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Abstract

Biodiversity loss in river ecosystems is much faster and more severe than in ter-

restrial systems, and spatial conservation and restoration plans are needed to

halt this erosion. Reliable and highly resolved data on the state of and change

in biodiversity and species distributions are critical for effective measures. How-

ever, high-resolution maps of fish distribution remain limited for large riverine

systems. Coupling data from global satellite sensors with broad-scale environ-

mental DNA (eDNA) and machine learning could enable rapid and precise

mapping of the distribution of river organisms. Here, we investigated the

potential for combining these methods using a fish eDNA dataset from 110

sites sampled along the full length of the Rhone River in Switzerland and

France. Using Sentinel 2 and Landsat 8 images, we generated a set of ecological

variables describing both the aquatic and the terrestrial habitats surrounding

the river corridor. We combined these variables with eDNA-based presence and

absence data on 29 fish species and used three machine-learning models to

assess environmental suitability for these species. Most models showed good

performance, indicating that ecological variables derived from remote sensing

can approximate the ecological determinants of fish species distributions, but

water-derived variables had stronger associations than the terrestrial variables

surrounding the river. The species range mapping indicated a significant transi-

tion in the species occupancy along the Rhone, from its source in the Swiss

Alps to outlet into the Mediterranean Sea in southern France. Our study dem-

onstrates the feasibility of combining remote sensing and eDNA to map species

distributions in a large river. This method can be expanded to any large river

to support conservation schemes.

Introduction

To counter global biodiversity erosion, ecosystem gover-

nance and management require an increase in the speed,

accuracy and ease of biodiversity data collection and pro-

cessing (Dornelas et al., 2019; Makiola et al., 2020). This

entails a shift from expert monitoring towards high-

throughput data acquisition technology (Cordier
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et al., 2019). Freshwater ecosystems have been experienc-

ing major declines in biodiversity (Darwall et al., 2018;

Grooten et al., 2018) as a result of river canalization, dam

building, pollution and over-exploitation (Maavara

et al., 2020). To reverse these trends and effectively man-

age freshwater ecosystems, reliable data-driven conserva-

tion and policy-oriented planning are needed (Darwall

et al., 2018). Fortunately, our ability to rapidly monitor

the status of freshwater ecosystems to inform policies has

increased with recent technological developments. On the

one hand, fast inventories of entire freshwater communi-

ties are now possible with the emergence of environmen-

tal genomics and specifically environmental DNA (eDNA)

(Bohmann et al., 2014; Cordier, 2020; Deiner et al., 2017;

Pawlowski et al., 2018; Thomsen & Willerslev, 2015). On

the other hand, the increased spatial and temporal resolu-

tion of satellite observations allows regular surveys of eco-

systems, which can be used with machine learning to

reconstruct explicit maps of species distribution when

combined with point-based species information (Barbar-

ossa et al., 2020; Vihervaara et al., 2017). The resulting

species distribution maps can inform conservation plan-

ning and spatial prioritization (Ferrier, 2002; Jetz

et al., 2012). The combination of eDNA and remote sens-

ing could enable the fast production of fish species distri-

bution maps, especially in regions where little species

information is currently available (Pettorelli et al., 2014;

Wang & Gamon, 2019; Yamasaki et al., 2017). However,

the feasibility and performance of such data and method

associations require evaluation.

Environmental DNA is becoming a method of choice

to survey freshwater species at large spatial scales (Alter-

matt et al., 2020; Deiner et al., 2017; Lyet et al., 2021), as

it can be applied to large river corridors (Blackman

et al., 2021; Carraro et al., 2020). eDNA is genetic mate-

rial obtained directly from environmental samples (e.g.

soil, sediment and water), and it is characterized by a

complex mixture of intracellular (from living cells) or

extracellular DNA (originating from skin, hair, urine, fae-

ces or carcasses) (Pawlowski et al., 2020; Taberlet

et al., 2012). eDNA thus offers an integrative view of eco-

system composition (Deiner et al., 2017; Ficetola

et al., 2008). When coupled with high-throughput DNA

sequencing methods, eDNA ‘metabarcoding’ can contrib-

ute to the rapid assessment and monitoring of species dis-

tributions across all levels of life, from prokaryotes to

eukaryotes, with a higher detection capacity and cost-

effectiveness than traditional methods (e.g., Polanco

Fern�andez et al., 2021). The sequences from the high-

throughput sequencing are then compared with reference

barcode libraries to establish taxonomic lists directly from

environmental samples (Taberlet et al., 2012). Ultimately,

these lists can be used to assess species occupancy, but

also ecosystem functioning and health status (Cordier

et al., 2019). An increasing number of initiatives propose

to use eDNA metabarcoding routinely and globally to

monitor ecosystems (Berry et al., 2021). Large rivers,

defined here as rivers at least 60 m wide, deliver many

ecosystem services to human populations living on their

banks (Palmer et al., 2008), but are under increasing

anthropogenic pressure, for example relating to damming,

pollution and overfishing (Maavara et al., 2020). In this

context, eDNA offers a cost-efficient method for monitor-

ing species within these large rivers (Pont et al., 2018).

