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Original Research Article 

Synthetic computed tomography for low-field magnetic resonance-only 
radiotherapy in head-and-neck cancer using residual vision transformers 

Agustina La Greca Saint-Esteven a,b,*, Ricardo Dal Bello a, Mariia Lapaeva a, Lisa Fankhauser a, 
Bertrand Pouymayou a, Ender Konukoglu b, Nicolaus Andratschke a, Panagiotis Balermpas a, 
Matthias Guckenberger a, Stephanie Tanadini-Lang a 

a Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland 
b Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zurich 8092, Switzerland  

A B S T R A C T   

Background and purpose: Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep 
learning (DL) has shown remarkable performance in generating sCT scans from MR images, research has predominantly focused on high-field MR images. This study 
presents the first implementation of a DL model for sCT generation in head-and-neck (HN) cancer using low-field MR images. Specifically, the use of vision 
transformers (ViTs) was explored. 
Materials and methods: The dataset consisted of 31 patients, resulting in 196 pairs of deformably-registered computed tomography (dCT) and MR scans. The latter 
were obtained using a balanced steady-state precession sequence on a 0.35T scanner. Residual ViTs were trained on 2D axial, sagittal, and coronal slices, respectively, 
and the final sCTs were generated by averaging the models’ outputs. Different image similarity metrics, dose volume histogram (DVH) deviations, and gamma 
analyses were computed on the test set (n = 6). The overlap between auto-contours on sCT scans and manual contours on MR images was evaluated for different 
organs-at-risk using the Dice score. 
Results: The median [range] value of the test mean absolute error was 57 [37–74] HU. DVH deviations were below 1% for all structures. The median gamma passing 
rates exceeded 94% in the 2%/2mm analysis (threshold = 90%). The median Dice scores were above 0.7 for all organs-at-risk. 
Conclusions: The clinical applicability of DL-based sCT generation from low-field MR images in HN cancer was proved. High sCT-dCT similarity and dose metric 
accuracy were achieved, and sCT suitability for organs-at-risk auto-delineation was shown.   

1. Introduction 

Recent technological advances have facilitated the integration of a 
magnetic resonance (MR) imaging unit with a linear accelerator (MR- 
Linac), enabling MR-guided radiation therapy (MRgRT) [1]. Depending 
on the available commercial system, the MR scanner may be low- or 
high-field. The latter can acquire higher-quality images but is signifi
cantly more expensive and more susceptible to artefacts and geometric 
distortions than the former [2]. Patient imaging before and during dose 
delivery allows for plan adaptation and beam gating which, together 
with the improved soft tissue definition, make MRgRT a more person
alised choice in cancer treatment [3,4]. Moreover, there is increasing 
evidence addressing its possible benefits for treating head-and-neck 
(HN) cancer patients [5,6]. 

MRgRT requires, however, the acquisition of a computed tomogra
phy (CT) image to perform dose calculation on the simulation day. In the 
following treatment days, deformable image registration (DIR) of the 

original CT to the new MR scan is performed, or a combination of DIR 
and bulk density override [7]. This method not only increases patient 
radiation exposure, but also introduces uncertainties, estimated to be 
around 2 mm [8,9]. In a complete MR-only radiotherapy workflow, CT 
acquisition should be replaced with an accurate synthetic CT (sCT) 
generation method. Different approaches have been proposed (and some 
commercially implemented [10,11]) for multiple cancer sites which 
have brought MR-only radiotherapy closer to its clinical implementation 
[8,12–14]. Among these, deep learning (DL) methods have shown great 
potential with little compromise on time requirements, operator de
pendencies, and registration errors, as opposed to atlas-based and bulk 
override methods [15–17]. Dose deviations between CT and DL- 
generated sCT scans are typically lower than 2% [12], fulfilling the 
requirement for clinical applicability [18]. 

