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Abstract

Acoustics are rarely included as a design driver in the early phases of

design due to the multi-faceted nature of sound and the complex and

time-consuming analysis process of room acoustics software. Inevitably

this results in architectural spaces with poor acoustics, where treatment

is either disregarded or focuses only on noise prevention using absorbent

materials. However, most commonly used construction materials have sound-

reflecting properties and can be configured into sound-diffusive surfaces.

These surfaces can help reduce unwanted flattered echoes, colourisation,

and image shift and create a more pleasant and comfortable environment

without needing additional elements (e.g. absorption panels). Faster and

simpler analysis tools are required to harness the potential of diffusion in

architectural design.

This dissertation presents a new data-driven approach to designing and

evaluating the acoustic properties of architectural surfaces. It investigates

the use of machine-learning techniques to study the mutual relationship

between geometry and sound diffusion. It introduces a new acoustic dataset

meant as a basis for training predictive machine-learning models. These

models enable the creation of fast, less cumbersome, and reasonably accu-

rate acoustics analysis tools. It proposes and implements a new automated

multi-robotic data-acquisition method for collecting impulse responses from

scale-modelled surfaces. It also develops computational tools to design and

generate three-dimensional wall-like surface geometries. The geometrical

characteristics of these surfaces are based on commonly used construction

materials and techniques. A computational framework is developed in paral-

lel to process the collected data and generate customisable and interactive

visualisations for low- and high-dimensional data. This framework caters to

both expert and non-expert users in acoustics, providing expert users with

familiar descriptors and visualisations and introducing non-experts to sim-

pler ones. Furthermore, to address users with no programming knowledge,

it develops a web-based application enabling easy access to the collected

dataset, the acoustic descriptors, and visualisations. It introduces a new

workflow to the performance-driven acoustic design of sound-diffusing wall

surfaces, allowing architects and designers to explore alternative wall designs

with sound-diffusing properties, given a set of desired acoustic performance

criteria.

The proposed workflow has the potential to bring acoustics closer to the

early phases of architectural design and enable a more integrative acoustic

and architectural design exploration. Providing architects and acousticians



with comprehensive and user-friendly tools for acoustics analysis can help

integrate acoustics into the design process from the beginning rather than as

an afterthought.



Zusammenfassung

Die Akustik wird aufgrund der vielfältigen Natur des Schalls und des kom-

plexen und zeitaufwändigen Analyseprozesses von Raumakustik-Software

selten in den frühen Phasen des Designs berücksichtigt. Dies führt zwangsläu-

fig zu architektonischen Räumen mit schlechter Akustik, bei denen die Be-

handlung entweder vernachlässigt wird oder sich nur auf Lärmbekämpfung

mit absorbierenden Materialien konzentriert. Die am häufigsten verwen-

deten Baumaterialien weisen jedoch schallreflektierende Eigenschaften auf

und können zu schalldiffusiven Oberflächen konfiguriert werden. Diese

Oberflächen können dazu beitragen, unerwünschte flache Echos, Klangver-

färbungen und Bildverschiebungen zu reduzieren und eine angenehmere

und komfortablere Umgebung zu schaffen, ohne zusätzliche Elemente (z. B.

Absorptionspaneele) zu benötigen. Es sind schnellere und einfachere Analy-

setools erforderlich, um das Potenzial der Diffusion in der architektonischen

Gestaltung nutzbar zu machen.

Diese Dissertation präsentiert einen neuen datengetriebenen Ansatz zur

Gestaltung und Bewertung der akustischen Eigenschaften architektonis-

cher Oberflächen. Sie untersucht den Einsatz von maschinellem Lernen,

um die wechselseitige Beziehung zwischen Geometrie und Schalldiffusion

hervorzuheben. Es wird ein neuer akustischer Datensatz vorgestellt, der

als Grundlage für das Training prädiktiver maschineller Lernmodelle dient.

Diese Modelle ermöglichen die Erstellung schneller, weniger umständlichen

und angemessen genauen Akustikanalysetools. Eine neue automatisierte,

multi-robotergesteuerte Datenakquisitionsmethode zur Erfassung von Im-

pulsantworten maßstabsgetreu modellierter Oberflächen wird vorgeschlagen.

Auch rechnergestützte Werkzeuge zur Gestaltung und Erzeugung dreidi-

mensionaler, wandähnlicher Oberflächengeometrien werden entwickelt.

Die geometrischen Eigenschaften dieser Oberflächen basieren auf häufig

verwendeten Baumaterialien und Techniken. Parallel dazu wird ein rech-

nergestütztes Framework entwickelt, welches die gesammelten Daten ver-

arbeitet und skalierbare und interaktive Visualisierungen für niedrig- und

hochdimensionale Daten generiert. Dieses Framework richtet sich sowohl

an Experten als auch an Nicht-Experten der Akustik. Es bietet Experten

vertraute Beschreibungen und Visualisierungen und führt Nicht-Experten

in einfachere ein. Darüber hinaus wird eine webbasierte Anwendung en-

twickelt, um Benutzer ohne Programmierkenntnisse anzusprechen und

einen einfachen Zugriff auf den gesammelten Datensatz, die akustischen

Beschreibungen und Visualisierungen zu ermöglichen. Es führt einen neuen

Arbeitsablauf für die leistungsorientierte akustische Gestaltung von schalld-



iffusen Wandflächen ein, welcher Architekten und Designern ermöglicht,

alternative Wandgestaltungen mit schalldiffusen Eigenschaften, basierend

auf einer Reihe gewünschter akustischer Leistungskriterien, zu erforschen.

Der vorgeschlagene Arbeitsablauf hat das Potenzial, die Akustik näher in

früheren Phasen der architektonischen Gestaltung anzusetzen und eine

integrativere akustische und architektonische Gestaltungserkundung zu

ermöglichen. Die Bereitstellung umfassender und benutzerfreundlicher

Werkzeuge zur Akustikanalyse für Architekten und Akustiker kann dazu

beitragen, die Akustik von Anfang an in den Gestaltungsprozess zu integri-

eren, anstatt sie als nachträgliche Überlegung zu behandeln.
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1: A flutter echo is a series of suffi-

ciently loud distinct echoes in rapid

succession.

2: Colouration is defined as

changes in timbre.

3: Image shift is the movement of

the source image from the direction

of direct sound toward the direction

of a lateral reflection. This is caused

when the amplitude of the lateral

reflections is very high [2].

1.1 Motivation and background

Hearing is essential in our everyday life. It enables us to communicate with

each other and perceive our environment. Every space, outdoor or indoor,

exhibits different acoustical properties that may range from noisy to quiet

or from very to dry. These properties depend on the space’s shape, size,

and material of its surfaces; therefore, how architects design these spaces

influences their resulting acoustical signature. Nevertheless, architectural

principles and styles change and evolve over time. During the Renaissance,

Baroque, and up to the end of the Neoclassical period, sound-scattering

surfaces were an integral part of the architectural form. While elements such

as columns and coffered ceilings fulfilled a structural and aesthetical purpose

(Figure 1.1), perhaps not always intentionally, they also had an acoustical

function. These elements, combined with carved wooden doors and staircases,

heavy curtains, thick carpets, and elaborate decorative wall elements and

furniture, provided rooms with adequate acoustic treatment. Following

the steps of the modernist movement of the early 1900s, contemporary

architecture shifted to cleaner and simpler designs with flat smooth surfaces

devoid of ornaments. Adolf Loos, an Austrian architect and theorist of

modern Western architecture, was very critical of ornaments. In his essay

Ornament and Crime [1], he explored the idea that cultural progress is linked

to the omission of ornamentation from everyday objects. Forcing craftspeople

and builders to squander their time on ornamentation represented wasted

labour and ruined material, and it was not adequately remunerated. The

lack of sound-scattering surfaces, combined with the often rectilinear room

design - typical for modern western architecture - gave rise to multiple

acoustical problems such as flutter echoes
1
, colouration

2
, and image shift

3
.

In the 1950s, open-plan designs, such as Bürolandschaft, accentuated these

problems by introducing large multi-functional spaces that were used by

many people at the same time [3]. Their large size, high occupancy, and

multi-functional character resulted in slower sound decay rates and increased

noise exposure.

Poor acoustics and increased noise exposure have various auditory and

non-auditory effects on our mental and physical health [4]. These effects

range from simple annoyance, irritation, fatigue, loss of concentration, and

decreased productivity to elevated stress levels, tension headaches, noise-

induced hearing loss, or even cardiovascular diseases [5]. In our work

environment, the acoustics are strongly linked to our productivity and

well-being [3]. Struggling to understand the person speaking during a

presentation, finding it hard to concentrate when working in an open-plan

office, and feeling exhausted when coming out of a meeting room are things

that many people have experienced more than once in their everyday lives.

4



Figure 1.1: Ernst August Saal in

Burg Bentheim, Germany

4: DALYs are the sum of the po-

tential years of life lost due to pre-

mature death and the equivalent

years of “healthy” life lost by virtue

of being in states of poor health or

disability.

According to the World Health Organisation [6], more than 1,5 million healthy

years (DALYs
4
) are lost annually due to environmental noise exposure in the

European A-member states.

Room acoustic design can create good acoustic conditions, which in return

help mitigate or even eliminate all mental and health-related problems

caused by bad acoustics. One of the central topics in room acoustics is how

to manipulate the sound reflections affecting the way sound propagates

and is ultimately perceived [7]. The sound we hear combines the direct

sound coming straight from the source and the indirect reflections from

the surrounding surfaces. When a sound wave hits a surface is transmitted,

absorbed, or reflected, and the ratio of sound energy that gets transmitted,

absorbed, or reflected depends on the acoustic properties of the surface. With

transmission, all or part of the sound energy passes through the surfaces and

continues on the other side. With absorption, all or part of the sound energy

dissipates inside the surface. There are two ways that sound is reflected, and

it depends on the surface’s texture and geometry. Large flat surfaces redirect

sound (specular reflection), while rough or structured surfaces scatter a

significant portion of the reflected sound spatially and temporarily (diffuse

reflection) (see Figure 1.2).

Both absorptive and diffusive surfaces can be used to prevent - or fix if

used retrospectively - acoustic distortions caused by the room’s geometry

and choice of surface materials. Whether absorptive or diffusive surfaces

should be used depends on whether we wish to reduce the sound level

or not while decreasing the Reverberation Time (RT). Absorptive surfaces

can be used to reduce the sound level and lower the reverberation time,
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Figure 1.2: The temporal and spatial

characteristics of absorbing, specu-

larly reflecting and diffusing sur-

faces. After Trevor J. Cox and Peter

D’Antonio.

whereas diffusive surfaces can reduce flutter echoes and image shifts while

maintaining the sound energy inside the room. Absorption can create quieter

working environments and increase intelligibility. However, a high increase

of intelligibility in an open-plan office space inevitably decreases the level

of privacy because all potentially masking background noises are now

suppressed. Sound noises from printers or coffee machines, conversations

between colleagues from other tables, or even phone calls are now clearer,

making it more difficult to ignore them, thus, more difficult to concentrate.

Furthermore, when only absorption is used as a sound treatment method,

the room becomes unpleasant to stay in for an extended period, and people

describe it as "dead". Therefore, a combination of absorptive and diffusive

surfaces should be used to preserve some liveliness inside the room while

reducing the sound levels and the reverberation time.

There are two general types of absorbers, porous absorbents and resonant

devices [7]. The most common type is porous absorbents which are made

of porous and fibrous materials such as mineral wool, fibreglass, open-cell

expanded synthetic foam, wood chips, and more, making them difficult to

maintain and clean. Over time their performance could degrade as their

pores fill up with particulates from the air. Furthermore, they do not hold

up well when used outdoors under rainy and windy conditions. Finally,

absorptive materials are non-structural; therefore, they need to be installed

6



Figure 1.3: Commercially available acoustic diffusers based on Schroeder’s quadratic residue diffuser. From left to right: 1D QRD diffuser,

2D QRD diffuser, Skyline diffuser, Harmonix K from RPG.Inc.

on another structural element. Diffusers, on the other hand, are rigid, non-

porous articulated surfaces. Any reflective material can be used as a diffusive

surface. Broadly used architectural materials such as concrete, brick, stone,

plaster, clay, wood, and glass can be shaped or arranged to diffuse sound.

Contrary to sound absorptive materials, these materials are easier to maintain

and clean, and depending on their material or finishing treatment, they can

stand up well in outdoor environments.

Many manufacturers offer standardised acoustic panels such as absorbers

and diffusers for the acoustical treatment of rooms. Unfortunately, most

architects are not keen on using such standardised acoustic panels in their

designs, and the reason is twofold. First, standardised acoustic panels – and

especially diffusers – have particular and limited geometries, a substantial

thickness, and a dedicated placement according to acoustic criteria. These

factors make them unattractive and difficult to integrate into an architectural

design that is not purely focused on music performance. It becomes even

harder to integrate when acoustic treatment is introduced later in the design

process. Second, with the introduction of computational design and digital

fabrication, architectural forms became expressive and complex. The regular

and often rectilinear forms of standardised acoustic panels no longer fit with

these complex and expressive architectural forms (see Figure 1.3).

Today, computational design, digital fabrication, and room acoustics simula-

tion tools can be combined to provide custom acoustic treatment solutions.

These solutions can either target the design of bespoke acoustic panels, the

room’s surfaces, or a combination of both. Despite the potential benefits

of providing solutions that would integrate with the project’s architectural

aesthetics, such a combination has not yet been implemented in projects that

do not focus mainly on sound or music.
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1.2 Problem statement

The architectural design consists of several phases. During the early phases,

architects explore various alternative design ideas. Early-stage decisions

significantly impact the quality and performance of the final design. In

contrast, late-stage design modifications can rarely compensate for poor

early-stage choices [8]. Therefore, it is essential to consider all factors in the

early-stage design to avoid potentially delaying the project, increasing the

building cost, or impairing the overall design with retrospective changes.

Design aspects such as the load-bearing structure and natural lighting are

integral design drivers and are included early on in the design phase. This

process has become a standard practice for most architectural projects because

architects are trained to understand these topics (e.g., structural design) and

acknowledge their importance for an aesthetical, performative, sustainable,

and cost-effective design. Usually, this is done in close collaboration with

experts in an iterative process where a design is analysed, evaluated, and

adjusted to meet the desired performance criteria. Contrary, acoustics are

rarely included as a performance criterion at an early design stage. Apart

from cases where sound quality is critical (e.g., concert halls, auditoriums),

the current acoustic design paradigm follows three possible paths: a) it

focuses only on noise prevention, b) it applies simplified acoustic guidelines

or c) it includes acoustic specialists only in the late design phase. The

first two paths can result in the design of spaces with sub-nominal sound

quality. The latter leads to the inevitable addition of previously unplanned

elements, usually standardised acoustic panels, in the architectural design.

Besides being difficult to incorporate these panels into an existing design,

it is challenging to apply late-stage design modifications that will not also

increase the project’s budget.

The acoustic design does not have to weaken the intended architectural aes-

thetic. Custom acoustic treatments can be designed to match the architectural

aesthetic, but this can only be achieved by including acoustic performance

criteria early on in the design phase. The main factors hindering the inclu-

sion of acoustics in the architectural workflow are a) the limitations and

complexity of available acoustic assessment tools and b) a knowledge gap in

evaluating their results. The following sections talk about these two limiting

factors.

Figure 1.4: Schlieren photography

experiment with a model of the

New Theatre in New York by Wal-

lace C. Sabine in 1913 [9].

1.2.1 Tool limitations

In 1912 Wallace C. Sabine used a method called Schlieren photography
5

5: In his paper Theatre Acoustics

[9] Sabine refers to it as Toeppler-
Boys-Foley method after the inventor,

physicist, August Toepler.
to visualise the sound propagation inside architectural models (see Figure

8



Figure 1.5: Interior view of the 1:10

physical scale model of the La Phil-

harmonie de Paris. ©Nicolas Borel.

6: For a small 5x5x3m room and for

frequencies up to 8kHz, an FDTD

simulation takes around 10 hours.

The computation time could reach

several days for larger rooms or

higher frequencies.

1.4) [10]. This technique allows the rendering of optical inhomogeneities in

transparent media like air and water that otherwise are invisible to the naked

eye [11]. Since then, many modelling techniques have been developed to

analyse and study room acoustics. Today, to assess the acoustic quality of our

designs, physical scale models or computer simulations are used. Physical

scale models are usually constructed at scales ranging between 1:8 to 1:50 (see

Figure 1.5). Although large-scale models can be accurate and adaptable, they

pose several practical limitations as design tools. They are expensive and

require larger-than-normal sized spaces to house the model (see Figure 1.6).

most importantly, need a lot of time to construct, implying that they cannot

be part of the design process [12, 13].

Computer simulations are generally faster than physical scale modelling and

are based on two main approaches: wave-based modelling and Geometrical

Acoustics (GA). Wave-based methods provide the most accurate results

but are computationally intensive. These methods discretise the model or

its boundary surfaces to small interconnected elements and calculate their

interactions. The discretisation density increases relative to the frequency;

therefore, time-consuming when simulating high frequencies [14, 15]. The

long computing time makes it difficult for architects and acousticians to

iterate quickly through several design variations
6
. GA techniques are faster

because they are based on a simplified model where the wave properties of

sound are neglected, and sound is assumed to propagate as rays[16]. This

technique uses a simplified, low-polygon mesh representation of the space

under study. Each surface is assigned two coefficients that describe how the

surface interacts with the sound rays. The absorption coefficient is the ratio of

incident sound that gets absorbed by the surface and not reflected back into

the space. The scattering coefficient describes how much of the sound ray is

reflected in a specular or diffuse way. A large number of rays is cast though

out the space from the source position, and every time a ray intersects a

1 INTRODUCTION 9



Figure 1.6: Exterior view of the 1:10

physical scale model of the La Phil-

harmonie de Paris during an acous-

tic measurement. ©Nicolas Borel.

7: www.odeon.dk (Odeon A/S

2020)

8: www.orase.org (ORASE 2022)

9: www.cate.se (CATT 2022)

10: www.afmg.eu/en/ease-

enhanced-acoustic-simulator-

engineers [18]

surface, the model calculates the energy losses and the type and direction of

the reflected ray. The simplified assumptions of GA render them incapable

of modelling diffraction and become equally slow as wave-based methods

when simulating models with a high level of detail [17]. Therefore, diffusion

– an important acoustic phenomenon that can promote spaciousness and

prevent flutter echoes and colouration – cannot be accurately simulated [7],

thus, not correctly evaluated.

1.2.2 User limitations

To employ acoustic performance as a design driver, we must be able to

quantify and interpret the acoustic effects of our geometric design choices.

In a classical design process, architects have no starting point for an acousti-

cally performative design as they lack expert knowledge. Several computer

simulation software (Odeon
7
, Pachyderm

8
, CATT-acoustics

9
, EASE

10
, and

more) can simulate and characterise the acoustic performance of digitally

designed geometries. Given a room and the material properties of each of its

surfaces, they can calculate acoustic descriptors such as RT, Early Decay Time

(EDT), Clarity (C50), Definition (D), and more. Nevertheless, this paradigm

relies on the premise that the user is knowledgeable in room acoustics and

knows what adjustments need to be made to achieve the desired goal. As

a result, architects are discouraged from using such software to evaluate

their designs, especially early on. Furthermore, no computer-aided design

(CAD) or acoustic simulation software proposes a geometrical solution to an

acoustical question.

10



11: Bedroom, studio, classroom,

church 1, church 2, great hall, and

library.

12: Meeting room 1, Meeting room

2, building lobby 1, building lobby

2, office 1, office 2, lecture room 1,

and lecture room 2.

1.3 Research goal

As highlighted in sections 1.1 and 1.2, acoustic performance criteria are

mainly considered in projects where spaces host music performances and

heavily rely on expert knowledge in acoustics. Computational design and

digital fabrication methods are opportunities to design and fabricate surfaces

with complex geometries that can also be used as diffusers, enhancing the

room’s acoustic qualities. Contrary to standardised acoustic panels, these

digitally designed and fabricated structures and surfaces could be an integral

part of the room’s surfaces. Custom acoustic treatments can be designed

to match the architectural aesthetic, but further effort is needed to increase

acoustic performance awareness in architectural design. A key ingredient to

successful integration is providing architects with faster, simpler, and more

accessible tools for including acoustics in their design workflows.

A possible approach to shorten the computation time and simplify the

design workflow is to employ Machine Learning (ML) techniques. ML

has enabled significant breakthroughs in automated data processing and

pattern recognition within the field of computer vision [19]. Architecture and

engineering have seen an increase in research on employing ML techniques

in performance-based design [20], style transferring [21, 22], and clustering

[23]. In acoustics research, ML has been used mainly as a predictive tool

[24] focusing on information extraction, characterisation, and classification.

Gamper et al. [25] extracted the RT and EDT from audio recordings, and

Genovese et al. [26] the room’s volume from music signals. Peters et al.

[27] presented methods for identifying the room
11

in an audio file. They

achieved an accuracy of 61% for musical signals and 85% for speech signals.

Papayiannis et al. [28] used an Attention-Convolutional Recurrent Neural

Network (CRNN) architecture to identify the room type
12

where a speech

recording was captured. Their classification accuracy was 78% when using 5

hours of training data and 90% with 10 hours of data.

Given the previous success of ML techniques in acoustics and other research

fields, this doctoral thesis seeks to employ such techniques to provide

faster and easy-to-use tools and workflows to study sound diffusion. This

research aims to provide a dataset for acoustic research using machine

learning applications and make this dataset and its content accessible to

non-acoustics experts. It does it by developing novel visualisation methods

for displaying complex and multi-dimensional acoustic data. Furthermore, it

uses dimensionality reduction techniques to develop novel design methods

that enable users to navigate and explore this large, high-dimensional dataset

using acoustic performance criteria.

1 INTRODUCTION 11



1.4 Research objectives

Diffusion occurs when sound waves hit a non-flat, articulated surface. These

articulations scatter sound spatially and temporally [29] (see Figure 1.2).

To predict the acoustic properties of such surfaces, we need to model the

relationship between surface geometry and reflected sound. This model needs

a dataset that contains both geometrical and acoustical data. Several datasets

exist that contain acoustical data in the form of room Impulse Responses

(IRs). AIR, BUT ReverbDB, RWCP, and DIRHA [30–33] are used for speech

enhancement and speech recognition, the ACE Corpus [34] for acoustic

environment characterisation. Nevertheless, these datasets do not address

room acoustics applications and, most importantly, do not contain any three-

dimensional geometrical data. As such, one of the primary objectives of this

research is to:

▶ Create a dataset containing three-dimensional geometrical data of

articulated surfaces and their corresponding physically measured

impulse responses.

In ML techniques, the quality and size of the dataset heavily influence

the final quality of the model [35]. Building a high-quality dataset mainly

depends on a) defining the type of collected data based on the desired goals

and b) defining an accurate collection, processing, and organisation pipeline.

Having very few data points is problematic (Figure 1.7c); the same goes for a

large dataset with insufficient diversity in its data points (Figure 1.7b). In both

cases, although the predicted function accurately satisfies the training data,

it does not accurately describe the real problem (represented with a dashed

line in Figure 1.7). The dataset needs to have sufficient and diverse data to

generalise the problem in question and achieve a high prediction accuracy

(Figure 1.7d). Creating a new dataset can be challenging and time-consuming,

especially with non-computer-generated data. The following objectives are

set to ensure the creation of such a high-quality dataset.

▶ Define relevant diffusive geometries for architectural acoustics.

▶ Develop methods and tools to generate diffusive geometries for acoustic

testing.

▶ Set up a data acquisition pipeline.

The objectives outlined above aim to provide the necessary dataset to develop

ML methods for predicting the acoustical properties of diffusive surfaces.

This alone does not address the need for intuitive and easy-to-use tools for

non-expert users in acoustics or ML. This research aims to demonstrate that

a dataset generated for predictive deep neural network applications can also

be used as a knowledge base of known acoustic properties. Nevertheless,
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Figure 1.7: The relationship between training data and MLS’s prediction quality. (a) Large, dense, and diverse training data set. (b) Large

enough and dense but not diverse. (c) Small and diverse. (d) Large enough and diverse. Function that perfectly describes the system.

The predicted function that satisfies all input data points. • Data points.

the large number and multi-dimensional nature of its data points make

it challenging to explore with conventional visualisation methods. ML

techniques such as data clustering and dimensionality reduction can filter and

organise large amounts and high-dimensional data. Visualisation tools based

on these techniques can provide a more accessible and comprehensible data

exploration, allowing architects and acousticians to study sound-diffusive

surfaces and incorporate them in their designs easily.

▶ Develop data clustering and dimensionality reduction tools.

▶ Develop data visualisation tools

1.5 Research methodology

Figure 1.8: The closed-loop method-

ology of the data acquisition pro-

cess.

The methodology consists of quantitative and qualitative research to achieve

the above research objectives. It addresses the challenges of creating a new

dataset and developing easy-to-use data analysis and visualisation tools

for large amounts and high-dimensional data. The methodology can be

split into four main parts: a) the development of the data acquisition setup,

b) the design, generation, and fabrication of diffuse surfaces, c) methods

for processing and visualising the captured data, and finally, d) methods

for analysing, exploring, and using the data within an architectural design

process. Most of these parts are developed in parallel due to their high level

of inter-dependency. The data acquisition requires the parallel use of surface

design, data processing, data visualisation, and data analysis methods. It

follows a closed-loop process (see Figure 1.8) consisting of the following

steps:

1. Design an acoustic surface

2. Fabricate and post-process the surface

3. Collect acoustic data from the surface

4. Process the captured data

5. Analyse the processed data

6. Use the results of the analysis to inform the design of the next acoustic

surface
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13: Fresnel zones are ellipsoidal

shapes that, based on a predeter-

mined source and receiver position,

define the part of a sound reflector’s

surface that is mainly responsible

for the reflected sound that arrives

at the receiver’s position.

Below is a description of the four methodological parts and how each one

addresses the research objectives and tackles research challenges.

1.5.1 Data acquisition setup development

To study the spatiotemporal effects of diffusion, we need acoustic data

from different positions and at different distances around the surface. A

three-dimensional grid containing multiple measuring positions at different

distances from the surface is introduced to address this challenge. Since

every single measurement adds to the total time required to measure an

entire surface, given the limited period of this research, the density and,

consequently, the number of measurements per surface must be carefully

defined. On the one hand, too many measurements per surface will result

in a small number of surfaces. On the other hand, even though fewer

measurements will result in a larger number of surfaces, the small number of

measurements per surface will not be sufficient to characterise it adequately.

To address this challenge, the measuring grid is defined using Fresnel

zones
13

[36]. A computational tool is developed to generate these Fresnel

zones, and the generated zones are validated using empirical experiments.

These tests help define the optimal grid density and the number of layers,

which in return determines the total number of measurements per surface

and the total time needed for each surface.

The high number of measurements per surface and the imperative need

for accuracy and repeatability in the measuring process dictates the use of

automation. Two robotic arms are used to accurately reposition a microphone

and a speaker on the measuring grid. The multi-robotic setup is integrated

with audio equipment such as an audio interface, an audio amplifier, and

environmental sensors to measure and document the temperature, humidity,

and atmospheric pleasure during the measuring process.

1.5.2 Design and generation of diffuse surfaces

This part of the research focuses on developing a computational pipeline for

designing and fabricating a large and diverse set of surfaces to be measured

in the data-acquisition setup. To bring acoustics closer to the architecture

practice, tools should be not only easy to use but also relatable and applicable

to existing design workflows. Common architectural materials such as stone

and brick and fabrication techniques such as ashlar masonry or stretcher-bond

brick walls are included to create a link between past and current building

systems. They are chosen based on their geometrical characteristics and

ability to diffuse sound. Typologies help to organise the surfaces into groups

14



14: An impulse response is the out-

put or reaction of a dynamic system

in response to an external change.

It describes the system’s reaction as

a time function.

with distinct surface characteristics. During the data acquisition period, the

data visualisation and data analysis methods described in the following

sections are used to introduce geometrical variations in the typologies. This

variation has the motivation to a) uncover new possibilities within the

acoustics domain, possibly integrating diffusion and absorption within one

surface, and b) diversify the acquired dataset.

1.5.3 Data processing and visualisation

The data captured with the acquisition setup are stored as IRs. Although an

IR contains much information, this format type is not easily readable by a

human
14

. For this reason, computational tools are developed to process an

IR and compute multiple standard acoustic parameters such as Absorption

Coefficient (𝛼), energy, EDT, and more. Furthermore, several visualisation

tools are developed to display these acoustical parameters and illustrate

the complex nature of sound in relation to geometry. They provide a more

detailed insight into the relationship between geometrical characteristics

and the frequencies they influence. Simple and understandable data vi-

sualisations are key components for communicating these insights within

interdisciplinary groups of experts and non-experts in acoustic.

As mentioned in 1.5.2, these visualisations are also used to inform the design

generation algorithm and vary the geometry of the acoustic surfaces. The

design of these surfaces happens in several batches. For each batch, the

measurements of the surfaces are visualised and compared with already

measured surfaces. The results of this comparison inform the design of

the next batch of acoustic surfaces. This process helps diversify the dataset

with surfaces whose acoustic properties are not very similar but also not

significantly different.

1.5.4 Data analysis

The captured data are complex and high in quantity, exceeding the number

of dimensions humans can visualise or easily comprehend. Therefore, ana-

lytical strategies and machine learning techniques are employed for feature

extraction and dimensionality reduction. Analytical tools such as Principal

Component Analysis (PCA) [37] are used to analyse and extract correlations.

PCA is a statistical procedure that emphasises variation and brings out strong

patterns in a dataset, making data easy to explore and visualise. These results

are then used to identify the most critical geometrical characteristics that

influence specific acoustic properties. Self-Organising Map (SOM) [38], a di-

mensionality reduction technique, is a type of artificial neural network. It uses

1 INTRODUCTION 15



unsupervised learning to produce a low-dimensional representation of the

high-dimensional input space of the training samples in a two-dimensional

graph. The dimensionality reduction helps arrange the data based on physical

(i.e., fabrication technique, simulated material) or acoustical characteristics

(i.e., absorption, scattering), allowing the identification of clusters in the

generated data.

1.6 Interdisciplinary research

This dissertation is part of the AADS, an interdisciplinary research project

between the Chair of Architecture and Digital Fabrication at ETH Zurich,

the Swiss Data Science Center (SDSC), the Laboratory for Acoustics /

Noise Control of Empa, and Strauss Elektroakustik. The scientific group

of the AADS project includes architects, acousticians, data scientists, and

software engineers. This project aims to investigate a novel application of ML

techniques for predicting the acoustic properties of architectural surfaces.

The data for training the ML models are collected using the data-acquisition

setup described in 1.5.1. The data scientists of the SDSC would then use

the data to implement predictive ML models using deep neural networks.

These models would take new architectural geometries as input and provide

acoustic performance information as output.

Each author’s different collaborations and contributions are described in

detail at the end of every paper.

1.7 Thesis structure

This cumulative, paper-based dissertation is built up of six chapters. Chapter

1 contains the introduction and contextualises the research. Chapters 2, 3,

4, and 5 contain the four papers that together with Chapter 6 form the

body of the research. Chapter 6 describes the development of a web-based

application that makes the entirety of this research available to users with

no programming knowledge. Finally, chapter 7 contains the conclusions,

outlining and discussing the contributions and the outlook of this research.

These six chapters are followed by Appendices A, B, C, D, E, and F. Appendix

F is a scientific publication describing a built project that used several

methods developed in this thesis. Supplementary to this dissertation is an

Annex that documents the content of the GIR Dataset.

Chapter 1

Introduction: forms the introduction to the subject matter, discussing the

project background and research problem. It contextualises the research goal
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and proceeds to describe the chosen methodology. The research objectives

follow the problem statements. They are grouped into four parts consisting

of setup development, digital design, data processing, and data analysis that

are respectively developed in the body of this research in Chapters 2, 3, 4,

and 5.

Chapter 2

Paper A - GIR Dataset: A Geometry and real Impulse Response Dataset for machine
learning research in Acoustics: is a scientific publication in the journal of

Applied Acoustics [39]. It introduces a new GIR Dataset, built within the

scope of this research. The article details the dataset’s content, how it is

collected, and how it is structured. It continues by presenting a use-case ML

application using the dataset and concludes by discussing the challenges of

creating such a dataset, possible applications, limitations, and future work.

Chapter 3

Paper B - A data acquisition setup for data driven acoustic design: is a scientific

publication in the journal of Building Acoustics [40]. It presents the automated

data-acquisition setup, the data processing and the computational generation

of diffusive surfaces. Finally, it describes initial comparative studies of

measured surfaces.

Chapter 4

Paper C - Visualisation methods for big and high-dimensional acoustic data: is

a peer-reviewed paper at the conference of the Association for Computer-

Aided Design in Architecture (ACADIA) [41]. It presents novel methods

for interactive visualisations of acoustic datasets for architects and non-

acoustic experts. It introduces a series of simple acoustic properties for users

with basic knowledge of acoustics and describes methods for low- and high-

dimensional data visualisations. It describes the computational workflow and

uses a design scenario to demonstrate the proposed visualisations. Finally,

it discusses the challenges of developing such methods, their advantages,

limitations, and future work.

Chapter 5

Paper D - Data-Driven Acoustic Design of Diffuse Soundfields: Self-Organising
Maps as an Exploratory Design Tool for Big Data: is a peer-reviewed paper

at the conference of the Association for Computer-Aided Design in Ar-

chitecture (ACADIA) [42]. The paper demonstrates a novel approach to

a performance-driven acoustic design of architectural diffusive surfaces

using unsupervised machine learning techniques to analyse and explore the

GIR Dataset described in Chapter 2. The paper introduces the computational

pipeline, describes the methods used, and presents two use cases in the

form of design experiments. Finally, the paper discusses the challenges of

developing such a method, its advantages, limitations, and future work.
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Chapter 6

Geometry and Impulse Responses web application: This chapter introduces the

Geometry and Impulse Responses library, a web-based application allowing

users without programming knowledge to explore the GIR Dataset. The

chapter then describes two available visualisation modes and how to use

them to analyse acoustic data. It concludes by demonstrating how it can be

used and describes alternative methods to use developed visualisations to

analyse the diffusivity of a surface.

Chapter 7

Conclusions: summarises the body of the research, discusses current limita-

tions, and concludes on the implication of data-driven acoustic design in

architecture. It lists the contributions of this dissertation and provides an

outlook for future work in this field.

Appendix F

Paper E - Computational design and evaluation of acoustic diffusion panels for the
Immersive Design Lab: An acoustic design case study: is a peer-reviewed paper

in the proceedings of the eCAADe conference [43]. The paper presents a

workflow for the computational design and evaluation of acoustic diffusive

panels, developed and realised in a real building project - the Immersive

Design Lab (IDL). This workflow includes a computational design system

integrated with a rough acoustic evaluation method for fast performance

feedback, assessing acoustic performance criteria using the data-acquisition

setup described in Chapter 3, and the post-processing of a selected design

instance for fabricability. Finally, the paper illustrates and discusses this

workflow, its limitations, and future work.

Annex

Geometry and Impulse Response Dataset: is an overview of the GIR Dataset’s

content.
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Abstract

Acoustics play a significant role in our

everyday lives, influencing our

communication, well-being, and

perception of space. Fast and precise

acoustics simulation is crucial for the

accurate design of real spaces by architects

and acousticians and maximises the user’s

immersion in virtual and augmented

reality environments. Computer

simulation techniques can help to simulate



and analyse acoustics. However, their

cumbersome, computationally expensive,

and often inaccurate results discourage

most architecture practices from including

acoustic evaluation in their design

workflow and prevent real-time accurate

audio synthesis in virtual reality. Recent

advancements in ML and particularly

Deep Learning offer compelling solutions

to address the above problems. ML

methods require large datasets for training,

and existing datasets are either not large

enough, contain synthetic data, or are not

suitable for room acoustics research. This

paper presents the GIR Dataset, a dataset

of 920712 real IRs of 312 architectural

geometries for the study of early reflections

from diffusive surfaces. The paper

provides a detailed description of the

GIR Dataset’s content and an ML use-case

example. The dataset and the code

described in this paper are open-sourced.

This version of the article has been published after peer review in the journal of Applied Acoustics,
Volume 208, p. 109333, on June 15th 2023. The published version is available online at: https:
//doi.org/10.1016/j.apacoust.2023.109333.
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2.1 Introduction

The sound we hear is a combination of the direct sound coming straight

from the source and the indirect reflections from the surrounding surfaces.

Sound hitting a surface is either transmitted, absorbed or reflected; the ratio

depends on the surface’s acoustic properties. Early reflections significantly

affect the characteristics of the sound at the listening position. Furthermore,

the directional aspects and the degree of diffusivity are most relevant in the

early reflections [7, 44, 45]. Room acoustics combine room geometry and

surface treatment by appropriately placing absorptive, reflective or diffusive

surfaces to control sound propagation. In particular, diffuse surfaces can

help to reduce flutter echoes and colouration and create a uniform sound

field.

Today, to assess acoustic quality, we use physical scale models or computer

simulations. Unfortunately, physical scale modelling is expensive both in

cost and time, often requiring several months to fabricate and measure a

single design. For these reasons, they are mainly used for projects where

sound is the main protagonist, such as concert halls or auditoriums. On

the other hand, computer simulations are generally faster and are based

on two main approaches: wave-based modelling and GA. Wave-based

modelling provides the most accurate results but with the expense of very

long computation times [7, 14]. Techniques based on GA are faster but less

accurate because sound wave properties are neglected, and sound is assumed

to propagate as rays [16]. Both approaches create a bottleneck in the study of

diffusion. Wave-based methods are time-intensive; therefore, architects and

acousticians cannot iterate through several design variations. The simplified

assumption of GA methods renders them incapable of modelling diffraction

and are equally slow when used on high-level-of-detail models [17]. Except

for projects that primarily focus on sound, these limitations, paired with

their cumbersome-to-use nature, discourage most architectural practices

from using them in their everyday design workflow to develop acoustically

informed designs [8]. Thus, diffusion, an important acoustic phenomenon

that can promote spaciousness, prevent flutter echoes, and improve speech

intelligibility [7], is either neglected or inaccurately simulated, thus not

properly evaluated.