Recently, broad-scale applications of eDNA along the

Maroni and Oyapock Rivers in South America (Cantera

et al., 2020), the Yangtze River in China (Li et al., 2018;

Zhang et al., 2022) and the Rhone River in Switzerland

and France (Pont et al., 2018) have demonstrated the reli-

ability of eDNA in detecting fish occupancy at multiple

locations along the river corridor. However, species moni-

toring with eDNA remains spatially limited, often with

tens of kilometres between two sampling sites (Blackman

et al., 2021). These patchy data could be associated with

remotely sensed information about the habitat to build

continuous spatial models of species distributions.

Remote sensing involves regular measurements over

time (Ozesmi & Bauer, 2002; Reul et al., 2020), matching

the spatial and temporal resolution of eDNA metabarcod-

ing data. Products from remote sensing have led to a

more precise characterization of the ecological properties

of freshwater ecosystems (Campbell et al., 2011; Castello

& Macedo, 2016; Revenga et al., 2005), including the

water bodies themselves (Watanabe et al., 2015) and the

surrounding terrestrial environments (Growns

et al., 2003; Karra et al., 2021). Rivers generally occupy a

small spatial fraction of the landscape, and thus, their

characterization requires the use of high-resolution

images (Kuhn et al., 2019). High-resolution remote sens-

ing data provide accurate information on the narrow fea-

tures of river systems and could therefore help explain

the distribution of species detected in eDNA signals. In

river systems, temperature is expected to be a major fac-

tor determining species distributions for many taxonomic

groups. In particular, it determines the spatial distribution

of many fish species (Brazner et al., 2005; Buisson

et al., 2008; Heino et al., 2002; Shuter & Post, 1990).

Since fishes are ectothermic animals, they are dependent

on their thermal environment for survival, breeding and

developmental success (Gillooly et al., 2001; Mann &

Blackburn, 1991; Mills & Mann, 1985; Nunn et al., 2003;

Wolter, 2007). In addition, other environmental factors

influence their distribution and community composition,

including water quality (Watanabe et al., 2015), water

clarity (Harrington et al., 1992; Lee et al., 2016), substrate

type (Humpl & Pivni�cka, 2006) and the structure of the
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riparian vegetation (Growns et al., 2003; Maridet

et al., 1998), which can all be approximated by remote

sensing information (Bae et al., 2019; Bergen et al., 2009;

Drusch et al., 2012; Turner et al., 2003).

Species distribution models (hereafter: SDMs) relate

species observations to descriptors of the environment and

produce response curves indicating species responses to

environmental gradients. By matching eDNA and remote

sensing data, SDMs can provide insight into species

responses to environmental gradients and also into species

distributions if the spatial layers truly reflect features

related to the ecological preferences of species (Randin

et al., 2020). By using SDMs that integrate a set of machine

learning methods, species occurrence data (e.g. from

eDNA metabarcoding detection) and spatial variables (e.g.

remote sensing data), it is possible to predict species’

potential occupancy over a landscape (Guisan & Zimmer-

mann, 2000). In freshwater ecology and conservation,

SDM maps have been used to design protected areas

(Esselman & Allan, 2011) and to predict the risk of species

extinction under climate change (Bond et al., 2011), but

these applications have been limited to rivers with existing

species surveys. Hence, the rapid generation of species dis-

tribution maps through the combination of eDNA, remote

sensing and machine learning would be especially valuable

in the management of regions where other species infor-

mation is lacking. However, the source of the transported

eDNA is uncertain (from local to several kilometres away)

(Carraro et al., 2020), and it is essential to consider this

uncertainty when associating the species occupancy data

from eDNA with the remote sensing variables to integrate

their ecological signals (Goldberg et al., 2015). Moreover,

the scarcity of continuous freshwater-specific environmen-

tal predictors has been a major challenge in efforts to pro-

duce robust estimations of the geographic habitat

suitability of freshwater species by means of SDMs (Dom-

isch et al., 2015). Hence, cloud processing of high-

resolution remote sensing predictors for riverine systems

could represent a major tool for the development of fresh-

water SDMs (Amani et al., 2020; Gorelick et al., 2017).

