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Abstract

Deep learning based on representative and large-scale training datasets has lead to impressive
performance gains in various fields. With an increasing availability of condition monitoring
data from industrial assets, deep learning holds much potential to be applied to fault detection
and diagnostics. Unfortunately, in the context of safety-critical systems, the available training
datasets are typically neither representative nor large-scale. The reasons for that are two-fold:
First, faults occur very rarely in safety critical systems, leading to scarcity of faulty samples.
Moreover, even if anomalies or faults occur, it is difficult to determine the exact point in
time of their initiation, resulting in scarce and imprecise labeling. Second, there is a large
variety of operating conditions affecting the condition monitoring data. It is impossible to
collect a representative dataset within a limited observation time period that covers all the
relevant conditions. The resulting data and label scarcity can limit the performance of deep
learning models for condition assessment. While some solutions have been proposed for data
and label scarcity, they often make implicit or explicit assumptions that are often unrealistic
in real-world scenarios. The dissertation addresses these real-world challenges and limitations
and proposes four main contributions.

Firstly, while robustness of fault diagnostics models to changing operational environment
has been approached before, the previously proposed approaches did not consider that in
addition to changes in the operational environment also a new health condition might emerge
at deployment time. We propose a methodology based on contrastive feature learning that
enables to achieve both objectives simultaneously: (1) robustness towards changes in the
operational environment and (2) sensitivity to novel faults.

Secondly, to enable the transfer of fault diagnostics models between different operational
environments, common restrictions are that the same fault classes must have occurred under
both operational environments and that the change in the operational environments is small.
These restrictions severely limit the application of existing methods to domain adaptation
tasks in the context of real industrial applications. To lift these restrictions, we propose a
data generative approach that is particularly beneficial for domain adaptation with extreme
label space discrepancies and thus, is suitable for realistic settings of fault diagnostics under
changes in the operational environment.

Thirdly, to tackle the challenge of label noise, previously proposed methods typically require
prior knowledge about the label noise. This is often not available in reality and thus, existing
methods are not suited to be applied in a realistic operational context. We eliminate this
limitation and develop a method that solely relies on rough estimates of the label noise level.

Lastly, in the first stage of monitoring an asset where presumably only healthy data is
available, different fault detection methods have been proposed. Existing anomaly detection
algorithms typically disregard the fact that anomalies in the data are not only caused by
faults but also by changes in the operational environment. If faults are detected each time
the operational environment changes, the anomaly detection will raise many false alarms and
thus, is not deployable in real operations. To counteract that, we adapt contrastive feature
learning to be applicable to the anomaly detection setup and demonstrate the superiority of
the method on two datasets recorded under real in-service conditions.

We demonstrate that our proposed methods can significantly improve the fault detecti-
on and diagnostics performance under real-world constraints, mitigate previously existing
limitations and extends the applicability of deep learning to realistic settings in condition
monitoring. Thus, the proposed framework extends the applicability of deep learning models



for real-world industrial applications and is a key component in enabling safe operations in
all phases of the life cycle of an asset.
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Zusammenfassung

Tiefe neuronale Netze zeigen bei verschiedenen Aufgaben eine sehr gute Leistungsfähigkeit,
wenn sie auf repräsentativen und grossen Datensätzen trainiert werden. Mit der steigen-
den Verfügbarkeit von Zustandsüberwachungsdaten bergen sie grosses Potential zur Erken-
nung und Diagnose von Defekten in Industrieanlagen. Allerdings sind die verfügbaren Zu-
standsüberwachungsdaten von sicherheitskritschen Industrieanlagen oft weder repräsentativ
noch noch haben die eine ausreichende Menge. Folgenden Gründe kommen dafür in Be-
tracht: Zum einen treten Defekte in sicherheitskritischen Anlagen nur selten auf. Das führt
dazu, dass Defektdaten oft nur sehr spärlich in den gesammelten Daten repräsentiert sind.
Selbst wenn ein Defekt auftritt, ist es schwierig festzustellen, wann genau der Defekt initiiert
wurde. Das wiederum führt zu spärlichen und unzuverlässigen Labels in den Daten. Zum
anderen werden die Zustandsüberwachungsdaten von vielen Betriebsfaktoren beeinflusst. Es
ist nicht möglich, einen repräsentativen Datensatz innerhalb eines beschränkten Zeitraums
zu sammeln, der alle relevanten Betriebsfaktoren abdeckt. Die daraus folgende Knappheit
der Daten und Labels verschlechtert die Leistungsfähigkeit der neuronalen Netze, die für
Zustandsüberwachung eingesetzt werden. Einige Methoden wurden bereits vorgeschlagen für
Daten- und Label Knappheit. Allerdings gehen diese Methoden häufig von impliziten oder
expliziten Annahmen aus, die in realen industriellen Anwendungen nicht erfüllt sein können.
In dieser Dissertation schlagen wir vier wissenschaftliche Beiträge vor, um den Einsatz von
neuronalen Netzen in realen industriellen Anwendungen zu ermöglichen.

Erstens werden in vorherigen Publikationen zwar die Robustheit von neuronalen Netzen in
Bezug auf wechselnde Betriebsbedingungen angegangen, allerdings nehmen diese Publikatio-
nen nicht in Betracht, dass nicht nur die Betriebsbedingungen sich ändern können, sondern
auch der Gesundheitszustand der Industrieanlage. Wir schlagen die Methode des ’contrastive
learning’ vor um beide Ziele zu erreichen: (1) Robustheit in Bezug auf wechselnde Betriebs-
bedingungen und (2) Sensitivität in Bezug auf neue Defekte.

Zweitens um ein Defekt-Diagnose-Model zwischen verschiedenen Betriebsbedingungen trans-
ferieren zu können, müssen in der Regel zwei Anforderungen erfüllt sein: dieselben Defekte
müssen unter beiden Betriebsbedingungen vorgekommen sein und die Änderung der Be-
triebsbedingungen muss klein sein. Diese Anforderungen limitieren die Anwendung von so-
genannten Domänenanpassungsmethoden für realistische industrielle Anwendungen. Um die-
se Anforderungen aufzuheben, schlagen wir eine generative Methode vor, die insbesondere
geeignet ist, wenn verschiedene Defekttypen unter verschiedenen Betriebsbedingungen beob-
achtet wurden und eignet sich daher besonders für realistische industrielle Anwendungen der
Domänenanpassung von Defekt-Diagnose-Modellen.

Drittens bisherige Methoden, die die Herausforderung von unzuverlässigen Labels angehen,
benötigen in der Regel vorherige Kenntnis über die Art oder Menge der Unverlässlichkeit der
Labels. Dies ist allerdings nicht verfügbar in realistischen industriellen Anwendungen. Wir
eliminieren diese Anforderung und entwickeln eine Methode, die nur eine grobe Einschätzung
der Unverlässlichkeit der Labels benötigt.

Als letztes, frühere Studien haben Methoden zur Defekterkennung vorgeschlagen für die
erste Phase der Zustandsüberwachung, in welcher vermutlich nur gesunde Zustände aufge-
treten sind. Allerdings nehmen diese Anomalie-Detektions-Methoden nicht in Betracht, dass
Anomalien in den Daten nicht nur von Defekten herrühren, sondern auch von veränderten
Betriebsbedingungen. Wenn ein Modell aufgrund veränderter Betriebsbedingungen Defekte
detektiert, kann es nicht eingesetzt werden unter wechselnden Betriebsbedingungen, da es
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sonst zu vielen Betriebsunterbrechungen aufgrund von falschen Alarmen kommen würde. Um
dem entgegenzuwirken, adaptieren wir die Methode des ’contrastive learning’ so, dass es auch
ohne echte Defektdaten anwendbar wird. Wir zeigen die Überlegenheit von unserer Methode
an zwei Datensätzen die unter echten Betriebsbedingunghen aufgezeichnet wurden.

