
Improving virtual representations of
environments for usage in augmented reality

Adrian Hirt
Supervised by

Prof. Dr. Marc Pollefeys
Dr. Iro Armeni

Master thesis

Departement of Computer Science
ETH Zürich
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Abstract

In this thesis, I present a method to merge data captured
from the real world in the form of a point cloud with a low-
detail virtual model of the same environment. The method
first extracts the relevant structure from the captured point
cloud and then uses this structure to generate a low-detail
version of the point cloud. This low-detail version of the
point cloud will then be fitted into the virtual model, using
a combination of a custom global registration and ICP. The
fitted point clouds will then be merged into a single point
cloud, resulting in a version of the virtual model with added
data from the real world.

1. Introduction
1.1. Overview

In this thesis, I explore the possibility to augment a 3D
representation of a building containing interior structure
with data captured from the real world. The representa-
tion might have some inaccuracies in regard to scale, and
lack details such as color, furniture and other more detailed
structure, which could be added with the captured data.
I start with a simple, relatively rough model of the build-
ing, which is generated from the floor plan of the building,
and first explore various methods of capturing data from the
real world. I then explore some different approaches to pro-
cess the captured data, such that it can be added to the 3D
model. This includes a process to fit the captured data into
the 3D model, needing little to no human interaction during
the process.
I then show in more detail the final method I developed,
and explain the various intermediate steps required for the
whole pipeline. I also present some other approaches which
I evaluated, and elaborate why I decided against using these
approaches.
I will compare my method to other approaches, for example
directly running the ICP algorithm on the data. I will also
outline the shortcomings of my method and possible future
work to improve it.

1.2. Motivation

In my semester project ”AR indoor navigation” 1, I de-
veloped a proof-of-concept for a system which navigates
users through buildings using a head-mounted mixed real-
ity device such as the Hololens 2.

This method uses a 3D model of the environment for the
computation of the navigation, as well as for the visualiza-
tion of the navigation (e.g. to correctly occlude the rendered
navigation visualization when it disappears behind obsta-
cles).

1https://github.com/Adrian-Hirt/SemesterProject

The 3D model of the building was generated from the
floor plans of the structure, which simplifies setting up the
model, as no extensive scanning of the real world (e.g. by
creating a point cloud using LIDAR or structure from mo-
tion) is needed. However, the 3D model lacks details, and
might contain some dimensional inaccuracies. This can be
due to inaccuracies in the floor plan itself (e.g. wrong scale
of the sides of a room), in the reconstruction process (e.g.
by making a wall too thin) or using a wrong height of the
floor (as this measurement is often absent in floor plans).

A floor plan also does not include many details, for ex-
ample the height of a door, which therefore results in the
doors being ”holes” in the wall, stretching from the floor all
the way to the ceiling. This results in several issues with the
navigation setup.

For example, if the virtual world (where the navigation
is computed & rendered in) differs too much from the real
world, the visualization of the navigation will be inaccurate
or wrong, e.g. by having the visualization lead through a
wall, the height of stairs being incorrect etc.

Using the 3D model to locate the device from one (or
possibly several) 2D query images is also rather difficult, as
many important features either are missing or don’t match
their real world counterpart.

In the application I developed for the project, the user has
to select their start-point from a list of given start locations,
which translates the virtual model to match the position of
the user. This is extremely cumbersome and limits the us-
ability of the application. Also, as the scale of the model is
not exactly the same as the real world, the navigation often
would clip through walls.

My main motivation for this thesis is now to develop an
approach where I can still start with the 3D model generated
from the floor plan, and then use the application a few times
to capture real-world data, which then corrects the scale of
the model and adds important details, such that localization
is possible and the visualized navigation path matches the
real world.

1.3. Applications in practice

As previously mentioned in the section about the mo-
tivation 1.2, this thesis is based on some issues I came
across during development of my application for the AR in-
door navigation semester project. One application in prac-
tice could definitely be to augment the virtual models in
that project in such a way that the localization & tracking
work better, while also fixing incorrect scales of the virtual
model.

Another use could be to progressively enhance simple
models of public buildings, such as train stations, air ports,
schools etc. with data submitted from users, where the users
only would need to submit sequences of photos, which then
add more details to a simple initial model of that building.
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2. Related work

2.1. Structure from motion

Structure from motion (SfM) was proposed by Ullman
[10]. It is an approach to estimate 3D structure from 2D
input images, as well as estimating the camera poses for
each individual input image.

In my thesis, I use SfM to create the initial point cloud
from the set of input images captured with a normal camera.
The pipeline built to process and fit this point cloud into the
3D model of the building would also work with any other
point cloud, e.g. generated from a lidar scanner. The advan-
tage of using SfM is that it’s possible to use my method with
only a RGB camera, for example a smartphone camera, not
requiring any specialized hardware to capture the data.

2.2. Iterative Closest Point

The iterative closest point (ICP) algorithm is an often
used approach to register two sets of points, whether they
are in a 2D curve or a 3D point cloud.

The original ICP algorithm was proposed by Besl and
McKay [1] as well as by Zhang [11].

In ICP, the goal is to find a rigid transformation on the
set of points P = {p1, . . . , pn} ∈ Rd, which minimizes the
distance to the set Q = {q1, . . . , qm} ∈ Rd. The transfor-
mation can be represented as a rotation matrix R ∈ Rd×d

and a translation t ∈ Rd.
The ICP algorithm is, as the name already suggests, an

iterative algorithm which requires multiple iterations of two
steps to find this transformation:

The first step is the data association step, where each
point in P is associated to its nearest neighbour (i.e. point
with smallest distance) in Q.

The second step is the transformation step, where the
transformation is updated to minimize the euclidean dis-
tance between the points and their respective correspond-
ing points. This transformation usually consists of shifting
the centers of mass of the points and their corresponding
points onto each other, and then applying a rotation which
minimizes the distance between the points. The rotation is
usually computed using SVD.

This process is then repeated until a convergence criteria
is reached. In each step, the points are newly associated
to their corresponding points, as the initial correspondence
might not be optimal.

The ICP algorithm is widely used to align two point
clouds with each other, usually to reconstruct surfaces from
different scans, where the partial scans overlap in some way.

In this thesis, I evaluated directly running ICP on the two
point clouds (one from the 3D model and the other from the
captured data), to see whether this already yields an usable
result. I also use ICP to refine the alignment I get from

registering the point clouds on a larger scale, as ICP usually
requires an already good initial alignment.

2.3. RANSAC

The random sample consensus (RANSAC) algorithm
was first proposed by Fischler and Bolles [4].

It can be used to handle data with outliers / noise. It
separates the data into inliers and outliers. In the 3D case,
this usually consists of fitting a 3D plane into a collection
of data points, for example a point cloud.

In the RANSAC algorithm, a certain number of points
(in the case of a 3D plane at least 3) is randomly selected,
and then the line or plane is fitted into these selected points.
In the next step, the algorithm computes the number of in-
liers and outliers, which results in a ”score” for this fitting.
Usually, this just means selecting the points which lie within
a certain distance to the plane as inliers, while treating all
points which lie outside of this threshold as outliers.

This process is then repeated a certain number of times,
and after all iterations are completed, the fitted plane with
the best score is returned from the algorithm.

In its most basic form, the RANSAC algorithm is very
simple, and can easily be implemented and adapted. In
my thesis, I use the RANSAC algorithm, both in its nor-
mal form, where an arbitrary plane can be returned from
the algorithm, as well as in a modified version, where the
search space for planes can be restricted to a certain axis in
3D space. I will elaborate more on this modified version in
the section about the method 4.

2.4. Manhattan world assumption

The Manhattan world assumption was first proposed by
Coughlan and Yuille [2]. It states that all surfaces in the
world are aligned with three main directions, usually called
the X , Y and Z directions. While this assumption does not
always work for structures found in the real world, as there
might be diagonal walls, round shapes or other irregulari-
ties, it still holds true for the surfaces I work with in my
thesis.

Using this assumption simplifies many tasks in my the-
sis, as I can for example assume that all planes identified as
walls need to be aligned within a certain degree of one of
the three main axis to be a valid wall. Furthermore, regis-
tration of the point cloud from the 3D model and the point
cloud from the captured data is simplified, as I do not need
to consider arbitrary rotations in the transformation. The
problem simplifies to first align the floor planes of the two
point clouds, and then rotating one point cloud in a way that
the X and Y principal axis of the two clouds align. Now,
the rotation still might be wrong, as the point clouds can
have different principal directions, but now I only need to
consider 4 possible rotations: 0, 90, 180 and 270 degrees.
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3. Research Questions
The main question that the thesis is concerned with is the

following:
Is there a way a noisy point cloud generated from 2D

input images can be processed in such a way that it can be
fit to a 3D model without needing human interaction?

As explained in the section 1.2, the main goal of this
process is to augment the CAD model point cloud with data
captured from the real world, such that augmented reality
applications can use this virtual model to navigate through
the real world. Of course, one could process the data man-
ually, fitting the newly captured data in the CAD model
by hand, however this task is time-consuming, especially
if there are many point clouds to fit into various models.

In addition to the main question, two sub-questions also
are relevant for the thesis:

1. What steps can be taken to reduce the complexity &
noise of the captured point cloud?

2. Are there any simplifications and assumptions that can
be applied to simplify the overall task?

As I’m working with an unprocessed point cloud as in-
put, it will have some noise in it, as well as points which
cannot be used for registration of the two point clouds (or
rather negatively impact the accuracy, e.g. from points be-
longing to furniture in one point cloud which are not present
in the other point cloud).

4. Method
4.1. General

The general idea of my approach is to receive a set of im-
ages taken by any normal RGB camera and a CAD model of
the structure where we want to fit the captured data in (e.g.
an apartment). It then processes the images, creating a 3D
point cloud, which however still contains a lot of unusable
points, in the form of noise as well as points which do not
belong to a wall. These points usually make up the furniture
and any other objects existing in a normal environment.

While the points belonging to furniture have the poten-
tial to add a lot of meaningful structure to the model, they
also make if more difficult to actually fit the captured point
cloud into the CAD model, as the difference between the
two point clouds can be rather large, and as the arrangement
of furniture often varies between types of rooms, it’s rather
difficult to come up with a way to also use these points to
fit the point clouds onto each other.

4.1.1 Inputs

The first input is the CAD model of the structure. This CAD
model is a point cloud of the whole structure, which might

have some inaccuracies, e.g. a wrong wall height. The de-
tails on this model are rather low, i.e. only the most relevant
structural elements are present, so no furniture or decora-
tion.

For my thesis, I followed a similar approach as I did for
my semester project, where I use a cleaned up version of
the floor plan of the structure (i.e. no text, door symbols
and other symbols), where only the walls are present.

Figure 1. The simplified floor plan used to create the CAD model
from

As one can see, this is basically a binary height map,
where a black pixel means full height (i.e. a wall), and a
white pixel is zero height (i.e. a floor point).

With this, I then use the HMM 2 program, which turns
this 2D image into a 3D mesh. The initial height of the
model is chosen in a way that it looks plausible. This is a
rather inaccurate approach, however many floor plans avail-
able to normal users lack any details about the height of the
rooms. Other than manually measuring, there isn’t a way to
get the correct height, but usually one can estimate which
height input works for the given floor plan.

After processing with the HMM program, the result-
ing mesh is then turned into a point cloud using sampling,
which results in the point cloud representing the environ-
ment I want to fit the captured data in. The sampling step
was done with a large sample count, returning a dense point
cloud, as downsampling (using uniform downsampling or
voxel downsampling) can still be used later in the program
if needed.

2https://github.com/fogleman/hmm
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Figure 2. The resulting point cloud from the floor plan

Using HMM and the floor plan is of course only one of
many possible ways to create the CAD model point cloud.
Any other point cloud of the environment will also work.

The second input is the captured data, in form of a se-
quence of RGB images. The images do not necessarily need
to be RGB, as the chosen SfM pipeline (see the following
section 4.2) also works with grayscale images. However,
most cameras featured in portable devices such as smart-
phones, digital cameras, drones and often also augmented
reality headsets are capable of capturing RGB images.

Using RGB images has the advantage that the resulting
point cloud also features colors. This is additional useful in-
formation which is added to the colorless CAD model point
cloud. This color information can then either be used for lo-
calization & navigation inside the environment, or the algo-
rithm could also use color information of previously added
data to better fit data in the CAD model point cloud. This
is especially the case if the environment is rather large, e.g.
a whole building instead of only a part of the building (e.g.
an apartment).

The main point to be made here however is that the
method works with RGB images, and does not require
RGB-D images (i.e. images which also feature a depth di-
mension). To be able to capture RGB-D images, one needs
special hardware supporting this, which limits the number
of devices that can be used for this.

