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Abstract

Topic of this thesis is the development and extension of quantum
transport simulators for the modeling of nanowire and planar field
effect transistors (FETs) at the nanometer scale, as well as the
investigation of band structure effects by various atomistic methods
in order to improve the effective mass approximation (EMA) used
by the present simulators.

The accurate description of strongly scaled nanostructures, with
typical dimensions below 5 nm, requires approaches which go beyond
the EMA. The empirical tight-binding method (ETB) is widely ap-
preciated since the related computational burden is notably smaller
compared to other approaches such as the empirical pseudopotential
method (EPM). On the other hand, the EPM yields a more physical
picture of the charge density and the related computational bur-
den is still small compared to fully ab-initio approaches. Detailed
comparisons between the EMA, ETB, and EPM are carried out for
various nanostructures. For this purpose, and for future use within a
quantum transport simulator, a fully scalable band structure calcu-
lator for bulk, nanowires, and wells based on the EPM is provided.
A popular nonparabolicity (NP) model for the improvement of the
EMA is adapted for the case of nanowires and quantum wells. The
parametrization of the present NP models is accomplished by means
of the ETB.

The scattering matrix algorithm (SMA) for the description of
quantum transport within the Landauer-Büttiker framework as well

vii



viii ABSTRACT

as related numerical issues are thoroughly reviewed. For the de-
scription of nanowires with arbitrary cross sectional shapes, the
finite element method (FEM) is implemented within the SMA. The
parallelization of time consuming routines is accomplished by means
of OpenMP and the MPI for the use on large scale compute clusters.
Extensive calculations in order to investigate the impact of band
structure effects on transfer characteristics of planar and nanowire
FETs of various shapes are carried out. For this purpose, the NP
models are implemented by means of a spectral method. Further-
more, detailed comparisons with a full-band tight-binding quantum
transport simulator are carried out in order to validate the NP
models.

Finally, inelastic scattering processes and NP are taken simulta-
neously into account for the simulation of nanowire FETs.



Zusammenfassung

In dieser Dissertation werden Transportsimulatoren auf quantenme-
chanischer Basis entwickelt und erweitert. Sie dienen der Modellie-
rung von Nanowire- und planaren Feld-Effekt-Transistoren (FETs)
im Längenbereich von wenigen Nanometern, sowie der Untersuchung
von Bandstruktur-Effekten mit verschiedenen Methoden. Letztere
verbessern die gängige Effektivmassen-Approximation (EMA), die
auch den vorliegenden Simulatoren zu Grunde liegt.

Die genaue Beschreibung der elektronischen Struktur von Bau-
elementen mit typischen Abmessungen im Bereich von 5 nm erfor-
dert Methoden, die über die EMA hinausgehen. Hier ist die empi-
rische Tight-Binding-Methode (ETB) sehr populär, da der mit ihr
verbundene Rechenaufwand erheblich kleiner ist als bei anderen Ver-
fahren, wie z.B. der empirischen Pseudo-Potential-Methode (EPM).
Allerdings liefert die EPM eine physikalisch genauere Beschreibung
der Ladungsträgerdichte, und der Rechenaufwand bleibt im Ver-
gleich zu ab-initio-Methoden immer noch gering. Detaillierte Ver-
gleiche zwischen EMA, ETB und EPM werden anhand verschiedener
Nanostrukturen durchgeführt. Dazu wurde ein vollständig paralleli-
siertes Bandstruktur-Programm für Bulk, Wires und Wells basierend
auf der EPM implementiert, das zukünftig in Transportsimulato-
ren eingesetzt werden kann. Ein weit verbreitetes Nichtparaboli-
zitätsmodell (NP) zur Verbesserung der EMA wird auf Nanowires
und Wells angepasst, wobei die Parametrisierung mithilfe der ETB-
Methode erfolgt.

ix



x ZUSAMMENFASSUNG

Der Streumatrix-Algorithmus (SMA) zur Beschreibung des Quan-
tentransports im Rahmen des Landauer-Büttiker-Formalismus, so-
wie damit verbundene numerische Probleme werden tiefer analysiert.
Für die Modellierung von Nanowires mit beliebigen Querschnitts-
flächen wird die Finite-Elemente-Methode im SMA benutzt. Die
Parallelisierung von zeitaufwändigen Routinen wird mittels OpenMP
und MPI für die Verwendung auf Grossrechnern bewerkstelligt. Um-
fangreiche Berechnungen von Transfer-Kennlinien verschiedener FETs
verdeutlichen den Einfluss der Bandstruktur-Effekte. Dazu wurden
die entwickelten NP-Modelle unter Benutzung einer spektralen Me-
thode implementiert. Detaillierte Vergleiche mit einem atomistischen
Tight-Binding-Transportsimulator ermöglichen die Validierung der
NP-Modelle.

Schliesslich werden gleichzeitig NP-Effekte und inelastische Streu-
prozesse bei der Simulation von Nanowire FETs berücksichtigt.
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Chapter 1

Introduction

Integrated circuits (ICs) are present in almost all electronic equip-
ment used in the domestic or industrial field. Compared to the
ICs back in the 1960’s comprising around 50 components, nowadays
high-end-processors such as graphic processing units (GPUs) contain
up to 2.1 × 109 transitors on a surface of less than 6cm2. This
astonishing integration density is the result of decades of research
in miniaturization. A concurrent trend to improve the performance,
besides miniaturization, consists in the development of novel micro-
processor architectures or the optimization of the circuit design.

In virtue of the ITRS 2005 [1], sub-10-nm channel-length FETs
will be manufactured in the year 2016 for the HP22 technology node
while 5-nm channel lengths will be required for the HP14 node in
year 2020. Silicon-on-insulator (SOI) transistors with comparable
dimensions [2] are hard to fabricate and are known to suffer from
severe short-channel effects due to a reduced electrostatic control
by the gate contact. Gate leakage currents caused by the reduced
thickness of the oxide layer further aggravate the circumstances.
Nanoelectronic research is partially concerned with the development
of novel device architectures to overcome these shortcomings and
thus to exploit the limit of CMOS technology. Promising materials
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2 CHAPTER 1. INTRODUCTION

and device components such as graphene or carbon nanotubes rep-
resent also hot topics in this field beside emerging approaches such
as spintronics.

A superior electrostatic control can be straightforwardly achieved
by adding further gate contacts to a device such as in the case of
triple-gate or gate-all-around nanowire field effect transistors (FETs).
Nanowires are attractive not only from an electrostatic point of
view [3], but also due to their capability to act both as FET and wire
connector. Realizations of nanowires consisting of various materials
such as Si [4], GaAs [5], or Ge [6] with different cross sectional
shapes and channel orientations have been reported in the literature
as well as nanowire FETs with a triangular [7], rectangular [8], or
cylindrical [9] nanowire as channel.

Technology computer aided design (TCAD) can be used to sup-
port the fabrication of such novel devices by means of preliminary
simulations to investigate their features and performance limits. The
use of quantum mechanics is mandatory for the description of these
devices since the typical dimensions are of the order of the de Broglie
wave length. The effective mass approximation (EMA) is a widely
used approach within nowadays quantum transport simulators since
the implementation is rather simple and computation times are kept
within reasonable limits. Many-body effects due to Coulomb inter-
action are typically accounted for by the Hartree approximation.
The finite difference (FD) method on a tensorial grid is a popular
choice for the discretization of the Schrödinger and Poisson equation.
Particularily in the case of nanowires with complex surfaces, the
finite element method (FEM) provides more flexibility than the FD.
However, the EMA is intended for situations, where the variation of
an external perturbation is small compared to the lattice periodicity
of the considered material. This prerequisite is clearly violated for
nanowires with small (typically ≤ 5 nm) diameters. In this regime,
fully atomistic quantum transport simulators are more accurate and
corresponding results notably differ from the ones obtained by the
EMA. The latter shortcomings of the EMA are referred to as band
structure effects. Atomistic approaches to quantum transport range
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from empirical tight-binding (ETB) methods to fully ab-initio ap-
praches. However, the considerable computational burden caused by
these methods is the main reason why the EMA remains attractive.
Nonparabolicity (NP) models gained a lot of attention since they
aim at improving the EMA while keeping a comparable simulation
efficiency. In this work, TCAD tools are developed (extended) in
order to include suitable NP models for a more accurate description
of aggressively scaled nanowire and planar FETs. The focus in
this work is laid on band structure effects instead of scattering
phenomenons without the intention to underrate the latter effect.

This work is organized as follows. In chapter 2 some impor-
tant simplifications for the treatment of the inhomogeneous electron
gas are briefly reviewed such as the Born Oppenheimer and the
Hartree approximation for the treatment of the electronic system.
The Hartree approximation is used within the quantum transport
frameworks employed in this work in order to partially account for
many-body effects.

Chapter 3 is concerned with the band structure calculation of
bulk materials and nanostructures by means of different approaches.
The ETB and the empirical pseudopotential method (EPM) are
described and comparisons between the ETB and EPM are carried
out for the case of nanowires and quantum wells. The EMA is
revised and results are compared to atomistic data. A widely used
NP model being able to capture several band structure effects is
considered and appropriately modified for the case of nanowires and
quantum wells. This modification is crucial for the implementation
of NP whithin the present quantum transport framework.

Topic of chapter 4 is the elaboration of algorithmic, numerical,
and implementational details concerning the present quantum trans-
port simulator based on the EMA and the Landauer-Büttiker theory.
The FEM for the solution of the Poisson and Schrödinger equation
within the scattering matrix algorithm (SMA) is thouroughly de-
scribed. In a corresponding appendix, some notes on the SMA for
arbitrarily oriented nanowire FETs are given. A spectral method
is employed in order to include NP within the SMA. The chapter
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ends with an investigation of the impact of band structute effects on
transfer characteristics of nanowire and planar FETs.

The parametrization of the present NP models is accomplished
by means of band structures derived from tight-binding models as
described in chapter 5. Transfer characteristcs of nanowire FETs
obtained by means of the NP model are compared to results from a
TB-NEGF simulator.

Finally, the combined effects of NP and scattering are inves-
tigated in chapter 6 after a short survey of NEGF for quantum
transport.

Beside the notable improvements provided for the SIMNAD soft-
ware such as OpenMP parallelization of time-consuming routines
and the inclusion state-of-the-art libraries for linear and eigenvalue
problems, the TCAD tools provided in this work comprise a bulk,
well, and wire EPM band structure calculator as well as a fully MPI
parallelized quantum transport simulator based on the FEM.



Chapter 2

Inhomogeneous
Electron Gas

2.1 Introduction

The behavior of charge carriers in semiconductor devices reaching
the nanometer scale is best described by means of quantum me-
chanics. Particularly in strongly confined systems, the Schrödinger
equation has to account for many-particle effects as the Coulomb
repulsion between electrons becomes non-negligible. A gas consisting
ofN electrons of massme interacting by means of Coulomb repulsion
and being subjected to a background potential V (~r) is referred to as
the inhomogeneous electron gas (IEG). The Hamiltonian of the IEG
reads

Hel =

N∑

j=1

[
− ~

2

2me
∆j + V (~rj)

]
+

e2

8πǫ0

1...N∑

i,j
i6=j

1

|~ri − ~rj | , (2.1)

where the coordinate ~rj = (xj , yj , zj) describes the j-th electron
and ∆j = (∂2/∂x2

j ) + (∂2/∂y2
j ) + (∂2/∂z2

j ). If V (~rj) does not

5



6 CHAPTER 2. INHOMOGENEOUS ELECTRON GAS

depend on ~rj the system is referred to as the homogeneous electron
gas. The Hamiltonian (2.1) can be modified to include the spin
degree of freedom , and therefore, the spin-orbit coupling as well
as any further relativistic correction which is not considered in this
work. Three approaches for the solution of the IEG problem are
given by the Hartree method, Hartree-Fock method, and density
functional theory [10, 11], respectively. Generally, the electron gas
is an integral part of a system consisting of many atoms whose
positively charged cores generate the background potential V (~r). In
this case, the ability to formulate an Hamiltonian for the electronic
system alone, and thus treating the ionic cores as if they were frozen,
is provided by the Born-Oppenheimer approximation (BOA). This
simplification is of crucial importance not only for electronic systems
in semiconductors and shall be discussed thoroughly.

First, the full quantum many-body problem describing electrons
and atomic cores is introduced. Subsequently, the BOA is described
and a simplified solution for the resulting equations is illustrated.
Finally, the Hartree approximation for solving the IEG problem 1

will be addressed.

2.2 The Born-Oppenheimer Approxima-
tion

2.2.1 Full Many-Body Problem

A system consisting of M atomic cores 2 of mass Mj located at the

positions {~Rj}j=1,2,...,M and N electrons located at {~ri}i=1,2,...,N is
now considered. For simplicity, the abbreviations

X = (~R1, ~R2, . . . , ~RM )

x = (~r1, ~r2, . . . , ~rN )

1 The Hartree approximation is widely used within nowadays quantum
transport simulators including the framework described in this work.

2The terms core and ion will be used interchangeably.
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for cores and electrons, respectively, are employed. The full Hamil-
tonian reads

H(x,X) = Hel(x,X) + Tion(X) (2.2)

with

Hel(x,X) = Tel(x)+Vel−ion(x,X)+Vel−el(x)+Vion−ion(X). (2.3)

The operators

Tion(X) =

M∑

j=1

− ~
2

2Mj

∂2

∂ ~R2
j

Tel(X) =

N∑

i=1

− ~
2

2me

∂2

∂~r2
i

denote the kinetic energy of the electrons and cores respectively. The
term

Vion−ion(X) =
e2

8πǫ0

1...M∑

i,j
i6=j

ZiZj

|~Ri − ~Rj |
(2.4)

is the potential energy of the ions with Zi being the number of
protons of the i-th ion and

Vel−el(x) =
e2

8πǫ0

1...N∑

i,j
i6=j

1

|~ri − ~rj | (2.5)

is the potential energy of the electrons. Finally, the interaction
between the electrons and the ions is described by

Vel−ion(x,X) =

N∑

i=1

M∑

j=1

Φion
j (~ri), (2.6)

where

Φion
j (~r) = − e2

4πǫ0

Zj

|~r − ~Rj |
(2.7)
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is the Coulomb potential of the j-th ion. The Schrödinger equation
in the product Hilbert space H = Hel ⊗ Hion reads

H(x,X)Ψ(x,X) =
[
Hel(x,X) + Tion(X)

]
Ψ(x,X)

= EΨ(x,X), (2.8)

where Hel is the Hilbert space relative to the configuration space of
the electrons x and Hion relative to X.

2.2.2 Approximation

The wave function Ψ(x,X) from Eq. (2.8) can be written as

Ψ(x,X) =
∑

ν

φν(x,X)χν(X), (2.9)

with {φν(x,X)}ν being the eigensolutions of the electronic problem

Hel(x,X)φν(x,X) = Eel
ν (X)φν(x,X) (2.10)

for a fixed X. Equation (2.10) corresponds to the IEG problem
(2.1) with an appropriate V (~r). The ansatz (2.9) is used in Eq. (2.8).
Based on the assumption that the electron mass is much smaller than
any of the core masses, the mixing between different ν in Eq. (2.9)
due to Tion can be neglected [10,11] and Eq. (2.8) simplifies to

[
Tion(X) + Eel

µ (X)
]
χµ(X) = Eχµ(X) (2.11)

for the different ν. For instance, an eigensolution of Eq. (2.8) is given
by Ψ(x,X) = φν(x,X)χν(X). The Eel

ν (X) acts as a potential energy
in the vibrational problem (2.11) including the effect of V ion−ion(X).
The subsequent solution of the electronic (2.10) and vibrational
problem (2.11) is actually referred to as the BOA or adiabatic ap-
proximation. For a discussion on non-adiabatic phenomena, i.e.
effects which can not be reproduced within the BOA, such as the
electron-phonon interaction, see Ref. [10].
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2.2.3 Solution

In general, where no analytic dependence of Eel
µ on X can be found,

a solution of Eqs. (2.11) and (2.10) can be accomplished by numer-
ically solving the electronic problem for a finite set of {X} and use
the discretized Eel

µ for the solution of the ionic problem. Except
for very simple cases such as the H2 molecule it is obvious that the
sampling of Eel

µ (X) represents a non-trivial task. A more simplified
scheme is based on a classical description of the atomic cores. Given
an initial configuration Xinit, the forces

− F (X0) ≡ ∂Eel
ν (X)

∂X

∣∣∣∣
X=X0

(2.12)

are used to propagate the cores during a small time step. The
iterative application of this procedure, as summarized in Fig. (2.1),
leads to a quantum mechanical description of molecular dynamics
(MD), where the motion of the cores is usually described by the
ground state energy Eel

g (X) of the electronic system. This represents
an improvement compared to the purely classical motion of electrons
and atomic cores. At some point the cores are supposed to rest at
the positions X0 defined by

F (X0) = 0. (2.13)

The calculation of the atomic forces without knowing the depen-
dence of Eel

ν on X can be accomplished by the Hellmann-Feynman
theorem

− F (X) =
∂Eel

ν (X)

∂X
= 〈φν ,X|∂H

el

∂X
|φν ,X〉, (2.14)

where 〈x|φν ,X〉 = φν(x,X). Of course, modern MD simulators are
much more involved than the procedure scheched above, especially
when a finite temperature is taken into account, and the electronic
energy is rather complicated having many local minima. For more
details see Refs. [12, 13]. Energy minimizations allow to investigate
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X
init

X
(i)

Assemble the Hamiltonian
of the electronic problem
Hel(x,X(i))φ(x,X(i)) =
Eel(X(i))φ(x,X(i)) and
compute the ground state
φg.

Compute the forces F (X(i))
by means of the Hellmann-
Feynman theorem: −F (X(i)) =

〈φg,X
(i)|H̃el(x,X(i))|φg,X

(i)〉

|F (X(i))| ≤ tol Done

X
(i) = X

(n+1) Compute a new configuration
X

(n+1) by means of F (X(i)).

No

Yes

Figure 2.1: Minimization procedure to find the rest positions X0

of the atomic cores defined in Eq. (2.13). The Hellmann-Feynman
theorem (2.14) is used to compute of the forces on the atomic cores.

The abbreviation H̃el(x,X) = (∂Hel)/(∂X) is used.
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important physical quantities such as the crystal structure of solids
for instance.

The atomic cores being trapped at some positions, i.e. the rest
positions found by a minimization procedure for instance, is the
picture that will be retained within the ballistic quantum transport
framework described in chapter 4. Obviously, the atomic cores are
never perfectly at rest but rather oscillate around the positions X0.
Further details on these lattice vibrations can be found in Ref. [10].
Furthermore, the impact of an applied voltage bias due to electric
contacts, such as in semiconductor devices, on the positions of the
atomic cores is ignored.

2.3 The Hartree Approximation

A direct solution of the electronic problem

Hel(x)φ(x) = Eelφ(x) (2.15)

can be accomplished by expanding the solution φ in an orthonormal
basis {ψµ}µ of Hel

φ(x) =
∑

µ

cµψµ(x). (2.16)

The X-dependence in Hel,Eel, and φ is omitted for simplicity. Using
the expansion (2.16) in Eq. (2.15), multiplying on the left by ψ∗

ν , and
integrating over x yields an algebraic eigenvalue problem. This ap-
proach, also referred to as exact diagonalization, is rather impractica-
ble especially when a large number of electrons is considered as the
resulting matrices can not be diagonalized within reasonable time
limits even on large scale computers. As mentioned in Sec. (2.1), the
DFT and the Hartree Fock method are two widely used approaches
to tackle the electronic problem. A simpler approach is given by the
Hartree approximation. Within this approximation, the ansatz for
the total wave function reads

φ(x) = φ(~r1, ~r1, . . . , ~rN ) = ψ1(~r1)ψ2(~r2) . . . ψN (~rN ). (2.17)
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The single particle states ψi are obtained by minimizing the func-
tional

〈φ|Hel|φ〉

= 〈φ|
N∑

i=1


− ~

2

2me
∆~ri

+

M∑

k=1

Φion
k (~r) +

e2

8πǫ0

N∑

j=1
j 6=i

1

|~ri − ~rj |


 |φ〉

=
N∑

i=1

∫
ψ∗

i (~ri)

[
− ~

2

2me
∆~ri

+
M∑

k=1

Φion
k (~r)

]
ψi(~ri)d~ri

+
e2

8πǫ0

1...N∑

i,j
i6=j

∫ ∫ |ψi(~ri)|2|ψj(~rj)|2
|~ri − ~rj | d~rid~rj (2.18)

under the constraint that the single electron wave functions are
normalized

δ

δψ∗
i


〈φ|Hel|φ〉 −

N∑

j=1

ǫj

∫
|ψj(~rj)|2d~rj


 = 0 i = 1 . . . N,

(2.19)
with {ǫj}j being Lagrange multipliers. The resulting equations, i.e.
the Hartree equations, read

[
− ~

2

2me
∆ + Vi(~r)

]
ψi(~r) = ǫiψi(~r) (2.20)

with

Vi(~r) =
e2

4πǫ0

N∑

j=1
j 6=i

∫ |ψj(~r′)|2

|~r − ~r′|
d~r′

︸ ︷︷ ︸

+Vc(~r). (2.21)

V
(i)

H (~r)
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The term V
(i)

H (~r) is referred to as the Hartree potential and Vc(~r) =∑M
k=1 Φion

k (~r) is the crystal potential. In a generalized sense, the
ψi(~r) may be understood as single-electron states [10]. The Hartree

potential V
(i)

H (~r) can then be interpreted as the sum of the Coulomb
potentials of all electrons except the i-th. Obviously, as the Hartree
potential depends on the single-electron states, the Hartree equa-
tions have to solved in a self-consistent way. Assuming that the
number of electrons N in the system is macroscopically large, as
in the case of a solid for instance, and that the wave functions
of the electrons are widely spread over the considered region, no
significant difference can be expected if the sum over j in Eq. (2.21)
is extended to include the term j = i. In this way the i-dependence
of the Hartree potential is eliminated, where the resulting error is of
order of magnitude 1/N . The conditions (2.19) collapse to a single
Schrödinger equation 3 yielding the eigensystem {ǫ(ν), ψ(ν)}ν . It re-
mains to specify a representative configuration of the ψi which enter
the product ansatz (2.17). The existence of such a configuration
implies that external perturbations do not notably change the state
of the electron gas. From an energy point of view then, a reasonable
choice would be to use the ground state configuration of the N -
particle system. At zero temperature the first N states, i.e. the en-
ergetically lowest, are considered to construct this state, where ǫ(N)

is referred to as the Fermi energy. The configuration-dependence
of the Hartree potential is strongly affected by the kind of one-
particle states involved. Plane-wave-like states of ideal crystals for
instance are expected to yield a weaker configuration-dependence
than localized states of real semiconductors including perturbations
[10].

3This implies that the different ψi in Eq. (2.17) are orthonormal. Further-
more, by ensuring that the ψi are different in Eq. (2.17), the exclusion principle
is partially accounted for.
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The Hartree potential is finally given by

VH(~r) =
e

4πǫ0

∫
e

N∑

ν=1

|ψν(~r′)|2

︸ ︷︷ ︸

1

|~r − ~r′|d~r
′

ρ(~r′) (2.22)

with ρ(~r′) being the electron density. The Hartree equation is then
solved by the iterative procedure described in Fig. (2.2). Instead of
using Eq. (2.22) which implies an integration in three dimensions,
the Hartree potential can be calculated by means of Poisson’s equa-
tion

− ∆VH(~r) =
n(~r)

ǫ0
(2.23)

In this way the presence of electric contacts in semiconductor devices
can be accounted for by suitable boundary conditions for Eq. (2.23).
In particular, a given voltage on the gate contact is described by a
Dirichlet condition

VH(~r) = Vg, ~r ∈ gate (2.24)

while the source and drain contacts require more specific treatment
as explained in chapter 4. The calculation of the electron density
ρ(~r) at finite temperatures is addressed in Sec. 3.8.

2.4 Summary

The stationary Schrödinger equation describing a system of electrons
and atomic cores is presented at the beginning of this chapter. An
important approximation due to Born and Oppenheimer notably
simplifies this problem which is almost intractable in its full form
especially in the presence of many particles. The problem reduces
to the solution of a Schrödinger equation for the electronic system
depending on the configuration of the atomic cores. Subsequently,
the electronic spectrum can be used to compute the properties of the
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φinit

φ(n) Compute the charge density
ρ(n)(~r) = e

∑N

ν=1
|ψ

(n)
ν (~r′)|2

Compute the Hartree potential
by means of Poisson’s equa-
tion −∆V

(n)
H (~r) = ρ(n)(~r)/ǫ0.

Boundary conditions dictated
by electric contacts.

Mixing of V
(n)

H and V
(n−1)

H .

Assemble the Hartree equation
and compute φ(n+1)

φ(n) = φ(n+1) Convergence ? DoneNo
Yes

Figure 2.2: Iteration scheme for the self-conistent solution of the
Hartree equations. The iteration cycle usually requires advanced
damping schemes which are thouroughly discussed in chapter 4.
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cores. However, the motion of the cores is not further addressed. The
Hartree approximation for the solution of the electronic problem is
described which will be employed within the transport framework
described in chapter 4. This approximation requires an iteration
procedure to reach self-consistency between the potential and the
density. The presence of electric contacts can be straightforwardly
included within this approximation.



Chapter 3

Band Structure Effects

3.1 Introduction

Several simplifications were outlined in the previous chapter leading
to a simplified description of electrons moving in the presence of a
fixed ionic background. The electronic problem

[
− ~

2

2me
∆ + U(~r)

]

︸ ︷︷ ︸
ψ(~r) = ǫψ(~r) (3.1)

H

with U(~r) being the sum of the potential Vc(~r) generated by the
ionic cores and a mean field potential describing the interactions
between the electrons, is the starting point for further simplifications
needed for the simulation of semiconductor devices. The case of an
infinite crystal is considered first, followed by a description of the
empirical tight-binding (ETB) and the empirical pseudopotential
method (EPM). These two methods are used to compute the energies
of carriers in nanostructures. Subsequently, the effective mass ap-
proximation (EMA) is introduced and applied to specific examples.

17
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Comparisons to tight-binding and pseudopotential methods are car-
ried out in order to investigate the shortcomings of the effective mass
approximation 1. Nonparabolicity models for quantized structures
are introduced, followed by some details on the calculation of charge
densities in thermodynamic equilibrium.