Machine learning has enabled broad advances in automated data processing

and pattern recognition capabilities in fields such as computer vision [19],

reinforcement learning [46], audio processing, and (geo)physical science [47–

49]. Sound event detection and source localisation are some of the tasks

in acoustics and audio signal processing that have greatly benefited from

deep-learning techniques [24]. One of the main limitations of data-driven

ML methods is that they require large amounts of data for training and
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4: acecorpus.ee.ic.ac.uk

5: dirha.fbk.eu/English-PHdev

validation. Furthermore, the quality of the training data has a big influence

on the output quality and the prediction accuracy [35].

Therefore, a dataset containing a large number of high-quality real audio

measurements taken from diffuse surfaces would aid the research on the

mutual relationship between geometry and sound and the development of

fast and easy-to-use acoustic tools using machine-learning methods.

2.1.1 Motivation

The motivation of this paper is to introduce the Geometry and Impulse Response
Dataset GIR Dataset and describe the methodology of its collection. This

unique dataset can be seen as the equivalent of COIL-100 [50] for audio.

It comprises multiple real IR measurements taken from hundred surfaces

that represent different architectural wall structures. The GIR Dataset was

built to provide the scientific community with the first dataset of physi-

cally recorded IRs and their corresponding 3D geometries. The goal is to

aid the research on diffusion and its relationship to geometrical character-

istics. Knowledge of a surface’s reflective properties could be translated

into parameters such as absorption and scattering coefficient for use in

room acoustic simulations. Furthermore, this dataset can be used as a ba-

sis to develop machine-learning models for predicting early reflections, or

acoustic properties of 3D surfaces, thus omitting the need for a physical

scale model. These models could enhance hybrid GA methods by including

direction-specific diffusion as a replacement for global scattering coefficients

while still keeping the computational effort low. The dataset is released

under the GNU General Public License v3.0 and is available on Zenodo:

doi.org/10.5281/zenodo.5288743 [51]. Accompanying code is also dis-

tributed on Renku: renkulab.io/projects/ddad/gir-dataset.

2.1.2 Related work

This section focuses on three main topics. First, relevant datasets that con-

tain audio information and have been used in acoustics research; second,

ML applications on room acoustics; and finally, other research fields, be-

sides architectural acoustics, that use audio and could benefit from the

GIR Dataset.

Acoustic-based datasets. Several acoustic datasets containing real impulse

responses exist, most of them addressing a specific application. AIR
1

1: www.iks.rwth-aachen.de/
fileadmin/user_upload/
downloads/forschung/
tools-downloads/air_

database_release_1_4.zip

, BUT

ReverbDB
2

2: speech.fit.
vutbr.cz/software/
but-speech-fit-reverb-database

, and RWCP
3

3: research.nii.ac.jp/src/en/
RWCP-SSD.html[30–32] are used in speech enhancement and speech

recognition. The ACE Corpus
4

[34] for acoustic environment characterisation

and the DIRHA
5

[33] for smart-home applications. Nevertheless, these
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datasets do not include geometric information; thus, they are not adapted to

geometrical sound applications.

Room acoustics. Despite a lack of appropriate datasets, ML techniques have

been applied recently in room acoustics applications, mainly focusing on

characterisation, information extraction, or classification. In the past, ML

has been used to extract different indicators and properties of reverberant

environments. Such properties were the RT and the EDT of a room from music

signals [25, 52], and the room volume [26, 53]. Peters et al. [27] presented a

system for identifying a room in an audio or video recording. The system was

based on a Gaussian mixture model and used acoustical features extracted

using Mel-frequency cepstral coefficient. With no common content between

the training and testing data, they achieved an accuracy of 61% for musical

signals and 85% for speech signals. More recently, Papayiannis et al. [28]

used an attention Convolutional Recurrent Neural Network architecture to

identify the room in which a speech recording was taken. They provided a

classification accuracy of 78% when using 5 hours of training data and 90%

when using 10 hours.

Audio sensing. So far, the field of audio sensing has shown promising

results when a suitable algorithm is combined with high-quality data. For

example, audio camera applications can extract geometrical information

from sound using microphone arrays [54–57] or reconstruct the geometry

of the surrounding environment by measuring a series of IRs at different

spatial positions [58–60]. These techniques could be used in situations where

visual cameras are not available such as in surveillance applications [61], or

the desired information is out of the camera’s line of sight [62]. Arrays of

microphones are also widely used for source localisation, where the goal is to

identify the position of one or multiple sound sources [63]. The GIR Dataset

could help to study further the extraction of geometrical information from

sound events or source localisation by providing multiple measurements of

the same object from different physical positions. For example, identifying

the source-receiver localisation from multiple GIR Datasets corresponds

to the object localisation problem, whereas finding the source position

from the GIR Datasets at multiple receiver positions corresponds to source

localisation.

2.1.3 Paper structure

Section 2.1 introduces the research context, describes the research motivation,

and presents related work in audio and acoustics, existing datasets, and their

shortcomings. Section 2.2 introduces the GIR Dataset, detailing its content,

how it was collected, and how it is structured. Section 2.3 presents a use-case

ML application using the GIR Dataset and describes the Neural Network
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Figure 2.1: The measuring grid. The

source is displayed in blue (0,3,3),

and the receiver in red (0,2,2).

(NN) architecture and its results. The presented use case is fully reproducible

as the whole dataset, the code, and all training data are made available.

Finally, section 2.4 concludes the paper by discussing the challenges of

creating such a dataset, possible applications, limitations, and future work.

2.2 Dataset

The GIR Dataset is a library of 920712 physically measured impulse responses

of 312 scale-modelled architectural wall-like surfaces (2951 per surface) to

study early reflections from diffusive surfaces. The measurements were

carried out in a frequency range from 2 kHz to 40 kHz on an orthogonal

four-layered grid (see Figure 2.1). Layer_0 contains 36 measurement positions

in a 6 × 6 grid, Layer_1 25 measurements in a 5 × 5 grid, and Layer_2 16

measurements in a 4 × 4 grid. The fourth layer, Layer_3, contains only a

single measuring point, but no IR was captured in this location. Instead,

this point was used as a source position. The layers are located 124, 214,

304, and 474 millimetres on average away from the surface, respectively.

The measurement points are used both as receiver and source positions.

The decision to use an orthogonal grid was twofold. On the one hand, an

orthogonal grid (in contrast to the polar proposed in the ISO 17497-2 [64])

allows the use of symmetries in ML algorithms [65], which can significantly

reduce the sample complexity of the learning process [66, 67]. On the other

hand, measuring the reflected sound at different distances from the surface

enables the exploration of spatiotemporal relationships between geometry

and sound. Spatially, three reflection patterns are captured at close, medium,

and far distances from the surface. Temporally, the change in the reflection

pattern over time can be captured and visualised [41].

Figure 2.2: Micro- macro surface

composition. Left: A surface with

only the Stretcher-bond bricks mi-

crostructure. Middle: A surface

with only a macrostructure. Right:

The final surface combines the

micro- and macrostructure.
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Table 2.1: Number of surfaces per

typology
Typology Number of surfaces

Reference 16

Baseline flat 14

Baseline macro 6

Dutch-bond brick wall 68

Polygonal rubble stone wall 33

Ashlar masonry 16

stretcher-bond brick wall 81

IDL (Gaussian noise & Spline lofting) 10

Primitives 68

Total 312

The surfaces (referred to as panels in the dataset) were computationally

designed to resemble 6 × 6 metres wide walls that are built using common

fabrication techniques (referred to as typologies in the dataset) such as brick

walls, stone walls, cast concrete, and more (See Table 2.1 for a list of surfaces

per typology). The surfaces were 3D printed in a 1:10 scale using a binder-jet

3D printer and sprayed with two layers of paint to increase their sound

reflectivity (see Appendix A.3). The varying geometry of each panel is

composed of a macrostructure and a microstructure (see Figure 2.2) [40].

The first defines the overall shape of the panel, and the second its typology.

Several material and construction parameters particular to each typology are

coded in a geometry generation algorithm and utilised to generate various

surfaces. For example, the brick typologies are defined by the brick size,

rotation along the Z-axis, displacement along the macrostructure’s normal

vector, and the mortar’s width and depth [42]. A big geometrical variety

is achieved by combining different macro- and microstructures (see Figure

2.3).

The reflection properties of the panels depend on the ratio between geometric

dimension and wavelength; therefore, the measurement results also remain

valid for other frequencies or dimensions as long as the ratio mentioned

remains the same. When interpreting the results in a scaled version, the

time axis must also be stretched or compressed by the corresponding factor.

This is particularly important in the analysis of time histories, such as the

energy over time or the cumulative energy (see more in section 2.3 Use-case

example).

2.2.1 Data acquisition setup

An automated robotic setup was used to capture all IR. The setup included

two robotic arms inside an acoustically treated room. The room had a size of

5.70m × 1.97m × 2.55m (L, W, H), and all the surfaces around the measuring

base were covered with 5cm thick Basotect G+ melamine foam by Vibraplast.

26



Figure 2.3: A sample of geometries included in the dataset illustrating the different typologies. From top left to bottom right: Polygonal

Rubble Stones, Reference (PRD diffuser), Baseline macro (macrostructure), Ashlar masonry, IDL (Gaussian noise), IDL (spline lofting),
Flemish-Bond Bricks, Stretcher-Bond Bricks, Primitives.

The first robot was equipped with a speaker (source) and the other with a

microphone (receiver) (see Figure 2.4). The robotic arms acted as dynamic

measuring devices, emitting a sound and recording the reflection from the

3D printed panel. They continuously re-positioned their end-effectors in a

predefined three-dimensional measuring grid on top of the 3D printed panel

(see Figure 2.1)[40].

The sound was a linear frequency sweep ranging from 2 kHz to 40 kHz.

The frequency range is a direct consequence of the speaker’s flat frequency

response in this frequency range. The speaker’s small membrane diameter

produces a narrow sound radiation pattern, focusing sound radiation on-axis,

especially at high-frequencies. To maintain its flat frequency response, we

oriented the speaker in each measurement to directly point at the centre
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Figure 2.4: A closeup view of the

data acquisition setup. The micro-

phone (left) and speaker (right) end-

effectors attached to two Stäubli

TX2-60L robots.

of that microphone-speaker combination’s Fresnel Zone [36] on the 3D

printed panel [40] (see Figure 2.5). Some microphone-speaker combinations

are skipped because the end-effectors would collide with each other. All

measured combinations are available by running the all_combinations()

method of the Grid class from the accompanying code.

Figure 2.5: The Fresnel zone on the

surface of the 3D-printed panel un-

der test for a 2 kHz frequency.

After every recording, a post-processing pipeline performed automatic

quality checks on the raw file before computing the IR. The system kept

repeating the recording until all checks were passed. When all checks were

successful, the pipeline was then converting the raw recordings to an IR using

deconvolution, retaining only the first approximately 4ms. This step was

used to filter out unwanted late room reflections and retain only the relevant

part of the IR. In some geometries, the path lengths between direct sound

and reflected sound were very similar; thus, direct sound suppression using

a time-windowing separation was impossible. Instead, the IR of a highly

absorbent acoustic foam panel, captured from the same source-receiver

positions, was subtracted from the measured IR. This final step resulted in

an IR containing only the reflected sound energy of the panel under test.

The resulting IR can then be split up into five-octave bands using specifically

designed band-pass filters.

Besides the two robotic arms, the data acquisition setup was comprised

of several additional hardware components. Below we include a list of the

most important components and a short description of how they were used.

A more detailed description of the data acquisition setup can be found in

[40].
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6: Running on a 2.9GHz 6-core

i9 CPU, 32GB of 2400MHz DDR4

RAM.

7: 96000𝑘𝐻𝑧 ÷ 4𝑚𝑠 = 384 ≈ 400

samples.

▶ 2× Staubli TX2-60L robotic arms. The robotic arms were also covered

with a custom-knitted cotton textile to reduce sound reflections. These

robotic arms were chosen for their exceptional precision and repeata-

bility (0.2mm and 0.02mm respectively). To remove any noise sources

from the room, we placed their controllers in the adjacent room. Finally,

their joint motors could be turned off and on through code, rendering

them completely silent when recording.

▶ A microphone comprised of a G.R.A.S. 40BE capsule attached on a

Microtech Gefell MV 220 high impedance transducer.

▶ A Berillyum Utopia Be tweeter by Focal was used as a speaker.

▶ A Dynavox ET-100 power amplifier drove the speaker.

▶ A Scarlett 2i4 audio interface by Focusrite was used for playing the

sweeping sound and recording the signal from the microphone.

▶ A Gravity I2C BME680 Environmental Sensor by DFRobot was used to

capture the room’s temperature, humidity, and atmospheric pressure in

every recording. The temperature values were then used to compensate

for the small changes in the speed of sound. All IRs in the dataset are

re-sampled using the speed of sound at 20
◦

Celsius.

▶ A Gravity Analoge Sound Level Meter by DFRobot was placed outside of

the room to monitor the outside noise levels and pause the measure-

ment process when the 60𝑑𝐵 threshold was exceeded.

▶ A DFRduino Mega2560 by DFRobot was used to control the environ-

mental sensor and the sound level meter.

The measurement process per panel took approximately 11 hours, resulting

in 16 months for the whole dataset. At the beginning of this research, we

evaluated the use of acoustic simulations as a method of acquiring the

desired IRs. Geometrical acoustic methods are not capable of modelling

sound diffusion [17]; therefore, we looked into wave-based simulations

using the Finite-Difference Time-Domain method (FDTD). For a maximum

frequency of 40kHz, a domain of 585 × 585 × 45 millimetres, and an FDTD

solver performing 150 Million updates per second, a single source required

approximately 75 minutes
6

to simulate 40ms. For the 75 sources we used, the

FDTD solver would have needed almost 95 hours of continuous computing.

This approach was rejected since it would have resulted in a very small

dataset.

2.2.2 Dataset content

A dataset sample is comprised of three items; a 3D geometry, a list of 2951

impulse responses, and a metadata file. The 1:10 scaled 3D geometry is stored

as 3D Mesh in an OBJ file and the IRs in a 2951×400
7

float32 matrix in an .npz
file. Finally, the metadata file contains useful information about the geometry
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8: A testing set, also called test set

or holdout data, consists of data

that is held out of the training or

parameters tuning. This data can

then be used for the model evalua-

tion without the risk of information

leakage.

9: The term "distribution shift" is

used to refer to the fact that sam-

ples from the training/validation

set might be sampled from a differ-

ent distribution than the one of the

testing set.

10: VJ is an abbreviation of the

printing service provider’s name.

design, fabrication, and environmental conditions during the measuring

process (Table 2.2). A list containing a detailed description of the metadata

file’s content can be found in Appendix A.1.

Table 2.2: Dataset sample content.

File type Content

.obj 3D Mesh (1:10 scale)

.npz 2951 IRs

.json panel_id, start_time, end_time, package_time,

impulse_response_file, geometry_file, macrostructure,

recording_sample_rate, reference_resample_temperature,

print_provider, print_machine, print_sand_type, typology,

print_binder_type, microphone_model, measurements

2.3 Use-case example

In this section, we demonstrate the use of the GIR Dataset to predict the

acoustic properties of a surface. For architectural acoustics applications,

the fast prediction of acoustic properties through ML could replace time-

consuming physics-based acoustic simulations. This would allow designers

more iterations on their design and evaluation workflow. Furthermore, since

the dataset comprises real measurements, the ML model could provide a

more accurate representation of reality than simulation.

Testing sets. The dataset is composed of a unique and highly diverse set

of panels (see Figure 2.3 and Figure 2.6). Therefore, we manually defined

six different testing sets
8

allowing us to evaluate different generalisation

properties of our algorithms (A detailed description of the contents of each

testing set can be found in Appendix A.2).

▶ Random: 19 different panels from all typologies. This testing set is

informative of the general performance of the algorithm without

distribution shift
9
.

▶ Micro-macro: The training set contains panels that have either only a

macrostructure or only a microstructure. Then, the testing set contains

16 panels that combine these macro and microstructures present in the

training set. This set is informative of the model’s ability to generalise

by combining elements from the training set.

▶ Brick-Printer-VJ: All brick wall panels printed with the VJ
10

printer.

This testing set allows evaluating the model’s ability to generalise to

different conditions, i.e. a different printer.

▶ Brick-Printer-CG: A random selection of brick wall panels from the CG

printer.

▶ Extrusion: All Flemish-Bond Brick panels with a front extrusion distance

of 3mm and a side extrusion distance of 5mm.
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▶ Macro: Six panels composed of only a macrostructure (the flat panel is

not included).

Problem details. The goal of this experiment is to predict the acoustic

properties of a three-dimensional surface. The GIR Dataset contains a total of

312 panels, but some are reference panels that are used by the post-processing

pipeline to clean and normalise the data. Therefore, for our training set, we

used a subset consisting of 268 panels comprising a total of 743652 IRs. As

40 20 0 20 40

Figure 2.6: Top projection of 266

out of 268 panels used for the ex-

periments. The legend represents

the height values of each part of the

panels (in millimetres). Panels with

the same macrostructure are clearly

visible.

2 PAPER A - GIR DATASET: A GEOMETRY AND REAL IMPULSE RESPONSE

DATASET FOR MACHINE LEARNING RESEARCH IN ACOUSTICS

31



a geometry input, we used the 2D projection of the panel’s mesh and, as

an output, the reflected Cumulative Energy (CE) for any source-receiver

position. Our goal is to predict the CE for all available combinations of source-

receiver positions on the grid. The cumulative energy is an essential feature

as the steepness of the temporal increase maps the reflection characteristic.

Moreover, this indicator is easier to predict, as it is evaluated based on the

integration over time of sound pressure square and therefore does not contain

any phase information. To allow for frequency-dependent predictions, we

first split the IR into 5-octave bands using a band-pass filter bank as described

in [40]. The first is a low-pass filter with a cutoff frequency of 3.5 kHz, then

three band-pass filters with centre frequencies at 5 kHz, 10 kHz, and 20

kHz, and lastly, a high-pass filter with a cutoff frequency of 28 kHz. The

filter bank is "tight", meaning that it conserves the signal energy. Then the 5

IRs are converted into CE and normalised using a corresponding reference

panel. This panel is printed with the same 3D printer as the panel we wish

to normalise, and its CE is used as a reference for the maximum specularly

reflected energy. By summing up the CE time series, we obtain six numbers

representing the Total Normalised Cumulative Energy (TNCE), five from the

band-pass filter plus the total value. Assuming that there is negligible sound

absorption by the surface, then TNCE values smaller than 1.0 indicate sound

scattering, and values higher than 1.0 indicate sound focusing. Figure 2.7

shows the cumulative energy of an IR and the embedding of all panels using

principal component analysis from their 17706 features vectors (6 TNCE

numbers × 2951 positions).

As described in Section 2.2 Dataset, the dataset measurements remain valid

for other sets of frequencies and dimensions as long as their ratio remains the

same as the one that the GIR Dataset was created, and the time axis is also

stretched or compressed by the corresponding factor. For an architectural

acoustics application, a 10× factor can be used, resulting in panel dimensions

of 5.85 × 5.85 meters and a frequency range between 200Hz and 4kHz. The

time axis of the CE will also stretch by a factor of 10.

NN architecture and training information. We are in a very low sample

regime as the dataset is composed of only 268 panels. Therefore, we use

an encoder-decoder architecture that artificially multiplies the number of

samples. The encoder comprises six convolutional layers and embeds the

512 × 512 × 1 input geometry into a space of size 8 × 8 × 128. The decoder

takes the resulting code and the source positions 6 × 6 × 1 as inputs and

outputs the reflected energy for all receiver positions 6× 6× 1. This artificially

multiplies the number of samples by 36, at least for the decoder. The decoder

is a fully convolutional NN with the addition of a trained resampler (a linear

layer of size 64 × 36) that transforms the 8 × 8 × 128 code into a 6 × 6 × 128.

Since some microphone-speaker combinations are not measured (see Data
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Figure 2.7: Left: Cumulative energy curves of an IR. Each colour represents the cumulative energy of each filter band. The red dashed line

is the cumulative energy of the reference flat panel. Right: PCA embedding of the dataset with each dot corresponding to a panel. The

colours represent the macrostructures and the symbols of the typologies. The macrostructure panels are marked with a circle.

11: A measurement with flipped

source-receiver positions would not

produce the same IR.

acquisition setup), we ignore their unmeasured output using a mask. The

network size (the number of convolutions and layers) gradually increased

until the network would not improve in performance anymore. The overall

architecture and the network parameters are illustrated in Appendix A.8.2

(see Figure A.1 and Tables A.4, A.5, and A.6).

We tried augmenting the training set by randomly performing one of four

rotations (0°, 90°, 180°, 270°) and flipping the input/output pairs to increase

the sample size. Unfortunately, this operation, instead of improving the

results, increased the variance slightly. This could be the consequence of the

dataset’s non-reciprocal nature
11

(See Section 2.4).

Optimisation parameters. We train the network using an Adam optimiser

(learning rate of 5𝑒 − 4, 𝛽
1
= 0.95, 𝛽2 = 0.999) [68] for 32 epochs with a batch

size of 4. To find the best model, we randomly selected 10% of the training

set for validation, computed the validation error at the end of each epoch

and selected the model with the lowest validation error. To account for the

randomisation error and to obtain an estimate of performance variance, we

repeated the experiment 10 times with a different validation set for each

repetition.

Results. To remove any possible positional/frequency bias in the dataset,

we normalise the output data for the entire dataset. Each source-receiver-

frequency band combination has a 0 mean and unit variance. Table 2.3
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Table 2.3: Acoustic property predic-

tion results. MSE values for the pre-

diction of the cumulative energy in

five energy bands. The output has

been normalised with zero mean

and unit variance for each band and

each source-receiver combination.

Testing set Testing Testing Validation Training

Variance MSE 𝑅2
MSE MSE

Random 1.07 0.52 ± 0.06 0.51 0.60 ± 0.13 0.25 ± 0.03

Micro-Macro 1.59 0.99 ± 0.13 0.38 0.62 ± 0.12 0.24 ± 0.03

Brick-Printer-VJ 1.84 0.87 ± 0.05 0.53 0.61 ± 0.11 0.23 ± 0.01

Brick-Printer-CG 1.12 0.70 ± 0.09 0.37 0.57 ± 0.13 0.23 ± 0.01

Extrusion 1.19 0.39 ± 0.04 0.68 0.64 ± 0.15 0.23 ± 0.01

Macro 2.97 1.78 ± 0.09 0.40 0.56 ± 0.09 0.22 ± 0.01

shows the results acquired from the different testing sets. Due to their panel

selection, the testing sets do not have a unit variance. We compare the testing

set’s variance with the prediction’s MSE and compute the coefficient of

determination:

𝑅2 = 1 −
MSE(𝑌

pred
)

var(𝑌test)
(2.1)

𝑅2
represents the ratio of variance captured by the network, 0 is equivalent

to predicting the mean, and 1 is a perfect prediction. Different testing sets

vary the quality of the results with 𝑅2
values ranging between 0.37 and 0.68.

The performance differences of the different testing sets in Table 2.3 can

be explained by the various distribution shifts between the testing and the

training/validation sets. By design, the Random testing set has only a small

random distribution shift, which explains why the validation and testing

MSEs are similar. In fact, comparing the training and the validation MSEs,

one can estimate how much of the error is caused by overfitting. The rest of

the error can likely be associated with the various distribution shifts.

2.4 Discussion

We have created the GIR Dataset as the first publicly available dataset dedi-

cated to the study of diffusion. The GIR Dataset consists of 920712 physically

measured impulse responses and the three-dimensional information of 312

surfaces. We have demonstrated how it could be used in a use-case ML

application.

2.4.1 Dataset limitations

Although the GIR Dataset is a unique and valuable dataset for studying

acoustics, it comes with certain limitations. These limitations result from

unforeseen events or because we underestimated the impact specific factors

will have on the dataset. These events and factors are discussed below.
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Table 2.4: All the 3D printers that

were used to print panels.

Printer Binder

Voxeljet VX1000 Phenol

Voxeljet VX2000 Phenol

Voxeljet VX2000 Furan

ExOne S-Max Furan

One of the biggest challenges of capturing this dataset was consistency.

Computer simulations might not generate accurate IRs (depending on the

technique), but they do so consistently. Real IRs, on the other hand, although

they accurately represent reality, are sensitive to environmental factors.

A technical problem with the in-house 3D printer and the global pandemic

forced us to use four different 3D printers (Table 2.4) from two manufacturers

to meet the tight project timeline. We printed a flat reference panel with each

printer to mitigate the surface quality differences between printers. We then

used its data to normalise all other panels that were printed with the same

printer. This solution brought all measurements to a comparable level.

The 3D-printed panels were highly absorbent regardless of the printer they

were printed with. To reduce their sound absorption, we applied two layers

of spray paint to the surface of each 3D-printed panel. We used the same

setup for all panels (paint, spray gun, spray booth, person spraying) to avoid

possible surface variances. Although all panels exhibit the same surface

quality when visually inspected, a slight variance can be detected from the

recorded data. The only factor that could contribute to this effect is the person

spraying. We also noticed that the printing and cleaning quality of one of the

3D printing companies was subpar. Several small and sharp surface features

were not present on the final print, and the 3D printed panels had leftover

sand stuck on them. These caused the panels to have a more smoothed-out

appearance than their 3D model. We created a testing set with all the stone

panels from Printer-CG for testing purposes. Evaluating the network on this

particular testing set led to a negative coefficient of determination of -0.27.

Finally, we based the design of the measurement grid and, consequently,

the source-receiver combinations on the reciprocity theorem [69, 70]. A

data augmentation of up to 8× would have been possible if we could invert

the source-receiver positions. We measured the same panel once in its

standard orientation and once rotated 180 degrees around the Z-axis. We

then compared the IRs of several symmetrical source-receiver combinations,

but they did not match to a sufficient level to be used in our experiment. As

an example, using this theoretical symmetry to augment the dataset in our

use-case (see Section 2.3) did not improve the network’s prediction accuracy.

We suppose that the reciprocity principle was violated in our set-up by the

non-strict omnidirectionality of the loudspeaker and the microphone at the

upper end of the frequency range.

Despite these limitations, measurements are consistent within each panel

and comparable across panels when looking at the same source-receiver

combination. When looking at one panel, the dataset allows exploring the

acoustical effects of microstructure variances or how that panel responds

to the different incident and exit angles of sound. When comparing the
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same source-receiver combinations on different panels, the dataset enables

exploring the acoustical effects of different microstructures, macrostructures,

and surface typologies.

2.4.2 Future work and potential applications

The results are very encouraging and suggest new questions to investigate

using the GIR Dataset. a) How could we interpolate the measured IRs to other

source-receiver spatial positions? Can we construct a high-resolution grid

of IRs from just a few specific IR measurements? Some of our preliminary

experiments suggest that this is possible. b) Can we perform audio sensing,

i.e., recover the panel geometry from the raw IRs? Although it is possible

to learn geometry from an IR, we can increase the resolution, thus making

panel identification more accurate by combining the information of multiple

IRs taken from several positions. c) We have shown in our experiment that

we can predict some properties of an acoustic panel using a NN. Therefore,

is it possible to construct a useful approximation of the IR only from the

geometry? d) Finally, having a good predictor is the first step to tackling

the reverse problem. Can we build an ML system that would propose

new geometries that match certain given acoustic requirements? Such a

system could have a two-fold benefit. On the one hand, it could be used as

a design-exploration tool by architects and engineers. On the other hand,

using reinforcement learning algorithms could help improve its accuracy by

proposing new panel designs for areas with high uncertainty. The measured

data will then be added to the dataset to decrease the system’s uncertainty

in these areas.
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Abstract

In this paper, we present a novel

interdisciplinary approach to studying the

relationship between diffusive surface

structures and their acoustic performance.

Using computational design, surface

structures are iteratively generated and 3D

printed at a 1:10 model scale. They

originate from different fabrication

typologies and are designed to have

acoustic diffusion and absorption effects.

An automated robotic process measures

the IRs of these surfaces by positioning a



microphone and a speaker at multiple

locations. The collected data serves two

purposes: first, as an exploratory catalogue

of different spatiotemporal acoustic

scenarios and second, as data set for

predicting the acoustic response of

digitally designed surface geometries

using machine learning. In this paper, we

present the automated data acquisition

setup, the data processing and the

computational generation of diffusive

surface structures. We describe the first

results of comparative studies of measured

surface panels and conclude with steps for

future research.
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3.1 Introduction

The acoustic quality of a room is an important criterion for the perception

and, subsequently, the sense of well-being of its inhabitants [72, 73]. However,

today’s architectural acoustic design is mainly focused on typologies that

demand high-end acoustics, like concert halls or auditoriums. The acoustic

design of the vast majority of the built environment is often overlooked,

leading to reduced comfort, negative health effects from acoustic pollution,

cost for noise abatement measures and unaesthetic retrofitting of built

structures both indoors and outdoors.

One of the main reasons for this is the lack of accurate and easy-to-use

simulation tools [74] that can be well integrated into computational design

workflows, enabling the assessment of acoustic quality without the need for

acoustic specialists. Thus, acoustics is only considered at a later stage of the

architectural planning process (and often concerns only the installation of

standard absorption panels). Still, computational room acoustics is a field

that has been intensively studied over the past 50 years [16]. Fundamentally,

there are two main approaches for computationally modelling the acoustics

of a room, which are either based on numerically solving the wave equation

or on the assumptions of GA. Wave-based modelling is able to provide the

most accurate results but is too computationally expensive [14, 75] for an

iterative design and evaluation workflow. GA is faster but less accurate.

Here the sound is assumed to propagate as rays, and the wave nature of

sound is neglected. Thus, all wave-based phenomena, such as diffraction and

interference, are missing. Available room acoustic modelling software such as

ODEON [76], CATT, EASE, Ramsete [77] or RAVEN [78] are offering hybrid

GA methods, where the image source approach is combined with ray-tracing

that allows to consider diffuse reflections [79]. The scattering properties

of a surface are usually described by a simple one-parameter model that

assumes Lambert’s reflection directivity. This approach splits up the reflected

power into a specular and a scattering part, whereas the ratio between the

two contributions depends on the frequency and the structure depth. This

coarse reflection model can not consider specific surface properties that can

generate particular reflection patterns. In order to be able to work in room

acoustic design with surfaces with specially designed reflective properties,

other solutions are necessary.

Another method to validate room acoustics utilises physical scale models

[80]. Here, sound sources are installed at predefined positions, emitting

sound in a scaled frequency range while the corresponding audio signals are

recorded. The resulting measurements can be used to analyse the acoustic

performance [75] and improve the design [81]. However, this method is
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1: These robotic arms are accu-

rate (absolute positioning accuracy

0.2mm, repeatability 0.02mm), and

they have the ability to program-

matically turn the joint motors off

and on, such that their operating

noises do not affect acoustic mea-

surements.

extremely time- and resource-inefficient, as the number of design iterations

is limited to the number of built models.

In this paper, we present a novel interdisciplinary approach to studying the

mutual relationship between diffusive surface textures and their acoustic per-

formance through data science methods. In order to leverage data gathered

from physical scale models, we employ an automated robotic measurement

setup to record the IRs in front of 3D printed acoustically diffusive sur-

faces at 1:10 scale. They represent surface structures created through certain

fabrication typologies, such as brick or stone walls, for which we collect

diverse acoustic scenarios. The recorded data set serves as a foundation to

analyse relations between geometrical and acoustical configurations and to

determine performance clusters. The final goal is to use the created data set

as a basis for a data-driven acoustic simulation that will allow us to predict

the acoustic properties of newly created 3D surfaces, thus omitting the need

for a physical scale model.

The main challenge of building this data set arises from the need to define

and collect sufficient, relevant, and reliable data in a short amount of time.

Additionally, the post-processing of the input data needs to be identified

since both geometric and acoustic information are high-dimensional. This is

necessary for both the data visualisation and the future ML system. In the

following sections, we describe the data acquisition setup, the parameters

of the data set and the post-processing of the IR to extract meaningful

measures, such as the reflected cumulative energy per frequency band. These

evaluated indicators allow different panels to be compared. We introduce

the computational generation of diffusive surface structures and conclude

with strategies for shaping the data set and future work.

3.2 Acoustic data acquisition setup

The constituent parts of the multi-robotic setup were developed collabora-

tively by evaluating architectural and acoustic requirements, in addition to

the requirements from the perspective of data science and the constraints

of a physical setup. Several tests were performed to guide the development

and validate the quality of the measured data. Some of these tests can be

found in the project’s open data repository [51].

The multi-robotic measurement setup consists of two 6-axis Staubli TX2-60L
1

robotic arms with a reach of 920mm each (see Figure 3.1). They are equipped

with two different end-effectors: one with a speaker and the other one with

a microphone. During the measurement process, they reconfigure from

position to position in an irregular measurement grid above a 3D-printed

acoustic panel. For each combination of microphone and speaker position,
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Figure 3.1: Acoustic data acquisi-

tion setup with two Staubli TX2-60L

robots in an acoustically shielded

and absorbent room.

2: Basotect
®

G+ Melamine foam

from Vibraplast AG.

a sweep signal in a scaled (1:10) frequency range of 2-40kHz is emitted,

a recording is taken, and the corresponding IR is calculated. The sweep

signal covers the frequency range that can be reproduced by the loudspeaker

and determines the lower and upper-frequency limits of the data. The time

spent on each measurement combination averages 12.3 seconds, and the

measurement process per acoustic surface takes approximately 10 hours,

during which the data of 2951 measurement combinations are stored. To avoid

acoustic reflections, the robotic arms are covered with custom 3D knitted

sound-absorbing cloths. The robot controllers are installed in the adjacent

room to prevent their operating noise from affecting the measurement. The

whole setup is installed inside a sound-insulated room, in which all surfaces

are covered with 50mm melamine foam
2
. In the following paragraphs, the

core components of the setup are described.

3.2.1 3D printed acoustic panels

The goal of the research project is to produce a large and rich data set during

the project’s time span. However, the main constraints are the measurement

time, the acoustic panel’s size and its fabrication time. The print-bed of

the in-house Voxeljet VX1000 3D sand printer and the defined operation

hours constrain the acoustic panel’s size to a bounding box measuring

585 × 585 × 100mm (W x L x H), enabling the production of maximal five

panels per week. To increase the number of measurable surfaces, we designed

the panel with two sides (see Figure 3.2), thus two acoustic surfaces per

panel. A square panel shape was selected for the possibility of applying
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Figure 3.2: Double-sided 3D

printed panel placed in a special

fixture.

standard data augmentation techniques: based on the assumption that the

measurements are symmetric, the data can be virtually mirrored and rotated

four times (90 degrees each time), resulting in an overall increase of the

collected data by a factor of eight.

A panel produced with a binder-jet 3D printer is porous and highly absorbing.

To obtain a surface that represents rigid non-porous materials, the panel

is coated. We evaluated different surface treatments and compared the

respective normal incidence absorption coefficients obtained by impedance

tube measurements. If left untreated or baked in an oven, the absorption

coefficient is 0.47-0.58 for frequencies between 2-6kHz. If infiltrated with

resin or coated with two layers of acrylic paint, the absorption coefficient is

below 0.1 (see Figure E.2). We decided to proceed with the application of

two layers of plant-based, water-borne paint using a compressed air spray

gun. We compared the panel’s surface reflectivity after coating by comparing

the measurements from a coated flat 3D printed surface (referred to as Flat,
see Table 3.1) with a flat MDF panel (referred to as Wood). Compared to

Wood, Flat reflected on average 29.3% less energy. This unavoidable loss in

reflected energy and the variations of the measurements is considered in the

subsequent evaluations by normalisation (see Section 3.3.2); that is to say, all

indicators are consequently calculated in relation to Flat.

3.2.2 Measurement grid

The measurement locations are set in an irregular point grid based on the

defined dimensions of the 3D printed panel, the robots’ working space,

and acoustic considerations. The grid’s dimensions are defined to avoid
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3: Fresnel zones on a surface are the

intersections of Fresnel spheroids

with a flat surface between a source

and the image of the receiver. The

foci of the Fresnel spheroid are the

source and the image of the receiver.

The resulting intersections have the

form of an ellipse.

measurements with edge diffraction as much as possible. The density of

the measurement grid was calculated based on three criteria: a) to ensure

a uniform surface coverage, b) to maximise the number of data points per

panel, and c) to allow two acoustic surfaces to be measured within a 24-hour

cycle. To do so, we calculated the first Fresnel zone
3
[36] for each microphone

and speaker combination for both the lowest and highest used frequencies,

assuming a planar surface. By calculating all possible combinations of speaker

and microphone positions (excluding some immeasurable cases), the final

measurement grid contains 78 measurement points (see Figure 3.3) and a

total of 2951 measurement combinations. The measurement points are placed

on four planar layers, each with a different number of measurement points

located at different offsets from the panel’s surface. The first layer contains

6x6 measurement points, the second 5x5, and the third 4x4, with average

offsets of 124, 214, and 304mm from the surface and respective distances of

75, 93.75 and 125mm between measurement points. The fourth layer has only

one measurement point with an average offset of 474mm from the surface.

Finally, the Fresnel zones for the lowest frequency (2kHz) have a minimum

ellipse diameter of 195mm and a maximum of 560mm, and for the highest

frequency (40kHz), 43mm and 140mm, respectively.

Figure 3.3: Left: Measurement grid

with four layers in relation to

robotic setup and 3D printed panel.

Right: Panel top view with surface

coverage in layer 1 at 40000Hz (top)

and 2000Hz (bottom) calculated by

Fresnel zones.

3.2.3 Microphone and speaker end-effector

To record clean audio responses, shielding and scattering from the robotic

arms are avoided to the greatest possible extent. The microphone is positioned
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Figure 3.4: Microphone (left) and

speaker end-effector (right). The mi-

crophone is attached to an acousti-

cally transparent steel mount, and

the speaker is tilted to optimise di-

rectivity and ensure robot reacha-

bility.

