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LSTP: Long Short-Term Motion Planning for
Legged and Legged-Wheeled Systems

Edo Jelavic∗, Kaixian Qu∗, Farbod Farshidian and Marco Hutter

Abstract—This article presents a hybrid motion planning and
control approach applicable to various ground robot types and
morphologies. Our two-step approach uses a sampling-based
planner to compute an approximate motion which is then fed to
numerical optimization for refinement. The sampling-based stage
finds a long-term global plan consisting of a contact schedule
and sequence of keyframes, i.e., stable whole-body configura-
tions. Subsequently, the optimization refines the solution with a
short-term planning horizon to satisfy all nonlinear dynamics
constraints. The proposed hybrid planner can compute plans
for scenarios that would be difficult for trajectory optimization
or sampling planner alone. We present tasks of traversing
challenging terrain that requires discovering a contact schedule,
navigating non-convex obstacles, and coordinating many degrees
of freedom. Our hybrid planner has been applied to three
different robots: a quadruped, a wheeled quadruped, and a
legged excavator. We validate our hybrid locomotion planner in
the real world and simulation, generating behaviors we could not
achieve with previous methods. The results show that computing
and executing hybrid locomotion plans is possible on hardware
in real-time.

Index Terms—Whole-body motion planning, optimization,
sampling, legged robot, legged-wheeled robot, legged excavator

I. INTRODUCTION

MOTION planning is one of the fundamental problems in
robotics, as it enables mobile robots to safely navigate

in uncontrolled environments. Among different strategies for
mobility, legs combined with wheels are the most promising
solution when it comes to tasks that require a high level of mo-
bility (legs) and efficiency (wheels) in challenging terrain [1]–
[3].

The motion planning for hybrid platforms, i.e. systems with
legs and wheels, is particularly challenging since, on one side,
legs and wheels increase the number of Degrees of Freedoms
(DoFs) the planner has to handle. On the other hand, motion
planning for legged-wheeled robots is particularly complex
since the combinatorial nature of stepping with legs (contact
schedule) is combined with the non-holonomic nature of
wheeled robots (rolling constraints). To tackle this challenging
problem, we propose a motion planning framework for legged
and legged-wheeled platforms based on different levels of
model fidelity and different prediction horizons. In particular,
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(a) Legged excavator

(b) Quadruped (c) Wheeled quadruped

Fig. 1: a) HEAP overcomes a virtual bridge too narrow to drive over it. Hence,
the stepping behavior emerges. We did not dig a ditch in our testing field.
However, the map supplied to the planner contains it. Left: HEAP driving on
three wheels over the bridge. Right: Visualization of the map the planner sees.
b) ANYmal climbing consecutive steps. c) ANYmal on wheels stepping up the
stairs (plan visualization). All the motions are also shown in the accompanying
video https://youtu.be/iQiNAy6sLlo.

a Numerical Optimization (NO) technique is used for short-
term planning with high fidelity (e.g. full kinodynamic model)
and randomized sampling for long-term planning with lower
fidelity (full kinematics in quasistatic conditions).

NO is frequently used for planning and control with legged
robots as it handles well high dimensional joint space, non-
holonomic constraints, and nonlinear dynamics constraints.
Examples can be found in the early work of [2], [4], [5], which
follows the decoupled planning approach for the footholds
and the base of the robot. With the advance of solvers and
more computing power, researchers have started solving whole
body planning problems in a receding horizon fashion fully
onboard [6], whereby discrete foothold locations and contin-
uous body motions are jointly optimized. However, a major
limitation is the sensitivity to initialization and local optima,
which are often caused by terrain constraints (e.g., collision
avoidance) [7]. Similarly, researchers tackled the locomotion
problem using Reinforcement Learning (RL) methods [8], [9].
Despite the unprecedented robustness and impressive field
deployments, RL methods still struggle to achieve precise and
coordinated foot placement required to negotiate terrains such
as stepping stones [6], [10].

On the other hand, Sampling-Based Planners (SBPs) [11]–
[14] can handle very non-convex environments since the ran-
domization allows them to escape local minima. The robotic

https://youtu.be/iQiNAy6sLlo
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community has been using SBP for planning contacts and
whole-body motions on a variety of legged robots [15]–[18].
However, including kinodynamic constraints in a sampling-
based planner remains an open research problem. Legged
robots have many DoFs which often results in long planning
times as SBP runtimes scale exponentially with configuration
space dimension.

This work presents Long Short-Term Motion Planner
(LSTP) combining the merit of optimization-based and
sampling-based methods while generalizing to different robot
types. The method is showcased on a quadruped, a wheeled-
quadruped, and a legged excavator. The SBP computes contact
schedule and keyframe (whole-body state) sequence quickly
(< 1 s) thanks to offline-computed roadmaps. Subsequently,
the NO refines the initial solution. Whole-body states from
SBP act as attractors for the optimization preventing it from
falling into bad local minima. Thus, we can handle both
complex terrains (thanks to SBP), many DoFs, and complex
system dynamics (thanks to NO). We run the NO in an Model
Predictive Control (MPC) fashion, thus ensuring stability and
robustness to disturbances [19].

A. Related Work

The robotic community has extensively studied motion
planning for legged robots, and NO emerged as one of the
most common methods, especially for short-term planning.
Examples of optimization-based controllers for quadrupeds
can be found in [4], [20] where Hierarchical Optimization
(HO) satisfies system constraints while tracking base twist
reference. Optimization has also been used to implement active
suspension behaviour on legged-wheeled robots [21]–[23].
However, these works do not have a look-ahead horizon in
the future and hence cannot overcome challenging obstacles.

Planning allows the robot to prepare for the oncoming
obstacles and thus increases the chances of overcoming them.
In [24], the authors use collocation to transcribe the problem
into an Nonlinear Program (NLP) and solve it using IPOPT
solver [25]. The optimization discovers whole-body maneuvers
using all DoFs to overcome various obstacles. This approach
has been extended to work with a legged-wheeled robot [26]
and a legged excavator [7]. Similar examples of using NO for
planning can be found in [27]–[29]. The authors above plan
offline once and then track the plan using a tracking controller.
In [24], [27], the tracking controller is based on HO from [4].

Keeping the contact schedule fixed and allowing the NO
to optimize for the whole-body motion is a common practice
in the legged-robot community. While NO can also optimize
over the contact schedule [7], [24], it often results in a very
non-convex NLP that is difficult to solve. This motivates the
use of Mixed-Integer Programs (MIPs) and L1 norms for
planning [30], [31]. MIPs have been successfully applied in
robotics, e.g., for humanoid robots [32]. While this is an
attractive problem formulation, the computation times scale
exponentially with the planning horizon.

Planning in the receding horizon fashion reduces the need
for an accurate tracking controller and increases the system’s
robustness. Many roboticists use NO in this fashion, and this

paradigm is often called MPC. In [2], [5], [20], [33] the authors
generate motions in a decoupled fashion (decoupled base
trajectory and footholds) using Zero Moment Point (ZMP)
criterion. The decoupled planning has also been applied to
legged-wheeled robots [2], [34]. The optimization problem
can be solved at high frequencies, up to 200Hz. However,
decoupling the problem reduces the controller’s generality.

Increased computing power and new methods based on dif-
ferential dynamic programming [35] have enabled optimizing
for base and limbs simultaneously [19]. Many recent works
solve a full optimization problem using a centroidal or single-
rigid-body model [6], [36]–[39]. Algorithm in [40] solves a hi-
erarchical MPC, where a high-fidelity model (near future pre-
dictions) is combined with a lower-fidelity model (predictions
further away in time). Optimizing over full dynamics without
decoupling makes planned motions stabler [40]. Moreover,
the MPC has progressed to the point where it is possible to
incorporate the terrain constraints and solve the optimization in
real time [41], [42]. [43] shows a two-stage optimization where
a motion library is first computed offline and then executed
using online MPC. We also follow the approach of using
perceptive MPC as a backbone for our refinement planning
stage.

While NO is a great tool for dealing with complicated
nonlinear dynamics and many DoFs, it inevitably falls prey
to local minima. Some researchers have tackled this problem
by employing stochastic optimization [44]. While the planner
can cope with challenging terrain, the motion plans take up
to several minutes to compute. Another stream of research
uses different types of planners to cope with local minima;
most of them are based on Rapidly-exploring Random Trees
(RRTs) [13], [14], Probabilistic Roadmaps (PRMs) [11] or
grid-based methods (e.g. A∗ [45]).

Grid-based methods discretize the workspace and use a
graph search algorithm (A∗ being a popular choice). Early
works [46] can generate complex motions by defining a
suitable potential field over the workspace. However, motions
like crawling narrow passages and ladder climbing come at
the cost of high computation times (up to 3 h). More recently,
[47], [48] propose motion planning for the legged-wheeled
robot Momaro based on A* that runs in real-time by combing
handcrafted stepping motions with a carefully designed cost
function.

Early works utilizing SBPs generate complex maneuvers,
such as free climbing or ladder climbing, yet with very long
computation time (e.g., 16min for 32 steps) [15], [16], [46].
[49] shows RRT-based whole-whole body motion planning
with a Nao humanoid. The work builds upon ideas presented
in ([50], [51]), where samples are drawn from pre-computed
sets. While gracefully handling whole-body manipulation on
flat ground, the approach is unsuitable for traversing obstacles
since the set of stable configurations is strongly dependent on
the terrain. Recently, more efficient approaches are proposed
for humanoid and quadrupedal robots [17], [18], [52], [53].
SBPs can deal with very complex environments, and even
compute limb contact schedule [17]. However, creating kin-
odynamically consistent motion directly in the SBP remains
challenging, possibly leading to complex planning pipelines
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and long planning times.
Replacing the SBP with an RL policy can be an effective

alternative for foothold planning. In [54], RL is used to plan
footsteps which are then tracked by the RL based controller.
[55] also uses an RL footstep planner with a model-based
tracking controller executing the plan. [56] uses a similar
strategy except that the model-based tracking is happening in
the latent space. While promising, these methods still require
retraining for different types of terrains and cannot plan acyclic
gait patterns.

Global planning typically relies on a sampling-based or
grid-search technique with reduced model order. The resulting
high-level planner is then combined with a local planner or
controller [47], [57] that are often based on cyclic gait pattern.
[58], [59] extends the SBP with neural network to predict the
terrain difficulty for the underlying tracking controller. The
introduced cost estimator requires re-training of the neural
network estimator in case of a controller swap.

