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A B S T R A C T

Visual object tracking is a fundamental problem in computer vision
and finds its application in multiple tasks such as autonomous driv-
ing, robotics, surveillance, video understanding, and sports analysis.
Generic Object Tracking (GOT) is a specialized tracking task that
aims at tracking virtually any object in a video by using a user-
specified bounding box that defines the target object in the initial
video frame. Learning a target model, in order to track the target
in each frame, from such sparse information proves extremely chal-
lenging. Especially in adverse tracking scenarios, where the target
object is frequently occluded, goes out of view, or where distrac-
tors, visually similar objects as the target, are present. Thus, we
tackle the problem of robust generic object tracking in videos even in
challenging scenarios in this thesis.

First, we propose a novel tracking architecture that keeps track of
distractor objects in order to continue tracking the target. We achieve
this by learning an association network, that allows to propagate the
identities of all target candidates from frame-to-frame. To tackle the
problem of lacking ground-truth correspondences between distrac-
tor objects in visual tracking, we propose a training strategy that
combines partial annotations with self-supervision.

Second, we introduce a Transformer-based target model predictor
that produces the target model. The employed Transformer captures
global relations with little inductive bias, allowing it thus to learn the
prediction of powerful target models even for challenging sequences.
We further extend the model predictor to estimate a second set of
weights, which are applied for accurate bounding box regression.

Third, we propose the new visual tracking benchmark, AVisT, dedi-
cated for tracking scenarios with adverse visibility. AVisT contains 18

diverse scenarios broadly grouped into five attributes with 42 object
categories. The key contribution of AVisT are diverse and challeng-
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ing scenarios, covering severe weather conditions, obstruction and
adverse imaging effects, along with camouflage.

Finally, we propose the task of multi-object GOT, that benefits
from a wider applicability than tracking only a single generic ob-
ject per video, rendering it more attractive in real-world applica-
tions. To this end, we introduce a new large-scale GOT benchmark,
LaGOT, containing multiple annotated target objects per sequence.
Our benchmark allows researchers to tackle remaining challenges in
GOT, aiming to increase robustness and reduce computation through
joint tracking of multiple objects simultaneously. Furthermore, we
propose a Transformer-based GOT tracker capable of joint processing
of multiple objects through shared computation.

iv



Z U S A M M E N FA S S U N G

Die visuelle Objektverfolgung ist ein grundlegendes Problem im
Bereich des computerbasierten Sehens (Computer Vision) und findet
ihre Anwendung in zahlreichen Aufgabenbereichen wie autonomes
Fahren, Robotik, Überwachung, Videoverständnis und -bearbeitung,
und Sportanalysen. Die Verfolgung generischer Objekte (Generic Ob-
ject Tracking (GOT)) ist eine spezialisierte Verfolgungsaufgabe. GOT
zielt darauf ab, praktisch jedes beliebige Objekt in einem Video zu
verfolgen. Das Objekt muss allerdings zuvor, durch ein Rechteck im
Anfangsbild des Videos, von einem Nutzer gekennzeichnet worden
sein. Das Erlernen eines Zielobjektmodells, um das Zielobjekt in
jedem Bild zu verfolgen, erweist sich bei solch spärlichen Informa-
tionen als äusserst schwierig. Dies gilt insbesondere für ungünstige
Szenarien, in denen das Zielobjekt häufig verdeckt ist, aus dem Blick-
feld verschwindet oder in denen visuell ähnliche Objekte wie das
Zielobjekt vorhanden sind. Daher befassen wir uns in dieser Arbeit
mit dem Problem der robusten Verfolgung von generischen Objekten
in Videos, selbst in schwierigen Fällen.

Zunächst schlagen wir eine neuartige Verfolgungsmethode vor,
die visuell ähnliche Objekte wie das Zielobjekt im Auge behält, um
die Verfolgung des Zielobjekts zu verbessern. Wir erreichen dies
durch das Erlernen eines Assoziationsnetzwerks, das es ermöglicht,
die Kennzeichnung aller Zielobjekt-Kandidaten von Bild zu Bild
weiterzugeben. Um das Problem fehlender gekennzeichneter Trai-
ningsdaten zwischen den Zielobjekt-Kandidate bei der Objektverfol-
gung zu lösen, schlagen wir eine Trainingsstrategie vor, die teilweise
gekennzeichnete Trainingsdaten mit Selbst-Überwachtem-Lernen
kombiniert.

Zweitens führen wir einen Transformer-basierten Modellschätzer
ein. Der eingesetzte Transformer erfasst globale Beziehungen mit
geringer induktiver Verzerrung, so dass er die Vorhersage leistungs-
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fähiger Zielobjektmodelle auch für schwierige Sequenzen erlernen
kann. Ausserdem erweitern wir den Modellschätzer damit ein zwei-
ter Satz von Gewichten generiert werden kann, die dann für eine
genaue Regression des Zielobjekt-Begrenzungsrahmen verwendet
werden kann.

Drittens schlagen wir den neuen visuellen Objekt-Verfolgungs-
Benchmark AVisT vor, der sich auf Szenarien mit ungünstigen Sicht-
verhältnissen fokusiert. AVisT enthält 18 verschiedene Szenarien,
die grob in fünf Attribute mit 42 Objektkategorien unterteilt sind.
Der Hauptbeitrag von AVisT sind die vielfältigen und anspruchs-
vollen Szenarien, die schwierige Wetterbedingungen, Hindernisse,
ungünstige Bildeffekte, und Tarnung umfassen.

Schliesslich schlagen wir die neue Aufgabe vor, mehrere generische
Objekte im gleichen Video zu verfolgen. Diese Ausfgabe profitiert
von einer breiteren Anwendbarkeit und macht die Aufgabe in rea-
len Anwendungen attraktiver als die Verfolgung eines einzelnen
generischen Objekts pro Video. Daher führen wir einen neuen gross
angelegten Benchmark ein, LaGOT, der mehrere gekennzeichnete
Zielobjekte pro Sequenz enthält. Unser Benchmark ermöglicht es
den Forschern, die wichtigsten verbleibenden Herausforderungen
im Bereich der generischen Objektverfolgung anzugehen, um die Ro-
bustheit zu erhöhen und den Rechenaufwand durch die gemeinsame
Verfolgung mehrerer Objekte gleichzeitig zu reduzieren. Darüber hin-
aus schlagen wir einen auf Transformer basierenden Tracker vor, der
die Verarbeitung mehrerer Objekte gleichzeitig durch gemeinsame
Berechnung ermöglicht.
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1
I N T R O D U C T I O N

Human perception has developed highly sophisticated visual track-
ing capabilities that enable us to track with incredible accuracy and
speed. Our visual system is highly adaptable and is able to rapidly
adjust the gaze in response to changes in the visual environment.
Moreover, human tracking abilities are not limited to simply follow-
ing a target in a linear path. We are able to track in three dimensions,
allowing us to accurately perceive depth and distance. Another key
aspect of human tracking abilities is our deep understanding of the
environment. By having a fundamental understanding of the physi-
cal world around us such as the principles of motion, humans can
predict and anticipate the movements of different components in our
surroundings. This allows us to track targets with incredible accuracy,
even in complex and dynamic environments, and avoid collisions
when navigating through crowded spaces.

While humans possess remarkable visual tracking capabilities,
automating this task for machines is crucial for many applications.
In practice, visual tracking can be applied in any field where the
path of a target needs to be reconstructed over time. Thus, visual
tracking has a wide range of practical applications across various
domains. For instance, in the field of autonomous systems such as
self-driving cars and drones [45, 122], visual tracking is used to detect
and track objects like pedestrians, vehicles, and obstacles in real-time
for safe navigation. In the domain of robotics, visual tracking is used
to track the position and movement of robots or other objects in the
environment to enable precise control, localization and manipula-
tion [19, 95]. In 3D computer vision, tracking of key points is used
to estimate camera pose, which in turn is used for 3D reconstruc-
tion and augmented reality applications [21, 86]. Industrial quality
control also leverages tracking of automated processes using video
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2 introduction

cameras for monitoring and identifying any anomalies in production
lines. Similarly, the tracking of human and animal activities and
behavior is used for understanding and analyzing their movements
and poses, with applications in fields like sports, entertainment, and
wildlife research [2, 100, 111]. Finally, tracking methods are used for
semi-automatic annotation of videos [65], enabling improved video
understanding for a wide range of applications.

Generic Object Tracking (GOT) is a specialized tracking task that
involves tracking objects of virtually any category without prior
knowledge of the object or the environment. This is typically achieved
by defining the target object in the initial frame of the video sequence
using a user-specified bounding box. The challenge of GOT is that the
tracker needs to learn to track the target using only a single training
example provided at test time, without any additional information
about the target’s movement or appearance. Additionally, the tracker
needs to be able to operate in various domains with different lighting,
resolution, and application scenarios. This makes GOT particularly
challenging, as the tracker needs to be able to handle significant
appearance changes of the target object, as well as adapt to different
environments such as underwater or at microscopic scales.

GOT can be further complicated by objects that are visually similar
to the target, known as distractor objects, as well as by background
clutter and camouflage. Additionally, target objects are often in mo-
tion, occluded, or go out of view, making it difficult to learn their
motion models and re-detect them once they reappear. These factors
can significantly limit the tracking performance. The quality of video
capturing also plays a crucial role in successful target tracking. Partic-
ularly harmful effects are camera motion, motion blur, and changes
in scale, illumination, and view-point.

Due to the wide applicability of visual tracking, numerous trackers
have been proposed to tackle the described challenges. Discrimina-
tive Correlation Filter (DCF)-based and Siamese trackers have shown
great potential for robust tracking even in adverse tracking scenarios.
DCF-based trackers formulate the target localization problem as an
optimization problem and therefore require solving the said problem
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during inference [10, 26, 27, 51, 52]. Due to their setup they allow to
update the target model with prediction results of previous frames
and can therefore track target objects that undergo severe appear-
ance changes [28]. A downside of DCF-based trackers is that while
they use deep learned feature representations, they are not readily
end-to-end trainable [6]. Thus, Siamese trackers largely gained in
popularity because they are end-to-end trainable and operate at a
very high frame rate. However, Siamese trackers cannot as easily inte-
grate previous predictions as DCF-based trackers. This characteristic
makes Siamese trackers particularly vulnerable to severe appearance
changes, to distractors or to sequences with heavy background clutter
and camouflage [5, 68, 101, 115]. Furthermore, existing GOT methods
focus on tracking a single object per video sequence instead of pro-
cessing multiple targets at the same time. However, multi-object GOT
has the potential of increasing the robustness of a tracker, by joint
reasoning across all tracks to reduce the risk of confusing similar
objects.

In this thesis, we aim at addressing several open challenges in
visual object tracking. In Chapter 3, we propose a novel tracking
architecture that keeps track of distractor objects to continue tracking
the target. To achieve this, we first retrieve the target candidates that
correspond to local maxima in the score map of the base tracker.
Both, DCF-based and Siamese trackers produces such a score map.
Then, we introduce a learned association network, that allows to
propagate the identities of all target candidates from frame-to-frame.

Next, in Chapter 4, we introduce a powerful Transformer-based
model prediction module, that reduces the need of specialized distrac-
tor mitigation approaches. The main idea is to replace optimization-
based model predictors, that are typically employed in DCF-based
trackers, with a Transformer. The Transformer is then learned in
an end-to-end fashion to predict the target model for each frame
individually. In contrast to DCF-based trackers, we further extend
the model predictor to estimate a second set of weights that enable
accurate bounding box regression.



4 introduction

Beside new tracking architectures, we introduce in Chapter 5,
the new visual tracking benchmark AVisT. AVisT is dedicated for
tracking scenarios with adverse visibility, such as severe weather
or camouflage. Furthermore, we study the robustness of existing
trackers in such challenging settings.

Lastly, in Chapter 6, we propose the multi-object GOT task that
benefits from a wider applicability than single object tracking. The
idea of this task is developing trackers that are capable of tracking
multiple generic objects at the same time in each video sequence. To
this end, we introduce a new large-scale GOT benchmark, LaGOT,
containing multiple annotated target objects per sequence. Further-
more, we propose a Transformer-based GOT tracker that is capable
of joint processing of multiple objects through shared computation.



2
R E L AT E D W O R K

We tackle the problem of GOT. In this chapter we provide a brief
overview of the existing literature covering GOT datasets and bench-
marks and the most popular tracking methodologies ranging from
DCF-based trackers and Siamese trackers to Transformer-based track-
ers.

2.1 generic object tracking datasets and benchmarks

In GOT there are specialized datasets and challenges that focus
on short-term or long-term tracking. OTB [109] is one of the most
popular short-term tracking datasets, containing 100 videos with
an average length of 578 frames. Other similarly large short-term
tracking datasets that focus on the impact of color information (Tem-
pleColor [70]) or on fast moving targets (NFS [42]). In contrast, GOT-
10k [54] and TrackingNet [85] are large-scale short term tracking
datasets that contain thousands of different videos (10k and 30k
videos respectively). While most GOT datasets contain less than 100

different object classes, GOT-10k contains objects from 563 different
class categories. In addition to all these tracking datasets, there exist
dedicated benchmarks, such as the VOT series [60–64] associated with
annual tracking challenge competitions. The VOT challenge mainly
focuses on short-term tracking but contains several sub-challenges,
where the VOTLT sub-challenge focuses on long-term tracking.

Short-term tracking focuses on accurate localization and bounding-
box regression in videos where the objects is always at least partially
visible [62, 109]. Thus, short-term trackers must track the target object
reliably even in challenging scenarios where the target object under-
goes sever appearance changes such as deformations or scale varia-
tions or when visually similar objects as the target are present. Other
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6 related work

challenging settings are low-resolution, fast-motion, background clut-
ter, motion blur, viewpoint changes or camera motion [42, 85, 109].
In addition to all these challenges, long-term tracking includes se-
quences where the target object goes out-of-view, is fully or at least
partially occluded [38, 84, 102]. Thus, beyond tracking the target ob-
ject while it is visible, long-term trackers are required to re-detect the
previously occluded target object as soon as it is visible again [60].

2.2 generic object trackers

Discriminative Correlation Filter-based Trackers: A successful
GOT methodology is DCF-based tracking [10, 26, 27, 29, 51, 52]. Such
methods learn a correlation filter from a set of training samples. The
correlation filter is optimized to localize the target objects on the
training samples by performing a circular sliding window operation.
Due to the special structure of the formulated problem, the Fast
Fourier Transform (FFT) can be used to efficiently obtain the corre-
lation filter. Early DCF based trackers such as MOSSE [10] showed
several limitations caused by the circular convolution, by the simple
gray scale image features or by using a single scale. Thus, multiple
follow up works tackled these problems [26, 27, 29]. The popularity
of deep learning lead to astonishing improvements particularly in
learning feature representations for effective target classification and
for accurate target estimation [6, 8, 23, 25, 29].

More recent but still related GOT methods no longer used FFT-
based algorithms to produce the target model but relied on alterna-
tive optimization strategies. ATOM [23] employed a two-layer Percep-
tron as target model and used Conjugate Gradient to solve the target
classification problem. In order to train such models end-to-end,
DiMP [6] introduced the idea of unrolling the iterative optimization
algorithm for a fixed number of iterations and to integrate it in the
tracking pipeline. In addition, ATOM [23] introduced a dedicated
bounding box regression branch, making the multi-scale detection



2.2 generic object trackers 7

strategy obsolete. PrDiMP [30] improves on the target state estimation
of ATOM by applying a probabilistic regression formulation.
Siamese Trackers: Other related and very popular GOT methods are
Siamese trackers that employ Siamese networks to learn a similarity
metric [5, 16, 46, 47, 67, 68, 101, 104, 115, 124, 128, 133]. Siamese
trackers are end-to-end trainable and typically achieve a high tracking
efficiency. SiamFC [5] used a fully-convolutional deep network to
learn a strong embedding in an offline phase. SiamRPN [68] and
SiamRPN++ [67] introduced region proposal components that are
extensively trained offline to regress more accurate bounding boxes.
SiamCAR [47], SiamFC++ [115], SiamBAN [16], and Ocean [128] are
anchor-free trackers that used separate branches for target object
classification and bounding box regression.
Transformer-based Trackers: Recently Transformer-based trackers
became very popular and powerful [14, 18, 41, 44, 106, 116, 117, 120,
121]. TrDiMP [106] and TrSiam [106] use traditional tracking architec-
tures but integrated a Transformer encoder and decoder to produce
refined template and search area features. TransT [14] introduced
a feature fusion network with alternating self- and cross-attention
blocks resulting in fused feature vectors that allow to localize the
object and regress its bounding box. STARK [117] adopted the Trans-
former architecture of DETR [12]. Instead of fusing the template and
search area features in the Transformer decoder, they are stacked and
jointly processed by the encoder and the decoder. A single object
query is fed into the the decoder and its output is fused with the
encoder features in order to directly regress the target bounding
box. MixFormer [18] and OSTrack [120] no longer employ classical
backbones such as ResNets [50] to first produce visual features for
tracking but uses one Transformer architecture [35, 108] to jointly
extract template and search area features and for the feature fu-
sion process. Eventually, shallow components produce the target
classification scores and the bounding box.





3
L E A R N I N G TA R G E T C A N D I D AT E A S S O C I AT I O N
T O K E E P T R A C K O F W H AT N O T T O T R A C K

In this chapter, we propose a novel tracking architecture that keeps
track of distractor objects in order to continue tracking the target.
To this end, we introduce a learned association network, allow-
ing us to propagate the identities of all target candidates from
frame-to-frame. To tackle the problem of lacking ground-truth cor-
respondences between distractor objects in visual tracking, we pro-
pose a training strategy that combines partial annotations with self-
supervision. The code and trained models are available at https:

//github.com/visionml/pytracking.

3.1 introduction

Generic visual object tracking is one of the fundamental problems
in computer vision. The task involves estimating the state of the
target object in every frame of a video sequence, given only the initial
target location. Most prior research has been devoted to the devel-
opment of robust appearance models, used for locating the target
object in each frame. The two currently dominating paradigms are
Siamese networks [5, 67, 68] and discriminative appearance mod-
ules [6, 25]. While the former employs a template matching in a
learned feature space, the latter constructs an appearance model
through a discriminative learning formulation. Although these ap-
proaches have demonstrated promising performance in recent years,
they are effectively limited by the quality and discriminative power
of the appearance model.

As one of the most challenging factors, co-occurrence of distractor
objects similar in appearance to the target is a common problem
in real-world tracking applications [7, 112, 133]. Appearance-based

9

https://github.com/visionml/pytracking
https://github.com/visionml/pytracking
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Figure 3.1: Visualization of the proposed target candidate association
network used for tracking. For each target candidate ( ) we extract a set
of features such as score, position and appearance in order to associate
candidates across frames. The proposed target association network then
allows to associate these candidates ( ) with the detected distractors ( )
and the target object ( ) of the previous frame. Lines connecting circles
represent associations.

models struggle to identify the sought target in such cases, often
leading to tracking failure. Moreover, the target object may undergo
a drastic appearance change over time, further complicating the dis-
crimination between target and distractor objects. In certain scenarios,
e. g., as visualized in Fig. 3.1, it is even virtually impossible to unam-
biguously identify the target solely based on appearance information.
Such circumstances can only be addressed by leveraging other cues
during tracking, for instance the spatial relations between objects.
We therefore set out to address problematic distractors by exploring
such alternative cues.

We propose to actively keep track of distractor objects in order to
ensure more robust target identification. To this end, we introduce a
target candidate association network, that matches distractor objects
as well as the target across frames. Our approach consists of a base
appearance tracker, from which we extract target candidates in each
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frame. Each candidate is encoded with a set of distinctive features,
consisting of the target classifier score, location, and appearance. The
encodings of all candidates are jointly processed by a graph-based
candidate embedding network. From the resulting embeddings, we
compute the association scores between all candidates in subsequent
frames, allowing us to keep track of the target and distractor objects
over time. In addition, we estimate a target detection confidence,
used to increase the robustness of the target classifier.

While associating target candidates over time provides a powerful
cue, learning such a matching network requires tackling a few key
challenges. In particular, generic visual object tracking datasets only
provide annotations of one object in each frame, i. e., the target. As a
result, there is a lack of ground-truth annotations for associating dis-
tractors across frames. Moreover, the definition of a distractor is not
universal and depends on the properties of the employed appearance
model. We address these challenges by introducing an approach that
allows our candidate matching network to learn from real tracker out-
put. Our approach exploits the single target annotations in existing
tracking datasets in combination with a self-supervised strategy. Fur-
thermore, we actively mine the training dataset in order to retrieve
rare and challenging cases, where the use of distractor association is
important, in order to learn a more effective model.
Contributions: In summary, our contributions are as follows:

(i) We propose a method for target candidate association based on
a learnable candidate matching network.

(ii) We develop an online object association method in order to
propagate distractors and the target over time and introduce
a sample confidence score to update the target classifier more
effectively during inference.

(iii) We tackle the challenges with incomplete annotation by employ-
ing partial supervision, self-supervised learning, and sample-
mining to train our association network.
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(iv) We perform comprehensive experiments and ablative analyses
by integrating our approach into the tracker SuperDiMP [6,
24, 30]. The resulting tracker KeepTrack sets a new state-of-the-
art on six tracking datasets, obtaining an AUC of 67.1% on
LaSOT [38] and 69.7% on UAV123 [84].

3.2 related work

Discriminative appearance model based trackers [6, 23, 29, 43, 52,
125] aim to suppress distractors based on their appearance by inte-
grating background information when learning the target classifier
online. While often increasing robustness, the capacity of an online
appearance model is still limited. A few works have therefore de-
veloped more dedicated strategies of handling distractors. Bhat et
al. [7] combine an appearance based tracker and an RNN to prop-
agate information about the scene across frames. It internally aims
to track all regions in the scene by maintaining a learnable state
representation. Other methods exploit the existence of distractors
explicitly in the method formulation. DaSiamRPN [133] handles dis-
tractor objects by subtracting corresponding image features from
the target template during online tracking. Xiao et al. [112] use the
locations of distractors in the scene and employ hand crafted rules
to classify image regions into background and target candidates
on each frame. SiamRCNN [104] associates subsequent detections
across frames using a hand-crafted association score to form short
tracklets. In contrast, we introduce a learnable network that explicitly
associates target candidates from frame-to-frame. Zhang et al. [129]
propose a tracker inspired by the Multiple Object Tracking (MOT)
philosophy of tracking by detection. They use the top-k predicted
bounding boxes for each frame and link them between frames by us-
ing different features. In contrast, we omit any hand crafted features
but fully learn to predict the associations using self-supervision.

Many online trackers [6, 23, 25] employ a memory to store previous
predictions to fine-tune the tracker. Typically the oldest sample is



3.3 method 13

replaced in the memory and an age-based weight controls the contri-
bution of each sample when updating the tracker online. Danelljan et
al. [28] propose to learn the tracking model and the training sample
weights jointly. LTMU [22] combines an appearance based tracker
with a learned meta-updater. The goal of the meta-updater is to
predict whether the employed online tracker is ready to be updated
or not. In contrast, we use a learned target candidate association
network to compute a confidence score and combine it with sample
age to manage the tracker updates.

The object association problem naturally arises in MOT. The dom-
inant paradigm in MOT is tracking-by-detection [4, 11, 98, 123, 126],
where tracking is posed as the problem of associating object detec-
tions over time. The latter is typically formulated as a graph parti-
tioning problem. Typically, these methods are non-causal and thus
require the detections from all frames in the sequence. Furthermore,
MOT typically focuses on a limited set of object classes [32], such
as pedestrians, where strong object detectors are available. In com-
parison we aim at tracking different objects in different sequences
solely defined by the initial frame. Furthermore, we lack ground
truth correspondences of all distractor objects from frame to frame
whereas the ground-truth correspondences of different objects in
MOT datasets are typically provided [32]. Most importantly, we aim
at associating target candidates that are defined by the tracker itself,
while MOT methods associate all detections that correspond to one
of the sought objects.

3.3 method

In this section, we describe our tracking approach, which actively
associates distractor objects and the sought target across multiple
frames.
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3.3.1 Overview

An overview of our tracking pipeline is shown in Fig. 3.2. We use a
base tracker with a discriminative appearance model and internal
memory. In particular, we adopt the SuperDiMP [24, 49] tracker,
which employs the target classifier in DiMP [6] and the probabilistic
bounding-box regression from [30], together with improved training
settings.

We use the base tracker to predict the target score map s for the
current frame and extract the target candidates vi by finding locations
in s with high target score. Then, we extract a set of features for each
candidate. Namely: target classifier score si, location ci in the image,
and an appearance cue fi based on the backbone features of the base
tracker. Then, we encode this set of features into a single feature
vector zi for each candidate. We feed these representations and the
equivalent ones of the previous frame – already extracted beforehand
– into the candidate embedding network and process them together
to obtain the enriched embeddings hi for each candidate. These
feature embeddings are used to compute the similarity matrix S
and to estimate the candidate assignment matrix A between the two
consecutive frames using an optimal matching strategy.

Once having the candidate-to-candidate assignment probabilities
estimated, we build the set of currently visible objects in the scene
O and associate them to the previously identified objects O′, i. e.,
we determine which objects disappeared, newly appeared, or stayed
visible and can be associated unambiguously. We then use this prop-
agation strategy to reason about the target object ô in the current
frame. Additionally, we compute the target detection confidence β to
manage the memory and control the sample weight, while updating
the target classifier online.