In dieser Forschung zeigen wir, dass unsere Methoden die Leistungsfähigkeit der Defekter-
kennung und -diagnose in Industrieanlagen signifikant verbessern, dass vorherige Limitationen
aufgehoben wurden und dass die Anwendung von neuronalen Netzen unter realistischen Be-
dingungen erweitert wurde. Das entwickelte Framework erweitert somit die Anwendbarkeit
von neuronalen Netzen für industrielle Anwendungen und ermöglicht einen sicheren Betrieb
in verschiedenen Phasen des Lebenszyklus von Industrieanlagen.
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1 Introduction

1.1 Motivation

Critical services such as transport, energy or communication are essential pillars for the
proper functioning of our modern and globalized world. Traditionally, industrial and infras-
tructure assets have been monitored and assessed by human experts who visually inspect the
assets (Jing et al., 2021; Yu et al., 2019). Physics based models have also been proposed for
monitoring industrial assets (Luo et al., 2003; Cubillo et al., 2016). However, the implementa-
tion and performance of physics based models is often obfuscated by noisy environments and
system complexities (Khan and Yairi, 2018). With the increasing complexity of industrial
systems and the increasing requirements on system availability and performance, a reliable
and generalizable solution for real-time condition monitoring is needed to enable safe, efficient
and effective operations (Vrignat et al., 2022).

Major pillars for condition monitoring are the early and accurate detection of an incipient
fault (fault detection) and the identification of its specific fault type and severity level (fault
diagnostics) (Fink et al., 2020). In recent years, there has been much effort conducted to
develop and implement algorithms to monitor the health condition of complex industrial
assets - we refer to these algorithms as condition assessment solutions.

With the development of low cost sensors and the increasing capacity to store and process
data, more and more condition monitoring systems have been installed, providing real-time
information on the system’s condition (Jardine et al., 2006). Data-driven algorithms based
on the collected real-time condition monitoring data have shown to be a very promising
direction for monitoring the condition of industrial assets (Zhang et al., 2019; Chien and
Chen, 2020). Their potential has been demonstrated in a multitude of studies which have
shown that superior empirical results have been achieved in various application fields such
as bearing or wind turbine fault diagnostics compared to other methods (Zhang et al., 2020;
Hoang and Kang, 2019).

Especially deep learning, a subcategory of machine learning based on deep neural networks,
has led to impressive performance gains in recent years, especially in applications such as
computer vision or natural language processing (Ramesh et al., 2021; Goyal et al., 2021).
While traditional machine learning approaches required manual and time-consuming feature
engineering, the main difference in deep learning is that representative features can be learnt
automatically.

Motivated by the promising achievements of deep learning in many fields of research, there
has been a high interest in recent years to transfer the full potential of deep learning from
other applications to Prognostics and Health Management (PHM) tasks (Fink et al., 2020).
Contrary to other research studies conducted on deep learning, PHM tasks mostly rely on
time series data which has not been in the center of deep learning research which mainly
focused on image datasets. Different types of deep learning methods have been proposed
for fault detection, diagnostics and prognostics - also based on time series data (Serradilla
et al., 2022). However, certain challenges arise when working on deep learning for PHM tasks
such as the lack of or scarce representation of fault data or the multitude of operational or
environmental factors that can strongly influence the condition monitoring data.

1.2 Challenges

The success of deep learning has largely relied on the availability of representative and labeled
large-scale datasets for the training of the neural network models. In particular, the training
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datasets need to be representative of the conditions and settings that the model might endure
when it is deployed (test dataset). One of the main challenges of PHM applications has been
a lack of such representative, labeled and sufficiently large datasets. This data and label
scarcity hinders to transfer the full potential of deep learning to PHM tasks. Real condition
monitoring datasets of in-service systems, for example, might lack data samples of faulty
conditions or might contain a lot of variability in the quality of labels. There are three main
factors responsible for data and label scarcity:

Rareness of faults. As safety-critical faults cannot be tolerated in operation, industrial
assets are operated in safe regimes (Michau and Fink, 2021). Thus, faults in safety-critical
systems occur very rarely (Fink et al., 2020; Biggio and Kastanis, 2020). While this is desired
from the operational perspective, from the data perspective, it means that faulty conditions
are not represented well in the available condition monitoring datasets used for the training of
machine learning algorithms. However, we are particularly interested in detecting, diagnosing
and predicting those faulty system conditions. Traditional supervised learning algorithms
would require a respresentative fault dataset in order to learn the specificities of the distinct
fault patterns and classify them precisely. If, however, no fault or only few faults occurred
at training time, such a representative dataset is not available.

When no fault data is available in the training dataset, anomaly detection models have been
deployed to detect any anomalous patterns that deviate from the healthy training dataset
(Zhao et al., 2018; McKinnon et al., 2020). However, not every novel pattern necessarily
corresponds to a fault in the system. Instead, other factors can also cause anomalous patterns
in the data such as new operating or environmental conditions (details are elaborated below)
(Michau and Fink, 2021). Previously proposed anomaly detection models that raise an alarm
if any anomalous pattern is observed could result in a high false alarm rate (Michau and Fink,
2021). For adequate applicability in real applications, it is important that anomaly detection
models are only sensitive to changes in the health conditions resp. faults and not to other
changes in the data caused by changing operating or environmental conditions.

Contrary to the case of missing faulty samples in the training dataset, in other cases
some faults have been observed during the data acquisition time and hence, the respective
fault data is represented in the training dataset. In this case, deep classification models can
be trained to distinguish between known fault types and/or severity levels if the respective
information on the fault types and severity levels is available. While superior performances
have been achieved by employing deep classification models for fault diagnostics (Li et al.,
2021a; Zhang et al., 2020), new health conditions i.e. new fault types and severity levels
might emerge at any point in time. Thus, a mature solution to condition assessment should
not only entail the correct distinction of known health conditions but also the detection of
novel health conditions. Achieving both of these objectives jointly is particularly challenging
when dealing with condition monitoring data which is subjected to a variety of factors that
cause variations in the data such as operational or environmental conditions (see below).

Non-informative factors of variation in the data. Not only evolving health conditions,
but also other factors in an operational environment can cause variations in the condition
monitoring data. Typical factors are operating or environmental conditions such as opera-
tional speed or load, the ambient temperature or sensor location (Shi et al., 2022). Since
all of the above mentioned factors are unrelated to the health condition of the asset, we will
refer to them as non-informative factors of variation in this thesis. These non-informative
factors can cause a discrete or continuous shift in the underlying data distribution (Michau
and Fink, 2021). In deep learning terminology, these shifts are referred to as domain shifts
(Zhou et al., 2022c). The performance of data-driven models can drop significantly under
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domain shifts (Wang et al., 2019). For example, an anomaly detection model could raise a
false alarm if confronted with anomalies in the data due to a domain shift. This will lead to a
high false positive rate and disqualifies a model from being deployed for PHM tasks as it will
hinder efficient operations and would create additional cost. If the anomaly detection model
is adjusted to be less sensitive, it might also fail to detect early signs of an defect. This will
lead to a higher false negative rate, which also disqualifies a model from being deployed as a
missed fault can pose a safety risk. Equally so, the performance of a classification model is
negatively impacted under domain shifts since data-driven models are prone to provide wrong
predictions if the underlying data distribution has shifted. Thus, for assets that are moni-
tored with data-driven fault detection and diagnostics models, the non-informative factors of
variation can pose a severe safety and reliability risk if an algorithm’s training dataset was
recorded under different non-informative factors of variation compared to those it encounters
when deployed (test dataset).