Combining sampling and optimization-based planning is
a sound strategy to escape the local minima and enforce
kinodynamic constraints. One possible combination is to solve
a Boundary Value Problem (BVP) for computing connections
inside the SBP. BVP can typically be solved either for low
DoF systems (e.g., a vehicle) or with an analytical solution
(e.g. [60]–[63]). [64], [65] computes transition feasibility for
a humanoid robot and successfully transfers the solution to
hardware. Another possibility is using sampling or grid-based
search to provide an initial guess for the optimization and
refine the motion plan. The two-stage approach has been
widely used in the literature, most notably for manipula-
tion problems [66]–[68]. In [69], motion plans for a trailer
composition are calculated, and in [70], the authors plan
whole-body motions for a humanoid robot without planning
a contact schedule. We followed the idea of using the two-
stage approach, and we extended it to be used for whole-body
motion and contact planning.

This work computes approximate whole-body plans with an
SBP and then refines them with MPC. We follow the idea of
using contact dynamic roadmaps introduced in [52] to speed
up the SBP which are an extension of dynamic roadmaps [71]
for legged robot usage. We further extend the contact roadmap
to handle robots with heavy limbs. Our planner leverages
MPC from [19] for tracking and re-planning on a shorter
time horizon. We propose a strategy for using kinematic MPC
on legged excavators operating in challenging terrain where
terrain adaptation is imperative, but precise torque control is
often unavailable.

B. Contribution
This work presents LSTP, a combined sampling and

optimization-based planner for mobile robots with many DoFs.
The planner consists of a long horizon Initialization Step with
SBP computing a contact schedule and a sequence of keyframe
whole-body configurations and a short horizon Refinement
Step with MPC satisfying dynamics and contact constraints.
We introduce the following contributions:

• We extend the dynamic roadmap data structure to be
applicable for robots with heavy limbs, such as legged

excavators. Compared to [52], we achieve faster roadmap
lookup. This allows our SBP planner to rapidly find plans
under 0.5 s over challenging terrains such as stepping
stones.

• The proposed LSTP generalizes to a variety of different
legged mobile platforms. We exemplarily demonstrate
this on a quadruped, a wheeled quadruped with non-
steerable wheels, and a legged excavator with steerable
wheels and an arm. So far, only generalizations for
different legged robots have been shown in the [17]

• We present and apply for the first time a whole body MPC
controller to a legged excavator, enabling it to execute
motions on par with skilled human operators. We retain
all the qualities from the controller presented in [27] and
extend it to execute new motions

• We extensively verified the proposed planner in simula-
tion and experimentally on three different robots, includ-
ing a quadruped (ANYmal), legged-wheeled quadruped
(ANYmal on wheels), and a legged excavator (Hydraulic
Excavator for Autonomous Purpose (HEAP)).

With respect to our previous work [72], we generalize the
SBP planner for different robots, show hardware experiments
on multiple platforms and design a whole-body control system
for HEAP. Lastly, we remove the need for offline optimization-
based refinement and introduce a real-time MPC.

II. PRELIMINARIES

Notations used for robot’s limbs are the following: LF
stands for Left Front, and similarly we have, RF, LH, RH
(Right Hind). ARM denotes HEAPs arm. Label EE means End-
Effector. Left superscript denotes the frame (e.g. Bp means a
position in the base frame B) and defaults to world frame W
if omitted. Right superscript indicates a component of a vector
(e.g. pz is the z component of p). T denotes a homogeneous
transform composed of translation t and rotation R.

Our planner computes a trajectory that is T seconds long,
given the starting base pose TB(t = 0) = TB,start and
TB(t = T ) = TB,goal where TB,start and TB,goal are given
poses of the robot’s base. We always command the goal pose in
SE(2) since the height, roll, and pitch are well-defined by the
terrain around the goal pose (see Sec. III-C1). No additional
constraints on the joint configurations are imposed at TB,goal.
Proposed pipeline is visualized in Fig. 2. The planner is
divided into an Initialization step computing an approximate
long-term plan Γ and a Refinement step computing a short-
term plan satisfying all the constraints and exhibiting smooth
motions.

The planner perceives the world via a multilayered map,
which can be defined as mapping f : R2 → R from (x, y)
coordinates to various functions f(x, y). It always receives
elevation data h(·, ·) and then partitions the terrain (map) into
traversable part T and untraversable part ¬T . Any contact
point needs to be in the traversable area T :

(px,py) ∈ T ≡ sdf2(p
x,py) ≥ δ ≥ 0, (1)

where δ is a user-defined parameter and sdf2(·, ·) represents
a 2D Signed Distance Field (SDF) with the positive distance
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Desired base pose (SE2)

Initialization 
(SBP planner)

Refinement 
(MPC optimization)

Long term initial plan 𝚪

Short term refined plan

Robot with controller

Terrain map

Robot state

Fig. 2: Planning pipeline overview

meaning the point lies in T . All contact points need to be
at least δ away from the ¬T . sdf2 is calculated using [73]
and stored as a layer in the map, relying on the grid map
implementation from [74].

A legged robot can in general have both limbs without
wheels and limbs with wheels (e.g. HEAP has 4 legs with
wheels and an arm). We say that ith limb is in contact when
it’s close to the surface,

|pz
ee,i − h(px

ee,i,p
y
ee,i)−Rw| ≤ ϵ, ϵ ∈ R+, (2)

where pee,i denotes the position of ith limb End-Effector (EE)
and h(·, ·) gives the terrain height. Rw is the wheel radius
and is set to 0 for limbs without wheels. ϵ ∈ R+ is used
to control contact proximity. Eq. 2 assumes that the contact
point is directly underneath the wheel’s center, which is often
violated. However, the tracking controller can compensate for
this error (see experiment section).

III. LONG TERM PLANNING: INITIALIZATION STEP

The Initialization Step computes an approximate long-term
(global) solution to the planning problem. The approximate
solution is a sequence of keyframe configurations with a
feasible contact schedule. Each keyframe is a statically stable
whole-body configuration with contact flags. Simple interpo-
lation between keyframes can violate system constraints (e.g.,
rolling constraints); hence, the solution is only approximate.
The Initialization Step uses RRTs [12], [14] to explore the
space, but one could also use PRM planners [11]. This chapter
first outlines the computation of limb roadmaps that happens
offline. Limb roadmaps store the mapping between joint con-
figurations and EE positions and are used to speed up foothold
computation during the planning phase. Subsequently, the
chapter describes the terrain preprocessing pipeline, triggered
whenever the map is updated. The last section combines all
the elements in a sampling-based planner.

A. Roadmap Precomputation

A roadmap is a mapping between ith limb joint angles qi
and the EE position in the base frame Bpee,i. Each limb has
its own base-pose invariant roadmap (expressed in the base
frame). Examples of roadmaps are shown in Fig. 3. Generating
a roadmap offline and using it online is an idea introduced
in [52]. Here we extend the roadmap to store mapping between

the ith limb joint angles qi and the position of its Center of
Mass (CoM) Bpcom,i. The CoM location is needed to test
the support polygon stability criteria for keyframes. The CoM
position of a robot with limbs I can be computed as:

Bpcom =
1

M

(
Bpcom,B mB +

∑
i∈I

Bpcom,i mi

)
, (3)

where M denotes the total mass, mB the mass of the robot
base, and mi the mass of ith limb. Evaluating Eq. 3 is much
faster than computing the CoM from scratch, and it allows us
to rapidly check the stability criterion during online planning.
For robots with heavy limbs, such as HEAP or humanoid
robots, evaluating Eq. 3 is essential to ensure stability.

Besides stability, no self-collision should occur for any
given configuration of the legs. A simple way to prevent
self-collision is to enforce the roadmap vertices to stay in
their respective quadrants. For the HEAP arm, preventing all
collisions in the roadmap generation might be too restrictive.
Hence, the collision-free arm movement is planned during the
online planning phase by invalidating portions of the roadmap
colliding with legs or the terrain. Choosing the number of
vertices in the roadmap involves a tradeoff. Many vertices
approximate the workspace well but require more computation
for online planning. We found that 4000-5000 vertices yielded
an acceptable tradeoff for a legged robot. For HEAP, we used
300 vertices in the leg roadmap and 3000 vertices in the
arm roadmap. The connection between neighboring vertices
is rejected if it is longer than dmax. We used dmax =
0.3m for HEAPs legs and dmax = 1m for the arm. For
the legged robot we used dmax = 0.05m. Space around the
robot is voxelized, and we store vertices within respective
voxels. Voxelization accelerates configuration lookup since
a good guess of foothold typically exists, e.g., around the
default position. Finding candidate footholds takes 9 ± 9µs
for a quadruped robot. We avoid transforming the terrain into
the roadmap frame and search vertices only around the best
guess instead of searching the entire roadmap and randomly
sampling a feasible one [52]. In implementing their method,
just transforming the terrain without any foothold search takes
35± 10µs.

B. Terrain Preprocessing

The only input to the terrain preprocessing module is a
raw elevation map (h) implemented using a grid map data
structure [74]. From this elevation, we compute additional
layers for surface normals, traversability SDF, elevation SDF,
and filtered elevation. The relations between different tasks
and their usages are illustrated in Fig. 4.

Surface normals are computed by fitting a tangent plane to
a neighbourhood within a small radius of each grid cell (see
Appendix A).

Traversability SDF is the SDF in 2D storing the distance of
any points from the nearest untraversable region (see Fig. 5c).
We refer to this field as sdf2 in further text. More details
about how terrain traversability is classified can be found in
Appendix A.

Elevation SDF is a signed distance field in 3D which is used
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(a) Roadmap ANYmal legs (b) Roadmap HEAP legs (c) Roadmap HEAP arm (d) Collision spheres for ANYmal base and limbs

Fig. 3: Roadmap vertices (red spheres) and edges (blue lines). Each red dot represents an end-effector position in R3. a) Roadmap for ANYmal robot (only
vertices shown). Each leg has 5000 vertices in the roadmap. b) HEAP legs have 300 vertices and about 2000 edges in the roadmap. c) HEAP arm with 1000
vertices and about 8000 edges shown. d) Collision spheres approximating the geometry of the legged robot. We use ten balls of a radius of 20 cm for the
base, two balls of 7 cm radius for each knee, and three balls of 3.5 cm radius for each shank.

Raw elevation map Surface normals Traversability estimation

Traversability SDF Filtered elevation Elevation SDF 

Obstacle avoidance Base pose calculationFoothold selection

Fig. 4: Terrain preprocessing module overview.

for collision avoidance. The value is positive if the point is
outside of the terrain and negative if the point lies inside the
terrain. We refer to the 3D SDF field as sdf3 in further text.
sdf3 is computed using the implementation from grid map
package which can be found open source1.

