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A B S T R AC T

Video scene understanding engulfs several fundamental and challenging com-
puter vision tasks that complement each other. Some of them are inherently
reasoning on a set of consecutive images, while others can be tackled on each
frame separately. In this thesis, we focus on a subset of these tasks, starting
from a global scene understanding perspective with semantic segmentation, to
finish on a more local one with Visual Object Tracking (VOT) and Video Ob-
ject Segmentation (VOS). Within that scope, we investigate different means to
leverage and combine temporal cues to improve scene understanding algorithms
when processing videos.

More specifically, we start by analyzing in the first part how the spatio-
temporal correlations found in videos can be used to either increase the frame
rate or the accuracy of single-frame semantic segmentation methods. First, we
use optical flow as a means to propagate semantic information across frames,
and build a pipeline for real-time video semantic segmentation that balances the
computation load between GPU and CPU. Instead of designing a heavy neural
network that infers everything on the GPU, we propose to focus the GPU task
on either predicting segmentation masks from scratch or refining propagated
labels. At the same time, a fast optical flow running on the CPU provides the
motion vectors to warp semantic labels and features from one frame to the next.
The refinement is done by a lightweight module that considers potential optical
flow mistakes. We propose several operating points offering different trade-offs
between speed and accuracy, and observe that our approach can lead to massive
speedups at the price of a small drop in segmentation accuracy.

Then, we propose to directly exploit temporal correlations and appearance
cues without an additional optical flow module. To achieve this, we aggregate
semantic information from previous frames in a memory module that can be
used through attention mechanisms. We design our pipeline to first access the
deep features from past frames stored in memory and match them in a local
neighborhood around each pixel. These spatio-temporal cues are afterward
fused together with the current frame encoding to improve the final segmentation
prediction. Our approach introduces a set of simple yet generic modules which
can convert virtually any existing single-frame method to a video pipeline. We
demonstrate the improvements of our architecture in terms of segmentation
accuracy on two popular single-frame semantic segmentation networks.
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In the second part, we shift our focus to the tasks of tracking and segment-
ing single objects in a video and hope to bridge the gap between the two.
We especially study how they are related and expose the benefits of working
with segmentation masks in the context of VOT. To that end, we propose a
segmentation-centric approach which, in contrast with most existing approaches,
internally works with segmentation masks and predicts segmentation masks
without the need for an additional module. A dedicated instance localization
branch inspired by existing trackers is used to bring the necessary robustness for
VOT challenges and to condition the segmentation decoder to predict the correct
segmentation mask. We show that our unified architecture yields state-of-the-art
results compared to other trackers, both in terms of robustness and accuracy,
while generating accurate segmentation masks.
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R É S U M É

La compréhension des scènes vidéo englobe plusieurs tâches fondamentales et
difficiles de vision par ordinateur qui se complètent les unes les autres. Certaines
d’entre elles raisonnent par définition sur une succession d’images, tandis que
d’autres peuvent être définies pour une simple image. Dans cette thèse, nous
nous concentrons sur un sous-ensemble de ces tâches, en commençant par
une perspective de compréhension globale de la scène avec la segmentation
sémantique, pour finir sur une perspective plus locale avec le suivi visuel
d’objets (VOT) et la segmentation d’objets vidéo (VOS). Dans ce cadre, nous
étudions différents moyens d’exploiter et de combiner des indices temporels
susceptibles d’améliorer les algorithmes de compréhension de scènes lors du
traitement de vidéos.

Plus précisément, nous commençons par analyser dans la première partie
comment les corrélations spatio-temporelles présentes dans les vidéos peuvent
être utilisées pour augmenter le taux de trame ou la précision des méthodes
de segmentation sémantique d’images. Tout d’abord, nous utilisons le flux
optique comme moyen de propagation de l’information sémantique entre les
images, et nous construisons un pipeline pour la segmentation sémantique des
vidéos en temps réel qui équilibre la charge de calcul entre la carte graphique
et le processeur. Plutôt que de concevoir un réseau de neurones complexe qui
effectue tout le travail sur la carte graphique, nous proposons de concentrer
les tâches de celle-ci sur la prédiction des masques de segmentation à partir
de zéro et sur l’affinage des caractéristiques propagées. Dans le même temps,
un flux optique rapide fonctionnant sur le processeur fournit les vecteurs de
mouvement pour déformer les étiquettes sémantiques et les caractéristiques
d’une image à l’autre. L’affinage est effectué par un module léger qui prend en
compte les erreurs éventuelles du flux optique. Nous proposons plusieurs points
de fonctionnement offrant différents compromis entre la vitesse et la précision,
et nous observons que notre approche peut conduire à des accélérations non
négligeables au prix d’une légère baisse de la précision de la segmentation.

Ensuite, nous proposons d’exploiter directement les corrélations temporelles
et l’apparence visuelle de celles-ci sans module supplémentaire pour calculer
le flux optique. Pour ce faire, nous regroupons les informations sémantiques
des images précédentes dans un module mémoire qui peut être utilisé via des
mécanismes d’attention. Nous concevons notre pipeline de manière à accéder
d’abord aux caractéristiques profondes des images précédentes stockées dans la
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mémoire et à les faire correspondre dans un voisinage local autour de chaque
pixel. Ces indices spatio-temporels sont ensuite fusionnés avec l’encodage de
l’image actuelle pour améliorer la prédiction finale de la segmentation. Notre ap-
proche introduit un ensemble de modules simples, mais génériques, qui peuvent
convertir pratiquement n’importe quelle méthode existante fonctionnant sur une
image en un pipeline vidéo. Nous démontrons les améliorations apportées par
notre architecture en termes de précision de segmentation sur deux réseaux de
neurones populaires de segmentation sémantique d’image.

Dans la deuxième partie, nous nous concentrons sur les tâches de suivi et
de segmentation d’objets dans une vidéo et espérons combler le fossé entre
celles-ci. Nous étudions en particulier les liens entre les deux et exposons les
avantages de travailler avec des masques de segmentation dans le contexte du
VOT. À cette fin, nous proposons une approche centrée sur la segmentation
qui, contrairement à la plupart des approches existantes, fonctionne en interne
avec les masques de segmentation et en prédit de nouveaux sans nécessiter
de module supplémentaire. Une branche dédiée à la localisation inspirée des
algorithmes de suivi d’objets existants est utilisée pour apporter la robustesse
nécessaire aux défis VOT et pour conditionner le décodeur de segmentation à
prédire le masque de segmentation pour la bonne cible. Nous montrons que
notre architecture unifiée donne des résultats de pointe par rapport à d’autres
algorithmes de suivi d’objet, à la fois en termes de robustesse et de précision,
tout en générant des masques de segmentation précis.
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1I N T RO D U C T I O N

Video footage represents a significant portion of all the data processed and
consumed by everyone on the planet. This is nowadays possible and easy since
cameras are essentially everywhere: smartphones, computers, drones, cars,
security cameras, TV cameras, etc. Videos are used for a wide range of purposes:
connecting people, sharing information and knowledge, autonomous driving and
flying, surveillance, broadcasting sports, entertainment, etc. Considering only
YouTube, one of the biggest online platforms for video consumption, several
hundreds of hours of video are uploaded every minute and made available to
billions of people across the globe. The total amount of video footage generated
and used every day is probably much higher. Video data is at the core of
our digital societies and is simply too big to be exploited by humans without
technological means.

Video Understanding consists in automatically extracting information and
meaning from videos. It is a vast umbrella under which fall many Computer
Vision tasks such as Visual Object Tracking, Video Object Segmentation, Visual
Odometry, Simultaneous Localization And Mapping, Instance Semantic Seg-
mentation, Object Segmentation, Object Detection, Body Pose Estimation, etc.
Each of these tasks aims at answering one or several of the following example
questions: What is the video about? What is happening during the video and
when? What are the different elements in the video, where are they and how do
they interact with one another? What is the motion of the camera over time and
how do the elements in the scene move?

Having powerful video understanding capabilities is in practice very useful
when it comes to exploiting video footage beyond simply recording or watching.
The tasks previously described find very concrete applications for different
people and organizations. It can be used to organize, classify, index and search
across a huge video database. It can be used to present content in a different
way and highlight relevant information, for instance in sports with in-game
augmentations to visualize strategies and actions, replays, creating best mo-
ments, highlights, etc. It can be used to bridge the gap between the physical and
digital worlds, with Augmented Reality and Virtual Reality that can be used
for instance to enhance remote assistance or work, from supporting factories to
facilitating remote surgeries, enhancing teaching, etc. It can be used to alter the
video for artistic purposes, entertainment, or even to create commercial value
with virtual advertisement.

1



I N T RO D U C T I O N

Video understanding comes with a lot of additional challenges when com-
pared to single-frame computer vision tasks. They manifest themselves at
different levels in a general and unconstrained setup. First, the scene content
is dynamic, which means that elements in one image can, in the next images,
move, get occluded, change in appearance and size, get out of the camera view,
etc. Second, the camera itself can move and its intrinsic parameters can change,
both of which can additionally induce motion blur, modify the size of objects,
change the global illumination and drastically modify the appearance of the
scene, change distortion, induce rolling shutter, etc. Third, a video can suffer
from additional artifacts that can alter the quality of each individual image: it
can be compressed with different codecs for storage or streaming, it can be
interlaced for broadcasting, etc.

From a scientific and machine learning perspective, working with video data
poses yet another problem that resides in the availability of annotated data for
supervised training and testing. While datasets with single-frame annotations
have grown larger over the years, densely annotated video data is far more
scarce, especially when it comes to segmentation annotations. For instance, the
Cityscapes [24] dataset has sequences with only a single full frame annotated per
sequence for semantic segmentation. Other datasets [101, 130, 31] have dense
annotations for video object segmentation, but the sequences remain relatively
short and at best limited to a few objects annotated. The only alternative for
supervised methods, while bigger datasets are being forged, is to rely on purely
synthetic datasets like Sintel, GTA5, or SYNTHIA [11, 102, 104]. This however
poses another set of issues when it comes to real data generalization [97, 20].
Fortunately, a growing number of self-supervised methods are emerging to deal
with the lack of data available [14, 138, 147, 65, 126]. These are especially
useful in the industry, where use cases are very specific and scalability is key.

One could consider a video sequence as a series of consecutive images cap-
tured by a camera and reason on a per-frame basis. From that perspective, video
understanding would be an extension of image understanding to the temporal
domain, where an algorithm extracts information from each frame separately.
Although this “naive” approach provides a natural baseline, considering the
whole video allows us to extract more information that might not be deduced
from a single image, for instance, depth estimation, occlusion handling, camera
motion estimation, analyzing dynamics of objects in the scene, etc.

This additional information potential is not the only advantage of considering
the temporal dimension in videos. The consecutive frames are taken by the
same sensor in a short period of time, therefore each image is highly correlated
with its neighbors. This additional amount of redundant sensor data can be used
in two major ways: to reduce the average computational intensity over several
frames and to improve the quality of the information extracted.
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The former consists in extracting semantics for a sparse set of frames instead
of every frame. The assumption is that propagating information between similar
frames comes at a lower computational cost and is easy since the relative
changes between consecutive images are minimal. This can be used to optimize
the overall computational cost of processing a video since the total cost will be
lower than the combined sum of per-frame costs.

The latter exploits the high redundancy in the image content shared between
neighboring frames. In the general case, both the camera and the scene can be
dynamic, and the camera sensor itself can generate slightly different images
from the same content due to noise or other factors. Performing tasks like object
detection or segmentation on each frame separately can therefore easily lead to
temporal inconsistencies, discontinuities, and flickering. When using temporal
consistency, one can potentially hope to get better segmentation borders, dis-
ambiguate detection or segmentation parts and solve occlusions, by fusing the
information from several frames.

In this thesis, we explore some of the aforementioned aspects through the
scope of Semantic Segmentation, Video Object Segmentation (VOS), and Visual
Object Tracking (VOT). In the first part, we analyze various ways of exploit-
ing temporal information to boost either the performance or the accuracy of
single-frame semantic segmentation methods. We particularly thrive towards
lightweight and generic approaches that can be adapted to different segmenta-
tion methods easily. In the second part, we slightly shift our focus to VOS and
its relation to VOT. We aim to reduce the existing gap between the two fields
and try to highlight the benefits of tackling the VOT problem with segmentation
masks at its core. We organize the thesis around three chapters.

Chapter 3 presents Efficient Video Semantic Segmentation with Labels Propa-
gation and Refinement (EVS), a pipeline that focuses on maximizing efficiency
and frame rate when performing semantic segmentation with videos. In that
work, we propose to balance the computation load between the CPU and the
GPU. A very fast optical flow runs on the CPU and the resulting motion vectors
are used to propagate semantic labels and features across consecutive frames.
At the same time, two neural networks operating on the GPU are responsible
for either predicting dense semantic labels from scratch or refining existing
predictions with the help of the propagated semantic features. We validate our
approach on the Cityscapes [24] dataset using as a baseline a single-frame se-
mantic segmentation network, showing comparable accuracy metrics compared
to other methods. We suggest a set of operating points to use that range between
80 to 1000 Hz, depending on the desired trade-off between speed and accuracy.
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Chapter 4 goes in the orthogonal direction and focuses on improving the qual-
ity of semantic segmentation masks when provided a video as input. We propose
Local Memory Attention for Fast Video Semantic Segmentation (LMANet), a
method that does not use an optical flow component to model changes across
frames, but matches instead directly semantic features from different frames. In
this work, we aggregate a rich representation of the semantic information in past
frames into a memory that is queried and matched using attention mechanisms.
A dedicated module makes sure to fuse the temporal cues from prior frames
matched against the current one in a local neighborhood before the segmentation
decoder makes the final prediction. Our approach, used on Cityscapes with
two popular semantic segmentation networks ERFNet [103] and PSPNet [143],
yields an improvement in segmentation performance by 1.7% and 2.1% in
mean Intersection Over Union (IoU) respectively, while marginally increasing
inference time.

Chapter 5 introduces Robust Tracking by Segmentation (RTS), a segmentation-
centric tracking pipeline that works internally with segmentation masks instead
of bounding boxes. Its unified architecture is therefore not only able to learn a
better representation of the target but also outputs accurate segmentation masks
without the need for additional segmentation components or post-processing
steps. To make our method robust to challenging tracking scenarios, we design
a dedicated instance localization component for a double purpose. It is used to
condition the segmentation decoder to the right target when making the final
segmentation prediction. It also enhances the online updating routine during
inference, which helps prevent wrong semantic information to be stored in
memory or used to update our model. To accommodate for the lack of segmen-
tation masks in VOT benchmarks, we validate the quality of our segmentation
masks on two popular VOS datasets. RTS proves to be competitive with other
methods on multiple VOT benchmarks and establishes a new state of the art on
the challenging LaSOT [35] dataset, with an Area-Under-Curve (AUC) score
of 69.7%.
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2.1 S E M A N T I C S E G M E N TAT I O N

Image Semantic Segmentation consists in partitioning an image into semanti-
cally meaningful parts. Each part is taken from a set of predetermined classes
relevant to the dataset or use case. For instance, in Figure 2.1 below, we would
assign to each pixel of each image its corresponding label from a predefined list.
For the football game: pitch, player, referee, ad boards, stairs, public, etc. For
the autonomous driving case: road, sky, vegetation, car, building, pedestrian,
advertisement, road sign, etc.

This is a core computer vision task that can be performed on a single image
and is especially useful to get a high-level understanding of the content of
an image. Of course, when extended to videos, it can be key to video scene
understanding, for instance for autonomous driving and flying, commercial
applications for productivity, entertainment, sports, etc. In particular, some
works integrate the additional semantic knowledge as part of their pipeline to
help with other tasks such as Structure from Motion (SfM) or SLAM [110, 100,
136], where parameters can be tuned based on different parts of the image, or
additional constraints can improve results.

Figure 2.1 – Semantic Segmentation visually represented with colored overlays
on the original images. Each semi-transparent colored overlay represents a
different class. Each situation has a different set of pre-determined classes: on
the left a football game and on the right a typical autonomous driving situation.
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2.2 V I D E O O B J E C T S E G M E N TAT I O N

In contrast with Semantic Segmentation, Video Object Segmentation (VOS)
focuses on a specific target and generates a binary segmentation mask between
the object of interest (foreground), and the rest of the scene (background), see
figures 2.2 and 2.3. Moreover, the task in this case consists in segmenting that
target object throughout a video, starting from an initial segmentation mask.
The initial segmentation is propagated across the video frames and modified
over time as the target changes, see Figure 2.3. It is pretty common for methods
and datasets to track and segment several targets in the scene at the same time.

As the initialization of a target for a VOS pipeline is done with a segmentation
mask, it takes a substantial amount of work building non-synthetic datasets, as
each target pixel has to be annotated manually. Therefore, an active research
field consists in providing an easier initialization with for instance weaker
annotations [6, 141, 54], or Referring VOS [127, 8] that works with textual
descriptions. Other approaches go further and can automatically find the most
probable object of interest and segment it [14, 138, 147].

Figure 2.2 – Two examples of Video Object Segmentation visually represented
with the help of a different semi-transparent colored overlay per target (fore-
ground). Everything else in the scene is considered as background.

Figure 2.3 – A simple example of Video Object Segmentation captured 10
frames apart. During that time, the shape and position of the masks representing
both the tennis player and the racket changed completely. One of the targets,
the tennis ball, disappeared from the camera view.
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2.3 V I S UA L O B J E C T T R AC K I N G

Visual Object Tracking (VOT) solves a very similar problem compared to Video
Object Segmentation (VOS). Given an object of interest in the initial frame, the
goal is to track that object across consecutive frames. The difference, in this
case, is that a bounding box is traditionally used to represent the target instead
of a segmentation mask.

