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A B S T R A C T

This Dissertation studies two closely related topics: fermionic Lieb-Schultz-Mattis (LSM)
Theorems and invertible fermionic topological (IFT) phases of matter. The original LSM
Theorem was proved in 1961 and applies to quantum antiferromagnetic spin chains. It ties
the spectral properties of Hamiltonians to the presence of symmetries. It is reminiscent
of the Nambu-Goldstone (NG) Theorem (1961), which ties the spectral properties to
the absence, through spontaneous symmetry breaking, of symmetries. Whereas the NG
Theorem had an immediate impact, the power of LSM Theorem was not truly appreciated
until the prediction and discovery of crystalline topological phases a decade ago. In the
last five years, the original LSM Theorem has been generalized to a set of powerful no-go
theorems that provide insights for understanding both gapped phases of matter as well as
quantum criticality. In this Dissertation, our first original result is the extensions of
LSM Theorems to local lattice Hamiltonians built out of fermionic degrees of freedom in
any spatial dimensions.

IFT phases of matter with an internal symmetry group Gf realize nondegenerate,
gapped, and, Gf -symmetric ground states under periodic boundary conditions, with
the caveat that under open boundary conditions nontrivial IFT phases support gapless
boundary modes. LSM Theorems explain both features of IFT phases with crystalline
symmetries. We apply the insights from fermionic LSM Theorems to identify topological
invariants that enumerate all IFT phases of matter with internal symmetry group Gf
in one-dimensional space. We derive the so-called fermionic stacking rules that dictate
the addition rule for these topological indices. This allows us to compute the Abelian
group structure formed by IFT phases with any symmetry group Gf , which is our second
original result.

Finally, we formulate a correspondence between various (generalized) LSM Theorems
and IFT phases with crystalline symmetries. We exemplify this correspondence by the
explicit study of a two-dimensional topological superconductor protected by time-reversal,
reflection, and, translation symmetries. Our third original result is the interpretation of
protected gapless boundary modes of this topological superconductor as the consequence
of an underlying LSM Theorem.
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A B S T R A I T

Cette thèse étudie deux sujets étroitement liés : les théorèmes fermioniques de Lieb-
Schultz-Mattis (LSM) et les phases topologiques fermioniques inversibles (IFT) de la
matière. Le théorème LSM original a été démontré en 1961 et s’applique aux chaînes de
spins antiferromagnétiques quantiques. Il lie les propriétés spectrales des Hamiltoniens à
la présence de symétries. Il rappelle le théorème de Nambu-Goldstone (NG) (1961), qui
lie les propriétés spectrales à l’absence, par rupture spontanée de symétrie, de symétries.
Alors que le théorème NG a eu un impact immédiat, la puissance du théorème LSM n’a
été véritablement appréciée qu’avec la prédiction et la découverte des phases topologiques
cristallines il y a une décennie. Au cours des cinq dernières années, le théorème LSM original
a été généralisé en un ensemble de théorèmes puissants qui fournissent des informations
pour comprendre à la fois les phases de matière avec gap et la criticité quantique. Dans
cette thèse, notre premier résultat original est l’extension des théorèmes LSM aux
Hamiltoniens locaux de réseau construits à partir de degrés de liberté fermioniques dans
n’importe quelle dimension spatiale.

Les phases IFT de la matière avec un groupe de symétrie interne Gf réalisent des états
fondamentaux non dégénérés, à gap et Gf -symétriques sous des conditions aux bords
périodiques, avec la réserve que sous des conditions aux bords ouvertes, des phases IFT
non triviales soutiennent des modes de bord sans gap. Les théorèmes LSM expliquent les
deux caractéristiques des phases IFT avec des symétries cristallines. Nous appliquons les
informations tirées des théorèmes LSM fermioniques pour identifier les invariants topologi-
ques qui énumèrent toutes les phases IFT de la matière avec le groupe de symétrie interne
Gf dans un espace unidimensionnel. Nous dérivons les règles d’empilement fermioniques
qui dictent la règle d’addition pour ces indices topologiques. Cela nous permet de calculer
la structure du groupe abélien formée par les phases IFT avec n’importe quel groupe de
symétrie Gf , ce qui est notre deuxième résultat original.

Enfin, nous formulons une correspondance entre divers théorèmes LSM (généralisés) et les
phases IFT avec des symétries cristallines. Nous illustrons cette correspondance par l’étude
explicite d’un supraconducteur topologique bidimensionnel protégé par des symétries
de renversement du temps, de réflexion et de translation. Notre troisième résultat
original est l’interprétation des modes de bord sans gap protégés de ce supraconducteur
topologique comme conséquence d’un théorème LSM sous-jacent.
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1
I N T R O D U C T I O N

Human brain is hard-wired to recognize patterns. We categorize the objects in our
environment according to the similarities they share. Therefore, it is natural for condensed-
matter physicists to desire classifying the subject of their study, matter, into categories of
shared attributes, phases. For a given quantum matter, these attributes are determined
by the properties related to its ground states such as (i) the presence/absence of a spectral
gap, (ii) ground-state degeneracy, (iii) orders (if any) that are supported by the ground
states, (iv) and, nature of the low-lying (if any) excitations. Such properties can be
probed by experiments such as low-temperature scattering or transport measurements,
which can then be put in use to built various devices. For instance, in the band theory of
noninteracting electrons subjected to periodic potential of positively charged background
of an ionic crystal [1], the existence of a spectral gap defines the insulating phase, while
its absence defines the metallic phase, which was an early triumph of solid-state physics
that gave us the semiconductor industry.

From a theoretical point of view, to characterize the quantum phase realized by a given
Hamiltonian, ideally one seeks to obtain all its eigenvalues and eigenstates. However, often
in practice, the best one can hope for is an approximation for the ground state and some
low-lying excited states, unless the Hamiltonian is exactly solvable for some particular
reason. In fact, even the very first attribute listed above, i.e., the existence of a spectral
gap, was shown impossible to numerically determine for generic Hamiltonians [2, 3].
This makes the classification of Hamiltonians into quantum phases of matter a nontrivial
problem in physics.

One of the most fruitful ideas in characterizing phases of matter was the so-called
Landau-Ginzburg (LG) paradigm [4, 5]. In this scheme, distinct quantum phases of
matter are classified by symmetries preserved and broken by the ground states. More
specifically, distinct phases are characterized by local order parameters which take nonzero
expectation value in the ground state and transform nontrivially under the symmetries of
the corresponding Hamiltonian. For example, a magnetically ordered phase is character-
ized by nonzero local magnetization which breaks O(3) spin-rotation and time-reversal
symmetries, while in a paramagnetic phase local magnetization vanishes. We say that the
O(3) and time-reversal symmetries are spontaneously broken in the ground state.

1



2 introduction

When studying ordered phases in the LG paradigm, a powerful tool is the Nambu-
Goldstone (NG) Theorem [6–8]. It asserts that if a continuous symmetry is spontaneously
broken in the ground state, then there exist at least one gapless branch of excitations 1.
These are the so-called Nambu-Goldstone bosons. For example, the ground state of
two-dimensional Heisenberg ferromagnet is magnetically ordered. Correspondingly, O(3)
symmetry of the Hamiltonian is spontaneously broken to O(2) subgroup by the ground
state. There is a single branch of gapless excitations with a quadratic dispersion ∝ p2. In
contrast, the ground state of two-dimensional Heisenberg antiferromagnet differs from this
scenario in that while the symmetry-breaking pattern is the same (from O(3) to its O(2)
subgroup), there are two branches of gapless excitations with linear dispersion ∝ |p| [10].
Both the nonvanishing local order parameter and the existence of NG bosons can be
measured by an experimental probe that couples to the local order parameter. In the case
of magnetic order, experimental probes include elastic and inelastic neutron scattering
experiments, magnetic susceptibility measurements, muon-spin resonance, and, nuclear
magnetic resonance spectroscopy.

From the point of view of LG paradigm and NG Theorem, phases described by non-
degenerate, gapped, and, symmetric ground states appears to be rather “boring”. The
ground state being nondegenerate and symmetric means that there is no nonvanishing local
order parameter. At temperatures below the spectral gap, the system does not respond
strongly to external probes, i.e., it is insulating. The band insulators of noninteracting
electronic systems fall into this category and were thought to be well-understood from a
theory point of view. This naive perspective changed dramatically after the discovery of
so-called invertible topological phases.

Invertible topological phases are described by local Hamiltonians with nondegenerate,
gapped, and, symmetric ground states under periodic boundary conditions (PBC) 2.
Remarkably, under open boundary conditions (OBC), certain invertible topological phases
support gapless degrees of freedom localized at the spatial boundaries. For this reason,
these are called nontrivial invertible topological phases. These gapless boundary modes are
robust against any symmetric interactions or disorder as long as the interaction/disorder
strength is not comparable to the spectral gap when PBC are imposed. The adjective
‘’topological” here refers to (i) the sensitivity of the ground-state degeneracy or spectral

1 More precisely, when there is Lorentz-invariance, for each generator of spontaneously-broken symmetry
there exist a gapless excitation with linear dispersion. This is not correct when Lorentz-invariance is
not present [9].

2 More generally, this condition must be satisfied on any closed space manifold, i.e., a compact topological
manifold without boundary.



introduction 3

gap to the boundary conditions 3, (ii) and the robustness of the gapless degrees of freedom
under symmetric perturbations. A paradigmatic example is the integer quantum Hall state
(IQHS) [11]. Distinct IQHS are described by an integer-valued topological invariant ν ∈ Z ,
namely the Chern number [12]. It corresponds to the total Berry phase [13] accumulated
over a closed loop around the first Brillouin zone [14]. When OBC are imposed, a nontrivial
IQHS has |ν| gapless chiral boundary modes. The topological invariant ν is associated
with the Hall conductance taking the quantized value σxy = ν e2/h [15, 16].

While the realizations of IQHS require explicit or spontaneous breaking of time-reversal
symmetry [17], it is also possible to realize time-reversal symmetric invertible topological
phases. These examples include Kitaev’s Majorana chains [18, 19], quantum spin Hall
states [20–22], and, time-reversal invariant topological insulator [23]. Importantly, these
examples imply that not all band insulators are the “same”. They can be distinguished by
what happens at their boundaries. This idea has become experimentally observable with
the application of angle-resolved photoemission spectroscopy (ARPES) [24, 25] techniques
which can probe the spectra of gapless boundary modes directly [26–28].

By their definition, invertible topological phases are not described by the LG paradigm
as each class of invertible phases share the same set of symmetries. Similarly, NG Theorem
does not apply as invertible topological phases are described by gapped and symmetric
ground states. Yet, it turns out that symmetry can still be used as an organizing principle
for the classification of invertible topological phases [29–36]. As we shall see invertible
topological phases are characterized by the anomalous realization of symmetries at their
boundaries.

In this Dissertation, we take this boundary point of view to study invertible fermionic
topological (IFT) phases in one and two dimensions. Just as NG Theorem constraints
the spectra of symmetry broken phases in the LG theory, we are going to show that
Lieb-Schultz-Mattis (LSM) Theorem [37] and its extensions can be used to understand
invertible topological phases in low-dimensional space. In Secs. 1.1 and 1.2, we give
historical reviews of LSM theorems and classification of invertible topological phases. Sec.
1.3 concludes with the organization of the Dissertation.

3 One can equivalently say that the ground states of nontrivial invertible phases support nontrivial
topology on closed manifolds.



4 introduction

1.1 review of lieb-schultz-mattis theorems

The original Lieb-Schultz-Mattis (LSM) Theorem was proved in the appendix of Ref. [37].
In that form, LSM Theorem establishes that in the spectrum of one-dimensional spin-1/2
Heisenberg antiferromagnet there are excited states with small energies (vanishing in the
thermodynamic limit) that are orthogonal to the ground state. Another theorem that is
also proved in the same appendix states that the ground state is nondegenerate for any
finite chain made out of even number of sites. These two theorems do not have control
over the thermodynamic limit. For instance, they do not make any prediction about the
absence of long-range order in the thermodynamic limit, which was later established by
the Mermin-Wagner Theorem [38]. They also do not put any constraints on the nature of
the excitations, as opposed to say NG Theorem which was proved around the same time.
The gapless spinon dispersion was computed later [39] using Bethe Ansatz techniques [40].

A surge of interest for deeper understanding emerged after Haldane’s conjecture that
quantum antiferromagnet has gapped ground state for integer spin values as opposed
to the belief that the spectrum is gapless irrespective of the spin quantum number [41,
42]. Experimental evidence confirming this conjecture was later obtained for spin-1
antiferromagnet [43]. Several generalizations then followed. For instance, it has been
understood that the SO(3)-spin-rotation symmetry is not an essential requirement for an
LSM constraint [44].

LSM type theorems for U(1)-number-conserving Hamiltonians have been established in
arbitrary dimensions. These theorems state that systems with noninteger filling fraction,
defined as the average number of particles per unit cell, cannot have a translationally
invariant, nondegenerate, and short-range entangled ground state [45–52]. Similar
constraints have also been worked out for number-conserving Hamiltonians that have
non-symmorphic or magnetic space group symmetries [53–56]. A number of LSM type
theorems pertaining to discrete internal symmetries combined with crystallographic
symmetries have also been worked out [54–64].

A second surge of interest stemmed from the parallels between the boundary modes of
invertible topological phases and LSM theorems [58, 60, 65–68]. When open boundary
conditions are imposed, the effective low-energy quantum Hamiltonian governing the
dynamics of the boundary modes of a nontrivial invertible topological phase supports a
ground state that is either (i) gapless, (ii) symmetry-broken, (iii) or topologically ordered
if the boundary is no less than two dimensional [31, 57, 69–72], which are reminiscent of
the properties of ground states of the bulk Hamiltonians for which LSM type theorems
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apply. More precisely, the protected gaplessness of the boundary modes of weak and
crystalline topological phases can be understood as a consequence of an LSM constraint
on the boundary.

LSM-type theorems mentioned here can be grouped into two kinds. The first kind
is the so-called filling-constraint type, which arises due to the presence of translation
symmetry and a fractional filling per repeat unit cell which is defined with respect to a
global continuous symmetry. For instance, this kind of LSM theorems apply to half-integer
spin chains with translation symmetry and U(1) spin-rotation symmetry along z-axis, or
lattice Hamiltonians with translation symmetry, U(1)-charge conservation symmetry, and,
a non-integer filling fraction. The second kind of LSM theorems are due to the global
symmetries being represented in a nontrivial projective manner when restricted to the
repeat unit cells of a lattice Hamiltonian. This kind of LSM theorems do not apply to
the Hamiltonians with only global U(1) symmetry since the group U(1) has no nontrivial
projective representations. However, both kinds apply to the half-integer spin chains with
translation and SO(3)-spin rotation symmetries.

1.2 review of invertible topological phases

We define and summarize the properties of invertible topological phases in Sec. 1.2.1.
A historical review of various classification schemes of invertible topological phases is
presented in Sec. 1.2.2.

1.2.1 Properties of Invertible Topological Phases

Invertible topological phases of matter are described by Hamiltonians that are spatially
local and support a nondegenerate and gapped ground state on any closed spatial
manifold 4 in the thermodynamic limit. Here, by locality it is meant that the Hamiltonian
is a sum of terms each of which has a finite spatial support. Demanding that ground
state to be nondegenerate on any closed manifold rules out the possibility of ground
state degeneracies that depend on the topology of underlying space. This is to say that
Hamiltonians describing invertible phases do not support nontrivial topological order.
Hereby, we consider a tensor product Fock space F, i.e., F is the tensor product of local
Fock spaces Fj on sites j of a lattice Λ. An example ground state on F that realize
an invertible phase is the product state |ψtriv⟩, which is obtained by taking the tensor

4 A compact manifold without boundary.
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Figure 1.1: Invertible phases are equivalence classes of local Hamiltonians with nondegenerate
and gapped ground states on any closed manifold under continuous gap-preserving
deformations. The phase boundaries of invertible phases are the thick black lines.
The Ĥtriv of which the ground state is a product state is assigned to the trivial
invertible phase. Imposing additional symmetries may divide the invertible phases
into further equivalence classes. The dashed red lines show the potential division of
invertible phases when only the symmetric gap-preserving deformations are allowed.
The symmetry protected topological (SPT) phases are the invertible phases that
are trivial once the protecting symmetry is broken. The subspace of SPT phases is
shown by the shaded area.

product of local states |ψj⟩ ∈ Fj . A local Hamiltonian for which |ψtriv⟩ is the ground
state is

Ĥtriv = −
∑
j∈Λ

|ψj⟩⟨ψj |. (1.1)

By convention, the product state |ψtriv⟩ is called the trivial state as it is the nondegen-
erate ground state of Hamiltonian Ĥtriv on any manifold independent of the boundary
conditions 5. Hamiltonians that have the form of Ĥtriv are representatives of the trivial
invertible topological phase.

A continuous deformation of a local Hamiltonian is defined to include both the continuous
change of short-range couplings between all existing local degrees of freedom or the addition
(removal) of decoupled local degrees of freedom that realize a trivial invertible topological
phase of their own. Any pair of Hamiltonians with nondegenerate and gapped ground
states on any closed manifold are said to be equivalent if they can be continuously deformed
into one another without closing the spectral gap. Invertible topological phases are then
defined as the equivalence classes of such Hamiltonians under gap-preserving continuous

5 Here, the implicit assumption is that one can define a lattice Λ on the underlying space manifold.
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deformations. Fig. 1.1 demonstrate the invertible phases in the space of local Hamiltonians
with nondegenerate and gapped ground states on any closed manifold.

While any Hamiltonian realizing an invertible phase have a nondegenerate and gapped
ground state on closed manifolds by definition, this is not so true under open boundary
conditions. Any Hamiltonian realizing a nontrivial invertible topological phase must
support gapless degrees of freedom that are localized at the boundaries. This implies
either a ground state degeneracy or gapless states localized at the boundaries.

The classification of invertible topological phases can be enriched by imposing an
internal (independent of space) symmetry group G such that two invertible phases
are equivalent only if they can be continuously deformed to one another without gap
closing and without (neither explicitly nor spontaneously) breaking the G symmetry.
Those invertible topological phases that are equivalent to the trivial phase under the
continuous deformation that spontaneously or explicitly break the G symmetry are called
the symmetry protected topological (SPT) phases. When open boundary conditions are
imposed, SPT phases support gapless degrees of freedom at the boundaries that are
protected by the G symmetry, i.e., the boundary degrees of freedom cannot be gapped
unless G symmetry is either explicitly or spontaneously broken.

We can impose an additional algebraic structure on invertible phases under a composition
rule called the stacking rule. The stacking of any pair of invertible phases consists in
creating a new invertible phase by defining the new local degrees of freedom to be the
union of the local degrees of freedom from a representative of each invertible phase and
by defining the new Hamiltonian acting on the new local degrees of freedom by taking
the direct sum of the pair of representative Hamiltonians for each invertible phase. As
defined here, stacking is an Abelian operation. The set of invertible phases is closed under
the stacking operation. By definitions of invertible phases and gap-preserving continuous
deformations, stacking of an invertible phase with the trivial phase is the invertible
phase itself, i.e., trivial phase is the identity element of the stacking operation. For each
invertible phase there exists an inverse phase, hence motivating the name invertible, such
that stacking an inverse pair delivers the trivial phase. Therefore, the set of invertible
phases together with stacking operation is endowed with an Abelian group structure.

1.2.2 Classification Schemes for IFT Phases

Even though not identified as such at the time, the first example of an invertible topological
phase was polyacetylene, which supports zero-energy bound states localized at the domain
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walls of bond-density orders [73–75]. The study of topological phases was accelerated
after the discovery of IQHS in 1980 [11], where quantized the Hall conductance taking
integer values in units of e2/h was observed.

Soon after the discovery of IQHS, another type of topological phase was discovered,
namely, the Abelian fractional quantum hall state (FQHS) [76]. The Abelian FQHS with
filling fraction 1/m (m odd) [77], supports gapless chiral edge modes and a fractional
Hall conductance σxy = e2/(mh). While this is reminiscent of the IQHS, this FQHS has
features that are not present in IQHS. For instance, it has has gm-fold degenerate ground
states on a two-dimensional closed manifold of genus g. It supports point point-like
excitations with statistical angle θ = π/m 6 that carry fractional charge e/m. FQHS
were later identified as examples of topologically ordered phases of matter [78, 79]. While
invertible phases can exists in any spatial dimension, topological order is possible only in
two or higher dimensional space. In general, the ground-state degeneracy for topological
order depends on the topology of underlying manifold. They support excitations with
fractional statistics and quantum numbers which are called anyons 7. Anyonic excitations
can only be created in inverse pairs by nonlocal operators. A defining feature of the
topologically ordered phases is that any local operator acts as the identity when projected
on the degenerate ground-state manifold. The adjective “topological” here refers to the
sensitivity of the ground-state manifold to the topology of underlying spatial manifold
under closed boundary conditions. When OBC are imposed, the boundary degrees of
freedom can be either gapped or gapless. Some other examples are Kitaev’s toric code [80,
81] and Levin-Wen string-net models [82]. In this Dissertation, we only focus on invertible
phases of matter which are characterized by nondegenerate and gapped ground states on
any closed manifold.

The realization of quantum Hall physics relies on explicit or spontaneous breaking
of reversal of time. The discovery of time-reversal symmetric quantum spin Hall state
(QSHS) by Kane and Mele [20, 21], brought the subject to the domain of band insulators.
Various generalizations of Kane and Mele followed both theoretically [22, 23, 83–87] and
realized experimentally [26–28, 88–93] in two and three dimensional space.

A systematic classification of topological band insulators and superconductors has been
obtained in Refs. [29, 30, 94, 95]. This classification scheme is based on the presence or
absence of three discrete symmetries of single-particle Bloch Hamiltonians: time-reversal

6 This means that the exchange two such excitations produces phase eiθ which is neither bosonic (θ = 2π)
nor fermionic (θ = π) for m > 1.

7 Strictly speaking, anyons are only supported in two-dimensional space. topologically ordered phases in
three or higher dimensions support string-like and brane-like excitations with statistics.
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Table 1.1: Tenfold Way classification of topological insulators and superconductors. The
leftmost column indicates the Cartan label of the symmetry class. T = ±1 and
C = ±1 means that time-reversal symmetry (TRS) or particle-hole symmetry (PHS)
are present in the corresponding symmetry class with T 2 = ±1 and C2 = ±1,
respectively. When T = 0 or C = 0, TRS or PHS are not present in the corresponding
symmetry class. The entry S = 1 indicates the presence of CHS. The entries Z or
Z2 are the classification at space dimension d while the entry 0 means that only the
trivial phase is possible.

Label T C S d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI +1 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI +1 +1 1 Z2 Z 0 0 0 Z 0 Z2

D 0 +1 0 Z2 Z2 Z 0 0 0 Z 0
DIII -1 +1 1 0 Z2 Z2 Z 0 0 0 Z

AII -1 0 0 Z 0 Z2 Z2 Z 0 0 0
CII -1 -1 1 0 Z 0 Z2 Z2 Z 0 0
C 0 -1 0 0 0 Z 0 Z2 Z2 Z 0
CI +1 -1 1 0 0 0 Z 0 Z2 Z2 Z

symmetry (TRS), particle-hole symmetry (PHS), and, their combination that is called
sublattice or chiral symmetry (CHS). The consideration of these three symmetries leads
to the Tenfold Way classification which is summarized in Table 1.1. The left column
shows the labels given to each class, which originate from the classification of symmetric
spaces by Élie Cartan [96, 97]. Next to each label the presence or absence of each
symmetry for that symmetry class is shown. T , C or S corresponds to the single-particle
representations of TRS, PHS, and, CHS, respectively. The entry 0 indicates that the
corresponding transformation is not a symmetry for the class. T = ±1 (C = ±1) indicates
that representation of TRS (PHS) symmetry squares to ±1 on the single-particle basis.
The corresponding many-body operators implementing TRS or PHS squares to identity
operator for +1 or fermion parity operator for −1. The entry S = 0, 1 means that the
chiral symmetry is absent or present,respectively. The entries Z or Z2 corresponds to
the number of distinct topological phases at space dimension d for each symmetry class.
The classification is periodic in space dimension d. For the first two symmetry classes, A
and AIII, the periodicity is two whereas for the rest it is eight. All examples of invertible
topological phases we have discussed so far are realized by Hamiltonians built out of
fermions. For this reason they are examples of invertible fermionic topological (IFT)
phases.

The Tenfold Way classification can be extended in different ways. For instance, one
can incorporate crystallographic symmetries such as point groups, reflection or inversion
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Table 1.2: Exhaustive classification of IFT phases with symmetry classes of Tenfold Way in
d = 0, 1, 2, 3 spatial dimension. The entries in black denotes the IFT phases for which
the classification is the same as noninteracting classification of the Tenfold Way that
is given in Table 1.1. The entries in magenta shows the reduction of noninteracting Z

classification in the Tenfold Way. The entries in blue shows the interaction-enabled
IFT phases that are only stabilized in the presence of interaction terms. These
entries are all trivial in the Tenfold Way classification.

Label d=0 d=1 d=2 d=3
A Z 0 Z × Z 0
AIII 0 Z4 0 Z8 × Z2
AI Z Z2 0 Z2
BDI Z2 Z8 0 0
D Z2 Z2 Z 0
DIII 0 Z2 Z2 Z16
AII Z 0 Z2 Z2 × Z2 × Z2
CII 0 Z2 0 Z2 × Z2 × Z2
C 0 0 Z × Z 0
CI 0 Z2 0 Z4 × Z2

to the classification scheme. These lead to the so-called crystalline topological insulators
and superconductors where gapless boundary states are protected by a combination of
internal and crystallographic symmetries [98–106]. Another extension of the Tenfold Way
classification is given by the so-called higher-order topological insulators (HOTI) [107–116].
HOTI in d-dimensional space support protected boundary states that are localized at
spatial submanifold with lower than d− 1 dimensions. For instance, a three-dimensional
HOTI supports gapless states not at the two-dimensional boundary but at the one-
dimensional hinges or zero-dimensional corners.

The protected boundary states of nontrivial IFT phases are stable against disorder
provided that the disorder strength is not larger than the spectral gap in the pristine limit
and evade Anderson localization [117]. For this reason, it was initially thought that the
protected boundary states would also be stable against interactions. This presumption
was shown to be wrong by Fidkowski and Kitaev who established that the noninteracting
Z classification of symmetry class BDI reduces to Z8 when interactions are added [18, 19].
Following this work, breakdown of Tenfold Way classification and its various extensions
have been shown [118–124].

A systematic classification of interacting IFT phases followed the classification of
invertible bosonic topological (IBT) phases which can only be realized by interacting
Hamiltonians. A paradigmatic example in one dimension is the Haldane phase of spin-1
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Heisenberg antiferromagnet [41, 125] which was identified as a bosonic SPT (BSPT)
phase 8 about three decades after its introduction [126]. After this identification all one
dimensional BSPT phases with an arbitrary internal symmetry group were classified [57,
69, 70, 127]. The key idea in this classification scheme was that the protected zero
modes at the boundary can be understood from the perspective of boundary projective
representations. Therefore, the classification of one-dimensional BSPT phases is equivalent
to the classification of projective representations of internal symmetry group which is
provided by the second group cohomology. This idea was then generalized in Refs. [31, 128,
129] to a proposal for classification of BSPT phases in any spatial dimension, that is closely
related to the classification of certain topological gauge theories in (d+ 1)-dimensional
spacetime and (d + 1)th cohomology group [130]. While this proposal exhaustively
classifies all BSPT phases, there are IBT phases that are not SPTs, which are also called
“beyond-cohomology phases”, in two or higher space dimensions [71, 131–133].

It was proposed by Kapustin in Refs. [33, 34] that an exhaustive classification of IBT
phases in any spatial dimension is provided by cobordism groups. This approach was then
generalized to IFT phases in Ref. [35]. An exhaustive classification for all invertible phases
of matter was obtained by Freed and Hopkins in Ref. [36] using stable homotopy theory
to classify the invertible topological field theories. This classification delivers Table 1.2 for
the symmetry classes in the Tenfold Way for space dimension d < 3. There, we colored the
entries for which the classification of IFT phases is the same as in Table 1.1. The entries
colored in magenta show the breakdown of Tenfold Way classification. Interestingly, there
are certain IFT phases that can only be stabilized by interactions, which are colored in
blue. For instance, for the class A in d = 2, the additional Z classification is because of
quantum thermal hall conductance taking values independent of the quantum charge Hall
conductance. This only occurs due to the presence of interactions and can be interpreted
as the violation of Wiedemann-Franz law [134]. Other classification and construction
schemes for IFT phases with internal and crystalline symmetries are obtained in Refs. [72,
135–150].

1.3 organization of the dissertation

This Dissertation is organized in three Parts I, II, and, III, which are based on Refs.
[151], [152], and, [153], respectively. Part I focuses on our first original result, namely,
extension of LSM Theorem to fermionic systems with only discrete symmetries. Part

8 In one-dimensional space all IBT phases are SPTs.
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II connects the Fermionic LSM Theorems with the classification of IFT phases in one-
dimensional space. Therein, we derive the fermionic stacking rules of one-dimensional IFT
phases with any internal symmetry group which is our second original result. Part
III explores the relation between protected gapless boundary modes of crystalline IFT
phases and generalized LSM-type Theorems. Our third original result is a concrete
application of generalized LSM-type Theorems to a two-dimensional crystalline topological
superconductor.



Part I

FERMIONIC L IEB - SCHULTZ -MATTIS
THEOREMS





Adapted from:
Ö. M. Aksoy, A. Tiwari, and C. Mudry

"Lieb-Schultz-Mattis type theorems for Majorana models with discrete symmetries",
Physical Review B 104, 075146 (2021)

Part I is dedicated to the Lieb-Schultz-Mattis (LSM) Theorems that apply to the
Hamiltonians that are built out of fermionic degrees of freedom. We start in Chapter 2
by proving LSM Theorem 1, that applies to one-dimensional bosonic or fermionic models
with U(1) symmetry. This is a filling-fraction type LSM Theorem that can be generalized
to any continuous symmetry. It applies to fermionic systems with charge-conservation
symmetry.

Chapter 3 presents the main result of this Part. Namely, we prove two LSM Theorems
2 and 3 that apply to one-dimensional Hamiltonians built out of fermions with or without
continuous symmetries. As opposed to Theorem 1, these two theorems are due to projective
nature of the local representations of symmetries. In particular, they do not apply to
systems with only U(1) charge-conservation symmetry. Their full power is unleashed
when applied to Hamiltonians that are only symmetric under discrete groups such as
the mean-field treatment of superconductivity. In Chapter 3, Theorems 2 and 3 are also
generalized to higher dimensions in a weaker form.

Chapter 4 introduces the concept of intrinsically fermionic LSM Theorems. These
are a subset of Theorems 2 and 3 that only applies to Hamiltonians that are built out
of fermions. We argue by way of example that intrinsically fermionic LSM Theorems
in one-dimension disappear under a Jordan-Wigner (JW) transformation, which is a
boson-fermion duality.

In the final Chapter 5, we construct various examples of Hamiltonians for which
Theorem 2 applies.
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2
L S M T H E O R E M S I N O N E D I M E N S I O N W I T H G L O B A L U ( 1 )

S Y M M E T RY

We will prove a general LSM theorem that applies to Hamiltonians that is supported on
a one-dimensional lattice with L sites. The argument we present is adapted from Refs.
[47, 49, 52]. We assume that each lattice site hosts p flavors of fermions or bosons. More
concretely, we consider the Hamiltonian

Ĥ = −
L∑

i,j=1

ψ̂†
i Tij ψ̂j +

L∑
i=1

V̂i , (2.1a)

where

ψ̂†
i =
(
ĉ†
i,1 ĉ†

i,2 · · · ĉ†
i,p

)
, ψ̂i =

(
ĉi,1 ĉi,2 · · · ĉi,p

)T
, (2.1b)

are p-dimensional vectors of creation and annihilation operators, i, j = 1, · · · ,L label the
sites of a one-dimensional lattice. The algebra{

ĉi,α, ĉ†
j,β

}
= δij δα,β ,

{
ĉi,α, ĉj,β

}
= 0, (2.1c)

holds if the particles occupying each lattice site are fermionic, and the algebra[
ĉi,α, ĉ†

j,β

]
= δij δα,β ,

[
ĉi,α, ĉj,β

]
= 0, (2.1d)

holds if the particles occupying each lattice site are bosonic. The matrix Tij is a p× p

Hermitian matrix of hopping amplitudes that (i) are short-range with range r, and (ii)
are bounded in magnitude from above, i.e., for |i− j| > r[

Tij
]
αβ

= 0, α,β = 1, · · · , p, (2.1e)

17
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and for |i− j| ≤ r ∣∣∣ [Tij]αβ ∣∣∣ ≤ t̄, α,β = 1, · · · , p, (2.1f)

where t̄ is a finite and positive real number.
The term V̂i in (2.1a) is an arbitrary short-range interaction term that is a function of

rp number operators acting on the sites i, i+ 1, · · · , i+ r, i.e.,

V̂i = V̂i
(
n̂i,1, · · · , n̂i,p, n̂i+r,1, · · · , n̂i+r,p

)
, n̂i,α := ĉ†

i,α ĉi,α. (2.1g)

With these definitions, the Hamiltonian (2.1a) possesses two symmetries. First, there is
the global U(1) number conservation symmetry generated by the operator

Û(θ) := eiθ N̂ , N̂ :=
L∑
i=1

p∑
α=1

n̂i,α =

L∑
i=1

ψ̂†
i ψ̂i, θ ∈ [0, 2π), (2.2a)

with the action

Û(θ) ĉi,α Û
†(θ) = e−iθ ĉi,α. (2.2b)

Second, there is the lattice translation symmetry generated by the operator T̂ which is
defined by its action

T̂ ĉi,α T̂
† = ĉi+1,α, T̂L = 1, (2.3)

where the second equality imposes periodic boundary conditions. The global symmetry
group then is Gtot = U(1) × ZL.

Let |ψ
GS

⟩ be a ground state of the Hamiltonian (2.1) that is both U(1) and translation
symmetric. If so the identities

Û(θ) |ψGS⟩ = eiθ N |ψGS⟩, T̂ |ψGS⟩ = eiκ |ψGS⟩, (2.4)

where N is the total-number of particles and κ = 2π n/N with n = 0, 1, · · · ,L− 1, hold.
We define the filling fraction by

ν :=
N

L
, (2.5)
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such that ν ∈ [0, p] if the particles are fermionic and ν ∈ [0, ∞) if the particles are bosonic.
With these definitions, we will prove the following theorem (originally proved in Refs.

[47, 49]).

Theorem 1. Let Ĥ be a translationally invariant and U(1)-symmetric Hamiltonian of
the form (2.1). Let |ψ

GS
⟩ be a ground state of this Hamiltonian and satisfy symmetry

conditions (2.4). Then there exists a variational state |ψvar⟩ such that

(i) the variational energy Evar of |ψvar⟩ compared to the energy E
GS

of the ground
state |ψ

GS
⟩ is bounded from above as

Evar −EGS = ⟨ψvar|Ĥ |ψvar⟩ − ⟨ψGS|Ĥ |ψGS⟩ ≤
C

L
, (2.6a)

where C is a constant, and,

(ii) if, in addition, the filling fraction ν defined in (2.5) is not an integer, the state |ψvar⟩
is orthogonal to the ground-state |ψ

GS
⟩, i.e.,

⟨ψvar|ψGS⟩ = 0. (2.6b)

Proof. We define the unitary operator

Ûtw := e
i
∑L

i=1

2π i
L
ψ̂

†
i
ψ̂i , (2.7a)

and the variational state

|ψvar⟩ := Ûtw |ψGS⟩. (2.7b)

The operator Ûtw implements a site-dependent U(1) rotation. For the first statement
(2.6a), we write the energy difference ∆E := Evar −E

GS
as

∆E = ⟨ψvar|Ĥ |ψvar⟩ − ⟨ψGS|Ĥ |ψGS⟩

= ⟨ψGS|
(
Û†

tw Ĥ Ûtw − Ĥ
)

|ψGS⟩

=

L∑
i,j=1

(
1 − ei 2π

L
(j−i)

)
⟨ψGS|ψ̂†

i Tij ψ̂j |ψGS⟩, (2.8)
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where the last line follows since the interaction term V̂i being a function of n̂i,α is invariant
under local U(1) rotations. Since |ψ

GS
⟩ is the ground state we have the bounds

0 ≤ ⟨ψGS|
(
Ûtw Ĥ Û†

tw − Ĥ
)

|ψGS⟩, (2.9a)

and

∆E ≤ ⟨ψGS|
(
Û†

tw Ĥ Ûtw − Ĥ
)

|ψGS⟩ + ⟨ψGS|
(
Ûtw Ĥ Û†

tw − Ĥ
)

|ψGS⟩

= 2
L∑

i,j=1

(
1 − cos

(2π
L

(j − i)

))
⟨ψGS|ψ̂†

i Tij ψ̂j |ψGS⟩

≤ 2
L∑

i,j=1

(
1 − cos

(2π
L

(j − i)

)) p∑
α,β=1

∣∣∣ [Tij]αβ ∣∣∣ ∣∣⟨ψGS|ĉ†
i,α ĉj,β |ψGS⟩

∣∣ . (2.9b)

We use Eqs. (2.1e) and (2.1f) to obtain

∆E ≤ 2
L∑
i=1

i+r∑
j=i−r

(
1 − cos

(2π
L

(j − i)

))
t̄

p∑
α,β=1

∣∣⟨ψGS|ĉ†
i,α ĉj,β |ψGS⟩

∣∣ , (2.10a)

and Cauchy-Schwarz inequality to obtain∣∣⟨ψGS|ĉ†
i,α ĉj,β |ψGS⟩

∣∣ ≤
√

⟨ψ
GS

|n̂i,α|ψ
GS

⟩
√

⟨ψ
GS

|n̂
j,β

|ψ
GS

⟩

≤

√√√√⟨ψ
GS

|
p∑
α=1

n̂i,α|ψ
GS

⟩

√√√√⟨ψ
GS

|
p∑
β=1

n̂
j,β

|ψ
GS

⟩

= ν. (2.10b)

Together, they deliver the bound

∆E ≤ 2
L∑
i=1

i+r∑
j=i−r

(
1 − cos

(2π
L

(j − i)

))
t̄ p2 ν. (2.10c)
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Finally, using the identity

i+r∑
j=i−r

(
1 − cos

(2π
L

(j − i)

))
≤

4π2

L2

i+r∑
j=i−r

(j − i)2 ≤ 2r3 4π2

L2
, (2.11a)

we obtain the bound

∆E ≤
16π2 r3 t̄ p2 ν

L
. (2.11b)

This proves the first part of Theorem 1.
For the second part, we compute

⟨ψvar|ψGS⟩ = ⟨ψGS| Û†
tw |ψGS⟩ = ⟨ψGS| T̂ Û†

tw T̂
†|ψGS⟩, (2.12a)

where we have used that the state |ψ
GS

⟩ is translationally invariant by assumption. The
algebra

T̂ Û†
tw T̂

† = e
−i
∑L

i=1

2π i
L
ψ̂

†
i+1

ψ̂i+1

= e
−i
∑L

i=1

2π i+1
L

ψ̂
†
i+1

ψ̂i+1 e
+i
∑L

i=1

2π
L
ψ̂

†
i
ψ̂i

= Û†
tw e

+i 2π N̂
L , (2.12b)

implies

⟨ψvar|ψGS⟩ = ⟨ψGS| Û†
tw e

+i 2π N̂
L |ψGS⟩

= e+i 2π N
L ⟨ψGS| Û†

tw |ψGS⟩

= e+i2π ν ⟨ψvar|ψGS⟩. (2.12c)

Unless ν is an integer the exponential does not vanish. For any fractional filling n /∈ Z we
have

⟨ψvar|ψGS⟩ = 0, (2.12d)

as claimed in Theorem 1.
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The main intuition behind Theorem 1 is the following. Due to the presence of a global
continuous symmetry, a local smooth twist by U(1)-rotations is expected to cost little
energy. A low-energy variational state then can be constructed by applying the twist
operator on a translationally invariant ground state 1. The corresponding variational
energy is vanishing in the L → ∞ limit. However, the variational estimate alone does not
guarantee that the states |ψvar⟩ and |ψ

GS
⟩ remain distinct in the thermodynamic limit.

The nontrivial observation is that if the filling fraction ν is not an integer, the two states
are necessarily orthogonal.

Theorem 1 can be interpreted as the absence of a ground state that is U(1)-symmetric,
translationally invariant, nondegenerate, and, separated by a gap from all excited states
for any Hamiltonian with the same symmetries at a fractional filling. However, as
stated, Theorem 1 does not make any controlled prediction on the ground state in the
thermodynamic limit. In Ref. [52], this theorem was generalized by using local twist
operators as opposed to a global twist operator (2.7a). It was shown that provided the
ground state does not break the translation symmetry, there are infinitely many low-
lying states that are orthogonal to the ground state |ψ

GS
⟩ and have variational energies

vanishing in the limit L → ∞. This means that one of the following three possibilities
must occur for the ground state in the thermodynamic limit:

1. The spectrum is gapped and the translation symmetry is spontaneously broken in
the ground state manifold.

2. The spectrum is gapless with infinitely many states with arbitrarily small energy
above the ground state.

3. The spectrum is gapped and there are infinitely many degenerate ground states 2.

In reaching this conclusion, we proved two separate statements of Theorem 1. First, we
showed that the variational energy of the state |ψvar⟩ is small by using the dynamical
data, i.e., our assumptions on the Hamiltonian (2.1) 3. This argument is independent of
the filling fraction since the states |ψvar⟩ and |ψ

GS
⟩ carry same total occupation number.

1 Observe that the total accumulated U(1) phase under the local twist operator (2.7a) is 2π. Indeed, this
is nothing but a large gauge transformation that maps the Hamiltonian (2.1) with zero flux through
the periodic chain to the same Hamiltonian with one quantum of magnetic flux threading the periodic
chain. If the ground state |ψ

GS
⟩ is separated by a gap from the excited states, an adiabatic insertion

of one quantum of flux should not change the spectral properties. This is to say that |ψvar⟩ should be
either proportional or orthogonal to the ground state |ψ

GS
⟩. This argument was used in Refs. [48, 154]

to obtain various LSM type theorems in one and higher dimensions.

2 For example, a flat band with noninteger filling falls into this category.

3 This proof can be extended to any Hamiltonian provided that it is local, its matrix elements are
bounded and it has U(1) and translation symmetries.
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Second, we have showed that when the many-body Fock space F is restricted to the
Hilbert space HN of N particles, the variation state |ψvar⟩ ∈ HN is necessarily orthogonal
to |ψ

GS
⟩ if ν ≡ N/L is not an integer. This argument is related to the structure of

the N-particle Hilbert space HN and is independent of the energy spectrum. In the
remaining of this Chapter, we are going to generalize Theorem 1 to models with discrete
symmetry groups. Due to the discreteness of the symmetries involved, there is no notion
of a smooth twist operator. In other words, our argument for the first part of Theorem 1
fails immediately. However, as we shall see, the local representations of global symmetries
constrain the states in a many-body Fock space. A statement analogous to the second
part of Theorem 1 can still be made. To establish LSM type theorems, we are going to
present arguments alternative to the variational estimate used in proving Theorem 1.





3
L S M T H E O R E M S W I T H G L O B A L D I S C R E T E S Y M M E T R I E S

In Sec. 2, we proved an LSM type theorem that applies to Hamiltonians with a continuous
internal symmetry group. For translationally invariant Hamiltonians with particle number
conservation, there is always a global U(1) symmetry and a corresponding LSM constraint.
In this section, we will consider Hamiltonians for which there is no necessarily a continuous
internal symmetry group e.g., the mean-field Hamiltonian for a superconductor where the
global charge conservation symmetry is broken down to fermion parity symmetry. It is
particularly useful to represent such Hamiltonians in terms of Majorana degrees of freedom.
In what follows, we consider lattice Hamiltonians that are built out of fermionic degrees
of freedom. To each site, we attach a number of Majorana degrees of freedom with the
constraint that the total number of Majorana degrees of freedom is even. This constraint
is required have a well-defined global fermionic Fock space. On such Hamiltonians, we
impose (i) the translation symmetry G

trsl
of the corresponding lattice, and (ii) a global

symmetry group Gf
1.

We first consider the case of one-dimensional space, and prove the following two theorems
in Sec. 3.3.

Theorem 2. Any one-dimensional lattice Hamiltonian that is local and admits the
symmetry group G

trsl
× Gf cannot have a nondegenerate, gapped, and G

trsl
× Gf -

symmetric ground state that can be described by an even- or odd-parity injective fermionic
matrix product state if Gf is realized by a nontrivial projective representation on the
local Fock space.

Theorem 3. A local Majorana Hamiltonian (under periodic boundary conditions) with
an odd number of Majorana degrees of freedom per repeat unit cell that is invariant under
the symmetry group G

trsl
×Gf , cannot have a nondegenerate, gapped and translationally

invariant ground state.

Several comments are due. Theorem 2 relies on two key concepts: (i) injective fermionic
matrix product states (FMPS) and (ii) local projective representations of a group Gf . In
one-dimensional space, injective FMPS can be thought as representatives of nondegenerate

1 Here, subscript f stands for a fermionic symmetry group, which is explained in detail in Sec. 3.1.1.

25
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and gapped ground states of local Hamiltonians. As opposed to the proof of Theorem
1, where a low-lying variational state is constructed, the proof of Theorem 2 utilizes the
properties of injective FMPS to obtain necessary conditions to for local Hamiltonians to
support nondegenerate, gapped, and, symmetric ground states 2. Similarly, a nontrivial
local projective representation plays a role in Theorem 2 that is similar to the role played
by noninteger filling fraction in Theorem 1. Despite these parallels, Theorem 2 is not a
generalization of Theorem 1 since the group U(1) has no projective representations.

Theorem 3 applies to the case where each repeat unit cell contains odd number of
Majorana degrees of freedom, where for consistency, we demand the total number of sites
to be even. In contrast, Theorem 2 assumes that each repeat cell in the lattice supports a
well-defined local fermionic Fock space, i.e., each repeat unit cell contains an even number
of Majorana degrees of freedom. In this case, Theorem 3 is inactive.

As stated, Theorem 3 applies to any dimension of space without any restriction on
the internal fermionic symmetry group Gf . As for Theorem 2, a weaker form of it holds
in any dimension if it is assumed that Gf is Abelian and can be realized locally using
unitary operators. Versions of both theorems that apply to any dimension of space are
proved using tilted and twisted boundary conditions in Sec. 3.4.

The direct product structure of the symmetry group G
trsl

×Gf is crucial in Theorems
2 and 3, and their generalizations to higher dimensions. Indeed, it has been shown that
when the total symmetry group does not have a direct product structure, such as is the
case with magnetic translation symmetries, a symmetric, nondegenerate, gapped, and
short-range entangled ground state is not ruled out when closed-boundary conditions are
imposed [61, 155, 156]. However, such a short-range entangled ground state must then
necessarily support gapless symmetry-protected boundary states when open boundary
conditions are imposed.

We present an overview of fermionic symmetry groups and their representations in Sec.
3.1. We then introduce the framework of FMPS in Sec. 3.2 which is central to our proofs.
The proofs of Theorems 2 and 3 are given in Sec. 3.3 while their generalizations to spatial
dimensions larger than one are given in Sec. 3.4.

2 The contraposition of Theorem 2 gives a set of necessary conditions for local Hamiltonians to have
such ground states.
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3.1 representations of fermionic symmetry groups

The fermionic symmetry group Gf and its local representations play a central role in
Theorems 2 and 3. In this Section, we will first describe what is meant by a fermionic
symmetry group and classification of its representations.

3.1.1 Fermionic Symmetry Groups

For quantum systems built out of an even number of local Majorana operators, it is always
possible to express all Majorana operators as the real and imaginary parts of local fermionic
creation or annihilation operators. We seek to describe the structure of internal symmetries
with onsite action on quantum systems built out of an even number of Majorana operators.
In the context of lattice models, internal symmetries are the transformations that preserve
locality in the sense that local operators are mapped to nearby local operators. By
symmetries with “onsite” action, we mean that the unitary operators implementing the
transformations can be written as a composition of unitary operators each of which act
on disjoint subsets of adjacent lattice sites 3 4 5. Examples of internal symmetries with
an onsite action include, time-reversal or spin-rotation symmetries. We denote the group
of all such internal symmetries that are imposed on a fermionic quantum system by Gf .

The parity (evenness or oddness) of the total fermion number is always a constant
of the motion. This is to say that any symmetry group Gf contains the fermion parity
symmetry at its center, i.e.,

Gf ⊃ ZF
2 := {e, p | e p = p e = p, e = e e = p p} , p g = g p, ∀g ∈ Gf , (3.1a)

where e is the identity element and we shall interpret the representation of p as the fermion
parity operator. It is because of this interpretation of the group element p that we attach
the upper index F to the cyclic group Z2. We denote by G the group that consists any

3 Equivalently, a symmetry acts onsite if the lattice can be divided into disjoint sets of adjacent sites
such that the set of local operators supported over each disjoint set is closed under the symmetry
transformations.

4 For symmetries that are represented by antiunitary operators, e.g., reversal of time, we call the action
onsite if the unitary part of the representation is acting onsite.

5 A symmetry can preserve locality while mapping an operator supported on a single site to an operator
acting on several nearby lattice sites. When this happens, the symmetry is said to have a ’t Hooft
anomaly. See Ref. [128] for an example of anomalous Z2 symmetry at the one-dimensional boundary of
a two-dimensional topological phase.
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internal symmetry in Gf other than the fermion parity. The group G is isomorphic to
the quotient of Gf by ZF

2 , i.e.,

G ∼= Gf/ZF
2 . (3.1b)

However, Gf does not necessarily has the form of a direct product G× ZF
2 . For a simple

counterexample, consider the groups G = Z2 and Gf = ZF
4 . Here, the superscript F

implies that the fermion parity group ZF
2 is contained in the center of Z4. One observes

that

G ∼= Gf/ZF
2 = Z2, Gf ≇ Z2 × ZF

2 , (3.2a)

i.e., Gf is not isomorphic to the direct product of G with ZF
2 . In general, given a group

G, the fermionic symmetry group Gf is constructed from the central extension of G by
ZF

2 . As a set, elements of Gf are given by the pairs (g,h) ∈ G× ZF
2 with the composition

rule

(g1, h1) ◦
γ
(g2, h2) :=

(
g1 g2,h1 h2 γ(g1, g2)

)
, (3.3a)

where γ is a map

γ : G×G → ZF
2 ,

(g1, g2) 7→ γ(g1, g2),
(3.3b)

such that
γ(e, g) = γ(g, e) = e, γ(g−1, g) = γ(g, g−1), (3.3c)

for all g ∈ G and
γ(g1, g2) γ(g1 g2, g3) = γ(g1, g2 g3) γ(g2, g3), (3.3d)

for all g1, g2, g3 ∈ G 6. We write any fermionic symmetry group Gf as 7

Gf = G×
γ

ZF
2 . (3.3e)

6 With an abuse of notation, we denote by e the identity element in both G and ZF
2 . From this point on,

we will denote the identity element of any group by e.

7 For the example in Eq. (3.2a) we have the map

γ(e, e) = γ(e, g) = γ(g, e) = e, γ(g, g) = p,



3.1 representations of fermionic symmetry groups 29

The conditions (3.3c) and (3.3e) ensure that Gf has a group structure, i.e., composition
rule (3.3a) is compatible with neutral element, inverse, and, associativity.

Given a group G, two fermionic symmetry groups Gf and G′
f generated by maps γ and

γ′, respectively, are isomorphic, i.e.,

Gf = G×
γ

ZF
2

∼= G×
γ′

ZF
2 = G

′
f (3.4a)

if there exists a map

κ : G → ZF
2 ,

g 7→ κ(g),
(3.4b)

such that the identity

κ(g1 g2) γ(g1, g2) = κ(g1) κ(g2) γ
′(g1, g2) (3.4c)

holds for all g1, g2 ∈ G, see Appendix A.2. This group isomorphism defines an equivalence
relation. We say that the group Gf obtained by extending the group G with the group
ZF

2 through the map γ splits when a map (3.4b) exists such that

κ(g1 g2) γ(g1, g2) = κ(g1) κ(g2) (3.4d)

for all g1, g2 ∈ G, i.e., Gf splits when it is isomorphic to the direct product G× ZF
2 .

The task of classifying all the nonequivalent central extensions of G by ZF
2 through γ

is achieved by enumerating all the elements of the second cohomology group H2
(
G, ZF

2

)
,

see Appendix A.2. We define an index [γ] ∈ H2
(
G, ZF

2

)
to represent such an equivalence

class, whereby the index [γ] = 0 is assigned to the case when Gf splits. We conclude this
section by giving some examples of frequently encountered internal symmetry groups Gf
when treating fermions in condensed matter physics (see Appendix A.3 for the details):

where e is the identity element and g is the nontrivial element in G = Z2. One observes that with

respect to the composition rule defined with this γ, the element (g, e) ∈ ZF
4 has order 4, i.e.,

(g, e)2 = (g, e) ◦
γ
(g, e) = (e, p),

(g, e)3 = (e, p) ◦
γ
(g, e) = (g, p),

(g, e)4 = (g, p) ◦
γ
(g, e) = (e, e).
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1. The charge conservation symmetry Gf = U(1)F is the nonsplit central extension of
G = U(1) by ZF

2 .

2. The spin rotation symmetry for spinful electrons Gf = SU(2)F is the nonsplit
central extension of G = SO(3) by ZF

2 .

3. The time-reversal symmetry for spinful electrons Gf = ZFT
4 is the nonsplit central

extension of G = ZT
2 by ZF

2 (We denote by ZT
2 , the Z2 group where the nontrivial

element t ∈ ZT
2 is represented by an antiunitary operator).

4. The time-reversal symmetry for spinless electrons Gf = ZT
2 × ZF

2 is the split central
extension of G = ZT

2 by ZF
2 .

3.1.2 Projective Representations of Gf

We denote with Λ a d-dimensional lattice with j ∈ Zd labeling the repeat unit cells. We
are going to attach to Λ a Fock space on which projective representations of the group
Gf constructed in Sec. 3.1.1 are realized. This will be done using four assumptions.
Assumption 1. We attach to each repeat unit cell j ∈ Λ the local Fock space Fj . This
step requires that the number of Majorana degrees of freedom in each repeat unit cell
is even. It is then possible to define the local fermion number operator f̂j and the local
fermion-parity operator

p̂j := (−1)f̂j . (3.5)

We assume that all local Fock spaces Fj with j ∈ Λ are “identical,” in particular they share
the same dimensionality D. This assumption is a prerequisite to imposing translation
symmetry.
Assumption 2. Each repeat unit cell j ∈ Λ is equipped with a representation ûj(g) of
Gf through the conjugation

ôj 7→ ûj(g) ôj û
†
j (g), [ûj(g)]

−1 = û†
j (g), (3.6a)

of any operator ôj acting on the local Fock space Fj . The representation (3.6a) of g ∈ Gf
can either be unitary or antiunitary. More precisely, let

c : Gf → {0, 1} ,

g 7→ c(g),
(3.6b)
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be a homomorphism. We then have the decomposition

ûj(g) :=


v̂j(g), if c(g) = 0,

v̂j(g)K, if c(g) = 1,

(3.6c)

where
v̂−1
j (g) = v̂†

j (g), p̂j v̂j(g) p̂j = (−1)ρ(g) v̂j(g), (3.6d)

is a unitary operator with the fermion parity ρ(g) ∈ {0, 1} ≡ Z2 acting linearly on
Fj and K denotes complex conjugation on the local Fock space Fj . Accordingly, the
homomorphism c(g) dictates if the representation of the element g ∈ Gf is implemented
through a unitary operator [c(g) = 0] or an antiunitary operator [c(g) = 1]. Finally, we
always choose to represent locally the fermion parity p ∈ ZF

2 by the Hermitian operator
p̂j ,

ûj(p) := p̂j ≡ (−1)f̂j . (3.6e)

Assumption 3. For any two elements g,h ∈ Gf [to simplify notation, g ◦
γ
h ≡ g h for all

g,h ∈ Gf ], whereby e = g g−1 = g−1 g denotes the neutral element and g−1 ∈ Gf the
inverse of g ∈ Gf , we postulate the projective representation

ûj(e) = 1̂D, (3.7a)

ûj(g) ûj(h) = eiϕ(g,h) ûj(g h), (3.7b)[
ûj(g) ûj(h)

]
ûj(f ) = ûj(g)

[
ûj(h) ûj(f )

]
, (3.7c)

whereby the identity operator acting on Fj is denoted 1̂D and the function

ϕ : Gf ×Gf → [0, 2π),

(g,h) 7→ ϕ(g,h),
(3.8a)

must be compatible with the associativity in Gf , i.e.,

ϕ(g,h) + ϕ(g h, f ) = ϕ(g,h f ) + (−1)c(g) ϕ(h, f ), (3.8b)

for all g,h, f ∈ Gf . The map ϕ taking values in [0, 2π) and satisfying (3.8b) is an example
of a 2-cocycle with the group action specified by the Z2-valued homomorphism c. In
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the vicinity of the value 0, ϕ generates the Lie algebra u(1). The associated Lie group
is denoted U(1). Given the neutral element e ∈ Gf , a normalized 2-cocycle obeys the
additional constraint

ϕ(e, g) = ϕ(g, e) = 0 (3.8c)

for all g ∈ Gf . Two 2-cocycles ϕ(g,h) and ϕ′(g,h) are said to be equivalent if they can
be consistently related through a map

ξ : Gf → [0, 2π),

g 7→ ξ(g),
(3.9)

as follows. The equivalence relation ϕ ∼ ϕ′ holds if the transformation

û(g) = eiξ(g) û′(g), (3.10a)

implies the relation

ϕ(g,h) − ϕ′(g,h) = ξ(g) + (−1)c(g) ξ(h) − ξ(g h), (3.10b)

between the 2-cocycle ϕ(g,h) associated to the projective representation û(g) and the
2-cocycle ϕ′(g,h) associated to the projective representation û′(g) . In particular, û is
equivalent to an ordinary representation (a trivial projective representation) if ϕ′(g,h) = 0
for all g,h ∈ Gf . Any ϕ ∼ 0 is called a coboundary. For any coboundary ϕ there must
exist a ξ such that

ϕ(g,h) = ξ(g) + (−1)c(g) ξ(h) − ξ(g h). (3.11)

The space of equivalence classes of projective representations is obtained by taking the
quotient of 2-cocycles (3.8) by coboundaries (3.11). The resulting set is the second
cohomology group H2(Gf , U(1)c), which has an additive group structure. Appendix A.1
gives more details on group cohomology.
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Assumption 4. We attach to Λ the global Fock space FΛ by taking the appropriate
product over j of the local Fock spaces Fj . This means that we impose some algebra on
all local operators differing by their repeat unit cell labels. We then define the operator

Û(g) :=



∏
j∈Λ

v̂j(g) [ûj(p)]
ρ(g), if c(g) = 0,

[∏
j∈Λ

v̂j(g) [ûj(p)]
ρ(g)

]
K, if c(g) = 1,

(3.12a)

that implements globally on the Fock space FΛ the operation corresponding to the group
element g ∈ Gf . The decomposition (3.12a) ensures that the global representation Û(g)

and the local representation ûj(g) defined in Eq. (3.6c) implement the same transformation
rules on the local Majorana degrees of freedom at site j, i.e., the equation

Û(g) γ̂j Û
†(g) = ûj(g)γ̂j û

†
j (g), (3.12b)

holds for any Majorana operator γ̂j at site j. Intuitively, the term [ûj(p)]
ρ(g) is needed

to correct the −1 factors that would arise from anticommutation of v̂j(g) and v̂
j′ (g)

for j ̸= j′ when each v̂j(g) have odd fermion parity. A derivation of the decomposition
(3.12a) is presented in Chapter 7.

Theorem 2 presumes the existence of a local projective representation of the symmetry
group Gf . This is only possible if the local Fock space Fj defined in Sec. 3.1.2 is spanned
by an even number of Majorana operators. This hypothesis precludes a situation in which
a fermion number operator is well defined globally but not locally, for example when the
lattice Λ is made of an even number of repeat unit cells, but a repeat unit cell is assigned
an odd number of Majorana operators. (This can happen upon changing the parameters
governing the quantum dynamics as is illustrated in Fig. 3.1.) We introduce the index
[µ] = 0, 1 to distinguish both possibilities. The case [µ] = 0 applies when the number
of local Majorana operators at site j ∈ Λ is even, in which case the number of repeat
unit cells in Λ is any positive integer. The case [µ] = 1 applies when the number of local
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(c)

(b)

(a)

Figure 3.1: The repeat unit cells of a lattice Λ are represented pictorially by squares. The
lattice Λ is chosen for simplicity to be one dimensional. (a) The repeat unit cell
is decorated with two circles, one empty, the other filled. If periodic boundary
conditions are imposed, translations by one repeat unit cell are symmetries. The
translation of each circle to the adjacent ones, i.e., translation by half repeat unit
cell is not a symmetry. (b) If the filling pattern is smoothly tuned (through an
on-site potential whose magnitude is color coded, say) so that both circles in an
repeat unit cell have the same filling, then the translation of half a repeat unit cell
is a symmetry. One may then choose a smaller repeat unit cell, a square centered
about one circle only. (c) Image of (a) under the translation by half repeat unit cell.

Majorana operators at site j ∈ Λ is odd, in which case the number of repeat unit cell in
Λ must necessarily be an even positive integer. The doublet

([ϕ], [µ]) :=


([ϕ], 0), if [µ] = 0,

(0, 1), if [µ] = 1,

(3.13)

of indices allows to treat Theorem 3 and 2 together, as we are going to explain.

3.2 fermionic matrix product states

We are going to use the properties of injective FMPS to prove Theorems 3 and 2. In this
section, we review the definition and some basic properties of FMPS. Further background
can be found in Appendix B and Refs. [135, 136, 139, 157].
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Consider a one-dimensional lattice Λ ∼= ZN . At the repeat unit cell j = 1, · · · ,N , the
local fermion number operator is denoted f̂j and the local Fock space of dimension Dj is
denoted Fj

∼= C
Dj . We define with

|ψσ
j
⟩, σj = 1, · · · , Dj , (3.14a)

an orthonormal basis of Fj such that

(−1)f̂j |ψσ
j
⟩ = (−1)|σj ||ψσ

j
⟩. (3.14b)

The fermion parity eigenvalue of the basis element |ψσ
j
⟩ is thus denoted (−1)|σj | with

|σj | ≡ 0, 1. The local Fock space Fj admits the direct sum decomposition

Fj = F
(0)
j ⊕ F

(1)
j (3.15a)

where, given p = 0, 1,

F
(p)
j := span

{
|ψσ

j
⟩, σj = 1, · · · , Dj

∣∣∣ |σj | = p

}
. (3.15b)

One verifies that dimF
(0)
j = dimF

(1)
j = Dj/2. To construct the Fock space FΛ for the

lattice Λ, we demand that the direct sum (3.15) also holds for FΛ. This is achieved with
the help of the Z2 tensor product ⊗g. This tensor product preserves the Z2-grading
structure. We define the reordering rule

|ψσ
j
⟩ ⊗g |ψσ

j′
⟩ ≡ (−1)|σj | |σ

j′ ||ψσ
j′

⟩ ⊗g |ψσ
j
⟩ (3.16)

on any two basis elements |ψσ
j
⟩ and |ψσ

j′
⟩ of Fj and F

j′ for any two distinct sites j ∈ Λ

and j′ ∈ Λ, respectively. The rule (3.16) guarantees that states are antisymmetric under
the exchange of an odd number of fermions on site j with an odd number of fermions on
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site j′ while symmetric otherwise. We then define the fermionic Fock space FΛ for the
lattice Λ to be

FΛ := span
{

|Ψσ⟩

∣∣∣∣ |Ψσ⟩ ≡
N⊗
j=1

g |ψσ
j
⟩,

σ ≡ (σ1, · · · ,σN ) ∈ {1, · · · , D1} × · · · × {1, · · · , DN}
}

.

(3.17)

As the parity |σj | of the state |ψσ
j
⟩ can be generalized to the parity |σ| of the state |Ψσ⟩

through the action of the global fermion number operator

F̂Λ :=
N∑
j=1

f̂j , |σ| ≡
N∑
j=1

|σj | mod 2, (3.18)

the Fock space (3.17) inherits the direct sum decomposition (3.15a),

FΛ = F
(0)
Λ ⊕ F

(1)
Λ . (3.19)

Any state |Ψ⟩ ∈ FΛ has the expansion

|Ψ⟩ =
∑
σ

cσ |Ψσ⟩ (3.20a)

with the expansion coefficient cσ ∈ C. Such a state is homogeneous if it belongs to either
F
(0)
Λ or F

(1)
Λ , in which case it has a definite parity |Ψ| ≡ 0, 1. From now on, we assume

that all local Fock spaces are pairwise isomorphic, i.e.,

Dj = D, Fj
∼= Fj′ 1 ≤ j < j′ ≤ N . (3.21)

This assumption is needed to impose translation symmetry below. We describe the
construction of two families of states that lie in F

(0)
Λ and F

(1)
Λ , respectively. To this end,

we choose the positive integer M , denote with 1M the unit M ×M matrix and define the
following pair of 2M × 2M matrices

P :=

(
1M 0
0 −1M

)
, Y :=

(
0 1M

−1M 0

)
. (3.22)
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The 2 × 2 grading that is displayed is needed to represent the Z2 grading in Eq. (3.19)
as will soon become apparent. The anticommuting matrices P and Y belong to the set
Mat(2M , C) of all 2M × 2M matrices. This set is a 4M2-dimensional vector space over
the complex numbers. 8 For any σj = 1, · · · , D with j ∈ Λ, we choose the matrices

Bσ
j
,Cσ

j
,Dσ

j
,Eσ

j
,Gσ

j
∈ Mat(M , C) (3.23a)

with the help of which we define the matrices

A
(0)
σ

j
:=



(
Bσ

j
0

0 Cσ
j

)
, if |σj | = 0,

(
0 Dσ

j

Eσ
j

0

)
, if |σj | = 1,

(3.23b)

and

A
(1)
σ

j
:=



(
Gσ

j
0

0 Gσ
j

)
, if |σj | = 0,

(
0 Gσ

j

−Gσ
j

0

)
, if |σj | = 1,

(3.23c)

from Mat(2M , C). Observe that Eq. (3.23c) is a special case of Eq. (3.23b). For any
σj = 1, · · · , D with j ∈ Λ, the matrix P commutes (anticommutes) with A

(p)
σ

j
when

|σj | = 0 (|σj | = 1),
P A

(p)
σ

j
= (−1)|σj |

A
(p)
σ

j
P (3.24)

for both p = 0, 1. In contrast, the matrix Y commutes with A
(1)
σ

j

Y A
(1)
σ

j
= A

(1)
σ

j
Y (3.25)

for all σj = 1, · · · , D with j ∈ Λ.

8 The set Mat(2M , C) of all 2M × 2M matrices is a 8M2-dimensional vector space over the real numbers.
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We are ready to define the FMPS. We define states with either periodic boundary
conditions (PBC) or antiperiodic boundary conditions (APBC) denoted by the parameter
b = 0 or 1, respectively. They are

|{A(0)
σ

j
}; b⟩ :=

∑
σ

tr
[
P b+1A

(0)
σ

1
· · ·A(0)

σ
N

]
|Ψσ⟩ (3.26a)

and
|{A(1)

σ
j

}; b⟩ :=
∑
σ

tr
[
P b Y A

(1)
σ

1
· · ·A(1)

σ
N

]
|Ψσ⟩ (3.26b)

for any choice of the matrices (3.23b) and (3.23c), respectively, and with the basis (3.17)
of the Fock space FΛ. The following properties follow from the cyclicity of the trace and
from the fact that Y is traceless.
Property 1. The FMPS |{A(p)

σ
j

}; b⟩ is homogeneous and belongs to F
(p)
Λ for p = 0, 1. This

claim is a consequence of the identities

N∑
j=1

|σj | = 1 mod 2 =⇒ tr
(
P b P A

(0)
σ

1
· · ·A(0)

σ
N

)
= 0, (3.27a)

N∑
j=1

|σj | = 0 mod 2 =⇒ tr
(
P b Y A

(1)
σ

1
· · ·A(1)

σ
N

)
= 0. (3.27b)

Property 2. The FMPS |{A(p)
σ

j
}; b⟩ changes by a multiplicative phase under a translation

by one repeat unit cell. Indeed, one verifies that

T̂b |{A(p)
σ

j
}; b⟩ = |{A(p)

σ
j

}; b⟩, (3.28)

where T̂b is the generator of translation by one repeat unit cell with boundary conditions
b = 0, 1 and k ∈ Z.
Property 3. The FMPS (3.26a) and (3.26b) are not uniquely specified by the choices
{A(p)

σ
j

} for p = 0, 1, respectively. For example, the similarity transformation

A
(0)
σ

j
7→ U A

(0)
σ

j
U−1, σj = 1, · · · ,D, j = 1, · · · ,N , (3.29)
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with U any matrix that commutes with P leaves the trace unchanged. Another example
occurs if there exists a nonvanishing matrix Q = Q2 ∈ Mat(2M , C) such that

QA
(0)
σ

j
= QA

(0)
σ

j
Q, σj = 1, · · · , D. (3.30)

Indeed, one verifies that Eq. (3.30) implies the identity

tr
[
P b+1 A

(0)
σ

1
· · ·A(0)

σ
N

]
= tr

[
P b+1 Ã

(0)
σ

1
· · · Ã(0)

σ
N

]
(3.31a)

with Ã
(0)
σ

j
the matrix

Ã
(0)
σ

j
:= QA

(0)
σ

j
Q+ (1M −Q)A

(0)
σ

j
(1M −Q). (3.31b)

While conditions (3.30) imply that all matrices A(0)
1 , · · · ,A(0)

D are reducible, conditions
(3.31b) imply that all matrices Ã(0)

1 , · · · , Ã(0)
D are decomposable into the same block

diagonal form. A necessary and sufficient condition on the D matrices A(0)
1 , · · · ,A(0)

D to
prevent that Eq. (3.30) holds for some Q ∈ Mat(2M , C) is to demand that there exists
an integer 1 ≤ ℓ⋆ ≤ N such that the vector space spanned by the Dℓ⋆ matrix products

A
(0)
σ

1
· · ·A(0)

σ
ℓ⋆

, σ1, · · · ,σℓ⋆ = 1, · · · , D, (3.32a)

is Mat(2M , C). More precisely, for any A ∈ Mat(2M , C), it is possible to find Dℓ⋆

coefficients a(0)σ
1

,··· ,σ
ℓ⋆

∈ C such that 9

A =

D∑
σ

1
,··· ,σ

ℓ⋆=1

a
(0)
σ

1
,··· ,σ

ℓ⋆
A

(0)
σ

1
· · ·A(0)

σ
ℓ⋆

. (3.32b)

In order to restrict the redundancy in the choice of the matrices (3.23) that enter the
FMPS (3.26), we make the following definitions.

Definition 1. The even-parity FMPS (3.26a) is injective if there exists an integer ℓ⋆ ≥ 1
such that the Dℓ⋆ products A(0)

σ
1

· · ·A(0)
σ

ℓ⋆
of 2M × 2M matrices span Mat(2M , C).

9 The basis (3.32a) is in general overcomplete owing to the condition Dℓ⋆
≥ 4M2.
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Definition 2. The odd-parity FMPS (3.26b) is injective if there exists an integer ℓ⋆ ≥ 1
such that the (D/2)ℓ

⋆
products Gσ

1
· · ·Gσ

ℓ⋆
of M × M matrices with |σ1| = · · · =

|σℓ∗ | = 0 span Mat(M , C).

The need to distinguish the definitions of injectivity for even- and odd-parity FMPS
stems from the fact that for an odd-parity FMPS the matrix Y commutes withA(1)

1 , · · · ,A(1)
D .

In other words, Y is in the center of the algebra closed by products of A(1)
1 , · · · ,A(1)

D .
Injectivity requires this center to be generated by 1

2M and Y , i.e., the algebra closed by
products of matrices A(1)

1 , · · · ,A(1)
D is a Z2-graded simple algebra. For the center to be

generated by no more than 1
2M and Y , the products of D/2 matrices{

Gσ
1
, · · · , GσD/2

∣∣∣ |σ1| = · · · = |σD/2| = 0
}

(3.33)

must close a simple algebra of M ×M matrices, which is precisely the Definition 2. The
following properties of FMPS are essential to the proofs of Theorems 3 and 2.
Property 4. Let ℓ ≥ ℓ⋆. The Dℓ products A(0)

σ
1

· · ·A(0)
σ

ℓ
of 2M × 2M matrices span

Mat(2M , C) for any injective even-parity FMPS. The D/∈ℓ products Gσ
1

· · ·Gσ
ℓ

with

|σ1| = · · · = |σℓ| = 0 (3.34)

of M ×M matrices span Mat(M , C) for any ℓ ≥ ℓ⋆ injective odd-parity FMPS.
Property 5. If two sets of matrices {A(p)

σ
j

} and {Ã(p)
σ

j
} generate the same injective FMPS,

there then exists an invertible matrix V and a phase φV ∈ [0, 2π) such that [135]

Ã
(p)
σ

j
= eiφV V A

(p)
σ

j
V −1, (3.35a)

for any σj = 1, · · · , D, and
P = ±V P V −1, (3.35b)

for p = 0, while
P = V P V −1, Y = ±V Y V −1, (3.35c)

for p = 1. Here, the phase φV is needed to compensate for the possibility that the matrix
V anticommutes with P or Y . We also observe that the index σj that labels the local
fermion number is preserved under the conjugation by V . The transformation (3.35) that
leaves an injective FMPS invariant is called a gauge transformation.
Property 6. Definitions 1 and 2 ensure that the two-point correlation function of any
pair of local operators taken in an injective FMPS decays exponentially fast with their
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separation. This provides an additional motivation to study them as they can be used to
describe nondegenerate and gapped ground states [135].