Some of the factors causing variations might be known and controllable in the sense that (a)
they can be set to each desired value to record a representative dataset and (b) each change
of the operational parameters can easily be detected or can be measured. For example, the
operational speed or load typically can be set or are measured and thus, are controllable.
Domain shifts caused by controllable factors can be detected and appropriate mitigation
strategies can be pursued to prevent a performance drop of the deployed condition assessment
solutions. For example, unsupervised domain adaptation approaches have been proposed to
adapt a model from a labeled source domain to an unlabeled target domain (Farahani et al.,
2021). Domain adaptation has also been successfully applied to PHM tasks where domains
typically represent different operational or environmental conditions under which the data is
recorded (Li et al., 2020a). Most of the proposed methods require that the same classes are
represented in the source and the target domain (Rombach et al., 2023). This requirement,
however, is not realistic in the context of a complex industrial environment. Since faults are
rare in these environments, it is not realistic to assume that the same fault types and severity
levels occur during the data acquisition time in the source and target domain. There has been
an increasing interest in recent years to develop domain adaptation methods that meet the
requirements of a complex industrial environment, where different fault classes are represented
in the source and the target domain (Zhou et al., 2022a; Zhang et al., 2021b). Different types
of this label space discrepancies are distinguished. For example, if only a subset of classes
in the source domain is represented in the target domain, researchers refer to this setting
as the Partial setting (Li et al., 2020b). Or, the setting where both domains have classes
that are not represented in the other domain is referred to as the Open-Partial setting.
Different approaches have been developed which are suited for one specific setting of the
above mentioned label space discrepancy settings. For example, a method for Partial domain
adaptation is proposed for bearing fault diagnostics (Zhou et al., 2022a). For the OpenSet
domain adaptation setting on similar data, another method has been proposed (Zhang et al.,
2021b). These methods are often not universally applicable in multiple settings of label space
discrepancies. Moreover, in practice, extreme cases of label space discrepancy, where only the
healthy class is shared between two domains, are common as faults occur rarely (Rombach
et al., 2023). These extreme cases have only been tackled by researchers insufficiently so far.
Furthermore, most publications evaluated the proposed method on rather small domain gaps
such as slight changes in very few operating parameters and might, therefore, not perform
well on larger domain gaps.

Contrary to the known and controllable factors, where distinct domain shifts in the data
can be identified a priori, there are also other factors of variation that might be unknown
or not measurable or controllable. For example, the temperature might impact the recorded
measurement data. While the ambient temperature often is measured or tracked, the temper-
ature at the sensor location might substantially differ from the ambient temperature. If there
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is no temperature sensor in place at the sensor location, there is no possibility of measuring
thistemperature. Moreover, in an open environment, there might exist a multitude of other
factors that influence the condition monitoring data that might be unknown to the operator.
In these cases, when the factors are not known or cannot be measured, domain shifts cannot
be identified a priori. This poses a safety critical risk as an undetected domain shift results
in an undetected performance drop of the deployed condition assessment solution. Domain
generalization has been proposed to tackle this challenge of unforeseen and unknown domain
shifts that might emerge after the model has been trained, mainly in the field of computer
vision (Zhou et al., 2022c; Wang et al., 2022). Very recently, domain generalization methods
have also been proposed and applied for fault diagnostics in industrial assets (Zhang et al.,
2021a; Zhao and Shen, 2022a; Liao et al., 2020). These methods were developed to be robust
towards unforeseen or unknown domain shifts such that reliable classification of known health
conditions is possible even if the underlying data distribution shifts. In addition to reliable
classification of known health conditions under domain shifts, it is equally important to be
able to detect the emergence of novel faults in PHM tasks. In other words, in the context
of PHM it is critical that not only robustness towards any novel data variation is achieved
but in addition to the robustness towards domain shifts, sensitivity to novel data variations
caused by a change in the health condition is required. Distinguishing novel variations in
the data that are caused by a domain shift from those that are caused by a new health
condition is a very challenging task in absence of the corresponding data of either the future
domain shift or the future health condition. However, it is a critical requirement for PHM to
consider both types of data scarcity: (1) scarce domain representation and (2) scarce fault
representations. A mature solution for condition assessment needs to be able to cope with
both simultaneously.

Label Noise. Ground truth information on the exact health condition of assets is often
difficult to obtain. For example, assets that operate in an open environment such as railway
wheels cannot be monitored constantly while in operation. Instead, the ground truth infor-
mation about the assets’ health condition is often assigned by domain experts in hindside at
a workshop visit, where the exact point in time of a change in the health condition cannot
be reconstructed anymore, or is extracted based on pre-defined rules or assumptions such
as fixed timeperiods after maintenance in which an asset is considered to be healthy. Since
such rules are not adapted to the specific health conditions or the operational environment
of a component, they can quickly result in noisy information on the true health condition of
an industrial asset. For the application of deep learning, it means that the available train-
ing dataset might be impacted by label noise. Label noise can have a critical effect on the
learning process (Algan and Ulusoy, 2021). It encourages the model to memorize individual
samples rather than to generalize over certain class-specific attributes, even if the data is
drawn from the same underlying data distribution (Arpit et al., 2017). Since label noise is
ubiquitous in real world datasets, some methods have been proposed that aim to prevent
the memorization of mislabeled samples. These typically rely on prior information on either
the characteristics of label noise or a clean validation dataset without label noise (Ren et al.,
2018; Vahdat, 2017). Since this prior information is typically not available in real PHM tasks,
existing methods are not applicable in a realistic scenario. For PHM applications in realistic
scenarios, however, not much research has been conducted to tackle label noise. This is,
however, required in order to develop methods that are applicable in scenarios where ground
truth information is not only time consuming to obtain but also is often even impossible to
obtain.

These three challenges, (1) the rareness of faults, (2) the non-informative factors of varia-
tion and (3) the label noise result in the fact that high quality representative labeled datasets
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are scarce. Many of the problems encountered in PHM, once formulated as deep learning
problems result in ’extreme’ setups of known deep learning problems. We define ’extreme’
setups as those where the data scarcity does not only relate to a lacking representation of
different domains but also to an extremely scarce representation of faults. One example of an
’extremely’ scarce representation of faults is often encountered in domain adaptation, where
only the healthy class is represented in both, the target and source domain, but fault types
were only observed in either one of the domains. I.e. the fault data is scarcely represented in
the domains and this results in an extreme label space discrepancy for the tasks of domain
adaptation. An example of lacking domain representation is that the training dataset might
only be recorded under certain environmental conditions (e.g. summer) or operating condi-
tions. It is however critical that the a model developed under one condition performs also well
if exposed to new conditions that were not represented in the training dataset (e.g. winter).
Additionally, the data scarcity is often accompanied with scarce labeling. All three challenges
combined presents quite a substantial challenge for deep learning methods; especially since
reliable condition assessment solutions need to be robust towards unknown domain shifts but,
simultaneously, sensitive to novel, previously unobserved fault types. This is quite difficult to
achieve as both objectives cannot be imposed directly in absence of data from future domain
shifts and future health conditions. Existing methods are not quite satisfying in overcoming
these challenges under real conditions. In this thesis, we address these problems and propose
new methods to better handle these ’extreme’ cases of data and label scarcity to cover the
whole life-time of an asset.

1.3 Research Gaps and Overriding Research Questions

In this thesis, we propose a framework for condition assessment, that is robust towards novel
domain shifts, is robust to label noise and is sensitive towards novel health conditions. To
achieve this, we address several research gaps with respect to data scarcity and label quality.

Research Gap 1 A mature fault diagnostics solution needs to ensure safe operation even
under unforeseen changes of operating or environmental conditions while also enabling the
detection of novel fault types. These two objectives have not yet been tackled simultaneously.

Research Question 1 How can we train a fault diagnostics model that is both, able to
perform well on known and unknown domains as well as able to detect novel fault types?

Research Gap 2 It is crucial to be able to develop robust and reliable fault diagnostics
solutions also for systems that have not yet experienced any faults but whose operating
profiles are dissimilar to those where faults are known. In other words, it is crucial to
adapt or transfer fault diagnostics models from one domain to another under real conditions.
Contrary to previously proposed domain adaptation approaches, a solution that is applicable
under real conditions needs to be able to deal with extreme label space discrepancies, deal
with large domain gaps and deal with different types of label space discrepancies (universally
applicable). For example, if different fault types are observed in the source and target domain
during the data acquisition time and only the healthy class is shared between the domains,
resulting in a extreme label space discrepancy. Furthermore, the operating regime of the
asset might have changed significantly between the source and target domain, resulting in
large domain gaps. These scenarios are common in condition monitoring datasets and need
to be addressed. Moreover, the developed method needs to be applicable under realistic
conditions, where no representative data from the missing health conditions is available to
tune the methodology.
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Research Question 2 How can we enable universal domain adaptation for fault diagnos-
tics models with extreme label space discrepancies and large domain gaps?