This representation is unfortunately very limiting for characterizing the target
precisely unless it is convex and axis-aligned. Some methods or datasets
might consider rotated bounding boxes to better fit the target [134, 34, 22].
Unfortunately, in many cases, the bounding box will cover as much background
as foreground because the target will have thin parts or holes. In other cases,
an accurate bounding box will even include occluding objects, and fail again
to represent fully the target beyond its size and location. Figure 2.4 shows
examples of these limitations.

In contrast with VOS, it is however much easier to annotate ground truth with
bounding boxes. This partially explains why there is such a big gap between the
nature of VOT and VOS datasets: Whereas VOS datasets are rather short and
focus on challenging segmentation situations (bigger or thin objects, appearance
changes), VOT datasets are longer and contain more challenging scenarios in
terms of tracking such as small and/or fast targets, long occlusions, changes in
the camera motion, etc.

Visual Object Tracking can be further split into Single-Object Tracking (SOT)
and Multiple-Objects Tracking (MOT). The number of target objects in the
MOT case is in general quite high, therefore it has its own methods [79, 119],
benchmarks [86, 32], and metrics [108]. In this thesis, we place ourselves in
the SOT case to facilitate the reasoning with VOS.

Figure 2.4 – In Visual Object Tracking, a target is defined by a bounding box.
Simple targets like the volleyball (�) are very well defined by this representation.
In contrast, more complex objects like the volleyball player or the bike (�) can
only be represented well in terms of location in the image. A big part of the
content inside each bounding box does not belong to the target object.
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3E F F I C I E N T V I D E O S E M A N T I C S E G M E N TAT I O N W I T H
L A B E L S P RO PAG AT I O N A N D R E F I N E M E N T

This chapter tackles the problem of real-time semantic segmentation of high-
definition videos using a hybrid GPU-CPU approach. We propose an Efficient
Video Segmentation (EVS) pipeline that combines:

(i) On the CPU, a very fast optical flow method, that is used to exploit the
temporal aspect of the video and propagate semantic information from one
frame to the next. It runs in parallel with the GPU.

(ii) On the GPU, two Convolutional Neural Networks: A main segmentation
network that is used to predict dense semantic labels from scratch, and a Refiner
that is designed to improve predictions from previous frames with the help of a
fast Inconsistencies Attention Module (IAM). The latter can identify regions
that cannot be propagated accurately.

We suggest several operating points depending on the desired frame rate and
accuracy. Our pipeline achieves accuracy levels competitive to the existing
real-time methods for semantic image segmentation (mIoU above 60%) while
achieving much higher frame rates. On the popular Cityscapes dataset with
high-resolution frames (2048×1024), the proposed operating points range from
80 to 1000 Hz on a single GPU and CPU.

3.1 I N T RO D U C T I O N

A lot of efforts have been made in semantic segmentation over the past years.
Yet, while segmentation accuracy reached astonishing levels, little focus has
been put on making it usable in real-time scenarios. Achieving very fast
semantic segmentation would have many advantages, especially when used as
an additional building block for other computer vision tasks related to real-time
scene understanding. Particularly in the context of real-world scenarios for
industrial or commercial cases such as augmented reality, autonomous driving,
autonomous flying, etc.

Video scene understanding is already a wide and active research topic, espe-
cially in accurate object instances tracking and segmentation. However, in the
context of real-time video semantic segmentation, fewer efforts have been put
into exploiting the temporal information as a means to decrease inference time.
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Figure 3.1 – Comparison between our EVS pipeline and state-of-the-art methods
on the Cityscapes [24] dataset with input resolution 2048 × 1024. Table 3.2
provides more operating points and comparisons, from 1 Hz to 1000 Hz.

When used, this temporal aspect is in most methods used as additional informa-
tion to improve either the accuracy of the predictions or their consistency over
time, at the cost of additional runtime.

On the contrary, the focus of this chapter is to use temporal information as a
way to minimize the inference time for each frame as much as possible, while
limiting the drop in accuracy resulting from the reduced computations. The
baseline we use runs at around 40 Hz on a frame resolution of 2048 × 1024.
Our EVS pipeline defines several operating points among which the speedup
factor varies from ×2 to ×27 on the same resolution.

The proposed pipeline uses ICNet [142] as the main prediction network since
it is the current state of the art in terms of trade-off between accuracy and
performance for single frame processing. To compute the dense optical flow,
we use Dense Inverse Search (DIS) [61] as it is the current state of the art in
terms of computational efficiency on the CPU. Dense optical flow plays a key
role in our pipeline, as it can run on the CPU in parallel with the GPU at a much
higher frame rate than the prediction network. This information is then used to:
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- Warp the semantic information from one frame to the next, both high-level
predictions and low-level contextual features. This warped semantics is
used as input for the Refiner which will improve the prediction of the
labels for the current frame.

- Feed the IAM to focus the refinement on regions where the optical
flow is unreliable (typically thin and/or moving objects boundaries), by
computing the forward-backward consistency of the propagated labels.

Contributions: Since semantic segmentation is crucial for video scene un-
derstanding, we aim to push the limits of this field through the following
contributions, with a focus on efficiency and frame rate. Our contributions are
the following:

First, our hybrid EVS pipeline balances the workload between GPU and CPU.
They work in parallel, either computing semantic predictions or propagating
them from frame to frame using optical flow, instead of having one large
pipeline running fully on the GPU. Running the optical flow directly on the
CPU decreases the workload on the GPU and leads to a massive reduction in
computation time. Our goal is to establish new standards in terms of speed for
real-time video semantic segmentation while preserving sound segmentation
quality.

Furthermore, we introduce a fast IAM and a Refiner that work together to
refine the propagated predictions of the main segmentation network to better
match the current frame. Our versatile design allows running our pipeline in
various operating modes, trading-off speed versus segmentation quality.

3.2 R E L AT E D W O R K

The most straightforward way to perform video semantic segmentation is to
simply run image semantic segmentation on each frame. Although this approach
is rather slow, it leads to a natural baseline to assess the quality of video
segmentation methods. Furthermore, we review recent trends and ideas in video
segmentation. As our proposed method combines semantic image segmentation
with optical flow, we review different methods extracting optical flow between
consecutive frames using traditional or deep learning-based methods.

3.2.1 Image Semantic Segmentation

Semantic image segmentation aims at assigning a class label to each pixel of
a given image. The recent advances in deep learning [60, 128] lead to fast
progress in semantic image segmentation [75, 74, 16]. Most of the state-of-the-
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art methods [17, 143] are based on Fully Convolutional Networks (FCNs) [75].
Among these methods are: DeepLabV3+ [17], PSPNet [143] or more recently
Panoptic FPN [57]. These methods concentrate mainly on high-quality segmen-
tation masks that require a large number of parameters and are computationally
intensive, i.e.inference time of around one second for a high-resolution frame
(2048× 1024).

Other methods that focus on reducing computing time and memory foot-
print obtain more and more attention: SegNet [1], SQ [114], ENet [93] and
ESPNet [85].

Combining the best of both worlds, some methods aim at finding good trade-
offs between frame rate and accuracy, either from their model (ERFNet [103]
and ICNet [142]) or by treating differently complex and simple parts of the
image (LC [71]). These methods achieve faster inference times while preserving
a decent segmentation quality.

3.2.2 Video Semantic Segmentation

Compared to semantic image segmentation, developing dedicated video segmen-
tation pipelines is a less explored research track. Applying image segmentation
algorithms that operate on each video frame individually is possible. How-
ever, specialized methods for videos can exploit temporal information between
consecutive frames to enable more reliable predictions or increase the frame
rate.

Early methods tackling video segmentation were extending classical single
image segmentation methods with temporally-aware components: normalized
cuts [107], tracking [66] or motion segmentation [91].

Recent methods leverage dense optical flow in a more direct way by com-
bining it with Gated Recurrent Units (GRUs) to refine the predictions and add
temporal consistency [113, 90].

In particular, some methods aim at reducing inference times by embedding
the temporal aspect in their structure by using LSTM [80], or by selecting
keyframes to fully segment. Clockwork [106] authors observe that intermediate
representations within a network change only slowly in most videos. Therefore,
they propose to schedule features computation for keyframes only and share
features in between. LLVS [72] and DVSN [131] try to further optimize
scheduling depending on frame content.

Another family of methods uses the geometrical structure of the 3D scene to
improve the segmentation quality. There, 3D point clouds obtained from visual
odometry or stereo-vision approaches add additional information that allows
more reliable predictions [10, 39, 105, 64].
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Figure 3.2 – Full pipeline overview with an input video stream (I0, I1, ...) and the corresponding output labels (L0, L1, ...).
The predicted probabilities Pi, labels Li and deep features Fi are propagated with the corresponding dense optical flow.
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One of the major challenges in video segmentation remains the massive
amount of data that deep Convolutional Neural Networks (CNNs) require for
training. Already, producing annotations for semantic image segmentation is
costly. In this case, ensuring diversity in a video segmentation data set demands
many different video sequences each consisting of hundreds of frames even
for very short movies, leading to thousands of frames that should be annotated.
Thus, existing data sets for video segmentation are either sparsely annotated [9,
43, 24], i.e.not every frame is labeled, or the segmentation task is simplified such
that annotation is cheaper, i.e.single object segmentation [98]. In our case, we
avoid this pitfall by relying on a network that is trained on single images. Only
synthetic data sets such as GTA5 [102] or Sintel [11] overcome that annotation
limitation.

3.2.3 Optical Flow

Traditional optical flows such as Lucas-Kanade or Gunnar-Farneback [76, 37],
recently started to compete with new deep learning approaches: FlowNet [33,
53], MPNet [112] and SegFlow [23] produce very accurate flow estimates, but
are rather expensive and slow and run on the GPU. As a result, deep video
semantic segmentation pipelines using optical flow usually improve marginally
their accuracy or temporal consistency, while increasing substantially their
inference time: NetWarp [41], GRFP [90] or DFF [145].

In contrast, when aiming at fast and efficient video segmentation, DIS [61]
is among the most suitable candidates. DIS achieves much higher frame rates
than deep optical flow methods and runs on CPU, which gives more flexibility
to choose between speed and accuracy by selecting different operating points.

3.3 E FFI C I E N T V I D E O S E G M E N TAT I O N P I P E L I N E

3.3.1 Full Pipeline Overview

Our pipeline consists of five main components that process the video stream
jointly, see Figure 3.2. The GPU holds a segmentation network and a Refiner
with IAM, while the CPU is responsible for computing in parallel the optical
flow and for warping the CNN features and predictions.

The dense optical flow is computed for each pair of consecutive frames. It
enables the forward and backward remapping of semantic information extracted
by the deep networks. The IAM is responsible for computing the inconsistencies
that remapping reveals. It provides this information to the Refiner, which then
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corrects mistakes caused by warping around inconsistent areas, i.e. where the
optical flow is not reliable.

In the best case, the flow will be consistent and the prediction of the next
frame will simply be the previous prediction warped by using optical flow. In
most cases, the lack of flow consistency in some regions of the image (sudden
changes in brightness, occlusions, multiple fast motions, etc.) will be recovered
by the Refiner, while the other prediction of other regions will still be derived
from the previous prediction to increase temporal consistency.

3.3.2 Semantic Segmentation Network

The segmentation network in our pipeline is responsible for providing a full-
frame semantic segmentation. We want to emphasize that any deep framework
can be used within our framework, leaving space for improvements when better
networks are developed. For this work, we choose to use ICNet [142] because
of its excellent trade-off between accuracy and speed: 67% mIoU at ∼ 40 Hz
on the popular Cityscapes [24] dataset.

3.3.3 Optical Flow and Semantics Propagation

The advent of deep learning brought many optical flow methods to impressive
quality levels while focusing less on computational efficiency. However, we
require a fast but still accurate dense optical flow. DIS Flow [61] matches
perfectly this requirement and has the advantage of producing a reasonable
dense flow at a very high frame rate while running on the CPU. Thus, it allows
to save the GPU resources for other tasks.

Dense optical flow provides for each pixel (x, y) of the image a flow in
each dimension F 1→2

xy (x, y), between two consecutive frames I1 and I2. The
mapping between I1 and I2 can be written for each dimension as follows:

Mx(x, y) = I2(x, y)− F 1→2
x (x, y)

My(x, y) = I2(x, y)− F 1→2
y (x, y)

(3.1)

Using Eq. (3.1) then allows to produce image I2 solely by remapping the
pixels from image I1.

For non-integer valued coordinates, using the nearest neighbors interpolation
results in a valid remapped image:

I2(x, y) = I1(Mx(x, y),My(x, y)) (3.2)

17



E V S

ABS. DIFF

DILATE

1 -

LF LBF Pwarped

Prefiner

Prefined

IAM https://confluence.uniqfeed.com/plugins/drawio/addDiagram.action?ce...

1 of 1 19-Dec-19, 11:51

Figure 3.3 – Inconsistencies Attention Module.

We want to emphasize that such a mapping is fast to perform because it is
highly parallelizable on the CPU. In our pipeline, it is used to quickly remap
both the predictions and the low-level CNN features from one frame to the next.
These features represent the slow-changing contextual information of the scene.
The predictions can also be remapped backward such that the IAM is able to
compute the inconsistencies (Figure 3.3).

3.3.4 Inconsistencies Attention Module

The IAM is working together with the Refiner. It is designed such that it is
lightweight and able to focus the attention of the refinement on regions where
the optical flow is inconsistent. The inputs are:

- LF: the labels predicted for the current frame, obtained by warping the
previous frame labels forward.

- LBF: the labels predicted for the current frame, obtained by warping the
labels backward and then forward LF .

- Prefiner: the predicted probabilities for each class by the Refiner.

- Pwarped: the predicted probabilities warped using the optical flow.
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As a first step, the module computes a probability map Mi that represents
the forward-backward inconsistencies of the optical flow for the given input
frames. For every pixel (m,n) where LF and LBF are different, the probability
is considered to be maximal because the flow is unreliable. All other pixels are
considered to be reliable:

Mi(m,n) =

{
1.0 if LF(m,n) 6= LBF(m,n)

0.0 otherwise
(3.3)

As a second step, this binary mask is dilated and smoothed to engulf the
surrounding areas of the inconsistencies and to let the Refiner act on them, as
the predictions in these regions are more likely to be wrongly propagated by the
optical flow.

Finally, the predicted probabilities for each pixel are weighted differently
between the warped prediction and the prediction of the Refiner. If Prefiner is
the prediction of the Refiner and Pwarped is the previous prediction warped to
the current frame using the optical flow, the final refined prediction Prefined is
defined as the sum of the Hadamard products:

Prefined = Mi ◦ Prefiner + (1−Mi) ◦ Pwarped (3.4)

As shown in Figure 3.3, the module only consists of lightweight operations
for a GPU, especially since the inputs and outputs are processed at a resolution
of 512× 256.

3.3.5 Refiner

A carefully performed benchmark of the branches in the ICNet architecture
shows that even though the network is designed to limit the heavy computations
on the lowest resolution to limit the inference time per frame, almost half of that
time is spent only on building low level features (see Figure 3.5). The Refiner
is built on the idea that these low level features do not need to be recomputed
every frame in the context of a continuous video stream: due to their resolution,
they are changing at the slowest rate over time.

Its task is different from the segmentation network: given pre-aligned low-
level features from past frames, the Refiner should only compute the higher-level
features for the new frame, making it shallower. This allows us to spare half of
the computations that would then otherwise be carried out to extract low-level
features.

Besides, with the help of the IAM, this refinement is focused only on some
areas of the image (see Figure 3.4). Using the dense optical flow is reliable
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Figure 3.4 – Refiner architecture. For a given input image In and warped seman-
tics from the previous frames (green), it generates refined probabilities Prefined
and labels Ln. CFF stands for "Cascade Feature Fusion", as in ICNet [142].

for large portions of the image but it causes errors next to object boundaries,
especially when these objects are thin, moving, or new. Thus, using the IAM
leads to a better temporal consistency overall, as most of the predicted labels
were propagated from one frame to the next.

3.4 E X P E R I M E N TA L E VA L UAT I O N

3.4.1 Setup and Benchmarking Method

All the benchmarks are done using a single Nvidia Titan Xp GPU, and an Intel
Core i7-5930K CPU @ 3.50GHz. The implementation is different from the
original ICNet implementation which is written in Caffe and uses a proprietary
version of ResNet50. Instead, we use an equivalent implementation in Ten-
sorflow 1.8 and CUDNN 7.1 as the baseline for this chapter. The Tensorflow
implementation yields almost the same performance and accuracy (67.3% vs.
67.7%). All the benchmarks and comparisons in this chapter use this Tensorflow
implementation. It is worth noting that this is not problematic because the seg-
mentation network of our pipeline can be replaced by any other implementation.

20



3.4 E X P E R I M E N TA L E VA L UAT I O N

All the following benchmarks and results are produced on Cityscapes [24],
which contains short video snippets of 30 frames at a high resolution (2048×
1024) among which the 20th frame contains a fully annotated ground truth mask.
All the experiments and results presented are evaluated on the 20th frame with
different starting points before it depending on the operating points.

For us, it is important to measure the computation times on the GPU as
accurately as possible. Thus, we build a specific probe class based on the
publicly available Tensorflow Profiler, which provides the detailed timestamps
for each operation on the GPU in JSON format. This data allows us to establish
very accurate timings for each part of the network.

Each measurement contains 300 samples from the extracted profiler data.
In order to avoid border effects, we measure each sample in the middle of the
execution of the network. The measurements show that the timings are more
varied at the startup time and the initialization of the models. Nonetheless,
following the aforementioned strategy leads to reliable and accurate GPU
computation times: the average and median measurements are matching with a
small standard deviation, see Figure 3.5.