3.2 Infinite Crystal (Bulk)

The description of a crystal structure starts with the choice of a
Bravais lattice [14]

Γ ≡
{

A~n | ~n ∈ Z
3
}

(3.2)

where A ≡ (~a1|~a2|~a3) consists of three linearly independent column
vectors ~a1, ~a2, and ~a3. A unit cell

Ωc ≡ {λ1~a1 + λ2~a2 + λ3~a3 | λi ∈ [0, 1), i = 1, 2, 3} (3.3)

of the Bravais lattice (3.2) can be defined which, translated through
all vectors in Γ, fills the whole space without overlaps. The unit
cell contains a basis of atoms which is translated together with the
cell to generate the entire crystal. Of course, other unit cells can
be defined with an appropriate atomic basis to describe the same
crystal structure. The definition (3.2) implies that the crystal is
infinitely large. This idealization can be used for actual crystals
which, of course, have a finite dimension but are large enough such
that the majority of atoms do not feel the presence of the surface 2.
Given a Bravais lattice (3.2), the corresponding reciprocal lattice is
defined by

Γ̃ ≡
{

B~n | ~n ∈ Z
3
}
, (3.4)

1 These shortcomings are referred to as band structure effects.
2The term bulk is often used to describe such crystals.
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where B = 2πA−T = (~b1|~b2|~b3). A function f(~r) which is periodic
with respect to the Bravais lattice (3.2) can be expanded in terms
of plane waves

f(~r) =
∑

~G∈Γ̃

f̂(~G)ei ~G~r (3.5)

with

f̂(~G) =
1

|Ωc|

∫

Ωc

f(~r)e−i ~G~r. (3.6)

When a material crystallizes in a given structure, the potential
generated by the atomic cores

Vc(~r) =

∞∑

j=1

Φion
j (~r) (3.7)

is periodic with respect to a Bravais lattice (3.2) and the potential
U(~r) is assumed to have the same periodicity of the crystal potential
Vc(~r).

The eigenstates ψ of the Hamiltonian (3.1) can then be chosen to
have the form of a plane wave times a function with the periodicity
of the Bravais lattice, i.e.

ψ(~r) → ψ(~k, ~r) = ei~k~ru(~k, ~r), (3.8)

where

u(~k, ~r + ~R) = u(~k, ~r) ∀~R ∈ Γ. (3.9)

Accordingly, the wave vector ~k enters the energy ǫ → ǫ(~k). This
statement is known as Bloch theorem and the property

ψ(~k, ~r + ~R) = ei~k ~Rψ(~k, ~r + ~R) (3.10)
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is referred to as Bloch condition3. For a proof see Ref. [14]. The en-
ergy and the wave function have the following important properties

ψ(~k + ~G,~r) = ψ(~k, ~r) (3.11)

ǫ(~k + ~G) = ǫ(~k) (3.12)

for all ~G ∈ Γ̃. Using the ansatz (3.8) for the Schrödinger problem
(3.1) yields

[
− ~

2

2me
(~∇ + i~k)2 + U(~r)

]
ψ(~k, ~r) = ǫ(~k)ψ(~k, ~r) (3.13)

which is solved on Ωc with periodic boundary conditions (3.9). The

wave vector ~k is varied over a primitive unit cell of the reciprocal
lattice, i.e.

Ω̃c ≡ {λ1
~b1 + λ2

~b2 + λ3
~b3 | λi ∈ [0, 1), i = 1, 2, 3} (3.14)

for instance. Solving Eq. (3.8) for a fixed ~k yields the eigensystem

{ǫn(~k), ψn(~k, ~r)} which is labeled4 by the band index n. Usually, the
Born-von Karman boundary conditions

ψn(~k, ~r + ~v)
!
= ψn(~k, ~r) ∀ ~v ∈ Γ ~N , (3.15)

where ~N = (N1, N2, N3) and

Γ ~N ≡ {n1N1~a1 + n2N2~a2 + n3N3~a3 | ni ∈ Z i = 1, 2, 3} . (3.16)

The lattice Γ ~N is a subset of Γ and can be characterized by a unit
cell

Ω ~N ≡ {λ1N1~a1 + λ2N2~a2 + λ3N3~a3 | λi ∈ [0, 1), i = 1, 2, 3} (3.17)

3Using wave functions of the form (3.8) within the DFT or Hartree
aproximation guarantees that the potential U(~r) possesses the periodicity of
the Bravais lattice.

4The solutions of Eq. (3.8) are usually referred to as Bloch states, Bloch

functions, or Bloch waves while the term band structure is used for ǫn(~k). Note
that not all methods for band structure calculations require a reduction of the
problem (3.1) to Eq. (3.8).
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being a multiple of Ωc. In this context it is useful to define the
reduced lattice

Γred
~N

≡ {n1~a1 + n2~a2 + n3~a3 | ni = 0, . . . , Ni − 1 i = 1, 2, 3} .
(3.18)

The condition (3.15) restricts the allowed wave vectors ~k in the
reciprocal space to the set

Γ̃red
~N

≡
{
n1
~b1

N1
+
n2
~b2

N2
+
n3
~b3

N3
| ni = 0, . . . , Ni − 1 i = 1, 2, 3

}

(3.19)

which is a subset of

Γ̃ ~N ≡
{
n1
~b1

N1
+
n2
~b2

N2
+
n3
~b3

N3
| ni ∈ Z i = 1, 2, 3

}
. (3.20)

The cell Ω ~N is used to normalize the Bloch states

∫

Ω ~N

|ψn(~k, ~r)|2d~r = 1. (3.21)

The number N of allowed wave vectors ~k is equal to the number of
cells Ωc in the reduced lattice Γred

~N
, i.e. N = N1N2N3.

3.3 Methods

The calculation of the potential U(~r) from Eq. (3.1) often requires an
iterative procedure to achieve self-consistency. This is the case when
DFT, Hartree, or the Hartree-Fock approximation are used for in-
stance to simplify the original many-particle problem (2.15). Other
methods implicitly assume the form (3.1) without being related to
a simplification of the original many-particle problem. The latter
methods rely for instance upon experimental data to construct U(~r)
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Table 3.1: Effective masses and band gap of band structures com-
puted by means of the parameterizations of Chelikowski et al. (Ch)
and Wang et al. (Wa) given in Eqs. (A.17) and (A.18) respectively
and by means of the tight-binding (TB) formalism described in
appendix A.0.1. Two different cutoffs co ∈ {3.5, 4.5}[1/aB ] are
used for the Wa case while co = 8π/aSi is used for the Ch case.
Conduction band masses and minimum are extracted at 0.85[ΓX]
in the case of the pseudopotentials. The experimental data is taken
from Ref. [16] and references therein.

Quantity Ch Wa (3.5) Wa (4.5) TB experiment

m
[100]
lh 0.167 0.150 0.151 0.214 0.15

m
[111]
lh 0.097 0.092 0.093 0.144 0.11

m
[100]
hh 0.272 0.279 0.276 0.276 0.34

m
[111]
hh 0.671 0.682 0.662 0.734 0.69

ml 0.911 0.911 0.913 0.891 0.916

mt 0.195 0.200 0.200 0.201 0.19

Eg [eV] 1.056 1.165 1.173 1.131 1.124

and do not require self-consistency. Consequently, these empirical
approaches are particularily interesting from a computational point
of view. Two examples are given by the ETB and EPM described
in appendix A. The band structure of bulk silicon is computed by
means of the ETB and EPM and a comparison of characteristic
quantities such as the band gap and effective masses along different
directions [10, 15] is given in Tab. 3.1. The band structures are
plotted in Fig. 3.1. Conduction band effective masses are in good
agreement with experimental data while the agreement for the va-
lence band masses is less obvious in some cases 5. An increment
of the cutoff co from 3.5/aB to 4.5/aB has a minor impact on the

5Minor deviations from the results given in Ref. [16] are observed which is
probably due to different extraction methods.
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Figure 3.1: Band structure of bulk silicon obtained by means of the
empirical pseudopotential (PP) method using the parametrization
(A.17) and the present tight-binding (TB) method. A comparison
of characteristic quantities is given in Tab. 3.1.
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results obtained by the pseudopotential of Wang et al.. This is of
crucial importance for the simulation of nanostructures as shown in
Sec. 3.4.

Using co = 3.5/aB for the potential of Wang et al. (see appendix
A) yields a Hamilton matrix of size 181 × 181. The tight-binding
method has the advantage that the matrices involved in the band
structure calculations are rather small, i.e. 20 × 20. On the other
hand, within the tight-binding formalism, the functional form of
the basis set is undermined, since only the empirically adjusted
Hamilton matrix elements are used. Without explicit basis functions
it becomes difficult to describe the impact of the atomic geometry
on the matrix elements or to compare the real space representation
of the Bloch states with results from other methods such as ab-
initio calculations. Furthermore, the small basis set suggests limited
variational flexibility compared to the continuous form factors used
within the pseudopotential method.

3.4 Nanostructures

3.4.1 Overview

The critical dimensions of nowadays semiconductor devices have
reached a regime where the bulk picture described in Sec. 3.2 does
not apply any longer. These semiconductor structures can be gener-
ally divided in three classes - structures periodic in two dimensions
(2D quantum wells), those periodic in one dimension (1D quantum
wires)6, and finally structures that are periodic in zero dimensions
(0D quantum dots). With respect to the 3D periodic bulk case,
these structures exhibit localization effects in one, two, and three
dimensions, respectively. In the case of wires and wells, a unit cell
containing a basis of atoms similar to the bulk case can be employed
to describe the reduced periodicity as illustrated in Fig. 3.2. The
use of the EPM to compute energies and states of wires and wells

6The terms quantum wire and nanowire will be used interchangeably.
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(a) (b)

x

z

y

Figure 3.2: Schematic representation of nanostructures confined in
two (a) and one (b) direction. The red polygons denote the unit
cells of the structures which contain a basis of atoms. The cells are
translated along the arrows to obtain the entire structure.

is described in the following 7. The treatment of nanostructures
within the semi-empirical sp3d5s∗ tight-binding framework is ex-
plained elsewhere [17]. Quantum dots are not considered in this
work.

3.4.2 Wire

The unit cell given in Fig. 3.2.a is specified by

Ωc = [0, a] × [0, L] × [0, L]. (3.22)

While the length a is fixed by the atomic structure of the wire, the
lateral extension L can can be set to any value provided that the
entire atomic basis is contained in the cell 8. In order to employ

7The approach adopted in fully ab-initio methods is similar.
8A rectangular unit cell with a square cross section is not always the optimal

choice. However, it simplifies the formalism and does not restrict the shape of
the nanowire cross section, i.e. the atomic basis.



26 CHAPTER 3. BAND STRUCTURE EFFECTS

(a) (b)

Figure 3.3: (a) The unit cell of a nanowire is periodically repeated to
fill the whole space. This generates an artificial array of nanowires
giving rise to a potential which is periodic in three dimensions. (b)
Each cell contains a wire (dark area) which is surrounded by vacuum
(arrows).

Bloch’s theorem for the calculation of the electronic states of the
nanowire, a periodicity in all three dimensions has to be recovered.
This is achieved by constructing an artificial array of nanowires as
shown in Fig. 3.3 generating a potential U(~r) that is periodic with
respect to Ωc. The corresponding Brillouin zone in the reciprocal
space reads

Ω̃c = [−π/a, π/a] × [−π/L, π/L] × [−π/L, π/L]. (3.23)

The presence of the artificial wire replicas is eliminated by enlarging
the vacuum layer around the atomic basis, i.e. L → ∞. Conse-
quently, the Brillouin zone (3.23) becomes quasi one-dimensional

and it is sufficient to consider ~k = (kx, 0, 0) with kx ∈ [−π/a, π/a].
For computational reasons, the vacuum layer is increased until the
energies on the trajectory kx ∈ [0, 2π/a] become independent of the
vacuum width. The Brillouin zone retains a certain width and the
energies and the Bloch states are assumed to be independent of ky

and kz, i.e. ǫ(~k) ≃ ǫ(kx, 0, 0) and ψ(~k) ≃ ψ(kx, 0, 0).



3.4. NANOSTRUCTURES 27

The atomic structure of a typical silicon nanowire grown along
the 〈100〉 direction is shown in Fig. 3.4.a. Two possible wire cross
sections with surfaces oriented along the 〈100〉 and 〈110〉 directions
are given in Figs.3.4.b and 3.4.c respectively, both having a unit cell
of length a = aSi. The dangling bonds at the surface are terminated
by hydrogen atoms in this particular case. A continuous form factor
for hydrogen is provided by Wang et al.

V̂ W a
H (q) =

{
vSi(a1 + a2q + a3q

2 + a4q
3) q ≤ 2/aB

vSi(a5/q + a6/q
2 + a7/q

3 + a8/q
4) q > 2/aB

(3.24)
where a1 = −0.1416Ry, a2 = 9.802 × 10−3a−1

B Ry, a3 = 6.231 ×
10−2a−2

B Ry, a4 = −1.895×10−2a−3
B Ry, a5 = 2.898×10−2aBRy, a6 =

−0.3877a2
BRy, a7 = 0.9692a3

BRy, and a8 = −1.022a4
BRy. Together

with the form factor (A.18), the Fourier transform (A.12) of a wire
unit cell (slab) consisting of NH hydrogen and NSi silicon atoms is
given by

Û(~G) =
1

|Ωc|

[
V̂ W a

H (|~G|)
NH∑

i=1

e−i ~G~bi + V̂ W a
Si (|~G|)

NH +NSi∑

i=NH +1

e−i ~G~bi

]
.

(3.25)
The potential (3.25) is used in the secular problem (A.14) to compute
the band structures of the nanowires from Figs. 3.4.b and 3.4.c.
A cutoff co = 3.5/aB is used for the calculations. These band
structures are plotted in Fig. 3.5. Contour plots of the potentials
as well as the energetically highest valence band state (HVS) and
lowest conduction band state (LCS) are given in Fig. 3.6. Using
co = 3.5/aB , yields a secular problem of size 221352 for the 〈100〉
wire. As in the bulk case, the tight-binding formalism involves
Hamilton matrices of much more moderate sizes, i.e. 12802 for
a comparable nanowire of the same orientation 9. Furthermore,

9More details on how the pseudopotential and tight-binding frameworks
used in this work are compared can be found in Sec. 3.6.3. This is not a
straightforward task, as hydrogen is not explicitly parametrized within the
present tight-binding framework.
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<100>

<100>

(a)

(c)(b)

<110>

<100>

Figure 3.4: (a) Silicon nanowire grown along the 〈100〉 direction.
The cross sectional shape of this wire can be square for instance with
surfaces oriented along the 〈100〉 and 〈110〉 directions as shown in
(b) and (c) respectively. The green blocks are used to construct the
skeleton of the wires (red spheres). Bond lengths and orientations
within the skeleton are identical to bulk silicon. The dangling
bonds are terminated by hydrogen (blue spheres) and the surface
is deformed as explained in Ref. [16]. This deformation affects the
silicon skeleton in the vicinity of the surfaces. Both unit cells have
a length of a = aSi while the lateral extensions are L = 2.89nm and
L = 2.28nm for (b) and (c) respectively including a vacuum layer of
0.25nm.
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Figure 3.5: Band structures of silicon nanowires computed by means
of the empirical pseudopotential method explained in Sec 3.4.2. The
dispersions of the wires from Figs. 3.4.b and 3.4.c are given in (a)
and (b), respectively. The energy scales are gauged such that the
corresponding bulk conduction band minimum is equal to zero.
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<110>

LCS

POT

HVS

<100>

Figure 3.6: Contour plots of the potential (POT) and the absolute
square of the HVS and LCS (see text) of the wires from Fig. 3.4.b
and 3.4.c. The contours are computed for equally spaced values, ten
for the states and five for the potentials, between the maximum and
minimum of the corresponding quantity. Blue represents low values,
red high.
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(a) (b)

Figure 3.7: Same as in Fig. 3.3 for the case of quantum wells. (a)
Array of quantum well unit cells. (b) Each unit cell contains a basis
of the quantum well sandwiched between vacuum layers.

within the tight-binding formalism there is no need to account for
the surrounding vacuum explicitly.

3.4.3 Well

The calculation of electronic states in semiconductor quantum wells
is similar to the procedure employed for nanowires. The unit cell
shown in Fig. 3.2.b

Ωc = {(λ1a
x
1 + λ2a

y
1, λ1a

x
2 + λ2a

y
2, λ3L) | λi ∈ [0, 1], i = 1, 2, 3}

(3.26)
is specified by means of two vectors a1 = (ax

1 , a
y
1) and a2 = (ax

2 , a
y
2)

in the xy-plane and a height L. The atomic structure of the quantum
well fixes the vectors a1 and a2 while L is variable. Figure 3.7 shows
the artificial array of quantum well unit cells needed to generate the
periodic potential U(~r). A possible unit cell in the reciprocal space
is given by

Ω̃c = {(λ1b
x
1+λ2b

y
1, λ1b

x
2+λ2b

y
2, λ32π/L) | λi ∈ [−0.5, 0.5], i = 1, 2, 3},

(3.27)
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where bx
1 = 2πay

2/d, by
1 = −2πay

1/d, bx
2 = −2πax

2/d, by
2 = 2πax

1/d,
and d = ax

1a
y
2 − ax

2a
y
1. These reciprocal unit cells become quasi two-

dimensional as the height L of the well, i.e. the vacuum layer shown
in Fig. 3.7.b, is increased to remove the artificial well replicas. The
energies and Bloch states are computed for kz = 0, assuming that
these quantities are approximately independent of kz even though a
finite height L is retained for computational reasons.

Two typical silicon quantum well structures with surfaces per-
pendicular to the 〈100〉 and 〈110〉 direction are shown in Fig. 3.8.
The unit vectors in the xy−plane are {a1 = (−aSi, aSi)/2,a2 =
(aSi, aSi)/2} and {a1 = (aSi, 0),a2 = (0, aSi/

√
2)} for the 〈100〉 and

〈110〉 case respectively.
The pseudopotential is constructed according to Eq. (3.25) using

the same parameterizations employed for the wire case in Sec. 3.4.2,
i.e. Eqs. (A.18) and (3.24), and the potential is used within the
secular problem (A.14). The two-dimensional band structures of
the quantum wells shown in Fig. 3.8 are given in Fig. 3.9 while one-
dimensional cuts are plotted in Fig. 3.10. In both cases, co = 3.5/aB

has been employed. The size of the secular problem for the 〈100〉
case is 20292 while the tight-binding framework generates a 1702

matrix for a well of comparable height.

3.4.4 Computational Remarks

As mentioned in Secs. 3.4.2 and 3.4.3, the Hamilton matrices as-
sembled within the EPM are notably larger than the ones used
in the tight-binding framework. While the eigenvalue problems
generated in the latter approach can be satisfactorily solved by
means of a standard library, e.g. LAPACK [18], more advanced
diagonalization algorithms have been developed to efficiently sim-
ulate nanostructures described by pseudopotentials [19]. In this
work, ScaLAPACK [20] is used to compute the pseudopotential
band structures of nanowires while quantum wells are treated by
means of LAPACK. Parallelization in the latter case is achieved
by distributing the different ~k’s among the compute nodes. The
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(a)

<100>

(b)

<110>

Figure 3.8: Unit cells of silicon quantum wells with surfaces
perpendicular to the 〈100〉 (a) and 〈110〉 direction (b). The green
polygons are used to construct the skeleton of the wells (red spheres)
which is carved out of bulk silicon as in the wire case. Hydrogen
(blue spheres) passivation of the surface is explained in Ref. [16].
The height of the unit cells is L = 2.89 nm and L = 2.29 nm for (a)
and (b) respectively including a vacuum layer of 0.25 nm.
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(b)(a)

(c) (d)

k

k

y

x

vb <100> cb <100>

vb <110> cb <110>

Figure 3.9: Two-dimensional band structures of silicon quantum
wells computed by means of the EPM explained in Sec 3.4.3. The
valence bands (vb) of the wells shown in Figs. 3.8.a and 3.8.b are
plotted in (a) and (c), respectively and the conduction bands are
given in (b) and (d), respectively. Plotted is the range (kx, ky) ∈
[−3π/aSi, 3π/aSi]

2. The white lines denote the unit cells (3.27)
which in this case coincide with the first Brillouin zones. Blue
represents low energies, red high energies.
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Figure 3.10: Band structure cuts of the silicon quantum wells shown
in Figs. 3.8.a and 3.8.b are plotted in (a) and (b) respectively. In
both cases, the reciprocal space is cutted along the cartesian kx-axis.
A cut along the ky-axis for the 〈110〉 case is plotted in (c). The
present EPM has been employed for the calculations. Energies are
gauged as in Fig. 3.5.
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diagonalization routines can be accelerated by providing the exact
indices of the desired eigenvalues. Generally, only a few eigenvalues
around the gap are required. Provided that the nanostructure is a
semiconductor, the number of valence bands is just half the number
of electrons in the unit cell.

3.5 Effective Mass Approximation

The calculation of electronic states in semiconductor nanostructures
as outlined in Sec. 3.4 is related to a notable computational burden.
A widely used simplification is given by the effective mass approxi-
mation (EMA) which has been originally introduced to describe an
infinite crystal subjected to an external perturbation Uext(~r)

[
− ~

2

2me
∆ + U(~r) + Uext(~r)

]
Ψ = EΨ, (3.28)

where U(~r) is the periodic crystal potential 10.The problem (3.28)
is solved on the enlarged unit cell Ω ~N from Eq. (3.17) and Born-
von Karman boundary conditions (3.15) are used for Ψ(~r). In the

following, ~N is macroscopically large and omitted in the notation.
The wave function Ψ(~r) can be expanded in terms of Bloch states
of the potential U(~r)

Ψ(~r) =
∑

n,~k∈Γ̃red

〈n,~k|Ψ〉ψn(~k, ~r) (3.29)

with 〈n,~k|Ψ〉 =
∫

Ω
ψ∗

n(~k, ~r)Ψ(~r)d~r . Using the ansatz (3.29) for the
Schrödinger problem (3.28) yields the secular equation
∑

n′,~k′∈Γ̃red

[
ǫn(~k)δn,n′δ~k,~k′

+ 〈n,~k|Uext|n′,~k′〉
]

〈n′,~k′|Ψ〉 = E〈n,~k|Ψ〉.

(3.30)

10For a discussion on the mean field potentials describing the interactions
between the electrons, see Ref. [10]. In the following, the periodic potential
U(~r) is assumed to be unaffected by Uext(~r).
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The external potential Uext(~r) is assumed to be periodic with respect
to the cell Ω and can be expressed by means of plane waves

Uext(~r) =
∑

~k∈Γ̃inf

〈~k|Uext〉ei~k~r, (3.31)

where Γ̃inf ≡
{

B ~N~n | ~n ∈ Z
}

and 〈~k|Uext〉 = (1/Ω)
∫

Ω
exp(−i~k~r)

Uext(~r)d~r. The EMA is based on several prerequisites. The first
is that the external potential has to be smooth compared to the
periodic potential U(~r). Quantitatively, this means that the main

contributions to the sum (3.31) come from wave vectors ~k inside the

first Brillouin zone and the remaining coefficients 〈~k|Uext〉 for ~k’s
outside the Brillouin zone are much smaller than the corresponding
Fourier coefficients of the crystal potential U(~r). The |〈~k|Uext〉| are
roughly related to the change of the external potential over the unit
cell of the crystal which can be estimated as a|~∇Uext|. On the
other hand, the Fourier coefficients of the crystal potential can be
estimated by a typical band energy, i.e. the band gap, which yields
the approximate condition a|~∇Uext| ≪ Eg for smoothness.

The second prerequisite is that the wave function Ψ(~r) can be
approximated by a single energy band n = b

Ψ(~r) =
∑

~k∈Γ̃red

〈b,~k|Ψ〉ψb(~k, ~r) ≡
∑

~k∈Γ̃red

F̂b(~k)ψb(~k, ~r) (3.32)

This single-band picture is consistent with the requirement of smooth-
ness for the external potential Uext(~r). A consequence of smoothness

is namely that the mixing 〈n,~k|Uext|n′,~k′〉 ≃ δn,n′δ~k,~k′
〈n,~k|Uext|n,~k〉

is suppressed in Eq. (3.30). The band b is assumed to have an

non-degenerated extremum at ~k0 = 0 which can be expanded in
second order in ~k

ǫb(~k) ≃ Eedge +
~

2

2me

~kT M~k +O(~k2), (3.33)

where M is referred to as the effective mass tensor. The function
F̂b(~k) is essentially non-zero for wave vectors ~k in the first Brillouin
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zone similar to Fourier coefficients of the external potential. Finally,
it is assumed that for these vectors ~k , the Bloch factor ub(~k, ~r) can
be approximated by

ub(~k, ~r) ≃ ub(~k0, ~r). (3.34)

Using the approximation (3.34) in Eq. (3.32) yields

Ψ(~r) ≃ ub(~k0, ~r)
∑

~k∈Γ̃red

F̂b(~k)ei~k~r

≡ ub(~k0, ~r)Fb(~r). (3.35)

The envelope function Fb(~r) is determined [10] by means of the
effective mass equation

[
Eedge − ~

2

2me

~∇T M~∇ + U(~r)

]
Fb(~r) = EFb(~r). (3.36)

The extension to bands with multiple extrema located at ~k(i), i =
1, . . . , ν is straightforward [21]. Each extremum is related to an en-

velope function F
(i)
b (~r) and a corresponding effective mass equation

[
Eedge − ~

2

2me

~∇T M(i)~∇ + Uext(~r)

]
F

(i)
b (~r) = E(i)F

(i)
b (~r), (3.37)

where Eedge is the same for all extrema 11. The total wave function
reads

Ψ(~r) =

ν∑

i=1

ψb(~k(i), ~r)F
(i)
b (~r). (3.38)

For the calculation of charge densities, the |Ψ|2 is important. As long
as the region of interest extends over several unit cells of the crystal,

11For a general Uext, the energies E(i) will have different values. On the other
hand, if Uext is spherically symmetric or has the symmetry of the crystal point
group, the solutions to different extrema i will have the same energy [21]. When
open boundary conditions are employed, the energy spectrum is continuous for
a general potential and a common energy can be found for each extremum.
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it is a good approximation to average the oscillating Bloch factors
within a cell. Furthermore, the mixing between different extrema in
|Ψ|2 is omitted, yielding

|Ψ|2 ≃
ν∑

i=1

|F (i)
b (~r)|2. (3.39)

As outlined above, the EMA and, hence Eq. (3.37), describes
a single material subjected to an external perturbation. In or-
der to describe nanostructures consisting of several materials, some
modifications are necessary. A possible approach would be to em-
ploy a position-dependent effective mass tensor and band edge in
Eq. (3.37) which account for the local material, together with suit-
able boundary conditions at the material interfaces [22]. More ad-
vanced envelope-function theories are based on transfer matrices to
describe the connection rules at the material interfaces [23]. How-
ever, as the regular calculation of these matrices represents an ex-
tremely tedious task, the use of the standard approach [22] is en-
couraged. The effective mass equation becomes

[
− ~

2

2me

~∇T M(i)~∇+ Eedge + Uext

︸ ︷︷ ︸ ]F
(i)
b = E(i)F

(i)
b ,

Ueff (3.40)

where Eedge(~r) is piecewise constant and determined by means of the
local affinity χ(~r) and band gap Eg(~r). Transitions from a material
to the surrounding vacuum are approximated by hard wall condi-
tions, i.e. zero Dirichlet conditions. A further simplification is given
by the single-material approximation [24–26]. Within this approach,
the effective mass tensor is position-independent and determined by
the material which hosts the majority of the envelope function. This
approximation is particularly suited for large band edge offsets and
moderate confinements.