16 learning to keep track of what not to track

3.3.2 Problem Formulation

Let the set of target candidates, which includes distractors and the
sought target, be V = {vi}N

i=1, where N denotes the number of can-
didates present in each frame. We define the target candidate sets V ′
and V corresponding to the previous and current frames, respectively.
We formulate the problem of target candidate association across two
subsequent frames as, finding the assignment matrix A between the
two sets V ′ and V . If the target candidate v′i corresponds to vj then
Ai,j = 1 and Ai,j = 0 otherwise.

In practice, a match may not exist for every candidate. Therefore,
we introduce the concept of dustbins, which is commonly used for
graph matching [34, 93] to actively handle the non-matching vertices.
The idea is to match the candidates without match to the dustbin on
the missing side. Therefore, we augment the assignment matrix A
by an additional row and column representing dustbins. It follows
that a newly appearing candidate vj – which is only present in the
set V – leads to the entry AN′+1,j = 1. Similarly, a candidate v′i that
is no longer available in the set V results in Ai,N+1 = 1. To solve the
assignment problem, we design a learnable approach that predicts
the matrix A. Our approach first extracts a representation of the
target candidates, which is discussed below.

3.3.3 Target Candidate Extraction

Here, we describe how to detect and represent target candidates
and propose a set of features and their encoding. We define the set
of target candidates V as all unique coordinates ci that correspond
to a local maximum with minimal score in the target score map s.
Thus, each target candidate vi and its coordinate ci need to fulfill the
following two constraints,

ϕmax(s, ci) = 1 and s(ci) ≥ τ, (3.1)

where ϕmax returns 1 if the score at ci is a local maximum of s or 0

otherwise, and τ denotes a threshold. This definition allows us to



3.3 method 17

build the sets V ′ and V , by retrieving the local maxima of s′ and s
with sufficient score value. We use the max-pooling operation in a
5× 5 local neighbourhood to retrieve the local maxima of s and set
τ = 0.05.

For each candidate we build a set of features inspired by two
observations. First, we notice that the motion of the same objects
from frame to frame is typically small and thus similar locations and
similar distances between different objects. Therefore, the position
ci of a target candidate forms a strong cue. In addition, we observe
only small changes in appearance for each object. Therefore, we use
the target classifier score si = s(ci) as another cue. In order to add a
more discriminative appearance based feature fi = f(ci), we process
the backbone features (used in the baseline tracker) with a single
learnable convolution layer. Finally, we build a feature tuple for each
target candidate as (si, fi, ci). These features are combined in the
following way,

zi = fi + ψ(si, ci), ∀vi ∈ V ,

where ψ denotes a Multi-Layer Perceptron (MLP), that maps s and c
to the same dimensional space as fi. This encoding permits jointly
reasoning about appearance, target similarity, and position.

3.3.4 Candidate Embedding Network

In order to further enrich the encoded features and in particular
to facilitate extracting features while being aware of neighbouring
candidates, we employ a candidate embedding network. On an ab-
stract level, our association problem bares similarities with the task of
sparse feature matching. In order to incorporate information of neigh-
bouring candidates, we thus take inspiration from recent advances in
this area. In particular, we adopt the SuperGlue [93] architecture that
establishes the current state-of-the-art in sparse feature matching. Its
design allows to exchange information between different nodes, to
handle occlusions, and to estimate the assignment of nodes across
two images. In particular, the features of both frames translate to
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nodes of a single complete graph with two types of directed edges: 1)
self edges within the same frame and 2) cross edges connecting only
nodes between the frames. The idea is then to exchange information
either along self or cross edges.

The adopted architecture [93] uses a Graph Neural Network (GNN)
with message passing that sends the messages in an alternating fash-
ion across self or cross edges to produce a new feature representation
for each node after every layer. Moreover, an attention mechanism
computes the messages using self attention for self edges and cross
attention for cross edges. After the last message passing layer a linear
projection layer extracts the final feature representation hi for each
candidate vi.

3.3.5 Candidate Matching

To represent the similarities between candidates v′i ∈ V ′ and vj ∈
V , we construct the similarity matrix S. The sought similarity is
measured using the scalar product: Si,j = ⟨h′i, hj⟩, for feature vectors
h′i and hj corresponding to the candidates v′i and vj.

As previously introduced, we make use of the dustbin-concept [34,
93] to actively match candidates that miss their counterparts to the
so-called dustbin. However, a dustbin is a virtual candidate without
any feature representation hi. Thus, the similarity score is not di-
rectly predictable between candidates and the dustbin. A candidate
corresponds to the dustbin, only if its similarity scores to all other
candidates are sufficiently low. In this process, the similarity matrix S
represents only an initial association prediction between candidates
disregarding the dustbins. Note that a candidate corresponds either
to an other candidate or to the dustbin in the other frame. When
the candidates v′i and vj are matched, both constraints ∑N′

i=1 Ai,j = 1
and ∑N

j=1 Ai,j = 1 must be satisfied for one-to-one matching. These
constraints however, do not apply for missing matches since multi-
ple candidates may correspond to the same dustbin. Therefore, we
make use of two new constraints for dustbins. These constraints
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for dustbins read as follows: all candidates not matched to another
candidate must be matched to the dustbins. Mathematically, this
can be expressed as, ∑j AN′+1,j = N −M and ∑i Ai,N+1 = N′ −M,
where M = ∑(i≤N′,j≤N) Ai,j represents the number of candidate-to-
candidate matching. In order to solve the association problem, using
the discussed constraints, we follow Sarlin et al. [93] and use the
Sinkhorn [20, 96] based algorithm therein.

3.3.6 Learning Candidate Association

Training the embedding network that parameterizes the similarity
matrix used for optimal matching requires ground truth assignments.
Hence, in the domain of sparse keypoint matching, recent learn-
ing based approaches leverage large scale datasets [36, 93] such as
MegaDepth [69] or ScanNet [21], that provide ground truth matches.
However, in tracking such ground truth correspondences (between
distractor objects) are not available. Only the target object and its
location provide a single ground truth correspondence. Manually
annotating correspondences for distracting candidates, identified
by a tracker on video datasets, is expensive and may not be very
useful. Instead, we propose a novel training approach that exploits,
(i) partial supervision from the annotated target objects, and (ii) self-
supervision by artificially mimicking the association problem. Our
approach requires only the annotations that already exist in stan-
dard tracking datasets. The candidates for matching are obtained by
running the base tracker on the given training dataset.
Partially Supervised Loss: For each pair of consecutive frames, we
retrieve the two candidates corresponding to the annotated target, if
available. This correspondence forms a partial supervision for a sin-
gle correspondence while all other associations remain unknown. For
the retrieved candidates v′i and vj, we define the association as a tuple
(l′, l) = (i, j). Here, we also mimic the association for redetections
and occlusions by occasionally excluding one of the corresponding
candidates from V ′ or V . We replace the excluded candidate by the
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corresponding dustbin to form the correct association for supervi-
sion. More precisely, the simulated associations for redetection and
occlusion are expressed as, (l′, l) = (N′ + 1, j) and (l′, l) = (i, N + 1),
respectively. The supervised loss, for each frame-pairs, is then given
by the negative log-likelihood of the assignment probability,

Lsup = − log Al′,l . (3.2)

Self-Supervised Loss: To facilitate the association of distractor candi-
dates, we employ a self-supervision strategy. The proposed approach
first extracts a set of candidates V ′ from any given frame. The cor-
responding candidates for matching, say V , are identical to V ′ but
we augment its features. Since the feature augmentation does not
affect the associations, the initial ground-truth association set is given
by C = {(i, i)}N

i=1. In order to create a more challenging learning
problem, we simulate occlusions and redetections as described above
for the partially supervised loss. Note that the simulated occlusions
and redetections change the entries of V , V ′, and C. We make use
of the same notations with slight abuse for simplicity. Our feature
augmentation involves, randomly translating the location ci, increas-
ing or decreasing the score si, and transforming the given image
before extracting the visual features fi. Now, using the simulated
ground-truth associations C, our self-supervised loss is given by,

Lself = ∑
(l′,l)∈C

− log Al′,l . (3.3)

Finally, we combine both losses as Ltot = Lsup + Lself. It is important
to note that the real training data is used only for the former loss
function, whereas synthetic data is used only for the latter one.
Data Mining: Most frames contain a candidate corresponding to
the target object and are thus applicable for supervised training.
However, a majority of these frames are not very informative for
training because they contain only a single candidate with high tar-
get classifier score and correspond to the target object. Conversely, the
dataset contains adverse situations where associating the candidate
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corresponding to the target object is very challenging. Such situa-
tions include sub-sequences with different number of candidates,
with changes in appearance or large motion between frames. Thus,
sub-sequences where the appearance model either fails and starts to
track a distractor or when the tracker is no longer able to detect the
target with sufficient confidence are valuable for training. However,
such failure cases are rare even in large scale datasets. Similarly, we
prefer frames with many target candidates when creating synthetic
sub-sequences to simultaneously include candidate associations, re-
detections and occlusions. Thus, we mine the training dataset using
the dumped predictions of the base tracker to use more informative
training samples.
Training Details: We first retrain the base tracker SuperDiMP with-
out the learned discriminative loss parameters but keep everything
else unchanged. We split the LaSOT training set into a train-train
and a train-val set. We run the base tracker on all sequences and
save the search region and score map for each frame on disk. We
use the dumped data to mine the dataset and to extract the target
candidates and its features. We freeze the weights of the base tracker
during training of the proposed network and train for 15 epochs by
sampling 6400 sub-sequences per epoch from the train-train split. We
sample real or synthetic data equally likely. We use ADAM [58] with
learning rate decay of 0.2 every 6th epoch with a learning rate of
0.0001. We use two GNN Layers and run 10 Sinkhorn iterations.

3.3.7 Object Association

This part focuses on using the estimated assignments (see Sec. 3.3.5)
in order to determine the object correspondences during online
tracking. An object corresponds either to the target or a distractor.
The general idea is to keep track of every object present in each scene
over time. We implement this idea with a database O, where each
entry corresponds to an object o that is visible in the current frame.
Fig. 3.3 shows these objects as circles. An object disappears from the
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Figure 3.3: Visual comparison of the base tracker and our tracker. The
bounding boxes represent the tracker result, green [■] indicates correct
detections and red [■] refers to tracker failure. Each circle represents
an object. Circles with the same color are connected to indicate that the
object-ids are identical. If a target candidate cannot be matched with an
existing object we add a new object ( ,  ,  ). Similarly, we delete the
object if no candidate corresponds to it anymore in the next frame ( ,  ,
 ).
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scene if none of the current candidates is associated with it, e. g., in
Fig. 3.3 the purple and pink objects ( ,  ) no longer correspond to
a candidate in the last frame. Then, we delete this object from the
database. Similarly, we add a new object to the database if a new
target candidate appears ( ,  ,  ). When initializing a new object,
we assign it a new object-id (not used previously) and the score si.
In Fig. 3.3 object-ids are represented using colors. For objects that
remain visible, we add the score si of the corresponding candidate to
the history of scores of this object. Furthermore, we delete the old and
create a new object if the candidate correspondence is ambiguous,
i. e., the assignment probability is smaller than ω = 0.75.

If associating the target object ô across frames is unambiguous, it
implies that one object has the same object-id as the initially provided
object ôinit. Thus, we return this object as the selected target. However,
in real world scenarios the target object gets occluded, leaves the
scene or associating the target object is ambiguous. Then, none of
the candidates corresponds to the sought target and we need to
redetect. We redetect the target if the candidate with the highest
target classifier score achieves a score that exceeds the threshold
η = 0.25. We select the corresponding object as the target as long
as no other candidate achieves a higher score in the current frame.
Then, we switch to this candidate and declare it as target if its score
is higher than any score in the history (of the currently selected
object). Otherwise, we treat this object as a distractor for now, but if
its score increases high enough, we will select it as the target object
in the future. Please refer to the appendix Sec: 3.6.B.1 for the detailed
algorithm.

3.3.8 Memory Sample Confidence

While updating the tracker online is often beneficial, it is disadvanta-
geous if the training samples have a poor quality. Thus, we describe
a memory sample confidence score, that we use to decide which
sample to keep in the memory and which should be replaced when
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employing a fixed size memory. In addition, we use the score to
control the contribution of each training sample when updating the
tracker online. In contrast, the base tracker replaces frames using a
first-in-first out policy if the target was detected and weights samples
during inference solely based on age.

First, we define the training samples in frame k as (xk, yk). We as-
sume a memory size m that stores samples from frame k ∈ {1, . . . , t},
where t denotes the current frame number. The online loss then given
by,

J(θ) = λR(θ) +
t

∑
k=1

αkβkQ(θ; xk, yk), (3.4)

where Q denotes the data term, R the regularisation term, λ is a scalar
and θ represents appearance model weights. The weights αk ≥ 0
control the impact of the sample from frame k, i. e., a higher value
increases the influence of the corresponding sample during training.
We follow other appearance based trackers [6, 23] and use a learning
parameter γ ∈ [0, 1] in order to control the weights αk = (1− γ)αk+1,
such that older samples achieve a smaller value and their impact
during training decreases. In addition, we propose a second set
of weights βk that represent the confidence of the tracker that the
predicted label yk is correct. Instead of removing the oldest samples
to keep the memory fixed [6], we propose to drop the sample that
achieves the smallest score αkβk which combines age and confidence.
Thus, if t > n we remove the sample at position k = argmin1≤k≤nαkβk
by setting αk = 0. This means, that if all samples achieve similar
confidence the oldest is replaced, or that if all samples are of similar
age the least confident sample is replaced.

We describe the extraction of the confidence weights as,

βt =





√
σ, if ô = ôinit

σ, otherwise,
(3.5)

where σ = maxi st
i denotes the maximum value of the target classifier

score map of frame t. For simplicity, we assume that σ ∈ [0, 1].
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The condition ô = ôinit is fulfilled if the currently selected object is
identical to the initially provided target object, i. e., both objects share
the same object id. Then, it is very likely, that the selected object
corresponds to the target object such that we increase the confidence
using the square root function that increases values in the range
[0, 1). Hence, the described confidence score combines the confidence
of the target classifier with the confidence of the object association
module, but fully relies on the target classifier once the target is lost.
Inference details: We propose KeepTrack and the speed optimized
KeepTrackFast. We use the SuperDiMP parameters for both trackers
but increase the search area scale from 6 to 8 (from 352 to 480 in
image space) for KeepTrack. For the fast version we keep the original
scale but reduce the number of bounding box refinement steps from
10 to 3. In addition, we skip running the association module if only
one target candidate with a high score is present in the previous and
current frame. Overall, both trackers follow the target longer until it
is lost such that small search areas occur frequently. Thus, we reset
the search area to its previous size if it was drastically decreased
before the target was lost, to facilitate redetections. Please refer to
the appendix 3.6.B for more details.

3.4 experiments

We evaluate our proposed tracking architecture on seven benchmarks.
Our approach is implemented in Python using PyTorch. On a single
Nvidia GTX 2080Ti GPU, KeepTrack and KeepTrackFast achieve 18.3
and 29.6 FPS, respectively.

3.4.1 Ablation Study

We perform an extensive analysis of the proposed tracker, memory
sample confidence, and training losses.
Target association network components: We evaluate the target can-
didate association network with different numbers of Sinkhorn [96]
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Num GNN Num Sinkhorn

Layers iterations NFS UAV123 LaSOT FPS

– – 65.2 69.1 65.8 –

0 50 65.9 69.2 66.6 –

2 10 66.4 69.7 67.1 18.3

9 50 66.4 69.8 67.2 12.7

Table 3.1: Impact of each component of the Target Candidate Association
Network in terms of AUC (%) on three datasets.

Memory Sample Search area Target Candidate

Confidence Adaptation Association Network NFS UAV123 LaSOT

– – – 64.4 68.2 63.5

✓ – – 64.7 68.0 65.0

✓ ✓ – 65.2 69.1 65.8

✓ ✓ ✓ 66.4 69.7 67.1

Table 3.2: Impact of each component in terms of AUC (%) on three
datasets. The first row corresponds to our SuperDiMP baseline.

iterations and with different number of GNN layers of the embedding
network or dropping it at all, see Tab. 3.1. We conclude, that using
the target candidate association network even without any GNN
layers outperforms the baseline on all three datasets. In addition,
using either two or nine GNN layers improves the performance even
further on all datasets. We achieve the best results when using nine
GNN layers and 50 Sinkhorn iterations. However, using a large can-
didate embedding network and a high number of Sinkhorn iterations
reduces the run-time of the tracker to 12.7 FPS. Hence, using only
two GNN layers and 10 Sinkhorn iterations results in a negligible
decrease of 0.1 on UAV123 and LaSOT but accelerates the run-time
by 44%.
Online tracking components: We study the importance of memory
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Loss no TCA Lsup Lself Lsup + Lself Lsup + Lself

Data-mining n.a. ✓ ✓ - ✓

LaSOT, AUC (%) 65.8 66.0 66.9 66.8 67.1

Table 3.3: Analysis on LaSOT of association learning using different loss
functions with and without data-mining.

Sample Replacement Online updating Conf. score LaSOT

with conf. score with conf. score threshold AUC (%)

– – – 63.5

✓ – – 64.1

✓ ✓ 0.0 64.6

✓ ✓ 0.5 65.0

Table 3.4: Analysis of our memory weighting component on LaSOT.

sample confidence, the search area protocol, and target candidate
association of our final method KeepTrack. In Tab. 3.2 we analyze
the impact of successively adding each component, and report the
average of five runs on the NFS [42], UAV123 [84] and LaSOT [38]
datasets. The first row reports the results of the employed base tracker.
First, we add the memory sample confidence approach (Sec. 3.3.8),
observe similar performance on NFS and UAV but a significant
improvement of 1.5% on LaSOT, demonstrating its potential for long-
term tracking. With the added robustness, we next employ a larger
search area and increase it if it was drastically shrank before the target
was lost. This leads to a fair improvement on all datasets. Finally,
we add the target candidate association network, which provides
substantial performance improvements on all three datasets, with a
+1.3% Area Under the Curve (AUC) on LaSOT. These results clearly
demonstrate the power of the target candidate association network.
Training: In order to study the effect of the proposed training
losses, we retrain the target candidate association network either
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with only the partially supervised loss or only the self-supervised
loss. We report the performance on LaSOT [38] in Tab. 3.3. The results
show that each loss individually allows to train the network and
to outperform the baseline without the target candidate association
network (no TCA), whereas, combining both losses leads to the best
tracking results. In addition, training the network with the combined
loss but without data-mining decreases the tracking performance.
Memory management: We not only use the sample confidence
to manage the memory but also to control the impact of samples
when learning the target classifier online. In Tab. 3.4, we study the
importance of each component by adding one after the other and
report the results on LaSOT [38]. First, we use the sample confidence
scores only to decide which sample to remove next from the memory.
This, already improves the tracking performance. Reusing these
weights when learning the target classifier as described in Eq. (3.4)
increases the performance again. To suppress the impact of poor-
quality samples during online learning, we ignore samples with a
confidence score bellow 0.5. This leads to an improvement on LaSOT.
The last row corresponds to the used setting in the final proposed
tracker.

3.4.2 State-of-the-art Comparison

We compare our approach on seven tracking benchmarks. The same
settings and parameters are used for all datasets. In order to ensure
the significance of the results, we report the average over five runs
on all datasets unless the evaluation protocol requires otherwise. We
recompute the results of all trackers using the raw predictions if
available or otherwise report the results given in the paper.
LaSOT [38]: First, we compare on the large-scale LaSOT dataset
(280 test sequences with 2500 frames in average) to demonstrate the
robustness and accuracy of the proposed tracker. The success plot
in Fig. 3.4a shows the overlap precision OPT as a function of the
threshold T. Trackers are ranked w. r. t. their AUC score, denoted
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KeepTrack [48.2]
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(b) LaSOTExtSub [37]

Figure 3.4: Success plots, showing OPT , on LaSOT [38] and LaSO-
TExtSub [37]. Our approach outperforms all other methods by a large
margin in AUC, reported in the legend.
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Keep Keep Alpha Siam Super STM Pr DM

Track Track Refine TransT R-CNN TrDiMP Dimp Track DiMP Track LTMU DiMP Ocean

Fast [118] [14] [104] [106] [24] [41] [30] [129] [22] [6] [128]

Precision 70.2 70.0 68.0 69.0 68.4 66.3 65.3 63.3 60.8 59.7 57.2 56.7 56.6

Norm. Prec 77.2 77.0 73.2 73.8 72.2 73.0 72.2 69.3 68.8 66.9 66.2 65.0 65.1

Success (AUC) 67.1 66.8 65.3 64.9 64.8 63.9 63.1 60.6 59.8 58.4 57.2 56.9 56.0

Table 3.5: State-of-the-art comparison on the LaSOT [38] test set in terms
of AUC score.

KeepTrack KeepTrack AlphaRefine LTMU TrDiMP KYS SuperDiMP

Fast [118] [22] [106] [7] [30]

Precision 70.2 70.0 68.0 66.5 61.4 64.0 65.3

Norm. Prec. 77.2 77.0 73.2 73.7 – 70.7 72.2

Success (AUC) 67.1 66.8 65.3 64.7 63.9 61.9 63.1

Table 3.6: Results on the LaSOT [38] test set. All trackers use the same
base tracker SuperDiMP [24].

in the legend. Tab. 3.5 shows more results including precision and
normalized precision. KeepTrack and KeepTrackFast outperform the
recent trackers AlphaRefine [118], TransT [14] and TrDiMP [106] by
a large margin and the base tracker SuperDiMP by 4.0% or 3.7% in
AUC. The improvement in OPT is most prominent for thresholds
T < 0.7, demonstrating the superior robustness of our tracker. In
Tab. 3.6, we further perform an apple-to-apple comparison with
KYS [7], LTMU [22], AlphaRefine [118] and TrDiMP [106], where all
methods use SuperDiMP as base tracker. We outperform the best
method on each metric, achieving an AUC improvement of 1.8%.
LaSOTExtSub [37]: We evaluate our tracker on the recently pub-
lished extension subset of LaSOT. LaSOTExtSub is meant for testing
only and consists of 15 new classes with 10 sequences each. The
sequences are long (2500 frames on average), rendering substantial
challenges. Fig. 3.4b shows the success plot, that is averaged over 5

runs. All results, except ours and SuperDiMP, are obtained from [37],
e. g., DaSiamRPN [133], SiamRPN++ [67] and SiamMask [107]. Our
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Keep Keep Super Siam DM Global Siam

Track Track LTMU DiMP R-CNN TACT Track SPLT Track MBMD FC+R TLD

Fast [22] [24] [104] [17] [129] [119] [53] [127] [102] [55]

TPR 80.6 82.7 74.9 79.7 70.1 80.9 68.6 49.8 57.4 60.9 42.7 20.8

TNR 81.2 77.2 75.4 70.2 74.5 62.2 69.4 77.6 63.3 48.5 48.1 89.5

MaxGM 80.9 79.9 75.1 74.8 72.3 70.9 68.8 62.2 60.3 54.4 45.4 43.1

Table 3.7: Results on the OxUvALT [102] test set in terms of TPR, TNR,
and the max geometric mean MaxGM of TPR and TNR.

Keep Keep Siam Siam Super

Track Track LTMU R-CNN PGNet RPN++ DiMP SPLT MBMD DaSiamLT

Fast [22] [104] [71] [67] [24] [119] [127] [60, 133]

Precision 73.8 70.1 71.0 – 67.9 64.9 64.3 63.3 63.4 62.7

Recall 70.4 67.6 67.2 – 61.0 60.9 61.0 60.0 58.8 58.8

F1-Score 72.0 68.8 69.0 66.8 64.2 62.9 62.2 61.6 61.0 60.7

Table 3.8: Results on the VOT2018LT dataset [60] in terms of F1-Score,
Precision and Recall.

method achieves superior results, outperforming LTMU by 6.8% and
SuperDiMP by 3.5%.
OxUvALT [102]: The OxUvA long-term dataset contains 166 test
videos with average length 3300 frames. Trackers are required to
predict whether the target is present or absent in addition to the
bounding box for each frame. Trackers are ranked by the Maximum
Geometric Mean (MaxGM) of the True Positive Rate (TPR) and the
True Negative Rate (TNR). We use the proposed confidence score
and set the threshold for target presence using the separate dev.
set. Tab. 3.7 shows the results on the test set, which are obtained
through the evaluation server. KeepTrack sets the new state-of-the-art
in terms of MaxGM by achieving an improvement of 5.8% compared
to the previous best method and exceed the result of the base tracker
SuperDiMP by 6.1%.
VOT2018LT [60]: Next, we evaluate our tracker on the 2018 edition of
the VOT [62] long-term tracking challenge. We compare with the top
methods in the challenge [60], as well as more recent methods. The
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Keep Keep Mega RLT Super Siam

Track Track LT_DSE LTMU_B track CLGS DiMP DiMP DW_LT ltMBNet

Fast [61, 63] [22, 61] [61] [61, 63] [61] [24] [61, 63] [61]

Precision 72.3 70.6 71.5 70.1 70.3 73.9 65.7 67.6 69.7 64.9

Recall 69.7 68.0 67.7 68.1 67.1 61.9 68.4 66.3 63.6 51.4

F1-Score 70.9 69.3 69.5 69.1 68.7 67.4 67.0 66.9 66.5 57.4

Table 3.9: Results on the VOT2019LT [63]/VOT2020LT [61] dataset in
terms of F1-Score, Precision and Recall.