The image 3 is an example of an image from the se-
quence of input images. The images were captured with
a Sony Alpha II camera, held on chest height, while walk-
ing around the apartment, using the rapid shutter to cap-
ture 5 images/sec. The images are not captured in a special
way, the process of capturing the images can be described
as ”simply walking around and looking around”.

Figure 3. Example input image

4.1.2 Outputs

After running the whole program (which is described in
more detail in the following section 4.2), the program re-
turns a new point cloud, where point cloud from the cap-
tured data is fitted into the CAD model point cloud, as well
as the transformation matrix Tfinal ∈ R4×4, which can be
applied to the CAD model point cloud to align it with the
captured data point cloud.

See the section 4.12 for more details about the resulting
point cloud.

4.2. Overview of the steps

In the following sections, I will now show the steps of
the method. The steps usually follow each other, for the
following general structure:

4.3 Process image sequence into point cloud

4.4 Removing outlier points

4.5 Aligning point cloud with main axis

4.6 Finding relevant planes

4.7 Extracting the structure from the found planes

4.8 Creating a new point cloud from the structure

4.9 Computing the global alignment

4.10 Refining alignment locally

4.11 Merging point clouds

While the steps follow each other, their implementations
are independent of the other steps, i.e. the implementation
of a step could be changed, as long as the in- and outputs of
the step remains the same. This way, individual steps can
be changed if another implementation returns better results.
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4.3. Process image sequence into point cloud

The very first step in my method is to turn the input im-
ages into a 3D point cloud, which then can be processed
further.

For this step, a large number of well-working off-the-
shelf software exists, and as such, I will use OpenSfM 3 for
this step.

This step only involves installing OpenSfM on the com-
puter, creating a new directory containing the sequence of
images taken with the camera, and running the reconstruc-
tion of OpenSfM:

bin/opensfm_run_all <image-sequence-directory>

This will start the OpenSfM pipeline, which computes a
3D reconstruction from the images.

Please note that OpenSfM can be exchanged by any other
suitable SfM program which outputs a point cloud in the
.ply format. OpenSfM was chosen due to the ease of use,
as well because OpenSfM features python functions to pro-
cess the data after running the reconstruction. A number of
these functions were used in some of the other approaches
described in section 4.13, however in the final method, these
python functions are not used, and as such, OpenSfM could
indeed be easily replaced by another SfM software.

After running the OpenSfM reconstruction on the
dataset, I end up a point cloud in the .ply format, shown
in figure 4, with which the method can continue.

Figure 4. OpenSfM output

When inspecting the point cloud, one can see the is-
sue that I described earlier: The point cloud contains many
points which do not contain any meaningful information
about the structure of the building itself, e.g. furniture (red
in figure 5). Also, the walls have large holes, especially in
regions where the SfM algorithm failed to track the move-
ment between frames. One example is on the right side

3https://opensfm.org/

of image 5, where the wall is almost completely absent, as
there is only a plain white wall without any structure.

In comparison to the wall, the floor (blue in figure 5)
does not contain large holes, this is due to the floor having
enough structure for the SfM algorithm to track movement.
However, if the floor were to have less structure, e.g. be-
cause it’s a plain white surface, the SfM algorithm might
struggle as well and leave holes in the floor.

Figure 5. OpenSfM output, detail view with color overlay

Due to this, the point cloud first needs to be processed,
removing any points which do not correspond to a point in
the structure of the room, and filling in any holes in the walls
and floor, resulting in a point cloud that only contains points
corresponding to the structure of the building.

4.4. Removing outlier points

As one can see in figure 4, the point cloud has many
outlier / noise points, which do not correspond to any real
points in the 3D world, and are artifacts from the SfM pro-
cess. In a first step, I remove these points, such that the
point cloud has less noise.

For this, I use the method
remove_statistical_outlier from Open3d.
Another option would be to use cluster_dbscan
from Open3D4, which implements the DBSCAN al-
gorithm, which first was proposed by Ester et al [3].
cluster_dbscan however does not work for point
clouds with many points, as it uses too much memory and
the python process crashes.

Both algorithms however are able to identify outlier
points, which mainly are noise points, added to the point
cloud as artifacts of the SfM process.

4https://www.open3d.org/
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Figure 6. Outliers in the point cloud, marked in red

As one can see in figure 6, mostly points on the outside of
the significant point cloud are marked as outliers and there-
fore removed.

The point cloud in figure 6 does not feature too much
noise, however there can be significant more noise. One
source of unwanted points are windows, where the SfM ap-
proach manages to track points on the outside of the build-
ing (i.e. surfaces which are visible from the location of the
user).

While of course the simple way to avoid such points be-
ing tracked is not capturing these surfaces in the first place,
(e.g. by closing curtains), it’s not always possible, and as
such these points need to be removed as well.

Here, the same approach as for removing noise proved to
work well, as these points usually are less dense compared
to the points near the camera, and as either of the two pre-
viously mentioned algorithms can be used, as shown in 7.
In that example, the same apartment was captured, however
this point cloud contains many artifacts outside the apart-
ment structure (clusters on the top left and bottom right of
the image). However, they were all identified as outliers,
and subsequently removed.

Figure 7. Running DBSCAN on the point cloud containing outside
points

4.5. Aligning point cloud with main axis

Right now, the point cloud can have an orientation which
does not align with the X , Y and Z axis in 3D space. While
the orientation usually is not be completely arbitrary, it still
makes the following steps more complicated, and as such,
this step aligns the point cloud with the main axis (up to a
certain degree, the alignment will not be perfect, but good
enough for the following steps).

For this, the first step is to compute the principal com-
ponents from the point cloud, which will be explained in
further detail in 4.6.1.4. This results in a set of 3 vectors,
which describe the local main X , Y and Z directions for
the point cloud.

To align them with the unit direction vectors in world
coordinates, I use the method align_vectors from the
scipy package, which takes two sets of vectors as input
and outputs a rotation matrix to align these two sets.

After computing this rotation, it can be simply applied to
the point cloud, which is now better aligned with the XY Z
vectors in world coordinates, as shown in figure 8.

Figure 8. Point cloud before (red) and after (green) aligning

4.6. Finding relevant planes

The next step in the algorithm is to detect relevant planes,
which means planar surfaces in the point cloud which either
belong to a wall or the floor. As only using RANSAC for
finding planes yielded mixed results, I divided this step into
three steps: First, I use the RANSAC algorithm to find pla-
nar surfaces, and decide whether they can be kept as floor or
wall planes. This step is further explained in the subsection
4.6.1.

The second step, which is independent from the first, is
finding all planes which make up the outer boundary of the
captured space. The RANSAC approach might not find all
the planes making up the boundary, and as such I added an
additional step to make sure these planes are also kept. This
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step is explained in 4.6.2.
Lastly, I merge these two sets of planes, as some planes

might be found by both approaches (or rather planes very
close to each other), which I want to merge into a single
plane. I show how this is done in 4.6.3.

The output of this step is a collection of planes, which
should lie along the walls and floor of the point cloud.

4.6.1 Find (inner) planes with RANSAC

In the first version, I tried using the RANSAC algorithm
to directly find the planes. When running the algorithm on
the point cloud from the previous step explained in 4.4, the
algorithm usually finds the floor plane. As the RANSAC
algorithm is a randomized algorithm, it might find planes
which don’t belong to any relevant surfaces, e.g. by going
diagonally across the point cloud, as shown in figure 9.

Figure 9. Unusable plane found by the RANSAC algorithm

Another issue with this approach is that running the algo-
rithm multiple times usually finds some planes (as the plane
found depends on the choice of the n anchor points), how-
ever these usually are either very similar, or only the largest
few planes that have a similar count of inliers. For small
walls, the likelihood that they are found with this approach
is very small (and decreases with increased number of iter-
ations for the RANSAC algorithm), as the chance of always
picking n points along these small walls is relatively low.

During testing of the RANSAC method, I also found out
that, next to planes being oriented completely arbitrary as
shown in figure 9, they also might have the correct align-
ment in respect to vertical alignment (i.e. have the correct
direction for being a wall), but go diagonally through the
point cloud, as shown in figure 10. While in theory, it might
be possible for a structure to have such diagonal walls, many
structures do not, and if I apply the Manhattan world as-
sumption 2.4 to this plane, it would also mean that the other
planes need to be oriented parallel or perpendicular to this
plane.

To resolve this, the process also has an additional step
which filters out such implausible planes, keeping only
planes which are either horizontal or vertical and align with
the walls of the point cloud.

Figure 10. Vertical plane which crosses the point cloud diagonally

4.6.1.1 Fitting RANSAC planes iteratively

As mentioned in the previous section, one issue with
RANSAC is that running the algorithm multiple times on
a point cloud usually returns very similar planes, which
means that most planar surfaces are not found. This is
especially true the larger the number of iterations of the
RANSAC algorithm is, as the chance of the algorithm pick-
ing points which lie on the optimal plane for that point
cloud (i.e. the plane with the largest number of inliers) is
increased.

For example, running RANSAC 5 times on the point
cloud used in the above examples shows that 4 of these
planes are almost identical, with one plane being a bit off,
as shown in figure 11.

Figure 11. Result of running RANSAC multiple times

This is clearly not an usable approach of finding all rel-
evant planes, especially as there are no wall planes being
found, only various horizontal planes which might belong
to the floor.

The underlying problem with this is that the points that
belong to a RANSAC plane are still available for the next
run of the RANSAC algorithm, which means the RANSAC
algorithm can pick similar points again in the next run.
Therefore, to resolve this issue, the solution is to remove
all points which are within a certain threshold of the found
plane. With this, the next run of the RANSAC algorithm
runs on a point cloud without the points that belong to the
previous plane, which means it cannot find the same plane
again.
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Running the RANSAC algorithm multiple times, now
with the additional step of removing the points in between
runs, actually results in more distinct planes (i.e. planes
which actually differ enough from each other to be consid-
ered different planes), with multiple of the planes now being
vertical wall planes. The result of this change can be seen in
figure 12. While there still are multiple horizontal planes,
due to the point cloud having many points on that surface
because of the furniture, they are now distinct planes that
lie on different heights.

Figure 12. Result of running RANSAC multiple times, removing
points between runs

With this change, I’m now able to run RANSAC a con-
figurable number of times n, finding n distinct planes.
However, there are now too many planes, which either have
an arbitrary orientation or don’t align with the direction of
the planes.

4.6.1.2 Group planes into vertical, horizontal and
other planes

As shown in figure 12, the iterative RANSAC approach is
able to find many different planes, many of which are valid,
as they lie along the floor or one of the walls. However, as
shown in figure 9, the algorithm can also find planes with
some other orientation, which are not valid surfaces in the
point cloud and therefore should be discarded.

In addition to this, only one floor plane should be kept,
all other horizontal planes are usually unnecessary and
should be discarded.

With this in mind, I categorize the planes into 3 cate-
gories, with different characteristics:

• Horizontal planes: Planes which might belong to the
floor. Here, I only want to keep 1 plane, ideally the
plane really belonging to the floor, discarding other
horizontal planes (the process for this is elaborated in
the next paragraph 4.6.1.3).

• Vertical planes: Planes which might belong to a wall.
In this group, I want to keep as many valid planes as

possible. Some planes might not align with walls, the
process to remove these is shown in paragraph 4.6.1.5.

• Other planes: All planes which have an orientation
which is not horizontal or vertical, e.g. the plane
shown in fig 9. All of these planes should be discarded
without any further action, as they cannot contribute
anything to the process of finding the structure of the
point cloud.

Grouping these planes into these three categories is
rather simple, especially as the point cloud was already ro-
tated in such a way that its principal component vectors
align with the three main axis, as explained in section 4.5.

This also means that the planes which do not fall into
the other category have normal vectors which align within a
certain threshold with one of the three XY Z normal vectors
[1, 0, 0], [0, 1, 0] or [0, 0, 1].

Computing the normal vector of a plane is simple, espe-
cially as the planes are in the format of the plane equation
ax+ by + cz + d = 0 (i.e. the planes in the program are a
list of the parameters [a, b, c, d]). For a plane in this format,
the normal vector is simply the vector [a, b, c].

The process of grouping the planes now simply involves
computing the normal vector for each plane, and then com-
paring whether certain coefficients lie near 0 (within a cer-
tain threshold):

• If the first (x) and second (y) coefficient are close
enough to zero (i.e. −threshold <= x <=
threshold and −threshold <= y <= threshold are
both satisfied), we know the plane is a horizontal plane
(the z component must be large in this case, as the vec-
tor has unit length).

• If the previous condition does not hold, I compare
the third coefficient to the threshold (i.e. whether
−threshold <= z <= threshold is satisfied). If
this holds, the plane is a vertical plane. Please note
that this only checks that the plane is vertical, it does
not check whether it aligns with the walls themselves.

• Finally, if neither of the previous two checks succeed,
the plane is in the other category, and can be ignored.
The points still are removed, to avoid getting the same
plane again in the next run of the RANSAC algorithm.