The case of degenerate band extrema, i.e. beyond the single-band
picture, has not been discussed so far and will not be considered
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in this work. The k · p method, for instance, accounts for band
degeneracies within an envelope function framework similar to the
EMA and is thoroughly described in Refs. [10,21,27].

The effective mass tensors related to the six minima of the silicon
conduction band (see Fig. A.2) are diagonal, i.e. M = diag(1/mx,
1/my, 1/mz). Examples for the masses are given in Tab. 3.1. The
entries of the six mass tensors are obtained by permuting the set
{1/ml, 1/mt, 1/mt}. Within the effective mass approximation, a
silicon nanowire grown along the 〈100〉 direction, i.e. the x direction
for instance, can be described by a potential 12 Ueff (y, z) being
independent of x. Therefore, the general form of the corresponding
envelope functions reads

F (~r) = eikxxψn(y, z), (3.41)

where ψn(y, z) is determined by means of the Schrödinger equation

[
− ~

2

2me

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
+ Ueff (y, z)

]
ψ(y, z) = ǫψ(y, z)

(3.42)
and E = ǫn + ~

2k2
x/(2memx) is the total energy. The special form

of the kinetic operator in Eq. (3.42), i.e. effective mass sandwiched
between the derivatives, is particularly important when the masses
are position-dependent as this form ensures hermiticity of the Hamil-
tonian. Accordingly, for a silicon quantum well with 〈100〉 oriented
surfaces, the solution of the envelope equation has the form

F (~r) = ei(kxx+kyy)ψn(z), (3.43)

with [
− ~

2

2me

1

mz

∂2

∂z2
+ Ueff (z)

]
ψ(z) = ǫψ(z). (3.44)

and a total energy E = ǫn + (~2/2me)(k2
x/mx + k2

y/my). In this
case, the surfaces are perpendicular to the z-axis.

12This form for the effective potential can be used for any material and growth
direction.
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3.6 Limitations of the EMA

3.6.1 Overview

The prerequisites which led to the effective mass equation (3.37), in
particular the smoothness of the external potential, become ques-
tionable in the case of very small nanostructures, where the spatial
inhomogeneities are of the order of the lattice constant. A quanti-
tative comparison to direct calculations 13 for specific systems shall
give more insights regarding the suitability of the EMA and suggest
some efficient improvements.

3.6.2 Optical Lattice

An optical lattice is generated by superimposing two counterpropa-
gating running-wave laser beams of wavelength λ in all three spatial
directions, yielding a static potential U(~r) with periodicity a = λ/2

U(~r) = U0

3∑

i=1

sin2

(
2πxi

λ

)
, (3.45)

where U0 is the amplitude of the laser beam. The potential (3.45)
can be used to confine cold atoms. This system of trapped atoms
resembles a crystal in the sense that the atoms move in a periodic
potential. Several interesting effects such as the quantum phase
transition from the superfluid to the Mott insulator phase in bosonic
systems or ramping fermionic atoms across a Feshbach resonance
can be investigated (For more details see Ref. [28] and references
therein.)

In this section, the optical lattice is used as a prototypic system
to illustrate the shortcomings of the EMA. The computation of the

13The terms direct calculations or atomistic approach refer to methods which
explicitly account for the periodic background potential such as the tight-binding
or pseudopotential framework. Comparisons to other envelope theories such as
the kp method [27] are not carried out in this work.
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Figure 3.11: Band structure of the one-dimensional optical lattice
(3.46) for {a = 10aB , U0 = 0eV} (a) and {a = 10aB , U0 = 5eV} (b).

bandstructure of the optical lattice (3.45) is relatively easy, as the
corresponding Schrödinger equation separates in the three cartesian
directions. It is therefore sufficient to consider the one-dimensional
problem [

− ~
2

2me

∂2

∂x2
+ U0 sin2

(
2πx

λ

)]
ψ = ǫψ (3.46)

which is solved by means of a Bloch ansatz and a secular equation of
the form (A.14) in one dimension. The resulting eigenenergies ǫn(k)
form the band structure of the optical lattice

E~n(~k) = ǫn1
(k1) + ǫn2

(k2) + ǫn3
(k3), (3.47)

where ~n = (n1, n2, n3) and ~k = (k1, k2, k3). A plot of ǫn(k) is
given in Fig. 3.11. Increasing the amplitude U0 results in a sep-
aration of the lowest band from all the others. The same holds
for the three-dimensional band structure E~n(~k). The effective mass
equation is formulated for the lowest band having a minimum lo-
cated at ~k = 0 and an effective mass tensor of the form M =
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diag(1/m0, 1/m0, 1/m0). The unit cell Ωc = [−Na/2, Na/2]3 is em-
ployed to describe the optical lattice subjected to the perturbation

Ũext(~r) = Uext
0 [1 − χb(~r)] , (3.48)

where χb is unity on [−Nb/2, Nb/2]3 and zero elsewhere. The ex-
ternal potential is characterized by the width d ≡

√
3Nb. In order

to obtain a smooth confinement, the potential (3.48) undergoes a
convolution with a Gaussian mollifier

Uext(~r) ≡ 1

|Ωc|

∫

Ωc

Ũext(~r′)Fǫ(~r − ~r′)d~r′ (3.49)

Fǫ(~r) ≡
∑

~v∈Λ(Ωc)

|Ωc|
(2π)3/2ǫ3

exp

[
−1

2

(~r − ~v)2

ǫ2

]
, (3.50)

where Λ(Ωc) ≡ {Na~n|~n ∈ Z
3}. In the following

{N = 15, a = 10aB , ǫ = 0.2aB , U
ext
0 = 4.1eV, U0 = 0.5eV } (3.51)

with aB = 0.052nm. The resulting potentials U(~r) and Ueff (~r) are
illustrated in Fig. 3.12. For the parameter set (3.51), the effective
mass m0 = 1.006 is close to unity and the band edge is E0 ≡ E~0 =
0.79eV. The groundstate energies of the full Hamiltonian

ĤFull ≡ − ~
2

2me
∆ + U(~r) + Uext(~r) (3.52)

(3.53)

and of the effective mass Hamiltonian

ĤEMA ≡ − ~
2

2me

~∇M~∇T + Uext(~r) + E0︸ ︷︷ ︸ (3.54)

Ueff (~r) (3.55)

are computed for different widths d of the external potential and
plotted in Fig. 3.13. For d . 2nm, the EMA notably overestimates
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Figure 3.12: Potentials U(~r) and Ueff (~r) from Eqs. (3.45) and (3.49)
for the parameter set (3.51). Plotted is a cut along the space diagonal
of Ωc.
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Figure 3.13: Lowest eigenvalues of the Hamiltonians (3.52) and
(3.52) as a function of the width d =

√
3Nb. The dashed line denotes

the edge E0 = 0.79eV.
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the groundstate energy compared to the full solution while in the
remaining regime the agreement is quite satisfactory. The discrep-
ancy for d . 2 reaches some tenths of an eV and can be related to
one or more prerequisites for the EMA which are not fulfilled any
longer such as the single-band picture or parabolicity14. Of course,
these findings are related to the specific choice (3.51) and can not
be generalized. These parameters roughly mimic silicon surrounded
by an insulating material such as silicon dioxide. The qualitative
behavior of the discrepancy however is assumed to be transferable
to other systems as shall be seen in Secs. 3.6.3 and 3.6.4.

The groundstate energies of the Hamiltonians (3.52) and (3.54)
are computed by means of the usual procedure, i.e. using a Bloch
ansatz and solving the secular problem. In this particular case, the
periodicity is broken in all three dimension and the secular problem
has to be considered only at ~k = ~0 provided that Ωc is sufficiently
large. In order to obtain well converged groundstate energies, i.e.
up to a meV, a notably larger plane wave basis set is required for
the full Hamiltonian (∼ 60000 plane waves) compared to the EMA
case (∼ 36000) [29]. This is due to strong oscillations of the optical
lattice compared to the size of the unit cell or the width of the
external potential.

3.6.3 Silicon Nanowire

Circular and square shaped silicon nanowires grown along the 〈100〉
direction are now considered to investigate the suitability of the

14The term parabolicity refers to the situation where a few Bloch states near
the extremum of a single band are sufficient to describe the solution of the full
problem. In this regime, the parabolic approximation is a good approximation to
the band structure of the optical lattice. Conversely, nonparabolicity describes
the case when Bloch states far from the minimum become relevant. In this case,
the parabolic approximation provides too much dispersion around the extremum
compared to the real band structure. More dispersion tendentiously yields higher
energies. The changeover from the parabolic to nonparabolic regime is assumed
to precede the involvement of further energy bands for the description of the full
solution.
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EMA. For each cross-sectional shape, a series of nanowires is con-
structed by varying the diameter. The present empirical tight-
binding and pseudopotential method rely on different approaches
to generate the wire structures and, more importantly, passivate the
surface. Some details on the wire generation in the pseudopotential
case are given in the caption of Fig. 3.4. Larger sized nanowires of
these shapes can be obtained by increasing the number of unit blocks
(green cells) before the surface is passivated. For the tight-binding
case, a detailed description of the wire generation can be found in
Ref. [17]. In particular, no hydrogen is used and the silicon skeleton
is not distorted in the vicinity of the surface15. Thus, a direct
comparison between the frameworks is not as straightforward as in
the bulk case and it is mandatory to define an effective geometry pa-
rameter which can be generically assigned to a wire structure within
both frameworks 16. For the square case, a possibility [31] would be
to add an atomic layer of vacuum to the silicon skeleton and measure
the width. The approach [30] used in this work employs a cylinder
of length aSi made of silicon, whose diameter de is determined by
the condition

ρSiπ

(
de

2

)2

aSi
!
= NSi, (3.56)

i.e. the bulk silicon density ρSi = 8/a3
Si times the volume of the

cylinder yields the number of silicon atoms NSi in the wire unit cell.
The diameter

de = aSi

√
NSi

2π
(3.57)

15A tight-binding framework which explicitly employs hydrogen for the surface
passivation is described in Ref. [30].

16The effective parameter can then be used to formulate the Dirichlet
boundary conditions for a comparison with the EMA.
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is the effective geometry parameter which can be assigned to wires
with any cross-sectional shape. This procedure might seem counter-
intuitive for square nanowires. In this case, the wire can be thought
to have an effective width

le = de

√
π

2
= aSi

√
NSi

8
(3.58)

which yields the same cross-sectional area of a circle with diameter
de.

The tight-binding framework is used to compute the band struc-
tures of circular and square nanowires with surfaces perpendicular
to the 〈100〉 direction (cf. Fig. 3.4.b). The dispersions of square
nanowires with 〈110〉 (cf. Fig. 3.4.c) and 〈100〉 oriented surfaces are
computed by means of the present EPM 17. For the latter approach,
co = 3.5/aB and a vacuum width of 0.25nm has been used. A plot
of the resulting conduction band minima, i.e. the edges, is given in
Fig. 3.14 as a function of the effective diameter de. The energies
tend to zero for de → ∞ as they are shifted by the corresponding
bulk edges.

The effective mass equation for a silicon nanowire grown along
the 〈100〉 direction reduces to the two-dimensional Schrödinger prob-
lem (3.42) for the conduction band. The potential Ueff is replaced
by zero Dirichlet conditions at the effective boundary of the nano-
wire. For the square case with 〈100〉 oriented surfaces, the total
energy reads

Esq100(kx, n,m) =
~

2

2me

[
k2

x

mx
+
π2

l2e

(
n2

my
+
m2

mz

)]
(3.59)

with n,m = 1, 2, . . . and transverse eigenfunctions18

F sq100
kx,n,m(~r) = eikxx sin

(
nπy

le

)
sin

(
mπz

le

)
. (3.60)

17Both, the tight-binding and pseudopotential approach will be referred to as
the atomistic approaches in the following.

18Normalization is not considered yet.
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Figure 3.14: Conduction band edges of circular (ci) and square
silicon nanowires with surfaces perpendicular to the 〈100〉 (sq100)
and 〈110〉 (sq110) direction. Energies are computed by means of
the present tight-binding (TB) and pseudopotential (PP) framework
(see text). The EMA band edges Esq100(0, 1, 1) and Eci(0, 1, 1) for
one of the ∆4 valleys are denoted by the solid and dash-dot line
respectively. Tight-binding results for the circular case by Niquet et
al. [32] are plotted as well (dashed line).
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An analytic expression for the total energy can be given in the
circular case for my = mz = m:

Eci(kx, n,m) =
~

2

2me

(
k2

x

mx
+

4µ2
n,m

md2
e

)
(3.61)

with the transverse states expressed in radial coordinates (r, φ)

F ci
kx,n,m(~r) = eikxxJn

(
2µn,mr

de

)
einφ, (3.62)

where Jn(x) is the Bessel function of the first kind and order n and
µn,m is the m-th zero of Jn(x). Unfortunately, for the more interest-
ing case my 6= mz, an analytical solution is not straightforward [33]
and therefore, the band edge has to be computed numerically (see
Sec. 5.2). The square nanowire with 〈110〉 surfaces as depicted in
Fig. 3.4.c requires a rotation of the two-dimensional effective mass
tensor in Eq. (3.42) by π/4. Conversely, the form (3.42) can be
retained but the Dirichlet boundary has to be rotated by π/4. The
energetically lowest conduction bands in the 〈100〉 square cases are
given by Esq100(kx, 1, 1). The band edge is fourfold degenerate
and related to the four mass tensors (∆4) with my 6= mz. The
two remaining mass tensors with my = mz are referred to as the
∆2 valleys 19. The subband structure obtained by the atomistic
approaches shows some similarities. For this purpose, a closer look
at the dispersion given in Fig. 3.5.a for instance might be helpful.
The conduction band minimum at kx = 0 is related to the effective
mass dispersion from the ∆4 valleys. Two further local minima
of the conduction band located at kx ≃ ±0.3π/aSi due to zone
folding are related to the ∆2 valleys 20. These two minima move
towards the gamma point (kx = 0) as the wire diameter decreases.

19As a mass tensor is uniquely related to a minimum (valley), the terms will
be used interchangeably.

20A more detailed discussion on zone folding in the case of silicon nanowires
and the relation to the effective mass subband structure is given in Refs. [32,34].
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Note that zone folding is not accounted for by the effective mass
approximation, where all subbands are located at kx = 0. Fur-
thermore, in the atomistic approaches a splitting [31] of the four
lowest conduction bands can be observed while the effective mass
model inherently assumes a perfect degeneracy for the ∆4 valleys
(circular and square case). This effect as well as the movement
of the local minima are not further discussed in this work. The
observations made for the square wires can be directly transferred
to the circular case. In particular, the presence of ∆4 and ∆2 valleys
and the relations to the corresponding band structure. A plot of
the band edges Esq100(0, 1, 1) and Eci(0, 1, 1) for one of the ∆4

valleys are given in Fig. 3.14. The effective masses ml = 0.891
and mt = 0.201 are taken from the TB case in Tab. 3.1. The
EMA overestimates the band edge of the atomistic approaches as
already seen in the case of the optical lattice. Possible reasons are
mentioned in Sec. 3.6.2. However, for large diameters the atomistic
results approach the effective mass curve. The tight-binding results
for square and circular wires are not supposed to collapse on a single
line since even in the EMA the band edges of a square and circular
nanowire with the same effective diameter are different as can be
seen explicitely from Eqs. (3.59) and (3.61) for my = mz. The same
is assumed for my 6= mz. A notable discrepancy can be observed
between the tight-binding and pseudopotential data even at large
diameters. In particular, the pseudopotential approach still predicts
notable band structure effects for large diameters. Comparing with
a fit provided by Ref. [32], which includes the present tight-binding
parametrization but employs a different passivation model, yields
a good agreement with the present tight-binding results for the
circular case 21. A comparison with fully ab-initio simulations might
shed more light on the discrepancy between the tight-binding and
pseudopotential results 22.

21In Ref. [32] the nanowires are carved out of bulk silicon in a cylindrical
shape.

22Since the bulk band structures agree fairly well (cf. Tab. 3.1), the source of
discrepancy most probably resides in the surface termination models.
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Table 3.2: Analytical fits (3.63) to the atomistic conduction band
edges shown in Fig 3.14.

Wire type Kc [eVnm2] ac [nm] bc[nm2]

PP sq100 2.626 2.469 -0.886

PP sq110 1.561 -1.015 1.820

TB sq100 2.922 0.605 0.175

TB ci 2.5875 0.383 0.337

Analytic fits of the form [32]

ǫc(de) =
Kc

d2
e + acde + bc

(3.63)

for the atomistic band edges ǫc(de) shown in Fig. 3.14 are reported
in Tab. 3.2. The form (3.63) is more accurate than the widely used
fit Kc/d

β
e when a large range of diameters is considered. It behaves

like 1/d2
e in large structures, thus being consistent with the effective

mass approximation which becomes more accurate in this regime.
Beside the overestimation of the subband energies, a further

important band structure effect is the distortion of the atomistic
wire dispersions compared to the effective mass band structures [31].
In other words, the effective masses extracted from the minima of
the atomistic conduction bands located at kx ∈ {0,∼ ±0.3π/aSi}
differ from the corresponding bulk values. These conduction masses
are extracted from the present band structures by means of

1

mc
=
me

~2

∂2

∂k2
x

E(kx)

∣∣∣∣
kx=0

, (3.64)

where E(kx) is the conduction band, and plotted in Fig. 3.15. As
for the band edges, the conduction masses increase for a decreasing
diameter.

For a quantitative investigation of the suitability of the single-
band picture in the case of silicon nanowires, see Ref. [35].
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Figure 3.15: Conduction masses of the nanowires mentioned in
the caption of Fig. 3.14. The masses are extracted by means of
Eq. (3.64). The dashed line denotes the bulk value mt = 0.201 (TB
case in Tab. 3.1). For the TB sq100 and circular case, the conduction
masses (3.80) computed by means of the nonparabolicity (NP) model
described in Sec. 3.7 are denoted by the solid and dash-dot line
respectively. See Sec. 5.2 for details on the extraction of the NP
conduction mass.
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3.6.4 Silicon Quantum Well

band structure effects for the case of the silicon quantum wells shown
in Fig. 3.8 are investigated by means of the present pseudopotential
method (co = 3.5/aB). Similar to the wire case from Sec. 3.6.3,
conduction band edges and conduction masses will be compared to
the effective mass approach. To increase the height of the quantum
wells, the silicon skeleton is enlarged by employing a higher number
of unit blocks (green cells in Fig. 3.8) before the surface is passivated.
The effective height he of the quantum well is determined by the
condition

ρSihe|a1 × a2| !
= NSi, (3.65)

where a1 and a2 span the projection of the unit cell in the (x, y)-
plane as explained in Sec. 3.4.3 and a1 × z2 is the cross product
between v and w. This definition is equivalent to the one used
by Ref. [30]. Compared to the wire case, the conduction bands
shown in Fig. 3.9 are more complicated [36]. For the quantum well
with 〈100〉 oriented surfaces, the minima of the conduction band
are located at k ≡ (kx, ky) = (±0.85,±0.85)2π/aSi and k = (0, 0),
where the global minimum is at the latter point. In the 〈110〉 case,
two global minima are in k = (0,±0.85/

√
2)2π/aSi while two further

local minima can be found in k = (±0.15, 0)2π/aSi. The position
of the minima move towards zero as the well height decreases. This
movement is not accounted for during the measurement of the edges
and masses. Figure 3.16 shows the band edges of the quantum
wells as a function of the effective height he. For large heights,
the pseudopotential data agrees fairly well with the tight-binding
results from Ref. [30].

Analytical fits of the form (3.63) are computed for the band edges
plotted in Fig. 3.16 and reported in Tab. 3.3.

The effective mass equation (3.44) yields the total energy

E(100)(kx, ky, n) =
~

2

2me

[
k2

x

mx
+
k2

y

my
+
π2

h2
e

n2

mz

]
(3.66)
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Figure 3.16: Conduction band edges of silicon quantum wells with
〈100〉 and 〈110〉 oriented surfaces. The corresponding energies
computed by the EMA and tight-binding (TB) results by Niquet
et al. [30] are plotted as well.

Table 3.3: Analytical fits (3.63) to the conduction band edges plotted
in Fig 3.16 (pseudopotential data).

Well type Kc [eVnm2] ac [nm] bc[nm2]

100 0.093 2.068 1.541

110 0.955 0.814 -0.051
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and envelope functions

F
(100)
kx,ky,n(~r) = ei(kxx+kyy) sin

(
nπz

he

)
(3.67)

with n = 1, 2, . . . for the 〈100〉 well. In the 〈110〉 case, Eq. (3.41) has
to be employed, whereas the effective mass tensor is rotated by π/4

(
1√
2

− 1√
2

1√
2

1√
2

)(
1

my
0

0 1
mz

)(
1√
2

1√
2

− 1√
2

1√
2

)
(3.68)

and Ueff is replaced by Dirichlet conditions at z ∈ {0, he}. The
total energy is

E(110)(kx, ky, n) =
~

2

2me

[
k2

x

mx
+

2k2
y

my +mz
+

π2

n2h2
e

my +mz

2mymz

]

(3.69)
with the envelope function

F
(110)
kx,ky,n(~r) = ei(kxx+kyy+γkyz) sin

(
nπz

he

)
, (3.70)

where γ = (my − mz)/(my + mz) and n = 1, 2, . . .. The relations
between the minima of the atomistic dispersions and the effective
mass approximation can be straightforwardly derived by zone folding
considerations as in the wire case. The energy E(100)(0, 0, 1) with
mz = mt corresponds to the band edge of the 〈100〉 well, while
E(110)(0, 0, 1) with my = ml and mz = mt for instance yields the
band edge of the 〈110〉 well. The edges obtained by the EMA are
plotted in Fig. 3.16, where ml = 0.918 and mt = 0.191 from Ref. [30]
are employed.

As in the wire case, the conduction masses along the kx-direction
can be extracted at the global minima of the atomistic conduction
bands. The masses extracted from the pseudopotential data are
plotted in Fig. 3.17 as a function of the effective height he. For
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Figure 3.17: Conduction masses of the quantum wells described in
Sec. 3.6.4. The masses are extracted by means of Eq. (3.64). The
dashed line denotes the bulk value mt = 0.2 from the Wa(3.5) case
in Tab. 3.1.
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the 〈100〉 case, the conduction masses converge very quickly to the
corresponding bulk value mt. The small peak in the 〈110〉 curve at
he ≃ 3 nm is most probably due to the movement of the conduction
band minimum which is not accounted for during the measurement.

An investigation of silicon quantum wells within the k · p frame-
work and the linear combination of bulk bands method can be found
in Refs. [24,25,36]. In particular, a good agreement between the kp
method and the effective mass approximation has been observed for
the conduction band edges. Consideration on free-standing silicon
quantum wells simulated by the empirical pseudopotential method
are given in Ref. [37].

3.7 Nonparabolicity

In Secs. 3.6.2, 3.6.3, and 3.6.4 two important band structure effects,
i.e. shortcomings of the EMA, have been highlighted, namely the
overestimation of the subband energies and the underestimation
of the conduction masses. More advanced approaches have been
mentioned such as the k ·p method or the linear combination of bulk
bands. However, these methods still imply a large computational
burden compared to the EMA and their implementation within the
transport framework employed in this work is not straightforward. It
is therefore desirable to preserve the simplicity of the effective mass
approximation while being able to capture the main band structure
effects. For this purpose, the effective mass equation (3.36) is written
in the more general form 23

[
ǫb(−i~∇) + Uext(~r)

]
Fb(~r) = EFb(~r), (3.71)

where ǫb is the band containing the most relevant contributions to
the full solution Ψ(~r) (see Sec. 3.5). Using a more sophisticated

approximation for ǫb(~k) than a simple parabola is expected to reduce

23This form appears during the derivation of the effective mass equation [10].
Using the parabolic expansion (3.33) one recovers Eq. (3.36).
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the energy overestimation when Bloch states far from the minimum
become relevant. For Uext ≡ 0, the Bloch states ψb(~k, ~r) are solu-

tions of Eq. (3.71) to the eigenvalue ǫb(~k). Equation. (3.71) can be
efficiently solved in momentum space by fast Fourier transforms for
arbitrary potentials [38, 39]. A widely used nonparabolicity (NP)
model for the conduction bands of covalent semiconductors [40, 41]
is given by the dispersion

ǫNP (~k) =
1

2α



√

1 + 4α
~2

2me

~kT M ~k − 1


+ Eedge, (3.72)

where α is referred to as the NP coefficient having the dimension of
an inverse energy. Using the dispersion (3.72) in Eq. (3.71) yields a
Schrödinger equation of the form


 1

2α



√

1 − 4α
~2

2me

~∇T M ~∇ − 1


+ Eedge

+Uext(~r)
]
F (~r) = EF (~r). (3.73)

Equation (3.73) can be further simplified for the case of silicon
nanowires grown along the 〈100〉 direction [42, 43], where M is di-
agonal and Uext(~r) → Uext(y, z) is independent on x. Using the
simple model potential

Uext(y, z) =

{
0, (y, z) ∈ [0,D]2

∞, otherwise
(3.74)

in Eq. (3.73) yields the spectrum

E(n,m, kx, α) ≡ 1

2α

[√
1 + 4α

(
ǫ‖ + ǫ⊥

)
− 1

]
+ Eedge

(3.75)

with n,m = 1, 2, . . ., ǫ‖(kx) ≡ ~
2k2

x/(2memx), and ǫ⊥(n,m) ≡
~

2π2(n2/my + m2/mz)/(2meD
2). The key assumption is that in
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small nanowires, the transverse confinement prevails against the
longitudinal energy, i.e. ǫ‖ ≪ ǫ⊥. This allows to expand the
spectrum (3.75) in a Taylor series

E(n,m, kx, α) =
1

2α

[√
1 + 4αǫ⊥ − 1

]
+ Eedge

+
ǫ‖√

1 + 4αǫ⊥
+O

[(
ǫ‖
ǫ⊥

)2
]
. (3.76)

The term ǫ‖/
√

1 + 4αǫ⊥ on the right hand side of Eq. (3.76) corre-
sponds to a longitudinal kinetic energy with a renormalized mass

mx → mx

√
1 + 4αǫ⊥. (3.77)

This finding is consistent with the observations made in Sec. 3.6.3
and 3.6.4, where the conduction masses of the atomistic dispersions
increase when the effective diameter is reduced. Neglecting terms of
order O[(ǫ‖/ǫ⊥)2] and fixing ǫ⊥ to ǫg⊥ ≡ ǫ⊥(1, 1) in the longitudinal
kinetic energy term in Eq. (3.76), yields

E(n,m, kx, α) ≈ 1

2α

[√
1 + 4αǫ⊥ − 1

]
+Eedge+

ǫ‖√
1 + 4αǫg⊥

. (3.78)

A modified Schrödinger equation which reproduces the spectrum
(3.78) reads

{
− ~

2

2memc

∂2

∂x2

+
1

2α

[√
1 − 4α

~2

2

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
− 1

]

+Eedge + Uext(y, z)}F (~r) = EF (~r), (3.79)

where

mc ≡ mx

√
1 + 4αǫg⊥. (3.80)
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The form (3.79) notably simplifies the implementation of NP 24

within the transport framework described in chapter 4. The deriva-
tion of Eq. (3.79) can be repeated for Dirichlet conditions on ar-
bitrary boundaries with appropriate modifications of ǫ‖, ǫ⊥, and
consequently ǫg⊥ and mc.

