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Abstract—Due to their flexibility and openness, the RISC-
V ISA and processor architectures have emerged as notable
contenders in various application domains. Their advantages over
commercial solutions have attracted the interest of academia and
industry and even led to their planned adoption in aeronautics
and space. However, in these demanding environments, system
reliability is of paramount importance. To address this issue,
this paper presents an overview of several hardware-centric
approaches for developing reliable systems based on the parallel-
ultra low power (PULP) open-source RISC-V hardware platform.
These approaches range from gate-level optimizations to system-
level improvements and highlight the versatility of the PULP
architecture and its potential as a viable architecture for devel-
oping various aerospace platforms.

Index Terms—RISC-V, PULP, Reliability, Fault Tolerance,
Fault injection, Selective Hardening, UVM, Machine Learning,
Hardware Acceleration, ECC, Adaptivity, SEU

I. INTRODUCTION

The RISC-V instruction set architecture (ISA) has gained
significant traction in academia and industry over the past
years. Its open-source nature has created a collaborative en-
vironment for hardware developers to innovate and develop
new hardware systems [1]. The flexibility and versatility of the
RISC-V ISA led to its use in various applications, including
machine learning, automotive, and aerospace.

The increasing demand for open systems and the inherent
adaptability for specific applications are fueling the growth
of RISC-V-based hardware in industries. SiFive, for example,
has developed a wide range of RISC-V-based processors that
can be used in various applications such as AI, networking,
and storage [2]. Western Digital supports RISC-V as part
of its strategy to intensify the development of purpose-built
architectures that bring memory closer to compute. One of
their many highlights is the SweRV Core EH2, which they
claim to support ”the running of two simultaneous threads
on top of its two-way superscalar architecture, enabling 6.3
Coremarks/Mhz simulated performance” [3]. As a European
company, MINRES has developed a RISC-V soft IP core
family called The Good Core [4], which is built according
to the ISO 26262 standard and targets functional safety and
reliability.

RISC-V has also become a popular research platform for
exploring new computer architectures and applications in
academia. Many universities and research institutions use
RISC-V-based hardware to develop new systems and applica-
tions. For example, the Parallel Ultra-Low-Power (PULP) [5]
platform developed at ETH Zürich and the University of
Bologna is an open-source hardware and software platform
under a liberal license which allows unconstrained use for re-
search, education as well as in for industrial development that
released several RISC-V-based processors [6]. The PULP plat-
form aims to provide energy-efficient and high-performance
solutions for the Internet of Things (IoT), wearable devices,
and autonomous vehicles. In addition, the PULP IPs are
highly configurable and enable the optimization of power and
performance for specific applications. Another example of an
academic project is the Chipyard framework, which illustrates
the potential of RISC-V-based open-source hardware. It is a
framework for designing and testing customizable RISC-V-
based systems and provides a set of tools and libraries for de-
signing processors, memory subsystems, and interconnects [7].

Fig. 1. addressed abstraction levels



As open-source hardware gradually finds its way into more
critical applications, the need for reliable systems becomes
increasingly important. In aerospace, reliability is critical due
to the harsh and remote environments in which systems
operate. As a result, developing reliable open-source hardware
is an active area of research to ensure system reliability and
safety and is making rapid progress. The NOEL-V processor
by Frontgrade Gaisler [8], for example, was the first RISC-
V-based processor that has started operation in a European
nanosat in space [9]. The success of this has inspired many
follow-up works that enrich the NOEL-V environment. De-
RISC [10] is a European Horizon 2020 project to investigate
a space-grade MPSoC and qualified hypervisor based on the
RISC-V ISA.

Other research addresses dependable RISC-V systems on a
more abstract level. Di Mascio et al. [11], for example, propose
a framework to evaluate the fitness of a microarchitecture for
environments where failure rates are dominated by soft errors
and allow the inclusion of considerations on soft errors when
selecting and configuring an open-source IP core (like RISC-
V). Recently, even the main space agencies are recognizing
and promoting the importance of dependable RISC-V-based
systems. ESA has published a roadmap to leverage RISC-V
in space applications [12] and is having workshops [13] to
make them more known to the interested public. Furthermore,
NASA has discovered the benefits of open-source hardware
and plans to use it on future missions [14].