Filtered elevation, denoted by hf , is a smoothed version of
the terrain height visualized in Fig. 5d. The smooth elevation
is used by the base pose selection module (Sec. III-C1).
Implementation details can be found in Appendix A.

C. Sampling-Based Planning

With the roadmap computed offline and the terrain pre-
processed, we are ready to use the RRT based planner online.
The planner attempts to connect TB,start and TB,goal geo-
metrically (only considers the kinematics). The state space S
is defined in Eq. 4 with nJ being the number of limb joints
(actuated) and {0, 1}|I| contact states of all limbs I. SBPs
main components are described below.

S := R3 × SO(3)× RnJ × {0, 1}|I|. (4)

1) Sampling: Although the planner is a full 3D planner, the
sampling module operates in SE(2) space which is motivated
by the use of legged systems. Since legged robots locomote by
interacting with the terrain, their base has to be in the vicinity
of the terrain surface. Therefore, we uniformly sample the
base’s x, y position and the orientation in yaw γ and compute
the remaining DoFs from the terrain features. Note that the
base pose selection module operates on filtered terrain, which
only retains prominent terrain features (see Sec. III-B). Roll
α and pitch β are computed from the terrain normal n such
that the robot roughly stays parallel to the surface below the
base. The z coordinate can then be computed simply as z =
hdes + hf (x, y) where hdes is a user-defined desired height
above the ground and hf (x, y) is the filtered terrain height.

1https://github.com/ANYbotics/grid map

2) Expansion: Expansion refers to connecting the newly
drawn sample to the rest of the tree. The maximum connection
length is a tuning parameter (15m for HEAP and 5m for the
legged robot). The connecting path for the base is computed
using Reeds-Shepp (RS) curves [75], which give an optimal
path between two poses in SE(2) while respecting a minimal
turning radius constraint. Upon drawing a random sample
(x, y, γ), we use RS curve length drs to determine its nearest
neighbors. The RS path is computed without considering any
terrain information; it just helps enforce the rolling constraints
for robots with steerable wheels. Using straight-line connec-
tions might render the problem infeasible in the refinement step
(see Sec. V). For legged robots, we also use RS curves with
small turning radii since they naturally minimize sideways
motions, typically less stable and slower than locomoting
forwards.

3) Feasibility Checking: SBP checks the connection feasi-
bility before connecting the newly drawn sample to the rest of
the tree. Unlike [17] where a guiding path is computed first, we
do not add the connection into the tree before calculating the
entire trajectory and ensuring its feasibility with four criteria.

• Kinematic Reachability: A contact must lie inside reach-
able workspace which is approximated by the roadmap.

• Collision Avoidance: Robot’s base and limbs must not be
in collision with the environment for each state along the
proposed connection.

• Valid Contact Positions: All contacts need to lie within
traversable terrain T .

• Stability Criteria (relaxed): CoM is allowed to deviate
at most ϵs (parameter) from the support polygon edge.
In addition, we impose a lower bound on the support
polygon’s area. For ϵs = 0 the robot is statically stable.

Kinematic reachability can be verified by transforming
roadmap vertices into the world frame and then using Eq. 2.
This can be evaluated quickly using the pre-computed roadmap
and the elevation map. The collision check can be easily
enforced using sdf3 from Sec. III-B. It suffices to ensure
that collision spheres B(c, r) (ball of radius r centered at
c) are outside the terrain, i.e. sdf3(c

x, cy, cz) ≥ r. Fig. 3d
shows an example of collision geometry for the legged robot.
Contact validity can be checked using sdf2 from Sec. III-B
and Eq. 1. Lastly, the algorithm checks the support polygon
stability criterion, which does not hold in arbitrary terrain
configuration, and care needs to be taken to ensure stability.
We empirically found that the refinement step can stabilize

https://github.com/ANYbotics/grid_map
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(a) Raw Elevation (b) Elevated Mean (c) Untraversable (black) (d) Filtered terrain

Fig. 5: Intermediate steps in terrain preprocessing for stepping stones terrain. a) Raw elevation map input. b) Elevated mean (see Appendix A). c) Untraversable
terrain shown in black color. d) Filtered terrain, used by the base pose selector module.

Fig. 6: Addition of a new node into the RRT tree (expansion step). Red circles
and full black lines are nodes and paths that make the current RRT tree. The
newly sampled node (green) has to be connected to the rest of the tree. For
a successful connection, all subnodes on the connecting path (small green
circles) have to be valid.

the robot even when the CoM projection is slightly outside
the support polygon (controlled by ϵs).

Fig. 6 depicts the feasibility checking. Upon drawing a
new sample (large green node) as described in Sec. III-C1,
we compute a RS connection (dotted line) to the new node,
as described in Sec. III-C2. Subsequently, the dotted line is
discretized into subnodes (small green circles) using an RS
interpolation method [76]. The subnodes do not necessarily be
equidistant. Next, for each subnode we generate a full 6 DoF
pose using the filtered elevation layer inside the grid map.
Finally, each subnode undergoes feasibility checking, ensuring
that all criteria above are satisfied. If every subnode is feasible,
the new state and the connecting path are added to the tree.
For detailed description, refer to Sec. IV.

4) Cost Function: An optimizing SBP in the Initialization
Step allows us to minimize a user defined cost function. Eq. 5
introduces our cost c, composed of RS path length drs(Γ)
and sum of robot-specific costs on each state L(s) along the
trajectory Γ.

c = drs(Γ) +
∑
s∈Γ

L(s), Γ ⊂ S. (5)

Robot specific costs are given with Eq. 6 (HEAP) and Eq. 7
(ANYmal and ANYmal on wheels). For HEAP, we penalize
the legs going over untraversable terrain ¬T to prefer driving
over stepping (as shown in our previous work [72]). ¬T

1ee,i

is an indicator function with a value 1 if the ith limb EE is
inside the untraversable area ¬T . w is the user-defined weight.
For the legged robot, we penalize the roll (α) and pitch (β)
angles of the base with different weights.

L(s) = w
∑
i∈I

¬T
1ee,i for HEAP, (6)

L(s) = wα |α|+ wβ |β| for others. (7)

IV. FEASIBILITY CHECK

We introduce a subroutine called One-Step Motion (OSM),
which does additional discretization between the green subn-
odes in Fig. 6 to ensure connection feasibility. We describe

?

Fig. 7: Path validation using OSMs. Each gray node and arrow refers to an
FSS and an OSM, respectively. Crosses represent failed OSM creations. Top
to bottom: we first create an FSS for vnn, and then successfully generates
the first OSM (the first length defined in lentgh candidates L). The second
OSM tries two lengths before the third length succeeds. The third OSM tries
one length before the second one succeeds. Finally the last OSM connects to
vnew in one try.

the algorithm for the legged robot first since it is the most
general, and then the special cases for other robots.

When all feet are grounded, the robot is in a Full-Support
State (FSS). OSM is the transition between two FSSs, during
which at most one swing phase (corresponding to one step)
happens for each leg. We assume the robot constantly moves
between two FSSs which will always result in a short full
stance phase. This chapter describes how OSM is used inside
RRT and subsequently all the subroutines.

A. Using One-Step Motion with RRT

Proposed OSM is used inside RRT expansion step. After
sampling the base pose, the new vertex (vnew) needs to be
connected to the tree. We find a nearest neighbor in the tree
(vnn) and use Alg. 4 (see Appendix B) to check validity
between the two samples. If vnn and vnew can be connected,
Alg. 4 returns a sequence of OSMs that achieve the connection.
The maximum length of the edge between vnn and vnew can
be tailored to different terrains.

OSMs do not have to be the same length. The plan-
ner receives a user-defined list of lengths for OSM, L =
[l1, l2, . . . , ln] which is sorted in descending order. Empirically
we found that the planner makes use of longer connections
first, which achieve fast progress in easier terrains and resorts
to using shorter connections when the terrain gets harder. The
process of adding a new vertex with OSMs of different lengths
is illustrated in Fig. 7.
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Fig. 8: OSM with length = 20 cm created on stairs (left) and obstacles (right).
Terrain color represents the height value (white: maximum, blue: minimum).
The base trajectory is shown in green, limb trajectories in separate colors.
The spheres on the terrain show liftoff and touchdown locations.

Fig. 9: FSS computation on stairs (white shows traversable terrain, black
untraversable). Left: Base and nominal hip positions (blue spheres). Mid-
dle: Desired footholds (red spheres) computed using nominal hip positions.
Right: FSS with leg configurations.

B. One-Step Motion Creation

OSM creation routine (Alg. 2 in Appendix B) receives a
full state as a starting point and a base pose for the goal. It
first generates an FSS for the goal base pose, then discretize
the connecting RS path, find a feasible contact schedule, and
create valid swing motions. Motion duration is computed in the
end. The algorithm returns true if a feasible OSM is discovered
and false otherwise. We illustrate an example OSM trajectory
on two different terrains in Fig. 8.

1) Full-Support State Computation: FSS creation subrou-
tine receives a base pose and computes joint configuration (one
keyframe). We define nominal hip positions2 which are shown
with blue spheres in Fig. 9 on the left. A desired foothold is
computed as a traversable point on the terrain surface closest
to the nominal hip position. Subsequently, joint positions q are
created by searching valid roadmap vertices in a user-defined
neighborhood of the desired foothold. A vertex is considered
valid when foot position is in contact with the traversable
terrain T (Eq. 1 and Eq. 2) and the corresponding leg collision
free (see Sec. III-C3). In case no valid vertex is found, FSS
creation for this state returns failure. Fig. 9 shows FSS creation
on the stairs. One FSS corresponds to a green subnode in Fig. 6
and Fig. 7.

2) Full-Support State Connection: The base path connect-
ing the OSM start and the goal is discretized into subnodes
with the detailed algorithm description found in Appendix B.
In [52], two FSSs connect with a creep gait, i.e. the robot
first moves the limbs and then the base with all 4 limbs on
the ground. In contrast, our two-stage approach can accom-
modate for simultaneous motion of the base and swing limbs,
which increases the overall motion speed by 35% and allows
overcoming larger obstacles.