Combining eDNA with the remote sensing cloud infra-

structure could offer a high-throughput support tool for

conservation decisions about large river systems.

Here, we investigated whether eDNA metabarcoding

data can be coupled with remote sensing predictors,

matched both spatially and temporally, to map fish species

distributions in large river systems. To generate ecological

variables of freshwater habitats and the surrounding vege-

tation, we used a combination of imagery from Landsat 8,

Sentinel 2 and associated derived products. The resulting

set of variables represented water temperature, water qual-

ity, vegetation type surrounding rivers (Growns

et al., 2003), terrestrial properties and human activities

based on the Google Earth Engine cloud computing plat-

form (Gorelick et al., 2017; Kennedy et al., 2019). We

focused on the Rhone River, where an intense eDNA sam-

pling campaign was completed to inventory the fish com-

position of 198 samples in Switzerland and France. Given

that the signal from eDNA is partly carried downstream by

the current, relating sampling locations to ecological vari-

ables requires the selection of an appropriate spatial scale

for the eDNA signal. To consider this issue, we evaluated

the influence of applying different spatial scales (5, 10, 15

and 20 km) for the environmental extractions. Specifically,

we asked the following questions:

1. Can the species occupancy data derived from eDNA

detection be combined with environmental variables

from remote sensing to capture species’ ecological

preferences and map their potential distribution along

a large river corridor?

2. What are the most important environmental variables,

derived from remote sensing, for predicting fish species

distributions along the Rhone River?

3. How do the spatial scale and direction of the extrac-

tion window of remote sensing layers surrounding the

eDNA sampling point (5, 10, 15 and 20 km in the

upstream direction) influence the performance of

SDMs derived from eDNA, and what is the optimal

scale to use?

Materials and Methods

eDNA datasets

Along the whole length of the Rhone River, starting in its

alpine upstream area in Switzerland and ending at its outlet

into the Mediterranean Sea in France, eDNA samples were

taken at a total of 110 sites (Pont et al., 2018). Given the

river configuration, more samples were collected in France

than in Switzerland, and the confluences were larger in

France. While the sampling, extraction and sequencing pro-

tocols also differed between the samples from Switzerland

and France, the bioinformatic analyses resulted in qualita-

tively comparable data at the presence/absence level when

restricted to the most common species (field and laboratory

work details in Supporting Information). All lake species

were excluded, and only species present in both databases

were included in the final curated dataset.

Generation of remote sensing variables

From the MultiSpectral Instrument (MSI) onboard Sentinel

2, we used the Level 1C (Top-of-Atmosphere Reflectance)

and Level 2A (Surface Reflectance) products (Drusch

et al., 2012). We computed variables representing

222 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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water-quality characteristics. Specifically, we computed Sec-

chi depth (SD), trophic state index (TSI) and chlorophyll-a

concentration (Chla) using the approaches developed by

Page et al. (2018) (Gessesse & Melesse, 2019), which are the

most commonly used metrics for water-quality measure-

ments (Olmanson et al., 2008).

We derived river water surface temperature (RST) from

the thermal infrared sensor onboard Landsat 8 (details in

Supporting Information). We employed several vegetation

indices to reflect the multiple properties of the vegetation

surrounding the river. We computed the normalized dif-

ference vegetation index (NDVI), from the Landsat 8

Operational Land Imager, to represent the vegetation con-

ditions surrounding the river. Low NDVI values indicate

moisture-stressed vegetation, while higher values indicate

a higher density of green vegetation (Gessesse &

Melesse, 2019). We further considered the enhanced vege-

tation index (Sims et al., 2006), leaf area index (Zheng &

Moskal, 2009) and gross primary productivity (GPP)

from MODIS products to represent the structure of the

vegetation (Wulder et al., 1998) and its productivity.

Moreover, we considered forest canopy height, calculated

following the methods of Lang et al. (2022), to investigate

its impact on the habitat of fish species.

The morphology of a river can influence the hydrology

and other ecological conditions, and in turn the freshwa-

ter species distribution. For example, the river channel

width and shape can influence the occurrence of impor-

tant habitats for fish (Kail et al., 2015). We therefore con-

sidered the surrounding water area and the river width to

represent the morphology of each river pixel. We com-

puted the surrounding water area by summing all the

water pixels within pre-defined surrounding buffers (see

“Extraction windows of remote sensing variables” sec-

tion). We acquired river width data from the Global River

Width from Landsat data produced by Allen and

Pavelsky (2018). We further used terrain factors repre-

senting the channel morphology and the form of the river

banks, which are expected to influence the species distri-

bution pattern in rivers. We computed the slope of the

terrain surrounding the river and the height difference

between the bank and the water surface, which can serve

as proxies for species habitats. Finally, as human activities

surrounding the river can influence freshwater species dis-

tributions, we acquired the human modification index

(Kennedy et al., 2019) and computed its median value

within the pre-defined buffers.