Keep Keep Super Pr STM Siam Siam

Track Track CRACT TrDiMP TransT DiMP DiMP Track AttN R-CNN KYS DiMP

Fast [39] [106] [14] [24] [30] [41] [124] [104] [7] [6]

UAV123 69.7 69.5 66.4 67.5 69.1 68.1 68.0 64.7 65.0 64.9 – 65.3

OTB-100 70.9 71.2 72.6 71.1 69.4 70.1 69.6 71.9 71.2 70.1 69.5 68.4

NFS 66.4 65.3 62.5 66.2 65.7 64.7 63.5 – – 63.9 63.5 62.0

Table 3.10: Comparison with state-of-the-art on the OTB-100 [109],
NFS [42] and UAV123 [84] datasets in terms of AUC score.

dataset contains 35 videos with 4200 frames per sequence on average.
Trackers are required to predict a confidence score that the target
is present in addition to the bounding box for each frame. Trackers
are ranked by the F1-score, evaluated for a range of confidence
thresholds. As shown in Tab. 3.8, our tracker achieves the best results
in all three metrics and outperforms the base tracker SuperDiMP by
almost 10% in F1-score.
VOT2019LT [63]/VOT2020LT [61]: The dataset for both VOT [62]
long-term tracking challenges contains 215,294 frames divided in
50 sequences. Trackers need to predict a confidence score that the
target is present and the bounding box for each frame. Trackers are
ranked by the F-score, evaluated for a range of confidence thresholds.
We compare with the top methods in the challenge [61, 63], as well
as more recent methods. As shown in Tab. 3.9, our tracker achieves
the best result in terms of F-score and outperforms the base tracker
SuperDiMP by 4.0% in F-score.
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UAV123 [84]: This dataset contains 123 videos and is designed to
assess trackers for UAV applications. It contains small objects, fast
motions, and distractor objects. Tab. 3.10 shows the results, where
the entries correspond to AUC for OPT over Intersection over Union
(IoU) thresholds T. Our method sets a new state-of-the-art with an
AUC of 69.7%, exceeding the performance of the recent trackers
TransT [14] and TrDiMP [106] by 0.6% and 2.2% in AUC.
OTB-100 [109]: For reference, we also evaluate our tracker on the
OTB-100 dataset consisting of 100 sequences. Several trackers achieve
tracking results over 70% in AUC, as shown in Tab. 3.10. So do
KeepTrack and KeepTrackFast that perform similarly to the top methods,
with a 0.8% and 1.1% AUC gain over the SuperDiMP baseline.
NFS [42]: Lastly, we report results on the 30 FPS version of the Need
for Speed (NFS) dataset. It contains fast motions and challenging
distractors. Tab. 3.10 shows that our approach sets a new state of the
art on NFS.

3.5 conclusion

We propose a novel tracking pipeline employing a learned target
candidate association network in order to track both the target and
distractor objects. This approach allows us to propagate the identities
of all target candidates throughout the sequence. In addition, we
propose a training strategy that combines partial annotations with
self-supervision. We do so to compensate for lacking ground-truth
correspondences between distractor objects in visual tracking. We
conduct comprehensive experimental validation and analysis of our
approach on seven generic object tracking benchmarks and set a new
state-of-the-art on six.
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3.6 appendices

In the appendix, we first provide details about training in Sec. 3.6.A
and about inference in Sec. 3.6.B. We then provide failure cases in
Sec. 3.6.C and an attribute-wise comparison in Sec. 3.6.D.

3.6.a Training

First, we describe the training data generation and sample selection
to train the network more effectively. Then, we provide additional
details about the training procedure such as training in batches,
augmentations and synthetic sample generation. Finally, we briefly
summarize the employed network architecture.

3.6.a.1 Data-Mining

We use the LaSOT [38] training set to train our target candidate asso-
ciation network. In particular, we split the 1120 training sequences
randomly into a train-train (1000 sequences) and a train-val (120 se-
quences) set. We run the base tracker on all sequences and store the
target classifier score map and the search area on disk for each frame.
During training, we use the score map and the search area to extract
the target candidates and its features to provide the data to train the
target candidate association network.

We observed that many sequences or sub-sequences contain mostly
one target candidate with a high target classifier score. Thus, in this
cases target candidate association is trivial and learning on these
cases will be less effective. Conversely, tracking datasets contain
sub-sequences that are very challenging (large motion or appearance
changes or many distractors) such that trackers often fail. While these
sub-sequences lead to a more effective training they are relatively
rare such that we decide to actively search the training dataset.

First, we assign each frame to one of six different categories. We
classify each frame based on four observations about the number of
candidates, their target classifier score, if one of the target candidates
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Is a candidate Does the candidate Does any

Number selected with max score candidate

of as target? correspond correspond to Num

Name candidates max(si) ≥ η to the target? the target? Frames Ratio

D 1 ✓ ✓ ✓ 1.8M 67.9%

H > 1 ✓ ✓ ✓ 498k 18.4%

G > 1 x ✓ – 8k 0.3%

J > 1 ✓ x x 76k 2.8%

K > 1 ✓ x ✓ 42k 1.5%

other – – – – 243k 9.1%

Table 3.11: Categories and specifications for each frame in the training
dataset used for data-mining.

is selected as target and if this selection is correct, see Tab. 3.11. A
candidate corresponds to the annotated target object if the spatial
distance between the candidate location and center coordinate of the
target object is smaller than a threshold.

Assigning each frame to the proposed categories, we observe, that
the dominant category is D (70%) that corresponds to frames with a
single target candidate matching the annotated target object. How-
ever, we favour more challenging settings for training. In order to
learn distractor associations using self supervision, we require frames
with multiple detected target candidates. Category H (18.4%) cor-
responds to such frames where in addition the candidate with the
highest target classifier score matches the annotated target object.
Hence, the base tracker selects the correct candidate as target. Further-
more, category G corresponds to frames where the base tracker was
no longer able to track the target because the target classifier score of
the corresponding candidate fell bellow a threshold. We favour these
frames during training in order to learn continue tracking the target
even if the score is low.

Both categories J and K correspond to tracking failures of the base
tracker. Whereas in K the correct target is detected but not selected,
it is not detected in frames of category J. Thus, we aim to learn from
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tracking failures in order to train the target candidate association
network such that it learns to compensate for tracking failures of the
base tracker and corrects them. In particular, frames of category K
are important for training because the two candidates with highest
target classifier score no longer match such that the network is forced
to include other cues for matching. We use frames of category J
because frames where the object is visible but not detected contain
typically many distractors such that these frames are suitable to learn
distractor associations using self-supervised learning.

To summarize, we select only frames with category H, K, J for self-
supervised training and sample them with a ratio of 2 : 1 : 1 instead
of 10 : 2 : 1 (ratio in the dataset). We ignore frames from category
D during self-supervised training because we require frames with
multiple target candidates. Furthermore, we select sub-sequences of
two consecutive frames for partially supervised training. We choose
challenging sub-sequences that either contain many distractors in
each frame (HH, 350k) or sub-sequences where the base tracker fails
and switches to track a distractor (HK, 1001) or where the base
tracker is no longer able to identify the target with high confidence
(HG, 1380). Again we change the sampling ratio from approximately
350 : 1 : 1 to 10 : 1 : 1 during training. We change the sampling ration
in order to use failure cases more often during training than they
occur in the training set.

3.6.a.2 Training Data Preparation

During training we use two different levels of augmentation. First,
we augment all features of target candidate to enable self-supervised
training with automatically produced ground truth correspondences.
In addition, we use augmentation to improve generalization and
overfitting of the network.

When creating artificial features we randomly scale each target
classifier score, randomly jitter the candidate location within the
search area and apply common image transformations to the orig-
inal image before extracting the appearance based features for the



3.6 appendices 37

artificial candidates. In particular, we randomly jitter the brightness,
blur the image and jitter the search area before cropping the image
to the search area.

To reduce overfitting and improve the generalization, we randomly
scale the target candidate scores for synthetic and real sub-sequences.
Furthermore, we remove candidates from the sets V ′ and V randomly
in order to simulate newly appearing or disappearing objects. Fur-
thermore, to enable training in batches we require the same number
of target candidates in each frame. Thus, we keep the five candidates
with the highest target classifier score or add artificial peaks at ran-
dom locations with a small score such that five candidates per frame
are present. When computing the losses, we ignore these artificial
candidates.

3.6.a.3 Architecture Details

We use the SuperDiMP tracker [24] as our base tracker. SuperDiMP
employs the DiMP [6] target classifier and the probabilistic bounding-
box regression of PrDiMP [30], together with improved training
settings. It uses a ResNet-50 [50] pretrained network as backbone
feature extractor. We freeze all parameters of SuperDiMP while
training the target candidate association network. To produce the
visual features for each target candidate, we use the third layer
ResNet-50 features. In particular, we obtain a 29× 29× 1024 feature
map and feed it into a 2× 2 convolutional layer which produces the
30× 30× 256 feature map f. Note, that the spatial resolution of the
target classifier score and feature map agree such that extracting the
appearance based features fi for each target candidate vi at location
ci is simplified.

Furthermore, we use a four layer MLP to project the target classifier
score and location for each candidate in the same dimensional space
as fi. We use the following MLP structure: 3 → 32 → 64 → 128 →
256 with batch normalization. Before feeding the candidate locations
into the MLP we normalize it according to the image size.
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We follow Sarlin et al. [93] when designing the candidate embed-
ding network. In particular, we use self and cross attention layers in
an alternating fashion and employ two layers of each type. In addi-
tion, we append a 1× 1 convolutional layer to the last cross attention
layer. Again, we follow Sarlin et al. [93] for optimal matching and
reuse their implementation of the Sinkhorn algorithm and run it for
10 iterations.

3.6.b Inference

In this section we provide the detailed algorithm that describes the
object association module (Sec. 3.7 in the paper). Furthermore, we
explain the idea of search area rescaling at occlusion and how it is
implemented. We conclude with additional inference details.

3.6.b.1 Object Association Module

Here, we provide a detailed algorithm describing the object associ-
ation module presented in the main paper, see Alg. 1. It contains
target candidate to object association and the redetection logic to
retrieve the target object after it was lost.

First, we will briefly explain the used notation. Each object can
be modeled similar to a class in programming. Thus, each object o
contains attributes that can be accesses using the ”.” notation. In
particular (oj).s returns the score attribute s of object oj. In total the
object class contains two attribute: the list of scores s and the object-id
id. Both setting and getting the attribute values is possible.

The algorithm requires the following inputs: the set of target can-
didates V , the set of detected objects O′ and the object selected as
target ô in the previous frame. First, we check if a target candidate
matches with any previously detected object and verify that the as-
signment probability is higher than a threshold ω = 0.75. If such a
match exists, we associate the candidate to the object and append its
target classifier score to the scores and add the object to the set of
currently visible object O. If a target candidate matches none of the
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Algorithm 1 Object Association Algorithm.
Require: Set of target candidates V
Require: Set of objects of previous frame O′
Require: Target object ô′

1: O = {}, N = |V|
2: for i = 1, . . . , N do
3: if matchOf(vi) ̸= dustbin && p(vi) ≥ ω then
4: v′j ← matchOf(vi)

5: (o′j).s← concat((o′j).s, [si])

6: oi ← o′j
7: else
8: oi ← new Object(getNewId(), [si])

9: O ← O ∪ {oi}
10: if ô′ ̸= none and ô′.id ∈ {o.id | o ∈ O} then
11: ô = getObjectById(O, ô′.id)
12: for i = 1, . . . , N do
13: if max(ô.s) < (oi).s[−1] then
14: ô = oi

15: else
16: i = argmaxi{(oi).s[−1]) | oi ∈ O}
17: if (oi).s[−1] ≥ η then
18: ô = oi
19: else
20: ô = none
21: return ô, O
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previously detected objects, we create a new object and add it to O.
Hence, previously detected objects that miss a matching candidate
are not included in O. Once, all target candidates are associated to
an already existing or newly created object. We check if the object
previously selected as target is still visible in the current scene and
forms the new target ô. After the object was lost it is possible that the
object selected as target is in fact a distractor. Thus, we select an other
object as target if this other object achieves a higher target classifier
score in the current frame than any score the currently selected object
achieved in the past. Furthermore, if the object previously selected
as target object is no longer visible, we try to redetect it by checking
if the object with highest target classifier score in the current frame
achieves a score higher than a threshold η = 0.25. If the score is high
enough, we select this object as the target.

3.6.b.2 Search Area Rescaling at Occlusion

The target object often gets occluded or moves out-of-view in many
tracking sequences. Shortly before the target is lost the tracker typ-
ically detects only a small part of the target object and estimates
a smaller bounding box than in the frames before. The used base
tracker SuperDiMP employs a search area that depends on the cur-
rently estimated bounding box size. Thus, a partially visible target
object causes a small bounding box and search area. The problem
of a small search area is that it complicates redetecting the target
object, e. g., the target reappears at a slightly different location than
it disappeared and if the object then reappears outside of the search
area redetection is prohibited. Smaller search areas occur more fre-
quently when using the target candidate association network because
it allows to track the object longer until we declare it as lost.

Hence, we use a procedure to increase the search area if it de-
creased before the target object was lost. First, we store all search
are resolutions during tracking in an list a as long as the object is
detected. If the object was lost k frames ago, we compute the new
search area by averaging the last k entries of a larger than the search
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area at occlusion. We average at most over 30 previous search areas to
compute the new one. If the target object was not redetected within
these 30 frames with keep the search area fixed until redetection.

3.6.b.3 Inference Details

In contrast to training, we use all extracted target candidates to
compute the candidate associations between consecutive frames. In
order to save computations, we extract the candidates and features
only for the current frame and cache the results such that they can
be reused when computing the associations in the next frames.
KeepTrack Settings: We use the same settings as for SuperDiMP but
increase the search area scale from 6 to 8 leading to a larger search are
(from 352× 352 to 480× 480) and to a larger target score map (from
22× 22 to 30× 30). In addition, we employ the aforementioned search
area rescaling at occlusion and skip running the target candidate
association network if only one target candidates with high target
classifier score is detected in the current and previous frame, in order
to save computations.
KeepTrackFast Settings: We use the same settings as for SuperDiMP.
In particular, we keep the search area scale and target score map
resolution the same to achieve a faster run-time. In addition, we
reduce the number of bounding box refinement steps from 10 to
3 which reduces the bounding box regression time significantly.
Moreover, we double the target candidate extraction threshold τ

to 0.1. This step ensures that we neglegt local maxima with low
target classifier scores and thus leads to less frames with multiple
detected candidates. Hence, KeepTrackFast runs the target candidate
association network less often than KeepTrack.

3.6.c Failure Cases

While KeepTrack is particularly powerful when distractor objects
appear in the scene, it also fails to track the target object in complex
scenes, such as the examples shown in Fig. 3.5.



42 learning to keep track of what not to track

Tim
e

#134
#135

#140
#142

#143

#76
#77

#87
#92

#93

F
i
g

u
r

e
3.

5:
Failu

re
C

ases:
a

very
challenging

case
is

w
hen

a
d

istractor
crosses

the
target’s

location,
since

positionalinform
ation

is
then

of
lim

ited
use.T

he
box

represents
the

ground
truth

bounding
box

of
the

target
object,

w
here

green
ind

icates
the

the
selected

target
cand

id
ates

corresp
ond

s
to

the
sou

ght
target

and
red

indicates
that

the
tracker

selected
a

candidate
corresponding

to
a

distractor
object.



3.6 appendices 43

The top row shows such a challenging case, where the target object
is the right hand of the person on the right (indicated by [■] or [■]).
KeepTrack manages to individually track all hands ( , , ) visible in
the search area until frame number 134. In the next frame, both hands
of the person are close and our tracker only detects one candidate
for both hands ( ). Thus, the tracker assigns the target id to the
remaining candidate. The tracker detects two candidates ( , ) as
soon as both hands move apart in frame 143. However, now it is
unclear which hand is the sought target. If two objects approach
each other it is unclear whether they cross each other or not. In
this scenario positional information is of limited use. Hence, deeper
understanding of the scene and the target object seems necessary to
mitigate such failure cases.

The bottom row in Fig. 3.5 shows a similar failure case where
again a distractor object ( ) crosses the target’s ( ) location. This
time, the tracker fails to extract the candidate corresponding to the
target from frame number 77 on wards. The tracker detects that
the target candidate previously assumed to represent the target has
vanished but the remaining distractor object ( ) achieves such a high
target score that the tracker reconsiders its previous target selection
and continues tracking the distractor object ( ) instead. Thus, the
tracker continues tracking the distractor object even if the a target
candidate for the sought target ( ) appears (frame number 93).

3.6.d Attributes

Tabs. 3.12 and 3.13 show the results of various trackers including Keep-
Track and KeepTrackFast based on different sequence attributes. We
observe that both trackers are superior to other trackers on UAV123

for most attributes. In particular, we outperform the runner-up by
a large margin in terms of AUC on the sequences corresponding
to the following attributes: Aspect Ratio Change (+2.5/2.6%), Full
Occlusion (+1.8/1.9%), Partial Occlusion (+2.5/2.3%), Background
Clutter (+1.5/1.3%), Illumination Variation (+1.7/1.5%), Similar Ob-
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Scale Aspect Low Fast Full Partial

Variation Ratio Change Resolution Motion Occlusion Occlusion Total

ATOM [23] 63.0 61.9 49.5 62.7 46.2 58.1 64.2

DiMP50 [6] 63.8 62.8 50.9 62.7 47.5 59.7 65.3

STMTrack [41] 63.9 64.2 46.4 62.2 48.9 58.0 65.7

TrDiMP [106] 66.4 66.1 54.3 66.3 48.6 62.1 67.5

SuperDiMP [30] 66.6 66.4 54.9 65.1 52.0 63.5 67.7

PrDiMP50 [30] 66.8 66.3 55.2 65.3 53.6 63.5 68.0

TransT [14] 68.0 66.3 55.6 67.4 48.4 63.2 69.1

KeepTrackFast 68.4 68.8 57.3 67.2 55.4 66.0 69.5

KeepTrack 68.7 68.9 57.0 68.0 55.5 65.8 69.7

Background Illumination Viewpoint Camera Similar

Out-of-View Clutter Variation Change Motion Object Total

ATOM [23] 61.4 46.2 63.1 65.1 66.4 63.1 64.2

DiMP50 [6] 61.8 48.9 63.9 65.2 66.9 62.9 65.3

STMTrack [41] 68.2 46.2 61.9 70.2 67.5 58.0 65.7

TrDiMP [106] 66.3 45.1 61.5 70.0 68.3 64.9 67.5

SuperDiMP [30] 63.7 51.4 63.2 67.8 69.8 65.5 67.7

PrDiMP50 [30] 63.9 53.9 62.4 69.4 70.4 66.1 68.0

TransT [14] 69.1 44.1 62.6 71.8 70.5 65.3 69.1

KeepTrackFast 65.9 55.4 65.6 70.3 71.2 67.9 69.5

KeepTrack 66.8 55.2 65.4 70.4 71.8 67.2 69.7

Table 3.12: UAV123 attribute-based analysis in terms of AUC score. Each
column corresponds to the results computed on all sequences in the
dataset with the corresponding attribute.

ject (+1.8/1.1%). Especially, the superior performance on sequences
with the attributes Full Occlusion, Partial Occlusion, Background Clutter
and Similar Object clearly demonstrates that KeepTrack mitigates the
harmful effect of distractors and allows to track the target object
longer and more frequently than other trackers. In addition, Tab. 3.12

reveals that KeepTrack achieves the highest (red) or second-highest
(blue) AUC on the sequences corresponding to each attribute except
for the attribute Out-of-View.

The attribute-based analysis on LaSOT allows similar observa-
tions. In particular, KeepTrack and KeepTrackFast outperform all other
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Illumination Partial Motion Camera Background

Variation Occlusion Deformation Blur Motion Rotation Clutter Total

LTMU [22] 56.5 54.0 57.2 55.8 61.6 55.1 49.9 57.2

PrDiMP50 [30] 63.7 56.9 60.8 57.9 64.2 58.1 54.3 59.8

STMTrack [41] 65.2 57.1 64.0 55.3 63.3 60.1 54.1 60.6

SuperDiMP [30] 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.1

TrDiMP [106] 67.5 61.1 64.4 62.4 68.1 62.4 58.9 63.9

Siam R-CNN [104] 64.6 62.2 65.2 63.1 68.2 64.1 54.2 64.8

TransT [14] 65.2 62.0 67.0 63.0 67.2 64.3 57.9 64.9

AlphaRefine [118] 69.4 62.3 66.3 65.2 70.0 63.9 58.8 65.3

KeepTrackFast 70.1 63.8 66.2 65.0 70.7 65.1 60.1 66.8

KeepTrack 69.7 64.1 67.0 66.7 71.0 65.3 61.2 67.1

Viewpoint Scale Full Fast Low Aspect

Change Variation Occlusion Motion Out-of-View Resolution Ration Change Total

LTMU [22] 56.7 57.1 49.9 44.0 52.7 51.4 55.1 57.2

PrDiMP50 [30] 59.2 59.4 51.3 48.4 55.3 53.5 58.6 59.8

STMTrack [41] 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6

SuperDiMP [30] 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1

TrDiMP [106] 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9

Siam R-CNN [104] 65.3 64.5 55.3 51.5 62.2 57.1 63.4 64.8

TransT [14] 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9

AlphaRefine [118] 63.1 65.4 57.4 53.6 61.1 58.6 64.1 65.3

KeepTrackFast 67.6 66.6 59.2 57.1 63.4 62.0 65.6 66.8

KeepTrack 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1

Table 3.13: LaSOT attribute-based analysis. Each column corresponds to
the results computed on all sequences in the dataset with the correspond-
ing attribute.

trackers by a large margin in AUC on the sequences correspond-
ing oth the following attributes: Partial Occlusion (+1.8/1.5%), Back-
ground Clutter (+2.3/1.2, Viewpoint Change (+1.6/2.3%), Full Occlu-
sion (+2.7/1.8%), Fast Motion (4.1/3.5%), Out-of-View (+1.9/1.2%),
Low Resolution (+3.4/3.4%). Moreover, the superior performance is
even clearer when comparing to the base tracker SuperDiMP, e. g.,
and improvement of +6.0/5.2% for Full Occlusion or +7.0/6.4% for
Fast Motion. KeepTrack achieves the highest AUC score for every at-
tributed except two where KeepTrackFast achieves slightly higher
scores. Again, the best performance on sequences with attributes
such as Background Clutter or Full Occlusion clearly demonstrates
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the effectiveness of our proposed target and distractor association
strategy.



4
T R A N S F O R M I N G M O D E L P R E D I C T I O N F O R
T R A C K I N G

In the previous chapter we proposed an target candidate associa-
tion network to explicitly handle distractor objects. In contrast, we
introduce in this chapter a more powerful Transformer-based model
prediction module than the previously used one, reducing the need
of further distractor mitigation approaches. The employed Trans-
former captures global relations with little inductive bias, allowing it
thus to learn the prediction of more powerful target models. We fur-
ther extend the model predictor to estimate a second set of weights
that are applied for accurate bounding box regression. The resulting
tracker relies on training and on test frame information in order to
predict all weights trasductively. The code and trained models are
available at https://github.com/visionml/pytracking.

4.1 introduction

Generic visual object tracking is one of the fundamental problems
in computer vision. The task involves estimating the state of the
target object in every frame of a video sequence, given only the
initial target location. One of the key problems in object tracking is
learning to robustly detect the target object, given a scarce annotation.
Among existing methods, DCF [6, 10, 23, 25, 43, 52, 78, 97] have
achieved much success. These approaches learn a target model to
localize the target in each frame, by minimizing a discriminative
objective function. The target model, often set to a convolutional
kernel, provides a compact and generalizable representation of the
tracked object, leading to the popularity of DCFs.

The objective function in DCF integrates both foreground and
background knowledge over the previous frames, providing effective

47
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Figure 4.1: Performance improvements when transforming the model
optimizer based tracker SuperDiMP [24] ( ) step-by-step. First, we re-
place the model optimizer by a Transformer based model predictor ( ).
Secondly, we replace the probabilistic IoUNet by a new regressor and
predict its weights with the same model predictor ( ). The performance
(success AUC) is reported on NFS [42] and LaSOT [38] and compared
with recent trackers ( ). ToMP-50 and ToMP-101 refer to the different
employed backbones ResNet-50 [50] and ResNet-101 [50].

global reasoning when learning the model. However, it also imposes
severe inductive bias on the predicted target model. Since the target
model is obtained by solely minimizing an objective over the previous
frames, the model predictor has limited flexibility. For instance, it
cannot integrate any learned priors in the predicted target model. On
the other hand, Transformers have also been shown to provide strong
global reasoning across multiple frames, thanks to the use of self and
cross attention. Consequently, Transformers have been applied to
generic object tracking [14, 106, 117, 121] with considerable success.

In this work, we propose a novel tracking framework that aims
at bridging the gap between DCF and Transformer based trackers.
Our approach employs a compact target model for localizing the
target, as in DCF. The weights of this model are however obtained
using a Transformer-based model predictor, allowing us to learn
more powerful target models, compared to DCFs. This is achieved by
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introducing novel encodings of the target state, allowing the Trans-
former to effectively utilize this information. We further extend our
model predictor to generate weights for a bounding box regressor
network, in order to condition its predictions on the current target.
Our proposed approach ToMP obtains significant improvement in
tracking performance compared to state-of-the-art DCF-based meth-
ods, while also outperforming recent Transformer based trackers (see
Fig. 4.1).
Contributions: In summary, our main contributions are the follow-
ing:

i) We propose a novel Transformer-based model prediction mod-
ule in order to replace traditional optimization based model
predictors.

ii) We extend the model predictor to estimate a second set of
weights that are applied for bounding box regression.

iii) We develop two novel encodings that incorporate target loca-
tion and target extent allowing the Transformer-based model
predictor to utilize this information.

iv) We propose a parallel two stage tracking procedure at test time
to decouple target localization and bounding box regression in
order to achieve robust and accurate target detection.

v) We perform a comprehensive set of ablation experiments to
assess the contribution of each building block of our tracking
pipeline and evaluate it on seven tracking benchmarks. The
proposed tracker ToMP sets a new state of the art on three
including LaSOT [38] where it achieves an AUC of 68.5% (see
Fig. 4.1). In addition we show that our tracker ToMP outper-
forms other Transformer based trackers for every attribute of
LaSOT [38].
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(b) Proposed tracker with Transformer based model prediction.