3.4.2 Runtime of the different components

On the CPU side, warping pixels from one frame to the next using optical flow
can be easily parallelized on the CPU. Once split in a 3× 3 or 4× 4 grid, all the
pixels from a full frame are remapped within a marginal time period (∼ 0.15
ms on an Intel Core i7-5930K CPU @ 3.50GHz).

On the GPU side, we have two models: one for the full CNN and the other
for the Refiner. ICNet [142] is structured around 3 branches: Branch1 with
very few convolutions operating at full resolution, Branch2 that computes deep
features starting from half the resolution, and Branch4 that goes much deeper
at even lower resolution. Figure 3.5 shows a speedup of almost two times for
the inference time of the Refiner.

3.4.3 Optical Flow and Labels Propagation

3.4.3.1 Optical Flow Benchmark

Several operating points are suggested for DIS [61], with a set of parameters
that trade off accuracy and runtime. For our experiments, we choose a set of
parameters to achieve a small runtime: no variational refinement, finest scale
θf = 2, patch size θps = 8, gradient descent iterations θit = 12. This allows
us to run the optical flow computation on one of the cores of the CPU, on the
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Figure 3.5 – Runtime of the Refiner with IAM compared to ICNet on a single
Nvidia Titan Xp.

full frame resolution 2048 × 1024 in less than 5 ms. The goal is to compute
the optical flow for five frames on one core, while the segmentation network is
working (∼ 25 ms, see Figure 3.5).

3.4.3.2 Influence of the Optical Flow Algorithm

The dense optical flow computation is of paramount importance to propagate
the semantic information correctly. Figure 3.6 shows the comparison between
DIS [61] at a fast operating point and Gunnar-Farneback [37] with a 2 lay-
ers pyramid, an averaging window of 9 pixels and 15 iterations. There is a
substantial difference in the mIoU already after the first propagation.

Experiments with higher quality settings for DIS [61] showed marginal im-
provements (below 0.2%) on the mIoU even at high resolution, which motivated
our choice for a faster operating point. With the ultra-fast setting, the drop
per propagation on the highest resolution is between 1.0% and 1.5% (1.2% on
average). This drop also tends to decrease when the resolution decreases, which
is particularly interesting for the predictions and low-level forward propagation
of the features since they operate at a resolution of 512 × 256 and 128 × 64
respectively.
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Figure 3.6 – Influence of a pure label propagation on the mIoU for 2048×1024,
comparison Gunnar-Farnebäck vs. DIS.

3.4.3.3 Uncertainties across the Evaluation Set

The inconsistencies detected by forward-backward warping of the labels with
the optical flow vary depending on the frame content and increase globally after
each propagation. Figure 3.7 shows on the evaluation set of CityScapes [24]
how the uncertainties are distributed depending on the number of propagations.
This shows that even after 4 propagations, less than 5% of the flow computed is
detected as inconsistent on average. For frame-to-frame propagation, this drops
to less than 1%, which confirms that the optical flow is highly consistent.

3.4.4 EVS Operating Points

3.4.4.1 Per Class Impact of Warping and Refinement

As discussed before, a simple forward mapping of the predictions made by the
segmentation network can bring an important speedup factor, at a cost of an
overall marginally degraded segmentation quality. Although the drop in mIoU
per propagation might seem marginal, it is directly correlated to the mistakes of
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Figure 3.7 – Re-partition of frames on the Cityscapes [24] evaluation set as a
function of their percentage of forward-backward inconsistent pixels from the
optical flow, after 1, 2 and 4 propagations.

the optical flow (especially around boundaries of moving objects, thin objects
and occlusions that may happen over time) and might have a big impact locally.

A per-class analysis (see Table 3.1) confirms that the errors due to optical
flow propagation affect most classes only marginally (below 1% drop in IoU).
Some of them are particularly affected by the wrong labeling: static thin objects
(poles, traffic signs, traffic lights) and humans/small moving objects (person,
rider, bike) are the most impacted classes (between 1% and 5% drop in IoU).

The Refiner is able to recover a large portion of the drop in IoU observed for
those classes, especially after 1 frame propagation for poles, street signs and
persons, even though the overall IoU gain is between 0.5% and 1%. Figure 3.8
shows these typical situations where the refinement has a clear visible impact
on these specific classes and shows that our Refiner can recover missing parts:

- Thin objects such as poles, street signs, or traffic lights are not always
captured or heavily distorted by the camera motion.

- Pedestrians on a crossing or cyclists on bikes are sometimes difficult for
the optical flow to fully capture.
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Method Total road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike

Baseline 67.3 97.4 79.5 89.4 49.1 51.7 46.1 47.9 61.1 90.3 58.6 93.4 69.9 43.3 91.4 64.8 75.8 59.9 43.9 65.4

EVS 03 66.2 97.3 78.9 89.1 51.1 52.1 41.5 46.6 60.4 89.8 59.2 93.1 66.9 41.7 90.5 64.1 75.2 52.1 44.5 64.2
EVS 02 66.8 97.3 79.1 89.3 51.0 52.3 44.5 47.1 61.4 90.2 59.5 93.2 69.0 42.5 90.9 63.9 75.5 52.5 45.0 64.9
Recovery +0.64 = +0.2 +0.2 -0.1 +0.2 +3.0 +0.5 +1.0 +0.4 +0.3 +0.1 +2.1 +0.8 +0.4 -0.2 +0.3 +0.4 +0.5 +0.7
EVS 07 62.2 96.8 77.1 87.4 50.6 49.5 31.3 43.5 55.5 87.9 55.9 92.6 57.9 35.4 87.2 59.8 72.0 41.8 40.3 58.5
EVS 06 63.0 96.6 75.6 87.9 50.2 49.8 36.0 44.4 57.5 89.1 56.6 93.2 63.6 36.5 87.5 59.2 70.8 41.5 41.1 60.0
Recovery +0.84 -0.2 -1.5 +0.5 -0.4 +0.3 +4.7 +0.9 +2.0 +1.2 +0.7 +0.6 +5.7 +1.1 +0.3 -0.6 -1.2 -0.3 +0.8 +1.5

Table 3.1 – Per-class results on Cityscapes after propagating 1 or 4 times the
labels with refinement (EVS 02 and EVS 06) or without (EVS 03 and EVS 07).
The corresponding recovery achieved by the Refiner is explicitly mentioned for
both cases.

- Missing parts due to occlusion and moving objects: a cyclist and bike
passing in front of vegetation or two cars at a crossing.

Interestingly, the analysis also reveals that large static classes benefit from
propagation (wall, fence, terrain) such that the IoU for these classes is higher
than the IoU produced by the baseline, even without refinement (between 0.5%
and 2% gain in IoU).

3.4.4.2 Operating Point Comparison

The structure of our EVS pipeline is defined by four parameters: the downscal-
ing factor used by the segmentation network (D), the rate (every nth frame)
at which the full segmentation is computed (S), warping (W) and refinement
(R). Table 3.2 summarizes these operating points and compares them with
state-of-the-art methods in terms of accuracy, frame rate and speedup factor
compared to our baseline ICNet [142].

3.5 C O N C L U S I O N

In this work, we introduce an Efficient Video Segmentation pipeline that pushes
the boundaries of real-time video semantic segmentation in terms of compu-
tational efficiency by combining the benefits of deep CNNs running on the
GPU and a very fast optical flow running in parallel with the CPU. We propose
different operating modes in order to focus either on frame rate or accuracy,
from 67% mIoU at ∼ 40 Hz to 46% mIoU at ∼ 1000 Hz for 2048× 1024 input
images.

To compensate for the introduced errors in the predictions by the optical flow
propagation around thin and moving objects (poles, persons, bikes, etc.), we
propose a Refiner network to correct some errors and to generate a visually more
appealing segmentation. The Refiner works with a dedicated Inconsistencies
Attention Module which focuses the prediction refinement on the relevant
regions of the image.
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(a) Ground truth (b) ICNet (c) EVS Propagated (d) EVS P + Refined

Figure 3.8 – Benefits of the Refiner on the propagated predictions in three
problematic situations for the optical flow: a person riding a bike, thin poles on
the sidewalk, and occlusions from cars.

One of the strengths of our pipeline is that the segmentation network can be
used as a black box method and can be replaced with any other segmentation
network, bringing potentially more accuracy for the same speedups in the future.
Moreover, our pipeline could benefit from a higher input frame rate because two
consecutive frames are more similar and lead to a more accurate and reliable
optical flow prediction (Cityscapes has a relatively small frame rate of 17 Hz).
Furthermore, the IAM introduced in this chapter could be used in future works
as a way to dynamically adapt the behavior of our pipeline depending on the
input frames. In simple situations, the segmentation network and the Refiner
could run less often such that the whole pipeline relies more on the optical flow
when it is reliable. In more complex situations, the pipeline would then be able
to force the re-segmentation more often to preserve a reasonable accuracy at
the price of a lower frame rate.
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3.5 C O N C L U S I O N

Method Framerate Speedup D S W R mIoU

V
id

eo
pi

pe
lin

e

EVS 14 (Ours) 1045 Hz ×27.1 0.5 17 3 7 46.0%
EVS 13 (Ours) 677 Hz ×17.6 0.5 10 7 7 35.3%
EVS 12 (Ours) 634 Hz ×16.5 0.5 10 3 7 50.7%
EVS 11 (Ours) 387 Hz ×10.1 1.0 10 7 7 36.7%
EVS 10 (Ours) 372 Hz ×9.7 1.0 10 3 7 56.2%
EVS 09 (Ours) 339 Hz ×8.8 0.5 5 7 7 42.8%
EVS 08 (Ours) 192 Hz ×5.0 1.0 5 7 7 46.4%
EVS 07 (Ours) 190 Hz ×4.9 1.0 5 3 7 62.2%
EVS 06 (Ours) 122 Hz ×3.2 1.0 5 3 3 63.0%
EVS 05 (Ours) 115 Hz ×3.0 1.0 3 3 7 64.7%
EVS 04 (Ours) 74 Hz ×1.9 1.0 3 3 3 65.6%
EVS 03 (Ours) 77 Hz ×2.0 1.0 2 3 7 66.2%
EVS 02 (Ours) 49 Hz ×1.2 1.0 2 3 3 66.8%
EVS 01 (Ours) 37 Hz ×0.95 1.0 1 3 3 67.6%
DVSN [131] 30 Hz ×0.8 - - - - 62.6%
Clockwork [106] 12 Hz ×0.3 - - - - 64.4%
LLVS [72] 6.6 Hz ×0.2 - - - - 75.3%
DFF [145] 5.6 Hz ×0.1 - - - - 69.2%
GRFP [90] 0.6 Hz ×0.02 - - - - 81.3%
NetWarp [41] 0.3 Hz ×0.01 - - - - 80.6%

Si
ng

le
fr

am
e

ENet [93] 77 Hz ×1.9 - - - - 58.3%
ERFNet [103] 42 Hz ×1.1 - - - - 69.7%
ICNet[142] 39 Hz Ref.– - - - - 67.3%
SQ [114] 17 Hz ×0.4 - - - - 59.8%
SegNet [1] 15 Hz ×0.4 - - - - 57.0%
PSPNet [143] 0.8 Hz ×0.02 - - - - 81.2%

Table 3.2 – Comparison of different EVS pipeline operating points. Numbers are
reported on a Nvidia Titan Xp GPU and Intel Core i7-5930K CPU @3.50GHz
for our pipeline and the reproduced ICNet [142]. Numbers for other methods
are reported from their respective papers on various hardware.
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4L O C A L M E M O RY AT T E N T I O N F O R FA S T V I D E O
S E M A N T I C S E G M E N TAT I O N

In this chapter, we propose a novel neural network module that transforms
an existing single-frame semantic segmentation model into a video semantic
segmentation pipeline. In contrast to prior works, we strive towards a simple,
fast, and general module that can be integrated into virtually any single-frame
architecture. Our approach aggregates a rich representation of the semantic
information in past frames into a memory module. Information stored in the
memory is then accessed through an attention mechanism.

In contrast to previous memory-based approaches, we propose a fast local
attention layer, providing temporal appearance cues in the local region of prior
frames. We further fuse these cues with an encoding of the current frame
through a second attention-based module. The segmentation decoder processes
the fused representation to predict the final semantic segmentation.

We integrate our approach into two popular semantic segmentation networks:
ERFNet and PSPNet. We observe an improvement in segmentation performance
on Cityscapes by 1.7% and 2.1% in mIoU respectively, while increasing the
inference time of ERFNet by only 1.5ms.

4.1 I N T RO D U C T I O N

Semantic segmentation is one of the core computer vision tasks that paves the
way toward scene understanding. It entails assigning a label to each pixel of
an image, where a label generally represents an element in a predefined set of
classes. It is useful in a growing number of applications, including augmented
reality, surveillance, and robotics (autonomous cars and drones), where scene
understanding is key to building better and safer systems. In these scenarios,
however, the input to the vision pipeline most often consists of a video stream,
and not only a single frame. It is natural to exploit the temporal dimension
instead of processing each input frame independently. In this work, we therefore
address the problem of video semantic segmentation.

Considering a sequential input instead of a single frame can be beneficial
to solve the semantic segmentation task, as we can leverage the additional
temporal dimension. Indeed, in most cases, one can reasonably assume a certain
level of temporal consistency from one frame to the next. This temporal cue
has the potential to reduce inference time by avoiding redundant computations,
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improving the accuracy of the prediction, or finding a better trade-off between
speed and accuracy. In practice, however, exploiting video data is a very
challenging problem. Introducing the temporal dimension can easily lead to
inertia, which can be problematic for dynamic content. In particular, the model
should avoid propagating errors over time and allow for rapid changes in the
scene produced by events such as occlusions or new objects. Efficiency is also
a concern with video architectures, as they need to run fast enough and require
a lot of data to train and evaluate.

In comparison to its single-frame counterpart, video semantic segmentation
has received much less attention despite its potential advantages. Existing
approaches exploit video input by using either dense optical flow directly [131,
145, 96, 41] or by combining it with recurrent neural networks (RNNs) [113, 90].
However, these often lead to marginal improvements relative to the added com-
plexity and increased frame rates of those architectures. In contrast, methods
trying to reduce complexity and inference time by avoiding redundancies and
propagating information between frames usually have unsatisfactory accuracy
compared to their baselines [96, 72, 131]. In this work, we set out to address
these issues.

We introduce a novel neural network architecture to convert single-frame se-
mantic segmentation models into video pipelines. Our network consists of three
components. Following the recent success of attention-based approaches [92,
69, 73, 50, 49], we employ a Memory module that aggregates semantic informa-
tion from several past frames. It holds a rich representation of the past and is
updated over time with incoming frames. Contrary to previous attention-based
alternatives [69, 50, 49], we propose a local attention mechanism. It ensures effi-
cient reading from the memory, given the current Query frame, while preserving
the segmentation performance of the standard dot-product attention [117]. We
combine the extracted memory representation with features from the Query
frame itself with an attention-based Fusion module. The fused representation
serves as input for the decoder to make the final prediction. Our approach does
not rely on optical flow or other expensive operations and thus has a minimal
impact on inference time. We integrate our approach into two popular semantic
segmentation architectures, namely ERFNet [103] and PSPNet [143]. With
ERFNet, our approach achieves a 1.67% increase in mIoU on Cityscapes [24]
while only increasing inference time by 1.5ms.

4.2 R E L AT E D W O R K

The simplest way of tackling video semantic segmentation is to perform seman-
tic segmentation independently in each frame. Although this approach ignores
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4.2 R E L AT E D W O R K

Figure 4.1 – We propose LMANet for fast video semantic segmentation. The
Memory (top) consists of deep features extracted from previous frames. Features
of the current frame (Query) are matched against the frames in the Memory
to generate memory attention maps for each query location. Three example
locations (orange, blue, green) are visualized with their respective attention
maps in Memory. Our approach can thus efficiently integrate information from
past frames to predict a final segmentation output.
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the temporal dimension of the input, it provides a natural baseline to assess
the performance of video segmentation methods. Dedicated video semantic
segmentation pipelines have been receiving more attention in recent years. How-
ever, generating accurate dense annotations for video semantic segmentation
is costly. Only synthetic data sets such as GTA5 [102] or Sintel [11] provide
large-scale densely annotated training and test sets. Thus, most real-world
video data sets are sparsely annotated [9, 43, 24]. Consequently, most video
semantic segmentation approaches [80, 106, 72, 131, 96, 145, 113, 90, 41]
evaluate their results based on a single frame annotated per sequence. Their
basis is a single-frame classifier, such as a random forest or a CNN. Temporal
consistency is introduced by considering consecutive predictions or propagating
semantic information. The goal is to either improve the segmentation masks or
to decrease the average inference time.

Some methods address video semantic segmentation by looking at the prob-
lem from a broader angle: using tracking [66], motion segmentation [91],
or even exploiting the 3D structure of the scene. The latter usually rely on
3D point clouds to improve 2D segmentation predictions [10, 38, 63] which
is computationally expensive and potentially error-prone. Other methods fo-
cusing on improving the segmented outputs model the temporal consistency
by introducing inter-frame and intra-frame pixel connections in large graphs
structures, mostly relying on 2D or 3D conditional random fields across the
video inputs [15, 89, 62, 115].

Propagating semantic information and features was explored in different
ways, for instance by using long short-term memorys (LSTMs) [80] to embed
the temporal aspect in the pipeline structure or scheduling keyframes to fully
segment and propagate semantic information in between [106, 72, 131, 96].
These methods in general offer different operating points leading to different
trade-offs between efficiency and accuracy.