Since the first application of a convolutional neural network (CNN) 
for MR-to-CT image synthesis in 2016 [19], the scope of DL architectures 
and training strategies for this task has increased at a vertiginous pace 
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[12,13]. CNNs trained with pixel-wise losses have been outperformed by 
generative adversarial networks (GANs) [20], which employ adversarial 
losses to learn the target distribution conditioned on the source mo
dality. GANs are composed of one or two generator/discriminator pairs, 
which compete to generate/discriminate realistic fake images. However, 
GANs also present some drawbacks, such as training instability, which 
can result in vanishing gradients or mode collapse [21], together with 
limited learning of global spatial dependencies and inter-subject 
generalisation [22]. More recently, vision transformers (ViTs) [23] 
have achieved state-of-the-art performance in a wide range of medical 
image analysis tasks, including sCT generation [24]. Transformers 
incorporate self-attention mechanisms that allow them to obtain 
contextual representations and improve the detection of long-range 
dependencies. The combination of ViTs and CNNs has also been 
explored recently, which has not only enabled the joint learning of local 
and global details but has also alleviated the computational burden of 
ViTs [24]. In the field of medical image synthesis, hybrid architectures 
have been proposed which involve the integration of transformer blocks 
within the generator and/or discriminator networks of convolutional 
GANs, such as GAN-BERT [25], VTGAN [26], SLATER [27], and residual 
vision transformers (ResViT) [28]. 

Specific to the HN region, ten previous studies employed DL to 
generate sCT scans from MR images [29–38]. These MR scans were 
acquired using high-field scanners and T1 or T2 sequences, except for 
two studies that utilised multi-parametric series. The architectures 
employed were deep CNNs and GANs, predominantly trained on paired 
2D axial slices. Reported results showed a mean absolute error (MAE) 
ranging from 65 to 131 Hounsfield units (HU) and dose-volume histo
gram (DVH) deviations between 0.5 and 6%. Nevertheless, only two 
studies incorporated multi-view slices and none of them explored the 
use of low-field MR scans. The latter has only been investigated for 
abdomen, prostate, and lung cancer [39–45], resulting in promising 
image similarity scores (MAE = 26–90 HU) and dose metric accuracies 
(DVH = 1–5%). However, and, like the HN cancer studies, none of these 
studies investigated the use of ViTs. 

Here we present the first study on the generation of sCT scans from 
low-field MR images in the HN region to advance MR-only radiotherapy. 
Moreover, unlike similar previous literature, the application of the 
hybrid model ResViT was explored, as well as the use of orthogonal sets 
of 2D slices to incorporate 3D information. To evaluate the clinical 
feasibility of the proposed method, an analysis of the dose metric ac
curacy and four global gamma analyses were carried out. Additionally, 
the suitability of sCT scans for organs-at-risk (OARs) auto-delineation 
was assessed to determine the similarity to manual contours and 
whether this step could be integrated into the treatment planning 
workflow. 

2. Materials and methods 

2.1. Study cohort 

Imaging and clinical data from 31 HN cancer patients treated with 
MRgRT at the University Hospital of Zurich between August 2020- 
December 2022 were retrospectively collected. Patients gave prior 
informed consent, and the use of the data was approved by the local 
ethics committee (2018–01794 and 2019–00993). A detailed descrip
tion of the treatment can be found in [5,6]. For most patients, one MR- 
CT pair from the simulation day was available, together with 5–6 MR 
scans from the treatment days. Because the training-validation-test split 
was performed with no patient overlap among cohorts, to maximise the 
amount of training data, patients with a lower number of available 
images were assigned to the test set. The remaining patients were 
assigned randomly to one cohort following these proportions: training 
~65% (n = 20), validation ~15% (n = 5), and test ~20% (n = 6). A flow 
diagram describing the study design can be found in Supplement A. The 
patients’ characteristics are summarised in Supplement B. 