4: After the absolute calibration

of the robotic arms, we have a

mean precision of 0.17mm and a

max@90% of 0.28mm.

such that it is far from the robot’s flange (approx. 0.5m), and it is fixed on

an acoustically transparent steel mount (see Figure 3.4). The precise tool

manufacturing and the accuracy of the robotic arm allow us to achieve

a positional accuracy of 0.17mm
4

for the microphone. The microphone

consists of a G.R.A.S. 40BE capsule attached to a Microtech Gefell MV 220 high-

impedance transducer. The microphone is of free-field type and has a flat

amplitude response up to 40kHz (-1dB) for sound incidence on-axis. For 30
◦

and 60
◦

off-axis, the sensitivity at 40kHz drops by 2 and 4dB, respectively.

On the source side, a Beryllium tweeter was selected as a loudspeaker that is

capable of exiting frequencies between 2 and 40kHz. As a direct consequence

of the 20mm membrane diameter, the loudspeaker shows a directivity

pattern with a tendency to focus sound radiation on-axis at high frequencies.

Several tests with conical attachments and scattering objects in front of the

membrane showed an improved (closer to omnidirectional) radiation pattern,

however, with a degradation of the temporal signature. To maintain the

excellent time response of the tweeter, it was decided to do without measures

to optimise directivity but carefully orient the speaker in each measurement

configuration. This is the reason for the 45
◦

tilt of the steel mounting (see

Figure 3.4), ensuring reachability by the robotic arm.

The microphone and speaker are connected to a Focusrite Scarlett 2i4 2nd Gen
audio interface. We use two of the mono-balanced output channels. One is

connected to an amplifier that drives the Beryllium tweeter, and the other is

connected back to one of the audio interface’s inputs and used as a loopback

channel for computing the IR (See 3.3.2).
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3.2.4 Automation, control setup and sensors

COMPAS FAB [82] and MoveIt [83] were used to calculate collision-free robot

trajectories for each of the 2951 measurement configurations of microphone

and speaker along a defined sequence. For the data acquisition phase, a

workstation running textttUbuntu 16.04, together with the audio interface and

the two Stäubli CS9 robot controllers, were installed in the adjacent control

room. ROS Kinetic [84] is used as the base of a distributed system with

the following nodes: main controller service, ambient measurement service,

audio interface service, two VAL3 robot driver instances and WebSockets ROS

bridge [85]. The main controller service was built using COMPAS FAB [82],

and it coordinates all other services. After positioning, the controller powers

the robots off so that their operating noises do not affect the measurement.

Then it invokes the audio interface to start playback and recording while

the ambient measurement service collects external sound level, temperature,

relative humidity, and atmospheric pressure using an Arduino board. The

external sound level values are employed to track exogenous sounds that

can influence the quality of our measurements. After recording, the IR is

calculated and validated to ensure that the measurement is not distorted by

unwanted signals and repeated if needed.

Metrics of the process are continuously collected in an InfluxDB time-series

database, and Grafana is used for monitoring. Tracked metrics include values

from all ambient measurement sensors, system metrics based on collectd,

and process metrics.

3.3 Dataset, post-processing and visualisation

The acoustic data acquisition setup collects different spatiotemporal acoustic

scenarios, which are stored in a multivariable data set. One data point

in the data set consists of the computationally generated geometry of the

measured diffusive surface, plus 2951 IRs, supplemented by measured

environmental data (temperature, humidity, atmospheric pressure). The

geometric information of the data set includes input parameters of the

geometry generation algorithm (see Diffusive surface structures), together

with the algorithm itself, and the representation of the surface as a polygon

mesh. The mesh data is directly used for the panel fabrication with the

binder-jet 3D printer. Additionally, each 3D panel is labelled with a unique

identifier and suffixed with 0 or 1, indicating the panel side (e.g. 0015_0).

This identifier is used to determine the 3D-printed physical object with the

data set entry.
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Label Material Purpose

Wood MDF plate Reference for a surface of high reflection.

Flat 3D printed and

coated

Reference for the surface of highest reflection pos-

sible with the used 3D printed and coated material.

Used to normalise the measurements.

Foam Acoustically

absorbent

melamine foam

Reference for a surface of high absorption. Used

for subtracting the direct sound signal from the

measurement.

2D-PRD 3D printed and

coated

2D Primitive Root Diffuser. Reference for a surface

of high and uniform diffusion.

0015_0 3D printed and

coated

Reference for a specific macrostructure with no

meso- and microstructure.

Table 3.1: Reference panels

3.3.1 Reference panels

Some data points in the data set are baseline measurements obtained from

special reference panels with the same dimensions as our 3D-printed acoustic

surfaces. These serve to put the measurements of the 3D-printed acoustic

panels in relation to other materials or panels with different surface geometry.

Table 3.1 lists the baseline measurements with their respective label, material

and purpose. Two of these baseline panels (Flat and Foam) are also used in

the post-processing of the data, which is part of both the ML processing

pipeline and the data visualisation.

3.3.2 Impulse response and data post-processing

The primary measurement result for a specific surface and speaker/micro-

phone combination is the IR. The IR is the richest representation possible as

it contains all of the acoustic information linking the source and the receiver.

Furthermore, one advantage of the IR is the fact that different contributions

appear lined up on the time axis. As a result, the 2951 IRs offer a very precise

and relatively complete representation of the acoustic response of a panel

surface. Nevertheless, the IRs presents some challenges as well. First, IRs

are not easily interpretable with respect to perceptional aspects, especially

because the phase information is very complex. Second, for human data

analysis, it is necessary to compress the information contained in the 2951 IRs

such that it can be comprehensibly visualised per acoustic surface. Third, for

the future ML system, the direct modelling of the IRs might be challenging

or even impossible, given the low amount of available samples at the end

of the research project. In consequence, we identified other indicators that

represent the desired acoustic information of a surface from an acoustic

design perspective.
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Figure 3.5: Captured IRs. Blue: the

sweep signal Orange: the micro-

phone measurement.

Figure 3.6: After deconvolution, the

temperature correction is applied.

In this figure, we used 30°𝐶 and

15°𝐶 to emphasise the resampling

effect.

Figure 3.7: Direct sound removal.

Information extraction

First, to obtain the IR, we play a linear frequency sweep ranging from 2

to 40kHz and record the microphone signal as raw data. The IR is then

computed by deconvolution, and temperature compensation is applied. The

deconvolution operation is carried out using a simple division in the Fourier

domain. Given 𝑥̂ = 𝐹𝑥 the Fourier transform of 𝑥 and 𝑥 = 𝐹−1 𝑥̂ its inverse

operation, the deconvolution of the signal 𝑥 with the sweep 𝑠 is given by

𝑥𝑑 = 𝐹−1 (𝐹𝑥/𝐹𝑠) (3.1)

where 𝑠 is the sweep, and the division is performed element-wise. Note that

F𝑠 is never close to 0 because the sweep contains all frequencies (see Figure

3.5). To adjust for the room temperature change, we estimate the speed of

sound at temperature 𝑇 (in °𝐶 )

𝑐 = 𝑐0

√
1 + (𝑇/273.15) (3.2)

where 𝑐0 is the temperature at 0°𝐶 [86]. The IR is then resampled at the

frequency 𝑐/𝑐𝑟𝑒 𝑓 𝑓𝑠 , where 𝑐𝑟𝑒 𝑓 is the speed of sound at 20°𝐶 and 𝑓𝑠 = 96𝑘𝐻𝑧

the sampling frequency. We use the polyphase filtering method (resample_-

poly) from the SciPy python package (see Figure 3.6). Afterwards, we crop

the IR after 4 ms and suppress the direct sound. Due to small path length

differences between direct and reflected sound in some geometries, a time-

windowing-based separation is not applicable. For that reason, the direct

sound time signal obtained from an IR measurement with an absorbing

panel (referred to as Foam) is subtracted (see Figure 3.7). Third, the IR is

band-pass filtered with the help of the filter bank described below (see Figure

3.8). This allows the derivation of frequency-dependent reflection properties

of the surface. Fourth, the filtered IRs are converted to cumulative energy

curves (see Figure 3.9) that display, on one hand, total reflected energy and

its distribution among the different filter bands and, on the other hand,

the temporal pattern of energy arrival. The cumulative energy curves are

then put in relation to the measurements obtained from a reference flat

panel (referred to as Flat) by normalisation. For simplification, we refer to

the resulting curves as Normalised Cumulative Energy (NCE) curves and the

resulting total value as TNCE in the following. The TNCE measure allows

comparing different panels with each other. For example, if we contrast the

stacked cumulative energy plots of Figure 3.9 and Figure 3.10 and refer to

Table 3.2 for the TNCE values, the following information can be extracted:

First, we see that panel 0072_0 reflects 14.1% less energy than the Flat panel.

Second, the energy distribution among the different frequency bands changes.

The 2.5kHz and 5kHz bands are exhibiting an energy increase, the 10kHz

band has almost no difference (< 0.2%), and the two higher bands have a

significant decrease. Additionally, the slope of the NCE curve relates to the
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Panel ID 2.5 kHz 5 kHz 10 kHz 20 kHz 40 kHz Total

Flat 0.092 0.216 0.169 0.309 0.213 1.000

0072_0 0.136 0.291 0.169 0.157 0.106 0.859

energy 47.4% 34.5% 0.18% -49.2% -50.3% -14.1%

difference

Table 3.2: TNCE values for Flat and

panel 0072_0. The values relate to

Figure 3.9 and Figure 3.10

degree of diffusiveness where a steep gradient indicates a rather specular

reflection and a slow increase represents a diffuse reflection. In this case,

panel 0072_0 has a slightly less steep slope.

Figure 3.8: Constructed filters to

separate the content of the IR in

frequency

Figure 3.9: Stacked cumulative en-

ergy curves of panel Flat

Figure 3.10: Stacked cumulative en-

ergy curves of panel 0072_0

Filterbank design

The signal is separated into different frequency bands using an "itersine"

wavelet construction. Formally, we use the mother function:

𝑐(𝜔) = sin

(𝜋
2

cos(𝜋𝜔)
)

(3.3)

and scale, warp, and translate it as in [87]. Selecting the right parameters, we

construct the set of five filters shown in Figure 3.8. The filters are centred at 5,

10, and 20kHz and are logarithmically stretched (warped). The blue and green

filters correspond to the remaining low and high-frequency bands. Note that

because everything is 1:10 scaled, the three band-pass filters correspond to

0.5, 1, and 2kHz bands. Note that this set of filters forms a unitary tight frame,

meaning that the total energy of the signal is conserved after the application

of the filters. The proposed construction does not satisfy a particular norm for

octave-based filter banks such as IEC 61260.1:2019 [88]. However, it is tailored

to our application because it conserves energy and has good localisation

properties both in the time and the frequency domain.

3.3.3 Data visualisation

For 150 measured surfaces, the TNCE values range between 0.02 and 24.32.

However, the value of the 95
th

percentile is 1.67. To represent those values in

a compact way and not clip high numbers, we map them on a logarithmic

dB scale by applying the function:

𝑓 (𝑥) = 10

𝑙𝑜𝑔
10
(𝑥) (3.4)

Figure 3.11 shows all data that relate to a given microphone index at the

corresponding location in the measurement grid for three of the reference

panels. The TNCE values are first mapped on the logarithmic dB scale, then

converted to colour, and finally grouped based on measurement grid layers
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Figure 3.11: Layered grid plot of

band-separated TNCE. Layer 0 is

the closest to the surface, and layer

2 is the furthest away. "M" indicates

the microphone’s position.

(a) Flat

(b) Wood

(c) 2D-PRD

(horizontally) and filter bands (vertically). The data is always read relative to

the Flat panel: white indicates less cumulative energy (minimum -20dB) and

black an equal amount (0dB). In situations where amplification occurs due

to focusing, they are represented with red (maximum +6dB). In this way, the
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Figure 3.12: Geometry generation steps for a Flemish bond brick wall. From left to right: initial single-faced flat mesh, flat mesh subdivided

according to typology, thickened mesh with macrostructure deformation, and final mesh with microstructure deformation.

high dimensional information of the panel measurements can be visually

compared and evaluated (see section 3.4.2).

3.4 Diffusive surface structures

Surface articulations play a significant role in the resulting acoustic response.

When a sound wave is incident on a surface, the shape and size of these

articulations define which frequencies will be specularly reflected and which

will be scattered [89]. Diffusion is an important acoustic phenomenon that

can promote spaciousness, prevent flutter echoes, and improve speech

intelligibility. Although a reasonably big library of absorption coefficients for

different materials is available, the same is not true for scattering coefficients

[75]. With the goal of investigating diffuse surface properties, we generate

geometric typologies stemming from architectural fabrication techniques,

ensuring compatibility with past and current building systems (rubble stone

walls, river rock walls, slated stone walls, brick walls). These are chosen

based on their ability to diffuse sound within a broadband or a selective

frequency range. The typologies vary with the motivation to a) uncover new

possibilities within the domain of acoustics, possibly integrating diffusion

and absorption within one surface, and b) diversify the acquired dataset.

To ensure the latter, data acquisition and the generation of new surface

geometries are performed in parallel. In this way, results from a measured

panel can be used to inform the generation of new ones.
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3.4.1 Computational generation of diffusive surface structures

For each fabrication typology, the essential geometric characteristics were

extracted and implemented in a geometry generation algorithm that controls

the surface geometry represented by a polygon mesh with a set of functions.

These functions generate macro-, meso-, and microstructures based on

specific criteria by applying operations such as mesh subdivision and mesh

face translation. The macrostructures are targeting the low-frequencies,

the mesostructures the mid frequencies, and the microstructures the high

frequencies. For example, for a stone wall (see Figure 3.12), its general shape

(depth, straight or wavy) is controlled by the macrostructure, the overall

size and placement of stones by the meso-structure, and finally, the surface

roughness of each stone, and the shape of the joint between them, by the

microstructure. Through this modular surface generation process, panels of

the same macrostructure but different microstructure or similar combinations

can be compared and analysed.

Due to the limited time span of this research project, there is a limited amount

of surface variations per typology that can be explored. At the beginning

of each typology exploration, the value ranges of all surface articulation

parameters are defined. Then, random step sizes to sample these value ranges

are chosen, and a first group with a certain number of panels is generated

and produced. After this group has been measured, the acoustic data are

compared against each other, and the step sizes for the next group of panels

are adjusted. If the compared data are very similar, the step sizes need to

be increased. If the data are significantly different, the step sizes need to be

decreased. This allows for diversity in the data set while avoiding unexplored

areas.

3.4.2 Comparative experiments

Comparative studies are used to investigate the relationship between ge-

ometry and resulting acoustical properties. These studies serve two main

purposes: first, they help to verify certain acoustic assumptions and thus

validate the data set; and second, they serve to develop quantitative design

guidelines for acoustic planners and architects, which can be used in their

design workflow. For each typology, experiments are designed to test how

the size, rotation, spacing, protrusion and roughness of the base element (e.g.

brick, stone) influence the acoustic response. This section describes three

of these studies, comparing the captured acoustic data of several panels

to determine how a chosen geometrical characteristic influences acoustic

performance.

Brick wall joints
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Panel Mortar Frequency band

ID height 2.5 kHz 5 kHz 10 kHz 20 kHz 40 kHz Total

0015_1 0 -7.66 -3.66 -9.18 -7.02 -5.54 -0.4

0012_1 0.6mm -7.8 -4.14 -9.58 -8.06 -7.38 -1.02

0011_1 1.2mm -7.86 -3.89 -9.19 -9.62 -8.55 -0.86

Table 3.3: Mortar on brick walls ex-

periment. Mean TNCE values of the

90
th

percentile per filter band. Mor-

tar height in mm (1:10) and energy

values in dB. For every frequency

band, red indicates the value with

the smallest difference to the refer-

ence Flat, and green is the one with

the highest.

5: The 90
th

percentile was chosen

to exclude outliers.

This experiment investigates brick walls and the acoustic effect of different

mortar joint heights and depths. Considering building parameters for brick

walls, an average joint height ranges between 5 to 10mm (0.5 to 1.0mm in 1:10

scale). The mortar can be either flush with the surface of the bricks or recessed

by a few millimetres. Given the small size of the joint in relation to the overall

surface, we only expect an influence on the high frequencies. To test this

assumption, we compare three panels with the same macrostructure: two of

them feature a Flemish-bond brick wall typology, with a raked joint type and

an average height of 0.6 mm (0012_1), and 1.2mm (0011_1) respectively; both

with a joint depth of 1mm. The third panel features only the macrostructure

(0015_1), representing a brick wall with a joint height of 0.6mm and a joint

depth of 0mm. Table 3.3 shows the mean TNCE of the 90
th

percentile
5

for

each filter band. As expected, the joint height does not affect the first three

filter bands (2.5, 5, and 10kHz). For the two higher ones, panel 0012_1 shows

1.04 and 1.84dB less energy compared to the reference panel 0015_1, and

panel 0011_1 2.6 and 3.01dB respectively. Therefore, a small but noticeable

reduction in the high-frequency energy can be achieved just by recessing

the mortar joint and by increasing the mortar height. It is important to note

that if we look at the mean TNCE for the full spectrum, the difference is very

small. Both panel 0011_1 and panel 0012_1 have very similar values and are

only 0.68 and 0.46dB, respectively less than the one from panel 0015_1.

Macrostructure

In this experiment, we compare panels Flat, 0015_0, and 0031_0 and fo-

cus solely on the effect of the macrostructure. Each panel has a different

macrostructure but no microstructure. Compared to Flat (see Figure 3.11a), an

apparent disruption in the homogeneity of the energy distribution is visible

(see Figure 3.14). Microphone-speaker combinations where their Fresnel zone

falls in a convex shape exhibit less energy. Contrary, combinations in which

their Fresnel zone falls in a concave part of the surface exhibit increased

energy due to the focusing effect (see red squares in Figure 3.14b). When

comparing two panels that share the same macrostructure but have different

microstructures (see Figure 3.13), the cumulative energy plots show that the

macrostructure influences all frequency bands and the microstructures start

having an influence only after 10kHz.
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Figure 3.13: TNCE values for stone

vs brick walls - experiment. a) Panel

with only the macrostructure, b)

Stone wall typology panel with

the same macrostructure as panel

0015 _1, c) Brick wall typology panel

with the same macrostructure as

panel 0015_1

(a) Panel 0015_1

(b) Panel 0005_1

(c) Panel 0013_1

Stone vs brick walls

This experiment aims to determine whether stone walls or brick walls

are better at diffusing sound. We generated and measured 46 stone and

92 brick walls. Our analysis shows that brick walls diffuse sound more
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(a) Panel_0015_0

(b) Panel_0031_0

Figure 3.14: TNCE values for

macrostructure comparative experi-

ment with varying macrostructures.

"M" indicates the microphone’s po-

sition, and "+" is a point with no

data.

consistently. Polygonal rubble stone walls generally diffuse less energy in the

lower frequencies, but the results were inconclusive for the mid and high

frequencies. To illustrate the findings, we present two extreme cases (see

Figure 3.15).

Panel 0005_1 is from the polygonal rubble stone wall typology. It features,

on average, nine stones per square meter, a joint width between 20-30mm,

a joint depth between 50-80mm, and a stone surface roughness of ±30mm

(numbers in 1:1). Panel 0013_1 is from the brick typology and resembles a

standard stretcher-bond brick wall. It features standard bricks measuring

215 × 65 × 102.5mm (W x H x D) and a raked joint around 15mm wide

(±1mm) and 10mm deep (±1mm) (numbers in 1:1). Both panels 0005_1 and

0013_1 share the same macrostructure with panel 0015_1. Compared to panel

0015_1 (Figure 3.13a), panel 0005_1 (Figure 3.13b) exhibits higher TNCE
values across all filter bands (see Table 3.4), with the exception of 40kHz,

but only by 0.4dB. On the contrary, panel 0013_1 (Figure 3.13c) exhibits less

cumulative energy across all filter bands. The difference is smaller in the two
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Figure 3.15: 3D printed and coated

panels. Left: Surface 0013_1 from

the brick typology. Right: Surface

0005_1 from the polygonal rubble

stone wall typology.

lower filter bands (-0.49, -1.6dB), in which the effect of the macrostructure

is more dominant, but more present in the upper three bands (-3.6, -4.03,

-5.03dB). In comparison to panel 0015_1, the TNCE of panel 0005_1 is higher

by 2.03dB, and of panel 0013_1 lower by -1.88dB.

Table 3.4: Stone vs brick walls.

Mean TNCE of the 90
th

percentile

per filter band. All values are rela-

tive to the reference Flat.

Panel ID Frequency band

2.5 kHz 5 kHz 10 kHz 20 kHz 40 kHz Total

0015_1 -7.66 -3.66 -9.18 -7.02 -5.54 -0.4

0005_1 -7.44 -3.09 -6.96 -5.96 -5.94 1.63

0013_1 -8.15 -5.26 -12.78 -11.05 -10.57 -2.28

3.5 Conclusions and future work

In this paper, we presented a novel approach to studying the mutual rela-

tionship between diffusive surface structures and their acoustic performance

through data science methods. We described the post-processing of the

measured data and the evaluated indicators and showed that they can be

used for the quantitative assessment of different surface structures, thus

providing a valid evaluation system.

By the end of this research project, we target to measure 350 acoustic

surfaces; this amounts to approximately 1 million IRs in total. To create

high diversity, the data set is continuously shaped through analysis and

subsequent surface generation. This approach should enable the future ML

model to generalise as well as possible. Analytical tools, for example, PCA [37]

and PCC [90], will be evaluated to identify the most important geometrical
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characteristics that influence certain acoustic responses. SOM [38] are also

tested for clustering the surfaces based on geometrical (fabrication typology)

and acoustical characteristics (i.e. absorption, scattering). This will help

to identify unexplored areas in the design and data space and test new

hypotheses that emerge during analysis.

Currently, we can only speculate on the output and accuracy of the ML

system. However, it is foreseeable that the limited number of data set

samples will be critical. This limitation can be mitigated by leveraging the

large number of IRs present in each sample and by the data augmentation

naturally emerging from the setup symmetries. From our preliminary testing

on 100 acoustic surfaces, we believe that an exact prediction of the IR is likely

impossible. Hence, we will focus our efforts on predicting the compressed

information obtained from the post-processing step presented in this paper.

Our preliminary ML architecture is able to predict the energy reflected (more

precisely, the TNCE) in every measured position for geometries that present

similarities with the training set.

Our future ML model shall be used as a fast acoustic evaluation tool for

diffusive surfaces, which facilitates acoustic-driven form-finding in early

design phases. Together with the developed design guidelines for certain

fabrication typologies, this will enable more acoustic-aware designs, thus

bringing acoustics closer to the architectural practice.
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4.1 Abstract

Acoustics are rarely included in

architectural design because available

acoustic analysis tools are cumbersome

and require expert knowledge of acoustics.

This exclusion from the design phase

could lead to late-stage design

modifications, potential delays, and

increased building costs. On the contrary,

their inclusion can improve the acoustic

properties of spaces and ensure seamless

design integration. This can be achieved by

providing architects with easy-to-use

visualisation tools to study the

relationship between geometry and sound



without expert knowledge in acoustics.

Available acoustic datasets can enable the

development of such visualisations, but

recent technological advances have

increased their complexity and size.

Although existing data-science methods

can process and analyse them, it remains

challenging to develop easy-to-use and

informative visualisations for architects

and non-acoustic experts.

This research proposes a novel approach

for interactive visualisations of acoustic

datasets for architects and non-acoustic

experts. It introduces a series of simple

acoustic properties for users with basic

knowledge of acoustics and describes

methods for low- and high-dimensional

data visualisations. It describes the

computational workflow and uses a design

scenario to demonstrate the proposed

visualisations. Finally, it discusses the

challenges of developing such methods,

their advantages, limitations, and future

work.

This version of the article has been accepted for publication after peer review in ACADIA 2022:
Hybrids & Haecceities - Proceedings of the 42nd Annual Conference of the Association for Computer Aided
Design in Architecture (ACADIA), 2022.
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4.2 Introduction

Sound visualisations are an integral part of the study of room acoustics. Since

the introduction of Ultrasonic-Schlieren photography by Wallace C. Sabine

in 1912 [10], acousticians have developed multiple methods to visualise the

invisible to the naked eye propagation of sound and its interaction with sur-

faces. Advancements in measurement techniques and computer simulations

make it easier today to measure and simulate sound propagation. However,

our display mediums are still two-dimensional, and visualisation tools face

the challenge of projecting high-dimensional data on flat screens or paper.

This challenge becomes apparent when we try to display even the most

essential acoustical features (frequencies, amplitude, phase, direction) simul-

taneously, making the visualisation unreadable or overwhelming. Looking

at recent developments in acoustic measurement technology and advances

in computing power and storage capabilities, acoustic data collection has the

tendency to increase in complexity and size rather than simplify. Large and

often heterogeneous data sets make it challenging to develop informative

visualisations [91] because such datasets have surpassed human cognitive

capabilities when explored through simple data analysis tools [92]. Therefore,

the challenge of visualising large acoustic datasets to make them accessible

and readable to humans becomes more and more pressing.

Data visualisation can facilitate meaningful analysis, accessibility, and in-

terpretation of large datasets because it relies on the human’s cognitive

capabilities to process visual information [93]. Furthermore, it can support

unanticipated discoveries by visually exploring and analysing the data [94].

These discoveries could be a valuable resource in steering the creative process

within architectural design. One reason for the necessity of data visualisation

in architecture is the potential to include acoustics in the early design stages.

Although architects already include performance as an early-on design driver

for building components such as the building structure or façades, room

acoustics are rarely included in the early design process [8, 95]. The reason

for this is twofold. On the one hand, there is a lack of acoustic visualisations

for architects and users with basic knowledge of acoustics. On the other hand,

available visualisations are decoupled from the geometry that influences

the sound. Nevertheless, geometry is essential for architects to understand

the relationship between sound and geometry. This understanding would

enable them to develop design workflows where they can manipulate the

design and intuitively understand how this manipulation affects the room’s

acoustics.

Therefore, this research focuses on developing acoustic visualisations for

big acoustic datasets for architects and non-acoustic experts that can be
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integrated into the early design processes to enable acoustically informed

design explorations.

4.3 Background

As big data becomes more prevalent in acoustic research, data visualisa-

tions have become increasingly important to interpret it. Lowe and Matthee

describe that dimensionality reduction, interactivity, readability, and user

assistance are key requirements of data visualisation tools to interpret big

data [94]. Building upon the key requirements introduced by them, we focus

on four points to develop novel acoustic visualisation for architectural appli-

cations: low- and high-dimensional visualisations, interactive visualisations,

and usability of acoustic visualisations in architectural applications.

4.3.1 Low-dimensional visualisations

From a data science perspective, an Impulse Response (IR) is a time series

of float numbers that describe the sound’s energy and phase over time. All

acoustic parameters (called descriptors) that derive from it can be grouped

into a) single-value descriptors and b) series-of-numbers descriptors. Single

value descriptors include Reverberation Time (RT), Clarity (C50), Strength (G),

Definition (D), Centre Time (TS), and more. Series-of-numbers descriptors

include frequency response and energy over time. Although acoustic analysis

software such as Odeon and CATT-acoustics [96, 97] provides methods to

calculate these acoustic descriptors, it requires expert knowledge in acoustics

to decode their meaning.

4.3.2 High-dimensional visualisations

High-dimensional data pose another challenge for accurate and readable

visualisation methods. Humans can only visually perceive three dimensions.

Traditional data science visualisation techniques, such as scatter plots and

heat maps, can represent small or intermediate datasets in two or three

dimensions. Although these visualisations are intuitive and may be used

to identify bivariate correlations between variables, they require dimen-

sionality reduction to arrange the data points in a lower-dimensional space.

Dimensionality reduction methods such as Principal Component Analysis

[98] and t-distributed stochastic neighbour embedding [99] can compress

attributes and reduce complexity. Although this compression is necessary

to lower the dimensions down to two or three dimensions, it could lead to

projection losses [94]. Projection loss describes a scenario where well-spread
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1: API stands for application pro-

gramming interface, which is a

set of definitions and protocols for

building and integrating applica-

tion software.

points in high-dimensional space appear falsely close in the low-dimensional

projection [94]. Other limitations of dimensionality reduction methods are

that they treat the values as pure numbers, completely decoupled by the

geometry that influenced them. This makes it especially difficult to include

these methods in architectural applications as geometry is one of the key

design components.

4.3.3 Interactive visualisations

Interactive visualisations combine human and machine intelligence [100] to

explore and uncover unexpected patterns in datasets [101]. This visual analy-

sis benefits “visual perception, interactive exploration, improved understanding,
informed steering and intuitive interpretation” [102]. Furthermore, this type of

analysis can have two approaches; a bottom-up approach that can potentially

uncover patterns in the data [103] and a top-down approach to test theories

and search for evidence in the data [91, 104].

4.3.4 Usability of acoustic visualisations in architectural

applications

During the design phase, architects explore various alternative design ideas.

Early-stage design decisions have a significant impact on the final design’s

quality and performance [8]. In contrast, late-stage design modifications

can rarely compensate for poor early-stage choices. Therefore, it is essential

to consider all factors early on to avoid potentially delaying the project,

increasing the building cost, or impairing the overall design. To employ

acoustic performance as a design driver, we must be able to quantify and

interpret the acoustic effects of our geometric design choices. Currently, most

of the visual analytics are performed by acousticians equipped with the

necessary knowledge and specialised acoustic analysis software. The reason

for this is that this type of software is cumbersome to use and requires expert

knowledge in acoustics. As a result, architects are discouraged from using

them to evaluate their designs, especially early on.

Commercially available acoustic analysis and visualisation software are black

boxes, providing insufficient feedback to the user and often no description

of how the results were calculated [105]. Furthermore, most commercial

software do not provide APIs
1

or ways for external software to interface

with them. This limitation, for example, hinders form-finding studies using

computational design because each design must be exported from the de-

sign software and imported into the acoustic analysis software for analysis.

Therefore, acoustic visualisation tools should be flexible for customisation
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and easily expandable to accommodate study-specific requirements. The

increased popularity of web-based Python programming allows the de-

velopment of visualisation tools that are easily accessible and easy to use.

Furthermore, their open-source nature allows users to customise them and

extend their capabilities according to their needs.

This research proposes a novel approach for interactive visualisations of

acoustic datasets for architects and non-acoustic experts. It introduces a

series of simpler descriptors for users with basic knowledge of acoustics

and describes methods for low- and high-dimensional data visualisations.

It introduces visualisation methods that incorporate the geometry that

influenced the sound under study. The inclusion of influential geometry

provides a more detailed insight into the relationship between geometrical

characteristics and the sound properties they influence. Moreover, this

research proposes methods for interactive visualisations that allow users

to explore the data from different angles and zoom closer to reveal more

details. Interactivity also allows animated content to display how sound

properties change over time. Furthermore, it describes methods that allow the

simultaneous display of multiple data points, enabling the user to compare

data within the same visualisation. Lastly, all visualisations are customisable

and extendable, and the entire code is open-sourced and available at https:

//github.com/gramaziokohler/sdsc_data_driven_acoustic_design.

4.4 Methods

Based on the topics described in the background, this section describes

the computational workflow of the proposed visualisation pipeline and

demonstrates its use through a design scenario. For the design scenario, we

used the open-source Geometry and Impulse Response Dataset (GIR Dataset)

[51]. The dataset contains 920712 physically measured IRs from 312 surfaces

(2951 per surface). More details about how the dataset was collected can be

found in [40].

4.4.1 Computational workflow

The visualisation pipeline is written in Python and contains two main classes,

the DataConverter and the DataPlotter. The DataConverter handles the

data retrieval from the dataset and can convert the IR data to the desired

acoustic descriptors, and the DataPlotter handles all the visualisation

computing. Open-source libraries are used to extend the core code. The

Numpy library handles the mathematical operation, and the Scipy library

manages the audio-related computation, such as Fast Fourier Transform
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Figure 4.1: Computational pipeline.

(FFT) analysis and resampling. The visualisation part of the code uses

Seaborn for computing heat maps, Matplotlib for constructing all the static

visualisations, and pythreejs for interactive visualisations. Ipywidgets is

used to generate graphic widgets such as number sliders, buttons, and

text inputs. The computational pipeline comprises of three main steps (see

Figure 4.1). First, the input step, where the data selection takes place; second,

the processing step with data conversion and data visualisation; and finally,

the output step, where the visualisation is displayed or saved to a file.

4.4.2 Visualisation types

There are two types of visualisations possible with the computational work-

flow, explanatory visualisations and comparative visualisations.

Explanatory visualisations. The acoustic data visualisation process begins

with the selection of an input. For low-dimensional data, the input refers to

an IR measurement; in high-dimensional visualisations, the input refers to

several IRs. Afterwards, the user selects the desired acoustic descriptor, and

the DataConverter class returns the converted data. This data then can be

passed to the DataPlotter for visualisation. Table 4.1 shows all the available

acoustic descriptors that DataConverter class can compute. Besides the

standard output, each of these descriptors can also be normalised (from

0.0 − 1.0 or 0% − 100% depending on the descriptor) or scaled using a scale

factor. Table 4.2 shows all the available visualisations the DataPlotter class

can generate. All visualisations have the option to display the output for the

entire audio spectrum or per user-defined frequency bands (see Figures 4.4

and 4.5). This option, for example, allows the user to analyse the relationship

between a geometrical design and groups of frequencies. This enables them

to adjust their design to target specific frequencies. Finally, the output of the

visualisation can be either saved directly to a file, displayed on the screen, or

both.

All visualisations follow the same principle. A sound is emitted at the source

position, then the sound wave hits the room’s surfaces and finally arrives at

the receiver position. The visualisations show how these surfaces influenced
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Descriptor Value type

Reverberation time float

Clarity float

Definition float

Energy over time list of floats

Cumulative energy over time list of floats

Total cumulative energy float

Frequency response list of floats

Absorption coefficient list of floats

Scattering coefficient list of floats

Table 4.1: Available acoustic de-

scriptors inside DataConverter
class.

Visualisation method Interactive Comparative

2D IR no yes

Energy over time no yes

Cumulative energy over time no yes

Frequency response no yes

Absorption coefficient no yes

Scattering coefficient no yes

2D grid yes yes

3D grid yes yes

3D polar yes yes

Table 4.2: Available visualisations

inside DataPlotter class.

the sound wave when the wave came in contact with them. Except for IR,

Absorption coefficient, Scattering coefficient, and Frequency response, all

visualisations can display absolute and relative values. For relative values,

the values of a flat and smooth surface are taken as a baseline, and all values

of the chosen surface relate to them. This way, the visualisations enable the

evaluation of acoustic properties without professional assistance.

Comparative visualisations. Several low- and high-dimensional descrip-

tors can be used in comparative visualisations. The process is similar to

the one described in the computational workflow section, except that for

low-dimensional data (see Figure 4.2 top), users select two or more IRs and

for high-dimensional data, two sets of multiple IRs. Then, they select the

desired acoustic descriptor and generate the comparative visualisation.

4.4.3 Interactivity

All high-dimensional data visualisations, explanatory and comparative, are

displayed in a three-dimensional interactive window and include the surface

geometry (see Figure 4.3). They allow the user to pan, zoom, and rotate

around the displayed data, breaking the barrier of a static data representation

and enabling users to intuitively study the relationship between geometry

and sound. Furthermore, these visualisations support animated content.
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Figure 4.2: Computational workflow for comparative visualisations. To illustrate both output options, the low-dimensional visualisation

outputs a file, and the high-dimensional visualisation opens a window where users can interact with the data.

If a specific acoustic descriptor is selected, it can display the descriptor’s

value over time, adding an extra dimension to the visualisation. When the

comparative mode is active, the user can apply the same transformation

to both visualisations and see the animated data simultaneously for both

surfaces.

Figure 4.3: Interactive comparative

visualisation of the energy over

time. The left surface has the origi-

nal density of the measuring grid,

and the right surface has the denser

interpolated grid. The time slider

can be changed to show the energy

for a specific time.
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4.5 Design scenario

To show the entire workflow of the presented research, we are converting

an existing room into an open-plan office space as an example. This section

goes through several architectural design phases and demonstrates how

the proposed visualisations enable a more acoustically informed design

outcome. The design scenario has the architect as a user, and it consists of

two main steps a) analysis and evaluation of the existing acoustic conditions

and b) exploration of acoustic design interventions.

4.5.1 Analysis and evaluation

The process starts by analysing the existing acoustic conditions of the

room to understand the design actions necessary to improve the acoustic

properties of the room for our open-plan office. After acquiring the impulse

response measurements of the existing room, the user is ready to start the

analysis. The computational workflow supports single IR measurements

or multiple IR measurements recorded at several positions inside a room.

Multiple IR measurements can be arranged in orthogonal two-dimensional or

three-dimensional grids. Below we describe the three different arrangement

options.

Single IR measurements. Figure 4.4 shows explanatory two-dimensional

visualisations of the Cumulative energy over time of single IRs. In this case,

the user defines five filter bands, with a centre frequency of 250Hz, 500Hz,

1kHz, 2kHz, and 4kHz. The 250Hz band is a Low-pass Filter (LPF), and

the 4kHz is a High-pass Filter (HPF). The values are normalised from 0.0

to 1.0, with 0.0 representing no energy at the receiver position and 1.0 that

all the energy emitted by the source arrived at the receiver position. The

Cumulative energy inside the room (see Figure 4.4 left) goes up quickly

Figure 4.4: Cumulative energy over

time visualisation. Left: The cur-

rent acoustic conditions of the sce-

nario’s room. The room is highly

reverberant and has an unbalanced

frequency response. The 2kHz and

4kHz bands contain more energy

than the other bands. Right: The

Staatstheater in Karlsruhe is a refer-

ence of an acoustically treated space.

The black line represents the cu-

mulative energy of the entire audio

spectrum in the IR and the coloured

sections for each filter band.
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2: The IR is taken from the

“Théâtre Acoustique Room

Impulse Response Library”

https://www.lieuxperdus.com/
convolver/download/.

when the direct sound arrives, but because the room is very reverberant due

to its big volume and the lack of absorptive surfaces, the energy continues

to rise for another 1.5 seconds. The small “steps” in the plot indicate when

strong reflections arrive at the receiver position. These reflections can cause

colouration, image shift, and flutter echoes, all negative characteristics for

meeting rooms, lecture halls, and offices where speech clarity is important.