3) Contact Schedule Computation: Once the OSM con-
nection has been discretized into subnodes, the algorithm

2computed by projecting nominal footholds onto the base frame’s x-y plane

LF

RF

LH

RH

LF

RF

LH

RH

p = (LF, RF, LH, RH) p = (LF, RF, RH, LH)

Fig. 10: Contact schedule computation for swing orders (LF,RF,LH,RH)
and (LF,RF,RH,LH). The black dots on the top represents the OSM
states. Each red arrow points from the start to LCB, and each blue one from
the goal to ECC. Swing phases generated from Alg. 1 (see Appendix B) are
shown as gray rectangles. There exist many other feasible contact schedules
(e.g., move swing phase to the left, increase the size of swing phase).

attempts to compute a feasible contact schedule. Generally,
the robot has to break contact once the foot is at the edge of
its workspace. This observation has been used in [17] where
FIFO queue is used to decide which limb to recover first. In
contrast, we allow for earlier contact breaks giving the planner
more freedom to reshape the support polygon in anticipation
of obstacles. First we find the latest contact breaking point and
earliest contact establishing point for each limb. We define the
Latest Contact Break (LCB) for limb i as the latest subnode
when limb’s swing phase must start (we must break contact
because the limb is in the kinematic limits). The counterpart of
LCB is the Earliest Contact Creation (ECC), i.e. the earliest
subnode that can establish a valid contact with footholds at
OSM goal state. Contact schedule is computed by solving a
feasibility problem (see Eq. 33) where LCB and ECC define
the constraints. Essentially, we seek to compute contact breaks
no later than the LCB and contact creations no earlier than
ECC. Examples of contact schedule computation are shown
in Fig. 10 with detailed description given in Appendix B.

4) Swing Motion Validation: The last step in OSM creation
is to validate swing motion. We look for feasible swing tra-
jectories after finding the contact schedule. Swing motion can
be verified by invalidating portions of the roadmap and then
performing the graph search, as suggested in [52]. However,
in our approach, the roadmap is not stationary during a swing
phase because the base moves. We instead search collision-free
vertices near the desired swing position that are user-defined
distance above the terrain.

5) Timing Computation: Transition duration between two
states along the path is computed as follows:

∆tl = t(i+ 1)− t(i) =
1

vJ

(
∥qJ(i+ 1)− qJ(i)∥∞

)
, (8)

where qJ is the vector of joint positions and vJ is the expected
mean joint velocity (same as [68], [72]).

C. Legged-Wheeled Robot
By modifying the LCB and ECC search, we can reuse the

OSM concept for legged-wheeled robots such as ANYmal on
wheels [2]. A description on how to find LCB and ECC for
a legged-wheeled robot is given in Appendix C. Compared to
legged robot duration ∆tl (see Eq. 8), one needs to consider
the average driving speed. Transition duration between two
states along the path is thus slightly different:

∆tlw = max
{
∆tl,

1

vB

(
∥rB(i+ 1)− rB(i)∥2

)}
, (9)
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where rB is the position of the base and vB is the expected
mean driving speed.

D. Legged Excavator

OSM method is slightly modified to work for systems like
legged excavators, whereby the planner has to handle legs
with wheels that can move and an arm that cannot move
when in contact. We discretize the connection as described
in Sec. III-C3 with maximal distance between the subnodes
being 20 cm (green circles in Fig. 6).

It is most efficient to keep all four legs in contact and drive,
which can be seen as FSS for HEAP. The planner allows
configurations with minimum three contact limbs (e.g. 2 legs
and an arm). When the contact state switches, e.g., HEAP
needs to lift Left Front (LF) leg while Right Hind (RH) is
airborne, we insert an FSS in between, which is a special case
of OSM where the length is not predefined.

When the arm has to move, HEAPs base stops, and we use
the roadmap to find a collision-free path similar to [52]. If
the arm has to establish contact (e.g., for going over a gap),
we find the corresponding contact establishing and contact
breaking point. The arm contact position p∗ is found by
solving

min ∥pcc − pcb∥ (10)

and setting p∗ = (p∗
cc + p∗

cb)/2.0, where pcb and pcc are
positions of valid vertices in arm roadmap at contact break
and creation subnodes. Each contact node’s arm joint angles
are computed solving Inverse Kinematics (IK) q = IK(p∗) as
in [72].

V. SHORT TERM PLANNING: REFINEMENT STEP

Optimization is the backbone of Refinement step. It refines
the keyframe trajectory Γ found in the Initialization step to
ensure smooth, stable, and feasible motions. Γ is a sequence
of full body poses and contact states. Full states help the opti-
mization convergence instead of just providing base poses (see
Sec. VII-B). Optimization can modify the whole body states
but not the Contact Schedule. As opposed to offline Trajectory
Optimization (TO) [7], [72], we solve the optimization in an
MPC fashion, which brings robustness during execution as it
can compensate for small deviations from the reference Γ.
The optimization can deviate from the initial plan if fulfilling
systems constraints or rejecting disturbances requires so.

The Refinement Step solves an Optimal Control Program
(OCP) given below:

min
x,u

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt

s.t. x(t0) = x0

ẋ(t) = f(x(t),u(t), t)

g1(x(t),u(t), t) = 0

g2(x(t), t) = 0

h(x(t),u(t), t) ≥ 0,

(11)

where L is a time-varying running cost, Φ is the cost at the
terminal state, and T is the prediction horizon. The state and

input are represented by x and u, respectively. A Riccati-
based solver solves the optimal control problem in Eq. 11.
In particular, we use the Differential Dynamic Programming
(DDP) method from [38] and the Direct Multiple Shooting
(DMS) scheme from [6]. Both methods handle state-input
equality constraints g1 using the projection technique [77].
Pure state equality constraints g2 are enforced using aug-
mented Lagrangian [78]. The state-input inequality constraints
h are handled using relaxed barrier functions as proposed
in [38]. Transcription implementation, as well as optimization
solvers, are publicly available in the OCS2 optimal control
toolbox [79].

A. MPC for Legged Robot

OCP given with Eq. 11 has been solved using Sequential
Linear Quadratic (SLQ) algorithm presented in [38]. We used
prediction horizon of T = 1 s with the maximal step size of
0.01 s. Below we describe the dynamic model and constraints
used in the MPC formulation.

1) System Dynamics: Legged robot state is composed of
the position of the CoM p in world frame, Euler angles θ
(Z − Y ′ − X ′′ sequence) of the base, joint position qJ,i for
leg i = {1, 2, 3, 4}, and the linear velocity Bv and the angular
velocity Bw of CoM. The total number of joints for the robot
is nJ = 12. Since the legs are much lighter than the body,
CoM is assumed to be configuration invariant. Robot’s state
can be written as x =

(
p, θ, qJ ,

Bv, Bω
)
∈ R24 and

control input u as u =
(
uJ ,

Bλee

)
∈ R24, where uJ is

the joint velocity and Bλee,i ∈ R3 is the contact force at ith

EE. We use a kinodynamic model describing the dynamics of
a single rigid free-floating body together with the kinematics
for each leg. The Equations of Motion can be found in [38].

2) Cost Formulation: MPC should track Γ, however it is
allowed to deviate. Hence, deviation from the reference state
is penalized quadratically. The reference twist is computed
using finite differences, and the reference forces are equally
distributed on stance feet. High-frequency input is also penal-
ized as proposed in [80].

3) Constraints: We use C to denote the set of contact limbs.
Zero Force or Velocity Constraint: A contact leg cannot

change its position while a swing leg cannot generate a contact
force, {

vee,i = 0, i ∈ C,
λee,i = 0, i /∈ C.

(12)

Foot Constraint: The foothold of a contact leg must be
placed at its reference from Γ, while for a swing leg, its foot
should maintain a certain height to avoid foot scuffing,{

pee,i = p̄ee,i, i ∈ C,
pz
ee,i ≥ h(px

ee,i,p
y
ee,i) + c(t), i /∈ C,

(13)

where pee,i is the foot position of ith limb and p̄ee,i is
the reference. h(·, ·) evaluates the terrain height. c(·) is the
clearance function used to minimize the constraint violation
and thus make the problem more numerically stable for the
optimizer (see Fig. 11).
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mid-swing

t

c(t)

initial
swing

terminal
swing

entire swing phase

Fig. 11: The ground clearance function. It gradually increases to a user-defined
value and then gradually decreases. Such a shape minimizes violation in the
initial and terminal swing phases since feet cannot change state instantly.

Friction Cone Constraint: We use the perturbed cone pro-
posed in [38] to avoid differentiability problems around the
origin.

hcone,ϵ = µcFz −
√
F 2
x + F 2

y + ϵ2 ≥ 0, (14)

where µc is the friction coefficient, ϵ is a control parameter,
and F = [Fx, Fy, Fz] is the contact force expressed in the
local frame of the terrain surface.

Push Force Constraint: To enforce stability margins, the
vertical component of contact forces Wλz

ee,i for contact legs
needs to be larger than a user-defined value,

Wλz
ee,i ≥ λz,min, ∀i ∈ C. (15)

Leg Collision Constraint: sdf3 is used to prevent collision
of the knee and shin with the terrain,

sdf3(c) ≥ r for all limb collision spheres B(c, r). (16)

Limb collision spheres for ANYmal can be found in Fig. 3d.

B. MPC for HEAP

The OCP for HEAP is transcribed into a finite-dimensional
NLP using DMS [81] and solved with Sequential Quadratic
Programming (SQP). We used prediction horizon of T = 15s.
Below we describe the differences in OCP formulation com-
pared to the legged robot.

1) System Dynamics: HEAP state is given with x =(
p, θ, qJ

)
∈ R31. Control input can be written as u as

u =
(
v, θ̇, q̇J , α

)
∈ R36. Euler angles θ (Z − Y ′ − X ′′

sequence) parametrize the rotation, p is the base position, qJ
are joint positions and v is the linear velocity of the base. α
is a vector of weights used to enforce robust support polygon
constraint in Eq. 20. System dynamics can then be described
as:

ẋ(t) = S u(t), (17)

where S is a selection matrix of the form S =
[
I31×31 031×5

]
.

Following our previous work [7], HEAP uses a kinematic
model since such a heavy machine is operated in quasi-static
conditions.

2) Cost Formulation: The cost function follows the same
principle as for the legged robot, i.e., the solution should stay
close to Γ computed by the SBP. Since HEAP has one hy-
draulic circuit that spins all wheels at approximately the same
velocity, we add cost terms that help bridge the simulation
to the hardware gap. The cost term below minimizes slip by

penalizing the linear wheel velocity difference between the left
and the right side.

L(x) =
∑

i,j∈Cl

∥∥vee,i − vee,j

∥∥2
2
, (18)

where vee,i denotes the velocity of the wheel center. We use C
for contact limbs (legs and arm) and Cl for contact legs only.

3) Constraints: Rolling Constraint prevents lateral slip, i.e.
linear velocity of the wheel center stays perpendicular to wheel
joint axis.

Eivy
ee,i = 0, ∀i ∈ Cl, (19)

with Eivy
ee,i being y component of the wheel center velocity

expressed in ith end-effector frame Ei. Optimization is not
aware of the wheel joint, it treats the wheel as a moving contact
point which reduces number of variables.