The PULP architecture mentioned above, with its high con-
figurability and heavy emphasis on low power consumption,
builds a solid basis for the various computational needs of
avionic or space applications, ranging from small sensing
devices to Linux-capable processing systems. This paper pro-
vides an overview of different research approaches that target
reliability as another vital characteristic to enable the PULP
platform as a reliable companion for harsh environments.
As a general introduction, the following chapter introduces
the PULP platform and summarizes its main properties and
architectural features. The subsequent sections then introduce
our research at different abstraction layers.

Figure 1 summarizes the presented abstraction layers and
respective methods. The lowest layer is the gate level, which
we address with fault simulations in section III and selec-
tive hardening based on artificial intelligence in section IV.
Methods that increase the fault tolerance on the more abstract
register transfer (RT) level will follow in section V, which
focuses on memory banks, and section VI, with insights on a
fault-tolerant hardware accelerator. Sections VII and VIII then
move on to our investigations at the system level and present
two adaptive and resilient multicore systems that offer the
performance, flexibility, and reliability required in harsh and
remote environments that are encountered during high altitude
flights or space missions. Section IX concludes the paper, with
summarizing remarks and suggestions for future research, that
will further enhance the reliability of PULP systems for space.
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Fig. 2. PULP architecture.

II. THE PULP SYSTEM

The Parallel Ultra-Low-Power (PULP) [5] platform offers
an open-source template and all the hardware IPs that can
be used to build reliable digital computing systems ranging
from small micro-controllers up to Linux-capable single-board
computers, with several options for software- and hardware-
based acceleration. Figure 2 depicts the architecture of the
PULP platform, which is divided into two main domains.

The first domain is the host domain [15]. It is a system
based on a single RISC-V controller core that can be either a
32-bit [16] core for the execution of ultra-low-power real-time
applications or a 64-bit [17] Linux-capable core for mid-to-
high-end applications, and both cores are industrially verified
by the OpenHardware Group [18]. The host domain typi-
cally includes an L2 Tightly-Coupled Data Memory (TCDM),
whose size typically ranges between 512 KiB and 2 MiB, and
a ROM storing the boot code. Furthermore, the host domain
includes a complete set of peripherals, such as Quad SPI, I2C,
I2S, UART, and a DDR HyperBus interface to extend the size
of the on-chip memory, and a JTAG interface that allows for
system debugging.

The second domain of the PULP system is the cluster
domain, which acts as a parallel accelerator to the host.
The PULP cluster [19] features a parametric number of 32-
bit RISC-V CV32E40P cores [16] varying from 2 to 16.
The CV32E40P architecture is a simple in-order four-stage
pipeline based on the Harvard template, extending the baseline
RV32IMC ISA with Xpulp extensions for efficient digital
signal processing. In the PULP cluster, the cores’ instruction
interface connects them to a hierarchical instruction cache [20]
made of private (512 B per core) and shared (4 kiB) banks
for improved application performance on parallel workloads.
On the other hand, the cores connect to the rest of the system
through a data interface. This interface allows connection to
the L1 TCDM, whose size typically ranges between 64 and
256 kiB, and that features a parametric number of 32-bit word-
interleaved memory banks accessible through a full crossbar



with single-cycle access latency, with a banking factor of two
that allows for minimizing the memory contention probability
on memory-intensive workloads.

The data interface also connects the cores to a peripheral
interconnect to access memory-mapped devices within the
cluster and the host domain. One of these peripherals is the
Direct Memory Access Controller (DMAC), allowing for data
transfers of up to 64 bit/cycle between the L1 TCDM and
the L2 TCDM or other external memories. The cores can
also access an event unit [21] for synchronization barriers
and interrupt handling within the cluster. The communication
within the PULP cluster and any other external domains, like
the host domain, is allowed through a dedicated AXI crossbar
in the PULP cluster’s domain.

PULP clusters can be further extended with architectural
heterogeneity, integrating application-specific hardware ac-
celeration units that share the L1 TCDM with the cluster
cores and can be configured through a memory-mapped regis-
ter file [22], [23]. The PULP project provides standardized
interfaces1 to integrate these hardware accelerators without
redesigning interfaces from scratch, reusing designs which
can provide standard (32-bit) or high-bandwidth (up to 512-
bit/cycle) access to L1 TCDM.