In summary, the NP models derived in this section are able to
capture the two bandstructure effects observed in Secs. 3.6.3 and
3.6.4, namely the overestimation of the conduction band edge and
the underestimation of the conduction mass. Both effects can be
contemporarily accounted for by means of the NP coefficient, i.e.
for an increasing α the conduction band edge decreases and the
conduction mass increases while for α → 0 the results from the
EMA are recovered. The extraction of NP coefficients α by means
of atomistic nanowire band structures is thouroughly described in
Sec. 5.2. Conversely, the use of bulk density of states for this
extraction is shown in Sec. 3.8.

A simplified Schrödinger equation including NP can be derived
for the case of silicon quantum wells with 〈100〉 oriented surfaces

{
− ~

2

2me

√
1 + 4αǫg⊥

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2

)

+
1

2α

[√
1 − 4α

~2

2me

(
∂

∂z

1

mz

∂

∂z

)
− 1

]

+Eedge + Uext(z)}F (~r) = EF (~r). (3.81)

Similar to the wire case, the effective masses in the free directions
are increased due to NP. The extraction of α for the well case is
described in Sec. 5.2.

A Taylor expansion of the nonparabolic dispersion (3.72) has
already been employed by Jungemann et. al. [44]. They simplify
the nonparabolic dispersion to obtain a fully parabolic Schrödinger

24The Hamiltonian in Eq. (3.79) is solely used within the single-material
approximation in this work.
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equation for the case of silicon quantum wells. More recently, the
unaltered dispersion (3.72) has been used for quantum wires [45] and
dots [46]. Beside the present NP models, improved effective mass
theories [47] which employ a finite number of terms to approximate
the silicon conduction band have been successfully applied to well,
wires, and dots.

3.8 Calculation of Charge Densities

3.8.1 Ideal Semiconductors

The electron density in an ideal crystal reads [10]

ρideal =
2

|Ω ~N |
∑

n,~k∈Γ̃
red
~N

1

1 + e
ǫn(~k)−EF

kB T

=

∫

R

Gideal(E)f(E)dE (3.82)

with Γ̃red
~N

from Eq. (3.19). The density of states

Gideal(E) =
2

|Ω ~N |
∑

n,~k∈Γ̃
red
~N

δ(E − ǫn(~k)) (3.83)

contains informations about the possible quantum states of the sys-
tem while the information about the statistical occupation of these
states is exclusively contained in the Fermi distribution function
f(E). In the macroscopic limit, i.e. for ~N → ∞, the density of
states becomes [14]

Gideal(E) =
1

4π3

∑

n

∫

Ω̃c

δ(E − ǫn(~k))d~k (3.84)

=
1

4π3

∑

n

∫

Sn(E)

1

|∇~kǫn(~k)|
dS, (3.85)
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where Sn(E) is a surface defined by the condition ǫn(~k) = E, dS is

the corresponding surface element, and Ω̃c is the unit cell (3.14) in
the reciprocal lattice.

Within the EMA, the valleys of the conduction (c) and valence
(v) bands of a semiconductor are approximated by parabolic disper-
sions

ǫEMA
c/v (~k) = Ec/v ± ~

2

2me

~kT M
(i)
c/v
~k, (3.86)

where the M
(i)
c/v are the effective mass tensors of the ith valley and

are generally dense. In the case of silicon, the valence bands are
warped in the vicinity of the maximum and an average is necessary

to obtain a parabolic approximation, i.e. the M
(i)
v , as mentioned in

appendix A.0.2. The densities of states of the dispersions (3.86) can
be calculated analytically

GEMA,i
c/v (E) =

2

|Ω ~N |
∑

~k∈Γ̃ ~N

δ(E − ǫEMA,i
c/v (~k))

→ 1

4π3

∫

R3

δ

(
E − Ec/v ∓ ~

2

2me

~kT M
(i)
c/v
~k

)
d~k

=
1

2π2

√
det(|M(i)

c/v)|

(
2me

~2

) 3
2 √

|E − Ec/v|.(3.87)

In the presence of #c conduction band and #v valence band valleys,
the total density of states reads

GEMA
c/v (E) =

#c/v∑

i=1

GEMA,i
c/v (E)

≡ 1

2π2

(
2memc/v

~2

) 3
2 √

|E − Ec/v| (3.88)
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The density of states effective mass mc/v collects the contributions
of all valleys. Similarly, the nonparabolic dispersion (3.72) can be
used to compute the density of states of the conduction band

GNP,i
c (E)

=
1

4π3

∫

R3

δ


E − Ec − 1

2α



√

1 + 4α
~2

2me

~kT M
(i)
c
~k − 1




 d~k

=
1

2π2

√
det(M

(i)
c )

(
2me

~2

) 3
2

[1 + 2α(E − Ec)]

×
√

(E − Ec)[1 + α(E − Ec)] (3.89)

and consequently

GNP
c (E) =

#c∑

i=1

GNP,i
c (E)

=
1

2π2

(
2memc

~2

) 3
2

[1 + 2α(E − Ec)]

×
√

(E − Ec)[1 + α(E − Ec)]. (3.90)

A plot of G,GEMA
c/v ,GNP

c from Eqs. (B.4), (3.88), and (3.90) respec-
tively can be found in Fig. 3.18 for the case of silicon. The pseu-
dopotential of Chelikowski et al. described in appendix A.0.2 is
used to compute the band structure ǫn(~k) and consequently G(E)
for a reciprocal space discretization of M = 70 (see appendix B).
These results are in quantitative agreement with the data given
in Ref. [48]. The masses mc = 1.06 and mv = 0.5 are used for
GEMA

c and GEMA
v respectively. The NP coefficient α is obtained by

fitting the expression (3.88) to the approximate density of states
(3.90). Employing a least square minimization procedure on the
range [Ec, Ec + 0.6eV] yields α = 0.51eV−1.
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Figure 3.18: Density of states (B.4) of silicon obtained by means
of the pseudopotential of Chelikowski et al. described in appendix
A.0.2. The corresponding parabolic (3.88) and nonparabolic (3.90)
densities of states are shown as well.
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3.8.2 Doped Semiconductors

A fraction of the semiconductor atoms are now replaced by dopands
providing single-ionizible donor and acceptor levels EA and ED.
With N−

A and N+
D being the concentrations of the acceptors and

donors respectively, the neutrality condition which fixes the Fermi
energy EF reads [10]

0 = nc − pv −N+
D +N−

A (3.91)

with

nc =

∫ ∞

Ec

Greal
c (E)f(E)dE (3.92)

pv =

∫ Ev

−∞
Greal

v (E)[1 − f(E)]dE. (3.93)

Complete ionization of the dopands is assumed in Eq. (3.91). The
density of states Greal

c/v of the doped (real) semiconductor appearing

in Eqs. (3.92) and (3.93) can be approximated [10] by GEMA
c/v from

Eq. (3.88). In this case, the electron density in the conduction band
nc and the hole density in the valence band pv become

nc = 2

(
memckBT

2π~

)3/2

F1/2

(
EF − Ec

kBT

)
(3.94)

and

pv = 2

(
memvkBT

2π~

)3/2

F1/2

(
Ev − EF

kBT

)
. (3.95)

The complete Fermi-Dirac integral Fj is defined as

Fj(x) =
1

Γ(j + 1)

∫ ∞

0

tjdt

exp(t− x) + 1
(3.96)

with Γ being Euler’s gamma function [49]. For values j < −1 the
integral (3.96) does not converge but analytic continuations can be
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defined. For further details on Fermi-Dirac integrals and routines
to compute these integrals to almost any precision see Ref. [50] and
references therein. Analytic expressions for Fj exist for integers
j ≤ 0. The j = 0 case reads

F0(x) = ln[1 + exp(x)] (3.97)

and the application of the property

F ′
j(x) = Fj−1(x) (3.98)

allows one to write Fj for negative integers as a rational function
of exp(x). Rational approximations for efficient implementations
for the cases j ∈ {−3/2,−1/2, 1/2} can be found in Refs. [51, 52]
while pre-assembled routines are provided by the GNU scientific
library [53].

The densities nc and pv are derived under the assumption of
spatial isotropy. Under real circumstances, inhomogeneities due to
the presence of different materials and externally applied fields have
to be considered. In the simplest case, local equilibrium is assumed
and spatial changes of the material properties are accounted for by
introducing a position dependence in the quantities mc/v and Ec/v
25 as in the effective mass description of nanostructures explained in
Sec. 3.5. However, when quantization effects become relevant, the
local equilibrium approximation is expected to fail. In this case the
envelope functions of the entire nanostructure have to be calculated.
For nanowires, the densities read

n1DEG
c (~r) =

√
2memxkBT

π~2

∑

n

|ψn(y, z)|2F−1/2

(
EF − ǫn
kBT

)

(3.99)

p1DEG
v (~r) =

√
2memxkBT

π~2

∑

n

|ψn(y, z)|2F−1/2

(−EF − ǫn
kBT

)
.

(3.100)

25In the presence of an external perturbation Uext, the band edges are replaced
by Ueff = Ec/v + Uext.
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The expressions (3.99) and (3.100) are valid for arbitrary mass ten-
sors. In this case, the mass mx has to be chosen as described in
appendix D. For the case of quantum wells, the densities read

n2DEG
c (~r) =

√
mxmymekBT

π~2

∑

n

|ψn(z)|2F0

(
EF − ǫn
kBT

)

(3.101)

p2DEG
v (~r) =

√
mxmymekBT

π~2

∑

n

|ψn(z)|2F0

(−EF − ǫn
kBT

)
.

(3.102)

The densities n1DEG
c , p1DEG

v , n2DEG
c , and p2DEG

v are always related
to a single valley. In a multi-valley material, the total density is
obtained by collecting the contributions from all valleys 26 The
quantities {ψn, ǫn} in Eqs. (3.99), (3.100), (3.101), and (3.102) are
the eigensolutions of the Schrödinger equation for the confined direc-
tion. Several examples related to the conduction band minimum of
silicon have been presented so far. Given a valence band maximum
described by the tensor Mv = diag(−1/mx,−1/my,−1/mz), the
envelope equation for the confined direction in a quantum well 27

reads

[
− ~

2

2me

∂

∂z

1

mz

∂

∂z
− Ueff (z)

]
ψ(z) = ǫψ(z). (3.103)

The resulting eigensystem {ψn, ǫn} is used within Eq. (3.102).

Generally, the near-gap energy bands are degenerate around the
extremal points such as for instance the valence bands of silicon.
As mentioned in Sec. 3.5, the k · p method can be used to com-
pute the states and thus the densities in this case. However, the
single-band picture, and thus the effective mass equation, can be

26In this way, the coupling between diffent valleys is fully suppressed as already
mentioned in Sec. 3.5.

27The wire case follows analogously.
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retained by means of a very rough approximation, i.e. by lump-
ing the valence bands into a single effective mass tensor Mv =
diag(−1/mv,−1/mv,−1/mv) with mv being the density of states
effective mass.

The neutrality conditions for the wire and well cases are discussed
in chapter 4.

3.9 Summary

An review of the basic theory and an overview of different meth-
ods for the calculation of band structures have been given at the
beginning of this chapter with a particular focus on the empirical
pseudopotential (EPM) and the ETB. While the ETB is attractive
from a computational point of view, the EPM is numerically more
involved but is supposed to describe the charge density in a more
physical way. For the bulk case, both methods yield a satisfactory
agreement. Unfortunately, such an agreement can not be observed
for the case of nanostructures, whereas the discrepancy is more
pronounced for nanowires. A possible source for this discrepancy has
been attributed to different treatment of the surface. Comparisons
with more advanced ab-initio methods could shed more light on this
behaviour.

Electronic states in nanostructures have been calculated by the
EMA and compared to results from the ETB and the EPM. The
shortcomings of the EMA compared to the atomistic approaches are
referred to as band structure effects. Two such effects, which turn
out to be the most relevant in qunatum transport simulations (see
chapter 4), are the overestimation of the conduciton band edge and
the underestimation of the conduction mass. Simple NP models be-
ing parametrized by a single coefficient incorporate these two effects
and can be used to improve the EMA. The chapter is concluded
with some considerations on particle densities in nanostructures at
thermodynamic equilibrium.





Chapter 4

Simulation of Ballistic
Transport

4.1 Introduction

With the EMA described in the previous chapter, the basis for an ef-
ficient quantum-mechanical treatment of electronic systems in semi-
conductor devices has been laid. Sticking to the level of quantum
mechanics, the transport of electrons is then most simply treated in
the absence of phase breaking scattering processes, being referred to
as quantum-ballistic transport (QBT). The validity of the ballistic
approximation strongly depends on the dimensions of the devices
which should not exceed the coherence length of the charge carriers.
Ignoring this prerequisite, QBT can still be used to investigate the
theoretical performance limit of a device. For given material and
contact specifications, the Schrödinger and Poisson equation of the
device are repeatedly solved until the electrostatic potential and the
charge density become consistent. Upon successful exit, the current
is calculated.

71
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The Landauer-Büttiker formalism, which is widely used to de-
scribe QBT, is briefly outlined at the beginning of this chapter.
Subsequently, some historical notes on the simulator for nanodevices
SIMNAD are given. Fundamental numerical issues are addressed
such as the discretization of the Schrödinger and Poisson equation as
well as iterative schemes to achieve self-consistency. In this context,
the box integration method and the finite element method (FEM)
are described. In order to improve the EMA, a spectral method
to include the nonparabolicity models elaborated in the previous
chapter, is presented. Finally, the impact of band structure effects
on current characteristics is investigated.

4.2 Devices

Two types of devices are considered in this work, namely nano-
wire and planar field effect transistors (FETs). Since a nanowire
FET hosts a quasi one-dimensional electron gas (1DEG), the terms
1DEG and nanowire will be used interchangeably. Analogously, the
term 2DEG is related to a planar FET. Both types of devices are
schematically shown in Fig. 4.1. The gate contact is described by a
Dirichlet boundary condition for the Poisson equation while zero
von Neumann conditions are imposed on the remaining surface.
The prismatically shaped semiconductor region is fully enclosed by
the dielectric and is divided in three segments along the transport
direction x, i.e. the source, channel, and drain region. Note that
the overall prismatic shape of the devices is not mandatory for the
present simulation framework, i.e. the source and drain regions can
be flared out for instance. In particular, the oxide thickness tox does
not have to be uniform along the surface.

In the following, the semiconductor region consists of silicon
grown along the 〈100〉 direction and silicon dioxide is used as di-
electric. The confinement direction in the planar FETs coincides
with the 〈100〉 direction.
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Figure 4.1: Schematic representation of the devices considered in
this work, i.e. nanowire FETs (a) and planar FETs (b). The red
region denotes the gate contact of length lg which is placed precisely
above the channel region and coincides with the Dirichlet boundary
∂ΩD. The remaining surface is referred to as the von Neumann
boundary ∂ΩN , i.e. ∂Ω = ∂ΩD ∪ ∂ΩN is the total boundary of the
simulation domain Ω. The lengths of the source and drain regions
are denoted by ls and ld respectively. Finally, the width and the
channel thickness of the planar FET are denoted by Wy and tc,
respectively and tox is the oxide thickness.
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Figure 4.2: A device coupled to semi-infinite leads which are in turn
coupled to reservoirs being at thermodynamic equilibrium. This is
the picture used within the Landauer-Büttiker formalism.

4.3 Landauer-Büttiker Formalism

In this formalism, the current flowing through a conductor is related
to the probability that a charge carrier can be transmitted through
this conductor. A detailed review is given in Refs. [54, 55]. For a
two-terminal device, the schematic situation is shown in Fig. 4.2.
The device is coupled to semi-infinite terminals (leads) which are
assumed to be perfect wave guides. These leads are coupled to
particle reservoirs being in thermodynamic equilibrium 1. The Fermi
energies are Es

F and Es
F − eVds for the source (s) and drain (d)

reservoir respectively, where Vds is the applied forward bias.

In the following, the potential Ueff (~r) describes the device and
the affiliated leads. The effective mass Schrödinger equation is as-
sumed to be of the form

[
− ~

2

2me

~∇M~∇T + Ueff (~r)

]
F (~r) = EF (~r) (4.1)

1The lead is not semi-infinite in the strict sense but merely much longer than
the device. Furthermore, the leads are assumed to be perfect prolongations of
the source and drain regions of the device. More involved injection conditions,
i.e. from 2DEGs into nanowire FETs, have been studied within the Green’s
functions formalism [17].
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with M = diag{1/mx(x), 1/my(~r), 1/mz(~r)}. The mass mx is inde-
pendent on (y, z) within the device 2 and fully position-independent
in the leads. In the leads of a nanowire, the potential Ueff depends
only on (y, z). The eigenstates of the Hamiltonian (4.1) for this case
have been thoroughly described in Sec. 3.5. The general form reads

F (~r) =
∑

i

(
aie

ikix + bie
−ikix

)
ψi(y, z) (4.2)

with ki =
√

2memx(E − ǫi)/~ and {ǫi, ψi} are the eigensolutions
of the transverse Schrödinger equation 3. The solution (4.2) is
continued into the device until reaching the opposite terminal, where
the form of the solution equals the one given in Eq. (4.2). A suitable
basis set for the lead-device-lead system is given by the so called

scattering states [56]. Such a state F
(t)
j (E,~r) is injected into a single

mode j from a given terminal t ∈ {s, d} at a fixed total energy E
4. If ai = δi,j in the source for instance, bi has to be zero in the
drain lead for all i. The density of electrons in the conduction band
is given by

n1DEG
c (~r) =

√
me√
2π~

∑

ν

∑

t

√
m

(t,ν)
x

∑

j

∫ ∞

ǫ
(t,ν)
j

|F (t,ν)
j (E,~r)|2

× 1

1 + e(E−E
(t)

F
)/kBT

dE√
E − ǫ

(t,ν)
j

(4.3)

where ν is a label for the different valleys, if present, of the conduc-
tion band giving rise to different mass tensors in the Hamiltonian

(4.1) and ǫ
(t,ν)
j is the j-th subband energy of the valley ν in terminal

2This assumption notably simplifies the implementation of the scattering
matrix approach (see Sec. 4.5).

3The energies ǫi are also referred to as subband energies.
4The parameters j, t, and E dictate the scattering boundary conditions which

are used within the scattering matrix formalism from Sec. 4.5 to compute the

state F
(t)
j (E,~r) inside the device.
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t. The Landauer-Büttiker formalism gives rise to a somewhat un-
familiar picture of non-equilibrium as the Fermi level is not strictly
defined throughout the device. Instead, each charge carrier is linked
to a single reservoir and thus a single Fermi level. The charge density
(4.3) is the sum of the source and drain populations. The current
through the nanowire FET is given by

I1DEG
d =

e

π~

∑

ν

∫

minj(ǫ
(s,ν)
j

)

T (1DEG,ν)(E)

×
[

1

1 + e(E−E
(d)

F
)/kBT

− 1

1 + e(E−E
(s)

F
)/kBT

]
dE, (4.4)

where T (1DEG,ν)(E) is the total transmission probability contributed
from valley ν. This probability can be explained by means of the
current

Jx[F ](x) ≡
∫

R2

i~

2memx

[(
∂F

∂x

)∗
F −

(
∂F

∂x

)
F ∗
]

︸ ︷︷ ︸
dydz(4.5)

{ ~J [F ](~r)}x

where { ~J [F ](~r)}x is the x-component of the current

~J [F ](~r) =
i~

2memx

[(
~∇F
)∗
F −

(
~∇F
)
F ∗
]
. (4.6)

Applying the operator (4.5) to the scattering state F
(s,ν)
j (E,~r) for

instance, yields ~k
(s,ν)
j (E)/(mem

(s,ν)
x ) in the source and

~

mem
(d,ν)
x

∑

i

k
(ν)
i (E)|a(ν)

i (E)|2 (4.7)

in the drain, where {k(ν)
i (E), a

(ν)
i (E)}i are the parameters belong-

ing to F
(s,ν)
j (E,~r) in the drain 5. The transmission probability

5Only transverse modes are considered with subband energies being strictly
smaller than E in source and drain.
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T (1DEG,ν)
j (E) provided by this state is given by the quotient of the

drain and source current and the total probability is then obtained
by summing up the contributions from all states, i.e. T (1DEG,ν)(E) =∑

j T (1DEG,ν)
j (E) 6. For the 2DEG case, the density and current

expressions can be computed analogously [55]

n2DEG
c (~r) =

me

√
kBT

~2π3/2

∑

ν

∑

t

√
m

(t,ν)
x m

(t,ν)
y

∫

minj(ǫ
(t,ν)
j

)

∑

j

F−1/2

(
E

(t)
F − Ẽ

kBT

)
|F (t,ν)

j (Ẽ, x, z)|2 dẼ√
Ẽ − ǫ

(t,ν)
j

(4.8)

I2DEG
d =

Wy

√
2kBT

~2π3/2

∑

ν

√
m

(s,ν)
y

∫

minj(ǫ
(s,ν)
j

)

T (2DEG,ν)(E)

×
[

F−1/2

(
E

(s)
F − Ẽ

kBT

)
− F−1/2

(
E

(d)
F − Ẽ

kBT

)]
dẼ, (4.9)

where Wy is the width of the 2DEG as shown in Fig. 4.1.b. Note

that Ẽ in Eqs. (4.8) and (4.9) does not denote the total energy any
longer [55].

Finally, some remarks on the role of zero von Neumann condi-
tions for the Poisson equation shall be given. A device is described by
means of the conduction and valence band edge profiles, the effective
masses, the dielectric constants, and the doping profiles 7. In the
semi-infinite leads of the device, charge-neutrality is mandatory.
This requirement fixes the electrostatic potential in the leads once
the Fermi levels are specified. While charge neutrality is natu-
rally included in the local equilibrium approximation mentioned in
Sec. 3.8.2, more effort is needed when the nanostructure is consid-
ered as a whole. This is the point, where the zero von Neumann

6The transmission probability is not defined for E < ǫ
(s,ν)
j and is set to zero

in this regime.
7The doping is uniformly distributed in a specified region. See Sec. 4.9 for

more details.
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conditions come into play. From Gauss’ theorem it follows that
the total charge in a box, here the leads, has to vanish if these
conditions are applied. Irrespective of the electrostatic potential,
the source-to-gate voltage (Vgs) is defined as the difference between
the Dirichlet condition on the gate and the Fermi level in the source
while the source-to-drain voltage (Vds) is the difference between the
source and drain Fermi levels. These specifications are of crucial
importance for comparisons between different simulators. It has to
be noted that only electrons are considered, i.e. the source and
drain regions and thus the corresponding leads are n-doped. The
calculation of the hole density in the valence band pv is not addressed
as it is negligible.

4.4 SIMNAD

The implementation of the SIMNAD software started in 1997 [57]
with the intention to simulate single electron transistors (SET). The
promising future attributed to SETs relied on the idea that the
switching procedure in such devices is based on adding or removing
a single electron from a quantum dot (island) and thus being in
principle the physical limit of miniaturization. The conventional
FET is controlled by means of a gate contact which opens or closes
the channel capacitively and allows the current flow (ON-state).

In a subsequent work [55], starting around 2000, the simulator
has been widely extended. Amongst other features, the ability to
simulate 2DEG devices has been provided. In this context, tunneling
effects and self-consistency are fully taken into account. The equiv-
alent extension followed for the case of nanowires, where the issue of
self-consistency is much more involved. So far, the EMA has been
employed in conjunction with a tensorial grid discretization for the
Schrödinger and Poisson equation. The scattering matrix formalism
served as basis for the calculation of transmission probabilities and
charge densities.
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Figure 4.3: Slicing of the simulation domain along the transport
direction.

In particular for the wire case, the tensorial grid discretization
puts stringent limits for the choice of the cross-sectional shape. This
motivated the implementation of the FEM. Furthermore, the most
relevant band structure effects are now accounted for by a suit-
able nonparabolicity models in case of nanowire and planar FETs.
Since 2005 several other features have been implemented, beside
this work, by Martin Frey. The most important ones being the
Green’s functions formalism for charge transport and the inclusion
of inelastic scattering processes. A conceptual comparison between
the scattering matrix formalism and the Greens functions formalism
can be found in Ref. [55].

4.5 Scattering Matrix Formalism

The simulation domain, i.e. the device, is sliced along the transport
direction as illustrated in Fig. 4.3. For this purpose, a set of points
{xn}n=0,...,N is distributed on the interval [0, L] with x0 = 0, xN =
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L, and L being the length of the device. Each slice is delimited by
an interval

Ix
n =





[0, x1/2], n = 0

((xN−1 + L)/2, L), n = N

((xn−1 + xn)/2, (xn + xn+1)/2), otherwise

. (4.10)

The external potential Ueff (~r) is approximated by Ueff
n (y, z) ≡

Ueff (xn, y, z) on the interval Ix
n. Consequently, the general form of

the envelope function on Ix
n is formally identical to the expression

(4.2) in the leads, i.e.