Figure 13. Categories of planes: horizontal in red, vertical in
green and other in blue
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As one can see in figure 13, the blue planes can be dis-
carded without any further consideration, as they all run di-
agonally through the point cloud. However, there still are
too many red horizontal planes, ideally we only keep one
plane, which will be shown in the paragraph 4.6.1.3.

4.6.1.3 Discarding invalid floor planes

As described in previous paragraphs and visible in figure
12 and 13, the iterative RANSAC approach still results in
multiple horizontal planes being found. As one can see in
the figure 14, these horizontal planes contain the floor plane,
but also other planes that have an horizontal orientation.

Figure 14. Horizontal planes

This can especially happen if the captured point cloud
contains furniture or other structures which add many points
to horizontal planes trough the point cloud. In empty rooms,
it’s less likely to happen, but if the overall size of the foot-
print of the point cloud is large compared to the surface of
the walls in the point cloud, it still may happen.

To remedy this, I added an additional step to check
whether a horizontal plane actually is the floor plane of the
point cloud:

If a plane is found to be in the horizontal group, I count
the number of points below the plane. If the fraction of
points below the plane compared to the total number of
points in the point cloud is lower than a certain threshold,
the plane is considered to be the floor plane. In my tests,
a number of 1% was shown to be a good number for this
threshold.

If a plane satisfying this condition is found, it’s marked
as the floor plane, and any subsequent horizontal planes are
ignored (with their points still being removed for the next
run of the RANSAC algorithm).

With this additional step, only 1 floor plane is now left,
and n possible wall planes, which might or might not align
with an actual wall in the point cloud.

4.6.1.4 Computing PCAs of the point cloud

As mentioned in the previous sections and shown in figure
9, some of the found vertical planes might not align with the
walls. Such planes can be removed if they differ too much
from the principal components of the point cloud, or rather
the principal components of the walls in the point cloud.

For this to work however, I need a way to compute the
principal components of the walls in the point cloud.

To find the principal component vectors, I used
the method compute_mean_and_covariance of
Open3D to compute the covariance matrix of the point
cloud, from which I then can extract the principal compo-
nent vectors using eigenvalue decomposition.

One issue with this however is that if I pass the whole
point cloud to this method, the returned principal compo-
nents do not align with the direction of the walls (see figure
15).

Figure 15. Principal components from running the algorithm on
the whole point cloud

The vectors are correct, however the issue is that the
points belonging to the small room on the lower right skew
the distribution of the points, which means that these vec-
tors are not usable to check the alignment of the planes.
For some other point clouds, where the general shape of the
point cloud is even more different than the direction of the
walls, this issue was even more striking, as shown in figure
16.

Figure 16. Principal components differing much from the direction
of the walls

One approach that I tested as well was to only compute
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the principal components from the points belonging to the
floor plane (which usually is found as the first plane with
normal RANSAC), however, the distribution of these points
usually also follows the same shape as the whole point
cloud, and as such this did not improve the quality of the
found principal component vectors.

During testing of the previous approach, I noticed that
the first planes found by the RANSAC algorithm usually
do correspond to actual walls in the point cloud (see the
section 4.6.1.1 for an explanation how multiple planes can
be found), and as such these might be used to compute the
principal components.

What still was not possible was to only include the points
making up these planes, especially if they were perpendicu-
lar to each other, this again yielded unusable vectors, which
again was no surprise, as the shape of this ”filtered” point
cloud still was skewed in respect to the direction of the
planes, as shown in figure 17.

Figure 17. Principal components computed from points on walls

The next approach however then finally yielded better
results: Instead of combining all the points of the first n
planes into one point cloud, I compute the principal vec-
tors for each plane point cloud individually, and then merge
these together.

Figure 18. Principal components computed from individual walls

Shown in figure 18, the red vectors are the principal com-
ponents computed from the whole point cloud (inserted for

comparison), and the other vectors are colored the same
color as the point cloud they were computed from.

As one can see, the only of these vectors that is off is the
light green one, which belongs to the floor point cloud, the
others all align relatively well with each other, as well as the
walls.

Only keeping the principal components from the walls,
discarding the set from the floor, these vectors are averaged,
which then resulted in better principal components vectors,
as shown in figure 19.

Figure 19. Comparison between principal components computed
from the whole point cloud (red) and the merged components from
the first n walls (green)

4.6.1.5 Discarding planes differing too much from
PCAs

With the principal components of the walls that were com-
puted previously, I can compare the orientation of the verti-
cal planes with these principal components, and discard the
plane if it differs too much from the principal directions.

As in the paragraph 4.6.1.2 for grouping planes, I can use
the normal vector of the planes to check this alignment. For
this, I simply check if the dot product of the normal vector
with the X or Y principal component is close enough to 1
(normal vector is parallel to the principal component) or −1
(normal vector is anti parallel to the principal component).

For the notion of ”close enough”, I again use a config-
urable threshold, where a number of 0.99 has shown to work
reasonably well.

After running this additional check, planes which do not
align with the principal components well enough are dis-
carded, and a collection of vertical planes which align well
enough with the walls in the point cloud is returned. A vi-
sualization of this step is shown in figure 20.
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Figure 20. Planes aligned with the principal components (green)
and differing too much (red)

Please note, that after this step, there still might be planes
that do not correspond to a wall in the point cloud, e.g. when
there are many points from furniture or other objects along a
plane in the point cloud. These planes however are removed
in a later step.

4.6.1.6 Final result of finding (inner) planes with
RANSAC

After running all the steps shown in the previous para-
graphs, the result is a collection of planes, which include
the horizontal floor plane, as well as a set of n vertical wall
planes.

Figure 21. Final result of running iterative RANSAC with cleanup
steps

Using this approach, it’s possible to find many different
planes, especially also larger planes in the inside of the point
cloud, however there might be holes in the outer boundary
of the point cloud, as some of these walls are rather small.
In the figure 21, the absence of a plane at the very top of the
point cloud, as well as on the bottom of the larger room and
the boundaries of the smaller room on the bottom right are
visible, and in this state, the result cannot be used, as the

planes do not form a closed boundary around the rooms in
the point cloud.

4.6.2 Find outer planes

As explained in 4.6 and visible in figure 21, only using the
RANSAC approach results in a set of planes which might
be missing some of the planes making up the boundary of
the point cloud.

To find these planes as well, I added a second step, which
computes the outer planes for a point cloud, making sure the
point cloud is captured entirely by the computed planes.

4.6.2.1 Constructing a FlatPointcloudGrid

First, a FlatPointcloudGrid is constructed from the
point cloud. This is a custom class, which divides the space
that the point cloud occupies into bins. The number of bins
is a configurable parameter of this class, where the longer
side of the grid contains this number of bins.

For each point in the point cloud, the grid then computes
to which bin it belongs to by projecting the point onto a
plane, increasing the counter of elements contained in that
bin by 1. With this, I get a heat map for the point cloud,
where one can query the number of points in a bin, as shown
in 22.

Figure 22. Heat map of the distribution of points, yellow bins
containing the most points

The FlatPointcloudGrid also has methods where
the user can query the bin of a 3D point and the number of
points within that bin.

4.6.2.2 Finding outermost bins & consecutive filled
bins

With the FlatPointcloudGrid from the previous step,
the program now steps through the grid and finds for each
of the 4 directions (coming from positive X and Y as well
as from negative X and Y ) the first bin that contains more
points than a certain threshold. Stepping trough the grid is
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done in a nested loop, e.g. when stepping trough the posi-
tive X direction, for each X value, all the bins along the Y
line for this X value are considered. If a bin with a large
enough threshold is found, the other bins along this (inner
loop) index are then not considered anymore, as there al-
ready is a bin further out in the grid that has enough points.

The threshold is required, as some outlier points, or
rather groups of outlier points, still exist in this point cloud,
and they should be ignored for finding the bounding bins.
One example of applying this filter is shown in figure 23.

Figure 23. Outermost bins, red = positive and negative X direction,
blue = positive and negative Y direction

During this process, I keep track whether the previous
bins were marked as containing enough points or not. If
enough consecutive bins contain the required number of
points, the current slice is marked as containing a plane.

After the algorithm stepped through the grid in all 4 di-
rections, I have a list of X rows and Y columns, where the
algorithm found enough consecutive bins for the column or
row to contain a plane.

With these two lists, I can then proceed and compute the
planes that can be fit into these rows and columns.

4.6.2.3 Fitting planes into bin point clouds

With the rows and columns computed in 4.6.2.2, I now
gather the points that belong to the columns or rows, cre-
ating several point clouds which each need a plane fitted in
(see figure 24).

Figure 24. Point clouds found by keeping only relevant points

With these point clouds, I can now compute the planes
that fit into them. However, I noticed during testing that us-
ing normal RANSAC (even with the PCA constraint shown
in 4.6.1.5) still results in incorrect planes, as some of these
point clouds are rather small and therefore fitting a plane
inside might not yield the desired result.

However, as I know for each of these point clouds
whether it belongs to a plane oriented in the X or Y di-
rection, I can use an approach I call constrained RANSAC.

Usually, in normal RANSAC, the n points to fit the plane
in are picked randomly. In this version, I only pick one
point from the point cloud at random, and then construct a
plane from this point and the normal vector (which needs
to be perpendicular to the heading of the plane, i.e. to the
principal component for this direction).

With this plane, I then apply the normal logic for
RANSAC: Compute the number of inliers, and compare if
this plane has a larger number of inliers compared to the
previous iteration. This approach forces all planes to be par-
allel to each other (following the direction given by the prin-
cipal component for this direction), only moving the planes
along their normal vector.

The constrained RANSAC approach is further explained
in 4.13.6, as I also tried to find planes with this approach
in the whole point cloud. The issues with this approach are
shown in the previously mentioned section.

Running this constrained RANSAC approach on all the
slice point clouds then results in a collection of planes,
which consist of all planes that were found in the step ex-
plained in 4.6.2.2.

4.6.2.4 Final result of finding outer planes

Finally, after running this step, I end up with a set of planes,
which contain most of the bounding planes for the point
cloud, shown in figure 25.
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Figure 25. Final result of running the steps for finding outer planes

When compared to the result from using RANSAC in
figure 21, some planes are missing from this result, while
some other planes that are missing in the RANSAC result
are present here.

Also, as one can see, both algorithms do find some very
similar planes, which is why the next step shown in 4.6.3 is
needed.

4.6.3 Merging the found planes

After running the steps outlined in the previous sections
4.6.1 and 4.6.2, I end up with two sets of planes, the
RANSAC set from 4.6.1 and the boundary plane set from
4.6.2.

The goal of this step is now to merge these two sets into
a single set of planes, such that the planes capture as much
of the structure of the point cloud as possible.

4.6.3.1 Grouping planes into X and Y planes respec-
tively

First, I group the planes in both sets into a set of X and Y
planes. Visible in figure 25 for example, some planes might
be very close to each other and should be merged.

Grouping these planes is simply a matter of determining
the main direction the plane is heading, and creating an X
and Y set of planes, where each set contains the planes from
the RANSAC step, as well as from the bounding planes
step.

After this, I have 2 sets of planes, with an additional floor
plane from the RANSAC step. For example, see the figure
26 for the X set of planes.

Figure 26. Set of X planes

4.6.3.2 Merging planes

Next, for each of the sets, the planes are merged into each
other. This involves iterating over each pair of planes, and
checking whether they are close enough to each other to be
merged into each other. However, one can not simply merge
these pairs into each other, as there might be a constellation
where multiple planes need to be merged. Consider the fol-
lowing example:

Plane B is in the threshold for merging with plane A, but
plane C is too far from A, however it is close enough to B
to be merged. This means that we need to collect the set of
”planes to merge with this” for each plane, and then check
if there’s an overlap with another set. If there is, these two
sets need to be merged into one, and all the planes in this
set need to be merged into one plane.

For each of these sets, I then keep the plane which con-
tains the most points, and discard the other planes, which
only keeps one plane per set.

4.6.3.3 Final result of merging planes

Finally, after merging the X and Y planes into each other
respectively, I concatenate these two sets into one, and add
the floor plane from the RANSAC step, which results in a
single set of relevant planes.

For each point cloud belonging to a plane (i.e. all points
which lie within a certain distance threshold to the plane),
I also compute the bounding box, as this is required for the
next step. An example of these bounding boxes are shown
in figure 27.
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Figure 27. Merged planes with bounding boxes

These sets of planes and bounding boxes can now be
used for the next step in the pipeline, which is computing
the intersections of these planes and deriving a structure
from these intersections.

4.7. Extracting the structure from the found planes

In this section, I will show the approach to extract the
structure from the set of planes computed in the previous
step. This part of the program is divided into various seg-
ments, which continuously process the data, discarding any
data which is not part of the relevant structure of the point
cloud.