The host subsystem’s controller nature and the cluster
domain’s multi-core nature provide the opportunity to be
extended with fault-tolerant features to build reliable systems,
exploiting architectural or component-level redundancy.

III. FAULT SIMULATION ON IBEX WITH UVM TESTBENCH

As the scaling of feature sizes of circuits continuously
decreases and the complexity of SoCs steadily grows, the
probability of system failures caused by soft errors in mi-
croprocessors increases. Circuit reliability analysis during the
early design stage is crucial to identify the vulnerable parts
of a microprocessor. A commonly used approach is to use
simulation-based fault injection [24], where Universal Verifica-
tion Methodology (UVM) represents the most widely adopted
simulation verification methodology in the industry. Test-
benches based on UVM facilitate coverage-driven verification,
which ensures a balance between verification completeness
and minimum verification effort and time.

A. Workflow and Optimization

Work has already been done in the domain of fault simu-
lation, also with a focus on RISC-V-based processors [25].
We propose an optimized workflow for conducting simulation-
based fault injection at the gate level (GL) on the Ibex
core [26] using the UVM testbench [27] provided by ETH
Zurich and the University of Bologna. The testbench generates
compiled instruction binaries using an open-source RISCV-
DV random instruction generator. We simulate the generated
instructions on an Ibex core and compare the core trace log
to a golden ISS trace log to ensure the program is executed
correctly. We use the Xcelium fault simulator provided by
Cadence for fault simulation ([28]).

1http://hwpe-doc.rtfd.io

As can be seen in later parts, the cost for the high accuracy
of the gate-level simulations is an extremely long runtime. An
important goal of the research on hand is to optimize this from
three perspectives: 1) Performing the simulations at the RTL,
rather than GL, because RT level simulations are much faster,
2) optimal test case selection based on functional coverage and
3) fault pruning to reduce the number of simulations. We will
describe the details of the optimized approach in the following
subsections.

1) Test Case Selection: To reduce simulation time, we first
analyze the contributions of the test cases provided in [27] to
the functional coverage using Integrated Metrics Center (IMC)
by Cadence. We select the cases with higher contributions and
modify or merge them to reduce the overall number from 39
to 6 to cover about 98.2% functions. The selected test cases
and their descriptions are listed in Table I.

2) Fault Injection Flow, SIFR and Test Case Pruning: The
simulation-based fault injection is then moved from GL, for
which the test cases were originally created by the UVM,
to the RTL to increase simulation speed. We conduct the
simulations for each test case in the order of the coverage
contribution from high to low. Despite aiming for single event
upsets (SEUs), we initially inject permanent faults (i.e., stuck-
at-1 or stuck-at-0) into all flip-flops. If the fault in a flip-
flop is detected in the output interface of the Ibex core, we
subsequently inject multiple bit-flips with an even distribution
over the time window from the activation time to the end of the
simulation, to imitate the effect of SEUs. The SEU-induced
failure rate (SIFR) of an FF under a certain test load describes
the probability of the SEU propagating to the primary outputs
of the Ibex core. If n faults were injected during the time
window, and m were detected, the SIFR for the FF under the
given load was calculated using Equation 1.

SIFR =
t− x

t
× m

n
(1)

If neither of the two permanent errors of an FF was detected,
its SIFR is set to 0 right away. We set flip-flops as critical
when their SIFRs are larger than a certain threshold that should
be specified in the safety requirements of the system (in our
case, we set it to 0,1). When the simulation of one test case is
finished, we remove the identified critical flip-flops from the
fault list of the following test case and repeat the process until
the simulation of all test cases is completed.

B. Results

Table I summarizes the simulation time and number of runs
needed for each test case, which gradually decreases. The time
for the overall fault simulation is given in the last row. It
is based on a single-core Intel Xeon processor E5-4627V2
and can be reduced considerably by parallelization on multiple
cores.

In addition to the simulation time, we were able to extract
other interesting information on the criticality of the flip-flops
in an Ibex core during our work. The number of critical flip-
flops identified by each test case in each module in the Ibex



TABLE I
FAULT SIMULATION ON IBEX.

