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ABSTRACT

Visual object tracking is a fundamental problem in computer vision
and finds its application in multiple tasks such as autonomous driv-
ing, robotics, surveillance, video understanding, and sports analysis.
Generic Object Tracking (GOT) is a specialized tracking task that
aims at tracking virtually any object in a video by using a user-
specified bounding box that defines the target object in the initial
video frame. Learning a target model, in order to track the target
in each frame, from such sparse information proves extremely chal-
lenging. Especially in adverse tracking scenarios, where the target
object is frequently occluded, goes out of view, or where distrac-
tors, visually similar objects as the target, are present. Thus, we
tackle the problem of robust generic object tracking in videos even in
challenging scenarios in this thesis.

First, we propose a novel tracking architecture that keeps track of
distractor objects in order to continue tracking the target. We achieve
this by learning an association network, that allows to propagate the
identities of all target candidates from frame-to-frame. To tackle the
problem of lacking ground-truth correspondences between distrac-
tor objects in visual tracking, we propose a training strategy that
combines partial annotations with self-supervision.

Second, we introduce a Transformer-based target model predictor
that produces the target model. The employed Transformer captures
global relations with little inductive bias, allowing it thus to learn the
prediction of powerful target models even for challenging sequences.
We further extend the model predictor to estimate a second set of
weights, which are applied for accurate bounding box regression.

Third, we propose the new visual tracking benchmark, AVisT, dedi-
cated for tracking scenarios with adverse visibility. AVisT contains 18
diverse scenarios broadly grouped into five attributes with 42 object
categories. The key contribution of AVisT are diverse and challeng-
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ing scenarios, covering severe weather conditions, obstruction and
adverse imaging effects, along with camouflage.

Finally, we propose the task of multi-object GOT, that benefits
from a wider applicability than tracking only a single generic ob-
ject per video, rendering it more attractive in real-world applica-
tions. To this end, we introduce a new large-scale GOT benchmark,
LaGOT, containing multiple annotated target objects per sequence.
Our benchmark allows researchers to tackle remaining challenges in
GOT, aiming to increase robustness and reduce computation through
joint tracking of multiple objects simultaneously. Furthermore, we
propose a Transformer-based GOT tracker capable of joint processing
of multiple objects through shared computation.
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ZUSAMMENFASSUNG

Die visuelle Objektverfolgung ist ein grundlegendes Problem im
Bereich des computerbasierten Sehens (Computer Vision) und findet
ihre Anwendung in zahlreichen Aufgabenbereichen wie autonomes
Fahren, Robotik, ﬂberwachung, Videoverstdndnis und -bearbeitung,
und Sportanalysen. Die Verfolgung generischer Objekte (Generic Ob-
ject Tracking (GOT)) ist eine spezialisierte Verfolgungsaufgabe. GOT
zielt darauf ab, praktisch jedes beliebige Objekt in einem Video zu
verfolgen. Das Objekt muss allerdings zuvor, durch ein Rechteck im
Anfangsbild des Videos, von einem Nutzer gekennzeichnet worden
sein. Das Erlernen eines Zielobjektmodells, um das Zielobjekt in
jedem Bild zu verfolgen, erweist sich bei solch sparlichen Informa-
tionen als dusserst schwierig. Dies gilt insbesondere fiir ungiinstige
Szenarien, in denen das Zielobjekt hdufig verdeckt ist, aus dem Blick-
feld verschwindet oder in denen visuell dhnliche Objekte wie das
Zielobjekt vorhanden sind. Daher befassen wir uns in dieser Arbeit
mit dem Problem der robusten Verfolgung von generischen Objekten
in Videos, selbst in schwierigen Fallen.

Zunichst schlagen wir eine neuartige Verfolgungsmethode vor,
die visuell d4hnliche Objekte wie das Zielobjekt im Auge behalt, um
die Verfolgung des Zielobjekts zu verbessern. Wir erreichen dies
durch das Erlernen eines Assoziationsnetzwerks, das es ermdglicht,
die Kennzeichnung aller Zielobjekt-Kandidaten von Bild zu Bild
weiterzugeben. Um das Problem fehlender gekennzeichneter Trai-
ningsdaten zwischen den Zielobjekt-Kandidate bei der Objektverfol-
gung zu losen, schlagen wir eine Trainingsstrategie vor, die teilweise
gekennzeichnete Trainingsdaten mit Selbst-Uberwachtem-Lernen
kombiniert.

Zweitens fiihren wir einen Transformer-basierten Modellschétzer
ein. Der eingesetzte Transformer erfasst globale Beziehungen mit
geringer induktiver Verzerrung, so dass er die Vorhersage leistungs-
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fahiger Zielobjektmodelle auch fiir schwierige Sequenzen erlernen
kann. Ausserdem erweitern wir den Modellschdtzer damit ein zwei-
ter Satz von Gewichten generiert werden kann, die dann fiir eine
genaue Regression des Zielobjekt-Begrenzungsrahmen verwendet
werden kann.

Drittens schlagen wir den neuen visuellen Objekt-Verfolgungs-
Benchmark AVisT vor, der sich auf Szenarien mit ungtinstigen Sicht-
verhiltnissen fokusiert. AVisT enthilt 18 verschiedene Szenarien,
die grob in fiinf Attribute mit 42 Objektkategorien unterteilt sind.
Der Hauptbeitrag von AVisT sind die vielféltigen und anspruchs-
vollen Szenarien, die schwierige Wetterbedingungen, Hindernisse,
ungiinstige Bildeffekte, und Tarnung umfassen.