Figure 4.2: Comparison between trackers that employ optimization based
model prediction and our Transformer-based model prediction. The
model optimizer [■] in Fig. 4.2a is replaced by the model predictor in
Fig. 4.2b that consists of the proposed modules [■,■,■,■].
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4.2 method

In this work, we propose a Transformer-based target model pre-
diction network for tracking called ToMP. We first revisit existing
optimization based model predictors and discuss their limitations in
Sec. 4.2.1. Next, we describe our Transformer-based model prediction
approach in Sec. 4.2.2. We extend this approach to perform joint
target classification and bounding box regression in Sec. 4.2.3. Finally,
we detail our offline training procedure and online tracking pipeline
in Sec. 4.2.4 and Sec. 4.2.5, respectively.

4.2.1 Background

One of the popular paradigms for visual object tracking is discrimina-
tive model prediction based tracking. These approaches, visualized
in Fig. 4.2a, use a target model to localize the target object in the
test frame. The weights (parameters) of this target model are ob-
tained from the model optimizer, using the training frames and
their annotation. While a variety of target models are used in the
literature [6, 23, 57, 78, 97, 105, 130], discriminative trackers share
a common base formulation to produce the target model weights.
This involves solving an optimization problem such that the target
model produces the desired target states yi ∈ Y for the training
samples Strain ∈ {(xi, yi)}m

i=1. Here, xi ∈ X refers to a deep feature
map of frame i and m denotes the total number of training frames.
The optimization problem reads as follows,

w = arg min
w̃

∑
(x,y)∈Strain

f (h(w̃; x), y) + λg(w̃). (4.1)

Here, the objective consists of the residual function f which computes
an error between the target model output h(w̃; x) and the ground
truth label y. g(w̃) denotes the regularization term weighted by a
scalar λ, while w represents the optimal weights of the target model.
Note that the training set Strain contains the annotated first frame, as
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well as the previous tracked frames with the tracker’s predictions
being used as pseudo-labels.

Learning the target model by explicitly minimizing the objective
of (4.1) provides a robust target model that can distinguish the tar-
get from the previously seen background. However, such a strategy
suffers from notable limitations. The optimization based methods
compute the target model using only limited information available
in previously tracked frames. That is, they cannot integrate learned
priors in the target model prediction so as to minimize future fail-
ures. Similarly, these methods typically lack the possibility to utilize
the current test frame in a transductive manner when computing
the model weights to improve tracking performance. The optimiza-
tion based methods also require setting multiple optimizer hyper-
parameters, and can overfit/underfit on the training samples. An-
other limitation of optimization based trackers is their procedure that
produces the discriminative features. Usually, the features provided
to the target model are simply the extracted test features. Instead of
reinforced features by using the target state information contained in
the training frames. Extracting such enhanced features would allow
reliable differentiation between the target and background regions in
the test frame.

4.2.2 Transformer-based Target Model Prediction

In order to overcome the aforementioned limitations of optimiza-
tion based target localization approaches, we propose to replace the
model optimizer by a novel target model predictor based on Trans-
formers (see Fig. 4.2b). Instead of explicitly minimizing an objective
as stated in (4.1), our approach learns to directly predict the tar-
get model purely from data by end-to-end training. This allows the
model predictor to integrate target specific priors in the predicted
model so that it can focus on characteristic features of the target, in
addition to the features that allow to differentiate the target from
the seen background. Furthermore, our model predictor also utilizes
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the current test frame features, in addition to the previous training
features, to predict the target model in a transductive manner. As a
result, the model predictor can utilize the current frame information
to predict a more suitable target model. Finally, instead of applying
the target model on a fixed feature space, defined by the pre-trained
feature extractor, our approach can utilize the target information to
dynamically construct a more discriminative feature space for every
frame.

An overview of the proposed tracker employing the Transformer-
based model prediction is shown in Fig. 4.2b. Similar to the opti-
mization based trackers, it consists of a test and training branch. We
first encode the target state information in the training frames and
fuse it with the deep image features [■]. Similarly, we also add an
encoding to the test frame in order to mark it as test frame [■]. The
features from both the training and test branches are then jointly
processed in the Transformer Encoder [■] that produces enhanced
features by reasoning globally across frames. Next, the Transformer
Decoder [■] predicts the target model weights [ ] using the output
of the Transformer Encoder. Finally, the predicted target model is
applied on the enhanced test frame features to localize the target.
Next, we describe the main components in our tracking pipeline.
Target Location Encoding: We propose a target location encoding
that allows the model predictor to incorporate the target state infor-
mation from the training frames, when predicting the target model.
In particular, we use the embedding efg ∈ R1×C that represents fore-
ground. Together with a Gaussian yi ∈ RH×W×1 centered at the target
location, we define the target encoding function

ψ(yi, efg) = yi · efg, (4.2)

where "·" denotes point-wise multiplication with broadcasting. Note,
that Him = s ·H and Wim = s ·W correspond to the spatial dimension
of the image patch and s to the stride of the backbone network used
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to extract the deep features x ∈ RH×W×C. Next, we combine the
target encoding and the deep image features x as follows

vi = xi + ψ(yi, efg). (4.3)

This provides us the training frame features vi ∈ RH×W×C which
contain encoded target state information. Similarly, we also add a
test encoding to identify the features corresponding to the test frame
as,

vtest = xtest + µ(etest), (4.4)

where µ(·) repeats the token etest for each patch of xtest.
Transformer Encoder: We aim to predict our target model using
the foreground and background information from both the training,
as well as the test frames. To achieve this, we use a Transformer
Encoder [12, 103] module to first jointly process the features from the
training frames and the test frame. The Transformer Encoder serves
two purposes in our approach. First, as described later, it computes
the features used by the Transformer Decoder module to predict the
target model. Secondly, inspired by STARK [117], our Transformer
Encoder also outputs enhanced test frame features, which serve as
the input to the target model when localizing the target.

Given multiple encoded training features vi ∈ RH×W×C and an
encoded test feature vtest ∈ RH×W×C, we reshape the features to
R(H·W)×C and concatenate all m training features vi and the test
feature vtest along the first dimension. These concatenated features
are then processed jointly in a Transformer Encoder

[z1, . . . , zm, ztest] = Tenc([v1, . . . , vm, vtest]). (4.5)

The Transformer Encoder consists of multi-headed self-attention
modules [103] that enable it to reason globally across a full frame
and even across multiple training and test frames. In addition, the
encoded target state identifies foreground and background regions and
enables the Transformer to differentiate between both regions.
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Transformer Decoder: The outputs of the Transformer Encoder (zi
and ztest) are used as inputs for the Transformer Decoder [12, 103] to
predict the target model weights

w = Tdec([z1, . . . , zm, ztest], efg). (4.6)

Note that the inputs zi and ztest are obtained by jointly reasoning
over the whole training and test samples, allowing us to predict
a discriminative target model. We use the same learned foreground
embedding efg as used for target state encoding as input query of
the Transformer Decoder such that the Decoder predicts the target
model weights.
Target Model: We use the DCF target model to obtain the target
classification scores

h(w, ztest) = w ∗ ztest. (4.7)

Here, the weights of the convolution filter w ∈ R1×C are predicted by
the Transformer Decoder. Note that the target model is applied on the
output test features ztest of the Transformer Encoder. These features
are obtained after joint processing of training and test frames, and
thus support the target model to reliably localize the target.

4.2.3 Joint Localization and Box Regression

In the previous section, we presented our Transformer based archi-
tecture for predicting the target model. Although the target model
can localize the object center in each frame, a tracker needs to also
estimate an accurate bounding box of the target. DCF based trackers
typically employ a dedicated bounding box regression network [23]
for this task. While it is possible to follow a similar strategy, we
decide to predict both models jointly since target localization and
bounding box regression are related tasks that can benefit from one
another. In order to achieve this, we extend our model as follows.
First, instead of only using the target center location when generating
the target state encoding, we also encode target size information to
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provide a richer input to our model predictor. Secondly, we extend
our model predictor to estimate weights for a bounding box regres-
sion network, in addition to the target model weights. The resulting
tracking architecture is visualized in Fig. 4.3. Next, we describe each
of these changes in detail.
Target Extent Encoding: In addition to the extracted deep image
features xi and the target location encoding ψ(yi, efg), we add an-
other encoding to incorporate information about the bounding box of
the target. In order to encode the bounding box bi = {bx

i , by
i , bw

i , bh
i }

encompassing the target object in the training frame i, we adopt
the ltrb representation [41, 99, 115, 121]. First, we map each loca-
tion (jx, jy) on the feature map xi back to the image domain using
(kx, ky) = (⌊ s

2⌋+ s · jx, ⌊ s
2⌋+ s · jy). Then, we compute the normalized

distance of each remapped location to the four sides of the bounding
box bi as follows,

li = (kx − bx
i )/Wim, ri = (kx − bx

i − bw
i )/Wim,

ti = (ky − by
i )/Him, bi = (ky − by

i − bh
i )/Him,

(4.8)

where Wim = s ·W and Him = s · H. These four sides are used to
produce the dense bounding box representation d = (l, t, r, b), where
d ∈ RH×W×4. In this representation, we encode the bounding box
using a MLP ϕ and thereby increase the number of dimensions from
4 to C before adding the obtained encoding to Eq. (4.3) such that

vi = xi + ψ(yi, efg) + ϕ(di). (4.9)

Here, vi is the resulting feature map which is used as input to the
Transformer Encoder, see Fig. 4.3.
Model Prediction: We extend our architecture to predict weights for
the target model, as well as bounding box regression. Concretely, we
pass the output w of the Transformer Decoder through a linear layer
to obtain the weights for bounding box regression wbbreg and target
classification wcls. The weights wcls are then directly used within
the target model h(wcls; ztest) as before. The weights wbbreg, on the
other hand, are used to condition the output test features ztest of
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the Transformer Encoder with target information for bounding box
regression, as explained next.
Bounding Box Regression: To make the encoder output features ztest

target aware, we follow Yan et al. [117] and first compute an attention
map wbbreg ∗ ztest using the predicted weights wbbreg. The attention
weights are then multiplied point-wise with the test features ztest

before feeding them into a Convolutional Neural Network (CNN).
The last layer of the CNN uses an exponential activation function
to produce the normalized bounding box prediction in the same
ltrb representation as described in Eq. (4.8). In order to obtain the
final bounding box estimation, we first extract the center location
by applying the argmax(·) function on the target score map ŷtest

predicted by the target model. Next, we query the dense bounding
box prediction d̂test at the center location of the target object to
obtain the bounding box. We use two dedicated networks for target
localization and bounding box regression in contrast to Yan et al. [117]
that uses one network trying to predict both. This allows us as
explained in Sec. 4.2.5 to decouple target localization from bounding
box regression during tracking.

4.2.4 Offline Training

In this section, we describe the protocol to train the proposed tracker
ToMP. Similar to recent end-to-end trained discriminative trackers [6,
30], we sample multiple training and test frames from a video se-
quence to form training sub-sequences. In particular, we use two
training frames and one test frame. In contrast to recent Transformer
based trackers [14, 117, 121] but similar to DCF based trackers [6, 23,
30], we keep the same spatial resolution for training and test frames.
We pair each image Ii with the corresponding bounding box bi. We
use the target state of the training frames to encode target informa-
tion and use the bounding box of the test frame only to supervise
training by computing two losses based on the predicted bounding
boxes and the derived center location of the target in the test frame.
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We employ the target classification loss from DiMP [6] that consists
of different losses for background and foreground regions. Further,
we employ the generalized Intersection over Union loss [91] using
the ltrb bounding box representation [99] to supervise bounding box
regression

Ltot = λclsLcls(ŷ, y) + λgiouLgiou(d̂, d), (4.10)

where λcls and λgiou are scalars weighting the contribution of each
loss. Note that in contrast to FCOS [99] and related trackers [41] we
omit an additional centerness loss since it would be redundant in
addition to our classification loss that serves the same purpose. A
detailed study examining the impact of centerness is available in the
appendix.
Training Details: We train our tracker on the training splits of
the LaSOT [38], GOT10k [54], Trackingnet [85] and MS-COCO [73]
datasets. We sample 40k sub-sequences and train for 300 epochs on
two Nvidia Titan RTX GPUs. We use ADAMW [76] with a learning
rate of 0.0001 that we decay by a factor of 0.2 after 150 and 250

epochs and weight decay of 0.0001. We set λcls = 100 and λgiou = 1.
We construct a training sub-sequence by randomly sampling two
training frames and a test frame from a 200 frame window within a
video sequence. We then extract the image patches after randomly
translating and scaling the image relative to the target bounding box.
Moreover, we use random image flipping and color jittering for data
augmentation. We set the spatial resolution of the target scores to
18× 18 and set the search area scale factor to 5.0. Further training
and architecture details are provided in the appendix.

4.2.5 Online Tracking

During tracking, we use the annotated first frame, as well as pre-
viously tracked frames as our training set Strain. While we always
keep the initial frame and its annotation, we include one previously
tracked frame and replace it with the most recent frame that achieves
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a target classifier confidence higher than a threshold. Hence, the
training set Strain contains at most two frames.

We observed that incorporating previous tracking results in Strain

improves the target localization considerably. However, including
predicted bounding box estimations degrades the bounding box re-
gression performance due to inaccurate predictions, see Sec. 4.3.1.
Hence, we run the model predictor twice. First, we include intermedi-
ate predictions in Strain to obtain the classifier weights. In the second
pass, we only use the annotated initial frame to predict the bounding
box. Note that for efficiency both steps can be performed in parallel
in a single forward pass. In particular, we reshape the feature map
corresponding to two training and one test frame to a sequence and
duplicate it. Then, we stack both in the batch dimension to process
them jointly with the model predictor. To only allow attention be-
tween the initial frame with ground truth annotation and the test
frame when predicting the model for bounding box regression, we
make use of the so-called key_padding_mask that allows us to ignore
certain keys when computing attention.

4.3 experiments

We evaluate our proposed tracking architecture ToMP on seven
benchmarks. Our approach is based on PyTorch 1.7 and is developed
within the PyTracking [24] framework. PyTracking is available under
the GNU GPL 3.0 license. On a single Nvidia RTX 2080Ti GPU, ToMP-
101 and ToMP-50 achieve 19.6 and 24.8 FPS and use a ResNet-101 [50]
and ResNet-50 [50] as backbone respectively.

4.3.1 Ablation Study

We perform a comprehensive analysis of the proposed tracker. First,
we analyze the contribution of the different proposed target state
encodings and then examine the effect of different inference settings.
Finally, we report the performance achieved when replacing the target
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efg ebg etest ϕ(·) qdec = efg LaSOT NFS OTB

1 ✗ ✗ ✗ ✓ n.a. 66.0 64.8 68.2

2 ✓ ✗ ✗ ✓ ✓ 67.1 66.6 70.0

3 ✓ ✓ ✗ ✓ ✓ 67.1 66.3 69.4

4 ✓ ✗ ✓ ✓ ✓ 67.6 66.9 70.1

5 ✓ ✓ ✓ ✓ ✓ 67.4 66.0 69.5

6 ✓ ✗ ✓ ✓ ✗ 66.0 66.2 69.9

7 ✓ ✗ ✓ ✗ ✓ 63.1 64.2 64.0

Table 4.1: For efg, ebg and etest learning the embedding is denoted by
✓ whereas ✗ means setting it to zero. Using the encoding ϕ(·) is denoted
by ✓ whereas ✗ refers to omitting it. For qdec = efg the symbol ✓ means
sharing the learned embedding efg for encoding and querying the De-
coder wheres ✗ means learning two separate embeddings for both tasks.
(Our final model is in the 4

th row)..

classifier or the bounding box regressor of SuperDiMP with ours. All
ablation experiments in this part use a ResNet-50 as backbone.
Target State Encoding: In order to analyze the effect of the dif-
ferent target state encodings we train different variants of our net-
work and evaluate them on multiple datasets. The first five rows
of Tab. 4.1 correspond to versions with different target location en-
codings. All other settings are kept the same. In addition to the
foreground and test embedding, we include a learned background
embedding (instead of setting ebg = 0) to our analysis as follows:
ψ(yi, efg, ebg) = yi · efg + (1− yi) · ebg. However, Tab. 4.1 shows (4th

vs. 5
th row) that adding such a learned background embedding de-

creases the tracking performance. We further observe that setting
the foreground embedding efg = 0 (1st row) and only relying on the
target extent encoding ϕ(·) still achieves high tracking performance
but clearly lacks behind all other versions that include the foreground
embedding. We conclude that using only the foreground encoding
efg and the test encoding etest leads to the best performance (4th row).
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Number of Decoder

Decoder queries Linear Layer query qdec LaSOT NFS OTB

1 ✓ qdec = efg 67.6 66.9 70.1

2 ✗ qdec ̸= efg 63.7 62.8 67.9

Table 4.2: Analysis of different model predictor architectures and its
impact on the tracking performance in terms of success AUC.

Two Stage Previous Confidence

Model Prediction Tracking Results Threshold η LaSOT NFS OTB

✓ ✓ 0.85 67.3 66.9 70.3

✓ ✓ 0.90 67.6 66.9 70.1

✓ ✓ 0.95 67.4 66.0 69.8

Table 4.3: Analysis of different inference settings an of their impact on
the tracking performance in terms of AUC of the success curve.

In the second part of Tab. 4.1 we choose the best settings for
the target location encoding and remove either the target extent
encoding ϕ(·) or decouple the Transformer Decoder query from the
foreground embedding efg. We observe that using a separate query
(6th row) decreases the overall performance. Similarly, we notice that
incorporating target extent information via the proposed encoding is
crucial. Otherwise, the performance drops significantly (7th row).
Model Predictor: Since our model predictor estimates two different
model weights, it seems natural to use two different Transformer
queries: one to produce the target model weights and the other to
obtain the bounding box regressor weights. However, this involves
decoupling the query from the foreground embedding efg and the
experiments in Tab. 4.2 show a significant performance drop for this
case.
Inference Settings: During online tracking, we use the initial frame
and its annotation as training frames. In addition, we include the
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Two Stage Previous

Model Prediction Tracking Results LaSOT NFS OTB

n.a. ✗ 65.7 65.3 67.8

✓ ✓ 67.6 66.9 70.1

✗ ✓ 62.0 64.8 62.8

Table 4.4: Analysis of different inference settings an of their impact on
the tracking performance in terms of success AUC.

Model Bounding Box LaSOT

Predictor Regressor LaSOT NFS UAV ExtSub

DiMP [6] Prob. IoUNet [30] 63.1 64.8 67.7 43.7

ToMP Prob. IoUNet [30] 64.7 65.2 65.0 45.2

ToMP ToMP 67.6 66.9 69.0 45.4

Table 4.5: Impact of replacing DiMP [6] and the probabilistic IoUNet [30]
with ToMP for localization and box regression.

most recent frame and its target prediction if the classifier confidence
is above the threshold η = 0.9, see Tab. 4.3. Tab. 4.4 shows that
including previous tracking results leads to higher tracking perfor-
mance than using only the initial frame. Disabling the described
two stage model prediction approach and predicting the weights of
the target model and bounding box regressor at once decreases the
tracking performance drastically (-5.6 AUC on LaSOT). The reason is
the sensitivity of the bounding box predictor to inaccurate predicted
boxes that are encoded and used for training.
Transforming Model Prediction Step-by-Step: Our model predictor
can estimate model weights for the target model and bounding box
regressor. In this part, we will transform an optimization based
tracker step-by-step to assess the impact of each transformation step.
Tab. 4.5 shows that replacing the model optimizer in SuperDiMP
(1st row) with our proposed model predictor to only predict the
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ToMP ToMP STARK Keep STARK Alpha Siam Tr Super STM Pr

101 50 ST101 Track ST50 Refine TransT R-CNN DiMP DiMP SAOT Track DTT DiMP

[117] [83] [117] [118] [14] [104] [106] [24] [132] [41] [121] [30]

Precision 73.5 72.2 72.2 70.2 71.2 68.0 69.0 68.4 66.3 65.3 - 63.3 - 60.8

Norm. Prec 79.2 78.0 76.9 77.2 76.3 73.2 73.8 72.2 73.0 72.2 70.8 69.3 - 68.8

Success (AUC) 68.5 67.6 67.1 67.1 66.4 65.3 64.9 64.8 63.9 63.1 61.6 60.6 60.1 59.8

Table 4.6: Comparison on the LaSOT [38] test set ordered by AUC.

target model (2nd row) outperforms SuperDiMP on three out of four
datasets. Our tracker ToMP that jointly predicts model weights for
target localization and bounding box regression (3rd row) achieves the
best performance on all four datasets. We conclude that predicting the
weights of the target model improves the performance and likewise
predicting the weights of the bounding box regressor. Note that
we report the average over five runs for all trackers based on the
probabilistic IoUNet due to its stochasticity.

4.3.2 Comparison to the State of the Art

We compare our tracker ToMP on seven tracking benchmarks. The
same settings and parameters are used for all datasets. We recompute
the metrics of all trackers using the raw predictions if available or
otherwise report the results given in the respective paper.
LaSOT [38]: First, we compare ToMP on the large-scale LaSOT
dataset (280 test sequences with 2500 frames on average). The success
plot in Fig. 4.5a shows the overlap precision OPT as a function of
the threshold T. Trackers are ranked w. r. t. their AUC score, shown
in the legend. Tab. 4.6 shows more results including precision and
normalized precision for each tracker. Both versions of ToMP with
different backbones outperform the recent trackers STARK [117],
TransT [14], TrDiMP [106] and DTT [121] in AUC and sets a new state-
of-the-art result. Note that even ToMP with ResNet-50 outperforms
STARK-ST101 with ResNet-101 (67.6 vs 67.1). Fig. 4.4 shows the
success AUC gain of ToMP compared to recent Transformer based
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Figure 4.4: Per attribute analysis on LaSOT [38] between ToMP and
recent Transformer based trackers. The bar heights correspond to the
gain of our tracker and the legend shows the average gain.

trackers for different attributes annotated in LaSOT [38]. We want
to highlight that ToMP outperforms TransT [14] and TrDiMP [106]
on each attribute by more than one percent point. Similarly, ToMP
achieves higher performance than STARK-ST101 for every attribute. It
achieves the highest gain over STARK for Background Clutter, showing
the disadvantage of using small templates instead of training frames
with a large field of view that allow not only to leverage target, but
also background information.
LaSOTExtSub [37]: This dataset is an extension of LaSOT. It only
contains test sequences assigned to 15 new classes with 10 videos
each. The sequences contain 2500 frames on average showing chal-
lenging tracking scenarios of small, fast moving objects with dis-
tractors present. Fig. 4.5b shows the success plot where the results
of most trackers are obtained from [37], e. g., DaSiamRPN [133],
SiamRPN++ [67], ATOM [23], DiMP [6] and LTMU [22]. ToMP ex-
ceeds the performance of all trackers except KeepTrack [83] that
employs explicit distractor matching between frames. In particular,
we outperform SuperDiMP [24] that uses a model optimizer (+2.2%).
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Figure 4.5: Success plots, showing OPT , on LaSOT [38] and LaSO-
TExtSub [37] and AUC is reported in the legend.
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ToMP ToMP STARK STARK Siam Alpha STM Tr Keep Super Pr Siam

101 50 ST101 TransT ST50 R-CNN Refine Track DTT DiMP Track DiMP DiMP FC++

[117] [14] [117] [104] [118] [41] [121] [106] [83] [24] [30] [115]

Precision 78.9 78.6 - 80.3 - 80.0 78.3 76.7 78.9 73.1 73.8 73.3 70.4 70.5

Norm. Prec 86.4 86.2 86.9 86.7 86.1 85.4 85.6 85.1 85.0 83.3 83.5 83.5 81.6 80.0

Success (AUC) 81.5 81.2 82.0 81.4 81.3 81.2 80.5 80.3 79.6 78.4 78.1 78.1 75.8 75.4

Table 4.7: Comparison on the TrackingNet [85] test set.

ToMP ToMP Keep STARK STARK Super Pr STM Siam Siam

101 50 Track CRACT ST101 TrDiMP TransT ST50 DiMP DiMP Track AttN R-CNN KYS DiMP

[83] [39] [117] [106] [14] [117] [24] [30] [41] [124] [104] [7] [6]

UAV123 66.9 69.0 69.7 66.4 68.2 67.5 69.1 69.1 67.7 68.0 64.7 65.0 64.9 – 65.3

OTB-100 70.1 70.1 70.9 72.6 68.1 71.1 69.4 68.5 70.1 69.6 71.9 71.2 70.1 69.5 68.4

NFS 66.7 66.9 66.4 62.5 66.2 66.2 65.7 65.2 64.8 63.5 – – 63.9 63.5 62.0

Table 4.8: Comparison with the state of the art on the OTB-100 [109],
NFS [42] and UAV123 [84] datasets in terms of AUC score.