Test
ID

Test
Name

Descriptions
Simulation
Time (ns)

Number of
Runs

Number of
Detected

Critical Flip-flops

Time
(hours)

1 rand jump test Jump among large number of sub-programs. 59,400,814 23314 590 5196
2 pmp basic test Basic physical memory protection (PMP) test. 3,611,144 8044 62 81

3 debug branch jump test
Randomly assert debug requests, insert

branch instructions and subprograms into the debug rom
to make core jump around within the the debug rom

21,970,704 6640 53 338

4 mem error test
Randomly insert instruction fetch

or memory load/store errors.
9,818,104 5942 327 206

5 debug ebreakmu test
Set dcsr.ebreakm at the beginning of the test

upon the first entry into the debug rom.
13,274,244 2627 101 80

6 invalid csr test
Boot core into random privilege mode

and generate csr accesses to invalid CSRs.
2,261,544 2258 0 23
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core can be seen in figure 3 and the respective SIFRs in figure
4. The module of if stage has the most significant number
of critical flip-flops, and most of them are identified by the
test1 which is rand jump test (see Table I). The SIFRs of
critical flip-flops recognized by test5 (represented by orange
points, the color is the same as in figure 3) in the module
wb stage and load store unit is close to 1, which means they
are significantly critical.

IV. IDENTIFYING CRITICAL FLIP-FLOPS WITH MACHINE
LEARNING

Selective hardening [29] is a widely employed technique to
enhance the reliability of integrated circuits (ICs). It is based
on selectively protecting only the critical circuit components
rather than the entire circuit to reduce the resources involved.
However, the identification of the critical components in
circuits is a challenging task. A commonly used approach is
simulation-based fault injection. Unfortunately, this is time-
consuming and impractical for complex circuits running com-
plicated workloads. To overcome this challenge, we are ex-
ploring using machine learning (ML) as an alternative method
to identify critical flip-flops in circuits.

Previous studies have applied ML to reliability analysis,
including using ML algorithms to determine the relationship
between fault injection outcomes and the characteristics of
applications and platforms [30], predicting functional de-rating
(FDR) [31], [32], and anticipating hardware defects at the
transistor level [33]. Our work aims to utilize ML to predict
critical flip-flops in circuits.

A. Methodology overview

We use Neural networks (NNs) as our primary ML model.
We extract features such as the number of loads and the
types of connected gates for each flip-flop from the circuit’s
netlist to build the dataset. The flip-flops in the dataset are
annotated as critical or non-critical based on the results of
simulation-based fault injection. NNs are trained on the dataset
to search the pattern between the features and the annotations.
However, NNs are limited in that they cannot comprehend
the inter-component connections within circuits and can only
learn from the characteristics of each individual component.
The structural characteristics of circuits are essential for un-
derstanding the patterns of fault propagation. Graph Neural
Networks (GNNs) are capable of learning from connection



information. They have been developed as machine learning
models that can learn from graphs by utilizing the features of
a node’s neighbors in the graph and the node’s own features
during training. To utilize the structural features of circuits, we
also train GNNs on our datasets to compare their prediction
performance to NNs.

To use GNNs, our initial step is to transform the circuit into
a graph. Each flip-flop in the circuit is represented as a node
in the graph, and we employ the Breadth-First Search (BFS)
algorithm to identify the shortest path between flip-flops and
establish edges between them. The distance between flip-flops
is determined by the number of combinational gates on the
shortest path that connects them. To enhance the clarity of
the graph model and eliminate unnecessary noise, we remove
edges from the graph when the distance between two flip-
flops exceeds a specified maximum distance. In the end, we
represent the graph model using three tensors. The feature
matrix contains the features of each flip-flop in the circuit
or each node in the graph. The adjacency matrix refers to
the interconnections between nodes. Lastly, the edge tensor
defines the properties of the combinational gates on the edges
that connect the flip-flops in the graph. GNN models learn
from these three tensors to get the capacity to predict the
critical flip-flops in a circuit based on them.