Schliesslich schlagen wir die neue Aufgabe vor, mehrere generische
Objekte im gleichen Video zu verfolgen. Diese Ausfgabe profitiert
von einer breiteren Anwendbarkeit und macht die Aufgabe in rea-
len Anwendungen attraktiver als die Verfolgung eines einzelnen
generischen Objekts pro Video. Daher fiihren wir einen neuen gross
angelegten Benchmark ein, LaGOT, der mehrere gekennzeichnete
Zielobjekte pro Sequenz enthélt. Unser Benchmark ermdoglicht es
den Forschern, die wichtigsten verbleibenden Herausforderungen
im Bereich der generischen Objektverfolgung anzugehen, um die Ro-
bustheit zu erhthen und den Rechenaufwand durch die gemeinsame
Verfolgung mehrerer Objekte gleichzeitig zu reduzieren. Dartiber hin-
aus schlagen wir einen auf Transformer basierenden Tracker vor, der
die Verarbeitung mehrerer Objekte gleichzeitig durch gemeinsame
Berechnung ermdglicht.
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INTRODUCTION

Human perception has developed highly sophisticated visual track-
ing capabilities that enable us to track with incredible accuracy and
speed. Our visual system is highly adaptable and is able to rapidly
adjust the gaze in response to changes in the visual environment.
Moreover, human tracking abilities are not limited to simply follow-
ing a target in a linear path. We are able to track in three dimensions,
allowing us to accurately perceive depth and distance. Another key
aspect of human tracking abilities is our deep understanding of the
environment. By having a fundamental understanding of the physi-
cal world around us such as the principles of motion, humans can
predict and anticipate the movements of different components in our
surroundings. This allows us to track targets with incredible accuracy,
even in complex and dynamic environments, and avoid collisions
when navigating through crowded spaces.

While humans possess remarkable visual tracking capabilities,
automating this task for machines is crucial for many applications.
In practice, visual tracking can be applied in any field where the
path of a target needs to be reconstructed over time. Thus, visual
tracking has a wide range of practical applications across various
domains. For instance, in the field of autonomous systems such as
self-driving cars and drones [45, 122], visual tracking is used to detect
and track objects like pedestrians, vehicles, and obstacles in real-time
for safe navigation. In the domain of robotics, visual tracking is used
to track the position and movement of robots or other objects in the
environment to enable precise control, localization and manipula-
tion [19, 95]. In 3D computer vision, tracking of key points is used
to estimate camera pose, which in turn is used for 3D reconstruc-
tion and augmented reality applications [21, 86]. Industrial quality
control also leverages tracking of automated processes using video
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cameras for monitoring and identifying any anomalies in production
lines. Similarly, the tracking of human and animal activities and
behavior is used for understanding and analyzing their movements
and poses, with applications in fields like sports, entertainment, and
wildlife research [2, , I. Finally, tracking methods are used for
semi-automatic annotation of videos [65], enabling improved video
understanding for a wide range of applications.

Generic Object Tracking (GOT) is a specialized tracking task that
involves tracking objects of virtually any category without prior
knowledge of the object or the environment. This is typically achieved
by defining the target object in the initial frame of the video sequence
using a user-specified bounding box. The challenge of GOT is that the
tracker needs to learn to track the target using only a single training
example provided at test time, without any additional information
about the target’s movement or appearance. Additionally, the tracker
needs to be able to operate in various domains with different lighting,
resolution, and application scenarios. This makes GOT particularly
challenging, as the tracker needs to be able to handle significant
appearance changes of the target object, as well as adapt to different
environments such as underwater or at microscopic scales.

GOT can be further complicated by objects that are visually similar
to the target, known as distractor objects, as well as by background
clutter and camouflage. Additionally, target objects are often in mo-
tion, occluded, or go out of view, making it difficult to learn their
motion models and re-detect them once they reappear. These factors
can significantly limit the tracking performance. The quality of video
capturing also plays a crucial role in successful target tracking. Partic-
ularly harmful effects are camera motion, motion blur, and changes
in scale, illumination, and view-point.

Due to the wide applicability of visual tracking, numerous trackers
have been proposed to tackle the described challenges. Discrimina-
tive Correlation Filter (DCF)-based and Siamese trackers have shown
great potential for robust tracking even in adverse tracking scenarios.
DCF-based trackers formulate the target localization problem as an
optimization problem and therefore require solving the said problem
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during inference [10, 26, 27, 51, 52]. Due to their setup they allow to
update the target model with prediction results of previous frames
and can therefore track target objects that undergo severe appear-
ance changes [28]. A downside of DCF-based trackers is that while
they use deep learned feature representations, they are not readily
end-to-end trainable [6]. Thus, Siamese trackers largely gained in
popularity because they are end-to-end trainable and operate at a
very high frame rate. However, Siamese trackers cannot as easily inte-
grate previous predictions as DCF-based trackers. This characteristic
makes Siamese trackers particularly vulnerable to severe appearance
changes, to distractors or to sequences with heavy background clutter
and camouflage [5, 68, , ]. Furthermore, existing GOT methods
focus on tracking a single object per video sequence instead of pro-
cessing multiple targets at the same time. However, multi-object GOT
has the potential of increasing the robustness of a tracker, by joint
reasoning across all tracks to reduce the risk of confusing similar
objects.

In this thesis, we aim at addressing several open challenges in
visual object tracking. In Chapter 3, we propose a novel tracking
architecture that keeps track of distractor objects to continue tracking
the target. To achieve this, we first retrieve the target candidates that
correspond to local maxima in the score map of the base tracker.
Both, DCF-based and Siamese trackers produces such a score map.
Then, we introduce a learned association network, that allows to
propagate the identities of all target candidates from frame-to-frame.

Next, in Chapter 4, we introduce a powerful Transformer-based
model prediction module, that reduces the need of specialized distrac-
tor mitigation approaches. The main idea is to replace optimization-
based model predictors, that are typically employed in DCF-based
trackers, with a Transformer. The Transformer is then learned in
an end-to-end fashion to predict the target model for each frame
individually. In contrast to DCF-based trackers, we further extend
the model predictor to estimate a second set of weights that enable
accurate bounding box regression.
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Beside new tracking architectures, we introduce in Chapter 5,
the new visual tracking benchmark AVisT. AVisT is dedicated for
tracking scenarios with adverse visibility, such as severe weather
or camouflage. Furthermore, we study the robustness of existing
trackers in such challenging settings.

Lastly, in Chapter 6, we propose the multi-object GOT task that
benefits from a wider applicability than single object tracking. The
idea of this task is developing trackers that are capable of tracking
multiple generic objects at the same time in each video sequence. To
this end, we introduce a new large-scale GOT benchmark, LaGOT,
containing multiple annotated target objects per sequence. Further-
more, we propose a Transformer-based GOT tracker that is capable
of joint processing of multiple objects through shared computation.