TrackingNet [85]: We evaluate ToMP on the large-scale TrackingNet
dataset that contains 511 test sequences without publicly available
ground-truth. An online evaluation server is used to obtain the
tracking metrics shown in Tab. 4.7 by submitting the raw tracking
results. Both versions of ToMP achieve competitive results close to
the current state of the art. In particular, ToMP-101 achieves the
second best performance in terms of AUC behind STARK [117],
outperforming other Transformer based trackers such as TransT [14]
and TrDiMP [106].
UAV123 [84]: The UAV dataset consists of 123 test videos that contain
small objects, target occlusion, and distractors. Tab. 4.8 shows the
achieved results in terms of success AUC. Again, ToMP achieves
competitive results compared to the current state of the art achieved
by KeepTrack [83].
OTB-100 [109]: We also report results on the OTB-100 dataset that
contains 100 short sequences. Multiple trackers achieve results above
70% AUC. Among them are both versions of ToMP, see Tab. 4.8.
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ToMP ToMP STARK Super STARK

101 50 ST50 DiMP ST101 DPMT TRAT UPDT DiMP ATOM

[117] [24, 61] [117] [61] [61] [8, 61] [6, 61] [23, 61]

Accuracy 0.453 0.453 0.478. 0.477 0.481 0.492 0.464 0.465 0.457 0.462

Robustness 0.814 0.789 0.799 0.728 0.775 0.745 0.744 0.755 0.734 0.734

EAO 0.309 0.297 0.308 0.305 0.303 0.303 0.280 0.278 0.274 0.271

Table 4.9: Comparison to the state of the art of bounding box only
methods on VOT2020ST [61] in terms of EAO score.

ToMP achieve the same performance as SuperDiMP [24] but slightly
higher results than TransT [14] and slightly lower than TrDiMP [106].
NFS [42]: We compete on the NFS dataset (30FPS version) containing
100 test videos. It contains fast motions and challenging sequences
with distractors. Both versions of ToMP exceed the performance of
the current best method KeepTrack [83] by +0.5% and +0.3%, see
Tab. 4.8.
VOT2020 [61]: Finally, we evaluate on the 2020 edition of the Vi-
sual Object Tracking short-term challenge. We compare with the top
methods in the challenge [61], as well as more recent methods. The
dataset contains 60 videos annotated with segmentation masks. Since
ToMP produces bounding boxes we only compare with trackers that
produce the bounding boxes as well. The trackers are evaluated fol-
lowing the multi-start protocol and are ranked according to the EAO
metric that is based on tracking accuracy and robustness, defined
using IoU overlap and failure rate respectively. The results in Tab. 4.9
show that ToMP-101 achieves the best overall performance, with the
highest robustness and competitive accuracy compared to previous
methods.

4.3.3 VOT2020 with AlphaRefine

In contrast to previous years where the sequences in the VOT short-
term challenge were annotated with bounding boxes [60, 63] the
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ToMP ToMP STARK STARK Ocean Alpha Fast

101+AR 50 +AR RPT ST50+AR ST101+AR Plus Refine AFOD LWTL Ocean

[61, 81] [117] [117] [15, 61] [61, 118] [61] [9, 61] [61]

EAO 0.497 0.496 0.530 0.505 0.497 0.491 0.482 0.472 0.463 0.461

Accuracy 0.750 0.754 0.700 0.759 0.763 0.685 0.754 0.713 0.719 0.693

Robustness 0.798 0.793 0.869 0.817 0.789 0.842 0.777 0.795 0.798 0.803

Table 4.10: Comparison to the state of the art of segmentation only
methods on VOT2020ST [61] in terms of EAO score.

sequences of the more recent challenges contain segmentation mask
annotations [61] of the target in each frame. Above we compared our
method with methods that produce bounding boxes. Thus, in addi-
tion, we compare our method on the VOT2020 short-term challenge
to methods that produce a segmentation mask in each frame. Since
our method produces only a bounding box, we use AlphaRefine [118]
that is able to produce a segmentation mask given the bounding box.
Tab. 4.10 shows that our method achieves competitive results. In par-
ticular ToMP-101 achieves the same EAO (for more details on EAO
we refer the reader to [61]) as STARK-ST101+AR [117] that employs
AlphaRefine too. Nonetheless, RPT [81] achieves higher EAO than
our tracker. In particular it scores a higher robustness but a lower
accuracy than our trackers.

4.4 conclusion

We propose a novel tracking architecture employing a Transformer-
based model predictor. The model predictor estimates the weights of
the compact DCF target model to localize the target in the test frame.
In addition, the predictor produces a second set of weights used for
precise bounding box regression. To achieve this, we develop two
new modules that encode target location and its bounding box in the
training features. We conduct comprehensive experimental validation
and analysis of ToMP on several challenging datasets, and set a new
state of the art on three.
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4.5 appendices

In the appendix, we first provide details about training, model archi-
tecture and inference in Sec. 4.5.A. Further, we report visual results
such as a comparison to state-of-the-art trackers, a comparison of dif-
ferent model predictors and failure cases of our tracker in Sec. 4.5.B.
Finally, we provide an attribute-wise comparison in Sec. 4.5.C.

4.5.a Training, Architecture and Inference

First, we provide additional details about the training followed by
a detailed description of the architectures employed and finally we
provide further inference details.

4.5.a.1 Training and Architecture Details

For training we produce the target states y by using a Gaussian
with standard deviation 1/4 relative to the base target size and by
setting τ = 0.05 to differentiate between foreground and background
regions in the corresponding classification loss lcls adopted from
DiMP [6]. For the model predictor we extract features with a stride
of 16 from the third block of the ResNet that we use as backbone.
We initialize the backbone with the official weights obtained by
training the backbone on ImageNet [33] and freeze the batch norm
statistics during training. Since we use a channel dimension of 256

for the Transformer and the ResNet features have 1024 channels
we employ an single convolutional layer to decrease the number of
channels before feeding the features into the Transformer Encoder.
The Transformer Encoder consists of layers containing multi-headed
self attention and a feed-forward network. We use eight heads and a
hidden dimension of 2048 for the feed-forward network. Furthermore,
we use Dropout with probability 0.1 and layer normalization. The
Transformer settings are adopted from DETR [12]. The predicted
target model weights for classification and bounding box regression
consist of a single 1× 1 filter with 256 channels. The bounding box
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training frames NFS OTB UAV LaSOT LaSOTExtSub Speed [FPS]

1 initial 65.3 67.8 68.7 65.7 43.7 26.2

1 initial + 1 recent 66.9 70.1 69.0 67.6 45.4 24.8

2 initial + 1 recent 67.6 70.5 67.2 68.0 45.4 20.5

1 initial + 2 recent 66.7 70.8 69.4 67.6 44.4 21.8

1 initial + 3 recent 66.8 70.5 69.2 67.6 44.2 17.6

1 initial + 4 recent 67.2 70.1 68.2 67.3 44.7 13.2

1 initial + 5 recent 66.8 70.1 69.1 67.2 43.9 11.3

Table 4.11: Comparison of different number of training samples in success
AUC.

regression CNN consists of four convolution-instance-normalization-
ReLU layers and a final convolution layer, followed by an exponential
activation. The MLP for target extent encoding ϕ consists of three
layers (4 → 64 → 256 → 256) where each layer consists of a linear
projection, batch normalization and ReLU activation except the last
that only consist of a linear projection. The region-encoding tokens
efg and etest are 256 dimensional learnable embeddings.

4.5.a.2 Inference Details

In order to decide whether a previous tracking result should be used
for training of not we use the maximal value of the target score
map produced by the target model as discussed in the main paper.
Furthermore, we follow SuperDiMP [24] and enter in the target not
found state if the maximal value of the target score map is bellow 0.25.
Moreover, we use the same spatial resolution of the target scores of
18 × 18 and the same search area scale factor of 5.0 during inference
and training.

Furthermore, we study the effect of using more than two training
frames stored in the sample memory. Instead of using only one initial
and one recent training frame to predict the network weights we test
the impact of increasing the number of recent training frames and
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Centerness Scores Classification ScoresVideo Frame

Figure 4.6: Visual Comparison between centerness and classification
scores.

Lcenterness NFS OTB UAV LaSOT LaSOTExtSub

Classification ✗ 66.9 70.1 69.0 67.6 45.4

Classification ✓ 65.8 69.2 67.3 67.9 45.5

Centerness ✓ 62.7 66.3 67.4 64.4 41.3

Classification · Centerness ✓ 63.7 67.8 68.7 65.8 45.3

Table 4.12: Impact of centerness scores on training and inference.

of using multiple initial training frames. We increase the number of
initial training frames with ground truth bounding box annotations
using an augmentation (vertical flipping and random translation).
Tab. 4.11 shows the results for different combinations of multiple
initial and recent training frames. Note, that we use the same network
weights for all experiments trained with one initial and one recent
recent frame in all cases. We observer that using more training
frames can improve the tracking performance but decreases the
run-time. Furthermore, we observe that the tracker greatly benefits
from including at least one recent frame for training.
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4.5.a.3 Centerness

Our proposed bounding box regression component is inspired by
FCOS [99] but in contrast to FCOS we omit an auxiliary centerness
branch. The classification head of FCOS is trained to predict a high
score for almost every region inside the bounding box. The centerness
branch is therefore needed to identify the center location of the object,
used to select the bounding box offsets. In contrast, our classification
branch is directly trained to accurately locate the object’s center. The
additional centerness branch is therefore redundant. Nonetheless,
we train our best model with a centerness head and Lcenterness and
report the results in Tab. 4.12 (2nd-4th rows). The 1

st row shows
the performance when omitting centerness for training. We achieve
comparable results when using the model trained with centerness
but applying only the classification scores to localize the target (2nd

row). Using only the centerness scores decreases the performance
(3rd row) because centerness often fails to identify the target among
distractors (see Fig. 4.6). Finally, we follow FCOS and multiply the
classification and centerness scores point-wise to retrieve the target
object (4th row). We conclude that omitting the centerness branch for
training and during inference to localize the target achieves the best
tracking performance.

4.5.b Visual Results

In this part we provide visual results of our tracker. First, we show
three frames of different sequences where our tracker outperforms
the state of the art. Secondly, we compare the produced target score
map of our tracker with score maps obtained by optimization based
model prediction. Finally, we show some failure cases of our tracker.

4.5.b.1 Visual Comparison to the State of the Art

Fig. 4.7 shows three frames of eight different LaSOT [38] sequences
where each frame contains the ground truth annotation of the target
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Figure 4.7: Visual comparison of different trackers (ToMP-101, Su-
perDiMP [24] and STARK-ST101 [117]) on different LaSOT [38] sequences.
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object and the predictions of three different trackers: SuperDiMP [24],
STARK-ST101 [117] and ToMP-101. We observe that our tracker
produces in most sequences more robust and in some more accurate
bounding box predictions than the related methods. In particular it
achieves solid robustness for scenarios where distractors are present
but the target object is at least partially visible and not undergoing a
full occlusion.

4.5.b.2 Target Model Prediction

Fig. 4.8 shows the target score maps produced by the target model
when using two different model predictors for three different se-
quences. In detail we compare the target score map produced by
SuperDiMP [24] that adopts the DiMP [6] model predictor with op-
timized settings. In particular it uses a slightly smaller search area
factor of 6 instead of 5 and a target score resolution of 22 instead
of 18. Note, that our tracker uses 5 and 18 similar to DiMP [6] as
stated Sec. 4.5.A.2. We observe that our model predictor leads to
much cleaner and unambiguous target localization than DiMP. While
the former often produces multiple local maxima for distractors,
our methods is able to almost fully suppress these. An important
design choice that enables this is the transductive model weight and
test feature prediction produced by our Transformer based model
predictor. However, the cleaner score maps come with the risk, that
once the target is lost and a distractor is tracked instead recover-
ing is less likely since our tracker effectively suppresses distractors.
Similarly, our method learns to produce a score map containing a
Gaussian such that overall the maximum score values are higher than
by SuperDiMP. Thus, we chose a relatively high threshold to decide
whether to use a previous prediction as training sample or not.

4.5.b.3 Failure Cases

Fig. 4.9 shows failure cases of our tracker. In particular, it shows three
frames of four different LaSOT [38] sequences containing the ground
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Figure 4.8: Visual comparison of the target score maps resulting from
different model predictors.

truth annotations and the predicted bounding boxes of our tracker
using a ResNet-101 [50] as backbone. To summarize, our tracker
typically fails if object similar to the targets so called distractors are
present. While the sole presence of distractors typically does not
lead to tracking failure, our tracker shows difficulties in sequences
where the target is occluded and distractors are present (1st and
3

rd row). Instead of detecting that the target is occluded the tracker
starts to track a distractor instead. Another challenging scenario are
sequences where the target and a distractor approach each other
(2nd row in Fig. 4.9) or one occludes the other (4th row in Fig. 4.9).
The model then detects only a single object instead of two in both
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Figure 4.9: Visualization of failure cases of our tracker.
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scenarios. Once they diverge again and the tracker detects two objects
it typically fails to reliably differentiate between the target and the
distractor.

4.5.c Attributes

To support the attribute based analysis in the main paper, where we
compared the performance of our tracker with other Transformer
based trackers, we provide the detailed analysis for multiple trackers
and ToMP in Tab. 4.13. ToMP-101 achieves the best performance on
all but three. It achieves the second best results for Motion Blur behind
KeepTrack [83] and similar to AlphaRefine [118]. Further ToMP-101

achieves the third best for Full Occlusion behind KeepTrack [83] and
ToMP-50. Similarly it scores third for Illumination Variation behind
KeepTrack [83] and AlphaRefine [118]. We further observe, that
discriminative model prediction based methods such as TrDiMP [106],
SuperDiMP [24], AlphaRefine [118], KeepTrack [83] and ToMP all
outperform STARK [117] on the attribute Background Clutter showing
the advantage of using full training samples during tracking instead
of cropped templates that mainly cover the centered target.
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Illumination Partial Motion Camera Background

Variation Occlusion Deformation Blur Motion Rotation Clutter Total

LTMU 56.5 54.0 57.2 55.8 61.6 55.1 49.9 57.2

PrDiMP50 63.7 56.9 60.8 57.9 64.2 58.1 54.3 59.8

STMTrack 65.2 57.1 64.0 55.3 63.3 60.1 54.1 60.6

SuperDiMP 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.1

TrDiMP 67.5 61.1 64.4 62.4 68.1 62.4 58.9 63.9

Siam R-CNN 64.6 62.2 65.2 63.1 68.2 64.1 54.2 64.8

TransT 65.2 62.0 67.0 63.0 67.2 64.3 57.9 64.9

AlphaRefine 69.4 62.3 66.3 65.2 70.0 63.9 58.8 65.3

STARK-ST50 66.8 64.3 66.9 62.9 69.0 66.1 57.3 66.4

STARK-ST101 67.5 65.1 68.3 64.5 69.5 66.6 57.4 67.1

KeepTrack 69.7 64.1 67.0 66.7 71.0 65.3 61.2 67.1

ToMP-50 66.8 64.9 68.5 64.6 70.2 67.3 59.1 67.6

ToMP-101 69.0 65.3 69.4 65.2 71.7 67.8 61.5 68.5

Viewpoint Scale Full Fast Low Aspect

Change Variation Occlusion Motion Out-of-View Resolution Ration Change Total

LTMU 56.7 57.1 49.9 44.0 52.7 51.4 55.1 57.2

PrDiMP50 59.2 59.4 51.3 48.4 55.3 53.5 58.6 59.8

STMTrack 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6

SuperDiMP 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1

TrDiMP 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9

Siam R-CNN 65.3 64.5 55.3 51.5 62.2 57.1 63.4 64.8

TransT 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9

AlphaRefine 63.1 65.4 57.4 53.6 61.1 58.6 64.1 65.3

STARK-ST50 67.8 66.1 58.7 53.8 62.1 59.4 64.9 66.4

STARK-ST101 68.8 66.8 58.9 54.2 63.3 59.6 65.6 67.1

KeepTrack 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1

ToMP-50 67.2 67.5 59.3 56.1 63.7 61.1 66.5 67.6

ToMP-101 69.2 68.4 59.1 57.9 64.1 62.5 67.2 68.5

Table 4.13: LaSOT [38] attribute-based analysis. Each column corresponds
to the results computed on all sequences in the dataset with the corre-
sponding attribute.





5
AV I S T: A B E N C H M A R K F O R V I S UA L O B J E C T
T R A C K I N G I N A D V E R S E V I S I B I L I T Y

In the previous two chapters, we introduced two new methods that
address the problem of visual object tracking in adverse tracking
scenarios where the target is occluded, goes out-of-view or where
similar objects as the target are present. Beside these scenarios that
complicate robust tracking other factors such as adverse visibility can
greatly impact the tracking quality. Thus, we introduce in this chapter
the new visual tracking benchmark AVisT dedicated for tracking
scenarios with adverse visibility. AVisT comprises 120 challenging
sequences, spanning 18 diverse scenarios broadly grouped into five
attributes with 42 object categories. The key contribution of AVisT are
diverse and challenging scenarios covering sever weather conditions
such as, dense fog, heavy rain and sandstorm; obstruction effects
including, fire, sun glare and splashing water; adverse imaging effects
such as, low-light; target effects including, small targets and distractor
objects along with camouflage. Our dataset along with the complete
tracking performance evaluation is available at https://github.com/
visionml/pytracking.

5.1 introduction

Visual object tracking is one of the fundamental problems in com-
puter vision, where the objective is to estimate the target state and
trajectory in an image sequence, provided only its initial location.
The target object is not known a priori and is not constrained to
be from a specific object class. Therefore, the main challenge is to
accurately learn the appearance of the target object in unconstrained
real-world scenarios.
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https://github.com/visionml/pytracking
https://github.com/visionml/pytracking


82 a benchmark for object tracking in adverse visibility

OTB-100 UAV123 GOT-10k TrackingNet LaSOT AVisT

Datasets [109] [84] [54] [85] [38]

Best Tracker TrDiMP MixF-22k MixF-1k MixFL-22k MixFL-22k MixFL-22k

Performance 71.1 70.4 71.2 83.9 70.1 56.0

Table 5.1: Tracking performance (AUC score) achieved by the top-
performing trackers on existing datasets and AVisT. MixF-1k refers to
MixFormer-1k, MixF-22k refers to MixFormer-22k and MixFL-22k to
MixFormerLarge-22k Compared to existing datasets such as, LaSOT and
TrackingNet, the performance achieved on AVisT is significantly lower
highlighting the challenging nature of the proposed dataset.

Recent years have witnessed a significant progress in the field of
visual tracking with a plethora of trackers introduced in the literature.
One of the major contributing factors towards these recent advances
in tracking is the introduction of several benchmarks [38, 42, 54, 85,
109]. OTB [109] was one of the first large-scale datasets, contain-
ing 100 videos. Afterwards, tracking benchmarks are introduced to
evaluate different aspects of tracking such as, the impact of color
information [70], fast target motion [42] as well as tracking in aerial
imagery [84]. More recently, the tracking community has focused on
constructing datasets [38, 54, 85] with large-scale training splits, to
benefit from task-specific deep learning. Among these, GOT-10K [54]
comprises a large collection of shorter videos, whereas LaSOT [38]
focuses on longer sequences. Moreover, there exist dedicated bench-
marks, such as the VOT series [62] associated with annual tracking
challenge competitions.

While all of these datasets have greatly benefited the tracking
research, they no longer pose the same difficulty as before to the
current state-of-the-art trackers, due to the rapid progress in the
field. Most notably, the state-of-the-art trackers now achieve AUC
scores of above 70% also on LaSOT (see Tab. 5.1), which is one of
the most difficult established datasets. On the other hand, since the
introduction of OTB in 2013 [110], the existence of highly difficult
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Figure 5.1: AVisT comprises challenging diverse tracking scenarios with
adverse visibility. The diverse scenarios cover adverse weather conditions,
including dense fog, heavy rain and sandstorm; obstruction effects such
as, fire and sun glare; illumination effects; target effects, including dis-
tractor objects and small targets; along with camouflage. Here, we show
individual frames of some representative sequences and visualize with
different colors the ground truth annotations and the predicted bounding
boxes of four different trackers. The trackers belong to different tracking
paradigms: KeepTrack [83] (Discriminative Classifier), SiamRPN++ [67]
(Siamese), STARK-ST-101 [117] and MixFormerL-22k [18] (Transformer).
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tracking benchmarks has been vital, in order to challenge researchers
to designing ever more robust and accurate trackers, applicable for
increasingly diverse scenarios. In this work, we therefore set out
to develop a new, highly challenging dataset, in order to promote
further progress in the visual tracking field.

We believe that one of the main reasons that the aforementioned
datasets do not pose sufficient challenge to new trackers is that
diverse scenarios such as, adverse visibility due to weather conditions,
camouflage and illumination effects are underrepresented. In practice,
robust handling of adverse visibility is essential in many applications.
For instance, autonomous driving applications require the target to
be tracked under all weather conditions, such as heavy rain, dense
fog, and sandstorms. Similarly, rescue missions involving drones
require robust and accurate object tracking in adverse scenarios, such
as fire, smoke, and strong winds. Further, wildlife conservation often
relies on monitoring different animal populations in their natural
habitats, where many animal species are difficult to distinguish from
the surrounding environments due to their camouflaged appearance.
Contributions: We propose AVisT, a benchmark for visual object
tracking in diverse scenarios with adverse visibility. AVisT better
accommodates the difficult conditions encountered in the aforemen-
tioned real-world applications, while being severely challenging even
for the most recent trackers (see Tab. 5.1). Our dataset comprises
120 challenging sequences, spanning 18 diverse scenarios and 42

object categories. The scenarios cover adverse weather conditions,
including heavy rain, dense fog, and hurricane; obstruction effects
such as, splashing water, fire, sun glare, and smoke; adverse imaging
effects; target effects such as, fast motion and small target; along with
camouflage. The proposed AVisT is densely annotated with accurate
bounding boxes following a thorough quality control. Moreover, ev-
ery frame is annotated with flags for occlusion, partial occlusion, out
of view, and extreme visibility.

We evaluate 17 popular trackers on AVisT, including the most
recent state-of-the-art methods. The best method, MixFormer-22k [18]
which employs an ImageNet-22K pre-trained backbone achieves an
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AUC score of only 56.0%, demonstrating the challenging nature
of AVisT. We further analyze the performance of different trackers
across attributes, which can provide valuable insights for specific
applications. For instance, we note that ImageNet-22K pre-training
is important for improved performance on the weather conditions
attribute. Fig. 5.1 shows a qualitative comparison of recent trackers
belonging to different tracking paradigms: discriminative classifiers,
Siamese networks and Transformers.

5.2 the avist benchmark

5.2.1 Scenarios and Attributes

Our AVisT offers a dedicated dataset that covers a variety of adverse
scenarios highly relevant to real-world applications. Importantly,
AVisT poses additional challenges to the tracker design due to ad-
verse visibility. To this end, our AVisT covers a wide range of 18 di-
verse scenarios: rain, fog, hurricane, fire, sun glare, low-light, archival
videos, fast motion, distractor objects, occlusion, snow, sandstorm,
tornado, smoke, splashing water, camouflage, small objects and de-
formation. These diverse scenarios are broadly categorized into five
attributes: weather conditions, obstruction effects, imaging effects, target
effects and camouflage. A short description of each scenario and their
partitioning into attributes are presented in Tab. 5.2. The frequency of
each scenario and attribute is visualized in Fig. 5.2. Next, we describe
the included attributes.
Weather Conditions: While most existing benchmarks, such as La-
SOT comprises sequences acquired under normal weather conditions,
the tracking problem becomes more challenging in adverse weather
scenarios, which often lead to bad visibility. In our dataset, the di-
verse adverse scenarios caused by weather conditions are: rain, fog,
hurricane, snow, sandstorm and tornado. Accurately capturing the
target appearance information in such extreme scenarios (see Fig. 5.3)
is crucial and poses additional challenges to the tracking model.
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Attribute Scenario Description

Weather
Conditions

Rain Heavy rain that compromises the visibility of the target.

Snow Heavy snowfall or snow conditions, affecting target visibility.

Fog Dense fog that severely affects target visibility.

Sandstorm Dense sand and dust in the air, severely impairing target visibility.

Hurricane Severe winds accompanied by rain and lightning.

Tornado Presence of a tornado, hampering target visibility.

Obstruction
Effects

Occlusion The target is occluded by another object or background structures.

Splashing water Splashing water in front of or on the target.

Fire Fire obstructing the target as well as causing lighting variation.

Smoke Dense smoke obstructing the view of the target.

Sun glare Sun glare effects that reduces the visibility of the target.

Imaging
Effects

Low-light Poor scene lighting conditions.

Archival Monochrome archival videos of poor quality.

Target
Effects

Fast motion The target motion is greater than the target size.

Small target In at least one frame, the target box is smaller than 500 pixels.

Distractor objects Presence of several objects that are visually similar to the target.

Deformation The target undergoes shape changes during tracking.

Camouflage Camouflage The target appearance is very similar to the surrounding background.

Table 5.2: A brief description of 18 different adverse scenarios, grouped
into five broader attributes (weather conditions, obstruction effects, imag-
ing effects, target effects and camouflage), in the proposed AVisT dataset.

Obstruction Effects: Apart from difficult weather conditions, there
are several real-world obstructions that pose additional challenges to
the tracker. These obstructions can be caused by occlusion as well as
natural phenomenon such as, fire, smoke, sun glare and splashing
water. Our dataset covers all these diverse settings of obstructions
(see Fig. 5.3).
Imaging Effects: Challenging imaging conditions such as, low-light,
night-time and archival monochrome videos causes losing the natu-
ral color of the target, and thereby pose difficulties to the tracking
model. Our AVisT dataset comprises a set of challenging sequences
covering these imaging effects (see Fig. 5.3).
Target Effects: In addition to the aforementioned adverse scene sce-
narios, there are several target-related challenges in the real-world.
The proposed AVisT dataset includes various target effects such as,
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Figure 5.2: Distribution of image sequences with respect to scenarios and
attributes in the proposed AVisT benchmark.

fast motion, small objects, deformations, and distractor objects (see
Fig. 5.3).
Camouflage: Camouflage aims to conceal the object by making it
blend into the background appearance. Most animal species utilize
camouflage to various degrees, with some even changing their cam-
ouflage with the seasons. This cryptic coloration makes the target
hard to distinguish from the surroundings. Compared to most exist-
ing tracking benchmarks, our dataset comprises a dedicated set of
camouflage sequences that pose difficulties to state-of-the-art trackers
(see Fig. 5.3).