F (n)(~r) ≡
∑

i

(
a

(n)
i eik

(n)
i

x + b
(n)
i e−ik

(n)
i

x
)
ψ

(n)
i (y, z), (4.11)

where ψ
(n)
i (y, z) = 〈y, z|i〉(n) is the eigensolution of the transverse

Hamiltonian 8

H
(n)
⊥ = − ~

2

2me

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
+ Ueff

n (y, z) (4.12)

to the eigenvalue ǫ
(n)
i and

k
(n)
i =





√
2memx(E − ǫ

(n)
i )/~, E ≥ ǫ

(n)
i

i

√
2memx(ǫ

(n)
i − E)/~, otherwise

. (4.13)

The position-dependence of the effective masses is defined in Sec. 4.3.
Note that separability of the Schrödinger problem (4.1) on a slice Ix

n

is partially due to the (y, z)-independence of mx beside the enforced
x-dependence of Ueff . For instance, the mass mx can be taken
from the material which hosts the majority of the charge density on

8The transverse wave functions ψ
(n)
i (y, z) are subject to Dirichlet boundary

conditions. For instance, the surface of an arbitrary prismatic hull of the device
oriented along the transport direction can serve to define the boundary for the
Dirichlet conditions.
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Ix
n, i.e. usually the channel material. The envelope function on the

whole simulation domain reads

F (~r) =

N∑

n=0

χn(x)Fn(~r), (4.14)

where χn(x) is unity on Ix
n and zero otherwise. The continuity of the

current (4.5) and the charge densities (4.3) and (4.8) at the interface
between two slices is ensured by the conditions

Fn((xn + xn+1)/2, y, z)
!
= Fn+1((xn + xn+1)/2, y, z), (y, z) ∈ R

2

(4.15)
and

∂

∂x
Fn(~r)

∣∣∣∣
x=(xn+xn+1)/2

!
=

∂

∂x
Fn+1(~r)

∣∣∣∣
x=(xn+xn+1)/2

, (y, z) ∈ R
2

(4.16)
Equations (4.15) and (4.16) provide connection rules between the
coefficients on two neighboring slices

a
(n+1)
j =

1

2
eik

(n+1)
j

∆xn/2

×
∑

i

[
a

(n)
i eik

(n)
i

∆xn/2

(
1 +

m
(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)

+ b
(n)
i e−ik

(n)
i

∆xn/2

(
1 − m

(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)]
(n+1)〈j|i〉(n)

b
(n+1)
j =

1

2
e−ik

(n+1)
j

∆xn/2

×
∑

i

[
a

(n)
i eik

(n)
i

∆xn/2

(
1 − m

(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)

+ b
(n)
i e−ik

(n)
i

∆xn/2

(
1 +

m
(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)]
(n+1)〈j|i〉(n)
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which can be cast as matrix vector product

(
a(n+1)

b(n+1)

)
= T

(n)

(
a(n)

b(n)

)
=

(
T

(n)
00 T

(n)
01

T
(n)
10 T

(n)
11

)(
a(n)

b(n)

)

with a(n) = (a
(n)
0 , a

(n)
1 , . . . , a

(n)
Ns

)T and b(n) = (b
(n)
0 , b

(n)
1 , . . . , b

(n)
Ns

)T .
The number of subband energies is denoted by Ns. Given the initial
boundary conditions

F (0, y, z) = f(y, z) (4.17)

∂

∂x
F (~r)

∣∣∣∣
x=0

= g(y, z), (4.18)

one can compute the coefficients {a(0),b(0)} and consequently {a(i),
b(i)}i=1,...,N by means of the partial transfer matrices {T(i)}i=0,...,N−1.
However, as mentioned in Sec. 4.3, the portion of the wave function
in the waveguide is determined by means of scattering boundary
conditions. In contrast to the Cauchy boundary conditions (4.17)
and (4.18), the components of the wave function propagating into the
device, a(0) and b(N), are used to compute the outward propagating
components a(N) and b(0) 9. This is achieved by means of the
scattering matrix

(
a(N)

b(0)

)
= S

(0,N)

(
a(0)

b(N)

)

The forward construction scheme for S(0, N) employs the total trans-

fer matrix T =
∏N−1

n=0 T
(n) and the relation (4.19) to compute the

scattering matrix

S
(0,N) =

(
T00 − T01T11T10 T01T

−1
01

−T
−1
11 T

−1
11

)

9Note that the scattering boundary conditions contain the same amount of
information as given by the Cauchy boundary conditions. Uniqueness of the
solution is therefore guaranteed for a fixed total energy E.
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However, the forward construction scheme is numerically unstable
[55, 58]. This instability resides in the exponentially increasing and
decreasing terms in the partial transfer matrices. Depending on
the device length, the entries of T may differ by several orders
of magnitude and cause numerical problems when the scattering
matrix is finally assembled. A remedy is provided by a recursive
construction of the scattering matrix. In this scheme, the matrices
S

(0,n) which fulfill
(

a(n)

b(0)

)
= S

(0,n)

(
a(0)

b(n)

)
,

are recursively calculated starting from n = 1. The S
(0,1) is obtained

by replacing T with T
(0) in Eq. (4.19). The step from n to n+ 1 is

accomplished by the pair of matrices S
(0,n) and T

(n), i.e.

S
(0,n+1)
00 =

(
B

(n)
00 − S

(0,n)
01 B

(n)
10

)−1

S
(0,n)
00

S
(0,n+1)
01 =

(
B

(n)
00 − S

(0,n)
01 B

(n)
10

)−1 (
S

(0,n)
01 B

(n)
11 − B

(n)
01

)

S
(0,n+1)
10 = S

(0,n)
10 + S

(0,n)
11 B

(n)
10 S

(n+1)
00

S
(0,n+1)
11 = S

(0,n)
11

(
B

(n)
11 + B

(n)
10 S

(n+1)
01

)
(4.19)

where B
(n) = (T(n))−1. Alternatively, the S

(0,1) can be calculated
using S

(0,0) = 1 and T
(0) in Eq. (4.19). The advantage of this

scheme, compared to the forward construction, is that the partial
transfer matrices are included slice by slice in the scattering matrix.
In this way, exponentially growing and decreasing terms are mixed
at each recursion step.

The calculation of the charge density inside the device requires
the computation of the entire set of coefficients {a(n),b(n)}n=0,...,N .
This can be accomplished by transforming the scattering boundary
conditions {a(0),b(N)} in Cauchy conditions {a(0),b(0)} by means
of S

(0,N). The partial transfer matrices can then be employed to
compute the coefficients inside the device. However, this approach
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suffers from instabilities similar to the forward construction of the
scattering matrix. Again, this problem can be circumvented by using
a slice-wise incorporation of the partial transfer matrices [58,59]. For
this purpose, the scattering matrix S

(n,N) with the property
(

a(N)

b(n)

)
= S

(n,N)

(
a(n)

b(N)

)
,

is introduced. The construction of the set {S(n,N)}n=0,...,N starts
with S

(N,N) = 1. Then, the scattering matrix S
(n−1,N) is computed

by means of {T(n−1),S(n,N)}, i.e.

S
(n−1,N)
00 = S

(n,N)
00 (T

(n−1)
00 + T

(n−1)
01 S

(n−1,N)
10 )

S
(n−1,N)
01 = S

(n,N)
01 + S

(n,N)
00 T

(n−1)
01 S

(n−1,N)
11

S
(n−1,N)
10 =

(
T

(n−1)
11 − S

(n,N)
10 T

(n−1)
01

)−1 (
S

(n,N)
10 T

(n−1)
00 − T

(n−1)
10

)

S
(n−1,N)
11 =

(
T

(n−1)
11 − S

(n,N)
10 T

(n−1)
01

)−1

S
(n,N)
11 . (4.20)

Combining Eqs. (4.19) and (4.20) allows to express the coefficients
on each slice as a function of the scattering boundary conditions

a(n) =
(
1 − S

(0,n)
01 S

(n,N)
10

)−1

×
(
S

(0,n)
00 a(0) + S

(0,n)
01 S

(n,N)
11 b(N)

)
, (4.21)

b(n) =
(
1 − S

(n,N)
10 S

(0,n)
01

)−1

×
(
S

(n,N)
10 S

(0,n)
00 a(0) + S

(n,N)
11 b(N)

)
. (4.22)

The algorithm for the computation of {a(n),b(n)}n=0,...,N can be
summarized as follows. First, calculate the partial transfer matrices
{T(n)}n=0,...,N−1 defined in Eq. (4.17) and store them in memory.
Then, compute the scattering matrices {S(n,N),S(0,n)}n=0,...,N−1 by
means of Eqs. (4.19) and (4.20) and store them as well. The coeffi-
cients a(n) and b(n) can be finally computed by means of Eqs. (4.21)
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and (4.22), respectively. The number of matrix-matrix multiplica-
tions in this algorithm is proportional to the number of slices N .
In a more memory-saving approach, a loop over the slices can be
performed and the required transfer and scattering matrices are
calculated anew for each slice. In this case the number of matrix-
matrix multiplications scales like N2.

For the numerical calculation of the electrostatic potential and
the density, the envelope function (4.14) has to be sampled at po-
sitions whose x-components are part of the set {xi}i=0,...,N from
Fig. 4.3 10. The evaluation of Fn(xn, y, z) is rather simple since the
exponential terms are omitted. More information from the entire
slice can be included by averaging the wave function over the slice

F̃n(y, z) =
1

∆xn

∫ (xn+xn+1)/2

(xn+xn−1)/2

Fn(~r)dx

=
∑

i

φ
(n)
i (y, z)(a

(n)
i + b

(n)
i )

2 sin
(
k

(n)
i ∆xn/2

)

k
(n)
i ∆xn

.(4.23)

Note that the terms containing purely complex wave vectors k
(n)
i =

ik̃
(n)
i with k̃

(n)
i ∈ R in Eq. (4.23) diverge exponentially as a function

of ∆xnk̃
(n)
i , i.e.

(a
(n)
i + b

(n)
i )

2 sinh
(
k̃

(n)
i ∆xn/2

)

k̃
(n)
i ∆xn

. (4.24)

Especially in the presence of high barriers, the grid spacing has to

be chosen such that the corresponding ∆xnk̃
(n)
i does not excessively

exceed unity. This is a crucial prerequisite for the achievement of
self-consistency.

In this section, some details on the SMA have been explicitly
described for the case of nanowire FETs. The planar case can

10This restriction for the sampling points is required for the numerical
approaches used in this work.
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be treated analogously [55]. The usage of the SMA for arbitrary
effective mass tensors is described in appendix D. Neglecting the
off-diagonal entries in the overlap matrices (n+1)〈j|i〉(n) is referred to
as the uncoupled mode space approach. This approximation notably
reduces the computational burden but in some cases this goes at
the expense of important physical insights [60,61]. In this work, the
mode coupling is fully taken into account.

Finally, some notes on the charge density computation shall be
given. Instead of evaluating the time-demanding injected densities
(4.3) and (4.8), a local equilibrium like approach can be employed
by using the expressions (3.99) and (3.101) on each slice Ix

n. In this
approximation, tunneling and reflections are completely discarded.
However, this adiabatic density can be calculated very efficiently
and can serve as an initial guess to a self-consistency algorithm (see
Sec. 4.7.6). Details on the implementation of the adiabatic density
can be found in Ref. [55]. In this work, current calculation are always
based on the injected variants (4.3) and (4.8).

4.6 Discretization

4.6.1 Fundamental Equations

In d dimensions, the general form of the stationary Schrödinger
equation within the EMA is given by

[
−∇M(x)∇T + Ueff (x)

]
F (x) = EF (x), (4.25)

and the Poisson equation reads

− 1

8π
∇ǫ(x)∇TF (x) = ρ(x) (4.26)

with

ρ(x) = −
[
nc(x) − pv(x) +N−

A (x) −N+
D (x)

]
. (4.27)
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Both equations are expressed in atomic units, i.e. lengths in Bohr
radii, energies in Rydberg, and potentials in Ry/e. The effective
mass tensor M(x) is generally dense while the dielectricity ǫ(x) is
assumed to be of the form ǫ(x)1. The self-consistent solution of
Eqs. (4.25) and (4.26), i.e. with nc(x) computed by means of the
solutions of the Schrödinger equation (4.25), partially accounts for
many-particle interactions in the sense of the Hartree approximation
described in Sec. 2.3.

4.6.2 Box Integration Method

Finite difference methods are widely used for the solution of partial
differential equations. The differential operators are expressed by
means of differences between point evaluations of the solution, thus
allowing to cast the differential equation as an algebraic matrix
problem. These point evaluations are then obtained by solving this,
generally sparse, matrix problem11. A straightforward discretization
of the simulation domain, which is particularly suited for the finite
difference method, is provided by a tensorial grid. Starting with
the set sx = {xn}n=0,...,N used for the slicing of the device (cf.
Fig. 4.3), the tensorial grid T G = sx ⊗ sy ⊗ sz is constructed by
means of two further sets sy = {yj}j=0,...,J and sz = {zk}k=0,...,K in
three dimensions 12. Intervals {Iy

j }j=0,...,J and {Iz
k}k=0,...,K can be

constructed for sy and sz respectively, according to Eq. (4.10).

Within the box integration method in three dimensions (x = ~r),

the operator −~∇B(~r)~∇T , with B = diag(bx, by, bz) being either M

or ǫ, is integrated over the box Ωn,j,k = Ix
n × Iy

j × Iz
k

−
∫

Ωn,j,k

~∇B(~r)~∇TF (~r)d~r = −
∮

∂Ωn,j,k

~n(~r)(B(~r)~∇TF (~r))dS

(4.28)

11A simple linear or eigenvalue problem has to be solved in the case of the
Poisson or Schrödinger equation, respectively.

12The two-dimensional case is constructed analogously.
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The same operation has to be performed on the remaining terms of
the partial differential equation. The surface integral in Eq. (4.28)
can be divided in six integrals corresponding to the six faces of Ωn,j,k.
Each of these integrals is approximated by evaluating the integrand
at the middle of the face and multiplying this value with the area
of the face. The integrands itself are approximated by a central
difference, i.e. the integrand pointing along the positive x-direction
for instance is approximated by

− bx(x, yj , zk)
∂

∂x
F (x, yj , zk)

∣∣∣∣
x=(xi+xi+1)/2

=

−bx
n+1/2,j,k

(
Fn+1,j,k − Fn,j,k

xi+1 − xi
+ O((xi+1 − xi)

3)

)
(4.29)

where Fn,j,k = F (xn, yj , zk) and bx
n+1/2,j,k = bx((xi+1−xi)/2, yj , zk).

Note that the matrix B has to be evaluated at artificial points lying
between the sites of the tensorial grid. The approximation of the
surface integral (4.28) is formulated for each lattice site and cast as a
matrix vector multiplication AF with F = (. . . , Fn,j,k, . . .)

T . 13 For
the inclusion of Dirichlet and von Neumann Boundary conditions see
Ref. [57]. With Ω = diag(. . . , |Ωn,j,k|, . . .), U = diag(. . . , Ueff

n,j,k, . . .),

and ρ = (. . . , ρn,j,k, . . .)
T , the application of the box integration

method to the Schrödinger (4.25) and Poisson equation (4.26) yields
the algebraic problems

(A + U)F = EF (4.30)

and
AF = ρ (4.31)

respectively. In the 1DEG case for instance, the Poisson equation
is solved on the three-dimensional tensorial grid yielding the elec-
trostatic potential at the grid points. At each position xi ∈ sx, a

13The hermiticity of the matrix A is ensured by the particular choice of
integration (4.28). Non-hermitian matrices may arise from a direct finite
difference discretization of the Laplacian on a non-uniform grid.
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two-dimensional Schrödinger equation expressed on the grid points
perpendicular to the transport direction is solved employing the
electrostatic potential.

Solution of the linear Problem

In one, two, and three dimensions, the matrix A contains at most
three, five, and seven entries per row respectively, and is therefore
rather sparse. The Poisson problem related to the 1DEG case for
instance has to be solved in three dimensions. In this case, typical
sizes of the tensorial grid, and therefore of the matrix problem, are
of the order of ∼ 500000 degrees of freedom. The solution of sparse
linear systems up to these sizes can be accomplished by several
well-established algorithms and data structures. A common way
to store large sparse matrices is provided by the column row sparse
(CRS) format for instance. The solvers for sparse linear systems
are generally subdivided in two classes, i.e. direct 14 and iterative
15 methods. A survey on direct and iterative approaches for the
solution of sparse linear systems can be found in Refs. [63] and [64],
respectively, with references to corresponding software packages. A
powerful framework which combines efficient data structures and an
unified access to state-of-the-art linear solvers, even for distributed
computing, is provided by the PETSC [65] software.

Solution of the Eigenvalue Problem

The eigenvalue problems which have to be solved within the 1DEG
case are sparse as well, but of more moderate size, i.e. ∼ 10000
degrees of freedom. However, these problems are still not optimally
suited for direct eigenvalue solvers such as LAPACK. More appro-
priate approaches are Krylov subspace iteration methods such as

14The PARDISO (www.pardiso-project.org),
MUMPS (mumps.enseeiht.fr/), and UMFPACK
(www.cise.ufl.edu/research/sparse/umfpack/) libraries are well-known
direct solvers.

15The iterative solver ILS [62] is well suited for computational electronics.

www.pardiso-project.org
mumps.enseeiht.fr/
www.cise.ufl.edu/research/sparse/umfpack/
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the implicitly restarted Arnoldi method. This algorithm is imple-
mented in the ARPACK [66] software. A further iterative approach
is given by the Jacobi Davidson QR method [67]. Both, the Arnoldi
and Jacobi Davidson method search for some eigenvalues around a
specified parameter λ. As only the energetically lowest eigenvalues
are interesting, the λ can be set to the minimum of the effective
potential in the Schrödinger equation. A detailed survey on methods
for the solution of eigenvalue problems is given in Ref. [63]. At
the beginning, the device simulator SIMNAD was equipped with
the JDQR and Slip90 software for eigenvalue and linear problems
respectively. The ARPACK solver has been added operating in
shift-invert mode by means of the UMFPACK.

Remarks

Finally, some major shortcomings of the box integration method
used in conjunction with tensorial grids shall be mentioned. The
tensorial grid itself implies two main disadvantages. First, refining
the grid in regions where strong variations of the potential or density
for instance are expected, such as at a material interface, generates
a notable amount of undesired grid points as illustrated in Fig. 4.4.
Secondly, the treatment of von Neumann conditions on arbitrarily
shaped surfaces is not straightforward. Major complication can
also be expected when dense effective mass or dielectric tensors
are employed. The application of the box integration on Delaunay
triangulations and related theory can be found in Ref. [68].

4.6.3 Finite Element Method

When partial differential equations have to be solved on complicated
domains such as in aerodynamics or when the desired accuracy of
the solution notably varies within the domain such as in car crash
simulations, the finite element method is a popular choice.
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(a) (b)

Figure 4.4: (a) Tensorial grid discretization of a rectangular domain.
The boundary of the dark region, denoted by the red line, is refined
(green lines) in (b). The redundant lattice sites are highlighted by
the blue dots.

In this work, the Poisson and Schrödinger equation for the 1DEG
case with arbitrarily shaped boundaries16 are solved by means of the
FEM on a tetrahedrization and triangulation, respectively. Again,
the set sx = {xn}n=0,...,N from Fig. 4.3 is used to construct the grid.
As the device is assumed to be prismatic, i.e. the transverse shape
does not change along the transport direction, a two-dimensional
grid17 is generated, according to the cross-sectional shape and re-
finement regions, and replicated 18 along the positions {xi}i=0,...,N

as shown in Fig. 4.5. The two- and three-dimensional grid contain
N2D

p and N3D
p points respectively. The QHULL 19 software is em-

ployed to generate a Delaunay tetrahedrization from the resulting

16The box integration method is exclusively used for rectangular cross sections.
17The term grid denotes a set of points while a mesh contains informations

on how the grid points are connected. Within the finite difference method, the
meshing is trivial and thus knowing the grid is sufficient.

18Conversely, different 2D grids for different xn could be employed to
further reduce the number of grid points. However, this modification notably
complicates the calculation of the overlap integrals.

19www.qhull.org

www.qhull.org
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Figure 4.5: Meshing strategy for the finite element method described
by means of a circular nanowire. A two-dimensional grid (a) for Ωt

is replicated along the set sx consisting of four points in this case.
The resulting three-dimensional grid (b) is then meshed as shown
in (d). Accordingly, a triangulation (c) is generated from the two-
dimensional grid (a). Note that the mesh (c) does not necessarily
coincide with the mesh (d).
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grid in three dimensions. This grid is used for the Poisson prob-
lem. Accordingly, a Delaunay triangulation is created from the 2D
grid for the Schrödinger problem 20. The FEM discretization of
the Schrödinger and Poisson equation is accomplished by means of
piecewise linear functions (hat functions) bi(x) located at the lattice
sites (see appendix C). First, the Schrödinger problem is considered.
In this case, the solution F is subject to zero Dirichlet conditions on
the boundary ∂Ωt of the transverse domain Ωt which is the same for
all slices. Hence, only hat functions which do not peak at ∂Ωt are
considered. This set of hat functions is referred to as St. Multiplying
Eq. (4.25) on the left by a test function v ∈ St and integrating (by
parts) over Ωt yields

∫

Ωt

(∇v)(M∇F )dx−
∮

∂Ωt

v(x)(∇vMn(x))dS

+

∫

Ωt

v(x)U(x)F (x))dx = E

∫

Ωt

v(x)F (x))dx. (4.32)

The condition (4.32) has to be fulfilled for each v ∈ St. Using the
ansatz

F (x) =
∑

bi∈St

fibi(x) (4.33)

in Eq. (4.25) yields an algebraic problem of the form (4.30) with

Ai,j =

∫

Ωt

(∇bi)(M∇bj)dx, (4.34)

Ui,j =

∫

Ωt

bi(x)U(x)bj(x)dx, (4.35)

and F = (. . . , fi, . . .)
T . Details on the assembly of A and U within

the hat function basis are given in appendix C.

20Similar to the box integration method, the grids for the Schrödinger
problems are subsets of the 3D grid. This is not necessarily the case for the
corresponding 2D and 3D meshes within the finite element method.
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The solution of the Poisson problem is more involved as the data
at the Dirichlet boundary ∂ΩD is not necessarily zero. In this case,
the problem is recasted as follows. Instead of searching for F with
F |∂ΩD

= g, the inhomogeneous Dirichlet conditions are eliminated
by introducing a new function w = F − F0, where F0 is a given
function with F0|∂ΩD

= g(x) and n ∇F0|∂ΩN
= 0. The modified

Poisson problem reads

− 1

8π
∇ǫ(x)∇Tw(x) = ρ(x) +

1

8π
∇ǫ(x)∇TF0(x), x ∈ Ω

w = 0, x ∈ ∂ΩD

n ∇w = 0, x ∈ ∂ΩN .

and is solved within the set S of hat functions which do not peak at
∂ΩD. The solution

w(x) =
∑

bi∈S
wibi(x) (4.36)

has to fulfill the condition 21

∫

Ω

(∇v)(ǫ∇w)dx =

∫

Ω

v(x)ρ(x)dx−
∫

Ω

(∇v)(ǫ∇F0)dx (4.37)

for each v ∈ S. This yields an algebraic problem of the form Aw = ρ

with

Ai,j =

∫

Ω

(∇bi)(ǫ∇bj)dx, (4.38)

ρ
i

=

∫

Ω

bi(x)ρ(x) −
∫

Ω

(∇bi)(ǫ∇F0)dx (4.39)

wi = (. . . , wi, . . .)
T . A suitable boundary function F0 is given by

F0 =
∑

bi∈S0
gibi, where S0 is the set of hat functions which peak

at ∂ΩD and the gi are the evaluations of g(x) at the lattice sites

21This variational formulation is derived as in the Schrödinger case using
integration by parts. The boundary terms vanish due to the properties v|∂ΩD

=
0, n∇F0|∂ΩN

= 0, and nǫ∇w|∂ΩN
= 0.
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i within ∂ΩD. This gives a piecewise linear approximation of the
boundary condition g(x).

The Poisson equation is solved on the tetrahedrization yielding
the piecewise linear electrostatic potential. In this form, the poten-
tial is included in the transverse Schrödinger equations on each slice.
The resulting wave functions are used to compute the total charge
density which is in turn absorbed in piecewise linear form in the
Poisson equation for the next iteration step.

As already mentioned previously, the main advantage of the FEM
is the ability to easily include von Neumann boundary conditions on
arbitrarily shaped boundaries. This benefit, compared to the box
method, vanishes in the 2DEG case which is the main reason why
the FEM is used for the 1DEG exclusively. The agreement between
the FEM and the box method, in terms of current computations, is
found to be excellent for comparable rectangular nanowires.

Finally, some notes on further promising discretization methods
shall be given. A hybridization between the FEM and finite dif-
ference method, referred to as the finite difference element method
(FDEM) [69], combines the advantages from both approaches. This
method has been successfully applied to several important industrial
problems (see Ref. [70] for instance). Sparse grids [71] are a further
promising utility which have not received much attention so far.
Amongst other applications, when higher dimensional problems are
considered in conjunction with the FEM, these grids can yield a
substantial reduction of memory consumption and computational
burden. The presence of atomic-like, i.e. singular, potentials or
densities in a device simulation often hinders the achievement of
self-consistency. An improvement can be obtained by splitting the
potential in a long-range and a short-range part [72], whereas the
latter is treated analytically.
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4.7 Self-Consistency

4.7.1 Main Difficulties

A straightforward iteration between the Poisson and Schrödinger
equation, i.e. a direct exchange of the charge density and the elec-
trostatic potential, rarely yields a satisfactory convergence behavior
22. Mostly, the desired quantities exhibit an oscillatory behavior
or diverge after some iterations. This shortcoming can be partially
ameliorated by tracking the history of the observable and perform
an appropriate mixing before the observable is handed over to the
next equation. A popular mixing scheme is described in Sec. 4.7.2.
Especially when the quantities are still far from the final solution,
the mixing prevents overshoots and therefore inhibits divergence. A
further enhancement is provided by the so called predictor-corrector
method which employs an approximate non-linear Poisson equation
to obtain a better prediction for the electrostatic potential. The
solution of this non-linear equation (predictor step) is referred to as
the inner loop while in the outer loop (corrector step), the poten-
tial is used within the Schrödinger equation to compute the wave
functions and consequently the charge density for the next predictor
step. Details on the simulation flow are given in Sec. 4.7.5.

4.7.2 Kerker Mixing

With φ
(i)
out being the output from the Poisson solver, the input to the

Schrödinger solver can be computed by means of Kerker 23 mixing

φ
(i)
in = γφ

(i)
out + (1 − γ)φ

(i−1)
in , (4.40)

22Similar observations can be expected within other frameworks for device
simulations such as the drift-diffusion model or more generally when computing
the self consistent charge density within the density functional theory.

23The term linear mixing or underrelaxation is often encountered in the
literature for this scheme. In this work, the mixing is only applied to the
electrostatic potential.
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where φ
(i−1)
in is the Schrödinger input from the previous iteration

and γ ∈ [0, 1] is referred to as the damping factor. This factor can
be modified during the iteration procedure, i.e. γ → γ(i), depending
on the behavior of the potential error

Perr[φ
(i)
in , φ

(i−1)
in ] = ||φ(i)

in − φ
(i−1)
in ||p (4.41)

and the residual

R[φ
(i)
in , ρ

(i)] = ||∇ǫ∇Tφ
(i)
in + ρ(i)||r (4.42)

A small residual is an indicator for self-consistency whereas the po-
tential criterion (4.41) acts as an additional control parameter. It has

to be noted that the difference φ
(i)
in − φ

(i−1)
in is directly proportional

to γ. Therefore, only if the damping factor is close to unity at the
end of the iteration procedure, the potential satisfactorily fulfills the
specified error criterion. A common choice for ||.||p is given by the
maximum norm ||f ||p = maxx∈Ω whereas a possible norm for the
residual ||.||r is described in appendix C for the present FEM. Typ-
ical convergence criterions, which can be fullfilled within reasonable
time limits, are given by Perr = 10−3V and R = 1016cm−3 for
doping concentrations of ∼ 1020cm−3. However, the poor conver-
gence behavior in large structures often requires a loosening of these
criterions.