RELATED WORK

We tackle the problem of GOT. In this chapter we provide a brief
overview of the existing literature covering GOT datasets and bench-
marks and the most popular tracking methodologies ranging from
DCF-based trackers and Siamese trackers to Transformer-based track-
ers.

2.1 GENERIC OBJECT TRACKING DATASETS AND BENCHMARKS

In GOT there are specialized datasets and challenges that focus
on short-term or long-term tracking. OTB [109] is one of the most
popular short-term tracking datasets, containing 100 videos with
an average length of 578 frames. Other similarly large short-term
tracking datasets that focus on the impact of color information (Tem-
pleColor [70]) or on fast moving targets (NFS [42]). In contrast, GOT-
10k [54] and TrackingNet [85] are large-scale short term tracking
datasets that contain thousands of different videos (10k and 30k
videos respectively). While most GOT datasets contain less than 100
different object classes, GOT-10k contains objects from 563 different
class categories. In addition to all these tracking datasets, there exist
dedicated benchmarks, such as the VOT series [60—64] associated with
annual tracking challenge competitions. The VOT challenge mainly
focuses on short-term tracking but contains several sub-challenges,
where the VOTLT sub-challenge focuses on long-term tracking.
Short-term tracking focuses on accurate localization and bounding-
box regression in videos where the objects is always at least partially
visible [62, 109]. Thus, short-term trackers must track the target object
reliably even in challenging scenarios where the target object under-
goes sever appearance changes such as deformations or scale varia-
tions or when visually similar objects as the target are present. Other

5



RELATED WORK

challenging settings are low-resolution, fast-motion, background clut-
ter, motion blur, viewpoint changes or camera motion [42, 85, ].
In addition to all these challenges, long-term tracking includes se-
quences where the target object goes out-of-view, is fully or at least
partially occluded [35, 84, I. Thus, beyond tracking the target ob-
ject while it is visible, long-term trackers are required to re-detect the
previously occluded target object as soon as it is visible again [60].

2.2 GENERIC OBJECT TRACKERS

Discriminative Correlation Filter-based Trackers: A successful
GOT methodology is DCF-based tracking [10, 26, 27, 29, 51, 52]. Such
methods learn a correlation filter from a set of training samples. The
correlation filter is optimized to localize the target objects on the
training samples by performing a circular sliding window operation.
Due to the special structure of the formulated problem, the Fast
Fourier Transform (FFT) can be used to efficiently obtain the corre-
lation filter. Early DCF based trackers such as MOSSE [10] showed
several limitations caused by the circular convolution, by the simple
gray scale image features or by using a single scale. Thus, multiple
follow up works tackled these problems [26, 27, 29]. The popularity
of deep learning lead to astonishing improvements particularly in
learning feature representations for effective target classification and
for accurate target estimation [6, 8, 23, 25, 29].

More recent but still related GOT methods no longer used FFT-
based algorithms to produce the target model but relied on alterna-
tive optimization strategies. ATOM [23] employed a two-layer Percep-
tron as target model and used Conjugate Gradient to solve the target
classification problem. In order to train such models end-to-end,
DiMP [6] introduced the idea of unrolling the iterative optimization
algorithm for a fixed number of iterations and to integrate it in the
tracking pipeline. In addition, ATOM [23] introduced a dedicated
bounding box regression branch, making the multi-scale detection
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strategy obsolete. PrDiMP [30] improves on the target state estimation
of ATOM by applying a probabilistic regression formulation.
Siamese Trackers: Other related and very popular GOT methods are
Siamese trackers that employ Siamese networks to learn a similarity
metric [5, 16, 46, 47, 67, 68, , , , , , ]. Siamese
trackers are end-to-end trainable and typically achieve a high tracking
efficiency. SiamFC [5] used a fully-convolutional deep network to
learn a strong embedding in an offline phase. SiamRPN [68] and
SiamRPN++ [67] introduced region proposal components that are
extensively trained offline to regress more accurate bounding boxes.
SiamCAR [47], SiamFC++ [115], SiamBAN [16], and Ocean [128] are
anchor-free trackers that used separate branches for target object
classification and bounding box regression.
Transformer-based Trackers: Recently Transformer-based trackers
became very popular and powerful [14, 18, 41, 44, , , , ,
]. TrDiMP [106] and TrSiam [106] use traditional tracking architec-
tures but integrated a Transformer encoder and decoder to produce
refined template and search area features. TransT [14] introduced
a feature fusion network with alternating self- and cross-attention
blocks resulting in fused feature vectors that allow to localize the
object and regress its bounding box. STARK [117] adopted the Trans-
former architecture of DETR [12]. Instead of fusing the template and
search area features in the Transformer decoder, they are stacked and
jointly processed by the encoder and the decoder. A single object
query is fed into the the decoder and its output is fused with the
encoder features in order to directly regress the target bounding
box. MixFormer [15] and OSTrack [120] no longer employ classical
backbones such as ResNets [50] to first produce visual features for
tracking but uses one Transformer architecture [35, 108] to jointly
extract template and search area features and for the feature fu-
sion process. Eventually, shallow components produce the target
classification scores and the bounding box.






LEARNING TARGET CANDIDATE ASSOCIATION
TO KEEP TRACK OF WHAT NOT TO TRACK

In this chapter, we propose a novel tracking architecture that keeps
track of distractor objects in order to continue tracking the target.
To this end, we introduce a learned association network, allow-
ing us to propagate the identities of all target candidates from
frame-to-frame. To tackle the problem of lacking ground-truth cor-
respondences between distractor objects in visual tracking, we pro-
pose a training strategy that combines partial annotations with self-
supervision. The code and trained models are available at https:
//github.com/visionml/pytracking.

3.1 INTRODUCTION

Generic visual object tracking is one of the fundamental problems
in computer vision. The task involves estimating the state of the
target object in every frame of a video sequence, given only the initial
target location. Most prior research has been devoted to the devel-
opment of robust appearance models, used for locating the target
object in each frame. The two currently dominating paradigms are
Siamese networks [5, 67, 68] and discriminative appearance mod-
ules [6, 25]. While the former employs a template matching in a
learned feature space, the latter constructs an appearance model
through a discriminative learning formulation. Although these ap-
proaches have demonstrated promising performance in recent years,
they are effectively limited by the quality and discriminative power
of the appearance model.