B. Preliminary results

Our work [34] compares the performance of NNs and
GNNs on the dataset built on the RI5CY core [16]. The
highest prediction accuracy we achieved on NN is 88.2%. The
accuracy of GNNs is 91.1%, about 3% higher than NNs. Our
current research efforts are focused on improving the accuracy
of our predictions. By incorporating more advanced GNNs,
augmenting our feature set to include additional features
extracted from the Value Change Dump (VCD) waveforms,
and optimizing the method to use edge features, we have
achieved a prediction accuracy that exceeds 97%. Additionally,
we are actively working to validate our proposed methodology
on other open-source RISC-V cores, such as Ibex.

V. PROTECTING ON-CHIP MEMORY BANKS

Memory is a fundamental component of any digital system
and is responsible for storing both program and data [11]. In
line with other state-saving elements such as flip-flops, errors
in memory banks are persistent until corrected and can lead
to incorrect behavior in the surrounding system. Furthermore,
memories generally occupy large areas within an SoC at a
high density, which leads them to be the main source of errors
within the system in a hazardous environment.

While there are several ways to protect bits from corruption
due to radiation-induced single-event upsets, static memory
can greatly benefit from information redundancy. This gener-
ally relies on adding additional bits to each data word, allowing
errors to be detected and corrected using error-correcting codes
(ECC). For single-error correction and double-error detection
(SECDED), a Hamming code with parity or a Hsiao code is
often used. With ECC applied to the data word before storage,
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any individual errors occurring within the memory can be
detected and corrected upon reading back this memory word,
ensuring correct operation.

The PULP system is based on the 32-bit RISC-V ISA,
which, like many other ISAs, allows for memory access
at a byte granularity. This can pose some difficulty when
implementing ECC for memory protection: As the additional
bits required scales logarithmically with the data word bits,
larger granularities are usually used, such as protecting a full
32-bit word. Therefore, as the additional bits in the codeword
depend on all bits of the data word, storing only individual
bytes, e.g., using a byte strobe, requires recalculating the
codeword.

To reduce the impact on the PULP memory system, we
implement a read-modify-write approach directly at the mem-
ory bank shown in Figure 5, keeping up with the single-cycle
access latency of the system’s memory banks. Upon storing
less than a word, the first cycle reads the stored protected
word, directly responding to the requester with an error code
derived from decoding the protected word. In the following
cycle, the stored and to-be-stored parts of the word are strobed
appropriately, and the protection codeword is calculated. Any
request to this memory bank in this cycle is stalled so the
memory can store the data.

To analyze the performance impact of this approach, we first
investigate a representative workload such as the Coremark
benchmark. Analyzing the simulation instruction trace of an
ibex core executing the benchmark, we find that 90% of store
operations store full words, with 9% storing halfwords and 1%
storing individual bytes. To verify that the performance does
not degrade within the PULP system, even for a workload
using individual bytes more intensely than Coremark, we
execute an 8-bit parallel matrix-matrix multiplication on the
PULP cluster in RTL simulation, finding that the performance
impact is less than 0.5%.

Finally, to ensure that latent errors within the memory
system are corrected even if the data is not accessed, we
implement a memory scrubber, sequentially reading the stored
data within a single memory bank. If another actor in the
system accesses the memory bank, the scrubber pauses its
operation, resulting in no impact on the system’s performance.
If the scrubber detects a correctable error, it writes back a
corrected word to memory.
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VI. REDUNDANT HARDWARE ACCELERATORS

The criticality of the space environment requires space
systems such as satellites and spacecraft to feature a tight
link between onboard processing, communication, sensing,
and actuation elements [35], providing enough performance
to complete their tasks in a reasonable amount of time. The
onboard computing capabilities of spacecraft play a crucial
role in reducing the overhead given by raw data transmission,
allowing the data processing to be directly performed onboard
a spacecraft (for example, for image processing or fault
detection, isolation and recovery through machine-learning-
based techniques), sharing only valuable information on the
communication line. Thus, the onboard processing systems
must be highly reliable and perform well to process data while
recovering from incurring faults [36].

General-purpose computing systems might not provide
enough performance and efficiency to accelerate specific ker-
nels needed for deep learning execution [37], [38], requiring
coupling with application-specific hardware accelerating units.
Even though machine learning has some capabilities of resist-
ing faults, reliability in the acceleration of neural networks’
execution is still a requirement that makes machine learning
accelerators benefit from features that guarantee the reliability
of their operation [39].