4.7.1 Computing plane intersections

The first step is to compute all relevant intersections of the
planes received from the previous step 4.6.

For each pair of planes from this set, I compute the inter-
section of them. Usually, an intersection can be found for
every pair of planes, even for planes heading in the same
direction, as the planes are usually not perfectly parallel to
each other.

If there is the rather unlikely case that there are two
planes that actually do run parallel, the algorithm simply
skips this pair and moves onto the next pair.

If the intersection does exist, the algorithm to computing
the intersections returns a line, represented by a point pi and
a direction vector di.

As planes in 3D space are indefinitely large, this means
that many intersections lie far outside the point cloud, which
is visualized in figure 28. The point cloud is the small col-
ored spot in the denser region of lines. As one can see,
many intersections are far outside the point cloud, which
means they are irrelevant for this step.

Figure 28. Visualization of parts of the intersection lines

To solve this issue, I use the bounding boxes of the
planes computed in the previous step, and only consider
segments of the lines that are within at least one bounding
box of the two planes in a pair of planes.

During this step, the intersection lines are also divided
into X , Y and Z lines, based on the maximum coefficient
of their direction vector di, as the horizontal lines need to
be processed different from the vertical lines.

As the bounding boxes for walls might not stretch all the
way down to the floor (e.g. if the wall only has points above
a certain height because tracking below this height failed),
this step also ensures that the lines along the Z axis reach at
least the floor, such that they can be used for processing.

The result of this step are three sets of lines, visualized
in figure 29.

Figure 29. X , Y and Z line sets

At the start of this section, right after computing the in-
tersections between the planes, each line was indefinitely
long, parameterized as a point pi ∈ R3 and a direction vec-
tor di ∈ R3. After this step, the lines are finite lines be-
tween two points, referred to in the following sections as
line startpoint and line endpoint.
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4.7.2 Computing intersection points of lines

With the intersections now computed and grouped into X ,
Y and Z lines, the next step is to compute the intersections
between the lines on the floor, referred to as X and Y lines
respectively.

For each pair of lines in X and Y , I compute the closest
distance between lines, which also returns the point on each
line that is the closest point to the other line.

If the closest computed distance is larger than a certain
threshold, the lines are considered to not intersect, and the
two points on the line are discarded. If the distance is close
enough to 0, the lines are considered to intersect, and there-
fore the points are added as intersection points to a list of
such points. As floating-point operations introduce some in-
accuracies, the distance usually is larger than 0, however the
computed distance for intersecting lines usually lies within
the 1e− 14 range.

Figure 30. Real intersection points (purple) and points too far apart
(blue)

As one can see in figure 30, the only points which are too
far apart (blue) are on pairs of lines which do not intersect.

Going forward, only the real intersection points (purple)
are considered, with the others being discarded after this
step.

4.7.3 Discarding z lines outside the point cloud

In the next step, the Z lines (upwards lines, colored blue
in 29) need to be processed. For each of these lines,
the program checks whether there are any points near the
line, using the FlatPointcloudGrid first introduced in
4.6.2.1. If there are no points in the same bin as the line, the
line is considered to be outside of the relevant point cloud,
and can be discarded.

If there are any points nearby, the line is kept for now,
which results in a cleaned up set of lines, shown in figure
31.

Figure 31. Visualization of valid (green) Z lines

4.7.4 Remove intersection points without correspond-
ing z line

After filtering the Z lines in the previous step, the intersec-
tion points are filtered again, this time only considering the
real intersection points found in the previous step 4.7.2.

For each intersection point Iij , which is the intersection
of the two intersection lines between the plane Xi with the
floor and the plane Yj with the floor respectively, we know
that there should also be a corresponding Z line Zij of the
intersection between the planes Xi and Yi. If Zij is absent,
the intersection point lies outside any bounding boxes of
the point cloud, and therefore outside of the relevant space,
which means it should be discarded.

As before, due to floating point imprecision, the distance
usually is not exactly 0, but in the range of 1 − e14 if Zij

actually does intersect the point Iij .
After running this step, all intersection points that are

still present should be within the point cloud. As visible in
fig 32, all points Iij which do have a corresponding Zij line
were kept, with only points on the outside removed.

Figure 32. Removed intersection points (red) and kept intersection
points (blue)
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4.7.5 Clamp lines to their endpoints

With the intersection points now only existing inside the
point cloud, the X and Y lines can now be processed in
such a way that they only exist between their outermost in-
tersection points, as parts of the line extending beyond these
points are not relevant.

This step is rather simple, and simply involves finding all
intersection points which lie along a line, and then compute
the intersection point closest to the start of the line, as well
as the intersection point closest to the end of the line. This
results in 2 points, which now are the new start and end of
the line.

Figure 33. Lines clamped to their new endpoints

After this step, the structure of the point cloud now ap-
pears for the first time, with the lines enclosing the point
cloud rather well. However, as one can see in figure 33,
there are still many lines inside the shape, which do not cor-
respond to an actual wall in the point cloud.

4.7.6 Filter z lines by neighbourhood

As there are still many lines inside the point cloud which do
not correspond to an actual wall, the program needs to filter
these. For this, the Z lines are again considered.

First, the set of Z lines is divided into a boundary set,
which contains all Z lines which intersect a start- or end-
point of a line, as well as an inside set, which contains the
other Z lines.

The boundary lines should be preserved at all times, as
bounding lines are all considered to be valid, however the
other lines can possibly be removed.

For a Z line Zij in the inside set to be considered valid,
the line needs to be near (or optimally on) the intersection
between two walls Xi and Zj , where both walls should
contain some points near this intersection (i.e. both walls
should exist at the intersection). If this does not hold and
there are no points (or rather not enough, as there can still

some outlier points in the point cloud) near this intersec-
tion Zij , it can be discarded. Please note that for this step,
only the points belonging to the walls are considered (i.e.
all points within a certain distance to a wall plane), as the
floor usually has points everywhere within the point cloud,
even if there is no wall.

All Z lines which have fewer points near themselves than
the threshold are considered low Z lines, which will be dis-
carded, all others are high Z lines, which should be kept.

Figure 34. Boundary Z lines (blue), high Z lines (green) and low
Z lines (purple)

As one can see in figure 34, some of the Z lines inside
the point cloud are indeed marked as low Z lines, which
results in them being discarded. Z lines on the boundary,
but on an inner corner cannot be marked as boundary lines
with this approach, however they are still kept, as there usu-
ally are enough points at these locations for the lines to be
considered high segments.

4.7.7 Divide lines into segments and remove unneeded
segments

Until now, the lines exist along the whole length of the line,
i.e. between the start- and endpoint computed from the in-
tersection points. Some of these lines however need to be
divided, as they either might be part of an inner wall, which
only exists along some segment of the line, or an outer line
which might be divided by a hallway or door.

As a preparation for this filtering step, the lines are di-
vided into segments by the intersection points laying along
each line.

For this, the intersection points on each line are sorted
by distance to the start point of the line, and then each con-
secutive pair of points in this sorted list makes up a new line
segment, as shown in figure 35.
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Figure 35. Lines divided into segments

In the previous step, some of the Z lines belonging to in-
tersection points were removed, as they did not have enough
points nearby, and as such were considered to be nonexis-
tent intersection lines in the point cloud. After this step,
only the set of kept Z lines was remaining, and this set is
now used to remove invalid line segments.

For this, each line segment is checked whether the start-
as well as the endpoint are still on one of the remaining Z
lines. If the Z line Zij belonging to an intersection Iij of
two planes Xi and Yj was previously removed, we know
that there are not enough points near the intersection for it
to exist in the point cloud. If either the start- or the endpoint
(or both) are not on such a line, the segment is marked as to
be discarded, as shown in figure 36.

Figure 36. Kept segments (green) and discarded segments (red)

In the figure 36, one can easily verify that all segments
existing between two Z lines are kept, while the other lines
are removed. With this step, most of the unneeded inner
line segments are removed, while the segments along the
boundary are kept.

4.7.8 Compute boundary segments

This step is a preparation for the next step, where we’re
only interested in the line segments on the inside. This

time however, not the Z lines are grouped, but the line
segments. For this, we construct a new point cloud from
the X lines by sampling along them, and then construct a
FlatPointcloudGrid from this sampled point cloud.
For each line, we now can check whether there are any lines
above or below it in the FlatPointcloudGrid by sim-
ply checking the bins above and below a point on the line.
If this approach finds that either above or below the line are
no bins with points inside, we know there isn’t any other
line on that side, and therefore the line must be a boundary
line.

If the program finds a line above and below, the line must
be on the inside of the point cloud, and can be processed in
the next step.

This process is then again repeated for the Y lines, which
results in a set of boundary line segments and inner line
segments, as shown in figure 37.

Figure 37. Boundary segments (black) and inner segments (green)

All the boundary segments that were found by this step
are now definitely part of the final result, while the inner
segments still need to be processed, as described in the next
step.

4.7.9 Apply grid filter to inside line segments

Finally, as a last step in the process of finding the structure
in the point cloud from the planes, the program needs to re-
move any leftover inside segments which don’t have enough
points along them.

Most planes that do not have any points along them were
already removed in step 4.7.7, as at least one of their end-
points is not along one of the kept Z lines.

However, some segments do have both endpoints along
one of the Z lines, but no points on the segment itself. One
example of such a segment is a doorway, where there is a
wall to the left and right.

To filter such segments, the FlatPointcloudGrid
is again applied (again only considering wall points), and
the bins (with the number of points inside them) along a
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line are counted. If most bins don’t have any points, or the
number of bins containing only a small number of points is
too high compared to the number of bins containing many
points, the segments is removed by the algorithm.

With this approach, the segments existing in spaces with-
out enough points are removed, which means that structures
such as doorways are now not blocked by a segment any-
more. The result of this step is shown in figure 38.

Figure 38. Lines being kept after filtering

4.7.10 Final result of extracting the structure

After running all the steps described in this section, I end up
with a set of lines, which represents the structure extracted
from the planes and their intersections in the point cloud.
While some details might be missing (e.g. smaller walls on
the inside) and some planes inside the point cloud might be
useless, the general shape of the the point cloud is rather
well represented. This set of lines is passed to the next step
in the program, which processes them further.

Figure 39. Final result, visualized with the point cloud

The output of this step is the total set of lines Lt, as well
as the set of boundary lines Lb and inner lines that were kept
Li, for which we have Lt = Lb ∪ Li and Li ∩ Lb = ∅.

4.8. Creating a new point cloud from the structure

The main point of extracting the structure of the point
cloud as a set of lines in the previous step was to be able to
only keep relevant points of the cloud to fit it into the CAD
model.

Theoretically, one could use the points from the captured
point cloud, keeping only the points on the extracted lines,
and fit this in the CAD model. However, as already pointed
out in the previous section, the point cloud has holes in the
walls and the floor, which could impact accuracy of aligning
the point clouds.

Therefore, as the next step in the program, the extracted
structure is turned into a new point cloud, which does not
have any holes in the walls and floor.

The input for this step are the point cloud from the cap-
tured data, the previously computed set of lines Lt as well
as the set of boundary lines Lb. An optional argument is the
number of points to sample, with the default set to 100′000.
This allows the user to sample more or fewer points, de-
pending on the use for the sampled point cloud.

4.8.1 Sampling line segments

The first step is to sample the line segments themselves,
turning them into walls for the newly created point cloud.

To evenly distribute the points across all segments, the
total length of all segments ls is computed. The number of
desired samples is then divided by this number ls, giving
the number of samples per segment unit length.

Sampling the walls is then simply a process of iterating
over each segment, picking a random point along this seg-
ment (i.e. between the start and end of the segment), using
an uniform distribution. This results in a point cloud with
all points lying on a single plane, as visible in figure 40.

Figure 40. Sampled point cloud with all points on the same height

As one also can see in the figure 40, the points are spread
out over the various segments, the short segments do not
have significantly more or fewer points than the large seg-
ments. Due to the sampling using an uniform random dis-
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tribution with a low number of samples (300 for this exam-
ple), the points aren’t evenly spread out. When the number
of sampling points is large enough, the holes in the lines
disappear. I don’t use a fixed distance for sampling, as this
would introduce a regular structure in the level of points
which I want to avoid.

The points now still all have the same height, as they
all lie on the line segments, which means I need to add the
height of the point as an additional independent sampling
variable. However, for this, I first need to compute the cor-
rect height of the point cloud, such that the sampled point
cloud matches the captured point cloud in height as exactly
as possible.

4.8.2 Computing Z height

One approach to compute the Z height would be to use
the bounding box of the point cloud to compute the height
from, however the two types of bounding boxes available
in Open3D (AxisAligned and Oriented) usually are
higher than the distance between the floor and the ceiling of
the point cloud.