Stability Constraint: We use the robust support polygon
constraint introduced in [7] which avoids the need to compute
half spaces manually:∑

i∈C

(
αi +

ϵ

|C|

)
px,y
ee,i = px,y

com ∈ R2,

∑
i∈C

αi = 1− ϵ, 0 ≤ ϵ ≤ 1, αi ≥ 0,

(20)

where αi are part of the input vector u, ϵ is a user-defined
parameter, and pcom is the position of CoM. The bigger the
ϵ, the more conservative we are, i.e., the minimum permitted
distance of CoM to the edge of the support polygon becomes
larger. We set ϵ = 0.1 in this work.

Swing Limb Constraint: We follow the same formulation as
for the legged robot. The user-defined height threshold was
0.6m for the legs and 0.9m for the shovel.

Contact Limb Constraint: We relax the foothold constraint
from Eq. 13; MPC can optimize contact position as long as
the limb stays grounded within the traversable area (Eq. 1 and
Eq. 2).

VI. CONTROL

A. Legged Robot Control

The Low-level Whole Body Controller (WBC) for the
legged robot is based on the hierarchical optimization from [4].
It considers full nonlinear rigid body dynamics of the robot
and it solves a series of Quadratic Programs (QPs) tasks in a
prioritized order through nullspace projection. Table I shows
tasks and priorities used. WBCs output torques are augmented
with a PD term for stance legs. For more details on the specific
WBC version, the reader is referred to [6].

B. HEAP Control

Compared to the legged robot and our previous work [27],
we omit the WBC based on HO [4]. Instead, through the use of
Virtual Model Controller (VMC) we retain the good qualities
from our previous work [27] including the terrain adaptation.
The new controller can use the arm as a support limb and it
shows higher robustness. Lastly, the presented controller relies
on existing tuning of hydraulic cylinders which removes the
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TABLE I: WBC task setup. Smaller number indicates higher priority.

Priority Type Task
1 = Floating base equations of motion
1 ≤ Joint torque limits
1 ≤ Joint position limits
1 ≤ Joint velocity limits
1 ≤ Friction cone
1 = Stance legs no contact motion
2 = Swing leg tracking
3 = Base orientation tracking
3 = Base translation tracking
4 = End-effector force tracking

need for laborious tuning of the low-level torque control loops.
Below we describe how VMC is combined with MPC and how
each individual joint is controlled.

1) Virtual Model Control: Motion of the CoM is governed
by the net resulting force acting on it. Assuming quasi-
static conditions (p̈ = θ̈ = 0), virtual force fv and virtual
moment mv can then be computed by PID control law. This
is expressed in Eq. 21.

Mg +
∑
i

λz
c,i = fv = PID(zdes − zmeas), (21)∑

i

rc,i × λc,i = mv = PID(θdes − θmeas).

p is the position, g is the gravitational acceleration, and θ is
rotation parametrized by Euler angles. λc,i is a contact force
at ith contact point and rc,i is the distance from the contact
point to the CoM. We only regulate the height in z direction,
roll θr and pitch θp angle of the base. The contact forces
required to produce desired virtual force and moment can then
be recovered by solving a QP:

min
Λ

ΛTWΛ

s.t. Λlb ≤ Λ ≤ Λub

AΛ = b,

(22)

where Λ is a stacked vector of contact forces, W is a
weighting matrix and the constraint AΛ = b arises from the
geometry of the contact points w.r.t. to the CoM (Eq. 21).
The solution of Eq. 22 yields minimal contact forces which
are distributed as equally as possible. The joint torques can
then be recovered with JTΛ = τ where J is the stacked
contact Jacobian matrix. Compared to our previous work [82],
we include the arm into the control structure as a contact point.

2) HEAP Whole Body Controller: While MPCs purpose
is to track the desired plan, VMC makes the system terrain-
adaptive and compliant. In practice we cannot acquire a full
accuracy map with on-board sensors. Furthermore, such a map
has too many details which make the gradients non-smooth.
Hence the system needs to plan using simplified geometry
and adapt to the unmodelled terrain at runtime. We achieve
this by utilizing a minimal set of torque-controlled joints.
An important consideration is that hydraulic cylinders have
a lot of friction, and in some cases (e.g. tele joint in Fig. 12)
the friction is even position dependent. However, if the joint
supports lot of weight, the amount of friction torque in the total
torque is relatively low and the resulting control performance
is better compared to non-load bearing joints. We control
Hip Flexion-Extension (HFE) and Telescopic (TELE) joints in

Fig. 12: HEAP joints. Blue joints are always frozen and red joints are always
velocity controlled. Green joints are torque controlled when corresponding
limb is in contact, velocity controlled otherwise. Figure adapted from [3].

VMC

Filtering, control mode selection

Legend

cs - contact schedule
𝚪 - trajectory from the
SBP planner

𝜭des - desired base roll 
and pitch angle

zdes- desired base 
height

q - joint velocities 
𝛕HFE - flexion-extension 
hip torques

𝛕TELE - arm telescope 
torque
SBP - sampling based 
planner
VMC - virtual model 
control     

𝜭des

[𝛕TELE   𝛕HFE]

SBP planner

cs 𝚪

Desired base pose

2 s

0.01 s

zdesMPC

ٜ
q

0.05-0.2 s

command

ٜ

Fig. 13: HEAP control system with layer execution times on the right. MPC
tracks trajectory Γ from SBP using a kinematic model from Eq. 17. VMC
computes torques for Hip Flexion-Extension and arm Telescopic joint to track
roll, pitch and, base height setpoints from the MPC. Joint control mode is
selected based on contact schedule.

torque mode given that these joints bear the most load when
corresponding limb is in contact. Since Contact Schedule (CS)
allows only configurations with at least three contacts, there
is always enough DoFs to control roll, pitch and height.

Fig. 13 shows the structure of combined MPC and VMC
controllers. The MPC receives a trajectory Γ from the SBP.
Optimized roll, pitch and height are fed to VMC which then
computes HFE and TELE joint torques to achieve desired base
pose. Lower level controller selects joint control mode based
on the contact schedule CS. All joints are velocity controlled
except for HFE and TELE if the corresponding limb is in
contact. Both torque and joint velocity commands are filtered
using exponential smoothing to remove small jumps. MPC is
tuned to accurately follow the plan from the SBP. MPC uses
a prediction horizon of 15 s, which is enough to correct for
small deviations around the long term plan Γ. In contrast, the
VMC control loops are tuned for good disturbance rejection
since VMC sees the terrain as a disturbance. VMC uses
a state machine to handle late touchdown events. A swing
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leg that should be in contact (based on contact schedule) is
commanded a constant velocity in HFE joint until contact is
established. Late touchdowns require dedicated treatment since
they may result in instability. We found that early touchdowns
are not problematic; they merely degrade the base tracking
performance. With dedicated late touchdown handling, we
could perform stepping motion in terrain with a roughness
of about ±50 cm.

To execute some of the maneuvers shown in the result
section, HEAP needs to control wheel velocities. The lack
of wheel speed measurements (no oil flow sensor in the
wheel rotary actuators) is mitigated by closing the PI control
loop over the base velocity. Given desired wheel velocities
ω we can compute linear velocities of the wheel center
vcenter = ωRw (Rw is wheel radius). The desired base speed
vB,des is approximated by taking the average over grounded
wheel linear velocities. Base speed vB in a local frame can
be estimated by differentiating the base position and taking a
dot product with the heading of the base. The final estimate
is obtained after applying an exponential filter.

Control signal u is computed with a PID control law with
feedforward term kff vB,des,

u = PID
(
vB,des − vB

)
+ kff vB,des, (23)

u is applied to all four wheels since they cannot be controlled
individually.

VII. RESULTS

The proposed LSTP is implemented entirely on Central
Processing Unit (CPU). All components are implemented in
C++ programming language with ROS as a communication
middleware. SBP uses the OMPL library [76] and MPC is
implemented using OCS2 library [79], both of which are
available as open source. OCS2 relies on Pinocchio library
[83] for rigid body dynamics and all the derivatives are
computed using CppAd framework [84]. Terrain processing
is common to all robots. This chapter presents results with
a different robot in separate sections. For a better impression
please refer to the video3.

A. Terrain Preprocessing
Normal estimation is a key component in our terrain pre-

processing pipeline. It is used by the traversability estimation
and later by the base pose selector. Fig. 14 left shows the
runtime of normal estimation on a fixed size 8m × 8m map
at 3 cm resolution with varying normal estimation radius R.
The algorithm complexity is O(R2) since the number of points
used for estimation is proportional to the neighborhood surface
(see Appendix A). The total runtime of our processing pipeline
with varying map sizes (resolution is always 3 cm) is shown
in the middle. The pipeline can maintain more than 1 Hz real-
time rate updates, even for 20×20 meter maps. The right plot
shows the percentage of time spent in each submodule, with
the vast majority of time spent filtering the terrain. sdf3 is
excluded from Fig. 14 right since it is computed using open-
source software; its average runtime is 115 ms for an 8 m ×
8 m map and z coordinate between -0.5 m and 1.9 m.

3https://youtu.be/iQiNAy6sLlo
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Fig. 14: Terrain processing runtime analysis with 6 threads. Left: Normal
estimation runtimes for 8 × 8 meters map (resolution = 3 cm) and different
radii. Middle: Total runtimes for different map sizes at a resolution of 3 cm.
Right: Runtime percentage of each component.

TABLE II: Terrain features for planner evaluation.

Terrain
Level Easy Medium Hard Comment

gap
width [m] 0.3 0.4 0.5 0.5 m is too wide

for crossing
obstacle

height [m] 0.15 0.2 0.25 obstacles 6 cm wide

ramp
slope [deg] 11.3 21.8 31 max traversable

slope: 25◦

stair
rise [m] 0.1 0.15 0.2 stair run 30 cm

num pillars
and holes 20 40 60 position distributed

uniformly
brick

height [m] 0.15 0.2 0.25 100 bricks that
robot can step on

terrace step
height [m] 0 0.1 0.2 Perlin noise with

quantization steps
% stepping

stones removed 4 8 12 grid with some stones
removed at random

B. Legged Robot

We evaluate our planning and control pipeline in simulation
first and then validate it on real hardware ANYmal robot.
For simulation evaluation we create terrains 20m × 20m in
size (3 cm resolution). Start and goal are fixed SE(2) states;
(0, 0, 0) and (5, 5, 0), respectively. We generate eight different
terrain types with three difficulty levels each. Different terrain
types are gaps, obstacles, ramps, stairs, mazes, bricks, terrace,
and stepping stones; all shown in Fig. 15. In each map, the
white color denotes the fully traversable area, and the fully
untraversable area is shown in a dark color (black or olive).
The final path after 2 s planning time is denoted in green. Black
lines represent the connections inside the RRT tree. Table II
describes difficulty levels for each terrain. At Hard level, some
of the features are too difficult for the robot to traverse, and a
detour has to be taken (e.g., slope terrain). This highlights the
planner feature of negotiating obstacles to shorten the path if
possible and take a detour if not.