A successful strategy for the Kerker mixing of the outer loop
consists of keeping the γ constant during some iterations as long
as both Perr and R decrease. If one of the latter conditions is not
fulfilled any longer, the γ is instantly decreased. Otherwise, the
factor is increased and kept constant for the next few iterations.

The ability to modify the damping factor is particularly interest-
ing when the quantities are close to the self-consistent solution. In
this regime, a large damping factor notably reduces the number of
required iterations. However, in cases where the increment of γ does
not yield a satisfactory improvement of the convergence near the
self-consistent solution, an acceleration could be obtained by means
of Pulay mixing [73]. In this approach, a linear combination of all
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previous iterations is used in order to construct the input for the
Schrödinger routine.

4.7.3 Predictor-Corrector Method

Knowing the exact dependence of the total charge density ρ on
the electrostatic potential φ allows to formulate a non-linear Pois-
son equation which can be solved by means of a Newton-Raphson
scheme, for instance, as described in Sec. 4.7.4. This approach
fully circumvents a Schrödinger-Poisson type iteration procedure
to obtain the self-consistent charges and potentials. However, an
explicit expression for ρ[φ] for general quantized structures is not
known. Nevertheless, an approximate dependence ρ̃[φ] could be
employed in the non-linear Poisson equation

− ~∇ǫ~∇Tφ =
1

ǫ0
ρ̃[φ] (4.43)

to compute an improved guess for the potential within a Schrödinger-
Poisson scheme. For instance, a semi-classical form [74] for the
charge density could be used. A more elaborate expression for the
case of nanowires has been presented by Trellakis et al. [75]. The
approximate charge density in this case reads

ρ̃[φ] = −e{ñc[φ] − pv +N−
A −N+

D } (4.44)

with

ñc[φ] =

√
2memxkBT

π~2

∑

n

|ψ(i)
n (y, z)|2

×F−1/2

[
EF − ǫ

(i)
n + e(φ− φ

(i)
in )

kBT

]
, (4.45)

where {ψ(i)
n , ǫ

(i)
n } were computed in the previous Schrödinger step,

i.e. by means of the potential φ
(i)
in . This potential remains fixed
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during the inner loop. Once the non-linear problem is solved, the

resulting potential φ
(i+1)
out ) is handed over to the mixing routine

for the outer loop. The dopand concentrations are assumed to
be independent on φ. Note that the approximate electron density
(4.45) is similar to the adiabatic density (3.99) with the differ-
ence that the eigenvalues are shifted by the potential offset, i.e.

ǫ
(i)
n → ǫ

(i)
n − e(φ − φ(i)). Following this idea 24, the density (4.3)

can be appropriately modified to obtain an approximate expression
for the injected case. The expressions for the 2DEG case follows
analogously. Note that the computation of the injected density
within the predictor loop is much more involved than the evaluation
of the conventional expression (4.3). This is due to the potential
term in the Fermi-Dirac integral.

4.7.4 Solution of the Non-Linear Poisson Equa-
tion

Given a non-linear equation of the form F(x) = 0, the Newton-
Raphson method starts by linearizing the function F in the vicinity
of the solution x by means of a Taylor expansion

F(x + δx) = F(x)+
δF
δx︸︷︷︸

δx + O(δx2). (4.46)

J (x)

Neglecting terms of order δx2 and requiring F(x + δx) = 0, yields
the condition

J (x)δx = −F(x) (4.47)

for the shift δx. Equation (4.47) is solved for an initial guess x0 and
the resulting correction δx0 is used to obtain a new position

x1 = x0 + δx0. (4.48)

24In the original work only the adiabatic density (3.99) has been considered.
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By means of an iterative application of this procedure, the xi is
assumed to converge towards the solution of F(x) = 0.

Conversely, instead of seeking for the correction δx0 in Eq. (4.47),
the relation (4.48) could be employed to recast Eq. (4.47) into a
linear equation for x1, i.e.

J (x0)x1 = J (x0)x0 − F(x0). (4.49)

The non-linear Poisson problem (4.43) can be recast in the form
F [φ](~r) = 0

F [φ](~r) = −~∇ǫ(~r)~∇Tφ(~r) − ρ̃[φ](~r) (4.50)

and the Jacobian

J [φ](~r) = −~∇ǫ(~r)~∇T − δρ̃[φ]

δφ
(~r)

︸ ︷︷ ︸
. (4.51)

ρ̃D[φ](~r)

With φ0 being the initial electrostatic potential, the linear problem
(4.47) reads

{
−~∇ǫ~∇T − ρ̃D[φ0]

}
δρ0 = −~∇ǫ~∇Tφ0 + ρ̃[φ0] (4.52)

or alternatively

{
−~∇ǫ~∇T − ρ̃D[φ0]

}
φ1 = ρ̃[φ0] − ρ̃D[φ0]φ0 (4.53)

using Eq. (4.49). The form (4.53) is more convenient from an im-
plementational point of view since the set up of an additional linear
problem due to the boundary conditions for δρ is circumvented.

As in the outer loop, handing over the potential directly to the
next Newton step results in a poor convergence behavior. Very elab-
orate damping schemes such as the Broyden or Bank-Rose method
(see Ref. [57] and references therein) could be employed to improve
the convergence. A more manageable approach is provided by the
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Kerker mixing described in Sec. 4.7.2. The residual (4.42) in this case
is ||F [φ](~r)||r. Contemporarily, the convergence of the potential φ
is monitored. The functionality of the predictor-corrector scheme
within the entire self-consistency simulation flow is schematically
plotted in Fig. 4.6.

4.7.5 Simulation Flow

The interplay between the Schrödinger-Poisson iteration (outer loop)
and the solution of the non-linear Poisson equation (inner loop)
outlined in Secs. 4.7.2 and 4.7.3 respectively, is illustrated in Fig. 4.6.

The i-th iteration starts with the potential φ
(i)
in and comprises the

solution of the Schrödinger problems, the calculation of the charge

density ρ(i), as well as the computation of a new potential φ
(i+1)
out by

means of the inner loop. The φ
(i+1)
in for the (i + 1)-th iteration is

obtained by Kerker mixing. The convergence criterions for the outer
loop are given in Eqs. (4.41) and (4.42) while the termination of the
inner loop is described in Sec. 4.7.4.

4.7.6 Initial Guess

The efficiency and, under circumstances, the success of simple or
sophisticated damping strategies strongly depend on the choice of
the starting solution, i.e. the initial guess. An elementary, and
rather generic, approach to compute this initial guess is provided
by the local equilibrium approximation described in Sec. 3.8.2 with
Uext(~r) = −eφ(~r). However, especially in small nanostructures, the
resulting potential φ(~r) is rather far away from the self-consistent
solution due to quantization effects. In this regime, an improved
initial guess can be obtained by evaluating the densities (3.99) or
(3.101), for nanowire or planar FETs respectively, on each slice 25.
The required subband energies and wave functions {ǫ(n), ψ(n)} are

25This is equivalent to the calculation of the adiabatic density described at
the end of Sec.4.5.
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φ
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in = φ
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Figure 4.6: Simulation flow for self-consistency.
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computed by means of the potential Ueff = Ec/v(~r) − eφ(~r) with

φ(~r)|x∈Ix
n

= φ(n) being piecewise constant on a slice. For the 1DEG

case, the values {φ(n)}n are determined by the condition

0 =

∫

σ

(
n1DEG

c + p1DEG
v +NA −ND

)
dydz (4.54)

on each slice n. The 2DEG case is treated analogously.
For the calculation of transfer characteristics for instance, the

self-consistent solution for a given gate voltage can serve as input
for the successive voltage point. When the solutions to several
voltage points are available, a suitable extrapolation scheme could
be employed to further improve the initial guess for the next point.

4.7.7 Computation of the Injected Charge Den-
sity

The integrands in the injected charge densities (4.3) and (4.8) di-
verge for energies equal to the subband energies in the terminal.
Furthermore, a transfer matrix is not defined, i.e. divergent, if the
injection energy is equal to a subband energies on the corresponding
slice. Therefore, in order to avoid further numerical instabilities, the
energy grid has to account for these singularities. A straightforward
approach would be to project the subband energies of all slices onto
the energy axis. The allowed energy range is then obtained by
removing an interval [s−∆E1/2, s+∆E1/2] around each singularity
s. The integrand is sampled on the resulting energy range and the
integral can be evaluated by means of a conventional Riemann sum.
A typical sampling interval is given by ∆E2 ≃ 2 · 10−5 eV while
∆E1 ≃ 2 · 10−6 eV. It remains to specify the integration boundaries
for the injected densities. The lowest subband energy in the terminal
is the natural choice for the lower boundary as states with lower
transport energies are exponentially suppressed. The exponential
decay of the Fermi distribution function suggests the higher of the
source or drain Fermi energy plus a cutoff ∆Ec, being typically a
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few kBT , as upper limit. If the Fermi level is lower than the lowest
subband energy, the latter quantity shall be taken as upper bound
(plus ∆Ec). Typically, the total amount of energy points with ∆E1

and ∆E2 as specified above is of the order of ∼ 1000.

The energy grid for the computation of the currents (4.4) and
(4.9) has to account for the same singularities as in the density
calculation. Furthermore, in some cases the transmission probabil-
ity may grow faster than the Fermi function decreases (thermally
assisted tunneling). While the lowest subband energy in the source
remains a proper lower boundary for the integration domain, the
upper limit might be raised to the maximum of the lowest subband
energy barrier (plus ∆Ec) in order to capture thermally assisted
tunneling effects. However, when the barrier starts to disappear,
the upper bound should be kept above Es

F + ∆Ec.

Conversely, instead of building the energy grid explicitly for
densities and currents, an adaptive Simpson quadrature rule could
be employed which automatically accounts for singularities. This
approach is technically more involved but more advantageous for
transport frameworks where the injection singularities are not known
a priori.

4.7.8 Implementation

The major computational burden within the self-consistency algo-
rithm resides in the calculation of the injected charge densities and
the solution of the transverse eigenvalue problems. The effort related
to these tasks can be fortunately divided into independent subtasks,
i.e. by splitting the energy integral in the density calculation or sub-
divide the slices on which the eigenvalue problems are solved. Par-
allelization can be achieved by means of the open multi-processing
(OMP) programming interface and the message passing interface
(MPI) 26. The two programming models are basically different in

26 See www.openmp.org and www.mcs.anl.gov/research/projects/mpich2 for
instance.

www.openmp.org
www.mcs.anl.gov/research/projects/mpich2
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that OMP requires a connection of the compute nodes to a common
memory (shared memory parallelism) while the MPI is not bound to
this restriction (distributed memory parallelism). For an excellent
overview see Ref. [76]. The OMP programming interface is rather
simple to employ but computing machines featuring shared memory
capabilities typically contain only a small amount of compute nodes.
On the other hand, scaling a code by means of the MPI is more
involved.

Both programming models have been employed for the calcula-
tion of the charge density and the eigenvalue problems and in both
cases the scaling of the individual routines is found to be excellent.
However, a major drawback of the MPI is the overhead caused by
the communication between the nodes. The solution of the Poisson
problem and the collection of the transverse modes for instance
require substantial communication. The simulation time spent for
the total self-consistency routine can therefore be notably affected
by a slow node interconnect within the MPI model.

4.8 Inclusion of Nonparabolicity

The nonparabolictiy (NP) models derived in Sec.3.7 can be imple-
mented within the SMA from Sec. 4.5. 27 The main consequences
for the SMA are twofold, namely, the conduction mass mx and the
transverse Hamiltonian (4.12) are affected. In the wire case, the
transverse Hamiltonian is replaced by 28

H
(n)
NP,⊥ =

1

2α

[√
1 − 4α

~2

2

(
1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
− 1

]
+ Ueff

n (y, z)

(4.55)

27The present NP models are also compatible with the Green’s functions mode
space approach for quantum transport [43,60,61].

28The single-material approximation will be used in conjunction with NP.
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A real space discretization of the Hamiltonian (4.55) is not as straight-
forward as in the EMA case. Instead, a spectral method can be em-
ployed, i.e. the solution F (n) is expanded in terms of basis functions
which are used to build the Hamilton matrix 29. For rectangular
nanowires a suitable choice consists of sine waves with nodes at the
boundary of the transverse domain, i.e.

F (n)(y, z) =

Cr∑

r=1

Cs∑

s=1

fr,s
2√
LyLz

sin

(
πry

Ly

)
sin

(
πsz

Lz

)

︸ ︷︷ ︸
,(4.56)

σr,s(y, z)

where Ωt = [0, Ly]× [0, Lz] is the transverse domain in this case and
Cr and Cs are the cutoffs for the basis set.

Within the box method from Sec. 4.6.2 the effective potential
Ueff

n is given by samples Ueff
n,j,k on the sites of the tensorial grid. A

piecewise constant analytic continuation of the potential on Ωt reads

Ueff
n (y, z) =

J∑

j=0

K∑

k=0

Ueff
n,j,kχjk(y, z), (4.57)

where χjk is unity on Iy
j × Iz

k and zero elsewhere. The Hamilton
matrix elements

〈r′, s′|H(n)
NP,⊥|r, s〉 =

∫ Ly

0

∫ Lz

0

σr′,s′H
(n)
NP,⊥σr,sdydz (4.58)

can be computed very efficiently since the kinetic part is diagonal
and the terms 〈r′, s′|χjk|r, s〉 can be calculated and stored a-priori.
Typically, Cr = Cs = 30 is sufficient and the resulting dense eigen-
value problems can be solved by means of LAPACK. The planar
FETs are treated analogously.

29Further works which employ spectral methods for device simulations can be
found in Refs. [38,39,77].
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In the FEM the situation is more involved since the effective
potential is piecewise linear on an arbitrary triangulation. An ap-
parently rough, but effective, simplification consists of sampling
the piecewise linear potential on a tensorial grid and adopt the
procedure from the tensorial case, i.e. Eq. (4.57). For this purpose,
a bounding box surrounding the arbitrary transverse domain Ωt

is constructed and the originated vacuum region is mimicked by
raising the conduction band edge to a sufficient high value. For
J = K = 100 an excellent agreement with the conventional FEM is
found for several transverse shapes.

Arbitrary transverse kinetic operators, including position-dependent
effective masses, can be tackled by means of spectral methods such
as the one described in this section. The sine waves in the expansion
(4.56) can be replaced for instance by the eigenfunctions of the
transverse kinetic operator subjected to zero Dirichlet conditions
on Ωt.

4.9 Simulation results

4.9.1 Overview

The NP models from Sec.3.7 are now used to investigate the im-
pact of band structure effects on transfer characteristics of silicon
nanowire and planar FETs (cf. Fig. 4.1). The ballistic quantum
transport formalism outlined in this chapter is employed to compute
the currents. In particular, the spectral method from Sec. 4.8 is used
for the inclusion of NP 30. The penetration of the wave function
in the oxide is neglected, i.e. zero Dirichlet boundary conditions
are employed at the channel oxide interface 31. Furthermore, NP
is solely used for the energetically lowest valleys, since particularly

30Note that the expressions for the currents (4.4) and (4.9) are left formally
unaltered by the present NP models.

31In this way, only the effective masses of the channel material, i.e. silicon,
become relevant.
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in the presence of strong confinements, only these valleys notably
contribute to quantum transport. On the other hand, for weak
confinements all valleys become relevant but band structure effects
are less important. Charge densities are computed self-consistently
as described in Sec. 4.7.

As mentioned in Sec.3.7, two band structure effects, i.e. the
overestimation of the conduction band edge and the underestimation
of the conduction mass, are captured by the present NP models.
These two effects can be accounted for individually in order to
distinguish between the respective contributions to the currents 32.
In the following, increasing the conduction mass alone is referred
to as the MC model while increasing the NP coefficient alone is
referred to as the ALPHA model. Neglecting both effects yields
the EMA case and the inclusion of both effects is still referred to
as the NP case. The numerical values of the NP coefficients and
modified conduction masses for the simulation of the FETs are given
in Sec. 5.2 and are of minor importance in this section since the
attention is paid to qualitative considerations.

The impact of band structure effects on transfer characteristics
Id(Vgs) of FETs operating under a fixed forward bias Vds is investi-
gated by means of specific quantities. One of these quantities is the
threshold voltage Vth defined by the condition

Id(Vth)
!
= Ith. (4.59)

The threshold voltage Vth divides the transfer characteristic in two
parts, the subthreshold regime (Vgs ≤ Vth) and the on-current regime.
The subthreshold regime is characterized by the subthreshold slope
(SS)

SS = 1000 × ln(10) × min
Vgs∈[Vth−∆VSS,Vth]

[
d

dVgs
ln(Ĩd)

]−1

, (4.60)

32The investigations are closely related to the strategy employed by Ref. [78].
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where Ĩd is the drain current in arbitrary units. The theoretically
minimal value for the SS is given by 1000 × ln(10) × kBT/e =
59.637mV/dec33. Finally, the on-current Ion is defined by

Ion = Id(Vth + ∆Von). (4.61)

The drain current in ideal FETs subject to a fixed bias Vds is
solely controlled by the gate voltage, i.e. the width of the barrier
underneath the gate in the subthreshold regime is comparable to the
length of the gate. Applying strong bias conditions in short channel
FETs leads to a deformation (thinning) of the barrier being referred
to as drain induced barrier thinning (DIBT). This phenomenon
is accompanied by a reduction of the barrier height, i.e. drain
induced barrier lowering (DIBL) [55]. Consequently, the tunneling
component to the drain current Id increases, leading to a shift of
the threshold voltage Vth and a degradation of the subthreshold
slope depending on Vds. Non-ideal effects such as the deformation of
the barrier appear both in planar and nanowire FETs whereas the
electrostatic control of the gate contact in the latter case is more
efficacious [3, 79]. In the following, non-ideal effects are abetted by
using a rather high forward bias of Vds = 0.6V and the behavior of
these effects under the influence of NP is investigated.

4.9.2 Results for Nanowire FETs

The nanowire FETs considered in this section have a prismatic shape
with profiles shown in Fig. 4.7. The silicon core and the circumjacent
silicon oxide layer are characterized by the quantities tc and tox

respectively. The source and drain regions are both n-doped with
a concentration of ND = 1020cm−3 and the lengths are ls = ld =
10 nm. The gate contact surrounds the FET as shown in Fig. 4.1
(gate-all-around structure) and the length takes the values lg[nm] ∈
{5, 10, 15, 20}. The various channel thicknesses of the triangular

33A temperature of T = 300K is assumed for all current calculations in this
work.
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Figure 4.7: Profile specifications of the square (sq), circular (ci),
and triangular (tr) nanowire FETs from Sec. 4.9.2. Typical
triangulations are shown as well. The oxide thickness is always
tox = 1nm.



4.9. SIMULATION RESULTS 111

FETs are tc[nm] ∈ {4, 5, 6, 7} while tc[nm] ∈ {2, 3, 4, 5} are the ones
of the square and circular FETs. For the calculation of Vth, Ion, and
SS the values Ith = 10−7 A, ∆Von = 0.2 V, and ∆VSS = 0.2 V,
respectively, are employed 34.

Transfer characteristics of the square FETs are given in Fig. 4.8.
For tc = 2 nm and lg = 5 nm, the SS seems to be mainly affected
by the increment of the conduction mass while for the remaining
cases the SS is essentially left unaltered by the various models. A
more detailed analysis of the SS for different geometries is given in
Fig. 4.9. For the smallest tc, the SS diminishes for an increasing
lg and approaches the theoretical minimal value of 59.637 mV/dec.
Particularly evident is the influence of the conduction mass on the
SS in the square and circular cases with the smallest lg. In this
case, the tunneling contribution to the total current is notable and
is further enhanced by the strong forward bias as already mentioned
in Sec. 4.9.1. Increasing the conduction mass leads to a suppression
of tunneling and thus an improvement of the SS. The discrepancy
between the various models is negligible beyond lg = 10 nm since
tunneling is generally suppressed. For an increasing channel thick-
ness tc, the electrostatic control of the gate contact diminishes lead-
ing again to an increased tunneling and thus a degradation of the SS.
Contemporarily, the band structure effects decrease which explains
the smaller discrepancy between the various models compared to the
lg = 5 nm cases for the smallest tc.

The threshold voltage Vth is plotted in Fig. 4.10 as a function
of both lg and tc. The major impact on Vth can be attributed to
the increment of α. This finding is best explained by means of
Fig. 4.11.a showing the lowest subband energy profile of a square
nanowire FET at Vgs = 0 V. The transverse eigenvalue problems
generally yield a smaller eigenvalue when α > 0eV−1 and thus reduce
the barrier below the gate. The decrease of the barrier causes a shift
of the transmission coefficient and thus an increment of the spectral
current as shown in Fig. 4.11.c. This leads to a shift of the transfer

34These values are also used for the planar FETs in Sec. 4.9.3.
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Figure 4.8: Transfer characteristics (subthreshold regime) of square
nanowire transistors by various models. Gate lengths lg and channel
thicknesses tc are specified in the graphs.
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Figure 4.9: Subthreshold slope (SS) of nanowire FETs. The gate
lengths lg, channel thicknesses tc, and the cross-sectional shapes are
specified in the graphs.
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Figure 4.10: Threshold voltage Vth of nanowire FETs. The gate
lengths lg, channel thicknesses tc, and the cross-sectional shapes are
specified in the graphs.
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Figure 4.11: Lowest subband energy profile (a & b), spectral current
(dashed lines), and transmission coefficient (c & d) of a square
nanowire FET with tc = 2 nm and lg = 10 nm. The data
belongs to one of the four ∆4 valleys which, in this case, contribute
approximately in the same manner to the current. The gate voltages
are specified in the graphs and the source Fermi level is Es

F = 0 eV.
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characteristics and thus Vth towards smaller values. Apparently, this
shift of the barrier due to α does not notably influence the SS (cf.
Fig. 4.9). The situation in the source and drain regions is essentially
left unaltered by α (inset) while the increment of the conduction
mass lifts the subband energy (see discussion about the on-current)
having, however, a minor impact on Vth. For the smallest tc in
Fig. 4.10, the Vth approaches a constant value for an increasing lg.
A weak dependence on the conduction mass can be observed for lg =
5 nm, where the Vth is generally smaller compared to the remaining
lg. Again, this can be attributed to an increased contribution of
the tunneling component to the current for short channels, i.e. a
larger subthreshold current yields a smaller Vth while an increased
conduction mass suppresses the tunneling and thus diminishes the
decrease of Vth. Beyond lg = 10 nm the Vth is not influenced by
the tunneling any longer. For increasing channel thickness tc, the
subthreshold current generally increases leading to a reduction of
Vth. Furthermore, the discrepancy between various models vanishes
since band structure effects become less important.

The on-current of square nanowire FETs is plotted in Fig. 4.12 as
a function of the gate length lg. The Ion increases for an increasing lg
and becomes approximately constant beyond lg = 10 nm. The small
Vth at lg = 5 nm due to tunneling shifts the evaluation point for the
Ion and is mainly responsible for the smaller on-currents compared
to the remaining gate lengths. However, in each case, the conduction
mass seems to have the leading impact on Ion. This finding is
somehow counterintuitive since the gate barrier, and thus tunneling,
essentially vanishes in the on-current regime and the conduction
mass can not influence the current via the tunneling contribution any
longer. Figure 4.11.b sheds more light on this situation. The gate
voltage is close to the voltage point used for the evaluation of Ion.
In the source and channel region, the subband energy is raised when
the conduction mass increases leading to a smaller spectral current
as shown in Fig. 4.11.d. This influence of the conduction mass on
the subband energy in the source region is due to charge neutrality.
Since the density of states in a wire is directly proportional to the
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Figure 4.12: ON-currents of square nanowire transistors by various
models. The channel thickness is tc = 2nm.

conduction mass, a larger mass mandates a larger subband energy
in order to obtain the same number of conduction band electrons.
Finally, the Vth and the SS of the various nanowire FETs are plotted
in Fig. 4.13 as a function of the effective diameter de (see Sec. 5.2).

Further reading on ballistic transport is given in Refs. [60, 61,
80–86] and particular attention to band structure effects is paid in
Refs. [31,78,87–93].

4.9.3 Results for Planar FETs

The discussion in this section is kept rather brief since several ex-
planations from the wire case apply also to planar FETs. Transfer
characteristics were obtained from hypothetical double-gate FETs
similar to the one employed by Lundström et al. [94]. Doping and
geometry specifications are given in Fig. 4.14. The gate length lg and
channel thickness tc are variable while the source and drain regions
are fixed.

Transfer characteristics are plotted in Fig. 4.15. The currents
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Figure 4.14: Double-gate FET studied in Sec. 4.9.3. The oxide
thickness is always tc = 0.6 nm.

are given in A/µm, i.e. the current (4.9) has to be divided by Wy.
A point which is worth noting is the pronounced 35 influence of
the conduction mass on the Vth, compared to the wire case, even
for large lg as can be seen from Fig. 4.16. A closer look at the
current formula (4.9) reveals that even in the absence of tunneling,
the transverse mass my, which is increased in the same manner as
the conduction mass, is able to increment the current. The inferior
electrostatic control of the gate contact compared to the wire case
becomes evident, for instance, for {tc = 5nm, lg = 10nm, where SS =
83.512 mV/dec (EMA case) compared to the SS = 73.675 mV/dec
of the square nanowire FET with {tc = 5nm, lg = 10nm (EMA case)
from Sec. 4.9.2. Apart from that, the qualitative behavior of SS and
Vth as a function of tc and lg is very similar to the one observed in
the wire case.

Further reading on ballistic transport and band structure effects
for the case of planar FETs can be found in Ref. [95,96].