This can be due to the point cloud having some clusters
of outliers (which were not removed by the outlier removal
step shown before), or also because the point cloud might
not be perfectly aligned with the main axis of the coordinate
system. An example of this is visualized in figure 41.

Figure 41. Axis aligned bounding box on point cloud

As one can see, the bounding box is higher than the point
cloud, which means I can not simply use the height of the
bounding box to compute the height of the point cloud.

From the previous steps, it is known that it’s usually
rather simple to find the floor plane, especially when us-
ing the constrained RANSAC approach shown earlier. In
the current step, it’s even easier to find the floor plane, as
all the previously computed line segments lie on the floor
plane. This means I can simply select three points from the
set of start- and endpoints and compute the floor plane from
these.

After computing this floor plane, I use the normal of this
plane to shift the plane in the direction of its normal in the

point cloud. After shifting the plane, I compute the percent-
age of points still above the plane. If this number is above
a certain threshold (a threshold of 1% has shown to work
well), the shifting step is repeated, until this threshold is
reached.

With this, the ceiling of the point cloud can usually be
approximated rather well. Of course this approach does not
work if the point cloud does not reach up to the ceiling, but
with this approach it’s assumed that at least some parts of
the point cloud do reach the ceiling.

Figure 42. Top (green) and bottom (red) plane in the point cloud

After computing this upper plane, I simply compute the
distance between the two planes, which results in a good
approximation of the height of the walls in the point cloud.

With this height I can now also sample the Z value of a
point randomly, which results in the walls actually reaching
up to the ceiling of the point cloud, as shown in figure 43.

Figure 43. Sampled point cloud with walls

4.8.3 Scattering the points

For the next step explained in 4.8.4, I need the bounding
boxes of the boundary wall segments, however, Open3D
cannot compute a bounding box if all points lie on the same
2D plane.

To fix this problem, I introduce a small bit of impreci-
sion when sampling the points, i.e. the x and y values of
each points are shifted a random amount in positive or neg-
ative direction. The interval the random amount is chosen
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from is rather small, however it’s already enough that the
sampled points on a wall segment don’t form a 2D surface
anymore, but a 3D object, from which the bounding boxes
can be computed.

4.8.4 Sampling the floor

The sampled point cloud has so far no points on the floor,
as I only sampled points on the wall segments. The floor
plane was already computed before, so I can use this plane
to sample points.

One issue is that a plane is indefinitely large, which
means simply sampling arbitrary points on this plane would
not work, as the points might lie inside the point cloud, but
could also lie anywhere else on this plane.

However, from the already sampled wall points, I can
compute the bounding box of the whole point cloud, and
constrain the points to lie within this box. To sample a point
on the plane, I then simply pick an x and y value uniformly
distributed within this bounding box and then compute the
z value as:

1 x = random(bounding_box_min[0], bounding_box_max[0])
2 y = random(bounding_box_min[1], bounding_box_max[1])
3 z = (-a * x -b * y - d) / c

This results in a random point on this floor plane. As
one can see when visualizing this plane (figure 44), many
points still lie outside the walls, especially if the bounding
walls do not form a rectangular shape.

Figure 44. Floor points outside of the walls

To only keep points inside the walls, I copy each sam-
pled point outside the space enclosed by the walls, and then
trace a line between the sampled point and the correspond-
ing point on the outside. I then compute the number of
bounding boxes that intersect with this line (the bounding
boxes only exist for the boundary walls). If the number of
intersections is odd, the sampled point lies inside the walls
and can be kept, if the number of intersections is even, it
lies outside and can be discarded.

With this check, I now have a good result. There are
some artifacts remaining, this is likely due to the bounding
boxes slightly overlapping, but these few points could be
removed in a post-processing step.

Figure 45. Sampled point cloud

When visualizing the sampled point cloud and the cap-
tured point cloud (figure 46), one can easily see that the
sampled point cloud is a good approximation of the struc-
ture of the captured data.

Figure 46. Sampled point cloud aligned with captured data

4.9. Computing the global alignment

The next step is computing the transformation needed to
fit the captured data into the CAD model point cloud as well
as possible.

4.9.1 Inputs

The inputs for this step are simply the sampled point cloud,
which is an approximation of the structure of the captured
data, as well as the CAD model point cloud. Optionally,
one can additionally input a point cloud containing only the
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points from the sampled floor, this simplifies computing the
floor plane for the next step.

Figure 47. CAD model point cloud (yellow) and sampled point
cloud (green & blue)

4.9.2 Aligning floor planes

As the orientation of both point clouds still might be com-
pletely arbitrary (as seen in figure 47), the first step is to
align the floor planes, such that this orientation is already
correct.

To do this, the program first computes the floor plane of
both point clouds, which can easily be done as explained
in the previous sections. From both planes, I compute the
normal of the plane, and then use a method from the scipy
package to compute the rotation needed to align these two
vectors. Using this method proved to yield more accurate
rotations compared to a version I implemented myself.

After computing this rotation, the program applies the
rotation to the sampled point cloud, which now should align
better with the CAD model point cloud. However, it might
be oriented the wrong way, as the normals might now be
anti parallel to each other. In this case, the sampled point
cloud is flipped, which now also result in correctly oriented
planes, seen in figure 48.

Figure 48. Point clouds with their floor planes aligned

As one can see in figure 48, the floor planes are aligned,
however the walls still are not fully aligned, which will be
done in the next step.

The result of this first step is a rotation matrix Raf ∈
R3×3, which can be extended to a transformation matrix
Taf ∈ R4×4.

4.9.3 Align walls of both point clouds

After aligning the floor planes of both point clouds, the ro-
tation about the Z axis might still be off. As the Manhat-
tan world assumption shown in 2.4 still holds, I can simply
compute the PCAs of both point clouds, and then align the
X and Y principal vectors, as well as keeping the normal
vectors from before to constrain the rotation.

As before, I use the scipy package to compute the rota-
tion, and apply the resulting rotation matrix to the sampled
point cloud. The result of this alignment step is now two
point clouds, which are already aligned within the principal
directions given by their floors and walls (figure 49).

Figure 49. Point clouds with their floor planes and walls aligned

Multiplying the transformation matrix Taf from the pre-
vious step 4.9.2 with the transformation matrix Taw ∈ R4×4

(obtained by extending the rotation matrix from this step)
then results in a transformation matrix Ta ∈ R4×4. This
matrix will be used later to compute the final transforma-
tion.

4.9.4 Initial scaling based on height

Now, with the point cloud walls aligned, the next step is to
set an initial scaling based on the height of the point clouds.
I use the method to compute the height of each of the two
point clouds shown in 4.8.2. The height of the CAD model
divided by the height of the sampled point cloud then results
in the initial scale used for the following step.

Please also note that the height of the model will be fixed,
as the height of the CAD model and the sampled model will
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need to be the same. This means for the next step, only
two dimensions for scaling need to be considered instead of
three dimensions.

4.9.5 Finding optimal transformation

Now finally, with the previous steps aligning the point cloud
walls and computing the initial scale, the program moves to
computing the optimal transformation.

The approach is rather simple, however it works reason-
ably well for finding a good transformation between the two
point clouds. It consists of a few nested loops, which con-
tinuously change the transformation, apply it to the sampled
point cloud and keep track which transformation yields the
best fit:

1 for rotation in rotations:
2 for x_scale in x_scale_range:
3 for y_scale in y_scale_range:
4 for x_move_step in x_move_steps:
5 for y_move_step in y_move_steps:
6 # Compute transformation
7 # Apply it to the point cloud
8 # Compute fitness of current transformation

This might now seem inefficient, as the loops are nested
relatively deeply, however in 4.9.5.1 I explain how the num-
ber of loop iterations (and as such the runtime) can be re-
duced by applying some sensible constraints.

This step of the program also features two live updated
views 50, where one always shows the current alignment,
while the other shows the optimal alignment which was
found so far.

Figure 50. Live view (left) and current optimum view (right)

These views can be disabled, which speeds up the com-
putation, however for debugging purposes, it might be use-
ful to see what the algorithm is working on.

4.9.5.1 Constraints to reduce runtime

As mentioned before, the loop to compute the optimal trans-
formation is deeply nested, which means the parameters to

loop over need to be chosen very carefully, as not to increase
the total number of loop iterations too much.

The following parameters all are used in the loops:

• rotations

• x_scale_range

• y_scale_range

• x_move_steps

• y_move_steps

The first parameter, rotations, is one where I can
save many iterations. Usually, when aligning two elements
in 3D space, one needs to consider all possible rotations,
about all 3 axis (X , Y and Z). As the two point clouds
are already aligned, with their floor planes matching align-
ments, and the walls being aligned with respect to each oth-
ers principal components, this can be brought down to only
needing 4 rotations: 0, 90, 180 and 270 degrees about the
Z axis. Even though the point clouds are aligned, their re-
spective principal components might not point into the same
direction, and as such these 4 rotations are needed. This
still brings the number of rotations down significantly, com-
pared to the number of rotations needed if the point clouds
were not aligned initially.

Next, the x_scale_range and y_scale_range:
First off, scaling in z direction (i.e. the height of the point
cloud) can be skipped, as the z scale is known from the
height of both point clouds (as shown in 4.9.4. Second, the
range where the x and y directions are scaled can also be
constrained to a rather small range around the computed Z
scale, as the scale of the CAD model might be slightly off,
however it’s assumed this imprecision is within a sensible
range (i.e. if the scale is completely off, this approach does
not work too well).

Also, if the current scale factors result in the sampled
point cloud extending beyond the CAD point cloud, the
move steps are skipped completely.

Lastly, the x_move_steps and y_move_steps:
Again, moving in Z direction is not needed, as the floors
are already aligned, and the height is set. For the steps in X
and Y direction, a sensible number can be chosen, during
testing 30 steps have been shown to work well.

With all these constraints, the number of loop iterations
can be brought down significantly, which allows the algo-
rithm to run all these steps to find an optimal fit in a sensible
amount of time.

4.9.5.2 Keeping track of best result

To find the transformation (i.e. combination of rotation,
scale and translation) which fits the sampled point cloud
the best into the CAD model point cloud, some metric is
required that enables comparing these registrations.
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Open3D contains a method called
evaluate_registration, which makes it possi-
ble to compute an evaluation of a registration, given two
point clouds and a transformation. The results contains
multiple fields, from which I use the fitness, which
is the fraction of overlapping area (i.e. number of inlier
correspondences / number of points). A higher number
means a better registration, with a value of 1 being a perfect
match (e.g. when two copies of the same point cloud are
aligned perfectly with each other).

As the transformation in each step is applied to a copy of
the sampled point cloud (because the transformation is built
as a sequence of rotations, translations and scaling opera-
tions), the transformation passed in is the identity transfor-
mation.

For each computed transformation in the innermost loop
body, a score is returned from this method. Getting the best
registration is now simply a task of keeping track of the
highest score and its corresponding transformation, updat-
ing both if a transformation with a better fitness is found.

After the loop terminates, the program returns a final
best transformation, expressed as number of rotation steps,
X and Y scale factors as well as the number of translation
steps for both directions. This data now needs to be turned
into a final transformation matrix.

4.9.6 Computing transformation matrix

Finally with the transformation matrix Ta from 4.9.3 for
aligning the two point clouds as well as the data from the
previous step, the final transformation can now be com-
puted.

With the data from step 4.9.5.2, containing the number
of 90 degree rotations, the translations in X and Y direction
as well as the X and Y scale, I can now build individual
matrices for this rotation, scaling & translation. Finding
the final matrix for the global registration is then simply a
matter of multiplying these matrices, which results in the
final transformation matrix Tg ∈ R4×4. When this matrix
is applied to the (untransformed) sampled matrix that was
passed in as an input, it will align it according to the best
found alignment as shown in figure 51.

Figure 51. Alignment after computing the final transformation

4.9.7 Applying final transformation to CAD model

In the section before, the transformation steps (rotation,
scale & translations) were always applied to the sampled
point cloud. As the sampled point cloud is an approxima-
tion of the captured point cloud, which is the data from the
real world with the correct scale, it’s clear that the transfor-
mation should be applied to the CAD model point cloud,
not the captured point cloud. This however is rather easy, as
the transformation Tg can just be inverted as Tglob = T−1

g ,
and then be applied to the CAD model point cloud, resulting
in the correct transformation.

4.10. Refining alignment locally

The approach explained in the previous section yields
a good global registration, however on the local scale, the
registration still could be refined.

For this step, ICP 2.2 can be used, as ICP works well if
the initial alignment is already rather good.

As a preparation, the previously computed transforma-
tion Tglob is applied to the CAD model point cloud, such
that it and the sampled point cloud already fit into each other
rather well.

Open3D features various ICP algorithms, from
which I simply use the PointToPoint ICP al-
gorithm. Again, I use the previously mentioned
evaluate_registration method from Open3D
to compute the fitness for a registration, which allows me
to keep track of the best registration from a set of possible
registrations.