Comparing it to the Cumulative energy of the Staatstheater in Karlsruhe
2
,

we see that the energy rises quickly and then remains stable. This shows that

there are no more reflections arriving at the receiver position. Furthermore,

the total energy is lower because a portion of it (around 40%) was absorbed

by the room’s surfaces. Rooms with Cumulative energies like Figure 4.4 right

will have a clearer sound and be more relaxing working environments.

Multiple IR measurements: 2D measurement grids. Multiple IR measure-

ments of the same room enable a higher-resolution analysis of the existing

acoustic conditions. The visualisation in Figure 4.5 can be used when the

measurement positions are arranged in a two-dimensional grid. For this

visualisation, we chose the total energy as a descriptor, and each square

represents one total energy value. This value defines the total amount of

sound energy that arrived at that location for the duration of the measure-

ment. Looking at the entire spectrum grid, we can clearly see the high sound

energy concentrated at the corner of the room.

Multiple IR measurements: 3D measurement grids. The visualisation in

Figure 4.6 can display values that were measured using a three-dimensional

grid. The values are colour-coded and displayed inside the room’s geometry.

Users can pan and rotate the geometry to look at the values from a different

angle or zoom in to take a closer look when the data is too dense. The

grid’s density can be increased to make patterns more visible or decreased

to reduce the visual complexity. Because this visualisation also supports

animated content, the energy values over time can be displayed by moving a

time slider.

Figure 4.5: 2D grid. Total energy per filter band and for the entire audio spectrum. Black represents energy values similar to the transmitted

energy, and white 20dB less energy (equivalent to 100 times less energy). Red squares are positions where the received energy is higher,

indicating a local focusing effect.
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Figure 4.6: Interactive 3D grid visualisation. Left: The original density grid with 40 measuring positions. Right: higher-density linear

interpolated grid with 884 positions. In the interpolated grid, the energy pattern is more visible.

The analysis and evaluation show us clearly that the existing acoustic

conditions are not suitable for a comfortable working environment. More

precisely, some of the energy needs to be removed by means of absorptive

materials. The ceiling and the floor are ideal locations for installing such

materials. To balance the sound energy inside the room, limit disturbing

flutter echoes, and prevent the room from becoming very unnatural from

excess absorption, the walls can be designed in such a way that they will

diffuse sound. Bellow, we introduce different design explorations that the

user can use to address the acoustic problems.

4.5.2 Design explorations

This part of the scenario focuses on design interventions that can improve

the acoustic conditions of the room. This part consists of two main steps, a)

general acoustic treatment through proper surface material selection and

b) design and adjustment of the wall’s geometry to maximise the acoustic

performance.

General acoustic treatment. The sound we hear is a combination of the

direct sound coming straight from the source and indirect reflections from

the surrounding surfaces. Sound hitting a surface is either transmitted,

absorbed, or reflected; the ratio depends on the surface’s acoustic properties.

Based on the analysis of Figure 4.4, the user needs to lower the sound

energy inside the room, emphasising the mid and high frequencies. This

issue can be addressed by choosing appropriate materials that absorb

the sound energy of mid- and high frequencies. Figure 4.7 shows three

comparative two-dimensional visualisations of absorption coefficients for
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Figure 4.7: Comparative visualisations of absorption coefficients of different materials for the wall surfaces, the floor, and the ceiling of

the room. Values close to 0.0 represent no sound absorption; therefore, all energy is reflected, and values close to 1.0 complete absorption.

common architectural materials that can be used on the walls, floor, and

ceiling of the room. The algorithm either receives the coefficients as a list of

floats or computes them from IRs measured according to the ISO 354:2003

standard [106]. In this case, the coefficient values for these visualisations

are taken from a dataset that was created using data from www.akistik.ua.

Analysing the three visualisation reveals that Brickwork would be preferable

for the walls of the room (Figure 4.7 left, in orange), a thin carpet for the

floor (Figure 4.7 middle, in green), and 32.5% perforated thin metal sheets,

backed by 30mm rock wool for the ceiling (Figure 4.7 right, in orange).

Design and adjustment of architectural geometries After deciding on

brickwork as a wall material, the exact design of its geometry must be defined.

Brickwork has a structured surface texture. Parts of the texture diffuse sound,

and other parts reflect sound in a specular way (Figure 4.8). The brickwork

geometry can be optimised to redirect the reflected energy towards the

ceiling (Figure 4.9). This way, more sound is reflected towards the ceiling,

where it gets absorbed.

Recent research introduced a computational workflow to generate various

acoustically informed diffusive surfaces, including brickworks [42]. The

research uses Self-Organising Map (SOM) to arrange sound-diffusive ar-

chitectural surfaces based on chosen acoustic properties. Using its design

workflow, the SOM cell with the best matching unit contains two surfaces, a

flat and textured brickwork. To decide which of the two surfaces addresses

better our acoustic requirements, the user can evaluate the direction of the

reflected energy. Figures 4.10, 4.11, and 4.12 show interactive visualisations

that display the direction and intensity of the reflected sound energy. The

direction is represented as a ray leaving the surface, and the intensity by the

length and colour of the line. Users can pan, zoom, or rotate to explore the
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sound directivity from different angles. Furthermore, the descriptors can

be displayed for the entire audio spectrum or per user-defined frequency

bands (see Figure 4.12). By comparing the two visualisations in Figure 4.10

and Figure 4.11 we can clearly see that the surface on the right redirects more

energy upwards, making it an ideal option for the design scenario.

Figure 4.8: The room from the de-

sign scenario with the flat brick-

work. The black dashed lines illus-

trate the direction and intensity of

the reflected sound according to the

data from Figure 4.10. Most of the

sound energy bounces back into the

working area.

Figure 4.9: The room from the de-

sign scenario with the optimised

brickwork. The black dashed lines

illustrate the direction and intensity

of the reflected sound according to

the data from Figure 4.11. Here a sig-

nificant portion of the sound energy

gets reflected towards the absorbent

ceiling.
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Figure 4.10: 3D polar sound direc-

tivity visualisation of the total en-

ergy of the entire audio spectrum

for the flat brickwork.

Figure 4.11: 3D polar sound directiv-

ity visualisation of the total energy

of the entire audio spectrum for the

textured brickwork.
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Figure 4.12: 3D polar sound direc-

tivity visualisation of the total en-

ergy of two frequency bands for

the textured brickwork, left: 4kHz,

right: 1kHz.

4.6 Results and Discussion

We have presented a novel approach to visualising low and high-dimensional

acoustic data. We described the computational workflow to produce these

visualisations, its components, and how each of them contributes to the entire

workflow. We demonstrated a series of visualisations and described how they

could be used for acoustic studies. These visualisations show that thanks

to their intuitive visual implementation, they can be used both by expert

and non-expert users in acoustics. The proposed workflow addresses both

experts and non-experts in acoustics users. Expert users can use standard

and familiar acoustic descriptors and visualisations, while non-expert users

are presented with a range of newly proposed and simplified descriptors and

visualisations. Furthermore, both users benefit from the intuitive layout of

the visualisations, especially from the interactivity of the high-dimensional

visualisations. Finally, including the geometry that influenced the sound in

the visualisations allows for a deeper analysis of the mutual relationship

between geometry and sound. We believe that these visualisations will help

bring acoustics closer to the early phases of architectural design and enable

a more integrative acoustic and architectural design exploration.

4.6.1 Limitations and future work

Despite the intuitive workflow, users still required basic knowledge of Python

to run the scripts. That is also true for extending and further customising the

visualisations. However, this visualisation pipeline could be turned into a

plugin for CAD software, eliminating the need for programming knowledge.

In future steps, we are committed to continuing extending the visualisation

pipeline by adding more acoustic descriptors and visualisation methods to

it. Finally, we are confident that the proposed visualisation methods will
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encourage researchers to create more open-source high-dimensional acoustic

datasets.
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Abstract

The paper demonstrates a novel approach

to a performance-driven acoustic design of

architectural diffusive surfaces. It uses

unsupervised machine learning

techniques to analyse and explore the

GIR Dataset, an extensive collection of

physically measured impulse responses

and acoustically diffusive surfaces. The

presented approach enables designers to



explore many alternative

acoustically-informed material patterns

with various diffusive properties without

requiring expert knowledge in acoustics.

The paper introduces the computational

pipeline, describes the methods used and

presents two use cases in the form of

design experiments. Finally, the paper

discusses the challenges of developing

such a method, its advantages, limitations,

and future work.

This version of the article has been published after peer review in ACADIA 2021: Realignments:
Toward Critical Computation - Proceedings of the 41st Annual Conference of the Association of Computer
Aided Design in Architecture (ACADIA), pp. 170-181, in November 2021. The published version is

available online at https://papers.cumincad.org/cgi-bin/works/paper/acadia21_170.

5 PAPER D - DATA-DRIVEN ACOUSTIC DESIGN OF DIFFUSE SOUNDFIELDS:

SELF-ORGANISING MAPS AS AN EXPLORATORY DESIGN TOOL FOR BIG DATA

81

https://papers.cumincad.org/cgi-bin/works/paper/acadia21_170


1: Computer Aided Design

5.1 Introduction

During the design phase, architects examine a wide range of alternative de-

sign ideas. Early-stage design decisions significantly impact the final design’s

performance, whereas late-stage design modifications can rarely compensate

for poor early-stage choices. In fundamental building components such as

the building structure or façade, performance is an integral design driver,

which is included early on. Usually, this is done in close collaboration with

experts in an iterative process where a design is analysed, evaluated, and

adjusted to meet the desired performance criteria. This process has become

a standard practice for most architectural projects because architects are

trained to understand these topics (e.g., structural design). However, room

acoustics are rarely included in the early design process, even though they

significantly impact our perception of space and well-being. Apart from cases

where sound quality is critical (e.g., concert halls, auditoriums), acoustics are

either not included in the design process or come as an afterthought relying

on standardised solutions in the form of absorbent or diffusive panels.

The acoustic quality of a room is determined by its geometry and the

structure or pattern of its surfaces. Slight manipulations of the surface

geometry could yield significant gains in acoustic quality [75]. Currently,

through computational design and digital fabrication, architects already

design, visualise, and fabricate surfaces with complex geometries. While

these geometries are not designed with acoustics in mind, they could act as

sound diffusers, enhancing the room’s acoustic qualities. Diffusive surfaces

reflect sound in multiple directions and, by doing so, reduce echoes, standing

waves, and sound colouration while promoting spaciousness. Suppose

acoustics were included as a design criterion. In that case, these complex

geometries could be an integral part of architectural elements and combine

multiple acoustic properties, targeting the acoustic needs of their immediate

surrounding.

To employ acoustic performance as a design driver, we must be able to

quantify and interpret the acoustic effects of our geometric design choices. In

a classical design process, architects have no starting point for an acoustically

performative design of surfaces as they lack expert knowledge. Different

computer simulation software (Odeon [96], Pachyderm [107], CATT-acoustics

[97]) can be used to analyse and characterise the acoustic performance of

digitally designed geometries. Nevertheless, this paradigm relies on the

premise that the user is knowledgeable in room acoustics and knows what

adjustments need to be made to achieve the desired goal. As a result, architects

are discouraged from using such software to evaluate their designs, especially

early on. Furthermore, no CAD
1

nor acoustic simulation software exists

that proposes a geometrical solution to an acoustical question. Further
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effort is needed to increase acoustic performance awareness in architecture

and provide architects with simple and accessible workflows for designing

diffusive surfaces.

ML has enabled significant breakthroughs in automated data processing

and pattern recognition within various fields [19, 46, 47]. Architecture and

engineering have also seen an increase in research on how to employ ML

techniques in performance-based design [20], style transferring [21, 22], and

clustering [23]. In ML techniques, the quality and size of the dataset heavily

influence the ML model’s final quality [35]. Although a larger dataset is

desirable as it makes for a more confident prediction, the larger the dataset,

the more challenging it is to navigate, especially for non-expert users. Given

its success in other fields, ML is also used in acoustics research, mainly

as a predictive tool. Datasets built for this purpose could also be explored

as a knowledge base of known acoustic properties. This paper combines

data clustering techniques with a large dataset of geometries and IRs. It

provides an exploratory design tool for diffusive surfaces, bringing acoustic

performance-based evaluation earlier into the design stage.

5.2 Background

5.2.1 Acoustics

In recent years, significant research has been carried out on acoustic performance-

based design. Shtrepi et al. [15] presented a design process that provides

architects and designers with rapid visual feedback on the acoustic perfor-

mance of diffusive surfaces. Peters [108, 109] demonstrated methods that

allow tuning acoustic performance while geometry and materials change.

Badino et al. [8] presented the state-of-the-art of acoustic performance-based

design application in practice using 19 built projects. Most of these projects

were conducted by big architectural firms in collaboration with expert

acoustic consulting groups but were only geared towards spaces intended

for music performance. Several computational tools exist that enable the

design and optimisation of acoustically diffusive surfaces. However, their

primary focus is phase grating surfaces (stepped diffusers, quadratic residue

diffusers, primitive root diffusers) [110], based on sound diffusers introduced

by Schroeder [111]. Although these tools simplify the acoustic design process,

the generated diffusers have particular and limited geometries, a substantial

thickness, and a dedicated placement according to acoustic criteria. These

factors make them unattractive and difficult to integrate into an architectural

design that is not purely focused on music performance.
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6: dirha.fbk.eu/English-PHdev

7: renkulab.io/projects/ddad/
gir-dataset/

5.2.2 Machine Learning

The main ML applications in room acoustics have focused on characterisation,

information extraction, or classification. For example, ML has been used to

extract the RT and the EDT of a room from music signals [25], and the room

volume [26]. Peters et al. and Papayiannis et al. [27, 28] presented methods

to identify the room type from an audio recording.

Most of the contributions above used supervised learning, which generally

requires large amounts of labelled data. Data such as IR, absorption and

scattering coefficient, early decay time, and many more are primarily quan-

titative in nature; therefore, they are hard to evaluate by non-acousticians.

Moreover, architectural design is often focused on qualitative measures that

depend on the application context and the designer’s personal preferences.

Alternately, unsupervised learning allows the extraction of information

from data even when no labels are available. For example, dimensionality

reduction organises high-dimensional data samples in a lower-dimensional

space, also known as embedding, by clustering similar samples together.

A high-dimensional space contains data samples with multiple attributes;

for example, an image with a resolution of just 100 by 100 pixels is a 10000-

dimensional sample if we view each pixel within the image as an attribute.

Classical dimensionality-reduction techniques include PCA [98], t-SNE [99],

or SOMs [38]. SOMs have been successfully employed in several fields such as

environmental studies [112], cancer research [113], chemistry [114], structural

design [23], and architectural design [115]. SOMs are particularly useful in

this context. They use unsupervised training to create a nonlinear data trans-

formation of a high-dimensional space to a low-dimensional space (usually

a two-dimensional map) while preserving the topological relationships of

the original high-dimensional space [116]. Topology preservation implies

that if two data points are close in the high-dimensional space, they must

also be near each other in the new low-dimensional space and therefore

belong to the same cluster. This reduction in complexity makes it possible

for designers to associate a qualitative measure with the embedding.

5.2.3 Dataset

As mentioned in the Introduction, the success of ML techniques relies heavily

on the quality and size of the dataset they use. Several acoustic datasets exist

containing room IRs, but their main application is in the field of speech en-

hancement and speech recognition (AIR
2

2: www.iks.rwth-aachen.
de/fileadmin/user_upload/
downloads/forschung/
tools-downloads/air_

database_release_1_4.zip

, BUT ReverbDB
3

3: speech.fit.
vutbr.cz/software/
but-speech-fit-reverb-database

, RWCP
4

4: research.nii.ac.jp/src/en/
RWCP-SSD.html

[30–32]),

acoustic environment characterisation (ACE Corpus
5

5: acecorpus.ee.ic.ac.uk/
[34]), or for smart-home

applications (DIRHA
6

[33]). Furthermore, these datasets do not contain any

three-dimensional geometrical data. The open-sourced GIR Dataset
7

[51], an
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extensive collection of three-dimensional diffuse surfaces and their corre-

sponding real IRs, was recently released. It can be used for ML applications

to predict the acoustic properties of three-dimensional surfaces.

5.3 Methods

As highlighted in sections 5.1 and 5.2, acoustic performance criteria are mainly

considered in projects where spaces host music performances. Furthermore,

current methods mainly focus on design optimisation and heavily rely on

expert knowledge in acoustics. This research presents a workflow that enables

architects to explore several possible design solutions, given specific acoustic

performance criteria (energy per frequency band). It uses the GIR Dataset

for its unique set of three-dimensional surfaces and the high number of real

IRs per surface. Machine learning techniques and specifically SOMs are used

to cluster the surfaces based on acoustic performance criteria.

5.3.1 The GIR Dataset

The GIR Dataset contains 873496 real IRs from 296 surfaces (2951 per surface),

spread in three layers (see Figure 5.4). Layer_0 contains 36 measurements in a

6× 6 grid and is the closest to the surface at a distance of 1 meter. Layer_1 and

layer_2 contain 25 and 16 measurements in a 5× 5 and 4× 4 grid at a distance

of 1,9 meters and 2,8 meters, respectively. The IRs were captured inside a

semi-anechoic room and time-windowed only to contain the first reflections.

The surfaces of the dataset resemble architectural material systems and are

arranged in nine typologies, such as brick walls, stone walls, and more (see

Figure 5.1). The geometry of each surface is composed of a microstructure and

a macrostructure. The first defines the typology, and the second its overall

Figure 5.1: A sample of different sur-

face typologies. From top left to bot-

tom right: Polygonal rubble stones,

PRD diffuser, IDL, Stretcher-bond

bricks, Coursed ashlar stones, Prim-

itives, IDL, Flemish-bond bricks.
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Figure 5.2: 3D visualisation of a portion of GIR Dataset’s diffusive surfaces demonstrating possible geometric variations. For scale

reference, a human is placed at the bottom left part of the image.

shape. Several typology-specific material and construction characteristics

are coded in the geometry generation algorithm and used to create different

material patterns (see Figure 5.2). The brick dimensions, its rotation along

the Z-axis, its shift along the macrostructure’s normal vector, and the width

and depth of the mortar are used for the brick typologies. The number of

stones per square meter is used for the stone typologies, along with the

surface roughness and the joint depth between them. The macrostructure

enhances the low-frequency diffusion by significantly increasing the depth

variation (see Figure 5.3).

Figure 5.3: Micro-macrostructure.

Left: A surface with only a

microstructure (Stretcher-bond

bricks). Middle: A surface with

only a macrostructure. Right: A

surface that combines the micro-

and macrostructure.
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Figure 5.4: The measuring grid in

front of a surface. Red represents

the source position, and blue is the

selected receivers’ layer. The source

is located in the centre of the sur-

face and 4,5 meters away from it.

The receivers’ layer (layer_1) is ap-

proximately 1,9 meters away from

the surface.
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Figure 5.5: Data preparation pipeline.

8: https://github.com/
JustGlowing/minisom

5.4 Proposed Design Workflow

The proposed design workflow contains three main steps: data preparation,

clustering, and design exploration (see Figure 5.5). We use the IRs of the

GIR Dataset to compute the primary performance criteria for our method.

The large size of the dataset dictated the need for data reduction strategies.

We use the open-sourced MiniSom8
python library [117] and create several

custom data visualisation algorithms for the clustering step. These algorithms

provide an easy and understandable way to visualise complex and high-

dimensional data and validate the quality and performance of several steps

of our workflow. Finally, we describe using the trained SOM to explore design

options based on given acoustic criteria.

5.4.1 Data Preparation

The principal challenge when constructing a low-dimensional embedding

using a SOM is the size of a sample. Given that each of the patterns contains

2951 IRs of 400 float numbers, the total size of the raw feature vector is

1180400 (see Figure 5.5a). We use three steps to reduce this large dimension.

First, a source position is selected from the measuring grid, which yields 83

measurements spread across the three grid layers (see Figure 5.5b). In the

second step, we use the post-processing pipeline from Rust et al. [40] to build

low-dimensional feature vectors from the selected IRs. This pipeline removes

the direct sound from the IR, retaining only the reflected sound coming

from the surface. A custom-designed band-pass filter is used to split the

above-mentioned acoustic descriptors into five frequency bands, with centre
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9: The dataset’s geometries and fre-

quencies are in 1:10 scale.

10: The TNCE is the last value from

the NCE list, representing the to-

tal energy arrived at the receiver

position.

frequencies at 250Hz, 500Hz, 1kHz, 2kHz, and 4kHz
9
. As a last step, we use

the provided functions to convert the IR into TNCE
10

. This step effectively

reduces each IR’s 400 samples to 5 numbers (see Figure 5.5c). Finally, we

concatenate the features of each pattern and obtain feature vectors of size

36× 5, 25× 5, and 16× 5 for layers 0, 1, and 2, respectively (see Figure 5.5d).

5.4.2 Clustering

Clustering operations aim to group various design options into sets with

similar features (in this case, TNCE). Analogous to the clustering methods

used by [23, 118], this paper proposes a method to cluster multiple design

options based on their acoustic performance. Therefore, one can expect similar

acoustic performance for all the designs of the same cluster. Such clustering

can be used as a data-driven catalogue that enables designers to explore

the available design space based on acoustic criteria. The SOM algorithm

organises all the patterns on a two-dimensional plane. Figure 5.6 shows the

embedding of 296 patterns based on TNCE values. As highlighted with

the coloured outline, the macrostructure is one of the most discriminative

features for the SOM.

5.4.3 Design Exploration

Using the two-dimensional SOM described in the previous subsection,

designers can get a fast and precise overview of possible design options.

Each cell of the SOM contains a group of design options clustered based on

the acoustic performance feature selected by the designer (e.g., TNCE). The

hypothetical examples described below are used to illustrate the proposed

design workflow. We imagine a generic meeting room where one of its walls

may be freely designed to improve the room’s acoustical properties. For our

performance criterion, we choose the TNCE values of layer_1 because they

are located very close to the centre of the room. Because the IRs contain only

early reflection information (See The GIR Dataset in chapter 5.3.1), the TNCE

values also contain only the energy from these early reflections. Although the

form of the room does not influence our method, for simplicity, the meeting

room has a shoe-box shape measuring 5 meters wide, 6 meters long, and 4

meters high. We consider the reflected energy of a flat surface as our 100 per

cent reference (maximum specular reflection). The criterion is the reflected

energy of the desired surface, represented as a ratio of the flat surface’s

energy. Values higher than 100 per cent represent amplification, and lower

values energy reduction.
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Figure 5.6: An SOM of 296 surfaces

based on the TNCE values of

layer_1. The displayed surfaces

are coloured from violet to orange

to represent their depth, and the

coloured outline indicates their

macrostructure.
*

*This figure has been modified
from the published version. Its content
has been rearranged to fit the thesis
layout.

90



neurons iterations neighbourhood sigma learning training

x y function rate time

scenario A 10 10 100000 Gaussian 0.8 1.5 28 sec

scenario B 7 7 100000 Gaussian 1.0 2.5 22 sec

Table 5.1: SOM training values.

11: Further documentation can be

found on MiniSom’s Github repos-

itory. github.com/JustGlowing/
minisom

Scenario A does not have a specific material system in mind, but scenario B

assumes designers have already decided on a material system, specifically,

a brick wall. These different decisions result in two different sets of panels

for the SOM training. Scenario A uses all the dataset typologies, resulting in

279 surfaces, and scenario B uses only the brick wall typologies, resulting

in 146 surfaces. For the SOM training, the MiniSom library requires us to

provide values for the following arguments: map dimensions (x, y number of

neurons), training iterations, the neighbourhood function, the sigma, and the

learning rate
11

(see Table 5.1). Sigma defines the spread of the neighbourhood

function in number-of-neighbours. The appropriate value for sigma varies

by map dimensions. When the sigma value is too small, the samples cluster

near the centre of the map; When it is too large, the map exhibits several

large empty areas towards the centre [119]. The learning rate defines only the

initial value of the learning rate for the SOM. With every training iteration,

the learning rate adjusts according to the following function:

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(𝑡) = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

1 + 𝑡

0.5 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

(5.1)

We iterated over different training values to achieve an optimum embedding

(Figures 5.9 and 5.12). A SOM with many neurons has enough space to

arrange the data samples. When multiple very similar samples exist, the

SOM algorithm places these samples in the same cell; thus, the resulting

embedding can have several empty cells. On the other hand, a SOM with a

very small number of neurons may not have enough space to arrange the

samples. This constraint will force the algorithm to place less similar samples

on the same cell, resulting in a less representative data embedding.
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5.4.4 Scenario A

This scenario aims to design a surface that, compared to a flat reflective

surface, lowers the specularly reflected energy in the whole spectrum,

emphasising the mid and high-frequency bands. This emphasis will make

the room sound softer by reducing the often harsh high-frequency specular

reflections. Combined with the overall reduction in reflected energy, the

person speaking will sound more clear. To achieve the desired energy goal,

we input the following values: [80, 80, 70, 60, 60], and the SOM cell with

the closest matching values is displayed (see Figure 5.9). Selecting the cell

reveals all the surfaces with similar values in descending order, from the

closest to the least matching option. Nevertheless, because of how the SOM

clustering algorithm works, even the least matching option is very close

to our desired acoustic criterion. Figure 5.9 shows the energy ratios of all

matching surfaces compared to the desired energies and their close-up views.

Option 1 (panel_0100_0) and option 3 (panel_0082_0) are also visualised

inside the room to evaluate them based on aesthetic qualities (see Figures

5.7 and 5.8). At this point, the architect decides which surface best suits their

design idea.

Figure 5.7: 3D Visualisation of op-

tion 1 from scenario A (panel_0100_-

0).

Figure 5.8: 3D Visualisation of op-

tion 3 from scenario A (panel_-

0082_0).
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Figure 5.9: Top: The 10x10 SOM for

Scenario A. The black outline indi-

cates the best-matching cell accord-

ing to the desired energy values.

Middle: The surfaces of the best

matching cell. Bottom: Energy ra-

tios of all matching surfaces.
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5.4.5 Scenario B

Like the previous scenario, the performance criterion is again the TNCE

values of layer_1. Figure 5.12 shows the cell with the best matching values,

the close-up views of the associated surfaces and their energy ratios. In

this case, the SOM cell contains only three surfaces. Contrary to scenario A,

these surfaces happen to have a macrostructure, making them more spatially

expressive. Options 1 and 3 are from the same typology and have very

similar designs and energy values; therefore, we focus on options 1 and 2.

Panel_0036_1 lowers the energy by five to ten per cent more than the desired

energy goal in all frequency bands. Although panel_0104_1 also lowers the

energy a little more than the set goal in the two lowest frequency bands

(250Hz, 500Hz), it matches the desired goal in the 1kHz and 4kHz frequency

bands (see Figure 5.12 bottom). Therefore, option 1 better matches our desired

acoustic performance criteria. A visualisation of these two options can be

seen in Figures 5.10 and 5.11.

Figure 5.10: 3D visualisation of op-

tion 1 from scenario B (panel_0104_-

1).

Figure 5.11: 3D Visualisation of op-

tion 2 from scenario B (panel_0036_-

1).
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Figure 5.12: Top: The 7x7 SOM for

Scenario B. The black outline indi-

cates the best-matching cell accord-

ing to the desired energy values.

Middle: The surfaces of the best

matching cell. Bottom: Energy ra-

tios of all matching surfaces.
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12: On a 2.9GHz 6-core Intel i9 CPU

and 32GB 2400MHz DDR4 RAM.

5.5 Results and Discussion

We have proposed a novel and fast workflow for a performance-driven

acoustic design of diffusive surfaces. We described its components and how

each of them contributes to the entire workflow. We have demonstrated its

application with two design experiments. These experiments showed that

thanks to its visual and intuitive implementation, users need little acoustic

expert knowledge to specify and explore early design options compared

to traditional room acoustic surface design processes. When no predefined

typology is chosen, the design proposals could include several different

typologies. This approach could inspire or drive the designer’s choices and

could also be used as a base for discussion and further refinement with

acoustic experts. Compared to sometimes days of computing time when

using numerical modelling algorithms [108], our method needs only 20 to

30 seconds
12

to train the SOM depending on the dataset size (see Table 5.1).

Then, computing the closest matching designs requires less than a second.

Although the presented workflow is based on the GIR Dataset and precisely

a panel’s TNCE values, one could use any other acoustical descriptor from

the GIR Dataset (impulse response, frequency response, cumulative energy,

and more). Furthermore, the presented methodology is not limited to the

GIR Dataset. It can be adapted and applied to any other acoustic dataset.

The two design scenarios have shown that both flat-like (scenario A) and

spatially varied surfaces (scenario B) are considered options. Flat-like surfaces

are more likely to have uniform TNCE values across points of the same layer;

therefore, they are more likely to be the closest matching sample in the SOM.

Nevertheless, the design workflow is not limited to a single set of desired

energy values. We can assign different values to each layer, assign individual

values to each grid point of a specific layer, and finally, assign a few values at

desired locations and let the algorithm interpolate the in-between values.

The fewer sets of energy values one uses as a performance criterion, the more

likely it will result in a flat-like design.

5.5.1 Limitations

Although the presented design workflow proposes material patterns based

on desired acoustic performance criteria, these patterns can only be from

the GIR Dataset. Nevertheless, the dataset can be expanded to include

more patterns for a specific typology or introduce an entirely new typology.

Furthermore, because the measurements were not according to the ISO

standard, they cannot be used to derive standard acoustical descriptors such

as absorption and scattering coefficients. Therefore, the clustering can only

be done using the descriptors provided by Rust et al. [40] (e.g., cumulative

96



13: Contributor Roles Taxonomy

energy, normalised cumulative energy, total normalised cumulative energy).

Nevertheless, we believe that energy values (NCE, TNCE) split into five filter

bands are metrics most users can understand or quickly get familiar with.

5.5.2 Future Work

The proposed design workflow provides initial ideas or inspiration for a

more acoustically informed design direction. However, choosing the desired

acoustical parameters for the different frequency bands may still require some

basic understanding of acoustics or initial consultation with an acoustics

expert. Therefore, predefined acoustic use cases should be implemented.

These cases will translate qualitative intentions into quantitative parameters.

Currently, the design workflow can be used via a Jupyter notebook, and

it is available as an open-source code at https://renkulab.io/gitlab/

ddad/ddad-renku/. The interface can be further streamlined and possibly

integrated as a tool within existing CAD software or a stand-alone web-based

application.
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6 Geometry and Impulse

Responses web application

6.1 User Interface . . . . 102

6.2 Absolute - relative

modes . . . . . . . . . 104

6.3 Usability . . . . . . . 105

Chapters 2, 3, 4, and 5 describe design

workflows that enable acoustic-aware

design using the GIR Dataset. Even

though these workflows provide

visualisation methods enabling users to

explore the differences in reflected sound

energy, the scattered sound’s direction, the

frequency response, and more, they

require programming knowledge to set up,

execute, and even more customise and

further develop them. This requirement

could exclude the usability of this research

from users with limited or no

programming knowledge. One of the

research objectives is to increase the impact

of this research by developing easy-to-use

tools and open-sourcing the dataset and



all the developed code. A web-based

application was developed, allowing users

with no programming knowledge to access

the dataset. The application uses all the

visualisations described in chapter 4 to

enable architects and acousticians with no

prior programming knowledge to explore,

visualise, and study the interaction

between sound and diffusive surfaces.

The following sections describe the web

app’s user interface, the two available

visualisation modes, and how it can be

used to explore the content of the

GIR Dataset. Lastly, it describes

visualisation methods not covered in the

previous chapters to study a surface’s

diffusivity.
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1: blue sphere

2: red sphere

6.1 User Interface

Users are presented with a simple one-page - two-column design containing

all available information and eliminating unnecessary navigation to other

pages (see Figure 6.1). Users can filter out the surfaces of the GIR Dataset

based on their typology and then select a surface while being presented with

a close-up rendering of its geometry (see Figures 6.2 and 6.3). This action

loads the 3D geometry of the selected surface in the 3D view window. Users

can interact with the surface by panning around it or zooming in to get a

closer look at its structure. A list of all available metadata is displayed below,

containing information such as measured date, printer model, binder type,

air temperature and atmospheric pressure during the measuring process,

and many more. The measuring grid is superimposed in front of the surface’s

3D geometry, making it easy to select the right source-receiver combination.

By choosing a source
1

and a receiver
2

position, all acoustic descriptors are

calculated and displayed in a series of visualisations in the right column.

Figure 6.1: A screenshot of the web-

based application.

All visualisations provide an absolute and relative mode. In the absolute

mode, the mathematical results are output without any alteration. In the

relative mode, before visualising, the results are first normalised using the

values of a reference flat surface. The flat surface is a reference for the
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maximum specularly reflected energy. It allows for a direct comparison

with some of the most commonly used flat architectural surfaces, such

as drywalls, smooth concrete, or plastered brick walls. The importance of

reference surfaces in the computational pipeline and their usefulness in

comparative studies can be found in Appendix E.

Figure 6.2: Typology selection pro-

cess.

Figure 6.3: Surface selection pro-

cess.
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3: microphone at (0,1,0) and

speaker at (0,3,0)

4: The energy of a flat surface is

shown with a red dashed line

6.2 Absolute - relative modes

Figure 6.4 shows cumulative energy over time plots for the same microphone-

speaker combination
3
. Figure 6.4a shows the absolute energy values of

the reflected energy for a flat surface. The maximum value is the Total

Cumulative Energy (TCE) and is always located at the end of the plot. When

normalising the plots, that value is scaled to 1.0 and becomes the TNCE value

(see Figure 6.4b). Even though, for specific applications, absolute values are

helpful, it is also convenient to display energy values relatively. Users can

easily and quickly compare a structured surface’s cumulative energy to a flat

surface’s energy. Figure 6.4c shows the absolute cumulative energy values

of a Primitive Root Diffuser (PRD Diffuser). Although this plot provides an

insight on the speed that energy accumulates at the receiver position, the

energy distribution per frequency bands, and the TNCE, only in figure 6.4d

it becomes evident how much less energy is reflected from a PRD Diffuser

compared to a flat surface
4
.

Figure 6.4: Absolute and relative cu-

mulative energy CE over time plots.
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(a) Absolute CE over time plot for a reference

flat panel.

Total
2.5kHz
5kHz
10kHz
20kHz
40kHz

Cumulative energy mean_flat_rfl_1
microphone cell (0, 1, 0) - speaker cell (0, 3, 0)

1.0

0.8

0.6

0.4

0.2

0.0

En
er

gy
 ra

tio

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [ms]

(b) Normalised CE over time plot for a reference

flat panel. The normalisation scales the TNCE

value 1.0.
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(c) Absolute CE over time plot for a Primitive

Root Diffuser (baseline_prd_400_2000).
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(d) Normalised CE over time plot for a Primitive

Root Diffuser (baseline_prd_400_2000).
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(a) The CE slope of a flat surface. It takes 0.15

ms for the energy to go from 5% to 95%.
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(b) The CE slope of a PRD Diffuser. It takes 0.7

ms for the energy to go from 5% to 95%.

Figure 6.5: Diffusivity slope.

5: The figures are isolated from the

web app for better readability.

6: The 5% offset from 0% and 100%

is chosen to exclude any possible

leftover energy from imperfect re-

moval of the direct sound and possi-

ble late reflections originating from

the acquisition setup and not the

surface.

7: Sound focusing

8: Layer 0 is the closest to the sur-

face and layer 2 the furthest.

9: The plot is isolated from the web

page for better readability.

6.3 Usability

Similar to the comparative studies possible using the DataPloter class from

the computational pipeline, such studies are also possible via the web app.

Users can open two browser windows and select two different surfaces on

each one. Using one of the flat surfaces on the one window and a PRD

Diffuser on the other, users can compare their diffusivity by looking at the

CE over time plot. The flat reflector produces specular reflections that almost

instantaneously redirect most incident sound at the receiver’s location. On

the contrary, the highly diffusive surface of the PRD Diffuser produces many

smaller amplitude reflections spread over a more extended period. Looking

at figures 6.5a and 6.5b
5

the dotted line marks the steepness of the CE curve

indicating the time it took for the reflected energy to arrive at the receiver’s

location. It takes 0.15 ms with a flat surface and 0.7 ms with a PRD Diffuser

for the CE to go from 5% to 95%
6
, a 4.6× increase in time.

Another way to study a surface’s diffusivity is by looking at the 3D Grid -
Cumulative Energy plot, visible at the bottom of the right column on Figure 6.1

(A detailed view of this plot can be seen in Figures 6.6 and 6.7). This

visualisation provides a detailed overview of the reflected energy, with each

square representing the TCE value at a position on the measuring grid. The

values are normalised based on the TCE values of the entire audio spectrum

of a flat surface (flat reflector) and range from -20dB to +3dB. Values equal

to 0 are shown in black, indicating the same energy as a flat surface. Values

smaller than 0 are shown in white and indicate sound reduction. Lastly,

values above 0 are shown in red and indicate sound amplification
7
. The

energy values are grouped column-wise per frequency band and row-wise

per measuring grid layer
8
.

Figure 6.6
9

shows the TCE values of a flat surface. It is evident and expected

that this surface has a uniform energy distribution in every measuring

position. On the contrary, looking at Figure 6.7, we can see how much less
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energy is reflected in a specular way from a PRD Diffuser. Furthermore,

close to the surface, the energy distribution is not as uniform, but it becomes

more uniform in layer 2, which is the furthest away from it. This is expected,

considering that some distance is required for the destructive interferences

to create a uniform diffuse sound field. The repeating structural pattern of

this diffuser is also expressed as an energy pattern, especially at layer 0 for

the 20kHz, 40kHz, and Total frequency bands.

Figure 6.6: The TNCE value on ev-

ery point on the measuring grid for

a flat surface.

Figure 6.7: The TNCE value on ev-

ery point on the measuring grid for

a PRD Diffuser.
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7.4 Last remarks . . . . 118

This doctoral thesis focused on

architectural acoustics and sound diffusion

in particular and presented a novel

approach to studying the mutual

relationship between geometry and sound

diffusion. Instead of simulating the

interaction between diffusive surfaces and

sound, it opens the possibility of

predicting acoustical properties using

machine learning techniques. These

techniques address the two main reasons

that currently discourage architects from

including acoustics evaluation in the early

design stages, computation time and ease

of use. By focusing on developing faster

and simpler to use acoustic evaluation

methods, this research created a new

dataset, developed data analysis and

visualisation tools, and proposed new

methods for a data-driven acoustic design.