1) SBP Success Rate: SBP success rate was tested on a
laptop with an Intel i7-10750H@2.60GHz 6-core processor.
The success rate is defined as the number of plans that reach
the goal over the number of total plans when a feasible path
exists. For randomized terrains, we ensure that a feasible path
exists by running the planner for 20 seconds. If no path is
found, the terrain is re-sampled until a feasible path is found.
We consider 6 planning times (0.1, 0.2, 0.5, 1.0, 2.0 and
5.0 seconds), and plan 100 times for every terrain and every
planning time. Each randomized terrain is sampled 10 times

https://youtu.be/iQiNAy6sLlo
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(a) Gap (width = 50 cm) (b) Obstacles (height = 25 cm) (c) Ramp (slope = 0.6) (d) Stairs (rise = 20 cm)

(e) Maze (# holes = # pillars = 60) (f) Bricks (height = 25 cm) (g) Terrace (step height = 20 cm) (h) Stepping stones (12% removed)

Fig. 15: Top: Non-randomized terrains at the highest difficulty level; robot cannot negotiate some terrain features, and a detour must be taken. Bottom: Four
randomized terrain types with the highest difficulty level. We do not know whether a solution exists a priori. If we cannot find a feasible plan within 20 s
planning time, the terrain is re-generated until one is found.

TABLE III: SBPs success rate for ANYmal on different terrain types, difficulty
levels, and planning times. The top row shows the minimal planning time
where no failures occur (e.g., for the hard difficulty level, with 2 s planning
time, the SBP finds a solution in all terrains).

Terrain

Level Easy → 1.0 s Medium → 1.0 s Hard → 2.0 s
plan time [s] plan time [s] plan time [s]

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5
gap .88 .97 1.0 .81 .97 1.0 .50 .82 1.0

obstacles .82 .96 1.0 .79 .97 1.0 .69 .96 1.0
ramp .81 .98 1.0 .81 .96 1.0 .42 .78 .98
stairs .89 .99 1.0 .83 .97 1.0 .70 .84 .99
maze .87 .93 1.0 .82 .88 .97 .74 .90 .94
bricks .83 .92 1.0 .75 .86 1.0 .44 .86 .97
terrace .81 .95 1.0 .82 .92 1.0 .69 .93 .98

st. stones .79 .94 .98 .74 .87 .99 .67 .83 .94
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Fig. 16: Contact schedule visualization (cyan: contact phase, white: swing
phase). Left: planner discovers cyclic contact schedule when walking on the
flat ground. Right: planner uses a highly acyclic gait to walk on the stepping
stones.

for a fair evaluation. The result is shown in Tab. III. It reads
that the success rate drops with decreasing the planning time;
the worst-case scenario has a planning success of 94% for 0.5
seconds of planning time. The planner takes at most 1 second
to achieve 100 % success rate on the easy and medium terrains,
and 2 seconds for the difficult terrains.

Fig. 16 shows two contact schedules discovered by our
planner. These two examples highlight that when the terrain is
easy, the planner resorts to using well-understood and efficient
cyclic gait patterns. On the other hand, in the presence of
obstacles, an acyclic contact schedule can emerge and enable
the robot to precisely orient its body in anticipation of difficult
terrain features.

2) MPC Convergence Rate: The second scenario evaluates
the convergence rate of the combined SBP and MPC, defined
as the number of times MPC converges for the entire trajectory

over the number of plans executed. For evaluation purposes,
the MPC has perfect knowledge of robot dynamics, and the
controllers do not influence the success rate. For each non-
randomized terrain, ten global plans are executed. For each
randomized terrain, we generate two samples for each terrain
type and then execute five plans for each sample. The trivial
solutions, where the straight-line path on flat ground is enough
to connect the start and goal, are removed.

We compare the convergence rate for two different MPC
formulations: one with and one without the swing leg joint
deviation penalty. We found that the MPC with swing leg
penalization always converges, yet the other can diverge on
stepping stones with a probability of 30 %. This result demon-
strates the benefit of performing whole-body planning in the
initialization step since the whole-body plans better guide the
optimization to the correct local minima. Fig. 17a and Fig. 17b
show how the cost function guides the swing leg to the desired
foothold.

3) LSTP Physical Simulation: The proposed planning and
control framework was tested in the physical simulation to-
gether with the WBC. Since running a physical simulation is
computationally expensive, we tested the full simulated stack
on each terrain three times without failures.

4) LSTP Hardware Tests: We deploy our planning and
control framework on ANYmal. ANYmal has two Robosense
RS-Bpearl LiDARs, both in front and back. Bpearls are
dome-shaped LiDARs with 360◦×90◦ Field of View (FOV).
ANYmal has two onboard computers equipped with an Intel
i7-8850H@2.60 GHz 6-core processor. The Locomotion PC
(LPC) runs MPC at 25Hz and the WBC at 400Hz. The
controllers are run asynchronously from one another. The
Navigation PC (NPC) runs the sampling-based planner and the
terrain processing pipeline described in Sec. III-B. Elevation
mapping runs at 20Hz on a Jetson AGX Xavier onboard
computer [85]. As a state estimator we use the fusion of leg
kinematics and IMU [86] together with the LiDAR odometry
[87]. All experiments have been performed with a statically
stable gait with the maximum recorded velocity of approxi-
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(a) No swing leg deviation penalty (b) With swing leg deviation penalty

Hardware tests setup

1. SBP plans in a global map that is fully known

 Constructs grid_map for each physical terrain

 Implements a state estimator with pure localization mode 

2. SBP plans in a local map (8m x 8m) centered at the current position of the robot

 The height map generated from LiDAR is only good near the robot initially

 Only a short-term global plan is returned to the MPC 

20.01.2022 18

(c) Gap occlusion

Fig. 17: a) & b) Improved optimization convergence through penalizing swing leg deviation. We show an example for the LF leg, whose trajectory planned
by the MPC is colored in blue. The reference foothold at the end of the swing phase is shown with the blue disk. We show the initial swing trajectory on
the left, and the one after some optimization iterations on the right. a) Without penalization, the foothold of the optimized trajectory is far away from the
reference foothold (distance shown with red arrows). b) The optimized swing motion lands smoothly on the reference foothold with penalization. c) While
the LiDAR correctly detects the closer stepping stones, it cannot see holes between the far away stepping stones (marked with red arrows). Hence, the foot
placement might be incorrect.

mately 20 cm/s, which is the same velocity we achieved in
the simulation.

In our experiments, we let the robot plan in a local map of
size 8m by 8m centered at the robot’s current position and
snap the goal into this region if needed. We only send a portion
of the plan to the MPC for tracking, and once the tracking
finishes, SBP re-plans with an updated map. This procedure is
repeated until the goal is reached. By letting the SBP re-plan,
we can avoid issues like the one shown in Fig. 17c where the
holes are occluded, and as a result, the planner could attempt
to place the feet there.

A range of terrains used for hardware experiments can be
found in Fig. 18. We could cross 36 cm wide gaps, close to the
simulation result of 40 cm and more than the manufacturer’s
specification of 30 cm. The planner discovers an acyclic
contact schedule for the gap-crossing maneuver, similar to
the stepping stones scenario. Next, we increase the gap width
to 47cm (too wide to cross) and add a narrow bridge. The
bridge is too narrow to place all feet on it, so the planner
has to coordinate the leg placement precisely. Fig. 19 shows
the sequence of the robot crossing the bridge. Finally, we also
test three different stepping-stone scenarios to showcase the
generality of our planner.

Apart from negative obstacles like gaps and stepping stones
(see Fig. 18), we tested the planner’s capability to negotiate
steps. The robot was asked to go up and down a step of 20
cm, more than the stair heights recommended in construction,
which vary between 14 cm and 19 cm. Experimenting with the
maze environment showcases the planner’s ability to escape
local minima. We constructed a wall around the room corner
and left only one narrow passage allowing the robot to get in.
Subsequently, the robot was asked to go to the corner from
the other side of the wall, where the straight line connection
leads to a dead end. With the initialization from the SBP, the
robot can walk around and reach the goal. Such a maneuver
would be impossible if only MPC planner was used.

C. Legged-Wheeled Robot

This section shows the planner’s capabilities to plan for
a legged-wheeled robot with non-steerable wheels. Executing
SBPs plans on hardware has been demonstrated in our previous
work [43]. For the sake of space, we only show the SBPs
evaluation since, in this work, the SBP was generalized to
enable base turning and side stepping.

TABLE IV: SBPs success rate for ANYmal on wheels across different terrain
types, difficulty levels, and planning times. The top row shows the minimal
planning time where no failures occur (e.g., for the hard difficulty level, with
5 s planning time, the SBP finds a solution in all terrains).

Terrain

Level Easy → 2.0 s Medium → 2.0 s Hard → 5.0 s
plan time [s] plan time [s] plan time [s]

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5
gap .68 .91 .99 .73 .96 1.0 .44 .73 .99

obstacles .63 .91 1.0 .71 .86 1.0 .55 .88 .99
ramp .76 .91 1.0 .72 .91 1.0 .22 .62 .98
stairs .82 .96 1.0 .67 .86 1.0 .67 .93 .99
maze .73 .92 .98 .83 .94 .99 .53 .73 .95
bricks .76 .90 1.0 .70 .90 1.0 .68 .78 .94
terrace .78 .97 1.0 .71 .90 .99 .65 .82 .99

st. stones .64 .83 .95 .52 .75 .92 .50 .74 .91

The success rate of the SBP is shown in Tab. IV. Fig. 1
shows an example of a legged wheeled robot navigating stairs
using our SBP. The planner is evaluated in the same scenarios
as the legged robot. The success rate is comparable to the one
for the legged robot shown in Tab. III, but a bit lower. It
also takes longer planning times to achieve a 100% success
rate for all terrain types. We speculate that this is due to the
fact that ANYmal on wheels has a shorter shank compared to
ANYmal resulting in shorter reach. The SBP planners use the
same tuning for the legged and legged-wheeled robots; we did
not need to change any parameters.