3.3 proofs in one dimension

In this section, we sketch the proofs for Theorems 2 and 3 in 1D space using the machinery
of fermionic matrix product states (FMPS). We relegate some intermediate steps and
technical details to Appendix C.1. For convenience, we will first prove Theorem 2 and
then use it to prove Theorem 3. A separate proof of the latter is also presented in Sec.
3.4.

3.3.1 Proof of Theorem 2

Our strategy is inspired by the study of injective bosonic MPS assumed to be G
trsl

×G-
invariant made by Tasaki in Ref. [158]. For the fermionic case, we shall distinguish the cases
of even- and odd-parity FMPS, as each case demands distinct conditions for injectivity.
For the case of even-parity injective FMPS, we shall establish the following identity
between any matrix A ∈ Mat(2M , C) and a given norm preserving W ∈ Mat(2M , C) that
is induced by a projective representation of the symmetry group Gf . There exists a phase
δ ∈ [0, 2π) and a nonvanishing positive integer ℓ⋆ such that

A = eiℓ δW−1 AW , (3.36a)

holds for all ℓ=ℓ⋆, ℓ⋆ + 1, ℓ⋆ + 2, · · · and all A∈Mat(2M , C). This is only possible if

δ = 0, (3.36b)

which obviously holds when A is the identity matrix 1
2M . For the case of odd FMPS, we

shall establish the same identity as (3.36) for any matrix A ∈ Mat(2M , C) that commutes
with matrix Y , i.e., Y is in the center of the algebra spanned by such matrices A. Theorem
2 will follow from the interpretation of the condition δ = 0 as the projective representation
of Gf defined in Sec. 3.1 to have trivial second group cohomology class.

We start from the even-parity injective FMPS

|{A(0)
σ

j
}; b⟩ :=

∑
σ

tr
[
P b+1 A

(0)
σ

1
· · ·A(0)

σ
N

]
|Ψσ⟩. (3.37)
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Let g be an element from Gf be represented by the operator Û(g) as defined in Sec. 3.1.2.
On the one hand, we have the identity

Û(g) |{A(0)
σ

j
}; b⟩ =

∑
σ

tr
[
P b+1A

(0)
σ

1
· · ·A(0)

σ
N

]
Û(g) |Ψσ⟩

≡
∑
σ

tr
[
P b+1A

(0)
σ

1
(g) · · ·A(0)

σ
N
(g)

]
|Ψσ⟩, (3.38a)

where

A
(0)
σ

j
(g) :=

D∑
σ′

j
=1

[U(g)]σ
j
σ′

j
Kg
[
A

(0)

σ′
j

]
, (3.38b)

[U(g)]σ
j
σ′

j
:= ⟨ψσ

j
|
(
ûj(g)|ψσ′

j
⟩
)

, (3.38c)

Kg
[
A

(0)
σ

j

]
:=


A

(0)
σ

j
, if c(g) = 0,

KA(0)
σ

j
K, if c(g) = 1.

(3.38d)

(Complex conjugation is denoted with K.) On the other hand, we have the identity

Û(g) |{A(0)
σ

j
}; b⟩ = eiη(g;b) |{A(0)

σ
j

}; b⟩

= |{eiη(g;b)/N A
(0)
σ

j
}; b⟩ (3.39)

for some phase η(g; b)∈[0, 2π) if we assume that Û(g)|{A(0)
σ

j
}; b⟩ is an eigenstate of the

norm-preserving operator Û(g), as it should be if Gf is a symmetry. By the assumption
of injectivity, the matrices A(0)

σ
j
(g) and eiη(g;b)/N A

(0)
σ

j
are related by the similarity trans-

formation (3.35), i.e., there exists an invertible matrix V (g) and a phase φ(b)

V (g)
∈ [0, 2π)

such that
eiη(g;b)/N A

(0)
σ

j
= e

iφ
(b)

V (g) V (g)A
(0)
σ

j
(g) V −1(g) (3.40)
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for any σj . We massage Eq. (3.40) into

eiθ(g;b) V †(g)A
(0)
σ

j
V (g) =

D∑
σ′

j
=1

[U(g)]σ
j
σ′

j
Kg
[
A

(0)

σ′
j

]
, (3.41a)

where we have introduced the phase

θ(g; b) :=
η(g; b)
N

−φ
(b)

V (g)
. (3.41b)

Consider a second element h ∈ Gf asides from g ∈ Gf . We can use the relation (3.41a)
with g replaced by the composition g h. We can also iterate the relation (3.41a) by
evaluating the composition Û(g) Û(h) |{A(0)

σ
j

}; b⟩. After some algebra (Appendix C.1.1),
one finds that (i) the phase

δ(g,h; b) := (−1)c(g) θ(h; b) + θ(g; b) − ϕ(g,h) − θ(g h; b) (3.42a)

that relates the normalized 2-cocycle defined in Eqs. (3.7) and (3.8) to the phase (3.41a),
(ii) the map represented by

U(g) :=


V (g), if c(g) = 0,

V (g)K, if c(g) = 1,

(3.42b)

and the D matrices A(0)
σ

j
, are related by

eiδ(g,h;b) A
(0)
σ

j
W (g,h) = W (g,h)A(0)

σ
j

(3.42c)

for any σj = 1, · · · , D, where

W (g,h) := U(g)U(h)U−1(g h). (3.42d)

We are going to make use of the injectivity of the FMPS a second time after massaging
Eq. (3.42c) into

A
(0)
σ

j
= eiδ(g,h;b)W−1(g,h)A(0)

σ
j
W (g,h) (3.43)
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for any σj = 1, · · · , D. For any integer ℓ = 1, 2, · · · , iteration of Eq. (3.43) gives

ℓ∏
j=1

A
(0)
σ

j
= eiℓ δ(g,h;b)W−1(g,h)

[
ℓ∏
j=1

A
(0)
σ

j

]
W (g,h). (3.44)

When ℓ ≥ ℓ∗, injectivity of the FMPS implies that any matrix A ∈ Mat(2M , C) can be
written as a linear superposition of all the possible monomials

∏ℓ

j=1
A

(0)
σ

j
of order ℓ, each

of which obeys Eq. (3.44) [recall Eq. (3.32b)]. Hence, we arrive at the identity

A = eiℓ δ(g,h;b)W−1(g,h)AW (g,h), ∀ℓ ≥ ℓ⋆, (3.45)

for any A ∈ Mat(2M , C), which implies, in turn, that W (g,h) belongs to the center of
the algebra spanned by monomials

∏ℓ

j=1
A

(0)
σ

j
. For even-parity FMPS, this center is

one-dimensional as it is generated by the unit matrix 1
2M . In particular, we can choose

A = 1
2M for which

12M = eiℓ δ(g,h;b) 12M , (3.46a)

which implies that
δ(g,h; b) = 0, (3.46b)

and, therefore, [ϕ] = 0 [recall Eq. (3.11)].
The odd-parity FMPS differs from the even-parity FMPS in that the Dℓ products

A
(1)
σ

1
· · ·A(1)

σ
ℓ

for any ℓ ≥ ℓ⋆ span a subalgebra of Mat(2M , C) with the center spanned by
1

2M and Y . This difference is of no consequence until reaching the odd-parity counterpart
to Eq. (3.40). However, for the odd-parity counterpart to Eq. (3.40) multiplication of
U(g) from the left by any element from the center generated by 1

2M and Y ,[
a(g) 12M + b(g) Y

]
V (g), |a(g)|2 + |b(g)|2 = 1, (3.47)

leaves Eq. (3.40) unchanged. To fix this subtlety, we replace V (g) in Eq. (3.40) by V (0)(g)

which is defined by

V (g) :=
[
a(g) 12M + b(g) Y

]
V (0)(g), (3.48a)

P V (0)(g)P = V (0)(g). (3.48b)
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With this change in mind, all the steps leading to Eq. (3.42) for the even-parity case can
be repeated for the odd-parity case. The analog to the even-parity coboundary condition
(3.46b) then follows, thereby completing the proof of Theorem 2.

3.3.2 Proof of Theorem 3

Theorem 2 presumes the existence of a local fermionic Fock space, i.e., of an even number
of Majorana degrees of freedom per repeat unit cell. This hypothesis precludes translation
invariant lattice Hamiltonians with odd number of Majorana operators per repeat unit
cell such as

ĤK :=
2M∑
j=1

iγ̂j γ̂j+1. (3.49a)

Here, the Hermitian operators
(
γ̂j = γ̂†

j

)
obey the Majorana algebra{

γ̂j , γ̂j′

}
= 2δjj′ , j, j′ = 1, · · · , 2M , (3.49b)

and the total number 2M of repeat unit cell is an even integer. Hamiltonian Ĥ
K

realizes
the critical point between the two topologically distinct phases of the Kitaev chain. In the
continuum limit, it describes a helical pair of Majorana fields and has a gapless spectrum.

Motivated by this example, we now prove a separate LSM constraint on Majorana
lattice models with an odd Majorana flavors per repeat unit site. We use Theorem 2 for
the proof.

Let n ≥ 0 be an integer and

γ̂j :=
(
γ̂j,1, γ̂j,2, · · · , γ̂j,2m+1

)T (3.50)

be the spinor made of 2m+ 1 Majorana operators. Let the Hamiltonian Ĥ be local and
translationally invariant. We write

Ĥ ≡
2M∑
j=1

ĥ
(
γ̂j−q , . . . , γ̂j , . . . , γ̂j+q

)
, (3.51)
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where ĥ is a Hermitian polynomial of 2q Majorana spinors
{
γ̂j−q , . . . , γ̂j+q

}
with q a

positive integer. The finiteness of q renders Ĥ local. Hamiltonian (3.51) is defined over
2M sites, since an even number of Majorana operators are needed to have a well-defined
Fock space. We assume that Ĥ has a nondegenerate gapped ground state |Ψ0⟩. We are
going to deliver a contradiction by making use of Theorem 2, thereby proving Theorem 3.

Define the Hamiltonian,

Ĥ′ :=
2M∑
j=1

2∑
α=1

ĥ

(
γ̂
(α)
j−q , · · · , γ̂(α)j+q

)
, (3.52a)

which is the sum of two copies of Hamiltonian (3.51). The repeat unit cell labeled by
j = 1, · · · , 2M now contains two Majorana spinors labeled by α = 1, 2. Hamiltonian
(3.52) thus acts on a Fock space which is locally spanned by an even number of Majorana
flavors. At each site j = 1, · · · , 2M one can define a local fermionic Fock space. Since
there is no coupling between the two copies α = 1, 2 of Majorana spinors, Ĥ′ inherits
from Ĥ the nondegenerate gapped ground state

|Ψ′
0⟩ := |Ψ0⟩ ⊗g |Ψ0⟩. (3.52b)

Since at each site j, there is no term coupling the two copies γ̂(1)j and γ̂(2)j , Ĥ′ is invariant
under any local permutation (

γ̂
(1)
j

γ̂
(2)
j

)
7→
(
γ̂
(2)
j

γ̂
(1)
j

)
. (3.53a)

The local representation of the fermion parity operator is

P̂j :=
2n+1∏
l=1

[
i γ̂(1)
j,l

γ̂
(2)
j,l

]
. (3.53b)

Under the transformation (3.53a), the local fermion parity operator P̂j acquires the phase
(−1)2n+1 = −1. Therefore, the symmetry transformation (3.53a) anticommutes with P̂j .
This anticommutation relation implies a nontrivial second group cohomology class [ϕ] ̸= 0
of Gf , independent of the group of onsite symmetries of Hamiltonian (3.51). Therefore by
Theorem 2 Hamiltonian Ĥ′ cannot have a nondegenerate gapped ground state. This is in
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contradiction with the initial assumption that Hamiltonian (3.51) has the nondegenerate
gapped ground state |Ψ0⟩.

One can interpret Theorem 3 as the inability to write down an injective FMPS for the
ground state of translationally invariant Hamiltonians with an odd number of Majorana
flavors per repeat unit cell. This is because one cannot define the matrices Aσ

j
as there

is no well-defined Fock space at site j to begin with.

3.4 proofs in higher dimensions

In this section, we extend Theorem 2 to any dimension d of space when the symmetry
group Gf is Abelian and all elements g ∈ Gf are represented by unitary operators. Our
method is inspired by the one used recently in Ref. [159] for quantum spin Hamiltonians.

Consider a d-dimensional lattice Λ with periodic boundary conditions in each linearly
independent direction α = 1, · · · , d such that Λ realizes a d-torus. Let each repeat unit cell
be labeled as j and host a local fermionic Fock space Fj that is generated by a Majorana
spinor γ̂j with 2n components γ̂j,l, l = 1, · · · , 2n. The fermionic Fock space attached to
the lattice Λ is denoted by FΛ. We impose the global symmetry corresponding to the
central extension Gf of G by ZF

2 as defined in Sec. 3.1.1, whereby Gf is assumed to be
Abelian. We also impose translation symmetry. If the d-dimensional lattice Λ has Nα
repeat unit cell in the α-direction and thus the cardinality

|Λ| ≡
d∏
α=1

Nα, (3.54)

the translation group is

Gtrsl ≡ ZN
1

× ZN
2̂

× · · · × ZN
d

. (3.55)

By assumption, the combined symmetry group is the Cartesian product group

Gtotal ≡ Gtrsl ×Gf . (3.56)

The representation of the translation group (3.55) is generated by the unitary operator
T̂α whose action on the Majorana spinors is

T̂α γ̂j T̂
−1
α = γ̂j+eα

, T̂−1
α = T̂ †

α, (3.57a)
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along the α-direction (eα is a basis-vector along the α-direction). Imposing periodic
boundary conditions implies (

T̂α
)Nα+1

= T̂α. (3.57b)

The representation Û(g) of g ∈ Gf is defined in Sec. 3.1.2. Any translationally and
Gf -invariant local Hamiltonian acting on FΛ can be written in the form

Ĥpbc :=
d∑
α=1

Nα∑
nα=1

(
T̂α
)nα ĥj

(
T̂ †
α

)nα , (3.58a)

where ĥj is a local Hermitian operator centered at an arbitrary repeat unit cell j. More
precisely, it is a finite-order polynomial in the Majorana operators centered at j that is
also invariant under all the nonspatial symmetries, i.e.,

ĥj = Û(g) ĥj Û
−1(g) =

(
ĥj
)† (3.58b)

for any g ∈ Gf . Instead of extracting spectral properties of Hamiltonian Ĥ
pbc

directly,
we shall do so with the family of Hamiltonians indexed by g ∈ Gf and given by

Ĥtlt
tw (g) :=

|Λ|∑
a=1

(
T̂1(g)

)a
ĥtlt

1

(
T̂−1

1 (g)
)a

, (3.59)

where ĥtlt
1 is a Gf -symmetric and local Hermitian operator and T̂1(g) is the “g-twisted

translation operator” to be defined shortly. We shall derive LSM-like constraints for
Ĥtlt

tw (g) and then explain why those LSM-like constraints also apply to Ĥ
pbc

. To this end,
we will explain what is meant by the upper index “tlt” for tilted and the lower index “tw”
for twisted and how Ĥtlt

tw (g) and Ĥ
pbc

differ.

3.4.1 Case of a d = 1-Dimensional Lattice

As a warm up, we first consider the one-dimensional case, i.e., Λ ∼= ZN . We impose two
assumptions in addition to those previously assumed. These are that every element in Gf
is unitarily represented (Assumption 5) and that Gf is an Abelian group (Assumption
6). These two assumptions were superfluous when proving Theorem 2 using injective
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FMPS in Sec. 3.3. This drawback is compensated by the possibility to extend the proof
that follows to any dimension d of space.

Twisted boundary conditions are implemented by defining the symmetry twisted trans-
lation operator

T̂1(g) := v̂1(g) T̂1 (3.60a)

through its action

T̂1(g) γ̂j T̂
−1
1 (g) =


(−1)ρ(g) γ̂j+1, if j ̸= N ,

v̂1(g) γ̂1 v̂
−1
1 (g), if j = N ,

(3.60b)

for j = 1, · · · ,N , where ρ(g) ∈ {0, 1} ≡ Z2 is defined in Eq. (3.6d) [see also Eq. (4.10)].
We then consider any Hamiltonian of the form (3.59) where the operator ĥtlt

1 in Eq. (3.59)
is nothing but the operator ĥj in Eq. (3.58a) with Λ restricted to a one-dimensional lattice.
Such a twisted boundary condition is equivalent to coupling the Majorana operators to a
background Abelian gauge field with a holonomy g ∈ Gf around the spatial cycle. The
effect of turning on such a background field is that it delivers the operator algebra (see
Appendix C.2) [

T̂1(g)
]N

= Û(g), g ∈ Gf (3.61a)

and

Û(h)−1 T̂1(g) Û(h) = eiχ(g,h) T̂1(g), h ∈ Gf , (3.61b)

where

χ(g,h) := ϕ(h, g) − ϕ(g,h) + (N − 1)π ρ(h)[ρ(g) + 1]. (3.61c)

The same algebra with ρ(g) ≡ 0 for all g ∈ Gf was obtained by Yao and Oshikawa in
Refs. [154, 159]. The phase χ(g,h) is vanishing if and only if the second cohomology class
[ϕ] is trivial [see Appendix C.2].

If χ(g,h) mod 2π is nonvanishing, one-dimensional representations of (3.61) are not
allowed. The ground state of any Hamiltonian of the form (3.59) is either degenerate
or spontaneously breaks the symmetry in the thermodynamic limit. We have rederived
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Theorem 2 for the Abelian group Gf that is represented unitarily when twisted boundary
conditions apply.

If we assume that the choice of boundary conditions cannot change the ground-state
degeneracy when all excited states are separated from the ground states by an energy gap,
then Theorem 2 applies to all boundary conditions compatible with translation symmetry
that are imposed on the one-dimensional chain Λ and, in particular, to Hamiltonians of the
form (3.58) with Λ restricted to a one-dimensional lattice that obey periodic boundary
conditions. A necessary condition for this assumption to hold is that all correlation
functions between local operators decay sufficiently fast, a condition known to be an
attribute of any Hamiltonian with gapped ground states [160].

We emphasize that, in rederiving Theorem 2, we have taken (i) the group Gf to
be Abelian and (ii) representation ûj(g) to be unitary for all g ∈ Gf . There exist
several challenges in relaxing both of these assumptions. When the group is taken to be
nonAbelian, one cannot consistently define a twisted Hamiltonian (3.59) that is invariant
under both global symmetry transformations Û(h) and symmetry twisted translation
operators T̂1(g) without imposing stricter constraints on local operators ĥtlt

1 than Eq.
(3.59). The challenges with imposing antiunitary twisted boundary conditions with the
group element g ∈ Gf are the following. First, complex conjugation is applied on all
the states in the Fock space FΛ. This means that Hamiltonian (3.58) can differ from
Hamiltonian (3.59) through an extensive number of terms when c(g) = 1, in which case
it is not obvious to us how to safely tie some spectral properties of Hamiltonians (3.59)
and (3.58). Second, not all representations of the group Gf are either even or odd
under complex conjugation, in which case conjugation of T̂1(g) by Û(h)−1 need not result
anymore in a mere phase factor multiplying T̂1(g) when c(g) = 1. In view of this difficulty
with interpreting antiunitary twisted boundary conditions, we observe that the FMPS
construction of LSM type constraints is more general than the one using twisted boundary
conditions.

3.4.2 Case of a d > 1-Dimensional Lattice

We now assume that Λ is a d > 1-dimensional lattice. We would like to generalize
the twisted boundary conditions (3.60) obeyed by the Majorana operators to arbitrary
spatial dimensions. There is no unique way for doing so. In what follows, we construct a
group of translations Gtlt

trsl
that is cyclic. This is achieved by imposing tilted or sheared

boundary conditions. After constructing Gtlt
trsl

, we twist the boundary conditions in a
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Figure 3.2: Example of a path that visits all the sites of a two-dimensional lattice that decorates
the surface of a torus.

particular way using the local representations of elements of the on-site (internal) symmetry
group Gf . The operators representing translations on the lattice with tilted and twisted
boundary conditions may not commute with the operators representing elements of Gf ,
even though all elements of Gtlt

trsl
commute with all elements of Gf by assumption (3.56).

When this is so, the representation of Gtlt
total

= Gtlt
trsl

×Gf is necessarily larger than one
dimensional, in which case the ground states are either degenerate or the symmetry group
Gtlt

total
= Gtlt

trsl
×Gf is spontaneously broken.

Our strategy is to construct the counterpart of Eqs. (3.60) and (3.61). To this end, we
are going to trade the translation symmetry group (3.55), which is a polycyclic group
when d > 1, for the cyclic group

Gtlt
trsl ≡ ZN

1
···N

d
(3.62)

and define the combined symmetry group

Gtlt
total ≡ Gtlt

trsl ×Gf . (3.63)
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The intuition underlying the construction of the tilted translation symmetry group Gtlt
trsl

is provided by Fig. 3.2. As a set, the elements of Gtlt
trsl

can be labeled by the elements of
G

trsl
, namely

Gtlt
trsl :=

{(
(t1)

n1 , · · · , (td)
n

d

) ∣∣∣ nα = 1, · · · ,Nα, α = 1, · · · , d
}

. (3.64)

However, as a group we would like to label the elements of Gtlt
trsl

as those of the cyclic
group with |Λ| elements, i.e.,

Gtlt
trsl :=

{
tn
∣∣∣ n = 1, · · · , |Λ|

}
. (3.65)

This is achieved by carefully choosing the group composition for the elements (3.64), i.e.,
by iterating d− 1 central extensions.
Step 1. We consider ZN

1
generated by t1 and extend it by ZN

2̂

generated by t
2̂

through
the map

Θ1 : ZN
1

× ZN
1

→ ZN
2̂

,

Θ1

(
(t1)

a, (t1)b
)

:= (t
2̂
)

1
N

1

(
a+b−[a+b]N

1

)
,

(3.66a)

for any a, b = 1, · · · ,N1, to obtain ZN
1
N

2̂

, the group of translations on the tilted lattice

restricted to R2. Here, the notation [a+ b]n is used to denote addition modulo n. This
group extension can be summarized by the short exact sequence

1 → ZN
2̂

→ ZN
1
N

2̂

→ ZN
1

→ 1 (3.66b)

and is labeled by the extension classes

[Θ1] ∈ H2
(

ZN
1
, ZN

2̂

)
. (3.66c)

Using this extension class and the standard expression for group composition in an
extended group, we may identify t1 as the generator of ZN

1
N

2̂

.
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Step 2. We consider ZN
1
N

2̂

generated by t1 and extend it by ZN
3̂

generated by t
3̂

through the map

Θ
2̂

: ZN
1
N

2̂

× ZN
1
N

2̂

→ ZN
3̂

,

Θ
2̂

(
(t1)

a, (t1)b
)

:= (t
3̂
)

1
N

1
N

2̂

(
a+b−[a+b]N

1
N

2̂

)
,

(3.67a)

for any a, b = 1, · · · ,N1 N2̂
, to obtain ZN

1
N

2̂
N

3̂

the group of translations on the tilted

lattice restricted to R3. This group extension can be summarized by the short exact
sequence

1 → ZN
3̂

→ ZN
1
N

2̂
N

3̂

→ ZN
1
N

2̂

→ 1 (3.67b)

and is labeled by the extension classes

[Θ
2̂
] ∈ H2

(
ZN

1
N

2̂

, ZN
3̂

)
. (3.67c)

Using this extension class and the standard expression for group composition in an
extended group, we may identify t1 as the generator of ZN

1
N

2̂
N

3̂

.
Step d − 1. We consider ZN

1
···N

d−1
generated by t1 and extend it by ZN

d
generated

by td through the map

Θd−1 : ZN
1

···N
d−1

× ZN
1

···N
d−1

→ ZN
d

,

Θd−1

(
(t1)

a, (t1)b
)

:= (td)

1
N

1
···N

d−1

(
a+b−[a+b]N

1
···N

d−1

)
,

(3.68a)

for any a, b = 1, · · · ,N1 · · ·Nd−1
, to obtain ZN

1
···N

d
the group of translations on the

tilted lattice Λ. This group extension can be summarized by the short exact sequence

1 → ZN
d

→ZN
1

···N
d

→ ZN
1

···N
d−1

→ 1 (3.68b)

and is labeled by the extension classes

[Θd−1] ∈ H2
(

ZN
1

···N
d−1

, ZN
d

)
. (3.68c)
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Using this extension class and the standard expression for group composition in an
extended group, we may identify t1 as the generator of ZN

1
···N

d
.

At the quantum level, we represent the cyclic group (3.62) by replacing Eq. (3.57) with

T̂α γ̂j T̂
−1
α = γ̂tα(j), (3.69a)

where tα(j) is the action of the cyclic group Gtlt
trsl

on the repeat unit cell j ∈ Λ. The
cyclicity of Gtlt

trsl
≡ ZN

1
···N

d
≡ Z|Λ| is enforced by

(
T̂α
)Nα =


T̂α+1, if α = 1, · · · , d− 1,

1̂Λ, if α = d.

(3.69b)

With this convention, (T̂1)
a with a = 1, · · · , |Λ| represents all the elements (t1)

a with
a = 1, · · · , |Λ| of Gtlt

trsl
. Equation (3.58) is replaced by

Ĥtlt :=

|Λ|∑
a=1

(
T̂1

)a
ĥtlt

1

(
T̂−1

1

)a
, (3.70a)

whereby

ĥtlt
1 = Û(g) ĥtlt

1 Û−1(g) =
(
ĥtlt

1

)† (3.70b)

holds for any g ∈ Gf . The locality of the polynomial ĥtlt
1 is no longer manifest when

comparing the integers that now label the local Majorana operators in ĥtlt
1 . The locality

of ĥtlt
1 is inherited from the fact that ĥj is local while ĥtlt

1 is nothing but a mere rewriting
of ĥj in the cyclic representation of j ∈ Λ. Hamiltonian (3.70) differs from Hamiltonian
(3.58) by a sub-extensive number of terms of order |Λ|/N1. The same number of terms
would distinguish Hamiltonian (3.58) from the Hamiltonian Ĥtw(g) obtained by replacing
the periodic boundary conditions (3.57b) by twisted one, i.e., by multiplying the right-hand
side of Eq. (3.57b) with Û(g) for g ̸= e and α = 1.
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Because of the cyclicity of Gtlt
trsl

≡ ZN
1

···N
d

≡ Z|Λ| and of its quantum representation,
we can adapt the definition (3.60) for the twisted translation operator when d = 1 to that
when d > 1. We define for any g ∈ Gf with c(g) = 0 the generator of twisted translation

T̂1(g) := ûI (g) T̂1, û−1
I (g) = û†

I (g), (3.71a)

through its action

T̂1(g) γ̂j T̂
−1
1 (g) =


(−1)ρ(g) γ̂

t
1
(j)

, if j ̸= N ,

ûI (g) γ̂I û
−1
I (g), if j = N ,

(3.71b)

on any Majorana operator labeled by j ∈ Λ. Here, I ≡ (1, · · · , 1) ∈ Λ, N = (N1, · · · ,Nd) ∈
Λ, and j = (n1, · · · ,nd) with nα = 1, · · · ,Nα. One verifies that these twisted translation
operators satisfy the twisted operator algebra

Û(h)−1 T̂1(g) Û(h) = eiχ(g,h) T̂1(g), (3.72a)

where

χ(g,h) := ϕ(g,h) − ϕ(h, g) + (|Λ| − 1)π ρ(h)[ρ(g) + 1], (3.72b)

which is nothing but the algebra (3.61) with the identification N → |Λ| ≡ N1 · · ·Nd.
Finally, we define the family of Hamiltonians (3.59) that obey twisted boundary conditions.
The proof of Theorem 2 when d > 1 for Hamiltonians of the form (3.59) is the same as
that when d = 1. Because the family of Hamiltonians (3.59) only differ from the family
of Hamiltonians (3.58) obeying periodic boundary conditions by a sub-extensive number
of terms, the LSM-like conditions characterizing the existence of nondegenerate gapped
ground states valid for Hamiltonians of the form (3.59) are conjectured to be also valid
for Hamiltonians of the form (3.58).

3.4.3 Theorem 3 in Any Dimension d

We have extended Theorem 2 to any spatial dimension d. As discussed at the end of Sec.
3.3.2, if Theorem 2 holds for any d, then so does Theorem 3. It is nevertheless instructive
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to provide an alternative proof of Theorem 3 for any spatial dimension d without relying
on Theorem 2.

We consider a d-dimensional lattice Λ such that at each repeat unit cell labeled by
j ∈ Λ, there exists a Majorana spinor γ̂j with 2n+ 1 components γ̂j,l, l = 1, · · · , 2n+ 1.
To have a well-defined total Fock space on lattice Λ, we set the total number of sites |Λ|
in the lattice to be even. On lattice Λ, we impose the tilted translation symmetry group
Gtlt

trsl
defined in Eq. (3.65). Let T̂1 be the representation of the generator of the cyclic

group Gtlt
trsl

with the action (3.69) on the Majorana spinors γ̂j .
In terms of the Majorana spinors γ̂j , the total fermion parity operator P̂ has the

representation

P̂ := i|Λ|/2
∏
j∈Λ

2n+1∏
l=1

γ̂j,l. (3.73)

Conjugation of the fermion parity operator P̂ by the tilted translation operator T̂1 delivers

T̂1 P̂ T̂
−1
1 = (−1)|Λ|−1P̂ = −P̂ , (3.74)

where we arrived at the last equality by noting that |Λ| is an even integer. The factor
(−1)|Λ|−1 arises since each spinor γ̂j consists of an odd number of Majorana operators.
The nontrivial algebra (3.74) implies that the ground state of any Hamiltonian that
commutes with P̂ , the generators of the tilted translation group, and the generators of Gf
is either degenerate or spontaneously breaks translation or Gf symmetry. If one assumes
that the degeneracy of the ground states when gapped is independent of the choice made
for the boundary conditions, we reproduce Theorem 3. We note that the algebra (3.74)
was shown in Ref. [161] for a one dimensional Majorana chain and interpreted as the
existence of Witten’s quantum-mechanical supersymmetry (SUSY) [162].
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I N T R I N S I C A L LY F E R M I O N I C L S M T H E O R E M S

Theorem 1 that is proved in Sec. 2 equally applies to Hamiltonians that are built out
of both bosonic or fermionic degrees of freedom. In contrasts, Theorem 3 and certain
instances of Theorem 2 can only be realized in Hamiltonians that are built out of fermionic
degrees of freedom. The distinction between the bosonic and fermionic LSM theorems is
due to the presence of the fermion parity symmetry ZF

2 in the latter. Any Hamiltonian or
observable that is built out of fermionic degrees of freedom must be even under the fermion
parity. In other words, fermion parity symmetry cannot be broken neither explicitly nor
spontaneously. In bosonic system there is no such symmetry with a special status.

In this Section, we motivate the notion of intrinsically fermionic LSM theorems, i.e.,
LSM theorems that apply strictly fermionic models. We focus only on the case of
one-dimensional space. A tool that can be used to detect LSM constraints is dualities
induced by gauging discrete subgroups of the full internal symmetry group. We define
intrinsically fermionic LSM constraints as those which disappear under Jordan-Wigner
(JW) transformation [163] which is induced by gauging fermion parity symmetry [164,
165]. For convenience, first, we are going to argue that Theorem 3 ([µ] = 1) is intrinsically
fermionic. We will then introduce a decomposition of the index [ϕ] that characterizes local
projective representations into two indices [(ν, ρ)]. As we shall see, the index ρ will be
associated with the instances of Theorem 2 that are intrinsically fermionic. For both cases,
we will show that the associated LSM constraint disappears after JW transformation.

4.1 intrinsically fermionic lsm theorem 3

Theorem 3 applies to the system for which there are odd number of Majorana degrees
of freedom per repeat unit cell. We specify this possibility by the index [µ] = 1. To
demonstrate why the case of [µ] = 1 is intrinsically fermionic, we consider a concrete
model. Let Λ = {1, · · · ,N} be a one-dimensional lattice with N = 2M an even integer
and the global fermionic Fock space FΛ is of dimension 2(2m+1)M with (2m + 1) the
number of local Majorana flavors. By choosing the cardinality |Λ| = 2M to be even, we

57
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make sure that the lattice is bipartite. We do not impose any internal symmetry, i.e.,
Gf = ZF

2 .
We define the 2(2m+1)M -dimensional global Fock space FΛ using the 2(2m + 1)M

Majorana operators obeying the algebra

γ̂†
j,a = χj,a, γ̂2

j,a = 1, {γ̂j,a, γ̂j,a′ } = 2δj,j′ δa,a′ , (4.1)

for j, j′ = 1, · · · , 2M and a, a′ = 1, · · · , 2m + 1. The most general translation- and
Gf -invariant quadratic Hamiltonian with nearest neighbor couplings is

Ĥpbc :=
2M∑
j=1

i γ̂T
j M γ̂j+1 (4.2)

where the (2m+ 1) × (2m+ 1)-dimensional matrix M is real-valued and antisymmetric.
As M has necessarily a zero eigenvalue, the spectrum of Ĥ

pbc
is gapless. This is consistent

with Theorem 3. As discussed in Sec. 3.4.3, in addition to having a gapless spectrum
Hamiltonian (4.2) is also supersymmetric [161]. This is because the operator T̂ imple-
menting the lattice translations anticommute with the global fermion parity operator
Û(p). Furthermore, the Witten index is 0 implying that all states including the ground
state is twofold degenerate.

The underlying SUSY of Hamiltonian (4.2) is the signature of its intrinsically fermionic
nature. To further illustrate this point, let us focus on the case of m = 0, i.e.,

ĤK :=
2M∑
j=1

iγ̂j γ̂j+1, (4.3)

which Hamiltonian (3.49) that describe the critical point between the trivial and nontrivial
topological phases of the Kitaev chain. In one-dimensional space, there is a duality between
the fermionic and bosonic models. It is instructive to map Hamiltonian (4.3) to its dual
via JW transformation. We express the Majorana operators in terms of spin-1/2 degrees
of freedom

γ̂2j−1 =

(∏
j′<j

σ̂zj′

)
σ̂xj , γ̂2j =

(∏
j′<j

σ̂zj′

)
σ̂yj , (4.4a)

[
σ̂αj , σ̂βj

]
= i2ϵαβγ σ̂

γ
j , σ̂αj σ̂

α
j = 1̂, α,β, γ = x, y, z, (4.4b)
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which delivers

ĤK :=
M∑
j=1

{
iγ̂2j−1 γ̂2j + iγ̂2j γ̂2j+1

}
= −

M∑
j=1

σ̂zj −
M−1∑
j=1

σ̂xj σ̂
x
j+1 +

(
M∏
j′=1

σ̂zj

)
σ̂xM σ̂x1 . (4.4c)

If we impose the constraint(
M∏
j=1

σ̂zj

)
≡

(
M∏
j=1

iγ̂2j γ̂2−1

)
= Û(p) = −1̂, (4.4d)

Hamiltonian becomes

ĤI,crit := −
M∑
j=1

σ̂zj −
M∑
j=1

σ̂xj σ̂
x
j+1, (4.4e)

which describes the critical point of the transverse field Ising model with periodic boundary
conditions. Hamiltonian (4.4e) also has a gapless spectrum. However, there are two
distinctions between Hamiltonians (4.3) and (4.4e).

First, the twofold degeneracy due to the SUSY no longer exists for Hamiltonian (4.4e).
This is because the constraint (4.4d) means that under JW transformation only the
odd-parity sector of Hamiltonian (4.3) with periodic boundary conditions is mapped to
Hamiltonian (4.4e) with periodic boundary conditions.

Second, the fermion parity symmetry of Hamiltonian (4.3) is mapped to the Z2 Ising
symmetry generated by the operator

ÛI :=
M∏
j=1

σ̂zj . (4.5)
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However, unlike the fermion parity symmetry, the Ising symmetry can be explicitly or
spontaneously broken. The former happens when terms proportional to σ̂xj or σ̂yj are
added. The latter happens when the coefficient of σ̂zj term is set to zero, i.e.,

ĤI := −
M∑
j=1

σ̂xj σ̂
x
j+1. (4.6)

The Ising symmetry is spontaneously broken while the constraint (4.4d) is not satisfied
on the symmetry breaking ground states. In the Majorana language Hamiltonian (4.6)
maps to the Majorana chain

ĤD :=
M∑
j=1

iγ̂2j γ̂2j+1, (4.7)

for which the translation symmetry is explicitly broken. This Hamiltonian realizes the
nontrivial topological phase in symmetry class D in the Tenfold way [18, 19, 95]. When
open boundary conditions are imposed the Hamiltonian (4.7) has twofold degenerate
ground states that are symmetric under fermion parity. This twofold degenerate ground
states correspond to the linear combinations of two symmetry breaking ground states of
the Hamiltonian (4.6).

It is important to note that there is no LSM type theorem applies to the Hamiltonian
(4.4e). This can be seen as the Hamiltonian

ĤPM := −
M∑
j=1

σ̂zj , (4.8)

does not break Z2 Ising symmetry and translation symmetry while its paramagnetic
ground state is nondegenerate, gapped, and, symmetric. In light of this discussion, we
observe that Hamiltonians for which Theorem 3 applies, does not necessarily map to
Hamiltonians built out of bosonic degrees of freedom with a corresponding LSM type
constraint. We thus call Theorem 3 intrinsically fermionic.
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4.2 indices (ν , ρ)

Theorem 2 is only predictive once it is established that a projective representation of
Gf is non trivial. We recall that (i) the group Gf is a central extension of the group
G by ZF

2 through the map γ defined in Eq. (3.3b) and (ii) only the equivalence classes
[γ] ∈ H2

(
G, ZF

2

)
deliver non-isomorphic groups. Choosing an element [γ] ∈ H2

(
G, ZF

2

)
specifies Gf . In turn, a projective representation of Gf is specified by choosing an element
ϕ from the equivalence class [ϕ] ∈ H2(Gf , U(1)c) where the 2-cocycle ϕ was defined in Eq.
(3.8). To describe the cases when Theorem 2 is intrinsically fermionic, we shall distinguish
the projective representations of the group Gf that cannot be realized in bosonic models.
To this end, we must identify the contribution to the second group cohomology class [ϕ]

that is purely due to the “bosonic” symmetries G ∼= Gf/ZF
2 . Our intuition is that LSM

theorems due to the purely bosonic part apply to bosonic Hamiltonians with symmetry
group G.

When the group Gf splits, i.e., [γ] = 0 and Gf ∼= G× ZF
2 , this is achieved by using the

Künneth formula

H2
(
Gf , U(1)c

)
=H2

(
G× ZF

2 , U(1)c
)

=H2 (G, U(1)c) ×H1 (G, Z2) . (4.9)

The second cohomology group H2(G, U(1)c) classifies the projective representations
of the group G while the first cohomology group H1

(
G, Z2

)
classifies the projective

representations of Gf due to the nontrivial algebra of the elements of G with fermion
parity p ∈ ZF

2 . For the second cohomology group H2(G, U(1)c), we assign a 2-cochain
ν ∈ C2(G,U(1)) which is defined by restricting the domain of ϕ to G from Gf . For the
first cohomology H1

(
G, Z2

)
, we assign the 1-cochain ρ ∈ C1(G, Z2) which is defined by

ρ : G → Z2,

g 7→ ρ(g) :=
ϕ(g, p) − ϕ(p, g)

π
mod 2.

(4.10)

We recognize that the map (4.10) is the fermion parity ρ(g) ∈ {0, 1} ≡ Z2 defined in Eq.
(3.6d). All told, when the central extension Gf of the group G by ZF

2 splits, the Künneth
formula (4.9) predicts that

[ϕ] ≡ ([ν], [ρ]) (4.11)
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When the central extension Gf of the group G by ZF
2 does not split, i.e., [γ] ̸= 0, then

the identification (4.11) is no longer correct. In this case, the equivalence classes [(ν, ρ)]
of the pair (ν, ρ) ∈ C2(G, U(1)) ×C1(G, Z2) that satisfy the conditions [139]

(δν − π ρ ⌣ γ, δρ) = (0, 0), (4.12a)

are in one to one correspondence with the second cohomology classes [ϕ] ∈ H2(Gf , U(1)c),
see Appendix A.4. Here, the operation δ is defined in Eq. (A.3), while ⌣ denotes the cup
product defined in Eq. (A.9). Two pairs (ν, ρ) and (ν′, ρ′) are equivalent to each other if
there exists another pair (α,β), whereby

α : G → [0, 2π),

g 7→ α(g),
(4.12b)

while β ∈ Z2 such that

(ν, ρ) = (ν′, ρ′) + (δα+ πβ ⌣ γ, δβ) . (4.12c)

Hence, the second cohomology class is identified with

[ϕ] ≡ [(ν, ρ)] (4.12d)

It can be seen from Eqs. (4.12a) and (4.12c) that if [γ] = 0 then δν = 0, which is the
defining condition for ν to be a 2-cocycle. We may then identify the gauge equivalent classes
[ν] with the elements of the Abelian group H2 (G, U(1)c) and the identification (4.12d)
reduces to the one in Eq. (4.11). However, when [γ] ̸= 0, the function ν : G×G → U(1)
is called a 2-cochain and belongs to the set C2 (G, U(1)). In practice, Eq. (4.12) ties the
2-cochain ν to the 2- and 1-cochains γ and ρ that belong to the sets C2

(
G, ZF

2

)
and

C1
(
G, Z2

)
, respectively. From now on, we shall use the notation (4.12d) to trade in

general the second cohomology class [ϕ] with the equivalence class [(ν, ρ)] and reserve
the notation ([ν], [ρ]) of Eq. (4.11) for the case when the underlying fermionic symmetry
group Gf splits (i.e., [γ] = 0).
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4.3 intrinsically fermionic lsm theorem 2 when ρ ̸= 0

Motivated by Eqs. (4.11) and (4.12), we call LSM constraints following from Theorem 2
intrinsically fermionic if the 1-cochain ρ ∈ C1(G, Z2) is nonvanishing, i.e., ρ(g) = 1 for
some g ∈ G. In physical terms, this means that the local projective representation ûj(g)

of at least one element in g carries odd fermion parity.
Assume that g is one such element with ρ(g) = 1. Using (3.12a), the global representa-

tion is

Û(g) =


∏N

j=1
v̂j(g) ûj(p), if c(g) = 0,

[∏N

j=1
v̂j(g) ûj(p)

]
K, if c(g) = 1.

(4.13a)

When the number of sites N is odd Û(g) anticommutes with the global fermion parity
operator Û(g). As it was the case with global translation operator in Sec. 4.1, any
Hamiltonian that commutes with Û(g) has quantum mechanical SUSY and all states in
its spectrum are at least doubly degenerate. When the number of sites N is even, Û(g)

carries even fermion parity. We observe that

T̂1 Û(g) T̂−1
1 =


∏N

j=1
v̂j+1(g) ûj+1(p), if c(g) = 0,

[∏N

j=1
v̂j+1(g) ûj+1(p)

]
K, if c(g) = 1

= −


∏N

j=1
v̂j(g) ûj(p), if c(g) = 0,

[∏N

j=1
v̂j(g) ûj(p)

]
K, if c(g) = 1

= −Û(g) (4.13b)

where the minus sign follows from reordering the local representations v̂j(g) each of which
carries odd fermion parity by assumption. This is to say that Û(g) and T̂1 anticommutes
and the spectrum of any Hamiltonian that is invariant under these is at least twofold
degenerate. We emphasize that this algebra does not occur in Hamiltonians built out
of bosonic degrees of freedom where local operators v̂j(g) and v̂

j′ (g) commute for any
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j, j′ = 1, · · · ,N . More precisely, consider the situation for bosonic degrees of freedom
where we replaced the fermion parity symmetry ZF

2 with an ordinary Z2 symmetry. We
can also introduce a 1-cochain ρ(g) which encodes whether the local representation ûj(g)
commute or anticommute with the local representation of the generator of Z2, say ûj(g̃).
However, the operators v̂j(g) and v̂

j′ (g) commute irrespective of the value of ρ(g). In the
fermionic case, the 1-cochain ρ is tied to the statistics of underlying degrees of freedom.

The minus sign in Eq. (4.13b) can be removed by imposing antiperiodic boundary
conditions. This is done by twisting the translation operator by fermion parity at one
site, say j = 1. If so one has

T̂1(p) Û(g) T̂−1
1 (p) = û1(p) T̂1 Û(g) T̂−1

1 (p)û1(p)

= −û1(p) Û(g) û1(p)

= Û(g), (4.14a)

where the last equality follows since conjugating v̂1(g) by û1(p) gives a minus sign. With
antiperiodic boundary conditions, global representation of g and the twisted translation
operator commute. Theorem 2 still applies. A Hamiltonian that is invariant under both
T̂ (p) and Û(g) cannot have a gapped, symmetric, and nondegenerate ground state since
under the twisted boundary conditions again (from antiperiodic to periodic boundary
conditions) the ground state of the Hamiltonian is at least twofold degenerate (recall
the argument presented in Sec. 3.4.1). Similarly, if g is a unitarily represented element,
i.e., c(g) = 0, the minus sign in Eq. (4.13b) can also be removed by imposing boundary
conditions twisted by element g as well. In this case, the twisted translation operator
T̂1(g) anticommutes with the global fermion parity operator. The Hamiltonians symmetric
under such boundary conditions are then endowed with SUSY.

To better understand why Theorem 2 when ρ ̸= 0 is intrinsically fermionic, let us
consider the following concrete representation of the group Gf = Z2 × ZF

2

ûj(g) = ξ̂j , ûj(p) = iη̂j ξ̂j , (4.15a)

η̂2
j = ξ̂2

j = 1̂,
{
η̂j , ξ̂j

}
= 0, (4.15b)

Û(g) =

2N∏
j=1

ûj(g)ûj(p) = i2N
2N∏
j=1

η̂j , (4.15c)
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Û(p) =

2N∏
j=1

ûj(p) = i2N
2N∏
j=1

η̂j ξ̂j . (4.15d)

Each repeat unit cell, labeled by j = 1, · · · , 2N , contains two Majorana degrees of freedom
ξ̂j and η̂j . Therefore, [µ] = 0 and Theorem 3 is inactive. The local representation ûj(g)

carries odd fermion parity and therefore ρ(g) = 1 1.
Let Ĥ be a local fermionic Hamiltonian that is symmetric under Û(g) and translation

generated by T̂1. By the argument we presented, Ĥ has at least twofold degenerate ground
states, because Û(g) anticommutes with the translation operator T̂1. We use the JW
transformation

ξ̂j =

(∏
j′<j

σ̂zj′

)
σ̂xj , η̂j =

(∏
j′<j

σ̂zj′

)
σ̂yj , (4.16a)

to map the operators Û(g) and Û(p) to their bosonic forms

Û(g) =

2N∏
j=1

(∏
j′<j

σ̂zj′

)
σ̂yj =

N∏
j=1

iσ̂x2j−1 σ̂
y
2j , (4.16b)

Û(p) =

2N∏
j=1

σ̂zj . (4.16c)

We observe that after the JW transformation the symmetry operator Û(g) while be-
ing locality-preserving and onsite, does not commute with translation symmetry as it
implements different transformation rules on even and odd sites. Instead, the algebra

T̂1 Û(g) T̂ †
1 = Û(g)Û(p). (4.16d)

This is to say that the total symmetry group Gf × Z
2N = Z2 × ZF

2 × Z
2N in the

fermionic language maps to the group Gf ⋊ Z
2N =

(
Z2 × ZF

2

)
⋊ Z

2N in the bosonic
language under the JW transformation, i.e., the direct product of the internal and spatial
symmetries becomes a semidirect product. Because of the semidirect product in the

1 This is the only nontrivial local projective representation of the group Z2 × ZF
2 .
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bosonic language, there is no LSM constraint analogous to Theorem 2 2. Intuitively, the
representation (4.16b) breaks the translation symmetry as follows. JW transformation
maps Majorana operator on a single site to strings of spin-1/2 operators which are nonlocal.
The local representation ûj(g) defined in Eq. (4.15a) contains odd number of Majorana
operators and necessarily mapped to a nonlocal string operator under JW transformation.
In particular, û

2N (g) acts on the entire chain in the bosonic language. Therefore, an
even-odd effect appears in the global representation Û(g). The fact that Û(g) commutes
with translation by two sites (T̂ 2

1 ) is related to the fact that when each pair of adjacent
sites 2j − 1 and 2j are combined into a single site the resulting local representations
(acting on the single site comprised of the two sites) carry even fermion parity. One
can interpret this as a “trivialization” of the index ρ at the expense of introducing the
semidirect product algebra in Eq. (4.16d).

To recapitulate, we have shown that the LSM constraints due to Theorem 3 and
Theorem 2 when ρ ̸= 0 only applies to Hamiltonians that are built out of fermionic
degrees of freedom. Specifically, under the JW transformation, the corresponding LSM
constraints in the fermionic language disappear. This means that for the resulting bosonic
Hamiltonians, there may be symmetric perturbations that stabilize nondegenerate, gapped
and symmetric ground state. We, therefore, call the LSM theorems for which either
ρ ̸= 0 or [µ] ̸= 0 of the triplet ([ϕ], [µ]) ≡ ([(ν, ρ)], [µ]), intrinsically fermionic. All LSM
constraints that are due to the presence of nontrivial local projective representations and
translation symmetries are contained within the index ν.

2 Recall that the direct product structure of the internal and spatial symmetries is crucial for Theorems
2 and 3 as discussed in Sec. 3.



5
E X A M P L E S O F H A M I LT O N I A N S

We supplement the discussion in previous Sections by example Hamiltonians for which
Theorem 2 applies 1. We focus on three fermionic symmetry groups: (i) Gf = ZT

2 × ZF
2 ,

(ii) Gf = Z2 × Z2 × ZF
2 , and, (iii) Gf = ZFT

4 . The first two are split groups ([γ] = 0)
while the last one is a nontrivial central extension of time-reversal symmetry ZT

2 . For
simplicity, we consider the case of one-dimensional space and set the index [µ] = 0, i.e.,
even number of Majorana degrees of freedom at each repeat unit cell. For each group, we
then give examples of local representations for various values of the indices [(ν, ρ)] defined
in Sec. 4.2. The details on the corresponding second cohomology groups are derived in
Appendix A.1.

The lattice is Λ = {1, · · · , 2N}, i.e., one-dimensional bipartite lattice of cardinality
|Λ| = 2N . Given any one of these groups, we shall define a global fermionic Fock space
FΛ = F0 ⊕ F1 and construct a projective representation that realizes the indices [(ν, ρ)]
labeling H2(Gf , U(1)c). The global fermionic Fock space FΛ = F0 ⊕ F1 is here always
constructed from 2n |Λ| Hermitian operators

ξ̂j,α = ξ̂†
j,α, η̂j,α = η̂†

j,α, j ∈ Λ, α = 1, · · · ,n, (5.1a)

obeying the Majorana (Clifford) algebra{
η̂j,α, η̂j′,α′

}
=
{
ξ̂j,α, ξ̂j′,α′

}
= 2δj,j′ δα,α′ ,

{
η̂j,α, ξ̂j′,α′

}
= 0. (5.1b)

Since the index [µ] = 0, n is an even integer and we define the fermionic creation and
annihilation operators

ĉ†
j,α :=

1
2
(
η̂j,α − iξ̂j,α

)
, ĉj,α :=

1
2
(
η̂j,α + iξ̂j,α

)
, (5.2a)

1 Hamiltonians (4.2) and (4.3) provide two examples to which Theorem 3 applies.

67
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with j ∈ Λ and α = 1, · · · ,n. The local and global fermionic Fock space Fj and FΛ are
then

Fj := span
{ n∏
α=1

(
ĉ†
j,α

)nj,α |0⟩

∣∣∣∣ nj,α = 0, 1, ĉj,α |0⟩ = 0
}

(5.2b)

and

FΛ := span
{∏
j∈Λ

n∏
α=1

(
ĉ†
j,α

)nj,α |0⟩

∣∣∣∣ nj,α = 0, 1, ĉj,α |0⟩ = 0
}

, (5.2c)

respectively. We define the operation of complex conjugation K by its action

K
(
z ĉ†
j,α +w ĉj′,α′

)
K := z∗ ĉ†

j,α +w∗ ĉj′,α′ (5.3a)

for any pair of complex number z,w ∈ C. This implies the transformation law

K η̂j,α K = +η̂j,α, K ξ̂j,α K = −ξ̂j,α, (5.3b)

for any j ∈ Λ and α = 1, · · · ,n.
Given two example local representations û1,j and û2,j with indices (ν1, ρ1) and (ν2, ρ2),

we construct a third representation û∧,j by

û∧,j(g) = v̂1(g) v̂2(g) [û1(p)]
ρ2(g) [û2(p)]

ρ1(g) Kc(g), (5.4)

for any element g ∈ Gf , where v̂1,j and v̂2,j are the unitary parts of the representations
û1,j and û2,j as defined in Eq. (3.6c). Note that Eq. (5.4) resembles Eq. (3.12a) when
the number of sites is just two and translation invariance is not imposed (representations
on the two sites can carry different indices). This is not a coincidence as Eq. (5.4) is
an example of fermionic stacking rules of projective representations. We will devote the
entire Chapter 7 to the derivation of general stacking rules of indices ([(ν, ρ)], [µ]) and to
their physical significance in classifying invertible phases. For the purposes of this Section,
we shall only use Eq. (5.4) to systematically construct local projective representations
of the groups ZT

2 × ZF
2 , Z2 × Z2 × ZF

2 , and, ZFT
4 when [µ] = 0. For each group, this

exercise will reveal a group structure of the indices [(ν, ρ)] under the stacking rule (5.4).
Group structures of indices [(ν, ρ)] for each group are derived in Appendix A.5 using the
results from Chapter 7.



5.1 symmetry group ZT
2 × ZF

2 69

5.1 symmetry group ZT
2 × ZF

2

The symmetry group Gf := ZT
2 × ZF

2 is a split group. The group G := ZT
2 = {e, t}

corresponds to reversal of time. The local antiunitary representation ûj(t) of reversal of
time generates a projective representation of the group ZT

2 . The local unitary representa-
tion ûj(p) of the fermion parity p generates a projective representation of the group ZF

2 .
According to Appendix A.5.1, all cohomologically distinct projective representations of
ZT

2 × ZF
2 are determined by the independent indices [ν] = 0, 1 and [ρ] = 0, 1 through the

relations 2

ûj(t) ûj(t) = (−1)[ν] ûj(e), (5.5a)

ûj(t) ûj(p) = (−1)[ρ] ûj(p) ûj(t), (5.5b)

This gives the four distinct group cohomology classes

([ν], [ρ]) ∈
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
. (5.5c)

Under stacking rule (5.4), these indices form the group Z4, see Appendix A.5.1. All but
the group cohomology class ([ν], [ρ]) = (1, 0) can be realized using n = 2 local Majorana
flavors. The group cohomology class ([ν], [ρ]) = (1, 0) requires at least n = 4 local
Majorana flavors for it to be realized. For each possibility in Eq. (5.5c), we will present an
example local representation and a Hamiltonian that is invariant under the corresponding
symmetry transformation. As we shall see, the local projective representations of the
group ZT

2 × ZF
2 renders any invariant Hamiltonian to be intrinsically interacting, i.e.,

any symmetric Hamiltonian must consist of terms that are at least quartic in Majorana
operators.

5.1.1 Group Cohomology Class (0, 1)

The local fermionic Fock space Fj of dimension D = 2 is generated by the doublet of
Majorana operators

χ̂†
j ≡
(
η̂j ξ̂j

)
, j = 1, · · · , 2N . (5.6)

2 We have chosen the convention of always representing the generator p of ZF
2 by a Hermitian operator

according to Eq. (3.6e)
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One verifies that

ûj(t) := η̂j K, ûj(p) := iξ̂j η̂j , (5.7a)

realizes the projective algebra (5.5) with ([ν], [ρ]) = (0, 1), and implements the transfor-
mations

ûj(t) η̂j û
†
j (t) = +η̂j , ûj(t) ξ̂j û

†
j (t) = +ξ̂j , (5.7b)

ûj(p) η̂j û
†
j (p) = −η̂j , ûj(p) ξ̂j û

†
j (p) = −ξ̂j . (5.7c)

One verifies that the Majorana doublet (5.6) is even under conjugation by ûj(t) and odd
under conjugation by ûj(p). Time-reversal symmetry forbids any Hermitian quadratic
form for the doublet (5.6). We consider the Hamiltonian

Ĥpbc := λ

2N∑
j=1

η̂j ξ̂j η̂j+1 ξ̂j+1 = λ

2N∑
j=1

ûj(p) ûj+1(p) λ ∈ R. (5.8a)

This Hamiltonian is nothing but the sum of commuting terms with eigenvalues ±1.
Therefore, it can be equivalently represented by the Ising Hamiltonian

Ĥpbc ≡ λ

2M∑
j=1

σ̂j σ̂j+1, σ̂j ≡ ûj(p) (5.8b)

When λ < 0, Hamiltonian (5.8b) has twofold degenerate ground states |+⟩
F

and |−⟩
F

that are specified by

ûj(p)|±⟩F = ±|±⟩F, j = 1, · · · , 2N . (5.9a)

Since ûj(t) and ûj(p) anticommute, states |+⟩
F

and |−⟩
F

break spontaneously time-
reversal symmetry at zero temperature and thermodynamic limit, while translation and
fermion parity symmetries are preserved.

When λ > 0, Hamiltonian (5.8b) has twofold degenerate ground states |+⟩
AF

and
|−⟩

AF
that are specified by

ûj(p)|±⟩AF = ∓(−1)j |±⟩AF, j = 1, · · · , 2N . (5.9b)
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Since ûj(t) and ûj(p) anticommute and translation maps one state to the other, states
|+⟩

AF
and |−⟩

AF
break spontaneously time-reversal and translation symmetries at zero

temperature and thermodynamic limit, while fermion parity symmetry is preserved.

5.1.2 Group Cohomology Class (1, 0)

The local fermionic Fock space Fj of dimension D = 4 is generated by the quartet of
Majorana operators 3

χ̂†
j ≡
(
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2

)
, j = 1, · · · , 2N . (5.10)

One verifies that stacking two copies of the representation (5.7) according to the rule
(5.4) delivers

ûj(t) := ξ̂j,1 ξ̂j,2 K, ûj(p) := −ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2. (5.11a)

This representation realizes the projective algebra (5.5) with ([ν], [ρ]) = (1, 0) and imple-
ments the transformations

ûj(t) η̂j,α û
†
j (t) = +η̂j,α, ûj(t) ξ̂j,α û

†
j (t) = +ξ̂j,α, (5.11b)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.11c)

for α = 1, 2. One verifies that the Majorana quartet (5.10) is even under conjugation by
ûj(t) and odd under conjugation by ûj(p). These transformation rules are identical to
those in Eq. (5.7c) by construction of the stacking rule (5.4). Hence, two copies of the
Hamiltonian (5.8a) is symmetric under the representation (5.7a). Time-reversal symmetry
forbids any Hermitian quadratic form for the quartet (5.10).

Another symmetric Hamiltonian is obtained by coupling the two flavors α = 1 and
α = 2. We define

Ĥpbc := λ

2N∑
j=1

η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 = −λ
2N∑
j=1

ûj(p) λ ∈ R. (5.12)

3 It is not possible to represent the group cohomology class ([ν], [ρ]) = (1, 0) with a doublet of Majorana
operators.
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All terms in this Hamiltonian are mutually commuting and supported on only a single
site. Furthermore, one has the identity(

η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2

)2
= û2

j (p) = 1̂, (5.13)

i.e., on the four dimensional local Fock space Fj operator η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 has eigenvalues of
±1 each of which is twofold degenerate. Therefore, the ground states of Hamiltonian (5.12)
are gapped with an excitation gap 2λ and extensively degenerate with total degeneracy
22N (which diverges exponentially in the thermodynamic limit N → ∞). Since the total
number of sites is even, 2N , all 22N -fold degenerate ground states of Hamiltonian (5.12)
carry even total fermion parity while all 22N -fold degenerate excited states carry odd
total fermion parity. As the representation ûj(t) squares to minus identity, the twofold
degenerate eigenstates of ûj(p) in the local Fock space Fj form Kramer’s doublets. Hence,
22N -fold degenerate ground states of Hamiltonian (5.12) form 2N doublets that map to
one another under reversal of time. This means that each one of the 22N -fold degenerate
ground states spontaneously breaks reversal of time.

5.1.3 Group Cohomology Class (1, 1)

The local fermionic Fock space Fj of dimension D = 8 is generated by the sextet of
Majorana operators

χ̂†
j ≡
(
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 η̂j,3 ξ̂j,3

)
, j = 1, · · · , 2N . (5.14)

One verifies that stacking representation (5.7) with representation (5.11) according to the
rule (5.4) delivers

ûj(t) := ξ̂j,1 ξ̂j,2 ξ̂j,3 K, ûj(p) := −iξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3. (5.15a)

This representation realizes the projective algebra (5.5) with ([ν], [ρ]) = (1, 1) and imple-
ments the transformations

ûj(t) η̂j,α û
†
j (t) = +η̂j,α, ûj(t) ξ̂j,α û

†
j (t) = +ξ̂j,α, (5.15b)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.15c)
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for α = 1, 2, 3. One verifies that the Majorana sextet (5.14) is even under conjugation
by ûj(t) and odd under conjugation by ûj(p). These transformation rules are identical
to those in Eqs. (5.7c) and (5.11c) by construction of the stacking rule (5.4). Hence,
three copies of the Hamiltonian (5.8a) is symmetric under the representation (5.7a).
Time-reversal symmetry forbids any Hermitian quadratic form for the sextet (5.14).

Another symmetric Hamiltonian is obtained by coupling the three flavors α = 1, 2, 3.
We define

Ĥpbc := λ

2N∑
j=1

{
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 + η̂j,2 ξ̂j,2 η̂j,3 ξ̂j,3 + η̂j,3 ξ̂j,3 η̂j,1 ξ̂j,1

}
= −λ

2N∑
j=1

{
σ̂j,1 σ̂j,2 + σ̂j,2 σ̂j,3 + σ̂j,3 σ̂j,1

}
, (5.16)

σ̂j,α ≡ iξ̂j,α η̂j,α, α = 1, · · · , 3, λ ∈ R,

All terms in this Hamiltonian are mutually commuting and supported on only a single site.
The representation in terms of Ising degrees of freedom σ̂j,α implies that Hamiltonian
(5.16) is nothing but 2N decoupled Ising triangles.

When λ > 0, the ground states are specified by all local Ising degrees of freedom at site
j being aligned. In the eight dimensional local Fock space Fj there are two such states,
say |j, ±⟩

F
. The states |j, −⟩

F
and |j,+⟩

F
carry opposite fermion parities and mapped

to each other under the reversal of time The ground states of Hamiltonian (5.16) has
extensive degeneracy of 22N (which diverges exponentially in the thermodynamic limit
N → ∞). Each one of the 22N -fold degenerate ground states carries even total fermion
parity and spontaneously breaks reversal of time.

When λ < 0, the ground states are specified by all local Ising degrees of freedom at
site j being anti-aligned. This is to say that each Ising triangle is frustrated which leads
to a twofold local degeneracy In the eight dimensional local Fock space Fj there are six
such states, say |j, ±,α⟩

AF
with α = 1, 2, 3. For fixed α, the pair of states |j, −,α⟩

AF
and

|j,+,α⟩
AF

carry opposite fermion parities and mapped to each other under the reversal
of time. Therefore, the ground states of Hamiltonian (5.16) has extensive degeneracy of
62N (which diverges exponentially in the thermodynamic limit N → ∞). Each one of the
62N -fold degenerate ground states carries even total fermion parity and spontaneously
breaks reversal of time.
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5.1.4 Group Cohomology Class (0, 0)

The local fermionic Fock space Fj of dimension D = 8 is generated by the octet of
Majorana operators

χ̂†
j ≡
(
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 η̂j,3 ξ̂j,3 η̂j,4 ξ̂j,4

)
, j = 1, · · · , 2N . (5.17)

One verifies that stacking representation (5.7) with representation (5.15) according to the
rule (5.4) delivers

ûj(t) := ξ̂j,1 ξ̂j,2 ξ̂j,3 ξ̂j,4 K, ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4. (5.18a)

This representation realizes the projective algebra (5.5) with ([ν], [ρ]) = (0, 0) and imple-
ments the transformations

ûj(t) η̂j,α û
†
j (t) = +η̂j,α, ûj(t) ξ̂j,α û

†
j (t) = +ξ̂j,α, (5.18b)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.18c)

for α = 1, · · · , 4. One verifies that the Majorana octet (5.17) is even under conjugation
by ûj(t) and odd under conjugation by ûj(p). These transformation rules are identical to
those in Eqs. (5.7c) (5.11c), and, (5.15c) by construction of the stacking rule (5.4).

Since the indices take the values ([ν], [ρ]) = (0, 0), Theorem 2 is inoperative. It is
possible to find examples of both nondegenerate and degenerate gapped Hamiltonians
that are translationally invariant and Gf -symmetric. To prove this claim, consider the
Hamiltonian

Ĥpbc :=
2N∑
j=1

{
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 + η̂j,2 ξ̂j,2 η̂j,3 ξ̂j,3

+ η̂j,3 ξ̂j,3 η̂j,4 ξ̂j,4 + ξ̂j,1 ξ̂j,2 ξ̂j,3 ξ̂j,4

}
= −

2N∑
j=1

{
σ̂j,1 σ̂j,2 + σ̂j,2 σ̂j,3 + σ̂j,3 σ̂j,4 − ξ̂j,1 ξ̂j,2 ξ̂j,3 ξ̂j,4

}
, (5.19)

σ̂j,α ≡ iξ̂j,α η̂j,α, α = 1, · · · , 4, λ ∈ R.
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Hamiltonian (5.19) is sum of pairwise commuting terms. Each term supported on site
j has a nondegenerate ground state. To see this, we note that the first three terms in
Hamiltonian (5.19) requires the four Ising degrees of freedom σ̂j,α to either all align or
all anti-align in the ground state manifold. Therefore, the first three terms alone have
twofold degenerate ground states, say |j, ±⟩. The states |j, ±⟩ both carry even fermion
parity and mapped to each other under reversal of time. The last term in Hamiltonian
(5.19) then selects the time-reversal symmetric linear combination |j,+⟩ − |j, −⟩ as the
nondegenerate and symmetric ground state of each local term in Hamiltonian (5.19). The
tensor product

2N⊗
j=1

(
|j,+⟩ − |j, −⟩

)
(5.20)

is then the nondegenerate, translationally invariant, and, Gf -symmetric ground state of
Hamiltonian (5.19).

5.2 symmetry group Z2 × Z2 × ZF
2

The symmetry group Gf := Z2 × Z2 × ZF
2 is a split group. As usual, ZF

2 is generated
by p. The Abelian group G := Z2 × Z2. has two generators g1 and g2 that commute
pairwise, while each of them squares to the identity. We shall only consider the case when
the local number of Majorana flavors n = 2m is an even positive integer. The index µ

then takes the value µ = 0.
According to Appendix A.5.2, local projective representations of Gf can be labeled by

the pair of indices [ν] ∈ H2(G, U(1)c) and [ρ] = ([ρ]1, [ρ]2) with
(
[ρ]1, [ρ]2

)
∈ H1

(
G, Z2

)
through the relations 4

û(g1) û(g2) = (−1)[ν] û(g2) û(g1), [ν] = 0, 1, (5.21a)

û(gi) û(p) = (−1)[ρ]i û(p) û(gi), [ρ]i = 0, 1. (5.21b)

4 We have chosen the convention of always representing the generator p of ZF
2 by a Hermitian operator

according to Eq. (3.6e)
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This gives the eight distinct group cohomology classes

([ν], [ρ]) =
{(

0, (0, 0)
)

,
(

0, (0, 1)
)

,
(

0, (1, 0)
)

,
(

0, (1, 1)
)

,(
1, (0, 0)

)
,
(

1, (0, 1)
)

,
(

1, (1, 0)
)

,
(

1, (1, 1)
)}

.
(5.22)

Here, the group cohomology class
(

0, (0, 0)
)

is interpreted as the trivial representation.
Theorem 2 is predictive for any of the remaining seven group cohomology classes. It
is shown in Appendix A.5.2 that these eight distinct group cohomology classes form
the (stacking) group Z2 × Z2 × Z2, whereby the group composition is defined by the
stacking rule (5.4). We choose the generators of this (stacking) group to be the three
group cohomology classes

(
1, (1, 0)

)
,
(

1, (0, 1)
)

, and
(

1, (0, 0)
)

.

5.2.1 Group Cohomology Class
(

1, (1, 0)
)

The local fermionic Fock space Fj of dimension D = 4 is generated by the quartet of
Majorana operators

χ̂†
j ≡
(
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2

)
, j = 1, · · · , 2N . (5.23)

One verifies that

ûj(g1) := η̂j,1, ûj(g2) := η̂j,1 η̂j,2, ûj(p) := −ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2, (5.24a)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

1, (1, 0)
)

and implements
the transformations

ûj(g1) η̂j,α û
†
j (g1) = (−1)α+1 η̂j,α, ûj(g1) ξ̂j,α û

†
j (g1) = −ξ̂j,α, (5.24b)

ûj(g2) η̂j,α û
†
j (g2) = −η̂j,α, ûj(g2) ξ̂j,α û

†
j (g2) = +ξ̂j,α, (5.24c)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.24d)

for α = 1, 2.
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An example of a translation- and Gf -invariant Hamiltonian of quadratic order is

Ĥpbc :=
2N∑
j=1

2∑
α=1

{
λαiη̂j,α η̂j+1,α + λ′

αiξ̂j,α ξ̂j+1,α

}
+ λ

2N∑
j=1

{
iξ̂j,1 ξ̂j,2

}
, (5.25)

with λα, λ′
α, λ ∈ R. This Hamiltonian does not conserve the fermion-number in the

fermion-number basis (5.2). It can be thought of as four Kitaev chains each of which has
an effective index µ = 1. When λ = 0, all Kitaev chains decouple and are fine-tuned to
their quantum critical point (3.49) between their symmetry-protected and topologically
inequivalent gapped phases. Two of the Kitaev chains are coupled by the on-site term
iξ̂j,1 ξ̂j,2, which gaps their spectrum. The low-energy sector of the theory is that of two
decoupled quantum critical Kitaev chains containing the η̂j,α degrees of freedom. The
quadratic term iη̂j,1 η̂j,2 that would gap remaining gapless degrees of freedom, thereby
delivering a nondegenerate gapped ground state, is odd under conjugation by ûj(g1) and
thus forbidden by symmetry. The stability of this gapless phase to on-site quadratic
perturbations can thus be thought of as a consequence of Theorem 2, which also predicts
that any Gf -symmetric interaction that opens a spectral gap in the noninteracting
spectrum must break spontaneously at least one of the symmetries responsible for the
noninteracting spectrum being gapless.

When two copies of this
(

1, (1, 0)
)

representation are stacked according to Eq. (5.4),
the local fermionic Fock space Fj of dimension D = 16 is generated by the octuplet of
Majorana operators

χ̂†
j ≡
(
η̂j,1 ξ̂j,1 η̂j,2 ξ̂j,2 η̂j,3 ξ̂j,3 η̂j,4 ξ̂j,4

)
, j = 1, · · · , 2N . (5.26)

One verifies that

ûj(g1) := ξ̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 ξ̂j,4 η̂j,4, (5.27a)

ûj(g2) := η̂j,1 η̂j,2 η̂j,3 η̂j,4, (5.27b)

ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4, (5.27c)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

0, (0, 0)
)

, i.e., the trivial
projective representation. In this trivial representation, for any Majorana operator there
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exists another one such that they transform identically under Gf . For instance, one can
choose the pairs{

ξ̂j,1, ξ̂j,2

}
,
{
ξ̂j,3, ξ̂j,4

}
,
{
η̂j,2, η̂j,4

}
,
{
η̂j,1, η̂j,3

}
. (5.28)

This means that all onsite terms that are coupling these pairs are then Gf symmetric.
The ground-state degeneracy of any translation- and Gf -invariant Hamiltonian can be
lifted by including the 4 on-site terms, i.e., Theorem 2 is not predictive.