2.2. Image acquisition 

Mixed T1/T2-weighted MR images were acquired using the 0.35T 
scanner of the MRIdian system (ViewRay, Ohio, USA) with a balanced 
steady-state precession sequence and a dedicated HN coil. A custom 5- 
point thermoplastic mask and a cushion (CIVCO Radiotherapy, Iowa, 
USA) were employed for patient immobilisation. The cubic resolution 
was set to 1.5×1.5×1.5 mm3 and the matrix size was 202×360. On the 
simulation day, a CT scan (Somatom Definition AS, Siemens, Erlangen, 
Germany) was also acquired within 120 min of the MR acquisition with 
the same immobilisation setup. The in-plane resolution ranged from 
0.98 to 1.56 mm, whereas the axial resolution was 2 mm for all scans. 
The matrix size was set to 512×512. Despite minimal, the differences 
were handled via DIR in the MRIdian treatment planning system using 
the default settings as described in [5]. The resulting deformed CT (dCT) 
scans had the same in-plane and axial resolution as the MR scan. For 
each treatment fraction, the original CT was registered to the new MR 
scan following the same procedure. The radiotherapy dose plan and 
structure set with the planning target volume (PTV), gross tumour vol
ume (GTV), and OARs were available for each treatment day. The de
lineations were carried out by an experienced radiation oncologist, who 
also reviewed and approved the MR-dCT registrations. 

2.3. Image pre-processing 

Three different sets of 2D slices, one for each orthogonal direction, 
were collected. For each set, the slices included spanned the PTV with a 
20 mm margin in the respective directions (i.e., craniocaudal for the 
axial set, mediolateral for the sagittal set, and anteroposterior for the 
coronal set), as shown in Supplement C. The CT slices which contained 
artefacts caused by dental implants or the contrast agent were excluded, 
as well as their corresponding paired MR slice. This was done to prevent 
the model from erroneously creating artefacts. The number of remaining 
slices included in the study can be found in Supplement A. These slices 
were cropped around their respective centre to have a shape of 256×256 
pixels. CT scans were clipped in the range of − 1024 HU to 1200 HU and 
min-max normalised. MR scans were min-max normalised per-patient 
after clipping the intensities between the 2th- and 98th-percentiles 
values. Each pair of MR-dCT slices was masked with a binary body mask 
to eliminate potential confounding artefacts, such as the table and the 
thermoplastic mask. A 3D body mask was also constructed via the union 
of the axial, sagittal, and coronal body masks (Supplement C). 

2.4. Network: Architecture and training 

The model ResViT was employed, which was made publicly available 
by Dalmaz et al. [28]. ResViT is similar to classical GANs as it is also 
composed of one generator and one discriminator that compete against 
each other. However, the novelty relies on the inclusion of the so-called 
aggregated residual transformer blocks (ART) in the generator, which 
together with deep convolutional operators and the residual connections 
between them, enable the incorporation of local and contextual details. 
The conditional discriminator, on the other hand, is based solely on 
convolutional operators. As a result, ResViT captures long-range 
contextual information, while preserving local details through convo
lutions and realism through adversarial training. 

As recommended by the authors, the network was first trained 
without transformers for 50 epochs. Then, the ART blocks, pre-trained 
on the ImageNet dataset, were inserted and the model was trained for 
another 50 epochs. The default hyper-parameter values specified by 
Dalmaz et al. were used [28]. The loss function minimised via Adam 
optimizer was a sum of two different terms: the L1 loss computed pixel- 
wise between the dCT and the sCT weighted by λpixel, and the adversarial 
loss weighted by λadv (Equations D1-3 in Supplement D). Data 
augmentation was performed on each epoch using the library Monai 
[46] and consisted of random affine transformations with a probability 
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of 0.8 (ranges: ±10◦ for rotation, ±15 pixels for translation, and ±0.1 
for shear), as well as random left-right flips with a probability of 0.5. The 
transformations were applied to each pair of MR-dCT slices. For each 
orthogonal view, the final model was selected based on the epoch with 
the lowest MAE on the validation set. 

2.5. Image post-processing 

The 256×256 axial, sagittal, and coronal sCT 2D slices were 
respectively concatenated together to obtain three different sCT vol
umes. These were later resized to the original size of the corresponding 
dCT and averaged to obtain the final sCT (Fig. 1). The averaging was 
done using only the voxels >0 in the 3D body mask. 

2.6. Evaluation 

At test time, there was no exclusion of slices with artefacts to allow 
for a complete comparison of the original dCT-based and the sCT-based 
dose distributions. However, the voxels with a HU value ≥2200 in the 
dCT (i.e., voxels with artefacts) were not considered in the computation 
of the following image similarity metrics (Equations D4-7 in Supplement 
D): MAE, root mean squared error (RMSE), peak-signal-to-noise ratio 
(PSNR) and structural similarity index measure (SSIM). For each patient, 
the different metrics were calculated pixel-wise and averaged within the 
3D body mask. 