D. HEAP

HEAP is used for experimental verification of the proposed
planning and control architecture. We ran the planner on a
laptop with AMD Ryzen 9 5900HX CPU 3.3 GHz processor.
VMC controller, filtering, wheel velocity control loop, and
state estimation run on an onboard computer. Leica iCON
iXE3 system provides Global Navigation Satellite System
(GNSS) with Real-time Kinematic (RTK) corrections. Two-
state information filter [88] fuses GNSS measurements with
the two Inertial Measurement Unit (IMU) units (from the
chassis and the cabin). For more details, please refer to [3]. In
all experiments with HEAP, SBP plans once with 2 s planning
time. The plan is then fed to the MPC, which runs between 5
and 20 Hz (depending on the task).

1) LSTP Hardware Tests: We start by testing the combined
sampling and optimization planning on hardware. Conver-
gence rate was tested in our previous work [72], and in this
work, we focus on hardware results. Fig. 20 shows experiment
where HEAP steps over a virtual gap. We did not dig an actual
gap in our testing field; however, the height map provided



14

(a) Gap (width = 36 cm) (b) Bridged gap (width = 47 cm) (c) Stepping stones 1 (d) Stepping stones 2

(e) Stepping stones 3 (f) Stepping up (rise = 20 cm) (g) Stepping down (rise = 20 cm) (h) Maze

Fig. 18: Various terrains tested on the real robot.

Fig. 19: Anymal using a bridge to cross a 47 cm wide gap. The bridge is too narrow to place all 4 feet on it. Hence the robot has to figure out a contact
schedule and coordinate limb motion to avoid this situation.

to the planner contains a gap, and hence the stepping-over
behavior emerges. Another maneuver where HEAP crosses
the virtual bridge is shown in Fig. 1. These maneuvers require
perceptive planning with both SBP and MPC. Stepping over
a gap is challenging for the control system since it has to
precisely coordinate the movement of the arm kinematics with
the movement of the base such that the contact point does
not slip. The control system has to be robust since the wheel
speed cannot be precisely controlled, and hence we cannot
precisely control the base movement. Without high-frequency
local re-planning from the MPC, the gap crossing maneuver
would prove challenging due to accumulated drift. The total
gap crossing duration is 103 s.

2) Long-Horizon MPC: We also experiment with using
solely MPC as a planner and controller to verify MPCs ability
to plan over long horizons. In this case, MPC receives a goal
pose and a contact schedule without any guiding path. The
terrains tested are relatively flat since MPC can fail to converge
in the presence of obstacles without good initialization [72].
The prediction horizon is set to 25 s. The start and goal pose,
along with the route taken by the base and the wheels, is
shown in Fig. 21b. The optimization can discover an efficient
path that actively utilizes all four steering joints. It involves
crab steering, a configuration where all four steering joints
point in the same direction, resulting in diagonal movement
of the base that is not aligned with its heading. The machine
is moved 2.53m sideways with a trajectory that involves four
direction changes (discovered by MPC). The motion duration
is 46 s, and a contact schedule was externally provided.

The MPC can also plan stepping motions with a fixed con-
tact schedule. The machine lifts off the legs in the following
order: LH, LF, RH, RF. Each swing phase lasts 5 s. HEAP
is commanded to turn in place multiple times, with approxi-
mately 30 degrees yaw increments. Fig. 22 shows snapshots

of the machine changing its orientation by approximately 108
degrees. A similar scenario is shown in Fig. 23 where HEAP
steps 6.1m sideways without driving. Total motion duration is
177 s for the stepping turn and 266 s for the sideways stepping.

It is challenging for the optimization to plan in the presence
of nonlinear constraints (e.g., support polygon constraint) over
long horizons. Furthermore, the planning times should be short
enough to run in real-time. In all cases, the MPC plans with
the flat ground assumption. Hence, the control system is also
tested since it has to compensate for the unmodelled terrain
(the whole field is sloped and bumpy).

3) Whole-Body Controller Terrain Adaptiveness: Lastly,
Fig. 24 shows an experiment where HEAP is required to adapt
to unseen terrain. The planner is given a goal pose ahead
of the machine and generates trajectories with flat ground
assumption. However, there is a hole on one side of the
machine (blue arrow) and a hill on the other (red arrow). In
the next frame, one can observe that the machine retracted its
left leg and extended its right leg to keep the base as leveled
as possible. Base and joint tracking during the experiment is
also shown in Fig. 24. The MPC sends base references to
the VMC, which tries to track them. Note that there is some
offset since the VMC control has not been tuned with the set
point following in mind. The HFE leg joints do not follow the
planned values from the MPC since the terrain map inside the
MPC does not match the reality. Note how the left and right
HFE joint move in opposite directions since there is a hill on
one side and a hole on the other.

VIII. DISCUSSION

1) Initialization step: We chose an optimizing planner like
RRT* since the cost allows shaping the robot’s behavior (
[72]) at the expense of more computation. Since we sample
only a three-dimensional subspace, one could use a grid-based
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Fig. 20: Top to Bottom: HEAP stepping over a virtual gap, the timeline goes
from top to bottom. Left: snapshots of the machine performing the maneuver.
Right: terrain representation as seen by the planner and the controller.

method for the base motion planning. We chose RS curves as
connections since they elegantly enforce the minimal turning
radius for a robot with steerable wheels (HEAP). They are
also beneficial for quadrupeds since they naturally limit the
robot from walking too much sideways, the least stable way
of locomoting. RS curves come with a trade-off: they are far
more computationally expensive than straight-line connections
(for quadrupeds).

2) Refinement step: While timings are unecessary for quasi-
static motions, we compute them because the optimization is
formulated as an OCP. Since the MPC only receives and tracks
a snippet of the trajectory (e.g., 15 s out of 250 s) in the near
future, we trade off some optimality (e.g., cannot speed up
the motion) for real-time re-planning; crucial for hardware
experiments. We found that using SLQ was possible, however
less numerically stable than SQP (especially for HEAP) since
SLQ is quite sensitive during the rollout phase.

3) Control: For the torque-controllable legged robot with
high bandwidth actuators, we follow the standard approach
of using terrain-adaptive whole-body control at the lowest
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(b) Crab Steering Paths

Fig. 21: Left: Start and end configuration of HEAP performing a driving
maneuver. The base is commanded to move sideways, and MPC discovers
a motion satisfying the rolling constraint, which involves so-called crab
steering. It involves all four wheels pointing in the same direction while the
machine moves diagonally. Right: Base and end-effector positions during the
crab steering experiment. The lines denote the path taken by each wheel and
the base. The coordinate frames denote the base’s starting (S) and finishing
(F) position of the base, where red color denotes x axis and the green denotes
y axis. For HEAP, x axis is aligned with the direction of travel.

level, which improves robustness. For HEAP, the same method
does not work because fine torque control is not possible
on all joints. Hence, we run the VMC to be compliant
(necessary for hardware experiments) and MPC to track the
motion plan. The VMC + kinematic MPC structure avoids
a complicated dynamic model inside the MPC, which helps
us achieve real-time performance and reduces the amount of
tuning for deployment. Optimizing dynamic models for HEAP
is numerically challenging because of significant differences
in link masses. Moreover, we do not have an accurate dynamic
model (e.g., the weight of hoses and oil is not modeled).

IX. CONCLUSION

This work presented LSTP, a combination of sampling and
optimization-based motion planning for complex legged and
legged-wheeled machines. The planner is divided into two
stages. The long term initialization step is backed by an RRT
planner, while the short-term refinement step is backed by
the NO. The initialization step computes a contact schedule
and a sequence of keyframe configurations used as an initial
guess for the optimization. We found that initializing with
whole-body configurations can sometimes improve optimiza-
tion convergence. SBP presented in this work can find initial
solutions in less than 1 second, which makes it suitable for
real-time re-planning. Fast computation times are achieved
by precomputing limb roadmaps offline and then using them
to rapidly check collisions and stability at runtime. Lastly,
the SBP can handle three robot types: a legged robot, a
legged-wheeled robot with non-steerable wheels, and a legged
excavator with steerable wheels.

The planner’s second stage uses optimization running in an
MPC fashion to refine the initial guess from the sampling-
based planner. The constant re-planning allows for robust-
ness which is especially important for the HEAP where the
hardware does not allow precise control. The proposed two-
stage planning approach has been benchmarked on a variety
of terrains requiring MPC to stay out of local minima.
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Fig. 22: HEAP performing a stepping turn in place. The x− y position stays approximately the same, while the azimuth of the chassis changes.

Fig. 23: HEAP performing a stepping turn and moving laterally. The chassis keeps the azimuth approximately the same as at the beginning of the maneuver.
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Fig. 24: Top: HEAP is commanded forward and there is a hole in front of
it (blue arrow) and a hill (red arrow). Since the MPC is planning with a flat
terrain assumption, VMC has to coordinate the front legs to keep the chassis
leveled. Bottom: Base and joint tracking. While the base is tracking (with
some offset) the MPC commands, HFE joints ignore the MPC references to
accommodate for the unmodelled terrain.

We validate the proposed planning and control system on
hardware for both quadrupedal robot ANYmal and excavator
HEAP. We show that our approach can be executed on
hardware in realistic conditions. In particular, for HEAP, we
show that the proposed MPC controller is terrain-adaptive and
does not require precise terrain models.

X. OUTLOOK

The fundamental limitation of our approach is that it only
allows for quasi-static motions. The initialization stage of
LSTP can only discover static gaits which are not optimized in
the second stage. It would be interesting to relax the stability
assumption allowing SBP to find more dynamic gaits such
as trotting or jumps. Frameworks like [24] allow for gait

refinement in the second stage; however, one needs to ensure
real-time execution and prevent the optimization from getting
stuck. Thereby, hierarchical models [40] or new efficient
solvers for switching time optimization [89] could be used.

The other fundamental limitation is the choice of a height
map as an environmental representation. Our planner cannot
discover contact-rich motions involving overhanging structures
(e.g., crawling, ladder climbing), which could be addressed by
choosing a different map representation. One big challenge for
such confined environments is to devise an efficient strategy
for base pose selection.

In addition, the SBPs base pose selection module could
be improved. Since a cost function can describe a good base
pose, one could use reinforcement learning to train a policy
to produce a 3D pose based on the raw terrain observations.
This would remove the need for terrain pre-processing, free up
computational resources and reduce the amount of tuning. We
have already done some preliminary work in this direction.

Lastly, we will implement the SBP running in a separate
thread at any time. This way, the MPC could request the
new plan before it finishes executing the previous plan, which
speeds up maneuver execution.