5.2.2 Group Cohomology Class
(

1, (0, 1)
)

The local fermionic Fock space Fj of dimension D = 4 is generated by the quartet of
Majorana operators (5.23). One verifies that

ûj(g1) := η̂j,1 η̂j,2, ûj(g2) := η̂j,1, ûj(p) := −ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2, (5.29a)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

1, (0, 1)
)

and implements
the transformations

ûj(g1) η̂j,α û
†
j (g1) = −η̂j,α, ûj(g1) ξ̂j,α û

†
j (g1) = +ξ̂j,α, (5.29b)

ûj(g2) η̂j,α û
†
j (g2) = (−1)α+1 η̂j,α, ûj(g2) ξ̂j,α û

†
j (g2) = −ξ̂j,α, (5.29c)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.29d)

for α = 1, 2.
Equation (5.29) differs from Eq. (5.24) by interchanging g1 and g2. This difference

does not affect the reasoning leading to to the conclusion that the gapless Hamiltonian
(5.25) cannot be gapped by onsite quadratic terms without breaking Gf symmetry. This
difference also implies that stacking two copies of the

(
1, (0, 1)

)
representation (5.29)

delivers the trivial projective representation
(

0, (0, 0)
)

encoded by Eqs. (5.26) and (5.27),
for which Theorem 2 is not predictive anymore.
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5.2.3 Group Cohomology Class
(

1, (0, 0)
)

The local fermionic Fock space Fj of dimension D = 4 is generated by the quartet of
Majorana operators (5.23). One verifies that

ûj(g1) := η̂j,1 η̂j,2, ûj(g2) := ξ̂j,1 η̂j,2, ûj(p) := −ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2, (5.30a)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

1, (0, 0)
)

and implements
the transformations

ûj(g1) η̂j,α û
†
j (g1) = −η̂j,α, ûj(g1) ξ̂j,α û

†
j (g1) = +ξ̂j,α, (5.30b)

ûj(g2) η̂j,α û
†
j (g2) = (−1)α+1 η̂j,α, ûj(g2) ξ̂j,α û

†
j (g2) = (−1)α ξ̂j,α, (5.30c)

ûj(p) η̂j,α û
†
j (p) = −η̂j,α, ûj(p) ξ̂j,α û

†
j (p) = −ξ̂j,α, (5.30d)

An example of a translation- and Gf -invariant Hamiltonian of quadratic order is

Ĥpbc :=
2N∑
j=1

2∑
α=1

{
λαiη̂j,α η̂j+1,α + λ′

αiξ̂j,α ξ̂j+1,α

}
, (5.31)

with λα, λ′
α ∈ R, i.e., four decoupled Kitaev chains that are fine-tuned to their quantum

critical point (3.49) between their symmetry-protected and topologically inequivalent
gapped phases. No on-site quadratic term is allowed by the symmetries. The stability
of this gapless phase to on-site quadratic perturbations can thus be thought of as a
consequence of Theorem 2. Theorem 2 also predicts that any Gf -symmetric interaction
that opens a spectral gap in the noninteracting spectrum must break spontaneously at
least one of the symmetries responsible for the noninteracting spectrum being gapless.

When two copies of this
(

1, (0, 0)
)

representation are stacked according to Eq. (5.4),
the local fermionic Fock space Fj of dimension D = 16 is generated by the octuplet of
Majorana operators (5.26) with the projective representation

ûj(g1) := η̂j,1 η̂j,2 η̂j,3 η̂j,4, (5.32a)

ûj(g2) := ξ̂j,1 η̂j,2 ξ̂j,3 η̂j,4, (5.32b)

ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4, (5.32c)
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that realizes the group cohomology class ([ν], [ρ],µ) =
(

0, (0, 0), 0
)

, i.e., the trivial group
cohomology class. In this trivial representation, it is possible to choose four pairs of
Majorana operators such that onsite terms coupling them is Gf -symmetric. The ground-
state degeneracy of any translation- and Gf -invariant Hamiltonian can be lifted by
including these four on-site terms. Theorem 2 is not predictive.

5.2.4 Group Cohomology Class
(

1, (1, 1)
)

When representations (5.24) and (5.29) are stacked according to Eq. (5.4), the local
fermionic Fock space Fj of dimension D = 16 is generated by the octuplet of Majorana
operators (5.26). One verifies that

ûj(g1) := ξ̂j,1 η̂j,2 ξ̂j,2 η̂j,3 η̂j,4, (5.33a)

ûj(g2) := η̂j,1 η̂j,2 ξ̂j,3 η̂j,4 ξ̂j,4, (5.33b)

ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4, (5.33c)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

1, (1, 1)
)

and implements
the transformations

ûj(g1) χ̂
†
j û

†
j (g1) =

(
−η̂j,1 +ξ̂j,1 +η̂j,2 +ξ̂j,2

+η̂j,3 −ξ̂j,3 +η̂j,4 −ξ̂j,4

)
, (5.33d)

ûj(g2) χ̂
†
j û

†
j (g2) =

(
+η̂j,1 −ξ̂j,1 +η̂j,2 −ξ̂j,2

−η̂j,3 +ξ̂j,3 +η̂j,4 +ξ̂j,4

)
, (5.33e)

ûj(p) χ̂
†
j û

†
j (p) =

(
−η̂j,1 −ξ̂j,1 −η̂j,2 −ξ̂j,2

−η̂j,3 −ξ̂j,3 −η̂j,4 −ξ̂j,4

)
. (5.33f)

Given the transformation rules (5.33), one cannot construct four disjoint pairs of Majorana
operators that transform in the same manner under both symmetries. One can at most
obtain three pairs such as{

ξ̂j,1, ξ̂j,2

}
,
{
η̂j,1, ξ̂j,4

}
,
{
η̂j,2, η̂j,4

}
, (5.34)
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which leaves the Majorana operators ξ̂j,3 and η̂j,3 unpaired. Therefore, the Gf - and
translation-symmetric Hamiltonian

Ĥpbc :=
2N∑
j=1

4∑
α=1

{
λαiη̂j,α η̂j+1,α + λ′

αiξ̂j,α ξ̂j+1,α

}
, (5.35)

with λα, λ′
α ∈ R, that describe eight decoupled Kitaev chains can be partially gapped

by three onsite terms. Because of the projective representation (5.33), the low-energy
sector described by two decoupled Kitaev chains cannot be gapped. The stability of this
gapless phase to on-site quadratic perturbations can thus be thought of as a consequence
of Theorem 2, which also predicts that any Gf -symmetric interaction that opens a
spectral gap in the noninteracting spectrum must break spontaneously at least one of the
symmetries responsible for the noninteracting spectrum being gapless.

When two copies of this
(

1, (1, 1)
)

representation are stacked, the local fermionic Fock
space Fj of dimension D = 256 is generated by 16 Majorana operators. One verifies that

ûj(g1) := η̂j,1 ξ̂j,3 ξ̂j,4 η̂j,5 ξ̂j,7 ξ̂j,8, (5.36a)

ûj(g2) := ξ̂j,1 ξ̂j,2 η̂j,3 ξ̂j,5 ξ̂j,6 η̂j,7, (5.36b)

ûj(p) :=
4∏

α=1

iξ̂j,α η̂j,α, (5.36c)

realizes the group cohomology class ([ν], [ρ]) =
(

0, (0, 0)
)

, i.e., the trivial group cohomology
class. There exists a bijective map α 7→ α′ := (α+ 4) mod 8 such that all on-site terms
iξ̂j,α ξ̂j,α′ and iη̂j,α η̂j,α′ with α = 1, · · · , 4 can be shown to be Gf -symmetric. The
ground-state degeneracy of any translation- and Gf -invariant Hamiltonian can be lifted by
including the 8 on-site terms iξ̂j,α ξ̂j,α+4 and iη̂j,α η̂j,α+4 with α = 1, · · · , 4, i.e., Theorem
2 is not predictive.
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5.2.5 Group Cohomology Class
(

0, (1, 0)
)

When representations (5.24) and (5.30) are stacked according to Eq. (5.4), the local
fermionic Fock space Fj of dimension D = 16 is generated by the octuplet of Majorana
operators (5.26). One verifies that

ûj(g1) := ξ̂j,1 η̂j,2 ξ̂j,2 η̂j,3 η̂j,4, (5.37a)

ûj(g2) := η̂j,1 η̂j,2 ξ̂j,3 η̂j,4, (5.37b)

ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4, (5.37c)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

0, (1, 0)
)

and implements
the transformations

ûj (g1) χ̂
†
j û

†
j (g1) =

(
−η̂j,1 +ξ̂j,1 +η̂j,2 +ξ̂j,2

+η̂j,3 −ξ̂j,3 +η̂j,4 −ξ̂j,4

)
, (5.37d)

ûj (g2) χ̂
†
j û

†
j (g2) =

(
−η̂j,1 +ξ̂j,1 −η̂j,2 +ξ̂j,2

+η̂j,3 −ξ̂j,3 −η̂j,4 +ξ̂j,4

)
, (5.37e)

ûj (p) χ̂
†
j û

†
j (p) =

(
−η̂j,1 −ξ̂j,1 −η̂j,2 −ξ̂j,2

−η̂j,3 −ξ̂j,3 −η̂j,4 −ξ̂j,4

)
. (5.37f)

Given the transformation rules (5.37), one cannot construct four disjoint pairs of
Majorana operators that transform in the same manner under both symmetries. One can
at most obtain three pairs such as{

ξ̂j,1, ξ̂j,2

}
,
{
η̂j,1, ξ̂j,3

}
,
{
η̂j,2, η̂j,4

}
, (5.38)

which leaves the Majorana operators ξ̂j,4 and η̂j,3 unpaired. Therefore, the Gf - and
translation-symmetric Hamiltonian (5.35) that describe eight decoupled Kitaev chains
can be partially gapped by three onsite terms. Because of the projective representation
(5.37), the low-energy sector described by two decoupled Kitaev chains cannot be gapped.
The stability of this gapless phase to on-site quadratic perturbations can thus be thought
of as a consequence of Theorem 2, which also predicts that any Gf -symmetric interaction
that opens a spectral gap in the noninteracting spectrum must break spontaneously at
least one of the symmetries responsible for the noninteracting spectrum being gapless.
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When two copies of this
(

0, (1, 0)
)

representation are stacked, the local fermionic Fock
space Fj of dimension D = 256 is generated by 16 Majorana operators. One verifies that

ûj(g1) := η̂j,1 ξ̂j,3 ξ̂j,4 η̂j,5 ξ̂j,7 ξ̂j,8, (5.39a)

ûj(g2) := η̂j,1 η̂j,2 ξ̂j,3 η̂j,4 η̂j,5 η̂j,6 ξ̂j,7 η̂j,8, (5.39b)

ûj(p) :=
4∏

α=1

iξ̂j,α η̂j,α, (5.39c)

realizes the group cohomology class ([ν], [ρ]) =
(

0, (0, 0)
)

, i.e., the trivial group cohomology
class. There exists a bijective map α 7→ α′ := (α+ 4) mod 8 such that all on-site terms
iξ̂j,α ξ̂j,α′ and iη̂j,α η̂j,α′ with α = 1, · · · , 4 can be shown to be Gf -symmetric. The
ground-state degeneracy of any translation- and Gf -invariant Hamiltonian can be lifted by
including the 8 on-site terms iξ̂j,α ξ̂j,α+4 and iη̂j,α η̂j,α+4 with α = 1, · · · , 4, i.e., Theorem
2 is not predictive.

5.2.6 Group Cohomology Class
(

0, (0, 1)
)

When representations (5.29) and (5.30) are stacked, the local fermionic Fock space Fj of
dimension D = 16 is generated by the octuplet of Majorana operators (5.26). One verifies
that

ûj(g1) := η̂j,1 η̂j,2 η̂j,3 η̂j,4, (5.40a)

ûj(g2) := ξ̂j,1 η̂j,2 ξ̂j,2 ξ̂j,3 η̂j,4, (5.40b)

ûj(p) := ξ̂j,1 η̂j,1 ξ̂j,2 η̂j,2 ξ̂j,3 η̂j,3 ξ̂j,4 η̂j,4, (5.40c)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

0, (0, 1)
)

and implements
the transformations

ûj (g1) χ̂
†
j û

†
j (g1) =

(
−η̂j,1 +ξ̂j,1 −η̂j,2 +ξ̂j,2

−η̂j,3 +ξ̂j,3 −η̂j,4 +ξ̂j,4

)
, (5.40d)

ûj (g2) χ̂
†
j û

†
j (g2) =

(
−η̂j,1 +ξ̂j,1 +η̂j,2 +ξ̂j,2

−η̂j,3 +ξ̂j,3 +η̂j,4 −ξ̂j,4

)
, (5.40e)

ûj (p) χ̂
†
j û

†
j (p) =

(
−η̂j,1 −ξ̂j,1 −η̂j,2 −ξ̂j,2

−η̂j,3 −ξ̂j,3 −η̂j,4 −ξ̂j,4

)
. (5.40f)
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Equation (5.40) differs from Eq. (5.37) by interchanging g1 and g2 and Majorana
operators η̂j,3 and ξ̂j,3. This difference does not affect the reasoning leading to to
the conclusion that the gapless Hamiltonian (5.35) cannot be gapped by onsite terms
without breaking Gf symmetry. This difference also implies that stacking two copies
of the

(
0, (0, 1), 0

)
representation (5.40) delivers the trivial projective representation(

0, (0, 0), 0
)

encoded by Eqs. (5.39), for which Theorem 2 is not predictive anymore.

5.2.7 Group Cohomology Class
(

0, (1, 1)
)

When representations (5.30) and (5.33) are stacked, the local fermionic Fock space Fj of
dimension D = 64 is generated by 12 Majorana operators. One verifies that

ûj(g1) := η̂j,1 η̂j,2 η̂j,3 ξ̂j,5 ξ̂j,6, (5.41a)

ûj(g2) := ξ̂j,1 η̂j,2 ξ̂j,3 ξ̂j,4 η̂j,5, (5.41b)

ûj(p) :=
6∏

α=1

iξ̂j,α η̂j,α, (5.41c)

realizes the projective representation (5.21) with ([ν], [ρ]) =
(

0, (1, 1)
)

and implements
the transformations

ûj(g1) χ̂
†
j û

†
j (g1) =

(
+η̂j,1 −ξ̂j,1 +η̂j,2 −ξ̂j,2 +η̂j,3 −ξ̂j,3

−η̂j,4 −ξ̂j,4 −η̂j,5 +ξ̂j,5 −η̂j,6 +ξ̂j,6

)
, (5.41d)

ûj(g2) χ̂
†
j û

†
j (g2) =

(
−η̂j,1 +ξ̂j,1 +η̂j,2 −ξ̂j,2 −η̂j,3 +ξ̂j,3

−η̂j,4 +ξ̂j,4 +η̂j,5 −ξ̂j,5 −η̂j,6 −ξ̂j,6

)
, (5.41e)

ûj(p) χ̂
†
j û

†
j (p) =

(
−η̂j,1 −ξ̂j,1 −η̂j,2 −ξ̂j,2 −η̂j,3 −ξ̂j,3

−η̂j,4 −ξ̂j,4 −η̂j,5 −ξ̂j,5 −η̂j,6 −ξ̂j,6

)
. (5.41f)

Given the transformation rules (5.41), one cannot construct six disjoint pairs of Majorana
operators that transform in the same manner under both symmetries. One can at most
obtain five pairs such as{

η̂j,1, η̂j,3

}
,
{
ξ̂j,1, ξ̂j,3

}
,
{
ξ̂j,2, η̂j,4

}
,
{
ξ̂j,5, ξ̂j,6

}
,
{
ξ̂j,4, η̂j,5

}
, (5.42)
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which leaves the Majorana operators η̂j,2 and η̂j,6 unpaired. Therefore, the Gf - and
translation-symmetric Hamiltonian

Ĥpbc :=
2N∑
j=1

6∑
α=1

{
λαiη̂j,α η̂j+1,α + λ′

αiξ̂j,α ξ̂j+1,α

}
, (5.43)

with λα, λ′
α ∈ R, that describe twelve decoupled Kitaev chains can be partially gapped

by five onsite terms. Because of the projective representation (5.41), the low-energy
sector described by two decoupled Kitaev chains cannot be gapped. The stability of this
gapless phase to on-site quadratic perturbations can thus be thought of as a consequence
of Theorem 2, which also predicts that any Gf -symmetric interaction that opens a
spectral gap in the noninteracting spectrum must break spontaneously at least one of the
symmetries responsible for the noninteracting spectrum being gapless.

When two copies of this
(

0, (1, 1)
)

representation are stacked, the local fermionic
Fock space Fj of dimension D = 212 is generated by 24 Majorana operators. The Z2-
graded tensor product of the projective representation (5.41) with itself realizes the group
cohomology class ([ν], [ρ]) =

(
0, (0, 0)

)
, i.e., the trivial group cohomology class. There

exists a bijective map α 7→ α′ := (α+ 6) mod 12 such that all on-site terms iξ̂j,α ξ̂j,α′

and iη̂j,α η̂j,α′ with α = 1, · · · , 6 can be shown to be Gf symmetric. The ground-state
degeneracy of any translation- and Gf -invariant Hamiltonian can be lifted by including
the 12 on-site terms iξ̂j,α ξ̂j,α+6 and iη̂j,α η̂j,α+6 with α = 1, · · · , 6, i.e., Theorem 2 is not
predictive.

5.3 symmetry group ZFT
4

The symmetry group Gf := ZFT
4 := {t, t2, t3, t4} is the nontrivial central extension of

G ≡ ZT
2 = {t, t2} by ZF

2 ≡ {p, p2}, where the identification t2 = p is made. The upper
index T for the cyclic group G ≡ ZT

2 ≡ {e, t} refers to the interpretation of t as reversal
of time (see Appendix A.5.3). As usual, p denotes fermion parity. The symmetry group
Gf is thus generated by reversal of time t, whereby reversal of time squares to the fermion
parity p.

The local antiunitary representation ûj(t) of reversal of time generates a projective
representation of the group ZFT

4 . According to Appendix A.5.3, all cohomologically
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distinct projective representations of ZFT
4 are determined by the indices [(ν, ρ)], with

(ν, ρ) ∈ C2(G, U(1)) ×C1(G, Z2), through the relations 5

([ν], [ρ]) = (ρ(t), ρ(t)),

ûj(t) ûj(p) = (−1)ρ(t) ûj(p) ûj(t),
(5.44a)

where
û2
j (t) = eiϕ(t,t) ûj(p) (5.44b)

and ϕ is the 2-cocycle defined in Eq. (3.7). This gives two distinct group cohomology
classes

([ν], [ρ]) ∈ {(0, 0), (1, 1)} . (5.44c)

We will start with the nontrivial projective representation in the cohomology class
([ν], [ρ]) = (1, 1) that we shall represent using two local Majorana flavors. We will then
construct a projective representation in the group cohomology classes ([ν], [ρ]) = (0, 0)
by using the graded tensor product, i.e., by considering 4 local Majorana flavors. The
indices (5.44c) form group Z2 under the stacking rule (5.4).

5.3.1 Group Cohomology Classes (1, 1) and (0, 0)

The local fermionic Fock space Fj of dimension D = 2 is generated by the doublet of
Majorana operators

χ̂†
j ≡
(
η̂j ξ̂j

)
, j = 1, · · · , 2N . (5.45)

One verifies that

ûj(t) :=
1

√
2

(
η̂j − ξ̂j

)
K, (5.46a)

ûj(p) := iξ̂j η̂j , (5.46b)

realizes the projective representation (5.44) with ([ν], [ρ]) = (1, 1). With the help of[
ûj(t)

]−1
=

1
√

2

(
η̂j + ξ̂j

)
K, (5.47)

5 We have chosen the convention of always representing the generator p of ZF
2 by a Hermitian operator

according to Eq. (3.6e)
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one also verifies that

ûj(t)
(
η̂j ξ̂j

) [
ûj(t)

]−1
=

(
−ξ̂j
+η̂j

)
. (5.48)

It follows from Eq. (5.48) that the only on-site Hermitian quadratic form iη̂j ξ̂j is odd
under reversal of time. Consequently,

Ĥpbc :=
2M∑
j=1

λ
(

i η̂j η̂j+1 − i ξ̂j ξ̂j+1

)
(5.49)

with λ ∈ R is an example translation- and Gf -invariant Hamiltonian of quadratic order.
This Hamiltonian describes two Kitaev chains that have been fine-tuned to their quantum
critical point (3.49) between their symmetry-protected and topologically inequivalent
gapped phases. The stability of this gapless phase to on-site quadratic perturbations can
thus be thought of as a consequence of Theorem 2. Theorem 2 also predicts that any
Gf -symmetric interaction that opens a spectral gap in the noninteracting spectrum must
break spontaneously at least one of the symmetries responsible for the noninteracting
spectrum being gapless.

When two copies of the projective representation (5.46) are stacked according to Eq.
(5.4), the local fermionic Fock space Fj of dimension D = 4 is generated by 4 Majorana
operators. The Z2-graded tensor product of the projective representation (5.46) with itself
realizes the group cohomology class ([ν], [ρ]) =

(
0, 0
)

, i.e., the trivial group cohomology
class. There exists a bijective map α 7→ α′ := (α+ 1) mod 2 such that all on-site terms
iη̂j,α η̂j,α′ − iξ̂j,α ξ̂j,α′ with α = 1, 2 can be shown to be Gf symmetric. The ground-state
degeneracy of any translation- and Gf -invariant Hamiltonian can be lifted by increasing
the strength of iη̂j,α η̂j,α′ − iξ̂j,α ξ̂j,α′ with α = 1, 2, i.e., Theorem 2 is not predictive.
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Adapted from:
Ö. M. Aksoy and C. Mudry

"Elementary derivation of the stacking rules of invertible
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Physical Review B 106, 035117 (2022)

Part II focuses on the study of one-dimensional invertible fermionic topological (IFT)
phases. We use the LSM Theorems 3 and 2 to enumerate all one-dimensional IFT phases
in Chapter 6. This is achieved by assuming that for each IFT phase one can find a
translationally invariant representative Hamiltonian.

The enumeration of IFT phases do not immediately deliver the group structure under
stacking operation. Chapter 7 presents a derivation of fermionic stacking rules for any
symmetry group Gf by only using elementary means of quantum mechanics and linear
algebra. We distinguish the fermionic stacking rules from bosonic ones and show that the
latter is a special case of the former. This is one of the main results of this Part.

In Chapter 8, we study the protected ground-state degeneracies associated with non-
trivial IFT phases on general grounds. Therein, we also demonstrate that intrinsically
fermionic invertible phases support robust quantum mechanical supersymmetry (SUSY)
at their boundaries.

Chapter 9 deals with construction of bulk representations of symmetries out of zero
dimensional projective representations. We also show that for each IFT phase, we can
construct a translationally invariant commuting projector Hamiltonian, which closes the
loop in our classification scheme.

We close Part II with Chapter 10, where we present an application of the rather abstract
framework introduced in the earlier chapters. We consider two closely related families
of Hamiltonians, namely, the time-reversal symmetric Majorana chains and spin-1/2
cluster models. The former are representatives of IFT phases with Gf = ZT

2 × ZF
2

symmetry while the latter are representatives of bosonic symmetry protected topological
(BSPT) phases with G = ZT

2 × Z2. For each representative Hamiltonian, we compute
the corresponding indices and protected ground-state degeneracies. We also verify the
stacking rules derived in Chapter 7 and clarify how the classification of topological phases
described by these Hamiltonians are related.
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6
F R O M L S M T H E O R E M S T O 1 D I F T P H A S E S

In this Chapter, we explore how the contrapositions of Theorems 2 and 3 lead to the
enumeration of IFT phases in one-dimensional space. In Sec. 6.1, we present a strategy
that allows the classification of 1D IFT phases. Sec. 6.2 connects the strategy presented
in Sec. 6.1 to the projective representations of a fermionic symmetry group Gf that are
realized at the boundaries of 1D IFT phases when open boundary conditions are imposed.
Therein, an exhaustive classification of 1D IFT phases for any symmetry group Gf is
achieved. The derivations of fermionic stacking rules, which impose an additional group
structure on the set of IFT phases, are left to Chapter 7.

6.1 strategy for classifying 1d ift phases

We will present a classification scheme for invertible fermionic topological (IFT) phases
in one-dimensional space. IFT phases are invertible phases realized by Hamiltonians
built out of fermionic degrees of freedom with a fermionic symmetry group Gf . The
classification of the IFT phases in one-dimensional space is intimately related to the
classification of the projective representations of the fermionic symmetry group Gf , an
internal symmetry acting globally on the fermionic Fock space. To illustrate this, we
will first consider the representations of Gf on a closed one-dimensional chain and then
investigate the consequences of imposing open boundary conditions.

We denote by Λ the set of points on a one-dimensional lattice. Given are the fermionic
symmetry groupGf (Appendices A.1 and A.2) and a global fermionic Fock space FΛ defined
over Λ. We assume that there exists a faithful trivial representation Û

bulk
of the group

Gf on the lattice Λ. In other words, there exists an injective map Û
bulk

: Gf → Aut
(
FΛ

)
where Aut

(
FΛ

)
is the set of automorphisms on the fermionic Fock space such that for

any g,h ∈ Gf ,

Ûbulk(g) Ûbulk(h) = Ûbulk(g h), (6.1a)
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where g h denotes the composition of the elements g,h ∈ Gf . For any g ∈ Gf , its
representation Û

bulk
(g) can be written as 1

Ûbulk(g) = V̂bulk(g)Kc(g), (6.1b)

where V̂
bulk

(g) is a unitary operator acting on FΛ and K is the complex conjugation map.
For each point j ∈ Λ, we associate a set of Hermitian Majorana operators

Oj :=
{
γ̂
(j)
1 , γ̂(j)2 , · · · , γ̂(j)n

j

}
, (6.2a)

that realizes the Clifford algebra

Cℓn
j

:= span
{ nj∏

ι=1

(
γ̂
(j)
ι

)mι

∣∣∣∣∣ {γ̂(j)ι , γ̂(j
′)

ι′

}
= 2διι′ , mi = 0, 1, ι, ι′ = 1, · · · ,nj

}
.

(6.2b)

The nj Majorana operators (6.2a) span a local fermionic Fock space Fj if nj is an
even integer. If nj is odd, the Clifford algebra Cℓn

j
contains a two-dimensional center,

reason for which the nj Majorana operators (6.2a) span a Hilbert space that cannot be
interpreted as a fermionic Fock space 2. The consistent definition of a global fermionic
Fock space thus requires the total number of Majorana degrees of freedom to be even, i.e.,∑

j

nj = 0 mod 2. (6.3)

1 Recall that c is a group homomorphism that specifies if an element g ∈ G
f

is to be represented by a

unitary operator, in which case [c(g) = 0], or by an antiunitary operator, in which case [c(g) = 1].

2 We define the fermionic Fock space of dimension 2n as follows. We choose n pairs of Majorana operators
out of which one can define a conjugate pair of fermionic creation and annihilation operators. The
vacuum state that is annihilated by all annihilation operators is the highest weight state from which
2n − 1 orthonormal states with the fermion number n

f
= 1, 2, · · · ,n− 1,n descend by acting on the

vacuum state with the product of n
f

distinct fermionic creation operators. By construction, Cℓ2n acts

on a 2n-dimensional fermionic Fpck space for which each basis element t has a well-defined fermion
parity. Because the center of the Clifford algebra Cℓ2n is trivial, multiplication with an element of the
center of Cℓ2n thus leaves the fermion parity of each element of the fermionic Fock basis unchanged.
This is not so any more for a representation of the Clifford algebra Cℓ2n+1 spanned by 2n+ 1 Majorana

operators. Even though it is still possible to define a Hilbert space of dimension 2n+1 on which the
Clifford algebra Cℓ2n+1 has a nontrivial irreducible representation [166], the center of Cℓ2n+1 is a
two-dimensional subalgebra. It follows that there is no element in Cℓ2n+1, which anticommutes with
all the Majorana generators of Cℓ2n+1, i.e., it is not possible to distinguish an element in Cℓ2n+1,
which assigns odd fermion parity to all 2n+ 1 Majorana generators. The best one can do is to construct
a 2n-dimensional fermionic Fock space using the generators of a Cℓ2n subalgebra of Cℓ2n+1 and a
two-dimensional Hilbert space in which states do not have any assigned fermion parity or fermion
number.
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We define a local 3 representation ûj of the symmetry group Gf by demanding that on
the degrees of freedom localized at site j ∈ Λ, ûj acts in the same way as the global bulk
representation Û

bulk
does, i.e., the consistency condition

ûj(g) γ̂
(j)
ι û†

j (g) = Ûbulk(g) γ̂
(j)
ι Û†

bulk
(g), (6.4)

for any g ∈ Gf and ι = 1, · · · ,nj must hold. Hereby, we assume that the bulk representa-
tion Û

bulk
is onsite in the sense that there are no obstructions that prevent decomposing

Û
bulk

into the product of local representations ûj (see Refs. [57, 129] for examples when
this is not possible). The definition (6.4) implies that the representation ûj satisfies for
any g,h ∈ Gf

ûj(g) ûj(h) = e
iϕj (g,h)

ûj(g h). (6.5)

This is a projective representation as defined in Eq. (3.7c). The phase factor ϕj(g,h) ∈
C2(Gf , U(1)) defines a 2-cochain. Its equivalence classes [ϕj ] takes values in the second
cohomology group H2(Gf , U(1)c), see Appendix A.1.

By definition, local Hamiltonians with the symmetry group Gf that realize IFT phases
of matter must necessarily have nondegenerate and gapped ground states that transform
as singlets under the symmetry group Gf with any closed boundary conditions. We
restrict our attention to IFT phases of matter with translation symmetry G

trsl
in addition

to the internal fermionic symmetry group Gf . In other words, the total symmetry group
Gtot is by hypothesis the direct product

Gtot ≡ Gtrsl ×Gf . (6.6)

This restriction is justified if we assume that for each invertible phase of matter in one
dimension, there exists a translationally invariant representative Hamiltonian 4.

3 When nj is an odd integer, it is not always possible to construct a local representation ûj (g) for any

g ∈ G
f

only out of the Majorana degrees of freedom in the set Oj defined in (6.2a). However, we still

call ûj (g) a local representation in the sense that it can always be constructed by supplementing the

Clifford algebra (6.2b) by an additional Majorana degree of freedom γ̂j,∞ that is localized at some

other site j′ with the number of Majorana operators n
j′ being an odd integer.

4 Another justification that will be found a posteriori is that the classification scheme introduced here
accounts for all possible ground state degeneracies of one-dimensional nontrivial IFT phases with open
boundary conditions. This ground state degeneracy as we will show is a property of zero-dimensional
boundary and independent of whether the one-dimensional bulk is translationally invariant or not.
In turn, for each IFT phase, we will show how to construct a translationally invariant representative
Hamiltonian.
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Imposing translation symmetry G
trsl

requires the number nj of Majorana degrees of
freedom at each site to be independent of j with the same local representation ûj(g) for
any element g ∈ Gf . If so Theorems 2 and 3 apply. A nondegenerate and gapped ground
state that transforms as a singlet under the symmetry group Gtot is permissible if and
only if:

1. The number nj of Majorana degrees of freedom at each site j ∈ Λ is even, i.e.,
nj ≡ 2n

2. The local representation ûj(g) realizes a trivial projective representation, i.e., [ϕj ] ≡
[ϕ] = 0.

The first condition requires that there exist a local fermionic Fock space Fj spanned by the
even number of local Majorana degrees of freedom (6.2a). Therefore, the global fermionic
Fock space FΛ decomposes as a Z2-graded tensor product ⊗g of the local Fock spaces Fj ,
i.e.,

FΛ =
⊗
j∈Λ

g Fj . (6.7)

The second condition requires that the local representation ûj ∈ Aut
(
Fj

)
is a repre-

sentation in the trivial equivalence class [ϕ] = 0. This implies that the global bulk
representation Û

bulk
decomposes as the product of local representations ûj , i.e., for any

g ∈ Gf

Ûbulk(g) =

[∏
j∈Λ

v̂j(g)

]
Kc(g). (6.8)

Open boundary conditions break the hypothesis of translation symmetry in Theorems
2 and 3. When a closed chain is opened up, the degrees of freedom localized in one
or multiple repeat unit cells may be split into two disconnected components Λ

L
and

Λ
R

of the boundary Λ
bd

:= ∂Λ ≡ Λ
L

∪ Λ
R

, as is illustrated in Fig. 6.1. If so, the two
requirements of the LSM constraints need no longer hold at each disconnected component.

Any one-dimensional IFT phase of matter is thus characterized by the following data:

1. There is a Z2-valued index [µ
B
] = {0, 1} (B = L, R) that measures the parity of the

number of Majorana degrees of freedom that are localized on either one of the left
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L R

L R

(a) (c)

(b)

Figure 6.1: The repeat unit cells of a one-dimensional lattices are pictured by colored discs. Each
repeat unit cell hosts an even number 2n of Majorana degrees of freedom. Without
loss of generality, the range of the couplings between Majorana degrees of freedom
is one lattice spacing (the thick line between the repeat unit cells). Translation
symmetry is imposed by choosing periodic boundary conditions, in which case the
one-dimensional lattice is the discretization of a ring. Open boundary conditions
break the translation symmetry. This can be achieved by cutting a thick line
connecting two repeat unit cell or by cutting open a repeat unit cell. In the former
case, the number of Majorana degrees of freedom on any one of the upmost left
or right cells is the same even number 2n of Majorana degrees of freedom as that
in a single repeat unit cell. In the latter case, the number of Majorana degrees
of freedom on the upmost left cell is any integer 1 < nL < 2n while that on the
upmost cell is nR = 2n− nL.

(L) or right (R) boundaries (B) of the open chain Λ
bd

= Λ
L

∪ Λ
R

. The index [µ
B
]

can be viewed as an element of the zero-th cohomology group H0
(
Gf , Z2

)
= Z2.

2. There is an equivalence class [ϕ
B
] ∈ H2

(
Gf , U(1)c

)
of the second cohomology

group (Appendix A.1) that characterizes the projective representation of the internal
symmetry group Gf at either one of the left or right boudaries of an open chain
Λ

bd
= Λ

L
∪ Λ

R
.

Given a disconnected component Λ
B

of the boundary Λ
bd

, we assume the existence of a
set of boundary Majorana degrees of freedom

OB :=
{
γ̂
(B)
1 , γ̂(B)

2 , · · · , γ̂(B)
n

B

}
(6.9a)

that are associated with states exponentially localized in space at the boundary B. The
pair of data ([ϕ

B
], [µ

B
]) ∈ H2

(
Gf , U(1)c

)
×H0

(
Gf , Z2

)
are assigned as follows. The

index [µ
B
] is nothing but the parity of the number of Majorana degrees of freedom at
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Λ
B

, i.e., [µ
B
] = n

B
mod 2. The equivalence class [ϕ

B
] of the projective phase ϕ

B
(g,h) is

computed by constructing a boundary representation Û
B

5. This is done by demanding
the consistency condition

ÛB(g) γ̂
(B)
ι Û†

B
(g) = Ûbulk(g) γ̂

(B)
ι Û†

bulk
(g), (6.9b)

for any g ∈ Gf and ι = 1, 2, · · · ,n
B

.
The index [ϕ

B
] ∈ H2

(
Gf , U(1)c

)
depends both on [µ

B
] = 0, 1 and the fermionic

symmetry group Gf . This is so because Gf is the central extension of the internal
symmetry group G by the fermion-parity symmetry group ZF

2 with extension class
[γ] ∈ H2(G, ZF

2 ) (Appendix A.2), i.e., G is isomorphic to the group Gf/ZF
2

6 As the
center of the fermionic symmetry group Gf is the fermion-parity subgroup ZF

2 , its
projective representations are sensitive to the values of [µ

B
]. This sensitivity can be made

explicit if one trades the equivalence classes [ϕ
B
] ∈ H2

(
Gf , U(1)c

)
for the equivalence

classes [(ν
B

, ρ
B
)] ∈ ker D2

γ,c

/
im D1

γ,c where D2
γ,c and D1

γ,c are modified coboundary
operators (Appendix A.4). The construction of the triplet

(
[(ν

B
, ρ

B
)], [µ

B
]
)

and their
physical meaning will be reviewed in more depth in the next section (Sec. 6.2).

There are two possible scenarios for the fate of the set (6.9a) of boundary degrees of
freedom on the boundary Λ

B
that realize the triplet of boundary data ([(ν

B
, ρ

B
)], [µ

B
])

when the bulk is perturbed by local and continuous interactions that break neither
explicitly nor spontaneously the Gf symmetry. In scenario I, the set (6.9a) is unchanged
by the bulk perturbation. If so, the triplet of boundary data ([(ν

B
, ρ

B
)], [µ

B
]) does not

change. In scenario II, the bulk perturbation changes the set (6.9a) by either the addition
or removal of boundary degrees of freedom. If the degrees of freedom added to or removed
from the boundary Λ

B
realize the trivial triplet of data, then the resulting triplet of

boundary data is unchanged according to the fermionic stacking rules. If the degrees
of freedom added to or removed from the boundary Λ

B
realize a nontrivial triplet of

data, then the triplet of boundary data is changed to ([(ν′
B

, ρ′
B
)], [µ′

B
]) ̸= ([(ν

B
, ρ

B
)], [µ

B
])

according to the fermionic stacking rules. If the bulk-boundary correspondence were to
hold, then a gap-closing transition in the bulk that is induced by the bulk perturbations
is required to change the boundary triplet of data. This hypothesis is plausible because
Bourne and Ogata have shown rigorously in Ref. [143] the existence of triplets of bulk
data that take values in the same cohomology groups as the triplets of boundary data

5 We use the capital U here, since Û
B

is to be treated as a global representation on the (0 + 1)-dimensional
boundary.

6 The coset G
f

/ZF
2 is a group since ZF

2 is in the center of G
f

and therefore a normal subgroup.
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([(ν
B

, ρ
B
)], [µ

B
]), obey the same stacking rules, and offer a bulk classification of IFT

phases of matter. We assume without proof this bulk-boundary correspondence.
There is no need to specify the triplets associated with the disconnected components Λ

L

and Λ
R

independently. The triplet of data on the left boundary Λ
L

fixes their counterparts
on the right boundary Λ

R
, owing to the condition that the ground state of a Hamiltonian

realizing an IFT phase of matter must be nondegenerate and Gf -symmetric when periodic
boundary conditions are selected. Thus, we drop the subscripts when denoting the triplet
of data ([(ν, ρ)], [µ]) that characterize the IFT phases.

For any Gf that splits, i.e., Gf is isomorphic to the product G× ZF
2 , the index [µ]

can take the values 0 or 1. If the group Gf is a nonsplit group, then [µ] = 0 is the only
possibility. When [µ] = 1, the minimal degeneracy of the eigenspace for the ground states
when open boundary conditions are selected is two for any split fermionic symmetry
group Gf , including the smallest possible fermionic symmetry group Gf = ZF

2 . Hence,
one-dimensional Hamiltonians realizing IFT phases of matter with [µ] = 1 cannot be
deformed adiabatically to a Hamiltonian realizing the trivial IFT phase of matter at the
expense of breaking explicitly any of the protecting symmetries in Gf other than ZF

2 . A
forteriori, these phases of matter are distinct from the fermionic SPT (FSPT) phases of
matter in one-dimensional space. In one-dimensional space, FSPT phases of matter are
only possible when [µ] = 0.

Once the IFT phases in one-dimension are characterized by the triplet ([(ν, ρ)], [µ]), it
is imperative to derive the stacking rules, i.e., the group composition rules of the triplets
([(ν, ρ)], [µ]) that are compatible with the Z2-graded tensor product between fermionic
Fock spaces (in physics terminology, antisymmetrization). Stacking rules can be derived
by considering the topological indices ([(ν∧, ρ∧)], [µ∧]) of an IFT phase of matter that
is constructed by combining the boundary degrees of freedoms of any representatives
of two other IFT phases with topological indices

(
[(ν1, ρ1)], [µ1]

)
and

(
[(ν2, ρ2)], [µ2]

)
,

respectively. The stacking rules are essential properties of IFT phases of matter. They
enforce a group composition law between IFT phases of matter sharing the same fermionic
symmetry group Gf . This group composition law can be interpreted as the physical
operation by which two blocks of matter, each realizing IFT phases of matter sharing the
same fermionic symmetry group Gf , are brought into contact so as to form a single larger
block of matter sharing the same fermionic symmetry group Gf . This group composition
law is also needed to implement a consistency condition corresponding to changing from
open to closed boundary conditions. Topological data associated with the left and the
right disconnected components of the one-dimensional boundary must be the inverse
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of each other with respect to the stacking rules, i.e., one should obtain the trivial data
([(0, 0)], 0) if the change from open to periodic boundary conditions is interpreted as the
stacking of opposite boundaries. One of the main results of Part II is the derivation of
fermionic stacking rules from the boundary perspective, which is achieved in Chapter 7.

6.2 boundary projective representations

The internal symmetry group Gf is specified by two pieces of data. The first piece is
the central extension class [γ] ∈ H2(G, ZF

2 ) that characterize how the group G and the
fermion parity symmetry group ZF

2 are glued together to produce the group Gf . This
is to say that, Gf is not restricted to be the direct product Gf = G× ZF

2 . The group
Gf is such that (i) ZF

2 is a subgroup of the center of Gf (ii) and G is isomorphic to
Gf/ZF

2 . We assign the equivalence class [γ] = 0 to the case of Gf being isomorphic to
the direct product G× ZF

2 and say that Gf splits and A.2). The second piece is the group
homomorphism c : Gf → {0, 1} that specifies if an element g ∈ Gf is to be represented
by a unitary [c(g) = 0] operator or by an antiunitary [c(g) = 1] operator [by definition,
c(p) = 0].

In this Section, we summarize the properties of boundary representations Û
B

of a
fermionic symmetry groups Gf . The rather lengthy details are left to Appendix A.
Therein, Appendix A.1 introduces group cohomology, while Appendices A.2 and A.4 deals
with the construction of symmetry group Gf and the exhaustive characterization of its
projective representations, respectively. Various examples are provided in Appendices A.3
and A.5.

6.2.1 Boundary Fock Spaces

We denote by Λ the set of points on a one-dimensional lattice that we shall call the bulk.
We assume that there exists a nonvanishing boundary

Λbd ≡ ∂Λ (6.10a)

of the bulk Λ. The boundary Λ
bd

is the union of two disconnected components Λ
L

or
Λ

R
of the one-dimensional universe Λ,

Λbd = ΛL ∪ ΛR, ΛL ∩ ΛR = ∅. (6.10b)
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The hypothesis that states bound to Λ
L

or Λ
R

do not overlap in space only holds for
all fermionic invertible topological phases after the thermodynamic limit has been taken.
Without loss of generality, we consider any one of Λ

L
and Λ

R
, which we denote Λ

B
. We

are going to construct a projective representation of the symmetry group Gf on this
component Λ

B
of the boundary Λ

bd
, while the opposite component of the boundary must

then always be represented by the “inverse” projective representation.
On the boundary Λ

B
, we assume the existence of a set of n Hermitian Majorana

operators
On := {γ̂1, γ̂2, · · · , γ̂n} (6.11a)

that realizes the Clifford algebra

Cℓn := span
{ n∏

i=1

(γ̂i)
mi

∣∣∣∣∣ {γ̂i, γ̂j} = 2δij , mi = 0, 1, i, j = 1, · · · ,n
}

. (6.11b)

We assign the index [µ] ∈ {0, 1} to the parity of n, i.e.,

[µ] = n mod 2. (6.11c)

We consider the cases of even and odd n separately.
When [µ] = 0, the even number n of Majorana operators from the set (6.11a) span the

fermionic Fock space

FΛ
B

,0 :=span
{ n

2∏
α=1

(
γ̂2α−1 − iγ̂2α

2

)nα

|0⟩

∣∣∣∣∣∣
(
γ̂2α−1 + iγ̂2α

2

)
|0⟩ = 0, nα = 0, 1

}
(6.12a)

of dimension 7

dimFΛ
B

,0 = 2n/2. (6.12b)

When [µ] = 1, the odd number n of Majorana operators from the set (6.11a) span a
vector space that is not a fermionic Fock space. In order to recover a fermionic Fock

7 The partition of a set of n labels into two pairs of n/2 labels is here arbitrary.
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space, we add to the set (6.11a) made of an odd number n of Majorana operators the
Majorana operator γ̂∞ [19],

On,∞ :=
{
γ̂1, γ̂2, · · · , γ̂2⌊n/2⌋, γ̂n, γ̂∞

}
, (6.13)

thereby defining the Clifford algebra Cℓn+1. Here, the lower floor function ⌊·⌋ returns
the largest integer ⌊x⌋ smaller than the positive real number x. We may then define the
fermionic Fock space

FΛ
B

,1 :=span
{ n+1

2∏
α=1

(
γ̂2α−1 − iγ̂2α

2

)nα

|0⟩

∣∣∣∣∣∣
(
γ̂2α−1 + iγ̂2α

2

)
|0⟩ = 0, nα = 0, 1

}
(6.14a)

of dimension
dimFΛ

B
,1 = 2(n+1)/2, (6.14b)

where it is understood that γ̂n+1 ≡ γ̂∞. In this fermionic Fock space, all creation and
annihilation fermion operators are local, except for one pair. The pair of creation and
annihilation operator built out of the pair γ̂n and γ̂∞ of Majorana operators is nonlocal
as γ̂∞ originates from the opposite component of the boundary of one-dimensional
space owing to the open boundary conditions, a distance infinitely far away after the
thermodynamic limit has been taken. The same is true of the two-dimensional fermionic
Fock space

FLR :=span
{ (

γ̂n − iγ̂∞
2

)mα

|0⟩
∣∣∣ ( γ̂n + iγ̂∞

2

)
|0⟩ = 0

}
(6.15)

spanned by the pair γ̂n and γ̂∞.
Finally, it is assumed that the component Λ

B
of the boundary Λ

bd
defined in Eq.

(6.10b) is symmetric under the action of Gf in the sense that

Ûbulk(g)Cℓn Û
†
bulk

(g) ⊂ Cℓn, ∀g ∈ Gf . (6.16)
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We assume that, for any g ∈ Gf , there exists a norm-preserving operator Û
B
(g) acting

on the Fock space FΛ
B

,[µ]
as domain of definition such that

ÛB(g) γ̂i Û
†
B
(g) = Ûbulk(g) γ̂i Û

†
bulk

(g), (6.17)

for i = 1, 2, · · · ,n. The boundary representation Û
B
(g) of any element g ̸= e, p is not

unique since Eq. (6.17) is left invariant by the multiplication from the right of Û
B
(g) with

any norm-preserving element from the center of the Clifford algebra Cℓn. When n is
even this center is trivial and one-dimensional. When n is odd ([µ] = 1) this center is
nontrivial and two-dimensional. In contrast, irrespective of [µ] the representations Û

B
(e)

and Û
B
(p) of the identity and fermion parity acting on the fermionic Fock space FΛ

B
,[µ]

are uniquely determined up to a multiplicative phase factor.
Finally, we observe two consequences of Eq. (6.17). First, the boundary representation

Û
B

inherits the injectivity of the bulk representation Û
bulk

of the fermionic symmetry
group Gf . Second, for any element g ∈ Gf , the boundary representation Û

B
(g) has a

definite fermion parity. However, unlike the representation Û
bulk

, the representation Û
B

can be projective.

6.2.2 Explicit Boundary Representations

We treat the cases of [µ] = 0, 1 separately. For each case, we list the explicit boundary
representation of the fermion parity Û

B
(p), the general form of Û

B
(g) for any g ∈ Gf ,

and, the pair of indices (ν, ρ) that characterize the boundary projective representation.

6.2.2.1 The Case of [µ] = 0

When the number n of Majorana operators on the boundary Λ
B

is even, [µ] = 0. The
boundary representation of element p ∈ Gf that generates the fermion parity group ZF

2

is chosen to be

ÛB(p) :=
n/2∏
α=1

P̂α, P̂α := iγ̂2α−1 γ̂2α. (6.18a)

The parity operators P̂1, · · · , P̂
n/2

are Hermitian, square to the identity, and are pairwise
commuting. Hence, Û

B
(p) is Hermitian and squares to the identity. We choose a basis



104 from lsm theorems to 1d ift phases

in which all parity operators are simultaneously diagonalized and even under complex
conjugation K,

K P̂α K = P̂α, (6.18b)

for α = 1, · · · ,n/2.
The most general form of a representation of element g ∈ Gf is

ÛB(g) := V̂B(g)Kc(g), (6.19)

where V̂
B
(g) is a unitary operator that belongs to Cℓn defined in Eq. (6.11).

The projective representation Û
B
(g) defined in Eq. (6.19) is characterized by a pair of

indices (ν, ρ). Here, ν ∈ C2(G, U(1)) is a that corresponds to the projective representation
of the symmetry group G ∼= Gf/ZF

2 . The index ρ ∈ C1(G, Z2) is 1-cochain that
corresponds to the fermion parity of the representations of elements in G. When defining
these indices, it is convenient to label the element in Gf by elements (g,h) of the group
G×
γ

ZF
2 which is isomorphic to Gf . The group composition rule in G×

γ
ZF

2 is

(g1,h) ×
γ
(g′,h′) = (g1 g2, γ(g1, g2) h1 h2) . (6.20)

The 2-cochain ν ∈ C2
(
G, U(1)

)
is defined by restricting the domain of definition of the

2-cochain ϕ from Gf to G,

ν(g1, g2) := ϕ
(
(g1, e), (g2, e)

)
, (6.21)

for any g1, g2 ∈ G, and by e we denote the identity element in both G and ZF
2 .

The 1-cochain ρ ∈ C1
(
Gf , Z2

)
is defined by the relation

e
iπρ

(
g,h

)
≡ (−1)ρ

(
g,h

)
:=


Û

B

(
g,h
)
Û

B

(
e, p
)
Û†

B

(
g,h
)
Û†

B

(
e, p
)

, if c
(
g
)
= 0,

Û
B

(
g,h
)
Û

B

(
e, p
)
Û†

B

(
g,h
)
Û

B

(
e, p
)

, if c
(
g
)
= 1,

(6.22)

for any (g,h) ∈ G×
γ

ZF
2 . The 1-cochain ρ ∈ C1

(
Gf , Z2

)
takes the values 0 or 1. It is

a group homomorphism from Gf to Z2 = {0, 1}, since it has a vanishing coboundary
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and, hence, is a 1-cocycle. It measures the fermion parity of the operator Û
B

(
g,h
)

. As
expected we have ρ

(
e, p
)
= 0. When a gauge choice is made by choosing the representation

Û
(
(id, p)

)
to be Hermitian, the two cases in the definition (6.22) are equivalent.

In Eq. (6.22), 1-cochain is defined over Gf . With an abuse of notation, we denote its
restriction to G by ρ ∈ C1(G, Z2). It is defined by setting the h = e in Eq. (6.22). The
appropriate definition for 1-cocycle ρ should be understood from the context. Index ρ is
related to the 2-cochain ϕ by the relation In terms of the 2-cocycle ϕ, ρ ∈ C1

(
G, Z2

)
is,

for any g ∈ G, given by

ρ(g) =
1
π

[
ϕ
(
(g, e), (id, p)

)
− ϕ
(
(id, p), (g, e)

)
+ c(g, e)ϕ

(
(id, p), (id, p)

)]
. (6.23)

6.2.2.2 The Case of [µ] = 1

When the number n of Majorana operators on the boundary Λ
B

is odd, [µ] = 1. The
boundary representation of element p ∈ Gf that generates the fermion parity group ZF

2

is chosen to be

ÛB(p) := P̂ P̂nonloc, (6.24a)

P̂ :=

(n−1)/2∏
α=1

P̂α, P̂α := iγ̂2α−1 γ̂2α, (6.24b)

P̂nonloc := iγ̂n γ̂∞, (6.24c)

for Û
B
(p) is proportional to the product γ̂1 · · · γ̂n γ̂∞ of all the generators in Cℓn+1. As

such, Û
B
(p) anticommutes with all the Majorana operators that span the nonlocal fermionic

Fock space (6.14a). The parity operators P̂1, · · · , P̂
(n−1)/2

, P̂
nonloc

are Hermitian, square
to the identity, and are pairwise commuting. We choose a basis in which all parity
operators are simultaneously diagonalized and even under complex conjugation K,

K P̂α K = P̂α, K P̂nonloc K = P̂nonloc, (6.24d)

for α,α′ = 1, · · · , (n− 1)/2.
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In addition to defining a representation of the fermion parity p, we need to account for
the fact that the center of the Clifford algebra Cℓn is two-dimensional when n is odd. We
choose to represent the nontrivial element of this center by

ŶB := P̂ γ̂n, Ŷ †
B
= ŶB, Ŷ 2

B = 1̂B,1. (6.25)

By construction, Ŷ
B

is proportional to the product γ̂1 · · · γ̂n ̸= 1̂
B,1

. It commutes with
the Majorana operators γ̂1, · · · , γ̂n, while it anticommutes with the Majorana operator
γ̂∞. The operator Ŷ

B
is of odd fermion parity for it anticommutes with the fermion

parity operator (6.24). Because of the nontrivial central element Ŷ
B

that carry odd
fermion parity, the boundary representation Û

B
(g) satisfying Eq. (6.17) does not have a

fixed parity. In other words, Û
B
(g) and Û

B
(g) Ŷ

B
both satisfy Eq.̃(6.17) while they carry

opposite fermion parities.
Since the Clifford algebra Cℓn is closed under the action of the boundary representation

Û
bulk

(g), the same must be true for the boundary representation Û
B
(g) [recall Eqs. (6.16)

and (6.17)]. In other words, Û
B
(g) preserves locality in that its action on those operators

whose non-trivial actions are limited to Λ
B

is merely to mix them. This locality is
guaranteed only Û

B
(g) either commutes or anticommutes with the center Ŷ

B
of Cℓn, i.e.,

ŶB ÛB(g) = ±ÛB(g) ŶB. (6.26)

Furthermore, this is true only if the decomposition

ÛB(g) := V̂B(g) Q̂B(g)Kc(g), Q̂B(g) = [γ̂∞]q(g) , (6.27)

holds. Here, V̂
B
(g) ∈ Cℓn ⊂ Cℓn+1 is a unitary operator with well-defined fermion parity.

Here, we used the presence of nontrivial central element Ŷ
B

to fix to be even for all
g ∈ Gf . In this “gauge”, q(g) = 0, 1 denotes the fermion parity of the unitary operator
V̂

B
(g). Equation (6.27) together with Eqs. (6.24) and (6.25) define the realization of the

symmetry group Gf on the boundary Λ
B

when [µ] = 1.
The projective representation Û

B
(g) defined in Eq. (6.27) is characterized by a pair of

indices (ν, ρ). Here, ν ∈ C2(G, U(1)) is a that corresponds to the projective representation
of the symmetry group G ∼= Gf/ZF

2 . The index ρ ∈ C1(G, Z2) is 1-cochain that labels
if the representation Û

B
(g) of an element g ∈ Gf commutes or anticommutes with Ŷ

B
.

When [µ] = 1, the group Gf necessarily splits, i.e., [γ] = 0 and Gf must be isomorphic
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to the direct product G× ZF2
8. Therefore, we label the elements in Gf by the pair

(g,h) ∈ G× ZF
2 .

The 2-cochain ν ∈ C2
(
G, U(1)

)
is defined by restricting the domain of definition of the

2-cochain ϕ from Gf to G,

ν(g1, g2) := ϕ
(
(g1, e), (g2, e)

)
, (6.28)

for any g1, g2 ∈ G, and by e we denote the identity element in both G and ZF
2 .

When [µ] = 1, the Clifford algebra Cℓn spanned by the Majorana operators (6.11) has
a two-dimensional center, in which case the fermion parity of the boundary representation
Û

B

(
g,h
)

for any element (g,h) ∈ Gf can be reversed by multiplying it with the generator
Ŷ

B
of the two-dimensional center of the Clifford algebra Cℓn. Moreover, any Û

B

(
(g,h)

)
must either commute or anticommute with Ŷ

B
according to Eq. (6.26).

For this reason, we define the 1-cochain ρ ∈ C1
(
Gf , Z2

)
through

e
iπρ

(
g,h

)
≡ (−1)ρ

(
g,h

)
:=


Û

B

(
g,h
)
Ŷ

B
Û†

B

(
g,h
)
Ŷ †

B
, if c

(
g
)
= 0,

Û
B

(
g,h
)
Ŷ

B
Û†

B

(
g,h
)
Ŷ

B
, if c

(
g
)
= 1,

(6.29)

for any (g,h) ∈ Gf . The 1-cochain ρ ∈ C1
(
Gf , Z2

)
takes the value 0 and 1. The

1-cochain ρ ∈ C1
(
Gf , Z2

)
is a group homomorphism from Gf to Z2 = {0, 1} since it

has a vanishing coboundary and, hence, is a 1-cocycle. Since Ŷ
B

is of odd fermion parity
by definition (6.25), it anticommutes with the representation Û

B

(
e, p
)

. This implies
that ρ(e, p) = 1. When a gauge choice is made by choosing the representation Ŷ

B
to be

Hermitian, the two cases in the definitions (6.29) and (6.29) are equivalent. As was the
case for [µ] = 0, with an abuse of notation, we denote the restriction of ρ ∈ C1(Gf , Z2)

to G by ρ ∈ C1(G, Z2). The latter is defined by setting the h = e in Eq. (6.29). The
appropriate definition for 1-cocycle ρ should be understood from the context.

We close Sec. 6.2.2.2 by spelling out two identities that will be convenient when deriving
the stacking rules in Sec. 7. We note that definition (6.29) involves conjugation of the

8 This is because the index ρ when [µ] = 1 induces group isomorphisms from ZF
2 to Z2 and from G

f
to

G× ZF
2 ,which implies that γ is a 1-coboundary, see Appendix A.4.3.2 for a proof.
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central element Ŷ
B

by the boundary representation Û
B
(g) of some element g ∈ Gf . By

definitions (6.24) and (6.25), Ŷ
B

can be written as

ŶB = −i ÛB(p) γ̂∞. (6.30a)

Using this identity in definition (6.29) allows one to express the complex conjugation of
γ̂∞ in terms of group homomorphisms c, q, and ρ. Since Eq. (6.24d) implies that the
Majorana operators γ̂∞ and γ̂n transform oppositely under complex conjugation, one
finds the pair of identities

Kc(g) γ̂∞ Kc(g) = (−1)c(g)+q(g)+ρ(g)γ̂∞, (6.30b)

Kc(g) γ̂n Kc(g) = (−1)q(g)+ρ(g)γ̂n, (6.30c)

for any g ∈ Gf

6.3 enumeration of one-dimensional ift phases

In Sec. 6.1, we started with a set of representative Hamiltonians with internal Gf -symmetry
and translation symmetry for any one-dimensional IFT phase. In turn, using LSM theorems
3 and 2, we argued that the boundary projective representations enumerates distinct IFT
phases in one dimension. These correspond to the distinct ways in which the conditions
of Theorems 2 and 3 are violated when open boundary conditions are imposed.

In Sec. 6.2, we enumerated boundary projective representations when [µ] = 0 and
[µ] = 1 in terms of pair of indices (ν, ρ). This exercise tells us that one-dimensional IFT
phases are labeled by the values of the triplet(

(ν, ρ), [µ]
)

∈ C2(G, U(1)) ×C1(G, Z2) ×H0(G, Z2), (6.31)

subjected to certain consistency conditions. First, associativity of the group composition
rule requires the pair (ν, ρ) to obey the (modified) cocycle conditions

D2
γ,[µ] (ν, ρ) = (0, 0), (6.32a)
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where

D2
γ,[µ] (ν, ρ) =

{ (
δ2
c ν − π ρ ⌣ γ, δ1

c ρ
)

, if [µ] = 0,(
δ2
c ν, δ1

c ρ
)

, if [µ] = 1.
(6.32b)

Second, the projective representation Û (g) in Eqs. (6.19) and (6.27) are defined up to a
multiplicative phase. This means that two pairs (ν, ρ) and (ν′, ρ′) are equivalent if they
are related by a (modified) coboundary

(ν, ρ) = (ν′, ρ′) + D1
γ,[µ] (α,β) , (6.33a)

where

D1
γ,[µ] (α,β) =

{ (
δ1
cα+ π β ⌣ γ, δ0

c β
)

, if [µ] = 0,(
δ1
cα, δ0

c β
)

, if [µ] = 1,
(6.33b)

where α ∈ C1(G, U(1)) is a 1-cochain and β ∈ C0(G, Z2) is a 0-cochain. Therefore,
the inequivalent boundary projective representations are enumerated by the equivalence
classes

(
[(ν, ρ)], [µ]

)
such that

(
[(ν, ρ)], [µ]

)
=

ker
(

D2
γ,[µ]

)
im
(

D1
γ,[µ]

) ×H0(G, Z2). (6.34)

This is to say that the set of equivalence classes
(
[(ν, ρ)], [µ]

)
is in one-to-one correspon-

dence with the one-dimensional IFT phases.
We emphasize that what is achieved so far is only enumeration of IFT phases. Finding all

indices
(
[(ν, ρ)], [µ]

)
does not provide the group structure formed by IFT phases under the

operation of stacking. In particular, given the two IFT phases with indices
(
[(ν1, ρ1)], [µ1]

)
and

(
[(ν2, ρ2)], [µ2]

)
, we want to find the indices

(
(ν∧, ρ∧), [µ2∧]

)
associated with IFT

phase obtained from stacking the two. As we shall see, the naive guess of adding the
respective indices is not correct, i.e.,(

[(ν∧, ρ∧)], [µ∧]
)

̸=
(
[(ν1 + ν2, ρ1 + ρ2)], [µ1 + µ2]

)
. (6.35)
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We will show that this is because of the underlying fermionic nature of the degrees of
freedom. In particular, the guess (in a certain form) (6.35) holds for bosonic invertible
phases. In other words, the violations of Eq. (6.35) is associated with the intrinsically
fermionic nature of the corresponding IFT phases.
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Given the two triplets
(
(ν1, ρ1), [µ1]

)
and

(
(ν2, ρ2), [µ2]

)
associated to the pair Û1 and

Û2 of boundary representations, respectively, we shall construct the triplet ((ν∧, ρ∧), [µ∧])

that is associated with the representation Û∧, whereby Û∧ must be compatible with the
symmetry group Gf and is obtained from taking the tensor product of the two set of
boundary degrees of freedom. We call this operation stacking.

Since the number of boundary Majorana degrees of freedom on which Û∧ acts is obtained
by adding the boundary Majorana degrees of freedom

O1 :=
{
γ̂
(1)
1 , γ̂(1)2 , · · · , γ̂(1)n

1

}
(7.1)

on which Û1 acts to the boundary Majorana degrees of freedom

O2 :=
{
γ̂
(2)
1 , γ̂(2)2 , · · · , γ̂(2)n

2

}
(7.2)

on which Û2 acts, we define the index [µ∧] of the stacked representation to be

[µ∧] := [µ1] + [µ2] mod 2. (7.3)

For any g ∈ Gf , we define the stacked representation Û∧(g) to be a norm preserving
operator that satisfies the identities

Û∧(g) γ̂
(1)
i Û†

∧(g) := Û1(g) γ̂
(1)
i Û†

1 (g), (7.4a)

Û∧(g) γ̂
(2)
j Û†

∧(g) := Û2(g) γ̂
(2)
j Û†

2 (g), (7.4b)

for i = 1, · · · ,n1 and j = 1, · · · ,n2. This definition is the natural generalization of Eq.
(6.17). Because Û1(g) and Û2(g) act on single Majorana operators in the same way as
the bulk representation of the element g ∈ Gf does, the same is true for the stacked
representation Û∧(g). The stacked representation Û∧(g) is not unique since Eqs. (7.4a)

111
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and (7.4b) are left invariant by the multiplications from the right of Û∧(g) with any
norm-preserving element from the center of the Clifford algebra Cℓn

1
+n

2
.

When constructing an explicit representation of Û∧(g) for any g ∈ Gf , we shall consider
the three cases: (i) even-even stacking, [µ1] = [µ2] = 0, (ii) even-odd stacking, [µ1] = 0,
[µ2] = 1, (iii) and odd-odd stacking, [µ1] = [µ2] = 1. The case of odd-even stacking is to
be treated analogously to the case of even-odd stacking.

As is done in Sec. 6.2, we begin with the construction of a representation of the
fermion parity p ∈ Gf . When [µ∧] = 0, the stacked representation of Û∧(p) follows from
combining Eq. (7.4) with the counterpart to Eq. (6.18). When [µ∧] = 1, the stacked
representation of Û∧(p) follows from combining Eq. (7.4) with the counterparts to Eqs.
(6.24). More precisely, the stacked representation Û∧(p) of the fermion parity p is defined
to be

Û∧(p) :=



Û1(p) Û2(p), if [µ1] = [µ2] = 0,

Û1(p) Û2(p), if [µ1] = 0, [µ2] = 1,

P̂1 P̂2 iγ̂(1)n
1
γ̂
(2)
n

2
, if [µ1] = [µ2] = 1.

(7.5)

By construction, we have chosen a Hermitian representation Û∧(p) of the fermion parity
p.

Next, we fix the action of the stacked complex conjugation K∧ on the single Majorana
operators spanning the fermionic Fock space of the stacked boundary by demanding that
some set of mutually commuting fermion parity operators are left invariant under complex
conjugation [recall Eqs. (6.18) and (6.24)]. For the cases of even-even ([µ1] = [µ2] = 0)
and even-odd stacking ([µ1] = 0, [µ2] = 1), we define K∧ by

K∧ γ̂
(1)
i K∧ := K1 γ̂

(1)
i K1, (7.6a)

K∧ γ̂
(2)
j K∧ := K2 γ̂

(2)
j K2, (7.6b)

for i = 1, · · · ,n1 and j = 1, · · · ,n2. For the case of odd-odd stacking, we define K∧ by

K∧ γ̂
(1)
i K∧ := K1 γ̂

(1)
i K1, (7.7a)

K∧ γ̂
(2)
j K∧ := K2 γ̂

(2)
j K2, (7.7b)
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K∧ γ̂
(1)
n

1
K∧ := +γ̂

(1)
n

1
, (7.7c)

K∧ γ̂
(2)
n

2
K∧ := −γ̂(2)n

2
, (7.7d)

for i = 1, · · · ,n1 − 1 and j = 1, · · · ,n2 − 1. One verifies that, by construction, the fermion
parity operator Û∧(p) is invariant under conjugation by K∧. For any operator Ô, we
introduce the notations

Ô
1,g

:= Kc(g)
1 ÔKc(g)

1 , (7.8a)

Ô
2,g

:= Kc(g)
2 ÔKc(g)

2 , (7.8b)

Ô
∧,g

:= Kc(g)
∧ ÔKc(g)

∧ , (7.8c)

to denote its complex conjugation by K1, K2, and, K∧.
For the stacked representation with [µ∧] = 1 that is achieved with an even-odd stacking,

we define the central element Ŷ∧ by

Ŷ∧ := Û1(p) Ŷ2, (7.9)

where Ŷ2 is the central element inherited from the representation Û2 which by assumption
has [µ2] = 1 for the case of even-odd stacking.

In what follows, we give explicit representations of Û∧(g) in terms of the pair Û1(g) and
Û2(g) and of ([(ν∧, ρ∧)], [µ∧]) in terms of the pairs ([(ν1, ρ1)], [µ1]) and ([(ν2, ρ2)], [µ2]).
The computational details are left to the Appendix D.

7.1 even-even stacking

For even-even stacking, we have [µ1] = [µ2] = 0. We define

[µ∧] := [µ1] + [µ2] = 0. (7.10)

The representations Û1 and Û2 of the group Gf are of the form (6.19), i.e., for any g ∈ Gf ,

Û1(g) = V̂1(g)Kc(g)
1 , Û2(g) = V̂2(g)Kc(g)

2 , (7.11)
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with the pair of unitary operators V̂1(g) and V̂2(g). The naive guess of V̂1(g) V̂2(g)Kc(g)
∧

is not a satisfactory definition of Û∧(g), for one verifies that it fails to satisfy Eq. (7.4).
Instead, for any g ∈ Gf , we define

Û∧(g) := V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) Kc(g)
∧ . (7.12)

One verifies that this definition satisfies Eq. (7.4) and, a forteriori, Eq. (6.17). The parity
operators Û1(p) and Û2(p) in definition (7.12) ensure that no additional minus signs are
introduced when Majorana operators γ̂(1)i and γ̂

(2)
i are conjugated by Û∧(g). This is

because, by definition (6.22), the values ρ1(g) and ρ2(g) encode the fermion parity of the
unitary operators V̂1(g) and V̂2(g), respectively, and the parity operators Û1(p) and Û2(p)

correct for any additional minus signs arising from fermionic algebra between operators
from representation Û1 and Û2 in compliance with Eq. (7.4).

As a sanity check, one verifies that when restricted to the center ZF
2 ⊂ Gf , the definition

(7.12) of the stacked representation together with definition (6.18) deliver the Hermitian
representations

Û∧(e) = 1̂∧,0, Û∧(p) = Û1(p) Û2(p), (7.13)

that are consistent with the definition (7.5).
The stacking rules are retrieved by composing the representations Û∧(g) and Û∧(h) of

two elements g and h of Gf . Definition (7.12) delivers (Appendix D.1)

Û∧(g) Û∧(h) = (−1)ρ1(g)ρ2(h) V̂1(g) V̂1(h)
1,g

V̂2(g) V̂2(h)
2,g

×
[
Û1(p)

]ρ2(g h)
[
Û2(p)

]ρ1(g h) Kc(g h)
∧

= eiϕ∧(g,h)V̂1(g h) V̂2(g h)
[
Û1(p)

]ρ2(g h)
[
Û2(p)

]ρ1(g h) Kc(g h)
∧

= eiϕ∧(g,h) Û∧(g h), (7.14a)

where we have defined

ϕ∧(g,h) := ϕ1(g,h) + ϕ2(g,h) + π ρ1(g) ρ2(h). (7.14b)
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The construction of the indices ([(ν∧, ρ∧)], [µ∧]) in terms of the indices ([(ν1, ρ1)], [µ1])

and ([(ν2, ρ2)], [µ2]) is achieved as follows. According to definition (6.21), the 2-cochain
ν∧ is simply obtained by restricting ϕ∧ to the elements of G, i.e.,

ν∧(g,h) = ν1(g,h) + ν2(g,h) + π (ρ1 ⌣ ρ2) (g,h). (7.15a)

In the last step we have used the cup product ⌣ to construct a 2-cochain ρ1 ⌣ ρ2 out of
the pair of one cochains ρ1 and ρ2. For the 1-cochain ρ∧, definition (6.22) delivers

ρ∧(g) = ρ1(g) + ρ2(g), (7.15b)

which is nothing but the total fermion parity of the stacked representation Û∧(g) of
element g ∈ G.

7.2 even-odd stacking

For even-odd stacking, we have [µ1] = 0, [µ2] = 1. Hence, we define

[µ∧] := [µ1] + [µ2] = 1. (7.16)

The representations Û1 and Û2 of the group Gf are of the form (6.19) and (6.27),
respectively, i.e., for any g ∈ Gf ,

Û1(g) = V̂1(g)Kc(g)
1 , Û2(g) = V̂2(g) Q̂2(g)Kc(g)

2 , Q̂2(g) =

[
γ̂
(2)
∞

]q2(g)

. (7.17)

The naive guess V̂1(g) V̂2(g) Q̂2(g)Kc(g)
∧ is not a satisfactory definition of Û∧(g), for one

verifies that it fails to satisfy Eq. (7.4) and to be of even fermion parity. Instead, we
define the stacked representation to be

Û∧(g) := V̂1(g) V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

Kc(g)
∧

≡ V̂∧(g) Q̂∧(g)Kc(g)
∧ , (7.18a)

V̂∧(g) := V̂1(g) V̂2(g)
[
Û1(p)

]ρ1(g) , (7.18b)

Q̂∧(g) := Q̂2(g)

[
γ̂
(2)
∞

]ρ1(g)

=

[
γ̂
(2)
∞

]q2(g)+ρ1(g)

. (7.18c)
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One verifies that this definition satisfies Eq. (7.4) and, a forteriori, Eq. (6.17). For any
g ∈ Gf , the definition (7.18) guarantees that Û∧(g) is of even fermion parity. This
property is inherited from the fact that Û2(g) is of even fermion parity according to Eq.
(6.27) and the factor Û1(p) γ̂

(2)
∞ compensates for the fermion parity of the operator V̂1(g).

The product Û1(p) γ̂
(2)
∞ also compensates for additional minus signs arising from fermionic

algebra between the operators from representations Û1 and Û2 in compliance with Eq.
(7.4).

As a sanity check, one verifies that, when restricted to the center ZF
2 ⊂ Gf , the

definition (7.18) of the stacked representation together with definitions (6.18) and (6.24)
deliver the Hermitian representations

Û∧(e) = 1̂∧,1, Û∧(p) = Û1(p) Û2(p), (7.19)

that are consistent with the definition (7.5).
When representations Û∧(g) and Û∧(h) of two elements g,h ∈ Gf are composed, we

obtain from definition (7.18) (Appendix D.2)

Û∧(g) Û∧(h) = (−1)ρ1(g) q2(h) V̂1(g) V̂1(h)
1,g

V̂2(g) Q̂2(g) V̂2(h)
2,g

Q̂2(h)
2,g

×
[
γ̂
(2)
∞

]ρ1(g)
[
γ̂
(2)
∞

2,g
]ρ1(h) [

Û1(p)
]ρ1(g h) Kc(g h)

∧

= eiϕ∧(g,h) V̂1(g h) V̂2(g h) Q̂1(g h)

[
γ̂
(2)
∞

]ρ1(h)

= eiϕ∧(g,h) Û∧(g h), (7.20a)

where we have defined

ϕ∧(g,h) :=ϕ1(g,h) + ϕ2(g,h) + πρ1(g) q2(h) + πρ1(h) [c(g) + q2(g) + ρ2(g)] . (7.20b)

The projective phase (7.20b) can be simplified by noting that terms that contain the
1-cochain q2. Therefore, the 2-cochain ϕ∧(g,h) defined in (7.20b) is gauge equivalent
(Appendix D.2) to

ϕ′
∧(g,h) :=ϕ1(g,h) + ϕ2(g,h) + πρ1(g) ρ2(h) + πρ1(g) c(h). (7.21)
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The construction of the indices ([(ν∧, ρ∧)], [µ∧]) in terms of the indices ([(ν1, ρ1)], [µ1])

and ([(ν2, ρ2)], [µ2]) is achieved as follows.
According to definition (6.28), the 2-cochain ν∧ is simply obtained by restricting ϕ∧

to the elements of G, i.e.,

ν∧(g,h) := ν1(g,h) + ν2(g,h) + π (ρ1 ⌣ ρ2) (g,h) + π (ρ1 ⌣ c) (g,h), (7.22a)

where we introduced the cup product ⌣ to construct a 2-cochain out of 1-cochains.
Since the stacked representation has index [µ∧] = 1, the 1-cochain ρ∧ can be either

determined by the definition (6.29) or by the identity (6.30b). The definition (7.6) implies

γ̂
(2)
∞

∧,g

γ̂
(2)
∞ = γ̂

(2)
∞

2,g

γ̂
(2)
∞ . (7.22b)

Using identity (6.30b) for the left and right hand sides separately, and comparing the
two we find

ρ∧(g) = q2(g) + q∧(g) + ρ2(g) = ρ1(g) + ρ2(g) mod 2, (7.22c)

where the value of the 1-cochain q∧(g) = ρ1(g) + q2(g) is read off from the fermion parity
of the unitary operator V̂∧(g) defined in Eq. (7.18).