As the scale still might be a little bit off, this step also
again incorporates optimizing the scale, however this time
in a much smaller range (i.e. ±5% in X and Y directions
each).

For each step in this XY loop, first the scaling is applied
to the CAD model point cloud, and then ICP is executed
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on the now scaled point cloud and the captured point cloud.
This yields a new registration, where the fitness might be
better than in previous steps.

After running all iterations of the scale factors, the final
transformation for local registration is computed as Tlocal =
Ticp · Tscale. As one can see in figure 52, this does result
in a better alignment compared to the result of the global
registration.

Figure 52. Alignment after running local optimization

The transformation matrix from this step can now be
multiplied with the transformation from the global regis-
tration step, which results in the final transformation matrix
Tfinal = Tlocal · Tglob.

4.11. Merging point clouds

With the final transformation Tfinal for the CAD model
point cloud aligning the two point clouds now rather well,
the next step is to merge the two point clouds into a single
one, which then can be used further.

For this, first the CAD model point cloud is aligned to the
captured point cloud by applying the transformation Tfinal

to it.
I then build a KDTree 5 on the transformed CAD model

point cloud, and compute the average distance between each
point and its 5 nearest neighbours by using this KDTree.

After this, I iterate over each point from the captured
point cloud and use the position of the point as the input
for the query on the KDTree, which returns the number of
neighbouring points as well as their indices in the KDTree
within a certain radius (which is a fraction of the previously
computed average distance).

If this number is larger than zero (i.e. there are points
close to the query point), the indices of the points inside
this radius are added to a list ldel.

5http://www.open3d.org/docs/release/python_api/
open3d.geometry.KDTreeFlann.html

After iterating over each point in the captured point
cloud, the list ldel now contains the indices of all points
from the CAD model point cloud that need to be removed.
Removing these points is simply deleting the correspond-
ing rows from the matrix of 3D points making up the point
cloud, which results in a point cloud with holes in it where
data of the captured point cloud can replace this data, as
shown in figure 53.

Figure 53. CAD model point cloud, points near captured data re-
moved

Finally, the points and colors from the captured point
cloud can then be added to the respective matrices of points
and colors, resulting in the final result shown in 4.12.

4.12. Final result

After running all steps, the program outputs the final
transformation Tfinal, as well as the merged point cloud,
containing all points from the captured point cloud, as well
as the kept points from the CAD model point cloud. This
new point cloud (figure 54) can now again be used to fit
another point cloud in it or in some other programs.

Figure 54. Output of the program, view from outside

Especially when looking from below (figure 55), one can
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also see that the captured data does replace parts of the CAD
model.

Figure 55. Output of the program, view from below

When zooming in, the added details from the captured
point cloud become visible, with the CAD model point
cloud being augmented with the data from the input images
(figure 56).

Figure 56. Output of the program, view from inside

4.13. Other evaluated approaches

In this section, I will show some of the other evaluated
approaches which I think are worth showing and also elab-
orating on why I chose to not use that approach.

Some parts of these approaches eventually did find their
way into the final method as part of the whole process,
e.g. the 4.13.6 approach, while others were completely dis-
carded.

The subtopics presented here are ordered by the time I
evaluated them in the thesis, with some topics taking more
time than others.

4.13.1 Using SOLD2 to reconstruct walls

One of the first approaches I tried was using the algorithm
presented in the SOLD2 paper by Pautrat et al [9]. As the al-
gorithms finds lines in images, I wanted to evaluate whether

these lines can be used to match pictures of the real world
directly to their virtual counter part, without the need to cre-
ate a 3D model from the images. Later on, I also tried
projecting the lines from the 2D images into the 3D point
cloud, to see whether these lines can be used to find impor-
tant structural elements such as corners and the intersections
between the floor and walls.

4.13.1.1 Matching images with virtual counterpart

The first approach using SOLD2 was to take a single image
from the captured sequence of pictures, and create an image
from the same view port in the 3D cad model. To simplify
this task, as I mainly wanted to see whether the lines found
in both images are similar and can be matched, the camera
in the CAD model was placed manually.

With these images, I ran SOLD2 on both of these images,
which tried to match the found lines in both images.

Figure 57. Output of the line matching step

As one can see in the figure 57, some of the matched
lines do correspond to the same line in the real and vir-
tual world, however most of the lines are off, and therefore
SOLD2 also could not compute a homography between the
two images. Therefore, this approach was not evaluated fur-
ther.

4.13.1.2 Projecting lines into 3D model

After some time working on other approaches, the idea to
use the SOLD2 lines and map them into 3D space came up.
Here, I wanted to use these lines to find structural elements
in the 3D point cloud.

One issue that became apparent during working on this
approach was that the lines from the SOLD2 output don’t
feature any depth information, as the program is run on a
2D image. This means mapping a segment of a line to a
3D point is rather difficult, especially if the structure that
lies along this line (e.g. a corner) is not completely present
in the 3D point cloud. I then tried running the plane seg-
mentation algorithm (using the RANSAC approach shown
in 4.6.1), and then computing the intersection of the lines
projected into 3D space and the planes.

As one can see in figure 58, this did work for some lines,
while other lines were mapped to a wrong surface, e.g. the
floor.
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Figure 58. Mapping the SOLD2 lines from a single image to the
3D point cloud

Another idea was to run the SOLD2 program on each
pair of consecutive images, only projecting the correspond-
ing lines between two images. This way, each line would
have 2 representations from different views, and as such,
the depth could be computed for such a line.

The SOLD2 program did find many matched lines be-
tween the images, but these could not be used yet, as they
might have different lengths, as shown in figure 59.

Figure 59. Matched lines between two consecutive images

However, the lines with correspondence did not result in
many lines, and as such this approach was also discarded
(figure 60).

Figure 60. Lines with correspondence between two consecutive
images

4.13.2 Predator registration

At the start of the thesis, I also looked into some more re-
cent registration methods, especially the PREDATOR reg-
istration framework by Huang et al [5], which looked to be
promising.

The examples for the framework did work really well
on my computer, and therefore I wanted to see what the
result of trying to register the captured, unprocessed point
cloud with the CAD model point cloud would be. To run
the framework, I down sampled the point clouds, such that
they need less memory, and modified the demo code in a
way such that it also accepts .ply point cloud files 6.

However, the program kept crashing, as it tried to allo-
cate more memory than was available on the GPU. As the
file sizes of the two point clouds were rather large, I ran the
program again with versions of the point clouds that were
down sampled even more (from approx. 600′000 points to
10′000 points), however the program still crashed.

I then tried running the program in CPU only mode, but
again with the same result, the program wanted to allocate
120GB of memory, where as my computer only has 64GB
of memory.

I found an issue in the repo of the code 7, where the au-
thor of the code states that some parts of their network re-
quire a lot of memory and that they used GPUs with at least
12GB of memory.

With this in mind, I decided to stop evaluating this ap-
proach, as the hardware requirements of the PREDATOR
program are just too high for usage on normal PCs. Even
many higher-end computers would struggle to satisfy the
hardware requirements, and an average computer currently
has no where near the required hardware.

4.13.3 Capturing point cloud with Kinect

After trying SfM to capture a point cloud as shown in 4.3,
I wanted to see whether using a camera with a depth sen-
sor results in better, denser point clouds. For this, I used a
Xbox 360 Kinect sensor, as it features a RGB-D camera, is
inexpensive and easily available.

With the Kinect camera, I then used several methods
to capture a point cloud. The first approach was to use
the Kinect Fusion Explorer app, which is based on the pa-
per KinectFusion: Real-Time Dense Surface Mapping and
Tracking by Newcombe et al [8], however this app was only
able to generate a mesh from a static view of the Kinect sen-
sor. The field of view of the Kinect is rather small, and the
depth perception is limited to a few meters, and as such the
resulting mesh was rather small, as shown in figure 61.

6https://github.com/prs- eth/OverlapPredator/
issues/27

7https://github.com/prs- eth/OverlapPredator/
issues/2#issuecomment-766168105
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Figure 61. Mesh generated with Kinect camera, standing on the
table, looking towards wall with TV and entry hallway

Interestingly enough, the Kinect failed to capture any
data at the area where the TV was standing, this is prob-
ably due to the TV being a reflective surface.

I also used the program Skanect, which allows the user to
walk around with the Kinect and scan an object or room and
then re-construct a model from that scan. However, the soft-
ware performed quite poor, and even in my room, which is
about 3×4 meters, it kept losing the tracking, which messed
up the alignment of the surfaces. This especially was the
case when the Kinect was pointed towards a segment of the
room where there isn’t a lot of structural information, e.g.
a wall. Because of the small field of view (which is sig-
nificantly smaller than the field of view of my smartphone
or Sony camera), it was relatively difficult to always keep
enough structure in the view for the tracking to work.

As this approach did not result in better point clouds, I
decided to keep using only RGB images as input, and work
with the point clouds I have from OpenSfM.

4.13.4 Semantic segmentation

As previously elaborated, the main issue with the captured
point cloud is that it contains many points which do not be-
long to the structure of the room (see figure 5 for an example
of this categorization). The idea to use semantic segmenta-
tion came up, i.e. to use a pretrained neural network to label
the point clouds by labeling the individual images and then
projecting the labels into the 3D point cloud, keeping only
the points with relevant labels.

4.13.4.1 Labeling individual images

The first step in this approach is to label the individual im-
ages. For this task, the network lightweight refinenet by
Nekrasov et al [7] was chosen. For this network, multiple
pretrained models are available, which simplifies the task
of labeling the images. After setting everything up, the se-
quence of images was labeled with each available pretrained

network, with the labels being exported as RGB images, as
well as numpy matrices, such that it’s later possible to easily
access a label of a pixel.

One type of pretrained model assigned every pixel a la-
bel, for example the model that was pretrained on the NYU
dataset [6]. An example of this model labeling images can
be seen in figure 62.

Figure 62. Example output of the model pretrained on the NYU
dataset

The other type, which contained a model trained on the
VOC dataset8 assigned objects (such as furniture) labels,
while assigning the zero label to everything else (i.e. walls,
floors, etc). When the output is overlaid onto the RGB in-
put image (figure 63), one can see that the labels do capture
most of the furniture, however not all the pixels correspond-
ing to furniture are labeled correctly.

Figure 63. Example output of the model pretrained on the VOC
dataset

8http://host.robots.ox.ac.uk/pascal/VOC/
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4.13.4.2 Mapping labels to 3D points

The next step was to map the labels from the 2D images
into the 3D space. The OpenSfM library also contains a
python package, which makes it possible to access the data
generated by OpenSfM. With this, it’s possible to compute
the 2D coordinate xy of a 3D point in the point cloud for
a given image (or rather camera position from which the
image was taken). This means it’s possible to compute all
the 3D points which, if projected onto a 2D plane, could be
visible from the camera perspective. These points then can
be mapped to the corresponding 2D image, as seen in figure
64.

Figure 64. Mapping the 3D points to 2D

With this, I can now iterate over the images, compute
for each visible point for this image it’s image coordinates,
and then fetch the label for this pixel from the data that was
created in the previous step. An example of this is visible in
figure 65.

Figure 65. Labels mapped to the points

The program computes the labels of points for each im-
age, returning a map of point identifiers to a label for each

image. This allows the program to process the images in
parallel, speeding up the process significantly.

After these maps have been computed for all the images,
the program merges the maps, counting the occurrences of
each label for each 3D point (as the labels for a point might
be different from varying perspectives). After this, the label
with the highest number of occurrences for each 3D point is
kept as the definite label.

4.13.4.3 Using depth data to cull points

One issue with the previous approach is that all points
which could be visible from the camera perspective for an
image are fetched. Points outside the view frustum (i.e. also
behind the camera) are removed, however every point in
front of the camera is a valid point with this approach. This
also means that points behind obstacles, such as walls or
furniture, are still in the image.

If the captured point cloud is rather simple and mainly
contains a single room, this is not an issue, as there aren’t
many points occluded by other surfaces. When the point
cloud contains multiple rooms or turns (e.g. from walking
down a hallway), this can become a bigger issue, as visible
in figure 66. Many of the mapped points, mainly in the
bottom left, should not be visible from this view, as they are
hidden by structures in front of them (e.g. the wall on the
left side or the pillars).

Figure 66. Points visible which should be hidden

By mapping pixel labels to these points, many points
now receive incorrect labels from surfaces in front of them,
which decreases the accuracy of labeling the 3D points.

Simply filtering out points laying behind another point
does not yield satisfactory results, since there are many
spots where there are no points in front of the occluded
points (e.g. if OpenSfM was not able to track a part of a
wall).

I then tried using GluonCV9, which features a neural net-
9https://cv.gluon.ai/
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work to compute depth in images. Computing the depth of
the images worked rather well for the images, for example
when inputting image 67 in the network, the output was the
data visualized in figure 68.