Chapter 1 provided the motivation,

context, and problem statement



supporting the need for an alternative

approach to including acoustics evaluation

in the early design stages. Chapters 2 to 6

presented the main body of this research.

This chapter provides an overview of the

work presented in the previous chapters

consolidating the contributions made

throughout this cumulative thesis. It

continues by discussing the results and

limitations of the work presented in

chapters 2 to 6 and concludes with an

outlook and recommendations for future

work.
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1: In 1:10 scale.

7.1 Contributions

This research promotes the importance of interdisciplinary collaboration in

scientific discourse by bridging different disciplines, such as architecture,

acoustics, and data science. It contributes to the field of architectural acoustics

and fosters the application of data science methods. It enables fast data-driven

approaches for designing and evaluating the acoustics properties of digitally

designed architectural surfaces. It simplifies the current design-simulation-

evaluation process, thus bringing acoustics closer to the architecture practice

and enabling acoustics-aware designs. The following paragraphs summarise

the main contributions of this research.

7.1.1 Dataset

The basis of ML applications is high-quality datasets. A new acoustic dataset

was collected to aid the development of ML applications on sound diffusion.

The dataset is the basis for machine learning algorithms that will help create

tools that are faster, less cumbersome, and have reasonable accuracy. It can

also be explored as a library of surfaces and known acoustic properties.

It is the first dataset containing both acoustical and geometrical data. The

GIR Dataset includes 312 scale-modelled
1

architectural wall-like surfaces.

The surfaces resemble commonly used fabrication methods and construction

materials. For each surface, 2951 measurements were taken from multiple

source and receiver positions, resulting in a total of 920712 impulse responses.

The dataset is made available open-source and can be downloaded from

https://doi.org/10.5281/zenodo.5500519. A detailed documentation is

published describing its content, how it can be accessed, the data-acquisition

setup with all the hardware specifications, the data collection protocol, data

post-processing, and data storing (see chapters 3 and 2). Several ML examples

are made available showcasing the potential benefit of the GIR Dataset in

ML applications (see chapters 2.3, 5, and C).

7.1.2 Data-acquisition method

An automated multi-robotic data-acquisition method was developed for

collecting impulse responses from scale-modelled 3D-printed surfaces. The

method uses two industrial robotic arms inside an acoustically treated and

sound-insulated room. The robotic arms have as end-effectors a microphone

and a speaker, and they reposition them along a three-dimensional orthog-

onal grid over the surface under test. The three-dimensional grid enables

the measurement of surfaces with non-uniform material properties, such as

diffusive texture combinations and gradients, or combinations of diffusive
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2: Principal component analysis,

Self-organising maps

and absorptive areas. Furthermore, it captures the acoustic responses at three

distinct distances (layers) from the surface, allowing the study of distance-

related acoustical effects. Lastly, the entire process - robotic movement, audio

playback and recording, data processing, and data storing - is fully automated

and does not require human presence or supervision. On the one hand, this

automation provides the necessary accuracy and repeatability required for

such a precision-sensitive task. On the other hand, similar to measurement

processes such as the one described in ISO 17497 standard, it is extremely

time-consuming, thus human-resource consuming.

7.1.3 Data analysis and visualisation

This research introduced a large and high-dimensional acoustic dataset.

Three approaches were developed, addressing the complex and multi-

dimensional nature of the data. First, a series of new acoustic descriptors

tailored for users with basic knowledge of acoustics. Second, a computational

framework that generates customisable and interactive visualisations for low-

and high-dimensional data. These visualisations include the geometry of the

studied surface, coupling it with the acoustic data, and providing a detailed

way to study the mutual relationship between geometrical characteristics

and sound scattering. The interactive nature of these visualisations enables

users to explore the data from different perspectives and use animated

content to display how sound properties change over time. Lastly, the

visualisations are available in absolute and relative modes. Even though

the first mode visualises the absolute mathematical results of the selected

acoustical descriptor, the latter normalises the results based on a reference

flat surface. This mode makes comparative studies easier for users with

limited knowledge of acoustics since the data are presented in comparison

to a familiar flat surface.

7.1.4 Data-driven acoustic design

A novel approach to acoustically performance-driven design of sound-

diffusing wall surfaces was introduced. The computational workflow allows

architects and designers to explore alternative wall designs, given a set of

desired acoustic performance criteria. The design tool uses unsupervised

machine learning and data clustering techniques
2

to analyse and arrange

the GIR Dataset. To allow architects and acousticians with no programming

knowledge to explore the dataset, all the visualisations are made available

through an online web-based application. Users can filter surfaces based on

typology, explore a 3D view of their geometry, and access associated metadata

such as measuring date, printer model, binder type, temperature, atmospheric
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pressure, and more. By selecting a source and receiver combination, the

application visualises all available acoustic descriptors. The website is publicly

accessible at www.ddad.ethz.ch.

7.1.5 Computational design of sound diffusive surfaces

A computational tool was developed that generates highly customisable

three-dimensional wall-like geometries. It combines macro and microstruc-

tures to create unique architectural surfaces. The macrostructure adds

low-frequency wave deformations that break the flatness of the surface,

while the microstructure adds fine geometrical features that resemble com-

mon architectural materials and construction techniques. The tool includes

functions to generate various types of stone and brick walls, concrete

walls, and surfaces with primitive shapes. The tool is fully parametric,

allowing the user to adjust various geometrical properties such as stone

type, surface roughness, brick dimensions, mortar height and depth, and

more. Additionally, the tool outputs a ready-to-3D-print file that combines

two surfaces in one three-dimensional mesh, reducing material use and

printing time. The tool is open-sourced and available for download at

github.com/gramaziokohler/sdsc_data_driven_acoustic_design.

7.2 Discussion

This research investigated the spatiotemporal relationship between geometry

and reflected sound using data-science methods and ML applications, focus-

ing on early reflections and sound diffusion. The lack of a dataset containing

geometrical and acoustical data was seen as an opportunity to define the

relevant data, its collection, post-processing, and use within ML applications

targeting architectural design. Two topics are discussed in the following

sections, the collected dataset and acquisition setup and the usability of the

developed visualisations and design workflows.

7.2.1 Dataset - Acquisition setup

The generated dataset is the foundation for ML algorithms to develop efficient,

easy-to-use design and analysis tools with reasonable precision. The dataset

contains only first-reflection acoustical information. Although this is not

sufficient for a room acoustics analysis, it provides much information for the

direction, amplitude, frequency response, and more of the reflected sound.

This information is beneficial for designing and optimising sound diffusers.

Additionally, it can be utilised as a library of surfaces and their associated
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3: Finite Element Method (FEM),

Boundary Element Method (BEM),

FDTD

4: 400 samples at a 96kHz sampling

rate.

acoustic characteristics. The geometrical data are organised in typologies

that resemble commonly used architectural materials and construction

techniques. Designing a dataset around these commonly used materials and

construction techniques increases the likelihood of the data being used in

an architectural context. The dataset is open-source; therefore, anyone can

extend it by contributing to it if more surfaces or typologies are needed.

This can be achieved by physically reproducing the data-acquisition setup

described in chapters 2 and 3 or digitally reproducing its conditions within

a numerical, wave-based simulation
3
. Measuring the impulse responses

at three different distances from the surface captures the evolution of the

reflected wavefront over space and time. Having spatial information on the

sound propagation gives information not only on the far field but also on

the near-field behaviour of a surface. Such spatiotemporal investigation is

not possible with a measurement method based on the ISO 17497 standard

[64, 120]. That method, even though it captures the reflected sound from

multiple angles around a surface, it does it from a single fixed distance. The

implication of not following the ISO standard is that the absorption, scattering,

and diffusion coefficients can not be properly computed. Nevertheless,

computational methods have been developed to translate the captured data

to ISO-equivalent absorption and scattering coefficients (see chapters D and

F). Calculating the diffusion coefficient requires the surface’s polar response.

Although a portion of the polar response can be computed, it is insufficient

to develop a method that translates the captured data to an AES-4id-2001

[89] equivalent diffusion coefficient with acceptable accuracy.

The design of the dataset and the data-acquisition setup makes it possible

to collect acoustical data from surfaces with heterogeneous textures. The

three-dimensional measuring allows the collection of IRs not only at a global

surface level but also from a focused, localised part of the surface. This made

it possible to combine multiple geometrical textures on a single surface.

Working with the hypothesis that ML models could learn these features

and extract their geometrical information will allow testing and predicting

how gradient geometrical transitions and alternations between diffusive and

absorptive areas on the same surface affect the reflected sound. These are

essential design questions from an architectural perspective because they

investigate the extent of architectural expression in an acoustically informed

design, but these ML models are still under development.

The GIR Dataset stores the raw data captured with the data acquisition setup.

The only post-processing applied to the data is a time-window of around

4𝑚𝑠4
which filters out unwanted reflections from the room (see chapters 2

and 3). The decision to store the raw data was twofold. First, it allows other

researchers to apply different post-processing methods directly to the raw

data. Second, there is always a possibility for errors or mistakes in a code.

7 CONCLUSIONS 113



5: panel_name in the code

6: The source and receiver posi-

tions are given based on their mea-

surement grid coordinates (z,x,y).

7: A number between 1 and 2951.

By storing the processed data, these errors would have been permanently

embedded in the dataset.

7.2.2 Usability

The GIR Dataset is large and high-dimensional; therefore, highly complex to

explore with conventional data analysis and visualisation methods. To make

the data easily available, computational tools were developed to process the

data and compute simple-to-understand acoustic descriptors. Additionally,

interactive visualisation methods enable users to display and explore high-

dimensional data, and lastly, dimensionality reduction techniques allow

users to filter out and organise the surfaces based on acoustic characteristics.

The usability of the developed computational pipeline, design workflow, and

web application are discussed below.

Computational pipeline

The developed pipeline handles all computational needs from data retrieval,

data processing, and data visualisation. First, given a surface name
5
, the data-

retrieval part provides several methods to get the correct measurement data

from the dataset. The data of a single measurement can be returned given

a source-receiver combination
6

or a combination number
7
. For multiple

measurements, other methods return the data of an entire measurement-

grid layer or all the combinations of a single source position. Second, the

data-processing part handles data sanitation and data conversion. The data-

sanitation part cleans up the recording by removing the direct sound, and

the data-conversion part computes all the acoustical descriptors. Lastly, the

data visualisation ensures that all the acoustical descriptors are properly

displayed using two or three-dimensional interactive visualisations. These

visualisations address the needs of both expert and non-expert users of

acoustics. Experts can use standard and familiar acoustic descriptors and

visualisations, while non-experts are presented with a range of newly pro-

posed and simplified descriptors and visualisations. This approach allows

for a more inclusive design process, where different design team members

can contribute their expertise to the acoustics analysis. The intuitive layout of

the visualisations and the interactivity provided in the high-dimensional vi-

sualisations make the workflow more accessible, improving communication

among the design team. Including surface geometry in the visualisations

allows for a deeper analysis of the relationship between geometry and sound.

Overlaying the acoustical data onto the geometry enables users to couple

geometrical characteristics with certain acoustical responses. Furthermore,

it helps architects and acousticians to understand how different design
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decisions affect the acoustic response and make informed design choices.

Currently, the computational pipeline is set to work with the data structure of

the GIR Dataset. However, the code’s architecture, and it being open-source,

allows adjusting and extending it to accommodate different data structures

from other datasets.

Design Workflow

The design workflow presented in chapter 5 combines several computa-

tional tools developed in this research to introduce an alternative method

for including acoustics as a performance driver in architectural design. It

evaluates all or a subset of surfaces based on desired acoustic performance

criteria set by the user to filter and organise all surfaces on an easily readable

two-dimensional map. The process can be a single-criterion or multi-criterion

evaluation.

The output of this workflow is a single surface or a set of them that match

the desired criteria. Although it outputs existing surfaces from the dataset

and does not generate new ones, its computational speed allows for bespoke

multi-criterion searches containing arrays of acoustic descriptor values at

multiple receiver positions.

This workflow does not substitute room acoustics simulations, which are still

required to study the sound field inside the designed space. Nevertheless,

the architectural design process does not always include acousticians. In

those cases, the proposed workflow still improves the acoustic quality of

the design by enabling architects to make informed decisions that influence

early reflections. These reflections significantly affect how sound is perceived

in the listening position as directional aspects and the degree of diffusivity

are most relevant in early reflections. Furthermore, strong early reflections

can cause image shifts and sound colouration. [7, 44, 45].

When acousticians are involved in the design process, the developed work-

flow is still valuable and beneficial because acousticians are presented with

an acoustically better starting point by the architects. When an accurate

acoustics evaluation is needed, GA simulation software can be used. Even

though the acoustic descriptors developed in this research cannot be di-

rectly used with GA software, the computational pipeline offers methods to

translate the GIR Dataset’s descriptors into data usable by GA simulation

software. Appendix D describes these translation methods that compute

ISO-equivalent absorption and scattering coefficients.
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Web application

Using or extending the computational pipeline and the design workflows

presented in this thesis requires programming knowledge in Python. The

developed web-based application described in Chapter 6 addresses this

usability limitation by enabling users with no prior knowledge of program-

ming to use the GIR Dataset as a library of architectural wall-like surfaces

with sound-diffusive properties. The interface provides an overview of

all available surfaces, pre-filtered based on their typology, an interactive

three-dimensional view of the surface, metadata, and the visualisations

of all available acoustic descriptors. By increasing the accessibility of this

research, exploring and studying sound diffusion becomes easier to integrate

into an architectural design workflow and in the educational curriculum of

architectural studies.

7.2.3 Machine Learning applications

One of the goals of this dissertation is to aid research in sound diffusion by

enabling the development of ML applications. Chapter 2.3 describes such

an application that predicts a surface’s acoustic properties. Even though, in

that case, the property is the TNCE value, any other acoustic descriptor that

derives from an IR can be predicted.

Predicting acoustical properties is not the only useful ML application for

the GIR Dataset. Measuring or simulating an IR is a time-consuming and

computationally expensive process. Furthermore, the auralisation of dy-

namic virtual environments with a moving listener or moving sources and

possibly changing geometries is still challenging. Although a plausible but

not physically correct auralisation can be achieved in real-time, several

approximations must be made [78]. Alternatively, one could extrapolate

the IR corresponding to the desired position in real-time by using existing

surrounding IRs. These existing IRs can be pre-recorded or simulated in

advance. The benefit of this method is the significantly smaller number of

IRs that need to be pre-recorded or simulated in advance. A case study that

acted as a feasibility study can be found in Appendix C.1.

The GIR Dataset dataset and the computational framework developed in this

research can be used to create ML models to reconstruct or generate surfaces

from acoustic data. Such models can then be used as generative design tools

for designing and optimising sound-diffusive surfaces. The input criterion

can be a desired IR, a scattering or absorption coefficient, a sound energy

value, or any acoustic descriptor that can derive from an IR. Appendix C.2

describes such a classification model where the surface or its typology can

be identified given a single IR as an input.
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7.3 Outlook

Existing data-acquisitions methods have certain limitations. Even though

developing a new method can address these limitations, it is crucial to ensure

that it is compatible with established and widely used methods to facilitate its

adoption. This can be done by providing data translation options between the

new and existing data-acquisition methods, ensuring future compatibility.

Additionally, comparing the new method to the standards could also provide

an accuracy validation for the new method and a quality benchmark for the

collected data. As a future recommendation, the developed data acquisition

method and the structure of the GIR Dataset should be extended to also

include measurements according to the ISO 17497 standard[64, 120].

User testing and feedback are needed to further facilitate the adoption of

such computational and design workflows. This feedback can be used to

identify usability or workflow issues which will guide required adjustments.

Additionally, it can provide valuable insights into how users employ the

workflow, leading to more informed decisions about future development

and design.

This research provides access to object-oriented computational tools, enabling

complete customisation of the computational workflow based on user needs.

Providing the choice for a graphical programming interface would be an

advantage; users without coding skills would have access to the entire

computational pipeline. A start has been made to translate the Data-Driven

Acoustic Design (DDAD) code to a Grasshopper plugin for Rhino3D[121].

This will enable users to develop bespoke workflows. Currently, the DDAD

code is heavily linked to the GIR Dataset. Several computational tools and

visualisations are developed to accept and work with the data structure of the

GIR Dataset. Nevertheless, several of the tools and visualisations could easily

be generalised and decoupled from it. These generalised computational tools

could be up-streamed as a Python library to the COMPAS framework[122].

COMPAS is an open-source framework for research and collaboration in

Architecture, Engineering, Fabrication, and Construction. Distributing the

code through the COMPAS framework will make it more visible, increasing

its usage and impact.

This research investigated only a fraction of potential ML applications for the

GIR Dataset. Based on the promising results of the ML model described in

Appendix C.2, one could develop a ML model that generates new geometries

based on desired acoustic properties. Form-finding design studies can couple

the geometrical output of this model with optimisation algorithms to design

new acoustically performative surfaces.
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The three ML applications demonstrated in this dissertation (see chapter 2.3,

and Appendix C.1 and C.2) could be combined to develop a hybrid ray-tracing

room acoustics simulation. The simulation will be able to classify the surfaces

inside the model, interpolate the source position to match the direction of

the incident sound, and finally predict the direction and amplitude of the

reflected sound. A lower accuracy compared to existing GA simulations is

expected from such an application, but the very short computational time

will make it a valuable exploratory design tool.

7.4 Last remarks

As a last remark, new datasets, computational tools, and design workflows

are promising steps towards making acoustic design more accessible to

architects. Nevertheless, these tools on their own are not enough and should

be complemented within the education of future generations of architects.

These potential educational methods and curricula should not mimic the

ones from electrical engineering or physics. Architects cannot and should

not become expert acousticians but should become aware of the importance

of acoustics and build a vocabulary allowing them to include acoustics as a

design driver.
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A Paper A

A.1 Dataset content

At the time of publication, the dataset is composed of 312 samples, and each

sample contains the following metadata:

▶ A 3D Mesh geometry saved as an .obj file

▶ 2951 IRs in a 2951 × 400 float32 matrix, saved in an .npz file.

▶ A metadata file saves as a .json file. The content of this file is outlined

in Table A.1.

Table A.1: The content of the metadata file.

Variable Data type Description

panel_id string The ID of the panel

start_time string The date and time the measuring process started in ISO 8601
format, YYYY-MM-DDTHH:MM:SS.mmmmmm

end_time string The date and time the measuring process ended in ISO 8601
format, YYYY-MM-DDTHH:MM:SS.mmmmmm

package_time string The date and time all recordings were processed and stored in

ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
impulse_responses_file string The name of the .npz file containing all IRs

geometry_file string The name of the .obj file containing the panel geometry

recording_sample_rate integer The sample rate of the recording in Hz/sec
reference_resampling_temperature integer The temperature in Celsius that was used to resample the IRs

print_provider string The name of the printing service

print_machine string The name of the printer

print_sand_type string The type of sand used in the 3D printer

print_binder_type string The type of binder used in the 3D printer

microphone_model string The model of the microphone use in the recording

typology string The typology of the panel

macrostructure string The macrostructure that was used to generate the panel’s geom-

etry. It corresponds to the panel_id of a panel that was created

using only that macrostructure. When flat, no macrostructure

was used

measurements extra metadata info for each of the 2951 measurements

combination integer The microphone-speaker combination number. It starts from 1

and goes up to 2952

fluid_pressure float Air pressure inside the room in Pa
relative_humidity float Air humidity inside the room in %
sound_level float The sound level outside the room in dB
temperature float The temperature inside the room in C
distance float The distance between microphone and speaker frame in mm
end_time string The date and time of the successful recording in ISO 8601

format, YYYY-MM-DDTHH:MM:SS.mmmmmm



Table A.2: Testing sets.

Testing set Panel names

Random

panel_0001_1, panel_0009_1, panel_0010_0, panel_0011_1,

panel_0014_1, panel_0021_1, panel_0023_1, panel_0024_1,

panel_0049_1, panel_0054_1, panel_0058_1, panel_0066_0,

panel_0071_0, panel_0073_0, panel_0085_1, panel_0087_1,

panel_0089_0, panel_0090_1, panel_0094_0

Micro-Macro

panel_0099_0, panel_0105_0, panel_0105_1, panel_0016_1,

panel_0064_0, panel_0064_1, panel_0065_0, panel_0066_0,

panel_0066_1, panel_0070_1, panel_0071_0, panel_0072_0,

panel_0072_1, panel_0013_0, panel_0013_1, panel_0036_1

Brick-Printer-VJ

panel_0101_1, panel_0107_1, panel_0092_0, panel_0092_1,

panel_0089_0, panel_0072_1, panel_0108_1, panel_0070_0,

panel_0091_0, panel_0095_1, panel_0090_0, panel_0093_1,

panel_0107_0, panel_0094_0, panel_0072_0, panel_0094_1,

panel_0096_1, panel_0071_0, panel_0090_1, panel_0070_1,

panel_0071_1, panel_0105_0, panel_0095_0, panel_0089_1,

panel_0096_0, panel_0108_0, panel_0101_0, panel_0091_1,

panel_0093_0, panel_0105_1

Brick-Printer-CG

panel_0036_0, panel_0037_1, panel_0043_1, panel_0044_0,

panel_0046_1, panel_0049_0, panel_0049_1, panel_0051_0,

panel_0053_0, panel_0054_1, panel_0055_1, panel_0056_0,

panel_0057_0, panel_0057_1, panel_0058_1, panel_0061_0,

panel_0063_1, panel_0066_1, panel_0068_0, panel_0068_1

Extrusion

panel_0056_0, panel_0056_1, panel_0106_0, panel_0106_1,

panel_0107_0, panel_0107_1, panel_0108_0, panel_0108_1

Macro

panel_0015_1, panel_0015_0, panel_0031_0, panel_0031_1,

panel_0083_0, panel_0083_1

A.2 Testing set details

In the following table, we list the panels we selected for each testing set. The

entire list of panels is available through the code.

A.3 Panel diffusivity

To evaluate the diffusivity of each panel in the dataset, we can look at the

amount of reflected energy. A flat reflector produces a specular reflection,

redirecting most of the energy to a specific narrow direction. A highly

diffusive surface redirects the energy at a large solid angle. Similar to [43],

by comparing the two energy values, we can calculate how much energy

was not reflected specularly. Table A.3 shows the mean reflected energy

values of each typology compared to a flat surface. If close to 1, the panels

perform similarly to a flat reflector (high specular reflections). If close to 0, the

panel diffuses or absorbs all the energy. Indeed, the Primitive root diffuser

(panel_id: baseline_qrd_400_4000) that was designed to diffuse frequencies

between 400Hz and 4000Hz has values very close to 0.
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Typology 200Hz 500Hz 1kHz 2kHz 4kHz Total

Stretcher bond bricks mean 0.82 0.77 0.66 0.59 0.68 0.68

Flemish bond bricks mean 0.83 0.80 0.65 0.51 0.59 0.65

IDL mean 0.61 0.45 0.46 0.37 0.50 0.47

Polygonal rubble stones mean 0.61 0.50 0.46 0.46 0.49 0.49

Coursed ashlar stones mean 0.64 0.53 0.43 0.36 0.39 0.45

Primitives mean 0.87 0.78 0.62 0.52 0.59 0.65

Macrostructure mean 0.83 0.84 0.71 0.71 0.76 0.77

Primitive root diffuser 0.15 0.06 0.03 0.06 0.09 0.07

Reference Flat 1.00 1.00 1.00 1.00 1.00 1.00

Reference Foam 0.00 0.00 0.00 0.00 0.00 0.00

Table A.3: Specular reflection fac-

tors

1: https://renkulab.io/

2: https://arxiv.org/abs/1805.
03677

3: https://schema.org/docs/
data-and-datasets.html

4: https://renkulab.io/
projects/ddad/gir-dataset/
files/blob/dataset.json

A.4 Extra information

A.5 Dataset documentation and intended uses

GIR Dataset is intended for research in computational acoustics and, in

particular, the studies of the relationship between geometry and diffusion.

We describe the data organisation and provide rich metadata with contextual

documentation. With the Renku platform
1
, we automatically capture the

lineage and metadata. The latter is further enriched with the additional

attributes recommended in the framework dataset nutrition labels
2

and

Schema.org note on data and datasets
3
. This enriched metadata is provided

in a standard JSON-LD format on Renku4
and on Zenodo as part of the

published dataset.

A.6 Links to access the dataset, its metadata, and the code

We provide open and easy access to the GIR dataset through two publicly

available resources: Zenodo: doi.org/10.5281/zenodo.5288743 and Renku:

renkulab.io/projects/ddad/gir-dataset/datasets/gir/. Both Zenodo
and Renku provide unrestricted access to the dataset without the need for

authentication, including a free interactive computational environment to

explore the dataset directly on the Renku platform https://renkulab.io/

projects/ddad/gir-dataset/sessions/new. The code and the instructions

needed to reproduce the main experimental results are available on RenkuLab
in the https://renkulab.io/projects/ddad/gir-dataset repository.
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A.7 Author statement

The dataset and all the code can be downloaded freely for research purposes.

The dataset is released under the GNU General Public License v3.0: https:

//renkulab.io/projects/ddad/gir-dataset/files/blob/LICENSE. The

authors bear all responsibility in case of violation of rights regarding the

created dataset.

A.8 Hosting, licensing, and maintenance plan

To guarantee data access and retention we opted for two publicly available

resources: Zenodo and Renku, with Zenodo ensuring the long-term preserva-

tion of data and Renku providing the long-term availability of the code. The

integration of Renku with Zenodo streamlines data maintenance by automat-

ing the export of new data releases along with the lineage and rich metadata

automatically captured on Renku.

A.8.1 Ensuring accessibility

To ensure that the GIR dataset can be easily found and accessed, we use

Zenodo to assign a persistent unique Digital Object Identifier (DOI) and index

metadata enriched with descriptions, keywords, and author information at

Zenodo and DataCite servers. Zenodo guarantees a 20-year retention period

and implements the DCAT metadata standard. We further enhance the

accessibility of the GIR dataset with the Renku platform, where data can be

accessed through a curated reproducible run time environment. Metadata

captured on Renku follow Schema.org standards. Files constituting the dataset

are in standard, widely accepted formats and documented in the metadata.

Figure A.1: General structure of the

network. The network is made of an

encoder that transforms the input

wall (a 512× 512 image) into a code

(8× 8× 128). The decoder takes the

code as well as the source position

and produces the energy level for

the 5 bands and the 6 receiver posi-

tions.

Encoder Decoder

Code - 2D 
(8x8) x 128

Projected wall 
2D 

(512 x 512) x1

Output 
Normalized energy 

per band 
6 x 6 x 5

Loss

Desired output and mask (we do not have all outputs)

Souce selection 
2D 

(6 x 6) x1 
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A.8.2 Network architecture details

Figure A.1 describes the overall architecture of the NN used to predict

acoustic properties from a geometry. The NN takes as inputs a 512 × 512

image (the 2D projection of the geometry) as well as the position of the

source in the form of a 6 × 6 matrix (zero everywhere except for the source

position). The NN outputs a 6 × 6 × 5 = 36 × 5 tensor consisting of the

reflected energy in 5 frequency bands for the 6 × 6 = 36 receiver positions.

As some source-receiver positions are not measured, we apply a mask before

computing the loss. The NN is composed of an encoder and a decoder. The

encoder embeds the wall geometry into a space of size 6 × 6 × 128. It is a

conventional 6 layer Convolutional Neural Network (CNN) with leaky ReLu

non-linearity (See Table A.5). The decoder is made of three different blocks.

First, the resampling block is a learned linear layer with a weight matrix of

size 8
2 × 6

2
(See Table A.4). The same function is applied for all 128 channels.

Second, a three-layer CNN transforms the source position into a positional

encoding that is multiplied by the resampled code. Finally, a three-layer

CNN decodes the result into the energy per band. The parameters of the

decoder are given in Table A.6.

Layer Operation Activation Dimension

Input code 𝑐 𝑏 × 8 × 8 × 128

𝑑0 Reshape 𝑏 · 128 × 64

𝑑1 Linear (64 × 36) 𝑏 · 128 × 36

𝑑2 Reshape 𝑏 × 6 × 6 × 128

Resampled code 𝑐′ 𝑏 × 6 × 6 × 128

Table A.4: Resampler.

Layer Operation Activation Dimension

Input image𝑋 𝑏 × 512 × 512 × 1

ℎ0 Conv(𝑘 = 5 × 5,𝑠 = 2) LeakyRelu 𝑏 × 256 × 256 × 8

ℎ1 Conv(𝑘 = 5 × 5,𝑠 = 2) LeakyRelu 𝑏 × 128 × 128 × 16

ℎ2 Conv(𝑘 = 5 × 5,𝑠 = 2) LeakyRelu 𝑏 × 64 × 64 × 32

ℎ3 Conv(𝑘 = 5 × 5,𝑠 = 2) LeakyRelu 𝑏 × 32 × 32 × 64

ℎ4 Conv(𝑘 = 3 × 3,𝑠 = 2) LeakyRelu 𝑏 × 16 × 16 × 128

ℎ5 Conv(𝑘 = 3 × 3,𝑠 = 2) LeakyRelu 𝑏 × 8 × 8 × 128

Output code 𝑐 𝑏 × 8 × 8 × 128

Table A.5: Encoder for acoustic

property prediction. Here 𝑏 is the

batch size, 𝑘 the convolutional ker-

nel size and 𝑠 the stride. The num-

ber of filters (convolution layer) is

shown in blue. The LeakyRelu acti-

vation uses the parameter 𝛼 = 0.2.
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Table A.6: Decoder for acoustic

property prediction. Here 𝑏 is the

batch size, 𝑘 the convolutional ker-

nel size and 𝑠 the stride. The num-

ber of filters (convolution layer) is

shown in blue. The LeakyRelu acti-

vation uses the parameter 𝛼 = 0.2.

Layer Operation Activation Dimension

Source position 𝑠 𝑏 × 6 × 6 × 1

𝑑3 Conv (𝑘 = 5 × 5, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 128

𝑑4 Conv (𝑘 = 5 × 5, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 128

𝑑5 Conv (𝑘 = 5 × 5, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 128

𝑑6 Multiply with 𝑐′ 𝑏 × 6 × 6 × 128

𝑑7 Conv (𝑘 = 3 × 3, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 128

𝑑8 Conv (𝑘 = 3 × 3, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 256

𝑑9 Conv (𝑘 = 3 × 3, 𝑠 = 1) LeakyRelu 𝑏 × 6 × 6 × 5

Predictions 𝑏 × 6 × 6 × 5
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B Paper B

B.1 Impulse response post-processing details

The post-processing of the impulse response consists of the following three

steps, which are illustrated in Figures 3.5, 3.6, and 3.7.

B.1.1 Deconvolution

The deconvolution operation is carried out using a simple division in the

Fourier domain. Given 𝑥̂ = 𝐹𝑥 the Fourier transform of 𝑥 and 𝑥 = 𝐹−1 𝑥̂ its

inverse operation, the deconvolution of the signal 𝑥 with the sweep 𝑠 is given

by

𝑥𝑑 = 𝐹−1 (𝐹𝑥/𝐹𝑠) (B.1)

where 𝑠 is the sweep, and the division is performed element-wise. Note that

𝐹𝑠 is never close to 0 because the sweep contains all frequencies.

B.1.2 Temperature correction

To adjust for the room temperature change, we estimate the speed of sound

at temperature 𝑇 (in °𝐶 )

𝑐 = 𝑐0

√
1 + (𝑇/273.15) (B.2)

where 𝑐0 is the temperature at 0°𝐶 [86]. The impulse response is then

resampled at the frequency

𝑐

𝑐𝑟𝑒 𝑓 𝑓𝑠
(B.3)

where 𝑐𝑟𝑒 𝑓 is the speed of sound at 20°𝐶 and 𝑓𝑠 = 96𝑘𝐻𝑧 the sampling

frequency. We use the polyphase filtering method (resample_poly) from

the SciPy python package.



B.1.3 Removal of direct sound

The direct sound removal is performed by subtracting the impulse response

of the absence of a wall (an absorbent foam inserted instead of the panel; see

Table 3.1, Foam).
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1: The testing set is the same as the

one defined in chapter 2.3.

2: number of convolutions/neu-

rons per layer and number of layers

C Machine Learning

Applications

C.1 Impulse response interpolation model

Given 4 IRs in a specific position, this model aims to infer the IRs of 5 new

positions. The model takes as an input (I) 4 receiver positions and a single

source position (S) and outputs the IR of 5 new receiver positions (O) seen in

Figure C.1. This method results in 144 samples per panel for a total dataset

size of 144 × 268 = 38592
1
. For the validation set, a random selection of 10

panels is made (1440 samples).

I O I

O O O

I O I

S

II

I

O

O O

OO

S
Figure C.1: Source-receiver posi-

tions for the interpolation experi-

ment. Left: top view. Right: isomet-

ric view. On the top level, a sin-

gle source is selected among the

yellow positions (red positions are

not allowed). On the bottom level,

the blue dots correspond to the 4

input receiver positions and the 5

green dots to the output receiver

positions.

C.1.1 Neural Network architecture

Since the 4 inputs and the 5 outputs are IRs in the form of a time series, a

one-dimensional convolutional encoder/decoder architecture is chosen. The

encoder contains three convolutional layers with a stride of 2, BatchNorm [123]

and LeakyRelu [124] activation functions. At the end of the encoder, we add

a linear layer with 512 neurons. The decoder is the reversed architecture

where the convolution is replaced with deconvolution. The network size
2

was gradually increased until the network would not increase in performance

anymore. Table C.1 describes the NN’s architecture, essentially a convolutions

encoder-decoder architecture.



Table C.1: Encoder-decoder archi-

tecture. Here 𝑏 is the batch size, 𝑘
the convolutional kernel size and

𝑠 the stride. The number of filters

(convolution layer) and the number

of neurons (linear layers) are shown

in blue. The LeakyRelu activation

uses the parameter 𝛼 = 0.2.

Layer Operation Activation Dimension

𝑋 𝑏 × 256 × 4

ℎ0 Conv (𝑘 = 11, 𝑠 = 1) BatchNorm / LeakyRelu 𝑏 × 256 × 16

ℎ1 Conv (𝑘 = 11, 𝑠 = 2) BatchNorm /LeakyRelu 𝑏 × 128 × 32

ℎ2 Conv (𝑘 = 11, 𝑠 = 2) BatchNorm /LeakyRelu 𝑏 × 64 × 64

ℎ3 Reshape 𝑏 × 4096

ℎ4 Linear LeakyRelu 𝑏 × 512

ℎ5 Linear LeakyRelu 𝑏 × 4096

ℎ6 Reshape 𝑏 × 64 × 64

ℎ7 Deconv (𝑘 = 11, 𝑠 = 2) BatchNorm /LeakyRelu 𝑏 × 128 × 64

ℎ8 Deconv (𝑘 = 11, 𝑠 = 2) BatchNorm /LeakyRelu 𝑏 × 256 × 32

ℎ9 Deconv (𝑘 = 11, 𝑠 = 1) BatchNorm / LeakyRelu 𝑏 × 256 × 5

3: IRs always have a zero mean.

4: 0 is equivalent to predicting the

mean, and 1 is a perfect prediction

C.1.2 Optimisation parameters

We train the network using an Adam optimiser (learning rate of 5𝑒 − 4, 𝛽
1
=

0.95, 𝛽2 = 0.999 [68]) for 200 epochs with a batch size of 32. To find the

best model, we randomly selected 10% of the training set for validation,

computed the validation error at the end of each epoch and selected the

model with the lowest validation error. To account for the randomisation

error and to obtain an estimate of performance variance, we repeated the

experiment 5 times with a different validation set for each repetition.

Results

Table C.2 reports the Mean Square Errors (MSEs) for the interpolation

problem on the different testing sets presented in chapter 2.3. The outputs

(IRs) have been normalised with a zero mean and unit variance over the full

dataset. In this setting, the testing set variance corresponds to the MSE of a

predictor predicting the mean (i.e. 0). For a human-friendly measure of the

performance, the coefficient of determination is also computed:

𝑅2 = 1 −
MS(𝑌

pred
)

MSE(𝑌test)
(C.1)

MS signifies Mean Square and is equivalent to the variance since 𝑌test has a

zero mean
3
. 𝑅2

represents the ratio of variance captured by the network
4
.

There is an important variation of this coefficient depending on the testing

set (between 0.37 and 0.64), signifying that some panels or testing sets are

significantly harder to predict than others. From an ML perspective, these

performance differences are explained by the various distribution shifts

between the testing and the training/validation sets. Comparing the training

and the validation MSEs, one can estimate how much of the error is caused

by overfitting. The rest of the error can likely be associated with the various

distribution shifts. The large variation of error can also be observed directly
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Testing set Testing set Testing Testing Validation Training

mean square MSE 𝑅2
MSE MSE

Random 0.82 0.47 ± 0.00 0.43 0.40 ± 0.11 0.10 ± 0.00

Micro-Macro 0.92 0.43 ± 0.01 0.53 0.37 ± 0.05 0.11 ± 0.00

Brick-Printer-VJ 1.04 0.66 ± 0.00 0.37 0.39 ± 0.10 0.10 ± 0.00

Brick-Printer-CG 0.79 0.28 ± 0.00 0.64 0.40 ± 0.04 0.11 ± 0.00

Extrusion 0.87 0.34 ± 0.01 0.61 0.44 ± 0.13 0.11 ± 0.00

Macro 1.19 0.69 ± 0.01 0.42 0.34 ± 0.05 0.08 ± 0.00

Table C.2: IR interpolation results.

The output has been normalised

with a variance of 1 over the full

dataset. As all IRs have a mean of

0, the testing set variance/mean

square correspond to the MSE of

a predictor predicting 0.

by looking at the IRs. In Figure C.2, the prediction almost perfectly matches

the measurement. In this case, we can conclude that there would be no

audible difference between the measured and predicted reflection patterns.

In Figure C.3, the prediction underestimates the positive peak and loses

some of the fine structure in the negative peak. Finally, in Figure C.4, the

prediction cannot trace the IR details. As a consequence of the significant

local variation, the prediction seems to average out the oscillating curve.

This is comparable to a low-pass filtering process that attenuates the high

frequencies.