7.3 odd-odd stacking

For odd-odd stacking, we have [µ1] = [µ2] = 1. Hence, we define

[µ∧] := [µ1] + [µ2] = 0. (7.23)

The representations Û1 and Û2 of the group Gf are of the form (6.27), i.e., for any g ∈ Gf ,

Û1(g) = V̂1(g) Q̂1(g)Kc(g)
1 , Q̂1(g) =

[
γ̂
(1)
∞

]q1(g)

, (7.24a)

Û2(g) = V̂2(g) Q̂2(g)Kc(g)
2 , Q̂2(g) =

[
γ̂
(2)
∞

]q2(g)

. (7.24b)
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The naive guess V̂1(g) Q̂1(g) V̂2(g) Q̂2(g)Kc(g)
∧ is not a satisfactory definition of Û∧(g), for

one verifies that it fails to satisfy Eq. (7.4). Instead, we define the stacked representation
to be

Û∧(g) := (−i)δg,p V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

Kc(g)
∧ , (7.25a)

Û∧(p) := P̂1 P̂2 iγ̂(1)n
1
γ̂
(2)
n

2
, (7.25b)

where P̂1 and P̂2 are the fermion parity operators constructed out of the Majorana
operators γ̂(1)1 , · · · , γ̂(1)n

1
−1 and γ̂

(2)
1 , · · · , γ̂(2)n

2
−1, respectively [recall definitions (6.24) and

(7.5)]. The exponent δg,p of the multiplicative phase factor (−i)δg,p is the Kronecker delta
defined over the group Gf .

As a sanity check, one verifies that, when restricted to the center ZF
2 ⊂ Gf , the

definition (7.25) of the stacked representation together with the definition (6.24) deliver
the Hermitian representations

Û∧(e) = 1̂∧,1, Û∧(p) = P̂1 P̂2 iγ̂(1)n
1
γ̂
(2)
n

2
, (7.26)

that are consistent with the definition (7.5). The choice of the multiplicative phase factor
(−i)δg,p in Eq. (7.25) is not unique since representation Û(g) of any element g ∈ Gf
is defined up to a multiplicative U(1) phase. We observe that the multiplicative factor
(−i)δg,p in Eq. (7.25) ensures that the stacked representation Û∧(p) is Hermitian in
compliance with the “gauge” choice made in definition (6.24).

Several comments are due. First, one verifies that the definition (7.25) satisfies Eq. (7.4)
and, a forteriori, Eq. (6.17). Second, the Majorana operators γ̂(1)∞ and γ̂

(2)
∞ do not enter

the definition (7.25) of the stacked representation Û∧. This is expected as the stacked
representation Û∧ has [µ∧] = 0. Accordingly, Û∧ is constructed solely out of the even
number n1 + n2 of Majorana operators spanning the fermionic Fock space of the stacked
boundary [recall definition (6.19)]. Third, the definition (7.25) is not symmetric under
exchange of the labels 1 and 2, as is to be expected by inspection of Eq. (7.7).

When representations Û∧(g) and Û∧(h) of two elements g,h ∈ Gf are composed, we
obtain from definition (7.25) (Appendix D.3)

Û∧(g) Û∧(h) = (−i)δg,p+(−1)c(g)δ
h,p (−1)c(g)

[
c(h)+q2(h)+ρ2(h)

]
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× V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂1(h)
∧,g

V̂2(h)
∧,g [

Û∧(p)
]c(h)+ρ1(h)+ρ2(h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

Kc(g h)
∧

= e
iϕcomp(g,h)+iπχ1(g,h)+iπχconj(g,h)+iπχ

ord
(g,h)+iχgag(g,h)

× (−i)δgh,p V̂1(g h) V̂2(g h)
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(g h)+ρ1(g h)
[
γ̂
(2)
n

2

]c(g h)+q2(g h)+ρ2(g h)

Kc(g h)
∧ ,

≡ eiϕ∧(g,h) Û∧(g h), (7.27a)

where we have defined the phase factors

ϕcomp(g,h) := ϕ1(g,h) + ϕ2(g,h) + π q1(h)[c(g) + ρ1(g)] + π q2(h)[c(g) + ρ2(g)]. (7.27b)

χ1(g,h) := c(g)
[

1 + c(h) + q1(g) + q2(g) + ρ2(h)
]
+ ρ1(g)

[
1 + q1(g) + q1(h) + q2(h)

]
+ ρ2(g)

[
1 + q1(g) + q2(g) + q2(h)

]
+ q1(g)q2(g), (7.27c)

χconj(g,h) := q1(h)[ρ1(g) + q1(g)] + q2(h)[c(g) + ρ2(g) + q2(g)]. (7.27d)

χord(g,h) := [c(g h) + ρ1(g) + ρ2(g h) + q1(h)][c(g) + q2(g) + ρ2(g)]

+ [c(g h) + ρ1(g h) + ρ2(g h) + q2(g h)][q1(g) + ρ1(g)], (7.27e)

χgag(g,h) :=
3π
2

(
δg,p + (−1)c(g)

δh,p − δgh,p

)
. (7.27f)

ϕ∧(g,h) := ϕcomp(g,h) + π χ1(g,h) + π χconj(g,h) + π χord(g,h) + χgag(g,h). (7.27g)

After some algebra, one can show that (Appendix D.3) the stacked 2-cochain ϕ∧(g,h) in
Eq. (7.27g) is gauge equivalent to

ϕ∧(g,h) := ϕ1(g,h) + ϕ2(g,h) + π ρ1(g) ρ2(h). (7.28)

The construction of the indices ([(ν∧, ρ∧)], [µ∧]) in terms of the indices ([(ν1, ρ1)], [µ1])

and ([(ν2, ρ2)], [µ2]) is achieved as follows.
The 2-cochain ν∧ is obtained by restricting ϕ∧ to the elements of G, i.e.,

ν∧(g,h) := ν1(g,h) + ν2(g,h) + π (ρ1 ⌣ ρ2) (g,h), (7.29a)
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where we introduced the cup product ⌣ to construct a 2-cochain out of 1-cochains.
Since [µ∧] = 0, we identify the 1-cochain ρ∧(g) as the total fermion parity of the

representation of element g ∈ Gf [recall definition (6.22)]. From the definition (7.25), we
thus find

ρ∧(g) = ρ1(g) + ρ2(g) + c(g), (7.29b)

where the first two terms originate from V̂1(g) and V̂2(g), the next two terms originate
from γ̂

(1)
n

1
, and the last three terms originate from γ̂

(2)
n

2
.

7.4 summary of fermionic stacking rules

In Secs. 7.1, 7.2, and 7.3, we have explicitly constructed the stacked representation Û∧
given two representations Û1 and Û2 in Eqs. (7.12), (7.18), and (7.25). This was achieved
by defining for any g ∈ Gf

Û∧(g) := V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) Kc(g)
∧ , (7.30a)

if [µ1] = [µ2] = 0,

Û∧(g) := V̂1(g) V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

Kc(g)
∧ , (7.30b)

if [µ1] = 0, [µ2] = 1,

Û∧(g) := (−i)δg,p V̂1(g)V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

Kc(g)
∧ , (7.30c)

if [µ1] = [µ2] = 1, and deriving Eqs. (7.15), (7.22), and (7.29) by comparing Û∧(g) Û∧(h)

to Û∧(g h) for any pair g,h ∈ Gf .
We collect these equations into the fermionic stacking rules of one-dimensional IFT

phases

([(ν1, ρ1)], 0) ∧ ([(ν2, ρ2)], 0) = ([(ν1 + ν2 + π (ρ1 ⌣ ρ2) , ρ1 + ρ2)], 0) , (7.31a)

([(ν1, ρ1)], 0) ∧ ([(ν2, ρ2)], 1) = ([(ν1 + ν2 + π (ρ1 ⌣ ρ2 + ρ1 ⌣ c) , ρ1 + ρ2)], 1) , (7.31b)

([(ν1, ρ1)], 1) ∧ ([(ν2, ρ2)], 0) = ([(ν1 + ν2 + π (ρ1 ⌣ ρ2 + ρ2 ⌣ c) , ρ1 + ρ2)], 1) , (7.31c)
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([(ν1, ρ1)], 1) ∧ ([(ν2, ρ2)], 1) = ([(ν1 + ν2 + π ρ1 ⌣ ρ2, ρ1 + ρ2 + c)], 0) . (7.31d)

They correspond to the even-even, even-odd, odd-even, and odd-odd stacking, respectively.
The stacking rules (7.31) agree with the ones derived in Refs. [139] and [143]. We note
that the even-odd stacking rule derived in Ref. [139] contains the term ρ1 ⌣ ρ1 instead
of the term ρ1 ⌣ c. These two terms are gauge equivalent to each other, i.e., they differ
by a 2-coboundary δ1

c ξ with ξ = π ρ1 ⌣ c − π
2
ρ1 ⌣ ρ1. The presentation in Eq. (7.31)

makes the role of antiunitary symmetries in the stacking rules explicit. If the group Gf
consist of only unitary symmetries, i.e., c(g) = 0 for any g ∈ Gf , the stacking rules (7.31)
reduce to

([(ν1, ρ1)], [µ1]) ∧ ([(ν2, ρ2)], [µ2]) = ([(ν1 + ν2 + π (ρ1 ⌣ ρ2) , ρ1 + ρ2)], [µ1] + [µ2]) . (7.32)

The stacking rules (7.31) dictate the group structure of IFT phases that are symmetric
under the group Gf . This group structure encodes the physical operation by which
two open chains realizing IFT phases that are symmetric under group Gf are brought
adiabatically into contact so as to realize an IFT phases that is symmetric under group
Gf . The stacking rules (7.31a) and (7.31d) each encodes how the left and right boundaries
of an open chain realizing an IFT phase that is symmetric under the group Gf are glued
back together in such a way that the resulting chain obeying periodic boundary conditions
supports a nondegenerate gapped ground state.

We note that the stacking rules (7.31b), (7.31c), and, (7.31d) are only defined when the
group Gf splits, since [µ] = 1 is only then possible. Furthermore, these stacking rules are
all apply to the case of odd number of Majorana degrees of freedom at the boundaries,
which is only possible if the underlying degrees of freedom are fermionic. In this sense, the
stacking rules (7.31b), (7.31c), and, (7.31d) are intrinsically fermionic. Similarly, the term
ρ1 ⌣ ρ2 in stacking rule (7.31a) is present due to the fermionic nature of the underlying
degrees of freedom. Had we consider only bosonic degrees of freedom, all operators from
the set O1 of boundary degrees of freedom would commute with those from the set O2.
For strictly bosonic systems the stacking rule (7.31a) reduces to

[(ν1, ρ1)] ∧ [(ν2, ρ2)] = [(ν1 + ν2, ρ1 + ρ2)], (7.33)

which is the bosonic stacking rule. Hereby, the symmetry imposed on the bosonic system
is G ≡ Gf that is obtained from replacing the femrion parity symmetry ZF

2 by an ordinary
Z2 symmetry. For a bosonic system, this Z2 symmetry is not special as it can be explicitly
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or spontaneously broken. In terms of the 2-cochains ϕ1 and ϕ2, the bosonic stacking rule
(7.33) is

[ϕ∧] = [ϕ1 + ϕ2], (7.34)

i.e., bosonic invertible phases follows the group structure of H2 (G, U(1)c).
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In Sec. 6.2, we have shown that the distinct IFT phases are characterized by the projective
character of the boundary representation Û

B
. In turn this projective character is captured

by the triplet of indices ([(ν, ρ)], [µ]). Let us now consider the implications of this triplet
being nontrivial, i.e., ([(ν, ρ)], [µ]) ̸= ([(0, 0)], [0]), for the spectral degeneracy of the
boundary states.

The foremost consequence of the nontrivial indices ([(ν, ρ)], [µ]) is the robustness of the
boundary degeneracy that is protected by a combination of the symmetry group Gf being
represented projectively and the existence of a nonlocal boundary Fock space, denoted
F

LR
in Eq. (6.15), whenever opposite boundaries host odd numbers of Majorana degrees

of freedom.
A robust quantum mechanical supersymmetry [162] was shown in Refs. [167–169] to

be generically present in nontrivial IFT phases. We are going to recast these results by
showing how the quantum mechanical supersymmetry present at the boundaries can be
deduced from the indices ([(ν, ρ)], [µ]).

In what follows, we consider the two cases [µ] = 0 and [µ] = 1 separately. For each
case, we first discuss the degeneracies associated with nontrivial pair [(ν, ρ)] on general
grounds.

8.1 the case of [µ ] = 0

When [µ] = 0, there always are even numbers of Majorana degrees of freedom localized on
each disconnected component Λ

L
and Λ

R
of the boundary Λ

bd
[recall definition (6.10b)].

In this case, the boundary Fock space FΛ
bd

spanned by the Majorana degrees of freedom
supported on Λ

bd
decomposes as

FΛ
bd

= FΛ
L

⊗g FΛ
R

, (8.1)

where ⊗g denotes a Z2 graded tensor product, while FΛ
L

and FΛ
R

are the Fock spaces
spanned by the Majorana degrees of freedom localized at the disconnected components

123
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Λ
L

and Λ
R

, respectively. The Fock spaces FΛ
L

and FΛ
R

are defined by Eq. (6.12a). We

denote with Ĥ
L

and Ĥ
R

the Hamiltonians that act on Fock spaces FΛ
L

and FΛ
R

and
govern the dynamics of the local Majorana degrees of freedom localized at boundaries Λ

L

and Λ
R

, respectively. By assumption, the Hamiltonians Ĥ
L

and Ĥ
R

are invariant under
the representations (possibly projective) Û

L
and Û

R
of the given symmetry group Gf ,

respectively.
Since [µ] = 0, the only nontrivial IFT phases are those with nontrivial equivalence

classes [(ν, ρ)] ̸= [(0, 0)], i.e., the FSPT phases. By definition, the indices ([ν
L

, ρ
L
], 0)

and ([ν
R

, ρ
R
], 0) associated with the representations (possibly projective) Û

L
and Û

R
,

respectively, satisfy

([(νL, ρL)], 0) ∧ ([(νR, ρR)], 0) = ([(0, 0)], 0) (8.2)

under the stacking rule (7.31a).
If we focus on a single boundary (denoted by B), the equivalence class [(ν

B
, ρ

B
)] char-

acterizes the nontrivial projective nature of the boundary representation Û
B

. Whenever
[(ν

B
, ρ

B
)] ̸= [(0, 0)], it is guaranteed that there is no state that is invariant under the

action of Û
B
(g) for all g ∈ Gf . In other words, there is no state in the Fock space FΛ

B

that transforms as a singlet under the representation Û
B

. Any eigenenergy of a Gf -
symmetric boundary Hamiltonian Ĥ

B
must be degenerate. The degeneracy is protected

by the particular representation Û
B

of the symmetry group Gf and cannot be lifted
without breaking the Gf symmetry. The minimal degeneracy that is protected by the Gf
symmetry depends on the explicit structure of the group Gf and the equivalence class
[(ν

B
, ρ

B
)] of the boundary representation Û

B
.

Since for [µ] = 0, the boundary representations Û
L

and Û
R

act on two independent Fock
spaces FΛ

L

and FΛ
R

, the total protected ground-state degeneracy GSD[µ]=0

bd
when open

boundary conditions are imposed is nothing but the product of the protected ground-state
degeneracies GSD[µ]=0

L
and GSD[µ]=0

R
of the Hamiltonians Ĥ

L
and Ĥ

R
, respectively, i.e.,

GSD[µ]=0

bd
= GSD[µ]=0

L
× GSD[µ]=0

R
. (8.3)

When [µ] = 0, the 1-cochain ρ
B
(g) = 0, 1 encodes the commutation relation between

the representations Û
B
(g) of group element g ∈ Gf and Û

B
(p) of fermion parity p ∈ Gf .

A nonzero second entry in the equivalence class [(ν
B

, ρ
B
)] implies that there exists at least

one group element g ∈ Gf with ρ
B
(g) = 1, i.e., the operator Û

B
(g) is of odd fermion parity.
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If this is so, the boundary Hamiltonian Ĥ
B

must possess an emergent quantum mechanical
supersymmetry. The supercharges associated with the boundary supersymmetry are
constructed following Ref. [169]. Assume without loss of generality that all energy
eigenvalues εα of a boundary Hamiltonian Ĥ

B
are shifted to the positive energies, i.e.,

εα > 0. Also assume that there exists a group element g ∈ Gf with ρ
B
(g) = 1. For any

orthonormal eigenstate |ψα⟩ of Ĥ
B

with energy εα, the state

|ψ
′
α⟩ := ÛB(g) |ψα⟩, (8.4a)

is also an orthonormal eigenstate of Ĥ
B

with the same energy but opposite fermion
parity. Since the fermion parities of |ψ′

α⟩ and |ψα⟩ are different, they are orthogonal. Two
supercharges can then be defined as

Q̂1 :=
∑
α+

√
εα+

[(
ÛB(g) |ψα+

⟩
)

⟨ψα+
| + |ψα+

⟩
(

⟨ψα+
| Û†

B
(g)
)]

, (8.4b)

Q̂2 :=
∑
α+

i
√
εα+

[(
ÛB(g) |ψα+

⟩
)

⟨ψα+
| − |ψα+

⟩
(

⟨ψα+
| Û†

B
(g)
)]

, (8.4c)

where the summation index α+ runs over the even fermion parity sector, i.e.,

ÛB(p)|ψα+
⟩ = +|ψα+

⟩ (8.4d)

for any α+. Operators Q̂1 and Q̂2 are Hermitian, carry odd fermion parity, and satisfy
the defining properties{

Q̂i, Q̂j
}
= 2ĤB δi,j ,

[
Q̂i, ĤB

]
= 0, i, j = 1, 2, (8.4e)

of fermionic supercharges. The precise number of supercharges on the boundary Λ
B

depends on the pair [(ν
B

, ρ
B
)] that characterizes the number of symmetry operators Û

B
(g)

that carry odd fermion parity and their mutual algebra.

8.2 the case of [µ ] = 1

When [µ] = 1, there are odd number of Majorana degrees of freedom localized on each
disconnected component Λ

L
and Λ

R
of the boundary Λ

bd
[recall definition (6.10b)].
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In this case, the boundary Fock space FΛ
bd

spanned by Majorana degrees of freedom
supported on Λ

bd
decomposes as

FΛ
bd

= FΛ
L

⊗g FΛ
LR

⊗g FΛ
R

, (8.5)

where ⊗g denotes a Z2 graded tensor product. The Fock spaces FΛ
B

with B = L, R
is spanned by all the Majorana operators localized at the disconnected components Λ

B

except one. The two-dimensional Fock space FΛ
LR

is spanned by the two remaining
Majorana operators with one localized on the left boundary Λ

L
and the other localized on

the right boundary Λ
R

of the open chain. Correspondingly, the pair of fermionic creation
and annihilation operators that span FΛ

LR

are nonlocal in the sense that they are formed
by Majorana operators supported on opposite boundaries. One can define Hamiltonians
Ĥ

L
and Ĥ

R
that are constructed out of Majorana operators localized at the boundaries

Λ
L

and Λ
R

. If so, the Hamiltonians Ĥ
L

and Ĥ
R

act on Fock spaces

FΛ
L

⊗g FΛ
LR

, (8.6a)

and

FΛ
R

⊗g FΛ
LR

, (8.6b)

respectively. By assumption, the Hamiltonians Ĥ
L

and Ĥ
R

are invariant under the
representations Û

L
and Û

R
of a given symmetry group Gf , respectively.

On each boundary Λ
B

, there exists a local Hermitean and unitary operator Ŷ
B

that
commutes with any other local operator supported on Λ

B
. The operator Ŷ

B
is defined by

Eq. (6.25) and is the representation of the nontrivial central element of a Clifford algebra
Cℓn with n an odd number of generators. It therefore carries an odd fermion parity and
anticommutes with the representation Û

B
(p) of fermion parity. It follows that Ŷ

B
must

commute with Ĥ
B

. We label the simultaneous eigenstates of Ĥ
B

and Ŷ
B

by |ψ
B,α,±⟩, i.e.,

ŶB |ψB,α,±⟩ = ±|ψB,α,±⟩, ĤB |ψB,α,±⟩ = εα |ψB,α,±⟩, (8.7)

where εα is the corresponding energy eigenvalue which we assume without loss of generality
to be strictly positive. Hence, all eigenstates of Ĥ

B
are at least twofold degenerate. Since

Ŷ
B

carries odd fermion parity, the eigenstates |ψ
B,α,±⟩ do not have definite fermion parities.

The simultaneous eigenstates of Ĥ
B

and Û
B
(p) must be the bonding and anti-bonding
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linear combinations of |ψ
B,α,+⟩ and |ψ

B,α,−⟩ that are exchanged under the action of Ŷ
B

.
The twofold degeneracy of Ĥ

B
when [µ] = 1 is due to the presence of the two-dimensional

Fock space F
LR

. This twofold degeneracy is of supersymmetric nature and the associated
supercharges are

Q̂1 :=
∑
α

√
εα
(

|ψα,+⟩⟨ψα,+| − |ψα,−⟩⟨ψα,−|
)

, (8.8a)

Q̂2 :=
∑
α

i√εα
(

|ψα,+⟩⟨ψα,−| − |ψα,−⟩⟨ψα,+|
)

. (8.8b)

Operators Q̂1 and Q̂2 are Hermitian. They carry odd fermion parity since the operator
Û

B
(p) exchanges the states |ψα,±⟩ with |ψα,∓⟩. They satisfy the defining properties{

Q̂i, Q̂j
}
= 2ĤB δi,j ,

[
Q̂i, ĤB

]
= 0, i, j = 1, 2, (8.8c)

of fermionic supercharges.
There may be other supercharges in addition to the ones defined in Eq. (8.8) due to the

representation Û
B

of the group Gf . The precise number of these additional supercharges
on the boundary Λ

B
depends on the pair [(ν

B
, ρ

B
)] that characterizes the number of

symmetry operators Û
B
(g) that carry odd fermion parity and their mutual algebra. They

can be constructed in the same fashion as in Eq. (8.4).
By definition, the indices ([(ν

L
, ρ

L
)], 1) and ([(ν

R
, ρ

R
)], 1) associated to the representa-

tions Û
L

and Û
R

, respectively, satisfy

([(νL, ρL)], 1) ∧ ([(νR, ρR)], 1) = ([(0, 0)], 0) (8.9)

under the stacking rule (7.31d). If we focus on a single boundary (denoted by B), the
equivalence class [(ν

B
, ρ

B
)] characterizes the nontrivial projective nature of the boundary

representation Û
B

. Whenever [(ν
B

, ρ
B
)] ̸= [(0, 0)], it is guaranteed that there is no state

that is invariant under the action of Û
B
(g) for all g ∈ Gf . In other words, there is no state

in the Fock space FΛ
B

that transforms as a singlet under the representation Û
B

. Each

eigenstate of a symmetric boundary Hamiltonian Ĥ
B

must carry degeneracies in addition
to the twofold degeneracy due to [µ] = 1. The degeneracy is protected by the particular
representation Û

B
of the symmetry group Gf and cannot be lifted without breaking the

Gf symmetry. The exact degeneracy protected by the representation depends on the
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explicit form of the group Gf , and the boundary representation Û
B

with the equivalence
class [(ν

B
, ρ

B
)].

Since for [µ] = 1, the boundary representations Û
L

and Û
R

do not act on two decoupled
Fock spaces. The total protected ground-state degeneracy GSD[µ]=1

bd
when open boundary

conditions are imposed cannot be computed by taking the products of degeneracies associ-
ated with the Hamiltonians Ĥ

L
and Ĥ

R
separately. However, GSD[µ]=1

bd
can be computed

by multiplying the “naive” protected ground state degeneracies of the Hamiltonians at
the two boundaries and modding out the twofold degeneracy due to F

LR
shared by the

two Hamiltonians, i.e.,

GSD[µ]=1

bd
=

1
2

× GSD[µ]=1

L
× GSD[µ]=1

R
, (8.10)

where GSD[µ]=1

L
and GSD[µ]=1

R
are the protected ground state degeneracies of Ĥ

L
and

Ĥ
R

, respectively.
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The argument presented in Sec. 6.1 for the enumeration of one-dimensional IFT phases
is based on the assumption that one can find a translationally invariant representative
Hamiltonian with internal Gf symmetry. In this Chapter, we will demonstrate how this can
be achieved using the stacked representations (7.30). We will construct a translationally
invariant local Hamiltonian that is sum of commuting projectors. This idea is closely
related to the so-called parent Hamiltonians in matrix product states (MPS) formalism.
This idea has been explored extensively in the literature. See Refs. [31, 57, 69, 127, 128]
for early examples of parent Hamiltonians of bosonic SPT phases and Refs. [135, 136] for
those of IFT phases.

This Chapter mainly serves as a complementary to the earlier chapters and completes
our treatment of IFT phases in one dimension. On our way to the construction of
representative Hamiltonians, we will also clarify how global representations of symmetry
transformations can be built out of local projective representations.

9.1 from local to global representations

Invertible fermionic topological phases of matter in one-dimensional space have an internal
symmetry group Gf that is represented in the bulk by the faithful representation Û

bulk

given in Eq. (6.1). Because these symmetries are internal, they induce for any site j of any
one-dimensional lattice Λ a faithful representation Ûj . However, representatives of IFT
phases can also accomodate projective representations of the internal symmetry group
Gf on the left and right boundaries of Λ provided the stacking of these two boundary
representations is gauge-equivalent to a faithful representation of Gf , as is captured by
Fig. 6.1.

When treating the translationally invariant Hamiltonians, it is convenient to first list
the transformation rules on each repeat unit cell instead of a global bulk representation
Û

bulk
. Naively, one then take the composition of local representations to obtain the global

representation. However, when each repeat unit cell realizes a projective representation, a
mere composition does not work as exemplified by the stacked representations (7.30).

129
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We consider the more general case where there is no translation symmetry, i.e., the
case where to each lattice site we can attach a different fermionic Fock space. We are
going to construct a bulk representation Û

bulk
of the symmetry group Gf out of a given

set of projective representations ûj acting on the Clifford algebra

Cℓn
j

:= span
{
γ̂
(j)
1 , γ̂(j)2 , · · · , γ̂(j)n

j

}
(9.1)

spanned by nj Majorana degrees of freedom for any site j from a d-dimensional lattice Λ
provided ∑

j∈Λ

nj = 0 mod 2. (9.2)

We note that stacking three representations û1, û2, and û3 using the definition (7.30) is
associative, i.e., it is independent of which two of the three representations are first stacked.
This associativity follows from the consistency condition (7.4). This is because, for a
Clifford algebra Cℓ2n with an even number of generators, specifying the transformation
rules on its generators together with the action of the complex conjugation uniquely (up
to a phase factor) determines the representation Û(g) of any element g ∈ Gf . For a
Clifford algebra Cℓ2n+1 with an odd number of generators, this is no longer true since
Cℓ2n+1 has a two-dimensional center spanned by 1̂ and Ŷ . We removed the ambiguity
consisting in multiplying Û(g) by the central element Ŷ by demanding that Û(g) is of
even fermion parity. Hence, for any g ∈ Gf and any labeling j1, j2, · · · , j|Λ| with |Λ| the
cardinality of Λ, we can define Û

bulk
(g) by stacking Ûj

1
(g) with Ûj

2
(g), which we then

stack with Ûj
3
(g), and so on. By construction, it follows that

Ûj (g) γ̂
(j)
ι Û†

j
(g) = Ûbulk(g) γ̂

(j)
ι Û†

bulk
(g), (9.3)

for any ι = 1, · · · ,nj , j ∈ Λ, and g ∈ Gf . Equation (9.3) is the counterpart to the
consistency condition (6.17) that we used to construct boundary representations. It also
follows that the representation

Ûbulk(g) =

[∏
j∈Λ

v̂j (g)

]
Kc(g), (9.4)
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Figure 9.1: Construction of an IFT phase out of inverse local projective representations in
one-dimension. Red and blue squares denote degrees of freedom on which inverse
representations ûj and ˆ̄uj are realized. Dashed ellipses denote repeat unit cells, on
each of which the trivial projective representation û∧,j acts. Each solid line repre-
sents a projector −|ψj,j+1⟩⟨ψj,j+1| that couples neighboring sites, where |ψj,j+1⟩
is a state that transforms as a singlet under the stacked representation ŵj,j+1 that
is obtained by stacking ˆ̄uj and ûj+1. When open boundary conditions are imposed,
the left and right boundaries support projective representations of the group Gf

with indices ([(ν, ρ)], [µ]) and ([(ν̄, ρ̄)], [µ̄]), respectively.

for any g ∈ Gf holds if and only if the local representation Ûj (g) has the indices ρj (g) = 0
and [µj ] = 0 for any j ∈ Λ. This implies that the local representation Ûj (g) of any
element g ∈ Gf is of even fermion parity and the number of Majorana degrees of freedom
nj is an even integer for any site j ∈ Λ. It is then appropriate to call a local representation
Ûj that has nontrivial indices ρj and [µj ] an intrinsically fermionic representation. In
other words, the decomposition (9.4) is possible if and only if the local representation
Ûj for any site j ∈ Λ is not intrinsically fermionic. In particular, if all local degrees of
freedom are bosonic, then the decomposition (9.4) is always valid. However, instead of
the decomposition (9.4), Û

bulk
(g) is obtained in all generality by iterating Eq. (7.30) for

any g ∈ Gf .

9.2 commuting projector hamiltonians

Given a fermionic symmetry group Gf , we will construct a commuting projector Hamil-
tonian that realizes an IFT phase with indices ([(ν, ρ)], [µ]). The key observation is the
following. Let ûj be a nontrivial projective representation acting on a local Fock space
Fj

1, with indices ([(ν, ρ)], [µ]) ̸= ([(0, 0)], 0). By definition, there is no state in the local
Fock space Fj that transforms as a singlet under ûj . Since indices ([(ν, ρ)], [µ]) form an

1 In general, the Fock space Fj may be only a subspace of some fermionic Fock space. For instance, the

symmetry group G
f

= U(1)F ⋊ ZT
2 does not admit a nontrivial projective representation on a four-

dimensional fermionic Fock space while it does when restricted to its two-dimensional odd fermion-parity
subspace.
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Abelian group under stacking, there exists another representation ˆ̄uj on a local Fock space
Fj with indices ([(ν̄, ρ̄)], [µ̄]) such that

([(ν, ρ)], [µ]) ∧ ([(ν̄, ρ̄)], [µ̄]) = ([(0, 0)], 0). (9.5)

This means that on the stacked local Fock space Fj ⊗g Fj
2, there exists a state |ψj⟩ that

transforms as a singlet under the representation û∧,j obtained by stacking ûj and ˆ̄uj .
The identity

û∧,j(g)|ψj⟩ = eiθ(g) |ψj⟩, |ψj⟩ ∈ Fj ⊗g Fj (9.6)

where θ(g) ∈ [0, 2π), holds for any g ∈ Gg. We can choose two sets of basis states that
span the Fock spaces Fj and Fj , i.e.,

Fj = span
{

|φj,1⟩, |φj,2⟩, · · · , |φj,n⟩,
}

, dim
(
Fj
)
= n, (9.7a)

Fj = span
{

|φ̄j,1⟩, |φ̄j,2⟩, · · · , |φ̄j,n̄⟩,
}

, dim
(
Fj
)
= n̄. (9.7b)

The state |ψj⟩ then has the expansion

|ψj⟩ :=
∑
α,ᾱ

cα,ᾱ |φj,α⟩ ⊗g |φ̄j,ᾱ⟩. (9.7c)

Now, we consider a one-dimensional lattice Λ such that the stacked Fock space Fj ⊗g

Fj resides at each site j ∈ Λ. The global representation Û
bulk

of the group Gf is
obtained by stacking the trivial representations û∧,j according to Eq. (9.4). Since stacking
of representations is associative, the global representation Û

bulk
can be equivalently

constructed by stacking the local representations ŵj,j+1 that are obtained by stacking ˆ̄uj
and ûj+1. Furthermore, we can define a state that transforms as a singlet under ŵj,j+1

|ψj,j+1⟩ :=
∑
α,ᾱ

cα,ᾱ |φ̄j,ᾱ⟩ ⊗g |φj+1,α⟩, ŵj,j+1(g)|ψj,j+1⟩ = eiθ(g) |ψj,j+1⟩, (9.8)

2 Here, ⊗g denotes a (potential) Z2-graded tensor product if the corresponding Fock spaces are fermionic,

see Appendix B.



9.2 commuting projector hamiltonians 133

for any g ∈ Gf . The Hamiltonian

Ĥ([(ν,ρ)],[µ]) := −
∑
j∈Λ

|ψj,j+1⟩⟨ψj,j+1|, (9.9)

is a sum of commuting projectors each of which stabilizes the state |ψj,j+1⟩ on neighboring
sites. When periodic boundary conditions are imposed it realizes a nondegenerate,
gapped, translationally invariant, and, Gf -symmetric ground state. When open boundary
conditions are imposed, the projector |ψ|Λ|,1⟩⟨ψ|Λ|,1| is absent in the Hamiltonian. The
boundary degrees of freedom that would be otherwise pinned by this projector form
the zero-energy modes that are localized to the left and right boundaries. The total
ground-state degeneracy with open boundary conditions is

GSD = dim (F1) × dim
(
F|Λ|
)
= n n̄. (9.10)

The total ground-state degeneracy is due to the integrablity of the Hamiltonian (9.9)
and can be larger than the minimum protected ground-state degeneracy. The left- and
right-boundary degrees of freedom realizes projective representations û1 and ˆ̄u|Λ| of the
group Gf with nontrivial indices ([(ν, ρ)], [µ]) and ([(ν̄, ρ̄)], [µ̄]), respectively. Fig. 9.1
sketches the construction of Hamiltonian (9.9).

In Chapter 6.1, we enumerated one-dimensional IFT phases by assuming that for each
phase there exists a translationally invariant representative Hamiltonian. By constructing
the Hamiltonian (9.9), therefore, we ensure this classification scheme is at least self-
consistent.
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A N D S P I N C L U S T E R M O D E L S

In this Chapter, we present a concrete application of the toolkit developed in Chapters 6.1,
6.2, and, 7. We will consider two well-known and closely related examples: one-dimensional
invertible fermionic topological (IFT) phases with symmetry group Gf = ZT × ZF2 (class
BDI) and one-dimensional bosonic symmetry protected topological (BSPT) phases with
symmetry group G = ZT2 × Z2.

We start with a short review in Sec. 10.1 of the second cohomology group of ZT2 × ZF2

and the associated fermionic and bosonic stacking rules, see Appendix A.5.1 for the details.
In Sec. 10.2, we consider the time-reversal symmetric Majorana c chains introduced in

Ref. [18], that realize the representatives of the IFT phases in the symmetry class BDI.
The label c ∈ Z counts the zero modes at the boundaries of noninteracting Bogoliubov-
de-Gennes one-dimensional superconductors in the symmetry class BDI. We compute
the indices associated with the left and the right boundaries of each Majorana chain and
demonstrate that these indices form the cyclic group Z8 under the stacking rules (7.31).
We compute the protected ground-state degeneracy of each representative when open
boundary conditions are imposed.

In Sec. 10.3, we consider the quantum spin-1/2 cluster c chains introduced in Ref. [170],
that realize the representatives of the BSPT phases with symmetry group G = ZT2 × Z2.
The cluster chains are intimately related to the time-reversal symmetric Majorana chains
as they are related by a Jordan-Wigner transformation. This relation has been investigated
in Ref. [171]. For each quantum spin-1/2 cluster c chains, we compute the indices associated
with the left and the right boundaries and show that they form the group Z2 × Z2 under
the bosonic stacking rules. We relate the indices of the BSPT phases to that of Z4

subgroup of the IFT phases in the symmetry class BDI, which is the group of fermionic
symmetry protected topological (FSPT) phases in class BDI.

135
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10.1 review of second group cohomology of ZT
2 × ZF

2

The split group ZT
2 × ZF

2 is generated by the two generators t and p corresponding to the
cyclic subgroups ZT

2 ≡ {e, t} and ZF
2 ≡ {e, p}, respectively. The second group cohomology

of ZT
2 × ZF

2 is given by

H2(ZT
2 × ZF

2 , U(1)c) = Z2 × Z2. (10.1a)

We denote the equivalent classes of H2(ZT
2 × ZF

2 , U(1)c) by the index [(ν, ρ)]. Since
ZT

2 × ZF
2 is a split group, i.e., a trivial extension of ZT

2 by ZF
2 , we have the identity

[(ν, ρ)] ≡ ([ν], [ρ]) ∈ H2(ZT
2 , U(1)c) ×H1(ZT

2 , Z2) = Z2 × Z2. (10.1b)

Therefore, the two indices [ν] = 0, 1 and [ρ] = 0, 1 characterizes the projective representa-
tions of the group ZT × ZF

2 , and therefore, the one-dimensional FSPT phases in class
BDI. Given a representation Û , the indices [ν] and [ρ] are specified through the identities

(−1)[ν] = Û(t) Û(t), (10.2a)

(−1)[ρ] =

{
Û(t) Û(p) Û†(t) Û(p), if [µ] = 0,

Û(t) Ŷ Û†(t) Ŷ if [µ] = 1,
(10.2b)

where Ŷ is the nontrivial center of a Clifford algebra with an odd number of generators
as must be the case when [µ] = 1. Together with the index [µ] = 0, 1 that specifies the
parity of the number of boundary Majorana degrees of freedom, the triplet ([ν], [ρ], [µ]) ∈
Z2 × Z2 × Z2 characterizes the eight IFT phases with the symmetry group ZT × ZF

2 .
Given two projective representations Û1 and Û2 of the group Gf = ZT

2 × ZF
2 , using the

stacking rules (7.31), we find

[ν∧] =


[ν1] + [ν2] + [ρ1] [ρ2], if [µ∧] ≡ [µ1] + [µ2] = 0,

[ν1] + [ν2] + [ρ1] [ρ2] + [ρ1], if [µ1] = 0, [µ2] = 1,

[ν1] + [ν2] + [ρ1] [ρ2] + [ρ2], if [µ1] = 1, [µ2] = 0,

(10.3a)
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Table 10.1: The indices ([ν], [ρ], [µ]) generated by stacking the indices (0, 0, 1) (c = 1) with
itself form a Z8 under the stacking rules (10.3).

c ([ν], [ρ], [µ])
1 (0,0,1)
2 (0,1,0)
3 (1,1,1)
4 (1,0,0)
5 (1,0,1)
6 (1,1,0)
7 (0,1,1)
8 (0,0,0)

for the value of the 2-cochain ν∧(t, t), and

[ρ∧] =

{
[ρ1] + [ρ2] + 1, if [µ1] = 1, [µ2] = 1,

[ρ1] + [ρ2], otherwise,
(10.3b)

where we have used the fact that c(t) = 1. One thus finds that the one-dimensional IFT
phases with symmetry group ZT

2 × ZF
2 form the cyclic group Z8 under the stacking rule

(10.3). Without loss of generality, the generator of the group Z8 can be chosen as the
IFT phase with indices ([ν], [ρ], [µ]) = (0, 0, 1). In Table 10.1, the triplet ([ν], [ρ], [µ]) for
all elements fo Z8 are computed using the stacking rules (10.3).

The one-dimensional BSPT phases protected by the group ZT
2 × Z2 are also classified

by the second cohomology group (10.1) [31]. The two indices [ν] = 0, 1 and [ρ] = 0, 1
generating H2(ZT

2 × Z2, U(1)c) can be measured using Eq. (10.2) if we set [µ] = 0 and
make the identification between the fermion parity group ZF

2 and the cyclic group Z2

protecting the BSPT phases. There are three main differences as opposed to the fermionic
case.

1. First, all bosonic invertible phases in one dimension are BSPT phases. In particular,
there is no analogue of the fermionic index [µ] for bosonic invertible phases.

2. Second, the cyclic subgroup Z2 for the BSPT phases is an ordinary Z2 as opposed
to the fermion parity group ZF

2 in the sense that the former can be explicitly or
spontaneously broken whereas the latter cannot.
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3. Third, the stacking rules of BSPT phases follow the group composition rule of the
second cohomology group (10.1), i.e., one-dimensional BSPT phases with ZT

2 × Z2

symmetry form the group Z2 × Z2 under the stacking operation. In terms of the
indices [ν] and [ρ], we write(

[ν⊗], [ρ⊗]
)

≡ ([ν1], [ρ1]) ⊗ ([ν2], [ρ2]) := ([ν1] + [ν2], [ρ1] + [ρ2]) , (10.4)

where ⊗ denotes the bosonic stacking operation.

10.2 time-reversal invariant majorana chains

Let c ∈ Z. We consider the family of Hamiltonians introduced in Ref. [18]

Ĥn := −
N−c∑
j=1

(
ĉ†
j ĉj+c + ĉ†

j ĉ
†
j+c + H.c.

)
=

N−c∑
j=1

i ξ̂j η̂j+c, (10.5a)

where ĉj and ĉ†
j denote the annihilation and creation operators of spinless fermions and

ξ̂j and η̂j denote the Majorana operators defined through the equations

ĉj :=
1
2
(
η̂j + iξ̂j

)
, ĉ†

j :=
1
2
(
η̂j − iξ̂j

)
, η̂j = η̂†

j , ξ̂j = ξ̂†
j , (10.5b)

together with the algebra

{ĉi, ĉ
†
j} = δij {η̂i, η̂j} = {ξ̂i, ξ̂j} = 2δij , (10.5c)

with all other anticommutators vanishing. The bulk representation of the symmetry group
ZT

2 × ZF
2 = {e, t} × {e, p} is given by

Ûbulk(t) := 1̂ Kbulk, Ûbulk(p) :=
N∏
j

(
1 − 2ĉ†

j ĉj
)
=

N∏
j

iξ̂j η̂j . (10.6a)
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We demand that complex conjugation K
bulk

acts on complex fermion operators ĉj as

Kbulk ĉj Kbulk = ĉj , Kbulk ĉ
†
j Kbulk = ĉ†

j , (10.6b)

which implies

Ûbulk(t) η̂j Û
†
bulk

(t) = Kbulk η̂j Kbulk = η̂j , (10.6c)

Ûbulk(t) ξ̂j Û
†
bulk

(t) = Kbulk ξ̂j Kbulk = −ξ̂j . (10.6d)

In the family of Hamiltonians (10.5a) open boundary conditions are imposed. Con-
sequently, the Majorana operators

{
ξ̂N−c+1

, ξ̂N−c+2
, · · · , ξ̂N

}
on the right and the

Majorana operators
{
η̂1, η̂2, · · · , η̂c

}
on the left do not enter a Majorana c open chain.

These operators define the zero-energy Majorana degrees of freedom at the right- and
left-boundaries, respectively.

10.2.1 Boundary Representations and Computation of Indices

We shall construct the boundary representations Û
L
(t) and Û

R
(t) that satisfy the com-

patibility conditions

Ûbulk(t) η̂α Û
†
bulk

(t) = ÛL(t) η̂α Û
†
L
(t), α = 1, · · · , c, (10.7)

Ûbulk(t) ξ̂β Û
†
bulk

(t) = ÛR(t) ξ̂β Û
†
R
(t), β = N − c+ 1, · · · ,N . (10.8)

To this end, we will construct the boundary representation for the case of c = 1. For all
the remaining cases, we will stack the c = 1 representation with itself using the explicit
form of the stacked representation of reversal of time t

Û∧(t) := V̂1(t) V̂2(t)
[
Û1(p)

][ρ2 ]
[
Û2(p)

][ρ1 ] K∧, (10.9a)

if [µ1] = [µ2] = 0,

Û∧(t) := V̂1(t) V̂2(t)
[
Û1(p)

][ρ2 ]
[
Û2(p)

][ρ1 ] K∧, (10.9b)
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if [µ1] = 0, [µ2] = 1,

Û∧(t) := V̂1(t) V̂2(t)
[
Û∧(p)

]1+[ρ1 ]+[ρ2 ]
[
γ̂
(1)
n

1

]q1(t)+[ρ1 ]
[
γ̂
(2)
n

2

]1+q2(t)+[ρ2 ]

K∧, (10.9c)

if [µ1] = [µ2] = 1, which is defined in Eq. (7.30). We will then compute the triplets
([ν

L
], [ρ

L
], [µ

L
]) and ([ν

R
], [ρ

R
], [µ

R
]) that are associated with the left and the right

boundaries respectively. We will confirm that these indices are inverses of each other for
any c and follow the group structure in Table 10.1 dictated by the stacking rules (10.3).

10.2.1.1 The Case of c = 1

When c = 1, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1} , OR =
{
ξ̂N
}

, (10.10)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂1 KL = +η̂1, KR ξ̂N KR = −ξ̂N . (10.11)

The boundary representations that satisfy the conditions (10.8) are given by

ÛL(t) := KL, ÛR(t) := KR, (10.12a)

ŶL := η̂1, ŶR := ξ̂N . (10.12b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (0, 0, 1), ([νR], [ρR], [µR]) = (0, 1, 1), (10.12c)

on the left and the right boundaries, respectively.

10.2.1.2 The Case of c = 2

When c = 2, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2} , OR =
{
ξ̂N−1, ξ̂N

}
, (10.13)
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respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.14)

with α = 1, 2, and β = 0, 1. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the c = 1
representations (10.12a), we obtain the c = 2 representations

ÛL(t) := η̂1 KL, ÛR(t) := ξ̂N−1 KR, (10.15a)

ÛL(p) := iη̂2 η̂1, ÛL(p) := iξ̂N−1 ξ̂N . (10.15b)

Note that in the definition of the stacked operator (10.9) for odd-odd stacking, the
operator γ(2)n

2
denotes the Majorana degree of freedom that is odd under stacked complex

conjugation. In this case, these are the operators η̂2 and ξ̂N−1
according to Eq. (10.14).

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (0, 1, 0), ([νR], [ρR], [µR]) = (1, 1, 0), (10.15c)

on the left and the right boundaries, respectively.

10.2.1.3 The Case of c = 3

When c = 3, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3} , OR =
{
ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.16)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.17a)

KL η̂3 KL = +η̂3, KR ξ̂N−2 KR = −ξ̂N−2, (10.17b)

with α = 1, 2, and β = 0, 1.
Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the c = 2 representation (10.15a) and the

c = 1 representation (10.12a), respectively, we obtain the c = 3 representations

ÛL(t) := η̂2 ξ̂N−2 KL, ÛR(t) := ξ̂N η̂3 KR, (10.18a)

ŶL := iη̂3 η̂2 η̂1, ŶR := iξ̂N−2 ξ̂N−1 ξ̂N . (10.18b)
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Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (1, 1, 1), ([νR], [ρR], [µR]) = (1, 0, 1), (10.18c)

on the left and the right boundaries, respectively.

10.2.1.4 The Case of c = 4

When c = 4, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3, η̂4} , OR =
{
ξ̂N−3, ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.19)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.20a)

with α = 1, · · · , 4, and β = 0, · · · , 3. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the
c = 3 representation (10.18a) and the c = 1 representation (10.12a), respectively, we
obtain the c = 4 representations

ÛL(t) := η̂2 η̂4 KL, ÛR(t) := ξ̂N−2 ξ̂N KR, (10.21a)

ÛL(p) := η̂4 η̂3 η̂2 η̂1, ÛL(p) := ξ̂N−3 ξ̂N−2 ξ̂N−1 ξ̂N . (10.21b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (1, 0, 0), ([νR], [ρR], [µR]) = (1, 0, 0), (10.21c)

on the left and the right boundaries, respectively.

10.2.1.5 The Case of c = 5

When c = 5, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3, η̂4, η̂5} , OR =
{
ξ̂N−4, ξ̂N−3, ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.22)
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respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.23a)

KL η̂5 KL = +η̂5, KR ξ̂N−4 KR = −ξ̂N−4, (10.23b)

with α = 1, · · · , 4, and β = 0, · · · , 3. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the
c = 4 representation (10.21a) and the c = 1 representation (10.12a), respectively, we
obtain the c = 5 representations

ÛL(t) := η̂2 η̂4 KL, ÛR(t) := ξ̂N ξ̂N−2 KR, (10.24a)

ŶL := η̂5 η̂4 η̂3 η̂2 η̂1, ŶR := ξ̂N−4 ξ̂N−3 ξ̂N−2 ξ̂N−1 ξ̂N . (10.24b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (1, 0, 1), ([νR], [ρR], [µR]) = (1, 1, 1), (10.24c)

on the left and the right boundaries, respectively.

10.2.1.6 The Case of c = 6

When c = 6, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3, η̂4, η̂5, η̂6} , (10.25a)

OR =
{
ξ̂N−5, ξ̂N−4, ξ̂N−3, ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.25b)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.26a)

with α = 1, · · · , 6, and β = 0, · · · , 5. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the
c = 5 representation (10.24a) and the c = 1 representation (10.12a), respectively, we
obtain the c = 6 representations

ÛL(t) := η̂1 η̂3 η̂5 KL, ÛR(t) := ξ̂N−5 ξ̂N−3 ξ̂N−1 KR, (10.27a)
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ÛL(p) := i
6∏
j=1

η̂6−j+1, ÛL(p) := i
6∏
j=1

ξ̂N−6+j . (10.27b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (1, 1, 0), ([νR], [ρR], [µR]) = (0, 1, 0), (10.27c)

on the left and the right boundaries, respectively.

10.2.1.7 The Case of c = 7

When c = 7, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3, η̂4, η̂5, η̂6, η̂7} , (10.28a)

OR =
{
ξ̂N−6, ξ̂N−5, ξ̂N−4, ξ̂N−3, ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.28b)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.29a)

KL η̂7 KL = +η̂7, KR ξ̂N−6 KR = −ξ̂N−6, (10.29b)

with α = 1, · · · , 6, and β = 0, · · · , 5. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the
c = 6 representation (10.27a) and the c = 1 representation (10.12a), respectively, we
obtain the c = 7 representations

ÛL(t) := η̂2 η̂4 η̂6 ξ̂N−6 KL, ÛR(t) := ξ̂N−4 ξ̂N−2 ξ̂N η̂7 KR, (10.30a)

ŶL := i
7∏
j=1

η̂7−j+1, ŶR := i
7∏
j=1

ξ̂N−7+j . (10.30b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (0, 1, 1), ([νR], [ρR], [µR]) = (0, 0, 1), (10.30c)

on the left and the right boundaries, respectively.
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10.2.1.8 The Case of c = 8

When c = 8, the sets of Majorana degrees of freedom at the left and the right boundaries
are

OL = {η̂1, η̂2, η̂3, η̂4, η̂5, η̂6, η̂7, η̂8} , (10.31a)

OR =
{
ξ̂N−7, ξ̂N−6, ξ̂N−5, ξ̂N−4, ξ̂N−3, ξ̂N−2, ξ̂N−1, ξ̂N

}
, (10.31b)

respectively. We choose the complex conjugation on the boundaries to act as

KL η̂α KL = (−1)α+1η̂α, KR ξ̂N−β KR = (−1)β ξ̂N−β , (10.32a)

with α = 1, · · · , 8, and β = 0, · · · , 7. Choosing Û1(t) and Û2(t) in Eq. (10.9) to be the
c = 7 representation (10.30a) and the c = 1 representation (10.12a), respectively, we
obtain the c = 8 representations

ÛL(t) := η̂2 η̂4 η̂6 η̂8 KL, ÛR(t) := ξ̂N−6 ξ̂N−4 ξ̂N−2 ξ̂N KR, (10.33a)

ÛL(p) :=
8∏
j=1

η̂8−j+1, ÛL(p) :=
8∏
j=1

ξ̂N−8+j . (10.33b)

Using the definitions (10.2) delivers the indices

([νL], [ρL], [µL]) = (0, 0, 0), ([νR], [ρR], [µR]) = (0, 0, 0), (10.33c)

on the left and the right boundaries, respectively. Note that the indices on both left and
right-boundaries trivialize.

10.2.2 Protected Ground-State Degeneracies

We calculate the protected ground-state degeneracy for the symmetry class BDI, for each
value of the triplet ([ν], [ρ], [µ]). In Table 10.2, we summarize the protected ground state
degeneracies at each boundary and the total protected ground-state degeneracy of each
one-dimensional IFT phase in symmetry class BDI.
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10.2.2.1 The Case of [µ] = 0 for the Symmetry Class BDI

The case [µ] = 0 corresponds to the c = 2, 4, 6, 8 elements in the Table 10.1, which form
a Z4-group under the stacking rule (10.3). The index [ν

B
] dictates if the boundary

representation Û
B
(t) squares to plus or minus the identity, as defined in Eq. (10.2). The

index [ρ
B
] characterizes the fermion parity of the representation Û

B
(t) of reversal of time,

as defined in Eq. (10.2). Whenever [ρ
B
] = 1, it was shown in Chapter 8 that all states

on the boundary Λ
B

are at least twofold degenerate because of a quantum mechanical
supersymmetry. Whenever [ν

B
] = 1, there exists a twofold Kramer’s degeneracy on the

boundary Λ
B

. When [ν
B
] = [ρB] = 1, Û

B
(t) anticommutes with Û

B
(p), i.e., it is either

the pair Ĥ
B

and Û
B
(t) that can be simultanously diagonalized with Û

B
(p) acting as a

ladder operator or the pair Ĥ
B

and Û
B
(p) that can be simultanously diagonalized with

Û
B
(t) acting as a ladder operator. Therefore, when [µ] = 0, whenever the pair ([ν

B
], [ρ

B
])

is nontrivial, there exist a twofold protected degeneracy at the boundary Λ
B

. The ground
state degeneracies are

GSD[µ]=0

L
= 2[νL

]+[ρ
L
]−[ν

L
] [ρ

L
], (10.34a)

GSD[µ]=0

R
= 2[νR

]+[ρ
R
]−[ν

R
] [ρ

R
], (10.34b)

GSD[µ]=0

bd
= 2[νL

]+[ρ
L
]−[ν

L
] [ρ

L
] × 2[νR

]+[ρ
R
]−[ν

R
] [ρ

R
]. (10.34c)

We conclude that a one-dimensional nontrivial FSPT phase in the symmetry class BDI has
fourfold protected ground-state degeneracy when open boundary conditions are imposed.
Additional degeneracies are accidental.

10.2.2.2 The Case of [µ] = 1 for the Symmetry Class BDI

The case [µ] = 1 corresponds to the c = 1, 3, 5, 7 elements in the Table 10.1. The index
[ν

B
] dictates when the boundary representation Û

B
(t) squares to plus or minus identity as

defined in Eq. (10.2). The index [ρ
B
] dictates when the representation Û

B
(t) of reversal

of time commutes or anticommutes with the central element Ŷ
B

, as defined in Eq. (10.2).
Whenever [ν

B
] = 1, there exist a twofold Kramer’s degeneracy at the boundary Λ

B
. Since

by definition (4.10) in the main text, Û
B
(t) is constructed to have even fermion parity

all Kramer’s degenerate states carry the same fermion parity. When [ρ
B
] = 1, Û

B
(t)

maps the eigenstates of Ŷ
B

with eigenvalues ±1 to the eigenstates with eigenvalues ∓1.
However, a nonzero [ρ

B
] does not imply any additional protected degeneracy. Hence, any
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Table 10.2: The triplets ([νB], [ρB], [µB]) on the left (B = L) and right (B = R) boundaries
of a Majorana c chain with c = 1, · · · , 8. The last column GSD is the protected
ground-state degeneracies defined in Eqs. (10.34) and (10.35) for [µB] = 0 and
[µB] = 1, respectively.

c ([ν
L
], [ρ

L
], [µ

L
]) ([ν

R
], [ρ

R
], [µ

R
]) GSD

1 (0, 0, 1) (0, 1, 1) 2

2 (0, 1, 0) (1, 1, 0) 4

3 (1, 1, 1) (1, 0, 1) 8

4 (1, 0, 0) (1, 0, 0) 4

5 (1, 0, 1) (1, 1, 1) 8

6 (1, 1, 0) (0, 1, 0) 4

7 (0, 1, 1) (0, 0, 1) 2

8 (0, 0, 0) (0, 0, 0) 1

protected degeneracy in addition to that due to [µ] = 1 comes from the nontrivial index
[ν

B
]. The ground state degeneracies are

GSD[µ]=1

L
= 2 × 2[νL

], (10.35a)

GSD[µ]=1

R
= 2 × 2[νR

], (10.35b)

GSD[µ]=1 =
1
2

× 2 × 2[νL
] × 2 × 2[νR

] = 2 × 2[νL
] × 2[νR

]. (10.35c)

Hence, we find that a one-dimensional nontrivial IFT phases in the symmetry class BDI
with c = 1, 3, 5, 7 have protected ground-state degeneracy of 2, 8, 8, and 2, respectively,
when open boundary conditions are imposed.
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10.3 spin-1/2 cluster chains

In this section, we consider a family of spin Hamiltonians that realize BSPT phases and
are closely related to the Hamiltonians (10.5a) of the time-reversal symmetric Majorana
chains. As was done in Sec. 10.2, we will identify the set of gapless boundary degrees of
freedom when open-boundary conditions are imposed and compute the associated indices
that characterize the boundary projective representations.

We define the spin-1/2 cluster c chains that are described by the family of Hamiltonians

Ĥ
(b)
c := −

2N−b|c|∑
j=1

Ĉj , (10.36a)

where b = 0, 1 specifies the periodic (b = 0) or open (b = 1) boundary conditions and we
have defined

Ĉj :=



Ẑj X̂j+1 · · · X̂j+c−1Ẑj+c, if c > 0,

−X̂j , if c = 0,

Ŷj X̂j+1 · · · X̂
j+|c|−1

Ŷ
j+|c|, if c < 0,

(10.36b)

with X̂j , Ŷj , and Ẑj the Pauli spin operators at site j realizing the spin-1/2 representation
of the su(2) Lie algebra. The local terms Ĉj are pairwise commuting and each has
eigenvalues ±1. Therefore, the Hamiltonian (10.36) is a sum of pairwise commuting terms.
We set the total number of sites to be even, i.e., 2N .

The Hamiltonian (10.36) of the spin-1/2 cluster c chains is related to the Hamiltonian
(10.5a) of the time-reversal symmetric Majorana c chains by the Jordan-Wigner (JW)
transformation:

η̂j =

(
j−1∏
i=1

X̂i

)
Ẑj , ξ̂i =

(
j−1∏
i=1

X̂i

)
Ŷj , iξ̂j η̂j = −X̂j , (10.37a)

Ẑj =

(
j−1∏
i=1

iη̂i ξ̂i

)
η̂j , Ŷj =

(
j−1∏
i=1

iη̂i ξ̂i

)
ξ̂j , X̂j = −iξ̂j η̂j . (10.37b)
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In what follows, we will first review the spectra and the internal symmetries of the
Hamiltonian (10.36). We will then consider cluster chains with open boundary conditions
and construct the boundary projective representations of the protecting symmetries. In
doing so, we will also relate the boundary representations of the cluster chains to that of
the Majorana chains that are obtained from JW transformation.

10.3.1 Spectra and Internal Symmetries

We shall distinguish the cases of c odd and c even. For each cases, we shall single out an
internal symmetry group of the spin-1/2 cluster c chain.

10.3.1.1 The Case of c Even

When c is an even integer, the Hamiltonian (10.36) has a nondegenerate and gapped
ground state when periodic boundary conditions are imposed. This ground state is
specified by being the eigenstate of each projector Ĉj with the eigenvalue +1.

The Hamiltonian (10.36) is invariant under the global symmetry group Ge = ZT′
2 ×

Z2 = {e, t′} × {e, g} with the global representation

Ûe(t
′) := 1̂ K, Ûe(g) :=

2N∏
j=1

X̂j , (10.38a)

where 1̂ is the identity operator and K is the complex conjugation. The representations
(10.38a) act on the local spin-1/2 degrees of freedom as

Ûe(t
′)
(
X̂j Ŷj Ẑj

)T
Û†

e (t
′) =

(
+X̂j −Ŷj +Ẑj

)T
, (10.38b)

Ûe(g)
(
X̂j Ŷj Ẑj

)T
Û†

e (g) =
(
+X̂j −Ŷj −Ẑj

)T
. (10.38c)

When open boundary conditions are imposed, the Hamiltonian (10.36) may support
gapless edge degrees of freedom that are protected by a boundary projective representation
of the group Ge. Therefore, cluster c chains with even c realize the BSPT phases with
Ge-symmetry. When JW transformation is applied on the Hamiltonian (10.36) with open
boundary conditions, one obtains the Hamiltonian (10.5a). These are nothing but the
FSPT phases (IFT phases with [µ] = 0) in class BDI which has a Z4 classification. Under
the JW transformation the operators Ûe(t) and Ûe(g) defined in Eq. (10.38a) are mapped
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to the reversal of time and fermion parity symmetries of the Majorana chains defined in
Eq. (10.6), respectively.

10.3.1.2 The Case of c Odd

When c is an odd integer, the Hamiltonian (10.36) has a twofold degenerate ground-state
manifold when periodic boundary conditions are imposed. This twofold degeneracy arises
owing to the fact that product of all projectors Ĉj is equal to the identity.

The Hamiltonian (10.36) is invariant under the global symmetry group Go = ZT
2 ×

ZT′
2 × Z2 = {e, t} × {e, t′} × {e, g} with the global representations

Ûo(t) :=

(
2N∏
j=1

Ŷj

)
K, Ûo(t

′) := 1̂ K, Ûo(g) :=
2N∏
j=1

X̂j . (10.39a)

The actions of these generators on the local spin-1/2 degrees of freedom are

Ûo(t)
(
X̂j Ŷj Ẑj

)T
Û†

o (t) =
(

−X̂j −Ŷj −Ẑj
)T

, (10.39b)

Ûo(t
′)
(
X̂j Ŷj Ẑj

)T
Û†

o (t
′) =

(
+X̂j −Ŷj +Ẑj

)T
, (10.39c)

Ûo(g)
(
X̂j Ŷj Ẑj

)T
Û†

o (g) =
(
+X̂j −Ŷj −Ẑj

)T
. (10.39d)

In the thermodynamic limit N → ∞ at zero temperature, the symmetry group Go is
spontaneously broken. Without loss of generality, we project on one of the symmetry
breaking ground states and define the mean-field Hamiltonian

Ĥ
(b)
MF, c∈2Z+1

:= −
2N−b(|c|−1)∑

j=1

M̂j , (10.40a)

where the monomial M̂j of odd order |c| defined by

M̂j :=

{
Ẑj Ŷj+1 Ẑj+2 Ŷj+3 · · · Ẑj+c−3 Ŷj+c−2 Ẑj+c−1, if c > 0,

Ŷj Ẑj+1 Ŷj+2 Ẑj+3 · · · Ŷ
j+|c|−3

Ẑ
j+|c|−2

Ŷ
j+|c|−1

, if c < 0.
(10.40b)

This Hamiltonian has a nondegenerate and gapped ground state with closed boundary
conditions (b=0). Hamiltonian (10.40a) breaks the ZT

2 symmetry under reversal of time
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for M̂j is odd under simultaneous sign reversal of all spin operators. In fact, we have the
transformations laws

Ûo(t) M̂j Û
†
o (t) = −M̂j , (10.41a)

Ûo(t
′) M̂j Û

†
o (t

′) = (−1)
c−1

2 M̂j , (10.41b)

Ûo(g) M̂j Û
†
o (g) = −M̂j . (10.41c)

Nevertheless, by composing pairs of these three operations, it is possible to construct the
subgroup

GMF = Z̃T̃
′

2 × Z̃2, Z̃T̃
′

2 := {e, t̃′}, Z̃2 := {e, g̃}, (10.42)

with the representations

ÛMF(t̃
′) :=


1̂ K, if c−1

2
= 0 mod 2,(

2N∏
j=1

Ẑj

)
K, if c−1

2
= 1 mod 2,

(10.43a)

ÛMF(g̃) :=


2N∏
j=1

Ẑj , if c−1
2

= 0 mod 2,

2N∏
j=1

Ŷj , if c−1
2

= 1 mod 2,
(10.43b)

such that

ÛMF(t̃
′)
(
X̂j Ŷj Ẑj

)T
Û†

MF
(t̃′) =


(
+X̂j −Ŷj +Ẑj

)T
, if c−1

2
= 0 mod 2,(

−X̂j +Ŷj +Ẑj

)T
, if c−1

2
= 1 mod 2,

(10.43c)

ÛMF(g̃)
(
X̂j Ŷj Ẑj

)T
Û†

MF
(g̃) =


(

−X̂j −Ŷj +Ẑj

)T
, if c−1

2
= 0 mod 2,(

−X̂j +Ŷj −Ẑj

)T
, if c−1

2
= 1 mod 2,

(10.43d)

and

M̂j = ÛMF(t̃
′) M̂j Û

†
MF

(t̃′) = ÛMF(g̃) M̂j Û
†
MF

(g̃), j = 1, · · · , 2N . (10.43e)



152 applications to time-reversal invariant majorana and spin cluster models

It follows that the group (10.42) is a symmetry group of the mean-field Hamiltonian
(10.40a). After projecting the spin-1/2 cluster odd-c Hamiltonian onto the mean-field
Hamiltonian (10.40a), the spectrum and symmetries of the latter are the same and
isomorphic, respectively, to those of the spin-1/2 cluster [c− sgn(c)] Hamiltonian. The
consequences of the group cohomology that we study next are the same for the spin-
1/2 cluster odd-c Hamiltonian and the mean-field projection of the spin-1/2 cluster
[c− (−1)⌊ c

4
⌋sgn(c)] Hamiltonian.

10.3.2 Symmetry Fractionalization in Spin-1/2 Cluster c Chains

We are going to compute the indices classifying spin-1/2 cluster c models defined in
Hamiltonian (10.36). Without loss of generality, this is done as follows when c is even [we
consider the mean-field Hamiltonian (10.40a) when c is odd] and the cardinality of the
chain Λ := {j = 1, · · · , |Λ|} is |Λ|.

1. The cluster operators Ĉ|Λ|−|c|+1
, · · · , Ĉ|Λ| are not present in Hamiltonian (10.36),

when open boundary conditions are imposed. Consequently, either on the left
boundary

ΛL := {j = 1, 2, · · · , |c|} (10.44)

or on the right boundary

ΛR := {j = 2N − |c| + 1, · · · , 2N − 1, 2N}, (10.45)

the set of all operators commuting with Ĥ
(|c|)
c is a Clifford algebra Cℓ|c| with |c|

generators represented by 2|c|-dimensional matrices acting on the Hilbert space
hΛ

B

:= C2|c| on either the left (B = L) or the right (B = R) boundary, respectively.

2. The Clifford algebra Cℓ|c| contains the Lie subalgebra

su(2) ⊕ · · · ⊕ su(2)︸ ︷︷ ︸
|c| times

(10.46)

which is represented reducibly with 2|c|-dimensional matrices.

3. It is possible to represent the action of the protecting symmetries on either the left
or right boundaries using the generators of the Lie subalgebra (10.46).
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4. We construct the boundary representations Û
e,L

on the boundary degrees of freedom
by demanding the consistency condition

Ûe,L(g) Ŝ Û†
e,L

(g) = Ûe(g) Ŝ Û†
e (g) (10.47)

for any g ∈ Ge and Ŝ ∈ su(2) ⊕ · · · ⊕ su(2). For the case of odd c, we shall use the
global representations Û

MF
(g) of the group G

MF
.

We summarize the results of this exercise in Table 10.3. It is instructive to compare
the Table 10.3 with the Table 10.2. We observe that the indices for cluster even-c
chains match the indices ([νL], [ρL

], 0) of the Majorana chains with c even. On the
other hand, the indices associated with the right boundary of the Majorana chains are
not picked up by the corresponding cluster even-c chains. This asymmetry is due to
the fact that the JW transformation (10.37) is asymmetrical with respect to the left
and the right boundaries [171]. The odd-c cluster chains have the same indices as the
even-[c− (−1)⌊ c

4
⌋sgn(c)] chains. The protected ground state degeneracies of the cluster

odd-c chains match that of the Majorana c chains if we also include the twofold degeneracy
due to the spontaneous symmetry breaking.

10.3.2.1 The Case of c = 0

When c = 0, Hamiltonian (10.36) with open boundary conditions becomes

Ĥ
(1)
0 := −

2N∑
j=1

X̂j = Ĥ
(0)
0 , (10.48)

which has a nondegenerate and gapped ground state. All X̂j with j = 1, · · · , 2N are
present in Ĥ(1)

0 and commute pairwise. In other words, the set of gapless boundary degrees
of freedom is the empty set

OB,0
..= { } , B = L, R. (10.49)

By convention, we associate the trivial indices

([ν], [ρ]) = (0, 0) (10.50)

to the spin-1/2 cluster c = 0 chain.
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Table 10.3: The doublet ([νB], [ρB]) of a spin-1/2 cluster c chain that defines the projective
representation of the symmetry group (10.38) for even c or (10.39) for odd c that is
realized on the left (B=L) or right (B=R) boundaries of an open chain. The time-
reversal symmetry is broken spontaneously when c is odd. The column dim h

(c)
B,min

is the dimensionality of the smallest Hilbert space h
(c)
B,min

for which it is possible to
realize the projective algebra on either one of the left or right boundary. Squaring
this number gives the topologically protected degeneracy D(c) of the ground states
of a spin-1/2 cluster c open chain. The column dim h

(c)
gs is the degeneracy of the

ground state of the spin-1/2 cluster c open chain that is protected by its integrability
if spontaneous symmetry breaking is precluded.

c ([ν
L
], [ρ

L
]) ([ν

R
], [ρ

R
]) dim h

(c)
B,min

D(c) dim h
(c)
gs

0 (0, 0) (0, 0) 1 1 1
1 (0, 0) (0, 0) 1 1 2 = 21

2 (0, 1) (0, 1) 2 4 4 = 22

3 (0, 1) (0, 1) 2 4 8 = 23

4 (1, 0) (1, 0) 2 4 16 = 24

5 (1, 1) (1, 1) 2 4 32 = 25

6 (1, 1) (1, 1) 2 4 64 = 26

7 (0, 0) (0, 0) 1 1 128 = 27

8 (0, 0) (0, 0) 1 1 256 = 28

10.3.2.2 The Case of c = +2

When c = +2, the choice of open boundary conditions implies that Hamiltonian

Ĥ
(2)
2 =

2N−2∑
j=1

Ẑj X̂j+1 Ẑj+2 (10.51)

has a 22 = 4-fold degenerate and gapped ground states. Since open boundary conditions
are selected, the pair of commuting operators Ẑ

2N−1
X̂

2N Ẑ1, Ẑ
2N X̂1 Ẑ2, are present in

Ĥ
(0)
2 but are absent in Ĥ(1)

2 . The set of all operators that commute with the Hamiltonian
(10.51) and have support on the left boundary is the Clifford algebra Cℓ2 spanned by the
generators {

X̂1 Ẑ2, Ẑ1

}
. (10.52)
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We define define the triplet

ŜxL :=
1
2
X̂1 Ẑ2, Ŝy

L
:=

1
2
Ŷ1 Ẑ2, ŜzL :=

1
2
Ẑ1, (10.53)

of operators that obey the su(2) Lie algebra. We deduce the transformation laws

Ûe(t
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (t
′) =

(
+Ŝx

L
−Ŝy

L
+Ŝz

L

)T , (10.54a)

Ûe(g)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (g) =
(

−Ŝx
L

+Ŝy
L

−Ŝz
L

)T . (10.54b)

We define the action K
L

of complex conjugation on the four-dimensional representation
(10.53) of the su(2) Lie algebra by demanding that

KL Ŝ
x
L KL := +ŜxL, KL Ŝ

y
L

KL := −Ŝy
L

, KL Ŝ
z
L KL := +ŜzL. (10.55a)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

Ûe,L(t
′) := 1L KL, Ûe,L(g) := Ŝy

L
. (10.55b)

Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (0, 1) (10.55c)

to the spin-1/2 cluster c = +2 chain. One verifies that the Clifford algebra spanned by
the generators {

Ẑ2N−1 X̂2N , Ẑ2N

}
(10.56a)

for the right boundary Λ
R

:= {j = 2N − 1, 2N} delivers the pair of indices

([νR], [ρR]) = (0, 1) (10.56b)

for the projective representation of t′ and g on the right boundary.

10.3.2.3 The Case of c = −2

The case c = −2 is deduced from the case c = +2 by interchanging all the Ẑj and
Ŷj operators for j = 1, · · · , 2N . The set O

L
of all operators that commute with the
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Hamiltonian Ĥ
(2)
−2 and have support on the boundary Λ

L
:= {j = 1, 2} is the Clifford

algebra Cℓ2 spanned by the generators{
X̂1 Ŷ2, Ŷ1

}
. (10.57)

The Clifford algebra with the generators (10.57) contains the su(2) Lie algebra generated
by the operators

ŜxL :=
1
2
X̂1 Ŷ2, Ŝy

L
:= −

1
2
Ẑ1 Ŷ2, ŜzL :=

1
2
Ŷ1. (10.58)

We deduce the transformation laws

Ûe(t
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (t
′) =

(
−Ŝx

L
−Ŝy

L
−Ŝz

L

)T , (10.59a)

Ûe(g)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (g) =
(

−Ŝx
L

+Ŝy
L

−Ŝz
L

)T . (10.59b)

We define the action K
L

of complex conjugation on the four-dimensional representation
(10.58) of the su(2) Lie algebra by demanding that

KL Ŝ
x
L KL := +ŜxL, KL Ŝ

y
L

KL := −Ŝy
L

, KL Ŝ
z
L KL := +ŜzL. (10.60a)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

Ûe,L(t
′) := Ŝy

L
KL Ûe,L(g) := Ŝy

L
. (10.60b)

Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (1, 1) (10.60c)

to the spin-1/2 cluster c = −2 chain. One verifies that the Clifford algebra spanned by
the generators {

Ŷ2N−1 X̂2N , Ŷ2N

}
(10.61a)

for the right boundary Λ
R

:= {j = 2N − 1, 2N} delivers the pair of indices

([νR], [ρR]) = (1, 1) (10.61b)
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for the projective representation of t′ and g on the right boundary.