Research Gap 3 Since label noise is ubiquitous in condition monitoring datasets, it is
crucial to have a mechanism that enables robust training of deep neural networks despite
the presence of label noise. Existing approaches that aim to stabilize the training of data-
driven models in the presence of label noise either require a clean validation dataset that
can be used as a reference or knowledge about the characteristics of the label noise (type
and extent). However, in real applications of fault diagnostics these requirements cannot be
fulfilled. Typically, there is no ground truth information available such as knowledge about
the type and extent of the label noise or a clean validation dataset. In the context of PHM,
the challenge of label noise is particularly pronounced since it can pose a safety-critical risk in
PHM if no mitigation strategy is taken. In this dissertation, we aim to develop a methodology
that can deal with label noise without any exact knowledge about the label noise or a clean
dataset on which hyperparameter (HP) tuning can be performed.

Research Question 3 How can effective fault diagnostics be enabled in the presence of
label noise if no preliminary knowledge about the amount of label noise and no clean
validation dataset is available?

Research Gap 4 Lastly, we address the challenge of distinguishing variations in the data
that are caused by a change in the health condition from those that are caused by non-
informative factors (domain shifts) in cases where no or only little fault data is available.
Contrary to previous works for fault detection, we aim to move from an anomaly detection
model that is sensitive to any kind of anomaly in the data to a fault detection model that is
only sensitive to faults.

Research Question 4 How to concurrently achieve invariance to non-informative factors
and sensitivity to fault types for fault diagnostics but also for fault detection, where only
healthy data and no fault data is available?

In this dissertation, we will investigate various sizes of domain shifts originating from
changing operating conditions only. However, there is no limitation to applying the developed
methods to domain shifts caused by other factors of variation.
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In this section, we present a background on general topics that are closely related to this
dissertation. We focus the literature review mainly on publications that are relevant in
the field of PHM. A detailed introduction on the topics that are specific to the papers,
are introduced in the respective chapters. Moreover, to avoid redundancy, we provide the
literature review on certain topics like research on label noise only in the respective chapters.

Condition Monitoring and Assessment. According to Williams et al. (1994), condition
monitoring is defined as the continuous or periodic measurement and interpretation of data
to indicate the condition of an item to determine the need for maintenance. The term is
used in the context of data acquisition and also in the context of interpreting the acquired
data (Widodo and Yang, 2007). Therefore, the term condition monitoring does not allow to
distinguish between the the process of acquiring data and the interpretation of the data with
e.g. data-driven models. The term condition assessment is a less widely used in literature.
However, it explicitly refers to a tool resp. model for interpreting and assessing the condition
of an asset e.g. in the context of technical performance of the building to long-term mainte-
nance expectations (Yacob et al., 2022). In this thesis we will, on the one hand, use the term
’condition assessment solutions’ when referring to concrete tools, methods or models that al-
low us to assess the health condition of the industrial asset based on the condition monitoring
data. On the other hand, we will use the term condition monitoring when referring to the
entire process of acquiring data and drawing conclusions from it.

Transfer Learning. The major underlying assumption in machine and deep learning is
that the training and future data must have the same data distribution and that the same
learning task needs to be fulfilled (Pan and Yang, 2009). In other words, neither the learning
task nor the data distribution should change between the time period in which the model
is trained (source domain) and a new time period in which the model is deployed (target
domain). However, in many real-world applications and especially in the context of PHM,
this assumption may not hold. The underlying data distribution might have shifted between
the source and the target domain or the learning task might have changed. For both of
these scenarios, the generic concept of transfer learning has been a widely approached topic
(Zhuang et al., 2020; Pan and Yang, 2009; Tan et al., 2018). It aims to improve the learning
of a predictive function f = hT (.) in the target domain for a target task using source data and
the source task (Pan and Yang, 2009). As a generic concept, different categories of transfer
learning are distinguished by Pan and Yang (2009). First, inductive transfer learning aims
to address the setting where the source and target task differ, regardless if there is also a
shift between the source and the target data. Second, transduction transfer learning aims to
address the setting where there is a domain shift between the source and target domain, but
the learning task is identical in both domains. In the context of fault diagnostics, transfer
learning has raised a lot of attention in recent years (Li et al., 2020a; Li et al., 2022).
The goal is typically to either enable the transfer between different working conditions, the
transfer between different machine components or the transfer from simulation to real-world
data (Yao et al., 2022). In this thesis, we will therefore focus on the transduction transfer
learning setting, where the shift in the underlying data distribution is caused by a change
in the operational environment (see below). Transduction transfer learning tasks are usually
tackled with domain adaptation techniques.
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Domain Shifts. If the assumption that the training and the test data are drawn from the
same data distribution is violated, the performance of deep models can drop significantly
(Zhou et al., 2022c). Unfortunately, changes in the underlying data distribution, so called
domain shifts, are common in real-world applications and especially in condition monitoring
applications where a domain shift can be caused by any change in the operational environment
(Siahpour et al., 2020; Ding et al., 2023) (see below for examples). A formal definition of a
domain is provided by Wang et al. (2022) as:

Definition 1 (Domain). Let X denote a nonempty input space and Y an output space.
A domain is composed of data that is sampled from a distribution. We denote it as S =
{(xi, yi)}ni=1 ∼ PXY , where x ∈ X ⊂ Rd, y ∈ Y ⊂ R denotes the label, and PXY denotes the
joint distribution of the input sample and output label. X and Y denote the corresponding
random variables.

Building on that definition of a domain, a domain shift is defined as:

Definition 2 (Domain Shift). Let S = {(xi, yi)}ni=1 ∼ PS
XY be data sampled from a source

domain and T = {(xi, yi)}ni=1 ∼ P T
XY data sampled from a target domain. There is a

domain shift between S and T , if the joint distributions between the domains are different:
PS
XY ̸= P T

XY .

The operational environment under which fault condition assessment solutions are deployed
can vary substantially (Ragab et al., 2022). For example, the operating conditions can change,
the environmental conditions might vary, the configuration of the asset might be updated or
new fleets are taken into operation. These changes cause domain shifts that can significantly
decrease the performance of deployed data-driven models for condition assessment (Wang
et al., 2019). Therefore, domain shifts pose a reliability risk for the industrial operations if
the models are not appropriately adapted.

Domain Adaptation for Classification. Domain adaptation aims to adapt or transfer a
model between two distinct domains: from one labeled source domain to one specific unlabeled
target domain that is subject to a domain shift. In the context of PHM applications, the
source domain, for example, could differ from the target domain by the operating conditions
under which the data is recorded. A formal definition of domain adaptation is given as:

Definition 3 (Domain Adaptation). Let S = {(xi, yi)}ni=1 ∼ PS
XY be data from a la-

beled source domain, T = {(xi)}mi=1 ∼ P T
X be data from an unlabeled target domain and