One of the popular ways to propagate information between frames is to
explicitly use dense optical flow. This is usually done with two different
objectives in mind. First, it may be used to reduce the average inference time.
The authors of [131, 145] use state-of-the-art GPU methods [33, 53], adding to
the complexity of their pipeline. In [96], the authors suggest a simpler approach
relying on a fast optical flow running on CPU [61] to propagate semantics
across frames and achieve higher frame rates. However, all of these methods
reduce the segmentation accuracy. The second objective of using optical flow is
to improve the baseline accuracy. For instance, some pipelines learn temporal
consistency between consecutive feature maps with the help of gated recurrent
units (GRUs) [113, 90]. Others warp features directly at different depths of their
baseline [41]. Unfortunately, these frameworks have relatively small gains over
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their baselines, and the added complex and slow optical flow structure around
them makes them impractical to use in real-time scenarios.

The transformer model [117] was introduced as an alternative to RNNs, such
as LSTMs and GRUs. Transformer networks and self-attention are mostly used
in the field of Natural Language Processing but are rapidly gaining interest in
computer vision topics such as image recognition [48], object detection [13],
video object segmentation [92] or semantic segmentation [73].

Attention mechanisms were recently used for video semantic segmentation
to leverage temporal information and improve both intra-frame and inter-frame
semantic information. The authors of [69] introduce two attention mechanisms
to combine features while others embed the attention mechanism in the back-
bone over several frames [50, 49]. In contrast, we aim at a simpler architecture
and integrate a local attention mechanism to ensure efficiency.

4.3 P RO P O S E D M E T H O D

We propose Local Memory Attention Networks (LMANet), that transforms
an existing single-frame semantic segmentation model into a video semantic
segmentation pipeline. Our approach, summarized in Fig. 4.4, aggregates
an encoded representation from several past frames into a Memory module
described in section 4.3.1. We describe how this memory is accessed via an
attention-based module in section 4.3.2 and 4.3.3. Finally, in section 4.3.4, we
detail how the features map from the Query frame are fused with the aggregated
features read from the Memory to provide an input for the Decoder.

4.3.1 Memory

Having a representation of the temporal information from previous frames
is a way to leverage the additional dimension offered by videos. Previous
works trying to model this use a combination of optical flow and GRUs [113,
90]. However, RNNs are often difficult to train, requiring long sequences.
More importantly, the hidden state can easily get corrupted over time, severely
affecting the performance during inference. In contrast, we propose to use a
memory that holds semantic information from past frames as a core component
of our framework. Following the success of attention-based models for video
semantic segmentation [69, 50, 49], we construct the memory using Keys (KM)
and Values (VM) for each cell, such that the dimensionality of the Keys is much
lower than the one of the Values. This strategy allows us to efficiently read out
semantic information, stored in the values, by matching keys.
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We build and update the memory using consecutive inputs. For each input
frame It, we generate 2 pairs of (Key,Value) features: one for the Memory (Kt

M,
V t

M) and one for the Query (Kt
Q, V t

Q). Those features are all obtained from the
same backbone Encoder output, each with its own simple convolution layer
that preserves their spatial size, while reducing the dimensionality of the keys.
To keep a simple and explicit temporal representation of the Memory, the two
sets of feature maps KM and VM are obtained by concatenating the keys and
values from the previous frames, as follows We define VM = [V 1

M, . . . , V
L−1

M ] ∈
RH×W×DV×(L−1) and KM = [K1

M, . . . ,K
L−1
M ] ∈ RH×W×DK×(L−1). With

S = {1, . . . , L − 1} we denote the list of indices of the frames included in
memory.

4.3.2 Local Key Matching

In order to segment a new frame, we need to access the semantic information
from the Memory. This is done by matching the feature maps from the Memory
and the Query, respectively KM and KQ. Those feature maps have a spatial size
of H ×W and a dimensionality of DK. We let KM(i, j) and KQ(k, l) denote
the features vectors of dimension RDK at their respective spatial locations
(i, j), (k, l) ∈ {1, . . . ,H} × {1, . . . ,W}.

Previous approaches using transformers network architectures for NLP [117]
or video object segmentation [92] perform an all-vs-all matching of their feature
maps. However, this is memory-consuming and computationally expensive.
The similarities between all pairs of spatial locations in the Memory and Query
feature maps can be written as a 4D tensor G(KM,KQ) ∈ RH×W×H×W
defined as

G(KM,KQ) = KM(i, j)TKQ(k, l). (4.1)

Particularly in our case, global matching can be problematic for three reasons.
The spatial size of feature maps and their dimensionality not only makes it
harder to fit reasonable batch sizes and consecutive frames in GPU memory
during training but also degrades inference time. Moreover, matching features
at completely different locations can introduce wrong correlations between
similar classes or instances in the scene.

To address these issues, we exploit the temporal prior given by our input video.
In general, the content of the current frame at a given position is more likely
to be found in a similar position in the previous few frames. For each feature
location in the current frame, we thus only read from the memory in its spatial
neighborhood. We show that this operation can be efficiently implemented as a
correlation layer, commonly used in optical flow networks [33].
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Figure 4.2 – For a given location (orange) in the query image (left), we compare
the global correlation (middle) and the local correlation (right).

Formally, the pairwise similarities between all the locations in the Query
and their corresponding neighborhood in the Memory can be written as a 4D
tensor C(KM,KQ) ∈ RH×W×R×R, where R defines the radius of the local
neighborhood from a given location. This can be expressed as

C(KM,KQ) = KM(i, j)TKQ(i+ k, j + l). (4.2)

In this case, (i, j) ∈ {1, . . . ,H}×{1, . . . ,W} and (k, l) ∈ R = {−R, . . . , R}2
represents the search region for the correlation. (k, l) therefore represents the
displacement relative to the reference frame location (i, j), constrained to a
radius R.

We choose R such that R << H,W . While the local correlation cannot
match features that are located outside the limited search region, we can im-
mensely reduce the complexity in memory and computation time for feature
maps of a large spatial size, from O((HW )2) to O((HW )×R2).

4.3.3 Local Memory Attention

The Memory reading operation is the core part of our method. It enables us to
access the relevant features contained in the Memory at the right location in
an efficient way, thanks to the matching described in the previous section. It is
performed in three steps. First, the Query key is matched against all the keys in
the Memory. We thus define

Ctkl(i, j) = C(Kt
M,KQ) = Kt

M(i, j)TKQ(i+ k, j + l). (4.3)
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Then, we transform feature correlation maps into a set of probability maps using
a SoftMax layer, expressed as

P tkl(i, j) =
exp(Ctkl(i, j))∑
klt exp(Ctkl(i, j))

. (4.4)

The resulting probability maps represent the multiplicative attention weights,
visualized in Figure 4.2.

These weights are crucial for the last step of the Memory Reading operation
as they allow us to weight the features read from the Memory in both spatial and
temporal dimensions. The module thus only reads from the parts of the Memory
that contain the most relevant information for each location. Formally, the
output tensor ṼM read from the Memory at each location (i, j) can be written as

ṼM(i, j) =
∑
t∈S

∑
(k,l)∈R

P tkl(i, j)V
t

M(i+ k, j + l). (4.5)

The read operation is a weighted sum of all values of the memory V t
M over the

temporal domain S and the spatial domainR. By construction, its dimensions
are identical to the dimensions of the Query value tensor: VQ, ṼM ∈ RH×W×DV .

4.3.4 Memory Fusion

As described in the previous section, the semantic features read from the Mem-
ory ṼM contain a rich information from the aggregation of the semantics of
previous frames. The features extracted in the Query VQ contain the encoded
semantic segmentation of the current frame. The role of the Fusion module is to
combine VQ and ṼM and provide a meaningful input the Decoder that can then
make the most accurate prediction for the current frame. The naive approach
that would consist in concatenating feature maps would not allow the network
to select the best features from both sources of information. Indeed, the model
ideally has to learn to trust more the Memory for parts of the scene that have
a consistent behaviour over time (static classes, regular or slow motions, etc.)
while taking into account the current frame features that might introduce sudden
changes (objects entering the scene, occlusions, irregular motions, etc.).

In order to overcome this limitation, we extend the concatenation solution by
adding one attention branch per Fusion input, see Fig. 4.3. Each branch uses
its corresponding Fusion input and the concatenated inputs. Those attention
branches, with the help of sigmoid activated gates inspired by RNNs, are
controlling the information flowing through them. This structure therefore
allows to select which features from the Query or from the Memory will be sent
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Query	Attention

Memory	Attention

Figure 4.3 – Fusion of the features read from the memory and the current frame.

to the Decoder. Formally, if we let σ be the sigmoid activation function and ’·’
be the element-wise tensor multiplication, the output of the Fusion module can
be written as

F (VQ, ṼM) = σ
(
AQ(VQ, ṼM)

)
· EQ(VQ)

+ σ
(
AM(VQ, ṼM)

)
· EM(ṼM). (4.6)

The Fusion output F (VQ, ṼM) ∈ RH×W×D is a 3D tensor with the same
dimensions as the Encoder output. EQ, AQ, AM, EM represent respectively
the learned convolution layers of the Query attention and Memory attention
branches, as shown in Figure 4.3.

4.3.5 Training method

Our goal is to enable single-frame semantic segmentation models to deal with
video inputs, thus we need a simple and efficient training routine. However,
two obstacles stand in the way. First, we have a limited amount of annotated
data. Second, we need to fit a large enough amount of images on the GPU while
keeping reasonable batch sizes.
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Figure 4.4 – Overview of our framework, built upon an existing Encoder-Decoder backbone. For each input frame, the Encoder
output is used to create two (Key, Value) pairs. One is stored in the Memory module (violet) for future use and the other is used by
the Memory Read and Fusion modules (green). The Memory Read module first accesses the relevant semantic information in the
Memory. The information read from the memory is then combined with features of the current frame. The segmentation Decoder
employs this fused representation to finally predict the segmentation mask.
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Assuming that the backbone Encoder and Decoder are trained beforehand on
single frames, we propose to train our module in two steps. First, we freeze the
parameters of both the Encoder and the Decoder while we train our Memory
layers and Fusion module from scratch for a small number of epochs. We choose
the number of epochs between 20 and 50 so that the accuracy of our model
reaches the range of the baseline accuracy without aiming for convergence. This
allows the layers of our modules to get a rough initialization before we move
on to the next step, where we jointly train our modules and the Decoder until
convergence.

4.4 E VA L UAT I O N

4.4.1 Experimental setup

We run all our experiments on the Cityscapes dataset [24], as it is commonly
used to benchmark both single frame and video semantic segmentation methods.
It contains diverse urban street scenes across 50 different cities which makes
it relevant for autonomous driving applications. Its training, validation, and
testing sets contain respectively 2975, 500, and 1525 images with a resolution
of 1024 × 2048 pixels. Each of those images represents the 20th frame of
a corresponding 30 frames video sequence. The training and validation sets
provide dense ground truth annotations, but only for the 20th frame of each
sequence. We, therefore, train and evaluate our approach on video snippets but
report mean Intersection over Union (mIoU) results on the provided 20th frame.

Our experimental setup consists of several Intel Xeon Gold 6242 CPUs
running at 3.5GHz and several NVIDIA GeForce RTX 2080Ti GPUs. We use
Python 3.7, PyTorch 1.2, CUDA 10.2 and cuDNN 7.6. While simple inference
can be run on a single GPU, training is usually performed on several GPUs to
either speed up training or overcome GPU memory limitations. For training, we
use the Adam optimizer with an initial learning rate of 2e-4. We use adaptive
scheduling based on the training loss: the learning rate is kept constant until the
loss reaches a minimum plateau, after which we decrease it by 20%. We keep
this strategy until the learning rate reaches a minimum value of 1e-8.

4.4.2 Ablation study

We perform an ablation study to highlight the role of each component of our
method and its impact on the performance of the pipeline. We thus focus on the
critical parameters of our modules: the search region for the correlation layer,
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the size of the Memory used during inference, and the fusion strategy. We run
this ablation study using ERFNet [103] as the backbone for efficiency reasons.

Memory size S: The first and foremost important aspect of our method is
the size of its Memory. Especially in the context of autonomous driving, it is
important to make sure to look at the past frames without holding on to too old
information. At the same time, we have to make sure that the memory is long
enough to have meaningful temporal information to use. This part of the study
aims at determining the impact of the memory size S on the final prediction
accuracy. The case S = 0 represents our single-frame baseline ERFNet [103].
Table 4.1 summarizes the results and highlights two aspects. First, all memory
sizes improve the baseline from +1.29% to +1.67%, which means that there is
indeed meaningful information to retain from past frames and that our method
uses it to improve the final prediction. Second, even though a single frame in
the memory already improves the baseline, the best results are achieved with a
bigger memory size, with a peak for S = 4.

mIoU(%) S = 0 S = 1 S = 2 S = 3 S = 4 S = 5

LMA, R = 21 72.05 73.34 73.41 73.37 73.72 73.46

Table 4.1 – Impact of the size of the Memory on the results.

Search RegionR: This part of the study aims at validating the design choice
of the keys matching step in our pipeline. As it is the pillar supporting the
Memory reading operation, we want to compare an all-vs-all matching to a
local one and measure the impact of the search region size on the resulting
mIoU. Table 4.2 summarizes the results. These numbers should be compared to
the single frame baseline (S = 0) which has a mIoU of 72.05%.

Here we investigate and validate three aspects of our approach. First, all
settings combinations yield final mIoU improvements compared to the single
frame baseline, ranging from +0.85% to +1.67%. Second, we observe the im-
portance of actually considering a local neighborhood for the features matching
when considering temporal information: matching at the same location (R = 1)
improves results from the baseline, but is far from the improvements observed
with bigger search regions. Third, we confirm that using global matching is
counterproductive, as local matching with a search radius between R = 21 and
R = 41 seems to yield the best results. This suggests that local matching with
a reasonable search regionR is the best option to avoid mismatches that could
happen across the whole image while accounting for the temporal information
accumulated in the Memory.
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mIoU(%) G R = 41 R = 21 R = 11 R = 1

S = 3 73.38 73.50 73.37 73.21 72.90
S = 4 73.49 73.64 73.72 73.21 72.94

Table 4.2 – Accuracy comparison between global (G) and local correlations
with different search region sizes (R << G).

Fusion Strategy: The last part of our method combines features from the
Query and the Memory, which hold different kinds of information. The former
contains the current frame features while the latter is an aggregation of the
information from past frames. Table 4.3 compares our results to a simple
concatenation of the semantic maps and confirms that a more complex fusion
with attention branches generates more accurate results (+0.33%). This seems
to indicate that the probabilistic weighting done by the Fusion is helpful to
guide the Decoder.

Baseline LMAS=3,R=21 (Concat.) LMAS=3,R=21 (Fusion)

72.05% 73.14% 73.37%

Table 4.3 – mIoU comparison between concatenation and our Fusion.

4.4.3 Memory and computation time

As we strive towards a simple and general method for fast video semantic
segmentation applications, an important aspect to tackle is its efficiency, both
in terms of GPU memory consumption and inference time. We therefore
study the impact of our method on those variables on the existing backbone
ERFNet [103]. As reported previously, a relatively small memory size of 3 to
5 frames is reasonable for our benchmarks, so we focus on the impact of the
search radius R, with a fixed memory size of S = 3 and report the results in
Table 4.4.

These measurements confirm that an all-vs-all matching of the feature maps
is not a viable option for our problem. Indeed, a 166% increase in GPU memory
is not desirable during inference in a real-life scenario. It also would complicate
the learning phase, where bigger batch sizes are usually beneficial. At the
same time, we see that our pipeline adds a very small memory footprint onto
the existing backbone when using a local correlation approach, only 13% for
R = 21, which yields the highest mIoU.
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Baseline G R = 41 R = 21 R = 11

Total time T(s) 62.4 96.8 114 71.4 67.5
∆T - + 55% + 83% + 14% + 8%
GPU Mem. M(MiB) 1553 4125 2116 1749 1606
∆M - + 166% + 36% + 13% + 3%

Table 4.4 – Inference time and GPU memory consumption on the 500 validation
sequences of Cityscapes [24]. Each sequence has a length of L = 4 frames and
the Memory size S = 3. Results are displayed as an average of 10 runs under
the same conditions.

Single-frame baseline Video approach
Method Backbone mIoU (%) Time (ms) mIoU (%) Time (ms) ∆mIoU(%) ∆T(ms) Resolution

LMAS=4,R=21 ERFNet [103] 72.05 10.1 73.72 11.6 +1.67 +1.5 1024× 512
LMAS=3,R=21 PSP-SS-SC [143] 76.34 406 78.48 758 +2.14 +352 2048× 1024

TDNet [50] BiseNet*18 [50] 73.8 20 75.0 21 +1.2 +1 n.a.
TDNet [50] BiseNet*34 [50] 76.0 27 76.4 26 +0.4 -1 n.a.
FANet [49] FANet-18 [49] 75.0 14 75.5 14 +0.5 +0 2048× 1024
FANet [49] FANet-34 [49] 76.3 17 76.7 17 +0.4 +0 2048× 1024
GRFP [90] PSP-SS-MC [143] 79.7 n.a 80.2 n.a +0.5 +335 512× 512
GRFP [90] PSP-MS-MC [143] 80.9 n.a 81.3 n.a +0.4 +335 512× 512
NetWarp [41] PSP-SS-MC [143] 79.4 3000 80.6 3040 +1.2 +40 713× 713
NetWarp [41] PSP-MS-MC [143] 80.8 30300 81.5 30500 +0.7 +200 713× 713
LLVS [72] ResNet-101 [46] 80.2 360 76.84 171 -3.36 -189 n.a
DVS [131] PSP-SS-SC [143] 77.0 588 70.2 87 -6.8 -501 n.a
DVS [131] PSP-SS-SC [143] 77.0 588 62.6 33 -14.4 -555 n.a
DFF [145] ResNet-101 [46] 71.1 658 69.2 179 -1.9 -479 1024× 512
EVS [96] ICNet [142] 67.3 26 66.2 13 -1.1 -13 2048× 1024
EVS [96] ICNet [142] 67.3 26 67.6 27 +0.3 +1 2048× 1024

Table 4.5 – Comparison between our methods and other existing methods. As
we focus on the temporal aspect, we report the single-frame baseline for each
method and the relative changes it brings in terms of mean IoU and inference
time. The fields marked with "n.a" denote data that was not available in the
corresponding publications.