Figure C.2: IR interpolation re-

sults for receiver-source combina-

tion (0,4,3)-(1,2,4) from panel_-
0011_1.

Figure C.3: IR interpolation re-

sults for receiver-source combi-

nation (0,1,3)-(1,2,2) from panel_-
0011_1.

Figure C.4: IR interpolation re-

sults for receiver-source combina-

tion (0,2,4)-(1,3,2) from panel_-
0089_0.
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Figure C.5: IR interpolation re-

sults for various panels and source-

receiver positions.
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5: 268 classes × 2951 IR per surface

= 790868 samples.

C.2 Geometry reconstruction model

This can be seen as a classification problem, where given a single IR as

an input, the surface or typology can be identified. For this model, each

typology is a class (8 classes), each surface is also a class (268 classes), and

each IR forms a sample (790868 samples
5
). The same testing set is used as

the one described in chapter 2.3. It is interesting to investigate how many IRs

are necessary to correctly classify a surface or a typology. For this reason,

different training set sizes are formed, from 50 to 2800 IRs per surface. The

validation set contains 10 IRs per surface, and the testing set all the remaining

IRs. Furthermore, two different types of IR selection for the testing sets are

investigated; First, random, where the IRs assignment to either the testing or

the training set is entirely random, and second, position, where the IRs used

in the testing set are not present in the training set.

C.2.1 NN architecture and training information.

As the input is a time series, a traditional 1D CNN is proposed. It contains 4

convolutional layers with a stride of 2, BatchNorm [123], and LeakyRelu [124]

activation functions. A final linear layer is added that outputs the correct

number of classes. The network size (the number of convolutions and the

number of layers) was gradually increased until the network would not

increase in performance anymore. Table C.3 shows the parameters for the

geometrical classifier with the IR as input, consisting of a simple convolutional

architecture. The same optimisation parameters are used as the ones in the

IR interpolation model in Appendix C.1.

Layer Operation Activation Dimension

𝑋 𝑏 × 400 × 1

ℎ0 conv (𝑘 = 11, 𝑠 = 2) BatchNorm/LeakyRelu 𝑏 × 200 × 64

ℎ1 conv (𝑘 = 11, 𝑠 = 2) BatchNorm/LeakyRelu 𝑏 × 100 × 128

ℎ2 conv (𝑘 = 11, 𝑠 = 2) BatchNorm/LeakyRelu 𝑏 × 50 × 256

ℎ3 conv (𝑘 = 11, 𝑠 = 2) BatchNorm/LeakyRelu 𝑏 × 25 × 16

ℎ4 reshape 𝑏 × 400

ℎ5 linear linear 𝑏 × 𝑐

Table C.3: Architecture of the clas-

sifier. Here 𝑏 is the batch size, 𝑘 the

convolutional kernel size and 𝑠 the

stride. The number of filters (con-

volution layer) and the number of

neurons (linear layers) are shown

in blue. The LeakyRelu activation

uses the parameter 𝛼 = 0.2. 𝑐 is

the number of classes which is 268

for surface classification and 8 for

typology classification.

Results

Figure C.6 shows the classification accuracy on the testing set based on the

number of IRs per surface. Around 500 IR are needed to correctly identify

60% of the surfaces in the setup. If only the panel’s typology is desired, 200
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IR provide an accuracy of 80%. These results show that the CNNs can learn

the geometrical property of the panel directly from the IRs.

Figure C.6: Classification accuracy

compared to the training set size.

The reported classification results

are averaged over 5 trials corre-

sponding to 5 different (random)

testing sets.
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D Compatibility with

Geometrical Acoustics

simulations

Geometrical acoustics simulations are the most common methods to study

room acoustics. Even though a direct use of the acoustic descriptors developed

in this research cannot be used with GA software, the following method

proposes a translation of the GIR Dataset’s descriptors into data usable in

GA simulation software.

incident
1

scattered
(1-α)s

rough surface

specular
reflected
energy
(1-α)(1-s)

Figure D.1: Sound scattering from

a rough surface illustrating the sep-

aration of reflected energy into scat-

tered and specular components (Af-

ter Vorländer and Mommertz [125]).

According to Vorländer and Mommertz [125], the energies
1

1: The energies are normalised with

respect to the reflection from a ref-

erence flat plane.

seen in Figure D.1

can be expressed as:

𝐸𝑠𝑝𝑒𝑐 = (1 − 𝛼)(1 − 𝑠) = (1 − 𝛼𝑠𝑝𝑒𝑐) (D.1)

𝐸𝑡𝑜𝑡𝑎𝑙 = 1 − 𝛼 (D.2)

with s being the scattering coefficient, 𝛼 the absorption coefficient, 𝐸𝑠𝑝𝑒𝑐

representing the specularly reflected energy, and 𝐸𝑡𝑜𝑡𝑎𝑙 the total reflected

energy. The coefficient 𝛼𝑠𝑝𝑒𝑐 , also called the "specular absorption coefficient",

is an apparent absorption coefficient, as energy may be scattered away from

the specular reflection direction rather than being absorbed by the surface

material and converted into non-acoustical energy.

The goal is to obtain the 𝐸𝑠𝑝𝑒𝑐 . From equations D.1 and D.2, the scattering



coefficient can be expressed as:

𝑠 =
𝛼𝑠𝑝𝑒𝑐 − 𝛼

1 − 𝛼
= 1 −

𝐸𝑠𝑝𝑒𝑐

𝐸𝑡𝑜𝑡𝑎𝑙
(D.3)

To compute the 𝐸𝑠𝑝𝑒𝑐 , we first compute the Complex Reflection Factor (𝑅).

The 𝑅 can be expressed as the sum of a specular and a diffuse component:

𝑅 = 𝑅𝑠𝑝𝑒𝑐 + 𝑆 (D.4)

The specular complex reflection factor is calculated by coherently adding

𝑛 complex reflection coefficients from different incident angles. Although

the energy of the specular component (|𝑅𝑠𝑝𝑒𝑐 |2) adds up coherently, the

scattering component (𝑆) does so incoherently. With a large number of

measurements, the 𝑅𝑠𝑝𝑒𝑐 energy increases proportionally to 𝑛2
, and the

incoherent 𝑆 part becomes comparatively significantly smaller. To phase

align the IRs, the time of arrival of the reflected sound is computed for each

measurement using the estimated_time_of_arrival functions from the

Grid class. This value describes the time it takes for the sound wave to reach

the receiver position through the surface. Using this value, the IRs are shifted

along the time axis, bringing the start of the pulse at the 0 position. Then the

specular reflection factor can be calculated as follows:

𝑅𝑠𝑝𝑒𝑐 =
1

𝑛

𝑛∑
𝑖=1

𝑅𝑖 for 𝑛 > 1 (D.5)

The specular absorption coefficient can now be calculated using the follow-

ing:

𝛼𝑠𝑝𝑒𝑐 = 1 − |𝑅𝑠𝑝𝑒𝑐 |2 (D.6)

Finally, the scattering coefficient 𝑠 can be calculated from equation D.3

using the 𝛼𝑠𝑝𝑒𝑐 from equation D.6 and the absorption coefficient 𝛼 of the

spray-painted 3D-printed panels (see Flat surface in Appendix E.1).

The specular absorption coefficient 𝛼𝑠𝑝𝑒𝑐 can be retrieved by calling the

specular_absorption_coefficient function from the PanelData class and

the scattering coefficient 𝑠 by calling scattering_coefficient.
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1: e.g. mean_flat_rfl_1

2: e.g. mean_foam_1

3: e.g. baseline_prd_400_2000

E Reference surfaces

The GIR Dataset includes several reference surfaces (panels) such as Flat
1
,

Foam
2
, and 2D-PRD Diffuser

3
. These surfaces can be used to clean impulse

response data and establish reference baselines for data normalisation by

the computational pipeline, and they also serve as a common point of

comparison in studies. The following sections describe their purpose within

the computational pipeline and how they can be used in comparative

studies.

Figure E.1: 3D rendering of a flat

panel (e.g mean_flat_rfl_1). The

foam panel has the same geometry

(e.g. mean_foam_1).

E.1 Flat surface

The flat surface (see Figure E.1) resembles hard and smooth architectural

surfaces like plasterboard and smooth concrete. The values of this surface

are used to normalise the values of all other surfaces in the dataset and to act

as a baseline for the maximum specularly reflected energy. Three different

3D printers and two different binders were used to produce the panels for

the data-acquisition setup (see 2.4.1). Because each printer uses sand with

different grain sizes and has different printing quality, four versions of this

surface are included in the GIR Dataset. This is done to match the material

properties and printing quality of each printer. Each version corresponds to



Table E.1: Specular reflection fac-

tors of two reference flat panels com-

pared to a wooden panel.

panel name specular reflection factors

2.5kHz 5kHz 10kHz 20kHz 40kHz Total

mean_flat_rfl_1 0.85 1.04 0.81 0.95 0.72 0.86

mean_flat_rfl_2 0.90 0.95 0.87 0.90 0.75 0.85

baseline_wood_2 1.00 1.00 1.00 1.00 1.00 1.00

one 3D printer and the binder that was used. The 3D printer’s model and the

binder are stored in the metadata file of each surface. These data are used by

the computational pipeline to select the appropriate flat surface to normalise

the values as described in section 6.2.

The GIR Dataset also contains a flat wooden surface. Although this surface

should not be used for comparative studies since it has not the same material

properties as all other surfaces, it is used to validate the reflectivity of the 3D-

printed panels and ensure that enough energy is reflected and not absorbed

by the highly absorbent fine-grain sand used by the 3D printers. The values

of the wooden panel act as a reference of the maximum specularly reflected

energy possible with the data-acquisition setup described in chapter 3.

Table E.1 shows that the flat 3D-printed panels absorb only around 15% of

incident energy with the exception of the 40kHz frequency band, where they

absorb around 25%. These values are analogous to the ones obtained by

measuring a 3D-printed sample in an impedance tube [126]. The absorption

coefficient of an untreated 3D-printed sample and one coated with two layers

of spray paint are shown in Figure E.2.

Figure E.2: The absorption coef-

ficients of the 3D-printed panels

used in the data-acquisition setup.

: Untreated 3D-printed sand

with 140-micron average grain size.

: 3D-printed sand with two lay-

ers of spray paint.
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E.2 Foam surface

The foam surface represents highly absorbent surfaces like acoustic foam,

stone wool, or glass fibre. Its usefulness is threefold. First, it can be used

like any other surface in a comparative study as a highly absorbent surface.

Second, it acts as a baseline for the minimum reflected energy, representing
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(a) The raw IR of the Foam panel containing

only the direct sound.

(b) The raw IR of panel_0028_0 contain-

ing the direct and the reflection from the

surface.

(c) The IR of panel_0028_0 after removing

the direct sound.

Figure E.4: Direct sound removal steps.

the maximum possible absorption level. This representation is useful when

evaluating the performance of other surfaces, as it provides a baseline against

which their performance can be measured. Lastly, this material absorbs

over 95% of incident sound for frequencies above 1kHz (see Figure E.3);

therefore, all recordings from the 2951 source-receiver combination contain

only direct sound information. As described in 3.3.2, the computational

pipeline uses this information to remove the direct sound from all recordings

(see Figure E.4). The geometry of this surface is the same as the geometry of

a flat surface (see Figure E.1).

Figure E.3: The absorption coeffi-

cient of the Basotect©G+ melamine

foam. A thickness of 100mm is used

in the GIR Dataset.

Image source: www.vibraplast.ch

E.2.1 Primitive Root Diffuser

The GIR Dataset includes two two-dimensional phase grating diffusers

(one of them can be seen in Figure E.6). The diffusers are modelled after

D’Antonio and Konnert’s two-dimensional primitive root diffusor [127] (see

Figure E.5). They represent highly diffusive surfaces and act as a baseline for

minimum specularly reflected energy, representing the maximum possible

sound scattering level.

Figure E.5: Isometric view of a 2D

PRD Diffuser after D’Antonio and

Konnert[127].
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Figure E.6: 2D-PRD Diffuser in-

cluded in the GIR Dataset with

design frequency 2000kHz, Prime

number N=23, and well width

8.6mm (1:10 scale).
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Abstract

Acoustic performance is an important

criterion for architectural design. Much is

known about sound absorption but little

about sound scattering, although it is

equally important for improving the

acoustic quality of built spaces. This paper

presents an alternative workflow for the



computational design and evaluation of

acoustic diffusion panels, which have been

developed and realised in a real building

project - the IDL. This workflow includes a

computational design system, which is

integrated with a rough acoustic

evaluation method for fast performance

feedback, as well as the assessment of

acoustic performance with an

experimental measurement setup and the

post-processing of a selected design

instance for fabricability. The paper

illustrates and discusses this workflow on

the basis of the presented design study.
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1: www.gramaziokohler.arch.
ethz.ch/web/projekte/e/0/0/0/
417.html

F.1 Introduction

In performance-based design, building performance is the guiding factor

from early design phases, benefiting both design workflow and outcome.

The final design emerges as the design is constantly being evaluated and

the computational model is adjusted [128, 129]. Using this design approach,

evaluative simulation processes and analysis tools are integrated with digital

form generation processes. In the field of architectural acoustics, the applica-

tion of such an approach would allow the designer to better combine acoustic

performance objectives with architectural goals [8, 95], since they are strictly

interlinked: the emitted sound is altered by the architectural space within

which it is deployed. The constellation and material of surfaces within that

space evoke sound reflection, absorption, and diffusion phenomena. While

most architectural acoustics is concerned with sound absorption, sound

diffusion is just as important for obtaining an even distribution of sound. It

helps to promote spaciousness, prevent flutter echoes, and improve speech

intelligibility [75]. Computer simulation software such as e.g. Odeon and

Pachyderm Acoustics, which are based on GA, can predict the acoustic per-

formance of architectural spaces before construction with sufficient accuracy.

However, despite significant research over the past decades on methods

to design, predict, and measure diffusing surfaces, GA methods still lack

the ability to accurately model their behaviour [17, 130, 131]. To predict the

scattering of sound caused by these diffusive surfaces, wave-based acoustic

simulations must be used, or physical models must be tested. Both of these

methods are time-consuming, which is why they cannot be used in an itera-

tive design and evaluation workflow common to performance-based design.

Therefore, in architectural practice, design rules for sound scattering [132]

are often applied, or geometries are designed that are similar to tested ones.

By using certain mathematical formulae [111], the scattering performance for

a certain type of geometries can also be predicted.

This paper presents an alternative workflow for the evaluation of acoustic

diffusion panels, which have been specifically developed for the IDL. The

lab is an interdisciplinary laboratory at ETH Zurich for future design,

architecture, and engineering using Extended Reality (XR) technologies
1
. It

offers 3D spatial auralisation, which is enabled by a total of 75 speakers in

an 80 𝑚2
space (10.6 × 7.6 m) with a height of six meters. Consequently, the

room has high acoustic requirements, which had to be taken into account

during the planning of the lab. A homogeneous, acoustically isotropic room

was to be realised. The acoustics of the laboratory was planned in a 3D

model calibrated from a measurement of the existing room using ray-tracing

methods. A combination of sound-diffusing and sound-absorbing surfaces

was chosen, the area proportion of which was determined in the 3D CAD
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2: www.gramaziokohler.arch.
ethz.ch/web/forschung/e/0/0/
0/85.html

3: www.odeon.dk

4: www.catt.se

5: www.food4rhino.com/app/
pachyderm-acoustical-simulation

simulation. Absorbers were installed on the walls, floor and ceiling, and a

sound-absorbing curtain was chosen to prevent specular reflections from

the glass façade. The selected proportion of diffusive surfaces is to prevent

specular reflections in the listening area. Their staggered mounting also

creates a phase grid, which extends the diffusion into lower frequency

ranges.

The particular challenges for the development of the acoustic diffusion panels

were to a) improve the acoustic quality of a given space within selected

frequency bands, b) fit the aesthetic considerations of the overall design

concept of the lab and c) be fabricatable within a tight timeframe using

3D printing. This paper presents the design of sound scattering surfaces

through the use of parametric design tools, the integration with a rough

acoustic evaluation method (FFT analysis), and measured results obtained

from an experimental measurement setup. Additionally, the post-processing

of adapting the panels for fabrication, taking the fabrication constraints for

a 3D contour printer and the panel mounting into account, is explained.

The project presented in this paper builds upon previous and ongoing

research projects conducted together with acoustic experts at the chair of

Gramazio Kohler Research. Fields of study have been the design, fabrication,

and analysis of wall panels with differentiated spatial and sound-aesthetic

properties
2

and an acoustic wall system for office spaces [132] specifically

tailored to sound diffusion. In the ongoing research project Data-Driven

Acoustic Design, an acoustic measurement setup for data collection was

developed with the goal of studying diffusive surfaces with machine learning

[40]. This experimental measurement setup is also utilised in the presented

project.

F.2 Background

Currently, different acoustic simulation tools are available (e.g. Odeon
3
,

CATT-Acoustic
4
, Pachyderm Acoustics

5
, etc.), to estimate the performance

of design proposals using the GA method. In GA, sound is assumed to

propagate as rays, and the wave nature of sound is neglected [16]. Thus,

all wave-based phenomena, such as diffraction and interference, are absent.

This drawback is usually circumvented by using hybrid GA, which combines

ray-tracing with the image source approach that allows for the considera-

tion of diffuse reflections [79]. GA techniques require that absorption and

scattering coefficients are assigned to all surfaces in the model in order to

calculate the energy loss and the direction of the reflected sound. While the

sound absorption properties of many materials are available through acoustic

analysis software [133] or can be obtained from material manufacturers,

the same is not true for sound scattering properties. Although a number of
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Figure F.1: Acoustic data acquisi-

tion setup from the DDAD project

with two Stäubli TX2-60L robots

in an acoustically shielded and ab-

sorbent room. The double-sided

3D printed panel of dimensions

585x585 mm is placed in a special

fixture [40]

commercially available diffusers from different manufacturers with known

scattering coefficients exist (e.g. RPG, GIK Acoustics, Auralex), for most

architectural surfaces, these coefficients are unknown. If new surface geome-

tries are developed to be performative as a sound scattering device, their

performance will be difficult to predict. There are standards for measuring

directional diffusion coefficient [64] and random incidence scattering coeffi-

cient [120]. These processes, though, require the fabrication of a prototype

surface, a highly specialised setup, are time-consuming, labour-intensive,

and expensive. Therefore, the very limited dataset of scattering coefficients

that can be assigned to surfaces in GA models forces room modellers to

rely on empirical guidelines and intuition when assigning scattering coeffi-

cients [134]. Unlike GA simulations, wave-based simulation methods (e.g.

BEM, ISM, FDTD) can accurately simulate the scattering of sound caused

by diffusing surfaces. However, these methods are computationally heavy,

require long simulation times, and are currently not supported in any com-

mercial acoustic simulation tool [8]. The FabPod [108, 135] is an example

of a research project in which BEM was successfully used to compute the

scattering coefficients of different surface proposals and FDTD to visualise

the sound waves in order to evaluate different surface geometries. Two

different methods had to be used because their FDTD tool lacked the ability

to provide a measure of scattering performance. Peters [108] concluded that

the applied workflows are still cumbersome due to the lack of available tools

for architects to evaluate the acoustic performance of complex surfaces.

The research project Data-Driven Acoustic Design (DDAD) proposes another

approach for studying the relationship between diffusive surface structures

and their acoustic performance using data science methods [40]. To this end,

a robotic data acquisition setup (see Figure F.1) was developed that measures
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3D-printed surface textures at a 1:10 model scale on a daily basis. The setup

records 2951 impulse responses in front of these surfaces by repeatedly

positioning a microphone and a speaker within a predefined measurement

grid of 78 positions. The collected data serves both as an exploratory catalogue

of different spatiotemporal acoustic scenarios and as a data set for predicting

the acoustic response of digitally designed surface geometries using machine

learning. As part of the project, a post-processing method was developed to

extract meaningful indicators from the 2951 impulse responses per panel.

One of these indicators is the DDAD absorption coefficient, which is used in

the presented project to assess diffusion properties.

F.3 Workflow and design system

The acoustic panels were developed using a computational design system

that generates variable geometric patterns for doubly-curved, undulated

surfaces. This design system integrates a rough acoustic assessment method

(FFT analysis), which is used to quickly analyse the surface’s acoustic

performance. It also integrates fabricability analysis and optimisation for a

3D contour printing process. In the beginning, it was necessary to identify

the combination of parameters that would generate a particular surface

structure which both fulfils aesthetic and acoustic requirements. This was

conducted in a two-step process: First, the geometry generation parameters

were manually adjusted, and the result of the FFT analysis was observed

until a selection of six design instances was found. These designs were then

selected for a second, more in-depth acoustic evaluation, for which they were

3D printed at 1:10 scale and measured using the acoustic measurement setup

from the DDAD project. A final design selection was then made based on

the measurement results. These geometry generation parameters, together

with other design-relevant settings, were used to create the 29 individual

acoustic diffuser panels for the Immersive Design Lab. In a post-processing

step, the geometry of these panels was adapted considering the fabrication

constraints for a 3D contour printer and the panel mounting.

F.3.1 DDAD conformity

In order to conform to the DDAD measurement setup (see Figure F.1) and the

inclusion of the recorded data into the DDAD dataset, two conditions had to

be fulfilled. First, the dimensions of the surface, which is evaluated by both

acoustic analysis methods, had to be in a rectangular size of 5.85×5.85m,

such that it would fit into the measurement fixture at 1:10 scale (585×585mm).

Secondly, the geometry generation algorithm had to be reproducible without
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Figure F.2: The workflow elements and information flows of the design system

6: www.pypi.org/project/
compas-nurbs/

proprietary software. For this reason, the algorithm was written in Python

and only builds upon open-source Python libraries such as numpy, scipy and

compas nurbs6
. Via the COMPAS Remote Procedure Call (RPC), the algorithm

can be executed from within the Rhinoceros/Grasshopper environment,

from which also the remaining components of the computational design

system are accessible.

F.3.2 Geometry Generation

The custom geometry generation algorithm creates a NURBS surface that is

lofted through planar NURBS curves arranged along the x-axis of a defined

frame. It is loosely based on deducted design rules from the research of Cox

and D’Antonio [75] [132], focusing on differentiated and aperiodic surface

depth. It was also conceptualised with one defined direction, i.e. exhibiting

the highest undulation along the v-direction (=y-axis of the surface’s frame),

due to the selected layer-based fabrication method of 3D printing. Apart

from project-specific settings, the main parameters controlling the surface

undulation are resolution values in u- and v-direction, distortion values u-

and v-direction, the panel height, and the degree of the surface in v-direction.

The degree in u-direction is set to three. These parameters, together with

a random seed value, define the variable location of the surface’s control

points. The z-value of the control points (in relation to the surface’s frame)
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can be controlled by an additional input, for example, to achieve a flattening

at the edges of the surface.

F.4 Acoustic performance evaluation

F.4.1 Fast Fourier Transform (FFT) analysis

To quickly and roughly assess the acoustic performance of such a generated

surface, FFT analysis was integrated into the design tool. For this purpose, a

certain number of linear sections (iso-curves) of the surface in both u- and v-

directions are analysed by Fourier transform, and the spectral characteristics

are RMS-averaged and translated into octave band diffusion values. These

values are a measure for the ‘roughness’ of the given surface structure and

allow for an estimate of how the surface performs in six-octave bands (250,

500, 1000, 2000, and 4000Hz) (see Figure F.3).

F.4.2 Panel selection and reference panels for measurement

In order to make an initial selection of both aesthetically pleasing and

acoustically performing designs, the design parameters were manually

adjusted, and the result of the FFT analysis was observed. This was done

until a selection of six design instances was found (see Figure F.4a). Note that

the labelling of the design instances stems from the GIR Dataset dataset (each

surface is labelled successively with a unique identifier and suffixed with 0

or 1 indicating the panel side). Apart from the six selected design instances

(panels 0073-0078), another six panels have been chosen as reference panels

(see Figure F.4b) to compare the measurement results. Four of which (0079-

0082) were generated with the same geometry generation algorithm as the

Figure F.3: Comparison between DDAD absorption coefficient calculated from measurements (left) and FFT analysis (right)
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Figure F.4: a) Selection of design instances and their parameter settings, b) Six reference panels for comparison

7: www.rpgeurope.com/de/
products/product/harmonixk.
html

8: In the main body of this disserta-

tion and the released open-sourced

code; this coefficient is referred to

as specular absorption coefficient

𝛼𝑠𝑝𝑒𝑐

selected panel designs and resemble commonly known diffusers (e.g. RPG

Harmonix
7
). The two panels, Flat and PRD Diffuser, are reference panels

from the DDAD dataset. The flat is the reference for the surface of the highest

possible reflection within the dataset, and PRD Diffuser is the reference for a

surface of high and uniform diffusion.

F.4.3 DDAD absorption coefficient

During the AADS project, we developed several methods to compress

the information contained in the 2951 captured impulse responses and

extract meaningful descriptors therefrom, such that different surfaces can be

visually compared to one another and their performances can be analysed at

different frequency bands. One of these descriptors is the DDAD absorption

coefficient
8
. To evaluate the diffusivity of each panel, we observe the amount

of reflected energy. For example, a flat reflector produces a specular reflection,

redirecting the majority of the energy to a specific direction, and a highly

diffusive surface redirects the energy in multiple directions. By comparing

the two energy values, it can be calculated how much energy was not reflected

in a specular way, therefore diffused or absorbed.

We evaluate a reflection factor

𝑅𝑗 =
√
𝐸𝑗/𝐸𝑟𝑒 𝑓𝑗 (F.1)
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for every source-receiver combination 𝑗 that describes the ratio of sound

pressure of the reflected energy with respect to a reference. 𝐸𝑗 is the TCE [40]

of the reflected sound for the diffusive panel and 𝐸𝑟𝑒 𝑓𝑗 is the corresponding

TCE of the reflected sound for the reference Flat panel. To obtain a global

descriptor, we calculate the arithmetic mean 𝑅 of all 𝑅 𝑗 , and from this, the

DDAD absorption coefficient

𝛼 = 1 − 𝑅
2

(F.2)

for the whole panel. The same process can be applied for each octave band,

providing a more detailed view of the panel’s diffusivity over different

frequency bands. Panels that perform similarly to the flat panel would

exhibit values close to 0, and panels with values close to 1 diffuse almost

all energy. Note that the final values slightly overestimate the diffusivity of

our panels because a portion of that energy gets absorbed by the panel’s

material.

F.4.4 Results

The graph in Figure F.3a shows the result of the calculated DDAD absorption

coefficients for different frequency bands (250, 500, 1000, 2000 and 4000Hz).

The reference panel Flat clearly marks the lower line and the reference

panel PRD Diffuser the uppermost, such that panels with values on the top

can be assumed with higher diffusion. As identified by the acoustic room

measurement in the IDL before the installation of acoustic treatment, it is

desirable that these curves are as flat as possible, i.e. that they behave similarly

at the chosen frequencies. For this reason, panel 0077_0 was identified as

the best performing panel, and 0074_0 as the second best, although panel

0078_0 is higher on average, but it performs worse than 0074_0 in the lower

frequencies of 200 and 500 Hz. Comparing the measurement result with

the FFT analysis in Figure F.3b, one can discover parallels. The two green

curves (panels 0077_0 and 0078_0) stand out clearly, and one could already

identify the two as best performing in all selected frequency bands after the

FFT analysis. This was, however, done with caution because the FFT only

analyses one surface direction and does not take the acoustic response of the

full 3D surface into account. Therefore, the measuring of several different

design proposals was still essential in order to validate the results.

F.5 Fabrication adjustments

Once the geometry generation parameters for the geometry generation

were identified, the next step was to generate 29 individual surfaces: nine,
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Figure F.5: Visualisation of the Im-

mersive Design Lab before construc-

tion. It shows some of the 75 speak-

ers integrated at different heights

in the columns and the ceiling rack.

The diffuser panels are planned to

create a visually continuous diffu-

sion belt that extends across three

walls of the lab. The fourth wall is

a glass façade that can be covered

with a sound-absorbing curtain to

prevent specular reflections.

eleven, and nine, respectively, for three walls of the room, creating a visually

continuous diffusion belt that extends across the three walls (see F.5). For

this, design-specific considerations were taken into account, such as panel

arrangements and areas in which the surface depth was reduced, for example,

in the corners or at the belt’s ends. The individual NURBS surfaces were then

further processed such that they 1) do not collide with the panel mounting

and 2) can be fabricated using a robotic 3D contour printing process. In both

cases, an iterative method was implemented in which surface analysis is

followed by surface adaptation until the surface fulfils requirements defined

for 1) and 2).

The requirement for 1) is simply that there is no intersection between the sur-

face and the mounting elements (see Figure F.6b). For 2), two sub-conditions

need to be fulfilled. First, the 3D printing overhang angle should not exceed

45°. This is to ensure that each successive printing layer has sufficient support

and to avoid droopy filament strands. Another identified 3D printing con-

straint is the maximum allowed curvature along the printing direction, which

constraint derives from the used robotic setup and control. During tests, it

was found that surface areas with a curvature radius smaller than 0.0028 m

could lead to filament artefacts. A characteristic of the generated surface is

that its undulation expands from the surface’s frame only along the negative

and the positive z-axis (see Figure F.6a). To fulfil the identified requirements,

a similar strategy of surface adaptation could be applied, namely to make

the surface smoother or flatter by moving its control points along the z-axis

towards the surface frame. For requirement 1), since the panel mounts are

along the negative z-axis of the surface’s frame, the control points move

incrementally along the positive z-axis. For 2) a smoothing strategy similar to

Laplacian smoothing was chosen that proved to be stable, i.e. the error could
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Figure F.6: a) Panel build-up, b)

Fabrication adjustments: 1) intersec-

tion with mounting elements, 2.a)

coloured areas with 3D printing

overhang and 2.b) coloured areas

with curvature radius < 0.028m

9: www.aectual.com

continuously be reduced: The surface analysis identifies uv point locations

that do not fulfil requirements defined for 2). Then, the corresponding control

points of the NURBS surface are calculated and grouped per problem area.

In each group of 𝑁 control points 𝑃, a new z-value 𝑧𝑖 for each control point

𝑃𝑖 is calculated as follows:

𝑧𝑖 = 𝑧𝑖 + 𝜆
1

𝑁

𝑁∑
𝑗=1

𝑧 𝑗 (F.3)

Where 𝑧 𝑗 is the z-value of the 𝑗-th control point 𝑃𝑗 in the group and 𝜆 a

factor that controls the amount of displacement per iteration, which was

chosen at 0.05. The process would terminate if less than 0.001% of evaluated

uv points would have overhang or curvature problems. This incremental

adjustment with a small 𝜆 was particularly chosen to avoid unnecessarily

smoothing the surface and losing too much surface depth; otherwise, the

effect of diffusion would have been altered. We compared all surfaces before

and after the adjustment. Overall, only 5% of all control points moved more

than 10mm along the z-axis. On the most adjusted surface, there was only

one area (3% of the total surface) that had larger adjustments of up to 90mm.

This was due to the fact that the bottom peak of the surface wave collided

with the mounting part. The adjustments due to 3D printing amounted to a

maximum of 4mm, thus negligible.

F.6 Results

Once the surfaces were processed for production, they were passed on to

the fabrication partner Aectual
9
, who generated the geometry of the panels’

support structure considering the panel mounting and for introducing
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additional stiffness. From this geometry, 3D printing paths were generated,

and the final product was fabricated using a robotic 3D printing process.

F.6.1 Validation of the acoustic performance

The performance of the diffuser panels was determined by impulse response

analysis of acquired gun-shot decay sound samples. For this purpose, impulse

responses before and after installation of the inhere-described diffuser panels

were compared using multiple different analysis methods (e.g. cumulative

spectral decays, spectrograms with high temporal resolutions). All methods

focused on the characteristics of the reverberation time decay slope and

did not per se determine panel diffusion parameters. The graphs in Figure

F.7 visualise the cumulative spectral decay plots using GNU octave. Both

impulses were filtered with a digital brick wall high pass filter at 200Hz, with

the initial rising edge being an artefact. During the measurements, the room

was empty, and the sound-absorbing curtains were closed. Overall, the results

show that the set goals were successfully achieved, and the room is within the

identified specifications. Due to the geometric arrangement of the diffusers

and absorbers on the walls, the reverberation time was not significantly

reduced by the introduction of the diffusers. Subjective evaluation by carefully

listening to the room response validated the measurement results in Figure F.7,

no flutter echoes or other types of artefacts resulting from specular reflections

could be identified.

Figure F.7: a) Before the installa-

tion of the diffusers: Flutter echoes

are significantly level-determining

and clearly audible towards the

end of the impulse decay at mid

frequencies and can be seen as

spikes towards the tail of the im-

pulse response (dual slope decay).

b) After installation of the diffusers:

The impulse decays very densely

and smoothly. No disturbing spa-

tial artefacts can be measured or

heard.

F.7 Discussion and Conclusion

Empowered through digital communication and new tools, the way how

architects, experts, engineers, and fabricators work is dramatically altered.

Autonomous processes can be replaced by collective workflows supported by

a common digital infrastructure. Especially for non-standard design projects,
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such as curated digital workflows that span from design, over performance

analysis to production are paramount.

This paper presented a design system which has been successfully validated

in a real building project. It integrates acoustic evaluation and fabrication

constraints, allowing for a successful collaboration amongst all involved

experts from the fields of architecture, acoustics and fabrication. The result

is embodied in the feature-rich, full-scale and permanent acoustic panels

that adorn the walls of the Immersive Design Lab and have thus become

an essential part of its architecture. The development of acoustic diffuser

panels has created a synthesis with ongoing research projects and produced

new findings in a number of aspects. However, a number of limitations

were also uncovered during the realisation, highlighting opportunities for

improvement and further research:

▶ While the fast FFT analysis allowed for a good selection of design

proposals, thus providing an initial evaluation, it is not suitable as a

sole acoustic assessment and needs to be complemented with acoustic

measurements or wave-based acoustic simulations. Ideally, only wave-

based simulations could be used for the purpose presented, but

they are too computationally intensive for an iterative design and

evaluation process. However, for a specific design system like the

one presented, machine learning could be applied by replacing the

wave-based simulation with a surrogate simulation and thus decrease

the response time for evaluation.

▶ Another improvement to the presented workflow would be the earlier

consideration of fabrication constraints. Rather than trying to adapt

the surface in a post-processing step, the acoustic evaluation should

be applied to geometries that are fabricatable in the first place.

Projects like the one presented are exemplary of how converging interests in

academia and start-ups like Aectual can bring academic research and product

development in closer continuation of one another: The developed design

system provides a lean computational pipeline from design to fabrication

and allows the adaptation of surfaces to individual room shapes and custom

designs. As a result of this successful partnership, Aectual is launching mass-

customisable acoustic diffusion panels that are 3D printed on demand.
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Acoustics are rarely included as a design driver in the early phases of 
design due to the multi-faceted nature of sound and the complex and 
time-consuming analysis process of room acoustics software. Inevitably 
this results in architectural spaces with poor acoustics, where treatment 
is either disregarded or focuses only on noise prevention using absorbent 
materials. However, most commonly used construction materials have 
sound-reflecting properties and can be configured into sound-diffusi-
ve surfaces. These surfaces can help reduce unwanted flattered echoes, 
colourisation, and image shift and create a more pleasant and comforta-
ble environment without needing additional elements (e.g. absorption 
panels). Faster and simpler analysis tools are required to harness the 
potential of diffusion in architectural design. 

This dissertation presents a new data-driven approach to designing and 
evaluating the acoustic properties of architectural surfaces. It investi-
gates the use of machine-learning techniques to study the mutual re-
lationship between geometry and sound diffusion. It introduces a new 
acoustic dataset meant as a basis for training predictive machine-lear-
ning models. These models enable the creation of fast, less cumbersome, 
and reasonably accurate acoustics analysis tools. It proposes and imple-
ments a new automated multi-robotic data-acquisition method for col-
lecting impulse responses from scale-modelled surfaces. It also develops 
computational tools to design and generate three-dimensional wall-li-
ke surface geometries. The geometrical characteristics of these surfaces 
are based on commonly used construction materials and techniques. A 
computational framework is developed in parallel to process the col-
lected data and generate customisable and interactive visualisations for 
low- and high-dimensional data. This framework caters to both expert 
and non-expert users in acoustics, providing expert users with familiar 
descriptors and visualisations and introducing non-experts to simpler 
ones. Furthermore, to address users with no programming knowledge, 
it develops a web-based application enabling easy access to the collected 
dataset, the acoustic descriptors, and visualisations. It introduces a new 
workflow to the performance-driven acoustic design of sound-diffusing 
wall surfaces, allowing architects and designers to explore alternative 
wall designs with sound-diffusing properties, given a set of desired 
acoustic performance criteria.

The proposed workflow has the potential to bring acoustics closer to 
the early phases of architectural design and enable a more integrative 
acoustic and architectural design exploration. Providing architects and 
acousticians with comprehensive and user-friendly tools for acoustics 
analysis can help integrate acoustics into the design process from the 
beginning rather than as an afterthought.
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1: https://renkulab.io/
projects/ddad/gir-dataset/
files/blob/LICENSE

The GIR Dataset can be downloaded freely for research purposes from
Zenodo doi.org/10.5281/zenodo.5288743 and is released under the GNU
General Public License v3.01. The dataset contains 312 samples, and for each
one, the following metadata is provided:

▶ A 3D Mesh geometry saved as an .obj file
▶ 2951 impulse responses in a 2951 × 400 𝑓 𝑙𝑜𝑎𝑡32 matrix, saved in an

.npz file.
▶ A metadata file saves as a .json file. The content of this file is shown

below in Table 1.

Table 1: The content of the metadata file.

