck, K., Koch, T., Linderoth, J., et al.
MIPLIB 2017: data-driven compilation of the 6th mixed-integer pro-
gramming library. Mathematical Programming Computation 13, 443
(2021).

223. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift in International conference on
machine learning (2015), 448.

224. Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. arXiv
preprint arXiv:1607.06450 (2016).

225. Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz,
T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A.,
et al. The SCIP optimization suite 8.0. arXiv preprint arXiv:2112.08872
(2021).

226. Huang, Z., Wang, K., Liu, F., ling Zhen, H., Zhang, W., Yuan, M., Hao,
J., Yu, Y. & Wang, J. Learning to Select Cuts for Efficient Mixed-Integer
Programming arXiv preprint 2105.13645. 2021.

227. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization in
International Conference on Learning Representations (ICLR) (2015).

228. Gurobi. Gurobi Optimizer http://www.gurobi.com.

bibliography 171

229. Vitter, J. S. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 37 (1985).

230. Achterberg, T., Berthold, T. & Hendel, G. in Operations research pro-
ceedings 2011 71 (Springer, 2012).

231. Bertsimas, D. & Tsitsiklis, J. N. Introduction to linear optimization
(Athena Scientific Belmont, MA, 1997).

232. Pryor, J. & Chinneck, J. W. Faster integer-feasibility in mixed-integer
linear programs by branching to force change. Computers & Operations
Research 38, 1143 (2011).

233. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural
computation 9, 1735 (1997).

234. Kotary, J., Fioretto, F. & Van Hentenryck, P. Learning hard optimiza-
tion problems: A data generation perspective. Advances in Neural
Information Processing Systems 34, 24981 (2021).

235. Maher, S., Miltenberger, M., Pedroso, J. P., Rehfeldt, D., Schwarz, R.
& Serrano, F. in Mathematical Software – ICMS 2016 301 (Springer
International Publishing, 2016).

236. Shaw, P. Using constraint programming and local search methods to solve
vehicle routing problems in International conference on principles and
practice of constraint programming (1998), 417.

237. Ahuja, R. K., Orlin, J. B. & Sharma, D. New neighborhood search
structures for the capacitated minimum spanning tree problem (1998).

238. Pisinger, D. & Ropke, S. in Handbook of metaheuristics 399 (Springer,
2010).

239. Witzig, J. & Gleixner, A. Conflict-driven heuristics for mixed integer
programming. INFORMS Journal on Computing 33, 706 (2021).

240. Ha, D. & Schmidhuber, J. World models. arXiv preprint arXiv:1803.10122
(2018).

241. De Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J. &
Kolter, J. Z. End-to-end differentiable physics for learning and control.
Advances in neural information processing systems 31 (2018).

242. Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I. &
Bachem, O. Brax–A Differentiable Physics Engine for Large Scale
Rigid Body Simulation. arXiv preprint arXiv:2106.13281 (2021).

172 bibliography

243. Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S. & Amodei,
D. Deep reinforcement learning from human preferences. Advances
in neural information processing systems 30 (2017).

244. Beck, A. First-Order Methods in Optimization (SIAM, 2017).

245. Rush, A. M. Torch-Struct: Deep Structured Prediction Library. arXiv
preprint arXiv:2002.00876 (2020).

246. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
International Conference on Learning Representations (2015).

247. Kool, W., van Hoof, H. & Welling, M. Buy 4 REINFORCE Samples,
Get a Baseline for Free! (2019).

P U B L I C AT I O N S

Conference contributions:

• Paulus, M. B., Choi, D., Tarlow, D., Krause, A. & Maddison, C. J.
Gradient Estimation with Stochastic Softmax Tricks in Advances in Neural
Information Processing Systems (2020)

• Paulus, M. B., Maddison, C. J. & Krause, A. Rao-Blackwellizing the
Straight-Through Gumbel-Softmax Gradient Estimator in International
Conference on Learning Representations (2021)

• Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L. & Maddison, C.
Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation
Learning in Proceedings of the 39th International Conference on Machine
Learning (2022)

• Duan, H., Vaezipoor, P., Paulus, M. B., Ruan, Y. & Maddison, C. J.
Augment with Care: Contrastive Learning for Combinatorial Problems in
Proceedings of the 39th International Conference on Machine Learning
(2022)

• Miladinović, Ð., Shridhar, K., Jain, K., Paulus, M. B., Buhmann, J. M.
& Allen, C. Learning to Drop Out: An Adversarial Approach to Training
Sequence VAEs in Advances in Neural Information Processing Systems
(2022)

Articles in peer-reviewed journals:

• Huijben, I. A., Kool, W., Paulus, M. B. & Van Sloun, R. J. A Review
of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in
Machine Learning in (2022)

Other contributions:

• Valentin, R., Ferrari, C., Scheurer, J., Amrollahi, A., Wendler, C. &
Paulus, M. B. Instance-wise algorithm configuration with graph neural
networks. NeurIPS Machine Learning for Combinatorial Optimization
Competition (2021)

• Paulus, M. B. & Krause, A. Learning To Dive In Branch and Bound in
Under submission. (2023)