Furthermore, we show that the search radius R is crucial when it comes to
inference efficiency, and that a bigger correlation region directly impacts the
inference time, while not necessarily yielding the best accuracy results. For a
search radius of 21 pixels, we get a limited impact both on the GPU memory
(+13%) and on the inference time (+14%).

4.4.4 Comparison to state-of-the-art

Since current state-of-the-art approaches conduct experiments with different
baselines, backbones, input resolutions and hardware, providing a completely
fair comparison is virtually impossible. In order to provide the fairest compari-
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Method Total road s.walk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train motorcycle bicycle

ERFNet 72.05 97.65 81.28 90.68 49.31 54.89 59.93 62.31 72.07 91.25 60.83 93.36 75.91 53.28 92.84 72.77 78.77 63.78 46.35 71.74

+ LMA, R = 21, S = 4 73.72 97.73 81.81 90.83 51.65 55.32 60.87 63.48 74.21 91.50 61.17 93.43 77.08 57.97 93.21 75.63 81.66 69.51 51.18 72.48

PSPNet 76.34 98.05 84.71 92.47 54.66 60.71 64.05 71.22 79.09 92.64 63.49 94.71 82.46 62.43 94.96 73.87 82.51 58.70 61.70 78.04

+ LMA, R = 21, S = 3 78.48 98.06 85.06 92.73 60.13 62.57 64.20 70.22 78.20 92.40 64.17 94.35 81.68 63.16 95.14 80.77 87.93 76.86 67.24 76.21

Table 4.6 – Comparison with two backbones (ERFNet and PSPNet) on class-
wise improvements brought with our method LMA (Ours).
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ERFNet	(Single	frame	baseline) LMANet	(Ours) Ground	truth

ERFNet	(Single	frame	baseline) LMANet	(Ours) Ground	truth

Figure 4.5 – Qualitative results comparison between our method LMA4,21 and the single-frame ERFNet [103]. Different scenarios
are highlighted in the orange boxes and show improvements over the baseline. The top example shows cleaner segmentation
masks around a mixture of barrier, motorbike, and car. The bottom example shows a better classification of a road sign at the
edge of the scene.
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son, we report results from the original paper of the single-frame baseline along
with the corresponding video-based improvements.

Based on the ablation study, we choose the settings that yield the best mIoU,
which is with a search radius R = 21, and we compare our framework with
other video semantic segmentation methods. To provide a better comparison
and validate our approach on a different backbone, we apply our method to two
of the most popular backbones, ERFNet [103] and PSPNet [143] and report
results in Table 4.5.

ERFNet: While it does not reach the current state-of-the-art semantic segmen-
tation accuracy, ERFNet [103] remains a good compromise between frame rate
and accuracy compared to heavier and slower methods such as PSPNet [143]
and DeepLab [18]. It is therefore important to see whether our approach can
help increase the accuracy of its predictions while keeping a low inference time.
Table 4.5 shows that our approach can improve the baseline mIoU by 1.67%
while increasing the runtime by only 1.5 ms. This gain in accuracy is bigger
than any other existing methods and the very good inference time inherent to
ERFNet [103] is preserved. In comparison, EVS [96] improves its baseline by
only 0.3% with a similar additional inference time. Attention-based approaches
such as TDNet [50] or FANet [49] bring relatively smaller mean IoU improve-
ments to their backbones, at the price of more complex architectures. Other
methods starting from baselines below 80% [131, 145] still yield a mIoU vs.
inference time ratio that is much worse than our approach.

Figure 4.5 shows the qualitative improvements that our approach can bring
through the usage of the Memory with attention mechanisms. In some situations,
it increases the temporal consistency of the predictions for fixed objects, for
instance barriers and traffic lights.

PSPNet: The state-of-the-art and publicly available results for PSPNet [143] are
achieved by running multiple inferences on image crops of resolution 713×713.
In order to get the final prediction on the 1024× 2048 resolution, the authors
define a grid of 8 overlapping crops and combine the results of independent
predictions. They also present results in two flavors, a single-scale version that
simply runs at the original scale and another that combines 6 different scales
together. We refer in the table to the single-scale and multi-scale versions of the
multi-crop inference as PSP-SS-MC and PSP-MS-MC, respectively.

As we propose a general framework to work with video inputs, such a multi-
scale and multi-crop inference on each frame is not practical. First, from an
architecture complexity point of view, the implications it would have on our
query/memory structure would have to be studied further. Second, it would
multiply the average inference time per frame. Therefore, we focus our study
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on a single-scale and single-crop version of PSPNet, as in DVSNet [131]. We
refer to it as PSP-SS-SC.

In this setup, our approach not only improves the accuracy of a complex
backbone but also generalizes to other single-frame models. Moreover, while
our approach has a bigger impact on the inference time when using the PSPNet
backbone, compared to the ERFNet case, the relative improvement we gain
from our simple structure outperforms other more complex approaches.

4.4.5 Class-wise analysis

The mean intersection over union only offers a partial view of the improvements
achieved by our approach. In this section, we propose an overview of the results
we get with our LMANet for each class, on both backbones ERFNet [103] and
PSPNet [143], see Table 4.6. Two aspects stand out with ERFNet [103]. First,
the set of classes that were already well segmented (road, building, vegetation,
terrain, sky, car) does not change too much from the baseline. They mostly get
improved by a small margin or slightly degrade. Second, smaller and dynamic
classes that are the most critical to understand the dynamics of the scene get
improvements ranging from 0.5% to almost 6%. This is especially relevant in
the context of autonomous driving and flying.

With PSPNet [143], the trend is similar but with some noticeable differences.
While bigger classes, including moving dynamic ones (train, truck, bus, motor-
cycle, wall) are improving substantially, smaller objects do not benefit in the
same manner as before. This might be due to the stronger feature representation
provided by the ResNet-101 backbone along with the higher resolution of the
feature map: 256× 128× 2048 compared to 128× 256× 128 for ERFNet.

4.5 C O N C L U S I O N

We present a novel neural network architecture that transforms an existing
single frame semantic segmentation model into a video semantic segmentation
pipeline. In contrast to prior methods, we strive towards a simple structure that
can easily be integrated and trained together with any single-frame semantic
segmentation model. Our approach aggregates the semantic information from
past frames into a memory module and uses local attention mechanisms both
to access the features stored in the Memory and to fuse them with the input
Query frame. We validate our approach on two popular semantic segmentation
networks and show that we increase the segmentation performance of ERFNet
on Cityscapes by almost 2% while preserving its real-time performance.
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4.A C L A S S - W I S E A NA LY S I S

A P P E N D I C E S

In the following appendices, we provide detailed results and a deeper analysis
of the experiments presented in the chapter. We provide the results obtained for
each class and compare them for different operating points and backbones in
section 4.A. Finally, we further investigate the memory size in section 4.B.

4.A C L A S S - W I S E A NA LY S I S

The mean intersection over union only offers a partial view of the improvements
achieved by our approach. In this section, we propose an overview of the results
and improvements we get with our LMANet for each class, on both backbones
ERFNet [103] and PSPNet [143] (Based on ResNet-101 [46]). We also show
the impact of the Memory size and search radius on those classes.

4.A.1 ERFNet backbone

Influence of the Memory size S: For a fixed search radiusR = 21, we analyze
the impact of the Memory size on each individual class of the Cityscapes [24]
validation set for ERFNet [103]. Table 4.7 summarizes the absolute IoU for
each class while Figure 4.6 shows visually the relative improvements we obtain.

What stands out at first from the results is the fact that a set of classes that
were already well segmented (road, building, vegetation, terrain, sky, car) do
not change too much from the baseline. They mostly get improved by a small
margin or slightly degrade. Other classes, on the other hand, get improvements
ranging from 0.5% to almost 6%, which is very interesting, as many of those
classes are either small and/or dynamic classes that are critical to understanding
the dynamics of the scene in the case of autonomous driving. Besides, it seems
that the best improvements are in general yielded for bigger Memory sizes,
while on average improvements are less striking.

In that category, the following classes are worth mentioning for our best
operating point (S = 4, R = 21): wall (+2.34%), traffic light/sign (+ 1.17% /
+ 2.14%), person/rider (+ 1.17% / + 4.69%), truck (+ 2.86%), bus (+ 2.89%),
train (+ 5.73%), motorcycle (+ 4.83%). We can also note that, for that operating
point, all the classes are improving compared to the single-frame baseline.

Influence of the Search Radius R: Similarly, for a fixed Memory size S =
3, we analyze the impact of the search radius on each individual class of
the Cityscapes [24] validation set for ERFNet [103]. Table 4.8 summarizes
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Figure 4.6 – Per-class IoU difference between ERFNet and LMA (Ours) for
different Memory sizes S with a search radius R = 21.

Method Total road s.walk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train motorcycle bicycle

ERFNet 72.05 97.65 81.28 90.68 49.31 54.89 59.93 62.31 72.07 91.25 60.83 93.36 75.91 53.28 92.84 72.77 78.77 63.78 46.35 71.74

LMA, S = 1 73.34 97.73 81.77 90.90 52.2 55.41 60.96 64.60 74.17 91.42 61.00 93.34 76.85 57.40 93.23 74.36 80.56 66.74 48.95 71.92
LMA, S = 2 73.41 97.69 81.57 90.81 52.36 56.31 60.91 64.08 74.05 91.42 61.03 93.19 77.15 58.01 93.12 72.06 80.25 67.84 50.65 72.35
LMA, S = 3 73.37 97.73 81.64 90.82 52.08 55.72 60.90 64.06 74.24 91.49 60.72 93.07 76.93 56.96 93.27 74.57 81.27 66.06 50.17 72.36
LMA, S = 4 73.72 97.73 81.81 90.83 51.65 55.32 60.87 63.48 74.21 91.50 61.17 93.43 77.08 57.97 93.21 75.63 81.66 69.51 51.18 72.48

Table 4.7 – Comparison between ERFNet and LMA (Ours) for different Memory
sizes S, with R = 21.

the absolute IoU for each class while Figure 4.7 shows visually the relative
improvements we obtain.

The results are consistent with the previous section, the same classes follow
the same trend, for all search radii. What is most interesting to see here, is that
except for the two classes train and bus, the all-vs-all matching yield worse
results compared to a local matching, which is the behavior we observed in our
ablation study on average.

4.A.2 PSPNet backbone

Finally, we analyze the improvements obtained on the Cityscapes [24] validation
set for PSPNet [143]. Table 4.9 summarizes the absolute IoU for each class
while Figure 4.8 shows visually the relative improvements we have.

In this case, the trend is similar but with some noticeable differences. While
bigger classes, including moving dynamic ones (train, truck, bus, motorcycle,

48
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wall) are improving substantially, smaller objects do not benefit in the same
manner as before. This might be due to the stronger feature representation
provided by the ResNet-101 backbone along with the higher resolution of the
feature map: 256× 128× 2048 compared to 128× 256× 128 for ERFNet.
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Figure 4.7 – Per-class IoU difference between our ERFNet baseline and LMA
(Ours) for different search radius R with a Memory size S = 3.

Method Total road s.walk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train motorcycle bicycle

ERFNet 72.05 97.65 81.28 90.68 49.31 54.89 59.93 62.31 72.07 91.25 60.83 93.36 75.91 53.28 92.84 72.77 78.77 63.78 46.35 71.74

LMA, Global 73.38 97.71 81.65 90.72 51.04 55.61 60.54 63.95 73.25 91.39 61.23 93.41 76.91 56.56 93.11 74.43 81.71 69.22 49.57 72.15
LMA, R = 41 73.50 97.77 81.86 90.86 52.99 55.85 60.92 64.23 74.24 91.49 61.00 93.22 76.98 57.50 93.30 74.49 81.32 65.44 50.66 72.41
LMA, R = 21 73.37 97.73 81.64 90.82 52.08 55.72 60.90 64.06 74.24 91.49 60.72 93.07 76.93 56.96 93.27 74.57 81.27 66.06 50.17 72.36

Table 4.8 – Comparison between ERFNet and LMA (Ours) for different search
radius R, with S = 3.

4.B I N FL U E N C E O F T H E M E M O RY S I Z E D U R I N G I N F E R E N C E

This last experiment consists in evaluating the impact of performing inference
with a different Memory size than the model was trained for. In this example,
we trained our model with S = 4, and try the inference with bigger Memory
sizes, as shown in Table 4.10.

This shows the robustness of our approach since the accuracy does not de-
grade with an increased Memory size. In fact, we even see a slight improvement
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Method Total road s.walk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train motorcycle bicycle

PSPNet 76.34 98.05 84.71 92.47 54.66 60.71 64.05 71.22 79.09 92.64 63.49 94.71 82.46 62.43 94.96 73.87 82.51 58.70 61.70 78.04

LMA, S = 3 78.48 98.06 85.06 92.73 60.13 62.57 64.20 70.22 78.20 92.40 64.17 94.35 81.68 63.16 95.14 80.77 87.93 76.86 67.24 76.21

Table 4.9 – Comparison between PSPNet and LMA (Ours) with S = 3 and
R = 21.

when using a much larger Memory, meaning that our method can still make use
of the additional information in a meaningful way.

Method S = 4 S = 5 S = 6 S = 7 S = 8 S = 9 S = 10 S = 11 S = 12 S = 13 S = 14 S = 15 S = 16 S = 17 S = 18 S = 19

LMA, R = 21 73.72 73.69 73.73 73.72 73.70 73.72 73.71 73.72 73.72 73.73 73.75 73.77 73.78 73.70 73.78 73.77

Table 4.10 – Impact of the size of the Memory during inference on the final
mIoU(%), based on a model trained with an ERFNet backbone and a Memory
size of S = 4.
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Figure 4.8 – Per-class IoU difference between PSPNet and LMA (Ours) with
S = 3 and R = 21.
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5RO B U S T T R AC K I N G B Y S E G M E N TAT I O N

Estimating the target extent poses a fundamental challenge in visual object
tracking. Typically, trackers are box-centric and fully rely on a bounding box to
define the target in the scene. In practice, objects often have complex shapes
and are not aligned with the image axis. In these cases, bounding boxes do not
provide an accurate description of the target and often contain a majority of
background pixels.

In this chapter, we propose a segmentation-centric tracking pipeline that not
only produces a highly accurate segmentation mask, but also internally works
with segmentation masks instead of bounding boxes. Thus, our tracker is able
to better learn a target representation that clearly differentiates the target in the
scene from background content. In order to achieve the necessary robustness for
the challenging tracking scenario, we propose a separate instance localization
component that is used to condition the segmentation decoder when producing
the output mask. We infer a bounding box from the segmentation mask, validate
our tracker on challenging tracking datasets and achieve the new state of the art
on LaSOT with a success AUC score of 69.7%. Since most tracking datasets
do not contain mask annotations, we cannot use them to evaluate predicted
segmentation masks. Instead, we validate our segmentation quality on two
popular video object segmentation datasets.

5.1 I N T RO D U C T I O N

Visual object tracking is the task of estimating the state of a target object for
each frame in a video sequence. The target is solely characterized by its initial
state in the video. Current approaches predominately characterize the state itself
with a bounding box. However, this only gives a very coarse representation of
the target in the image. In practice, objects often have complex shapes, and
undergo substantial deformations. Often, targets do not align well with the
image axes, while most benchmarks use axis-aligned bounding boxes. In such
cases, the majority of the image content inside the target’s bounding box often
consists of background regions that provide limited information about the object
itself. In contrast, a segmentation mask precisely indicates the object’s extent in
the image (see Fig. 5.1 frames #1600 and #3200). Such information is vital in
a variety of applications, including video analysis, video editing, and robotics.
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In this work, we therefore develop an approach for accurate and robust target
object segmentation, even in the highly challenging tracking datasets [35, 87].

While severely limiting the information about the target’s state in the video,
the aforementioned issues with the bounding box representation can itself
lead to inaccurate bounding box predictions, or even tracking failure. To
illustrate this, Fig. 5.1 shows two typical tracking sequences. The tracking
method STARK [133] (first row) fails to regress bounding boxes that contain the
entire object (#1600, #1400) or even starts tracking the wrong object (#0700).
Conversely, segmentation masks are a better fit to differentiate pixels in the
scene that belong to the background and the target. Therefore, a segmentation-
centric tracking architecture designed to work internally with a segmentation
mask of the target instead of a bounding box has the potential to learn better
target representations, because it can clearly differentiate background from
foreground regions in the scene.

A few recent tracking methods [121, 132] have recognized the advantage
of producing segmentation masks instead of bounding boxes as final output.
However, these trackers are typically bounding-box-centric and the final seg-
mentation mask is obtained by a separate box-to-mask post-processing network.
These methods do not leverage the accurate target definition of segmentation
masks to learn a more accurate and robust internal representation of the target.