10.3.2.4 The Case of c = +4

When c = +4, the choice of open boundary conditions implies that Hamiltonian

Ĥ
(1)
4 =

2N−4∑
j=1

Ẑj X̂j+1 X̂j+2 X̂j+3 Ẑj+4 (10.62)

has a 24 = 16-fold degenerate and gapped ground states.
Since open boundary conditions are selected, the quadruplet of pairwise commuting

operators

Ẑ2N−3 X̂2N−2 X̂2N−1 X̂2N Ẑ1, Ẑ2N−2 X̂2N−1 X̂2N X̂1 Ẑ2,

Ẑ2N−1 X̂2N X̂1 X̂2 Ẑ3, Ẑ2N X̂1 X̂2 X̂3 Ẑ4,
(10.63)

are present in Ĥ
(0)
4 but are absent in Ĥ

(1)
4 . The set O

L
of all operators that commute

with Hamiltonian (10.62) and have support on the boundary Λ
L

:= {j = 1, 2, 3, 4} is the
Clifford algebra Cℓ4 spanned by the generators{

X̂1 X̂2 X̂3 Ẑ4, X̂1 X̂2 Ẑ3, X̂1 Ẑ2, Ẑ1

}
. (10.64)

We define the pair of triplets

ŜxL :=
1
2
X̂1 X̂2 X̂3 Ẑ4, Ŝy

L
:= −

1
2
X̂1 X̂2 Ẑ3, ŜzL :=

1
2
Ŷ3 Ẑ4, (10.65a)

ĴxL :=
1
2
X̂1 Ẑ2 Ŷ3 Ẑ4, Ĵy

L
:= −

1
2
Ẑ1 Ŷ3 Ẑ4, ĴzL :=

1
2
Ŷ1 Ẑ2 (10.65b)

of operators that obey the su(2) ⊕ su(2) Lie algebra. We deduce the transformation laws

Ûe(t
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (t
′) =

(
+Ŝx

L
+Ŝy

L
−Ŝz

L

)T , (10.66a)

Ûe(g)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (g) =
(

−Ŝx
L

−Ŝy
L

+Ŝz
L

)T , (10.66b)

and

Ûe(t
′)
(
Ĵx

L
Ĵy

L
Ĵz

L

)T
Û†

e (t
′) =

(
−Ĵx

L
−Ĵy

L
−Ĵz

L

)T , (10.66c)
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Ûe(g)
(
Ĵx

L
Ĵy

L
Ĵz

L

)T
Û†

e (g) =
(

−Ĵx
L

−Ĵy
L

+Ĵz
L

)T . (10.66d)

We define the action K
L

of complex conjugation on the four-dimensional representation
(10.65) of the su(2) ⊕ su(2) Lie algebra by demanding that

KL Ŝ
x
L KL := +ŜxL, KL Ŝ

y
L

KL := −Ŝy
L

, KL Ŝ
z
L KL := +ŜzL, (10.67a)

KL Ĵ
x
L KL := −ĴxL , KL Ĵ

y
L

KL := +Ĵy
L

, KL Ĵ
z
L KL := +ĴzL. (10.67b)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

Ûe,L(t
′) := ŜxL Ĵ

x
L KL, Ûe,L(g) := ŜzL Ĵ

z
L. (10.67c)

Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (1, 0) (10.67d)

to the spin-1/2 cluster c = +4 chain. One verifies that the Clifford algebra spanned by
the generators{

Ẑ2N−3 X̂2N−2 X̂2N−1 X̂2N , Ẑ2N−2 X̂2N−1 X̂2N , Ẑ2N−1 X̂2N , Ẑ2N

}
(10.68a)

for the right boundary Λ
R

:= {j = 2N − 3, 2N − 2, 2N − 1, 2N} delivers the pair of
indices

([νR], [ρR]) = (1, 0) (10.68b)

for the projective representation of t′ and g on the right boundary.

10.3.2.5 The Case of c = −4

The case c = −4 is deduced from the case c = +4 by interchanging all the Ẑj and
Ŷj operators for j = 1, · · · , 2N . The set O

L
of all operators that commute with the

Hamiltonian Ĥ
(4)
−4 and have support on the boundary

ΛL := {j = 1, 2, 3, 4} (10.69a)
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is the Clifford algebra Cℓ4 spanned by the generators

{Ŷ1, X̂1 Ŷ2, X̂1 X̂2 Ŷ3, X̂1 X̂2 X̂3 Ŷ4}. (10.69b)

The Clifford algebra with the generators (10.69b) contains the su(2) ⊕ su(2) Lie algebra
generated by the operators

ŜxL :=
1
2
X̂1 X̂2 X̂3 Ŷ4, Ŝy

L
:=

1
2
X̂1 X̂2 Ŷ3, ŜzL :=

1
2
Ẑ3 Ŷ4, (10.70)

ĴxL :=
1
2
X̂1 Ŷ2 Ẑ3 Ŷ4, Ĵy

L
:=

1
2
Ŷ1 Ẑ3 Ŷ4, ĴzL :=

1
2
Z1 Y2. (10.71)

We deduce the transformation laws

Ûe(t
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (t
′) =

(
−Ŝx

L
−Ŝy

L
−Ŝz

L

)T , (10.72a)

Ûe(g)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

e (g) =
(

−Ŝx
L

−Ŝy
L

+Ŝz
L

)T , (10.72b)

and

Ûe(t
′)
(
Ĵx

L
Ĵy

L
Ĵz

L

)T
Û†

e (t
′) =

(
+Ĵx

L
+Ĵy

L
−Ĵz

L

)T , (10.72c)

Ûe(g)
(
Ĵx

L
Ĵy

L
Ĵz

L

)T
Û†

e (g) =
(

−Ĵx
L

−Ĵy
L

+Ĵz
L

)T . (10.72d)

We define the action K
L

of complex conjugation on the sixteen-dimensional representation
(10.58) of the su(2) ⊕ su(2) Lie algebra by demanding that

KL Ŝ
x
L KL := −ŜxL, KL Ŝ

y
L

KL := +Ŝy
L

, KL Ŝ
z
L KL := +ŜzL, (10.73a)

and

KL Ĵ
x
L KL := +ĴxL , KL Ĵ

y
L

KL := −Ĵy
L

, KL Ĵ
z
L KL := +ĴzL. (10.73b)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

Ûe,L(t
′) := ŜxL Ĵ

x
L KL, Ûe,L(g) := ŜzL Ĵ

z
L. (10.73c)

Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (1, 0) (10.73d)
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to the spin-1/2 cluster c = −4 chain. This is the same pair of indices as in Eq.̃(10.67d).
One verifies that the Clifford algebra spanned by the generators{
Ŷ2N−3 X̂2N−2 X̂2N−1 X̂2N , Ŷ2N−2 X̂2N−1 X̂2N , Ŷ2N−1 X̂2N , Ŷ2N

}
(10.74a)

for the right boundary Λ
R

:= {j = 2N − 3, 2N − 2, 2N − 1, 2N} delivers the pair of
indices

([νR], [ρR]) = (1, 0) (10.74b)

for the projective representation of t′ and g on the right boundary. This is the same pair
of indices as in Eq. (10.68b).

10.3.2.6 The Cases of c = ±1

When c = ±1, the mean-field Hamiltonian (10.40a) becomes

Ĥ
(1)
MF,±1

=


−

2N∑
j=1

Ẑj , if c = +1,

− h̄ω
2

2N∑
j=1

Ŷj , if c = −1,

(10.75)

which is Hamiltonian (10.48) with X̂j replaced by Ẑj for c = +1 or Ŷj for c = −1.
Consequently, the set of gapless boundary degrees of freedom is empty, i.e.,

OB,±1
..= { } , B = L, R. (10.76)

By convention, we associate the trivial indices

([ν], [ρ]) = (0, 0) (10.77)

to the spin-1/2 cluster c = ±1 chains.
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10.3.2.7 The Case of c = +3

When c = +3, the mean-field Hamiltonian (10.40a) with open boundary conditions
becomes

Ĥ
(1)
MF,+3

=

2N−1∑
j=1

Ẑj Ŷj+1 Ẑj+2. (10.78)

This mean-field Hamiltonian follows from Hamiltonian (10.51) upon replacing X̂j with Ŷj .
One verifies the existence of a Clifford algebra Cℓ2 on the left boundary Λ

L
= {j = 1, 2}

that (i) commutes with Hamiltonian (10.78) and (ii) contains an su(2) Lie algebra whose
generators are

ŜxL :=
1
2
Ŷ1 Ẑ2, Ŝy

L
:= −

1
2
X̂1 Ẑ2, ŜzL :=

1
2
Ẑ1. (10.79)

We deduce the transformation laws

ÛMF(t̃
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

MF
(t̃′) =

(
+Ŝx

L
−Ŝy

L
+Ŝz

L

)T , (10.80a)

ÛMF(g̃)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

MF
(g̃) =

(
−Ŝx

L
+Ŝy

L
−Ŝz

L

)T . (10.80b)

We define the action K
L

of complex conjugation on the four-dimensional representation
(10.79) of the su(2) Lie algebra by demanding that

KL Ŝ
x
L KL := −ŜxL, KL Ŝ

y
L

KL := +Ŝy
L

, KL Ŝ
z
L KL := +ŜzL. (10.81a)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

ÛMF,L(t̃
′) := ŜzL KL, ÛMF,L(g̃) := Ŝy

L
. (10.81b)

Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (0, 1) (10.81c)

to the spin-1/2 cluster c = +3 chain. This is the same pair of indices as in Eq. (10.55c).
One verifies that the pair of indices

([νR], [ρR]) = (0, 1) (10.82)
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is found for the projective representation of t̃′ and g̃ on the right boundary Λ
R

=

{2N − 1, 2N}.

10.3.2.8 The Case of c = −3

The case of c = −3 is deduced from the case of c = +3 by interchanging all the Ẑj and
Ŷj operators for j = 1, · · · , 2N in the mean-field Hamiltonian (10.78). One verifies the
existence of a Clifford algebra Cℓ2 on the left boundary

ΛL = {j = 1, 2} (10.83)

that (i) commutes with the mean-field Hamiltonian

Ĥ
(1)
MF,−3

=

2N−1∑
j=1

Ŷj Ẑj+1 Ŷj+2 (10.84)

and (ii) contains an su(2) Lie algebra whose generators are

ŜxL :=
1
2
Ẑ1 Ŷ2, Ŝy

L
:=

1
2
X̂1 Ŷ2, ŜzL :=

1
2
Ŷ1. (10.85)

We deduce the transformation laws

ÛMF(t̃
′)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

MF
(t̃′) =

(
−Ŝx

L
−Ŝy

L
−Ŝz

L

)T , (10.86a)

ÛMF(g̃)
(
Ŝx

L
Ŝy

L
Ŝz

L

)T
Û†

MF
(g̃) =

(
−Ŝx

L
+Ŝy

L
−Ŝz

L

)T . (10.86b)

Third, we denote by 1
L

the unit 4 × 4 matrix and we define the action K
L

of complex
conjugation on the four-dimensional representation (10.85) of the su(2) Lie algebra by
demanding that

KL Ŝ
x
L KL := −ŜxL, KL Ŝ

y
L

KL := +Ŝy
L

, KL Ŝ
z
L KL := +ŜzL. (10.87a)

Demanding the consistency condition (10.47) to hold, we find the boundary representation

ÛMF,L(t̃
′) := ŜxL KL, ÛMF,L(g̃) := Ŝy

L
. (10.87b)
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Using the definition (10.2), we associate the pair of indices

([νL], [ρL]) = (1, 1) (10.87c)

to the spin-1/2 cluster c = −3 chain. This is the same pair of indices as in Eq. (10.60c).
One verifies that the pair of indices

([νR], [ρR]) = (1, 1) (10.88)

is found for the projective representation of t̃′ and g̃ on the left boundary Λ
R
= {2N −

1, 2N}.
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L S M T H E O R E M S A N D C RY S TA L L I N E

T O P O L O G I C A L P H A S E S





Adapted from:
Ö. M. Aksoy, J.-H. Chen, S. Ryu, A. Frusaki and C. Mudry

"Stability against contact interactions of a topological superconductor
in two-dimensional space protected by time-reversal and reflection symmetries",

Physical Review B 103, 205121 (2021)

Part III is devoted to the crystalline invertible topological phases and their relation
to the LSM constraints. Chapter 11 relates Theorems 2 and 3 from Part I to the weak
topological phases. Therein, generalizations of LSM theorems to crystalline symmetries
other than translations are discussed. We provide a view from the literature to propose a
classification scheme for certain generalized LSM constraints.

Chapter 12 presents an example of crystalline topological phases, namely, two-dimensional
topological superconductor in symmetry class DIIIR. This topological phase has Z8-
classification and which is due to the combination of internal symmetry group Gf = ZFT

4 ,
reflection symmetry, and, translation symmetry. We study the stability of protected
boundary states of this topological superconductor and interpret our results from the
perspective of generalized LSM constraints.

167





11
F R O M C RY S TA L L I N E T O P O L O G I C A L P H A S E S T O L S M

T H E O R E M S

In this Chapter, we are going to present Theorems 2 and 3 from a complementary
perspective. This line of thought was explored in Refs. [58, 65, 67, 172] and asserts that
there is a one to one correspondence between certain LSM type constraints that involve
translation symmetry and the classification of weak topological phases. In Sec. 11.1, we
illustrate this point of view by recasting Theorems 2 and 3 as ingappability conditions at
the boundaries of two-dimensional weak topological phases. In Sec. 11.2, we will argue that
this correspondence extends to that between generalized LSM type constraints involving
space group symmetries and certain crystalline topological phases.

11.1 lsm theorems from weak topological phases

Theorems 2 and 3 are statements that rule out the possibility of a symmetric, nondegener-
ate, and, gapped ground state. Consequently, there are only two ways for a Hamiltonian
with an LSM constraint to have a gapped spectrum: (i) either translation or internal
symmetries are broken (spontaneously or explicitly), or (ii) for spatial dimensions larger
than one the ground state supports topological order. Stated differently, gapless nature of
the ground state is protected by a combination of internal and translation symmetries.
Such a protected gaplessness is reminiscent of the protected boundary modes of invertible
topological phases. While the boundaries of strong topological phases are protected merely
by internal symmetries, weak and crystalline topological phases have boundary modes
that are protected by a combination of internal and spatial symmetries.

To better see these parallels, consider the following setup. Let Ĥ
1D

be a representative
Hamiltonian of a one-dimensional IFT phase with symmetry group Gf and indices
([(ν, ρ)], [µ]). This is a one-dimensional strong topological phase since no spatial symmetry
is needed to protect the boundary zero modes. We construct a two-dimensional weak
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== =

Figure 11.1: Construction of two-dimensional weak topological phase by stacking one-dimensional
strong topological phases. Each blue line represents a one-dimensional chain real-
izing a nontrivial IFT phase with indices ([(ν, ρ)], [µ]). The representative Hamil-
tonian Ĥweak, 2D is obtained by taking an array of one-dimensional Hamiltonians
Ĥ1D. When open boundary conditions are imposed, LSM Theorems 2 and 3 ensure
that the translationally invariant boundaries support protected gapless states.

topological phase by assembling N copies of Ĥ
1D

in a translationally invariant array.
Concretely, we consider the Hamiltonian

Ĥweak, 2D :=
N∑
j=1

ĥ1D,j , ĥ1D,j ≡ Ĥ1D, (11.1)

which is nothing but N decoupled copies of one-dimensional chains described by Ĥ
1D

.
This construction is shown in Fig. 11.1. When periodic boundary conditions are imposed,
Hamiltonian (11.1) has a nondegenerate, gapped, and, symmetric (both translation and
Gf ) ground state. When open boundary conditions are imposed, each decoupled chain
supports zero-energy states at its boundaries, owing to the fact that Ĥ

1D
itself realizes a

nontrivial IFT phase. The one-dimensional boundary (shown by dashed lines in Fig. 11.1)
is then a translationally invariant lattice where each repeat unit cell carries a projective
representation of Gf that is characterized by indices ([(ν, ρ)], [µ]). If so, LSM Theorems 2
and 3 applies. This means that Hamiltonian (11.1) supports gapless boundary modes when
open boundary conditions are imposed. The gaplessness of the boundaries are protected
as any gap-opening perturbation must break either translation or Gf symmetry.

So far, we have argued that LSM Theorems 2 and 3 can be used to show that the
gapless boundary states of weak topological phases are stable against perturbations (up
to symmetry breaking). Conversely, assumption that weak topological phases support
protected gapless boundary states, implies certain LSM Theorems. For simplicity, we focus
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on the case of LSM Theorems that are not intrinsically fermionic, i.e., ρ = 0 and [µ] = 0.
The only nonzero index is then ν which corresponds to the projective representations of
the group G ∼= Gf/ZF

2 (see Appendix A.4.3). This is to say that we are focusing only on
LSM Theorems that apply to both bosonic and fermionic models. We are going to use
the following two statements without proofs.

Claim 1. Strong bosonic symmetry protected phases (BSPT) in two dimension with
G-symmetry are classified by the third cohomology group H3(G, U(1)c) [31].

Claim 2. Given the groups G of internal symmetries, Z of lattice translations, and,
Gtot = G× Z of their direct product, all BSPT phases protected by Gtot are classified by
the third cohomology group H3(Gtot = G× Z, U(1)c) [173, 174].

These statements mean that the classification of weak topological phases are contained
in the third cohomology group H3(G× Z, U(1)c). This becomes transparent upon using
the Künneth formula of group cohomology [58, 175–177]

H3(G× Z, U(1)c) = H3(G, U(1)c) ×H2(G, U(1)c). (11.2)

Hereby, H3(G, U(1)c) corresponds to the strong BSPT phases protected by G alone while
H2(G, U(1)c) corresponds to the weak BSPT phases protected by translations and internal
G-symmetry together. It is not a coincidence that the latter is classified by H2(G, U(1)c)
which enumerates the projective representations of the group G. This is nothing but the
LSM Theorem 2 at the boundary of weak BSPT phases.

It is not hard to see that construction that lead to Hamiltonian (11.1) can be generalized
to obtain higher dimensional weak topological phases. In turn, the classification of these
topological phases can be used to obtain various LSM constraints for lower dimensional
spaces. From this point of view, generalizations of Theorem 2 to any dimension follows,
even though our proof in Sec. 3.4 only applies to the case of Abelian and unitarily
represented Gf .

11.2 generalized lsm theorems and crystalline topological phases

In our treatment of LSM constraints in Part I, we only considered models with internal
and translation symmetries. Recently, LSM constraints have been extended for the
Hamiltonians with crystalline symmetries other than translations [59, 60, 62, 63, 172,
178]. For example, it has been rigorously proved in Ref. [63] that for a reflection symmetric
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spin chain, if the internal symmetry is represented by a nontrivial projective representation
at the reflection center, then the ground state cannot be nondegenerate, gapped, and,
symmetric. This is reminiscent of what happens at the boundary of a two-dimensional
higher-order topological phases with reflection symmetry [110]. For such a system boundary
is gapped except at the reflection centers where zero-energy modes are localized.

In light of the equivalence between LSM theorems and weak topological phases as
described in Sec. 11.1, it is natural to expect a correspondence between generalized LSM
constraints and crystalline topological phases. The key step behind this correspondence
is the so-called crystalline equivalence principle (CEP) [173, 174]. Let us first focus on
purely bosonic phases, then CEP asserts the following one-to-one correspondence between
crystalline and strong topological phases.

Claim 3 (CEP). Let Gtot = G⋊Gspc be a total symmetry group where G and Gspc

are the groups of internal and crystallographic symmetries. With the semi-direct product
⋊, we allowed for a nontrivial group action of crystallographic symmetries on the internal
ones. Then, for any crystalline topological phase with Gtot-symmetry that can be realized
by a Hamiltonian supported on a contractible spatial manifold, there exists a strong
topological phase with internal symmetry group Gint = G⋊ G̃spc. Here, G̃spc is obtained
from Gspc by replacing all orientation-reversing unitary symmetries by antiunitary ones
(e.g., Z2 inversions in odd-dimensional space are mapped to ZT2 reversal of time).

Crystalline equivalence principle 3 is the generalization of the claim 2 and prescribes a
classification of generalized LSM constraints. For bosonic systems, enumeration of such
theorems in d dimensional space are contained in the cohomology group [31, 177]

Hd+2
(
G⋊ G̃spc, U(1)c

)
. (11.3a)

This cohomology group contains the classification of strong, crystalline, and, higher-order
BSPT phases. The LSM constraints can be obtained after specifying the space group
Gspc. When the group action of crystalline symmetries is trivial, i.e., Gtot = G×Gspc, an
elegant decomposition of Eq. (11.3a) into strong, and higher-order SPTs is possible [177].
For example, the generalized LSM constraints in d dimension with finite space groups
(such as point-group symmetries or reflections) are characterized by

Hd
(
G̃spc, H2 (G, U(1)c)

)
. (11.3b)

This group enumerates the projective representations of G per Gspc-invariant submanifolds
in d-dimensional space, that cannot be trivialized by lattice deformations. Setting G = Z1,



11.2 generalized lsm theorems and crystalline topological phases 173

the trivial group, allows one to enumerate LSM constraints that are purely due to spatial
symmetries [60, 177], which in d dimension are enumerated by

Hd+2
(
G̃spc, U(1)c

)
. (11.3c)

The CEP correspondence 3 have been generalized to fermionic systems in Refs. [141,
147, 148, 173, 179], i.e., the so-called fermionic cyrstalline equivalence principle (FCEP).
The treatment of fermionic systems with crystalline symmetries is subtler since the
total symmetry group may contain the central extensions of crystalline symmetries by
fermion parity. This is to say that the total symmetry group G

tot,f cannot be easily
decomposed into spatial and crystalline parts. Apart from this subtlely, FSPT phases
with G

tot,f symmetry are in one-to-one correspondence with FSPT phases with only
internal symmetry Gf = G̃

tot,f where

1. all crystallographic symmetries are treated as internal symmetries,

2. each orientation reversing crystalline symmetry inG
tot,f is replaced by an antiunitary

internal symmetry in Ĝ
tot,f , and

3. spinless (spinful) crystallographic symmetries in G
tot,f become spinful (spinless) in

G̃
tot,f .

The last rule essentially dictates that the central extensions classes associated with G
tot,f

and G̃
tot,f must differ. To give an example, in d = 2 space dimensions, the spinful

reflection symmetry is generates the group ZFR
4 which is a nontrivial central extension of

ZR
2 by fermion parity. When treated as an internal symmetry according to FCEP, the

group ZFR
4 is replaced by internal symmetry group ZR′

2 of which generator is represented
antiunitarily. In the next chapter, we are going to present an application of FCEP.
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L S M T H E O R E M AT T H E E D G E O F A 2 D C RY S TA L L I N E

T O P O L O G I C A L S U P E R C O N D U C T O R

In this Chapter, we explicitly study an example of two-dimensional crystalline topological
superconductor, namely, te so-called symmetry class DIIIR 1 [100, 124]. This crystalline
topological phase is defined by extending the symmetry class DIII in the Tenfold Way [30,
95] which refers to the strong IFT phase with internal symmetry group Gf = ZFT

4 . The
class DIIIR is then obtained by imposing translation and reflection symmetries, which
corresponds to the group Z ⋊ ZFR

4 of spatial symmetries. The total symmetry group is
then

Gtot,f = Z ⋊
ZFT

4 × ZFR
4

ZF
2

. (12.1)

Note that the particular reflection symmetry we consider squares to the fermion parity
and, hence, the corresponding group is ZFR

4 .
In two-dimensional space, class DIIIR has the noninteracting classification Z. When

open boundary conditions are imposed it features ν ∈ Z pairs of gapless helical Majorana
modes. When quartic interactions are added it is known that ν = 8 pairs of helical
Majorana modes can be gapped out [118]. This is interpreted as the breakdown of
noninteracting Z classification down to interacting Z8 classification [101, 118, 180].

In what follows, we study the stability of the ν < 8 pair of helical Majorana modes
localized at the (1 + 1)-dimensional boundary against quartic contact interactions. For
convenience, we focus only on the cases of ν = 4, 2, 1. In Sec. 12.1, we define the boundary
Hamiltonian and its single-particle symmetries. We also present a criterion that signals
the stability of the boundary theory. Sections 12.2, 12.3, and, 12.4 study the cases of
ν = 4, ν = 2, and, ν = 1, respectively. For each case, we explain why the boundary
degrees of freedom cannot be gapped without spontaneously or explicitly breaking one of
the protecting symmetries.

As explained in Chapter 11.2, the stability of the boundary modes of crystalline
topological phases is connected to the presence of an underlying generalized LSM constraint.

1 This class was also labeled as DIIIR−− in Refs. [100, 180]

175
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In Sec. 12.5, without proof, we conjecture the underlying LSM constraints for class DIIIR
based on the analysis done in the preceding sections.

12.1 definitions and symmetries

We describe the one-dimensional boundary of a two-dimensional crystalline topological
superconductor with the Hamiltonian

Ĥbd := Ĥ0 + Ĥint, (12.2a)

Ĥ0 :=

∫
dx χ̂† (σ3 ⊗ 1ν i∂x) χ̂, (12.2b)

Ĥint := −
∫

dxλ2

N(ν)∑
l=1

(
χ̂† βl χ̂

)2 . (12.2c)

The Hamiltonian Ĥ0 describes ν pairs of left- and right-moving quantum Majorana fields.
The components χ̂a and χ̂†

a with a = 1, · · · , 2ν of the quantum-fields and their adjoints
obey the equal-time algebra{

χ̂a(x), χ̂a′ (x
′)
}
= δaa′ δ(x− x′), (12.3a)

with all other anticommutators vanishing and we impose the Majorana condition

χ̂† = χ̂T. (12.3b)

The Hamiltonian Ĥint encodes the quartic contact interactions with coupling constant
λ2 between the ν different flavors. The matrix 1ν is the identity matrix in flavor space.
The label l = 1, · · · , N(ν) enumerates all 2ν × 2ν Hermitian matrices such that (i) they
square to the identity β2

l = 12ν , (ii) any pair (βl,βl′ ) anticommutes pairwise as well as
with σ3 ⊗1ν , and (iii) each βl is odd under complex conjugation. The first two conditions
restrict the N(ν) interaction channels to the squares of bilinears that are not competing
Dirac mass terms. The last condition follows from imposing a Majorana condition on the
fermionic quantum fields as we do now. Had we demanded instead of (iii) that each βl is
even under complex conjugation, the bilinear χ̂† βl χ̂ would then vanish because of the
Majorana condition. We emphasize that N(ν) is constant when 2n−1 < ν < 2n for some



12.1 definitions and symmetries 177

integer n. This means that the target space corresponding to the normalized dynamical
Dirac masses does not change when 2n−1 < ν < 2n for some integer n.

Following Refs. [100, 118], we define the PH, TR, and reflection transformations,

Cbd,ν := 12 ⊗ 1ν K, (12.4a)

Tbd,ν := iσ2 ⊗ 1ν K, (12.4b)

Rbd,ν := iσ2 ⊗ 1ν , (12.4c)

where σ are the Pauli matrices and K denotes complex conjugation. They satisfy the
defining conditions of the symmetry class DIIIR, i.e.,

C2
bd,ν = +1, T 2

bd,ν = −1, R2
bd,ν = −1, (12.5)

with the algebra [
Cbd,ν , Rbd,ν

]
= 0,

[
Tbd,ν , Rbd,ν

]
= 0. (12.6)

Had we chosen the Hermitian representation for the reflection transformation (12.4c), i.e.,
R

bd,ν = σ2 ⊗ 1ν , it would anticommute with both PH and TR transformations. This is
consistent with the definition of DIIIR in Ref. [100]. The anti-Hermitian representation
(12.4c) is chosen since the transformation law is then covariant with respect to the
Majorana condition (12.3b). Moreover, we demand that transformations (12.4) are
(spectral) symmetries of the single-particle Hamiltonian (12.2b)

Cbd,ν H0(x) C−1
bd,ν = −H0(x), (12.7a)

Tbd,ν H0(x) T −1
bd,ν = +H0(x), (12.7b)

Rbd,ν H0(−x)R−1
bd,ν = +H0(x). (12.7c)

When the conditions (12.7) are satisfied and we impose invariance under TS,

T̂ (x′) Ĥbd T̂
−1(x′) = Ĥbd, ∀x′ ∈ R, (12.8)

where T̂ (x′) is the operator that implements the translation by x′, then Hamiltonian (12.2b)
cannot be gapped by adding bilinears of the fermionic fields for any ν = 1, 2, 3, · · · [100].
In this case, the noninteracting classification for the class DIIIR is Z. However, bilinears
that are odd under reflection are allowed if they are multiplied by a (smooth) function of
x, a space-dependent mass, that is odd under x → −x and must thus vanish at the origin
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x = 0. Such a mass gaps the single-particle spectrum except for a mid-gap bound state
whose envelope decays exponentially fast away from x = 0. Any such mass breaks TS and
the origin can be thought of as a point defect or a “corner” along the one-dimensional
boundary at which the mass term must change sign if it is to respect reflection symmetry.
In the presence of such a space-dependent mass, the noninteracting classification reduces
to that of the symmetry class DIII, i.e., Z2 [100, 118, 181].

Alternatively, we can write down the partition function

Zbd :=

∫
D[χ] e−S

bd , (12.9a)

Sbd :=

∫
dτdxLbd, (12.9b)

Lbd := χ† (∂τ + σ3 ⊗ 1ν i∂x)χ− λ2

N(ν)∑
l=1

(
χ† βl χ

)2 , (12.9c)

where the action is defined on (1+1)-dimensional Euclidean space-time. The integration
variables are the components of the Grassmann-valued spinor χ, as χ† is linearly con-
strained to χ through the Majorana condition (12.3b). The interaction terms can be
decoupled via Hubbard-Stratonovich transformation. The partition function (12.9) then
takes the form

Zbd = const ×

∫
D[χ]

∫
D[ϕβ

l
] e

−S′
bd , (12.10a)

S
′
bd =

∫
dτdxL′

bd, (12.10b)

L′
bd = χ

†
(
∂τ + H(dyn)

bd

)
χ+

1
(2λ)2

N(ν)∑
l=1

ϕ
2
l , (12.10c)

H(dyn)
bd

:= +σ3 ⊗ 1ν i∂x +

N(ν)∑
l=1

βl ϕl. (12.10d)

We have thereby defined the dynamical single-particle boundary Hamiltonian H(dyn)
bd

.
Conditions (12.7) on H(dyn)

bd
can be met as follows. PHS imposes that

Kβl K−1 = β∗
l = −βl, l = 1, · · · , N(ν), (12.11)
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for any βl Hermitian 2ν × 2ν matrix. Hence, imposing the Majorana condition trivially
satisfies the PHS. Once the maximum number of βl matrices that are compatible with
PHS is found, the symmetry requirements coming from TRS and RS can be satisfied by
imposing that ϕl is either odd or even under time-reversal and reflection. From now on,
we shall use the shorthand notation for the 4n, 2n × 2n Hermitian matrices

Xµ
1
µ

2
...µn

:= σ
(1)
µ

1
⊗ σ

(2)
µ

2
⊗ σ

(3)
µ

3
⊗ · · · ⊗ σ

(n)
µn

,(
Xµ

1
µ

2
...µn

)2

= 12n , µj = 0, 1, 2, 3, (12.12)

where σ(j)0 is 12, σ(j) are the associated Pauli matrices, and n ∈ Z is related to ν by the
relation 2n−1 = ν.

The partition function (12.10) is quadratic in Grassmann variables, which therefore can
be integrated out to yield an effective action of bosonic fields ϕβ

l
, provided the Majorana

Pfaffian is nonvanishing. This effective theory is described by the partition function

Z =

∫
D[ϕ] δ

(
ϕ2 − ϕ̄2

)
e

−
∫

d2x 1
g (∂µϕ)2

+Γ[ϕ] (12.13)

where ϕ̄2 > 0 is a real-valued constant, ϕ is a N(ν)-dimensional vector field that is
normalized through the nonlinear constraint imposed by the δ function, and the symbol
Γ[ϕ] signifies the existence of a topological obstruction. In other words, the presence
of the symbol Γ[ϕ] implies that the effective action associated to the partition function
(12.13) is not merely that of a NLSM. Due to the nonlinear constraint imposed on N(ν)

bosonic fields, the target space in Eq. (12.13) is the unit sphere SN(ν)−1. The symbol
Γ[ϕ] is present in Eq. (12.13) whenever one of the homotopy groups,

π0(SN(ν)−1),

π1(SN(ν)−1),

π2(SN(ν)−1), (12.14)

· · ·

πd+1(S
N(ν)−1),

is nontrivial [182]. (The upper bound d + 1 is imposed as topological obstructions
corresponding to higher homotopy groups modify the equations of motions in a nonlocal
way [124].) Such topological obstructions are expected to prevent gapping out the edge
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modes. If no such topological obstructions exists, the low-energy effective theory is
described by no more than a NLSM action. For space-time dimension two, the action
then flows to the strong coupling g → ∞ stable fixed point [183]. This is the quantum
disordered phase that describes a gapped phase of matter that is symmetric under all
protecting symmetries. The original ν gapless edge modes have been gapped by the
interactions without any of the preserving symmetries being spontaneously broken. Hence,
the noninteracting gapless edge theory is smoothly connected to a strongly interacting
gapped edge theory upon switching on local symmetry preserving interactions. The
presence of the topological obstruction manifests itself by modifying the renormalization
group (RG) flow and preventing the flow to the strong coupling limit g → ∞.

12.2 the case ν = 4

The set (12.12) with n = 3 has the 64 elements {Xµρσ} with µ, ρ,σ = 0, · · · , 3. This
set spans the space of 8 × 8 Hermitian matrices. For ν = 4, there are at most N(4) = 4
interaction channels allowed by the symmetry conditions (12.7), each of which is labeled
by the Hermitian 8 × 8 matrix βl. We consider the parametrization

Hdyn
bd

(τ ,x) := β0 i∂x +

4∑
l=1

βl ϕl(τ ,x) (12.15a)

of the dynamical boundary single-particle Hamiltonian, where without loss of generality,
we make the choice

β0 := X300, (12.15b)

β1 := X210, (12.15c)

β2 := X230, (12.15d)

β3 := X222, (12.15e)

β4 := X102 = −X300 X210 X230 X222. (12.15f)

The choice {β1,β2,β3,β4} is not unique, but this lack of uniqueness does not affect the
subsequent analysis. We define the corresponding partition function

Zbd :=

∫
D[χ]

∫
D[Φ] e−S

bd , (12.16a)
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Sbd :=

∫
d2x

[
χ̄
(

iγµ∂µ + Φ
)
χ+

1
(2λ)2

Φ†Φ

]
, (12.16b)

where, following Ref. [184], we have introduced the notations

χ̄ := χ†(−iγ0), (12.16c)

γ0 := β4 = X102, (12.16d)

γ1 := iβ4 β0 = X202, (12.16e)

γ5 := γ0 γ1 = iβ0 = iX300, (12.16f)

Υ1 := − X312, (12.16g)

Υ2 := − X332, (12.16h)

Υ3 := − X320, (12.16i)

Υ4 := +iX000, (12.16j)

and have defined the matrix-valued field

Φ(x) := |ϕ(x)|
4∑
l=1

nl(x) Υl, (12.16k)

ϕ(x) := |ϕ(x)|n(x) ∈ R4, n2(x) = 1, (12.16l)

that parametrizes the dynamical mass profile. We denote the imaginary time and space
coordinates by x = (x0,x1) ≡ (τ ,x). With the choice of the representation made in Eqs.
(12.16), the identities {

γµ, γν
}
= 2δµν , {γµ, Υl} = 2δ4l Υl γµ, (12.17a)

hold for any µ, ν = 0, 1 and l = 1, 2, 3, 4. Performing the Grassmann integration on the
partition function (12.16) delivers the bosonic and local effective action

Zeff :=

∫
D [Φ] e−S

eff
[Φ], (12.18a)

Seff [Φ] := −
1
2

Tr [ln DΦ] +
1

32λ2
Tr
[

Φ†Φ
]

, (12.18b)

DΦ := iγµ ∂µ + Φ. (12.18c)
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Here, the trace Tr is understood to be over both a plane-wave basis and 8 × 8 matrices.
The local effective action (12.18b) can be written in closed form to any finite order of a
gradient expansion [182] as we now sketch.

The solution Φ̄ to the saddle-point equation

δS
eff

δΦ
= 0 (12.19a)

is

Φ̄ = ϕ̄

4∑
ι=1

n̄ιΥι, (12.19b)

where

4∑
ι=1

n̄2
ι = 1, ϕ̄2 :=

(
e

1

8πλ2 − 1
)−1

Λ2. (12.19c)

Here, Λ is the UV cutoff introduced to regularize the integration over momenta. The
direction of the saddle-point solution n̄ is arbitrary.

Next, we first consider the change δS
eff

[Φ] of effective action (12.18) when Φ is varied
to Φ + δΦ,

δSeff [Φ] = Seff [Φ + δΦ] − Seff [Φ], (12.20)

which is to be expanded around the saddle-point solution (12.19) in powers of 1/ϕ̄2.
Taking the limit ϕ̄2 → ∞ kills all but a finite number of terms on the right-hand side of
Eq. (12.20). Integration over δΦ then delivers two terms. The first term is

SNLSM =

∫
d2x

1
2g
(
∂µn
)2 , g = π. (12.21)

This is the action of the O(4)-NLSM in two-dimensional Euclidean spacetime with the
bare coupling constant g = π. The second term is

Γ =
2iπ

3!Area(S3)

∫
d3x̃ ϵµνρ ϵabcd (∂µña) (∂ν ñb) (∂ρñc) ñd. (12.22)
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Indeed, imposing the nonlinear constraint n2(x) = 1 compactifies the target space of
the O(4)-NLSM to the three-sphere S3. This sphere has the nontrivial homotopy group
π3(S3) = Z. It is then meaningful following Witten [185] to introduce an auxiliary
coordinate u ∈ [0, 1] and to extend the domain of definition of the field n(x) from R2

to R2 × [0, 1], n(x) → ñ(x,u), d2x → d2xdu ≡ d3x̃ such that the boundary conditions
n̄(x, 0) = n0 for some arbitrary direction n0 and ñ(x, 1) = n(x) are satisfied. This is the
WZ [185–188] term for the O(4)-NLSM in two-dimensional Euclidean space-time. This
term is not local in the action but its effect on the equations of motion is local. However,
this term modifies nonperturbatively the RG flow obeyed by the coupling g. In fact, in
the presence of the WZ term, the beta function of g has been conjectured to vanish at
the value gc = π that defines a critical point with conformal symmetry [182, 185].

The interaction that we chose has an O(4) symmetry. This symmetry is not sacred.
For example, we could have introduced four dimensionless couplings λl with l = 1, · · · , 4,
one for each dynamical mass βl in Eqs. (12.15). By treating each dynamical mass
βl as independent Hubbard-Stratonovich fields and integrating over these fields, the
interaction is the sum of four quartic contact interactions, each of which is weighted by
the multiplicative factor (2λl)

−2. This interacting theory can be bosonized with the help
of Abelian bosonization rules. The stability analysis then proceeds along the same line as
what is done in Sec. 12.3.2 with the same conclusions. The boundary theory is gapped
if and only if the protecting symmetries (12.7) or (12.8) are spontaneously broken. One
may repeat this exercise with ν = 6 and reach the same conclusion, a gap is necessarily
associated with the spontaneous symmetry breaking of the TRS or RS. It is only when ν
is an integer multiple of the number 8 that a gap delivers a nondegenerate ground state.

12.3 the case ν = 2

The set (12.12) with n = 2 has the 16 elements {Xµρ} with µ, ρ = 0, · · · , 3. This set
spans the space of 4 × 4 Hermitian matrices. For ν = 2, there are at most N(2) = 2
interaction channels allowed by the symmetry conditions (12.7), each of which is labeled
by the Hermitian 4 × 4 matrix βl. We consider the parametrization

H(dyn)
bd

(τ ,x) := β0 i∂x +

2∑
l=1

βl ϕl(τ ,x) (12.23a)
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of the dynamical boundary single-particle Hamiltonian. Following the same steps as in
Sec. 12.2, we impose the nonlinear constraint:

ϕ2
1(τ ,x) + ϕ2

2(τ ,x) = ϕ̄2. (12.24)

This condition compactifies the target space of the effective bosonic and local theory
to the circle S1. However, the nontrivial fundamental group π1(S1) = Z implies the
existence of a topological obstruction. This topological obstruction takes the form of
point defects when the vector (ϕ1(τ ,x),ϕ2(τ ,x)) accommodates vortex configurations
in (1 + 1)-dimensional space-time. A vortex configuration is singular at the vortex core
where its gradient is ill-defined. Direct application of the gradient expansion method
employed in Sec. 12.2 is thus invalid. To circumvent this difficulty, we choose the method
of Abelian bosonization to derive an effective local bosonic action.

12.3.1 Abelian bosonization

We start from

Ĥbd :=

∫
dx
{
χ̂†X30i∂xχ̂−

2∑
l=1

λ2
l

(
χ̂† βl χ̂

)2
}

, (12.25)

i.e., we do not impose the O(2) symmetry resulting from demanding that λ2
1 = λ2

2 = λ2

as is done in Hamiltonian (12.2). Imposing symmetry conditions (12.7a) leads to the
identification of two possible sets

{
βl

}
Ba = {X12, X20}, Bb = {X21, X23}. (12.26)

Choosing set Ba in Eq. (12.25) defines Ĥ
bd a. Choosing set Bb in Eq. (12.25) defines

Ĥ
bd b. We will perform the subsequent analysis for both Ĥ

bd a and Ĥ
bd b in parallel.

With the convention
χ̂† =

(
χ̂1

L, χ̂2
L, χ̂1

R, χ̂2
R

)
, (12.27a)

Hamiltonians Ĥ
bd a and Ĥ

bd b are given by

Ĥbd a :=

∫
dx
{
χ̂†X30i∂xχ̂
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− λ2
1,a

(
χ̂†X12χ̂

)2
− λ2

2,a

(
χ̂†X20χ̂

)2
}

, (12.27b)

and

Ĥbd b :=

∫
dx
{
χ̂† X30 i∂x χ̂

− λ2
1,b

(
χ̂† X21 χ̂

)2
− λ2

2,b

(
χ̂† X23 χ̂

)2
}

, (12.27c)

respectively. This Majorana representation is not well suited for Abelian bosonization.
Instead of it, we define the right-moving complex fermion fields

ψ̂†
R

:=
χ̂1

R
− iχ̂2

R√
2

, ψ̂R :=
χ̂1

R
+ iχ̂2

R√
2

, (12.28a)

the left-moving complex fermion fields

ψ̂†
L

:=
χ̂1

L
− iχ̂2

L√
2

, ψ̂L :=
χ̂1

L
+ iχ̂2

L√
2

, (12.28b)

and the complex fermion basis

Ψ̂† ..=
(
ψ̂†

L
ψ̂†

R
ψ̂

L
ψ̂

R

)
. (12.28c)

In the basis (12.28c), we find the complex fermion representation

Ĥbd a :=

∫
dx
{

Ψ̂† X03 i∂x Ψ̂

− λ2
1,a

(
Ψ̂† X31 Ψ̂

)2
− λ2

2,a

(
Ψ̂† X02 Ψ̂

)2
}

, (12.29a)

and

Ĥbd b :=

∫
dx
{

Ψ̂†X03 i∂x Ψ̂

− λ2
1,b

(
Ψ̂† X22 Ψ̂

)2
− λ2

2,b

(
Ψ̂† X12 Ψ̂

)2
}

. (12.29b)

The change of basis (12.28) causes a permutation among the matrices Xµρ with µ, ρ =

0, 1, 2, 3. Hamiltonians (12.29a) or (12.29b) are to be normal ordered by using point-
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splitting and Wick’s theorem. These normal-ordered Hamiltonians are then bosonized by
using the identities

ψ̂†
R
(x) =: η̂R

e−iφ̂
R
(x)

√
2πϵ

, ψ̂†
L
(x) =: η̂L

e+iφ̂
L
(x)

√
2πϵ

, (12.30a)

where ϵ is a short-distance cutoff. Hereby, we defined the chiral bosonic fields that obey
the algebra

[φ̂R(x), φ̂R(x′)] = −[φ̂L(x), φ̂L(x
′)] = iπ sgn(x− x′), [φ̂R(x), φ̂L(x

′)] = 0, (12.30b)

and Klein factors η̂
R/L

that obey the algebra

{η̂R, η̂R} = {η̂L, η̂L} = 2, {η̂R, η̂L} = 0. (12.30c)

Hamiltonian (12.29a) has the bosonic representation

Ĥbd a =

∫
dx
{

1
2π
[
(∂xφ̂L)

2 + (∂xφ̂R)2
]

+

(
λ2

1,a + λ2
2,a

)
π2

(∂xφ̂L + ∂xφ̂R)2

+
2
(
λ2

1,a − λ2
2,a

)
π2ϵ2

cos (2 φ̂L + 2 φ̂R)

}
. (12.31a)

Hamiltonian (12.29b) has the bosonic representation

Ĥbd b =

∫
dx
{

1
2π
[
(∂xφ̂L)

2 + (∂xφ̂R)2
]

+

(
λ2

1,b + λ2
2,b

)
π2

(∂xφ̂L − ∂xφ̂R)2

+
2
(
λ2

1,b − λ2
2,b

)
π2ϵ2

cos (2 φ̂L − 2 φ̂R)

}
. (12.31b)

In Hamiltonians (12.31), we have removed the Klein factors by diagonalizing the operator
iη̂

R
η̂

L
and choosing the eigenvalue +1 sector in the Klein Hilbert space. The difference

between the two sets Ba and Bb in Eq. (12.26) manifests itself as the sign with which
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φ̂
R

enters Hamiltonians (12.31a) and (12.31b), respectively. In Hamiltonian (12.31a),
the cosine results from the squares of the backward-scattering term ∝ ψ̂†

R
ψ̂

L
+ H.c. In

Hamiltonian (12.31b), the cosine results from the squares of the backward-pairing terms
∝ ψ̂†

R
ψ̂†

L
+ H.c. In the O(2) symmetric case that is defined by the condition

λ2
1,m = λ2

2,m, m = a, b, (12.32)

both cosine interactions vanish and the theory remains gapless. Away from the O(2)
symmetric point, the minima of the cosines are two-fold degenerate. If the cosines
dominate over the kinetic energy, they open a gap with a two-fold degenerate manifold
of ground states. Since the dependence on interaction strengths have the same form in
Hamiltonians (12.31a) and (12.31b), the boundaries in the corresponding phase diagrams
are identical. However, the phases they separate can be different whenever they break
spontaneously distinct symmetries.

The transformation 2

φ̂L → +φ̂L, φ̂R → −φ̂R (12.33)

that interchanges Hamiltonians (12.31a) and (12.31b) is nothing but the transformation
that interchanges the pair of dual fields

ϕ̂(x) :=
1

√
4π

[φ̂L(x) + φ̂R(x)] , (12.34a)

θ̂(x) :=
1

√
4π

[φ̂L(x) − φ̂R(x)] , (12.34b)

that satisfy the algebra [
ϕ̂(x), θ̂(x′)

]
=

i
2

sgn(x′ − x) (12.34c)

with all other commutators vanishing. If one trades the Hamiltonian representation for
the Lagrangian representation, one obtains the pair of actions

Sa :=

∫
d2x

{ 1
2ga

(
∂µϕ
)2

+ κacos
(√

16πϕ
)}

, (12.35a)

2 Recall that two copies of the helical Majorana fields can be thought of as a low energy description of
two copies of the Ising model. Suppose now that a Kramers-Wannier duality transformation is applied
to only the second copy of the Ising model via the transformation χ̂2

L
→ χ̂2

L
and χ̂2

R
→ −χ̂2

R
. In the

language of complex fermions, the left-handed component ψ̂
L

is unchanged, while the right-handed

component ψ̂
R

is transformed into its dagger, i.e., ψ̂
R

→ ψ̂
†
R

. The transformation (12.33) of chiral

bosons then follows.
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Sb :=

∫
d2x

{
1

2g
b

(
∂µθ
)2

+ κbcos
(√

16πθ
)}

, (12.35b)

where ϕ and θ are dual scalar fields satisfying either

∂µϕ = i ga ϵµν∂νθ, (12.35c)

with µ = 0, 1, (x0,x1) = (vaτ ,x), or

∂µϕ = i gb ϵµν∂νθ, (12.35d)

with µ = 0, 1, (x0,x1) = (vbτ ,x), respectively. The coupling constants are given by

2
va

= ga :=
1√

1 + 4
λ2

1,a
+λ2

2,a

π

, (12.35e)

2
v
b

= gb :=
1√

1 + 4
λ2

1,b
+λ2

2,b

π

, (12.35f)

whereas the effective interaction strengths are

κa :=
4

π2ϵ2

√
1 + 4

λ2
1,a + λ2

2,a

π

(
λ2

1,a − λ2
2,a

)
, (12.35g)

κb :=
4

π2ϵ2

√
1 + 4

λ2
1,b

+ λ2
2,b

π

(
λ2

1,b − λ2
2,b

)
. (12.35h)

The two actions (12.35a) and (12.35b) are exchanged if one performs the interchanges
λ2
i,a ↔ λ2

i,b with i = 1, 2 and ϕ ↔ θ. The interaction strengths (12.35g) and (12.35h)
change signs depending on whether λ2

1,m > λ2
2,m or λ2

1,m < λ2
2,m, with m = a, b.

Before proceeding, we determine how the symmetries defined in Eqs. (12.4) act on the
bosonic fields. The actions of the symmetry transformations on the complex fermionic
fields are deduced from their actions on the Majorana fields and given by

Û†
C

(
ψ̂

L
(τ ,x)

ψ̂
R
(τ ,x)

)
ÛC =

(
ψ̂

L
(τ ,x)

ψ̂
R
(τ ,x)

)
, (12.36a)

Û†
T

(
ψ̂

L
(τ ,x)

ψ̂
R
(τ ,x)

)
ÛT =

(
+ψ̂†

R
(τ ,x)

−ψ̂†
L
(τ ,x)

)
, (12.36b)
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Û†
R

(
ψ̂

L
(τ ,x)

ψ̂
R
(τ ,x)

)
ÛR =

(
+ψ̂

R
(τ , −x)

−ψ̂
L
(τ , −x)

)
, (12.36c)

where Û
C

, Û
T

, and Û
R

are PH, reversal of time, and reflection transformations at the
many-body level. The operator Û

T
is defined to be antiunitary, whereas operators Û

C

and Û
R

are chosen to be unitary. We note that the PHS is represented by the identity,
whereas the TRS involves a PH transformation 3. These transformation laws together
with Eqs. (12.30a) imply the transformation laws

Û†
C

(
φ̂

L
(τ ,x)

φ̂
R
(τ ,x)

)
ÛC =

(
φ̂

L
(τ ,x)

φ̂
R
(τ ,x)

)
, (12.37a)

Û†
T

(
φ̂

L
(τ ,x)

φ̂
R
(τ ,x)

)
ÛT =

(
−φ̂

R
(τ ,x)

−φ̂
L
(τ ,x) + π

)
, (12.37b)

Û†
R

(
φ̂

L
(τ ,x)

φ̂
R
(τ ,x)

)
ÛR =

(
−φ̂

R
(τ , −x)

−φ̂
L
(τ , −x)

)
. (12.37c)

We note that in deriving transformation rules (12.37), one must take care of the trans-
formation rules on the Klein factors as well. Demanding the invariance of the operator
iη̂

R
η̂

L
, we find the transformation rules

Û†
T

(
η̂

L

η̂
R

)
ÛT =

(
+η̂

R

+η̂
L

)
, (12.38a)

Û†
R

(
η̂

L

η̂
R

)
ÛR =

(
+η̂

R

−η̂
L

)
. (12.38b)

The corresponding transformation rules for the bosonic pair of dual fields are then found
to be

Û†
C

(
ϕ̂(τ ,x)
θ̂(τ ,x)

)
ÛC =

(
ϕ̂(τ ,x)
θ̂(τ ,x)

)
, (12.39a)

Û†
T

(
ϕ̂(τ ,x)
θ̂(τ ,x)

)
ÛT =

(
−ϕ̂(τ ,x) +

√
π/2

+θ̂(τ ,x) −
√
π/2

)
, (12.39b)

3 In fact, the unitary particle-hole transformation operator Û
C

replaces the spinor Ψ̂ with its conjugate

transpose Ψ̂†(τ , x) by the transformation rule Û
†
C

Ψ̂(τ , x) Û
C

= Ψ̂†(τ , x) M, where M is a unitary matrix.

It follows from the Majorana reality condition (12.3b) and the representation (12.7a) that M = X10.

This implies the transformation rule (12.36a) for the individual components of the spinor Ψ̂(τ , x).
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Û†
R

(
ϕ̂(τ ,x)
θ̂(τ ,x)

)
ÛR =

(
−ϕ̂(τ , −x)
+θ̂(τ , −x)

)
. (12.39c)

Alternatively, the transformations (12.39) can also be deduced from applying the many-
body symmetry transformations on the components of the fermionic two-current.

Equipped with the transformation rules (12.39), we explore the phase diagram corre-
sponding to the actions (12.35). For both actions, the corresponding cosine term has the
scaling dimension

∆m :=
4√

1 + 4
λ2

1,m
+λ2

2,m

π

, m = a, b. (12.40)

Therefore, the cosine terms are IR irrelevant when λ2
1,m + λ2

2,m < 3π/4 and the theory
remains critical. Increasing the interaction strengths makes the cosines relevant, in which
case the fields θ and ϕ are pinned to the minima of the corresponding cosine terms in the
ground state.

Each cosine has four extrema, two of which become minima depending on the difference
λ2

1,m − λ2
2,m being positive or negative. In particular, when this difference is zero, both

cosines vanish and the low-energy effective theory is that of a free scalar field, i.e., it also
remains critical. This is the O(2)-symmetric line in the parameter space. Away from this
line, we observe twofold ground-state degeneracy due to the two minima of the cosine.

For action (12.35a) with λ2
1,a > λ2

2,a, the two ground states are ϕ =
√
π/4 and

ϕ = 3
√
π/4. The transformation rules (12.39) then imply that RS is spontaneously

broken. Conversely, when λ2
1,a < λ2

2,a, the ground states correspond to ϕ = 0 and
ϕ =

√
π/2, which implies that TRS is spontaneously broken.

For action (12.35b), the transformation rules (12.39) imply that RS always holds,
whereas TRS is broken whenever there are two ground states separated by a shift of θ̂ by
√
π/2. This is realized by the cosine interaction in Eq. (12.35b).
In Fig. 12.1, we plot the phase diagrams for both actions (12.35a) (m = a) and (12.35b)

(m = b) as functions of the interaction strengths λ2
1,m and λ2

2,m, respectively. For given
m = a, b, we define the red line in Fig. 12.1 by

λ2
1,m + λ2

2,m = 3π/4 ⇐⇒ ∆m = 2 (12.41)

and the blue line in Fig. 12.1 by
λ2

1,m = λ2
2,m. (12.42)
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(a) (b)

Figure 12.1: Phase diagram for the edge theories defined by the actions (12.35a) (m = a) in
panel (a) and (12.35b) (m = b) in panel (b) as a function of the interaction strengths
λ2

i,m with i = 1, 2 and m = a, b. Along the blue line, O(2) symmetry holds and
both cosine interactions vanish. Along the red line, both cosine interactions are
marginal.

Below the red line (12.41), the cosine interactions are irrelevant as their scaling dimensions
are larger than 2. Each point in coupling space is then a critical phase with algebraic
correlation functions characterized by scaling exponents that are smooth functions of the
couplings λ2

1,m and λ2
2,m. The free Dirac point is defined by the origin λ2

1,m = λ2
2,m = 0

of coupling space. Above the red line (12.41), the cosine interactions are relevant as their
scaling dimensions are smaller than 2. Each point in coupling space then belongs to a
gapped phase, unless the couplings multiplying the cosine interactions vanish, as they do
along the blue line (12.42). Each gapped phase is associated with a pattern of spontaneous
symmetry breaking. When λ2

1,a < λ2
2,a (λ2

1,a > λ2
2,a), TRS (RS) is spontaneously broken

as follows from minimizing the cosine interaction. When λ2
1,b ̸= λ2

2,b, TRS is spontaneously
broken as follows again from minimizing the cosine interaction. Along the blue line (12.42),
O(2) symmetry holds and both cosine interactions vanish. Along the red line, both cosine
interactions are marginal.

Abelian bosonization reveals that when quartic contact interactions compatible with the
DIIIR symmetries are added, gap opening necessarily breaks one of the defining symmetries.
Therefore, the ν = 2 edge theory remains stable in the presence of interactions in the
sense that it may only be gapped by interactions if any one of the protecting symmetries
is either explicitly or spontaneously broken. We will next consider a generic family of
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symmetry-preserving cosine interactions and demonstrate that any interaction that gaps
the edge theory must necessarily break spontaneously one of the protecting symmetries.
We also discuss the effect of breaking of TS.

12.3.2 Haldane criterion

In Sec. 12.3.1, we bosonized Hamiltonians (12.29). They are of the sine-Gordon type. In
light of this result, one may consider a family of bosonic Hamiltonians with generic cosine
interactions. These interactions can gap some, most, or all bosonic degrees of freedom.
How many bosonic degrees of freedom remain gapless is determined using the so-called
Haldane stability criterion [189]. Doing so in a manner compliant with imposing the
protecting symmetries, we are going to recover the cosine potentials (12.31).

We consider the Hamiltonian

Ĥ := Ĥ0 + Ĥint, (12.43a)

which consists of the free Hamiltonian

Ĥ0 :=

∫
dx 1

4π
(
∂xΦ̂T

)
(x) V

(
∂xΦ̂
)
(x), (12.43b)

that describes free chiral bosonic fields and the interaction

Ĥint := −
∫

dx
∑
T∈H

hT (x) :cos
(
TT K Φ̂(x) + αT (x)

)
: (12.43c)

that encodes a countable set of local fermionic interactions describing many-body umklapp
processes that we shall call tunneling processes and hence label with the symbol T . The
components of the field Φ̂ obey the commutation relations[

Φ̂i(x), Φ̂j(x
′)
]
= −iπ

[
K−1
ij sgn(x− x′)

]
, (12.43d)

where K is a 2 × 2, integer valued, symmetric, and invertible matrix. The static functions

hT (x) ≥ 0, 0 ≤ αT (x) < 2π (12.43e)
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encode the possibility that TS is broken on the edge. The matrix V is a 2 × 2 symmetric
and positive definite matrix. The two-dimensional tunneling vectors T are chosen from a
set H, that we will specify later.

Our aim is to compare Hamiltonian (12.43a) with Hamiltonian (12.31a) or Hamiltonian
(12.31b) and use the Haldane criterion to identify some “minimal” sets of tunneling
vectors H that would gap the chiral bosonic fields Φ̂ if the functions h

T
were “large”. By

comparing the free Hamiltonian (12.43b) with (12.31), we define the fields

Φ̂(x) :=
(
φ̂

L (x) φ̂
R (x)

)T , (12.44a)

the universal data

Q :=

(
1
1

)
, K :=

(
+1 0

0 −1

)
, (12.44b)

and the nonuniversal data

V :=

(
v u

u v

)
, 0 < v ∈ R, 0 ≤ u ∈ R. (12.44c)

With the universal data (12.44b), the algebra (12.43d) reduces to the algebra (12.30b).
The two-dimensional vector Q is the charge vector. The explicit dependence of the positive
couplings u and v on the couplings λ2

i,m, i = 1, 2, m = a, b from Hamiltonian (12.31a)
will not be needed in the following.

The minimal set of tunneling vectors H is defined as follows. We first construct the
maximal Haldane set

L :=
{
T ∈ Z2

∣∣TT K T ′ = T ′T K T = 0, ∀T ′ ∈ L
}

, (12.45)

i.e., the set of elements in Z2 = Z × Z such that the bilinear form TT K T ′ vanishes
for any pair T and T ′ from L. This constraint is the compatibility condition of the
Haldane criterion. With it, there is no competition between any pair of cosine interaction
entering Ĥint. The vectors T ∈ L form a lattice since, for any pair T ,T ′ ∈ L, the linear
combination nT + n′ T ′ with n,n′ ∈ Z also satisfies the compatibility condition. We then
define the minimal set of tunneling vectors as the subset H ⊂ L such that elements T ∈ H

constitutes the primitive cell of the lattice L which is compatible with the symmetry
requirements of class DIIIR.
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The Haldane criterion then asserts that the Hamiltonian (12.43c) for a given H, removes
2 × |H|-chiral bosonic fields from gapless degrees of freedom by pinning them (the notation
|H| denotes the cardinality of the set H). In our case, Hamiltonian (12.43a) consists
of only a single pair of chiral bosonic fields. Therefore, it is enough to find the single
tunneling vector making up H to remove all gapless degrees of freedom.

For a general tunneling vector T = (m,n) of integers m,n ∈ Z, the Haldane compat-
ibility condition implies that there are two solutions, n = m and n = −m. Therefore,
there exists two disjoint sets of lattices L generated by the primitive cells

Ha :=
{(

+na −na
)T
∣∣∣ na to be determined

}
, (12.46a)

Hb :=
{(

+nb +nb

)T
∣∣∣ nb to be determined

}
. (12.46b)

The integers na and nb are not yet determined. To determine how integers na and nb are
constrained, we define the pair of interactions

Ĥint a :=

∫
dxha(x) :cos

(
na [φ̂L + φ̂R] (x) + αa(x)

)
:, (12.47a)

and

Ĥint b :=

∫
dxhb(x) :cos

(
nb [φ̂L − φ̂R] (x) + αb(x)

)
:, (12.47b)

corresponding to the minimal sets (12.46a) and (12.46b), respectively, on which we shall
impose the symmetries under the transformations defined in Eq. (12.39). Observe that,
in the strong coupling limit

4π sup{ha(x)} ≫ max{u, v} (12.48a)

[recall that ha(x) ≥ 0 for any x and u and v are defined in the velocity matrix (12.44c)],
the linear combinations φ̂

L
(x) ± φ̂

R
(x) of the chiral fields are pinned to the minima of

the cosine potentials, namely, either

na [φ̂L(x) + φ̂R(x)] = 2πk + π− αa(x), (12.48b)
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or

nb [φ̂L(x) − φ̂R(x)] = 2πk + π− αb(x), (12.48c)

respectively, for some integer k ∈ Z.

12.3.2.1 Symmetry constraints on Hamiltonian (12.47a)

PHS is trivially satisfied by construction. Imposing TRS by using the transformation rule
(12.37b) leads to the constraint

αa(x) = −αa(x) − naπ mod 2π, (12.49a)

which implies

αa(x) = la π−
naπ

2
mod 2π, la = 0, 1, (12.49b)

since αa(x) ∈ [0, 2π). Imposing RS by using the transformation rule (12.37c) leads to the
constraint

ha(−x) = ha(x), αa(−x) = −αa(x) mod 2π. (12.50)

Combining TRS and RS implies that

ha(x) = ha(−x) (12.51a)

and
αa(x) =

[
fa(|x|) −

na
2

]
π sgn(x) mod 2π, (12.51b)

where fa(x) is any function such that

fa : [0, ∞) → {la : la = 0, 1} . (12.51c)

We note that for any even na, assuming that fa(|x|) is constant, the discontinuity at x = 0
of αa(x) is an even multiple of 2π so the solution to Eqs. (12.51b) and (12.51c) can be
chosen independent of x. This is not the case for odd na as na π sgn(x)/2 mod 2π changes
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by π mod 2π across x = 0. A set of minima for the interaction (12.47a) compatible with
TRS and RS that are labeled by the integers la and na are thus given by

na [φ̂L(x) + φ̂R(x)] +

(
la −

na
2

)
π sgn(x) = π, (12.51d)

where the right-hand side is defined modulo 2π. Here, to minimize the cost in kinetic
energy arising from discontinuities, we restrict discontinuities to occur only at x = 0
and demand that h(x) vanishes smoothly at x = 0 if the argument of the cosine is
discontinuous at x = 0. From now on, we only consider the cases na = 1 and na = 2.

When na = 1, the minima (12.51d) simplify to

φ̂L(x) + φ̂R(x) = π + (1/2 − la ) π sgn(x) mod 2π

=


π
2

sgn(−x), if la = 0,

π
2

sgn(x), if la = 1.

(12.52)

One verifies that

[φ̂L(x) + φ̂R(x)]′ =


π
2

sgn(−x), if la = 0,

π
2

sgn(x), if la = 1,

(12.53)

where the prime over the operators on the left-hand side is a short-hand notation for their
image under either reversal of time or the reflection as defined by Eq. (12.37). Therefore,
for a given phase profile specified by la, there exists a unique gapped ground state for
the bosonic interaction Ĥint a that is invariant under the action of either TRS or RS.
When na = 1 and the competition between the kinetic energy and the interaction (12.47a)
results in the opening of a spectral gap (with a midgap bound state) on the edge, TRS
and RS are neither broken explicitly nor spontaneously, while TS is explicitly broken.
As announced below Eqs. (12.7) by making use of the bulk-edge correspondence, the
noninteracting topological classification Z of symmetry class DIIIR in (2+1)-dimensional
spacetime reduces to the topological classification Z2 of symmetry class DIII when a
RS compliant breaking of TS is allowed [100, 118], since Ĥint a with na = 1 is nothing
but a fermionic mass term in the complex fermion representation. The midgap states
bound at the reflection symmetric points are protected by the actions of TRS and RS
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and cannot be gapped. Such protected “corner" modes are nothing but the signature of a
second-order SPT phase induced by the spatially varying mass term. Indeed, it has been
shown in Ref. [110] that a two-dimensional superconductor in the symmetry class DIII
with RS but no TS along the boundary is an example of a second-order SPT phase 4.

When na = 2, the minima (12.51d) simplify to

2 [φ̂L(x) + φ̂R(x)] = π + (1 − la ) π sgn(x) mod 2π. (12.54a)

Because

π sgn(x) = π mod 2π, −π = π mod 2π, (12.54b)

one may write

2 [φ̂L(x) + φ̂R(x)] = π la, mod 2π. (12.54c)

We conclude that

φ̂L(x) + φ̂R(x) =


0, if la = 0,

π, if la = 0,

π/2, if la = 1,

3π/2, if la = 1.

(12.55a)

One verifies that

[φ̂L(x) + φ̂R(x)]TRS
=


π, if la = 0,

0, if la = 0,

π/2, if la = 1,

3π/2, if la = 1,

(12.55b)

4 The topological index belongs to the group Z2. Hence, the midgap state bound by a dynamical mass
supporting a domain wall for the ν = 4 case can be gapped as opposed to the ν = 2 case.
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and

[φ̂L(x) + φ̂R(x)]RS
=


0, if la = 0,

π, if la = 0,

3π/2, if la = 1,

π/2, if la = 1,

(12.55c)

where the subscripts TRS and RS are short-hand notations for the image of the minima
under reversal of time and space inversion, respectively. There are two crucial differences
between the cases na = 1 and na = 2. The minima (12.55a) transform in a nontrivial way
under the actions of TRS and RS. For each choice la, two minima are exchanged under
the action of either reversal of time or space inversion. Furthermore, the compactness
of the chiral fields and the choice na = 2 conspire in such a way that they minimize the
interaction Ĥint a without breaking the TS.

The cosine in the interaction Ĥint a with na = 2 is identical to the cosine in Hamiltonian
(12.31a). The coupling h(x) ≥ 0 breaks TS in the interaction Ĥint a when it is not a
constant function of x, unlike the coupling that multiplies the cosine in Hamiltonian
(12.31a). The two choices for la in Eq. (12.55a) correspond to fixing the overall sign of
the interaction Ĥint a with na = 2 when evaluated at its translation symmetric minima.
In other words, the two choices for la in Eq. (12.55a) with na = 2 correspond to choosing
which two translation symmetric extrema of the cosine term are the minima. Furthermore,
from the transformation rules (12.55b) and (12.55c) we observe that the same patterns
for spontaneous symmetry-breaking patterns as with Hamiltonian (12.31a). When la = 0,
TRS is spontaneously broken, whereas RS is protected. When la = 1, RS is spontaneously
broken, whereas TRS is protected. Hence, even though the interaction (12.47a) breaks
TS when h(x) is not a constant function of x, it shares with Hamiltonian (12.31a) the
same phase diagram.

Finally, we note that the sign function that interpolates between any two translation
symmetric minima of the interaction Ĥint a also minimizes Ĥint a. One verifies that this
sign function respects TRS and RS but breaks TS. Unlike the translation symmetric
minima of the interaction Ĥint a, this sign function costs kinetic energy. The competition
between the kinetic and interaction terms results in a compromise by which the singularity
of the sign function is smoothed. The outcome is a soliton that keeps TRS and RS but
breaks TS. This soliton is a gapped excitation that can be interpreted as a pair of helical
Majorana modes localized in the region where the soliton energy density is nonvanishing
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and whose existence is protected by TRS and RS in the Majorana representation of the
boundary theory.

12.3.2.2 Symmetry constraints on Hamiltonian (12.47b)

PHS is again satisfied trivially by construction. Imposing TRS by using the transformation
rule (12.39b) leads to the constraint

nb = 2m, m ∈ Z, (12.56a)

i.e., nb is an even integer. Imposing RS by using the transformation rule (12.39c) leads
to the pair of constraints

hb(−x) = hb(x), αb(−x) = αb(x). (12.56b)

A set of minima is given by

nb [φ̂L(x) − φ̂R(x)] + π lb = π, mod 2π, (12.57)

where lb = 0, 1. We only consider the case nb = 2 and conclude that

φ̂L(x) − φ̂R(x) =


π/2, if lb = 0,

3π/2, if lb = 0,

0, if lb = 1,

π, if lb = 1.

(12.58)

One verifies that

[φ̂L(x) − φ̂R(x)]
TRS

=


3π/2, if lb = 0,

π/2, if lb = 0,

π, if lb = 1,

0, if lb = 1.

(12.59)

The four translation symmetric minima (12.58) are invariant under the action of RS. On
the other hand, under the action of TRS, two translation symmetric minima corresponding
to each lb are exchanged. Therefore, RS is always protected by the interaction Ĥ

int b with
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nb = 2, whereas TRS is spontaneously broken by its minima. The argument of the cosine
in Ĥ

int b with nb = 2 is identical to that of the cosine in Hamiltonian (12.31b). Hence,
both Hamiltonians obey the same pattern of symmetry breaking. Finally, even though
the interaction (12.47b) breaks TS when h(x) is not a constant function of x, it shares
with Hamiltonian (12.31b) the same phase diagram (Fig. 12.1).

12.4 the case ν = 1

For the ν = 1 case, the boundary theory consists of a single helical pair of Majorana
fields. In this case, as we shall explain, it is not possible to employ the gradient expansion
method used in Sec. 12.2. Instead, we proceed in two steps. First, we establish that
there are two topological sectors in the effective bosonic theory for the boundary. Second,
we write down the dominant quartic interaction which we treat within the mean-field
approximation.

12.4.1 Existence of two topological sectors

The set (12.12) with n = 1 has the 4 elements (Xµ ≡ σµ with µ = 0, · · · 3). For ν = 1,
there is at most N(1) = 1 interaction channel allowed by the symmetry conditions (12.7).
Therefore, there is a unique parametrization

H(dyn)
bd

(τ ,x) := β0 i∂x + β1 ϕ (τ ,x), (12.60)

β0 := X3 ≡ σ3, β1 := X2 ≡ σ2, (12.61)

of the dynamical boundary single-particle Hamiltonian. If we impose the nonlinear
constraint

ϕ2(τ ,x) ≡ ϕ̄2 (12.62)

for some given real-valued number ϕ̄, the target manifold is then nothing but two points
±1 with the only nonvanishing homotopy group π0(S0) = Z2.

When the hard nonlinear constraint (12.62) is strictly imposed, all configurations of
ϕ(τ ,x) other than the constant field ϕ(τ ,x) = ±ϕ̄ must be discontinuous at the spacetime
points where ϕ(τ ,x) switches between +ϕ̄ and −ϕ̄. The gradient of ϕ(τ ,x) is then ill-
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defined at singular points and zero everywhere else. If we relax the condition (12.62) by
imposing the nonlinear constraint asymptotically,

lim
τ→±∞

ϕ2(τ ,x) ≡ ϕ̄2, (12.63)

then smooth deformations of these singular configurations are admissible. However, the
continuous function ϕ(τ ,x) then necessarily takes the value zero along at least one time
slice in (1 + 1)-dimensional space-time, which binds zero modes in the spectrum. This
prevents employing the gradient expansion approach outlined in Sec. 12.2 since the
Pfaffian obtained by integrating out real-valued Grassmann fields,

Zbd ∝
∫

D[ϕ]

∫
D[χ] e

−
∫

d2x χ̄(iγµ∂µ−iϕ)χ

∝
∫

D[ϕ]Pf [iσ2 D[ϕ]] , (12.64a)

vanishes due to zero eigenvalues of the kernel

D := iγµ∂µ − iϕ, γ0 := −σ2, γ1 := σ1, (12.64b)

where χ̄ = χ†(iσ2). Because the kernel iσ2D is skew symmetric, the identity

(Pf [iσ2 D[ϕ]])2 = Det [iσ2 D[ϕ]] (12.65)

holds. Therefore, the Pfaffian of iσ2D, is nothing but the square root of the functional
determinant of iσ2D.