Dtest = {(xi)}oi=1 ∼ P T
X a test dataset from the same target domain, whereby the underlying

data distribution differs between the source and target domain (PS
XY ̸= P T

XY as defined in
Definition 2). The variable x is the input data to the model, and y describes the classes
{0, ..., C-1} to predict, i.e. health conditions in the context of fault diagnostics. The goal of
domain adaptation is to learn a predictive function h : X −→ Y from the labeled source
domain S and the unlabeled target domain T to achieve a minimum prediction error on a
dataset sampled from the target domain Dtest:

min
h

E(x,y)∈Dtest
[l(h(x), y)], (2.1)

where E is the expectation and l(·, ·) is the loss function

Different approaches have been proposed in computer vision including discrepancy-based,
adversarial-based and reconstruction-based methods (Wang and Deng, 2018). Due to the
relevance of domain shifts in condition monitoring data, methods have recently been applied
and adapted for fault diagnostics (Li et al., 2020a). However, negative transfer i.e. leveraging
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source domain data undesirably reduces the learning performance in the target domain, has
been a long-standing and challenging problem in domain adaptation in general (Zhang et
al., 2022). Common causes can be a large domain divergence, poor source or target data
quality as well as an inappropriate choice of domain adaptation algorithm (Zhang et al.,
2022). Another reason for negative transfer in domain adaptation can be if the label spaces
of the source and target domain are not congruent (Cao et al., 2018, 2019). Therefore, most
of the previously proposed domain adaptation methods require that the same classes are
represented in the source and target domain. This scenario is referred to as the ClosedSet
domain adaptation setting. Unfortunately, this scenario does not meet the reality of real world
datasets (Rombach et al., 2023). Instead, discrepancies in the label space i.e. that different
classes are represented in the source and target domain are very common in real applications.
In the literature, different scenarios of label space discrepancies are distinguished: In the
Partial domain adaptation scenario, for example, the target domain covers only a subset of
the classes in the source domain. Vica versa, in the OpenSet domain adaptation scenario,
the source domain covers only a subset of classes compared to the target domain. In the
Open-Partial domain adaptation scenario, both the target and source domain have private
classes, i.e. classes that are not represented in the other domain. Due to the relevance of
any kind of label space discrepancy to real world applications, there has been an increasing
effort to develop methods that are applicable in different scenarios where the label spaces are
not congruent (Zhang et al., 2021b,c). Although these developments present a milestone in
transferring models to unlabeled domains, domain adaptation approaches are transductive
methods and as such, require data from an target dataset at the model development time.
That means, they cannot deal with unforeseen domain shifts at deployment time.

Domain Generalization. deals with a challenging setting where one or several different
but related domain(s) are given, and the goal is to learn a model that can generalize to an
unseen test domain (Wang et al., 2022; Zhou et al., 2022b). Contrary to domain adaptation,
domain generalization does not require access to some test resp. target data at development
time. For example, in the context of PHM applications, the goal is to train a model on data
from different operating conditions (multiple source domains) such that the model can gen-
eralize well to data that is recorded under novel, previously unobserved operating conditions
at test time. A formal definition is provided by Wang et al. (2022) as:

Definition 4 (Domain Generalization). Given M training (source) domains Strain = {Si|i =
1, . . . ,M} where Si = {(xi,j , yi,j)}ni

j=1 denotes the i-th domain. The joint distributions be-

tween each pair of domains are different: P i
XY ̸= P j

XY , 1 ≤ i ̸= j ≤ M . The goal of domain
generalization is to learn a robust and generalizable predictive function h : X −→ Y from
the M training domains to achieve a minimum prediction error on an unseen test domain
Stest (i.e., Stest cannot be accessed in training and P test

XY ̸= P i
XY for i ∈ {1, . . . ,M}:

min
h

E(x,y)∈Stest
[l(h(x), y)], (2.2)

where E is the expectation and l(·, ·) is the loss function

Thus, the goal of domain generalization is to train a model that performs well on previously
unobserved data that experiences a domain shift compared to the training datasets. Domain
generalization methods have been developed mainly in the field of computer vision to address
the generalization issue, where data manipulation techniques (Shankar et al., 2018), repre-
sentation learning techniques (Li et al., 2018a) as well as specific meta-learning strategies
(Balaji et al., 2018) have been proposed. Overviews on the different domain generalization
techniques for computer vision are in the surveys by Wang et al. (2022) as well as by Zhou
et al. (2022c).
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Solving the domain generalization issue is not only crucial in computer vision applications
but also very critical in PHM applications since changes in the operating conditions, for
example, can occur at any point in time causing a domain shift. While domain adaptation
for PHM has been addressed in a lot of research studies, domain generalization has only
recently started to be addressed for fault diagnostics tasks (Zheng et al., 2019). Mainly,
domain invariant feature representations have been trained by employing adversarial tech-
niques, metric learning techniques and even combining it with data augmentation techniques
(Li et al., 2020c; Liao et al., 2020; Nejjar et al., 2022). For example, adversarial feature
alignment combined with pseudolabeling was proposed to enable domain generalization for
fault diagnostics on rotary machines given one labeled and one unlabeled source domain (Liao
et al., 2020). To account for the specific challenges in condition monitoring datasets, (Li
et al., 2020c) combined three different techniques to train a generalizable fault diagnostics
model for bearing datasets based on multiple labeled source domains: a data augmentation
technique was proposed combined with adversarial alignment and metric learning. The above
mentioned methods explicitly decrease the distinct domain gap between defined the source
domains to learn domain invariant features. However, the identification of distinct domains is
only possible if the factors causing the domain shift are known or/and can be controlled. For
assets that operate in an open environment, some of these factors might not be known, might
not be measurable or controllable. If the identification of distinct domains is not possible,
methods based on adversarial alignment, for example, can not be applied in a straightforward
manner but would require methodological adaptions. Therefore, to satisfy more realistic re-
quirements of real operations, it is preferable to develop methods that do not require the
identification of distinct domains.

Contrastive Learning. Contrastive learning aims to learn a feature representation that
groups semantically similar data close to each other while pushing semantically dissimilar
ones far apart (Schroff et al., 2015). In the PHM context, contrastive learning transfers
very well when assuming that data samples recorded under similar health conditions should
be considered as semantically similar and those samples recorded under dissimilar health
conditions as semantically dissimilar. To achieve this, a contrastive loss function is employed
to train an encoder model (see Equation 2.3), whereby xa is the anchor sample, xp the positive
sample (that shares the semantic meaning with the anchor), and xn is the negative sample
with a different semantic meaning (Schroff et al., 2015), f(.) is the encoded sample, ||.|| is a
distance metric, and ϵ a margin parameter.

L(xa, xp, xn) =
∑
xa∈X

max(0, ||f(xa) − f(xp)||

− ||f(xa) − f(xn)|| + ϵ)

(2.3)

Contrastive learning has shown to enable generalization for downstream tasks in a theo-
retical investigation (Saunshi et al., 2019) and thus, lends itself to be applied in the opera-
tional context of PHM applications, where generalization towards unforeseen domain shifts
is required. Regardless of the exact downstream task for PHM (e.g. fault diagnostics), the
deployed condition assessment solution needs to be robust towards a large variety of non-
informative factors causing variations in the condition monitoring data. By selecting samples
in the positive pair which share the same health condition but are recorded under different
operational environments, we can directly impose the invariance towards non-informative fac-
tors and, thus, train the encoder model to filter out content in the data that is not relevant.
If the encoder model is able to generalize well, it will also show robustness towards novel, un-
foreseen domain shifts at test time. Simultaneously, the condition assessment solution needs
to be very sensitive to changes in the health condition. By maximizing the distance in the
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Figure 2.1: Basic structure of a GAN.

feature space between two samples with different health conditions (negative pair), we can
directly impose the sensitivity towards changes in the health condition.

The potential of contrastive learning is particularly pronounced in the context of condi-
tion monitoring datasets as it does not require to have distinct domains available to reach
a domain-invariant embedding, contrary to adversarial approaches that typically rely on
distinct source and target domains. Contrastive learning has already been applied in the
context of domain generalization. For example, Han et al. (2021) combined contrastive learn-
ing with adversarial training to achieve domain-invariant features for domain generalization
for fault diagnostics of a planetary gearbox. However, the additional adversarial alignment
step requires again the distinct differentiation between the different source domains and thus,
does not take full advantage of applying contrastive learning. After the publication of our
work, Zhao and Shen (2022b) proposed a method based on contrastive learning to enable the
detection of novel faults in a target domain while enabling generalization between domains.