Extraction windows of remote sensing
variables

For each eDNA sample location, we extracted the values

of the remote sensing variables using a neighbourhood

analysis method defined by a spatial buffer around the

sampling point (Fig. 1), considering both standard and

upstream-directed buffers. We separated the remote sens-

ing variables into river (blue) and riparian (green) vari-

ables. For blue variables (e.g. RST and water clarity), we

masked the non-water pixels, whereas for green variables

(canopy height and NDVI), we masked the water pixels.

We first considered circular buffers of 5, 10, 15 or 20 km

radius centred around each eDNA sampling site. Second,

to accommodate the direction of the river flow and the

potential dispersion of eDNA molecules, we considered

upstream-directed circular buffers from the eDNA sam-

pling sites. For this, we designed the circular buffers (5,

10, 15 or 20 km radius) to be centred 5, 10, 15 or 20 km

upstream such that the edge of the buffer passed through

the eDNA sampling site. We extracted the remote sensing

values and computed medians and standard deviations of

the values extracted within the buffers. In total, we gener-

ated 23 variables, extracted at four different scales with

two buffer types.

Species distribution modelling

We generated habitat suitability maps using SDMs (Gui-

san & Zimmermann, 2000) for 29 fish species detected in

198 eDNA samples from the 110 sampling sites. We only

considered species with at least 20 occurrences for build-

ing the models. We first investigated the correlations

between the remote sensing variables. We excluded vari-

ables that were highly correlated with each other (Pear-

son’s correlation >0.7) (Dormann et al., 2013; Hirzel

et al., 2006; Petitpierre et al., 2017; Zurell et al., 2020),

and we ranked the variables based on their correlation

with each target species individually and then extended

these rankings to create a global ranking across all species.

We kept those variables with higher univariate correlation

global rank in the highly correlated pairs. We retained 14

variables for further modelling (Table 1).

We related species presence and absence to environ-

mental conditions using generalized linear models (GLMs;

McCullagh & Nelder, 2019), gradient boosting machines

(GBMs; Friedman, 2002; Natekin & Knoll, 2013) and ran-

dom forests (RFs; Liaw & Wiener, 2002). For each model,

we applied a simple parametrization, as defined by Brun

et al. (2020). We used recursive feature elimination

(Granitto et al., 2006) to first reduce the number of vari-

ables so that there were at least 10 occurrences for each

variable considered in the model (Breiner et al., 2018).

Next, we fitted different models for the different fish spe-

cies, depending on their number of occurrences along the

whole river. We ran the standard models for species with

balanced numbers of presences and absences. By contrast,

for species with fewer than 60 or more than 140 presence

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 223
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observations, we used the method of ensemble of small

models (Lomba et al., 2010).

We conducted a fivefold cross-validation for all the

models (including both small models and regular models)

to calculate the true skill statistic (TSS; Allouche

et al., 2006), after which we retained only models with a

TSS >0.4 and with better performance than null models.

To compute null models, we randomly resampled the

presence and absence 100 times from 110 sites using

bootstrapping for each species (details are given in the

Supporting Information) (Raes & ter Steege, 2007; van

Proosdij et al., 2016). We compared the upper 95% confi-

dence interval of the null models’ performance with the

average performance of SDMs (Raes & ter Steege, 2007).

We computed the median effective TSS (median TSS dif-

ference between SDMs and null models) to indicate the

model performance. We compared the effective TSS

across the buffer scales and types used for the extraction

of the remote sensing variables.

We produced an ensemble model for each species, each

statistical method, and each buffer scale and type, taking

the median of the predicted suitability of the single

models (details of modelling and model performance cal-

culations following a standard protocol are given in the

Supporting Information). We converted model-based

projections to binary presence/absence using the threshold

of maximum TSS (Allouche et al., 2006). We considered

the species to be present in areas where at least two of

the three ensembles predicted presence. In total, we ran

696 SDMs, representing 29 species, using three machine

learning methods from eight combinations of buffer scales

and types. We compared the predictive power of the

Figure 1. Map of environmental DNA (eDNA) sampling sites along the full extent of the Rhone River in Switzerland and France (background) and

the values of three remote sensing variables [inset maps; trophic state index (TSI), canopy height and river water surface temperature (RST)] at

three sites (A, B, C). To aid visualization, A, B and C have different scales, and the three variables have different colourmaps.

224 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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different model types (GLMS, GBMs and RFs) and of

models with different buffer types and sizes and with dif-

ferent fish species, testing the significance with a linear

model associated with an analysis of variance.