APPENDIX

A. Terrain Preprocessing

The normal estimation module fits a plane locally for each
cell point pi = (xi, yi) inside the grid map. As a result, terrain
normal vectors ni = [nx

i ny
i 1]

T and a height estimate h̃i are
computed. The tangent plane at point pi is a function of height
h and local coordinates (dx, dy) = (x− xi, y − yi) ∈ R2,

nx
i dx+ ny

i dy + (h− h̃i) = 0. (24)

Assuming that all the points pj (height denoted by hj) within
radius R from pi lie on the plane, we can write Eq. 24 in the
matrix notation,

[∆x∆y − 1] · θ = −hj , ∀j with ∥pj − pi∥2 < R, (25)

where ∆x = xj − xi, ∆y = yj − yi, and θ = [nx
i ny

i h̃i]
T

is the vector of parameters. We can then assemble the data
matrix D ∈ RM×3 and height vector h ∈ RM and perform
the normal estimation by solving the least squares problem:

θ∗ = (DTD)−1DTh. (26)



17

Normal estimation is used in computing both surface nor-
mals and filtered elevation. The difference is that the former
one uses a smaller radius Rs (0.1m for ANYmal and 0.3m
for HEAP) and does not consider traversability. The latter one
performs normal estimation using all traversable points within
a larger radius of Rl (0.4m for ANYmal and 2.5m for HEAP).

A grid cell (x, y) is categorized as untraversable if on a
steep slope or if the surrounding terrain is irregular. Terrain
is considered irregular at (x, y) when its height deviates too
much from its elevated mean value. The elevated mean hem

around point pi is computed in the local neighbourhood with
radius Rl,

Nl(R,pi) :=
{
pj

∣∣∣ ∥pj − pi∥2 < Rl

}
. (27)

Define Ne(R,pi) as the set of nearby points whose height are
above havg , the average height of Nl(R,pi),

Ne(R,pi) :=
{
(x, y) ∈ Nl(R,pi) | h(x, y) > havg

}
. (28)

Then we can compute elevated mean hem using equation
Eq. 29 with the height offset defined in Eq. 30.

hem = min{hmax, havg + woho}, (29)

ho =
1

|Ne|
∑

(x,y)∈Ne

(
h(x, y)− havg

)
, (30)

where hmax is the maximum height in Nl(R,pi) and wo is a
user-defined weight controlling the influence of elevated mean.
Elevated mean is motivated by use case on terrains containing
negative obstacles such as ditches and stepping stones. We
found elevated mean to help correctly assess traversability for
terrains like gaps, holes, and stepping stones without a negative
effect on others such as stairs, ramps, and pillars. Visualization
of the computing elevated mean can be seen in Fig. 5b. Upon
classifying the traversable regions we compute the sdf2.

Lastly, the algorithm computes filtered elevation for base
pose selection by fitting planes using

Nf (R,pi) := Nl(R,pi) ∩ T , (31)

i.e., all traversable points in Nl(R,pi). The rationale behind
is that the base of the robot should not adjust itself to the
untraversable regions since those are the ones that we want to
avoid anyway.

B. Feasibility Check for Point Foot Robot

1) Full-Support State Connection: The base path connect-
ing the start and the goal of OSM is discretized into Nseg

segments with Nseg + 1 states. To create a swing phase, we
need at least one state to contain a non-grounded leg. Hence
we require each swing phase to span across two segments
at least, Nseg,s ≥ 2. Larger Nseg,s yields finer discretization
of swing leg motion in space (not in time) but decreases the
computation speed. The number of segments in OSM cannot
be set smaller than Nseg,min := K ·Nseg,s with K being the
number of the limbs, otherwise we cannot create a feasible
contact schedule if all limbs need to have a swing phase.
We set Nseg slightly larger than Nseg,min to allow for longer
swing phases if needed.

Algorithm 1 Compute contact schedule for a swing order p
1: function GETCONTACTSCHEDULE(p, jlcb, jecc,O)
2: jcb ← [−1,−1,−1,−1]⊤, jcc ← [−1,−1,−1,−1]⊤;
3: for k = p.SIZE()− 1 : 0 do
4: i← p[k]; ▷ i is k-th swing limb in p
5: if k = p.SIZE()− 1 then ▷ last swing limb
6: jcc[i]← Nseg ;
7: else
8: jcc[i]← jcb[p[k + 1]]; ▷ set cc to the next cb
9: while true do

10: jcb[i]← MIN(jlcb[i], jcc[i]−Nseg,s);
11: if jcc[i] < jecc[i] or jcb[i] < 0 then
12: return false;
13: for c = 0 : k − 1 do ▷ swing limbs prior to i
14: if jcb[i] < jecc[p[c]] then
15: return false;
16: t← UNSTABLEINDEX(p, jcb[i], jcc[i],O);
17: if t = −1 then
18: break;
19: else
20: jcc[i]← t− 1;
21: return {jcb, jcc};

2) Contact Schedule Computation: We refer to set of
discretized states within OSM as O, i.e.

O :=
{
oj , j = 0, . . . ,K with K = Nseg

}
. (32)

In Eq. 32, o0 denotes the starting state of OSM where oK

denotes the end of it. Their leg configurations are already
determined in FSS computation. To find LCB, we search for
every state from 1 to K−1 for valid roadmap vertices close to
footholds at state o0. If at state j no such vertex is found, we
set jlcb = j−1. In case the search reaches index K−1 it means
that the leg can remain in contact during the entire OSM. On
the other hand, ECC are computed by searching from index
K − 1 to Nseg,s (backwards). If at index j the footholds in
oK cannot be reached, we set jecc = j + 1. In case contact
can remain for all the searched index, we set jecc = Nseg,s

because contact break can at earliest happen at 0.
Given the latest contact break jlcb[i] and earliest contact

creation jecc[i] for the ith swing limb, a feasible contact
schedule can be computed by solving the feasibility problem
below. The algorithm needs to find indices of states where
contact break jcb[i] and contact creation jcc[i] happen. The
feasibility problem below is solved only for the swing legs
SW of OSM.

find jcb[i], jcc[i] for all i ∈ SW
s.t. jcb[i] ∈ {0, 1, . . . , jlcb[i]}

jcc[i] ∈ {jecc[i], jecc[i] + 1, . . . , Nseg}
jcc[i]− jcb[i] ≥ Nseg,s

at most one swing leg, ∀o ∈ O
(relaxed) stability constraint, ∀o ∈ O.

(33)

For a fixed swing limb permutation p, it is easy to compute
the contact schedule. p tells the swing limb order, e.g. limb at
position 0 is the one that swings first. An algorithm for finding
a feasible contact schedule is shown in Alg. 1.

As inputs Alg. 1 takes a sequence of OSM states O, ECC
and LCB indices (jecc, jlcb) for each leg and a swing limb
order p. The output of Alg. 1 are the indices of contact breaks
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LF

RH

RH

Ostart OgoalLF

Fig. 25: Different swing orders generate different support polygons in an
OSM. In the upper one, the robot swings first the LF leg and then the RH one,
which makes the Support Polygon (SP) large enough. The swing limb order
is reversed in the lower option, and this makes the SP very small (highlighted
in red) once the LF leg breaks contact.

Algorithm 2 Create one-step motion (OSM)
1: function CREATEOSM(ostart,ogoal)
2: O ← DISCRETIZE(ostart,ogoal); ▷ only base poses
3: if ¬CREATEFULLSUPPORTSTATE(ogoal) then
4: return false;
5: if ¬ISBASECOLLISIONFREE(O) then
6: return false;
7: jlcb ← FINDLATESTCONTACTBREAKS(O);
8: SW ← GETSWINGLIMBS(jlcb);
9: jecc ← FINDEARLIESTCONTACTCREATIONS(O,SW);

10: for all p ∈ Sym(SW) do ▷ Sym(SW) are permutations of SW
11: cs←GETCONTACTSCHEDULE(p, jlcb, jecc, O); ▷ Alg. 1
12: if cs ̸= false then
13: if CREATESWINGMOTION(O, cs) then
14: return O;
15: return false;

Algorithm 3 Get feasible OSM lengths
1: function FEASIBLEOSMLENGTHS(d, dtotal)
2: ret← {}, dto go ← dtotal − d;
3: if dto go < MAX(L) then
4: ret.PUSH BACK(dto go);
5: for all l ∈ L do
6: if dto go − l > MIN(L) then
7: ret.PUSH BACK(l);
8: return ret;

jcb and contact creations jcc for all limbs. If a limb does not
change its contact state the corresponding ECC and LCB are
set to −1 in our implementation. Alg. 1 returns false if no
feasible contact schedule can be computed in line 16. The
function UNSTABLEINDEX finds the first index t encountered
from jcc[i] to jcb[i] for which stability constraints are violated
or −1 if no violation. Two examples of the contact plans found
with Alg. 1 are shown in Fig. 10.

For a quadrupedal robot, the number of different swing
orders is at most 4! = 24 and they result in different support
polygons. Fig. 25 shows how different swing orders influence
on the SPs area. Hence all the combinations are enumerated
and we try to compute a feasible contact schedule using the
Alg. 1 (this can be done in parallel). Computation terminates
as a feasible contact schedule is found.

C. Legged-Wheeled Robot Extension

We say that a leg is in the driving mode if it drives forward
in longitudinal direction, without any lateral movement. The
robot enters the stepping mode if its base is turning, side-
stepping or when the terrain under the nominal hip location is
untraversable. For driving legs we can simply establish ground
contact same way as during FSS computation (Sec. IV-B2).

Algorithm 4 Motion feasibility validation from sstart to send
1: function ISMOTIONVALID(sstart, send)
2: traj ← {}; ▷ state sequence between sstart and send

3: dtotal ← DISTANCE(sstart, send), d← 0;
4: while d < dtotal do
5: ostart ← nullptr;
6: if d = 0 then
7: ostart ← COPYSTATE(sstart);
8: CREATEFULLSUPPORTSTATE(ostart);
9: else

10: ostart ← COPYSTATE(traj.BACK());
11: osm success← false;
12: L ← FEASIBLEOSMLENGTHS(d, dtotal); ▷ Alg. 3
13: for all l ∈ L do
14: ogoal ← nullptr;
15: if d+ l = dtotal then
16: ogoal ← COPYSTATE(send);
17: else
18: ogoal ← INTERP(sstart, send, d+ l);
19: O ← CREATEOSM(ostart,ogoal); ▷ Alg. 2
20: if O ≠ false then
21: traj.PUSH BACK(O);
22: d← d+ l;
23: osm success← true;
24: break;
25: if ¬osm success then
26: return false;
27: return true;

To find LCB for a legged-wheeled robot we first check the
leg mode by iterating over the OSM states. Once the leg
enters the stepping mode, it must go through a swing phase
before the end of the current OSM. In this case the LCB is
searched from the index where the leg switches its state from
driving to stepping. Similarly, one can find the ECC for the
legged-wheeled robot. The computation can be parallelized for
different legs.
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