Furthermore, while contrastive learning has been applied to obtain generalization for fault
diagnostics models, it has not yet been attempted to apply it for fault detection. However,
the same type of generalization towards variability in the healthy class caused by domain
shifts is desirable for fault detection models. Michau and Fink (2021) worked on this task
that enables the transfer of anomaly detection models between a source and a target domain
via adversarial alignment. The generalization of anomaly detection models to unforeseen
domains, however, was not investigated much yet. While the contrastive learning has shown
to be useful for fault diagnostics, the transfer is not straightforward to an anomaly detection
setting where only healthy conditions are available and faulty conditions are missing. In
absence of any fault data, it is not possible to explicitly train a feature space that positions
dissimilar health conditions far apart in the feature space. Developing an adaptation of
contrastive learning in absence of fault data is subject of this dissertation.

Generative Models - Generative Adversarial Networks A generative adversarial
network (GAN) is a model that can generate synthetic data and is trained in an adversarial
manner (Goodfellow et al., 2020). In its basic form, it can be depicted as shown in Figure 2.1.

The generator model (blue model in Figure 2.1) is trained to map a noise sample to a
synthetic data sample (adversarial samples) that can “fool” the discriminator. The discrim-
inator is trained to distinguish real data samples from synthetic ones (Creswell et al., 2018).
Over the years, different architectures and extensions of GANs have been proposed such as
the conditional GAN (cGAN) (Mirza and Osindero, 2014) or the Wasserstein GAN with
gradient penalty (Gulrajani et al., 2017). The latter has especially raised a lot of attention
as it has led to a more stable optimization process compared to other implementations. The
discriminator of the Wasserstein GAN approximates the Wasserstein distance of the real data
samples to the generated ones.
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In the context of PHM applications, GANs have been used to tackle the challenge of data
scarcity resp. class imbalance in training datasets. Underrepresented class data has been syn-
thetically generated to get a better representation of the classes (Luo et al., 2021; Zareapoor
et al., 2021). Despite the great achievements in providing richer class representations, GANs
have mainly been used to generate data that is similar to the training data i.e. drawn from
the same data distribution. So far, GANs have not been able to generate data that is drawn
from a distinct distribution or domain that was not observed before. Thus, these approaches
are not suited to generate faults that are recorded e.g. under a novel operating condition.

Data generative models have also been used to enable domain adaptation (Hong et al.,
2018; Bousmalis et al., 2017; Menke et al., 2022) as well as domain generalization (Zhou et
al., 2020a,b) - mainly in the field of computer vision. For domain adaptation, the generative
models are, for example, trained to transfer source images to target images. The generated
target data is then labeled by inheriting the labels from the source domain (Bousmalis et al.,
2017). For domain generalization, there have been very recent approaches aiming to generate
out-of-distribution data to improve the generalizability of the models (Zhou et al., 2020a,b).
These approaches, however, are not suited to generate data that is specific to a distinct
previously unobserved domain but rather data that is different from the observed data or
interpolates between existing domains. Thus, the approaches are not suited to generate
faults in a specific domain, where they have not been observed before.
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3.1 Framework

Over the life cycle of a monitoring system for industrial assets, the data availability resp.
the data scarcity changes and with it the requirement and expectation on the solution for
condition assessment. In this thesis, we propose a framework including four different modules.
Each of the modules addresses an open research question for different phases of the life cycle
of a monitoring system and is developed to overcome current limitations of the specific data
scarcity or label quality setting in the respective phase (see Section 1.3). By developing
methods that can perform well in more extreme and realistic cases of data scarcity or label
quality, each module helps reaching a higher maturity level of a condition assessment solution
with less information (data or labels) available. In other words, the proposed framework
enables to progressively increase the maturity level of condition assessment solution within a
shorter amount of time compared to existing approaches.

The framework is shown in Figure 3.1. On the left, a railway system is used as an example
to represent the different life cycles of condition monitoring. Railway systems exemplify
the complexity of industrial assets well as they have long life times and operate in an open
environment i.e. are exposed to changing environmental and operating conditions. Moreover,
their fleets show a high diversity of configurations. The railway infrastructure system is
equipped with wayside monitoring devices (green icons in Figure 3.1). Thus, the monitoring
devices are exposed to a variety of non-informative factors such as different fleets, different
environmental conditions and different operating conditions causing shifts in the underlying
data distribution (domain shifts). On the right in Figure 3.1, different phases of development
and deployment are shown.
In the initial phase of condition monitoring, the available condition monitoring data is

typically unlabeled but is assumed to originate from healthy conditions (illustrated as the
grey boxes in the lower row in Figure 3.1). Anomaly detection models can be developed, that
are able to detect any anomalous pattern in the data. In this phase, Research Question
4 arises since some novel or anomalous variations might not originate from a change in
the health condition but might originate from a change in the non-informative factors that
have not yet been observed such as novel operating conditions. For reliable operations, it is
important to distinguish anomalies caused by a change in the non-informative factors from
anomalies caused by a change in the health condition to prevent a high false alarm rate or
missed faults. This challenge is addressed in the ’No Fault Label’ module.
In a latter phase of condition monitoring, some faults might have occurred (second low-

est row in Figure 3.1). If they were successfully detected and the corresponding data was
labeled e.g. by domain experts, a classification model can be implemented for fault diagnos-
tics, enabling also the distinction between different fault types and potentially also severity
levels. This therefore provides a more mature solution to condition assessment compared to
a fault detection model. Because condition monitoring data is often affected by label noise,
Research Question 3 needs to be addressed on how to enable robust training despite the
presence of uncharacterized label noise. This is addressed in the Label Noise module.
If a robust fault diagnostics model for one operating condition or one unit of a fleet can be

developed, it may be required to transfer the existing model to different fleets or to new oper-
ating conditions. From a data perspective, this means that a model needs to be transferred to
another domain (second upper row in Figure 3.1). For condition monitoring datasets, often
specific challenges apply when adapting models to new domains. One challenge arises when

13
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only the healthy class is shared between the domains. In this case, there exist many possible
solutions to adapt the model resp. to align the two data distributions from the source and
target domain. Moreover, it is not possible to evaluate the fitness of the individual adaptation
solution in absence of fault classes that are represented in both domains. This challenge is
particularly pronounced when another challenge applies: If the domain gap is large and a
big adaptation step needs to be performed. From these challenges, Research Question 2
arises. To enable the transfer of diagnostics models also under these extreme settings of label
space discrepancies, we propose the ’Extreme Domain Adaptation’ module.

Lastly, it is desirable to reach a mature level of condition assessment solutions that does not
require intervention each time a new domain shift occurs that is caused e.g. by a change in the
operating conditions. Instead, the trained model should generalize well to unforeseen domain
shifts (upper row in Figure 3.1). Simultaneously, it is utterly important to remain sensitive
to novel health conditions to enable safe operations. To satisfy both of these requirements,
Research Question 1 needs to be addressed. We propose the ’Domain Generalization’
module to achieve that.

3.2 Modules

The proposed framework comprises four different modules with their corresponding methods.
In the following, the modules are briefly introduced. Some more detailed information on the
modules can be found in Section 3.3 and ultimately, the proposed methods is presented in
Chapter 4-Chapter 7.

1. Module 1: Domain Generalization module aims to enable not only reliable diagnostics
in known source domains (Si as defined in Definition 4) but also in novel domains
(Stest as defined in Definition 4) that have not been observed before. The proposed
solution integrates not only (1) the reliable distinction of known health conditions but
also (2) the detection of novel faults. Contrastive learning is proposed to achieve both
tasks simultaneously. The module provides a mature solution for reliable condition
assessment as it does not require model adjustments each time a domain shift occurred
but is still sensitive to novel health conditions. The module is illustrated in Figure 3.2a.

2. Module 2: Extreme Domain Adaptation module is able to transfer models to new do-
mains given extreme label space discrepancy i.e. if only the healthy class is shared
between the domains and the domain gaps are potentially large. We propose to address
the challenge raised by the label space discrepancies for domain adaptation by enabling
the generation of domain- and class-specific data from fault conditions that have not
been observed before in the target domain (T as defined in Definition 3). The gener-
ated fault data can compensate for unseen domain-specific fault classes and, thereby,
transform the given Partial or Open-Partial DA setting into a ClosedSet DA setting.
The module is illustrated in Figure 3.2b.