Importance of remote sensing variables in
SDMs

To assess the importance of the remote sensing variables

in determining the species distributions, we recorded the

number of times a predictor was retained in the well-

performing models (with TSS >0.4 and better perfor-

mance than null models) for each species. In addition, we

computed the importance of the predictor using a ran-

domization procedure. For each of the well-performing

models, we further employed a randomized approach to

assess the importance of each variable in predicting the

outcome, using the R package BIOMOD2 (Thuiller

et al., 2023). The method involved randomly shuffling

values to each variable and systematically repeating the

process for all variables. Through this process, we quanti-

fied the loss of predictive power as measured by the cor-

relation between the original results and the

shuffled ones.

Results

Species recovered from eDNA
metabarcoding

We recovered 71 fish species from 51 genera from the

eDNA metabarcoding data. After removing species

associated with lakes and those that are rare or too wide-

spread, we retained 29 species for species distribution

modelling. Specifically, of all the species detected from

the 198 eDNA samples, two species had >180 detections

and were thus considered too widespread for modelling

their associations with environmental variables. Further-

more, 20 species had ≤20 occurrences, which is not suffi-

cient to model their distribution (Breiner et al., 2015).

The full list of detected species and their number of

occurrences can be found in Table S1.

Spatial patterns of remote sensing variables

The longitudinal profile of the environmental variables

derived from remote sensing showed contrasting spatial

patterns along the Rhone River (Fig. 2). RST was gener-

ally low in the Rhone valley of Switzerland and gradually

decreased further before Lake Geneva, followed by a steep

increase from Lake Geneva (128–210 km of the river) to

410 km. After that point, a trough in RST occurred and

the values became more even until the Mediterranean

Sea. The longitudinal TSI profile showed high values at

the source in Switzerland, reflecting the relatively high

nutrient concentrations there, and a decline after kilo-

metre 200. The profile fluctuated, with several peaks and

troughs occurring from Lake Geneva to the Mediterra-

nean Sea. Similarly, SD decreased after Lake Geneva, indi-

cating that transparency decreased towards the river

mouth. The terrain slope to the river had two peaks, at

about kilometres 250 and 450. The longitudinal profile of

GPP showed initially high values reaching a peak near

kilometre 290, followed by a decrease towards the mouth

Table 1. Fourteen remote sensing variables considered in the species distribution models.

Abbreviation Variable name Description

RST Median river water surface temperature (Vanhellemont, 2020) Median value of river water surface temperature within the buffer

TSI Median trophic state index (Page et al., 2018) Median value of trophic state index within the buffer

SD-Med Median Secchi depth (Page et al., 2018) Median value of Secchi depth within the buffer

SD-Std Standard deviation Secchi depth (Page et al., 2018) Standard deviation of Secchi depth within the buffer

Chla Median chlorophyll-a (Cannizzaro & Carder, 2006; Page

et al., 2018)

Median value of chlorophyll-a concentration within the buffer

NDVI Median NDVI (Gessesse & Melesse, 2019) Median value of normalized difference vegetation index within

the buffer

CanopyH Standard deviation canopy height (Lang et al., 2022) Standard deviation of canopy height within the buffer

EVI Standard deviation EVI (Sims et al., 2006) Standard deviation of enhanced vegetation index within the

buffer

GPP Standard deviation GPP (Wulder et al., 1998) Standard deviation of gross primary productivity within the buffer

Slope-Med Median slope (Farr et al., 2007) Median value of surrounding terrain slope within the buffer

Slope-Std Standard deviation slope (Farr et al., 2007) Standard deviation of surrounding terrain slope within the buffer

HumModi Median human modification index (Kennedy et al., 2019) Median value of human modification index within the buffer

RW Median river width (Allen & Pavelsky, 2018; Kail et al., 2015) Median value of river width within

WaterA Sum of surrounding water area Total water area within the buffer
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Figure 2. Longitudinal profiles of normalized remote sensing variables. (A) Longitudinal profiles of the blue (river) variables chlorophyll-a

concentration (Chla), river width (RiverW), river water surface temperature (RST), Secchi depth (SD), trophic state index (TSI) and surrounding

water area (WaterA). (B) Longitudinal profiles of the green (riparian) variables forest canopy height (CanopyH), gross primary productivity (GPP),

human modification index (HumModi) and terrain slope. Note that the values shown here are the medians of the values within the buffers. The

purple ticks on the x-axis indicate the sample locations along the Rhone river.
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of the Mediterranean Sea. Overall, the longitudinal pro-

files emphasized the marked gradients in the variables

derived from remote sensing along the course of the

Rhone.