As one of the most challenging factors, co-occurrence of distractor
objects similar in appearance to the target is a common problem
in real-world tracking applications [7, 112, 133]. Appearance-based
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LEARNING TO KEEP TRACK OF WHAT NOT TO TRACK

Previous Frame

Target
Candidate
Association
Network

Current Frame

@ Target Candidate @ Target Object O Distractor Object

FIGURE 3.1: Visualization of the proposed target candidate association
network used for tracking. For each target candidate (@) we extract a set
of features such as score, position and appearance in order to associate
candidates across frames. The proposed target association network then
allows to associate these candidates (@) with the detected distractors (<)
and the target object (@) of the previous frame. Lines connecting circles
represent associations.

models struggle to identify the sought target in such cases, often
leading to tracking failure. Moreover, the target object may undergo
a drastic appearance change over time, further complicating the dis-
crimination between target and distractor objects. In certain scenarios,
e.g., as visualized in Fig. 3.1, it is even virtually impossible to unam-
biguously identify the target solely based on appearance information.
Such circumstances can only be addressed by leveraging other cues
during tracking, for instance the spatial relations between objects.
We therefore set out to address problematic distractors by exploring
such alternative cues.

We propose to actively keep track of distractor objects in order to
ensure more robust target identification. To this end, we introduce a
target candidate association network, that matches distractor objects
as well as the target across frames. Our approach consists of a base
appearance tracker, from which we extract target candidates in each
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frame. Each candidate is encoded with a set of distinctive features,
consisting of the target classifier score, location, and appearance. The
encodings of all candidates are jointly processed by a graph-based
candidate embedding network. From the resulting embeddings, we
compute the association scores between all candidates in subsequent
frames, allowing us to keep track of the target and distractor objects
over time. In addition, we estimate a target detection confidence,
used to increase the robustness of the target classifier.

While associating target candidates over time provides a powerful
cue, learning such a matching network requires tackling a few key
challenges. In particular, generic visual object tracking datasets only
provide annotations of one object in each frame, i.e., the target. As a
result, there is a lack of ground-truth annotations for associating dis-
tractors across frames. Moreover, the definition of a distractor is not
universal and depends on the properties of the employed appearance
model. We address these challenges by introducing an approach that
allows our candidate matching network to learn from real tracker out-
put. Our approach exploits the single target annotations in existing
tracking datasets in combination with a self-supervised strategy. Fur-
thermore, we actively mine the training dataset in order to retrieve
rare and challenging cases, where the use of distractor association is
important, in order to learn a more effective model.

Contributions: In summary, our contributions are as follows:

(i) We propose a method for target candidate association based on
a learnable candidate matching network.

(ii) We develop an online object association method in order to
propagate distractors and the target over time and introduce
a sample confidence score to update the target classifier more
effectively during inference.

(iii) We tackle the challenges with incomplete annotation by employ-
ing partial supervision, self-supervised learning, and sample-
mining to train our association network.

11
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(iv) We perform comprehensive experiments and ablative analyses

by integrating our approach into the tracker SuperDiMP [6,

, 30]. The resulting tracker KeepTrack sets a new state-of-the-

art on six tracking datasets, obtaining an AUC of 67.1% on
LaSOT [38] and 69.7% on UAV123 [84].

3.2 RELATED WORK

Discriminative appearance model based trackers [6, 23, 29, 43, 52,
] aim to suppress distractors based on their appearance by inte-
grating background information when learning the target classifier
online. While often increasing robustness, the capacity of an online
appearance model is still limited. A few works have therefore de-
veloped more dedicated strategies of handling distractors. Bhat et
al. [7] combine an appearance based tracker and an RNN to prop-
agate information about the scene across frames. It internally aims
to track all regions in the scene by maintaining a learnable state
representation. Other methods exploit the existence of distractors
explicitly in the method formulation. DaSiamRPN [133] handles dis-
tractor objects by subtracting corresponding image features from
the target template during online tracking. Xiao et al. [112] use the
locations of distractors in the scene and employ hand crafted rules
to classify image regions into background and target candidates
on each frame. SiamRCNN [104] associates subsequent detections
across frames using a hand-crafted association score to form short
tracklets. In contrast, we introduce a learnable network that explicitly
associates target candidates from frame-to-frame. Zhang et al. [129]
propose a tracker inspired by the Multiple Object Tracking (MOT)
philosophy of tracking by detection. They use the top-k predicted
bounding boxes for each frame and link them between frames by us-
ing different features. In contrast, we omit any hand crafted features
but fully learn to predict the associations using self-supervision.
Many online trackers [6, 23, 25] employ a memory to store previous
predictions to fine-tune the tracker. Typically the oldest sample is
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replaced in the memory and an age-based weight controls the contri-
bution of each sample when updating the tracker online. Danelljan et
al. [28] propose to learn the tracking model and the training sample
weights jointly. LTMU [22] combines an appearance based tracker
with a learned meta-updater. The goal of the meta-updater is to
predict whether the employed online tracker is ready to be updated
or not. In contrast, we use a learned target candidate association
network to compute a confidence score and combine it with sample
age to manage the tracker updates.

The object association problem naturally arises in MOT. The dom-
inant paradigm in MOT is tracking-by-detection [1, 11, 98, 123, 126],
where tracking is posed as the problem of associating object detec-
tions over time. The latter is typically formulated as a graph parti-
tioning problem. Typically, these methods are non-causal and thus
require the detections from all frames in the sequence. Furthermore,
MOT typically focuses on a limited set of object classes [32], such
as pedestrians, where strong object detectors are available. In com-
parison we aim at tracking different objects in different sequences
solely defined by the initial frame. Furthermore, we lack ground
truth correspondences of all distractor objects from frame to frame
whereas the ground-truth correspondences of different objects in
MOT datasets are typically provided [32]. Most importantly, we aim
at associating target candidates that are defined by the tracker itself,
while MOT methods associate all detections that correspond to one
of the sought objects.

3.3 METHOD

In this section, we describe our tracking approach, which actively
associates distractor objects and the sought target across multiple
frames.