3. Module 3: Label Noise module addresses the real world challenge that often condition
monitoring datasets are affected by label noise. Typically, there is no additional in-
formation available about the characteristics of the noise available and no clean and
correctly labeled validation dataset. In this module, we propose to enable robust fault
diagnostics in the presence of label noise without requiring any concrete knowledge of
the label noise. Instead, our proposed method relies on a rough assumption regarding
the level of label noise solely. We propose a two-step method that first identifies outliers
based on the samples’ consistency with the hypothesis update and second, modifies the
training dataset based on the identified outlier samples. The module is illustrated in
Figure 3.2c.
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Figure 3.1: Overview of the proposed framework which deals with various real-world limitations. The modules
of the framework are flexible applicable in different life cycle phases and with different levels of
data and label scarcity. The framework is applicable in different types of assets that face the same
challenges as addressed in the modules.
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(a) Module 1 - Chapter 4: Contrastive Learning for Fault
Detection and Diagnostics in the Context of Chang-
ing Operating Conditions and Novel Fault Types

(b) Module 2 - Chapter 5: Controlled Generation of Un-
seen Faults for Partial and Open-Partial Domain
Adaptation

(c) Module 3 - Chapter 6: Improving generalization of
deep fault detection models in the presence of misla-
beled data

(d) Module 4 - Chapter 7: Contrastive Feature Learning
for Fault Detection and Diagnostics in Railway Ap-
plications

Figure 3.2: Overview of the proposed domain adaptation framework which deals with various real-world limi-
tations.

4. Module 4: No Fault Label module aims to achieve robustness towards normal variations
in the healthy data that is caused by a change in the operational environment such
as changing operational conditions. Simultaneously, the module aims to train a model
that is particularly sensitive to possible future faults although these have not been
observed yet. Unsupervised contrastive learning has been proposed to achieve that.
The proposed module can be applied when the exact health condition is not known
but presumably only healthy data has been observed and, therefore, provides a stable
solution in the beginning of the condition monitoring phase. The module is illustrated
in Figure 3.2d.

The different modules enable to progressively reach a higher maturity level of the condition
assessment solution within a shorter period of time while enabling more reliable operations
compared to state of the art methods. The following advantages can be achieved under this
framework:

• Chapter 4: The ability to simultaneously provide a fault diagnostics solution that is
robust under unforeseen domain shifts, robust to label noise while being sensitive to
detecting new health conditions.
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• Chapter 5: The ability to transfer fault knowledge between domains and enable domain
adaptation under extreme label space discrepancies.

• Chapter 6: The ability to achieve robust fault diagnostics under unknown label noise
types and levels.

• Chapter 7: The ability to achieve robustness towards normal variations within the
healthy class for fault detection models and sharpening the sensitivity to potential
future faults.
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3.3 Contributions

This cumulative thesis incorporates four published articles in the fields of deep learning, as
well as its applications in fault diagnosis. The key papers are included in Chapters 4 - 7. A
summary of the methodology proposed in those articles and specific contributions is described
in subsections 3.3.1 - 3.3.4 and additional contributions are described in subsection 3.3.5. A
list with all publications can be found in Section 3.6.

3.3.1 Module 1: Contrastive Learning for Fault Detection and Diagnostics in the
Context of Changing Operating Conditions and Novel Fault Types

To enable safe operations, not only the robustness to domain shifts is important but also
the ability of the solution to be able to detect novel health conditions. These are somewhat
competing objectives where (1) robustness to novel data variations due to domain shifts
is required but (2) also sensitivity to novel variations in the data due to a change in the
health condition. We address this challenge of achieving the two above mentioned objectives
simultaneously by proposing a contrastive learning algorithm. A feature representation is
learned such that data samples that were recorded under the same health conditions are
positioned close to each other in the feature space. This corresponds to the positive pair
xa and xp as defined in Equation 2.3 and is illustrated in Figure 3.2a by the green icons.
Vica versa, samples recorded under different health conditions correspond to the negative
pair xa and xn as defined in Equation 2.3 and are positioned far apart in the feature space
as illustrated in Figure 3.2a.

Specific Contributions

• The proposed method does not require an explicit distinction of different source domains
nor do the domains need to be discrete.

• Considering the operational environment of an industrial asset, the proposed method
does not only enable generalization to new domains but also enables to detect novel
faults.

• The proposed method outperforms the comparison methods on both tasks (1) classifying
known health conditions under domain shifts and (2) detecting novel faults on a bearing
dataset.

3.3.2 Module 2: Controlled Generation of Unseen Faults for Partial and Open-Partial
Domain Adaptation

To enable domain adaptation under realistic scenarios in PHM, the respective method also
needs to be applicable in extreme settings i.e. with extreme label space discrepancies between
the source domain (S) and the target domain (T ) as well as with large domain gaps i.e. when
the underlying data distributions of the source domain and target domain differ considerably.
The proposed method enables the generation of domain- and class-specific data samples from
fault conditions that have not been observed before in the target domain. The generated
fault data can compensate for unseen domain-specific fault classes and, thereby, transform
the given Partial or Open-Partial DA setting into a ClosedSet DA as illustrated in Figure 3.2b,
where the target domain is enhanced with synthetic data. Thus, it is particularly suited for
domain adaptation under extreme label space discrepancies and large domain gaps.

Specific Contributions

• The proposed method enables the controlled generation of data that has not been
observed before by adapting data to the specificities of a desired domain as well as to
a desired fault class. Thus, unsupervised domain mapping is enabled.
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• The proposed method is applicable even if no validation dataset of unobserved data is
available and thus, contrary to other approaches proposed in literature, satisfies real-
world requirements.

• The proposed method is applicable in different settings of label space discrepancies.

• The proposed method is evaluated on two bearing datasets with different domain gap
sizes and outperforms comparison methods significantly in cases of large domain gaps.

3.3.3 Module 3: Improving generalization of deep fault detection models in the
presence of mislabeled data

The availability of either ground truth information on the type or amount of label noise or a
clean validation dataset is not realistic in condition monitoring datasets. Previous approaches
that aim to enable robust optimization of deep learning methods in presence of label noise
typically require prior knowledge on label noise or a clean validation datasets and thus, are
not applicable to many PHM applications. We aim to lift the above mentioned requirements
by developing a method that can perform well only based on a rough estimate of the label
noise level. Instead of investigating the model’s output of the classification model compared
to the different ground truth classes, we propose to investigate the gradient space to prevent
potential independent of the class characteristics as illustrated in Figure 3.2c.

Specific Contributions

• The proposed methodology requires solely a rough estimate on the label noise and does
neither require exact prior knowledge on the type or amount of label noise nor a clean
validation dataset. Therefore, it satisfies the requirements of real applications more.

• The benefits of the proposed methodology are evaluated on both, a computer vision
and a condition monitoring dataset. Both, the computer vision and fault diagnosis
experiments demonstrate the effectiveness of the proposed method, even under severe
label noise levels.

3.3.4 Module 4: Contrastive Feature Learning for Fault Detection and Diagnostics in
Railway Applications

It is crucial to prevent anomaly detection models to be too sensitive to normal variations in
the healthy class and consequently, raise false alarms. Equally so, anomaly detection need to
be very sensitive to novel variations in the data that are caused by a fault. Achieving both
objectives of (1) invariance to normal variations and (2) sensitivity to possible faults is a
quite challenging task in the anomaly detection setup i.e. in absence of any fault data as the
sensitivity to faults can not be imposed directly. We approach this challenge by inducing an
encoding of the data in the feature space that aims to achieve invariance to normal variations
and a high sensitivity to changes in the health condition. We propose to apply contrastive
learning, whereby we enabled the application of contrastive learning in an anomaly detection
setup by using the ’time passed since the last maintenance action’ as a surrogate to describe
the health condition (see Figure 3.2d).

Specific Contributions

• We evaluate the proposed methodology on real condition monitoring datasets contrary
to a dataset recorded under laboratory conditions, that only partially reflect the diffi-
culties of real condition monitoring data recorded under real in-service conditions.