Species distribution modelling

The SDMs built from fish species occurrences detected in

eDNA and environmental variables derived from remote

sensing performed well in general and captured some of

the species distribution patterns successfully (Figures S2

and S4–S8). The overall TSS of all 29 species was >0.4
(mean 0.58, std. 0.22), which is considered the minimum

for informative models (Allouche et al., 2006). Moreover,

the SDMs performed significantly better than the upper

95% confidence interval of 100 times randomly generated

null models (28 out of 29 species significantly better),

which indicates that the models performed better than

null models (Figures S6–S8). When comparing the three

model types, we found that the TSS values of RF models

were generally higher than values of the two other model-

ling methods considered (Figure S2). Some species,

including Gasterosteus aculeatus and Esox lucius, preferred

moderately productive, clear and cold water and high

vegetation coverage, as found in the upper Rhone. By

contrast, a few species were mainly distributed in warmer

and more turbid waters in the southern part of the

Rhone, such as Silurus glanis (Fig. 3) and Blicca bjoerkna.

Other species were found in waters of intermediate RST

(>17 °C), distributed along the French Rhone from Lake

Geneva to the Mediterranean Sea, such as Cyprinus carpio

(Fig. 3) and Rhodeus amarus.

Effect of the scale of remote sensing
variables

Models with an upstream-directed buffer had a signifi-

cantly higher predictive power than models with the sam-

pling point at the centre of the buffer (median effective

TSS difference = 0.009, P < 0.01; Figure S3). Model per-

formance additionally decreased as buffer size increased,

with a significant difference between the 5 and 20-km

buffers (median effective TSS difference = 0.026,

P < 0.001; Figure S3).

Importance of variables

The variables derived from remote sensing had different

explanatory powers across the modelled species in the

GLMs, GBMs and RFs (Fig. 4). The five most important

variables were RST (blue), SD (blue), terrain slope (slope,

green), TSI (blue) and GPP (green). The comparison of

Figure 3. Longitudinal profiles of selected species (Cottus sp., Esox lucius, Gasterosteus aculeatus, Liza ramada and Silurus glanis). The

suitabilities of the fish species are the predictions from the species distribution models. The purple ticks on the x-axis indicate the sample locations

along the Rhone River.
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the different machine-learning models indicated good

agreement in the ranking of variable importance. RST

was the most important variable across most models, irre-

spective of the modelling method. We found some varia-

tion among the fish species regarding the most important

variables in the models. While RST, slope and SD were

the most important variables explaining the distribution

of most species, a few species distributions were mainly

associated with green variables, including GPP and NDVI.

Indeed, both blue and green variables drove the distribu-

tions along the Rhone River in our models of the differ-

ent species.

Discussion

Our study demonstrates that eDNA metabarcoding data

can be coupled with environmental variables derived

from remote sensing to adequately predict species distri-

butions along a long river corridor. Our findings illus-

trate the potential of satellite sensors to scale up eDNA

data in aquatic ecosystems, as previously achieved in soil

eDNA studies (Lin et al., 2021). Our results show that

eDNA can be seamlessly combined with remote sensing

data to calibrate response curves and map the distribu-

tion of fish species along an entire river corridor. Precise

maps derived from remote sensing data can therefore

help to refine conservation strategies and support the

monitoring of the environmental conditions critical for

maintaining biodiversity along large rivers (Asner

et al., 2022; Esselman & Allan, 2011). Our study fills

major gaps in essential biodiversity variables by provid-

ing remotely sensed indicators for the distribution of

critical fish species (Asner et al., 2022; Turak

et al., 2017).

The new generation of satellite sensors enables the

computation of variables that are generally more ecologi-

cally meaningful for mapping species distributions

(Nagendra, 2001; Randin et al., 2020). The use of remote

sensing for mapping terrestrial organisms has been devel-

oped in the last 20 years (He et al., 2015), and data

derived from remote sensing have been shown to contain

relevant ecological information for mapping species distri-

butions (Schwager & Berg, 2021). Remote sensing has

recently been applied to model aquatic vegetation (Rowan

& Kalacska, 2021) and to map the typology of coral reefs

(Asner et al., 2022). Here, we demonstrate the potential

of using remote sensing variables describing river envi-

ronments in predictions of fish species distributions. The

application of remote sensing to rivers is non-trivial

because they occupy a small fraction of the landscape and

a high spatial resolution is necessary, for instance the 10–
20 m resolution of Sentinel 2. Our results further suggest

that direct water-related variables are more critical than

riparian ones, indicating the power and importance of

mapping water properties for river ecosystems globally

(Markovic et al., 2012). So far, most river applications of

remote sensing have been focused on the riparian vegeta-

tion in terms of predictors (Morgan et al., 2020), while

the modelling of aquatic organisms that are critically

endangered requires further development.