13
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3.3.1  Overview

An overview of our tracking pipeline is shown in Fig. 3.2. We use a
base tracker with a discriminative appearance model and internal
memory. In particular, we adopt the SuperDiMP [24, 49] tracker,
which employs the target classifier in DiMP [6] and the probabilistic
bounding-box regression from [30], together with improved training
settings.

We use the base tracker to predict the target score map s for the
current frame and extract the target candidates v; by finding locations
in s with high target score. Then, we extract a set of features for each
candidate. Namely: target classifier score s;, location ¢; in the image,
and an appearance cue f; based on the backbone features of the base
tracker. Then, we encode this set of features into a single feature
vector z; for each candidate. We feed these representations and the
equivalent ones of the previous frame — already extracted beforehand
— into the candidate embedding network and process them together
to obtain the enriched embeddings h; for each candidate. These
feature embeddings are used to compute the similarity matrix S
and to estimate the candidate assignment matrix A between the two
consecutive frames using an optimal matching strategy.

Once having the candidate-to-candidate assignment probabilities
estimated, we build the set of currently visible objects in the scene
O and associate them to the previously identified objects O, i.e.,
we determine which objects disappeared, newly appeared, or stayed
visible and can be associated unambiguously. We then use this prop-
agation strategy to reason about the target object 6 in the current
frame. Additionally, we compute the target detection confidence f to
manage the memory and control the sample weight, while updating
the target classifier online.

15
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3.3.2 Problem Formulation

Let the set of target candidates, which includes distractors and the
sought target, be V = {Ui}fi 1» where N denotes the number of can-
didates present in each frame. We define the target candidate sets 1’
and V corresponding to the previous and current frames, respectively.
We formulate the problem of target candidate association across two
subsequent frames as, finding the assignment matrix A between the
two sets V" and V. If the target candidate v} corresponds to v; then
A;jj=1and A;; = 0 otherwise.

In practice, a match may not exist for every candidate. Therefore,
we introduce the concept of dustbins, which is commonly used for
graph matching [34, 93] to actively handle the non-matching vertices.
The idea is to match the candidates without match to the dustbin on
the missing side. Therefore, we augment the assignment matrix A
by an additional row and column representing dustbins. It follows
that a newly appearing candidate v; — which is only present in the
set V — leads to the entry Ayvy1,; = 1. Similarly, a candidate v] that
is no longer available in the set V results in A; y41 = 1. To solve the
assignment problem, we design a learnable approach that predicts
the matrix A. Our approach first extracts a representation of the
target candidates, which is discussed below.

3.3.3 Target Candidate Extraction

Here, we describe how to detect and represent target candidates
and propose a set of features and their encoding. We define the set
of target candidates V as all unique coordinates ¢; that correspond
to a local maximum with minimal score in the target score map s.
Thus, each target candidate v; and its coordinate ¢; need to fulfill the
following two constraints,

Pmax(s,¢;) =1 and s(c¢) > T, (3.1)

where ¢max returns 1 if the score at ¢; is a local maximum of s or o
otherwise, and T denotes a threshold. This definition allows us to
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build the sets V' and V, by retrieving the local maxima of s’ and s
with sufficient score value. We use the max-pooling operation in a
5 x 5 local neighbourhood to retrieve the local maxima of s and set
T = 0.05.

For each candidate we build a set of features inspired by two
observations. First, we notice that the motion of the same objects
from frame to frame is typically small and thus similar locations and
similar distances between different objects. Therefore, the position
¢; of a target candidate forms a strong cue. In addition, we observe
only small changes in appearance for each object. Therefore, we use
the target classifier score s; = s(c;) as another cue. In order to add a
more discriminative appearance based feature f; = f(c;), we process
the backbone features (used in the baseline tracker) with a single
learnable convolution layer. Finally, we build a feature tuple for each
target candidate as (s;, f;, ¢;). These features are combined in the
following way,

z, = f; + l[J(Si, Cl‘), You; €V,

where ¢ denotes a Multi-Layer Perceptron (MLP), that maps s and ¢
to the same dimensional space as f;. This encoding permits jointly
reasoning about appearance, target similarity, and position.

3.3.4 Candidate Embedding Network

In order to further enrich the encoded features and in particular
to facilitate extracting features while being aware of neighbouring
candidates, we employ a candidate embedding network. On an ab-
stract level, our association problem bares similarities with the task of
sparse feature matching. In order to incorporate information of neigh-
bouring candidates, we thus take inspiration from recent advances in
this area. In particular, we adopt the SuperGlue [93] architecture that
establishes the current state-of-the-art in sparse feature matching. Its
design allows to exchange information between different nodes, to
handle occlusions, and to estimate the assignment of nodes across
two images. In particular, the features of both frames translate to
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nodes of a single complete graph with two types of directed edges: 1)
self edges within the same frame and 2) cross edges connecting only
nodes between the frames. The idea is then to exchange information
either along self or cross edges.

The adopted architecture [93] uses a Graph Neural Network (GNN)
with message passing that sends the messages in an alternating fash-
ion across self or cross edges to produce a new feature representation
for each node after every layer. Moreover, an attention mechanism
computes the messages using self attention for self edges and cross
attention for cross edges. After the last message passing layer a linear
projection layer extracts the final feature representation h; for each
candidate v;.

3.3.5 Candidate Matching

To represent the similarities between candidates v; € V' and v; €
V), we construct the similarity matrix S. The sought similarity is
measured using the scalar product: §;; = <h§, h]->, for feature vectors
h; and h; corresponding to the candidates v; and v;.

As previously introduced, we make use of the dustbin-concept [34,

] to actively match candidates that miss their counterparts to the
so-called dustbin. However, a dustbin is a virtual candidate without
any feature representation h;. Thus, the similarity score is not di-
rectly predictable between candidates and the dustbin. A candidate
corresponds to the dustbin, only if its similarity scores to all other
candidates are sufficiently low. In this process, the similarity matrix S
represents only an initial association prediction between candidates
disregarding the dustbins. Note that a candidate corresponds either
to an other candidate or to the dustbin in the other frame. When
the candidates v} and v; are matched, both constraints Zfil Ajj=1
and Z]-I\Ll A;j = 1 must be satisfied for one-to-one matching. These
constraints however, do not apply for missing matches since multi-
ple candidates may correspond to the same dustbin. Therefore, we
make use of two new constraints for dustbins. These constraints
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for dustbins read as follows: all candidates not matched to another
candidate must be matched to the dustbins. Mathematically, this
can be expressed as, YiAn+1,; =N-M and Y ; Ainy1 = N — M,
where M =} (;<n j<n) Ai; represents the number of candidate-to-
candidate matching. In order to solve the association problem, using
the discussed constraints, we follow Sarlin et al. [93] and use the
Sinkhorn [20, 96] based algorithm therein.