35The impact of α on Vth is still dominant.
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Figure 4.15: Transfer characteristics (subthreshold regime) of planar
FETs by various models. Gate lengths lg and channel thicknesses tc
are specified in the graphs.
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Figure 4.16: Threshold voltage (Vth) and subthreshold slope (SS) of
planar FETs as a function of the gate length lg and channel thickness
tc by various models.
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4.10 Summary

The scattering matrix formalism for the implementation of quantum
ballistic transport within the Landauer-Büttiker formalism has been
outlined at the beginning of this chapter with a particular focus on
devices hosting two- and one-dimensional electron gases, i.e. planar
and nanowire FETs. For the discretization of nanowire FETs, the
FEM is found to be superior compared to the box integration method
in that the treatment of arbitrary surfaces is more straightforward.
Beside the consideration of different discretization schemes for the
Poisson and Schrödinger equation, a detailed survey on techniques to
achieve self-consistency has been given. The inclusion of the present
NP models within the SMA by means of spectral methods allows
to investigate the impact of band structure effects on the device
characteristics. Nanowire FETs with various cross sectional shapes
have been employed in order to include the effect of the geometry.
While square and circular FETs show similarities, the triangular
FET shows a distinct behavior concerning the SS. Short-channel
effects such as the degradation of the SS is found to be alleviated by
the increment of the conduction mass in both planar and nanowire
FETs. Beside the expected inferior electrostatic control in planar
FETs, the qualitative impact of band structure effects depending on
geometry variations is found to be similar in both types of devices.
Finally, it has to be reminded that the conclusions elaborated in this
chapter are based on quantum ballistic transport simulations. The
presence of scattering, in particular surface roughness, might might
notably influence the impacts of band structure effects.



Chapter 5

Comparison with
Tight-Binding

5.1 Introduction

Simulation of quantum transport can be accomplished on various
levels. The Landauer-Büttiker formalism in conjunction with the
EMA and SMA has been outlined in the previous chapter for the
ballistic limit. An emerging class of simulators make use of the
non-equilibrium Green’s functions formalism (NEGF) in conjunction
with atomistic methods, i.e. the tight-binding [97, 98] or fully ab-
initio techniques [99,100] for instance. These methods fully account
for band structure effects. A good overview of related methods
is given in Ref. [101]. Further approaches to atomistic quantum
transport can be found in Refs. [102–107]. The common denom-
inator in atomistic quantum transport simulators is the notable
computational burden compared to the EMA case. Thus, sim-
plified methods being able to capture the main impacts of band
structure effects on quantum transport are desirable in order to
maintain simulation times within a reasonable limit. Extensions
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of the EMA within semi-classical transport frameworks have been
proposed [31,87] as well as quantum mechanical approaches [92,93]
including scattered comparisons to fully atomistic approaches. In
this chapter the present NP models are appropriately calibrated
and transfer characteristics are compared to results obtained by a
TB-NEGF simulator [97] being able to tackle devices of considerable
size. Extensive comparisons for circular and square nanowire FETs
are carried out for different diameters and gate lengths.

5.2 Extraction of α

The square and circular silicon wires used to build the channels of
the FETs in this section have been thoroughly studied in Secs. 3.4
and 3.6. The termination at the surfaces which mimics hydrogen
passivation is consistent with the neglect of the penetration of the
wave function in the oxide. This penetration will be neglected
for the comparisons in this section. Given a square or circular
nanowire FET, the transfer characteristics computed by the present
transport framework (EMA case) are supposed to differ from the
corresponding TB-NEGF results due to band structure effects. The
NP models from Sec. 3.7 aimed at improving the EMA results but
no parameterizations have been specified so far in this work 1. For
each wire cross section, the NP coefficient is extracted by means
of tight-binding band structures based on the parametrization in
Refs. [108,109], i.e. the TB cases in Figs. 3.14 and 3.15 and Tab. 3.2

1The qualitative considerations from Sec. 4.9 about the impact of band
structure effects on transfer characteristics by means of NP are based on the
parameters extracted in this section.
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2. A widely used approach to determine the NP coefficient in silicon
is based on the condition 3 [31, 78]

1

2α

[√
1 + 4αǫg⊥ − 1

]
!
= ǫac (5.1)

which states that the conduction band edge ǫac of the nanowire
computed by the tight-binding approach is equal to the band edge
obtained by means of the EMA, i.e. Eq. (3.78) in the square case4.
Once the α is known, the modified conduction mass is given by
ml

√
1 + 4αǫg⊥

5. For a square nanowire, the tight-binding and cor-
responding nonparabolic dispersion (3.78), after fitting the α, are
compared in Fig. 5.1. The extraction procedure (5.1) is employed
for both circular and square nanowires. As mentioned in Sec. 3.6.3,
an analytic expression for the EMA band edge ǫg⊥ in the circular
case is not straight-forward. The spectral method from Sec. 4.8 is
used to compute the band edges of the circular wires (diameters
dictated by the TB cases) from Sec. 3.6.3. The fit model (3.63)
is then used to obtain a continuous form for the band edge, yield-
ing Kc = 2.807 eVnm2, ac = 0.135 nm, and bc = −0.070 nm2.
The NP coefficients and related conduction masses are reported in
Tabs. 5.1 and 5.2 for the square and circular case, respectively.
Using the fits from Tab. 3.2, the NP coefficient, and therefore the

2This parametrization is employed by the TB-NEGF simulator used for the
present comparisons. The bulk effective masses for this parametrization are
ml = 0.891 and mt = 0.201.

3In the following, the notation from Sec. 3.7 is used. An other approach
to determine the NP coefficient in silicon consists in fitting the density of
states obtained by means of the dispersion (3.72) to data obtained by atomistic
approaches or experiments as outlined in Sec. 3.8.

4Note that the same α and mc are obtained when the full spectrum (3.75) is
fitted to the atomistic band edge.

5As mentioned in Sec. 4.9.1 , the NP model is only employed for the
energetically lowest conduction band valleys, i.e. the ∆4 valleys in this case.
In this connection, the band splitting effects mentioned in Sec. 3.6.3 are fully
ignored.
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Figure 5.1: Tight-binding (TB) band structure of a square silicon
nanowire (see text) and nonparabolic (NP) dispersion (3.78). The
corresponding dispersion obtained by the EMA is plotted as well.
Data is given for de = 4.139 nm, α = 0.841eV−1, mc = 0.252.
The inset highlights the agreement between the nonparabolic and
tight-binding dispersion.

Table 5.1: NP coefficients α, conduction masses mc, and effective
diameters de for the present comparison to tight-binding (square
case). The mc for the case of a single (sg) α is given as well.

de [nm] 2.451 2.914 3.370 3.831 4.139 4.595 5.057

α[eV−1] 0.625 0.688 0.748 0.806 0.841 0.895 0.945

mc 0.299 0.280 0.267 0.257 0.252 0.246 0.241

mc (sg) 0.319 0.290 0.270 0.256 0.250 0.241 0.234
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Table 5.2: NP coefficients α, conduction masses mc, and effective
diameters de for the present comparison to tight-binding (circular
case). The mc for the case of a single (sg) α is given as well.

de [nm] 2.044 2.536 3.010 3.500 4.000 4.529 4.926

α[eV−1] 0.636 0.755 0.888 1.044 1.222 1.427 1.595

mc 0.326 0.303 0.289 0.279 0.272 0.267 0.264

mc (sg) 0.334 0.295 0.271 0.255 0.244 0.235 0.230

conduction masses, can be evaluated at arbitrary positions 6. The
conduction masses from the NP model are compared to atomistic
data in Fig. 3.15. A satisfactory quantitative agreement with the
conduction masses extracted from the tight-binding band structure
can be observed. The continuity of α has been used to extract the
parameters for the calculations in Sec. 4.9.2 from the previous chap-
ter. The parameters for the various nanowires are given in Tab 5.3.
With the specifications from Fig. 4.7, the effective diameters for the
square and triangular case are 2tc/

√
π and tc/

√
π, respectively 7.

The NP coefficient α exhibits a notable dependence on the ef-
fective diameter de. This dependence suggests that there is no
overall agreement between the actual silicon conduction band and
the nonparabolic dispersion (3.72) for a single α. Even in the case
of a perfect agreement, when further energy bands become relevant,
the α has to be modified to account for this effect. However, it is
possible to extract a single α for a set of atomistic and corresponding
EMA band edges [31, 78] by fitting the relation (5.1) to the entire
dataset. Figure 5.2 shows the fits to the TB sq100 band and TB

6It has to be noted that for large de, the α diverges and becomes very sensitive
for variations of the fitting parameters. However, the analytic expression for the
NP coefficient and the conduction mass are restricted to the range of diameters
used to fit the atomistic band edges.

7Note that for the triangular FETs, the α from the circular case has been
employed. Conversely, atomistic nanowires with a triangular shape can be used
to provide the correct α.
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Table 5.3: NP coefficients α, conduction masses mc, and effective
diameters de for the various nanowire FETs from Sec. 4.9.2.

tc [nm] 2 3 4 5 6 7

α[eV−1] (sq) 0.598 0.750 0.886 1.003 - -

mc (sq) 0.309 0.267 0.247 0.235 - -

de [nm] (sq) 2.257 3.385 4.514 5.642 - -

α[eV−1] (ci) 0.627 0.885 1.221 1.627 - -

mc (ci) 0.329 0.289 0.272 0.263 - -

de [nm] (ci) 2 3 4 5 - -

α[eV−1] (tr) - - 0.685 0.833 1.006 1.203

mc (tr) - - 0.314 0.293 0.281 0.273

de [nm] (tr) - - 2.257 2.821 3.385 3.949

ci edges from Fig. 3.14 8. The resulting NP coefficients differ from
the value obtained by the bulk method described in Sec. 3.8. This
finding is not surprising since the present fit employs the band edge
and not the density of states. Neglecting the de-dependence of α
is investigated in Sec. 5.3. The modified conduction masses when
using the single α from Fig. 5.2 are reported in Tabs. 5.1 and 5.2. In
the following, using a single α is referred to as the NPsingle model.

Finally, NP coefficients are extracted for the planar FETs simu-
lated in Sec. 4.9.3. Again, this is accomplished by means of tight-
binding band edges. The parametrization by Niquet et al. [30] is
employed, i.e. the 100 case from Fig 3.16, with the bulk masses
ml = 0.918 and mt = 0.191. As in the wire case, the condition (5.1)
is employed to extract the α. In the well case, the transverse mass
my is increased in the same way as the conduction mass mx. The
NP coefficients and conduction masses are reported in Tab. 5.4 for
the various channel thicknesses tc.

8The EMA band edges from Fig. 3.14 are employed for the fit.
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Figure 5.2: Tight-binding band edges (cf. Fig. 3.14) versus the
corresponding value computed by means of the EMA (square and
circular wires). The solid and dash-dotted lines denote fits of the
relation (5.1) to the tight-binding data for a single α.

Table 5.4: NP coefficients α and conduction masses mc for the
various planar FETs from Sec. 4.9.3.

tc [nm] 1 2 3 5

α[eV−1] 7.731 9.567 12.294 18.696

mc 0.706 0.423 0.344 0.285
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5.3 Simulation Results

The circular and square nanowire FETs used for the comparison have
the same structure as the FETs from Sec. 4.9, i.e. gate-all-around,
Vds = 0.6 V, ls = ld = 10 nm, and the source and drain regions
are n-doped with 1020 cm−3. The diameters are dictated by the
atomic structure of the cross section and are reported in Tabs. 5.1
and 5.2. For the smallest diameter, the gate lengths take the values
lg[nm] = {5, 10, 15, 20} while lg = 15 nm is used for the remaining
diameters.

Transfer characteristics of the nanowire FETs with the smallest
and largest effective diameter are given in Fig. 5.3. The discrepancy
between the EMA and TB-NEGF models is most pronounced for the
smallest diameters. For this case, a detailed analysis of the Vth, SS,
and Ion can be found in Fig. 5.4. The parameters for the extraction
of these quantities are Ith = 10−7 A, ∆Von = 0.2 V, and ∆VSS =
0.2 V, i.e. the same as in Secs. 4.9.2 and 4.9.3. For lg = 5 nm, the SS
computed by the TB-NEGF model is smaller than the corresponding
EMA value due to the larger conduction mass. The NP and NPsingle
models provide an improvement for both circular and square FETs.
In the square case, the error (Vth − V TB

th ) between the threshold
voltage computed by the TB-NEGF model V TB

th and the remaining
models, shows the superior improvement by the NP model compared
to NPsingle. Furthermore, the error for the EMA case is comparable
to the band edge overestimation ǫg⊥ − ǫac (dash-dotted line) for large
lg. On the other hand, the overestimation is roughly equal to the
Vth shift between the EMA and NP. This finding is not surprising
since ǫg⊥ − ǫac is used to calibrate the NP model. In the circular
case, the improvement is less obvious compared to square FETs. In
particular, the (Vth − V TB

th ) for the EMA case notably differs from
ǫg⊥ − ǫac . Several causes are thinkable for the reduced improvement
by the NP compared to the square case. From a numerical point of
view, the spectral method from Sec. 4.8 might introduce an error in
the circular case. However, the method is in good agreement with
the FEM and is able to satisfactorily reproduce analytic results.
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Figure 5.3: Transfer characteristics of the smallest and largest square
and circular nanowire FETs by various models. The gate length is
lg = 15 nm.
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Figure 5.4: The errors (Vth − V TB
th ) and (Ion − ITB

on )/ITB
on as well

as the subthreshold slope (SS) of the smallest square and circular
nanowire FET as a function of the gate length lg by various models.
The dash-dotted lines denote the band edge overestimation ǫg⊥ − ǫac
by the EMA.
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From a conceptual point of view, instead of using analytic fits to the
TB band edges, the actual energies and conduction masses could be
employed. However, in the square case, the use of analytic fits yields
the expected improvement. A further cause could be the neglection
of band splitting effects which are more accentuated in the circular
case and particularily for small diameters.

The analysis is completed by a plot of the errors (Ion −ITB
on )/ITB

on

and (Vth − V TB
th ) as a function of the wire diameter in Fig. 5.5. The

improvement of the threshold voltage by the NP model is noticeable
over the whole range of diameters in the square case, as well as
the agreement between ǫg⊥ − ǫac and the EMA error. For the circular
FETs, the improvement by the NP model remains inferior compared
to the square case for an increasing diameter. However, the NPsingle
model seems to perform better than NP for larger diameters. The
error (Ion − ITB

on )/ITB
on reveals that the TB-NEGF current in the

on-current regime, for larger diameters, is even higher than the
EMA current. This finding is counter-intuitive from a physical
point of view since the conduction mass in the TB-NEGF case is
still much larger than the bulk value. A better improvement for
the on-current in the square case is reported in Ref. [43] which
employs different effective masses and contour fits to the atomic
cross sections but relies on the same NP model and comparison
to the TB-NEGF approach. The results are plotted in Fig. 5.6.
Finally, the on-currents and threshold voltages computed by the
TB-NEGF approach are plotted in Fig. 5.7 as a function of the
effective diameter. Similar to the NP and EMA data plotted in
Fig. 4.13, the Vth roughly follows a common line.
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Figure 5.5: The errors (Ion − ITB
on )/ITB

on and (Vth − V TB
th ) of square

and circular nanowire FETs as a function of the effective diameter
de by various models. The dash-dotted lines denote the band edge
overestimation ǫg⊥ − ǫac by the EMA. The gate length is lg = 15 nm.
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5.4 Summary

The calibration of the present NP models by means of atomistic
band structures has been described at the beginning of this chapter.
In particular, the parameters belonging to a series of square and
circular nanowire FETs are reported. These parameters are used
to validate the corresponding NP models by means of comparisons
with a full-band TB-NEGF approach. For the smallest diameters,
the improvement provided by NP is particularly evident for the
Vth of the square FETs and the SS of both types of devices. An
improvement for the Vth of the circular FETs and the on-current
of both types of devices is less evident. Different parameteriza-
tions provided in a previous work for the same NP models yield
a more satisfactory improvement for the on-current of square FETs.
Amongst other possible causes for the unexpected outcome in the
circular case, it has to be investigated whether a perfect circle is an
appropriate choice to approximate the cross section of, particularly
small, circular nanowires. Provided that this behavior is related to
the irregularity of the wire surface for very small diameters and no
satisfactory improvement can be achieved by continuum type ap-
proaches such as the EMA or NP, the TB-NEGF approach could be
employed since the computational burden does not notably exceed
the one caused by the present transport simulator. Typically, ∼ 400
CPU hours are required by the TB-NEGF simulator compared to the
∼ 60 CPU hours needed by the present simulator for the smallest
nanowires. Finally, except for the Vth of circular FETs for larger
diameters, the use of a diameter-independent α does not yield a
significant improvement compared to the conventional NP model.



Chapter 6

Inclusion of Scattering

6.1 Introduction

The quantum transport framework detailed in the previous two
chapters does not account for scattering effects. A widely used
approach, based on a phenomenological description of scattering,
is given by the Büttiker probes [110]. Going a step further, the
inclusion of scattering effects can be accomplished by means of the
NEGF 1. In this approach, scattering is introduced in a perturbative
way by means of self-energies which depend on the correlation func-
tions, i.e. the Green’s functions, and vice versa. Compared to the
Büttiker probes, the NEGF is less bound to input parameters but
causes a larger computational burden due to the interdependence
between the quantities.

In this chapter, combined and particular impacts of NP and scat-
tering on transfer characteristics of nanowire FETs are investigated.
Scattering is treated on the level of the first self-consistent Born
approximation and a novel method [111] for the treatment of the

1The implementation of the NEGF, inelastic scattering processes, and related
approximations in SIMNAD has been provided by Martin Frey.
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boundary conditions is employed. The result section is preceded by
a short survey on NEGF for quantum transport. The interested
reader can find detailed informations about the NEGF for quantum
transport in Refs. [17,54,112–117]

6.2 A Short Survey on NEGF

6.2.1 Steady-State Quantum Transport Equations

Before moving to the coupled-mode expansion, the continuous form
of the steady state quantum transport equations will be given. The
solution variables of the steady-state Dyson and Keldysh equation
are the retarded (GR) and lesser (G<) Green’s function [112,113]:

∫ [
(E −H(~r))δ(~r − ~r1) − ΣR(~r, ~r1, E)

]
GR(~r1, ~r

′, E)d~r1 = δ(~r − ~r ′),

G<(~r, ~r ′, E) =

∫ ∫
GR(~r, ~r1, E)Σ<(~r1, ~r2, E)GA(~r1, ~r

′, E)d~r1d~r2,

where H(~r) is the Hamiltonian from Eq. (4.1) describing the device.
The self-energy

Σ(~r, ~r ′, E) = Σint(~r, ~r
′, E) + Σbc(~r, ~r ′, E) (6.1)

contains the electron-phonon interaction Σint(~r, ~r
′, E) as well as the

boundary conditions Σbc(~r, ~r ′, E). The Hartree potential is included
in H(~r).

6.2.2 Coupled-Mode Expansion

For devices with a well-defined transport direction, such as the
ones employed in this work, the coupled-mode approach provides an
attractive alternative to the real-space discretization of the Dyson
and Keldysh equations from a computational point of view [61, 80]
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2. All quantities are expressed by means of the transverse modes

{ψ(n)
i (y, z)} from Sec. 4.5 and restricted to the points {xn} shown

in Fig. 4.3 along the transport direction. For instance, the retarded
Green’s function reads

GR(~r, ~r ′, E) =
∑

i,j

GR
ij(xn, xm, E)ψ

(n)∗
i (y, z)ψ

(m)
j (y′, z′), (6.2)

where GR
ij(xn, xm, E) is the solution of the Dyson equation formu-

lated in mode-space

∑

i,n′

[
Eδjiδnn′ −

∫
dydzψ

(n)∗
j (y, z)H(~r)ψ

(n′)
i (y, z)

−
∫
dydz

∫
dy′dz′ψ(n)∗

j (y, z)ΣR(~r, ~r ′)ψ(n′)
i (y′, z′)

]
GR

ik(xn′ , xm, E)

=
∑

i,n′

[
Eδjiδnn′ −Hji(xn, xn′) − ΣR

ji(xn, xn′ , E)
]
GR

ik(xn′ , xm, E)

= δjkδ(xn − xm).

Similarly, the expressions for the self-energies in mode-space can
be derived [43]. The present NP models enter the NEGF via the

transverse modes ψ
(n)
i (y, z) which are computed by the nonparabolic

transverse Hamiltonians (3.79) and (3.81).

6.2.3 Electron-Phonon Scattering

In general, scattering in quantum mechanics is spatially correlated
since the particles involved are described by their own wave func-
tions. For computational purposes, the scattering processes are

2The reduction of the matrix size for the transport problem is the main
advantage of the coupled-mode approach. The number of matrix elements is
proportional to the square of the number of modes while in the real space variant
the matrix size is proportional to the number of discretization points in the
transverse direction. On the other hand, accounting for gate leakage currents is
not straightforward in the coupled-mode approach.
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assumed to occur locally in space. Furthermore, the phonon system
is kept at equilibrium and the wave functions are approximated
by the bulk correspondents. The electron-phonon matrix elements
|Mq|2 are computed by means of a perturbative approach within
deformation potential theory [118]. For the steady-state case, the
lesser self-energy reads [114] 3

Σ<(~r, ~r ′, E) =
1

(2π)3

∫
ei~q(~r−~r ′)|Mq|2 (6.3)

×
[
NqG

<(~r, ~r ′, E − ~ωq) + (Nq + 1)G<(~r, ~r ′, E + ~ωq)
]
d~q

within the self-consistent Born approximation. The retarded self-
energy is generally given by

ΣR(~r, ~r ′, E) =
1

2
(Σ>(~r, ~r ′, E) − Σ<(~r, ~r ′, E)) (6.4)

+iP
1

2π

∫
Σ>(~r, ~r ′, E′) − Σ<(~r, ~r ′, E′)

E − E′ dE′

with P
∫
dE′ being the principal part of the integration. Conversely,

the retarded self-energy can be calculated directly from the solution
variables (GR, G<) of the Keldysh and Dyson equations [116]

ΣR(~r, ~r ′, E) =
1

(2π)3

∫
ei~q(~r−~r ′)|Mq|2 (6.5)

×
{

(Nq + 1)GR(~r, ~r ′, E − ~ωq) +NqG
R(~r, ~r ′, E + ~ωq)

+
1

2

[
G<(~r, ~r ′, E − ~ωq) −G<(~r, ~r ′, E + ~ωq)

]

+iP

∫
dE′

2π

G<(~r, ~r ′, E − E′)

E′ − ~ωq
− G<(~r, ~r ′, E − E′)

E′ + ~ωq

}
d~q.

In order to reduce the computational burden related to the principal
part integrals in Eqs. (6.4) and (6.5) different approximations are

3The equations are given in their continuous form. For the transformation
to mode-space see Sec. 6.2.2.
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employed. Neglecting the principle part integral in Eqs. (6.4) and
(6.5) is referred to as Approximation I and II, respectively, while
keeping the integrals is referred to as the Full model for scattering.
The respective impacts are investigated in Sec. 6.3. For a discus-
sion on the lesser self-energy for intravalley acoustic phonon and
intervalley phonon scattering see Ref. [43].

6.2.4 Calculation of Density and Current

The lesser self-energies for the density and current calculation es-
sentially consist of three contributions, i.e. coherent terms from
the source and drain contacts and an incoherent term from the
electron-phonon interaction. The density and current read

n(xn, y, z) =
−i
π

∑

v

∑

ij

∫
G<,v

ij (xn, xn, E)ψ
(n)∗
i (y, z)ψ

(n)∗
j (y, z)dE

I(xn) = − e

π~

∑

v

∑

ij

∫ (
2Re(Hv

ij(xn, xn+1)G<,v
ji (xn+1, xn))

)
dE

with v being the valley index.

6.3 Simulation Results

The nanowire FETs used for the present simulations have the same
structure as the ones from Sec. 4.9.2. The main difference is that the
gate contact is laid over three faces only (triple gate) compared to
the gate-all-around structures employed in Sec. 4.9.2. The geometry
parameters are ls = ld = 9.7 nm, lg = 15 nm, tox = 1 nm,
tc = 3.26 nm, and the source and drain regions are n-doped with a
concentration of 1020cm−3. The parameters for the extraction of Ion

and Vth are ∆Von = 0.3 V and Ith = 10−7 A. Further details such
as the NP coefficients and parameters for the scattering are given in
Ref. [43].



142 CHAPTER 6. INCLUSION OF SCATTERING

Figure 6.1 shows transfer characteristics computed by means of
different approximations of the retarded self-energy (cf. Sec. 6.2.3).
Approximation I yields an underestimation of the subthreshold cur-
rent of up to 80% compared to the Full version. On the other hand,
the discrepancy diminishes in the on-current regime. This behavior
can be explained by the absence of the energy renormalization on
the effective barrier height [43] due to the neglect of the principle
part integral in Eq. (6.4). Conversely, Approximation II is found
to be in excellent agreement with the Full version throughout the
whole voltage range. This approximation is used in the following
current calculations.

Transfer characteristics resulting from simulations including both
nonparabolicity and scattering (NPSC) are compared to data from
simulations containing only NP, SC, or purely ballistic EMA. The
currents are plotted in Figs. 6.2 and 6.3 and the extracted quan-
tities are reported in Tab. 6.1. For both forward biases Vds[V ] ∈
{0.1, 0.5}, the threshold voltage is mainly affected by the inclusion of
NP while the effect of scattering is in the order of 1% and, therefore,
negligible. Conversely, the on-current regime seems to be mainly
dominated by scattering compared to the impact of the increased
conduction mass from the NP model. The impact of the latter
model on the on-current is however not negligible. Identifying the
contributions from the particular models NP and SC to the results
obtained by the combination NPSC is a rather difficult task. As
shown in Fig. 6.2, the subthreshold current obtained by the NPSC
is very similar to the one obtained by NP alone thus suggesting a
minor interaction between SC and NP in this regime. The situation
is different for the on-current regime, i.e. contributions from the
single methods SC and NP do not roughly add up to the results
from the combined method NPSC. A tentative explanation for this
finding could be drawn from a qualitative point of view on how
inelastic scattering affects the charge carriers in the effective source
region. The impact of a modified conduction mass on the longi-
tudinal velocity of an electron is more pronounced when the total
energy is much higher than the corresponding conduction band edge.
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Figure 6.1: Transfer characteristics by different approximations to
the retarded self-energy compared to the full solution.
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Figure 6.2: Comparison of transfer characteristics computed by
means of the NP model and the combination of scattering with NP
(NPSC). The ballistic EMA curve is shown as well.
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Figure 6.3: Comparison of transfer characteristics computed by
means of scattering (SC) and the combination of scattering with
NP (NPSC). The ballistic EMA curve is shown as well.
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Table 6.1: Threshold voltages and on-currents extracted from the
transfer characteristics plotted in Figs. 6.2 and Fig. 6.3. Shown
are the results of the two ballistic simulations, EMA and NP,
as well as of the simulations including scattering SC and the
combination with nonparabolicity NPSC. Two source-to-drain biases
have been considered: VDS = 0.1V(I) and VDS = 0.5V(II). The
relative(REL) deviations |IEMA

on − INP,SC,NPSC
on |/IEMA

on and |V EMA
th −

V NP,SC,NPSC
th |/V EMA

th are shown as well.

mode VT(I) ION(I) VT(II) ION(II)

EMA 0.312 V 7.53e-06 A 0.308 V 1.06e-05 A

NP 0.266 V 6.86e-06 A 0.262 V 9.25e-06 A

NP REL 14.74 % 8.994 % 14.94 % 12.87 %

SC 0.311 V 4.15e-06 A 0.304 V 6.81e-06 A

SC REL 0.32 % 45.28 % 1.30 % 35.86 %

NPSC 0.265 V 4.04e-06 A 0.258 V 6.16e-06 A

NPSC REL 15.06 % 46.39 % 16.23 % 41.94 %
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In a non-equilibrium system, scattering causes a redistribution of
the electrons in energy and momentum. Phonon emission is the
favored process [43] for electrons compared to phonon absorption,
provided that the final state E → E − ~ωq is available. Therefore,
the electrons tend to dissipate energy in the effective source region
by relaxing toward the band edge and the reduced energy alleviates
the impact of the conduction mass on the longitudinal velocity.