The idea that we shall develop below is the following. According to Eq. (12.65),
computing the Pfaffian of a skew-symmetric operator is akin to taking the square root
of a number. Taking the square root of a real-valued number yields two roots differing
by their signs. For any pair ϕ and ϕ′, it is the relative sign between Pf

[
iσ2 D[ϕ]

]
and

Pf
[
iσ2 D[ϕ′]

]
that fixes if ϕ is topologically equivalent to ϕ′. The background ϕ is

topologically equivalent to ϕ′ if

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[ϕ′]

]) = +1. (12.66)
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Otherwise, the background ϕ is not topologically equivalent to ϕ′. We are going to show
that there are two topological sectors in the effective bosonic theory, i.e., there are two
disjoint sets of topologically inequivalent profiles of the field ϕ.

Although the kernel iσ2D[ϕ] is not Hermitian, the kernel

D′[ϕ] :=

(
−ϕ +∂

+∂̄ +ϕ

)
= −iσ1 ∂x + iσ2 ∂τ − σ3 ϕ, (12.67a)

∂ := ∂τ − i∂x, ∂̄ := −∂τ − i∂x, (12.67b)

(i) shares the same determinant as iσ2D[ϕ] and (ii) is Hermitian. It follows that the
eigenvalues of D′[ϕ] are real valued. Moreover, the kernel D′[ϕ] obeys the Bogoliubov-de
Gennes condition and, hence, the nonvanishing real-valued eigenvalues of D′[ϕ] come in
pairs of opposite signs. We shall assume that all eigenvalues of D′[ϕ] are nonvanishing.
The label ι enumerates all pairs of eigenvalues ±|λ′

ι| ∈ R \ {0} of D′[ϕ]. We then have
the definition

Pf [iσ2 D[ϕ]] :=
∏
ι

|λ′
ι| (12.68)

that consists of choosing all the positive representatives of the pairs of nonvanishing
eigenvalues. The question that immediately arises is if this definition can be done
consistently over the entire target space of ϕ. If the answer to this question is positive,
then the target space is topologically trivial. Otherwise, it is not.

Our goal is to show that there are two distinct topological sectors as discussed above. To
this end, we shall choose an arbitrary profile ϕ(τ ,x) that obeys the boundary conditions
(12.63).

Claim 4.

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[ϕ̄]

]) = −sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[−ϕ̄]

]) , (12.69a)

and

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[−ϕ]

]) = −1. (12.69b)
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Two comments are in order before we prove Eqs. (12.69). Equation (12.69a) implies
that profile ϕ is topologically equivalent to either one of the two constant profiles ±ϕ̄.
In other words, there exist exactly two topological sectors with representative profiles
+ϕ̄ and −ϕ̄ as measured by Eq. (12.69a). Equation (12.69b) implies that the profiles ϕ
and −ϕ belong to distinct topological sectors, a fact that originates from a Z2 global
anomaly [188, 190]. Indeed, the transformation

χ = σ3χ
′, ϕ = −ϕ′, (12.70a)

leaves the Lagrangian

χ̄
(

iγµ∂µ − iϕ
)
χ = χ̄′

(
iγµ∂µ − iϕ′

)
χ′ (12.70b)

invariant, while the partition function (12.64a) changes according to

Zbd ∝
∫

D[ϕ′]D[χ′]J [σ3] e
−
∫

d2x χ̄′(iγµ∂µ−iϕ′)χ′

∝
∫

D[ϕ′]J [σ3]Pf
[
iσ2 D[ϕ′]

]
∝
∫

D[ϕ]J [σ3]Pf
[
iσ2 D[−ϕ]

]
. (12.70c)

On the one hand, to reach the right-hand side of the second line, we allowed for a
possibly nontrivial Jacobian J [σ3] associated with the transformation χ = σ3χ

′. On
the other hand, to reach the third line, we assumed that the Jacobian associated with
the transformation ϕ = −ϕ′ is unity. Equation (12.69b) then implies that J

[
σ3

]
= −1,

which is the precise definition of a Z2 global anomaly, namely the symmetry of the
Lagrangian that is not respected by the measure.

Proof. We now prove Eqs. (12.69). To examine whether two profiles ϕi(τ ,x) and ϕ
f
(τ ,x)

are topologically equivalent, we introduce a parameter t ∈ [0, 1] and define a continuous
function ϕt(τ ,x) such that

ϕt=0(τ ,x) = ϕi(τ ,x), ϕt=1(τ ,x) = ϕf (τ ,x). (12.71a)



204 lsm theorem at the edge of a 2d crystalline topological superconductor

We choose the linear interpolation

ϕt(τ ,x) := (1 − t)ϕi(τ ,x) + t ϕf (τ ,x). (12.71b)

We impose periodic boundary conditions in both τ and x,

ϕ(τ ,x+ Lx) = ϕ(τ ,x), ϕ(τ + Lτ ,x) = ϕ(τ ,x). (12.72)

Hence, interpolation (12.71) also satisfies these boundary conditions. Boundary conditions
(12.72) describe a compact space-time (S1 × S1 = T2). It follows that the spectrum of the
kernel D′[ϕt] defined in Eq. (12.67) is discrete. If one calculates the flow of eigenvalues
λ′
t,ι of the kernel D′[ϕt] as a function of t, whenever there is a gap closing, i.e., at least

one of the λ′
t,ι is 0, there is a π phase change in the Pfaffian. Thus, an odd number of gap

closings during the evolution from t = 0 to t = 1 means that the initial and final profiles
belong to different topological sectors. We will prove Eqs. (12.69) by assuming that the
number of gap closings is independent of the choice of the interpolation scheme, without
calculating the actual number of gap closings explicitly.

We first examine a special case of Eq. (12.69a) for which ϕ(τ ,x) = +ϕ̄. Consider the
linear interpolation

ϕ+,−
t := (1 − t)ϕ̄+ t(−ϕ̄) = (1 − 2t)ϕ̄. (12.73)

For any t ̸= 1/2, ϕ+,−
t contributes to the Kernel D′[ϕ+,−

t̸=1/2
] as a constant nonvanishing

mass term. Hence, the spectrum is gapped. This gap closes only at t = 1/2, in which
case the kernel D′[ϕ+,−

t=1/2
] is that of a free Majorana fermion. There exists only a single

pair of zero eigenvalues that are labeled by reciprocal vector (ω, k) = (0, 0). Therefore, we
find that there is a single crossing between negative and positive eigenvalues of D′[ϕ+,−

t ]

at t = 1/2. It follows that in the special case ϕ(τ ,x) = +ϕ̄, Eq. (12.69a) holds. For any
profile ϕ(τ ,x), the manipulation

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[ϕ̄]

]) = sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[−ϕ̄]

])

× sgn

(
Pf
[
iσ2 D[−ϕ̄]

]
Pf
[
iσ2 D[ϕ̄]

] ) (12.74)
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then implies Eq. (12.69a). Observe that identity (12.74) is nothing but the interpolation

Φ+,−
t :=

{
(1 − 2t)ϕ(τ ,x) − 2t ϕ̄, if 0 ≤ t < 1

2
,

(2t− 2)ϕ̄+ (2t− 1)ϕ̄, if 1
2

≤ t ≤ 1.
(12.75)

To show Eq. (12.69b), we note that for any ϕ(τ ,x),

σ2 KD′[ϕ]Kσ2 = D′[−ϕ]. (12.76)

Hence, D′[ϕ] and D′[−ϕ] share the same eigenvalue spectrum. This implies that for the
two interpolations

Φ+
t := (1 − t) ϕ̄+ t ϕ(τ ,x), (12.77a)

Φ−
t := (1 − t) (−ϕ̄) + t (−ϕ(τ ,x)) = −Φ+

t , (12.77b)

D′[Φ+
t ] and D′[Φ−

t ] also share the same eigenvalue spectrum. Therefore, one can then
show that

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[ϕ̄]

]) = sgn

(
Pf
[
iσ2 D[−ϕ]

]
Pf
[
iσ2 D[−ϕ̄]

]) , (12.77c)

which after rearrangement gives

sgn

(
Pf
[
iσ2 D[ϕ]

]
Pf
[
iσ2 D[−ϕ]

]) = sgn

(
Pf
[
iσ2 D[ϕ̄]

]
Pf
[
iσ2 D[−ϕ̄]

])
= −1. (12.77d)

Any profile ϕ(τ ,x) is topologically inequivalent to −ϕ(τ ,x), as claimed in Eq. (12.69b).

12.4.2 Mean-field treatment of the interaction

To complement the discussion in the previous subsection, we integrate over the bosonic
field ϕ in action (12.64a) and derive the effective action for the Majorana fields χ̂

L
and

χ̂
R

. The single interaction term has the form χ̂
L
(x) χ̂

R
(x) χ̂

L
(x+ ϵ) χ̂

R
(x+ ϵ) where ϵ is

a short-distance cutoff that implements point splitting. For weak coupling strength this
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interaction term is irrelevant and the boundary remains gapless. In the limit of a strong
interaction strength, a gap opens in the spectrum [142, 191]. At the mean-field level, this
gap corresponds to the bilinear iχ̂

L
χ̂

R
acquiring a nonvanishing expectation value. This

is equivalent to replacing the dynamical field ϕ(τ ,x) in action (12.64a) by the constant
profiles ±ϕ̄. Inserting the mean-field solution for the field ϕ(τ ,x) explicitly breaks the
TRS since the term ±i ϕ̄ χ̂

L
χ̂

R
is odd under the transformation (12.4b). Gapping the

boundary is only possible by spontaneously breaking TRS.

12.5 interpretation from lsm perspective

In the preceding sections, we studied the cases of ν = 4, ν = 2, and, ν = 1 pairs of
helical Majorana modes. We now interpret the protected gaplessness of these cases as the
presence fo underlying LSM constraints. FCEP described in Sec. 11.2 dictates that the
classification of crystalline FSPT phases with total symmetry group

Gtot,f = Z ⋊
ZFT

4 × ZFR
4

ZF
2

, (12.78a)

is equivalent to the classification of FSPT phases with internal symmetry group

G̃tot,f = Z ⋊ ZR′
2 × ZFT

4 , (12.78b)

where the generator of ZR′
2 is represented antiunitarily. While obtining the full classifica-

tion with internal symmetry group G̃
tot,f is still a nontrivial task, in what follows, we are

going to argue that the Z8 classification corresponds to nontrivial cohomology groups of
G̃

tot,f . These then can be interpreted as generalized LSM constraints that apply to the
one-dimensional boundary of the two-dimensional topological superconductor. A more
in-depth and complete analysis is out of the scope of this dissertation and left as a future
work.

The case of ν = 1 is equivalent to the edge theory of the strong FSPT phase in class
DIII which has a Z2-classification. Therefore, for any odd ν pairs of helical Majorana
modes, the gapless degrees of freedom must be protected purely by the internal symmetry
group Gf = ZFT

4 . In the classification scheme of two-dimensional IFT phases, this is
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attributed to the nontrivial algebra between the fermion parity symmetry and reversal of
time at the boundary [146]. Indeed, intuitively, the local fermion parity operator

Û(p;x) ∼ iχ̂L(x) χ̂R(x), (12.79)

is odd under reversal of time. This is akin to a local projective representation of ZFT
4

(see Appendix A.5.3) 5.
For any even ν, the protection of gapless Majorana modes due to ZFT

4 disappears.
There is no nontrivial algebra between reversal of time and fermion parity. For any ν,
there is also no nontrivial algebra between spatial symmetries and fermion parity. This
means that the underlying LSM constraints when ν is even can be captured by only
considering the “bosonic” part of the symmetries, i.e.,

Gtot,f/ZF
2 = ZT

2 × Z ⋊ ZR
2 . (12.80a)

We therefore identify the group of internal symmetry

G = ZT
2 , (12.80b)

and the group of crystalline symmetries

Gspc = Z ⋊ ZR
2 . (12.80c)

For the case of ν = 2, we have shown in Sec. 12.3.2 that perturbation by a translation-
symmetry breaking mass term, the boundaries can be gapped everywhere except at the
reflection symmetric points. Such a mass term binds zero-modes, a single Kramer’s
doublet, at the reflection centers. The same mass term for ν = 4 case binds a pair of
Kramer’s doublet at each reflection center which can be gapped out. This is to say that
imposing only the reflection symmetry ZR

2 leads to a Z4 classification of class DIIIR
(also see Ref. [110]), where ν = 2 case corresponds to the order two element in Z4.
This classification can be understood by invoking the crystalline equivalence principle
3 and computing the cohomology group (11.3b) with d = 1 and G̃spc = ZR′

2 (which is
represented antiunitarily). We find

H1
(

ZR′
2 ,H2

(
ZT

2 , U(1)c
))

= H1
(

ZR′
2 , Z2

)
= Z2. (12.81)

5 This statement should not be taken at its face value. There is no lattice regularization of a single pair

of helical Majorana modes for which ZFT
4 also act locally.
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The ν = 2 case realizes the nontrivial element in the cohomology group (12.81). The
underlying LSM constraint is due to the nontrivial projective representation of ZT

2 at the
reflection center.

The case ν = 4 case realizes the trivial element in the cohomology group (12.81). The
protected gaplessness of the boundary modes requires all three symmetries reversal of
time, translation and reflection to be imposed. This can be understood, by invoking the
crystalline equivalence principle 3, as a result of the cohomology group 6

H3
(

Z ⋊ ZR
2 ,H1(ZT

2 , Zc)
)
= H3

(
Z ⋊ ZR

2 , Z2

)
⊃ Z2. (12.82)

The ν = 4 case realizes the nontrivial element in the cohomology group (12.82). The
ν = 8 case realizes the trivial element in both cohomology groups (12.81) and (12.82).

In summary, together with the Z2 invariant of strong IFT phase in class DIII, the
two LSM constraints (12.81) and (12.82) provide three Z2-valued indices. Since the
noninteracting classification of class DIIIR is the cyclic group Z, we deduce, without
derivation, that the three Z2-valued indices deliver the group Z8.

6 The physical interpretation of this cohomology group is not clear to the author at the time this
dissertation is written. It is left to be understood in the future work.
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C O N C L U S I O N A N D O U T L O O K

In this Dissertation, we demonstrated that IFT phases can be organized by using fermionic
LSM Theorems that rule out nondegenerate, gapped, and, symmetric ground states. On
one hand, contrapositions of these theorems provide a set of necessary condition to realize
ground states of IFT phases and can be used to classify them. On the other hand, they
also apply to the boundaries of crystalline IFT phases in higher dimensions and explain
why the gapless boundary degrees of freedom are protected.

In Part I, we solely focused on fermionic LSM Theorems. We proved Theorems 2
and 3 which apply to local fermionic lattice Hamiltonians with translation symmetry
and internal symmetry group Gf . The strength of these two theorems lies in the fact
that they can be applied when Gf is only a discrete symmetry group in which case
the strategy of constructing low-energy variational states that is used in Chapter 2 is
invalid. Interestingly, we have shown in Chapter 4 that certain cases of Theorem 2
and Theorem 3 are intrinsically fermionic, i.e., they only apply to Hamiltonians with
underlying fermionic degrees of freedom. Therefore, intrinsically fermionic LSM theorems
are nontrivial extension of those that apply to the bosonic Hamiltonians. In particular,
despite the exact boson-fermion dualities in one-dimensional space such as Jordan-Wigner
transformation, intrinsically fermionic LSM theorems cannot be retrieved from any bosonic
LSM theorem by using one of such dualities.

In Part II, starting from the fermionic LSM Theorems, we gave an exhaustive char-
acterization of one-dimensional IFT phases. This was done in three steps. First, given
any internal symmetry group Gf , we enumerated in Chapter 6 all one-dimensional IFT
phases. Second, we derived in Chapter 7 the corresponding fermionic stacking rules, which
prescribes how to add two Hamiltonians describing one-dimensional IFT phases to obtain
another such Hamiltonian. This delivers an Abelian group structure of IFT phases for
any symmetry group Gf . Third, we showed in Chapter 8, on general grounds, how to
compute the protected ground state degeneracy of a one-dimensional IFT phase when
open-boundary conditions are imposed. A comprehensive application to time-reversal
symmetric Majorana chains and closely-related spin-1/2 cluster models was also presented
in Chapter 10.

209



210 conclusion and outlook

In the final Part III, we explored the relation between generalized LSM Theorems and
IFT phases with crystalline symmetries. We described how LSM theorems with translation
symmetry and weak topological phases have a one-to-one correspondence. Starting from
this point of view, we argued that there is also a correspondence between generalized
LSM Theorems with crystallographic symmetries other than translations and crystalline
IFT phases. To demonstrate this, in Chapter 12 we explicitly studied the protected
gapless boundary modes of a two-dimensional crystalline topological superconductor. An
interpretation in terms of generalized LSM theorems is then given for why the edge states
are protected.
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A
P R O J E C T I V E R E P R E S E N TAT I O N S O F F E R M I O N I C

S Y M M E T RY G R O U P S

This Appendix provides the mathematical background to construct and classify projective
representations of fermionic symmetry groups. A review of group cohomology is presented
in Sec. A.1. Sec. A.2 describes the structure of fermionic symmetry groups Gf as
central extensions of groups G by fermion parity group ZF

2 . Some examples of frequently
encountered fermionic symmetry groups are reviewed in Sec. A.3. We then construct and
classify (projective) representations of a given Gf in Sec. A.4. The explicit classification of
projective representations of the groups ZT

2 × ZF
2 , Z2 × Z2 × ZF

2 , and ZFT
4 are computed

in Sec. A.5.

a.1 group cohomology

Given two groups G and M , an n-cochain is the map

ϕ : Gn →M ,

(g1, g2, · · · , gn) 7→ϕ(g1, g2, · · · , gn),
(A.1)

that maps an n-tuple (g1, g2, · · · , gn) to an element ϕ(g1, g2, . . . , gn) ∈ M . The set of all
n-cochains from Gn to M is denoted by Cn(G,M). We define an M -valued 0-cochain to
be an element of the group M itself, i.e., C0(G,M) = M . Henceforth, we will denote the
group composition rule in G by · and the group composition rule in M additively by +

(− denoting the inverse element).
Given the group homomorphism c : G → {0, 1}, for any g ∈ G, we define the group

action

Cg : M →M ,

m 7→ (−1)c(g)m.
(A.2)

213
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The homomorphism c indicates whether and element g ∈ G is represented unitarily
[c(g) = 0] or antiunitarily [c(g) = 1]. We define the map δc

δnc : Cn(G,M) → Cn+1(G,M),

ϕ 7→ (δnc ϕ) ,
(A.3a)

from n-cochains to (n+ 1)-cochains such that

(δnc ϕ) (g1, · · · , gn+1) :=Cg
1

(
ϕ(g2, · · · , gn, gn+1)

)
+

n∑
i=1

(−1)iϕ(g1, · · · , gi · gi+1, · · · , gn+1)

− (−1)n ϕ(g1, · · · , gn). (A.3b)

The map δnc is called a coboundary operator. For example, for n = 1 and n = 2 the
corresponding coboundary operators act as(

δ
1
cα
)
(g1, g2) = (−1)c(g1

)
α(g2) − α(g1 · g2) + α(g1), (A.4a)(

δ
2
cβ
)
(g1, g2, g3) = (−1)c(g1

)
β(g2, g3) − β(g1 · g2, g3) + β(g1, g2 · g3) − β(g1, g2), (A.4b)

on 1-cochain α ∈ C1(G,M) and 2-cochain β ∈ C2(G,M), respectively.
Using the coboundary operator, we define two sets

Zn(G,Mc) := ker(δnc ) = {ϕ ∈ Cn(G,M) | δnc ϕ = 0} , (A.5a)

and

Bn(G,Mc) := im(δn−1
c ) =

{
ϕ ∈ Cn(G,M) | ϕ = δn−1

c ϕ′, ϕ′ ∈ Cn−1(G,M)
}

. (A.5b)

The cochains in Zn(G,Mc) are called n-cocycles. The cochains in Bn(G,Mc) are called
n-coboundaries. The action of the boundary operator on the elements of the group M

is sensitive to the homomorphism c. For this reason, we label M by c in Zn(G,Mc) and
Bn(G,Mc).

The definition (A.3b) implies for any n-cochain ϕ ∈ Cn(G,M) the identity

δn+1
c δnc ϕ = 0 (A.6)
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holds, i.e., the coboundary of a coboundary Φ = δnc ϕ vanishes. The nth cohomology
group is defined as the quotient of the n-cocycles by the n-coboundaries, i.e.

Hn(G,Mc) :=
Zn(G,Mc)

Bn(G,Mc)
=

ker (δnc )
im
(
δn−1
c

) . (A.7)

The nth cohomology group Hn(G,Mc) counts the inequivalent cocycles that are not
themselves not coboundaries. We denote its elements by [ϕ] ∈ Hn(G,Mc), i.e., the
equivalence class of the n-cocycle ϕ. Hn(G,Mc) has a Abelian group structure with the
group composition rule

[ϕ] + [ϕ′] = [ϕ+ ϕ′]. (A.8)

Finally, we define the following operation on the cochains. Given two cochains ϕ ∈
Cn(G,N) and θ ∈ Cm(G,M), we produce the cochain (ϕ ∪ θ) ∈ Cn+m(G,N × M)
through

(ϕ∪ θ)(g1, · · · , gn, gn+1, · · · , gm) :=
(
ϕ(g1, · · · , gn), Cg

1
·g

2
···gn

(
θ(gn+1, · · · , gn+m)

))
.

(A.9a)

If we compose operation (A.9a) with the pairing map f : N ×M → M ′ where M ′ is an
Abelian group, we obtain the cup product

(ϕ ⌣ θ)(g1, · · · , gn, gn+1, · · · , gm) := f

(
ϕ(g1, · · · , gn), Cg

1
·g

2
···gn

(
θ(gn+1, · · · , gn+m)

))
.

(A.9b)

Hence, (ϕ ⌣ θ) ∈ Cn+m(G,M ′). For our purposes, both N and M are subsets of the
integer numbers, M ′ = Z2, while the pairing map f is

f (α,β) := α(g1, · · · , gn) β(gn+1, · · · , gn+m) mod 2 (A.10)

where multiplication of cochains α and β is treated as multiplication of integers numbers
modulo 2. For instance, for the cup product of a 1-cochain α ∈ C1

(
G, Z2

)
and a 2-cochain

β ∈ C2
(
G, Z2

)
, we write

(α ⌣ β)(g1, g2, g3) = α(g1) Cg
1
(β(g2, g3)) = α(g1) β(g2, g3), (A.11)

where the cup product takes values in Z2 = {0, 1} and multiplication of α and β is the
multiplication of integers. In reaching the last equality, we have used the fact that the
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2-cochain β(g2, g3) takes values in Z2 for which Cg
1
(β(g2, g3)) = β(g2, g3) for any g1.

The cup product defined in Eq. (A.9b) satisfies

δn+mc (ϕ ⌣ θ) = (δnc ϕ ⌣ θ) + (−1)n (ϕ ⌣ δmc θ) , (A.12)

given two cochains ϕ ∈ Cn(G,N) and θ ∈ Cm(G,M). Hence, the cup product of two
cocycles is again a cocycle as the right-hand side of Eq. (A.12) vanishes.

a.2 construction of fermionic symmetry groups

For quantum systems built out of Majorana degrees of freedom the parity (evenness or
oddness) of the total fermion number is always a constant of the motion. We denote the
group of two elements e and p

ZF
2 := {e, p | e p = p e = p, e = e e = p p} , (A.13)

whereby e is the identity element and p is the fermion parity operator. It is because of
this interpretation of the group element p that we attach the upper index F to the cyclic
group Z2. We denote the group of any symmetries other than the fermion parity by G.
Any fermionic symmetry group Gf is then constructed from the group G, via a central
extension of G by the fermion parity symmetry ZF

2 . This central extension can be written
as the short-exact sequence

0 → ZF
2

i→ Gf
π→ G → 0. (A.14a)

Hereby, the homomorphisms i : ZF
2 → Gf and b : Gf → G are inclusion and projection

maps, respectively. In other words, the map i is an injective homomorphism while π is a
surjective homomorphism. The extension (A.14a) is called central since the image of i is
in the center of Gf , i.e., for any gf ∈ Gf and h ∈ ZF

2

gf i(h) = i(h) gf . (A.14b)

The sequence is called exact since the identity

im(i) = ker(π) (A.14c)



A.2 construction of fermionic symmetry groups 217

holds, i.e., the kernel of π is equal to the image of i. This means that

G ∼= Gf/ ker(π)

= Gf/ im(i)

∼= Gf/ ZF
2 , (A.14d)

i.e., group G is isomorphic to the coset Gf/ZF
2

1. It is instructive to consider the simple
case in which Gf is the direct product of G and ZF

2 , i.e.,

Gf = G× ZF
2 :=

{
(g,h) | g ∈ G, h ∈ ZF

2

}
. (A.15a)

In this case, the homomorphisms i : ZF
2 → Gf and π : Gf → G can be defined as

i(e) = (e, e) ∈ Gf , i(p) = (e, p) ∈ Gf , π
(
(g,h)

)
= g ∈ G. (A.15b)

In general, Gf does not have to be the direct product (A.15a). To see this, we define two
more maps

s : G → Gf , τ : Gf → ZF
2 , (A.16a)

such that

π ◦ s = idG, τ ◦ i = id
ZF

2

, τ (gf i(h)) = τ (gf ) h, gf ∈ Gf h ∈ ZF
2 , (A.16b)

where idG and id
ZF

2

are identity maps on the groups G and ZF
2 , respectively. The map s

is injective but not necessarily a homomorphism and also called a section of the projection
map π. The map τ is a surjective map and called a trivialization of the central extension.
As we shall see, the last condition in Eq. (A.16b) on the map τ guarantees construction
of bijections between Gf and G× ZF

2 .

1 The coset G ∼= G
f

/im(i) has a group structure since image of i is in the center of G
f

and, therefore, is

a normal subgroup.
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Using the definition (A.14a) together with the maps (A.16), we are going to define a
bijection (and its inverse) between the sets G× ZF

2 and Gf . First, we define the map
(s · i)

(s · i) : G× ZF
2 → Gf ,

(g,h) 7→ gf = s(g) i(h).
(A.17a)

The map (s · i) is injective since the maps s and i are so. Following identities hold:

π(gf ) = π(s(g) i(h)) = π(s(g)) π(i(h)) = π(s(g)) = g, (A.17b)

τ (gf ) = τ
(
s(g) i(h)

)
= τ
(
s(g)
)
h. (A.17c)

Hereby, the first equation follows since π is a homomorphism and image of i is in the
kernel of π. The second equation follows by condition (A.16b). We define the (left) inverse
(π× τ ) of the map (s · i) as

(π× τ ) : Gf → G× ZF
2 ,

gf 7→ (g,h) =
(
π(gf ), τ (gf )

)
.

(A.18)

The composition I := (π× τ ) ◦ (s · i) is the map

I : G× ZF
2 → G× ZF

2 ,

(g,h) 7→ (g̃, h̃) =
(
g, τ (s(g)) h

)
.

(A.19a)

Observing that each element (g,h) ∈ G× ZF
2 has a unique inverse, i.e.,

I(g,h) = I(g′,h′) ⇐⇒ g = g′,h = h′, (A.19b)

we conclude that both maps (s · i) and (π× τ ) are bijections between Gf and G× ZF
2 .

We would like to promote the set bijections between Gf and G× ZF
2 to group iso-

morphisms. Using the bijection (A.17), for any two elements g
1,f , g

2,f ∈ Gf , one has

g1,f g2,f = s(g1) i(h1) s(g2) i(h2) = s(g1) s(g2) i(h1 h2), (A.20a)
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where we used the fact that image of i is in the center of Gf . We observe that

π
(
s(g1) s(g2)

)
= π
(
s(g1

)
π
(
s(g2

)
= g1 g2 = π ◦ s

(
g1 g2

)
= π(s(g1 g2)), (A.20b)

where in the last step we used the fact that π ◦ s is the identity map by construction.
Since the kernel of π is exactly the image of i, Eq. (A.20b) implies that

s(g1) s(g2) = γ̃(g1, g2) s(g1 g2), γ̃(g1, g2) ∈ im(i), (A.20c)

and the composition rule (A.20a) can be written as

s(g1) i(h1) s(g2) i(h2) = s(g1 g2)i
(
h1 h2 γ(g1, g2)

)
, (A.20d)

where we defined

γ(g1, g2) := τ (γ̃(g1, g2)) ∈ ZF
2 . (A.20e)

We want to interpret Eq. (A.20d) as a modified composition rule on the set G× ZF
2 . In

other words, we say that under the isomorphism (A.17), the group

G×
γ

ZF
2 , (A.21a)

with the composition rule

(g1, h1) ◦
γ
(g2, h2) = (g1 g2, h1 h2 γ(g1, g2)) , (A.21b)

where γ ∈ C2(G, ZF
2 ) is 2-cochain that specifies the central extension, is isomorphic to

the group Gf .
The 2-cochain γ can be obtained from the trivialization τ . To see this, we act with the

bijection (A.18) the left-hand side of Eq. (A.20d), which becomes

(π× τ ) (s(g1) i(h1) s(g2) i(h2)) = (g1 g2, h1 h2 τ (s(g1) s(g2))) . (A.22a)

Since (π× τ ) is also a group isomorphism from Gf to G×
γ

ZF
2 , this must be equal to

(π × τ ) (s(g1) i(h1) ) ◦
γ
(π × τ ) (s(g2) i(h2) ) = (g1, τ (s(g1)) h1) ◦

γ
(g2, τ (s(g2)) h2)
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= (g1 g2, τ (s(g1)) τ (s(g2)) γ(g1, g2) h1 h2) ,
(A.22b)

which is true if and only if

γ(g1, g2) = τ (s(g1)) τ (s(g2)) τ (s(g1) s(g2)) =
(
δ1
c τ
)
(s(g1), s(g2)) . (A.22c)

Therefore, more compactly, 2-cochain γ is given by

γ = s∗(δ1
c τ ), (A.22d)

where s∗(δ1
c τ ) is the pullback of the 2-cocycle δ1

c τ ∈ Z2
(
G, ZF

2

)
by the map s. Note that

Eq. (A.22c) implies that

γ
(
π(g1,f ),π(g2,f )

)
= τ
(
g1,f

)
τ
(
g2,f

)
τ
(
g1,f g2,f

)
. (A.23a)

This follows from the fact that s(π(g
1,f )) differs from g

1,f by an element in the image of
the map i. The right-hand side of Eq. (A.22c) is invariant under s(g1) 7→ s(g1) i(h1) for
any h1 ∈ ZF

2 by definition (A.16b). Equation (A.23a) can be more compactly written as

π∗γ = δ1
c τ , (A.23b)

where π ∗ γ is the pullback of the 2-cocycle γ ∈ Z2
(
G, ZF

2

)
by the map π.

One verifies that

γ(e, e) = γ(e, g) = γ(g, e) = e ∈ ZF
2 , (A.24a)

and

δ2
c γ = 0, (A.24b)

i.e., γ itself is a ZF
2 -valued 2-cocycle. The cocycle condition on γ ensures that the

composition rule (A.21b) obeys associativity. For any element (g,h) ∈ G×
γ

ZF
2 , its inverse

with respect to the composition rule (A.21b) is given by

(g−1, [γ(g, g−1)]−1 h−1), (A.24c)
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while the unit element is

(e, e). (A.24d)

The two groups G×
γ

ZF
2 and G×

γ′
ZF

2 are isomorphic if there exists the bijective map

κ̃ : G× ZF
2 → G× ZF

2 ,

(g,h) 7→ (g,κ(g) h)
(A.25a)

induced by the map

κ : G → ZF
2 ,

g 7→ κ(g),
(A.25b)

such that the condition

κ̃

(
(g1, h1) ◦

γ
(g2, h2)

)
= κ̃

(
(g1, h1)

)
◦
γ′
κ̃

(
(g2, h2)

)
(A.26)

holds for all (g1, h1), (g2, h2) ∈ G× ZF
2 . In other words, γ and γ′ generate two isomorphic

groups if the identity

κ(g1 g2) γ(g1, g2) = κ(g1) κ(g2) γ
′(g1, g2), (A.27)

holds for all g1, g2 ∈ G, i.e.,

γ = γ′ δ1
c κ, (A.28)

for some 1-cochain κ ∈ C1(G, ZF
2 ). We say that the group Gf obtained by extending the

group G with the group ZF
2 through the map γ splits when a map (A.25b) exists such

that
κ(g1 · g2) · γ(g1, g2) = κ(g1) · κ(g2) (A.29)

holds for all g1, g2 ∈ G, i.e., Gf splits when it is isomorphic to the direct product
(A.15). If the extension splits, then the map s defined in Eq. (A.16a) becomes a group
homomorphism.

Two 2-cocycles γ and γ′ are equivalent if they are related by a 2-coboundary δ1
c κ. This

is to say that all non-isomorphic central extensions of G by ZF
2 through γ are classified
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by the second group cohomology H2
(
G, ZF

2

)
. We define an index [γ] ∈ H2

(
G, ZF

2

)
to

represent such an equivalence class, whereby the index [γ] = 0 is assigned to the case
when Gf splits.

a.3 examples of fermionic symmetry groups

In this section, we explicitly review the construction of some typical symmetry groups
encountered in condensed matter physics. For each case, we will specify the groups Gf
and G, their typical (non-projective) representations, and, the maps i, π, s, τ , and, γ as
defined in Eqs. (A.14a), (A.16), and, (A.22d).

a.3.1 Symmetry Group U(1)F

The fermionic symmetry group Gf = U(1)F implements the charge conservation symmetry.
Elements of U(1)F are specified by angle θ ∈ [0, 2π).

For n flavors of fermions, we define the creation and annihilation operators ĉ†
i , ĉi with

the algebra {
ĉi, ĉ

†
j

}
= δij ,

{
ĉi, ĉj

}
= 0, i, j = 1, · · · ,n. (A.30a)

For element θ ∈ U(1)F, its typical representation is given by the unitary operator

Û(θ) := e
iθ
∑n

i=1
n̂i , n̂i := ĉ†

i ĉi, (A.30b)

which implements the transformation rule

Û(θ) ĉi Û
†(θ) = e−iθ ĉi. (A.30c)

One observes that a U(1)F rotation by θ = π implements the fermion parity symmetry,
i.e.,

Û(θ = π) = e
iπ
∑n

i=1
n̂i = (−1)

∑n

i=1
n̂i ≡ Û(p). (A.31)
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The group U(1)F is a nonsplit central extension of group G = U(1) by fermion parity ZF
2

that is characterized by the short-exact sequence

0 → ZF
2

i
⇌
τ

U(1)F
π
⇌
s

U(1) → 0. (A.32a)

Given the elements φ ∈ U(1) with φ ∈ [0, 2π) and e, p ∈ ZF
2 the homomorphisms i and π

are

i(e) = 0, i(p) = π, π(θ) = 2 θ mod 2π. (A.32b)

A section s of the projection π and a trivialization τ are given by

s(φ) =
1
2
φ ∈ [0,π) ⊂ U(1)F, τ (θ) = p

1
π
[θ−(θ mod π)] ∈ ZF

2 . (A.32c)

Using definition (A.22d) we find the 2-cocycle γ to be

γ
(
φ,φ′

)
= p

1
2π [φ+φ′−(φ+φ′ mod 2π)] ∈ ZF

2 . (A.32d)

a.3.2 Symmetry Group SU(2)F

The fermionic symmetry group SU(2)F implements spin rotation symmetry. Elements
of the group SU(2)F are labeled by 2 × 2 unitary matrices with unit determinant, i.e.,
M ∈ Mat(2, C) such that

MM† = 12, detM = 1. (A.33a)

We can parametrize any such matrix by

Mθ,n̂ = e−i θ
2
n̂·σ , (A.33b)

where θ ∈ [0, 2π] and n̂ ∈ S2 ⊂ R3 is a unit vector in R3. The vector σ/2 =
(
σ1,σ2,σ3

)
/2

is the vector of (normalized) Pauli matrices which span the su(2) Lie algebra in its
fundamental (two-dimensional) representation. Physically, matrix Mθ,n̂ corresponds to
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rotation of a spinor along n̂-direction by θ. Note that in the parametrization (A.33b), we
have the identifications

M0,n̂ = M0,n̂′ = 12, M2π,n̂ = M2π,n̂′ = −12, (A.33c)

for any n̂, n̂′ ∈ S2. This means that the group manifold of SU(2)F is the 3-sphere S3.
We consider n copies of spin-1/2 representations of the group rotation group, i.e., there

are 2n creation and 2n annihilation operators with the algebra{
ĉσ,i, ĉ

†
σ′,j

}
= δσ σ′δij ,

{
ĉσ,i, ĉσ′,j

}
= 0, σ,σ′ =↑, ↓, i, j = 1, · · · ,n. (A.34a)

The typical representation of the element Mθ,n̂ ∈ SU(2)F is

Û
(
Mθ,n̂

)
:= e

−i θ
2

∑n

i=1
n̂·
(
ψ̂

†
i
σ ψ̂i

)
, ψ̂i :=

(
ĉ↑,i

ĉ↓,i

)
, (A.34b)

which implements the transformation rule

Û
(
Mθ,n̂

)
ψ̂i Û

†
(
Mθ,n̂

)
= Mθ,n̂ ψ̂i. (A.34c)

One observes that for θ = 2π and vectors n̂ = (1, 0, 0) n̂ = (0, 1, 0), and, n̂ = (0, 0, 1)
the operator Û

(
Mθ,n̂

)
is equal to the fermion parity symmetry. For instance, choosing

θ = 2π and n̂ = (0, 0, 1) we obtain

Û
(
M

2π,(0,0,1)

)
= e

iπ
∑n

i=1

{
ĉ

†
↑,i

ĉ↑,i
−ĉ†

↓,i
ĉ↓,i

}
= (−1)

∑n

i=1

{
ĉ

†
↑,i

ĉ↑,i
+ĉ†

↓,i
ĉ↓,i

}
≡ Û(p),
(A.34d)

which is interpreted as 2π rotations of spin-1/2 particles being equal to fermion parity.
The group SU(2)F is a nonsplit central extension of group G = SO(3) by fermion parity

ZF
2 that is characterized by the short-exact sequence

0 → ZF
2

i
⇌
τ

SU(2)F
π
⇌
s

SO(3) → 0. (A.35)
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To better understand this extension, it is convenient to introduce the following parametriza-
tions of the groups SO(3) and SU(2)F. Elements of the group SO(3) are labeled by the
3 × 3 orthogonal matrices with unit determinant, i.e., R ∈ Mat(3, R) such that

RRT = 13, detR = 1. (A.36a)

To parametrize such matrices, we first define two disjoint subsets S2
+ and S2

− of S2 as

S2 = S2
+ ⊔ S2

−, (A.36b)

S2
+ :=

{
(n1, n2, n3) ∈ S2

∣∣ n3 > 0, or, n3 = 0 with 0 ≤ arcsin(n2/n1) < π
}

,
(A.36c)

S2
− :=

{
(n1, n2, n3) ∈ S2

∣∣ n3 < 0, or, n3 = 0 with π ≤ arcsin(n2/n1) < 2π
}

.
(A.36d)

Such matrices are then one-to-one correspondence with

Rφ,m̂ = e−iφ m̂·J , (A.36e)

where φ ∈ [0,π] and the unit vector m̂ is such that

m̂ ∈

{
S2, if 0 < φ < π,

S2
+, if φ = π.

(A.37)

The vector J =
(
J1, J2, J3

)
is the vector of generators of so(3) Lie algebra in its fun-

damental (3 dimensional) representation. The constraint (A.37) means that the group
manifold of SO(3) is obtained by identifying antipodal points on S3 which is the three
dimensional real projective space, i.e., SO(3) ∼= S3/Z2

∼= RP3.
The homomorphisms i and π are

i(e) = M0,n̂ = 12 ∈ SU(2)F, i(p) = M2π,n̂ = −12 ∈ SU(2)F, (A.38a)

π
(
Mθ,n̂

)
=


Rθ,n̂, if 0 ≤ θ < π,

Rπ,n̂, if θ = π and n̂ ∈ S2
+,

Rπ,−n̂, if θ = π and n̂ ∈ S2
−,

R
2π−θ,−n̂, if π < θ ≤ 2π,

(A.38b)
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A section s of the projection π and a trivialization τ are then given by

s
(
Rφ,m̂

)
= Mφ,m̂ ∈ SU(2)F, τ

(
Mθ,n̂

)
= pα ∈ ZF

2 , (A.38c)

α :=


0, if 0 ≤ θ < π,

0, if θ = 0, and, n̂ ∈ S2
+

1, if θ = 0, and, n̂ ∈ S2
−

1, if π < θ ≤ 2π.

(A.38d)

Using definition (A.22d), we find that the 2-cocycle γ to be

γ
(
Rφ,m̂,Rφ′,m̂′

)
= τ
(
Mφ,m̂

)
τ
(
Mφ′,m̂

)
τ
(
s
(
Rφ,m̂

)
s
(
Rφ′,m̂′

))
= τ
(
s
(
Rφ,m̂

)
s
(
Rφ′,m̂′

))
. (A.38e)

In particular, we compute the following values of γ

γ
(
Rπ,x̂, Rπ,ŷ

)
= γ
(
Rπ,ŷ , Rπ,ẑ

)
= γ
(
Rπ,ẑ , Rπ,x̂

)
e, (A.38f)

γ
(
Rπ,ŷ , Rπ,x̂

)
= γ
(
Rπ,ẑ , Rπ,ŷ

)
= γ
(
Rπ,ẑ , Rπ,x̂

)
= p, (A.38g)

γ
(
Rπ,x̂, Rπ,x̂

)
= γ
(
Rπ,ŷ , Rπ,ŷ

)
= γ
(
Rπ,ẑ , Rπ,ẑ

)
= p, (A.38h)

where we used the unit vectors x̂ := (1, 0, 0), ŷ := (0, 1, 0), and, ẑ := (0, 0, 1).

a.3.3 Symmetry Group ZFT
4

The fermionic symmetry group Gf = ZFT
4 implements the time-reversal symmetry for

spin-1/2 particles. The group ZFT
4 is generated by order four element g, i.e.,

ZFT
4 =

{
e, g, g2 ≡ p, g3

}
, (A.39a)

where elements g and g3 are represented antiunitarily and the homomorphism c

c(e) = c(g2) = 0, c(g) = c(g3) = 1. (A.39b)
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We consider n copies of spin-1/2 representations of time-reversal, i.e., there are 2n
creation and 2n annihilation operators with the algebra{

ĉσ,i, ĉ
†
σ′,j

}
= δσ σ′δij ,

{
ĉσ,i, ĉσ′,j

}
= 0, σ,σ′ =↑, ↓, i, j = 1, · · · ,n. (A.40a)

The generator g has the typical representation

Û(g) := e
−i π

2

∑n

i=1

(
ψ̂

†
i
σ2 ψ̂i

)
K, K iK = −i, ψ̂i :=

(
ĉ↑,i

ĉ↓,i

)
(A.40b)

which implements the transformation rule

Û(g) ĉσ,i Û
†(g) = (−1)σ ĉ−σ,i, σ =↑, ↓, (A.40c)

where (−1)σ = ±1 for σ =↑, ↓, respectively. One observes that Û(g) squares to to the
fermion parity symmetry, i.e.,

Û(g2) = Û(g) Û(g) = e
−iπ
∑n

i=1

(
ψ̂

†
i
σ2 ψ̂i

)
≡ Û(p), (A.41)

where the last equality follows from observing that Û(g2) is the same operator as 2π
SU(2)F rotation along y-axis. The group ZFT

4 is a nonsplit central extension of group
G = ZT

2 = {e, t} by fermion parity ZF
2 that is characterized by the short-exact sequence

0 → ZF
2

i
⇌
τ

ZFT
4

π
⇌
s

ZT
2 → 0. (A.42a)

The homomorphisms i and π are

i(e) = e, i(p) = g2, (A.42b)

π(e) = e, π(g) = t, π(g2) = e, π(g3) = t. (A.42c)

A section s of the projection π and a trivialization τ are given by

s(e) = e ∈ ZFT
4 , s(t) = g ∈ ZFT

4 , (A.42d)

τ (e) = e ∈ ZF
2 , τ (g) = e ∈ ZF

2 , (A.42e)

τ (g2) = p ∈ ZF
2 , τ (g3) = p ∈ ZF

2 . (A.42f)
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Using definition (A.22d) we find the 2-cocycle γ to be

γ (e, e) = γ (e, t) = γ (t, e) = e ∈ ZF
2 , γ(t, t) = p ∈ ZF

2 . (A.42g)

a.3.4 Symmetry Group ZT
2 × ZF

2

The fermionic symmetry group Gf = ZT
2 × ZF

2 implements the time-reversal symmetry
for spinless particles. The group ZT

2 × ZF
2 is a split group and has the direct product

structure (A.15a). Its elements are

ZT
2 × ZF

2 = {(e, e), (t, e), (e, p), (t, p)} , (A.43a)

where elements (t, e) and (t, p) are represented antiunitarily, i.e.,

c(e, e) = c(e, p) = 0, c(t, e) = c(t, p) = 1. (A.43b)

We consider n creation and n annihilation operators with the algebra{
ĉi, ĉ

†
j

}
= δij ,

{
ĉσ,i, ĉσ′,j

}
= 0, i, j = 1, · · · ,n. (A.44a)

The generators (t, e) and (e, p) of the two subgroups ZT
2 and ZF

2 have the typical repre-
sentations

Û(t, e) := 1̂ K, K iK = −i, Û(e, p) := (−1)
∑n

i=1
n̂i n̂i := ĉ†

i ĉi (A.44b)

which implement the transformation rules

Û(t, e) ĉi Û†(t, e) = +ĉi, Û(e, p) ĉi Û†(e, p) = −ĉi. (A.44c)

The group ZT
2 × ZF

2 is a split central extension of group G = ZT
2 = {e, t} by fermion

parity ZF
2 that is characterized by the short-exact sequence

0 → ZF
2

i
⇌
τ

ZT
2 × ZF

2

π
⇌
s

ZT
2 → 0. (A.45a)

The homomorphisms i and π are

i(e) = (e, e), i(p) = (e, p), (A.45b)
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π(e, e) = e, π(t, e) = t, π(e, p) = e, π(t, p) = t. (A.45c)

A section s of the projection π and a trivialization τ are given by

s(e) = (e, e) ∈ ZT
2 × ZF

2 , s(t) = (t, e) ∈ ZT
2 × ZF

2 , (A.45d)

τ (e, e) = e ∈ ZF
2 , τ (t, e) = e ∈ ZF

2 , (A.45e)

τ (e, p) = p ∈ ZF
2 , τ (t, p) = p ∈ ZF

2 . (A.45f)

Using definition (A.22d) we find the 2-cocycle γ to be

γ (e, e) = γ (e, t) = γ (t, e) = γ(t, t) = e ∈ ZF
2 , (A.45g)

which is trivial as ZT
2 × ZF

2 is a split group.

a.4 classification of projective representations of Gf

It was described in Appendix A.2, how a global symmetry group Gf for a fermionic
quantum system naturally contains the fermion-number parity symmetry group ZF

2 in
its center, i.e., it is a central extension of a group G by ZF

2 . Such group extension are
classified by prescribing an element [γ] ∈ H2(G, ZF

2 ). In what follows, we will characterize
finite-dimensional quantum mechanical [(0 + 1)-dimensional] projective representations of
a given fermionic symmetry group Gf . This is achieved in three steps. First, we specify a
set of local degrees of freedom and a fermionic Fock space that the representations act on.
Second, given a fermionic Fock space We then construct the general form of the projective
representations of Gf . As we shall see, distinct projective representations are classified by
the second cohomology class [ϕ] ∈ H2(Gf , U(1)c). Third, we trade ϕ ∈ C2(Gf , U(1)) for
a pair of indices (ν, ρ) ∈ C2(G, U(1)) ×C1(G, Z2). There is a one-to-one correspondence
between the second cohomology classes [ϕ] and equivalence classes [(ν, ρ)] of the pair
(ν, ρ) under certain equivalence relations.

a.4.1 Fermionic Fock Spaces

We assume the existence of n Hermitian Majorana operators

On := {γ̂1, γ̂2, · · · , γ̂n} (A.46a)
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that realizes the Clifford algebra

Cℓn := span
{ n∏

i=1

(γ̂i)
mi

∣∣∣∣∣ {γ̂i, γ̂j} = 2δij , mi = 0, 1, i, j = 1, · · · ,n
}

. (A.46b)

We assign the index [µ] ∈ {0, 1} to the parity of n, i.e.,

[µ] = n mod 2. (A.46c)

We consider the cases of even and odd n separately.
When [µ] = 0, the even number n of Majorana operators from the set (A.46) span the

fermionic Fock space

F0 := span
{ n/2∏

α=1

(
γ̂2α−1 − iγ̂2α

2

)mα

|0⟩

∣∣∣∣∣
(
γ̂2α−1 + iγ̂2α

2

)
|0⟩ = 0, mα = 0, 1

}
(A.47a)

of dimension 2

dimF0 = 2n/2. (A.47b)

When [µ] = 1, the odd number n of Majorana operators from the set (A.46a) span
a vector space that is not a fermionic Fock space. In order to recover a fermionic Fock
space, we add to the set (A.46a) made of an odd number n of Majorana operators the
Majorana operator γ̂∞ [19],

On,∞ :=
{
γ̂1, γ̂2, · · · , γ̂n−1, γ̂n, γ̂∞

}
, (A.48)

thereby defining the Clifford algebra Cℓn+1. Here, the lower floor function ⌊·⌋ returns
the largest integer ⌊x⌋ smaller than the positive real number x. We may then define the
fermionic Fock space

F1 := span
{ (n+1)/2∏

α=1

(
γ̂2α−1 − iγ̂2α

2

)mα

|0⟩

∣∣∣∣∣
(
γ̂2α−1 + iγ̂2α

2

)
|0⟩ = 0, mα = 0, 1

}
(A.49a)

2 The partition of a set of n labels into two pairs of n/2 labels is here arbitrary.



A.4 classification of projective representations of Gf 231

of dimension
dimF1 = 2(n+1)/2, (A.49b)

where it is understood that γ̂n+1 ≡ γ̂∞.

a.4.2 Projective Representations of Gf

Given a set (A.46a) of Majorana degrees of freedom, we want to implement a list of
transformation rules on Cℓn. Each item in the list corresponds to a distinct element
g ∈ Gf . This means that there exists a faithful representation 3 of the group Gf , i.e., an

injective map Û : Gf → Aut (F) where Aut
(
F
[µ]

)
is the set of automorphisms on the

fermionic Fock space F
[µ]

. We assume that the the set (A.46a) of Majorana operators is

invariant under the representation Û , i.e., for all g ∈ Gf

Û(g)Cℓn Û†(g) ⊆ Cℓn. (A.50)

We construct the general form of the representation Û for the cases of [µ] = 0, 1, separately.
The distinction between the cases of [µ] = 0 and [µ] = 1 is the following. The representation
Û implements a list of transformation rules on the set On. When [µ] = 0, the corresponding
Clifford algebra Cℓn contains all the automorphisms on fermionic Fock space F0. In
contrasts, when [µ] = 1, the set of automorphisms on fermionic Fock space F1 is contained
in the the extended Clifford algebra Cℓn+1. Therefore, the Clifford algebra Cℓn contains
only a subset of automorphisms on F1. This leads to an ambiguity when defining Û

for [µ] = 1 which reflected by the fact that center of the Clifford algebra Cℓn is two
dimensional when n is odd and one dimensional when n is even.

a.4.2.1 The Case of [µ] = 0

When [µ] = 0, the number n of Majorana operators is even. We denote the identity on
the local fermionic Fock space (A.47a) by 1̂0. The representation of element p ∈ Gf that
generates the fermion parity group ZF

2 is chosen to be

Û(p) :=
n/2∏
α=1

P̂α, P̂α := iγ̂2α−1 γ̂2α. (A.51a)

3 The assumption of a faithful representation is crucial when defining the invariants that characterize
projective representations.
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The parity operators P̂1, · · · , P̂
n/2

are Hermitian, square to the identity, and are pairwise
commuting. Hence, Û(p) is Hermitian and squares to the identity. Since operators
P̂1, · · · , P̂

n/2
are pairwise commuting, we can simultaneously diagonalize them and choose

any one of them to be even under complex conjugation K,

K P̂α K = P̂α, (A.51b)

for α = 1, · · · ,n/2. The most general form of a representation of element g ∈ Gf is

Û(g) := V̂ (g)Kc(g), (A.52)

where V̂ (g) is a unitary operator that belongs to Cℓn defined in Eq. (A.46).

a.4.2.2 The Case of [µ] = 1

When [µ] = 1, the number n of Majorana operators is odd. We denote the identity on
the nonlocal fermionic Fock space (6.14a) by 1̂1. The representation of element p ∈ Gf
that generates the fermion parity group ZF

2 is chosen to be

Û(p) := P̂ P̂nonloc, (A.53a)

P̂ :=

(n−1)/2∏
α=1

P̂α, P̂α := iγ̂2α−1 γ̂2α, (A.53b)

P̂nonloc := iγ̂n γ̂∞, (A.53c)

for Û(p) is proportional to the product γ̂1 · · · γ̂n γ̂∞ of all the generators in Cℓn+1. As
such, Û(p) anticommutes with all the Majorana operators that span the nonlocal fermionic
Fock space (A.49a). The parity operators P̂1, · · · , P̂

(n−1)/2
, P̂

nonloc
are Hermitian, square

to the identity, and are pairwise commuting. We choose to diagonalize them simultaneously
and choose each of them to be even under complex conjugation K,

K P̂α K = P̂α, K P̂nonloc K = P̂nonloc, (A.53d)

for α,α′ = 1, · · · , (n− 1)/2.
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In addition to defining a representation of the fermion parity p, we need to account for
the fact that the center of the Clifford algebra Cℓn is two-dimensional when n is odd. We
choose to represent the nontrivial element of this center by

Ŷ := P̂ γ̂n, Ŷ † = Ŷ , Ŷ 2 = 1̂1. (A.54)

By construction, Ŷ is proportional to the product γ̂1 · · · γ̂n ̸= 1̂1. It commutes with the
Majorana operators γ̂1, · · · , γ̂n, while it anticommutes with the Majorana operator γ̂∞.
The operator Ŷ is of odd fermion parity for it anticommutes with the fermion parity
operator (A.53). Because Ŷ commutes with all the elements of Cℓn, it follows that

Û(g) γ̂i Û
†(g) = Û ′(g) γ̂i Û

′†(g), Û ′(g) := Û(g) Ŷ , (A.55)

for any i = 1, · · · ,n, i.e., the operators Û(g) and Û ′(g) implement the same transformation
rule. However, the two operators have opposite fermion parities owing to the fact that Ŷ
carries odd fermion parity.

The Clifford algebra Cℓn is closed under the action of the representation Û(g) [recall Eq.
(A.50)]. In other words, Û(g) preserves locality in that its action on those operators whose
non-trivial actions are limited to On is merely to mix them. This locality is guaranteed
only if the condition [

Û(g) γ̂i Û
†(g), Ŷ

]
= 0, (A.56)

is satisfied for any g ∈ Gf and i = 1, · · · ,n.

Claim 5. The condition (A.56) implies that Û(g) either commutes or anticommutes
with the center Ŷ of Cℓn, i.e.,

Ŷ Û(g) = ±Û(g) Ŷ . (A.57)

Furthermore, this is true only if the decomposition

Û(g) := V̂ (g) Q̂(g)Kc(g) (A.58)

holds. Here, V̂ (g) ∈ Cℓn ⊂ Cℓn+1 is a unitary operator with well-defined fermion parity
and the operator Q̂(g) is either proportional to the identity operator in Cℓn+1 or to the
operator γ̂∞.
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Proof. The most general form of a norm-preserving representation of element g ∈ Gf
acting on the nonlocal fermionic Fock space (A.49a) is

Û(g) := Ŵ (g)Kc(g), (A.59)

Choose any i = 1, · · · ,n and any g ∈ Gf . We rewrite condition (A.56) as

Û(g) γ̂i Û
†(g) Ŷ = Ŷ Û(g) γ̂i Û

†(g). (A.60a)

After isolating γ̂i on the left-hand side, we find that

γ̂i =
[
Û†(g) Ŷ Û(g)

]
γ̂i
[
Û†(g) Ŷ Û(g)

]
= Ẑ(g) γ̂i Ẑ(g), (A.60b)

where we have defined the Hermitian operator

Ẑ(g) := Û†(g) Ŷ Û(g) = Ẑ†(g) (A.60c)

that squares to the identity 1̂1 in Cℓn+1. We observe that Eq. (A.60b) implies that Ẑ(g)
commutes with γ̂i. As i = 1, · · · ,n was arbitrarily chosen, Ẑ(g) must belong to the center
of the Clifford algebra Cℓn ⊂ Cℓn+1.

Moreover, Ẑ(g) must have odd fermion parity, for Û(g) and Û†(g) have the same
fermion parity and Ŷ has odd fermion parity. Hence,

Ẑ(g) = ζ Ŷ , ζ ∈ C, |ζ|2 = 1. (A.61)

Because Ẑ(g) squares to the identity 1̂1 according to Eq. (6.25), we find that ζ = ±1 and

Ẑ(g) = Û†(g) Ŷ Û(g) = ±Ŷ =⇒ Û(g) Ŷ = ±Ŷ Û(g). (A.62)

As g was arbitrarily chosen from Gf , we have completed the proof that Û(g) either
commutes or anticommutes with Ŷ for any g ∈ Gf .

Next, we note that if the algebra (A.62) between the representation Û(g) and the center
Ŷ holds, then the same algebra must hold between Ŵ (g) defined in Eq. (A.59), i.e.,

Ŵ (g) Ŷ = ±Ŷ Ŵ (g), ∀g ∈ Gf . (A.63)
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This is so because complex conjugation K (if present) either commutes or anticommutes
with the center Ŷ by the very definition of Ŷ .

Finally, owing to the fact that a general element of the Clifford algebra Cℓn+1 is of the
form

Â 1̂1 + B̂ γ̂∞, (A.64)

where Â, B̂ ∈ Cℓn ⊂ Cℓn+1, we observe that the operator Ŵ (g) with well-defined fermion
parity that satisfies Eq. (A.63) must have the form of either

Ŵ (g) = Â(g) 1̂1 (A.65)

with Â(g) unitary and of well-defined fermion parity or

Ŵ (g) = B̂(g) γ̂∞, (A.66)

with B̂(g) unitary and of well-defined fermion parity. But, this is nothing but the
decomposition (A.58) whereby V̂ (g) is either Â(g) or B̂(g).

The invariance of Eq. (A.50) under the Gf -resolved transformation (A.55) allows to fix
the fermion parity of Û(g) to be even for all g ∈ Gf . In this “gauge”,

Û(g) = V̂ (g) Q̂(g)Kc(g), Q̂(g) = [γ̂∞]q(g) , (A.67)

where q(g) = 0, 1 denotes the fermion parity of the unitary operator V̂ (g). Equation
(A.67) together with Eqs. (A.53) and (6.25) define the realization of the symmetry group
Gf when [µ] = 1.

a.4.3 Indices (ν, ρ)

We consider a boundary representation Û : Gf → Aut
(
F
[µ]

)
, where Aut

(
F
[µ]

)
denotes

the set of automorphisms on the fermionic Fock space F
[µ]

. We demand that this map
satisfies, for any g,h, f ∈ Gf ,

Û(g) Û(h) = eiϕ(g,h) Û(g h), (A.68a)
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where g h denotes the composition of the elements g,h ∈ Gf . The map ϕ(·, ·) ∈
C2
(
Gf , U(1)

)
is a U(1)-valued 2-cochain 4. Furthermore, to ensure the compatibility

with the associativity of the composition law of Gf , we demand that, for any g,h, f ∈ Gf ,

ϕ(g,h) + ϕ(gh, f ) = (−1)c(g) ϕ(h, f ) + ϕ(g,hf ). (A.68b)

The 2-cochains that satisfy this condition are called 2-cocycles. The map (A.68) defines
a projective representation of the symmetry group Gf . Under the gauge transformation

Û(g) 7→ eiξ(g) Û(g), (A.69a)

the phase ϕ(g,h) entering any projective representation of the symmetry group Gf changes
by

ϕ′(g,h) − ϕ(g,h) = ξ(g h) − ξ(g) − (−1)c(g) ξ(h) (A.69b)

for any g,h ∈ Gf . Two 2-cochains ϕ and ϕ′ are equivalent if they are related by a gauge
transformation. The 2-cochains ϕ that vanish under a gauge transformation, i.e., the
identity

ϕ(g,h) = ξ(g h) − ξ(g) − (−1)c(g) ξ(h) (A.69c)

for any g,h ∈ Gf holds, are called 2-coboundaries. The set of equivalence classes [ϕ] of 2-
cocycles under the gauge transformations is the second cohomology group H2

(
Gf , U(1)c

)
.

Elements of Gf were referred to, so far, by single letters g, with e reserved for the
identity and p reserved from the fermion parity. We will use the group isomorphism
(π× τ ) that is defined in Eq. (A.18) to map the group Gf to the group G×

γ
ZF

2 . As

we shall see, this mapping will allow us to represent the 2-cochain ϕ in terms of the
pair (ν, ρ) ∈ C2

(
G, U(1)

)
×C1

(
G, Z2

)
. Here, the 2-cochain ν ∈ C2

(
G, U(1)

)
captures

the projective representation (A.68) of the elements π(g) ∈ G for any g ∈ Gf . When
[µ] = 0, the 1-cochain ρ ∈ C1

(
G, Z2

)
measures if an operator representing an element of

G commutes or anticommutes with the operator representing the fermion parity p. When
[µ] = 1, the 1-cochain ρ ∈ C1

(
G, Z2

)
measures if an operator representing an element

4 Note that we denote the elements of the set of 2-cochains C2(G
f

, U(1)) by the phase ϕ(g1, g2) as

opposed to its exponential as is the usual convention. This is because we impose an additive composition
rule on the group U(1) as opposed to a multiplicative one.
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of G commutes or anticommutes with the central element Ŷ of the Clifford algebra Cℓn.
We will show that it is possible to organize C2

(
G, U(1)

)
× C1

(
G, Z2

)
into a coset of

equivalence classes {[(ν, ρ)]} such that there is a one-to-one correspondence between any
element [ϕ] ∈ H2

(
Gf , U(1)c

)
and [(ν, ρ)] (also see Ref. [139]). When defining the indices

(ν, ρ), there is an implicit choice for the projection π and trivialization τ . The projection
π is defined up to group automorphisms of group G while the trivialization τ is defined
up to certain group isomorphisms on Gf . In Sec. A.4.4, we explain how the pair (ν, ρ)
changes under isomorphisms relating different representatives of the central extension
class [γ] ∈ H2(G, ZF

2 ).

a.4.3.1 The Case of [µ] = 0

Recall that under the isomorphism (A.18), elements g and h in Gf are mapped to the
pairs (π(g), τ (g)) and (π(h), τ (h)) in G×

γ
ZF

2 with the composition rule

(
π(g), τ (g)

)
◦
γ

(
π(h), τ (h)

)
=

(
π(g) π(h), τ (g) τ (h) γ

(
π(g),π(h)

))
. (A.70)

When [µ] = 0, the number n of Majorana operators is even. The 2-cochain ν ∈
C2
(
G, U(1)

)
is defined by restricting the domain of definition of the 2-cochain ϕ from

Gf to G, i.e.,

ν (π(g),π(h)) := ϕ

((
π(g), e

)
,
(
π(h), e

))
. (A.71)

Note that for any element gb ∈ G, there exists an element g ∈ Gf such that π(g) = gb
and τ (g) = e. Equation (A.71) asserts that the 2-cochain ν is retrieved by inserting such
elements g and h in 2-cocycle ϕ. Another equivalent definition of ν is that

ν (gb,hb) := ϕ

(
s(gb), s(hb)

)
. (A.72)

for any gb, hb ∈ G.
The 1-cochain ρ ∈ C1

(
G, Z2

)
is defined by

eiπρ(π(g)) ≡ (−1)ρ(π(g)) :=


Û
(
g
)
Û
(
p
)
Û†
(
g
)
Û†
(
p
)

, if c
(
g
)
= 0,

Û
(
g
)
Û
(
p
)
Û†
(
g
)
Û
(
p
)

, if c
(
g
)
= 1,

(A.73a)
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for any g ∈ Gf . In terms of the 2-cocycle ϕ, ρ ∈ C1
(
G, Z2

)
is, for any g ∈ Gf , given by

ρ(π(g)) =
1
π

[
ϕ
(
g, p
)

− ϕ
(
p, g
)
+ c(g)ϕ

(
p, p
)]

. (A.73b)

The definition (A.73) is made so that the 1-cochain ρ is invariant under the gauge
transformation (A.69a). The 1-cochain ρ ∈ C1

(
G, Z2

)
is a group homomorphism from G

to Z2 = {0, 1}, since it has a vanishing coboundary and, hence, is a 1-cocycle 5. We note
that when a gauge choice is made by choosing the representation Û

(
p
)

to be Hermitian,
the two cases in the definition (A.73) are equivalent.

By definition, we have ρ (π(p)) = ρ (π(e)) = 0. Since both ρ and π are group homomor-
phisms, the 1-cocycle ρ ◦ π ∈ C1(Gf , Z2) denotes the fermion the fermion parity of the
element g for any g ∈ Gf . With an abuse of notation, we use ρ to denote both ρ : G → Z2

and ρ ◦ π : Gf → Z2, when the distinction is clear from the context.
It is possible to construct the 2-cocycle ϕ in terms of 2-cochain ν, 1-cochain ρ, and the

trivialization map τ as follows.

Claim 6. When [µ] = 0, the 2-cocycle ϕ is gauge equivalent to

ϕ ∼ ν + π ρ ⌣ τ , (A.74)

where the pair (ν, ρ) ∈ C2
(
G, U(1)

)
×C1

(
G, Z2

)
and τ : Gf → ZF

2 is the trivialization
map. Hereby, for the cup product of ρ and τ to be well-defined, we take τ (g) = 0, 1 when
τ (g) = e, p for any g ∈ Gf , respectively.

Proof. Using the group isomorphism π× τ , we write the representation of g ∈ Gf as

Û(g) = Û(π× τ (g)) ≡ Û
(
π(g), τ (g)

)
. (A.75)

We can then write the composition rule (A.68a) as

Û
(
π(g), τ (g)

)
Û
(
π(h), τ (h)

)
= eiϕ(g,h) Û

(
π(g h), τ (g h)

)
. (A.76)

5 A Z2 valued 1-cocycle ρ ∈ Z1(G, Z2) satisfies by definition (δ1
cρ)(g,h) = ρ(g) + c(g)ρ(h) − ρ(g h) = 0

for any g,h ∈ G. Since in the group Z2, ρ(h) = ±ρ(h) for any h ∈ G
f

, the 1-cocycle ρ is a group

homomorphism.
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Note that this equation implies the identity

Û
(
π(g), e

)
Û
(
e, τ (g)

)
= e

iϕ

((
π(g),e

)
,

(
e,τ (g)

))
Û
(
π(g), τ (g)

)
. (A.77)

Without loss of generality let us choose a gauge such that ϕ
(
(π(g), e), (e, τ (g))

)
= 0.

This is achieved by a gauge transformation (A.69a), where we choose the 1-cochain
ξ(g) = −ϕ

(
(π(g), e

)
,
(
e, τ (g))

)
. The left-hand side of Eq. (A.76) then becomes

Û
(
π(g), τ (g)

)
Û
(
π(h), τ (h)

)
= Û
(
π(g), e

)
Û
(
e, τ (g)

)
Û
(
π(h), e

)
Û
(
e, τ (h)

)
= e

+iπ τ (g) ρ

(
π(h)

)
Û
(
π(g), e

)
Û
(
π(h), e

)
Û
(
e, τ (g) τ (h)

)
,

(A.78)

where the phase factor iπ τ (g) ρ
(
π(h)

)
is to take into account the fermionic statistics

when representation of h carries odd fermion parity [ρ(h) = 1] and (e, τ (g)) ≡ p ∈ Gf
[τ (g) ≡ 1]. Using the composition rule (A.76) twice more delivers

Û
(
π(g), τ (g)

)
Û
(
π(h), τ (h)

)
= e

iϕ

((
π(g),e

)
,

(
π(h),e

))
+iπ τ (g) ρ

(
π(h)
)

× Û
(
π(g h), γ

(
π(g),π(h)

)
τ (g) τ (h)

)
= e

iν

(
π(g),π(h)

)
+iπ τ (g) ρ

(
π(h)
)
Û
(
π(g h), τ (g h)

)
, (A.79)

where we used the definition (A.71) of ν. Comparison with Eq. (A.76) implies the
equivalence

ϕ ∼ ν + π ρ ⌣ τ , (A.80)

where we used the gauge equivalence τ ⌣ ρ ∼ ρ ⌣ τ for the cup product of any Z2-valued
1-cochains.

Since ϕ is a 2-cocycle, Eq. (A.74) implies that

0 = δ2
c ϕ = δ2

c ν + πρ ⌣ δ1
c τ = δ2

c ν + πρ ⌣ γ, (A.81a)

i.e.,

δ2
c ν = πρ ⌣ γ. (A.81b)
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Therefore, it is convenient to define the modified 2-coboundary operator

D2
γ (ν, ρ) :=

(
δ2
c ν − π ρ ⌣ γ, δ1

c ρ
)

, (A.82)

acting on a tuple of cochains (ν, ρ) ∈ C2
(
G, U(1)

)
×C1

(
G, Z2

)
together with the modified

1-coboundary operator

D1
γ (α,β) :=

(
δ1
cα+ πβ ⌣ γ, δ0

c β
)

(A.83)

acting on a tuple of cochains (α, β) ∈ C1
(
G, U(1)

)
×C0

(
G, Z2

)
. Being a 0-cochain β

does not take any arguments and takes values in Z2, i.e., β ∈ Z2. Note that for the
0-cochain β, the coboundary operator (A.3b) acts as

(δ0
c β)(g) = Cg(β) − β, (A.84)

which in fact vanishes for any g ∈ G since β takes values in Z2 and Cg(β) = β. Using Eq.
(A.12) and the fact that γ is a cocycle, i.e., δ2

c γ = 0, one verifies that

D2
γ D1

γ (α,β) = (0, 0) (A.85)

for any tuple (α, β) ∈ C1
(
G, U(1)

)
×C0

(
G, Z2

)
.

As we have shown (also see Ref. [139]), one may assign to any 2-cocycle [ϕ] ∈
H2
(
Gf , U(1)c

)
an equivalence class [(ν, ρ)] of those tuples (ν, ρ) ∈ C2

(
G, U(1)

)
×

C1
(
G, Z2

)
that satisfy the cocycle condition under the modified 2-coboundary oper-

ator (A.82) given by

D2
γ (ν, ρ) =

(
δ2
c ν − π ρ ⌣ γ, δ1

c ρ
)
= (0, 0). (A.86)

Indeed, two tuples (ν, ρ) and (ν′, ρ′) that satisfy Eq. (A.86) are said to be equivalent if
there exists a tuple (α, β) ∈ C1

(
G, U(1)

)
×C0

(
G, Z2

)
such that

(ν, ρ) = (ν′, ρ′) + D1
γ (α, β) = (ν′ + δ1

cα+ π β ⌣ γ, δ0
c β). (A.87)
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In other words, using this equivalence relation we define an equivalence class [(ν, ρ)] of
the tuple (ν, ρ) as an element of the set

[(ν, ρ)] ∈
ker(D2

γ )

im(D1
γ )

. (A.88)

We note that when the [γ] = 0, i.e., the group Gf splits as Gf = G× ZF
2 , the modified

coboundary operators (A.82) and (A.83) reduce to the coboundary operator (A.3b)
with n = 2 and n = 1, respectively. If so the cochains ν and ρ are both cocycles, i.e.,
(ν, ρ) ∈ Z2(G, U(1)c) ×Z1

(
G, Z2

)
. The equivalence classes [(ν, ρ)] of the tuple (ν, ρ) is

then equal to the equivalence cohomology classes of each of its components, i.e.,

[(ν, ρ)] = ([ν], [ρ]) ∈ H2(G, U(1)c) ×H1
(
G, Z2

)
. (A.89)

We use the notation ([ν], [ρ]) for the two indices whenever the group Gf splits ([γ] = 0).
The notation [(ν, ρ)] applies whenever the group Gf does not split ([γ] ̸= 0).

a.4.3.2 The Case of [µ] = 1

When [µ] = 1, the number n of Majorana operators is odd. The 2-cochain ν ∈ C2
(
G, U(1)

)
is defined by restricting the domain of definition of the 2-cochain ϕ from Gf to G, i.e.,

ν (π(g),π(h)) := ϕ

((
π(g), e

)
,
(
π(h), e

))
. (A.90)

Note that for any element gb ∈ G, there exists an element g ∈ Gf such that π(g) = gb
and τ (g) = e. Equation (A.90) asserts that the 2-cochain ν is retrieved by inserting such
elements g and h in 2-cocycle ϕ. Another equivalent definition of ν is that

ν (gb,hb) := ϕ

(
s(gb), s(hb)

)
. (A.91)

for any gb, hb ∈ G.
When [µ] = 1, the Clifford algebra Cℓn spanned by the Majorana operators (6.11) has

a two-dimensional center, in which case the fermion parity of the boundary representation
Û(g) for any element g ∈ Gf can be reversed by multiplying it with the generator Ŷ of
the two-dimensional center of the Clifford algebra Cℓn. Moreover, any Û(g) must either
commute or anticommute with Ŷ according to Eq. (6.26).
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For this reason, we define the 1-cochain ρ ∈ C1
(
Gf , Z2

)
through

eiπρ(g) ≡ (−1)ρ(g) :=


Û(g) Ŷ Û†(g) Ŷ †, if c(g) = 0,

Û(g) Ŷ Û†(g) Ŷ , if c(g) = 1,

(A.92)

for any g ∈ Gf . The 1-cochain ρ ∈ C1
(
Gf , Z2

)
takes the value 0 and 1. The 1-cochain

ρ ∈ C1
(
Gf , Z2

)
is a group homomorphism from Gf to Z2 = {0, 1} since it has a vanishing

coboundary and, hence, is a 1-cocycle. Since Ŷ is of odd fermion parity by definition (6.25),
it anticommutes with the representation Û(p). This implies that ρ(p) = 1. More generally,
the 1-cochain ρ ∈ C1

(
Gf , Z2

)
measures if the representation Û(g,h) of (g,h) ∈ Gf

commutes or anticommutes with Ŷ .
The 1-cochain ρ ∈ C1

(
G, Z2

)
is defined by restricting the domain of definition of

ρ ∈ C1
(
Gf , Z2

)
from Gf to G, i.e.,

e
iπρ

(
π(g)
)

≡ (−1)ρ
(
π(g)
)

:=


Û
(
π(g), e

)
Ŷ Û†

(
π(g), e

)
Ŷ †, if c(g) = 0,

Û
(
π(g), e

)
Ŷ Û†

(
π(g), e

)
Ŷ , if c(g)

)
= 1,

(A.93)

for any g ∈ Gf with τ (g) = e. The definitions (A.92) and (A.93) are made so that the
1-cochain ρ is invariant under the gauge transformation (A.69a). We note that when a
gauge choice is made by choosing the representation Ŷ to be Hermitian, the two cases in
the definitions (A.92) are equivalent.