5.2.2 Data Collection

As discussed earlier, AVisT aims to provide a benchmark for evalu-
ating visual trackers under diverse scenarios with adverse visibility,
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such as severe weather conditions, image, obstruction and target
effects as well as camouflage. In addition, AVisT strives to achieve
diversity with respect to target object classes (42 object categories
in our dataset). With this objective, we first collect a large pool of
around 400 videos from Youtube covering the 18 diverse scenarios
with adverse visibility. We filter out unrelated contents in each video
and retain the relevant clip for tracking. We then annotate the target
object in the first frame of each trimmed video. Next, we qualita-
tively analyze two recent representative trackers, KeepTrack [83]
and STARK [117], on these image sequences. We select a set of 120

sequences which are highly challenging for both these recent repre-
sentative trackers. We note that other trackers such as, ToMP [82],
and MixFormer-1k [18], which perform similar to KeepTrack and
STARK on LaSOT [38], also perform similarly on our AVisT dataset.
Therefore, the 120 videos we select are generally challenging and not
specific to these two representative trackers. Among the initially large
pool of around 400 videos, some of the camouflage sequences are
overlapping with the MoCA dataset [66]. However, we re-annotate
those camouflage sequences since the MoCA dataset was originally
proposed for camouflage object detection and hence does not provide
dense frame-level annotations required for visual object tracking.

To summarize, our AVisT dataset comprises 120 challenging videos
from YouTube under the Creative Commons licence. All these 120

videos belong to at least one of the diverse scenarios, with a total of
80k annotated video frames. The frame-rates of these videos ranges
from 24 to 30 Frames per Second (FPS) and the average sequence
length is 664 frames (i.e., 22.2 seconds with 30 FPS). The shortest
sequence in our dataset has 99 frames (3.3 seconds with 30 FPS),
while the longest one has 3113 frames (103.7 seconds with 30 FPS).

5.2.3 Dataset Annotation

After data collection, the next step is to obtain high-quality anno-
tations for all the sequences to ensure an accurate benchmarking
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Figure 5.3: Video frames corresponding to different attributes namely
Rain, Snow, Fog, Sandstorm, Hurricane, Tornado, Fire, Smoke, Sun glare,
Splashing water, Occlusion, Low-light, Archival video, Fast motion, Small
target, Distractor objects, Deformation, Camouflage.
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Figure 5.4: Example frames from diverse scenarios highlighting the
complexity of the annotation process. In case of severe visibility, we
employ image enhancement techniques to better distinguish the target
aiding in improved annotations. Here, the example frames of different
scenarios show that fine-tuned annotations (green color) better fit the
target object region, compared to the initial annotations (red color).

of visual trackers. To obtain consistent annotations, we standardize
a protocol that ensures high-quality annotations for the proposed
AVisT dataset. During the annotation process, a video is processed
by two teams, where the labeling team, comprising typically three
members, manually draws the target object’s bounding box as the
tightest axis-aligned rectangle that fits the target in each frame of a
video that has a specified tracking target. Afterwards, the validation
team reviews the annotation results with either unanimously agree-
ing on the annotation results or returning it back to the labeling team
for revising the annotation.
Quality Control: In case of diverse scenarios where the target object
suffers from extreme visibility issues (e. g., dense fog and low-light),
the annotation process becomes further challenging. Therefore, we
employ standard image enhancement techniques, including contrast
limited adaptive histogram equalization, histogram equalization,
gamma correction, brightness and contrast adjustment, and white
balance, to distinguish the boundary of the target and improve the
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annotation quality (see Fig. 5.4 for fog and low-light examples).
Furthermore, we also utilize the relative displacement of the target
between consecutive frames to estimate its boundaries. As discussed
earlier, we also improve the annotation quality by making separate
teams for the process of labeling and validation. The labeling team
manually annotates and cross checks the annotated video samples.
Afterwards, the validation team verifies the quality of the annotated
videos and points out any possible mistakes in the annotations which
are then corrected by the respective team members. The annotation
teams meticulously examine the annotations and often revise them
in order to enhance the quality of the annotation. In the initial phase
of validation, around 24% of the original annotations were corrected.
Additionally, several frames underwent more than three revisions.
Fig. 5.4 presents example frames where the initial annotations are
fine-tuned, leading to improved annotation quality.

Our AVisT benchmark comprises different flags, where a frame
can be labeled with full occlusion, partial occlusion, out-of-view and
extreme visibility. A full occlusion flag is set when the target object is
fully occluded by another object, such that the original pixel values
are hard to be recovered. The partial occlusion flag implies that the
target object is partially visible. In such a case, we annotate only the
visible part of the target in the frame. The out-of-view flag refers to
the case where the target object is not in the camera field-of-view.
Here, we set a dedicated flag indicating that the target object is out-
of-view in the frame. The extreme visibility flag refers to the cases of
dense fog and extreme low-light where the target is suffering from
severe visibility issues and is hard to identify for human eyes. We
observe that image enhancement techniques helps in improving the
annotation process in such cases.
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5.3 experiments

5.3.1 Evaluated Trackers

The field of generic tracking has greatly progressed in recent years
with the development of various approaches. Siamese trackers em-
ploy a deep network to extract a target template that is matched with
the features of the current video frame in order to localize the target
therein. In contrast, trackers based on a discriminative classifier learn
the weights of a convolutional kernel that allows to differentiate be-
tween the target object (foreground) and background regions in the
current video frame. More recently, Transformer-based trackers have
emerged that use self and cross attention layers to combine template
and search frame information to extract discriminative features to lo-
calize the target. To analyse our AVisT, we evaluate high-performance
and popular trackers that we briefly summarize bellow.
Siamese:: SiamRPN++ [67] employs a region proposal network to de-
tect the target and to produce accurate bounding boxes. SiamMask [107]
proposes an auxiliary binary segmentation loss and produces a seg-
mentation mask and a bounding box for the target. SiamBAN [16]
employs a box adaptive network that fuses multi-scale features to
robustly localize targets of various scales. Ocean [128] employs an
object aware anchor free network for target classification and bound-
ing box regression.
Discriminative Classifiers:: Atom [23] uses an online trained two-
layer fully convolutional neural network for target classification and
employs a target estimation branch based on overlap maximiza-
tion. DiMP [6] adopts the target estimation component of Atom but
proposes an end-to-end learnable optimization-based model predic-
tor that produces discriminative filter weights to localize the target.
PrDiMP [30] and SuperDiMP [24] employ a probabilistic regression
formulation. KeepTrack [83] uses SuperDiMP as a base tracker and
employs a target candidate association network on top to reliably
identify the target among distractor objects. Similarly, KYS [7] em-
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Online Success

Framework Name Backbone Update Venue (AUC) OP50 OP75

Siamese

SiamMask [107] ResNet-50 ✗ CVPR 2019 35.75 40.06 18.45

SiamRPN++ [67] ResNet-50 ✗ CVPR 2019 39.01 43.48 21.18

SiamBAN [16] ResNet-50 ✗ CVPR 2020 37.58 43.22 21.73

Ocean [128] ResNet-50 ✓ ECCV 2020 38.89 43.60 20.47

Discriminative
Classifier

Atom [23] ResNet-18 ✓ CVPR 2019 38.61 41.51 22.17

DiMP-18 [6] ResNet-18 ✓ ICCV 2019 40.55 44.07 23.67

DiMP-50 [6] ResNet-50 ✓ ICCV 2019 41.91 45.67 25.95

PrDiMP-18 [30] ResNet-18 ✓ CVPR 2020 41.65 45.80 27.20

PrDiMP-50 [30] ResNet-50 ✓ CVPR 2020 43.25 48.02 28.70

Super DiMP [24] ResNet-50 ✓ CVPR 2020 48.39 54.61 33.99

KYS [7] ResNet-50 ✓ ECCV 2020 42.53 46.67 26.83

KeepTrack [83] ResNet-50 ✓ ICCV 2021 49.44 56.25 37.75

AlphaRefine [118] ResNet-50 ✓ CVPR 2021 49.63 55.65 38.17

RTS [89] ResNet-50 ✓ ECCV 2022 50.81 55.69 38.89

Transformer

TrSiam [106] ResNet-50 ✓ CVPR 2021 47.82 54.84 33.04

TrDiMP [106] ResNet-50 ✓ CVPR 2021 48.14 55.26 33.77

TransT [14] ResNet-50 ✗ CVPR 2021 49.03 56.43 37.19

STARK-ST-50 [117] ResNet-50 ✓ ICCV 2021 51.11 59.20 39.07

STARK-ST-101 [117] ResNet-101 ✓ ICCV 2021 50.50 58.23 38.97

ToMP-50 [82] ResNet-50 ✓ CVPR 2022 51.60 59.47 38.87

ToMP-101 [82] ResNet-101 ✓ CVPR 2022 50.90 58.77 38.42

MixFormer-1k [18] MAM ✓ CVPR 2022 50.83 58.56 39.30

MixFormer-22k [18] MAM ✓ CVPR 2022 53.72 62.98 43.02

MixFormerL-22k [18] MAM ✓ CVPR 2022 55.99 65.92 46.34

Table 5.3: Comparison of different trackers in terms of AUC score on
AVisT. Other than MixFormerL-22k and MixFormer-22k, the evaluated
trackers utilize backbones trained on ImageNet-1K dataset. Among ex-
isting trackers, STARK-ST-50 and ToMP-50 achieve comparable AUC
scores. Both MixFormerL-22k and MixFormer-22k utilizing backbone
with ImageNet-22K pre-training obtain improved tracking performance.
In addition to AUC score, we also report performance at OP50 and OP75.
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(a) Overall Results
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(b) Weather Conditions
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(c) Obstruction Effects
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(d) Imaging Effects
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(e) Target Effects
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(f) Camouflage

Figure 5.5: Comparisons in terms of success plots on AVisT. The AUC
scores are given in the legend. In all cases, the recent MixFormer with
a stronger backbone with ImageNet-22k pre-training achieves better
performance. Best viewed zoomed in.
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ploys DiMP-50 as baseline tracker but propagates dense localized
state vectors that encode target, background or distractor information
allowing to localized the target more robustly. In contrast, AlphaRe-
fine [118] refines the preliminary bounding box generated by the
base tracker SuperDiMP to increase the tracking accuracy.
Transformers:: TrDiMP [106] and TrSiam [106] employ a Transformer
to enhance the extracted template and search features that are then
used in a discriminative classification or Siamese setting. In con-
trast, TransT [14] directly extracts discriminative features using a
feature fusion module performing self and cross attention opera-
tions. STARK [117] jointly fuses template and search features using
a Transformer encoder consisting of self attention operations and
uses a Transformer decoder together with an object query to predict
the target state. ToMP [82] is inspired by DiMP but replaces the
online-optimization based model predictor with a Transformer that
predicts discriminative filter weights. In contrast to aforementioned
trackers that use a feature extractor followed by a feature fusion
module, MixFormer [18] only uses a mixed attention based backbone
that allows to directly extract discriminative features.

5.3.2 Evaluation Results

Evaluation Metric: Following LaSOT [38], we evaluate the tracking
performance using the One Pass Evaluation (OPE) [109], assessing
the success score of different tracking methods. Success is calculated
as the IoU of the ground truth bounding box and the tracking result.
The AUC, which ranges from 0 to 1, is used to rank the trackers.
Additionally, we present the results in terms of normalized precision
plot in the suppl. material. We normalize the precision as in [85]. The
precision is calculated by comparing the pixel distance between the
ground-truth bounding box and the tracking result.
Quantitative Results: We perform comprehensive evaluations for
each of the 120 videos in AVisT. Each tracker is evaluated with
publicly available trained weights. Tab. 5.3 shows the performance,
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in terms of AUC score, of trackers for the different frameworks.
Among the trackers belonging to the Siamese-based framework,
SiamRPN++ [67], SiamBAN [16] and Ocean [128] achieve AUC
scores of 39.01, 37.58 and 38.89, respectively. Within the discrimi-
native classifier framework, KeepTrack [83] and AlphaRefine [118]
achieve comparable performance with AUC score of 49.44 and 49.63,
respectively. Among existing Transformer-based methods employ-
ing backbones pre-trained on ImageNet-1k, STARK-ST-50 [117] and
ToMP-50 [82] achieve obtain similar AUC scores of 51.11 and 51.60.
The recently introduced MixFormer-1k [18] achieves AUC score of
50.83. A significant improvement in tracking performance is obtained
when using ImageNet-22k pre-trained backbone in MixFormer [18],
with MixFormerL-22k achieving AUC score of 56.0. We also report
the overall success plot in Fig. 5.5a.
Attribute-based Comparison: In Figs. 5.5b-5.5f, we further evaluate
the trackers on the five attributes in AVisT. We observe that a stronger
backbone along with large-scale ImageNet-22k pre-training typically
helps achieve better results (MixFormerL-22k [18]). However, the
performance varies among attributes when using a tracker with same
backbone that is either pre-trained on ImageNet-22k or ImageNet-1k
(MixFormer-1k and MixFormer-22k). Further, the results also vary
among attributes when using trackers all employing ImageNet-1k
pre-trained backbones. For instance, MixFormer [18] significantly
improves when using a backbone with ImageNet-22k pre-training
on weather conditions attribute, compared to the same tracker and
backbone but with ImageNet-1k pre-training (MixFormer-1k: 54.4
vs. MixFormer-22k: 58.4). However, we observe no improvement
in performance possibly due to this large-scale pre-training when
moving from MixFormer-1k to MixFormer-22k for obstruction ef-
fects. In case of imaging effects, ToMP-101 [82] with ImageNet-1k
pre-trained backbone achieves an AUC score of 46.1, which is even
comparable to that of MixFormerL-22k using a stronger backbone
along with ImageNet-22k pre-training. For target effects, we observe
MixFormer-1k to struggle compared to ToMP [82], KeepTrack [83]
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and AlphaRefine [118]. To summarize, we observe that among re-
cent trackers utilizing ImageNet-1k pre-trained backbones, no single
method achieves better performance against its counterparts on all
attributes. The comparisons further highlight the scope in designing
a novel tracking mechanism which could tackle the diverse range of
scenarios and attributes comprising sequences captured in real-world
adverse conditions. More results are in suppl. material.

5.4 conclusion

We introduce a new benchmark, AVisT, for visual tracking in diverse
scenarios with adverse visibility. AVisT comprises 120 challenging
videos, covering 18 diverse scenarios with 42 classes. These diverse
scenarios are further grouped into five attributes. We evaluate a
variety of recent Siamese, discriminative classifiers and Transformer-
based trackers. Our experiments show that even the most recent
Transformer-based tracker using a heavy ImageNet-22k backbone
achieves an AUC score of only 56.0%, thereby highlighting the chal-
lenging nature of AVisT. We further analyze trackers based on at-
tributes observing the need to design novel solutions that achieve
favorable performance on real-world adverse tracking conditions.
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Annotation MixFormerL-22k ToMP-101 STARK-ST-101 KeepTrack AlphaRefine

Figure 5.6: Here, we show frames of some representative sequences
of Weather Condition attribute and visualize with different colors the
ground truth annotations and the predicted bounding boxes of five differ-
ent trackers: MixFormerL-22k [18], ToMP-101 [82], STARK-ST-101 [117],
KeepTrack [83], and AlphaRefine [118]

5.5 appendices

5.5.a Visual Comparison per Attributes

Figs. 5.6-5.10 shows the visual results of the trackers on attribute
specific sequences from AVisT. From the visual results it is clear
that the compared trackers faces major difficulty in intense lightning
conditions e. g. Fig. 5.6 (first row second column) Fig. 5.8 (second row
second column), extreme visibility conditions e. g. Fig. 5.6 (second
row last column), Fig. 5.7 (second row second and third column),
object deformation e. g. Fig. 5.9 (first row first column), distractor
objects e. g. Fig. 5.9 (last row), small target e. g. Fig. 5.9 (first row last
column), camouflage sequences e. g. Fig. 5.10 (second row second
column).
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Annotation MixFormerL-22k ToMP-101 STARK-ST-101 KeepTrack AlphaRefine

Figure 5.7: Here, we show frames of some representative sequences
of Obstruction Effects attribute and visualize with different colors the
ground truth annotations and the predicted bounding boxes of five differ-
ent trackers: MixFormerL-22k [18], ToMP-101 [82], STARK-ST-101 [117],
KeepTrack [83], and AlphaRefine [118]

Annotation MixFormerL-22k ToMP-101 STARK-ST-101 KeepTrack AlphaRefine

Figure 5.8: Here, we show frames of some representative sequences of
Imaging Effects attribute and visualize with different colors the ground
truth annotations and the predicted bounding boxes of five different
trackers: MixFormerL-22k [18], ToMP-101 [82], STARK-ST-101 [117], Keep-
Track [83], and AlphaRefine [118]
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Annotation MixFormerL-22k ToMP-101 STARK-ST-101 KeepTrack AlphaRefine

Figure 5.9: Here, we show frames of some representative sequences of
Target Effects attribute and visualize with different colors the ground
truth annotations and the predicted bounding boxes of five different
trackers: MixFormerL-22k [18], ToMP-101 [82], STARK-ST-101 [117], Keep-
Track [83], and AlphaRefine [118]

Annotation MixFormerL-22k ToMP-101 STARK-ST-101 KeepTrack AlphaRefine

Figure 5.10: Here, we show frames of some representative sequences
of Camouflage attribute and visualize with different colors the ground
truth annotations and the predicted bounding boxes of five different
trackers: MixFormerL-22k [18], ToMP-101 [82], STARK-ST-101 [117], Keep-
Track [83], and AlphaRefine [118]



6
B E Y O N D S O T: I T ’ S T I M E T O T R A C K M U LT I P L E
G E N E R I C O B J E C T S AT O N C E

In the previous chapters, we focused on tracking a single generic
object per video sequence. However, multi-object GOT benefits from
a wider applicability, rendering it more attractive in real-world appli-
cations. We attribute the lack of research interest into this problem to
the absence of suitable benchmarks. In this chapter, we introduce a
new large-scale GOT benchmark, LaGOT, containing multiple anno-
tated target objects per sequence. Our benchmark allows researchers
to tackle remaining challenges in GOT, aiming to increase robustness
and reduce computation through joint tracking of multiple objects
simultaneously. Furthermore, we propose a Transformer-based GOT
tracker capable of joint processing of multiple objects through shared
computation. Our benchmark, code, and trained models will be made
publicly available at https://github.com/visionml/pytracking.

6.1 introduction

Visual object tracking is a fundamental problem in computer vision.
Over the years the research effort has been directed mainly to two
different task definitions: Generic Object Tracking [5, 10, 25, 52, 62,
67, 109] and Multiple Object Tracking [13, 32, 45, 98, 122, 123, 126].
MOT aims at detecting and tracking all objects defined in a class
category list, see Fig. 6.1. Hence, MOT methods can only detect and
track objects of known class categories whereas all other objects are
ignored. MOT methods are unable to track generic objects solely
defined by a user-specified bounding box at test time. In contrast,
GOT focuses on the scenario where a priori information about the
object’s appearance is unknown. Thus, the target model of the object’s
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appearance must be learned at test time from a single user-specified
bounding box in the initial frame, see Fig. 6.1.

While GOT has a long history of active research, the problem of
tracking multiple generic objects in the same video sequence has
been largely ignored by the community. So far GOT methods and
benchmarks focused on tracking a single object per video such that
the term Single Object Tracking (SOT) was introduced. However, the
task of GOT is not limited to tracking a single object. In fact, the
ability to track multiple generic objects is desired in many real-
world applications, such as surveillance, video understanding, semi-
automatic video annotation, and industrial quality control. A method
that jointly tracks multiple objects can achieve substantial reduction
in computational cost through shared elements, compared to running
a separate instance of a SOT method for each object. Moreover,
processing multiple targets at the same time has the potential of
increasing the robustness of the tracker by joint reasoning.

To facilitate the work on tracking multiple generic objects, we in-
troduce the new multi-object GOT benchmark LaGOT. It provides
up to 10 user-specified generic objects in the initial frame visible
through the large part of the video. The target objects in one video
may correspond to completely different and previously unseen class
categories. Our benchmark features challenging characteristics such
as fast moving objects, frequent occlusions, presence of distractors,
camera motion, and camouflage. In total LaGOT contains 588k an-
notated objects of 102 different class categories and an average track
length of 75 seconds.

Tracking multiple target objects in the same video poses key chal-
lenges and research questions that are typically overlooked by SOT
methods. A multi-object GOT method needs to jointly produce mul-
tiple target models using the first-frame annotations. This allows the
tracker to exploit annotations of potential distractors to improve the
robustness of each target model. Furthermore, a joint localization
step opens the opportunity for global reasoning across all tracks to
reduce the risk of confusing similar objects. Furthermore, operating
on multiple local search area [18, 82, 117] is no longer feasible for a
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MOT

Class Category List

Car, Person, Bus, Train,

Dog, Cat, Fish, Curtain,

Table, Chair, Sofa, Hat,

Guitar, Umbrella, Broom,

Bottle, Bicycle, Pillow,

Glass, Sandwich, Car, …

#1250

Phone

Person
Person

Keyboard

#0760

Person Person

Bench

SOTSOT SOT

#0760

#1250

SOT

#0001

Ours

#0001

#0760

#1250

Figure 6.1: Multiple Object trackers (MOT) track all the objects corre-
sponding to classes in a predefined category list, while all other objects are
ignored. Single Object Tracking (SOT) methods focus on tracking only
a single user-specified object per video. Thus, when encountered with
multiple objects, such methods must resort to independent tracking of
each object. This leads to a directly linear increase in computation. Our
tracker can track multiple generic objects jointly that are defined via user-
specified bounding boxes, leading to the opportunity of computational
savings and to exploit inter-object information for improved robustness.
The box colors correspond to track IDs.
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multi-object GOT method because it is inefficient and complicates
re-detecting lost objects.

We tackle these challenges by introducing a new multiple object
GOT tracker. In order to track all desired target objects at once it
operates globally on the entire frame. Furthermore, we propose a new
generic multiple object encoding that allows us to encode multiple
targets within the same training sample. We achieve this by learning
a fixed size pool of different object embeddings, each representing a
different target. Thus, we query the proposed model predictor with
these object embeddings to produce all target models. In addition,
we introduce a Feature Pyramidal Network (FPN) to increase the
overall tracking accuracy while operating on full-frame inputs.
Contributions: Our main contributions are:

(i) We propose a novel large-scale multi-object GOT evaluation
benchmark, LaGOT. It provides multiple annotated objects per
frame with an average of 2.8 tracks sequence.

(ii) We further evaluate several baselines on LaGOT, including one
MOT and six SOT methods. We assess their quality by using
GOT and MOT metrics.

(iii) We develop a new baseline, TaMOs, a GOT tracker that tracks
multiple generic objects at the same time efficiently. To achieve
this, we propose a new multi-object encoding, introduce an
FPN and apply the tracker globally on the entire video frame.
TaMOs demonstrates almost constant run-time when increasing
the number of targets and operates at an over 4× faster run-
time compared to the SOT baselines when tracking 10 objects.

(iv) We analyze TaMOs by assessing the impact of its different
components using multiple benchmarks. Furthermore, TaMOs
outperforms all baselines on LaGOT, while achieving excellent
results on popular SOT benchmarks.
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6.2 lagot benchmark

In this section we first introduce the multi-object GOT task and dis-
cuss its differences to other object tracking tasks. Then, we introduce
our new benchmark LaGOT.

6.2.1 Multi-object GOT Task

Multi-object GOT is the task of tracking multiple generic target
objects in a video sequence. The target objects are defined by user-
specified bounding boxes in the initial frame of the video. Thus, the
target objects are generic in the sense that their class category is
unknown and there might be no object of the same category in the
training data, see Fig. 6.1.
Multi-object GOT vs. SOT: SOT requires to track only a single target
object defined by the user [38, 62, 109], whereas multi-object GOT
focuses on tracking multiple user-specified generic target objects in
the same video.
Multi-object GOT vs. MOT: Multi-object GOT is a fundamentally
different problem than MOT: (i) The MOT task requires to track all
objects of known categories, whereas for multi-object GOT target ob-
jects in each video are defined by user-specified boxes. Consequently,
multi-object GOT is a one-shot problem where the target objects are
unknown at training time and are only available during inference.
In contrast, MOT methods track all objects corresponding to the
categories defined at training time. (ii) For the multi-object GOT
task an object-id switch is equivalent to a complete failure since the
user-specified object is no longer recoverable [79, 109]. Conversely,
for MOT methods object-id switches are considered less problematic
and are penalized less drastically by the MOT metrics [77].
Multi-object GOT vs. GMOT: Generic Multi Object Tracking (GMOT)
focuses on tracking multiple objects of a single generic object class in
each video. The class is defined by a single user-specified bounding
box in the initial video frame [3, 40]. Thus, in contrast to multi-object
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Dataset TAO val [31] GMOT-40 [3] LaSOT val [38] LaGOT

Task MOT GMOT SOT GOT

Object Definition class list 1 box 1 box n boxes

Num Classes per Video ≥ 1 1 1 ≥ 1

Tracking Metrics Track-mAP MOTA/IDF1 Success AUC F1-Score

Num Classes 302 30 70 102

Num Videos 988 40 280 294

Avg Video Length (num frames) 1010 240 2430 2258

Avg Track Length (num annos) 21 133 702 2106

Avg Tracks per Video 5.55 50.65 1 2.88

Num Annotations 115k 486k 680k 588k

Annotation Frequency 1 FPS 24-30 FPS 30 FPS 10 FPS

Table 6.1: Comparison of LaGOT with existing benchmarks that focus
on related tasks to multi-object GOT.