Figure 67. Input view of GluonCV

Figure 68. Output of GluonCV visualized

While this output managed to compute the depth differ-
ences well, the issue is that the depth output from GluonCV
is x ∈ [0, 1] for each pixel, i.e. it only outputs relative
depth. Directly filtering with this data is not possible, as
the depth of the points in the image range from 0 to an un-
known depth.

After using GluonCV, I also found some auxiliary data
generated by OpenSfM, which contains the depth data for
the images as well. Here, the depth of the points was in a
larger range, specifying the depth of the point in relation to
the camera position, visualized in figure 69.

Figure 69. Depth data from OpenSfM

The only issue with the depth data from OpenSfM is that
it only tracks depth until a certain depth is reached, points
further than this have their depth set to zero. This is visible
in figure 70, where points with depth = 0 are highlighted
in yellow. The green points are the points that are not ob-
structed by anything in front, while red points are the points
hidden by other surfaces in front of them.

Figure 70. Points filtered with OpenSfM depth data

As one can see, using the depth data from OpenSfM
works well, and indeed, many hidden points are removed
by this. For experimenting, I added two modes, one where
all points with depth = 0 are discarded (visualized in figure
71), and another where all points with depth = 0 are kept
(visualized in figure 72).
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Figure 71. Labels mapped to points, ignoring points with depth =
0

Figure 72. Labels mapped to points, keeping points with depth =
0

As the mode where all points with depth = 0 results in
labels being mapped to 3D points which might be incorrect,
I decided to discard the points with depth = 0, which re-
sults in fewer points being labeled in each image, but there
are fewer incorrectly labeled points.

Also note, that this issue with points having no depth
mainly occurs in views with a large depth difference, if the
furthest points visible are only a few meters from the cam-
era, this does not happen and almost all pixels in the image
do have a depth assigned.

4.13.4.4 Result of semantic segmentation

With the depth data now being used to only map applicable
labels to points, I can map the labels of every image and
then create a labeled point cloud from the data, as explained
in 4.13.4.2, with the final result of this visualized in figure
73.

Figure 73. Labeled point cloud

As one can see in this image, most floor and wall points
have been labeled correctly, however a lot of the furniture
contains wrongly labeled points. If I only keep the points
with relevant labels (i.e. wall, floor, ceiling etc.), one can
see that there are still many points belonging to furniture
and other object left in the point cloud (figure 74).

Figure 74. Labeled point cloud, keeping only relevant labels

Going back to the labeled images, it becomes clear that
the refinenet does achieve a high success rate with labeling,
however there are still too many incorrectly labeled pixels,
which then also has an effect on the quality of the labels in
the point cloud.

After spending a considerable time on the approach us-
ing semantic segmentation, I decided to try another ap-
proach (which was the RANSAC approach explained in
4.6.1).

4.13.5 Using a histogram to detect planes

Another approach was to create a histogram of the points,
i.e. flattening all points onto a single plane and then visual-
izing the density of points. The idea was that regions where
walls are to be found contain a higher density of points,
which allows to find lines in this 2D representation which
lie along these walls.
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One issue however is that not only the the walls have
high densities of points, but also other objects (such as fur-
niture) might have a high density of points. Shown in figure
75, the general layout of the room can be seen, however
some walls are barely visible (due to them having fewer
points than other areas in the point cloud). Also, some parts
of the furniture, e.g. the table, are also visible, as these re-
gions have a high density of points.

Figure 75. The computed histogram, using a suitable neighbour-
hood size to compute the value for a pixel

I tried detecting lines in this image with OpenCV10 using
edge detection with the Canny edge detector, followed by
HoughLinesP. This did indeed detect some of the lines
that make up the walls of the point cloud, but also some
lines belonging to other surfaces (for example the table), as
seen in figure 76. Lowering the threshold for detecting lines
added too many false positives, while increasing it removed
many of the desired lines along walls.

Figure 76. Lines found on the previously computed histogram

10https://opencv.org/

I therefore chose to stop following this approach, as it
appeared to be too dependent on the structure of the data
(i.e. it might yield usable results for point clouds mainly
containing the walls, and unusable results for point clouds
having many other objects within).

4.13.6 Constrained RANSAC

This approach which I call constrained RANSAC was al-
ready mentioned in 4.6.2.3, using it to find planes in point
clouds where I already know the orientation of the plane.

Usually, in normal RANSAC, the n points to fit the plane
trough are picked at random from all points in the data set.
The RANSAC algorithm then fits a plane through these n
points and computes the number of inliers (i.e. points which
are within a certain distance to the plane). This process is re-
peated a number of times, keeping track of the plane which
results in the highest number of inliers.

This usually works really well, however one downside of
this algorithm is that it can find an arbitrarily oriented plane
in the data (which might be the best fitting plane and not
only resulting from a low number of sampling steps). For
this application, this is not optimal, as I’m only interested
in the floor plane and wall planes.

When considering the Manhattan world assumption 2.4,
it can be seen that the planes (or rather their normal vector)
forming relevant surfaces must align with one of the three
main axis of the point cloud (X , Y or Z).

These directions can be computed using the approach
shown in 4.6.1.4, and with these it’s now possible to use this
constrained RANSAC approach. In addition to the number
of iterations as well as the point cloud itself, this method
also takes the direction the normal vector of the plane must
face.

The algorithm then picks a single point (instead of n
points), and constructs the plane equation from the point
and the normal:

1 a, b, c = plane_normal
2 x0, y0, z0 = random_point
3 d = -(a*x0 + b*y0 + c*z0)
4 plane = [a, b, c, d]

With this plane, I apply the normal logic for RANSAC:
Compute the number of inliers, and compare if this plane
has a larger number of inliers compared to the previous iter-
ation. This approach forces all planes to be parallel to each
other (following the direction given by the principal compo-
nent for this direction), only moving the planes along their
normal vector.
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Figure 77. 10 planes found by the constrained RANSAC approach

In figure 77, I visualized this algorithm being run 10
times for a certain direction. Many of these planes are rele-
vant, however the algorithm also fits some planes through
the middle of the point cloud. The main issue with
this approach is that the number of times the constrained
RANSAC approach is applied to the point cloud determines
the number of planes found. For example, if the point cloud
contains 2 planes in X direction, and 10 planes in Y direc-
tion, the user would need to specify this, as running both
directions 10 times would result in 20 planes. Running the
normal RANSAC 20 times (with the PCA alignment check
explained), the algorithm can find up to 20 planes, with in-
valid planes being discarded. This means the chance of find-
ing only the really needed planes is higher with the normal
RANSAC approach.

Also, even if the number of planes to be found is known,
the algorithm might not find these planes, especially if these
planes are rather small, as it might find a plane with a higher
number of inliers elsewhere in the point cloud.

I therefore decided not to use this approach alone, and
only use the method in 4.6.2.3 as a part of the method of
finding boundary planes.

5. Experiments
5.1. Comparison with ICP without previous global

registration

The first experiment is comparing the result from my
method with a registration using plain ICP.

For the ICP, I use two implementations of the algorithm:
The version in Open3D, which I also use for the local op-
timization step 4.10, as well as the version implemented in
the software CloudCompare 11.

5.1.1 ICP in CloudCompare

The version of ICP in CloudCompare offers a version of
ICP where the scale of the point cloud to be registered can

11https://www.danielgm.net/cc/

be changed to fit the reference. As such, I first try the ver-
sion where the scale can be changed as well, as the scales of
the two input point clouds (captured point cloud and CAD
model point cloud) might not match each other. In figure
78, one can see the input of this test.

Figure 78. Input for ICP with scaling enabled

After a few seconds, the algorithm is done, however the
algorithm scaled the captured point cloud down, as this
probably yielded the best fitness for these two input point
clouds. In figure 79, the captured point cloud is visible as a
very small collection of colored dots in the right side of the
image.

Figure 79. Result for ICP with scaling enabled

With multiple runs of this version, the result was always
similar, i.e. the captured point cloud was scaled down too
much. I therefore tried the version without scaling. The
main issue here is that the point clouds both need to have
the correct scale already, i.e. any difference in scale might
already negatively impact the result. Therefore, I manu-
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ally scaled the captured point cloud such that it matches the
scale of the CAD model point cloud, as visible in figure 80.

Figure 80. Input for ICP with scaling disabled

Running this version seemed to yield a good result, as
one can see in 81, however, when viewed from the side 82,
the result still is not optimal. This is probably due to the
points corresponding to furniture and other objects present
in the captured point cloud negatively impacting the result
for ICP.

Figure 81. Result for ICP with scaling disabled, top view

And of course, this result was only possible because I
manually scaled the point cloud before running ICP, as this
version does not change the scale of the point clouds. Run-
ning ICP without either changing the scale or have the ICP
algorithm change the scale is pointless anyway, as there will
be no useful result which could be used to merge the two
point clouds into each other.

Figure 82. Result for ICP with scaling disabled, side view

Lastly, I ran the ICP of CloudCompare on an input which
is similarly unaligned as the input for the global alignment
step 4.9. Here, I chose to use the sampled point cloud, with
the same alignment as the one in 47 as the input, to compare
the two approaches on the same input data. The only differ-
ence here is that I scaled the input for the CloudCompare
ICP, as it does not optimize the scale of the point clouds.

In figure 83, one can see the input of this, and in figure
84 the output. While this seems pretty well aligned, one
can also see that the alignment is still off, especially in the
rotation about the Z axis. This is mainly due to the fact that
ICP may rotate the point cloud in any arbitrary direction to
optimize its goal, while the global registration step in my
method first aligns the floor and wall planes, and then is
constrained to 4 rotations about the Z axis.

Figure 83. Input for CloudCompare ICP with unaligned point
clouds
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Figure 84. Result for ICP with unaligned point clouds

When comparing the fitness score of this result, which
is 0.39717 with the fitness score of the best fit found by my
method, which is in the region of 0.49 (see 5.3) it’s clear that
my method yields a better result for the same input. Also,
one thing to keep in mind is that my method works on point
clouds which have different scales, which is not the case for
ICP.

5.1.2 ICP in Open3d

Open3D also features an ICP implementation, which I do
use in the local optimization step explained in 4.10. How-
ever, this version also does not change the scale of the in-
puts, and therefore would not work if the inputs have a dif-
ferent scale.

I therefore again need to set the scale manually, and run
the ICP algorithm on this scaled input, shown in 85. To get
a sensible result, I had to use a rather large threshold for the
ICP method of Open3D, as using only a small threshold did
not result in sensible results. The threshold parameter is the
maximum correspondence distance, i.e. the radius around
each point the algorithm will try to find a corresponding
point.

Figure 85. Input for ICP in Open3d

With a large enough threshold, the algorithm did manage
to find a transformation which is not the identity transforma-
tion, however the resulting transformation still did not align
the point clouds well enough, as seen in 86. Increasing the
threshold also increased the runtime of the algorithm signif-
icantly.

In contrast, in the local refinement in 4.10, I’m able to
use a small radius, as the point clouds are already roughly
aligned, which keeps the runtime in a sensible time frame.

Figure 86. Output for ICP in Open3d

I also ran ICP of Open3d against the sampled point
cloud, as I did previously for the ICP implementation of
CloudCompare, with the input as shown in 87.

Figure 87. Input for ICP in Open3d, with unaligned point clouds

In 88, I visualized the outputs with increasing threshold
sizes, however, none of these thresholds resulted in a cor-
rectly rotated point cloud.
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Figure 88. Output for ICP in Open3d, with various threshold sizes
(0.5, 1, 5, 10, 15 and 25)

5.1.3 Results

While the ICP with the correctly scaled, sampled point
cloud in CloudCompare results in a good result, it still has
a significant lower fitness score than the result from my
method, as the rotation about the Z axis is off. The im-
plementation in Open3D did not manage to return an usable
result at all.

Furthermore, both methods require two point clouds as
input that already have a correct scale, where my method
also can work with differently scaled methods.

5.2. Comparison with global registration from
Open3D

Open3D also features methods for global registration 12,
which I want to compare to my method. As the method
for Open3D features two main parameters which can be
changed, threshold (again referring to the distance ra-
dius for correspondence search) and voxel_size, I run
the algorithm on a variety of combinations for these two
inputs.

The algorithm is ran on the same input I use in 4.9.1,
as I’ve already used this for the previous experiments, again
with the sampled point cloud being scaled correctly (in con-
trast to the input of my method, where the scale is not cor-
rect).

I run the algorithm 5 times for each combina-
tion of threshold ∈ [0.5, 1, 5, 10, 50, 100, 250, 500] and
voxel size ∈ [0.1, 0.25, 0.5, 1, 2, 5, 10], and compute the
average fitness over these 5 runs. The result is plotted in
89. As one can see, the fitness scores do differ significantly
depending on the chosen parameters, with the lowest fitness
score being 0.05581, and the highest score being 0.29671
(as explained in 4.9.5.2, this is the fraction of inlier corre-
spondences / number of points). This is still significantly
lower than the score from the best fit found by my method,
which is around 0.49.