Figure 2 shows that a PULP cluster can be enhanced
by introducing application-specific hardware accelerators that
provide higher efficiency and performance during specific
kernel execution over general-purpose cores. Since intense
matrix multiplications are widespread in machine learning
and deep learning, we integrate a Reduced-Precision Matrix
Multiplication Engine, RedMulE [40], to introduce up to 22×
better performance and 5× better energy efficiency on the
execution of 16-bits floating-point matrix multiplication ker-
nels over the parallel execution on the general-purpose RISC-
V cores. Furthermore, we enhanced RedMulE with fault-

tolerant capabilities to tackle safety-critical satellite onboard
computing.

RedMulE accelerates the execution of matrix multiplication
of the kind Z = X×W, and Figure 6 shows its internal
RedMulE architecture. It features internal buffers to store
input/output matrices tiles, a specialized streaming memory
interface that translates the TCDM protocol into streaming one
to feed the accelerator, dedicated control logic, and a datapath.
The datapath features a bi-dimensional array of Computing
Elements (CE) organized in rows and columns. Each CE
contains a Fused Multiply-Add module adapted from the
industrially-verified Trans-Precision Floating-Point Unit [41]
and has a private copy of elements from the X-matrix. The
elements from the W-matrix are broadcasted among all CEs
in a column so that all the CEs in a single column operate
in lockstep. Then, each CE provides the intermediate result
of its computation to the CE of the adjacent column in the
same row. The private copies of the X-elements of each CE
remain static for a given amount of time, while the W-elements
are shifted cycle-by-cycle within RedMulE’s datapath. The
internal computations of each row of CEs are reused within the
accelerator until an entire tile of the result matrix is completed,
reducing the required memory accesses to store intermediate
computations and maximizing internal reuse.

RedMulE can be configured so that its internal CEs are
grouped in a Dual Modular Redundancy (DMR) fashion,
allowing for the reliable execution of intense workloads if the
application requires reliability. In the redundant configuration,
each couple of adjacent CEs in a column receives the same
X and W input elements, so it is supposed to produce the
same output intermediate results. Each pair of CEs outputs
is provided as input to a DMR checker that compares the
results. If the results are consistent, they are propagated to
the next column of CEs for further computation. On the other
hand, if the checker detects a mismatch in the results provided
by paired CEs, it raises an error signal propagating it to
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Fig. 7. Area breakdown of the fault-tolerant RedMulE accelerator.

the control logic of RedMulE, forcing the datapath to repeat
the last computation. Figure 7 shows the area breakdown of
RedMulE, highlighting that the additional hardware required
for redundant grouping accounts for just 6% of the accelerator
data occupation.

VII. TETRISC SOC

In this section, the TETRISC (TETra Core System based
on RISC-V) SoC, an adaptive and resilient quad-core system
developed on the PULPissimo platform [15], is introduced.
TETRISC SoC is designed to dynamically adjust system
reliability in harsh environments while monitoring multiple
fault sources. The proposed system integrates a RISC-V-based
SoC, onboard reliability monitoring, and real-time switching
of operating modes to achieve a balance between system relia-
bility, performance, and power consumption. Figure 8 presents
the block diagram of the implemented SoC, where the green
and purple blocks represent newly implemented or upgraded
components, and the gray blocks originate from PULPissimo.
The proposed design comprises three main subsystems: the
quad-core subsystem, the on-chip reliability monitor subsys-
tem, and the adaptive control subsystem. These subsystems
are discussed in detail in the subsequent paragraphs.

In order to achieve the necessary level of redundancy, the
TETRISC SoC architecture extends the Pulpissimo platform to
a quad-core processor architecture, with the addition of three
RI5CY cores connected to an extended interface. The memory
interface has been redesigned to provide equal memory access
across the address space for all four cores, and the separation
of program and data memory is managed at the software
level. As with the original Pulpissimo platform, interrupts are
handled by an external event/interrupt unit, which has been
extended for TETRISC to ensure that all four processors can
receive interrupts independently.