GOT, a GMOT method is unable to track multiple objects of different
categories in the same video.

6.2.2 LaGOT

Benchmark Construction: To build a challenging long-term multi-
object GOT benchmark we require objects that are visible for a sig-
nificant amount of time and at the same time are difficult to track.
LaSOT [38] contains such diverse and relatively long videos (2430

frames or 81 seconds on average) with challenging tracking scenarios
including fast moving objects, camera motion, various object sizes,
frequent object occlusions, scale changes, motion blur, camouflage
and objects that go out of view or change their appearance. LaSOT
provides annotations for a single object in each video but typically
multiple objects are present throughout the full sequence, which is
desirable for long-term tracking scenarios. Thus, instead of collecting
new videos, we used the popular LaSOT evaluation set and add new
annotations for multiple objects in each sequence.
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Figure 6.2: Examples of the annotated objects in the video sequences
of our LaGOT dataset. The objects are annotated at 10 FPS. Notice the
diversity of the annotated media as well as the complexity of the scenes.
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Another large-scale video dataset we considered is TAO [31]. How-
ever, compared to LaSOT, TAO contains shorter videos with an
average of 33 seconds and its outdoor and road sequences mainly
focus on pedestrians and vehicles (60% of all objects in TAO). While
the indoor sequences contain rarer object categories, they are often
static and are only visible for a short time. Furthermore, TAO con-
tains only sparse annotations (1 FPS). For all these reasons, we used
LaSOT instead of TAO to build our benchmark. In contrast to TAO,
GMOT-40 [3] contains dense annotations, but each video contains
only annotated objects of the same class. Furthermore, GMOT-40

consists of only 40 short sequences (avg 240 frames or 8 seconds) ren-
dering only 10 different object classes, see Tab. 6.1. Thus, GMOT-40

is unsuitable to serve as a multi-object GOT benchmark.
Annotation Protocol: First, we inspect all 280 sequences in LaSOT
and identify in each video challenging target objects that play an
active role and meet the previously specified criteria. Next, we en-
trust professional annotators to annotate the selected objects in all
sequences on every third frame, leading to an annotation frequency
of 10 FPS. They use an interactive annotation tool which incorporates
an object tracker to speed up the annotation process [65]. A group
of researchers verifies the newly obtained annotations and sends
low-quality annotations back for correction until all annotations meet
our high quality standards. Finally, we post-process the annotations
to construct the final tracks. First, we remove all tracks shorter than 4
seconds. Second, we define the starting frame by manually selecting
the earliest frame where as many annotated objects as possible are
clearly visible. Third, it is not always possible to unambiguously asso-
ciate all object identities over time due to occlusions and out-of-view
events. Hence, we either remove ambiguous annotations or cut these
videos into multiple sub-sequences, where the objects association is
clear. Following this protocol guarantees a high annotation quality,
see Fig. 6.2 for annotated example frames.
Statistics: Our benchmark LaGOT has 294 videos with 837 tracks
leading to over 588’000 annotated objects. Thus, we almost triple
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the number of tracks compared to the original LaSOT validation
set (and the corresponding evaluation time from 381 to 975 min).
Furthermore, we add 31 additional generic object classes, e. g. pool
queue, propeller, tires or fabric bag. Overall our benchmark contains
10× more class categories than GMOT-40. The average track length
of LaGOT is 2106 frames (702 annotated frames), which is 3× longer
than in TAO, and almost 10× longer than in GMOT-40. We detail the
evaluation protocol in Sec. 6.4.
Annotation Frequency: According to Valmadre et al. [102] it is more
effective to spend a fixed annotation budget on many videos with
sparse annotations than on fewer videos with dense annotations.
Thus, we annotate every third frame to reduce the overall annotation
cost. To analyze the difference between 10s and 30 FPS annotations,
we evaluate five recent trackers on the tracks borrowed from LaSOT,
where 30 FPS annotations are available. The mean relative error of the
success rate AUC is only 0.237%. This shows that 10 FPS is sufficient
on large-scale datasets such as LaSOT and LaGOT, leading to only
minor score deviations.

6.3 method

In this section we present our tracker TaMOs, which employs a
Transformer to jointly model and track a set of arbitrary objects
defined in the first frame of a video. We start from ToMP [82], a
recent Transformer-based generic single object tracker. In Sec. 6.3.1
we introduce the proposed Transformer-based multi-object tracking
architecture and in Sec. 6.3.2 we discuss the used training protocol.

6.3.1 Generic Multi-Object Tracker - Overview

An overview of the proposed generic multi-object tracker TaMOs is
presented in Fig. 6.3. First, unlike original ToMP, our tracker operates
on the full train and test images instead of crops. The target object
encoder uses a pool of learnable object embeddings to encode the lo-
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cation and extent of each target object within a single shared feature
map (Sec. 6.3.1.1). The randomly sampled object embedding then
represents a particular target in the entire video sequence: we use
the object embedding to condition the model predictor to produce
the target model that localizes the target object in the test frame
(Sec. 6.3.1.2). Since operating on the entire video frame increases the
computational cost of the Transformer operations, we are limited to
a certain feature resolution. To track small objects we propose an
FPN-based feature fusion of the test frame features produced by the
Transformer with the higher resolution backbone features. We adopt
the correlation filter based target localization and bounding box
regression mechanism of ToMP but apply both on the higher resolu-
tion FPN features instead of the output features of the Transformer
(Sec. 6.3.1.3).

6.3.1.1 Generic Multiple Object Encoding

To track a growing number of target objects efficiently, we propose
a novel object encoding that allows to encode multiple objects in a
shared feature map without requiring multiple templates. In addition,
we process the entire video frame instead of a separate search region
for each target.

In particular, we extend the single object encoding formulation of
ToMP to be applicable for multiple objects. The idea is to replace
the foreground embedding with multiple object embeddings, each
representing a different target object. Thus, we create a pool E ∈
Rm×c of m ≥ n object embeddings ei ∈ R1×c. Then, we sample
for each target object a random object embedding from the pool
E without replacement. Next, we combine the object embeddings
with the Gaussian score map yi ∈ Rh×w×1 that represents the center
location of the target object i and the LTRB [99, 115] bounding box
encoding bltrb

i ∈ Rh×w×4. The final encoding is thus:

f enc
train = ftrain +

n

∑
i=0

ei · yi +
n

∑
i=0

ei · ϕ
(

bltrb
i

)
, (6.1)
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where ϕ is a MLP and n ≤ m is the number of tracked objects. Note,
that in contrast to the object encoding step in ToMP, we not only
use the object embedding to encode the Gaussian score map but
also the bounding box representation. The object embeddings ei are
learned during training such that the model is able to disentangle
the shared feature representation and can identify each object in the
training and test features. Note, that the products in Eq. (6.1) employ
multiplications with broadcasting across every dimension whereas
the latter uses channel-wise multiplication with broadcasting across
the spatial dimensions.

6.3.1.2 Joint Model Prediction

Now that the target object locations and extents are embedded in the
training features, we require a model predictor to produce a target
model for each encoded object. The target models are then used to
localize the targets in the test frame and to regress their bounding
boxes. In order to easily associate the different targets over time, we
require a model predictor that can be conditioned on the targets,
or in our case on the different object embeddings ei. Furthermore,
the model needs to be able to produce all target models jointly to
increase the efficiency.

We extend the aforementioned single target model predictor of
ToMP by keeping the Transformer encoder unchanged but by modify-
ing the Transformer decoder. In particular, we query the Transformer
decoder with multiple object embeddings ei at the same time instead
of a single foreground embedding,

[θ̂1, . . . θ̂n] = Tdec([h̃train, h̃test], [e1, . . . en]) . (6.2)

Here, θ̂i is the target model and n is the number of target objects
encoded in the training frame.

6.3.1.3 Target Localization and Box Regression

We use the generated target models to localize the targets and to
regress their bounding boxes. We produce a correlation filter for
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target classification and adopt the bounding box regression branch
of ToMP [82]. But instead of applying the target classifier and box
regressor on the low-resolution test features htest of the Transformer
encoder, we use high resolution features generated with an FPN:

zlow, zhigh = ψ(htest, f high
test ), (6.3)

where f high
test ∈ R2h×2w×c are the high resolution test features extracted

at an earlier stage of the backbone, and ψ(·) denotes the FPN. The
high-resolution multi-channel score map can then be obtained as
follows

ŷhigh
i = wcls

i (θ̂i) ∗ zhigh, 0 ≤ i < n, (6.4)

where wcls
i (θ̂i) refers to the discriminative correlation filter for the

target object i obtained from the model predictor θ̂i. Similarly we
obtain the multi-channel bounding box regression maps b̂high

i . Note,
that during inference we only use the high-resolution score and
bounding box prediction maps. During training we apply all target
models directly on the Transformer encoder features htest, similar to
ToMP, but also on the low- and high-resolution FPN feature maps
zlow, zhigh. We empirically observed better training performance when
applying the losses on each instead of only on the high resolution
outputs.

6.3.2 Training

During training we employ a classification and a bounding box
regression loss. We compute both losses for the predictions obtained
by processing each FPN feature map (low-res and high-res) as well
as the output test features htest of the Transformer encoder. The
classification loss is

Lcls =
n

∑
i=0

Lfocal(ŷi, y) +
m

∑
j=n

Lfocal(ŷj, 0), (6.5)

Here we assume that the first n object embeddings ei were used
to encode the n objects marked in the training frame whereas the
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remaining m− n object embeddings were not used to encode any
objects. Thus, we require that the resulting score maps ŷj that corre-
spond to an unused object embedding ej produce low scores every-
where (second sum in Eq. (6.5)). This step tightly couples the object
encoding and decoding. Omitting this term not only decreases the
overall performance but slows down the training progress.

In contrast to classification we enforce the bounding box regression
loss only for the predictions that actually correspond to an encoded
object and ignore those corresponding to unused object embeddings.
The regression loss is given by

Lbbreg =
n

∑
i=0

LGIoU

(
b̂ltrb

i , b̂ltrb
i

)
, (6.6)

where LGIoU denotes the generalized IoU-Loss [91]. The overall train-
ing loss is then defined as

Ltot = λclsLcls(ŷ, y) + λbbreg · Lbbreg(b̂ltrb, bltrb) (6.7)

where λcls and λbbreg are scalars weighting the contribution of each
loss component.
Training Details: We randomly sample an image pair consisting
of one training and one test frame from a training video. Since our
tracker operates on full frames, we retain the full training and testing
frames. These are re-scaled and padded to a resolution of 384× 576.
As we use the feature maps with stride 16 for both the ResNet-50 [50]
and SwinBase [75] backbones, this results in an extracted feature and
score map resolution of 24× 36. For ResNet-50 we use pretrained
weights on ImageNet-1k and for SwinBase on ImageNet-22k.

We train our tracker on the training splits of LaSOT [38], GOT10k [54],
TrackingNet [85], MS-COCO [73], ImageNet-Vid [92], TAO [31], and
YoutubeVOS [114]. Note, that we remove all videos from the TAO
training set that overlap with the evaluation set of LaSOT. We ran-
domly sample for each epoch 40k image pairs with equal probability
from all datasets. In order to leverage SOT datasets and training
all object embeddings ei equally, we assign random object ids to
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all objects in the sampled training pair, Note, that both SOT and
MOT datasets are crucial to train the proposed tracker. Without MOT
datasets the tracker is unable to learn multiple target models a the
same time and avoiding SOT datasets leads to inferior tracking qual-
ity. We train the tracker for 300 epochs on 4 Nvidia A100 GPUs using
ADAMW [76] with a learning rate of 0.0001 that we decay after 150

and 250 epochs by a factor of 0.2. Our method is implemented using
PyTracking [24].
Inference: During inference we adopt the simple memory updating
approach described in [82]. In particular, updating the memory refers
to adding a second dynamic training frame using predicted box an-
notations. We replace the second training frame (update the memory)
if the maximal value in each score map is above the threshold of
τ = 0.85.

6.4 experiments

To illustrate the challenges of our proposed GOT benchmark, we
evaluate several recent trackers that serve as baselines along with our
proposed tracker on our GOT benchmark LaGOT, which requires
tracking multiple objects in the same video (Sec. 6.4.1). Furthermore,
we compare our method to recent trackers on several SOT bench-
marks (Sec. 6.4.2). Finally, we present an ablation study, evaluating
the impact of different components of our tracker.

6.4.1 State-of-the-Art Evaluation on LaGOT

We evaluate our tracker with a ResNet-50 and a SwinBase back-
bone as well as 6 SOT (SuperDiMP [24], KeepTrack [83], TransT [14],
STARK [117], ToMP [82], and MixFormer [18]) and one MOT (QD-
Track [88]) tracker on LaGOT.
Metrics: We measure the performance of a tracker in the OPE setting.
We employ the standard GOT Success rate AUC metric [37, 38, 42,
84, 85, 87, 109]. However, success rate does not account for false
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positive predictions when a target gets occluded or is out of view.
While this is not a big issue in standard SOT datasets, where the
target object is present in the vast majority of frames, it becomes
vital in long-term tracking. In LaGOT objects are more frequently
invisible due to occlusions or are out-of-view. To capture this aspect,
we employ the VOTLT [60, 79] metric that penalizes false positives.
It computes the IoU-weighted precision-recall curve and ranks the
trackers according to their F1-score.

6.4.1.1 Comparison to SOT Methods

SOT methods are designed to track a user-specified object defined
by a bounding box in each video. However, SOT trackers are limited
to track only a single target at once. Thus, multiple instances of the
same tracker need to be run in parallel to track multiple objects in the
same sequence leading to a linearly increasing run-time, see Fig. 6.1.
Results: Fig. 6.4a shows the success rate of all trackers on LaGOT.
We observe that SOT trackers perform well on LaGOT. However, our
multi-object tracker TaMOs achieves the best AUC, even outperform-
ing the state-of-the-art SOT tracker MixFormerLarge-22k [18]. We
further observe that TaMOs is as robust as KeepTrack [83] (T < 0.4),
where the gap to the remaining trackers is particularly prominent.
This demonstrates the potential of a global multiple object GOT
method. Fig. 6.4b shows the tracking Precision-Recall curve on LaGOT.
Both versions of TaMOs outperform all other SOT trackers. The
highly robust object presence scores predicted by our tracker lead to
a superior precision at all recall rates > 0.2. Moreover, our approach
achieves the best maximal recall and outperforms all previous meth-
ods in VOTLT by 2.2 points. This demonstrates that joint tracking of
multiple objects and global search benefit the object localization and
identification capabilities of the tracker. For further insights we show
MOT metrics on LaGOT in Tab. 6.3. Our tracker achieves the best
results for every MOT metric and outperforms MixFormerLarge-22k
by 5.7 points in MOTA.



6.4 experiments 117

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

10

20

30

40

50

60

70

80

90

Ov
er

la
p 

Pr
ec

isi
on

 [%
]

Success plot

TaMOs SwinBase [63.5]
MixFormerLarge-22k [62.5]
MixFormer-22k [62.0]
ToMP-101 [61.7]
TaMOs 50 [61.6]
KeepTrack [61.4]
ToMP-50 [61.2]
Stark-101 [60.6]
TransT [59.9]
SuperDiMP [57.9]

(a) Success Plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision Recall plot

TaMOs SwinBase [0.649]
TaMOs 50 [0.633]
KeepTrack [0.627]
MixFormerLarge-22k [0.624]
ToMP-101 [0.620]

MixFormer-22k [0.620]
ToMP-50 [0.615]
TransT [0.611]
Stark-101 [0.609]
SuperDiMP [0.581]

(b) Precision-Recall
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1 Object 2 Objects 5 Objects 10 Objects

ToMP-50 34.7 17.4 7.0 3.4

TaMOs-50 19.2 17.9 16.3 13.9

Table 6.2: Run-time analysis (in FPS) between our baseline model ToMP
and our tracker TaMOs.

Run-Time Analysis: We evaluate the run-time on a single A100 GPU.
Tab. 6.2 reports a run-time analysis of our tracker TaMOs compared
to ToMP, with both employing a ResNet-50 backbone. While TaMOs
is slower than ToMP for a single object, due to the higher resolution
required for full-frame tracking, our approach already reaches an
advantage for 2 concurrent objects. As ToMP needs to run a separate
independent tracker for each new object, our approach achieves a
4× speedup for 10 concurrent objects. Furthermore, the analysis
demonstrates that TaMOs achieves almost a constant run-time even
when increasing the number of targets. TaMOs-SwinBase achieve 13.1
FPS for a single object and 9.3 FPS when jointly tracking 10 objects.

6.4.1.2 Comparison to MOT Methods

MOT methods are designed to track multiple objects in a video
sequence and are thus used as baselines for LaGOT. However, there
is no straightforward way to adapt an MOT tracker to the multi-object
GOT task, due to their radically different inputs. In MOT the targets
are defined via a list of classes. Thus, an MOT tracker cannot easily be
used to track arbitrary objects defined by a user-specified bounding
box in the initial frame. In order to be able to track generic objects
MOT methods need to be trained on large vocabulary datasets. Then,
we can greedily match the detected tracks with the user-defined
bounding boxes on the initial frame to track user-specified objects.
However, if a user-specified object corresponds to an unknown class
the tracker is unable to track this object. We evaluate QDTrack [88]
that is trained on LVIS [48] and TAO as MOT baseline.
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F1-Score Success HOTA MOTA IDF1 OWTA

GOT
TaMOs-SwinBase 0.649 63.5 62.5 58.3 75.2 69.4

TaMOs-50 0.633 61.5 60.4 53.2 72.6 67.6

SOT

MixFormerLarge-22k 0.624 62.5 61.7 52.6 74.6 69.3

ToMP-101 0.620 61.7 60.4 52.4 74.3 67.9

STARK-101 0.609 60.6 59.9 49.8 73.2 67.0

TransT 0.611 59.9 58.2 47.3 71.5 66.0

KeepTrack 0.627 61.4 59.3 51.7 74.0 66.4

SuperDiMP 0.581 57.9 56.3 43.3 69.8 64.1

MOT QDTrack 0.189 19.4 22.1 -119.7 16.2 36.6

Table 6.3: Comparison of GOT and MOT metrics on LaGOT.

Results: QDTrack achieves a success rate AUC of 19.4 and an F1-
score of 0.189 and thus performs inferior compared to all other
trackers. QDTrack is simply not robust enough and fails to track
unknown generic objects. To further explore the limitations of MOT
methods in our setting, we evaluate a version ‘QDTrack-Oracle’,
where we select the track ID that maximizes the AUC score on
LaGOT. Even with such oracle information, it achieves a success rate
AUC (29.1) and an F1-score (0.333) far inferior to any evaluated SOT
baseline. In addition we evaluate QDTrack using all its predicted
tracks with MOT metrics, see Tab. 6.3. However, QDTrack tracks
multiple background objects that are not annotated in LaGOT leading
to many False Positives (FPs). Thus, traditional MOT tracking metrics
such as MOTA, HOTA and IDF1 are unsuitable to evaluate QDTrack
on LaGOT. Instead, we concentrate on the OWTA metric [74] that
focuses on Detection Recall (DetRe) and Association Accuracy (AssA)
and thus ignores FPs. QDTrack achieves 36.6, which is still the lowest
OWTA score among all trackers. QDTrack achieves a low DetRe (46.7
vs. 70.2 of TaMOs) because it is unable to detect target objects that
appear rarely or are absent in TAO or LVIS. Furthermore, it achieves
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LaSOT [38] TrackingNet [85]

Method Venue Prec N-Prec Succ Prec N-Prec Succ

TaMOs-SwinBase 77.8 79.3 70.2 84.2 88.7 84.4

TaMOs-50 75.0 77.2 67.9 82.0 87.2 82.7

SwinTrack [72] NIPS’22 76.5 — 71.3 82.0 — 84.0

Unicorn [116] ECCV’22 74.1 76.6 68.5 82.2 86.4 83.0

AiATrack [44] ECCV’22 73.8 79.4 69.0 80.4 87.8 82.7

OSTrack [120] ECCV’22 77.6 81.1 71.1 83.2 88.5 83.9

RTS [89] ECCV’22 73.7 76.2 69.7 79.4 86.0 81.6

MixFormer [18] CVPR’22 76.3 79.9 70.1 83.1 88.9 83.9

ToMP [82] CVPR’22 73.5 79.2 68.5 78.9 86.4 81.5

GTELT [131] CVPR’22 73.2 75.9 67.7 81.6 86.7 82.5

UTT [80] CVPR’22 67.2 — 64.6 77.0 — 79.7

SBT [113] CVPR’22 71.1 — 66.7 — 87.5 82.2

KeepTrack [83] ICCV’21 70.2 77.2 67.1 73.8 83.5 78.1

STARK [117] ICCV’21 72.2 77.0 67.1 — 86.9 82.0

TransT [14] CVPR’21 69.0 73.8 64.9 80.3 86.7 81.4

TrDiMP [106] CVPR’21 66.3 73.0 63.9 73.1 83.3 78.4

SiamRCNN [104] CVPR’20 68.4 72.2 64.8 80.0 85.4 81.2

SuperDiMP [30] CVPR’20 65.3 72.2 63.1 73.3 83.5 78.1

Table 6.4: State of the art comparison on SOT datasets.

a low AssA (29.0 vs. 69.0 of TaMOs), demonstrating that QDTrack’s
association mechanism is not robust enough for the challenging
scenarios contained in LaGOT, see appendix for more details.

6.4.2 State-of-the-Art Comparison on SOT Datasets

While TaMOs is built to track multiple user-specified objects in a
video it can as well track only a single generic object. Thus, we
evaluate TaMOs on popular large-scale SOT benchmarks. We deploy
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Figure 6.5: Success plot, showing OPT , on LaSOT [38] (AUC is reported
in the legend).

the very same tracker in these settings, without altering its weights
nor any hyper-parameters.
LaSOT [38]: This large-scale dataset consists of 280 test sequences
with 2500 frames on average. Tab. 6.4 shows a comparison to recent
SOT trackers. While primarily designed to cope with multiple objects,
our tracker achieves the highest precision and the third highest suc-
cess rate AUC. In additions, Fig. 6.5 shows the corresponding success
plot. We observe that our tracker is the most robust (T < 0.3) and that
both MixFormerLarge-22k [18] and OSTrack [120] can regress more
accurate bounding boxes (0.5 < T < 0.9). Note, that neither Mix-
Former, SwinTrack nor OSTrack operate on the entire video frame,
but rely on a local search area to produce such high tracking accu-
racy. Thus, these results show the great potential of applying trackers
globally. Furthermore, we do not employ any motion priors, such as
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Figure 6.6: Success plot, showing OPT , on AVisT [87] (AUC is reported
in the legend).

search area selection [6, 18, 82, 120] or spatial windowing [67, 68],
considered standard in tracking.
TrackingNet [85]: This large-scale dataset consists of 511 test se-
quences and an evaluation server is used to evaluate the tracking
predictions. Tab. 6.4 shows that our tracker with SwinBase sets the
new state of the art on TrackingNet in terms of success rate and
precision AUC. Similarly, our tracker with ResNet-50 achieves the
best results among all trackers using that backbone. Again, these
results demonstrate the great potential of multi-object GOT for SOT.
AVisT [87]: AVisT is an evaluation benchmark that contains 120

sequences containing tracking scenarios in adverse visibility condi-
tions. Fig. 6.6 shows that our tracker achieves excellent results with a
success AUC of 55.1. This result shows that TaMOs is able to track
generic single objects even in visually challenging settings. The best
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Figure 6.7: Success plot, showing OPT , on ImagenetVID [92] (AUC is
reported in the legend).

tracker MixFormerLarge-22k [18] is able to regress more accurate
bounding boxes (0.3 < T < 0.9), as it relies on small search area
selection to ensure high-resolution features. In contrast, our approach
is capable of jointly tracking multiple objects.

6.4.3 Comparison on Video Object Detection Datasets

In order to validate the proposed multiple object GOT tracker not
only on LaGOT but also on another multiple object dataset, we
modify ImageNetVID [92].
ImageNetVID [92]: We perform the following adaptations in order
to apply GOT methods on the video object detection dataset Ima-
geNetVID. First, we remove all tracks that are not present in the first
frame. Then, we use the remaining tracks to produce the bounding
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Gaussian LTRB Object Embedding LaSOT LaGOT

Encoding Encoding Pool size m AUC AUC F1

✓ ✗ 10 58.3 54.0 0.552

✗ ✓ 10 66.3 60.2 0.620

✓ ✓ 10 67.2 61.6 0.633

✓ ✓ 15 65.7 60.0 0.617

✓ ✓ 20 65.7 58.9 0.603

✓ ✓ 50 63.1 57.4 0.587

Table 6.5: Analysis of different object encoding settings. All tested con-
figurations are not employing the FPN.

box annotations of the first frame. For simplicity we remove the 11

sequences where no track is visible in the first frame. This results in
544 sequences with 938 tracks and 1.7 tracks on average per video.
Fig. 6.7 shows the success plot on the resulting GOT dataset. We
observe that all trackers achieve relatively high AUC mostly differing
in bounding box accuracy. Both versions of our tracker outperform
the baselines ToMP-50 and ToMP-101 [82]. In particular, we notice the
superior bounding box accuracy of our tracker compared to ToMP.
To summarize we observe a similar ranking between trackers on
ImageNetVID and the proposed LaGOT dataset. However, LaGOT
is more challenging due to the higher average track number (2.9 vs.
1.7) and the much longer sequence length (2258 vs. 312) that leads
more frequently to occlusions and out-of-view events.