Figure 4. Variable importance in all the models (top 12 most

important variables). The heatmap shows the variable importance

across all the qualified models for all the species. The pixel values

indicate the variable importance within each species distribution

model (SDM). The rows correspond to species, labelled by their family

names respectively (Cyprinidae, Percidae and Salmonidae have more

than one species, and are labelled with family names, the other

species are labelled as Others). The columns represent the variables,

with blue indicating river variables and green indicating riparian

variables. The river and riparian variables, from left to the right in the

columns, represents decreasing level of importance. CanopyH,

standard deviation of canopy height within the buffer; EVI, standard

deviation of enhanced vegetation index within the buffer; GPP,

standard deviation of gross primary productivity within the buffer;

NDVI, median of normalized difference vegetation index within the

buffer; RST, median of river water surface temperature within the

buffer; SD, median of river water Secchi depth within the buffer;

Slope-Med, median of terrain slope within the buffer; Slope-Std,

standard deviation of terrain slope within the buffer; TSI, median of

trophic state index of river water body within the buffer; WaterA,

total water area within the buffer.
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Water temperature and water quality are generally the

most important drivers of species distributions in fresh-

water ecosystems (Bouska et al., 2015; Knudby

et al., 2010; Olden & Jackson, 2002; Sandstr€om

et al., 2016; Vezza et al., 2015). In our analyses combining

eDNA and remote sensing variables, RST and water clar-

ity were the most important variables driving the species

distributions. Surface water temperature is a well-known

determinant of fish species distributions in relation to fish

physiological properties (Farkas et al., 2001). The water

clarity indicator may reflect the level of productivity in

the water, an indication of food resource abundance, but

may also correspond to the level of water pollution

(Hoyer et al., 2002). Our validation of RST with river

monitoring station data demonstrated a very high level of

agreement (Figure S12). However, in future eDNA cam-

paigns, with water quality and clarity properties also col-

lected, the other water-related variables can also be

validated, and this will support future aquatic eDNA

studies and further improve the accuracy of our analysis.

Green variables (GPP, NDVI, slope and canopy height)

should complement hydrological variables by document-

ing the riparian habitat of fish species, but they generally

showed lower importance in our models, except for a few

species. Pike (E. lucius) preferred moderate productivity

in clear and cold water and riparian areas with high vege-

tation coverage, as found in the upper Rhone, which is in

line with previous knowledge of this species. The reduc-

tion in macrophytes caused by eutrophication has a

harmful impact on pike populations as these plants are

essential for the successful reproduction and survival of

young pike (Bry, 1996). Moreover, the low visibility and

lack of cover resulting from eutrophication create unfa-

vourable hunting conditions for pike (Bry, 1996; Zar-

kami, 2008). The model prediction of pike presence in

cold water also corresponds to habitats with high oxygen

concentrations, which favour the survival of larvae and

embryos (Siefert et al., 1973). This example highlights

how remote sensing variables can capture the ecological

conditions required for fish species, facilitating the model-

ling and mapping of their distributions.

Our modelling approach identified contrasting distribu-

tions of fish species along the Rhone River and in relation

to distinct environmental conditions. For instance, we

found that the European catfish (S. glanis) is distributed

in warm and turbid waters in the southern part of the

Rhone. This result is in accordance with previous studies

that have identified the low oxygen requirement of this

species (Lelek, 1987), as it has an affinity for high temper-

atures (physiological optimum about 25–27°C) (Copp

et al., 2009), its relative tolerance of pollution

(Lelek, 1987), and its presence in large rivers and in

coastal areas with low salinity (<15) (Copp et al., 2009).

We additionally detected major shifts in species distribu-

tions along the Rhone River (Pont et al., 2015). Specifi-

cally, Lake Geneva is associated with strong changes in

water conditions, reshaping the properties of the river

and thus the species composition. While some species,

such as Gasterosteus aculeatus, are mainly found in the

colder stretch near the source of the river, other species,

including S. glanis, are found more often in the warmer

waters downstream. Overall, our study shows how the

distribution of fish species can be recovered by combining

eDNA metabarcoding and remote sensing variables.