The operational phase of a chip can be affected by various
sources of failure, including radiation-induced effects, aging,
and temperature. These factors can result in performance
degradation, data corruption, and even catastrophic failures.
To comprehensively monitor these potential threats, this design
proposes the use of three on-chip monitors, each dedicated to
monitoring one of the three sources of faults. These monitors

Fig. 8. The system architecture of the TETRISC SoC.

provide a comprehensive view of the current and future threats
to the system’s reliability.

• The Single-Event Upset (SEU) monitor is an efficient,
SRAM-based radiation monitor that can detect and cor-
rect radiation-induced transient and permanent faults at
a negligible cost [42]. This feature is crucial in space
applications and other contexts where radiation levels
may fluctuate significantly. Moreover, it can forecast fu-
ture radiation conditions by analyzing historical error rate
data and applying a pre-trained machine learning model.
The SEU monitor uses an error detection and correction
code, a scrubbing module, and a dedicated detection
process to identify and classify faults in SRAM words.
It is integrated into the memory interface controller and
arbitration tree to control memory bank access, while a
specific control mechanism manages access hazards.

• The aging monitor detects aging variations in target
modules, preventing degradation imbalances [43]. Its
simple, flexible design utilizes standard library cells and
measures aging degradation through transistor input and
output delays. The monitor generates an ”aging code”
to reflect module performance degradation over time,
and each core has its own aging monitor integrated into
the HiRel Framework Controller (HFC) platform. This
allows the system to access aging information and take
countermeasures if needed.

• Additionally, the temperature can have a significant im-
pact on ICs, such as effects on system performance,
leakage current, and material degradation. Therefore, it is
essential to monitor the onboard temperature. The design
includes an on-chip analog temperature monitor with an
integrated Analog-to-Digital Converter (ADC) for real-
time temperature data processing and analysis.

The HFC serves as the main adaptive control subsystem
of the TETRISC SoC, allowing for hardware-based recon-
figurability and fault tolerance. The HFC allows for diverse
operational modes based on core-level N-Module Redundancy
(NMR) and clock-gating techniques, providing efficient and



Fig. 9. Layout and die photos of the TETRISC SoC.

reliable performance in various operating environments [44].
Under normal operating conditions, the four cores can in-
dependently execute different programs. However, in high-
reliability scenarios triggered by either the monitor system
or the user, the HFC can enable the parallel execution of
the same program by two, three, or all four cores, thereby
allowing for various levels of fault tolerance. The HFC’s
primary component is a binary matrix-based programmable
NMR majority voter for multiprocessors. The voter is able
to select processing cores to participate in the voting and
can monitor the results. It can also transition from a 2MR
to a 4MR system with any combination of active processors,
creating an NMR on-demand system. As the primary control
component of the SoC, the HFC integrates various control
registers, providing users with the ability to manage operating
modes and obtain real-time system status information. The
design also includes custom-designed shadow registers for
cores, enabling rapid switching and synchronization between
different modes and core tasks. This approach ensures that task
synchronization between different cores during NMR modes
can be achieved in just two clock cycles.

To accurately assess the system’s reliability under various
forms of harsh conditions, a thorough investigation of the
resiliency of such an adaptive system was conducted in [45].
Additionally, the TETRISC SoC was fabricated using IHP’s
130 nm CMOS technology, as depicted in Figure 9, which
displays the design layout and die photos. The chip employs
a standard cell library for its four RISC-V cores, while a rad-
hard cell library is utilized for the remaining design. Operating
at a clock frequency of 30 MHz, the chip encompasses an
area of 43.56 mm2, with 39.17 % allocated to four shared
8192 x 40-bit L2 SRAM blocks that also function as sensing
elements for radiation monitoring. A future version of the chip
is expected to aim for an enhancement of the currently limited
clock frequency.

VIII. ON-DEMAND REDUNDANCY GROUPING (ODRG)

The multicore PULP cluster, discussed in Section 2, offers
a unique advantage when designing a fault-tolerant system:
multiple cores for parallel calculations are already available.
While the tight coupling and integration with the memory
system significantly improve the processing performance of
parallelizable tasks, these cores can also be used for the same
calculation, offering a redundancy copy to detect errors.
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Fig. 10. Block diagram of ODRG, wrapping 3 cores with a configurable voter

Extending the hardware, on-demand redundancy grouping
(ODRG) [46] combines three cores in the PULP cluster into
a triple-core lockstep (TCLS) group. In an 8-core cluster, this
allows for two TCLS groups, and 2 remaining individual cores.
In a TLCS group, the three cores receive identical inputs to
ensure identical calculations. If an error occurs internally, all
core outputs are voted with bitwise majority voters to correct
errors in flight. This allows all processing to continue without
requiring a reset to determine the correct result, such as for a
Dual-Core Lockstep mode.