In contrast, most Video Object Segmentation (VOS) methods [92, 6] follow
a segmentation-centric paradigm. However, these methods are not designed for
challenging tracking scenarios. Typical VOS sequences consist only of a few
hundred frames [101] whereas multiple sequences of more than ten thousand
frames exist in tracking datasets [35]. Due to this setup, VOS methods focus on
producing highly accurate segmentation masks but are sensitive to distractors,
substantial deformations, and occlusions of the target object. Fig. 5.1 shows
two typical tracking sequences where the VOS method LWL [6] (second row)
produces a fine-grained segmentation mask of the wrong object (#3200) or is
unable to detect only the target within a crowd (#0700, #1400).

We propose Robust Visual Tracking by Segmentation (RTS), a unified track-
ing architecture capable of predicting accurate segmentation masks. To design
a segmentation-centric approach, we take inspiration from the aforementioned
LWL [6] method. However, to achieve robust and accurate segmentation on
Visual Object Tracking (VOT) datasets, we introduce several new components.
In particular, we propose an instance localization branch trained to predict a
target appearance model, which allows occlusion detection and target identifica-
tion even in cluttered scenes. The output of the instance localization branch is
further used to condition the high-dimensional mask encoding. This allows the
segmentation decoder to focus on the localized target, leading to a more robust
mask prediction. Since our proposed method contains a segmentation and an
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instance memory that need to be updated with previous tracking results, we
design a memory management module. This module first assesses the prediction
quality, decides whether the sample should enter the memory, and triggers the
model update when necessary.

Contributions: Our contributions are the following: (i) We propose a unified
tracking architecture capable of predicting robust classification scores and accu-
rate segmentation masks. We design separate feature spaces and memories to
ensure optimal receptive fields and update rates for segmentation and instance
localization. (ii) To produce a segmentation mask that agrees with the instance
prediction, we design a fusion mechanism that conditions the segmentation
decoder on the instance localization output and leads to more robust tracking
performance. (iii) We introduce an effective inference procedure capable of
fusing the instance localization output and mask encoding to ensure both ro-
bust and accurate tracking. (iv) We perform comprehensive evaluation and
ablation studies of the proposed tracking pipeline on multiple popular tracking
benchmarks. Our approach achieves the new state of the art on LaSOT with an
area-under-the-curve (AUC) score of 69.7%.

5.2 R E L AT E D W O R K

Visual Object Tracking: Over the years, research in the field of visual tracking
has been accelerated by the introduction of new and challenging benchmarks,
such as LaSOT [35], GOT-10k [52], and TrackingNet [88]. This led to the
introduction of new paradigms in visual object tracking, based on Discriminative
Correlation Filters (DCFs), Siamese networks and Transformers.

One of the most popular type of approaches, DCF-based visual trackers [7,
47, 30, 78, 26, 122, 144, 4, 29] essentially solve an optimization problem to
estimate the weights of the DCF that allow to distinguish foreground from
background regions. The DCF is often referred to as the target appearance
model and allows to localize the target in the video frame. More recent DCF
approaches [4, 29] enable end-to-end training by unrolling a fixed number of
the optimization iterations during offline training.

Siamese tracking methods have gained in popularity due to their simplicity,
speed and end-to-end trainability [116, 3, 111, 146, 44, 124, 45, 68, 67]. These
trackers learn a similarity metric using only the initial video frame and its
annotation that allows to clearly identify the target offline. Since no online
learning component is involved, these trackers achieve high frame rates at
the cost of limited online adaptability to changes of the target’s appearance.
Nonetheless, several methods have been proposed to overcome these issues [116,
3, 68, 67].
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Very recently, Transformer-based trackers have achieved state-of-the-art
performance on many datasets, often outperforming their rivals. This group of
trackers typically uses a Transformer component in order to fuse information
extracted from training and test frames. This produces discriminative features
that allow to accurately localize and estimate the target in the scene [19, 135,
133, 123, 82].

Video Object Segmentation: Semi-supervised VOS is the task of classifying
all pixels belonging to the target in each video frame, given only the segmen-
tation mask of the target in the initial frame. The cost of annotating accurate
segmentation masks is limiting the sequence length and number of videos con-
tained in available VOS datasets. Despite the relatively small size of VOS
datasets compared to other computer vision problems, new benchmarks such as
Youtube-VOS [130] and DAVIS [101] accelerated the research progress in the
last years.

Some methods rely on a learnt target detector [12, 120, 81], others learn
how to propagate the segmentation mask across frames [129, 99, 70, 55].
Another group of methods uses feature matching techniques across one or
multiple frames with or without using an explicit spatio-temporal memory [21,
51, 118, 92]. Recently, Bhat et al. [6] employed meta-learning approach,
introducing an end-to-end trainable VOS architecture. In this approach, a few-
shot learner predicts a learnable labels encoding. It generates and updates online
the parameters of a segmentation target model that produces the mask encoding
used to generate the final segmentation mask.

Joint Visual Tracking and Segmentation: A group of tracking methods have
already identified the advantages of predicting a segmentation mask instead of
a bounding box [132, 141, 121, 77, 125, 109]. Siam-RCNN is a box-centric
tracker that uses a pretrained box2seg network to predict the segmentation mask
given a bounding box prediction. In contrast, AlphaRefine represents a novel
box2seg method that has been evaluated with many recent trackers such as
SuperDiMP [29] and SiamRPN++ [67]. Further, Zhao et al. [141] focus on
generating segmentation masks from bounding box annotations in videos using
a spatio-temporal aggregation module to mine consistencies of the scene across
multiple frames. Conversely, SiamMask [125] and D3S [77] are segmentation-
centric trackers that produce a segmentation mask directly, without employing
a box2seg module. In particular, SiamMask [125] is a fully-convolutional
Siamese network with a separate branch which predicts binary segmentation
masks supervised by a segmentation loss.

From a high-level view, the single-shot segmentation tracker D3S [77] is most
related to our proposed method. Both methods employ two dedicated modules
or branches; one for localization and one for segmentation. D3S adopts the
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target classification component of ATOM [26], requiring online optimization of
weights in a two-layer CNN. In contrast, we learn online the weights of a DCF
similar to DiMP [4]. For segmentation, D3S [77] propose a feature matching
technique that matches test frame features with background and foreground
features corresponding to the initial frame. In contrast, we adopt the few-shot
learning based model prediction proposed in LWL [6] to produce accurate
segmentation masks. Furthermore, D3S proposes to simply concatenate the
outputs of both modules whereas we learn a localization encoding to condi-
tion the segmentation mask decoding based on the localization information.
Compared to D3S, we update not only the instance localization but also the
segmentation models and memories. Hence, our method integrates specific
memory management components.

5.3 M E T H O D

5.3.1 Overview

Video object segmentation methods can produce high quality segmentation
masks but are typically not robust enough for video object tracking. Robust-
ness becomes vital for medium and long sequences, which are most prevalent
in tracking datasets [35, 87]. In such scenarios, the target object frequently
undergoes substantial appearance changes. Occlusions and similarly looking
objects are common. Hence, we propose to adapt a typical VOS approach
with tracking components to increase its robustness. In particular, we base
our approach on the Learning What to Learn (LWL) [6] method and design a
novel and segmentation-centric tracking pipeline that estimates accurate object
masks instead of bounding boxes. During inference, a segmentation mask is
typically not provided in visual object tracking. Hence, we use STA [141]
to generate a segmentation mask from the provided initial bounding box. An
overview of our RTS method is shown in Fig. 5.2. Our pipeline consists of a
backbone network, a segmentation branch, an instance localization branch and
a segmentation decoder. For each video frame, the backbone first extracts a
feature map xb. These features are further processed into segmentation features
xs and classification features xc to serve as input for their respective branch.
The segmentation branch is designed to capture the details of the object with
a high dimensional mask encoding, whereas the instance localization branch
aims at providing a coarser but robust score map representing the target location.
Both branches contain components learned online, trained on memories (Ds and
Dc) that store features and predictions of past frames. The instance localization
branch has two purposes. The first is to control models and memories updating.
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The second is used to condition the segmentation mask decoder. To do so, we
add instance localization information with a learnt score encoding produced by
Hθ. The obtained segmentation scores and the raw instance model score map
are then used to generate the final segmentation mask output.

5.3.2 Segmentation Branch

The architecture of the segmentation branch is adopted from LWL [6], and we
briefly review it here. It consists of a segmentation sample memory Ds, a label
generator Eθ, a weight predictor Wθ, a few-shot learner Aθ and a segmentation
model Tτ . The goal of the few-shot learner Aθ is producing the parameters τ of
the segmentation model Tτ such that the obtained mask encoding xm contains
the information needed to compute the final segmentation mask of the target
object. The label mask encodings used by the few-shot learner are predicted by
the label generator Eθ.

The few-shot learner is formulated through the following optimization prob-
lem, which is unrolled through steepest descent iterations in the network

Ls(τ) =
1

2

∑
(xs,ys)∈Ds

∥∥Wθ(ys) ·
(
Tτ (xs)− Eθ(ys)

)∥∥2 +
λs

2
‖τ‖2, (5.1)

whereDs corresponds to the segmentation memory, xs denotes the segmentation
features, ys the segmentation masks and λs is a learnable scalar regularization
parameter. The weight predictor Wθ produces sample confidence weights for
each spatial location in each memory sample. Applying the optimized model
parameters τ∗ within the segmentation model produces the mask encoding
xm = Tτ∗(xs) for the segmentation features xs.

LWL [6] feeds the mask encoding directly into the segmentation decoder to
produce the segmentation mask. For long and challenging tracking sequences,
only relying on the mask encoding may lead to an accurate segmentation mask,
but often for the wrong object in the scene (see Fig 5.1). Since LWL [6] is only
able to identify the target to a certain degree in challenging tracking sequences,
we propose to condition the mask encoding based on an instance localization
representation, described next.

5.3.3 Instance Localization Branch

The segmentation branch can produce accurate masks but typically lacks the
necessary robustness for tracking in medium or long-term sequences. Espe-
cially challenging are sequences where objects similar to the target appear,
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where the target object is occluded or vanishes from the scene for a short time.
Therefore, we propose a dedicated branch for target instance localization, in
order to robustly identify the target among distractors or to detect occlusions.
A powerful tracking paradigm that learns a target-specific appearance model
on both foreground and background information are discriminative correlation
filters (DCF) [7, 47, 28, 4]. These methods learn the weights of a filter that
differentiates foreground from background pixels represented by a score map,
where the maximal value corresponds to the target’s center.

Similar to the segmentation branch, we propose an instance localization
branch that consists of a sample memory Dc and a model predictor Pθ. The
latter predicts the parameters κ of the instance model Tκ. The instance model
is trained online to produce the target score map used to localize the target
object. To obtain the instance model parameters κ we minimize the following
loss function

Lc(κ) =
∑

(xc,yc)∈Dc

∥∥R(Tκ(xc), yc
)∥∥2 +

λc

2
‖κ‖2, (5.2)

where Dc corresponds to the instance memory containing the classification
features xc and the Gaussian labels yc. R denotes the robust hinge-like loss [4]
and λc is a fixed regularization parameter. To solve the optimization problem
we apply the method from [4], which unrolls steepest descent iterations of the
Gauss-Newton approximation of (5.2) to obtain the final model parameters κ∗.
The score map can then be obtained with sc = Tκ∗(xc) by evaluating the target
model on the classification features xc.

5.3.4 Instance-Conditional Segmentation Decoder

In video object segmentation the produced mask encoding is directly fed into
the segmentation decoder to generate the segmentation mask. However, solely
relying on the mask encoding is not robust enough for the challenging tracking
scenario, see Fig 5.1. Thus, we propose to integrate the instance localization
information into the segmentation decoding procedure. In particular, we condi-
tion the mask encoding on a learned encoding of the instance localization score
map.

First, we encode the raw score maps using a multi-layer CNN to learn a
suitable representation. Secondly, we condition the mask encoding with the
learned representation using element-wise addition. The entire conditioning
procedure can be defined as xf = xm + Hθ(sc), where Hθ denotes the CNN
encoding the scores sc, and xm the mask encoding. The resulting features are
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then fed into the segmentation decoder that produces the segmentation scores
of the target object.

5.3.5 Jointly Learning Instance Localization and Segmentation

In this section, we describe our general training strategy and parameters. In
particular, we further detail the segmentation and classification losses that we
use for offline training.

Segmentation Loss: First, we randomly sample J frames from an annotated
video sequence and sort them according to their frame IDs in increasing order
to construct the training sequence V = {(xjb, y

j
s , y

j
c)}J−1j=0 , where xjb = Bθ(I

j)

are the extracted features of the video frame Ij using the backbone Bθ, y
j
s

is the corresponding segmentation mask and yjc denotes the Gaussian label
at the target’s center location. We start with entry v0 ∈ V and store it in the
segmentation Ds and instance memory Dc and obtain parameters τ0 and κ0

of the segmentation and instance model. We use these parameters to compute
the segmentation loss for v1 ∈ V . Using the predicted segmentation mask,
we update the segmentation model parameters to τ1 but keep the instance
model parameters fixed. Segmentation parameters typically need to be updated
frequently to enable accurate segmentation. Conversely, we train the model
predictor on a single frame only. The resulting instance model generalizes to
multiple unseen future frames, ensuring robust target localization. The resulting
segmentation loss for the entire sequence V can thus be described as follows

Lseq
s (θ;V) =

J−1∑
j=1

Ls

(
Dθ

(
Tτ j−1(xjs ) +Hθ

(
Tκ0(xjc)

))
, yjs

)
, (5.3)

where xs = Fθ(xb) and xc = Gθ(xb) and Ls is the Lovasz segmentation
loss [2].

Classification Loss: Instead of training our tracker only with the segmentation
loss, we add an auxiliary loss to ensure that the instance module produces score
maps localizing the target via a Gaussian distribution. These score maps are
essential to update the segmentation and instance memories and to generate
the final output. As explained before, we use only the first training v0 ∈ V to
optimize the instance model parameters. To encourage fast convergence, we
use not only the parameters corresponding to the final iteration Niter of the
optimization method κ0(Niter)

explained in Sec. 5.3.3, but also all the intermediate
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parameters κ0(i) of loss computation. The final target classification loss for the
whole sequence V is defined as follows

Lseq
c (θ;V) =

J−1∑
j=1

(
1

Niter

Niter∑
i=0

Lc

(
Tκ0

(i)
(xjc), yjc

))
, (5.4)

where Lc is the hinge loss defined in [4]. To train our tracker we combine the
segmentation and classification losses using the scalar weight η and minimize
both losses jointly

Lseq
tot (θ;V) = Lseq

s (θ;V) + η · Lseq
c (θ;V). (5.5)

Training Details: We use the train sets of LaSOT [35], GOT-10k [52], Youtube-
VOS [130] and DAVIS [101]. For VOT datasets that only provide annotated
bounding boxes, we use these boxes and STA [141] to generate segmentation
masks and treat them as ground truth annotations during training. STA [141]
is trained separately on YouTube-VOS 2019 [130] and DAVIS 2017 [98]. For
our model, we use ResNet-50 with pre-trained MaskRCNN weights as our
backbone and initialize the segmentation model and decoder weights with the
ones available from LWL [6]. We train for 200 epochs and sample 15’000
videos per epoch, which takes 96 hours to train on a single Nvidia A100 GPU.
We use the ADAM [56] optimizer with a learning rate decay of 0.2 at epochs 25,
115 and 160. We weigh the losses such that the segmentation loss is predominant
but in the same range as the classification loss. We empirically choose η = 10.
Further details about training and the network architecture are given in the
appendix.

5.3.6 Inference

Memory Management and Model Updating: Our tracker consists of two
different memory modules. A segmentation memory that stores segmentation
features and predicted segmentation masks of previous frames. In contrast, an
instance memory contains classification features and Gaussian labels marking
the center location of the target in the predicted segmentation mask of the
previous video frame. The quality of the predicted labels directly influences
the localization and segmentation quality in future video frames. Hence, it is
crucial to avoid contaminating the memory modules with predictions that do
not correspond to the actual target. We propose the following strategy to keep
the memory as clean as possible. (a) If the instance model is able to clearly
localize the target (maximum value in the score map larger than tsc = 0.3)
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and the segmentation model constructs a valid segmentation mask (at least one
pixel above tss = 0.5) we update both memories with the current predictions
and features. (b) If either the instance localization or segmentation fail to
identify the target we omit updating the segmentation memory. (c) If only
the segmentation mask fails to represent the target but the instance model can
localize it, we update the instance memory only. (d) If instance localization
fails we do not update either memory. Further, we trigger the few-shot learner
and model predictor after 20 frames have passed, but only if the corresponding
memory has been updated.

Final Mask Output Generation: We obtain the final segmentation mask by
thresholding the segmentation decoder output. To obtain the bounding box
required for standard tracking benchmarks, we report the smallest axis-aligned
box that contains the entire estimated object mask.

Inference Details: We set the input image resolution such that the segmenta-
tion learner features have a resolution of 52× 30 (stride 16), while the instance
learner operates on features of size 26× 15 (stride 32). The learning rate is set
to 0.1 and 0.01 for the segmentation and instance learner respectively. We use a
maximum buffer of 32 frames for the segmentation memory and 50 frames for
the instance memory. We keep the samples corresponding to the initial frame in
both memories and replace the oldest entries if the memory is full. We update
both memories for the first 100 video frames and afterwards only after every
20th frame. We randomly augment the sample corresponding to the initial frame
with vertical flip, random translation and blurring.

5.4 E VA L UAT I O N

Our approach is developed within the PyTracking [27] framework. The imple-
mentation is done with PyTorch 1.9 with CUDA 11.1. Our model is evaluated
on a single Nvidia GTX 2080Ti GPU. Our method achieves an average speed
of 30 FPS on LaSOT [35]. Each number corresponds to the average of five runs
with different random seeds.