3.3.6 Learning Candidate Association

Training the embedding network that parameterizes the similarity
matrix used for optimal matching requires ground truth assignments.
Hence, in the domain of sparse keypoint matching, recent learn-
ing based approaches leverage large scale datasets [36, 93] such as
MegaDepth [69] or ScanNet [21], that provide ground truth matches.
However, in tracking such ground truth correspondences (between
distractor objects) are not available. Only the target object and its
location provide a single ground truth correspondence. Manually
annotating correspondences for distracting candidates, identified
by a tracker on video datasets, is expensive and may not be very
useful. Instead, we propose a novel training approach that exploits,
(i) partial supervision from the annotated target objects, and (ii) self-
supervision by artificially mimicking the association problem. Our
approach requires only the annotations that already exist in stan-
dard tracking datasets. The candidates for matching are obtained by
running the base tracker on the given training dataset.

Partially Supervised Loss: For each pair of consecutive frames, we
retrieve the two candidates corresponding to the annotated target, if
available. This correspondence forms a partial supervision for a sin-
gle correspondence while all other associations remain unknown. For
the retrieved candidates v} and v}, we define the association as a tuple
(I',1) = (i,). Here, we also mimic the association for redetections
and occlusions by occasionally excluding one of the corresponding
candidates from V' or V. We replace the excluded candidate by the
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corresponding dustbin to form the correct association for supervi-
sion. More precisely, the simulated associations for redetection and
occlusion are expressed as, (I',1) = (N’ +1,j) and (I',]) = (i, N+ 1),
respectively. The supervised loss, for each frame-pairs, is then given
by the negative log-likelihood of the assignment probability,

Lsup = - 108 Al/,l- (3-2)

Self-Supervised Loss: To facilitate the association of distractor candi-
dates, we employ a self-supervision strategy. The proposed approach
first extracts a set of candidates V'’ from any given frame. The cor-
responding candidates for matching, say V), are identical to V' but
we augment its features. Since the feature augmentation does not
affect the associations, the initial ground-truth association set is given
by C = {(i,i)}}¥,. In order to create a more challenging learning
problem, we simulate occlusions and redetections as described above
for the partially supervised loss. Note that the simulated occlusions
and redetections change the entries of V, V', and C. We make use
of the same notations with slight abuse for simplicity. Our feature
augmentation involves, randomly translating the location c;, increas-
ing or decreasing the score s;, and transforming the given image
before extracting the visual features f;. Now, using the simulated
ground-truth associations C, our self-supervised loss is given by,

Lir= ).  —logAy,. (3-3)
('.ec

Finally, we combine both losses as Liot = Lsup + Lsels- It is important
to note that the real training data is used only for the former loss
function, whereas synthetic data is used only for the latter one.

Data Mining: Most frames contain a candidate corresponding to
the target object and are thus applicable for supervised training.
However, a majority of these frames are not very informative for
training because they contain only a single candidate with high tar-
get classifier score and correspond to the target object. Conversely, the
dataset contains adverse situations where associating the candidate
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corresponding to the target object is very challenging. Such situa-
tions include sub-sequences with different number of candidates,
with changes in appearance or large motion between frames. Thus,
sub-sequences where the appearance model either fails and starts to
track a distractor or when the tracker is no longer able to detect the
target with sufficient confidence are valuable for training. However,
such failure cases are rare even in large scale datasets. Similarly, we
prefer frames with many target candidates when creating synthetic
sub-sequences to simultaneously include candidate associations, re-
detections and occlusions. Thus, we mine the training dataset using
the dumped predictions of the base tracker to use more informative
training samples.

Training Details: We first retrain the base tracker SuperDiMP with-
out the learned discriminative loss parameters but keep everything
else unchanged. We split the LaSOT training set into a train-train
and a train-val set. We run the base tracker on all sequences and
save the search region and score map for each frame on disk. We
use the dumped data to mine the dataset and to extract the target
candidates and its features. We freeze the weights of the base tracker
during training of the proposed network and train for 15 epochs by
sampling 6400 sub-sequences per epoch from the train-train split. We
sample real or synthetic data equally likely. We use ADAM [58] with
learning rate decay of 0.2 every 6th epoch with a learning rate of
0.0001. We use two GNN Layers and run 10 Sinkhorn iterations.

3.3.7 Object Association

This part focuses on using the estimated assignments (see Sec. 3.3.5)
in order to determine the object correspondences during online
tracking. An object corresponds either to the target or a distractor.
The general idea is to keep track of every object present in each scene
over time. We implement this idea with a database O, where each
entry corresponds to an object o that is visible in the current frame.
Fig. 3.3 shows these objects as circles. An object disappears from the
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Base Tracker

Time

FIGURE 3.3: Visual comparison of the base tracker and our tracker. The
bounding boxes represent the tracker result, green [] indicates correct
detections and red [M] refers to tracker failure. Each circle represents
an object. Circles with the same color are connected to indicate that the
object-ids are identical. If a target candidate cannot be matched with an
existing object we add a new object (®, ®, ®). Similarly, we delete the
object if no candidate corresponds to it anymore in the next frame (®, @,
0)
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scene if none of the current candidates is associated with it, e. g., in
Fig. 3.3 the purple and pink objects (®, ®) no longer correspond to
a candidate in the last frame. Then, we delete this object from the
database. Similarly, we add a new object to the database if a new
target candidate appears (®, ®, ®). When initializing a new object,
we assign it a new object-id (not used previously) and the score s;.
In Fig. 3.3 object-ids are represented using colors. For objects that
remain visible, we add the score s; of the corresponding candidate to
the history of scores of this object. Furthermore, we delete the old and
create a new object if the candidate correspondence is ambiguous,
i.e., the assignment probability is smaller than w = 0.75.