The internal state within the cores, such as the program
counter, register file, or control and status registers, is stored
internally in registers and is also vulnerable to faults. While
these can lead to an error at the interface, the error is persistent
within the registers and is not corrected with the majority
voters at the interface. This can lead to a single error creating
an erroneous state within the cores continuously, as the cores
are no longer guaranteed to ensure triple modular redundancy.
To mitigate this, a re-synchronization routine is implemented
in software to correct any latent errors within the cores: When
an error is detected, the TCLS control unit hardware raises
an interrupt signal to the cores. This stops the cores and
starts a software routine that saves the internal state into
memory through the voters, correcting any errors that may
persist. Upon completion, the cores can be reset, clearing
any remaining errors within and ensuring an identical starting
condition across the cores. The previously stored state can then
be reloaded from the cores with additional software, ensuring
correct operation of the interrupted task can continue. In the
implemented PULP cluster, this re-synchronization requires
around 700 cycles, significantly faster than restarting the entire
computation if an error is detected.

While enforcing the locked TCLS mode allows for the
correct execution of tasks, it does so at a significant penalty
in area, requiring > 3× the area to replicate the processing
cores and add majority voters. However, the PULP cluster is
designed for many parallel processing cores, and not all tasks
require the high level of reliability guaranteed with TCLS.
Therefore, ODRG enables the reliability configuration to be
switched, allowing the cores to operate in the described lock-
step configuration and the standard individual configuration
without active reliability hardware. This switching is achieved
with multiplexers controlled by memory-mapped configuration
registers, where the implemented setup is shown in figure 10.



Switching between a reliable mode and a high-performance
mode is especially useful for systems where certain tasks
require absolute correctness, such as the control operations of
a satellite, and other tasks do not need this level of reliability,
such as image processing algorithms on already noisy data.
When switching to the individual configuration, the system
can benefit from an up-to 2.9× speedup over the locked mode
for non-critical tasks, tested here with matrix multiplication.
Overall, for a 6-core PULP cluster, ODRG adds less than 1%
area overhead with negligible impact on timing.

IX. CONCLUSIONS

In this paper, we illustrated several techniques to increase
the fault resilience capabilities of digital systems in order to
prepare them for demanding applications such as space and
avionics. All the proposed approaches rely on the openness of
the RISC-V Instruction Set Architecture, particularly on the
PULP platform, that uses industrially verified IP cores. We
showed how it is possible to use UVM-based test benches
and AI-based approaches to perform gate-level fault injection
within RISC-V cores to identify the design’s critical flip-
flops and further perform selective hardening. Then we were
able to show how redundant grouping can be applied to the
internal processing elements of application-specific acceler-
ators, guaranteeing the reliable execution of deep learning
algorithms. Additionally, we presented architectural-level ap-
proaches based on modular redundancy applied to simple
microcontrollers, or multi-core computing clusters, grouping
multiple cores for lockstep execution, allowing for increased
reliability of their operation. Our achieved results show that
the PULP platform can be modified to a reliable and adaptable,
highly performant system for air- or space-borne applications.

Future research needs to address certain aspects of our work
that we were not able to investigate yet. This is the trade-off
between the approaches on the one hand. Modular redundancy
leads to comparatively low area and performance optimization,
but selective hardening on flip-flop level introduces other low-
level issues in regard to timing, etc., and requires detailed
simulations. It might make sense to prefer one approach to
the other depending on the application, or even to develop
hybrid approaches to deliver more optimal results. On the other
hand, the presented approaches strongly focus on hardware-
based methods and only briefly touch upon the software
side, but software-based methods for fault tolerance are well
established. This needs to be further addressed in order to
deliver an optimal interaction between the different methods.
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