Variable Data type Description

panel_id string The ID of the panel
start_time string The date and time the measuring process started in ISO 8601

format, YYYY-MM-DDTHH:MM:SS.mmmmmm
end_time string The date and time the measuring process ended in ISO 8601

format, YYYY-MM-DDTHH:MM:SS.mmmmmm
package_time string The date and time all recordings were processed and stored in

ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
impulse_responses_file string The name of the .npz file containing all IRs
geometry_file string The name of the .obj file containing the panel geometry
recording_sample_rate integer The sample rate of the recording in Hz/sec
reference_resampling_temperature integer The temperature in Celsius that was used to resample the IRs
print_provider string The name of the printing service
print_machine string The name of the printer
print_sand_type string The type of sand used in the 3D printer
print_binder_type string The type of binder used in the 3D printer
microphone_model string The model of the microphone use in the recording
typology string The typology of the panel
macrostructure string The macrostructure that was used to generate the panel’s geom-

etry. It corresponds to the panel_id of a panel that was created
using only that macrostructure. When flat, no macrostructure
was used

measurements extra metadata info for each of the 2951 measurements
combination integer The microphone-speaker combination number. It starts from 1

and goes up to 2952
fluid_pressure float Air pressure inside the room in Pa
relative_humidity float Air humidity inside the room in %
sound_level float The sound level outside the room in dB
temperature float The temperature inside the room in C
distance float The distance between microphone and speaker frame in mm
end_time string The date and time of the successful recording in ISO 8601

format, YYYY-MM-DDTHH:MM:SS.mmmmmm

More information on its content, the collection setup, and methodology can
be found in the main volume of this dissertation. The next section provides
an overview of all dataset samples listing their main properties alongside a
front view and a close-up rendering of their geometry.

1
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baseline_3dprint_0

date_measured date_processed
06-01-2020 06-01-2020
temperature humidity
12.5 °𝐶 - 12.7 °𝐶 50.4 % - 50.0 %
pressure macrostructure
966.6 𝑃𝑎 - 966.6 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

baseline_3dprint_1

date_measured date_processed
07-01-2020 07-01-2020
temperature humidity
12.6 °𝐶 - 12.8 °𝐶 50.5 % - 50.7 %
pressure macrostructure
969.3 𝑃𝑎 - 969.2 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

baseline_flat1_0

date_measured date_processed
22-10-2020 23-10-2020
temperature humidity
18.1 °𝐶 - 18.3 °𝐶 55.2 % - 56.1 %
pressure macrostructure
959.1 𝑃𝑎 - 959.1 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

baseline_flat1_1

date_measured date_processed
23-10-2020 23-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 56.5 % - 57.6 %
pressure macrostructure
956.4 𝑃𝑎 - 956.4 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

2



baseline_flat_cg_0

date_measured date_processed
14-08-2020 14-08-2020
temperature humidity
23.1 °𝐶 - 23.3 °𝐶 66.2 % - 66.1 %
pressure macrostructure
957.9 𝑃𝑎 - 957.9 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

baseline_flat_cg_1

date_measured date_processed
16-08-2020 16-08-2020
temperature humidity
23.2 °𝐶 - 23.4 °𝐶 66.7 % - 65.1 %
pressure macrostructure
953.4 𝑃𝑎 - 953.4 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

baseline_flat_vj_0

date_measured date_processed
09-08-2020 09-08-2020
temperature humidity
22.8 °𝐶 - 22.9 °𝐶 64.2 % - 63.1 %
pressure macrostructure
960.5 𝑃𝑎 - 960.5 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

baseline_flat_vj_1

date_measured date_processed
09-08-2020 10-08-2020
temperature humidity
22.9 °𝐶 - 22.9 °𝐶 63.2 % - 64.0 %
pressure macrostructure
956.8 𝑃𝑎 - 956.8 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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baseline_foam_2

date_measured date_processed
30-01-2020 31-01-2020
temperature humidity
12.3 °𝐶 - 12.4 °𝐶 51.9 % - 53.8 %
pressure macrostructure
954.1 𝑃𝑎 - 954.1 𝑃𝑎 flat
printer printer_binder
None None

baseline_foam_3

date_measured date_processed
11-06-2020 12-06-2020
temperature humidity
18.9 °𝐶 - 19.1 °𝐶 61.5 % - 60.7 %
pressure macrostructure
948.5 𝑃𝑎 - 948.5 𝑃𝑎 flat
printer printer_binder
None None

baseline_foam_4

date_measured date_processed
13-06-2020 14-06-2020
temperature humidity
18.9 °𝐶 - 19.1 °𝐶 62.5 % - 63.0 %
pressure macrostructure
951.1 𝑃𝑎 - 951.1 𝑃𝑎 flat
printer printer_binder
None None

baseline_foam_5

date_measured date_processed
21-10-2020 22-10-2020
temperature humidity
18.3 °𝐶 - 18.4 °𝐶 50.4 % - 52.6 %
pressure macrostructure
953.3 𝑃𝑎 - 953.3 𝑃𝑎 flat
printer printer_binder
None None
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baseline_foam_6

date_measured date_processed
22-10-2020 22-10-2020
temperature humidity
18.2 °𝐶 - 18.2 °𝐶 53.3 % - 54.6 %
pressure macrostructure
958.8 𝑃𝑎 - 958.8 𝑃𝑎 flat
printer printer_binder
None None

baseline_qrd_400_2000

date_measured date_processed
09-01-2020 13-01-2020
temperature humidity
12.7 °𝐶 - 13.2 °𝐶 50.2 % - 49.1 %
pressure macrostructure
962.3 𝑃𝑎 - 962.3 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

baseline_qrd_400_4000

date_measured date_processed
14-01-2020 14-01-2020
temperature humidity
13.0 °𝐶 - 13.1 °𝐶 49.3 % - 48.4 %
pressure macrostructure
958.1 𝑃𝑎 - 958.1 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

baseline_vj2_0

date_measured date_processed
04-12-2020 05-12-2020
temperature humidity
14.7 °𝐶 - 14.8 °𝐶 41.8 % - 42.5 %
pressure macrostructure
930.4 𝑃𝑎 - 930.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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baseline_vj2_1

date_measured date_processed
07-12-2020 07-12-2020
temperature humidity
14.1 °𝐶 - 14.3 °𝐶 45.0 % - 45.0 %
pressure macrostructure
941.3 𝑃𝑎 - 941.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

baseline_vj2_r180_0

date_measured date_processed
04-02-2021 05-02-2021
temperature humidity
11.9 °𝐶 - 12.0 °𝐶 61.8 % - 61.4 %
pressure macrostructure
953.8 𝑃𝑎 - 953.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

baseline_vj3_0

date_measured date_processed
09-02-2021 09-02-2021
temperature humidity
12.5 °𝐶 - 12.8 °𝐶 56.5 % - 55.1 %
pressure macrostructure
941.6 𝑃𝑎 - 941.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

baseline_vj3_1

date_measured date_processed
10-02-2021 11-02-2021
temperature humidity
12.8 °𝐶 - 12.8 °𝐶 53.5 % - 52.1 %
pressure macrostructure
945.9 𝑃𝑎 - 945.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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baseline_wood_1

date_measured date_processed
27-04-2020 28-04-2020
temperature humidity
16.7 °𝐶 - 17.0 °𝐶 53.8 % - 56.7 %
pressure macrostructure
949.7 𝑃𝑎 - 949.7 𝑃𝑎 flat
printer printer_binder
None None

baseline_wood_2

date_measured date_processed
29-08-2020 29-08-2020
temperature humidity
23.1 °𝐶 - 23.3 °𝐶 57.7 % - 57.5 %
pressure macrostructure
948.8 𝑃𝑎 - 948.8 𝑃𝑎 flat
printer printer_binder
None None

baseline_wood_3

date_measured date_processed
29-08-2020 30-08-2020
temperature humidity
23.2 °𝐶 - 23.3 °𝐶 58.0 % - 56.3 %
pressure macrostructure
948.1 𝑃𝑎 - 948.1 𝑃𝑎 flat
printer printer_binder
None None

mean_flat_cg

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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mean_flat_rfl_1

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

mean_flat_rfl_2

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
Voxeljet VX4000 Phenolic binder

mean_flat_vj_fu

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

mean_flat_vj_ph

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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mean_foam_1

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
None None

mean_foam_2

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
None None

mean_wood

date_measured date_processed
synthetic computed
temperature humidity
20.0 °𝐶 - 20.0 °𝐶 0 % - 0 %
pressure macrostructure
0 𝑃𝑎 - 0 𝑃𝑎 flat
printer printer_binder
None None

panel_0001_0

date_measured date_processed
03-02-2020 03-02-2020
temperature humidity
12.5 °𝐶 - 12.7 °𝐶 64.2 % - 64.6 %
pressure macrostructure
958.8 𝑃𝑎 - 958.8 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0001_1

date_measured date_processed
03-02-2020 04-02-2020
temperature humidity
12.7 °𝐶 - 12.8 °𝐶 65.3 % - 63.8 %
pressure macrostructure
957.4 𝑃𝑎 - 957.4 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0002_1

date_measured date_processed
14-03-2020 26-03-2020
temperature humidity
13.3 °𝐶 - 14.0 °𝐶 50.4 % - 40.3 %
pressure macrostructure
960.3 𝑃𝑎 - 960.3 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0002reprint_0

date_measured date_processed
29-07-2020 30-07-2020
temperature humidity
22.3 °𝐶 - 22.5 °𝐶 63.1 % - 61.1 %
pressure macrostructure
958.7 𝑃𝑎 - 958.7 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0002reprint_1

date_measured date_processed
30-07-2020 30-07-2020
temperature humidity
22.4 °𝐶 - 22.6 °𝐶 60.9 % - 60.7 %
pressure macrostructure
961.1 𝑃𝑎 - 961.1 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0003_0

date_measured date_processed
25-10-2019 27-10-2019
temperature humidity
18.8 °𝐶 - 19.1 °𝐶 63.6 % - 62.4 %
pressure macrostructure
963.3 𝑃𝑎 - 963.3 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0003_1

date_measured date_processed
01-11-2019 04-11-2019
temperature humidity
18.3 °𝐶 - 18.2 °𝐶 57.8 % - 57.7 %
pressure macrostructure
948.1 𝑃𝑎 - 948.0 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0003rereprint_0

date_measured date_processed
20-01-2021 21-01-2021
temperature humidity
10.6 °𝐶 - 10.9 °𝐶 46.6 % - 47.3 %
pressure macrostructure
947.6 𝑃𝑎 - 947.6 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0003rereprint_1

date_measured date_processed
28-01-2021 29-01-2021
temperature humidity
11.0 °𝐶 - 11.2 °𝐶 49.1 % - 50.8 %
pressure macrostructure
947.7 𝑃𝑎 - 947.7 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0004_0

date_measured date_processed
02-04-2020 06-04-2020
temperature humidity
13.4 °𝐶 - 13.4 °𝐶 40.1 % - 45.3 %
pressure macrostructure
950.5 𝑃𝑎 - 950.5 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0004_1

date_measured date_processed
27-04-2020 27-04-2020
temperature humidity
16.6 °𝐶 - 16.7 °𝐶 55.3 % - 54.2 %
pressure macrostructure
952.2 𝑃𝑎 - 952.2 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0005_0

date_measured date_processed
18-12-2019 19-12-2019
temperature humidity
13.8 °𝐶 - 13.7 °𝐶 55.7 % - 56.5 %
pressure macrostructure
957.9 𝑃𝑎 - 957.9 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0005_1

date_measured date_processed
19-12-2019 20-12-2019
temperature humidity
13.6 °𝐶 - 13.7 °𝐶 57.0 % - 56.1 %
pressure macrostructure
950.5 𝑃𝑎 - 950.5 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0006_0

date_measured date_processed
20-12-2019 21-12-2019
temperature humidity
13.7 °𝐶 - 13.8 °𝐶 56.2 % - 56.5 %
pressure macrostructure
936.3 𝑃𝑎 - 936.3 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0006_1

date_measured date_processed
23-12-2019 23-12-2019
temperature humidity
13.6 °𝐶 - 13.8 °𝐶 56.6 % - 56.1 %
pressure macrostructure
952.1 𝑃𝑎 - 952.1 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0007_0

date_measured date_processed
24-12-2019 24-12-2019
temperature humidity
13.6 °𝐶 - 13.8 °𝐶 55.5 % - 56.0 %
pressure macrostructure
955.7 𝑃𝑎 - 955.7 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0007_1

date_measured date_processed
27-12-2019 30-12-2019
temperature humidity
13.4 °𝐶 - 13.5 °𝐶 55.9 % - 51.4 %
pressure macrostructure
962.5 𝑃𝑎 - 962.6 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0008_0

date_measured date_processed
30-12-2019 31-12-2019
temperature humidity
13.2 °𝐶 - 13.3 °𝐶 49.9 % - 49.3 %
pressure macrostructure
971.2 𝑃𝑎 - 971.2 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0008_1

date_measured date_processed
03-01-2020 06-01-2020
temperature humidity
12.8 °𝐶 - 12.6 °𝐶 48.6 % - 50.6 %
pressure macrostructure
966.4 𝑃𝑎 - 966.4 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0009_0

date_measured date_processed
01-02-2020 02-02-2020
temperature humidity
12.6 °𝐶 - 12.5 °𝐶 60.1 % - 59.7 %
pressure macrostructure
954.8 𝑃𝑎 - 954.8 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0009_1

date_measured date_processed
02-02-2020 02-02-2020
temperature humidity
12.4 °𝐶 - 12.5 °𝐶 61.4 % - 62.4 %
pressure macrostructure
956.4 𝑃𝑎 - 956.4 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

14



panel_0010_0

date_measured date_processed
20-01-2020 20-01-2020
temperature humidity
12.9 °𝐶 - 13.1 °𝐶 48.3 % - 47.3 %
pressure macrostructure
979.6 𝑃𝑎 - 979.6 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0010_1

date_measured date_processed
20-01-2020 21-01-2020
temperature humidity
13.0 °𝐶 - 13.1 °𝐶 46.8 % - 46.3 %
pressure macrostructure
978.2 𝑃𝑎 - 978.2 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0011_0

date_measured date_processed
17-01-2020 18-01-2020
temperature humidity
13.0 °𝐶 - 13.2 °𝐶 51.3 % - 50.1 %
pressure macrostructure
963.9 𝑃𝑎 - 963.9 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0011_1

date_measured date_processed
19-01-2020 19-01-2020
temperature humidity
12.9 °𝐶 - 13.0 °𝐶 48.8 % - 48.9 %
pressure macrostructure
972.5 𝑃𝑎 - 972.5 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0012_0

date_measured date_processed
16-01-2020 17-01-2020
temperature humidity
13.1 °𝐶 - 13.0 °𝐶 49.2 % - 49.2 %
pressure macrostructure
964.9 𝑃𝑎 - 964.9 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0012_1

date_measured date_processed
17-01-2020 17-01-2020
temperature humidity
13.2 °𝐶 - 13.1 °𝐶 49.2 % - 49.8 %
pressure macrostructure
962.2 𝑃𝑎 - 962.2 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0013_0

date_measured date_processed
15-01-2020 16-01-2020
temperature humidity
13.1 °𝐶 - 13.0 °𝐶 47.8 % - 48.4 %
pressure macrostructure
960.6 𝑃𝑎 - 960.6 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0013_1

date_measured date_processed
16-01-2020 16-01-2020
temperature humidity
12.9 °𝐶 - 13.0 °𝐶 48.8 % - 48.9 %
pressure macrostructure
968.0 𝑃𝑎 - 968.0 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0014_1

date_measured date_processed
14-01-2020 15-01-2020
temperature humidity
13.0 °𝐶 - 13.1 °𝐶 48.1 % - 47.8 %
pressure macrostructure
959.0 𝑃𝑎 - 959.0 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0015_0

date_measured date_processed
21-01-2020 21-01-2020
temperature humidity
13.0 °𝐶 - 13.1 °𝐶 46.0 % - 45.6 %
pressure macrostructure
978.4 𝑃𝑎 - 978.4 𝑃𝑎 macrostructure
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0015_1

date_measured date_processed
21-01-2020 22-01-2020
temperature humidity
13.0 °𝐶 - 13.0 °𝐶 45.3 % - 45.0 %
pressure macrostructure
974.9 𝑃𝑎 - 974.9 𝑃𝑎 macrostructure
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0016_0

date_measured date_processed
28-04-2020 28-04-2020
temperature humidity
17.0 °𝐶 - 17.1 °𝐶 57.5 % - 58.8 %
pressure macrostructure
949.0 𝑃𝑎 - 949.0 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0016_1

date_measured date_processed
22-01-2020 23-01-2020
temperature humidity
12.9 °𝐶 - 13.0 °𝐶 44.5 % - 44.4 %
pressure macrostructure
971.5 𝑃𝑎 - 971.5 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0016_r180_0

date_measured date_processed
28-04-2020 29-04-2020
temperature humidity
17.0 °𝐶 - 17.2 °𝐶 59.2 % - 58.1 %
pressure macrostructure
950.6 𝑃𝑎 - 950.6 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0017_0

date_measured date_processed
24-01-2020 25-01-2020
temperature humidity
12.5 °𝐶 - 12.7 °𝐶 44.7 % - 44.7 %
pressure macrostructure
962.5 𝑃𝑎 - 962.5 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0017_1

date_measured date_processed
27-01-2020 28-01-2020
temperature humidity
12.2 °𝐶 - 12.3 °𝐶 51.0 % - 50.7 %
pressure macrostructure
951.9 𝑃𝑎 - 951.9 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0018_0

date_measured date_processed
23-01-2020 23-01-2020
temperature humidity
13.0 °𝐶 - 12.9 °𝐶 43.3 % - 43.6 %
pressure macrostructure
967.9 𝑃𝑎 - 967.9 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0018_1

date_measured date_processed
24-01-2020 24-01-2020
temperature humidity
12.6 °𝐶 - 12.8 °𝐶 44.2 % - 44.3 %
pressure macrostructure
964.7 𝑃𝑎 - 964.7 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0019_0

date_measured date_processed
29-04-2020 29-04-2020
temperature humidity
17.2 °𝐶 - 17.2 °𝐶 58.8 % - 56.9 %
pressure macrostructure
952.2 𝑃𝑎 - 952.2 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0019_1

date_measured date_processed
29-04-2020 30-04-2020
temperature humidity
17.2 °𝐶 - 17.3 °𝐶 57.0 % - 56.6 %
pressure macrostructure
951.5 𝑃𝑎 - 951.5 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0020_0

date_measured date_processed
29-01-2020 29-01-2020
temperature humidity
12.1 °𝐶 - 12.2 °𝐶 51.8 % - 51.9 %
pressure macrostructure
953.2 𝑃𝑎 - 953.1 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0020_1

date_measured date_processed
29-01-2020 30-01-2020
temperature humidity
12.2 °𝐶 - 12.3 °𝐶 52.3 % - 51.7 %
pressure macrostructure
958.9 𝑃𝑎 - 958.9 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0021_0

date_measured date_processed
31-01-2020 31-01-2020
temperature humidity
12.4 °𝐶 - 12.4 °𝐶 55.1 % - 56.5 %
pressure macrostructure
957.7 𝑃𝑎 - 957.7 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0021_1

date_measured date_processed
31-01-2020 01-02-2020
temperature humidity
12.5 °𝐶 - 12.5 °𝐶 57.3 % - 58.6 %
pressure macrostructure
957.3 𝑃𝑎 - 957.3 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0022_0

date_measured date_processed
28-01-2020 28-01-2020
temperature humidity
12.2 °𝐶 - 12.2 °𝐶 52.5 % - 51.0 %
pressure macrostructure
943.0 𝑃𝑎 - 943.0 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0022_1

date_measured date_processed
28-01-2020 29-01-2020
temperature humidity
12.3 °𝐶 - 12.3 °𝐶 51.1 % - 50.8 %
pressure macrostructure
949.7 𝑃𝑎 - 949.7 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0023_0

date_measured date_processed
04-05-2020 04-05-2020
temperature humidity
17.0 °𝐶 - 17.3 °𝐶 57.3 % - 57.9 %
pressure macrostructure
958.0 𝑃𝑎 - 958.0 𝑃𝑎 panel_0031_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0023_1

date_measured date_processed
04-05-2020 05-05-2020
temperature humidity
17.2 °𝐶 - 17.2 °𝐶 58.4 % - 58.5 %
pressure macrostructure
954.9 𝑃𝑎 - 954.9 𝑃𝑎 panel_0031_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0024_0

date_measured date_processed
06-05-2020 06-05-2020
temperature humidity
17.2 °𝐶 - 17.3 °𝐶 59.7 % - 57.2 %
pressure macrostructure
960.3 𝑃𝑎 - 960.3 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0024_1

date_measured date_processed
06-05-2020 07-05-2020
temperature humidity
17.3 °𝐶 - 17.4 °𝐶 56.5 % - 54.7 %
pressure macrostructure
961.5 𝑃𝑎 - 961.5 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0025_0

date_measured date_processed
30-04-2020 30-04-2020
temperature humidity
17.3 °𝐶 - 17.4 °𝐶 57.4 % - 57.1 %
pressure macrostructure
950.2 𝑃𝑎 - 950.2 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0025_1

date_measured date_processed
30-04-2020 01-05-2020
temperature humidity
17.3 °𝐶 - 17.4 °𝐶 57.3 % - 56.2 %
pressure macrostructure
948.7 𝑃𝑎 - 948.7 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0026_0

date_measured date_processed
07-05-2020 07-05-2020
temperature humidity
17.2 °𝐶 - 17.4 °𝐶 53.8 % - 52.9 %
pressure macrostructure
963.9 𝑃𝑎 - 963.9 𝑃𝑎 panel_0031_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0026_1

date_measured date_processed
07-05-2020 08-05-2020
temperature humidity
17.4 °𝐶 - 17.4 °𝐶 52.2 % - 53.3 %
pressure macrostructure
960.4 𝑃𝑎 - 960.4 𝑃𝑎 panel_0031_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0027_0

date_measured date_processed
05-05-2020 05-05-2020
temperature humidity
17.2 °𝐶 - 17.3 °𝐶 59.0 % - 59.5 %
pressure macrostructure
955.3 𝑃𝑎 - 955.3 𝑃𝑎 panel_0031_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0027_1

date_measured date_processed
05-05-2020 06-05-2020
temperature humidity
17.3 °𝐶 - 17.3 °𝐶 60.1 % - 59.6 %
pressure macrostructure
957.1 𝑃𝑎 - 957.1 𝑃𝑎 panel_0031_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0028_0

date_measured date_processed
08-05-2020 08-05-2020
temperature humidity
17.3 °𝐶 - 17.5 °𝐶 54.2 % - 55.4 %
pressure macrostructure
960.1 𝑃𝑎 - 960.1 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0028_1

date_measured date_processed
10-05-2020 11-05-2020
temperature humidity
17.3 °𝐶 - 17.6 °𝐶 63.5 % - 64.1 %
pressure macrostructure
945.1 𝑃𝑎 - 945.1 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0029_0

date_measured date_processed
11-05-2020 11-05-2020
temperature humidity
17.5 °𝐶 - 17.7 °𝐶 65.4 % - 64.5 %
pressure macrostructure
938.0 𝑃𝑎 - 938.0 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0029_1

date_measured date_processed
11-05-2020 12-05-2020
temperature humidity
17.6 °𝐶 - 17.8 °𝐶 64.2 % - 60.8 %
pressure macrostructure
948.4 𝑃𝑎 - 948.4 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder
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panel_0030_0

date_measured date_processed
13-05-2020 13-05-2020
temperature humidity
17.5 °𝐶 - 17.8 °𝐶 56.5 % - 56.2 %
pressure macrostructure
952.0 𝑃𝑎 - 952.0 𝑃𝑎 panel_0015_0
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0030_1

date_measured date_processed
13-05-2020 14-05-2020
temperature humidity
17.8 °𝐶 - 17.9 °𝐶 56.6 % - 56.6 %
pressure macrostructure
947.3 𝑃𝑎 - 947.3 𝑃𝑎 panel_0015_1
printer printer_binder
Voxeljet VX4000 Phenolic binder

panel_0031_0

date_measured date_processed
27-05-2020 28-05-2020
temperature humidity
18.5 °𝐶 - 18.7 °𝐶 52.0 % - 51.6 %
pressure macrostructure
969.2 𝑃𝑎 - 969.2 𝑃𝑎 macrostructure
printer printer_binder
ExOne S-Max Furan binder

panel_0031_1

date_measured date_processed
28-05-2020 28-05-2020
temperature humidity
18.6 °𝐶 - 18.7 °𝐶 52.1 % - 51.8 %
pressure macrostructure
967.8 𝑃𝑎 - 967.8 𝑃𝑎 macrostructure
printer printer_binder
ExOne S-Max Furan binder
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panel_0032_0

date_measured date_processed
28-05-2020 29-05-2020
temperature humidity
18.6 °𝐶 - 18.7 °𝐶 53.3 % - 51.8 %
pressure macrostructure
965.3 𝑃𝑎 - 965.3 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0032_1

date_measured date_processed
29-05-2020 30-05-2020
temperature humidity
18.6 °𝐶 - 18.8 °𝐶 51.4 % - 50.8 %
pressure macrostructure
962.0 𝑃𝑎 - 962.0 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0033_0

date_measured date_processed
04-06-2020 05-06-2020
temperature humidity
19.0 °𝐶 - 19.2 °𝐶 58.4 % - 58.1 %
pressure macrostructure
939.6 𝑃𝑎 - 939.6 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0033_1

date_measured date_processed
05-06-2020 05-06-2020
temperature humidity
19.1 °𝐶 - 19.2 °𝐶 58.2 % - 57.2 %
pressure macrostructure
942.6 𝑃𝑎 - 942.6 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0034_0

date_measured date_processed
05-06-2020 06-06-2020
temperature humidity
19.1 °𝐶 - 19.3 °𝐶 57.3 % - 57.0 %
pressure macrostructure
945.4 𝑃𝑎 - 945.4 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0034_1

date_measured date_processed
08-06-2020 08-06-2020
temperature humidity
18.9 °𝐶 - 19.2 °𝐶 58.6 % - 57.1 %
pressure macrostructure
952.6 𝑃𝑎 - 952.5 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0035_0

date_measured date_processed
01-06-2020 02-06-2020
temperature humidity
18.5 °𝐶 - 18.8 °𝐶 50.3 % - 50.5 %
pressure macrostructure
958.4 𝑃𝑎 - 958.4 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0035_1

date_measured date_processed
02-06-2020 02-06-2020
temperature humidity
18.7 °𝐶 - 18.8 °𝐶 51.1 % - 50.9 %
pressure macrostructure
958.1 𝑃𝑎 - 958.1 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0036_0

date_measured date_processed
03-06-2020 04-06-2020
temperature humidity
18.9 °𝐶 - 19.1 °𝐶 53.4 % - 54.7 %
pressure macrostructure
944.9 𝑃𝑎 - 944.9 𝑃𝑎 panel_0031_0
printer printer_binder
ExOne S-Max Furan binder

panel_0036_1

date_measured date_processed
04-06-2020 04-06-2020
temperature humidity
19.0 °𝐶 - 19.1 °𝐶 55.8 % - 58.0 %
pressure macrostructure
940.4 𝑃𝑎 - 940.4 𝑃𝑎 panel_0031_1
printer printer_binder
ExOne S-Max Furan binder

panel_0037_0

date_measured date_processed
26-05-2020 27-05-2020
temperature humidity
18.4 °𝐶 - 18.6 °𝐶 55.1 % - 54.1 %
pressure macrostructure
970.6 𝑃𝑎 - 970.6 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0037_1

date_measured date_processed
27-05-2020 27-05-2020
temperature humidity
18.5 °𝐶 - 18.6 °𝐶 54.4 % - 52.2 %
pressure macrostructure
970.8 𝑃𝑎 - 970.8 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0038_0

date_measured date_processed
09-06-2020 10-06-2020
temperature humidity
19.1 °𝐶 - 19.3 °𝐶 59.2 % - 59.1 %
pressure macrostructure
953.3 𝑃𝑎 - 953.3 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0038_1

date_measured date_processed
10-06-2020 10-06-2020
temperature humidity
19.1 °𝐶 - 19.2 °𝐶 59.7 % - 59.9 %
pressure macrostructure
953.4 𝑃𝑎 - 953.4 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0039_0

date_measured date_processed
02-06-2020 03-06-2020
temperature humidity
18.7 °𝐶 - 18.9 °𝐶 51.2 % - 52.2 %
pressure macrostructure
953.2 𝑃𝑎 - 953.2 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0039_1

date_measured date_processed
03-06-2020 03-06-2020
temperature humidity
18.9 °𝐶 - 19.0 °𝐶 52.6 % - 52.5 %
pressure macrostructure
950.2 𝑃𝑎 - 950.2 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0040_0

date_measured date_processed
22-05-2020 23-05-2020
temperature humidity
18.1 °𝐶 - 18.2 °𝐶 61.2 % - 62.6 %
pressure macrostructure
962.5 𝑃𝑎 - 962.5 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0040_1

date_measured date_processed
25-05-2020 25-05-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 58.2 % - 57.3 %
pressure macrostructure
971.7 𝑃𝑎 - 971.7 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0040_r180_0

date_measured date_processed
02-12-2020 02-12-2020
temperature humidity
15.1 °𝐶 - 15.2 °𝐶 43.4 % - 43.2 %
pressure macrostructure
954.2 𝑃𝑎 - 954.2 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0040_r180_1

date_measured date_processed
02-12-2020 03-12-2020
temperature humidity
15.1 °𝐶 - 15.2 °𝐶 43.1 % - 42.9 %
pressure macrostructure
952.7 𝑃𝑎 - 952.8 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0041_0

date_measured date_processed
25-05-2020 26-05-2020
temperature humidity
18.3 °𝐶 - 18.5 °𝐶 57.5 % - 56.5 %
pressure macrostructure
970.5 𝑃𝑎 - 970.5 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0041_1

date_measured date_processed
26-05-2020 26-05-2020
temperature humidity
18.4 °𝐶 - 18.6 °𝐶 56.8 % - 55.2 %
pressure macrostructure
971.5 𝑃𝑎 - 971.5 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0041_r180_0

date_measured date_processed
03-12-2020 03-12-2020
temperature humidity
14.8 °𝐶 - 15.1 °𝐶 42.7 % - 42.2 %
pressure macrostructure
948.8 𝑃𝑎 - 948.9 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0041_r180_1

date_measured date_processed
03-12-2020 04-12-2020
temperature humidity
14.9 °𝐶 - 15.0 °𝐶 41.9 % - 42.0 %
pressure macrostructure
938.3 𝑃𝑎 - 938.3 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0042_0

date_measured date_processed
20-05-2020 20-05-2020
temperature humidity
17.3 °𝐶 - 17.4 °𝐶 59.0 % - 57.7 %
pressure macrostructure
960.0 𝑃𝑎 - 960.0 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0042_1

date_measured date_processed
22-05-2020 22-05-2020
temperature humidity
17.6 °𝐶 - 17.9 °𝐶 61.1 % - 60.8 %
pressure macrostructure
962.9 𝑃𝑎 - 962.9 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0043_0

date_measured date_processed
08-06-2020 09-06-2020
temperature humidity
19.0 °𝐶 - 19.2 °𝐶 56.1 % - 57.3 %
pressure macrostructure
951.3 𝑃𝑎 - 951.2 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0043_1

date_measured date_processed
09-06-2020 09-06-2020
temperature humidity
19.1 °𝐶 - 19.2 °𝐶 58.0 % - 58.3 %
pressure macrostructure
953.1 𝑃𝑎 - 953.1 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0044_0

date_measured date_processed
25-08-2020 25-08-2020
temperature humidity
23.4 °𝐶 - 23.6 °𝐶 55.9 % - 55.3 %
pressure macrostructure
956.6 𝑃𝑎 - 956.5 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0044_1

date_measured date_processed
25-08-2020 26-08-2020
temperature humidity
23.5 °𝐶 - 23.6 °𝐶 55.0 % - 54.8 %
pressure macrostructure
953.5 𝑃𝑎 - 953.5 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0045_0

date_measured date_processed
26-08-2020 26-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 55.5 % - 54.5 %
pressure macrostructure
956.8 𝑃𝑎 - 956.8 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0045_1

date_measured date_processed
26-08-2020 27-08-2020
temperature humidity
23.3 °𝐶 - 23.5 °𝐶 53.5 % - 54.1 %
pressure macrostructure
958.9 𝑃𝑎 - 958.9 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0046_0

date_measured date_processed
24-08-2020 24-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 59.4 % - 57.0 %
pressure macrostructure
959.4 𝑃𝑎 - 959.4 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0046_1

date_measured date_processed
24-08-2020 25-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 55.8 % - 55.6 %
pressure macrostructure
958.4 𝑃𝑎 - 958.4 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0047_0

date_measured date_processed
22-08-2020 23-08-2020
temperature humidity
23.4 °𝐶 - 23.6 °𝐶 64.7 % - 63.6 %
pressure macrostructure
961.6 𝑃𝑎 - 961.6 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0047_1

date_measured date_processed
23-08-2020 24-08-2020
temperature humidity
23.4 °𝐶 - 23.6 °𝐶 63.1 % - 60.0 %
pressure macrostructure
961.0 𝑃𝑎 - 961.0 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0048_0

date_measured date_processed
17-11-2020 17-11-2020
temperature humidity
17.1 °𝐶 - 17.2 °𝐶 53.9 % - 53.2 %
pressure macrostructure
969.0 𝑃𝑎 - 969.0 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0048_1

date_measured date_processed
17-11-2020 18-11-2020
temperature humidity
17.1 °𝐶 - 17.2 °𝐶 53.2 % - 52.6 %
pressure macrostructure
968.5 𝑃𝑎 - 968.5 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0049_0

date_measured date_processed
21-08-2020 22-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 63.8 % - 63.7 %
pressure macrostructure
955.0 𝑃𝑎 - 954.9 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0049_1

date_measured date_processed
22-08-2020 22-08-2020
temperature humidity
23.4 °𝐶 - 23.6 °𝐶 64.7 % - 65.2 %
pressure macrostructure
961.1 𝑃𝑎 - 961.1 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0050_0

date_measured date_processed
17-02-2021 18-02-2021
temperature humidity
11.8 °𝐶 - 11.9 °𝐶 47.3 % - 47.2 %
pressure macrostructure
960.8 𝑃𝑎 - 960.8 𝑃𝑎 panel_0015_0
printer printer_binder
FDB Furan binder

panel_0050_1

date_measured date_processed
18-02-2021 18-02-2021
temperature humidity
11.8 °𝐶 - 11.7 °𝐶 47.8 % - 48.6 %
pressure macrostructure
958.0 𝑃𝑎 - 958.0 𝑃𝑎 panel_0015_1
printer printer_binder
FDB Furan binder

panel_0051_0

date_measured date_processed
28-08-2020 28-08-2020
temperature humidity
23.3 °𝐶 - 23.5 °𝐶 56.0 % - 56.5 %
pressure macrostructure
949.7 𝑃𝑎 - 949.7 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0051_1

date_measured date_processed
28-08-2020 29-08-2020
temperature humidity
23.4 °𝐶 - 23.5 °𝐶 57.3 % - 57.1 %
pressure macrostructure
946.9 𝑃𝑎 - 946.8 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0052_0

date_measured date_processed
19-08-2020 19-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 64.0 % - 62.4 %
pressure macrostructure
954.2 𝑃𝑎 - 954.2 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0052_1

date_measured date_processed
19-08-2020 20-08-2020
temperature humidity
23.5 °𝐶 - 23.5 °𝐶 62.6 % - 63.5 %
pressure macrostructure
951.7 𝑃𝑎 - 951.7 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0053_0

date_measured date_processed
20-08-2020 21-08-2020
temperature humidity
23.3 °𝐶 - 23.6 °𝐶 63.4 % - 63.4 %
pressure macrostructure
952.9 𝑃𝑎 - 952.9 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0053_1

date_measured date_processed
21-08-2020 21-08-2020
temperature humidity
23.4 °𝐶 - 23.5 °𝐶 64.6 % - 64.2 %
pressure macrostructure
954.8 𝑃𝑎 - 954.8 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0054_0

date_measured date_processed
18-08-2020 18-08-2020
temperature humidity
23.4 °𝐶 - 23.5 °𝐶 64.5 % - 63.0 %
pressure macrostructure
955.3 𝑃𝑎 - 955.3 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0054_1

date_measured date_processed
18-08-2020 19-08-2020
temperature humidity
23.4 °𝐶 - 23.6 °𝐶 62.9 % - 63.0 %
pressure macrostructure
954.0 𝑃𝑎 - 954.0 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0055_0

date_measured date_processed
17-08-2020 17-08-2020
temperature humidity
23.2 °𝐶 - 23.5 °𝐶 66.6 % - 65.4 %
pressure macrostructure
954.6 𝑃𝑎 - 954.6 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0055_1

date_measured date_processed
17-08-2020 18-08-2020
temperature humidity
23.4 °𝐶 - 23.5 °𝐶 65.3 % - 64.4 %
pressure macrostructure
954.5 𝑃𝑎 - 954.5 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0056_0

date_measured date_processed
27-08-2020 27-08-2020
temperature humidity
23.3 °𝐶 - 23.5 °𝐶 54.7 % - 54.1 %
pressure macrostructure
959.6 𝑃𝑎 - 959.5 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0056_1

date_measured date_processed
27-08-2020 28-08-2020
temperature humidity
23.3 °𝐶 - 23.5 °𝐶 53.8 % - 54.8 %
pressure macrostructure
954.6 𝑃𝑎 - 954.6 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0057_0

date_measured date_processed
22-07-2020 23-07-2020
temperature humidity
21.7 °𝐶 - 22.0 °𝐶 64.0 % - 64.1 %
pressure macrostructure
957.9 𝑃𝑎 - 957.9 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0057_1

date_measured date_processed
23-07-2020 23-07-2020
temperature humidity
21.9 °𝐶 - 22.0 °𝐶 64.2 % - 63.3 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0058_0

date_measured date_processed
30-07-2020 31-07-2020
temperature humidity
22.4 °𝐶 - 22.7 °𝐶 61.5 % - 63.2 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0058_1

date_measured date_processed
31-07-2020 31-07-2020
temperature humidity
22.6 °𝐶 - 22.7 °𝐶 64.0 % - 63.7 %
pressure macrostructure
959.3 𝑃𝑎 - 959.3 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0059_0

date_measured date_processed
23-07-2020 24-07-2020
temperature humidity
21.7 °𝐶 - 22.0 °𝐶 62.7 % - 60.2 %
pressure macrostructure
954.9 𝑃𝑎 - 954.9 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0059_1