The fact that the 1-cochain ρ ∈ C1
(
Gf , Z2

)
defined in Eq. (A.92) is a group homo-

morphism puts constraints on the structure of the internal symmetry group Gf .

Claim 7. Compatibility between the existence of the group homomorphism ρ ∈ C1
(
Gf , Z2

)
which is defined in Eq. (A.92) and the group composition rule in Gf requires that the
central extension class [γ] ∈ H2(Gf , ZF

2 ) is trivial, i.e., [γ] = 0 and Gf is the split group.

Proof. We then have the identity(
π(g) π(h), e

)
=
(
π(g), e

)
◦
γ

(
π(h), γ

(
π(g), π(h)

))
=
(
π(g), e

)
◦
γ
(π(h), e) ◦

γ

(
e, γ
(
π(g), π(h)

))
(A.94)
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for any g,h ∈ Gf . Note that the 1-cochain ρ ∈ C1
(
Gf , Z2

)
encodes the information on

the algebra between the center Ŷ and the representation Û(g) of an element g ∈ Gf . As
such it is a group homomorphism from Gf to the additive group Z2. Applying ρ on both
sides of Eq. (A.94) gives

ρ
(
π(g) π(h), e

)
= ρ
(
π(g), e

)
+ ρ
(
π(h), e

)
+ ρ
(
e, γ
(
π(g), π(h)

))
mod 2 (A.95)

for any g, h ∈ Gf . We want to isolate the 2-cochain γ
(
π(g), π(h)

)
and express it as a

coboundary of a 1-cochain. To this end we define the group isomorphism t : Z2 → ZF
2 as

t(h) :=

{
e, if h = 0,

p, if h = 1,
(A.96a)

and the 1-cochain κ̃ : Gf → ZF
2

κ̃(π(g), τ (g)) := (t ◦ ρ) (π(g), τ (g)), (A.96b)

for any g ∈ Gf . The 1-cochain κ̃ is a group homomorphism since it is a composition of
the group homomorphism ρ and the group isomorphism t. We note that

κ̃

(
e, γ
(
π(g), π(h)

))
=


e, if ρ

(
e, γ
(
π(g), π(h)

))
= 0,

p, if ρ
(
e, γ
(
π(g), π(h)

))
= 1,

(A.97a)

and

κ̃

(
e, γ
(
π(g), π(h)

))
= γ
(
π(g), π(h)

)
(A.97b)

for any g,h ∈ Gf . Because κ̃ is a group homomorphism, applying κ̃ on both sides of Eq.
(A.94) gives

κ̃
(
π(g) π(h), e

)
= κ̃
(
π(g), e

)
κ̃
(
π(h), e

)
κ̃
(
e, γ
(
π(g), π(h)

))
= κ̃
(
π(g), e

)
κ̃
(
π(h), e

)
γ
(
π(g), π(h)

)
, (A.98a)
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i.e.,
γ = δ1

c κ, (A.98b)

where the 1-cochain κ ∈ C1(G, ZF
2 ) is defined by

κ : G → ZF
2 ,

g 7→κ(π(g)) := κ̃
(
π(g), e

)
.

(A.98c)

In other words, γ is necessarily a coboundary, i.e.,

[γ] = 0. (A.99)

Incompatibility, between nonsplit fermionic groups Gf and [µ] = 1 stems from the
fact that when restricted to the center ZF

2 ⊂ Gf , the homomorphism ρ ∈ C1
(
Gf , Z2

)
is a group isomorphism This is not true when [µ] = 0. The group homomorphism
ρ ∈ C1

(
Gf , Z2

)
defined in Eq. (A.73) takes the values ρ

(
e, e
)
= ρ
(
e, p
)
= 0. Therefore,

when restricted to the center ZF
2 ⊂ Gf , it is not an isomorphism. In other words, the

only internal symmetry groups Gf compatible with an odd number of Majorana degrees
of freedom ([µ] = 1) are those that split, i.e, Gf ∼= G× ZF

2 . This means that the second
group cohomology H2(Gf , U(1)c) splits via Künneth formula

H2(Gf , U(1)c) = H2(G× ZF
2 , U(1)c) = H2(G, U(1)c) ×H1(G, Z2). (A.100)

If so, equivalence classes [ϕ] are in one-to-one correspondence with the equivalence classes
of the pair [(ν, ρ)] = ([ν], [ρ]) when [µ] = 1. Both ν and ρ are cocycles, i.e.,

δ2
c ν = δ1

c ρ = 0. (A.101)

The pair (ν, ρ) is equivalent to the pair (ν′, ρ′) if they are related by the pair of coboundaries
(δ1

cα, δ0
c β) where (α,β) ∈ C1(G, U(1)) ×C0(G, Z2).

We close this section by relating 2-cocycle ϕ to 2-cocycle ν and 1-cocycle ρ defined in
Eqs. (A.90) and (A.93).

Claim 8. When [µ] = 1, the 2-cocycle ϕ is gauge equivalent to

ϕ ∼ ν, (A.102)
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where the pair ν ∈ C2
(
G, U(1)

)
.

Proof. Since the group splits [γ] = 0, without loss of generality we set γ = 0. This means
that any element g ∈ Gf is represented as

Û(g) = Û
(
π(g), τ (g)

)
. (A.103)

With the composition rule

Û
(
π(g), τ (g)

)
Û
(
π(h), τ (h)

)
= eiϕ(g,h) Û

(
π(g) π(h), τ (g) τ (h)

)
. (A.104)

Furthermore, by definition (A.67), all representations Û
(
π(g), τ (g)

)
carry even fermion

parity, i.e., we can set

ϕ
(
(π(g), e), (e, τ (g))

)
= ϕ
(
(e, τ (g)), (π(g), e)

)
= 0, (A.105a)

ϕ
(
(π(g), τ (g)), (e, p)

)
= ϕ
(
(e, p), (π(g), τ (g))

)
= 0. (A.105b)

The composition rule (A.104) then reads

Û
(
π(g), τ (g)

)
Û
(
π(h), τ (h)

)
= Û
(
π(g), e

)
Û
(
e, τ (g)

)
Û
(
π(h), e

)
Û
(
e, τ (h)

)
= Û
(
π(g), e

)
Û
(
π(h), e

)
Û
(
e, τ (g) τ (h)

)
= e

iν

(
π(g),π(h)

)
Û
(
π(g) π(h), τ (g) τ (h)

)
(A.106)

Comparison with Eq. (A.104) implies the equivalence

ϕ ∼ ν. (A.107)

We observe that ϕ in Eq. (A.102) does not contain the term ρ ⌣ τ in Eq. (A.74). This
is due to the fact that we explicitly assumed that the representation Û(g) defined in
Eq. (A.67) has even fermion parity. This can be thought as a “gauge fixing” in which
the term ρ ⌣ τ is effectively set to zero. This gauge choice is inconsequential for the
transformation rules of local physical degrees of freedom On defined in Eq. (A.46a) and
enumerating the equivalence classes ([ν], [ρ]).



246 projective representations of fermionic symmetry groups

a.4.4 Change in Indices (ν, ρ) under Group Isomorphisms

As explained in the Appendix A.2, the fermionic symmetry group Gf can be constructed
as the set of pairs (g,h) ∈ G× ZF

2 with the composition rule (A.21b) specified by the
2-cochain γ ∈ C2(G, ZF

2 ). The distinct central extensions Gf of G are then classified
by the equivalence classes [γ] ∈ H2(G, ZF

2 ). In other words, the central extension Gf is
determined up to the group isomorphisms (A.25a) under which the equivalence class [γ]

is invariant.
In Sec. A.4.3, we defined the pair of indices (ν, ρ) ∈ C2(G, U(1)) × C1(G, Z2) for

a given index [µ] = 0, 1. The definitions (A.71) and (A.90) of ν and the definitions
(A.73) and (A.93) are not invariant under group isomorphisms. In particular, when
restricting the domain of definition of the 2-cochain ϕ from Gf to G, we made an implicit
choice of trivialization τ and therefore γ. In this Section, we discuss how the pair
(ν, ρ) ∈ C2(G, U(1)) ×C1(G, Z2) is shifted under the group isomorphism (A.25a) for the
cases [µ] = 0, 1.

Let Gf be a fermionic symmetry group obtained by centrally extending the symmetry
group G by ZF

2 through the 2-cochain γ. We denote the elements of Gf by the pairs
(g,h) ∈ G× ZF

2 . Let G′
f be a fermionic symmetry group isomorphic to Gf through the

group isomorphism

κ̃ : Gf → G′
f ,

(g,h) 7→ (g′,h′) = (g, pκ(g) h)
(A.108a)

where κ(g) = 0, 1 for any g ∈ G and we introduced the shorthand notation p0 = e and
p1 = p for the elements in ZF

2 . In other words, G′
f is the central extension of G by ZF

2

through the 2-cochain γ′ such that

γ′(g1, g2) = γ(g1, g2) p
κ(g1)+κ(g2)+κ(g1 g2), (A.108b)

for any g1, g2 ∈ G.
One verifies that the pairs (g′,h′) ∈ G′

f are identified with the pairs (g = g′, pκ(g)h′) ∈
Gf under the group isomorphism κ̃. The identity

(g,h) ◦
γ
(e, pκ(g)) = (g,h pκ(g)), (A.109a)
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which holds for any g ∈ G and h ∈ ZF
2 , then suggests that the representation Û ′ of element

(g′,h′) ∈ G′
f is related to the boundary representation Û of element (g = g′, pκ(g) h′) ∈ Gf

via the relation

Û ′
(
g′,h′

)
∝ Û
(
g = g′,h′

) [
Û
(
e, p
)]κ(g)

, (A.109b)

i.e., the operator Û ′
(
(g′,h′)

)
must act up to a multiplicative phase factor as the operator

Û
(
(g,h′)

)
composed with the fermion parity operator Û

(
(e, p)

)
if κ(g) = 1. Hereby,

the exponent κ(g) ensures that the operators Û ′
(
(g′,h′)

)
and Û

(
(g,h′)

)
act identically,

if κ(g) = 0. Without loss of generality, we take the proportionality in (A.109b) to be
equality. We shall treat the cases of [µ] = 0 and [µ] = 1 separately.

a.4.4.1 The Case of [µ] = 0

On the one hand, invoking the definition (6.21) for the 2-cochain ν′ associated with the
group G′

f delivers

Û
′
(
g

′
1, e
)
Û

′
(
g

′
2, e
)
= e

iν′(g′
1

,g′
2
)
Û

′
(
g

′
1 g

′
2, γ′(g′

1, g′
2)
)

= e
iν′(g

1
,g

2
)
Û
(
g1 g2, γ(g1, g2) p

κ(g
1
)+κ(g

2
)+κ(g

1
g

2
)
) [
Û
(
e, p
)]κ(g

1
g

2
)

,

(A.110a)

where in reaching the last line we have used Eqs. (A.108b) and (A.109b). Applying the
identity (A.109a), we find

Û ′
(
g′

1, e
)
Û ′
(
g′

2, e
)
= eiν′(g1,g2) Û

(
g1 g2, γ(g1, g2)

[
Û
(
e, p
)]κ(g1)+κ(g2) , (A.110b)

where the equality holds up to a multiplicative phase factor that can be gauged away,
reason for which it is omitted for convenience. On the other hand, inserting Eq. (A.109b)
on the left-hand side delivers

Û ′
(
g′

1, e
)
Û ′
(
g′

2, e
)
= Û
(
g1, e

) [
Û
(
e, p
)]κ(g1) Û

(
g2, e

) [
Û
(
e, p
)]κ(g2)

= eiν(g1,g2)+iπ κ(g1)ρ(g2) Û
(
g1 g2, γ(g1, g2)

) [
Û
(
e, p
)]κ(g1)+κ(g2) ,

(A.110c)
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where the phase factor eiν(g1,g2) arises from the definition (6.21) of 2-cochain ν and
the phase factor eiκ(g1)ρ(g2) arises when the operators Û

(
g2, e

)
and

[
Û
(
e, p
)]κ(g1) are

interchanged. Comparing Eqs. (A.110b) and (A.110c), we make the identification

ν′(g1, g2) = ν(g1, g2) + π (κ ⌣ ρ)(g1, g2). (A.111)

The index ρ by definition (6.22) measures the fermion parity of the representation of the
element (g,h) ∈ Gf . One notes that the relation (A.109b) implies that the representations
Û and Û ′ have the same fermion fermion parity since Û((e, p)) is fermion parity even.
Hence, the indices ρ and ρ′ associated with Gf and G′

f , respectively, coincide.
We conclude that under the isomorphism (A.108a) the pair of indices ((ν′, ρ′), 0) and

((ν, ρ), 0) are related as (
(ν′, ρ′), 0

)
= ((ν + π (κ ⌣ ρ), ρ), 0) . (A.112)

a.4.4.2 The Case of [µ] = 1

When [µ] = 1, the definition (6.28) of the index ν is the same as it is when [µ] = 0.
However, by definition (A.67) all representations Û(g,h) have even fermion parity. This is
to say that the term κ ⌣ ρ in Eq. (A.111) does not arise. Therefore, ν is unchanged under
isomorphism. In contrasts, from Eqs. (A.92) and (A.109b), one observes that under the
isomorphism (A.108a) the index ρ gets shifted by κ, i.e.,

ρ′(g) = ρ(g) + κ(g). (A.113)

This is because computation of the index ρ′ involves an additional conjugation of Ŷ
by fermion parity operator Û

(
e, p
)

, which brings an additional factor of (−1)κ(g). We
conclude that under the isomorphism (A.108a) the pair of indices ((ν′, ρ′), 1) and ((ν, ρ), 1)
are related as (

(ν′, ρ′), 1
)
= ((ν, ρ+ κ), 1) . (A.114)

Under the group isomorphism (A.108a) the values of the indices (ν, ρ) and their respective
equivalence classes may change (according to Eqs. (A.112) and (A.114)). However, the
number of equivalence classes ([(ν, ρ)], [µ]) and their stacking rules remain the same, i.e.,
Eqs. (7.30) commute with the relations (A.112) and (A.114).
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a.5 examples of projective representations

We compute the values of equivalence classes [(ν, ρ)] of the groups ZT
2 × ZF

2 , Z2 × Z2 × ZF
2 ,

and ZFT
4 . For convenience, we denote by g both an element in Gf as well as its projection

π(g) onto G. Similarly, p denotes fermion parity in both Gf and ZF
2 .

a.5.1 Symmetry Group ZT
2 × ZF

2

The group ZT
2 × ZF

2 , where the upper index T for the cyclic group ZT
2 ≡ {e, t} refers to the

interpretation of t as time, is a split group. Since the group splits ([γ] = 0), one finds that
[ϕ] ∈ H2(Gf , U(1)c) separates into the pair of independent indices [ν] ∈ H2(ZT

2 , U(1)c)
and [ρ] ∈ H1(ZT

2 , Z2). Both [µ] = 0 and [µ] = 1 are possible. As we shall see

H2(ZT
2 , U(1)c) = Z2, H1(ZT

2 , Z2) = Z2, (A.115a)

i.e.,
H2

(
ZT

2 × ZF
2 , U(1)c

)
=

{(
[ν], [ρ]

) ∣∣∣ [ν] = 0, 1, [ρ] = 0, 1
}

. (A.115b)

Below we compute these cohomology groups and the group structure of the triplet
([ν], [ρ], [µ]) under the stacking rules (7.31).

Claim 9. [ν] = 0, 1.

Proof. Any cochain ν belonging to the equivalence class [ν] is defined by the substitutions
G = ZT

2 in Eqs. (A.71) and (A.90). It must satisfy and must satisfy the cocycle and
coboundary conditions in (A.68b) and (A.69b), respectively. If one chooses g = h = f = t

in Eq. (A.68b),one finds

ν(t, t) + ν(e, t) = ν(t, e) − ν(t, t) mod 2π =⇒ ν(t, t) = 0,π. (A.116)

Equation (A.116) is nothing but the statement that the representation of time reversal
should square to either the identity or minus the identity. These two possibilities are
not connected by a coboundary. Hence, they correspond to different second cohomology
classes. To see this, assume they were connected by a coboundary, i.e., they satisfy the
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equivalence condition (A.69b). On the one hand, choosing g = t and h = t in Eq. (A.69b)
implies that

ν(t, t) − ν′(t, t) = ξ(t) − ξ(t) − ξ(e) = −ξ(e) =⇒ ξ(e) = π (A.117)

if ν′(t, t) = π and ν(t, t) = 0. However, on the other hand, choosing g = t and h = e in
Eq. (A.69b) implies that

ν(t, e) − ν′(t, e) = ξ(t) − ξ(e) − ξ(t) = −ξ(e) =⇒ ξ(e) = 0, (A.118)

since ν(g, e) = ν(e, g) = 0 for all g. Equations (A.117) and (A.118) contradict each other.
This contradiction implies that one cannot consistently define a gauge transformation φ

that interpolates between ν such that ν(t, t) = π to ν′ such that ν(t, t) = 0. We denote
the cases ν(t, t) = π, 0 with the equivalence classes [ν] = 1, 0, respectively.

Claim 10. [ρ] = 0, 1.

Proof. For the second index [ρ] ∈ H1(ZT
2 , Z2), two 1-cochains ρ and ρ′ are equivalent if

and only if they are 1-cocycles that differ by a coboundary of a 0-cochain. But, by definition,
a Z2-valued 0-cochain has a vanishing coboundary. Hence, the coset H1(ZT

2 , Z2) is just
the set of all distinct 1-cocycles. By definition, a 1-cocycle ρ must obey [recall Eq. (A.4a)]

ρ(g) + c(g)ρ(h) − ρ(g h) = 0. (A.119a)

Choosing g = t and h = t delivers

ρ(t) = ρ(t) + ρ(e). (A.119b)

Since ρ(e) = 0 by definition, the cocycle condition (A.119a) is trivially satisfied. The
elements in H1(ZT

2 , Z2) are labeled by the values ρ(t) = 0, 1. Equivalently, this is to say
that there are two distinct group homomorphisms between ZT

2 and Z2. We assign the
indices [ρ] = 0, 1 to the values ρ(t) = 0, 1, respectively.

Given two projective representations Û1 and Û2 of the group Gf = ZT
2 × ZF

2 acting on
the Fock spaces F1 and F2, respectively, we now derive the indices associated with the
projective representation Û∧ acting on the Fock space F∧ constructed from the graded
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tensor product of the Fock spaces F1 and F2. Using the stacking rules derived in the Sec.
7, [Eq. (7.31)], we find

ν∧(t, t) =


ν1(t, t) + ν2(t, t) + π ρ1(t) ρ2(t), if [µ1] + [µ2] = 0,

ν1(t, t) + ν2(t, t) + π ρ1(t) ρ2(t) + π ρ1(t) c(t), if [µ1] = 0, [µ2] = 1,

ν1(t, t) + ν2(t, t) + π ρ1(t) ρ2(t) + π ρ2(t) c(t), if [µ1] = 1, [µ2] = 0,
(A.120a)

for the value of the 2-cochain ν∧(t, t), and

ρ∧(t) =

{
ρ1(t) + ρ2(t) + c(t), if [µ1] = 1, [µ2] = 1,

ρ1(t) + ρ2(t), otherwise,
(A.120b)

for the value of the 1-cochain ρ∧(t). Assignments of indices [ν∧] and [ρ∧] to the projective
representations of the group ZT

2 × ZF
2 and Eq. (A.120) imply that the indices of the tensor

product representation are related to the indices of the constituent representations via

[ν∧] =


[ν1] + [ν2] + [ρ1] [ρ2], if [µ∧] ≡ [µ1] + [µ2] = 0,

[ν1] + [ν2] + [ρ1] [ρ2] + [ρ1], if [µ1] = 0, [µ2] = 1,

[ν1] + [ν2] + [ρ1] [ρ2] + [ρ2], if [µ1] = 1, [µ2] = 0,

(A.121a)

for the value of the 2-cochain ν∧(t, t), and

[ρ∧] =

{
[ρ1] + [ρ2] + 1, if [µ1] = 1, [µ2] = 1,

[ρ1] + [ρ2], otherwise.
(A.121b)

One thus finds that the triplets ([ν], [ρ], [µ]) form the cyclic group Z8 under the stacking
rule (A.121). Without loss of generality, the generator of the group Z8 can be chosen as
the triplet ([ν], [ρ], [µ]) = (0, 0, 1). This is nothing but the Z8 classification of Class BDI
in the Tenfold Way [18, 19].

a.5.2 Symmetry Group Z2 × Z2 × ZF
2

As in Sec. A.5.1, the group Z2 × Z2 × ZF
2 is a split group. We denote the two generators

of Z2 × Z2 by g1 and g2, both of which are represented by unitary operators. Because



252 projective representations of fermionic symmetry groups

of the Cartesian products, [ϕ] ∈ H2(Gf , U(1)c) separates into the pair of independent
indices [ν] ∈ H2(Z2 × Z2, U(1)c) and [ρ] ∈ H1(Z2 × Z2, Z2). Both [µ] = 0 and [µ] = 1
are possible. As we shall see

H2(Z2 × Z2, U(1)c) = Z2, H1(Z2 × Z2, Z2) = Z2 × Z2, (A.122a)

i.e.,

H
2
(

Z2 × Z2 × Z
F
2 , U(1)c

)
=
{(

[ν], [ρ]
) ∣∣ [ν] = 0, 1, [ρ] =

(
[ρ]1, [ρ]2

)
, [ρ]1, [ρ]2 = 0, 1

}
.

(A.122b)
Below we compute these cohomology groups and the group structure of the triplet
([ν], [ρ], [µ]) under the stacking rules (7.31).

Claim 11. [ν] = 0, 1.

Proof. Since the group representation is unitary (and hence linear as opposed to antilinear),
there is no negative sign that appears on the right-hand side of the equality in Eq. (A.116).
It is not possible to constrain the possible values of ν(g1, g1) or ν(g2, g2) as was done
in Eq. (A.116). Cocycle conditions that are akin to Eq. (A.116) are trivially satisfied.
This is to say that we can choose a gauge for which ν(g1, g1) = ν(g2, g2) = 0. If so
the only nonvanishing values of ν occurs for ν(g1, g2) and ν(g2, g1) Group structure of
Z2 × Z2 dictates that the projective representations of g1 and g2 must either commute
or anticommute with each other, i.e.,

ν(g1, g2) − ν(g2, g1) = 0,π. (A.123)

Hence, these two possible values constitute the two inequivalent cohomology classes for
the index [ν]. To show that they are not connected by a 2-coboundary, we assume that ν
and ν′ the two are related by Eq. (A.69b). One finds

ν(g1, g2) − ν′(g1, g2) = ξ(g1) + ξ(g2) − ξ(g1 g2), (A.124a)

ν(g2, g1) − ν′(g2, g1) = ξ(g2) + ξ(g1) − ξ(g2 g1). (A.124b)

Because G ≡ Z2 × Z2 is Abelian, this pair of equations implies that

ν(g1, g2) − ν(g2, g1) = ν′(g1, g2) − ν′(g2, g1). (A.124c)
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Therefore, the projective representations of g1 ∈ G and g2 ∈ G that either commute
pairwise or anticommute pairwise must belong to distinct second cohomology classes. We
assign the values [ν] = 0, 1 to ν(g1, g2) − ν(g2, g1) = 0,π, respectively.

Claim 12. [ρ] =
(
[ρ]1, [ρ]2

)
= (0, 0), (0, 1), (1, 0), (1, 1).

Proof. Since a Z2-valued 0-cochain has a vanishing coboundary, enumerating the elements
of H1(Z2 × Z2, Z2) corresponds to enumerating the distinct 1-cochains ρ. Equation (A.4a)
implies for 1-cocycle ρ

ρ(g1 g2) = ρ(g1) + ρ(g2), (A.125)

i.e., ρ is a group homomorphism. Therefore, [ρ] retains the Z2 × Z2 structure. We assign
a pair of indices

[ρ] =
(
[ρ]1, [ρ]2

)
, [ρ]1 = 0, 1, [ρ]2 = 0, 1, (A.126)

to the values ρ(g1) = 0, 1 and ρ(g2) = 0, 1, respectively.

Given two projective representations Û1 and Û2 of the group Gf = Z2 × Z2 × ZF
2

acting on the Fock spaces F1 and F2, respectively, we now derive the indices associated
with the projective representation Û∧ acting on the Fock space F∧ constructed from the
graded tensor product of the Fock spaces F1 and F2. Using the stacking rules derived in
the Sec. 7, [Eqs. (7.31) and (7.32)], for any [µ1] and [µ2] we find

ν∧(g1, g2) = ν1(g1, g2) + ν2(g1, g2) + π ρ1(g1) ρ2(g2), (A.127a)

ν∧(g2, g1) = ν1(g2, g1) + ν2(g2, g1) + π ρ1(g2) ρ2(g1), (A.127b)

for the values of the 2-cochain ν∧(g1, g2) and ν∧(g2, g1), and

ρ∧(g1) = ρ1(g1) + ρ2(g1), ρ∧(g2) = ρ1(g2) + ρ2(g2) (A.127c)

for the value of the 1-cochains ρ∧(g1) and ρ∧(g2). Assignments of indices [ν∧] and [ρ∧] to
the projective representations of the group Z2 × Z2 × ZF

2 and Eq. (A.127) imply that the
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indices of the tensor product representation are related to the indices of the constituent
representations via

[ν∧] = [ν1] + [ν2] + [ρ1]1 [ρ2]2 + [ρ1]2 [ρ2]1, (A.128a)

[ρ∧] = ([ρ1]1 + [ρ2]1, [ρ1]2 + [ρ2]2) , (A.128b)

for any [µ1] and [µ2]. One thus finds that the triplets ([ν], [ρ], [µ]) form the group
Z4

2 = Z2 × Z2 × Z2 × Z2 under the stacking rule (A.128). Hence, each triplet ([ν], [ρ], [µ])
is its inverse. Without loss of generality, the four generators ai, of the group Z4

2 can be
chosen as (

[ν], ([ρ]1, [ρ]2) , [µ]
)
=
(

1, (0, 0) , 0
)

, (A.129)(
[ν], ([ρ]1, [ρ]2) , [µ]

)
=
(

0, (1, 0) , 0
)

, (A.130)(
[ν], ([ρ]1, [ρ]2) , [µ]

)
=
(

0, (0, 1) , 0
)

, (A.131)(
[ν], ([ρ]1, [ρ]2) , [µ]

)
=
(

0, (0, 0) , 1
)

. (A.132)

a.5.3 Symmetry Group ZFT
4

The group ZFT
4 is the nontrivial central extension of G ≡ ZT

2 by ZF
2 . This central

extension of time reversal by fermion parity is specified by the map γ with γ(t, t) = p,
which implies the group composition rule t t = p [see Sec. A.3]. Since [γ] ̸= 0, only [µ] = 0
is possible. If so, ν is not a cocycle but a cochain with nonvanishing coboundary according
to Eq. (A.86). On the other hand, ρ is a 1-cocycle. As we shall see

H2

(
ZFT

4 , U(1)c
)

=

{[(
ν, ρ
)] ∣∣∣ [(ν, ρ

)]
= (0, 0), (1, 1)

}
.. (A.133)

Claim 13.
[(
ν, ρ
)]

= (0, 0), (1, 1).

Proof. Two tuples (ν, ρ) and (ν′, ρ′) are not in the same equivalence class if ρ(t) ̸= ρ′(t).
Since ρ(t) can take two values, 0 or 1, there exist at least two distinct equivalence classes
of the tuple (ν, ρ), labeled by ρ(t). Given this value of ρ(t), we shall construct the
distinct equivalence classes of (ν, ρ) corresponding to different values of ν ∈ C2(G, U(1)).
Choosing g = h = f = t in Eq. (A.86) delivers

ν(t, e) − ν(t, t) − ν(t, t) − ν(e, t) = π ρ(t) γ(t, t) mod 2π. (A.134)
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With the choice of the convention γ(t, t) = p ≡ 1 for the nonsplit group ZFT
4 , we find the

pair of solutions to Eq. (A.134) given by

ν(t, t) = −
π

2
ρ(t), ν(t, t) = −

π

2
ρ(t) + π. (A.135)

The multiplicative factor π appears on the right-hand sides since ν takes values in U(1)
and is thus defined modulo 2π. Now, the two solutions (A.135) are equivalent under
the equivalence relation (A.87) as can be seen by choosing α = 0 and β = p ≡ 1 in Eq.
(A.87). Indeed, the term πβ ⌣ γ = π then cancels the factor π between the two solutions
(A.135). Thus, for each value of ρ(t) = 0, 1, there exists a single distinct equivalence class
[(ν, ρ)]. We assign [(ν, ρ)] = (1, 1) to the case (ν(t, t), ρ(t)) = (−π/2, 1) ∼ (+π/2, 1) and
[(ν, ρ)] = (0, 0) to the case (ν(t, t), ρ(t)) = (0, 0) ∼ (π, 0).

Given two projective representations Û1 and Û2 of the group Gf = ZFT
4 acting on

the Fock spaces F1 and F2, respectively, we now derive the indices associated with the
projective representation Û∧ acting on the Fock space F∧ constructed from the graded
tensor product of the Fock spaces F1 and F2. Using the stacking rules derived in the Sec.
7, [Eq. (7.31)], we find, where [µ1] = [µ2] = 0,

ν∧(t, t) = ν1(t, t) + ν2(t, t) + π ρ1(t) ρ2(t), (A.136a)

for the values of the 2-cochain ν∧(t, t) and

ρ∧(t) = ρ1(t) + ρ2(t), (A.136b)

for the value of the 1-cochain ρ∧(t). Assignments of indices
[(
ν∧, ρ∧

)]
to the projective

representations of the group ZFT
4 and Eq. (A.136) imply that the indices of the tensor

product representation are related to the indices of the constituent representations via[(
ν∧, ρ∧

)]
=
[(
ρ1 + ρ2, ρ1 + ρ2

)]
, (A.137a)

for [µ1] = [µ2] = 0. One thus finds that the triplets
(
[(ν, ρ)], 0

)
form the group Z2 under

the stacking rule (A.137). This is nothing but the Z2 classification of Class DIII in the
Tenfold Way [19].
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R E V I E W O F F E R M I O N I C M AT R I X P R O D U C T S TAT E S ( F M P S )

F O R M A L I S M

In this Appendix, we review the construction of fermionic matrix product states (FMPS).
We refer the reader to Refs. [135, 157] and references therein on the topic of matrix product
states (MPS). As in bosonic matrix product states (BMPS), FMPS can be expressed as a
contraction of objects belonging to a graded tensor product of vector spaces. The need
for graded tensor product of vector spaces stems from the underlying fermionic algebra.

b.1 Z2 -graded vector spaces

Any fermionic Fock space F can be seen, in the basis that diagonalizes the total fermionic
number operator, to be the direct sum over a subspace F0 with even total fermionic
number and a subspace F1 with odd total fermionic number. This property endows
fermionic Fock space with a natural Z2-grading.

A Z2-graded vector space V admits the direct sum decomposition

V = V0 ⊕ V1. (B.1)

We shall identify the subscripts 0 and 1 as the elements of the additive group Z2. We
say that V0 (V1) has parity 0 (1). Any vector space is Z2-graded since the choice V0 = V

and V1 = ∅ is always possible. Any subspace of V0 shares its parity 0. Any subspace of
V1 shares its parity 1. A vector |v⟩ ∈ V is called homogeneous if it entirely resides in
either one of the subspaces V0 and V1. The parity |v| of the homogeneous state |v⟩ is
either 0 if |v⟩ ∈ V0 or 1 if |v⟩ ∈ V1. These observation on the Z2-grading of a vector space
V only become useful when one demands that any operation acting on V preserves the
Z2-grading.

For example, certain operations need to be defined carefully between two Z2-graded
vector space V and W that preserve their Z2 structure. One such operation is the

257
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Z2-graded tensor product. Let V = V0 ⊕ V1 and W = W0 ⊕W1 be two Z2-graded vector
spaces. We define their graded tensor product as the map

⊗g : V ×W → V ⊗W , (B.2a)

such that

Vi ⊗g Wj ⊆ (V ⊗W )(i+j) mod 2 , i, j = 0, 1. (B.2b)

By design, the operation ⊗g carries the Z2-grading of V and W to their Z2-graded tensor
product. In particular, for any homogeneous vectors |v⟩ ∈ V with parity |v| = 0, 1 and
|w⟩ ∈ W with parity |w| = 0, 1, the graded tensor product |v⟩ ⊗g |w⟩ of two homogeneous
vectors has the parity ∣∣|v⟩ ⊗g |w⟩

∣∣ := (|v| + |w|) mod 2. (B.2c)

The connection between the Z2-graded vector space V = V0 ⊕ V1 and fermionic Fock
spaces F = F0 ⊕ F1, is established through the identifications F0 → V0 and F1 → V1.
However, a fermionic Fock space has more structure than a mere Z2-graded vector space.
Wave functions in a fermionic Fock space are fully antisymmetric under the permutation
of two fermions. This requirement can be implemented as follows on a Z2-graded vector
space. The exchange of two fermions can be represented by the isomorphism

R : V ⊗g W → W ⊗g V , (B.3a)

by which the graded tensor product of the homogeneous vectors |v⟩ ∈ V and |w⟩ ∈ W

obeys
|v⟩ ⊗g |w⟩ 7→ (−1)|v| |w| |w⟩ ⊗g |v⟩. (B.3b)

The map R is called the reordering operation. It is invertible with itself as inverse since
R2 is the identity map.

For every Z2-graded vector space V , we define the dual Z2-graded vector space V ∗.
We denote an element of the dual Z2-graded vector space V ∗ by ⟨v|, the dual to the
vector |v⟩ ∈ V . The dual Z2-graded vector space V ∗ inherits a Z2 grading from assigning
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the parity |v| to the vector ⟨v| ∈ V ∗ if |v⟩ ∈ V is homogeneous with parity |v|. The
contraction C is the map

C : V ∗ ⊗g V → C,

⟨ψ| ⊗g |ϕ⟩ 7→ ⟨ψ|ϕ⟩,
(B.4a)

where ⟨ψ|ϕ⟩ denotes the scalar product between the pair |ψ⟩, |ϕ⟩ ∈ V . Hence,

C
(

⟨i| ⊗g |j⟩
)
= δij (B.4b)

holds for any pair of orthonormal and homogeneous basis vectors |i⟩, |j⟩ ∈ V . The
contraction C∗ is the map C∗ : V ⊗g V

∗ → C defined by its action

C∗
(

|i⟩ ⊗g ⟨j|
)

:= C
(
R
(

|i⟩ ⊗g ⟨j|
))

= C
(
(−1)|i||j|⟨j| ⊗g |i⟩

)
= (−1)|i||j|⟨j|i⟩

= (−1)|i||j|δij (B.4c)

for any pair of orthonormal basis vectors |i⟩, |j⟩ ∈ V . It is common practice to use the
same symbol C for both C and C∗. Any linear operator

M : V → V (B.5a)

can be represented in the orthonormal and homogeneous basis {|i⟩} of V by the matrix

Mij = (−1)|i||j| Mji (B.5b)

through the expansion

M :=
∑
i,j

Mij |i⟩ ⊗g ⟨j| ∈ V ⊗g V
∗. (B.5c)

The linear operator M has a well defined parity if and only if each term |i⟩ ⊗g ⟨j| in the
summation has the same parity, in which case

|M | := (|i| + |j|) mod 2. (B.5d)
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More generally, if we define

T :=
∑

i
i
,··· ,in

Ti
i
,··· ,in

|i1⟩ ⊗g · · · ⊗g |in⟩ ∈ Vi
1

⊗g · · · ⊗g Vin (B.6a)

we can assign the parity
|T | := (|i1| + · · · + |in|) mod 2 (B.6b)

when all |i1⟩ ⊗g · · · ⊗g |in⟩ share the same parity.

b.2 definition of fmps

We attach to each integer j = 1, · · · ,N three Z2-graded vector spaces

Vj := span{|α) | α = 1, · · · , Dv,j}, (B.7a)

Fj := span{|ψσ⟩ | σ = 1, · · · , Dj}, (B.7b)

V ∗
j := span{(β| | β = 1, · · · , Dv,j}. (B.7c)

The basis states |α) and (β| of the dual pair Vj and V ∗
j of Z2-graded vector spaces are

virtual (auxiliary) states. They are denoted by rounded kets and bras and are introduced
for convenience. Each auxiliary basis state has a well defined parity by assumption. The
basis states {|ψσ⟩} span the physical fermionic Fock space Fj . Each physical basis state
|ψσ⟩ has a well defined parity by assumption, as follows from working in the fermion-
number basis of Fj say. The auxiliary Z2-graded vector space Vj has the dimension Dv,j .
The physical fermionic Fock space Fj has dimension Dj . A fermionic matrix product
state (FMPS) takes the form

|Ψ⟩ := Cv

(
Q(b) Y A[1] ⊗g A[2] ⊗g · · · ⊗g A[N ]

)
(B.7d)

and has a well defined parity provided the objects Q(b), Y , A[1], A[2], · · · , A[N ] are
defined as follows. For any j = 1, · · · ,N , element A[j] ∈ Vj ⊗g Fj ⊗g V

∗
j+1 is defined by

A[j] :=

D
v,j∑

α
j
=1

Dj∑
σ

j
=1

D
v,j+1∑
β

j
=1

(Aσ
j
)α

j
β

j
|αj) ⊗g |ψσ

j
⟩ ⊗g (βj | (B.7e)
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once the matrices Aσ
j
, labeled as they are by the basis elements of the local Fock space Fj

and with the matrix elements (Aσ
j
)α

j
β

j
, have been chosen. The contraction Cv labeled

by the lower index v is understood to be over all virtual indices belonging to the dual pair
(V ∗
j ,Vj) of auxiliary Z2-graded vector spaces, thereby producing the tensor proportional

to
Tα

1
···α

N
|β

1
···β

N
:= δβ

1
α

2
δβ

2
α

3
· · · δβ

N−1
α

N
δβ

N
α

1
(B.7f)

if Q(b) ∈ V1 ⊗g V
∗

1 and Y ∈ V1 ⊗g V
∗

1 were chosen to be the identity

Q(b) ≡ Y ≡
∑
α

|α) ⊗g (α|. (B.7g)

The integer b = 0, 1 labels the boundary conditions selected by Q(b) ∈ V1 ⊗g V
∗

1 . The
element Y ∈ V1 ⊗g V

∗
1 is needed to fix the fermion parity of |Ψ⟩. More precisely, we demand

that the parity (B.5d) of Q(b) ∈ V1 ⊗g V
∗

1 and the parity (B.6b) of A[j] ∈ Vj ⊗g Fj ⊗g V
∗
j+1

are both even, while the parity (B.5d) of Y ∈ V1 ⊗g V
∗

1 is either even or odd. Consequently,
the parity of |Ψ⟩ is determined by the parity of Y since

|Ψ| =

(
|Q(b)| + |Y | +

N∑
j=1

|A[j]|

)
mod 2 = |Y |. (B.7h)

A prerequisite to imposing translation symmetry on any FMPS is that all dimensions
Dv,j and Dj are independent of j = 1, · · · ,N . Hence, we assume from now on that

Dv,j ≡ Dv, Dj ≡ D , j = 1, · · · ,N . (B.7i)

b.2.1 Even-Parity FMPS

The FMPS

|Ψ⟩b0 := Cv

(
Q(b) Y A[1] ⊗g · · · ⊗g A[N ]

)
(B.8a)
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is an even-parity FMPS obeying periodic (b = 0) or antiperiodic (b = 1) boundary
conditions if, for any j = 1, · · · ,N ,

A[j] :=

Dv∑
α

j
=1

D∑
σ

j
=1

Dv∑
β

j
=1

(
A

(0)
σ

j

)
α

j
β

j

|αj) ⊗g |ψσ
j
⟩ ⊗g (βj |, (B.8b)

|A[j]| =
(

|αj | + |σj | + |βj |
)

mod 2 = 0, (B.8c)

Y :=

Dv∑
α=1

|α) ⊗g (α|, (B.8d)

Q(b = 0) :=

Dv∑
α=1

|α) ⊗g (α|, (B.8e)

Q(b = 1) :=

Dv∑
α=1

(−1)|α| |α) ⊗g (α|. (B.8f)

By construction, both Q(b) and Y are of even parity. Moreover, since
(

|αj | + |σj | + |βj |
)

is equal to 1 modulo 2 we have
(
A

(0)
σ

j

)
α

j
β

j

= 0.

We are going to give an alternative representation of this even-parity FMPS under
the assumption that the virtual dimension Dv obeys the partition Dv = Me +Mo where
Me ≡ M and Mo ≡ M are the numbers of even- and odd-parity virtual basis vectors,
respectively. Parity evenness of A[j] implies that the Dv × Dv dimensional matrices A(0)

σ
j

with the matrix elements
(
A

(0)
σ

j

)
α

j
β

j

is either block diagonal

A
(0)
σ

j
=

(
Bσ

j
0

0 Cσ
j

)
, if |σj | = 0, (B.9a)

when the physical state is of even parity [as follows from Eq. (B.8c)] or block off diagonal

A
(0)
σ

j
=

(
0 Dσ

j

Fσ
j

0

)
, if |σj | = 1, (B.9b)
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when the physical state is of odd parity [as follows from Eq. (B.8c)]. All the blocks are
here M ×M -dimensional. Parity evenness of Q(b) with matrix elements

(
Q(b)

)
α

1
β

1

and
Y with matrix elements Yα

1
β

1
implies that

Y = Q(b = 0) =
(

1M 0
0 1M

)
, Q(b = 1) =

(
1M 0
0 −1M

)
:= P . (B.9c)

Hereby, we introduced the parity matrix P that satisfies

P A
(0)
σ

j
P = (−1)|σj |

A
(0)
σ

j
. (B.9d)

Inserting these explicit representations of Q(b) and Y in Eq. (B.8a) delivers

|Ψ⟩b0 ≡ |{A(0)
σ

j
}; b⟩ :=

∑
σ

tr
[
P b+1 A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

]
|Ψσ⟩, (B.10a)

where we used the shorthand notation |Ψσ⟩ := |ψσ
1
⟩ ⊗g |ψσ

2
⟩ ⊗g · · · ⊗g |ψσ

N
⟩. The

appearance of the matrix P when b = 0 is counterintuitive. It is needed to eliminate from
the sum over all physical basis states {|Ψσ⟩} those physical basis states of odd parity.
The state |{A(0)

σ
j

}; b⟩ has even parity since(
N∑
j=1

|σj |

)
mod 2 =

[
N∑
j=1

(|αj | + |βj |)

]
mod 2 =

(
N∑
j=1

2|αj |

)
mod 2 = 0, (B.10b)

where we used condition (B.8c) to establish the first equality and the condition |βj | =
|αj+1| that is imposed by the contractions of virtual indices to establish the second
equality.

b.2.2 Odd-Parity FMPS

The FMPS

|Ψ⟩b1 := Cv

(
Q(b) Y A[1] ⊗g · · · ⊗g A[N ]

)
, (B.11a)
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is an odd-parity FMPS obeying periodic (b = 0) or antiperiodic (b = 1) boundary
conditions if, for any j = 1, · · · ,N ,

A[j] :=

Dv∑
α

j
=1

D∑
σ

j
=1

Dv∑
β

j
=1

(
A

(1)
σ

j

)
α

j
β

j

|αj) ⊗g |ψσ
j
⟩ ⊗g (βj |, (B.11b)

|A[j]| =
(

|σj | + |αj | + |βj |
)

mod 2 = 0, (B.11c)

Y :=

Dv∑
α,β=1

Yαβ |α) ⊗g (β|, Yαβ = 0 if (|α| + |β|) mod 2 = 0, (B.11d)

Q(b = 0) :=

Dv∑
α=1

|α) ⊗g (α|, (B.11e)

Q(b = 1) :=

Dv∑
α=1

(−1)|α| |α) ⊗g (α|. (B.11f)

By construction, Q(b) is of even parity while Y is of odd parity. Moreover, the condition(
|αj | + |σj | + |βj |

)
mod 2 = 1 implies that

(
A

(0)
σ

j

)
α

j
β

j

= 0.

We note that the only difference between definitions (B.8) and (B.11) is the choice for
Y . In the former case its parity is even, in the latter case its parity is odd. Analogously
to the even FMPS case, we define 2M × 2M dimensional matrices A(1)

σ
j

and Y with the

matrix elements
(
A

(1)
σ

j

)
α

j
β

j

and Yα
1
β

1
. The parity |Y | = 1 implies that

Y =

(
0 Y1

Y2 0

)
, (B.12a)

where Y1 and Y2 are M ×M and dimensional matrices, respectively. Imposing translation
symmetry requires that

Y A
(1)
σ

j
= A

(1)
σ

j
Y . (B.12b)

We choose

Y :=

(
0 1M

−1M 0

)
, P Y P = −Y , (B.12c)
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which implies

A
(1)
σ

j
=

(
Gσ

j
0

0 Gσ
j

)
, if |σj | = 0, (B.12d)

A
(1)
σ

j
=

(
0 Gσ

j

−Gσ
j

0

)
, if |σj | = 1, (B.12e)

where Gσ
j

are M ×M dimensional matrices. Inserting these explicit representations of
Q(b) and Y in Eq. (B.11a) delivers

|Ψ⟩b1 ≡ |{A(1)
σ

j
}; b⟩ :=

∑
σ

tr
[
P b Y A

(1)
σ

1
A

(1)
σ

2
· · ·A(1)

σ
N

]
|Ψσ⟩. (B.13a)

The state |{A(1)
σ

j
}; b⟩ has odd parity since(

N∑
j=1

|σj |

)
mod 2 =

[
N∑
j=1

(|αj | + |βj |)

]
mod 2 =

(
|α| + |β| +

N−1∑
j=2

2|αj |

)
mod 2 = 1,

(B.13b)

where we used condition (B.11c) to establish the first equality. For the second equality we
used the conditions |α| = |βN | and |β| = |α1| where |α|, |β| are the parities of the virtual
indices corresponding to matrix elements Yαβ , and |βj | = |αj+1| for j = 2, · · · ,N − 1
that is imposed by the contractions of virtual indices to establish the second equality.
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In this Appendix, we provide the proofs of Theorem 2, first in d = 1 dimension for any
symmetry group Gf , and then for any d dimension when Gf is Abelian and unitarily
represented.

c.1 proof by fmps formalism in 1d

We will prove Theorem 2 for one dimensional systems within the FMPS framework. Our
proof follows closely that for the bosonic case 1 introduced in Ref. [158]. We will show
that a even-parity or odd-parity injective FMPS necessarily requires the local projective
representation ûj of the symmetry group Gf to have trivial second cohomology class
[ϕ] ∈ H2

(
Gf , U(1)c

)
. In other words, when this cohomology class is nontrivial there is

no compatible injective FMPS with even or odd parity. The general forms (B.10a) and
(B.13a) as well as the injectivity conditions 1 and 2 are distinct for even and odd parity
FMPS. The proofs for the even- and the odd-parity cases are thus treated successively. For
conciseness, we are going to supress the symbol ⊗g when working with the orthonormal
and homogeneous basis{

|Ψσ⟩ ≡ |ψσ
1
⟩ ⊗g |ψσ

2
⟩ ⊗g · · · ⊗g |ψσ

N
⟩
}

(C.1a)

of the Fock space
FΛ ≡ F1 ⊗g F2 ⊗g · · · ⊗g F1. (C.1b)

1 Bosonic matrix products states presume that the local Fock space F
j

has no more than the trivial Z2

grading, i.e., F
j

≡ F
j 0

⊕ F
j 1

with F
j 0

≡ F
j

and F
j 1

≡ ∅.

267
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c.1.1 Even-Parity FMPS

Let [see Eq. (B.9)]

|{A(0)
σ

j
}; b⟩ ≡

∑
σ

tr
(
P b+1A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

)
|ψσ

1
⟩ |ψσ

2
⟩ · · · |ψσ

N
⟩ (C.2)

be a translation-invariant, Gf -symmetric, even-parity, and injective FMPS obeying
periodic boundary conditions when b = 0 or antiperiodic boundary conditions when
b = 1. For any g ∈ Gf , the global representation Û(g) of g is defined in Eq. (3.12a). By
assumption, |{A(0)

σ
j

}; b⟩ is a nondegenerate gapped ground state of some local fermionic
Hamiltonian in one-dimensional space. Hence, for any g ∈ Gf , there exists a phase
η(g; b) ∈ [0, 2π) such that

Û(g) |{A(0)
σ

j
}; b⟩ = eiη(g;b))|{A(0)

σ
j

}; b⟩. (C.3)

The action of the transformation Û(g) on the right-hand side of Eq. (C.2) gives

Û(g) |{A(0)
σ

j
}; b⟩ =

∑
σ

Kg
[

tr
(
P b+1 A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

)]
×
(
û1(g) |ψσ

1
⟩
) (

û2(g) |ψσ
2
⟩
)

· · ·
(
ûN (g) |ψσ

N
⟩
)

=
∑
σ

{∑
σ′

tr
[
P b+1 Kg

[
A

(0)

σ′
1

A
(0)

σ′
2

· · ·A(0)

σ′
N

]]
×

N∏
j=1

⟨ψσ
j
|
(
ûj(g)|ψσ′

j
⟩
)}

|ψσ
1
⟩ |ψσ

2
⟩ · · · |ψσ

N
⟩ (C.4)

after using N times the resolution of the identity, one for each local Fock space Fj . We

use the notation
(
ûj(g)|ψσ′

j

⟩
)

to indicate that the operator ûj(g) acts on the right, an

important fact to keep track of when ûj(g) is an antiunitary operator. The right-hand side
can be written more elegantly with the definition of the g-dependent 2M × 2M matrix

A
(0)
σ

j
(g) :=

∑
σ′

j

⟨ψσ
j
|
(
ûj(g)|ψσ′

j
⟩
)

Kg
[
A

(0)

σ′
j

]
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≡
∑
σ′

j

[U(g)]σ
j
σ′

j
Kg
[
A

(0)

σ′
j

]
, (C.5a)

where the D × D matrix U(g), whose matrix elements are the complex-valued coefficients
weighting the sum over the 2M × 2M matrices Kg

[
A

(0)

σ′
j

]
, acts on the local Fock space

Fj and we have defined

Kg
[
A

(0)
σ

j

]
:=


A

(0)
σ

j
, if c(g) = 0,

KA(0)
σ

j
K, if c(g) = 1.

(C.5b)

As usual, K denotes complex conjugation. Equation (C.4) becomes

Û(g) |{A(0)
σ

j
}; b⟩ =

∑
σ

tr
[
P b+1 A

(0)
σ

1
(g)A

(0)
σ

2
(g) · · ·A(0)

σ
N
(g)

]
|ψσ

1
⟩ |ψσ

2
⟩ · · · |ψσ

N
⟩,

(C.5c)

which is nothing but the FMPS (C.2) with A
(0)
σ

j
substituted for A(0)

σ
j
(g). Equating the

right-hand sides of Eqs. (C.3) and (C.5c) implies

tr
[
P b+1 A

(0)
σ

1
(g)A

(0)
σ

2
(g) · · ·A(0)

σ
N
(g)

]
= eiη(g;b) tr

[
P b+1 A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

]
. (C.6a)

This equation is satisfied by the Ansatz

A
(0)
σ

j
(g) = eiθ(g) V −1(g)A

(0)
σ

j
V (g), (C.6b)

P V (g)P = (−1)κ(g) V (g), (C.6c)

θ(g) :=
1
N

[η(g; b) − π(b+ 1) κ(g)] , (C.6d)

where κ(g) = 0, 1 dictates if the 2M × 2M unitary matrix V (g) commutes or anticommutes
with the 2M × 2M parity matrix P defined in Eq. (B.9c), since

tr
[
P

b+1
A

(0)
σ

1
(g)A(0)

σ
2
(g) · · ·A(0)

σ
N
(g)

]
= eiθ(g)N tr

[
P

b+1
V

−1(g)A(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N
V (g)

]
cyclicity of the trace = eiθ(g)N tr

[
V (g)P b+1

V
−1(g)A(0)

σ
1
A

(0)
σ

2
· · ·A(0)

σ
N

]
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Eq. (C.6d) = eiθ(g)N (−1)(b+1)κ(g) tr
[
P

b+1
A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

]
= eiθ(g)N+iπ(b+1)κ(g) tr

[
P

b+1
A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

]
≡ e

iη(g;b) tr
[
P

b+1
A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
N

]
. (C.6e)

The existence of the 2M × 2M invertible matrix V (g) is guaranteed because of the
injectivity of the FMPS. In an injective even-parity FMPS, the matrices A(0)

σ
1

, · · · , A(0)
σ

ℓ

span the simple algebra of all 2M × 2M matrices for any ℓ > ℓ⋆ for some nonvanishing
integer ℓ⋆. Hence, provided N is sufficiently large, the family of matrices {A(0)

σ
j
(g)} is

related to the family of matrices {eiη(g;b)/N A
(0)
σ

j
} that give the same FMPS (C.2) by the

similarity transformation [see Eqs. (3.35) and (3.40)]

A
(0)
σ

j
(g) = eiφ

(b)
g V −1(g)

[
eiη(g;b)/N A

(0)
σ

j

]
V (g), (C.7a)

for some phase φ(b)
g = [0, 2π) and some invertible 2M × 2M matrix V (g) that must also

obey

V (p) = P , P V (g)P = (−1)κ(g) V (g). (C.7b)

Here, the map κ : Gf → {0, 1} specifies the algebra between the similarity transformation
V (g) corresponding to element g ∈ Gf and the fermion parity P . The effect of the factor
(−1)κ(g) is nothing but the phase

φ
(b)
g = −

1
N
π (b+ 1) κ(g), (C.8)

as follows from Eq. (C.6d).
Equating the right-hand sides of Eqs. (C.7a) and (C.5a) implies

eiθ(g) V −1(g)A
(0)
σ

j
V (g) =

∑
σ′

j

[U(g)]σ
j
σ′

j
Kg
[
A

(0)

σ′
j

]
, (C.9)
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We would like to isolate Kg
[
A

(0)

σ′
j

]
on the right-hand side. To this end, we write

e
iθ(g)
∑

σ
j

[
V†(g)

]
σ′′

j
σ

j

V
−1(g)A(0)

σ
j
U(g) =

∑
σ

j
,σ′

j

[
U†(g)

]
σ′′

j
σ

j

[U(g)]
σ

j
σ′

j
Kg

[
A

(0)

σ′
j

]
.

(C.10a)

To evaluate the right-hand side we use the identities∑
σ

j

[
U†(g)

]
σ′′

j
σ

j

[U(g)]σ
j
σ′

j
=
∑
σ

j

⟨ψ
σ′′

j
|Kg
[(
û†
j (g)|ψσj

⟩
)]

⟨ψσ
j
|
(
ûj(g)|ψσ′

j
⟩
)

=
∑
σ

j

(
⟨ψ
σ′′

j
|ûj(g)

)
|ψσ

j
⟩⟨ψσ

j
|
(
ûj(g)|ψσ′

j
⟩
)

=

(
⟨ψ
σ′′

j
|ûj(g)

) (
ûj(g)|ψσ′

j
⟩
)

= Kg
[

⟨ψ
σ′′

j
|
(
û†
j (g)ûj(g)|ψσ′

j
⟩
)]

= Kg
[

⟨ψ
σ′′

j
|ψ
σ′

j
⟩
]

= δ
σ′′

j
,σ′

j
, (C.10b)

which delivers

Kg
[
A

(0)

σ′′
j

]
= eiθ(g)

∑
σ

j

[
U†(g)

]
σ′′

j
σ

j

V −1(g)A
(0)
σ

j
V (g). (C.10c)

By applying Kg to both sides of this equation, we obtain the selfconsistency condition

A
(0)
σ

j
= Kg

eiθ(g)
∑
σ′

j

[
U†(g)

]
σ

j
σ′

j

V −1(g)A
(0)

σ′
j

V (g)


= ei(−1)c(g) θ(g)

∑
σ′

j

⟨ψσ
j
|
(
û†
j (g)|ψσ′

j
⟩
)
U−1(g)A

(0)

σ′
j

U(g), (C.11a)
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with ûj(g) defined in Eq. (3.12a), and

U(g) :=

{
V (g), if c(g) = 0,

V (g)K, if c(g) = 1.
(C.11b)

Had we chosen the elements h ∈ Gf and g h ∈ Gf , Eq. (C.11a) would give the selfconsis-
tency conditions

A
(0)

σ′′
j

= ei(−1)c(h) θ(h)
∑
σ

j

⟨ψ
σ′′

j
|
(
û†
j (h)|ψσj

⟩
)
U−1(h)A

(0)
σ

j
U(h), (C.11c)

and

A
(0)
σ

j
= ei(−1)c(g h) θ(g h)

∑
σ′

j

⟨ψσ
j
|
(
û†
j (g h)|ψσ′

j
⟩
)
U−1(g h)A

(0)

σ′
j

U(g h), (C.11d)

respectively.
Inserting the selfconsistency condition (C.11a) into the the selfconsistency condition

(C.11c) gives

A
(0)

σ′′
j

= ei(−1)c(h) θ(h)
∑

σ
j

⟨ψ
σ′′

j
|
(
û

†
j (h)|ψσ

j
⟩
)
U

−1(h)

×

e
i(−1)c(g) θ(g)

∑
σ′

j

⟨ψσ
j

|
(
û

†
j (g)|ψσ′

j
⟩
)
U

−1(g)A
(0)

σ′
j

U(g)

U(h)

= ei(−1)c(h) θ(h)+i(−1)c(h)+c(g) θ(g)
∑

σ
j

,σ′
j

⟨ψ
σ′′

j
|
(
û

†
j (h)|ψσ

j
⟩
)

Kh

[
⟨ψσ

j
|
(
û

†
j (g)|ψσ′

j
⟩
)]

×U
−1(h)U−1(g)A

(0)

σ′
j

U(g)U(h)

= ei(−1)c(h) θ(h)+i(−1)c(h)+c(g) θ(g)
∑

σ′
j

⟨ψ
σ′′

j
|û†

j (h)

(
û

†
j (g) |ψ

σ′
j

⟩
)

×U
−1(h)U−1(g)A

(0)

σ′
j

U(g)U(h)

= ei(−1)c(h) θ(h)+i(−1)c(h)+c(g) θ(g)−i(−1)c(g h)ϕ(g,h)
∑

σ′
j

⟨ψ
σ′′

j
|
(
û

†
j (g h) |ψ

σ′
j

⟩
)
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×U
−1(h)U−1(g)A

(0)

σ′
j

U(g)U(h). (C.12)

In reaching the penultimate and last equalities, we used two identities. First,∑
σ

j

⟨ψ
σ′′

j
|
(
û†
j (h) |ψσ

j
⟩
)

Kh
[

⟨ψσ
j
|
(
û†
j (g) |ψ

σ′
j
⟩
)]

= ⟨ψ
σ′′

j
|
(
û†
j (h) û

†
j (g) |ψ

σ′
j
⟩
)

(C.13)

is obviously true when c(h) = 0 since
∑

σ
j

|ψσ
j
⟩ ⟨ψσ

j
| is the resolution of the identity on

Fj . When c(h) = 1, û†
j (h) is antiunitary so that∑

σ
j

⟨ψ
σ′′

j

|
(
û

†
j
(h) |ψσ

j
⟩
)

Kh

[
⟨ψσ

j
|
(
û

†
j
(g) |ψ

σ′
j

⟩
)]

=

∑
σ

j

⟨ψ
σ′′

j

|
(
û

†
j
(h)|ψσ

j
⟩
)[

⟨ψσ
j

|
(
û

†
j
(g) |ψ

σ′
j

⟩
)]∗

=

∑
σ

j

[(
⟨ψ

σ′′
j

| ûj (h)

)
|ψσ

j
⟩⟨ψσ

j
|
(
û

†
j
(g)|ψ

σ′
j

⟩
)]∗

=

[(
⟨ψ

σ′′
j

|ûj (h)

)(
û

†
j
(g)|ψ

σ′
j

⟩
)]∗

= ⟨ψ
σ′′

j

|
(
û

†
j
(h) û†

j
(g)|ψ

σ′
j

⟩
)

. (C.14)

Second, we used the projective representation (3.7) to obtain

û†
j (h) û

†
j (g) =

[
ûj(g) ûj(h)

]†

=
[
e+iϕ(g,h) ûj(g h)

]†

= û†
j (g h) e

−iϕ(g,h)

= e−i(−1)c(g h) ϕ(g,h) û†
j (g h). (C.15)

Equating the right-hand sides of Eqs. (C.12) and (C.11d) gives the condition

U−1(h)U−1(g)A
(0)

σ′
j

U(g)U(h) = eiχ U−1(g h)A
(0)

σ′
j

U(g h), (C.16a)

χ := (−1)c(g h)ϕ(g,h) − (−1)c(h) θ(h) − (−1)c(h)+c(g) θ(g) + (−1)c(g h) θ(g h). (C.16b)
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Upon using the fact that c is a homomorism so that c(g h) = c(g) c(h) holds, we arrive at

W−1(g,h)A(0)
σ

j
W (g,h) = e−iδ(g,h;b) A

(0)
σ

j
, (C.17a)

where

W (g,h) := U(g)U(h)U−1(g h), (C.17b)

δ(g,h; b) := (−1)c(g) θ(h) + θ(g) − ϕ(g,h) − θ(g h). (C.17c)

A forteriori

W−1(g,h)A(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ
W (g,h) = e−iℓ δ(g,h;b) A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ

(C.18)

holds for any positive integer ℓ.
Injectivity of a FMPS implies that for some integer ℓ⋆ > 1 and any ℓ ≥ ℓ⋆ all the

products of the form A
(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ

span the space of all 2M × 2M matrices. Therefore,
Eq. (C.18) combined with injectivity implies that the 2M × 2M matrix W (g,h) is an
element from the center of the algebra defined by the vector space of all 2M × 2M matrices,
i.e., {1

2M}. Condition (C.18) thus simplifies to

A
(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ
= e−iℓ δ(g,h;b) A

(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ

, (C.19)

for any ℓ ≥ ℓ⋆. Choosing a linar combination of A(0)
σ

1
A

(0)
σ

2
· · ·A(0)

σ
ℓ

equating the identity
matrix 1

2M , delivers the constraint

ℓ δ(g,h; b) = 0, ∀ℓ > ℓ⋆ =⇒ δ(g,h; b) = 0. (C.20a)

Inserting the value of δ(g,h; b) given in Eq. (C.17) implies the final constraint

ϕ(g,h) = (−1)c(g) θ(h) + θ(g) − θ(g h). (C.20b)

This is the coboundary condition (3.10) when ϕ′ = 0. In other words, the local represen-
tation ûj is equivalent to the trivial projective representation.
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c.1.2 Odd-Parity FMPS

Let [see Eq. (B.12)]

|{A(1)
σ

j
}; b⟩ =

∑
σ

tr
[
P b Y A

(1)
σ

1
A

(1)
σ

2
· · ·A(1)

σ
N

]
|ψσ

1
⟩ |ψσ

2
⟩ · · · |ψσ

N
⟩ (C.21)

be a translation-invariant, Gf -symmetric, odd-parity (each matrix A(1)
σ

j
commutes with

the matrix Y ), and injective FMPS obeying periodic boundary conditions when b = 0 or
antiperiodic boundary conditions when b = 1. For any g ∈ Gf , the global representation
Û(g) of g is defined in Eq. (3.12a). By assumption, |{A(1)

σ
j

}; b⟩ is a nondegenerate gapped
ground state of some local fermionic Hamiltonian in one-dimensional space. Hence, for
any g ∈ Gf , there exists a phase η(g; b) ∈ [0, 2π) such that

Û(g) |{A(1)
σ

j
}; b⟩ = eiη(g;b))|{A(1)

σ
j

}; b⟩. (C.22)

The counterpart to Eq. (C.5) is

Û(g)|{A(1)
σ

j
}; b⟩ =

∑
σ

tr
[
P b Y A

(1)
σ

1
(g)A

(1)
σ

2
(g) · · ·A(1)

σ
N
(g)

]
|ψσ

1
⟩ |ψσ

2
⟩ · · · |ψσ

N
⟩,

(C.23a)

A
(1)
σ

j
(g) :=

∑
σ′

j

⟨ψσ
j
| v̂j(g) |ψ

σ′
j
⟩ Kg

[
A

(1)

σ′
j

]
=
∑
σ′

j

U(g)
σ

j
,σ′

j
A

(1)

σ′
j

, (C.23b)

Kg
[
A

(1)
σ

j

]
:=


A

(1)
σ

j
, if c(g) = 0,

KA(1)
σ

j
K, if c(g) = 1.

(C.23c)

Odd-parity injective FMPS differ from the even ones in one crucial way. There exists a
positive integer ℓ⋆ ≥ 1 such that for any ℓ ≥ ℓ⋆ the products of the form A

(1)
σ

1
A

(1)
σ

2
· · ·A(1)

σ
ℓ

span the Z2-graded algebra of 2M × 2M matrices with the center
{

1
2M ,Y

}
. Conse-

quently, there exists a 2M × 2M invertible matrix V (g) and a phase θ(g) ∈ [0, 2π) such
that [recall Eq. (3.35)]

V (g) = P V (g)P , V (g) = (−1)ζ(g) Y V (g) Y , ζ(g) = 0, 1, (C.24a)
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with ζ : Gf → {−1,+1} a group homomorphism and

A
(1)
σ

j
(g) = eiθ(g) V −1(g)A

(1)
σ

j
V (g). (C.24b)

The same steps that lead to Eq. (C.6) then give

tr
[
P b Y A

(1)
σ

1
(g)A

(1)
σ

2
(g) · · ·A(1)

σ
N
(g)

]
= eiη(g;b) tr

[
P b Y A

(1)
σ

1
A

(1)
σ

2
· · ·A(1)

σ
N

]
(C.25a)

with the solution

A
(1)
σ

j
(g) = eiθ(g) V −1(g)A

(1)
σ

j
V (g), (C.25b)

Y V (g) Y = (−1)ζ(g) V (g), (C.25c)

θ(g) :=
1
N

[η(g; b) − π κ(g)] . (C.25d)

All the steps leading to Eq. (C.17) deliver

W−1(g,h)A(1)
σ

j
W (g,h) = e−iδ(g,h;b) A

(1)
σ

j
, σj = 1, · · · , D, j = 1, · · · ,N ,

(C.26a)
where

W (g,h) := U(g)U(h)U−1(g h), (C.26b)

δ(g,h; b) := (−1)c(g) θ(h) + θ(g) − ϕ(g,h) − θ(g h), (C.26c)

and U(g) = V (g) if c(g) = 0 and U(g) = V (g)K if c(g) = 1. Because V (g) commutes with
P so does W (g,h). Because all possible products of the form A

(1)
σ

1
A

(1)
σ

2
· · ·A(1)

σ
ℓ

span the Z2-
graded algebra of 2M × 2M matrices with the center

{
1

2M ,Y
}

, W (g,h) is, up to a phase
factor, proportional to 1

2M . The counterpart to the even-parity coboundary condition
(C.20) then follows, thereby completing the proof of Theorem 2 for the parity-odd FMPS.

c.2 proof by twisted boundary conditions for unitary groups

The lattice is Λ = {1, · · · ,N} ≡ ZN with N an integer. The global fermionic Fock space
FΛ is of dimension 2mN with n = 2m an even number of local Majorana flavors. The
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local Fj and global FΛ Fock spaces are generated by the Hermitian Majorana operators
χ̂j,a obeying the Clifford alegbra{

χ̂j,a, χ̂j′,a′

}
= 2 δj,j′ δa,a′ , j, j′ = 1, · · · ,N , a, a′ = 1, · · · ,n = 2m. (C.27)

The local and global fermion parity operators are

p̂j :=
m∏
a=1

iχ̂j,2a−1 χ̂j,2a, P̂Λ :=
N∏
j=1

p̂j , (C.28)

respectively. Any polynomial ĥj in the Majorana operators that is of finite order, of
finite range r (the integer r is the maximum separation between the space labels of the
Majorana operators entering ĥj) of even parity (P̂Λ ĥj P̂Λ = ĥj), and Hermitian (ĥ†

j = ĥj)
is a local Hamiltonian. We define the unitary operator T̂1 by its action

T̂1 χ̂j,a T̂
−1
1 =


χ̂j+1,a, if j = 1, · · · ,N − 1 and a = 1, · · · ,n = 2m,

χ̂1,a, if j = N and a = 1, · · · ,n = 2m.

(C.29)

It follows that
T̂N1 = 1̂

2mN , (C.30)

i.e., T̂1 is a unitary representation of the generator of the cyclic group ZN . For any
Abelian central extension Gf of G by ZF2 and for any g ∈ Gf , we assume the projective
representation (3.7) with

ûj(g) = v̂j(g) [as c(g) = 0 always hold by hypothesis] (C.31)

a polynomial in χ̂j,a with a = 1, · · · ,n = 2m. We make the identifications

v̂j(e) ≡ 1̂2m , v̂j(p) ≡ p̂j , p̂j v̂j(g) p̂j = (−1)ρ(g) v̂j(g), j = 1, · · · ,N ,

Û(e) ≡ 1̂
2mN , Û(p) ≡ P̂Λ, Û(g) :=

N∏
j=1

v̂j(g), ∀g ∈ Gf .

(C.32)
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We assume that the Hamiltonian ĥj is Gf invariant (symmetric), i.e.,

ĥj = Û(g) ĥj Û
−1(g), ∀g ∈ Gf . (C.33)

By construction, the Hamiltonian defined by [recall Eq. (3.58)]

Ĥpbc :=
N∑
n=1

(
T̂1

)n
ĥj
(
T̂ †

1

)n
, Û(g) ĥj Û

−1(g), ∀g ∈ Gf , (C.34a)

is translation invariant (symmetric),

T̂1 Ĥpbc T̂
−1
1 = Ĥpbc, (C.34b)

and Gf invariant (symmetric),

Û(g) Ĥpbc Û
−1(g) = Ĥpbc, ∀g ∈ Gf . (C.34c)

We define the family of twisted translation operators

T̂1(g) := v̂1(g) T̂1, g ∈ Gf , c(g) = 0. (C.35)

Their action on the Majorana spinor

χ̂j :=
(
χ̂j,1 · · · χ̂j,n

)T
(C.36a)

differ from that in Eq. (C.29),

T̂1(g) χ̂j T̂
−1
1 (g) =


(−1)ρ(g) χ̂j+1, if j ̸= N ,

v̂1(g) χ̂1 v̂
−1
1 (g), if j = N .

(C.36b)

We have the identity[
T̂1(g)

]N
=
[
v̂1(g) T̂1

] [
v̂1(g) T̂1

]
· · ·
[
v̂1(g) T̂1

] [
v̂1(g) T̂1

]
= v̂1(g)

[
T̂1 v̂1(g) T̂1

]
· · · v̂1(g)

[
T̂1 v̂1(g) T̂1

]
= v̂1(g)

[
T̂1 v̂1(g) T̂1

]
· · · v̂1(g)

[
T̂1 v̂1(g) T̂

−1
1

]
T̂ 2

1
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Eq. (C.29) = v̂1(g)
[
T̂1 v̂1(g) T̂1

]
· · · v̂1(g) v̂2(g) T̂

2
1

= Û(g) T̂N1

Eq. (C.30) = Û(g). (C.37)

Finally, we define the family of twisted Hamiltonians

Ĥtlt
tw (g) :=

N∑
j=1

[
T̂1(g)

]j
ĥtlt

1

[
T̂−1

1 (g)
]j

, ĥtlt
1 = Û(h) ĥtlt

1 Û−1(h), ∀h ∈ Gf .