If associating the target object 0 across frames is unambiguous, it
implies that one object has the same object-id as the initially provided
object Oinit. Thus, we return this object as the selected target. However,
in real world scenarios the target object gets occluded, leaves the
scene or associating the target object is ambiguous. Then, none of
the candidates corresponds to the sought target and we need to
redetect. We redetect the target if the candidate with the highest
target classifier score achieves a score that exceeds the threshold
n = 0.25. We select the corresponding object as the target as long
as no other candidate achieves a higher score in the current frame.
Then, we switch to this candidate and declare it as target if its score
is higher than any score in the history (of the currently selected
object). Otherwise, we treat this object as a distractor for now, but if
its score increases high enough, we will select it as the target object
in the future. Please refer to the appendix Sec: 3.6.B.1 for the detailed
algorithm.

3.3.8 Memory Sample Confidence

While updating the tracker online is often beneficial, it is disadvanta-
geous if the training samples have a poor quality. Thus, we describe
a memory sample confidence score, that we use to decide which
sample to keep in the memory and which should be replaced when
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employing a fixed size memory. In addition, we use the score to
control the contribution of each training sample when updating the
tracker online. In contrast, the base tracker replaces frames using a
first-in-first out policy if the target was detected and weights samples
during inference solely based on age.

First, we define the training samples in frame k as (xy, yx). We as-
sume a memory size m that stores samples from frame k € {1,...,t},
where t denotes the current frame number. The online loss then given

by,
t
J(6) = AR(0) + Y aiBrQ(6; Xk, i), (3-4)
k=1

where Q denotes the data term, R the regularisation term, A is a scalar
and 0 represents appearance model weights. The weights a; > 0
control the impact of the sample from frame k, i. e., a higher value
increases the influence of the corresponding sample during training.
We follow other appearance based trackers [6, 23] and use a learning
parameter 7y € [0,1] in order to control the weights ay = (1 — 7)ag,1,
such that older samples achieve a smaller value and their impact
during training decreases. In addition, we propose a second set
of weights By that represent the confidence of the tracker that the
predicted label vy is correct. Instead of removing the oldest samples
to keep the memory fixed [6], we propose to drop the sample that
achieves the smallest score a;fBx which combines age and confidence.
Thus, if t > n we remove the sample at position k = argmin, _, ., xSk
by setting a; = 0. This means, that if all samples achieve similar
confidence the oldest is replaced, or that if all samples are of similar
age the least confident sample is replaced.
We describe the extraction of the confidence weights as,

o, if 0 = Oin;
,Bt _ \F init (35)

o, otherwise,

where ¢ = max; s! denotes the maximum value of the target classifier
score map of frame t. For simplicity, we assume that ¢ € [0,1].
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The condition 6 = 0 is fulfilled if the currently selected object is
identical to the initially provided target object, i. e., both objects share
the same object id. Then, it is very likely, that the selected object
corresponds to the target object such that we increase the confidence
using the square root function that increases values in the range
[0,1). Hence, the described confidence score combines the confidence
of the target classifier with the confidence of the object association
module, but fully relies on the target classifier once the target is lost.
Inference details: We propose KeepTrack and the speed optimized
KeepTrackFast. We use the SuperDiMP parameters for both trackers
but increase the search area scale from 6 to 8 (from 352 to 480 in
image space) for KeepTrack. For the fast version we keep the original
scale but reduce the number of bounding box refinement steps from
10 to 3. In addition, we skip running the association module if only
one target candidate with a high score is present in the previous and
current frame. Overall, both trackers follow the target longer until it
is lost such that small search areas occur frequently. Thus, we reset
the search area to its previous size if it was drastically decreased
before the target was lost, to facilitate redetections. Please refer to
the appendix 3.6.B for more details.

3.4 EXPERIMENTS

We evaluate our proposed tracking architecture on seven benchmarks.
Our approach is implemented in Python using PyTorch. On a single
Nvidia GTX 2080Ti GPU, KeepTrack and KeepTrackFast achieve 18.3
and 29.6 FPS, respectively.

3.4.1 Ablation Study

We perform an extensive analysis of the proposed tracker, memory
sample confidence, and training losses.

Target association network components: We evaluate the target can-
didate association network with different numbers of Sinkhorn [96]
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Num GNN  Num Sinkhorn
Layers iterations NFS  UAVi23z  LaSOT FPS
- - 65.2 69.1 65.8 -
o 50 65.9 69.2 66.6 -
2 10 66.4 69.7 67.1 18.3
9 50 66.4 69.8 67.2 12.7

TaBLE 3.1: Impact of each component of the Target Candidate Association
Network in terms of AUC (%) on three datasets.

Memory Sample Search area  Target Candidate
Confidence  Adaptation Association Network | NFS UAV123 LaSOT

- - - 64.4 68.2 63.5

v - - 64.7 68.0 65.0
v v - 652  69.1 65.8
v v v 66.4 69.7 67.1

TABLE 3.2: Impact of each component in terms of AUC (%) on three
datasets. The first row corresponds to our SuperDiMP baseline.

iterations and with different number of GNN layers of the embedding
network or dropping it at all, see Tab. 3.1. We conclude, that using
the target candidate association network even without any GNN
layers outperforms the baseline on all three datasets. In addition,
using either two or nine GNN layers improves the performance even
further on all datasets. We achieve the best results when using nine
GNN layers and 50 Sinkhorn iterations. However, using a large can-
didate embedding network and a high number of Sinkhorn iterations
reduces the run-time of the tracker to 12.7 FPS. Hence, using only
two GNN layers and 10 Sinkhorn iterations results in a negligible
decrease of 0.1 on UAV123 and LaSOT but accelerates the run-time
by 44%.

Online tracking components: We study the importance of memory
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Loss no TCA Lsup Lgeys Lsup + Lself Lsup + Lsel
Data-mining n.a. v v - v
LaSOT, AUC (%) 658  66.0 66.9 66.8 67.1

TABLE 3.3: Analysis on LaSOT of association learning using different loss
functions with and without data-mining.