Each test sCT scan was converted to an electron density map, onto 
which the dCT-based dose plan was rigidly copied and recalculated 
using Monte Carlo algorithm (grid size of 3 mm, magnetic field cor
rections activated, variance of 1%). The following points were used to 
evaluate the DVH differences: the coverage (D95%), near- maximum 
(D2%), and mean dose (Dmean) to the PTV, the D2% to the spinal cord and 
mandible, and the Dmean to the GTV, parotid glands, submandibular 
glands, and oral cavity. Furthermore, a total of four global 3D gamma 
analyses were performed using 2%/2mm and 3%/3mm passing criteria 
and 50% (25 Gy) and 90% (45 Gy) of the prescribed dose as thresholds. 

The commercial software solution Contour ProtégéAI™ v1.1.2 (MIM 
Software Inc., Cleveland, USA) was employed to automatically delineate 
six different OARs (the left and right parotid glands and submandibular 
glands, the oral cavity, and the mandible) on the generated sCTs and the 
dCTs of the test patients. The Dice similarity coefficient (DSC, equation 
D8 in Supplement D) was employed to assess the segmentation accuracy 

with respect to the contours manually delineated on the MR images by a 
radiation oncologist. 

3. Results 

The final axial, sagittal, and coronal models corresponded to epochs 
85, 84, 79, respectively. On average, the training process of one model 
took 87 h, whereas the generation of an sCT volume at test time took less 
than 2 min per patient. The dose plan recalculation on the sCT took less 
than 10 min. Detailed results for the six test patients can be found in 
Supplement E. 

3.1. Image similarity 

On the test set, the achieved metrics (median [range]) were as fol
lows: MAE of 57 [37–74] HU, RMSE of 117 [75–149] HU, PSNR of 0.98 
[0.97–0.99], and SSIM of 30.9 [28.8–34.7]. Different MR, dCT, and sCT 
slices from the test subject with the lowest MAE (37 HU) are shown in 
Fig. 2A, while the same is depicted for the subject with the highest MAE 
(74 HU) in Fig. 2B. Similar images for the remaining test patients can be 
found in Supplements F-G. As one can see in Fig. 2B, the presence of 
dental artefacts (axial view) and the contrast agent (coronal view) was 
neglected by the network, which instead assigned lower HU values to 
the affected voxels. 

3.2. Dose metric accuracy analysis 

The DVHs of the six test patients can be found in Supplement H. The 
boxplot of the relative signed DVH differences is shown in Fig. 3. No 
deviations above 1% (0.5 Gy) were found. The median [range] passing 
rates for the 2%/2mm analyses were 97.4 [96.9–99.2] and 94.6 
[94.0–98.4] for the 50% and 90% thresholds respectively, whereas for 
the 3%/3mm analyses they were 99.8 [99.7–100.0] and 99.5 
[99.2–100.0] (Fig. 4). 

3.3. Auto-delineation accuracy 

Fig. 5 shows the DSCs calculated between the different sets of con
tours obtained automatically on the sCT and the dCT scans, and 
manually on the MR images. The highest agreement was observed for 
the oral cavity and the left parotid gland, whereas the submandibular 

Fig. 1. Three models are trained on axial (top), sagittal (middle), and coronal (bottom) 2D slices, respectively. The outputs are averaged using a 3D body mask. 
ResVit model image taken from [28]. 
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glands presented the worst results. Similar boxplots can be found in 
Supplement I for other segmentation metrics. 

4. Discussion 

The proposed multi-view method achieved excellent performance 
with a final median [range] MAE of 57 [37–74] HU on the internal test 
set. All DVH deviations were lower than 1% of the prescribed dose and 
the gamma analyses indicated a high agreement between the original 
and the sCT-based dose plans. Additionally, the generated sCT scans 
were proven suitable for OARs auto-contouring using a commercial 
software solution. 