6.4 Summary

Inelastic scattering effects are combined with NP within the NEGF
in order to investigate the respective impacts on transfer characteris-
tics of triple-gate nanowire FETs. The shift in the threshold voltage
was mainly attributed to NP while scattering dominates the on-
current regime when considering the particular effects. The energy
dissipation of electrons in the effective source region is assumed
to alleviate the effect of NP when both effects are combined thus
yielding a smaller degradation of the on-current. The findings in
this chapter underline the importance of scattering. However, the
inclusion of this effect goes at the expense of the simulation time
which considerably increases compared to the ballistic case.





Chapter 7

Concluding Remarks

In this work, quantum transport simulators for the treatment of
planar and nanowire FETs have been developed (extended). A
notable effort has been dedicated to the algorithmic, numerical, and
computational improvement of the pre-existing SIMNAD software.
In particular, the OpenMP parallelization of time-consuming rou-
tines such as the computation of the injected charge density or the
solution of the transverse eigenvalue problems for both the SMA or
the coupled-model NEGF, turned out to be a decisive advancement
especially for large devices. The use of state-of-the-art software
libraries for both linear and eigenvalue problems not only improves
the overall performance but also ensures a better supportability for
future developments. For the treatment of complicated surfaces, the
FEM has been implemented for both the solution of the Schrödinger
and the Poisson equation. For the FEM variant, the ballistic quan-
tum transport framework has been parallelized by means of the
MPI, i.e. made suitable for large scale distributed memory compute
clusters such as the Cray XT5.

The SMA is mostly used for the calculation of the transfer char-
acteristics since several advantages compared to the coupled-mode
NEGF exist for the ballistic limit. Some aspects concerning the
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use of the SMA for arbitrary transport directions within the EMA
have been briefly addressed. However, the NEGF is an appropriate
choice when scattering has to be treated beyond a phenomenological
approach. Particularly the real-space variant of NEGF is attractive
when complex geometries, gate leakage currents, or changes in the
transport direction have to be taken into account. This flexibility
goes at the expense of the computational burden which increases
notably. A common denominator of the mentioned transport frame-
works is the adequacy for scalability thus encouraging the consider-
ation of high-performance languages such as CUDA (NVIDIA) for
the use on GPUs.

In order to improve the EMA for the simulation of small FETs, a
widely used NP model has been appropriately modified to fit within
the SMA or the coupled-mode NEGF. This was accomplished by
means of a Taylor expansion based on the presence of strong two- and
one-dimensional confinements. Extensive simulations to investigate
the impact of band structure effects have been carried out for planar
and nanowire FETs of various shapes. Tight-binding band structures
were used to determine the NP coefficients. Comparisons with a full-
band tight-binding simulator reveal a satisfactory improvement by
means of NP for the threshold voltage of square nanowire FETs while
a similar improvement is missing for the circular case. However,
since the present NP model shows the potential to improve the
EMA (shown in previous work with different parametrizations) while
preserving the same simulation efficiency, it is worth continuing the
related investigations also with regard to more complex wire cross
sections.

The tight-binding method is widely appreciated for the mod-
eling of nanoelectronic devices on the atomistic level since related
simulation times are comparatively small. A part of this work was
dedicated to the implementation of an EPM framework to be used
in the future for quantum transport simulations. An advantage of
EPM with respect to tight-binding is the more physical description
of charge densities. Furthermore, the EPM is expected to be less
time consuming than fully ab-initio methods. At the present stage,
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a band structure calculator based on the EPM is available for bulk,
nanowires, and quantum wells.

A rather small part of this work was concerned with the combi-
nation of scattering 1 and NP in order to fully exploit the capabilities
of the presently developed simulators. Since the related investiga-
tions are rather young compared to the effort put in the particular
methods NP and scattering, the interpretations of the results are
comparatively superficial and further investigative work is necessary
for this topic.

1The implementation of the NEGF, inelastic scattering processes, and related
approximations in SIMNAD has been provided by Martin Frey.





Appendix A

Band Structure
Calculations

A.0.1 Empirical Tight-Binding Method

The tight-binding or LCAO method was originally proposed by Bloch
in 1928. Almost a quarter of a century later, Slater and Koster [119]
proposed a modified approach motivated by the fact that a rigorous
evaluation of the large number of integrals involved in the LCAO
method was almost impossible with the computational resources
of that time. They suggested instead, that these integrals should
be considered as adjustable parameters determined from results ob-
tained by more accurate electronic structure calculations such as
cellular methods or orthogonalized plane waves. Although the con-
tinuous increase of computing power has eliminated some of the
reasons for developing this interpolation scheme, it has survived
over several decades and evolved into a powerful tool for calculating
physical properties of arbitrary systems. For a detailed survey on the
Slater Koster (SK) theory and a list of applications see Ref. [120]
and references therein. In particular, the SK theory provided the
basis for the empirical tight-binding method. One of the major
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enhancements after the introduction of the SK theory was the addi-
tion of the excited s-like orbital, s*, by Vogl et al. [121] almost thirty
years later which yielded better reproduction of the conduction band
of diamond and zinc blende semiconductors along 〈100〉. A further
improvement has been provided recently by Jancu et al. [122] for the
case of X-valleys of group-IV and III-V semiconductors. Finally, pa-
rameter sets for silicon and germanium within the sp3d5s∗ empirical
tight-binding model have been presented [108] allowing an accurate
reproduction of the entire bulk band structure. In the following,
the basic ideas related to the Slater Koster theory are summarized.
Each atom is associated with a set of atomic-like orbitals φiσ, where
i denotes the position ~bi of the atom in the crystal unit cell and σ is
a quantum number for the atomic state. In general, orbitals related
to atoms residing on different lattice sites are not orthogonal. A
remedy is provided by Löwdin’s method [123] to construct a set
of states ψiσ having symmetry properties similar to those of the
corresponding φiσ but being orthogonal 1

∫
ψ∗

jσ̃
(~r − ~Rm −~bj)ψiσ(~r − ~Rn −~bi)d~r = δijδnmδσσ̃

, (A.1)

where ~Rn and ~Rm belong to the reduced lattice (3.18) consisting of
N unit cells Ωc. For each atom i in the unit cell and orbital σ, a
Bloch sum

χiσ(~k, ~r) =
1√
N

∑

~Rn∈Γ
red
~N

ei~k( ~Rn+~bi)ψiσ(~r − ~Rn −~bi)

= 〈~r|~kiσ〉 (A.2)

can be constructed which fulfills the Bloch condition (3.10)

χiσ(~k, ~r + ~R) = ei~k ~Rχiσ(~k, ~r) (A.3)

and orthonormality

〈~k′jσ̃|~kiσ〉 = δ~k′~kδijδσ̃σ
. (A.4)

1An approach which avoids this orthogonalization is mentioned in Ref. [120].
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With Na atoms in the unit cell and No orbitals per atom, the ansatz
for the Bloch states reads

Ψ(~k, ~r) =

Na∑

i=1

No∑

σ=1

ciσ(~k)〈~r|~kiσ〉 = 〈~r|~k〉 (A.5)

which still fulfills the Bloch condition and orthonormality provided
that

Na∑

i=1

No∑

σ=1

|ciσ(~k)|2 = 1. (A.6)

Using the ansatz (A.5) for the Schrödinger problem (3.1) leads to

the expression of the Hamiltonian H in terms of |~kiσ〉

〈~kσ̃j|H|~kσi〉

=
∑

~Rn∈Γ
red
~N

ei~k( ~Rn+~bi−~bj)

∫
ψ∗

jσ̃
(~r −~bj)Hψiσ(~r − ~Rn −~bi)d~r (A.7)

Note that mixing between Bloch states to different ~k is automatically
suppressed when using the ansatz (A.5), i.e. 〈~k′|H|~k〉 = δ~k~k′

〈~k|H|~k〉.
The potential U(~r) is approximated as a sum of spherically symmet-
ric potential wells located at all the atoms of the crystal

U(~r) =
∑

~Rp∈Γ
red
~N

Na∑

q=1

Uq(~r −~bq − ~Rp) (A.8)

In the general case, the integral on the right hand side of Eq. (A.7)
has contributions from three regions. First, the regions centered
around the two atom-like wave functions ψ

jσ̃
and ψiσ, and the region

centered around the potentials at ~bq + ~Rp. In the following, the two-
center approximation is used, i.e. only integrals involving one (on-
site) or two centers (two-center) are considered. Consequently, the
remaining integrals in Eq. (A.7) have the form

∫
ψ∗

jσ̃
(~r−~u)Hψiσ(~r)d~r
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and depend only on the displacement ~u = ~bj − (~Rn + ~bi). The
Hamilton matrix is now subdivided in Na ×Na blocks of size No ×
No denoted by Hji. Allowing only interactions between nearest
neighbors, the blocks are given by

Hji =

nn(j)∑

l=1

ei~k~ul
jiVji(~ul

ji), (A.9)

where ~ul
ji = ~Rn(l) + ~bi − ~bj is a vector pointing to one of the

nn(j) nearest neighbors of the atom located at j and the matrix
Vji(~ul

ji) is related to the integrals
∫
ψ∗

jσ̃
(~r − ~ul

ji)Hψiσ(~r)d~r. The

blocks Hii on the diagonal of the Hamilton matrix (A.7) are referred
to as the on-site energy of the ith atom. Within the SK theory
the on-site and two-center integrals which enter the blocks (A.9)
are replaced by adjustable parameters used to fit data obtained by
more sophisticated methods or experiments. More details on the
relation between these parameters and the corresponding integrals
are given in Refs. [10, 17, 119, 120]. In the diamond or zincblende
structure [14] the unit cell contains two atoms and each atom in the
lattice is surrounded by four nearest neighbors. Thus, for elements
crystallizing in these structures, the sp3d5s∗ tight-binding method
without spin-orbit coupling leads to eigenvalue problems of size 20×
20 for each wave vector ~k.

The extension from infinite crystals to nanostructures within the
tight-binding framework is straightforward [17]. If nothing else is
specified, the tight-binding calculations in the remainder of this work
are based on the parametrization [108] and boundary conditions
[109] employed by Ref. [17].
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A.0.2 Empirical Pseudopotential Method

The potential (3.1) is periodic with respect to the Bravais lattice
(3.2) and can be expanded in terms of plane waves

U(~r) =
∑

~G∈Γ̃

ei ~G~rÛ(~G) (A.10)

according to Eq.(3.5). The empirical pseudopotential method in-

volves a direct fit of the Û(~G) to experimental or ab-initio band
structures. Initially, Fermi surface data were used for metals and
later on photoemission and reflectivity results provided the relevant
informations. The method was successfully applied to silicon and
germanium as well as to other important semiconductors [124]. The
potential U(~r) is assumed to be a linear superposition of atomic
potentials Vs(i)

U(~r) =
∑

i

∑

n

Vs(i)(~r − ~Rn −~bi), (A.11)

where ~bi is the location of the ith atom in the unit cell, s(i) is the

corresponding species, and ~Rn is the position of a site in the Bravais
lattice. The coefficients of U(~r) become

Û(~G) =
1

|Ωc|

∫

Ωc

e−i ~G~rU(~r)d~r

=
∑

i

∑

n

1

|Ωc|

∫

Ωc

e−i ~G~rVs(i)(~r − ~Rn −~bi)d~r

=
∑

i

e−i ~G~bi
1

|Ωc|

∫

R3

e−i ~G~rVs(i)(~r −~bi)d~r

≡ 1

|Ωc|
∑

i

e−i ~G~bi V̂s(i)(|~G|), (A.12)

where Vs(i)(|~G|) depends only on the absolute value of ~G as the
Vs(i)(~r) are assumed to be spherically symmetric. The pseudopo-

tential enters the ~k-dependent Schrödinger equation (3.13) which
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is employed to compute the Bloch states ψn(~k, ~r). To account for

the periodic boundary conditions (3.9), the Bloch factor u(~k, ~r) is
expanded in terms of plane waves

u(~k, ~r) =
∑

~G∈Γ̃

ei ~G~rû(~G). (A.13)

as well. Using the ansatz (A.13) for the Schrödinger problem (3.13),

multiplying on the left with exp(−i ~G~r)/(|Ωc|), and integrating over
Ωc, yields the secular equation

∑

~G′

[
~

2

2me
(~k + ~G)2δ~G, ~G′ + Û(~G′ − ~G)

]
û(~G′) = ǫ(~k)û(~G) (A.14)

which is cast as matrix eigenvalue problem. In practice, the set of
~G’s is delimited by a cutoff co

|~G| ≤ co (A.15)

which has to be increased until the energies ǫn(~k) from Eq. (A.14) are
well converged. This convergence strongly depends on the smooth-
ness of the potential U(~r), i.e. on how fast the V̂s(i)(q) vanish. As

in the tight-binding method, the ansatz ψ(~k, ~r) = exp(i~k~r)u(~k, ~r) =

〈~r|~k〉 with u(~k, ~r) from Eq. (A.13) automatically suppresses mixing

between different ~k, i.e. 〈~k′|H|~k〉 = δ~k~k′
〈~k|H|~k〉.

The determination of an empirical pseudopotential starts with
a guess for the V̂s(i)(|~G|). Next, the Schrödinger equation (A.7) is

assembled and solved for a given set of wave vectors ~k, i.e. the
reduced lattice (3.18) for instance. This allows the calculation of
the density of states described in Sec. 3.8.1 as well as other physical
observables. These quantities are compared with experiments or
ab-initio data and the V̂s(i)(q) are modified accordingly, if the desired
agreement has not been achieved.

As an example the diamond structure is considered. The two
atoms are placed at the positions ~b1 = −~τ and ~b2 = ~τ with ~τ =
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(a, a, a)/8. For semiconductors with diamond lattice such as silicon

or germanium the two atoms are identical and therefore V̂s(1) =

V̂s(2). The coefficients (A.12) become

Û(~G) = cos(~τ ~G)
2

|Ωc| V̂s(1)(|~G|) (A.16)

which are nonzero for ~G2 ∈ {0, 3, 8, 11, . . .}(2π/a)2. The ~G = 0
term in Eq. (A.10) is omitted as it merely gives a constant shift to
the potential U(~r). Chelikowski et al. [124] provided the following
potential for silicon

V̂ Ch
Si (q) =





vSia
Ch
1 /2, (qaSi/(2π))2 = 3

vSia
Ch
2 /2, (qaSi/(2π))2 = 8

vSia
Ch
3 /2, (qaSi/(2π))2 = 11

(A.17)

where aCh
1 = −0.2241Ry, aCh

2 = 0.0551Ry,aCh
3 = 0.0724Ry, and

vSi = a3
Si/4 is the volume of the primitive unit cell of bulk silicon

with aSi = 0.543nm. Note that the potential (A.17) is strictly bound

to the choice ~b1 = −~τ and ~b2 = ~τ for the basis vectors. Unfortu-
nately, the definition of Û(~G) on discrete points of the reciprocal
lattice is insufficient for the proper description of nanostructures
such as dots, wires, or wells. Wang et al. [16] presented a continuous
momentum space form for silicon

V̂ W a
Si (q) = vSi

aW a
1 (q2 − aW a

2 )

aW a
3 eaW a

4 q2 − 1
, (A.18)

where aW a
1 = 0.2685a2

BRy, aW a
2 = 2.19a−2

B , aW a
3 = 2.06, and aW a

4 =
0.487a2

B are determined by a fit to experiments. This atomic pseu-

dopotential is not restricted to a specific choice for the basis ~b1

and ~b2. A plot of the form factors V̂ W a
Si and V̂ Ch

Si is given in

Fig. A.1. The discrete points V̂ Ch
Si are very close to the continuous

form V̂ W a
Si as they partially contributed to the derivation of V̂ W a

Si

[37]. Furthermore, as the form factor becomes very weak beyond the
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Figure A.1: Form factors V̂ W a
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Si from Eqs. (A.18) and
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third ~G vector in Eq. (A.17) one can assume that the three V̂ Ch
Si are

sufficient to reproduce the bulk silicon band structure. A plot of the
band structure is given in Fig. 3.1. Constant energy surfaces for the
conduction and three highest valence bands, i.e. two heavy and one
light hole band, are plotted in Fig. A.2. While the conduction band
minima can be well approximated by ellipsoids, the situation for the
valence band maxima is more complicated. In this case the warped
energy surfaces [10] can be approximated by spheres obtained by
means of an appropriate averaging procedure [15].

The previous considerations on the empirical pseudopotential
method involved the use of purely local potentials. The extension
to nonlocal potentials is straightforward [124, 125] and can lead to
significant improvements. An application to strained silicon germa-
nium alloys is given in Ref. [126]. However, nonlocality introduces
some further complications and is not considered in this work. Fur-
ther continuous momentum representations of empirical pseudopo-
tentials for silicon and germanium can be found in Ref. [127].
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(b)

(d)

(a)

(c)

Figure A.2: Constant energy surfaces for the conduction (a), heavy
hole (b & c), and the light hole band (d) of bulk silicon computed
by means of the parametrization (A.17). The surfaces correspond
to energies 0.1eV above or below the conduction band maximum or
valence band minimum, respectively.



Appendix B

Density of States

Several methods for the numerical computation of the density of
states Gideal(E) from Eq. (3.84) are available in the literature in-
cluding advanced schemes [48] which employ an adaptive sampling
of the reciprocal lattice. In the following, a simple procedure is
described to obtain Gideal(E). The integration domain Ω̃c in (3.84)
is first transformed to the unit cube C = [0, 1]3 in the reciprocal
space

Gideal(E) =
|det(B)|

4π3

∑

n

∫

C

δ(E − ǫ̃n(~k′))d~k′ (B.1)

=
|det(B)|

4π3

∑

n

∫

S′

n(E)

1

|~∇~k′
ǫ̃n(~k′)|

dS′ (B.2)

with B from Sec. 3.2, ǫ̃n(~k′) = ǫ̃n(B−1~k) = ǫn(~k), and S′
n(E) is

defined by the condition ǫ̃n(~k′) = E. The surface integral (B.2)
is now computed numerically by subdividing the unit cube in M3

uniformly sized cubic cells as shown in Fig. B.1.a. The energy ǫ̃n(~k′)
is sampled at the corners of these cells as illustrated in Fig. B.1.b.
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Figure B.1: (a) Uniform subdivision of the unit cube in the reciprocal

space. The dispersion ǫ̃n(~k′) = ǫn(~k) is sampled on the edges of the
cells and labeled accordingly as shown in (b).

For a given band n the gradient ~∇~k′
ǫ̃n(~k′) is approximated on the

ith cell Ci by

∇~k′
ǫ̃n(~k′)|Ci

≃ 1

∆k




ǫ
(i)
1 − ǫ

(i)
0

ǫ
(i)
2 − ǫ

(i)
0

ǫ
(i)
3 − ǫ

(i)
0


 ≡ ~v(i)

n , (B.3)

where ∆k = 1/M . In a next step the intersection between the ith

cell and the isosurface S′
n(E) has to determined. For this purpose,

the dispersion ǫ̃n(~k′) is linearly interpolated on the edges of the cell

by means of the samples on the corners, i.e. ǫ
(i)
0 +k(ǫ

(i)
1 −ǫ(i)

0 )/∆k for

instance. If for this particular edge the condition E ∈ [ǫ
(i)
0 , ǫ

(i)
1 ] holds

true, the point k = (E − ǫ
(i)
0 )/(ǫ

(i)
1 − ǫ

(i)
0 ) is marked and applying

the same procedure to the remaining eleven edges yields a polygon

which approximates the desired intersection. The surface s
(i)
n of
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this polygon is obtained by a suitable triangulation. Finally, the
approximation to the integral (B.2) is given by the non-vanishing
contributions from each cell and band

Gideal(E) ≃ |det(B)|
4π3

∑

n

∑

i

s
(i)
n

|~v(i)
n |

. (B.4)





Appendix C

Finite Element Method

The basis for the present FEM is given by piecewise linear functions,
i.e. hat functions, located at the nodes of a simplex tessellation
of the simulation domain Ω as illustrated in Fig. C.1 for the two-
dimensional case. A hat function bi(x) is characterized by the node
i on which the function is centered. Given a two-dimensional tessel-
lation of the form Ω = ∪KTK consisting of triangles TK , each hat
function is described by means of the unit triangle D = {(x, y)|0 ≤
x, 0 ≤ y, x+y ≤ 1}. The functions f0(ξ) = 1−ξ0−ξ1, f1(ξ) = ξ0, and
f2(ξ) = ξ1 on D are mapped to TK by means of the transformation

x = Θ(ξ) ≡ PK
0 + BKξ, where BK = (PK

1 − PK
0 |PK

2 − PK
0 ) and

PK
0 ,PK

1 , and PK
2 are the corners of the triangle TK . The three-

dimensional case follows analogously. The assembly of the matrix A

from Eq. (4.34) is accomplished by summing up the contributions
from each TK . Quantities such as the charge density or the potential
energy for the Schrödinger equation are expressed within the hat
function basis as well. For the calculation of the right-hand side in
the Schrödinger or Poisson equation, the overlap matrix

Oi,j =

∫

Ω

bi(x)bj(x)dx (C.1)
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Figure C.1: A hat function bi is equal to unity at a grid point i and
decays linearly down to zero towards the edges of the neighboring
simplexes.

is employed.

The evaluation of the residual (4.42) is commonly accomplished
by a variant of the L2 norm, i.e.

||R||r ≡
√

1

|Ω|

∫

Ω

|R(x)|2dx =

√
1

|Ω|
∑

i,j

RjRk

∫

Ω

bj(x)bk(x)dx

=

√
RORT

|Ω| (C.2)

with

R(x) = ∇
(
ǫ∇Tφin

)
+ ρ =

∑

i

Ribi(x) (C.3)

and R = (. . . , Ri, . . .)
T . However, the isolation of the vector R

needed for the evaluation of
√

RORT /|Ω| requires the solution of a

further linear problem. This difficulty can be circumvented by using
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the norm
√

(ORT )(ORT )/|Ω| with the following form in position
space

||R||r =
1

|Ω|

√√√√∑

i

[∫

Ω

bi(x)R(x)dx

]2

. (C.4)





Appendix D

SMA for Arbitrary
Directions

For silicon nanowires grown along the 〈100〉 direction, the envelope
function (3.41) consists of a plane wave times an x-independent
function. This form is a key ingredient for the quantum transport
framework described in chapter 4. Unfortunately, when the growth
direction of the silicon nanowire deviates from 〈100〉 or other mate-
rials are employed such as germanium, the symmetric effective mass
tensor becomes generally full

M =




wxx wxy wxz

wxy wyy wyz

wxz wyz wzz


 . (D.1)

Using an ansatz of the form (3.41) for the effective mass equation
(3.40) yields

− ~
2

2me

(
−ψ(y, z)k2

xwxx + wyy
∂2

∂y2
ψ(y, z) + wzz

∂2

∂z2
ψ(y, z)

+2ikxwxy
∂

∂y
ψ(y, z) + 2ikxwxz

∂

∂z
ψ(y, z)
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+2wyz
∂

∂y

∂

∂z
ψ(y, z)

)
+ (Ueff − E)ψ(y, z) = 0. (D.2)

The solution of the transverse wave function ψ(y, z) depends on kx

and notably complicates the problem. A remedy is provided by the
ansatz [128]

ψ(y, z) = eikx(αy+βz)σ(y, z) (D.3)

with

α =
−wxywzz + wyzwxz

wyywzz − w2
yz

(D.4)

β =
−wyywxz + wyzwxz

wyywzz − w2
yz

(D.5)

which separates the Schrödinger problem (D.2) in a longitudinal and
a kx-independent transverse part

[
− ~

2

2me
∇⊥

(
wyy wyz

wyz wzz

)
∇T

⊥ + Ueff
]
σ = ǫσ, (D.6)

where ∇ = (∂/∂y, ∂/∂z), ǫ = E − ~
2k2

x/(2mem̃) and

m̃ =
wyywzz − w2

yz

det(M)
. (D.7)

The determinant of M can be written as a product of the correspond-
ing eigenvalues wl = 1/ml and wt = 1/mt, i.e. det(M) = wlwtwt

1,
which are available in the literature [14].

In the case of germanium for instance, the conduction band has
four minima located at the boundary of the first Brillouin zone along

1The presence of a two-fold degenerate eigenvalue implies that the ellipsoid
described by M is rotationally invariant.
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the [111], [111], [111], and [111] directions corresponding to four
different effective mass tensors

M1 =
1

3mlmt




2ml +mt mt −ml mt −ml

mt −ml 2ml +mt mt −ml

mt −ml mt −ml 2ml +mt




M2 =
1

3mlmt




2ml +mt ml −mt mt −ml

ml −mt 2ml +mt ml −mt

mt −ml ml −mt 2ml +mt




M3 =
1

3mlmt




2ml +mt mt −ml ml −mt

mt −ml 2ml +mt ml −mt

ml −mt ml −mt 2ml +mt




M4 =
1

3mlmt




2ml +mt ml −mt ml −mt

ml −mt 2ml +mt mt −ml

ml −mt mt −ml 2ml +mt


 . (D.8)

The transverse Schrödinger problems (D.6) and conduction masses
m̃ are identical for the pairs {M1,M4} and {M2,M3}. In this sense,
two of the four valleys are two-fold degenerate.

A similar discussion for the case of arbitrarily oriented quantum
wells is given in Ref. [129].

The form (4.11) of the envelope function required within the
SMA is generalized for the case of arbitrary effective mass tensors
to

F (n)(~r) ≡
∑

i

(
a

(n)
i ψ

+,(n)
i (y, z)eik

(n)
i

x + b
(n)
i ψ

−,(n)
i (y, z)e−ik

(n)
i

x
)

(D.9)
by means of the presently described framework. The main differ-
ence is that the transverse wave functions ψi depend on the total
energy. However, this modification implies only a minor increase
of the computational burden and does not affect the scalability of
the algorithm. The continuity conditions for the current lead to
connection rules between the coefficient of adiacent slices which can
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be expressed in terms of transfer matrices, i.e. Eq. (4.17), and thus
allow the recovery of the SMA.
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