6.4.4 Ablation Study

Generic Multiple Object Encoding: Tab. 6.5 shows the effect of
the Gaussian score map encoding, the LTRB bounding box encoding
and the total number of object embeddings m stored in the pool E.
The first two rows in Tab. 6.5 show that the LTRB encoding is more
important than the Gaussian encoding (as removing LTRB decreases
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Memory LaSOT LaGOT

Backbone FPN Update AUC AUC F1-Score

Resnet-50 ✗ ✓ 67.2 60.4 0.621

Resnet-50 ✓ ✗ 66.0 60.2 0.620

Resnet-50 ✓ ✓ 67.9 61.6 0.633

SwinBase ✗ ✓ 69.5 62.4 0.643

SwinBase ✓ ✗ 67.9 62.1 0.636

SwinBase ✓ ✓ 70.2 63.5 0.649

Table 6.6: Architecture and memory update analysis.

all results more significantly). Another key factor is the number of
different object embeddings, that sets an upper limit on the number
of objects that can be tracked. LaGOT requires at least 10 embeddings
and our tracker achieves the best results when using a pool size of 10.
Increasing the number of embeddings decreases the overall tracking
performance.
Architecture: Tab. 6.6 shows that using SwinBase increases the
tracking performance on LaSOT and LaGOT. Similarly, adding an
FPN improves the results. Thus, we employ an FPN and report all
results for both backbones.
Inference: During inference we update the memory by adding a
second dynamic training frame. Since the ground truth bounding box
is not available, we use the predicted box as annotation. We replace
the dynamic training frame (update the memory) if the maximal
value in each target score map is above the threshold of τ = 0.85.
The results in Tab. 6.6 show that adding a second training frame
improves the results on both LaGOT and LaSOT.

6.5 conclusion

We propose a novel multiple object GOT tracking benchmark, LaGOT,
that allows to evaluate GOT methods that can jointly track multiple
targets in the same sequence. We demonstrate that the proposed



126 beyond single object tracking

task and benchmark are challenging for existing SOT and MOT
trackers. We further propose a Transformer-based tracker capable of
processing multiple targets at the same time. Our approach integrates
a novel generic multi object encoding and an FPN in order to achieve
full frame tracking. Our method outperforms recent trackers on the
LaGOT benchmark, while operating 4× faster than the SOT baseline
when tracking 10 objects. Lastly, our approach also achieves excellent
results on large-scale SOT benchmarks.
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6.6 appendices

In the appendix, we first give an overview of the different task defi-
nitions and the corresponding abbreviations used in the paper and
appendix. Next, we describe the details of the model architecture
and training in Sec. 6.8. Then, we provide more insights into the
experiments presented in the main paper and provide additional
results on less popular tracking datasets in Sec. 6.9. Then, we show
visual results between the baseline and our tracker on multiple se-
quences of the proposed datasets including failure cases 6.10. Finally,
we provide additional insights about our dataset and compare it to
datasets of related tasks in Sec. 6.11.

6.7 glossary

In this Section we will briefly summarize the different task definitions
behind the individual abbreviations:
GOT: Generic Object Tracking refers to the task of tracking poten-
tially multiple user-defined target objects of arbitrary classes specified
by a user-specified bounding box in the initial video frame.
SOT: Singe Object Tracking is the same task as GOT but focuses on
the setting where only a single generic object needs to be tracked.
Multi-Object GOT: The same as GOT but emphasizes that multiple-
objects need to be tracked. We use multi-object GOT because GOT is
in other research works sometimes used interchangeably with SOT.
MOT: Multi Object Tracking is completely different from the tasks
listed above because it requires a class category list to detect and
track all objects corresponding to the defined class categories.
GMOT: Generic Multi Object Tracking is the same as MOT but
instead of using a class category list to define the target objects,
a single user-specified box shows an example object of the target
class category. Thus, all objects that belong to the same class as the
user-specified example need to be detected and tracked.



128 beyond single object tracking

6.8 model architecture and training details

Architecture: We extract backbone features either from the Resnet-
50 or the SwinBase backbone. For both backbones we extract the
features corresponding to the blocks with stride 8 and 16. We only
use the features with stride 16 for object encoding and feed these
features into the model predictor. For both backbones we use a linear
layer to decrease the number of channels from 1024 to 256 or 512 to
256 respectively. Thus we use 256 dimensional object embeddings
ei and a MLP to project the LTRB bounding box encoding map
from 4 to 256 channels. Since the model predictor produces 256

dimensional convolutional filters we require the same number of
channels for the FPN output features. In particular we use a two layer
FPN that uses as input the enhanced Transformer encoder output
features corresponding to the test frame as well as the aforementioned
high resolution backbone test features. The high resolution input
features have either 512 or 256 channels for the Resnet-50 or the
SwinBase backbone respectively. Thus, we adapt the FPN accordingly
depending on the used backbone.
Training Details: We use a fixed size Gaussian when producing the
score map encoding for each object where σ = 0.25. Furthermore,
we use gradient norm clipping with the parameter 0.1 in order to
stabilize training. In addition, we set the loss weighting parameters
to λcls = 100 and to λbbreg = 1. We train all models on four A100

GPUs with a batch size of 4× 12 or 4× 6 depending on the used
backbone.

6.9 experiments

We provide more detailed results to complement the comparison
shown in the main paper. In addition we provide result for the
LaSOTExt [37] dataset in order to assess the performance of our
tracker on sequences containing small objects.
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Figure 6.8: Success plot, showing OPT , on LaGOT (AUC is reported
in the legend). Tracking Precision-Recall curve on LaGOT – VOTLT is
reported in the legend (the highest F1-score).
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HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA MOTA IDSW IDF1

GOT
TaMOs-SwinBase 62.5 57.5 69.0 70.2 70.0 76.6 76.4 84.5 69.4 58.3 5962 75.2

TaMOs-50 60.4 54.9 67.5 68.2 67.9 75.2 75.0 84.2 67.6 53.2 7273 72.6

SOT

MixformerLarge-22k 61.7 54.1 71.1 67.8 67.5 78.1 77.9 85.0 69.3 52.6 2788 74.636

Mixformer-22k 61.6 54.4 70.4 67.8 67.6 77.4 77.3 84.5 69.0 53.9 2969 75.0

ToMP-101 60.4 53.2 69.3 66.7 66.4 76.7 76.6 83.9 67.9 52.4 2297 74.3

ToMP-50 60.0 52.6 69.0 66.2 66.0 76.6 76.5 83.8 67.5 51.5 2042 74.0

STARK-ST-101 59.9 52.2 69.3 66.1 65.8 76.5 76.4 84.2 67.6 49.8 3212 73.2

STARK-ST-50 59.7 52.2 68.9 65.9 65.7 76.1 76.0 84.0 67.3 49.9 3689 73.2

TransT 58.2 50.6 67.5 64.8 64.5 75.0 74.9 84.4 66.0 47.3 2058 71.5

KeepTrack 59.3 52.6 67.3 65.7 65.5 74.8 74.7 82.4 66.4 51.7 2045 74.0

SuperDiMP 56.3 48.5 65.9 62.4 62.2 73.7 73.6 82.1 64.1 43.3 1748 69.8

PrDiMP-50 53.4 45.7 63.0 59.8 59.6 71.2 71.1 81.4 61.3 38.2 2023 67.2

PrDiMP-18 51.4 43.1 62.0 57.5 57.3 70.2 70.1 81.4 59.6 32.3 1770 63.6

DiMP-50 51.2 42.7 62.0 56.8 56.6 69.9 69.8 80.1 59.3 30.1 1722 62.6

DiMP-18 48.9 40.4 59.8 54.5 54.3 67.8 67.7 79.5 57.0 25.1 1647 60.1

MOT QDTrack 22.1 17.2 29.0 46.7 20.7 30.3 79.8 81.9 36.6 -119.7 18612 16.2

Table 6.7: Comparison of different trackers using MOT metrics on LaGOT.

6.9.a LaGOT

To complement the results shown in the main paper, we report
in Fig. 6.8 and Tab. 6.7 results for additional trackers and differ-
ent variants, such as using a different backbone or different hyper-
parameters. In Tab. 6.7 we report additional MOT sub-metrics and
statistics on LaGOT. In general we conclude, that using larger back-
bones especially if they are pretrained on Imagenet-22k leads to the
best results. Furthermore, we observe that the MOT method QDTrack
is not competitive with GOT methods. In particular, we observe that
QDTrack achieves the lowest OWTA score that depends on the DetRe
and the AssA scores. QDTrack scores the lowest DetRe among all
methods since it is not readily able to track target objects of arbi-
trary classes. While this is an expected limitation we further observe
that QDTrack achieves by far the lowest AssA caused by the poor
Association Recall (AssRe) of 30.3, whereas even small GOT method
DiMP-18 achieves a AssRe of 67.7.
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LaSOTExt [37]

Method Venue Prec N-Prec Succ

TaMOs-SwinBase 58.0 57.8 49.2

TaMOs-Resnet-50 54.1 55.0 46.7

AiATrack [44] ECCV’22 54.7 58.8 49.0

OSTrack [120] ECCV’22 57.6 61.3 50.5

ToMP-101 [82] CVPR’22 52.6 58.1 45.9

ToMP-50 [82] CVPR’22 51.9 57.6 45.4

GTELT [131] CVPR’22 52.4 54.2 45.0

KeepTrack [83] ICCV’21 54.7 61.7 48.2

SuperDiMP [30] CVPR’20 49.0 56.3 43.7

LTMU [22] CVPR’20 45.4 53.6 41.4

DiMP [6] ICCV’19 43.2 49.6 39.2

ATOM [23] CVPR’19 41.2 49.6 37.6

Table 6.8: Comparison to the state of the art on LaSOTExt [37].

LaSOTExt UAV123

Backbone FPN Zoom AUC AUC

Resnet-50 ✗ ✗ 41.3 56.2

Resnet-50 ✓ ✗ 43.1 58.2

Resnet-50 ✓ ✓ 46.7 64.2

SwinBase ✗ ✗ 43.9 56.5

SwinBase ✓ ✗ 44.6 57.3

SwinBase ✓ ✓ 49.2 66.2

Table 6.9: Analysis of the FPN and the zooming mechanism on LaSO-
TExt [37] and UAV123 [84].

6.9.b LaSOTExt

Since our tracker always operates on the full frame without the help
of a local search region, tracking small objects is challenging. Thus,
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we integrated an FPN in our tracker to improve the tracking accuracy.
To analyze our tracker on small objects we run it on LaSOTExt [37]
and UAV123 [84]. Tab. 6.9 shows that including an FPN improves the
tracking results on both datasets but is more effective when using a
Resnet-50 as backbone.

To track small objects a high feature map resolution is desirable.
To better cope with extremely small objects, found in some SOT
benchmarks, we add a simple zooming mechanism. In particular,
when the target is smaller that 30× 30 pixels, we crop a region of
the image that ensures this minimal target size when up-scaled to
the input-resolution of 384× 576. Tab. 6.9 clearly shows that using
such a zooming mechanism improves the results on LaSOTExt and
UAV123 considerably, due to the presence of extremely small objects
in these datasets.

Tab. 6.8 shows that our tracker with FPN and zooming achieves
competitive results on LaSOTExt. In particular it achieves the highest
precision and the second highest success AUC only being outper-
formed by OSTrack [120].

6.10 visual results

Visual Comparison to the State of the Art: We show visualizations
of the tracking results of the baseline (ToMP-101) and our proposed
tracker (TaMOs-SwinBase) on four different sequences of the pro-
posed LaGOT benchmark in Fig. 6.9. The first frame specifies the
target objects annotated with bounding boxes that should be tracked
in the video. The other frames show predictions of both trackers. The
results on the first and third sequences demonstrate that our tracker
can re-detect occluded objects quickly whereas a search area based
tracker is not able to re-detect the targets if they reappear outside of
the search area. The second and fourth sequences show the superior
robustness of our tracker. It is able to distinguish similarly looking
objects better without confusing their ids. For more visual results
we refer the reader to the mp4-videos submitted alongside this doc-
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Figure 6.9: Visual comparison between the proposed tracker (Ours-
SwinBase) and the baseline ToMP-101 on different LaGOT sequences.
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Annotations Predictions Predictions
#0001 #0307 #0429

#0001 #0185 #359

#0001 #0055 #0248

Figure 6.10: Visual examples of failure cases of the proposed tracker
(Ours-SwinBase) on different LaGOT sequences.

ument. Each video shows the predictions of the proposed tracker
TaMOs-SwinBase on the proposed LaGOT benchmark. Please note
that we always produce a bounding box for visualization indepen-
dent of its confidence score.
Failure Cases: Fig. 6.10 shows typical failure cases of the proposed
tracker on three different sequences of the proposed LaGOT bench-
mark. Particularly challenging are videos that contain multiple vi-
sually similar objects since our tracker does not employ any motion
model but rather tracks the objects via the learned appearance from
the first frame. Another failure case occurs when the target object is
no longer visible such that our tracker might start to track a visually
similar distractor instead. However, once the target reappears our
globally operating tracker is usually able to re-detect it. Lastly, if mul-
tiple visually similar objects need to be tracked our tracker might fail
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Figure 6.12: Object size distribution of the LaGOT benchmark.

to distinguish these objects such that it produces multiple bounding
boxes with different ids for the same object.

6.11 datasets

Below we provide additional details about our annotated dataset,
such as examples of new classes and various statistics, as well as an
extensive comparison to existing datasets that focus on related tasks.

6.11.a Insights

Fig. 6.11 shows the distribution of the track lengths in seconds for
all tracks in the proposed benchmark LaGOT. We observe that most
tracks are between 30 and 110 seconds long. Furthermore, Fig. 6.12

shows the size distribution of the annotated objects in the dataset.
We conclude that various sizes are present in the dataset but large
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Avg Avg Avg Avg Avg

Num Num Video length Tracks Track Length Track Instance Video Annotation

Dataset Classes Videos (num frames) per Video (num boxes) Length (s) per frame FPS FPS

YouTubeVOS [114] 91 474 135 1.74 27 4.5 1.64 30 FPS 6 FPS

Davis17 [90] - 30 67 1.97 67 2.8 1.97 24 FPS 24 FPS

ImageNetVID* [33] 30 555 317 2.35 208 7 1.58 30 FPS 30 FPS

TAO* [31] 302 988 1010 5.55 21 21 3.31 30 FPS 1 FPS

BDD100k [122] 11 200 198 94.21 26 5 11.8 30 FPS 5 FPS

MOT15 [32]*
1 11 500 45.5 75 3 8 2.5-30 FPS 2.5-30 FPS

MOT16 [32]*
1 7 760 74 273 10 38 14-30 FPS 14-30 FPS

MOT20 [32]*
1 4 2233 583 572 23 150 25 FPS 25 FPS

GMOT-40 [3] 10 40 240 50.65 133 5.3 26.6 24-30 FPS 24-30 FPS

TrackingNet [85] 27 511 442 1 442 15 1 30 FPS 30 FPS

UAV123 [84] 8 123 915 1 915 28 1 30 FPS 30 FPS

OTB-100 [109] 16 100 590 1 590 20 1 30 FPS 30 FPS

NFS-30 [42] 15 100 479 1 479 14 1 30 FPS 30 FPS

GOT10k [54] 84 420 150 1 150 15 1 10 FPS 10 FPS

OxUvA [102] 8 200 4198 1 60 140 1 30 FPS 1 FPS

LaSOT [37] 71 280 2430 1 2430 81 1 30 FPS 30 FPS

LaGOT 102 291 2258 2.88 702 70 2.36 30 FPS 10 FPS

Table 6.10: Comparison of LaGOT and the existing datasets. Statistics
is provided for test or validation set for the datasets for which test set
annotations are hidden. * For MOT15-20 we report stats on the train set.

objects are rare than small ones. Further, the distribution shows that
the targets are not visible in a large amount of video frames indicated
by an object area of zero.

During the annotation process, we added 31 new classes: rotor,
fish, backpack, motor, wheel, garbage, drum, accordion, super-mario, hockey
puck, hockey stick, kite-tail, ball, crown, stick, spiderweb, head, banner,face,
bench, tissue-bag, para glider, star-patch, shadow, bucket, helicopter, sonic,
hero, ninja-turtle, reflection, rider.

6.11.b Comparison

We provide a detailed comparison of related existing datasets in
Tab. 6.10. We divide the table into Video Object Segmentation (VOS),
Video Object Detection, Multiple Object Tracking (MOT), Generic
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Multiple Object Tracking (GMOT) and Single Object Tracking (SOT)
datasets.

The length of VOS sequences is much shorter than in our LaGOT
benchmark (2.8s/4.5s vs 70s). Similarly the video object detection
dataset ImagenetVID contains shorter sequences (7s vs. 70s), fewer
classes (30 vs 102) and a smaller number of average tracks per se-
quence (2.35 vs 2.88) than LaGOT. MOT datasets typically focus
on fewer classes, contain shorter sequences or are annotated at low
frame rates only. TAO contains many more classes than typical MOT
datasets but provides annotations only at 1 FPS leading to a much
lower average number of annotated frames per track than LaGOT (21

vs. 702). The GMOT-40 dataset contains fewer classes, fewer videos,
shorter sequences and provides due to its task only annotations of
one particular object class per sequence compared to LaGOT. In con-
trast to SOT datasets that provide only a single annotated object per
sequence, LaGOT provides on average 2.88 tracks per sequence. Fur-
thermore, it contains longer sequences than most listed SOT datasets.
Overall LaGOT enables to properly evaluate the robustness and accu-
racy of multiple object GOT methods. A key factor are the multiple
annotated tracks per sequence at a high frame rate and the relatively
long sequences.
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C O N C L U S I O N

In this thesis, we tackled the problem of generic visual object tracking
in videos. Next, we will briefly summarize our contributions, discuss
limitations and possible directions for future work.

7.1 summary of contributions

In Chapter 3, we proposed a novel tracking pipeline employing a
learned target candidate association network in order to track both
the target and distractor objects. This approach allows us to propa-
gate the identities of all target candidates throughout the sequence.
In addition, we propose a training strategy that combines partial
annotations with self-supervision. We do so to compensate for lack-
ing correspondence annotations between distractor objects in visual
tracking. We showed that the resulting tracker KeepTrack outper-
formed the state of the art at that time. KeepTrack achieved by far
the most robust tracking results.

In Chapter 4, we introduced ToMP a novel tracker employing a
Transformer-based model predictor. The model predictor estimates
the weights of the DCF-based target model to localize the target and a
second set of weights for precise bounding box regression. To achieve
this, we developed a new module that produce a target-specific
positional encoding that is combined with the backbone features. We
showed that our tracker ToMP is more robust and regresses more
accurate bounding boxes than the baseline method SuperDiMP.

Beside the new tracking methods proposed in the previous cßhap-
ters, we introduced a new benchmark in Chapter 5, that focuses on
visual tracking in diverse scenarios with adverse visibility. The bench-
mark AVisT covers 18 diverse scenarios with 42 classes. These diverse
scenarios are further grouped into five attributes. We evaluated a

139
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variety of recent Siamese, discriminative classifiers and Transformer-
based trackers on AVisT. Our experiments showed that even the most
recent Transformer-based tracker achieves a relatively low score,
thereby highlighting the challenging nature of AVisT.

Finally, in Chapter 6, we proposed a multiple object GOT bench-
mark, that allows to evaluate GOT methods that can jointly track mul-
tiple targets in the same video. In addition, we detailed a Transformer-
based tracker that is capable of processing multiple target objects
at the same time. Our approach integrates a novel generic multi
object encoding and an FPN in order to achieve full frame tracking.
Our method outperforms recent trackers on the proposed LaGOT
benchmark, while operating 4× faster than the SOT baseline when
tracking 10 objects. Lastly, we demonstrated, that our approach also
achieves excellent results on large-scale SOT benchmarks.

7.2 discussion, limitations and future work

7.2.1 KeepTrack

KeepTrack uses the score map of a base tracker to extract target
candidates. Then, it matches these candidates with the target object
and the distractors of the previous frame in order to identify the
target in the current frame. Thus, the main limitations are the small
time horizon and the selected features used for matching.
Matching across Multiple Frames: KeepTrack matches target can-
didates only between two frames. However, matching candidates
over multiple past frames would be beneficial, especially in uncertain
scenarios. Furthermore, keeping all possible assignment probabilities
between target candidates of adjacent frames, would allow to form a
graph over the whole video sequence. Then, a dynamic programming
algorithm could be applied to find the best fitting target candidate
by taking the entire history into account [104].
Candidate Features: Currently, the visual features used for matching
correspond to the features queried at the predicted center location
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of each target candidate. However, having access to a bounding box
for each target candidate could allow to extract more discriminative
visual features, for example by using Region of Interest (ROI) pooling.
Furthermore, the bounding box itself could be used as a feature for
matching.

7.2.2 ToMP

ToMP replaces the optimization based model predictor of DCF-based
trackers with a Transformer. Despite several advantages, doing so
results in the following limitations.
Memory Consumption: The Transformer encoder consist of self-
attention layers that computes similarity matrices between multiple
training and test frame features. This leads to a large memory foot-
print that impacts training and inference run-time. Thus, in future
work this limitation should be addressed by evaluating alternatives
such as [56, 59, 94] aiming at decreasing the memory burden.
Distractors: Another limiting factor of ToMP arises from challenging
tracking sequences. In particular, distractors that are present while
the target is occluded, is a typical failure scenario of ToMP, since it is
lacking explicit distractor handling as in KeepTrack.

7.2.3 AVisT

AVisT focuses on adverse visibility scenarios with the goal of exam-
ining visual trackers on diverse scenes. Even though, AVisT puts a
special focus on challenging and diverse scenarios, it has the follow-
ing limitations.
Domain Diversity: AVisT mainly focuses on tracking objects in
adverse visibility of natural scenes. To further increase the richness
of GOT benchmarks, sequences from other domains could be added
such as bio-medical videos captured via microscopes or other devices,
corrupted sequences from old black and white or early color movies,
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artificially generated videos from video games [38] or blockbuster
movies.
Rare Object Classes: AVisT contains objects of 42 different classes
that can be summarized as pedestrians, animals and vehicles. In order
to better benchmark the capability of existing trackers to track objects
of unknown class categories, sequences with rarer class categories
could be added. Possible examples are microorganisms, spaceships,
or fictional creatures [1, 38, 54].

7.2.4 LaGOT

In contrast to SOT datasets, LaGOT provides annotations for mul-
tiple objects in the same video sequence. The video sequences are
borrowed from LaSOT [38] but new annotations were added. Thus,
LaGOT has the following limitations.
Initial Annotations: Following the setup in existing GOT and Video
Object Segmentation (VOS) benchmarks, LaGOT contains a single
initial frame where all target objects are specified. However, the multi-
object GOT task could be further generalized by allowing that target
objects can appear at any time. Thus, whenever they appear, they
should be tracked along with the previously specified targets.
Video Diversity: Currently, all the LaGOT sequences are borrowed
from the evaluation set of LaSOT. Thus, the multi-object GOT bench-
mark could be further improved by adding new sequences or by
collecting videos from other datasets with complementary character-
istics.
Training Data: LaGOT is an evaluation benchmark and therefore
does not provided any training data. Instead, LaGOT requires that the
multi-object GOT tracking capabilities are trained by using datasets
that focus on different tasks. Particularly useful are datasets where
multi-object annotations are available (MOT, VOS, VIS). Thus, provid-
ing a training dataset could further improve the interest in this task
and improve the performance of resulting multi-object GOT trackers.
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7.2.5 TaMOs

TaMOs allows to jointly track multiple generic objects specified by
user-provided bounding boxes in the initial frame of the video se-
quence. The introduced multi object encoding module and the mod-
ified Transformer-based model predictor allow to jointly produce
multiple target models. Since TaMOs is the first method that can track
multiple generic targets in the same video it has a few limitations.
Global Reasoning: While the Transformer-based model predictor
jointly produces all target models, TaMOs avoids any explicit match-
ing or global reasoning over all target object tracklets. Hence, future
work could try to overcome this limitation by developing a more ex-
plicit matching approach, that allows to match different target objects
over time. The matching methods could be similar to KeepTrack or
the association methods employed in MOT trackers [4, 11, 88].
Tracking newly appearing Objects: TaMOs is able to track mul-
tiple generic objects at the same time but requires that all objects
are annotated and visible in the initial frame. Thus, an extension
of TaMOs could allow to integrate and track objects appearing at
arbitrary times. This would not only allow to track new target objects
on the fly but would also enable to track distractor objects. Together
with the aforementioned global reasoning, this approach has the
potential to increase the robustness of the tracker against distractors.
Number of Targets: Currently, the number of target objects, that
can be tracked, is limited by the pool-size of the object embeddings.
While it is possible to learn a larger pool-size, it is cumbersome. Thus,
an interesting direction for future research would be to generate an
arbitrary number of object embeddings on the fly, such that any
number of target objects can be tracked.
Tracking Small Objects: Furthermore, we proposed to use an FPN
to regress more accurate bounding boxes for small objects and show
that adding such an FPN helps. However, as in object detection,
tracking extremely small objects is challenging due to the limited
feature resolution when processing the full frame.
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Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernández, G.
& et al. The Eighth Visual Object Tracking VOT2020 Challenge
Results in Proceedings of the European Conference on Computer
Vision Workshops (ECCVW) (2020).

62. Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R.,
Fernandez, G., Nebehay, G., Porikli, F. & Čehovin, L. A Novel
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