(C.38)

By design,

T̂1(g) Ĥ
tlt
tw (g) T̂−1

1 (g) =

N−1∑
j=1

[
T̂1(g)

]j+1
ĥ

tlt
1

[
T̂

−1
1 (g)

]j+1
+
[
T̂1(g)

]N+1
ĥ

tlt
1

[
T̂

−1
1 (g)

]N+1

Eq. (C.37) =

N−1∑
j=1

[
T̂1(g)

]j+1
ĥ

tlt
1

[
T̂

−1
1 (g)

]j+1
+ T̂1(g)

[
Û(g) ĥtlt

1 Û
−1(g)

]
T̂

−1
1 (g)

G
f

symmetry =

N−1∑
j=1

[
T̂1(g)

]j+1
ĥ

tlt
1

[
T̂

−1
1 (g)

]j+1
+ T̂1(g) ĥ

tlt
1 T̂

−1
1 (g)

= Ĥtlt
tw (g). (C.39)

We are going to derive the important identity

Û(h) T̂1(g) Û
−1(h) = eiχ(g,h) T̂1(g), ∀g,h ∈ Gf , (C.40a)

with the phase

χ(g,h) := ϕ(h, g) − ϕ(g,h) + π ρ(h) [ρ(g) + 1] (N − 1), ∀g,h ∈ Gf . (C.40b)

We shall then specify the conditions under which the algebra defined by Eqs. (C.39) and
(C.40) guarantees that the spectrum of the twisted Hamiltonian is degenerate.

Proof. We begin with the proof of Eq. (C.40). We choose two elements g,h ∈ Gf with
the local representations v̂1(g) and v̂1(h), respectively, both of which are unitary.
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Step 1. We observe that

Û(h) v̂1(g) = v̂1(h) v̂2(h) · · · v̂N (h) v̂1(g). (C.41)

We can then interchange the local operator v̂j(h) and v̂
j′ (g) pairwise at the cost of the

fermionic phase (−1)ρ(h) ρ(g) for any j, j′ = 1, · · · ,N . This is done (N − 1) times

Û(h) v̂1(g) = (−1)ρ(g) ρ(h)(N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h). (C.42)

We conclude with

Û(h) v̂1(g) = (−1)ρ(g) ρ(h)(N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h). (C.43)

Step 2. We begin with

T̂1 Û
−1(h) = T̂1 v̂

−1
N (h) v̂−1

N−1
(h) · · · v̂−1

1 (h)

=
[
T̂1 v̂

−1
N (h) T̂−1

1

] [
T̂1 v̂

−1
N−1

(h)T̂−1
1

]
· · ·
[
T̂1 v̂

−1
1 (h)T̂−1

1

]
T̂1

Eq. (3.57a) = v̂−1
1 (h) v̂−1

N (h) · · · v̂−1
2 (h) T̂1. (C.44)

Hence,

T̂1 Û
−1(h) = (−1)ρ(h)(N−1)v̂−1

N (h) v̂−1
N−1

(h) · · · v̂−1
1 (h) T̂1, (C.45)

where we have reordered the factors v̂−1
j (h) and, in doing so, obtained the coefficient

(−1)ρ(h)(N−1) that encodes the fermionic algebra.
Step 3. We combine Eqs. (C.43) and (C.45) into

Û(h) T̂1(g) Û
−1(h) = (−1)ρ(h) [ρ(g)+1](N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h)

× v̂−1
N (h) · · · v̂−1

1 (h) T̂1

= (−1)ρ(h) [ρ(g)+1](N−1)v̂1(h) v̂1(g) v̂
−1
1 (h) T̂1. (C.46)

Step 4. We need to massage v̂1(h) v̂1(g) v̂
−1
1 (h). To this end, we use the fact that the

group Gf is Abelian to obtain

v̂1(h) v̂1(g) v̂
−1
1 (h) = eiϕ(h,g) v̂1(h g) v̂

−1
1 (h)

= eiϕ(h,g) v̂1(g h) v̂
−1
1 (h)
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= eiϕ(h,g)
[
e−iϕ(g,h) v̂1(g) v̂1(h)

]
v̂−1

1 (h)

= eiϕ(h,g)−iϕ(g,h) v̂1(g). (C.47)

Insertion into the right-hand side of Eq. (C.46) delivers the result

Û(h) T̂1(g) Û
−1(h) = (−1)ρ(h) [ρ(g)+1] (N−1)eiϕ(h,g)−iϕ(g,h) v̂1(g) T̂1

≡ eiχ(g,h) T̂1(g), (C.48a)

with the definition

χ(g,h) =ϕ(h, g) − ϕ(g,h) + π ρ(h) [ρ(g) + 1] (N − 1). (C.48b)

Step 5. It is instructive to derive the transformation law of the phase (C.48b) under
the global U(1) gauge transformation generated by

v̂j(g) =: eiξ(g) v̂′
j(g), j = 1, · · · ,N , ∀g ∈ Gf . (C.49)

Under this transformation,

ϕ′(g,h) = ϕ(g,h) − ξ(g) − ξ(h) + ξ(g h), ∀g,h ∈ Gf , (C.50)

is the phase entering the projective algebra obeyed by the operators {v̂′
j(g) | g ∈ Gf}

according to Eq. (3.10b). Hence, if we define

χ′(g,h) := ϕ′(h, g) − ϕ′(g,h) + π ρ′(h) [ρ′(g) + 1] (N − 1), ∀g, h ∈ Gf , (C.51)

we then have the relation

χ(g,h) =ϕ′(h, g) − ϕ′(g,h) + π ρ(h) [ρ(g) + 1] (N − 1)

=χ′(g,h) + ξ(h) + ξ(g) − ξ(h g) − ξ(g) − ξ(h) + ξ(g h)

=χ′(g,h), ∀g, h ∈ Gf . (C.52)

Hence, χ(g,h) is gauge invariant under the U(1) gauge transformation (C.49). The pair
of cocyles ϕ′ and ϕ are equivalent if and only if they have the same second cohomology
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class [ϕ] = [ϕ′] ∈ H2
(
Gf , U(1)

)
, i.e., if and only if they are related by the U(1) gauge

transformation (C.50). The gauge invariance of χ implies that it is independent of
the choice made of ϕ within the equivalence class [ϕ] ∈ H2

(
Gf , U(1)

)
. For example,

χ(g,h) = 0 holds for all g,h ∈ Gf for any ϕ belonging to the trivial second cohomology
class [ϕ] = 0 since the function ϕ = 0 belongs to [ϕ] = 0. As a corollary, there exists a
pair g,h ∈ Gf for which χ(g,h) is nonvanishing if and only if [ϕ] ̸= 0.

Step 6. The twisted Hamiltonian Ĥtlt
tw (g) is constructed so as to commute with

the generator T̂1(g) of twisted translations and with the representation Û(h) of any
group element h ∈ Gf , whereby passing Û(h) from the left through T̂1(g) produces
the phase exp

(
iχ(g,h)

)
. If it is possible to find a pair (g,h) such that χ(g,h) is not 0

modulo 2π, then the spectrum of Ĥtlt
tw (g) must be degenerate. Indeed, any simultaneous

eigenstate |E(g), exp
(

iK(g)
)

⟩ of Ĥtlt
tw (g) and T̂1(g) must be orthogonal to the state

Û(h) |E(g), exp
(

iK(g)
)

⟩, which is also an eigenstate of Ĥtlt
tw (g) with the energy E(g) but

has the eigenvalue exp
(

i[K(g) + χ(g,h)]
)

̸= exp
(

iK(g)
)

with respect to T̂1(g).
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In this Appendix, we complement Chapter 7 by presenting the details of derivations.

d.1 details for even-even stacking

Proof of Eq. (7.13). For the identity e ∈ ZF2 , we have

V̂1(e) = 1̂1, V̂2(e) = 1̂2, ρ1(e) = ρ2(e) = 0, (D.1a)

which delivers when inserted in Eq. (7.12)

Û∧(e) = 1̂1 1̂2 ≡ 1̂∧. (D.1b)

For the fermion parity p ∈ ZF2 , we have

V̂1(p) = Û1(p), V̂2(p) = Û2(p), ρ1(p) = ρ2(p) = 0, (D.2a)

which delivers when inserted in Eq. (7.12)

Û∧(p) = Û1(p) Û2(p). (D.2b)

Proof that definition (7.12) satisfies Eq. (7.4) and, a forteriori, Eq. (6.17). Without loss
of generality, we only consider the action of Û∧(g) on a Majorana operator γ̂(1)i associated
with representation Û1 for any i = 1, · · · ,n1. We have

Û∧(g) γ̂
(1)
i Û†

∧(g) = V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) Kc(g)
∧

× γ̂
(1)
i

× Kc(g)
∧
[
Û†

2 (p)
]ρ1(g)

[
Û†

1 (p)
]ρ2(g) V̂ †

2 (g) V̂ †
1 (g)
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= V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g)

× γ̂
(1)
i

1,g

×
[
Û†

2 (p)
]ρ1(g)

[
Û†

1 (p)
]ρ2(g) V̂ †

2 (g) V̂ †
1 (g), (D.3a)

where we used Eq. (7.6) to trade complex conjugation by K∧ with complex conjugation

by K1. As Majorana operator γ̂(1)i
1,g

commutes with Û2(p), while it anticommutes with
Û1(p), one finds

Û∧(g) γ̂
(1)
i Û†

∧(g) = (−1)ρ2(g) V̂1(g) V̂2(g) γ̂
(1)
i

1,g

V̂ †
2 (g) V̂ †

1 (g). (D.3b)

Passing V̂2(g) to the right of γ̂(1)i brings a second multiplicative phase factor of (−1)ρ2(g).
Hence,

Û∧(g) γ̂
(1)
i Û†

∧(g) = V̂1(g) γ̂
(1)
i

1,g

V̂ †
1 (g). (D.3c)

The definition (6.19) then implies that

Û∧(g) γ̂
(1)
i Û†

∧(g) = V̂1(g)Kc(g)
1 γ̂

(1)
i Kc(g)

1 V̂ †
1 (g)

= Û1(g) γ̂
(1)
i Û†

1 (g), (D.3d)

which is nothing but the condition (7.4).

Proof of Eq. (7.14a). When the representations Û∧(g) and Û∧(h) of two elements g and
h of Gf are composed, we obtain from definition (7.12)

Û∧(g) Û∧(h) = V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) Kc(g)
∧

× V̂1(h) V̂2(h)
[
Û1(p)

]ρ2(h)
[
Û2(p)

]ρ1(h) Kc(h)
∧

= V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g)

× V̂1(h)
∧,g

V̂2(h)
∧,g [

Û1(p)
]ρ2(h)

[
Û2(p)

]ρ1(h) Kc(g h)
∧ , (D.4a)
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we used the reality condition obeyed by Û1(p) and Û2(p), and the fact that

c(g) + c(h) = c(g h) mod 2. (D.4b)

According to definition (7.6), we can trade K∧ with K1 and K2 when K∧ acts on
operators V̂1 and V̂2, respectively. We therefore find

Û∧(g) Û∧(h) =V̂1(g) V̂2(g)
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g)

× V̂1(h)
1,g

V̂2(h)
2,g [

Û1(p)
]ρ2(h)

[
Û2(p)

]ρ1(h) Kc(g h)
∧ . (D.5)

We can bring V̂1(h)
1,g

to the right of V̂1(g) at the cost of the multiplicative phase factor
(−1)2ρ1(h)ρ2(g) = 1. This multiplicative phase factor arises from two multiplicative phase
factors. In turn, each multiplicative phase factor arises from the identity

V̂i (g) V̂j(h) = (−1)ρi(g) ρj (h) V̂j(h) V̂i (g), i ̸= j = 1, 2, (D.6)

that holds for any pair V̂i (g) and V̂j(h) of unitary operators with i ̸= j = 1, 2. This
identity simply states that V̂1(g) and V̂2(h) either commute when none of them are simulta-

neously fermionic or anticommute otherwise. Now, V̂1(h)
1,g

commutes with
[
Û2(p)

]ρ1(g)

for ρ2(p) = 0 while it shares the same parity as the Û1(p) parity of Û1(h). Commut-

ing V̂1(h)
1,g

across
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) produces the multiplicative phase factor

(−1)ρ1(h)ρ2(g). Commuting V̂1(h)
1,g

with V̂2(g) brings another factor of (−1)ρ1(h)ρ2(g).
One is left with

Û∧(g) Û∧(h) = V̂1(g) V̂1(h)
1,g

V̂2(g)
[
Û1(p)

]ρ
2
(g) [

Û2(p)
]ρ

1
(g)

× V̂2(h)
2,g [

Û1(p)
]ρ

2
(h) [

Û2(p)
]ρ

1
(h)

Kc(g h)
∧ . (D.7)

The next step consists in passing
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g) to the right of V̂2(h)
2,g

at
the cost of the multiplicative phase factor (−1)ρ1(g)ρ2(h). One is left with

Û∧(g) Û∧(h) =(−1)ρ1(g)ρ2(h) V̂1(g) V̂1(h)
1,g

V̂2(g) V̂2(h)
2,g

×
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g)
[
Û1(p)

]ρ2(h)
[
Û2(p)

]ρ1(h) Kc(g h)
∧ . (D.8)
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To proceed, we combine the manipulations

V̂i (g) V̂i (h)
i,g

= V̂i (g)Kc(g)
i V̂i (h)Kc(h)

i Kc(h)
i Kc(g)

i

= Ûi(g) Ûi(h)Kc(h)
i Kc(g)

i

= eiϕi(g,h) Ûi(g h)Kc(g h)
i , i = 1, 2, (D.9a)

with the manipulations[
Û1(p)

]ρ2(g h)
[
Û2(p)

]ρ1(g h) =
[
Û1(p)

]ρ2(g)+ρ2(h)
[
Û2(p)

]ρ1(g)+ρ1(h)

=
[
Û1(p)

]ρ2(g)
[
Û1(p)

]ρ2(h)

×
[
Û2(p)

]ρ1(g)
[
Û2(p)

]ρ1(h)

=
[
Û1(p)

]ρ2(g)
[
Û2(p)

]ρ1(g)

×
[
Û1(p)

]ρ2(h)
[
Û2(p)

]ρ1(h) . (D.9b)

One is left with

Û∧(g) Û∧(h) = eiϕ1(g,h)+iϕ2(g,h)+iπ ρ1(g) ρ2(h) V̂1(g h) V̂2(g h)

×
[
Û1(p)

]ρ2(g h)
[
Û2(p)

]ρ1(g h) Kc(g h)
∧

≡ eiϕ∧(g,h) Û∧(g h), (D.10a)

where
ϕ∧(g,h) := ϕ1(g,h) + ϕ2(g,h) + π ρ1(g) ρ2(h) (D.10b)

and
Û∧(g h) := V̂1(g h) V̂2(g h)

[
Û1(p)

]ρ2(g h)
[
Û2(p)

]ρ1(g h) Kc(g h)
∧ . (D.10c)

d.2 details for even-odd stacking

Proof of Eq. (7.19). For the identity e ∈ ZF2 , we have

V̂1(e) = 1̂1, V̂2(e) = 1̂2, Q̂2(e) = 1̂2, ρ1(e) = ρ2(e) = 0, (D.11a)
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which delivers when inserted in Eq. (7.18)

Û∧(e) = 1̂1 1̂2 ≡ 1̂∧. (D.11b)

For the fermion parity p ∈ ZF2 , we have

V̂1(p) = Û1(p), V̂2(p) = P̂2 iγ̂(2)n
2

, Q̂2(p) = γ̂
(2)
∞ , (D.12a)

ρ1(p) = 0, ρ2(p) = 1, (D.12b)

where, by definition (6.24), P̂2 is the fermion parity operators constructed from the
generators of the Clifford algebra Cℓn

2
−1. When these definitions are inserted in Eq.

(7.18), one finds

Û∧(p) = Û1(p) P̂2 iγ̂(2)n
2
γ̂
(2)
∞ = Û1(p) Û2(p). (D.12c)

Proof that definition (7.18) satisfies Eq. (7.4) and, a forteriori, Eq. (6.17). We begin with
the action of Û∧(g) on a Majorana operator γ̂(1)i associated with representation Û1 for
any i = 1, · · · ,n1. We have

Û∧(g) γ̂
(1)
i Û†

∧(g) = V̂∧(g) Q̂∧(g)Kc(g)
∧ γ̂

(1)
i Kc(g)

∧ Q̂†
∧(g) V̂

†
∧(g)

= V̂∧(g) Q̂∧(g) γ̂
(1)
i

1,g

Q̂†
∧(g) V̂

†
∧(g), (D.13a)

where we have used the definition (7.6) to trade complex conjugation by K∧ with complex

conjugation by K1. We seek to interchange the order between Q̂∧(g) with γ̂
(1)
i

1,g

. By
definition (7.18), Q̂∧(g) only contains the Majorana operator γ̂(2)∞ , which anticommutes
with γ̂

(1)
i for any i = 1, · · · ,n1. One finds

Û∧(g) γ̂
(1)
i Û†

∧(g) = (−1)q2(g)+ρ1(g)V̂∧(g) γ̂
(1)
i

1,g

V̂ †
∧(g)

= (−1)q2(g)+ρ1(g)V̂1(g) V̂2(g)
[
Û1(p)

]ρ1(g)

× γ̂
(1)
i

1,g

×
[
Û†

1 (p)
]ρ1(g) V̂ †

2 (g) V̂ †
1 (g). (D.13b)
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As the fermion parity operator Û1(p) anticommutes with γ̂
(1)
i , interchanging their order

results in the phase factor (−1)ρ1(g). The phase factor (−1)q2(g) dictates if the unitary
operator V̂ †

2 (g) commutes or anticommutes with γ̂
(1)
i [indeed q2(g) is the fermion parity

of the unitary operator V̂2(g) according to Eq. (6.27)]. Hence, interchanging their order
delivers

Û∧(g) γ̂
(1)
i Û†

∧(g) = (−1)2q2(g)+2ρ1(g) V̂1(g) γ̂
(1)
i

1,g

V̂ †
1 (g)

= Û1(g) γ̂
(1)
i Û†

1 (g), (D.13c)

for any i = 1, · · · ,n1. This is nothing but Eq. (7.4) for representation Û1.
Second, we need to evaluate the action of Û∧(g) on the Majorana operator γ̂(2)i associated

with representation Û2 for any i = 1, · · · ,n2. We have

Û∧(g) γ̂
(2)
i Û†

∧(g) = V̂∧(g) Q̂∧(g)Kc(g)
∧ γ̂

(2)
i Kc(g)

∧ Q̂†
∧(g) V̂

†
∧(g)

= V̂∧(g) Q̂∧(g) γ̂
(2)
i

2,g

Q̂†
∧(g) V̂

†
∧(g), (D.14a)

where we have used the definition (7.6) to trade complex conjugation by K∧ with complex
conjugation by K2. By definition (7.18), Q̂∧(g) contains only the Majorana operator γ̂(2)∞ ,
which anticommutes with γ̂

(2)
i for any i = 1, · · · ,n2. One finds

Û∧(g) γ̂
(2)
i Û†

∧(g) = (−1)q2(g)+ρ1(g)V̂∧(g) γ̂
(2)
i

2,g

V̂ †
∧(g)

= (−1)q2(g)+ρ1(g) V̂1(g) V̂2(g)
[
Û1(p)

]ρ1(g)

× γ̂
(2)
i

2,g

×
[
Û†

1 (p)
]ρ1(g) V̂ †

2 (g) V̂ †
1 (g)

= (−1)q2(g)+ρ1(g) V̂2(g) V̂1(g)
[
Û1(p)

]ρ1(g)

× γ̂
(2)
i

2,g

×
[
Û†

1 (p)
]ρ1(g) V̂ †

1 (g) V̂ †
2 (g), (D.14b)

where, in reaching the last line, we have interchanged V̂1(g) and V̂2(g) on the left and
V̂ †

1 (g) and V̂ †
2 (g) on the right. Both interchanges cost the same multiplicative phase
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factor ±1 and cancel each other. The fermion parity operator Û1(p) itself carries even
fermion parity and therefore commute with γ̂

(2)
i for any i = 1, · · · ,n2, i.e.,

Û∧(g) γ̂
(2)
i Û†

∧(g) = (−1)q2(g)+ρ1(g) V̂2(g) V̂1(g) γ̂
(2)
i

2,g

V̂ †
1 (g) V̂ †

2 (g), (D.14c)

Passing operator V̂1(g) through γ̂(2)i costs the phase factor (−1)ρ1(g). Hence, one obtains

Û∧(g) γ̂
(2)
i Û†

∧(g) = (−1)q2(g) V̂2(g) γ̂
(2)
i

2,g

V̂ †
2 (g)

= (−1)q2(g) V̂2(g) γ̂
(2)
i

2,g [
γ̂
(2)
∞

]q2(g)
[
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g)

= V̂2(g)

[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
i

2,g [
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g), (D.14d)

where we have used the fact that γ̂(2)∞ squares to identity to reach the second equality and

that
[
γ̂
(2)
∞

]q2(g)

anticommutes with γ̂
(2)
i to reach the last equality. Recalling Eq. (6.27),

one observes

Û∧(g) γ̂
(2)
i Û†

∧(g) = V̂2(g)

[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
i

2,g [
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g)

= V̂2(g) Q̂2(g)Kc(g)
2 γ̂

(2)
i Kc(g)

2 Q̂†
2(g) V̂

†
2 (g)

= Û2(g) γ̂
(2)
i Û†

2 (g), (D.14e)

which is nothing but Eq. (7.4) for representation Û2.

Remark. For any g ∈ Gf , the definition (7.18) guarantees that Û∧(g) is of even fermion
parity. This property is inherited from the facts that Û2(g) is of even fermion parity ac-

cording to Eq. (6.27) and by the presence of the factor
[
Û1(p) γ̂

(2)
∞

]ρ1(g)

that compensates

for the fermion parity of the operator V̂1(g).

Proof of Eq. (7.20a). When representations Û∧(g) and Û∧(h) of two elements g,h ∈ Gf
are composed, we obtain from definition (7.18)

Û∧(g) Û∧(h) = V̂1(g) V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

Kc(g)
∧
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× V̂1(h) V̂2(h) Q̂2(h)

[
Û1(p) γ̂

(2)
∞

]ρ1(h)

Kc(h)
∧

= V̂1(g) V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

× V̂1(h)
1,g

V̂2(h)
2,g

Q̂2(h)
2,g
[
Û1(p) γ̂

(2)
∞

2,g
]ρ1(h)

Kc(g h)
∧ . (D.15)

We can safely commute the operator V̂1(h)
1,g

to the left of the operator V̂2(g). This is
so for two reasons. First, V̂2(g) Q̂2(g) has even fermion parity by definition and thus

commutes with V̂1(h)
1,g

. Second, the product
[
Û1(p) γ̂

(2)
∞

]ρ1(g)

commutes with V̂1(h)
1,g

since both Û1(p) and γ̂
(2)
∞ anticommute with V̂1(h)

1,g

if ρ1(g) = 1. One is left with

Û∧(g) Û∧(h) = V̂1(g) V̂1(h)
1,g

V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

× V̂2(h)
2,g

Q̂2(h)
2,g
[
Û1(p) γ̂

(2)
∞

2,g
]ρ1(h)

Kc(g h)
∧

= eiϕ1(g,h) V̂1(g h) V̂2(g) Q̂2(g)

[
Û1(p) γ̂

(2)
∞

]ρ1(g)

× V̂2(h)
2,g

Q̂2(h)
2,g
[
Û1(p) γ̂

(2)
∞

2,g
]ρ1(h)

Kc(g h)
∧ , (D.16)

where in reaching the last line we made use of Eq. (D.9a) to trade V̂1(g) V̂1(h)
1,g

with
V̂1(g h). We can further safely commute the operator Û1(p) to the left of Kc(g h)

∧ since
Û1(p) is an even parity operator from representation Û1 and therefore commutes with all
operators from representation Û2. We find

Û∧(g) Û∧(h) = eiϕ1(g,h) V̂1(g h) V̂2(g) Q̂2(g)

[
γ̂
(2)
∞

]ρ1(g)

× V̂2(h)
2,g

Q̂2(h)
2,g
[
γ̂
(2)
∞

2,g
]ρ1(h) [

Û1(p)
]ρ1(g)+ρ1(h) Kc(g h)

∧

= eiϕ1(g,h) V̂1(g h) V̂2(g) Q̂2(g)

[
γ̂
(2)
∞

]ρ1(g)
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× V̂2(h)
2,g

Q̂2(h)
2,g
[
γ̂
(2)
∞

2,g
]ρ1(h) [

Û1(p)
]ρ1(g h) Kc(g h)

∧ , (D.17)

where the fact that ρ1 is a group homomorphism is used in reaching the last line. We shall

pass the operator
[
γ̂
(2)
∞

]ρ1(g)

to the right of Q̂2(h)
2,g

. Doing so costs the phase factor

(−1)ρ1(g) q2(h) since γ̂(2)∞ commutes with Q̂2(g) for any g and the operator V̂2(h)
2,g

has
fermion parity q(h) [recall definition (6.27)]. We obtain the expression

Û∧(g) Û∧(h) = eiϕ1(g,h)+iπρ1(g) q2(h) V̂1(g h) V̂2(g) Q̂2(g) V̂2(h)
2,g

Q̂2(h)
2,g

×
[
γ̂
(2)
∞

]ρ1(g)
[
γ̂
(2)
∞

2,g
]ρ1(h) [

Û1(p)
]ρ1(g h) Kc(g h)

∧

= eiϕ1(g,h)+iϕ2(g,h)+iπρ1(g) q2(h) V̂1(g h) V̂2(g h) Q̂2(g h)

×
[
γ̂
(2)
∞

]ρ1(g)
[
γ̂
(2)
∞

2,g
]ρ1(h) [

Û1(p)
]ρ1(g h) Kc(g h)

∧ , (D.18a)

where in reaching the last line we did the manipulations

V̂2(g) Q̂2(g) V̂2(h)
2,g

Q̂2(h)
2,g

= V̂2(g) Q̂2(g)Kc(g)
2 V̂2(h) Q̂2(h)Kc(g)

2

= Û2(g) Û2(h)Kc(h)
2 Kc(g)

2

= eiϕ2(g,h) Û2(g h)Kc(g h)
2

= eiϕ2(g,h) V̂2(g h). (D.18b)

The identity (6.30b) allows one to trade γ̂(2)∞
2,g

for (−1)(c(g)+q2(g)+ρ2(g)) γ̂
(2)
∞ . Because

the fermion parity of Û1(p) is even,
[
γ̂
(2)
∞

]ρ1(g)
[
γ̂
(2)
∞

]ρ1(h) [
Û1(p)

]ρ1(g h) can be replaced

with
[
Û1(p)γ̂

(2)
∞

]ρ1(g h)

. One is left with

Û∧(g) Û∧(h) = eiϕ1(g,h)+iϕ2(g,h)+iπρ1(g) q2(h)+iπ[c(g)+q2(g)+ρ2(g)]ρ1(h)

× V̂1(g h) V̂2(g h) Q̂2(g h)

[
Û1(p) γ̂

(2)
∞

]ρ1(g h)

Kc(g h)
∧

≡ eiϕ∧(g,h) Û∧(g h), (D.19a)
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where

ϕ∧(g,h) := ϕ1(g,h) + ϕ2(g,h) + πρ1(g) q2(h) + πρ1(h) [c(g) + q2(g) + ρ2(g)] , (D.19b)

and

Û∧(g h) := V̂1(g h) V̂2(g h) Q̂2(g h)

[
Û1(p)γ̂

(2)
∞

]ρ1(g h)

Kc(g h)
∧ . (D.19c)

Proof of (7.21). We shall show that the expression (D.19b) for ϕ∧(g,h) is gauge equivalent
to

ϕ′
∧(g,h) := ϕ1(g,h) + ϕ2(g,h) + πρ1(g) ρ2(h) + πρ1(g) c(h). (D.20)

In order to transform Eq. (D.19b) to Eq. (D.20), we shall trade the 1-cochain q2 with the
1-cochain ρ2. We will make use of the identity (6.30b). First, note that the Majorana
operator γ̂(2)∞ may be odd or even under complex conjugation by K2. We introduce an
auxiliary index ζ to label its eigenvalue under conjugation by K2 through

γ̂
(2)
∞

2

:= r(−1)ζ γ̂(2)∞ . (D.21)

Second, depending on whether an element g ∈ Gf is unitary [c(g) = 0] or antiunitary
[c(g) = 1], the identity (6.30b) becomes

γ̂
(2)
∞ = (−1)q2(g)+ρ2(g) γ̂

(2)
∞ , (D.22a)

or

γ̂
(2)
∞ = (−1)c(g)+q2(g)+ρ2(g)+ζ γ̂

(2)
∞ , (D.22b)

respectively. Since both sides contain the same Majorana operator γ̂(2)∞ , the phase factors
must be equal. In other words, we have the identification

q2(g) = c(g)(1 + ζ) + ρ2(g) mod 2. (D.22c)
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We are going to show that the last four terms on the right-hand side of Eq. (D.19b),
namely

πρ1(g) q2(h) + πρ1(h) [c(g) + q2(g) + ρ2(g)] , (D.23a)

are gauge equivalent to the last two terms on the right-hand side of Eq. (D.20), namely

πρ1(g) ρ2(h) + πρ1(g) c(h). (D.23b)

Upon replacing q2(g) with the right-hand side of Eq. (D.22c) in Eq. (D.23a), one finds

πρ1(g) q2(h) + πρ1(h) [c(g) + q2(g) + ρ2(g)] = πρ1(g) ρ2(h) + πρ1(g) c(h)

+ πζ [ρ1(g) c(h) + ρ1(h) c(g)] mod 2π. (D.24)

Modulo 2π, the expression (D.24) differs from the expression (D.23b) by

πζ [ρ1(g) c(h) + ρ1(h) c(g)] . (D.25)

The final step of the proof consists in showing that ρ1(g) c(h) + ρ1(h) c(g) is a coboundary
(i.e., a pure gauge), i.e., there exist a 1-cochain α : Gf → {0, 1} such that

ρ1(g) c(h) + ρ1(h) c(g) = α(g) + α(h) − α(g h). (D.26a)

This is achieved by observing that both ρ1 and c are group homomorphisms and as such
satisfy

ρ1(g) + ρ1(h) = ρ1(g h), c(g) + c(h) = c(g h). (D.26b)

Hence, we can write

ρ1(g) c(h) + ρ1(h) c(g) = ρ1(g) c(h) + ρ1(h) c(g) + ρ1(g) c(g) + ρ1(h) c(h)︸ ︷︷ ︸
=ρ

1
(g h) c(g h)

− ρ1(g) c(g) − ρ1(h) c(h)

= ρ1(g h)c(g h) − ρ1(g) c(g) − ρ1(h) c(h). (D.26c)

By choosing the 1-cochain

α(g) := ρ1(g) c(g), (D.26d)
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the expression (D.25) is indeed proportional to a coboundary, i.e., it can be gauged
away. As promised, ϕ∧(g,h) from Eq. (D.19b) is gauge equivalent to ϕ′

∧(g,h) from Eq.
(D.20).

d.3 details for odd-odd stacking

Proof of Eq. (7.26). For the identity e ∈ ZF2 , we have

V̂1(e) = 1̂1, Q̂1(e) = 1̂1, V̂2(e) = 1̂2, Q̂2(e) = 1̂2, ρ1(e) = ρ2(e) = 0, (D.27a)

which delivers when inserted in Eq. (7.25)

Û∧(e) = 1̂1 1̂2 ≡ 1̂∧. (D.27b)

For the fermion parity p ∈ ZF2 , we have

V̂1(p) = P̂1 iγ̂(1)n
1

, Q̂1(p) = γ̂
(1)
∞ ,

V̂2(p) = P̂2 iγ̂(2)n
2

, Q̂2(p) = γ̂
(2)
∞ , ρ1(p) = ρ2(p) = 1. (D.28a)

When these definitions are inserted in Eq. (7.25), one finds

Û∧(p) = −iP̂1 iγ̂(1)n
1
P̂2 iγ̂(2)n

2
= P̂1 P̂2 iγ̂(1)n

1
γ̂
(2)
n

2
. (D.28b)

The choice of the multiplicative phase factor (−i)δg,p in Eq. (7.25) is not unique since
representation Û(g) of any element g ∈ Gf is defined up to a multiplicative U(1) phase.
We observe that the multiplicative factor (−i)δg,p in Eq. (7.25) ensures that the stacked
representation Û∧(p) is Hermitian in compliance with the “gauge” choice made in definition
(6.24).

Remark. The Majorana operators γ̂(1)∞ and γ̂
(2)
∞ do not enter the definition (7.25) of

the stacked representation Û∧. This is expected as the stacked representation Û∧ has
[µ∧] = 0. Accordingly, Û∧ should be constructed solely out of the even number n1 + n2

of Majorana operators spanning the fermionic Fock space of the stacked boundary [recall
definition (6.19)].

Remark. The definition (7.25) is not symmetric under exchange of the labels 1 and 2, as
is to be expected by inspection of Eq. (7.7).
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Proof that definition (7.25) satisfies Eq. (7.4) and, a forteriori, Eq. (6.17). To see this,
we shall consider for any g ∈ Gf four cases, namely conjugation by Û∧(g)

(i) of Majorana operators γ̂(1)i with i = 1, · · · ,n1 − 1,

(ii) of Majorana operators γ̂(2)i with i = 1, · · · ,n2 − 1,

(iii) of Majorana operator γ̂(1)n
1

,

(iv) and of Majorana operator γ̂(2)n
2

.

We will verify that for each of these cases the consistency condition (7.4) is satisfied.
(i) Conjugating any Majorana operator γ̂(1)i with i = 1, · · · ,n1 − 1 by Û∧(g) gives

Û∧(g) γ̂
(1)
i Û†

∧(g) = (−i)δg,p V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× Kc(g)
∧ γ̂

(1)
i Kc(g)

∧

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g) (+i)δg,p

= V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× γ̂
(1)
i

1,g

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g), (D.29)

where we used the fact that action of K∧ is identical to that of K1 for γ̂(1)i with i =

1, · · · ,n1 − 1 [definition (7.7)]. We shall pass all the remaining terms except V̂1(g) to

the right of γ̂(1)i
1,g

. Operators Û∧(p), γ̂
(1)
n

1
, and γ̂

(2)
n

2
all anticommute with γ̂

(1)
i for

i = 1, · · · ,n1 − 1. Therefore, the induced multiplicative phase factor is (−1)q1(g)+q2(g).
As the operator V̂2(g) may either anticommute or commute with γ̂

(1)
i depending on the
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value taken by q2(g), another multiplicative phase factor (−1)q2(g) is induced. We thus
find

Û∧(g) γ̂
(1)
i Û†

∧(g) = (−1)q1(g) V̂1(g) γ̂
(1)
i

1,g

V̂ †
1 (g)

= (−1)q1(g) V̂1(g)

[
γ̂
(1)
∞

]q1(g)
[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
i

1,g

V̂ †
1 (g). (D.30)

The identity was represented by the square of γ̂(1)∞ in order to reach the last equality.

Passing γ̂(1)∞ to the right of γ̂(1)i
1,g

induces the multiplicative phase factor (−1)q1(g) i.e.,

Û∧(g) γ̂
(1)
i Û†

∧(g) = V̂1(g)

[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
i

1,g [
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g)

= V̂1(g)

[
γ̂
(1)
∞

]q1(g)

Kc(g)
1 γ̂

(1)
i Kc(g)

1

[
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g). (D.31)

According to the definition (6.27), we conclude that

Û∧(g) γ̂
(1)
i Û†

∧(g) = Û1(g) γ̂
(1)
i Û†

1 (g). (D.32)

The consistency condition (7.4) for γ̂(1)i with i = 1, · · · ,n1 − 1, thus holds.
(ii) Conjugating any Majorana operator γ̂(2)i with i = 1, · · · ,n2 − 1 by Û∧(g) is achieved

by repeating all the steps between Eqs. (D.29) and (D.32) with γ̂
(1)
i substituted by γ̂(2)i

with the intermediary steps

Û∧(g) γ̂
(2)
i Û†

∧(g) = (−1)q2(g) V̂2(g) γ̂
(2)
i

2,g

V̂ †
2 (g)

= (−1)q2(g) V̂2(g)

[
γ̂
(2)
∞

]q2(g)
[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
i

2,g

V̂ †
2 (g)

= Û2(g) γ̂
(2)
i Û†

2 (g). (D.33)

The consistency condition (7.4) for γ̂(2)i with i = 1, · · · ,n2 − 1 thus holds.
(iii) Conjugating γ̂(1)n

1
by Û∧(g) delivers

Û∧(g) γ̂
(1)
n

1
Û†

∧(g) = (−i)δg,p V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
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× Kc(g)
∧ γ̂

(1)
n

1
Kc(g)

∧

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g) (+i)δg,p

= V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× γ̂
(1)
n

1

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g), (D.34a)

where we used the fact that, according to definition (7.7), γ̂(1)n
1

is even under complex
conjugation by K∧.

We shall reorder the terms. The operators Û∧(p) and γ̂
(2)
n

2
anticommute with γ̂

(1)
n

1
,

while γ̂(1)n
1

commutes with itself. Hence, conjugation of γ̂(1)n
1

by
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) ×[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

amounts to multiplying γ̂(1)n
1

by the phase factor

(−1)q2(g)+ρ1(g). Conjugating γ̂
(1)
n

1
by V̂2(g) amounts to multiplying γ̂

(1)
n

1
by the phase

factor (−1)q2(g). We thus arrive at

Û∧(g) γ̂
(1)
n

1
Û†

∧(g) = (−1)ρ1(g) V̂1(g) γ̂
(1)
n

1
V̂ †

1 (g)

= (−1)ρ1(g) V̂1(g)

[
γ̂
(1)
∞

]q1(g)
[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
n

1
V̂ †

1 (g)

= (−1)ρ1(g)+q1(g) V̂1(g)

[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
n

1

[
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g). (D.34b)

Here, we traded the identity by the the square of γ̂(1)∞ and used the fact that γ̂(1)∞

anticommutes with γ̂
(1)
n

1
.
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With the help of the identity (6.30c), we may trade (−1)ρ1(g)+q1(g) γ̂
(1)
n

1
for γ̂(1)n

1

1,g

.
Doing so delivers

Û∧(g) γ̂
(1)
n

1
Û†

∧(g) = (−1)ρ1(g)+q1(g) V̂1(g)

[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
n

1

[
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g)

= V̂1(g)

[
γ̂
(1)
∞

]q1(g)

γ̂
(1)
n

1

1,g [
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g)

= Û1(g) γ̂
(1)
n

1
Û†

1 (g), (D.34c)

where we used the definition (6.27). The consistency condition (7.4) for γ̂(1)n
1

thus holds.
(iv) Conjugating γ̂(2)n

2
by Û∧(g) delivers

Û∧(g) γ̂
(2)
n

2
Û†

∧(g) = (−i)δg,p V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× Kc(g)
∧ γ̂

(2)
n

2
Kc(g)

∧

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g) (+i)δg,p

= V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× (−1)c(g) γ̂(2)n
2

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g), (D.35a)

where we used the fact that, according to definition (7.7), γ̂(2)n
2

is odd under complex
conjugation by K∧.

We shall reorder terms. The operators Û∧(p) and γ̂(1)n
1

anticommute with γ̂(2)n
2

, while γ̂(2)n
2

commutes with itself. Hence, conjugating γ̂(2)n
2

by
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) ×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
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×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

returns γ̂(2)n
2

multiplied by the phase factor (−1)q1(g)+ρ2(g)+c(g).

We can simultaneously bring V̂1(g) to the right of V̂2(g) and V̂ †
1 (g) to the left of V̂ †

2 (g) at
no cost of a multiplicative factor. Conjugation of γ̂(2)n

2
by V̂1(g) amounts to multiplying

γ̂
(2)
n

2
by the phase factor (−1)q1(g). We thus arrive at

Û∧(g) γ̂
(2)
n

2
Û†

∧(g) = (−1)ρ2(g) V̂2(g) γ̂
(2)
n

2
V̂ †

2 (g)

= (−1)ρ2(g) V̂2(g)

[
γ̂
(2)
∞

]q2(g)
[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
n

2
V̂ †

2 (g)

= (−1)ρ2(g)+q2(g) V̂2(g)

[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
n

2

[
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g). (D.35b)

Here, we traded the identity by the the square of γ̂(2)∞ and used the fact γ̂(2)∞ anticommutes
with γ̂

(2)
n

2
. With the help of the identity (6.30c), we may trade (−1)ρ2(g)+q2(g)γ̂

(2)
n

2
for

γ̂
(2)
n

2

2,g

. Doing so delivers

Û∧(g) γ̂
(2)
n

2
Û†

∧(g) = (−1)ρ2(g)+q2(g)V̂1(g)

[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
n

2

[
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g)

= V̂2(g)

[
γ̂
(2)
∞

]q2(g)

γ̂
(2)
n

2

2,g [
γ̂
(2)
∞

]q2(g)

V̂ †
2 (g)

= Û2(g) γ̂
(2)
n

2
Û†

2 (g), (D.35c)

where we used the definition (6.27). The consistency condition (7.4) for γ̂(2)n
2

thus hold.

Before proving Eq. (7.27a) we are going to derive two useful identities.

Claim 14. Under the assumption that Eqs. (6.17) and (7.4) hold for the stacked repre-
sentation Û∧ defined by Eq. (7.25), the pair of identities

V̂1(h)
∧,g

= (−1)q1(h)
[
ρ1(g)+q1(g)

] [
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂1(h)
1,g [

γ̂
(1)
n

1

]q1(g)+ρ1(g)

,

(D.36a)

V̂2(h)
∧,g

= (−1)q2(h)
[
c(g)+ρ2(g)+q2(g)

] [
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
2,g [

γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

. (D.36b)
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relates complex conjugation by K∧ to complex conjugation by K1 and K2 for any pair
g,h ∈ Gf .

Proof. Consistency conditions (6.17) and (7.4) imply the identity

Û∧(g) V̂1(h) Û
†
∧(g) = Ûbulk(g) V̂1(h) Û

†
bulk

(g) = Û1(g) V̂1(h) Û
†
1 (g). (D.37)

In order to relate conjugation by K∧ with conjugation by K1 we are going to insert the
definition of Û1(g) on the right-hand side of Eq. (D.37) and the definition of Û∧(g) on
the left-hand side of Eq. (D.37) and compare the resulting expressions.

The right-hand side of Eq. (D.37) upon insertion of the definition of Û1(g) is

Û1(g) V̂1(h) Û
†
1 (g) = V̂1(g)

[
γ̂
(1)
∞

]q1(g)

Kc(g)
1 V̂1(h)Kc(g)

1

[
γ̂
(1)
∞

]q1(g)

V̂ †
1 (g)

= V̂1(g)

[
γ̂
(1)
∞

]q1(g)

V̂1(h)
1,g [

γ̂
(1)
∞

]q1(g)

V̂ †
1 (g)

= (−1)q1(g) q1(h) V̂1(g) V̂1(h)
1,g

V̂ †
1 (g), (D.38)

where in reaching the last line we have interchanged γ̂(1)∞ with V̂1(h)
1,g

at the cost of the
phase factor (−1)q1(g) q1(h) [recall that q1(g) is the fermion parity of the unitary operator
V̂1(g) by definition (6.27)].

The left-hand side of Eq. (D.37) upon insertion of the definition of Û∧(g) is

Û∧(g) V̂1(h) Û
†
∧(g) = (−i)δg,p V̂1(g) V̂2(g)

[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× Kc(g)
∧ V̂1(h)Kc(g)

∧

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û†

∧(p)
]c(g)+ρ1(g)+ρ2(g) V̂ †

2 (g) V̂ †
1 (g) (+i)δg,p

= V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂1(h)
∧,g
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×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û†

∧(p)
]c(g)+ρ1(g)+ρ2(g) V̂ †

2 (g) V̂ †
1 (g), (D.39)

where the multiplicative phases (±i)δg,p cancel each other. In order to pass all operators

from the representation Û2 to the right of V̂1(h)
∧,g

, we observe that:

1. interchanging
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

with V̂1(h)
∧,g

induces the multiplicative phase
factor
(−1)[c(g)+q2(g)+ρ2(g)]q1(h),

2. interchanging V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) with
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

twice does not
cost any overall multiplicative phase factors,

3. interchanging
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) with V̂1(h)
∧,g

induces the multiplicative
phase factor
(−1)[c(g)+ρ1(g)+ρ2(g)]q1(h),

4. interchanging V̂2(g) with V̂1(h)
∧,g

induces the multiplicative phase factor (−1)q2(g) q1(h),

We thus find

Û∧(g) V̂1(h) Û
†
∧(g) = (−1)q1(h)ρ1(g)V̂1(g)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

× V̂1(h)
∧,g [

γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂ †
1 (g). (D.40)

Equating the right-hand sides of Eqs. (D.40) and (D.38) in view of Eq. (D.37) and solving

for V̂1(h)
∧,g

delivers

V̂1(h)
∧,g

= (−1)q1(h)
[
ρ1(g)+q1(g)

] [
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂1(h)
1,g [

γ̂
(1)
n

1

]q1(g)+ρ1(g)

. (D.41)

The same strategy is to be repeated for the representation Û2. The only difference as
compared to the steps leading to Eq. (D.41) occurs with the manipulations that follow
the counterpart to Eq. (D.39), as we shall see.
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Consistency conditions (6.17) and (7.4) imply the identity

Û∧(g) V̂2(h) Û
†
∧(g) = Ûbulk(g) V̂2(h) Û

†
bulk

(g) = Û2(g) V̂2(h) Û
†
2 (g). (D.42)

The counterpart to Eq. (D.38) is

Û2(g) V̂2(h) Û
†
2 (g) = (−1)q2(g)q2(h) V̂2(g) V̂2(h)

2,g

V̂ †
2 (g). (D.43)

It follows simply by interchanging labels 1 and 2. The counterpart to Eq. (D.39) is

Û∧(g) V̂2(h) Û
†
∧(g) = (−i)δg,p V̂1(g) V̂2(g)

[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× Kc(g)
∧ V̂2(h)Kc(g)

∧

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g) (+i)δg,p

= V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
∧,g

×
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

×
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) V̂ †
2 (g) V̂ †

1 (g). (D.44)

In contrast to Eq. (D.39), the total phase factor that arises from reordering terms is
different. This is so because the operators γ̂(1)n

1
and γ̂

(2)
n

2
in the definition (7.25) of the

stacked representation carry different exponents.
In order to pass all operators from the representation Û1 to the right of V̂2(h)

∧,g

, We
observe that:

1. interchanging γ̂(1)n
1

or Û∧(p) or V̂1(g) with γ̂(2)n
2

twice does not produce a multiplicative
phase factor,
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2. interchanging
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

with V̂2(h)
∧,g

induces the phase factor

(−1)[q1(g)+ρ1(g)]q2(h),

3. interchanging
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) with V̂2(h)
∧,g

induces the phase factor

(−1)[c(g)+ρ1(g)+ρ2(g)]q2(h),

4. interchanging V̂1(g) with V̂2(h)
∧,g

induces the phase factor (−1)q1(g)q2(h).

We thus find

Û∧(g) V̂2(h) Û
†
∧(g) = (−1)q2(h)

(
c(g)+ρ2(g)

)
V̂2(g)

[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
∧,g [

γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

V̂ †
2 (g). (D.45)

Equating the right-hand sides of Eqs. (D.43) and (D.45) in view of Eq. (D.37) and

solving for V̂2(h)
∧,g

delivers

V̂2(h)
∧,g

=(−1)q2(h)
[
c(g)+ρ2(g)+q2(g)

] [
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
1,g [

γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

. (D.46)

Equations (D.41) and (D.46) give the prescription to trade complex conjugation K∧
with K1 and K2, respectively. We will make use of these equations when deriving the
2-cochain ϕ∧ of the stacked representation. We are now at a position to compute the
2-cochain ϕ∧(g,h) associated with the stacked representation Û∧.

Proof of Eq. (7.27a). Composing the representations Û∧(g) and Û∧(h) of any pair g,h ∈
Gf delivers

Û∧(g) Û∧(h) = (−i)δg,p V̂1(g) V̂2(g)
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

Kc(g)
∧

×(−i)δh,p V̂1(h) V̂2(h)
[
Û∧(p)

]c(h)+ρ1(h)+ρ2(h)
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×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

Kc(h)
∧

= (−i)δg,p+(−1)c(g) δ
h,p V̂1(g) V̂2(g)

[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g)

×
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂1(h)
∧,g

V̂2(h)
∧,g [

Û∧(p)
]c(h)+ρ1(h)+ρ2(h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

× (−1)χ1 Kc(g h)
∧ , (D.47a)

where

(−1)χ1(g,h) := (−1)c(g)
[
c(h)+q2(h)+ρ2(h)

]
. (D.47b)

Here, we have passed the complex conjugation Kc(g)
∧ to the right. In doing so, opera-

tors V̂1(h) and V̂2(h) are replaced by their complex conjugates V̂1(h)
∧,g

and V̂2(h)
∧,g

,
respectively. The operators Û∧(p) and γ̂

(1)
n

1
are, by definition, invariant under complex

conjugation by Kc(g)
∧ . On the other hand, the operator γ̂(2)n

2
is odd under conjugation

by K∧. This is the origin of the multiplicative phase factor (−1)c(g)[c(h)+q2(h)+ρ2(h)].
The multiplier (−1)c(g) in the phase factor (−i)δg,p+(−1)c(g) δ

h,p arises when the complex
conjugation Kc(g)

∧ is passed through (−i)δh,p .

Our aim is now to bring V̂1(g) to the left of V̂1(h)
∧,g

and V̂2(g) to the left of V̂2(h)
∧,g

.
To do so, we apply the following steps.

(i) We bring
[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) to the left of
[
Û∧(p)

]c(h)+ρ1(h)+ρ2(h) and make
use of the identity[

Û∧(p)
]c(g)+ρ1(g)+ρ2(g)

[
Û∧(p)

]c(h)+ρ1(h)+ρ2(h) =
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

(D.48)
that follows from c, ρ1, and ρ2 being group homomorphisms. Passing[
Û∧(p)

]c(g)+ρ1(g)+ρ2(g) through γ̂
(1)
n

1
, γ̂(2)n

2
, V̂1(h)

∧,g

, and V̂2(h)
∧,g

induces multi-
plicative phase

(−1)χ2(g,h) := (−1)
[
c(g)+ρ1(g)+ρ2(g)

][
q1(g)+ρ1(g)+c(g)+q2(g)+ρ2(g)+q1(h)+q2(h)

]
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= (−1)
[
c(g)+ρ1(g)+ρ2(g)

][
c(g)+ρ1(g)+ρ2(g)+q1(g h)+q2(g h)

]
, (D.49a)

owing to the fact that the 1-cochains q1 and q2 are group homomorphisms (this
follows from both cochains keeping track of the fermion parity of the unitary
operators V̂1 and V̂2).

We can further simplify the expression by noting that[
c(g) + ρ1(g) + ρ2(g)

] [
c(g) + ρ1(g) + ρ2(g)

]
=
[
c(g) + ρ1(g) + ρ2(g)

]
mod 2.

(D.49b)

Hence, we have the identity

(−1)χ2(g,h) := (−1)
[
c(g)+ρ1(g)+ρ2(g)

][
1+q1(g h)+q2(g h)

]
. (D.49c)

The order of the operators on the right-hand side of Eq. (D.47a) after these manip-
ulations is

Û∧(g) Û∧(h) ∝ V̂1(g) V̂2(g)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂1(h)
∧,g

V̂2(h)
∧,g [

Û∧(p)
]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

Kc(g h)
∧ . (D.49d)

(ii) We interchange the operators
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

and V̂1(h)
∧,g

which produces
the phase factor

(−1)χ3(g,h) := (−1)
[
c(g)+q2(g)+ρ2(g)

]
q1(h), (D.50a)

while

Û∧(g) Û∧(h) ∝ V̂1(g) V̂2(g)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

× V̂1(h)
∧,g [

γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
∧,g [

Û∧(p)
]c(g h)+ρ1(g h)+ρ2(g h)
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×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

Kc(g h)
∧ . (D.50b)

(iii) We bring V̂2(g) to the right of V̂1(h)
∧,g

. This produces the multiplicative phase
factor

(−1)χ4(g,h) := (−1)
[
q1(h)+q1(g)+ρ1(g)

]
q2(g), (D.51a)

while

Û∧(g) Û∧(h) ∝ V̂1(g)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

× V̂1(h)
∧,g

V̂2(g)

[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

× V̂2(h)
∧,g [

Û∧(p)
]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

Kc(g h)
∧ . (D.51b)

(iv) We sum (modulo 2) the phases χ1(g,h) defined in Eq. (D.47), χ2(g,h) defined in
Eq. (D.49), χ3(g,h) defined in Eq. (D.50), and χ4(g,h) defined in Eq. (D.51)

χ1234(g,h) :=χ1(g,h) + χ2(g,h) + χ3(g,h) + χ4(g,h)

= c(g)
[
c(h) + q2(h) + ρ2(h)

]
+
[
c(g) + ρ1(g) + ρ2(g)

][
1 + q1(g h) + q2(g h)

]
+
[
c(g) + q2(g) + ρ2(g)

]
q1(h)

+
[
q1(h) + q1(g) + ρ1(g)

]
q2(g).

= c(g)
[
1 + c(h) + q1(g) + q2(g) + ρ2(h)

]
+ ρ1(g)

[
1 + q1(g) + q1(h) + q2(h)

]
+ ρ2(g)

[
1 + q1(g) + q2(g) + q2(h)

]
+ q1(g)q2(g), (D.52a)
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where we used the identities

q1(g) + q1(h) = q1(g h) mod 2, q2(g) + q2(h) = q2(g h) mod 2. (D.52b)

Collecting steps (i)-(iv) gives

Û∧(g) Û∧(h) = V̂1(g)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂1(h)
∧,g

× V̂2(g)

[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

V̂2(h)
∧,g

×
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

× (−i)δg,p+(−1)c(g) δ
h,p (−1)χ1234(g,h) Kc(g h)

∧ , (D.53)

where χ1234(g,h) is defined in Eq. (D.52).
We shall work on the first line of the right-hand side of Eq. (D.53). We note that the

operators V̂1(h) and V̂2(h) are conjugated by K∧, whose action differs from that of K1

and K2. To trade V̂1(h)
∧,g

and V̂2(h)
∧,g

with V̂1(h)
1,g

and V̂2(h)
2,g

, respectively, we use
the pair of identities (D.41) and (D.46), respectively. One finds using (D.41) that[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂1(h)
∧,g

= (−1)q1(h)
[
ρ1(g)+q1(g)

]
V̂1(h)

1,g [
γ̂
(1)
n

1

]q1(g)+ρ1(g)

. (D.54a)

Similarly, one finds using (D.46) that[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

V̂2(h)
∧,g

= (−1)q2(h)
[
c(g)+ρ2(g)+q2(g)

]
× V̂2(h)

1,g [
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

. (D.54b)

Inserting both identities into Eq. (D.53) gives

Û∧(g) Û∧(h) = (−1)χ
1234

(g,h) (−1)χ
conj

(g,h)
(−i)δg,p+(−1)c(g) δ

h,p

× V̂1(g) V̂1(h)
1,g
[
γ̂
(1)
n

1

]q
1
(g)+ρ

1
(g)

V̂2(g) V̂2(h)
2,g
[
γ̂
(2)
n

2

]c(g)+q
2
(g)+ρ

2
(g)
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×
[
Û∧(p)

]c(g h)+ρ
1
(g h)+ρ

2
(g h)

[
γ̂
(1)
n

1

]q
1
(h)+ρ

1
(h) [

γ̂
(2)
n

2

]c(h)+q
2
(h)+ρ

2
(h)

× Kc(g h)
∧ , (D.55a)

where we have consolidated the two multiplicative phase factors on the right-hand sides
of Eqs. (D.54a) and (D.54b) into the multiplicative phase factor

(−1)χconj(g,h) := (−1)q1(h)
[
ρ1(g)+q1(g)

]
+q2(h)

[
c(g)+ρ2(g)+q2(g)

]
. (D.55b)

To proceed, we make an interlude that relies on the fact that Û1 and Û2 are projective
representations of the group Gf . On the one hand,

Ûi(g) Ûi(h) = V̂i (g)

[
γ̂
(i)
∞

]qi(g)

Kc(g)
1 V̂i (h)

[
γ̂
(i)
∞

]qi(h)

Kc(h)
i

= V̂i (g)

[
γ̂
(i)
∞

]qi(g)

V̂i (h)
i,g
[
γ̂
(i)
∞
i,g
]qi(h)

Kc(g h)
i , (D.56)

where we used the definition (6.27) and brought Kc(g)
1 to the left of Kc(h)

i . We may

interchange
[
γ̂
(i)
∞

]qi(g)

and V̂i (h)
1,g

at the cost of the phase factor (−1)qi(g) qi(h) and use

the identity (6.30b) to trade
[
γ̂
(i)
∞
i,g
]qi(h)

with its complex conjugate. One is left with

Ûi(g) Ûi(h) = (−1)qi(g)qi(h) V̂i (g) V̂i (h)
i,g [

γ̂
(i)
∞

]qi(g)
[
γ̂
(i)
∞
i,g
]qi(h)

Kc(g h)
i

Eq. (6.30) = (−1)qi(g)qi(h)+qi(h)
[
c(g)+qi(g)+ρi(g)

]
V̂i (g) V̂i (h)

i,g

×
[
γ̂
(i)
∞

]qi(g h)

Kc(g h)
i

= (−1)qi(h)
[
c(g)+ρi(g)

]
V̂i (g) V̂i (h)

i,g [
γ̂
(i)
∞

]qi(g h)

Kc(g h)
i , (D.57)

where, in reaching the last equality, we have simplified the phase factor by dropping terms
that are 0 modulo 2. On the other hand, by definition [recall Eq. (A.68)]

Ûi(g) Ûi(h) = eiϕi(g,h) Ûi(g h)
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= eiϕi(g,h) V̂i (g h)

[
γ̂
(i)
∞

]qi(g h)

Kc(g h)
i , i = 1, 2. (D.58)

Equating the right-hand sides of Eqs. (D.57) and (D.58) gives

V̂i (g) V̂i (h)
i,g

= (−1)qi(h)
[
c(g)+ρi(g)

]
eiϕi(g,h) V̂i (g h), i = 1, 2. (D.59)

Inserting Eq. (D.59) into Eq. (D.55) delivers

Û∧(g) Û∧(h) = e
iπχ1234(g,h)+iπχconj(g,h)+iϕcomp(g,h)+i 3π

2

(
δg,p+(−1)c(g) δ

h,p

)
× V̂1(g h)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂2(g h)

[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

×
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

× Kc(g h)
∧ , (D.60a)

where we have defined the phase factor accumulated from the group composition rule
(D.59)

ϕcomp(g,h) := ϕ1(g,h) + ϕ2(g,h) + π q1(h)
[
c(g) + ρ1(g)

]
+ π q2(h)

[
c(g) + ρ2(g)

]
.

(D.60b)

It remains to reorder operators on the right-hand side of Eq. (D.60a) with the goal to
isolate the operator Û∧(g h), whose definition is given by Eq. (7.25). This is done with
the following steps.

(i) Bringing
[
γ̂
(2)
n

2

]c(g)+q2(g)+ρ2(g)

to the left of
[
γ̂
(2)
n

2

]c(h)+q2(h)+ρ2(h)

induces the mul-
tiplicative phase factor

(−1)
[
c(g)+q2(g)+ρ2(g)

][
c(g h)+ρ1(g h)+ρ2(g h)+q1(h)+ρ1(h)

]
, (D.61a)

while

Û∧(g) Û∧(h) ∝ V̂1(g h)

[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

V̂2(g h)
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)
[
γ̂
(2)
n

2

]c(g h)+q2(g h)+ρ2(g h)

Kc(g h)
∧ . (D.61b)
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(ii) Bringing
[
γ̂
(1)
n

1

]q1(g)+ρ1(g)

to the left of
[
γ̂
(1)
n

1

]q1(h)+ρ1(h)

induces the multiplicative
phase factor

(−1)
[
q1(g)+ρ1(g)

][
c(g h)+ρ1(g h)+ρ2(g h)+q2(g h)

]
, (D.62a)

while

Û∧(g) Û∧(h) ∝ V̂1(g h) V̂2(g h)
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(g h)+ρ1(g h)
[
γ̂
(2)
n

2

]c(g h)+q2(g h)+ρ2(g h)

Kc(g h)
∧ . (D.62b)

(iii) The total phase that is acuumulated in steps (i) and (ii) is

χord(g,h) :=
[
c(g) + q2(g) + ρ2(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q1(h) + ρ1(h)

]
+
[
q1(g) + ρ1(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q2(g h)

]
. (D.63)

Combining all the phase factors, one finds

Û∧(g) Û∧(h) = e
iπχ

1234
(g,h)+iπχ

conj
(g,h)+iϕcomp(g,h)+iπχ

ord
(g,h)+χ

gag(g,h)

× (−i)δ
gh,p V̂1(g h) V̂2(g h)

[
Û∧(p)

]c(g h)+ρ
1
(g h)+ρ

2
(g h)

×
[
γ̂
(1)
n

1

]q
1
(g h)+ρ

1
(g h) [

γ̂
(2)
n

2

]c(g h)+q
2
(g h)+ρ

2
(g h)

Kc(g h)
∧ , (D.64a)

where we have defined the phase factor

χ
gag(g,h) :=

3π
2
(
δg,p + (−1)c(g) δh,p − δgh,p

)
. (D.64b)

We have derived the composition rule

Û∧(g) Û∧(h) = e
iπχ1234(g,h)+iπχconj(g,h)+iϕcomp(g,h)iπχ

ord
(g,h)+χ

gag(g,h)

× (−i)δgh,p V̂1(g h) V̂2(g h)
[
Û∧(p)

]c(g h)+ρ1(g h)+ρ2(g h)

×
[
γ̂
(1)
n

1

]q1(g h)+ρ1(g h)
[
γ̂
(2)
n

2

]c(g h)+q2(g h)+ρ2(g h)

Kc(g h)
∧

≡ eiϕ∧(g,h) Û∧(g h) (D.65a)
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for the stacked representation Û∧, where we used the definitions (7.25) for Û∧(g h) and

ϕ∧(g,h) := πχ1234(g,h) + πχconj(g,h) + ϕcomp(g,h) + πχord(g,h) + χgag(g,h)

= ϕ1(g,h) + ϕ2(g,h) + χgag(g,h)

+ π
(
q1(h)

[
c(g) + ρ1(g)

]
+ q2(h)

[
c(g) + ρ2(g)

]
+ c(g)

[
1 + c(h) + q1(g) + q2(g) + ρ2(h)

]
+ ρ1(g)

[
1 + q1(g) + q1(h) + q2(h)

]
+ ρ2(g)

[
1 + q1(g) + q2(g) + q2(h)

]
+ q1(g)q2(g)

+ q1(h)
[
ρ1(g) + q1(g)

]
+ q2(h)

[
c(g) + ρ2(g) + q2(g)

]
+
[
c(g) + q2(g) + ρ2(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q1(h) + ρ1(h)

]
+
[
q1(g) + ρ1(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q2(g h)

])
= ϕ1(g,h) + ϕ2(g,h) + χgag(g,h) + πχ(g,h), (D.65b)

to reach the last equality in Eq. (D.65a). We have reserved the phase χ(g,h) for all
phases other than the 2-cochains ϕ1(g,h), ϕ2(g,h), and χgag(g,h) in Eq. (D.65b), i.e.,

χ(g,h) := q1(h)
[
c(g) + ρ1(g)

]
+ q2(h)

[
c(g) + ρ2(g)

]
+ c(g)

[
1 + c(h) + q1(g) + q2(g) + ρ2(h)

]
+ ρ1(g)

[
1 + q1(g) + q1(h) + q2(h)

]
+ ρ2(g)

[
1 + q1(g) + q2(g) + q2(h)

]
+ q1(g)q2(g)

+ q1(h)
[
ρ1(g) + q1(g)

]
+ q2(h)

[
c(g) + ρ2(g) + q2(g)

]
+
[
c(g) + q2(g) + ρ2(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q1(h) + ρ1(h)

]
+
[
q1(g) + ρ1(g)

][
c(g h) + ρ1(g h) + ρ2(g h) + q2(g h)

]
. (D.65c)

The phase factor χgag(g,h) that appear in Eq. (D.65b) is an artifact of the particular
gauge choice we have made when defining an Hermitian representation for the fermion
parity operator in Eq. (6.18). Indeed, we observe that χgag(g,h) is nothing but a pure
gauge, i.e., χgag(g,h) = δ1

c ξ(g,h) if we choose ξ(g) = − 3π
2
δg,h. Under such a gauge

transformation the representation Û∧(p) of fermion parity p is no longer Hermitian.
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However, by definition, the equivalence classes. [ϕ∧] of the stacked 2-cochain ϕ∧(g,h) are
invariant under the gauge transformations. Therefore, the stacked 2-cochain ϕ∧(g,h) is
gauge equivalent to

ϕ∧(g,h) ∼ ϕ1(g,h) + ϕ2(g,h) + πχ(g,h). (D.66)

Proof of Eq. (7.28). We now show that the phase χ(g,h) defined in Eq. (D.65c) is gauge
equivalent to

χ(g,h) ∼ ρ1(g) ρ2(h). (D.67)

In turn, the stacked 2-cochain ϕ∧(g,h) is gauge equivalent to

ϕ∧(g,h) ∼ ϕ1(g,h) + ϕ2(g,h) + πρ1(g) ρ2(h). (D.68)

We shall use the fact that for i = 1, 2, qi, ρi, and c are all Z2 = {0, 1}-valued group
homomorphisms. Hence, for any g,h ∈ Gf and i = 1, 2, they satisfy

qi(g) + qi(h) = qi(g h), ρi(g) + ρi(h) = ρi(g h), c(g) + c(h) = c(g h). (D.69)

A consequence of c being Z2-valued group homomorphism is that

c(g h) + c(h) = c(g) + c(h) + c(h) = c(g) + 2c(h) = c(g) mod 2, (D.70a)

c(g h) + c(g) = c(g) + c(h) + c(g) = c(h) + 2c(g) = c(h) mod 2. (D.70b)

The same identities hold for the homomorphisms qi and ρi with i = 1, 2.
We start by rewriting the phase factor χ(g,h) by expanding the last two lines of Eq.

(D.65c)

χ(g,h) = q1(h)
[
c(g) + ρ1(g)

]
+ q2(h)

[
c(g) + ρ2(g)

]
+ c(g)

[
1 + q1(g) + q2(g) + q1(h)

]
+ ρ1(g)

[
1 + q1(g) + q1(h)

]
+ ρ2(g)

[
1 + q1(g) + q2(g) + q2(h) + q1(h)

]
+ q1(g) q2(g) + q2(g) q1(h)



D.3 details for odd-odd stacking 313

+ q1(h)
[
ρ1(g) + q1(g)

]
+ q2(h)

[
c(g) + ρ2(g) + q2(g)

]
+ c(g)

[
c(h) + c(g h) + ρ1(h) + ρ1(g h) + ρ2(h) + ρ2(g h)

]
+ ρ1(g)

[
c(g h) + ρ1(g h) + q2(h) + ρ2(g h) + q2(g h)

]
+ ρ2(g)

[
c(g h) + ρ1(g h) + ρ1(h) + ρ2(g h)

]
+ q2(g)

[
c(g h) + ρ1(g h) + ρ1(h) + ρ2(g h)

]
+ q1(g)

[
c(g h) + ρ1(g h) + ρ2(g h) + q2(g h)

]
. (D.71)

By using identities (D.69) and (D.70) on the underlined terms, we make sure that the
arguments of c, qi, and ρi with i = 1, 2 depend on either g or h but not on their product,

χ(g,h) = q1(h)
[
c(g) + ρ1(g)

]
+ q2(h)

[
c(g) + ρ2(g)

]
+ c(g)

[
1 + c(g) + q1(g) + q1(h) + q2(g) + ρ1(g) + ρ2(g)

]
+ ρ1(g)

[
1 + q1(g) + q1(h) + q2(g) + c(g) + c(h) + ρ1(g) + ρ1(h) + ρ2(g) + ρ2(h)

]
+ ρ2(g)

[
1 + q1(g) + q1(h) + q2(g) + q2(h) + c(g) + c(h) + ρ1(g) + ρ2(g) + ρ2(h)

]
+ q1(g)q2(g)

+ q1(h)
[
ρ1(g) + q1(g)

]
+ q2(h)

[
c(g) + ρ2(g) + q2(g)

]
+ q2(g)

[
c(g) + c(h) + ρ1(g) + ρ2(g) + ρ2(h) + q1(h)

]
+ q1(g)

[
c(g) + c(h) + ρ1(g) + ρ1(h) + ρ2(g) + ρ2(h) + q2(g) + q2(h)

]
. (D.72)

As the right-hand side of Eq. (D.72) is defined modulo 2, every pair of identical terms can
be dropped on the right-hand side of Eq. (D.72). All such pairs are identified by being colored
in red and numbered. One finds

χ(g,h) = q1(h)
[
c(g)

1

+ ρ1(g)
2

]
+ q2(h)

[
c(g) + ρ3(g)

]
3

+ c(g)
[

1
4

+ c(g)
4

+ q1(g)
5

+ q1(h)
1

+ q2(g)
6

+ ρ1(g)
7

+ ρ2(g)
8

]
+ ρ1(g)

[
1
9

+ q1(g)
10

+ q1(h) + q2(g)
12

+ c(g)
7

+ c(h) + ρ1(g)
9

+ ρ1(h) + ρ2(g)
11

+ ρ2(h)
]

+ ρ2(g)
[

1
13

+ q1(g)
14

+ q1(h) + q2(g)
15

+ q2(h) + c(g)
8

+ c(h) + ρ1(g)
11

+ ρ2(g)
13

+ ρ2(h)
]

+ q1(g)q2(g)
16
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+ q1(h)
[
ρ1(g)

2

+ q1(g)
]
+ q2(h)

[
c(g) + ρ2(g)

3

+ q2(g)
]

+ q2(g)
[
c(g)

6

+ c(h) + ρ1(g)
12

+ ρ2(g)
15

+ ρ2(h) + q1(h)
]

+ q1(g)
[
c(g)

5

+ c(h) + ρ1(g)
10

+ ρ1(h) + ρ2(g)
14

+ ρ2(h) + q2(g)
16

+ q2(h)
]

= ρ1(g)
[
q1(h) + c(h) + ρ1(h) + ρ2(h)

]
+ ρ2(g)

[
q1(h) + q2(h) + c(h) + ρ2(h)

]
+ q1(h) q1(g) + q2(h) q2(g)

+ q2(g)
[
c(h) + ρ2(h) + q1(h)

]
+ q1(g)

[
c(h) + ρ1(h) + ρ2(h) + q2(h)

]
. (D.73)

We can use the gauge equivalence of cochains to make further simplifications. As is done for
even-odd stacking in Eq. (D.26c), we can relate products of two 1-cochains by a coboundary.
In general, for two Z2-valued 1-cochains α ∈ C1(Gf , Z2) and β ∈ C1(Gf , Z2), we have

α(g)β(h) ∼ α(h)β(g) =⇒ α(g) β(h) + α(h) β(g) ∼ 0 mod 2, (D.74)

for any g,h ∈ Gf . We use this gauge equivalence in order to simplify further the right-hand
side of Eq. (D.73). One finds

χ(g,h) = ρ1(g)
[
q1(h)

1

+ c(h) + ρ1(h) + ρ2(h)
]

+ ρ2(g)
[
q1(h)

2

+ q2(h)
3

+ c(h) + ρ2(h)
]

+ q1(h) q1(g) + q2(h) q2(g)

+ q2(g)
[
c(h) + ρ2(h)

3

+ q1(h)
4

]
+ q1(g)

[
c(h) + ρ1(h)

1

+ ρ2(h)
2

+ q2(h)
4

]
, (D.75)

where we have colored in red and numbered pairs of terms that can be dropped as they
are equal to 0 modulo 2. Consequently,

χ(g,h) = ρ1(g)
[
c(h) + ρ1(h) + ρ2(h)

]
+ ρ2(g)

[
c(h) + ρ2(h)

]
q1(g) c(h) + q2(g) c(h) + q1(h) q1(g) + q2(h) q2(g)
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= ρ1(g) ρ2(h) +

2∑
i=1

{
ρi(g)

[
c(h) + ρi(h)

]
+ qi(g)

[
c(h) + qi(h)

]}
, (D.76)

where in reaching the last equality, we have isolated the term ρ1(g) ρ2(h) and reorganized
the remaining terms as a sum over i = 1, 2.

Finally to prove Eq. (D.68), we are going to show that the each term inside the
summation in Eq. (D.76) vanishes. To this end, we apply the identity (D.22c) that was
used for the case of even-odd stacking. If we define

γ̂
(1)
∞

1

= (−1)ζ1 γ̂
(1)
∞ , γ̂

(2)
∞

2

= (−1)ζ2 γ̂
(2)
∞ , ζ1, ζ2 = 0, 1, (D.77a)

we obtain Eq. (6.30), two identities that are the equivalents of Eq. (D.22c), namely,

qi(g) = c(g)(1 + ζi) + ρi(g) mod 2, i = 1, 2, (D.77b)

for any g ∈ Gf . If we insert identity (D.77b), the argument of the summation in Eq.
(D.76) becomes

ρi(g)
[
c(h) + ρi(h)

]
+ qi(g)

[
c(h) + qi(h)

]
= ρi(g)

[
c(h) ζi + qi(h)

]
+ qi(g)

[
c(h) ζi + ρi(h)

]
= c(h) ζi

[
ρi(g) + qi(g)

]
+ ρi(g) qi(h) + qi(g) ρi(h)

= c(h) ζi
[
ρi(g) + qi(g)

]
, (D.78)

where Eq. (D.74) was used to reach the last equality. Inserting identity (D.77b) once
again and the using the fact that product ζi

[
1 + ζi

]
for ζi = 0, 1 is vanishing modulo 2,

delivers the final result

c(h) ζi
[
ρi(g) + qi(g)

]
= c(g) c(h) ζi

[
1 + ζi

]
= 0 mod 2, (D.79)

which completes the proof.
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