The main challenge encountered in this study was the small dataset 
size, primarily due to the limited availability of 0.35T MR-Linac 

machines worldwide. Additionally, considering the uniqueness of the 
MR sequence employed, it was not feasible to augment the dataset with 
additional data from other sources, as the mixed T1/T2 contrast ob
tained is distinct and not directly comparable to T1 or T2-weighted 
images. To increase the effective dataset size, 2D and deformably 
registered MR-CT pairs were employed. This registration process served 
as a form of data augmentation at the expense of potentially including 
registration errors in the learning process. The need for registered image 
pairs was dictated by the choice of the model, and could be mitigated 
with the inclusion of a registration block [47] or the use of cycle- 
consistency [48] and contrastive [49] losses, at the cost of increased 
computation time. Another measure could be the adoption of a semi- 
supervised training strategy, which would allow for the use of un
paired data [50] or under-sampled datasets [51]. 

Fig. 2. A: Axial, sagittal, and coronal views of the sCT scan which achieved the lowest MAE (37 HU). B: Axial, sagittal, and coronal views of the sCT scan which 
achieved the highest MAE (74 HU). 
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The model ResViT was selected because it was shown to outperform 
different state-of-the-art models in pelvic sCT generation from high-field 
MR images by its authors [28]. Notably, ResViT exhibited superior re
sults in bony regions, lower artefacts, more accurate soft tissue de
pictions, and improved inter-subject generalisation. Our approach also 
achieved the lowest reported MAE when compared to previous literature 
on MR-to-CT generation in HN cancer (Supplement J). However, due to 
the differences in the magnetic fields and MR sequences employed, a 
straightforward comparison with other studies is not possible. More
over, the differences in the reported similarity metrics, including 
average calculation within 3D volumes or 2D slices, and specific tissue 

selection using varying thresholds, posed challenges in comparing the 
studies. Similarly, three out of the ten studies were lacking a dose ac
curacy analysis, with the remaining seven presenting substantial varia
tions in the criteria for gamma analyses (2D versus 3D) and thresholds 
employed, as well as in the points used to assess DVH deviations. When 
compared to other studies on low-field MR-to-CT synthesis for other 
cancers, our approach performed comparably well achieving lower than 
average MAE values and DVH deviations (Supplement J). However, it 
should be noted again that our dataset size was very limited, and that a 
direct comparison is not possible due to differences in the metrics 
computations. 

Fig. 3. Differences between the sCT-based and the dCT-based DVHs for different points: Spinal D2% to the PTV, spinal cord and mandible; Dmean to the left and right 
submandibular glands, left and right parotid glands, oral cavity, GTV, and PTV. 

Fig. 4. Boxplot of the gamma pass rates using 2%/2mm and 3%/3mm criteria. The dose thresholds are set to 50% and 90% of the prescribed dose (50 Gy).  
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Another limitation present in this study was the prevalence of dental 
artefacts, which is known to greatly influence the performance of image 
analysis tools. The affected 2D slices were excluded during training to 
prevent the model from generating them, but this resulted in a 
compromised fidelity of the synthetic images, as shown in Fig. 2. 
Nevertheless, the DVH deviations for the mandible D2% and the oral 
cavity Dmean remained lower than 1%, and the median DSCs between the 
auto-contours on the sCT and the manual contours on the MR for these 
structures were 0.76 and 0.80, respectively. 

Lastly, the model’s generalisation capability to other cancer sites, 
other MR-Linac scanners, and other treatments, such as proton therapy, 
could be further evaluated to prove the clinical utility of the method. 
Similarly, before this model can be implemented in the clinic, a quality 
assurance protocol remains to be performed. Once this is accomplished, 
the method’s performance on a real clinical workflow, as the ones sug
gested in [5,52], could be studied, focusing on its quality and time 
sensitivity, as it currently takes ~12 min for sCT generation and plan 
recalculation. 

To conclude, this study proved the feasibility of DL-based sCT gen
eration from low-field MR images in the HN region, bringing MR-only 
radiotherapy closer to its clinical application. The achieved DVH de
viations were below 1%, fulfilling the clinical applicability criteria. 
Moreover, the sCT scans were proven suitable for OARs auto- 
delineation, ensuring a potential smooth integration in the workflow. 
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