12http://www.open3d.org/docs/0.13.0/tutorial/
pipelines/global_registration.html

Figure 89. Plotting the fitness for the combinations of threshold
and voxel size

Shown in 90 are the input (top left) and the outputs of
running the global registration with voxel size = 2 and
the various distance thresholds. As one can see, the point
clouds are mostly oriented in an arbitrary way, with the
alignment produced by the global registration not being us-
able for the purposes I intend it to.

Figure 90. Input (top left) and outputs for the distance thresholds

Another issue with the global registration is again that
the scales need to be correct to begin with, so passing in
point clouds with different scales would result in even worse
registrations.
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5.3. Running method with different transforma-
tions applied on inputs

Finally, I run the method on variations of the input, to
compare the result and the fitness scores after the global
registration step (4.9) as well as after the final local opti-
mization step (4.10).

As before, I ran every input 5 times and computed the
mean and standard deviation of the results, which are shown
in figure 91. The descriptions & visualizations of the inputs,
along with the result data, can be found in appendix A.1.

Figure 91. Results of running the method on various inputs

As before, the fitness is the fraction of inlier correspon-
dences / number of points. As one can see, after the global
registration steps, the results differ a bit, with the standard
deviation being between 0.03 and 0.05 (i.e. an absolute dif-
ference of 3% to 5% in total fitness). However, after running
the local optimization step, which improves the alignment
& scaling on a local scale, the resulting fitness scores for the
various inputs are very similar, with the standard deviation
being less than 0.01 for each set of inputs.

Figure 92. Resulting registration

This shows that the registration approach of my method
is able to register the two point clouds consistently, with-
out needing an initial alignment or have the point clouds
be the correct scales already. It also shows that the local
optimization step does indeed improve the registration, im-
proving the fitness score by up to 0.14 from the result from
the global registration.

In figure 92, one can see an example of a final registra-
tion produced during this experiment (result of a run with
input 3).

6. Conclusion
In this section, I’ll finally present my conclusions about

the method developed in the thesis, discuss some of the
more important limitations and some possible further work
to tackle these limitations.

6.1. Limitations

6.1.1 Manhattan world assumption needs to hold

During many of the steps, the Manhattan world assump-
tion 2.4 is assumed to hold, for example to filter invalid
RANSAC planes in 4.6.1.5 or to compute the outer planes
in 4.6.2. While the Manhattan world assumption does hold
for a large number of buildings, it limits the type of build-
ings that can be processed.

Buildings with diagonal walls such as 93 will not work,
as the diagonal lines are discarded by checking them against
the principal components (and computing the principal
components in regards to the walls as explained in 4.6.1.4
might also not work as expected).

This could be resolved by not checking the directions of
the found planes, but this leaves the RANSAC step open to
find other arbitrary oriented planes.

Figure 93. Floor plan with diagonal walls

Floor plans with curved walls, such as the example
shown in figure 94 on the other hand do not work at all,
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as the method I presented only works with straight lines.
Therefore, point clouds containing such walls are currently
not supported and might yield suboptimal results.

Figure 94. Floor plan with curved walls

6.1.2 Quality of RANSAC planes depend on input data

I introduced many additional checks and the step to find
bounding planes shown in 4.6.2 to get a set of planes that
should represent the structure well, however the quality of
the found planes still depends a lot on the input data.

If the point cloud does not contain enough data along the
walls, e.g. because the SfM step did not manage to track the
walls or if the user did not capture any images containing
enough views of the walls, the step to find planes might
perform badly, negatively impacting the whole result.

6.1.3 Approach only works for single floor point clouds

Currently, the approach only works for point clouds con-
taining data of a single floor. If the user changes floors dur-
ing capturing of the data, the algorithm will not be able to
align the point clouds. Furthermore, the algorithm will only
find the floor plane of the lower floor, as it’s assumed that
the floor plane is on the very bottom of the point cloud,
with only few points below this plane. Horizontal planes
with more than a percentage of points below it are currently
discarded as invalid horizontal planes.

Figure 95. Point cloud with multiple floors, manually highlighted

Point clouds with multiple floors, such as the point cloud
in figure 95 cannot be processed with the current method
and would need to be cut in half before processing.

6.1.4 Running method on floor plans with repeating
patterns

The global registration step 4.9 works especially well for
smaller floor plans, where the rooms differ enough from
each other. However, if the floor plan is large and contains
repeating patterns, e.g. offices along a hallway all having
the same size, this step might find a registration which is
not optimal. One example is a floor plan shown in figure
96.

Figure 96. Floor plan with repeating rooms

If the user were to capture only a small subset of data,
such as the one shown in figure 97 (path of user in red, walls
captured in black), the algorithm might not find the correct
location for this data, as the data might fit into multiple lo-
cations.

37



Figure 97. Example path, with captured data

6.2. Further work

6.2.1 Improve quality and reliability of finding planes

As previously explained, the quality of the whole result de-
pends on the quality of the planes that were extracted from
the point cloud. The current approach with RANSAC works
well, however this step still depends on randomized algo-
rithms (RANSAC), which means that the results might dif-
fer between runs. This can be partially avoided by increas-
ing the number of iterations of each RANSAC step, which
however also increases the runtime of the algorithm.

As the various parts of the method work independent
of each other, one could replace the plane search with
RANSAC by a more reliable approach, for example using a
neural network or some analytical approach. Any method
that is able to return a set of planes with corresponding
bounding boxes works here, which means there is a lot of
potential for improving this step of the method.

6.2.2 Use color information of previously added data

It is possible to run the method for multiple sets of inputs,
e.g. from two different sequences of pictures, on the same
CAD model point cloud. After the last step 4.11 of the run
with the first data set, the user has a point cloud where the
points from the CAD model Pcad are merged with the points
from the captured data Pcapt, resulting in a new point cloud
Pmerg .

When the method is now run a second time with the
captured data from the second sequence and the new point
cloud Pmerg , the algorithm runs the same as if it would be
run with the original CAD model point cloud Pcad.

However, the merged point cloud contains more relevant
data in the form of point colors from the first captured point
cloud, which could be taken into account to improve the
accuracy of the registration.

6.2.3 Handle multiple floors

As elaborated in 6.1.3, the method currently only works for
point clouds with a single floor. One improvement would
be to add the ability to handle multiple floors, where stairs
connecting the floors could be an important factor for initial
alignment in the registration step. Usually, buildings have a
small number of stairs connecting the floors, which would
reduce the number of translations the algorithm would need
to test to find the optimal global registration.

6.2.4 Incorporate position data

As shown in 6.1.4, the global registration step might strug-
gle to find the correct location for the captured data if the
floor plan (and therefore the CAD model point cloud) con-
tains the same shape multiple times. One approach to tackle
this issue would be to localize the position of the initial
shot of the sequence of images used to produce the captured
point cloud (using GPS, WiFi or some other technique) in-
side the CAD model.

With this localization, which would not have to be very
accurate, we could constrain the search for valid registra-
tions to a region around this point, e.g. by computing the
point of the camera for this shot in the captured point cloud
(which should be already done from the SfM framework)
and forcing this point to be nearby to the previously located
position of the camera in the CAD model point cloud.

For this to work, we would need to have some way of
roughly locating the camera device for each of the images
in the input sequence, e.g. by extracting GPS data from
EXIF metadata. Furthermore, the CAD model point cloud
would need to contain such information as well, e.g. by
using the real-life location of the building to compute a lo-
cation inside the building (and therefore on the floor plan)
for a given GPS coordinate.

While this certainly would add additional overhead and
require more data, it could be interesting to see whether the
whole process could be improved to work on larger, repeat-
ing floor plans, as well as speeding up the global registra-
tion by not having to search over the whole area of the CAD
model point cloud.

6.3. Summary

In this section, I’ll summarize the thesis, its results and
therefore whether the goals stated in 3 have been success-
fully met.

In general, the approach explained in this thesis works
reasonable well to fit a noisy point cloud containing many
points not related to the structure of the room into a 3D
model of the building. As shown in 5.3, the method works
with any oriented and scaled input, reducing the needed
manual work to align the data.
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The final result shown in 4.12 shows an example of such
a fit, where the program was able to fit the captured data
into the CAD model point cloud without requiring an initial
alignment.

While there are still some limitations and challenges (as
elaborated in 6.1), I think the approach can indeed be used
as a baseline for such an approach. As the individual parts
of the program are only loosely coupled (by their parame-
ters and return values), one could replace individual parts
and improve the performance of the whole program easily
(for example replacing the RANSAC approach with a more
sophisticated approach at finding planes in the point cloud).

One of the important findings is that reconstructing the
captured data by creating a new point cloud from the ex-
tracted structure can reduce the complexity of the point
cloud by a large margin, which means there are fewer points
in this point cloud that cannot be matched. The task of reg-
istration can therefore be simplified, yielding a higher regis-
tration fitness in the intermediate steps. By keeping track of
the needed transformation steps and then composing a final
transformation matrix, the original captured data still can be
fit into the CAD model point cloud, such that the goal can
be achieved.

As explained in 2.4, using the Manhattan world assump-
tion greatly simplifies the task at hand: First off, the planes
found in the step 4.6 can only be oriented in one of three di-
rections, which allows the program to discard invalid planes
easily. Second, it allows to reduce the number of rotations
in the global registration step to only 4 rotations about the
Z axis.

While I am satisfied with the outcome, I think the tasks
outlined in 6.2 still have the potential to make this approach
more usable, and would definitely be an interesting project
to tackle.
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6.5. Resources

The code for the thesis is available on GitHub:
https : / / github . com / Adrian - Hirt /
MasterThesisPointcloudRegistration

References
[1] PJ Besl and ND McKay. A method for registration of 3-d

shapes, ieee t. pattern anal., 14, 239–256, 1992. 2
[2] J.M. Coughlan and A.L. Yuille. Manhattan world: compass

direction from a single image by bayesian inference. In Pro-
ceedings of the Seventh IEEE International Conference on
Computer Vision, volume 2, pages 941–947 vol.2, 1999. 2

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery and
Data Mining, KDD’96, page 226–231. AAAI Press, 1996. 5

[4] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, jun 1981. 2

[5] Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas
Wieser, and Konrad Schindler. Predator: Registration of 3d
point clouds with low overlap, 2021. 26

[6] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 27

[7] Vladimir Nekrasov, Chunhua Shen, and Ian Reid. Light-
weight refinenet for real-time semantic segmentation, 2018.
27

[8] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, pages 127–136, 2011. 26
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A. Appendix
A.1. Inputs and results of global registration exper-

iments

Input 1
Applied transformations to sampled point cloud: None.

Run Fitness after global reg. Fitness after local opt.
1 0.352150837 0.496451156
2 0.37853988 0.497471111
3 0.324351409 0.496779142
4 0.353375645 0.497367116
5 0.409605463 0.495830183

Avg 0.363604647 0.496779742
SD 0.032077154 0.000605414

Input 2
Applied transformations to sampled point cloud: Rotated
around all 3 axis.

Run Fitness after global reg. Fitness after local opt.
1 0.408714694 0.483904708
2 0.398322384 0.481617809
3 0.274022937 0.485965618
4 0.361837954 0.481198827
5 0.395316038 0.483220738

Avg 0.367642801 0.48318154
SD 0.049380807 0.001711841

Input 3
Applied transformations to sampled point cloud: Rotated
around all 3 axis & scaled down by factor of 0.3.

Run Fitness after global reg. Fitness after local opt.
1 0.321456408 0.483202739
2 0.403444308 0.481248825
3 0.411906618 0.480953838
4 0.385517574 0.49499722
5 0.415098541 0.479937883

Avg 0.38748469 0.484068101
SD 0.034575333 0.005565971

Input 4
Applied transformations to sampled point cloud: Rotated
around all 3 axis & scaled up by factor of 2.

Run Fitness after global reg. Fitness after local opt.
1 0.41825335 0.483514725
2 0.318264484 0.483686718
3 0.44289797 0.491535372
4 0.359722377 0.491603369
5 0.440337008 0.492409334

Avg 0.395895038 0.488549904
SD 0.049029017 0.004053035
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Input 5
Applied transformations to sampled point cloud: Rotated
around all 3 axis, scaled down by factor of 0.3 & translated
in positive Z direction.

Run Fitness after global reg. Fitness after local opt.
1 0.294399287 0.467934411
2 0.412203541 0.481515813
3 0.345915451 0.481154829
4 0.325650447 0.49046342
5 0.394499499 0.49613317

Avg 0.354533645 0.483440329
SD 0.043468931 0.009589502
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