Method
Seg. Inst. Branch LaSOT [35] NFS [42] UAV123 [87]

Branch Conditioning AUC P NP AUC P NP AUC P NP

LWL [6] 3 - 59.7 60.6 63.3 61.5 75.1 76.9 59.7 78.8 71.4
RTS 3 7 65.3 68.5 71.5 65.8 84.0 85.0 65.2 85.6 78.8
RTS 3 3 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6

Table 5.1 – Comparison between our segmentation network baseline LWL and
our pipeline, with and without Instance conditioning on different VOT datasets.
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Inst. Branch
tsc

LaSOT [35] NFS [42] UAV123 [87]
Fallback AUC P NP AUC P NP AUC P NP

7 0.30 69.3 73.1 75.9 65.3 82.7 84.0 66.3 87.2 80.4
3 0.30 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6

3 0.20 68.6 72.3 75.0 65.3 82.7 83.9 67.0 88.7 80.7
3 0.30 69.7 73.7 76.2 65.4 82.8 84.0 67.6 89.4 81.6
3 0.40 69.1 72.7 75.6 63.3 79.7 81.7 67.1 89.1 80.7

Table 5.2 – Ablation on inference strategies. The first column analyzes the
effect of using the instance branch as fallback for target localization if the
segmentation branch is unable to detect the target (max(ss) < tss). The second
column shows the impact of different confidence thresholds tsc .

5.4.1 Branch Ablation Study

For the ablation study, we analyze the impact of the instance branch on three
datasets and present the results in Tab. 5.1. First, we report the performance of
LWL [6] since we build upon it to design our final tracking pipeline. We use the
network weights provided by Bhat et al. [6] and the corresponding inference
settings. We input the same segmentation masks obtained from the initial
bounding box for LWL as used for our method. We observe that LWL is not
robust enough for challenging tracking scenarios. The second row in Tab. 5.1
corresponds to our method but we omit the proposed instance branch. Hence,
we use the proposed inference components and settings and train the tracker as
explained in Sec. 5.3.5, but with conditioning removed. We observe that even
without the instance localization branch our tracker can achieve competitive
performance on all three datasets (e.g. +5.6% on LaSOT). Fully integrating the
instance localization branch increases the performance even more (e.g. +4.4 on
LaSOT). Thus, we conclude that adapting the baseline method to the tracking
domain improves the tracking performance. To boost the performance and
achieve state-of-the-art results, an additional component able to increase the
tracking robustness is required.

5.4.2 Inference Parameters

In this part, we ablate two key aspects of our inference strategy. First, we study
the effect of relying on the instance branch if the segmentation decoder is unable
to localize the target (max(ss) < tss). Second, we study different values for
tsc that determines whether the target is detected by the instance model, see
Tab. 5.2.
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ToMP ToMP Keep STARK Alpha Siam Tr Super STM Pr DM
RTS 101 50 Track ST-101 Refine TransT R-CNN DiMP DiMP Track DiMP LWL Track LTMU DiMP Ocean D3S

[82] [82] [83] [133] [132] [19] [121] [123] [27] [40] [29] [6] [140] [25] [4] [139] [77]

Precision 73.7 73.5 72.2 70.2 72.2 68.8 69.0 68.4 66.3 65.3 63.3 60.8 60.6 59.7 57.2 56.7 56.6 49.4
Norm. Prec 76.2 79.2 78.0 77.2 76.9 73.8 73.8 72.2 73.0 72.2 69.3 68.8 63.3 66.9 66.2 65.0 65.1 53.9
Success (AUC) 69.7 68.5 67.6 67.1 67.1 65.9 64.9 64.8 63.9 63.1 60.6 59.8 59.7 58.4 57.2 56.9 56.0 49.2

∆ AUC to Ours - ↑1.2 ↑2.1 ↑2.6 ↑2.6 ↑3.8 ↑4.8 ↑4.9 ↑5.8 ↑6.6 ↑9.1 ↑9.9 ↑10.0 ↑11.3 ↑12.5 ↑12.8 ↑13.7 ↑20.5

Table 5.3 – Comparison to the state of the art on the LaSOT [35] test set in
terms of AUC score. The methods are ordered by AUC score.

RTS STA LWL PrDiMP-50 DiMP-50 SiamRPN++
[141] [6] [29] [4] [67]

SR0.50(%) 94.5 95.1 92.4 89.6 88.7 82.8
SR0.75(%) 82.6 85.2 82.2 72.8 68.8 -
AO(%) 85.2 86.7 84.6 77.8 75.3 73.0

Table 5.4 – Results on the GOT-10k validation set [52] in terms of Average
Overlap (AO) and Success Rates (SR) for overlap thresholds of 0.5 and 0.75.

If the segmentation branch cannot identify the target, using the instance
branch improves tracking performance on all datasets (e.g. +1.3% on UAV123).
Furthermore, Tab. 5.2 shows that our tracking pipeline achieves the best perfor-
mance when setting tsc = 0.3 whereas smaller or larger values for tsc decrease
the tracking accuracy. Hence, it is important to find a suitable trade-off between
frequently updating the model and memory to quickly adapt to appearance
changes and updating only rarely to avoid contaminating the memory and
model based on wrong predictions.

5.4.3 Comparison to the state of the art

Assessing segmentation accuracy on tracking datasets is not possible since only
bounding box annotations are provided. Therefore, we compare our approach
on six VOT benchmarks and validate the segmentation masks quality on two
VOS datasets.

LaSOT [35]: We evaluate our method on the test set of the LaSOT dataset,
consisting of 280 sequences with 2500 frames on average. Thus, the benchmark
challenges the long term adaptability and robustness of trackers. Fig. 5.3 shows
the success plot reporting the overlap precision OP with respect to the overlap
threshold T . Trackers are ranked by AUC score. In addition, Tab. 5.3 reports
the precision and normalized precision for all compared methods. Our method
outperforms the state-of-the-art ToMP-50 [82] and ToMP-101 [82] by large
margins (+1.2% and +2.1% AUC respectively). Our method is not only as
robust as KeepTrack (see the success plot for T < 0.2) but also estimates far
more accurate bounding boxes than any tracker (0.8 < T < 1.0).
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Figure 5.3 – Success (left) and Precision (right) plots on LaSOT [35] with other
state-of-the-art methods. The AUCs for all methods are ordered and reported in
the legend. Our method outperforms all existing approaches, both in Overlap
Precision (left) and Distance Precision (right).

ToMP ToMP Keep STARK STARK Siam Alpha STM Tr Super Pr
RTS 101 50 Track ST101 ST50 STA LWL TransT R-CNN Refine Track DTT DiMP DiMP DiMP D3S

[82] [82] [83] [133] [133] [141] [6] [19] [121] [132] [40] [135] [123] [27] [29] [77]

Precision 79.4 78.9 78.6 73.8 - - 79.1 78.4 80.3 80.0 78.3 76.7 78.9 73.1 73.3 70.4 66.4
Norm. Prec 86.0 86.4 86.2 83.5 86.9 86.1 84.7 84.4 86.7 85.4 85.6 85.1 85.0 83.3 83.5 81.6 76.8
Success (AUC) 81.6 81.5 81.2 78.1 82.0 81.3 81.2 80.7 81.4 81.2 80.5 80.3 79.6 78.4 78.1 75.8 72.8

∆ AUC to Ours - ↑0.1 ↑0.4 ↑3.5 ↓0.4 ↑0.3 ↑0.4 ↑0.9 ↑0.2 ↑0.4 ↑1.1 ↑1.3 ↑2.0 ↑3.2 ↑3.5 ↑5.8 ↑8.8

Table 5.5 – Comparison to the state of the art on the TrackingNet [88] test set in
terms of AUC scores, Precision and Normalized Precision.

GOT-10k [52]: The large-scale GOT-10k dataset contains over 10.000 shorter
sequences. Since we train our method on several datasets instead of only GOT-
10k train, we evaluate it on the val set only, which consists of 180 short videos.
We compile the results in Tab. 5.4. Our method ranks second for all metrics,
falling between two VOS-oriented methods, +0.6% over LWL [6] and −1.5%
behind STA [141]. Our tracker outperforms other trackers by a large margin.

TrackingNet [88]: We compare our approach on the test set of the TrackingNet
dataset, consisting of 511 sequences. Tab. 5.5 shows the results obtained from
the online evaluation server. Our method outperforms most of the existing ap-
proaches and ranks second in terms of AUC, close behind STARK-ST101 [133]
which is based on a ResNet-101 backbone. Note that we outperform STARK-
ST50 [133] that uses a ResNet-50 as backbone. Also, we achieve a higher
precision score than other methods that produce a segmentation mask output
such as LWL [6], STA [141], Alpha-Refine [132] and D3S [77].

UAV123 [87]: The UAV dataset consists of 123 test videos that contain small
objects, target occlusion, and distractors. Small objects are particularly chal-
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ToMP ToMP Keep STARK STARK Super Pr STM Siam Siam
RTS 101 50 Track CRACT ST101 TrDiMP TransT ST50 DiMP DiMP Track AttN R-CNN KYS DiMP LWL

[82] [82] [83] [36] [133] [123] [19] [133] [27] [29] [40] [137] [121] [5] [4] [6]

UAV123 67.6 66.9 69.0 69.7 66.4 68.2 67.5 69.1 69.1 67.7 68.0 64.7 65.0 64.9 – 65.3 59.7
NFS 65.4 66.7 66.9 66.4 62.5 66.2 66.2 65.7 65.2 64.8 63.5 – – 63.9 63.5 62.0 61.5

Table 5.6 – Comparison with state-of-the-art on the UAV123 [87] and NFS [42]
datasets in terms of AUC score.

STARK STARK-
ST-50 ST-101- Ocean Fast Alpha

RTS +AR +AR LWL STA Plus Ocean Refine RPT AFOD D3S STM
[133] [133] [59] [141] [59] [59] [59] [59] [59] [59] [59]

Robustness 0.845 0.817 0.789 0.798 0.824 0.842 0.803 0.777 0.869 0.795 0.769 0.574
Accuracy 0.710 0.759 0.763 0.719 0.732 0.685 0.693 0.754 0.700 0.713 0.699 0.751
EAO 0.506 0.505 0.497 0.463 0.510 0.491 0.461 0.482 0.530 0.472 0.439 0.308

∆ EAO to Ours - ↑0.001 ↑0.009 ↑0.043 ↓0.004 ↑0.015 ↑0.045 ↑0.024 ↓0.024 ↑0.034 ↑0.067 ↑0.198

Table 5.7 – Results on the VOT2020-ST [59] challenge in terms of Expected
Average Overlap (EAO), Accuracy and Robustness.

lenging in a segmentation setup. Tab. 5.6 shows the achieved results in terms of
success AUC. Our method achieves competitive results on UAV123, close to
TrDiMP [123] or SuperDiMP [27]. It outperforms LWL [6] by a large margin.

NFS [42]: The NFS dataset (30FPS version) contains 100 test videos with fast
motions and challenging sequences with distractors. Our method achieves an
AUC score that is only 1% below the current best method KeepTrack [83] while
outperforming numerous other trackers, including STARK-ST50 [133] (+0.2)
SuperDiMP [4] (+0.6) and PrDiMP [29] (+1.9).

VOT 2020 [59]: Finally, we evaluate our method on the VOT2020 short-term
challenge. It consists of 60 videos and provides segmentation mask annotations.
For the challenge, the multi-start protocol is used and the tracking performance
is assessed based on accuracy and robustness. We compare with the top methods
on the leader board and include more recent methods in Tab. 5.7. In this setup,
our method ranks 2nd in Robustness, thus outperforming most of the other
methods. In particular, we achieve a higher EAO score than STARK [133],
LWL [6], AlphaRefine [132] and D3S [77].

YouTube-VOS 2019 [130]: We use the validation set which consist of 507
sequences. They contain 91 object categories out of which 26 are unseen in
the training set. The results presented in Tab. 5.8 were generated by an online
server after uploading the raw results. On this benchmark, we want to validate
the quality of the produced segmentation masks rather than to achieve the best
accuracy possible. Hence, we use the same model weight as for VOT without
further fine tuning.
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Method
YouTube-VOS 2019 [130] DAVIS 2017 [101]

G Jseen Junseen Fseen Funseen J&F J F

RTS 79.7 77.9 75.4 82.0 83.3 80.2 77.9 82.6
LWL [6] 81.0 79.6 76.4 83.8 84.2 81.6 79.1 84.1
STA [141] 80.6 - - - - - - -
STM [92] 79.2 79.6 73.0 83.6 80.6 81.8 79.2 84.3

RTS (Box) 70.8 71.1 65.2 74.0 72.8 72.6 69.4 75.8
LWL (Box) [6] - - - - - 70.6 67.9 73.3
Siam-RCNN [121] 67.3 68.1 61.5 70.8 68.8 70.6 66.1 75.0
D3S [125] - - - - - 60.8 57.8 63.8
SiamMask [77] 52.8 60.2 45.1 58.2 47.7 56.4 54.3 58.5

Table 5.8 – Results on the Youtube-VOS 2019 [130] and DAVIS 2017 [101]
datasets. The table is split in two parts to separate methods using bounding
box initialization or segmentation masks initialization, in order to enable a fair
comparison.

When using the provided segmentation masks for initialization, we observe
that our method performs slightly worse than LWL [6] and STA [141] (-1.3
G, -0.9 G) but still outperforms the VOS method STM [92] (+0.5 G). We
conclude that our method can generate accurate segmentation masks. When
using bounding boxes to predict both the initialization and segmentation masks,
we outperform all other methods by a large margin. This confirms that even with
our bounding-box initialization strategy, RTS produces accurate segmentation
masks.

DAVIS 2017 [101]: Similarly, we compare our method on the validation set
of DAVIS 2017 [101], which contains 30 sequences. We do not fine tune the
model for this benchmark. The results are shown in Tab. 5.8 and confirm the
observation made above that RTS is able to generate accurate segmentation
masks. Our method is competitive in the mask-initialization setup. In the
box-initialization setup however, our approach outperforms all other methods
in J&F , in particular the segmentation trackers like SiamMask [125] (+16.2)
and D3S [77] (+11.8).

5.5 C O N C L U S I O N

We introduced RTS, a robust, end-to-end trainable, segmentation-driven track-
ing method that is able to generate accurate segmentation masks. Compared
to the traditional bounding box outputs of classical visual object trackers, seg-
mentation masks enable a more accurate representation of the target’s shape
and extent. The proposed instance localization branch helps increasing the
robustness of our tracker to enable reliable tracking even for long sequences of
thousands of frames. Our method outperforms previous segmentation-driven
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tracking methods by a large margin, and it is competitive on several VOT bench-
marks. In particular, we set a new state of the art on the challenging LaSOT [35]
dataset with a success AUC of 69.7%. Competitive results on two VOS datasets
confirm the high quality of the generated segmentation masks.
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5.A A D D I T I O NA L A R C H I T E C T U R E D E TA I L S

A P P E N D I C E S

In these appendices, we provide further details on various aspects of our track-
ing pipeline. First, we provide additional architectural and inference details
in Sections 5.A and 5.B. Second, we provide additional ablation studies, in
particular on the loss weighting parameter η on different benchmarks to show
the importance of the auxiliary instance localization loss in Section 5.C. Then,
we provide success plots for different VOT benchmarks as well as a detailed
analysis of our results on LaSOT [35] by comparing our approach against
the other state-of-the-art methods for all the dataset attributes in Section 5.D.
Finally, we provide some additional visual comparison to other trackers on
Figure 5.8.

5.A A D D I T I O NA L A R C H I T E C T U R E D E TA I L S

Classification Scores Encoder Hθ: First, we describe in Figure 5.4 the
architecture of the Classification Scores Encoder Hθ. It takes as input the
H ×W -dimensional scores predicted by the Instance Localization (Classifica-
tion) branch and outputs a 16 channels deep representation of those scores. The
score encoder consists of a convolutional layer followed by a max-pool layer
with stride one and two residual blocks. The output of the residual blocks has
64 channels. Thus, the final convolutional layer reduces the number of channels
of the output to 16 to match the encoded scores with the mask encoding. All
the convolutional layers use (3× 3) kernels with a stride of one to preserve the
spatial size of the input classification scores.

Segmentation Decoder Dθ: The segmentation decoder has the same structure
has in LWL [6]. Together with the backbone, it shows a U-Net structure
and mainly consists of four decoder blocks. It takes as input the extracted
ResNet-50 backbone features and the combined encoding xf from both the
instance localization branch (Hθ(sc)) and the segmentation branch (xm), with
xf = xm +Hθ(sc). Since the encoded instance localization scores have a lower
spatial resolution than the mask encoding xm, we upscale the encoded instance
localization scores using a bilinear interpolation before adding it with the mask
encoding xm. We refer the reader to [6] for more details about the decoder
structure.

Segmentation Branch: We use the same architectures for the feature extractor
Fθ, the label encoder Eθ, the weight predictor Wθ, the few-shot learner Aθ and
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Figure 5.4 – Classification Scores Encoder Hθ.

the segmentation model Tτ as proposed in LWL [6]. Hence, we refer the reader
to [6] for more details.

Instance Localization Branch: We use the same architectures for the feature
extractor Gθ, the model predictor Pθ and the instance model Tκ as proposed in
DiMP [4]. Hence, we refer the reader to [4] for more details.

5.B A D D I T I O NA L I N F E R E N C E D E TA I L S

Search region selection: The backbone does not extract features on the full
image. Instead, we sample a smaller image patch for extraction, which is cen-
tered at the current target location and 6 times larger than the current estimated
target size, when it does not exceed the size of the image. The estimation of the
target state (position and size) is therefore crucial to ensure an optimal crop. In
most situations, the segmentation output is used to determine the target state
since it has a high accuracy. The target center is computed as the center of mass
of the predicted per-pixel segmentation probability scores. The target size is
computed as the variance of the segmentation probability scores.