Sample Replacement  Online updating  Conf. score LaSOT
with conf. score with conf. score threshold AUC (%)
- - - 63.5
v - - 64.1
v v 0.0 64.6
v v 0.5 65.0

TABLE 3.4: Analysis of our memory weighting component on LaSOT.

sample confidence, the search area protocol, and target candidate
association of our final method KeepTrack. In Tab. 3.2 we analyze
the impact of successively adding each component, and report the
average of five runs on the NFS [412], UAV123 [84] and LaSOT [35]
datasets. The first row reports the results of the employed base tracker.
First, we add the memory sample confidence approach (Sec. 3.3.8),
observe similar performance on NFS and UAV but a significant
improvement of 1.5% on LaSOT, demonstrating its potential for long-
term tracking. With the added robustness, we next employ a larger
search area and increase it if it was drastically shrank before the target
was lost. This leads to a fair improvement on all datasets. Finally,
we add the target candidate association network, which provides
substantial performance improvements on all three datasets, with a
+1.3% Area Under the Curve (AUC) on LaSOT. These results clearly
demonstrate the power of the target candidate association network.
Training:  In order to study the effect of the proposed training
losses, we retrain the target candidate association network either
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with only the partially supervised loss or only the self-supervised
loss. We report the performance on LaSOT [38] in Tab. 3.3. The results
show that each loss individually allows to train the network and
to outperform the baseline without the target candidate association
network (no TCA), whereas, combining both losses leads to the best
tracking results. In addition, training the network with the combined
loss but without data-mining decreases the tracking performance.
Memory management: We not only use the sample confidence
to manage the memory but also to control the impact of samples
when learning the target classifier online. In Tab. 3.4, we study the
importance of each component by adding one after the other and
report the results on LaSOT [38]. First, we use the sample confidence
scores only to decide which sample to remove next from the memory.
This, already improves the tracking performance. Reusing these
weights when learning the target classifier as described in Eq. (3.4)
increases the performance again. To suppress the impact of poor-
quality samples during online learning, we ignore samples with a
confidence score bellow 0.5. This leads to an improvement on LaSOT.
The last row corresponds to the used setting in the final proposed
tracker.

3.4.2 State-of-the-art Comparison

We compare our approach on seven tracking benchmarks. The same
settings and parameters are used for all datasets. In order to ensure
the significance of the results, we report the average over five runs
on all datasets unless the evaluation protocol requires otherwise. We
recompute the results of all trackers using the raw predictions if
available or otherwise report the results given in the paper.

LaSOT [38]: First, we compare on the large-scale LaSOT dataset
(280 test sequences with 2500 frames in average) to demonstrate the
robustness and accuracy of the proposed tracker. The success plot
in Fig. 3.4a shows the overlap precision OPt as a function of the
threshold T. Trackers are ranked w.r.t. their AUC score, denoted
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FIGURE 3.4: Success plots, showing OPr, on LaSOT [38] and LaSO-
TExtSub [37]. Our approach outperforms all other methods by a large
margin in AUC, reported in the legend.
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Keep Keep Alpha Siam Super STM Pr DM
Track Track Refine TransT R-CNN TrDiMP Dimp Track DiMP Track LTMU DiMP Ocean

Fast [118] [14]  [1o4]  [106]  [24] [a1] [30] [120] [22]  [6] [128]

Precision 70.2 70,0 68.0 69.0 68.4 66.3 653 633 608 597 572 567 56.6
Norm. Prec 77.2 77.0 732 738 72.2 73.0 722 693 688 66.9 662 650 65.1
Success (AUC) 67.1 66.8 653 64.9 64.8 639 631 606 598 584 572 569 56.0

TABLE 3.5: State-of-the-art comparison on the LaSOT [38] test set in terms
of AUC score.

KeepTrack KeepTrack AlphaRefine LTMU TrDiMP KYS SuperDiMP
Fast [118] [22]  [106] [7] [50]

Precision 70.2 70.0 68.0 66.5 61.4 64.0 65.3
Norm. Prec. 77.2 77.0 73.2 73.7 - 70.7 72.2
Success (AUC) 67.1 66.8 65.3 647 639 619 63.1

TaBLE 3.6: Results on the LaSOT [38] test set. All trackers use the same
base tracker SuperDiMP [24].

in the legend. Tab. 3.5 shows more results including precision and
normalized precision. KeepTrack and KeepTrackFast outperform the
recent trackers AlphaRefine [118], TransT [14] and TrDiMP [106] by
a large margin and the base tracker SuperDiMP by 4.0% or 3.7% in
AUC. The improvement in OPr is most prominent for thresholds
T < 0.7, demonstrating the superior robustness of our tracker. In
Tab. 3.6, we further perform an apple-to-apple comparison with
KYS [7], LTMU [22], AlphaRefine [118] and TrDiMP [106], where all
methods use SuperDiMP as base tracker. We outperform the best
method on each metric, achieving an AUC improvement of 1.8%.

LaSOTExtSub [37]: We evaluate our tracker on the recently pub-
lished extension subset of LaSOT. LaSOTExtSub is meant for testing
only and consists of 15 new classes with 10 sequences each. The
sequences are long (2500 frames on average), rendering substantial
challenges. Fig. 3.4b shows the success plot, that is averaged over 5
runs. All results, except ours and SuperDiMP, are obtained from [37],
e.g., DaSiamRPN [133], SiamRPN++ [67] and SiamMask [107]. Our



3.4 EXPERIMENTS

Keep Keep Super  Siam DM Global Siam
Track Track LTMU DiMP R-CNN TACT Track SPLT Track MBMD FC+R TLD
Fast  [22]  [24]  [rog]  [i7l D29l [rno]  [53]1  [i27] [1o2]  [55]
TPR 80.6 827 74.9 79.7 70.1 809 686 498 57.4 60.9 42.7 208

TNR 81.2 772 75-4 70.2 74.5 622 69.4 77.6 63.3 485 48.1 895
MaxGM 80,9 79.9 75.1 74.8 72.3 70.9 688 622 60.3 54.4 45.4 43.1

TaBLE 3.7: Results on the OXUvALT [102] test set in terms of TPR, TNR,
and the max geometric mean MaxGM of TPR and TNR.

Keep Keep Siam Siam  Super
Track Track LTMU R-CNN PGNet RPN++ DiMP SPLT MBMD DaSiamLT
Fast  [22]  [i04]  [71] [671  [241  [ri9]  [127] 60, 133]
Precision 7