date_measured date_processed
24-07-2020 24-07-2020
temperature humidity
21.9 °𝐶 - 22.1 °𝐶 60.7 % - 61.0 %
pressure macrostructure
955.4 𝑃𝑎 - 955.4 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0060_0

date_measured date_processed
14-08-2020 15-08-2020
temperature humidity
23.2 °𝐶 - 23.4 °𝐶 66.5 % - 66.6 %
pressure macrostructure
957.3 𝑃𝑎 - 957.3 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0060_1

date_measured date_processed
15-08-2020 15-08-2020
temperature humidity
23.3 °𝐶 - 23.4 °𝐶 66.9 % - 65.9 %
pressure macrostructure
957.2 𝑃𝑎 - 957.2 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0061_0

date_measured date_processed
06-08-2020 06-08-2020
temperature humidity
22.9 °𝐶 - 23.1 °𝐶 59.3 % - 59.4 %
pressure macrostructure
960.7 𝑃𝑎 - 960.7 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0061_1

date_measured date_processed
06-08-2020 07-08-2020
temperature humidity
23.0 °𝐶 - 23.1 °𝐶 59.7 % - 60.4 %
pressure macrostructure
960.0 𝑃𝑎 - 960.0 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0062_0

date_measured date_processed
24-07-2020 25-07-2020
temperature humidity
21.9 °𝐶 - 22.1 °𝐶 61.7 % - 61.4 %
pressure macrostructure
956.5 𝑃𝑎 - 956.5 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0062_1

date_measured date_processed
25-07-2020 25-07-2020
temperature humidity
22.1 °𝐶 - 22.2 °𝐶 61.6 % - 60.3 %
pressure macrostructure
957.0 𝑃𝑎 - 957.0 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0063_0

date_measured date_processed
28-07-2020 29-07-2020
temperature humidity
22.2 °𝐶 - 22.4 °𝐶 66.0 % - 64.6 %
pressure macrostructure
957.2 𝑃𝑎 - 957.2 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0063_1

date_measured date_processed
29-07-2020 29-07-2020
temperature humidity
22.2 °𝐶 - 22.5 °𝐶 64.1 % - 63.2 %
pressure macrostructure
960.2 𝑃𝑎 - 960.2 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0064_0

date_measured date_processed
26-07-2020 26-07-2020
temperature humidity
22.0 °𝐶 - 22.4 °𝐶 62.1 % - 62.1 %
pressure macrostructure
955.8 𝑃𝑎 - 955.8 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0064_1

date_measured date_processed
26-07-2020 27-07-2020
temperature humidity
22.3 °𝐶 - 22.3 °𝐶 62.3 % - 62.3 %
pressure macrostructure
957.2 𝑃𝑎 - 957.2 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0065_0

date_measured date_processed
31-07-2020 01-08-2020
temperature humidity
22.4 °𝐶 - 22.8 °𝐶 65.1 % - 65.4 %
pressure macrostructure
957.0 𝑃𝑎 - 957.0 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0065_1

date_measured date_processed
01-08-2020 03-08-2020
temperature humidity
22.8 °𝐶 - 22.9 °𝐶 65.5 % - 67.6 %
pressure macrostructure
957.6 𝑃𝑎 - 957.6 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder
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panel_0066_0

date_measured date_processed
27-07-2020 27-07-2020
temperature humidity
22.2 °𝐶 - 22.2 °𝐶 63.1 % - 63.3 %
pressure macrostructure
958.7 𝑃𝑎 - 958.7 𝑃𝑎 panel_0015_0
printer printer_binder
ExOne S-Max Furan binder

panel_0066_1

date_measured date_processed
28-07-2020 28-07-2020
temperature humidity
22.0 °𝐶 - 22.3 °𝐶 64.1 % - 65.0 %
pressure macrostructure
956.4 𝑃𝑎 - 956.4 𝑃𝑎 panel_0015_1
printer printer_binder
ExOne S-Max Furan binder

panel_0067_0

date_measured date_processed
04-08-2020 04-08-2020
temperature humidity
22.8 °𝐶 - 23.1 °𝐶 64.7 % - 63.1 %
pressure macrostructure
955.5 𝑃𝑎 - 955.4 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0067_1

date_measured date_processed
04-08-2020 05-08-2020
temperature humidity
23.0 °𝐶 - 23.1 °𝐶 63.2 % - 61.4 %
pressure macrostructure
959.1 𝑃𝑎 - 959.1 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0068_0

date_measured date_processed
05-08-2020 05-08-2020
temperature humidity
23.0 °𝐶 - 23.1 °𝐶 61.5 % - 59.6 %
pressure macrostructure
958.8 𝑃𝑎 - 958.8 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0068_1

date_measured date_processed
05-08-2020 06-08-2020
temperature humidity
22.8 °𝐶 - 23.1 °𝐶 60.0 % - 59.0 %
pressure macrostructure
958.9 𝑃𝑎 - 958.9 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0069_0

date_measured date_processed
03-08-2020 03-08-2020
temperature humidity
22.7 °𝐶 - 23.0 °𝐶 68.2 % - 66.6 %
pressure macrostructure
953.4 𝑃𝑎 - 953.4 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder

panel_0069_1

date_measured date_processed
03-08-2020 04-08-2020
temperature humidity
23.0 °𝐶 - 23.1 °𝐶 66.5 % - 64.9 %
pressure macrostructure
952.9 𝑃𝑎 - 952.9 𝑃𝑎 flat
printer printer_binder
ExOne S-Max Furan binder
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panel_0070_0

date_measured date_processed
02-11-2020 02-11-2020
temperature humidity
18.0 °𝐶 - 18.1 °𝐶 57.3 % - 57.6 %
pressure macrostructure
960.3 𝑃𝑎 - 960.2 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0070_1

date_measured date_processed
02-11-2020 03-11-2020
temperature humidity
18.0 °𝐶 - 18.1 °𝐶 58.2 % - 58.5 %
pressure macrostructure
959.8 𝑃𝑎 - 959.8 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder

panel_0071_0

date_measured date_processed
03-11-2020 03-11-2020
temperature humidity
18.0 °𝐶 - 18.0 °𝐶 59.8 % - 59.6 %
pressure macrostructure
963.7 𝑃𝑎 - 963.7 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0071_1

date_measured date_processed
03-11-2020 04-11-2020
temperature humidity
17.9 °𝐶 - 18.0 °𝐶 59.8 % - 58.8 %
pressure macrostructure
967.0 𝑃𝑎 - 967.0 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder
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panel_0072_0

date_measured date_processed
04-11-2020 04-11-2020
temperature humidity
17.8 °𝐶 - 18.0 °𝐶 58.7 % - 57.5 %
pressure macrostructure
967.5 𝑃𝑎 - 967.5 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0072_1

date_measured date_processed
04-11-2020 05-11-2020
temperature humidity
17.9 °𝐶 - 17.9 °𝐶 57.3 % - 56.1 %
pressure macrostructure
969.5 𝑃𝑎 - 969.6 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder

panel_0073_0

date_measured date_processed
11-08-2020 11-08-2020
temperature humidity
22.8 °𝐶 - 23.0 °𝐶 65.1 % - 64.5 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0074_0

date_measured date_processed
12-08-2020 12-08-2020
temperature humidity
22.9 °𝐶 - 23.1 °𝐶 67.3 % - 66.7 %
pressure macrostructure
957.7 𝑃𝑎 - 957.7 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0075_0

date_measured date_processed
12-08-2020 13-08-2020
temperature humidity
23.0 °𝐶 - 23.2 °𝐶 67.2 % - 66.9 %
pressure macrostructure
955.6 𝑃𝑎 - 955.6 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0076_0

date_measured date_processed
13-08-2020 13-08-2020
temperature humidity
23.1 °𝐶 - 23.2 °𝐶 67.3 % - 66.6 %
pressure macrostructure
956.9 𝑃𝑎 - 956.9 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0077_0

date_measured date_processed
13-08-2020 14-08-2020
temperature humidity
23.1 °𝐶 - 23.2 °𝐶 66.8 % - 66.1 %
pressure macrostructure
956.7 𝑃𝑎 - 956.7 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0078_0

date_measured date_processed
07-08-2020 07-08-2020
temperature humidity
22.8 °𝐶 - 23.0 °𝐶 62.0 % - 62.5 %
pressure macrostructure
961.2 𝑃𝑎 - 961.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0079_0

date_measured date_processed
07-08-2020 08-08-2020
temperature humidity
23.0 °𝐶 - 23.0 °𝐶 63.0 % - 63.7 %
pressure macrostructure
960.7 𝑃𝑎 - 960.7 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0080_0

date_measured date_processed
10-08-2020 10-08-2020
temperature humidity
22.9 °𝐶 - 23.0 °𝐶 64.6 % - 63.9 %
pressure macrostructure
956.4 𝑃𝑎 - 956.4 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0081_0

date_measured date_processed
11-08-2020 12-08-2020
temperature humidity
23.0 °𝐶 - 23.1 °𝐶 64.9 % - 65.8 %
pressure macrostructure
956.3 𝑃𝑎 - 956.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0082_0

date_measured date_processed
08-08-2020 08-08-2020
temperature humidity
22.8 °𝐶 - 23.0 °𝐶 64.0 % - 63.1 %
pressure macrostructure
961.5 𝑃𝑎 - 961.5 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

49



panel_0083_0

date_measured date_processed
07-02-2021 08-02-2021
temperature humidity
12.3 °𝐶 - 12.5 °𝐶 61.8 % - 60.4 %
pressure macrostructure
937.1 𝑃𝑎 - 937.1 𝑃𝑎 macrostructure
printer printer_binder
PDB Phenolic binder

panel_0083_1

date_measured date_processed
08-02-2021 09-02-2021
temperature humidity
12.4 °𝐶 - 12.7 °𝐶 59.5 % - 57.3 %
pressure macrostructure
935.4 𝑃𝑎 - 935.4 𝑃𝑎 macrostructure
printer printer_binder
PDB Phenolic binder

panel_0084_0

date_measured date_processed
30-10-2020 31-10-2020
temperature humidity
18.0 °𝐶 - 18.2 °𝐶 55.4 % - 54.9 %
pressure macrostructure
966.5 𝑃𝑎 - 966.5 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0084_1

date_measured date_processed
31-10-2020 31-10-2020
temperature humidity
18.0 °𝐶 - 18.2 °𝐶 55.0 % - 55.0 %
pressure macrostructure
964.9 𝑃𝑎 - 964.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0085_0

date_measured date_processed
01-11-2020 01-11-2020
temperature humidity
17.8 °𝐶 - 18.1 °𝐶 55.5 % - 55.7 %
pressure macrostructure
962.6 𝑃𝑎 - 962.6 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0085_1

date_measured date_processed
01-11-2020 02-11-2020
temperature humidity
18.0 °𝐶 - 18.1 °𝐶 55.9 % - 56.3 %
pressure macrostructure
960.9 𝑃𝑎 - 960.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder

panel_0086_0

date_measured date_processed
05-02-2021 06-02-2021
temperature humidity
12.0 °𝐶 - 12.2 °𝐶 61.6 % - 61.5 %
pressure macrostructure
953.2 𝑃𝑎 - 953.2 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0086_1

date_measured date_processed
06-02-2021 07-02-2021
temperature humidity
12.1 °𝐶 - 12.4 °𝐶 62.3 % - 61.5 %
pressure macrostructure
940.8 𝑃𝑎 - 940.8 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0087_0

date_measured date_processed
28-10-2020 28-10-2020
temperature humidity
18.3 °𝐶 - 18.4 °𝐶 52.2 % - 52.4 %
pressure macrostructure
956.5 𝑃𝑎 - 956.5 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0087_1

date_measured date_processed
28-10-2020 29-10-2020
temperature humidity
18.2 °𝐶 - 18.3 °𝐶 52.6 % - 53.1 %
pressure macrostructure
956.9 𝑃𝑎 - 956.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder

panel_0088_0

date_measured date_processed
26-10-2020 26-10-2020
temperature humidity
18.1 °𝐶 - 18.4 °𝐶 56.6 % - 55.0 %
pressure macrostructure
948.3 𝑃𝑎 - 948.3 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0088_1

date_measured date_processed
26-10-2020 27-10-2020
temperature humidity
18.3 °𝐶 - 18.4 °𝐶 54.7 % - 53.8 %
pressure macrostructure
950.9 𝑃𝑎 - 950.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0089_0

date_measured date_processed
05-11-2020 05-11-2020
temperature humidity
17.9 °𝐶 - 18.0 °𝐶 56.0 % - 55.6 %
pressure macrostructure
973.7 𝑃𝑎 - 973.7 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0089_1

date_measured date_processed
06-11-2020 06-11-2020
temperature humidity
17.8 °𝐶 - 18.0 °𝐶 55.3 % - 54.4 %
pressure macrostructure
970.6 𝑃𝑎 - 970.6 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder

panel_0090_0

date_measured date_processed
07-11-2020 08-11-2020
temperature humidity
17.7 °𝐶 - 17.8 °𝐶 54.2 % - 54.0 %
pressure macrostructure
965.3 𝑃𝑎 - 965.3 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0090_1

date_measured date_processed
08-11-2020 08-11-2020
temperature humidity
17.6 °𝐶 - 17.6 °𝐶 54.1 % - 54.5 %
pressure macrostructure
964.9 𝑃𝑎 - 964.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0091_0

date_measured date_processed
09-11-2020 09-11-2020
temperature humidity
17.5 °𝐶 - 17.8 °𝐶 54.0 % - 53.9 %
pressure macrostructure
964.6 𝑃𝑎 - 964.6 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0091_1

date_measured date_processed
09-11-2020 10-11-2020
temperature humidity
17.7 °𝐶 - 17.8 °𝐶 54.1 % - 53.5 %
pressure macrostructure
964.2 𝑃𝑎 - 964.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0092_0

date_measured date_processed
10-11-2020 10-11-2020
temperature humidity
17.5 °𝐶 - 17.7 °𝐶 53.4 % - 53.5 %
pressure macrostructure
965.8 𝑃𝑎 - 965.8 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0092_1

date_measured date_processed
10-11-2020 11-11-2020
temperature humidity
17.5 °𝐶 - 17.7 °𝐶 53.7 % - 53.2 %
pressure macrostructure
967.2 𝑃𝑎 - 967.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0093_0

date_measured date_processed
11-11-2020 11-11-2020
temperature humidity
17.6 °𝐶 - 17.7 °𝐶 53.2 % - 53.3 %
pressure macrostructure
965.9 𝑃𝑎 - 965.9 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0093_1

date_measured date_processed
11-11-2020 12-11-2020
temperature humidity
17.6 °𝐶 - 17.6 °𝐶 53.4 % - 53.4 %
pressure macrostructure
963.1 𝑃𝑎 - 963.1 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0094_0

date_measured date_processed
12-11-2020 12-11-2020
temperature humidity
17.4 °𝐶 - 17.6 °𝐶 53.8 % - 53.7 %
pressure macrostructure
962.7 𝑃𝑎 - 962.7 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0094_1

date_measured date_processed
12-11-2020 13-11-2020
temperature humidity
17.5 °𝐶 - 17.5 °𝐶 54.0 % - 53.4 %
pressure macrostructure
962.6 𝑃𝑎 - 962.5 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0095_0

date_measured date_processed
13-11-2020 13-11-2020
temperature humidity
17.3 °𝐶 - 17.5 °𝐶 53.6 % - 53.2 %
pressure macrostructure
962.7 𝑃𝑎 - 962.7 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0095_1

date_measured date_processed
13-11-2020 14-11-2020
temperature humidity
17.0 °𝐶 - 17.4 °𝐶 53.3 % - 52.9 %
pressure macrostructure
962.1 𝑃𝑎 - 962.1 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder

panel_0096_0

date_measured date_processed
16-11-2020 16-11-2020
temperature humidity
17.0 °𝐶 - 17.2 °𝐶 54.5 % - 53.9 %
pressure macrostructure
960.5 𝑃𝑎 - 960.5 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0096_1

date_measured date_processed
16-11-2020 17-11-2020
temperature humidity
17.1 °𝐶 - 17.2 °𝐶 54.0 % - 53.7 %
pressure macrostructure
964.9 𝑃𝑎 - 964.9 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0097_0

date_measured date_processed
20-11-2020 21-11-2020
temperature humidity
16.9 °𝐶 - 17.0 °𝐶 49.2 % - 48.5 %
pressure macrostructure
973.5 𝑃𝑎 - 973.5 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0097_1

date_measured date_processed
23-11-2020 24-11-2020
temperature humidity
16.4 °𝐶 - 16.5 °𝐶 45.8 % - 45.7 %
pressure macrostructure
967.6 𝑃𝑎 - 967.6 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0098_0

date_measured date_processed
24-11-2020 24-11-2020
temperature humidity
16.2 °𝐶 - 16.4 °𝐶 45.9 % - 45.5 %
pressure macrostructure
965.1 𝑃𝑎 - 965.2 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0098_1

date_measured date_processed
24-11-2020 25-11-2020
temperature humidity
16.3 °𝐶 - 16.4 °𝐶 45.2 % - 45.3 %
pressure macrostructure
962.1 𝑃𝑎 - 962.1 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder
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panel_0099_0

date_measured date_processed
03-02-2021 03-02-2021
temperature humidity
11.5 °𝐶 - 11.8 °𝐶 61.6 % - 61.3 %
pressure macrostructure
945.6 𝑃𝑎 - 945.6 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0099_1

date_measured date_processed
03-02-2021 04-02-2021
temperature humidity
11.7 °𝐶 - 11.9 °𝐶 61.7 % - 61.0 %
pressure macrostructure
949.1 𝑃𝑎 - 949.1 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder

panel_0100_0

date_measured date_processed
19-11-2020 20-11-2020
temperature humidity
17.1 °𝐶 - 17.1 °𝐶 52.2 % - 51.3 %
pressure macrostructure
964.2 𝑃𝑎 - 964.3 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0100_1

date_measured date_processed
20-11-2020 20-11-2020
temperature humidity
16.9 °𝐶 - 17.1 °𝐶 51.4 % - 50.1 %
pressure macrostructure
971.1 𝑃𝑎 - 971.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0101_0

date_measured date_processed
23-10-2020 24-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 59.0 % - 58.0 %
pressure macrostructure
957.3 𝑃𝑎 - 957.3 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0101_1

date_measured date_processed
24-10-2020 24-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 58.7 % - 57.6 %
pressure macrostructure
960.3 𝑃𝑎 - 960.3 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder

panel_0102_0

date_measured date_processed
25-11-2020 25-11-2020
temperature humidity
16.2 °𝐶 - 16.3 °𝐶 45.3 % - 45.1 %
pressure macrostructure
961.1 𝑃𝑎 - 961.1 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0102_1

date_measured date_processed
25-11-2020 26-11-2020
temperature humidity
16.2 °𝐶 - 16.3 °𝐶 44.8 % - 45.0 %
pressure macrostructure
961.4 𝑃𝑎 - 961.4 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder
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panel_0103_0

date_measured date_processed
26-11-2020 26-11-2020
temperature humidity
16.1 °𝐶 - 16.2 °𝐶 44.9 % - 45.1 %
pressure macrostructure
963.3 𝑃𝑎 - 963.3 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0103_1

date_measured date_processed
26-11-2020 27-11-2020
temperature humidity
16.1 °𝐶 - 16.2 °𝐶 45.1 % - 45.1 %
pressure macrostructure
961.6 𝑃𝑎 - 961.6 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0104_0

date_measured date_processed
18-11-2020 18-11-2020
temperature humidity
16.9 °𝐶 - 17.2 °𝐶 52.3 % - 52.6 %
pressure macrostructure
968.3 𝑃𝑎 - 968.3 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0104_1

date_measured date_processed
18-11-2020 19-11-2020
temperature humidity
17.1 °𝐶 - 17.2 °𝐶 52.4 % - 52.2 %
pressure macrostructure
964.9 𝑃𝑎 - 964.9 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder
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panel_0105_0

date_measured date_processed
24-10-2020 25-10-2020
temperature humidity
18.3 °𝐶 - 18.4 °𝐶 57.8 % - 57.1 %
pressure macrostructure
957.1 𝑃𝑎 - 957.1 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0105_1

date_measured date_processed
25-10-2020 25-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 57.2 % - 56.8 %
pressure macrostructure
951.1 𝑃𝑎 - 951.1 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder

panel_0106_0

date_measured date_processed
01-12-2020 01-12-2020
temperature humidity
15.3 °𝐶 - 15.4 °𝐶 42.5 % - 43.1 %
pressure macrostructure
955.5 𝑃𝑎 - 955.4 𝑃𝑎 panel_0031_0
printer printer_binder
PDB Phenolic binder

panel_0106_1

date_measured date_processed
01-12-2020 02-12-2020
temperature humidity
15.3 °𝐶 - 15.3 °𝐶 43.2 % - 43.4 %
pressure macrostructure
955.7 𝑃𝑎 - 955.7 𝑃𝑎 panel_0031_1
printer printer_binder
PDB Phenolic binder
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panel_0107_0

date_measured date_processed
27-10-2020 27-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 53.2 % - 52.7 %
pressure macrostructure
953.3 𝑃𝑎 - 953.3 𝑃𝑎 panel_0083_0
printer printer_binder
PDB Phenolic binder

panel_0107_1

date_measured date_processed
27-10-2020 28-10-2020
temperature humidity
18.2 °𝐶 - 18.4 °𝐶 52.2 % - 52.2 %
pressure macrostructure
953.7 𝑃𝑎 - 953.7 𝑃𝑎 panel_0083_1
printer printer_binder
PDB Phenolic binder

panel_0108_0

date_measured date_processed
30-11-2020 30-11-2020
temperature humidity
15.2 °𝐶 - 15.4 °𝐶 43.8 % - 43.0 %
pressure macrostructure
964.7 𝑃𝑎 - 964.7 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder

panel_0108_1

date_measured date_processed
30-11-2020 01-12-2020
temperature humidity
15.3 °𝐶 - 15.4 °𝐶 42.9 % - 42.7 %
pressure macrostructure
963.2 𝑃𝑎 - 963.2 𝑃𝑎 flat
printer printer_binder
PDB Phenolic binder
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panel_0109_0

date_measured date_processed
15-12-2020 16-12-2020
temperature humidity
13.4 °𝐶 - 13.6 °𝐶 50.2 % - 50.1 %
pressure macrostructure
956.5 𝑃𝑎 - 956.5 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0109_1

date_measured date_processed
16-12-2020 16-12-2020
temperature humidity
13.5 °𝐶 - 13.6 °𝐶 50.5 % - 51.0 %
pressure macrostructure
958.7 𝑃𝑎 - 958.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0110_0

date_measured date_processed
14-12-2020 14-12-2020
temperature humidity
13.4 °𝐶 - 13.6 °𝐶 48.4 % - 48.4 %
pressure macrostructure
954.8 𝑃𝑎 - 954.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0110_1

date_measured date_processed
15-12-2020 15-12-2020
temperature humidity
13.4 °𝐶 - 13.6 °𝐶 49.0 % - 49.5 %
pressure macrostructure
954.0 𝑃𝑎 - 954.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0111_0

date_measured date_processed
16-12-2020 17-12-2020
temperature humidity
13.4 °𝐶 - 13.6 °𝐶 51.7 % - 51.2 %
pressure macrostructure
959.7 𝑃𝑎 - 959.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0111_1

date_measured date_processed
17-12-2020 17-12-2020
temperature humidity
13.4 °𝐶 - 13.6 °𝐶 51.5 % - 51.5 %
pressure macrostructure
963.7 𝑃𝑎 - 963.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0112_0

date_measured date_processed
08-12-2020 09-12-2020
temperature humidity
14.0 °𝐶 - 14.1 °𝐶 44.6 % - 44.9 %
pressure macrostructure
944.8 𝑃𝑎 - 944.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0112_1

date_measured date_processed
09-12-2020 10-12-2020
temperature humidity
14.0 °𝐶 - 14.0 °𝐶 44.9 % - 44.8 %
pressure macrostructure
949.4 𝑃𝑎 - 949.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0113_0

date_measured date_processed
07-12-2020 08-12-2020
temperature humidity
14.2 °𝐶 - 14.3 °𝐶 45.1 % - 44.8 %
pressure macrostructure
940.9 𝑃𝑎 - 940.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0113_1

date_measured date_processed
08-12-2020 08-12-2020
temperature humidity
14.1 °𝐶 - 14.2 °𝐶 44.7 % - 44.5 %
pressure macrostructure
940.6 𝑃𝑎 - 940.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0114_0

date_measured date_processed
13-12-2020 13-12-2020
temperature humidity
13.5 °𝐶 - 13.7 °𝐶 47.6 % - 47.7 %
pressure macrostructure
953.2 𝑃𝑎 - 953.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0114_1

date_measured date_processed
13-12-2020 14-12-2020
temperature humidity
13.6 °𝐶 - 13.7 °𝐶 48.1 % - 48.0 %
pressure macrostructure
953.7 𝑃𝑎 - 953.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0115_0

date_measured date_processed
11-12-2020 12-12-2020
temperature humidity
13.7 °𝐶 - 13.7 °𝐶 44.2 % - 45.2 %
pressure macrostructure
936.8 𝑃𝑎 - 936.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0115_1

date_measured date_processed
12-12-2020 13-12-2020
temperature humidity
13.6 °𝐶 - 13.7 °𝐶 45.8 % - 46.2 %
pressure macrostructure
944.0 𝑃𝑎 - 944.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0116_0

date_measured date_processed
10-12-2020 10-12-2020
temperature humidity
13.8 °𝐶 - 13.8 °𝐶 44.9 % - 44.9 %
pressure macrostructure
945.1 𝑃𝑎 - 945.1 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0116_1

date_measured date_processed
11-12-2020 11-12-2020
temperature humidity
13.6 °𝐶 - 13.8 °𝐶 44.2 % - 43.9 %
pressure macrostructure
940.9 𝑃𝑎 - 940.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0117_0

date_measured date_processed
17-12-2020 18-12-2020
temperature humidity
13.3 °𝐶 - 13.6 °𝐶 52.4 % - 51.7 %
pressure macrostructure
965.2 𝑃𝑎 - 965.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0117_1

date_measured date_processed
18-12-2020 18-12-2020
temperature humidity
13.5 °𝐶 - 13.6 °𝐶 51.9 % - 51.7 %
pressure macrostructure
965.2 𝑃𝑎 - 965.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0118_0

date_measured date_processed
18-12-2020 19-12-2020
temperature humidity
13.5 °𝐶 - 13.5 °𝐶 52.0 % - 50.8 %
pressure macrostructure
962.7 𝑃𝑎 - 962.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0118_1

date_measured date_processed
20-12-2020 22-12-2020
temperature humidity
13.3 °𝐶 - 13.4 °𝐶 51.5 % - 56.0 %
pressure macrostructure
964.0 𝑃𝑎 - 964.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0119_0

date_measured date_processed
15-02-2021 16-02-2021
temperature humidity
12.1 °𝐶 - 12.0 °𝐶 39.7 % - 41.7 %
pressure macrostructure
971.7 𝑃𝑎 - 971.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0119_1

date_measured date_processed
17-02-2021 17-02-2021
temperature humidity
11.7 °𝐶 - 11.9 °𝐶 46.3 % - 46.7 %
pressure macrostructure
962.4 𝑃𝑎 - 962.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0120_0

date_measured date_processed
09-02-2021 10-02-2021
temperature humidity
12.5 °𝐶 - 12.8 °𝐶 54.5 % - 53.7 %
pressure macrostructure
940.3 𝑃𝑎 - 940.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0120_1

date_measured date_processed
11-02-2021 11-02-2021
temperature humidity
12.7 °𝐶 - 12.8 °𝐶 50.9 % - 48.3 %
pressure macrostructure
961.6 𝑃𝑎 - 961.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0121_0

date_measured date_processed
01-02-2021 02-02-2021
temperature humidity
11.2 °𝐶 - 11.5 °𝐶 58.6 % - 58.6 %
pressure macrostructure
941.0 𝑃𝑎 - 941.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0121_1

date_measured date_processed
02-02-2021 02-02-2021
temperature humidity
11.4 °𝐶 - 11.6 °𝐶 59.2 % - 59.5 %
pressure macrostructure
947.3 𝑃𝑎 - 947.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0122_0

date_measured date_processed
23-02-2021 23-02-2021
temperature humidity
12.0 °𝐶 - 12.3 °𝐶 54.2 % - 53.8 %
pressure macrostructure
974.3 𝑃𝑎 - 974.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0122_1

date_measured date_processed
23-02-2021 24-02-2021
temperature humidity
12.2 °𝐶 - 12.4 °𝐶 54.2 % - 54.3 %
pressure macrostructure
975.5 𝑃𝑎 - 975.5 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0123_0

date_measured date_processed
18-02-2021 19-02-2021
temperature humidity
11.7 °𝐶 - 11.9 °𝐶 49.2 % - 50.1 %
pressure macrostructure
957.5 𝑃𝑎 - 957.5 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0123_1

date_measured date_processed
22-02-2021 23-02-2021
temperature humidity
11.8 °𝐶 - 12.2 °𝐶 54.0 % - 53.7 %
pressure macrostructure
961.2 𝑃𝑎 - 961.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0124_0

date_measured date_processed
14-02-2021 14-02-2021
temperature humidity
12.1 °𝐶 - 12.3 °𝐶 40.0 % - 40.4 %
pressure macrostructure
974.7 𝑃𝑎 - 974.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0124_1

date_measured date_processed
14-02-2021 15-02-2021
temperature humidity
12.2 °𝐶 - 12.2 °𝐶 40.0 % - 40.0 %
pressure macrostructure
973.1 𝑃𝑎 - 973.1 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0125_0

date_measured date_processed
19-04-2021 20-04-2021
temperature humidity
14.2 °𝐶 - 14.2 °𝐶 43.7 % - 44.4 %
pressure macrostructure
958.4 𝑃𝑎 - 958.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0125_1

date_measured date_processed
20-04-2021 21-04-2021
temperature humidity
14.1 °𝐶 - 14.2 °𝐶 44.7 % - 44.5 %
pressure macrostructure
954.7 𝑃𝑎 - 954.7 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0126_0

date_measured date_processed
17-04-2021 18-04-2021
temperature humidity
14.1 °𝐶 - 14.3 °𝐶 41.6 % - 41.6 %
pressure macrostructure
957.8 𝑃𝑎 - 957.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0126_1

date_measured date_processed
18-04-2021 19-04-2021
temperature humidity
14.1 °𝐶 - 14.2 °𝐶 43.0 % - 43.4 %
pressure macrostructure
959.0 𝑃𝑎 - 959.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0127_0

date_measured date_processed
24-03-2021 25-03-2021
temperature humidity
12.8 °𝐶 - 12.8 °𝐶 44.0 % - 44.9 %
pressure macrostructure
962.4 𝑃𝑎 - 962.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0127_1

date_measured date_processed
25-03-2021 26-03-2021
temperature humidity
12.8 °𝐶 - 12.9 °𝐶 45.1 % - 46.7 %
pressure macrostructure
961.9 𝑃𝑎 - 961.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0128_0

date_measured date_processed
13-04-2021 14-04-2021
temperature humidity
14.4 °𝐶 - 14.5 °𝐶 45.1 % - 43.2 %
pressure macrostructure
967.3 𝑃𝑎 - 967.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0128_1

date_measured date_processed
14-04-2021 15-04-2021
temperature humidity
14.4 °𝐶 - 14.4 °𝐶 43.1 % - 42.2 %
pressure macrostructure
964.2 𝑃𝑎 - 964.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

72



panel_0129_0

date_measured date_processed
12-02-2021 13-02-2021
temperature humidity
12.4 °𝐶 - 12.4 °𝐶 45.4 % - 43.6 %
pressure macrostructure
962.3 𝑃𝑎 - 962.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0129_1

date_measured date_processed
13-02-2021 14-02-2021
temperature humidity
12.4 °𝐶 - 12.4 °𝐶 42.9 % - 41.9 %
pressure macrostructure
968.9 𝑃𝑎 - 968.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0130_0

date_measured date_processed
07-04-2021 07-04-2021
temperature humidity
14.3 °𝐶 - 14.5 °𝐶 43.0 % - 41.5 %
pressure macrostructure
960.8 𝑃𝑎 - 960.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0130_1

date_measured date_processed
07-04-2021 08-04-2021
temperature humidity
14.4 °𝐶 - 14.6 °𝐶 42.0 % - 40.7 %
pressure macrostructure
963.5 𝑃𝑎 - 963.5 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0131_0

date_measured date_processed
31-03-2021 01-04-2021
temperature humidity
13.3 °𝐶 - 13.7 °𝐶 50.2 % - 51.3 %
pressure macrostructure
964.5 𝑃𝑎 - 964.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0131_1

date_measured date_processed
06-04-2021 07-04-2021
temperature humidity
14.2 °𝐶 - 14.5 °𝐶 44.2 % - 43.4 %
pressure macrostructure
952.1 𝑃𝑎 - 952.1 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0132_0

date_measured date_processed
09-03-2021 10-03-2021
temperature humidity
13.4 °𝐶 - 13.4 °𝐶 46.4 % - 46.8 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0132_1

date_measured date_processed
10-03-2021 11-03-2021
temperature humidity
13.4 °𝐶 - 13.4 °𝐶 46.9 % - 46.2 %
pressure macrostructure
959.3 𝑃𝑎 - 959.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0133_0

date_measured date_processed
05-03-2021 07-03-2021
temperature humidity
13.2 °𝐶 - 13.3 °𝐶 52.1 % - 49.5 %
pressure macrostructure
964.6 𝑃𝑎 - 964.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0133_1

date_measured date_processed
08-03-2021 08-03-2021
temperature humidity
13.1 °𝐶 - 13.3 °𝐶 49.7 % - 48.7 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0134_0

date_measured date_processed
15-03-2021 15-03-2021
temperature humidity
13.3 °𝐶 - 13.5 °𝐶 48.7 % - 48.6 %
pressure macrostructure
953.9 𝑃𝑎 - 953.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0134_1

date_measured date_processed
16-03-2021 24-03-2021
temperature humidity
13.3 °𝐶 - 12.8 °𝐶 48.9 % - 43.7 %
pressure macrostructure
962.6 𝑃𝑎 - 962.6 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0135_0

date_measured date_processed
26-03-2021 27-03-2021
temperature humidity
12.8 °𝐶 - 13.0 °𝐶 47.6 % - 48.3 %
pressure macrostructure
957.9 𝑃𝑎 - 957.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0135_1

date_measured date_processed
29-03-2021 29-03-2021
temperature humidity
12.9 °𝐶 - 13.2 °𝐶 48.5 % - 47.1 %
pressure macrostructure
972.9 𝑃𝑎 - 972.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0136_0

date_measured date_processed
08-03-2021 09-03-2021
temperature humidity
13.3 °𝐶 - 13.4 °𝐶 48.6 % - 47.5 %
pressure macrostructure
957.3 𝑃𝑎 - 957.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0136_1

date_measured date_processed
09-03-2021 09-03-2021
temperature humidity
13.3 °𝐶 - 13.4 °𝐶 47.3 % - 46.5 %
pressure macrostructure
956.8 𝑃𝑎 - 956.8 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0137_0

date_measured date_processed
22-04-2021 22-04-2021
temperature humidity
14.1 °𝐶 - 14.3 °𝐶 47.7 % - 47.7 %
pressure macrostructure
959.5 𝑃𝑎 - 959.5 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0137_1

date_measured date_processed
23-04-2021 24-04-2021
temperature humidity
14.0 °𝐶 - 14.5 °𝐶 45.0 % - 43.6 %
pressure macrostructure
963.0 𝑃𝑎 - 963.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0138_0

date_measured date_processed
29-03-2021 30-03-2021
temperature humidity
13.2 °𝐶 - 13.3 °𝐶 47.2 % - 47.4 %
pressure macrostructure
971.4 𝑃𝑎 - 971.4 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0138_1

date_measured date_processed
30-03-2021 30-03-2021
temperature humidity
13.2 °𝐶 - 13.5 °𝐶 47.9 % - 47.9 %
pressure macrostructure
970.0 𝑃𝑎 - 970.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0139_0

date_measured date_processed
11-03-2021 11-03-2021
temperature humidity
13.3 °𝐶 - 13.3 °𝐶 46.4 % - 48.5 %
pressure macrostructure
952.2 𝑃𝑎 - 952.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0139_1

date_measured date_processed
12-03-2021 13-03-2021
temperature humidity
13.2 °𝐶 - 13.5 °𝐶 48.5 % - 47.9 %
pressure macrostructure
952.9 𝑃𝑎 - 952.9 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0140_0

date_measured date_processed
08-04-2021 09-04-2021
temperature humidity
14.5 °𝐶 - 14.4 °𝐶 40.6 % - 40.3 %
pressure macrostructure
964.2 𝑃𝑎 - 964.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0140_1

date_measured date_processed
10-04-2021 11-04-2021
temperature humidity
14.1 °𝐶 - 14.3 °𝐶 42.6 % - 44.7 %
pressure macrostructure
952.0 𝑃𝑎 - 952.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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panel_0141_0

date_measured date_processed
12-04-2021 12-04-2021
temperature humidity
14.1 °𝐶 - 14.4 °𝐶 46.8 % - 46.1 %
pressure macrostructure
965.1 𝑃𝑎 - 965.1 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0141_1

date_measured date_processed
12-04-2021 13-04-2021
temperature humidity
14.4 °𝐶 - 14.5 °𝐶 46.2 % - 44.9 %
pressure macrostructure
967.0 𝑃𝑎 - 967.0 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0142_0

date_measured date_processed
01-03-2021 01-03-2021
temperature humidity
12.5 °𝐶 - 13.0 °𝐶 52.2 % - 51.9 %
pressure macrostructure
969.3 𝑃𝑎 - 969.3 𝑃𝑎 flat
printer printer_binder
FDB Furan binder

panel_0142_1

date_measured date_processed
05-03-2021 05-03-2021
temperature humidity
13.0 °𝐶 - 13.2 °𝐶 51.6 % - 52.0 %
pressure macrostructure
958.2 𝑃𝑎 - 958.2 𝑃𝑎 flat
printer printer_binder
FDB Furan binder
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