If the segmentation branch cannot find the target (as described in this chapter),
but the instance branch still outputs a high enough confidence score, we use it
to update the target position. This is particularly important in sequences where
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5.C A D D I T I O NA L A B L AT I O N S

the target is becoming too small for some time, but we can still track the target
position.

When both branch cannot find the target, the internal state of the tracker is not
updated. We upscale the search area based on the previous 60 valid predicted
scales. This is helpful in situations where the size of the object shrinks although
its size does not change. This typically happens during occlusions, or if the
target goes out of the frame partially or completely.

5.C A D D I T I O NA L A B L AT I O N S

In this section, we provide additional ablation studies related to our method,
first on the weighting of the segmentation and classification losses used for
training, second on the parameters that might make a difference specifically for
VOS benchmarks like Youtube-VOS [130].

Weighting segmentation and classification losses: For this ablation, we study
the weighting of the segmentation loss Ls and the instance localization loss Lc
in the total loss Ltot. It used to train our model and its influence on the overall
performance during tracking. We recall that

Ltot = Ls + η · Lc. (5.6)

Table 5.9 shows the results when training the tracker with three different values
of η on five VOT datasets. First, we examine the case where we omit the auxil-
iary instance localization loss (η = 0.0). This means that the whole pipeline
is trained for segmentation and the instance branch is not trained to produce
specifically accurate localization scores. We observe that this setting leads to
the lowest performance on all tested datasets, often by a large margin. Secondly,
we test a dominant segmentation loss (η = 0.4), since the segmentation branch
needs to be trained for a more complex task than the instance branch. We see a
performance gain for almost all datasets. Thus, employing the auxiliary loss to
train the instance localization branch helps to improve the tracking performance.
We observe that using the auxiliary loss leads to localization scores generated
during inference that are sharper, cleaner and localize the center of the target
more accurately. Finally, we put an even higher weight on the classification
term (η = 10). This setup leads to an even more accurate localization, and
leads to the best results on average. Thus, we set η = 10 to train our tracking
pipeline.

Fine-tuning on Youtube-VOS [35]: In this section, we analyze whether we
can gear our pipeline towards VOS benchmarks. To do that, we take our model
and inference parameters, and modify them slightly. On the one hand, the model
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LaSOT [35] GOT-10k [52] TrackingNet [88] NFS [42] UAV123 [87]
η AUC AO AUC AUC AUC

0.0 67.7 84.0 81.2 63.7 64.7
0.4 69.8 84.0 81.4 66.2 67.4
10 69.7 85.2 81.6 65.4 67.6

Table 5.9 – Ablation on the classification vs. segmentation loss weighting on
different datasets in terms of AUC (area-under-the-curve) and AO (average
overlap)

.

YouTube-VOS 2019 [130] DAVIS 2017 [101]
Method G Jseen Junseen Fseen Funseen J&F J F

RTS 79.7 77.9 75.4 82.0 83.3 80.2 77.9 82.6
RTS (YT-FT) 80.3 78.8 76.2 82.9 83.5 80.3 77.7 82.9
LWL [6] 81.0 79.6 76.4 83.8 84.2 81.6 79.1 84.1
STA [141] 80.6 - - - - - - -
STM [92] 79.2 79.6 73.0 83.6 80.6 81.8 79.2 84.3

Table 5.10 – Results on the Youtube-VOS 2019 [130] and DAVIS 2017 [101]
datasets with a fined tuned model and inference parameters referred as RTS
(YT-FT).

is fined-tuned for 50 epochs using Youtube-VOS [130] only for both training
and validation. We also increase the initialization phase from 100 to 200 frames,
and remove the relative target scale change limit from one frame to the next. In
our standard model, we limit that scale change to 20% for increased robustness.

The results are presented in Table 5.10 for Youtube-VOS [130] and Davis [101].
We observe that the performances between both of our models stay very close
for Davis, but that the fine-tuned model is getting closer to the baseline LWL [6]
for Youtube-VOS. The more frequent updates seem to help, and not restricting
the scale change of objects from frame to frames seems to play a role, since we
get an improvement of 0.6 in G score.

5.D A D D I T I O NA L E VA L UAT I O N R E S U LT S

In this section, we provide additional plots of our approach on different bench-
marks, and a attribute analysis on LaSOT [35].

Success plots for LaSOT [35], NFS [42] and UAV123 [87]: We provide in
Figure 5.5 all the plots for the metrics we report for LaSOT [35] in the chapter:
Success, Normalized Precision and Precision plots. For completeness, we
provide the success plots for NFS [42] and UAV123 [87] in Figure 5.6.
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Figure 5.5 – Success, precision and normalized precision plots on LaSOT [35].
Our approach outperforms all other methods by a large margin in AUC, reported
in the legend.

Attribute analysis on LaSOT [35]: In this section, we focus on the dataset
sequences attributes. We compare our approach to numerous other trackers,
and provide the detailed results in Table 5.11. Furthermore, we highlight the
strength of our approach in Figure 5.7 by focusing the comparison only to the
two current state-of-the-art methods ToMP-101 and ToMP-50 [82].

There are 14 attributes provided for LaSOT [35] sequences, representing
different kind of challenges the tracker has to deal with in different situations.
Compared to existing trackers, our method achieves better AUC scores in 11 out
of 14 attributes. In particular, we outperform ToMP-50 [82] and ToMP-101 [82]
by a large margin for the following attributes: Camera Motion (+4.2% and
+2.7%), Scale Variation (+1.8% and 0.9%), Deformation (+3.1% and +2.2%),
Motion Blur (+3.1% and +2.5%) and Aspect Ratio Change (+1.7% and +1.0%).
Our method is only outperformed on three attributes by KeepTrack [83] and
ToMP [82] for Fast Motion (-2.3% to -4.1%) and for Illumination Variation
(-0.3% to -1.4%). For Background Clutter, RTS outperforms ToMP-50 [82] by
2.3% and fall just behind ToMP-101 [82] (-0.1%).
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Figure 5.6 – Success plots on the UAV123 [87] (left) and NFS [42] (right)
datasets in terms of overall AUC score, reported in the legend.

Illumination Partial
Deformation

Motion Camera
Rotation

Background Viewpoint Scale Full Fast
Out-of-View

Low Aspect
Total

Variation Occlusion Blur Motion Clutter Change Variation Occlusion Motion Resolution Ratio Change

LTMU [25] 56.5 54.0 57.2 55.8 61.6 55.1 49.9 56.7 57.1 49.9 44.0 52.7 51.4 55.1 57.2
LWL [6] 65.3 56.4 61.6 59.1 64.7 57.4 53.1 58.1 59.3 48.7 46.5 51.5 48.7 57.9 59.7
PrDiMP50 [29] 63.7 56.9 60.8 57.9 64.2 58.1 54.3 59.2 59.4 51.3 48.4 55.3 53.5 58.6 59.8
STMTrack [40] 65.2 57.1 64.0 55.3 63.3 60.1 54.1 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6
SuperDiMP [4] 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1
TrDiMP [123] 67.5 61.1 64.4 62.4 68.1 62.4 58.9 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9
Siam R-CNN [121] 64.6 62.2 65.2 63.1 68.2 64.1 54.2 65.3 64.5 55.3 51.5 62.2 57.1 63.4 64.8
TransT [19] 65.2 62.0 67.0 63.0 67.2 64.3 57.9 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9
AlphaRefine [132] 69.4 62.3 66.3 65.2 70.0 63.9 58.8 63.1 65.4 57.4 53.6 61.1 58.6 64.1 65.3
KeepTrack Fast [83] 70.1 63.8 66.2 65.0 70.7 65.1 60.1 67.6 66.6 59.2 57.1 63.4 62.0 65.6 66.8
KeepTrack [83] 69.7 64.1 67.0 66.7 71.0 65.3 61.2 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1
STARK-ST101 [133] 67.5 65.1 68.3 64.5 69.5 66.6 57.4 68.8 66.8 58.9 54.2 63.3 59.6 65.6 67.1
ToMP-50 [82] 66.8 64.9 68.5 64.6 70.2 67.3 59.1 67.2 67.5 59.3 56.1 63.7 61.1 66.5 67.6
ToMP-101 [82] 69.0 65.3 69.4 65.2 71.7 67.8 61.5 69.2 68.4 59.1 57.9 64.1 62.5 67.2 68.5
RTS 68.7 66.9 71.6 67.7 74.4 67.9 61.4 69.7 69.3 60.5 53.8 66.3 62.7 68.2 69.7

Table 5.11 – LaSOT [35] attribute-based analysis. Each column corresponds
to the results computed on all sequences in the dataset with the corresponding
attribute. Our method outperforms all others in 12 out of 14 attributes.

Visual results on LaSOT [35]: Figure 5.8 shows additional visual results com-
pared to other state-of-the-art trackers on 6 different sequences of LaSOT [35].
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Figure 5.7 – Attributes comparison on LaSOT [35].
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Figure 5.8 – Qualitative results on LaSOT [35] of our approach compared to the previous state-of-the-art methods KeepTrack [83]
and STARK-ST101 [133]. As they do not produce segmentation masks, we represent ours as a red overlay and print for all
methods the predicted bounding boxes with the following color code: � KeepTrack � STARK-ST101 � RTS
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6D I S C U S S I O N

6.1 S U M M A RY O F C O N T R I B U T I O N S

In this thesis, we explored several approaches to using spatio-temporal in-
formation to improve video scene understanding, in the scope of Semantic
Segmentation and Visual Object Tracking and Segmentation. The first part of
the thesis presented architectures to convert single-frame semantic segmentation
networks into video semantic segmentation pipelines. To that end, chapter 3
relied on optical flow to propagate semantic features and focused on decreasing
the processing time for each frame. Chapter 4 aimed at improving the segmen-
tation quality by directly storing and matching semantic features from previous
frames in a dedicated memory that can be used through attention mechanisms.

The second part of the thesis focused on VOT and its relationship with VOS
in chapter 5. We proposed to put the segmentation at the core of the tracking
architecture in contrast with most existing methods and to combine it with
a simpler localization task to increase its robustness. The resulting pipeline
showed state-of-the-art performances and hopefully paved the way for different
approaches in VOT.

Chapter 3 presented EVS [96], which proposed to balance the computation
load both on the GPU and on the CPU in parallel, to push the standards in
terms of speed. Based on a fast optical flow method, it additionally introduced a
lightweight module to guide and refine the propagation of semantic information.
Our design offers several operating points to trade off segmentation quality
versus frame rate and showed substantial speed improvements at a relatively
small cost in segmentation. Overall, we showed the benefits of balancing the
computation between GPU and CPU.

Chapter 4 presented LMANet [94], which demonstrated how to improve the
accuracy of a single-frame semantic segmentation method with a novel, generic
and simple structure. Our approach is based on explicitly modeling the semantic
information aggregated from previous frames matched in space and time to
improve the current frame segmentation. LMANet [94] successfully increased
the segmentation score from two popular segmentation networks by almost 2%
on the popular Cityscapes [24] dataset, while preserving their frame rates.

79



D I S C U S S I O N

Chapter 5 introduced RTS [95], a robust segmentation-driven tracking pipeline
that is end-to-end trainable and capable of generating segmentation masks. Our
method relies on a dual-branch architecture with distinct feature spaces and
memories to better optimize meta parameters for each task: localization and
segmentation. Having segmentation masks at the core of the pipeline enables
the tracker to learn a richer representation of the targets. Our approach showed
state-of-the-art results on several popular VOT benchmarks, even outperforming
by a large margin more recent transformer-based approaches on LaSOT [35],
with an AUC score of 69.7%.

6.1.1 Open-Source Contributions

Following the trend of most research papers in computer vision nowadays, the
source code for chapters 4 and 5 has been made public on GitHub. This should
help other researchers to access all the details of the proposed methods both
in terms of parameters and practical implementation. Moreover, open-sourced
methods should reduce significantly the time needed to reproduce results and
develop new approaches on top of them, thus accelerating the pace of research
in that field. In particular, we contributed online to the following repositories:

— https://github.com/mattpfr/lmanet
This repository contains the code to train and test LMANet [94] described
in chapter 4. It can also be used out of the box, as pre-trained models are
also provided.

— https://github.com/visionml/pytracking
The repository contains the implementation and the scripts to train, test,
debug, and visualize RTS [95] described in chapter 5. Pre-trained models
and a compilation of results are also available at this address. Note that
several other popular visual object trackers and visual object segmentation
models are available at this URL.

6.2 L I M I TAT I O N S A N D P O S S I B L E F U T U R E R E S E A R C H

In this thesis, we proposed a few methods to improve existing single-frame
semantic segmentation networks in the context of videos. We also proposed a
unique framework to bridge the gap between Visual Object Tracking and Video
Object Segmentation. In this section, we discuss the limitations of the presented
works and open the discussion on possible research directions that could be
pursued in the future.
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6.2.1 EVS

Chapter 3 explored the simple, yet powerful idea to use optical flow to propagate
semantic information across frames. As we focused on pushing the boundaries
of video semantic segmentation in terms of frame rate, we selected DIS [61],
an optical flow that could run extremely fast on the CPU, together with an effi-
cient single-frame semantic segmentation network, ICNet [142]. Although our
approach can conceptually and practically always be applied, we can highlight
three main limitations.

First, our method showed interesting results when it was written, but it
relied on two other components which could be replaced by other and newer
approaches. It would indeed be interesting to study more combinations of
optical flow and semantic segmentation methods since this research field moves
quite quickly and the trade-offs exposed in our work might be different now.

Second, this chapter showed that working toward increasing inference speed
is quite difficult in research. This is because, on the one hand, it requires being
thorough when measuring and reporting time, because it depends on a lot of
factors: CPU type, GPU model, current CPU load, library versions, tools used to
measure, border effects, etc. On the other hand, comparing results against other
works in a fair way either requires having all the details about the procedure
used by other teams, or reproducing these methods locally. These difficulties
limit the reasoning beyond the scope of those works and their assumptions,
compared to industry applications.

Third, there seems to be a global trend toward providing means to boost
inference times for models deployed in the industry for real-world applications.
For instance, on the hardware side, dedicated chips for optical flow computation
are now embedded in GPUs, which could replace in our case the optical flow
running on the CPU. Generally, the usage of dedicated hardware chips for
Deep Learning pipelines is becoming more and more common. Besides, from
the software side, the use of the TensorRT SDK and the advancements in the
optimizations made for deployment can substantially reduce inference times
once a model is deployed. This is adding another layer of complexity when it
comes to measuring the actual final performance.

6.2.2 LMANet

Chapter 4 presented a novel architecture to transform a single-frame semantic
segmentation model into a video segmentation pipeline. This architecture,
although simple and generic, showed an interesting boost in segmentation
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accuracy, at a minimal cost in terms of inference time. We believe that it could
be interesting to refresh and continue this work in two different ways.

First, attention mechanisms are now quite commonly used for various tasks
and it would make sense to consider the best practices from other newer methods.
In particular, it would be interesting to review and experiment with different
ways of representing semantic features, as well as improving querying and
matching mechanisms. The fusion module is also a key component that could
be refined to improve the quality of the segmentation output.

Second, it would be a good idea to study how our approach behaves with
more recent semantic segmentation models for single frames. Hopefully, using
a better baseline would mean having semantic features of better quality that
could further improve the final segmentation result.

6.2.3 RTS

Chapter 5 introduced a state-of-the-art visual object tracking pipeline that
places segmentation at its core instead of having it as a side component or a
post-processing step. Although its segmentation-centric approach is fairly rare
in the literature, with only two older methods [77, 125] using similar approaches,
it proved to be very promising. Indeed, we showed that RTS [95] could compete
head-to-head with other trackers, in some cases outperforming methods with
bigger backbones and transformer-based architectures [82, 133]. In several
benchmarks, we observed that our method could not only predict more accurate
bounding boxes and richer segmentation outputs but also remain robust across
very long videos. Therefore, we hope that our method will help pave the way
for more segmentation-centric approaches and slowly bridge the gap between
Visual Object Tracking and Video Object Segmentation.

Going forward, we believe our method could be improved by tackling its
inherent limitations while preserving the segmentation-centric approach. We
identify three main research directions that could be interesting to follow and
lead to improvements.

One of the limitations of our architecture is the multi-objects handling: in
the current version, each object is processed separately, which means that in
scenarios where multiple targets of interest are present, the computational cost
per frame can quickly become prohibitive. Future works would need to explore
the same concept with multi-objects segmentation and tracking, especially how
to store and relate features from different targets. This would potentially help
both processing time and distractors tracking, since currently, similar objects
(distractors) can be a source of mistakes and lead to losing the target completely.
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The second biggest limitation of our architecture is when it “loses” the target,
which can occur for various reasons: distractors are close to the real target, the
camera motion is challenging and introduces substantial changes in appearance,
the target is occluded for some time, the target is too fast, the object goes
out of the camera view, etc. In the current version, our method handles the
situation by a rather simplistic strategy that consists in not updating its internal
representation of the target, and waiting until it reappears in the same region
where it was lost. Although this is a reasonable strategy for different scenarios,
it is vulnerable to distractors in the scene and can lead to a permanent loss of
tracking if the object goes out of the search region or re-appears somewhere
else in the image. A global mechanism for re-initialization would be needed to
handle such scenarios and recover the target in more cases.

Finally, it would be very interesting to review newer architectures for both
tracking and segmentation. Visual Object Tracking and Video Object Segmen-
tation are two extremely dynamic fields that also saw big improvements coming
from transformer-based architectures. We believe that using more up-to-date
components and techniques from VOS and VOT, and considering the previous
limitations while designing a new architecture could yield interesting results.
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