The present study has several limitations related to

the sampling and the uncertainty regarding eDNA trans-

port along the river. The sampling in Switzerland was

less extensive than in France, and while our modelling

results were not sensitive to this difference (Figure S10),

a random stratified sampling design would be more

appropriate for species distribution modelling (Hirzel &

Guisan, 2002). For instance, there are species known to

be more common in the Swiss section of the Rhone,

but due to the limited number of sampling sites, occur-

rences were too few to model their distribution. Thus,

future eDNA sampling campaigns should be designed

with the aim of spatial modelling and should include a

reasonable number of sample sites across each of the

environmental strata of the river. Moreover, in rivers,

the eDNA collected at one point of the river does not

originate from that exact location, but from an unde-

fined area upstream. This might complicate the associa-

tion between the species occupancy signal and remote

sensing variables, and should be considered in modelling

efforts (Carraro et al., 2021; Turner et al., 2014). Our

results indicate that the best association between the

eDNA signal and remote sensing data is at a 5-km reso-

lution and in an upstream direction, as expected from

the eDNA origin. These findings support those of Pont

et al. (2018), where some effect of transport was

detected but a complete turnover of the eDNA signal

was found over distances of 10–130 km in the Rhone.

Using a similar approach in a subalpine freshwater sys-

tem with faster-running water, Zhang et al. (2023)

found a spatial association between riverine eDNA diver-

sity and remote sensing spectral diversity of terrestrial

ecosystems upstream, peaking at a 400 m distance yet

still detectable within a radius of up to 3.3 km. These

differences between riverine systems indicate that the

optimal shape and size of the buffer used to relate

remote sensing information to eDNA might vary across

rivers, depending on channel width and flow, and that

sensitivity analyses should be performed before running

models in new systems. Even in the same river system,

the optimal shape and size of the buffer may vary

among sections. Therefore, in future studies it may be
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necessary to model eDNA transportation across each

river section using variables such as river flow rate.

In conclusion, in this study we demonstrated the feasi-

bility of coupling eDNA with remote sensing data to map

the fish species distributions of large rivers. As freshwater

species have not been inventoried for many large rivers,

even as pressure from humans increases, our approach rep-

resents a way forward for rapidly mapping the species dis-

tribution status in such riverine ecosystems. Recent

examples in the Maroni (Cantera et al., 2020) and the

Yangtze (Zhang et al., 2019) have demonstrated that eDNA

metabarcoding can be applied in the span of a few weeks to

inventory the species distribution of entire river corridors.

In turn, we show that the combination of rapid eDNA sur-

veys with remote sensing data is feasible and informative

regarding the spatial distribution of species. Beyond map-

ping single species, machine learning approaches could also

be employed to map other biodiversity properties, such as

species richness and phylogenetic or functional diversity.

Moreover, with more frequent eDNA data collection in the

future, our model could be applied across time and vali-

dated with temporal eDNA data to become more robust.

Changes in the habitats of migratory fishes could even be

predicted and validated. With the rise of cloud computa-

tion and more advanced machine learning techniques,

long-term eDNA monitoring data coupled with remote

sensing data could offer a powerful tool for near-direct

mapping of changes in diversity over time. While our

approach was applied to a large river, similar indicators for

other aquatic systems, such as coastal reefs, are being devel-

oped. Hence, we foresee that many ecosystems in need of

conservation will benefit from a targeted combination of

remote sensing and eDNA monitoring.
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in the Supporting Information section at the end of the
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Table S1. List of species used in the species distribution

models and number of occurrences of the species in the

Rhone river.

Figure S1. Diagram of the upstream-directed buffers. Blue

circles from light to dark denote buffer size, from local to

20 km upstream of the sampling sites. For better visuali-

sation, the buffer sizes are not drawn to scale.

Figure S2. True skill statistic (TSS) of all the species dis-

tribution models (SDMs; 3 types), across 29 species (77

SDMs total).

Figure S3. Analysis of variance (ANOVA) results of the

median effective true skill statistic (DTSS) across the two

buffer types (centred around sampling point and upstream-

directed) and the four buffer sizes (5, 10, 15, 20 km).

Figure S4. Area under the ROC curve (AUC) of all the

species distribution models (SDMs; 3 types), across 29

species (77 SDMs total).

Figure S5. Cohen’s kappa of all the species distribution

models (SDMs; 3 types), across 29 species (77 SDMs

total).

Figure S6. True skill statistic (TSS) comparison between

null models and species distribution models (SDMs).

Figure S7. Area under the ROC curve (AUC) comparison

between null models and species distribution models

(SDMs).

Figure S8. Cohen’s kappa comparison between null

models and species distribution models (SDMs).

Figure S9. Effective model performance, along with the

number of occurrences of species.

Figure S10. Model uncertainty map.

Figure S11. Variable importance in all the models (top

12 most important variables).

Figure S12. River water surface temperature validation

with water temperature measurement stations in Switzer-

land (Geneva) and France (ST-VALLIER, PIERRELATTE,

and ROQUEMAURE).
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