• The experiments demonstrate the superiority of contrastive learning in both, a super-
vised and an anomaly detection setup.
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3.3.5 Additional Contributions

In addition to the specific contributions elaborated above, we also address more general
limitations that currently hinder the application of data-driven models for PHM. In the
following we will elaborate on the contributions that this thesis provides to overcome these
general limitations.

Hyperparameter Tuning without Access to a Representative Validation Dataset.
Many methods based on deep learning models require the tuning of a multitude of hyperpa-
rameters. Tuning these optimally influences the performance of the final model significantly.
Due to the importance of finding optimal hyperparameters, many methods rely on available
additional information. For example, many methods that tackle the challenge of label noise
rely on previous knowledge about the type and amount of label noise or a clean validation
dataset. Moreover, domain adaptation methods that were proposed in cases with discrep-
ancies in the label spaces require the availability of a labeled and representative validation
dataset of the target domain including the missing fault classes. This additional information
is not available for tasks of real industrial applications. For example, if a fault has not been
observed before in a specific target domain, a representative validation dataset including the
missing fault classes does not exist in a realistic scenario. This limits the application of many
existing methods to real applications where neither ground truth information nor a repre-
sentative validation datasets are typically available. In this dissertation, we aim to develop
methods that can be applied in absence of this additional information.

Extreme Data Scarcity. Many methods developed in literature addressed data scarcity
challenges before. In PHM tasks, however, we are often faced with extreme cases of data
scarcity, where not only domain data is scarcely represented but also the fault data repre-
sentation is extremely scarce. For example, if we want to transfer fault diagnostics models
to a new domain, often not the same fault types occurred in the source and target domain.
Often, the representation of potential fault types and severity levels is scarce in either one
or both domains. This can pose a critical challenge for existing domain adaptation methods,
especially in the extreme case that only the healthy class is shared between the domains
and the domain gap is large (fault scarcity). Otherwise, existing anomaly detection methods
take into account that fault data is not only scarce but often not available at all in safety
critical systems. However, it has hardly been addressed that, in addition to the missing fault
data, also the normal variations within the healthy class is only scarcely represented (domain
scarcity). An anomaly detection model might raise false alarms if there is a unforeseen do-
main shift at deployment time, which is not desired from a operational point of view. Vica
versa, domain generalization methods in the context of fault diagnostics do consider that
the available training dataset might only scarcely represent the conditions under which the
asset is operated in the future and thus, unforeseen or unknown domain shifts might occur
at deployment time. However, contrary to anomaly detection models, domain generalization
methods do not take into account that also the health conditions might be scarcely repre-
sented as well and thus, novel health condition might emerge at deployment time (domain
and fault scarcity). In this dissertation, we push the boundaries of deep learning under data
scarcity and aim to alleviate the limitations of existing approaches.

3.4 Aim, Scope and Thesis Outline

The aim of this research is to develop reliable fault detection and diagnostics models which
can efficiently deal with various types of label and data scarcity that are specific to different
phases of the life cycle of an asset or the life cycle of the installed measurement system. This
thesis is dedicated to filling existing research gaps elaborated in Section 1.3 that hinder the
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reliable application of deep learning methods. The remainder of the dissertation is organized
as follows:
Chapter 4 addresses the research question: How can we train a fault diagnostics model that

is both, able to perform well on known and unknown domains as well as able to detect novel
fault types?. We propose contrastive learning to achieve the two objectives: (1) robustness
towards domain shifts and (2) sensitivity to novel faults. The proposed method is evaluated
on a benchmark bearing dataset. This chapter enables condition monitoring with data-driven
models over multiple known and unknown domains and enables to distinguish known and
unknown faults. The method in this chapter can be applied if the monitoring of a complex
system has advanced and presents a mature solution to condition assessment as it does not
require to retrain a fault diagnostics model each time a domain shift occurs but it still enables
safe operations since novel faults can be detected.
Chapter 5 addresses the research question: How can we enable universal domain adap-

tation for fault diagnostics models with extreme label space discrepancies and large domain
gaps? This chapter further extends the framework to the scenario where a fault diagnostics
model needs to be adapted to be applicable in new domains - for new fleets or significantly
different operating conditions. To address more realistic scenarios in condition monitoring
compared to previously proposed domain adaptation methods, the data generative method
developed in 4 is particularly suited for large domain gaps and is applicable in extreme label
space discrepancies i.e. if only the healthy class is shared between two domain. The supe-
riority of the developed method is demonstrated on two benchmark bearing datasets with
different sizes of domain gaps.
Chapter 6 addresses the research question: How can effective fault diagnostics be enabled

in the presence of label noise if no preliminary knowledge about the amount of label noise and
no clean validation dataset is available? It can be applied in a condition monitoring phase,
where faults have occurred, were detected and labels are available. However, the quality of
the labels is not consistent and it is suspected that label noise is affecting the dataset. A
method is proposed in Section 6 that does not rely on concrete knowledge about the label
noise but relies solely on a rough estimation of the level of label noise. Therefore, the proposed
method addresses a more realistic setup compared to other approaches proposed in literature.
The proposed method considers the gradient space before updating the neural network and
thus, prevents overfitting to mislabeled samples from the beginning. Experiments on an
image classification task and a condition monitoring dataset demonstrate that the proposed
method results in robust classification models also, under large levels of label noise.
Chapter 7 addresses the research question: How to concurrently achieve invariance to

non-informative factors and sensitivity to fault types for fault diagnostics but also for fault
detection, where only healthy data and no fault data is available? To address this question,
contrastive feature learning is adapted in Chapter 7 to be suited not only for fault diagnostics
but also for the anomaly detection setup where only the healthy class is available at training
time. This enables to transfer the benefits of contrastive learning of learning generalizable
features from the fault diagnostics setup to the fault detection setup. In the anomaly de-
tection setup, invariance to operational conditions and sensitivity to degradation processes
is imposed. It is evaluated to which extent sensitivity to degradation can be transferred to
sensitivity to faults. Experiments are conducted on two real condition monitoring datasets
within the railway system. The dataset cover two different settings: fault diagnostics and
fault detection.
Chapter 8 discusses the key findings in the individual works.
Chapter 9 completes this thesis with conclusions and an outlook for future research

possibilities.
The four developed approaches in Chapter 4-7 mitigate the current limitations in applying

deep learning to PHM problems that have been elaborated earlier. They have been developed
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to suit the different phases when introducing a new monitoring solution for an industrial asset:
from early deployment when no faults and little operating conditions have yet been observed
to a mature fault detection and diagnostics model that is robust towards changes in the
non-informative factors (domain shifts) and simultaneously sensitive to novel fault types.
The four developed approaches can be employed consecutively and compose a framework as
described in Section 3.1 that enables reliable operation in the different phases of monitoring an
asset. The developed methods will ultimately allow to reach a mature solution for condition
assessment while enabling safe and efficient operations on the way of reaching a high level of
maturity (see Figure 3.1).

3.5 Relevance to Science and Economy

In this thesis, we provide a holistic framework that can be applied to different real-world
industrial assets for robust and reliable fault detection and diagnostics. For each of the
proposed modules, we integrate real world constraints. In order to incorporate artificial
intelligence into real-world problems methods are required that are able to learn from little
data and with as little supervision as possible. From a scientific perspective, we need to
develop methods that perform well in data scarcity settings that are common the the context
of real industrial applications and thus, differ from traditional deep learning applications
where representative and large-scale datasets are available. For example, by developing a
method that enables the generation of previously unobserved data in a controlled and directed
manner in Chapter 6, domain adaptation can be applied even if no faults were observed in
the target domain yet. Developing methods that can overcome the specific challenges that
arise under different data scarcity settings is one of the main goals of this thesis.

The methodological advances have great implications for economy. By developing methods
that can perform reliably with less amount of information or data available, the condition
assessment can be advanced quicker compared with other state-of-the-art methods as less
data acquisition time is required to gather a more representative dataset. Furthermore,
increasing the model’s robustness towards e.g. distributional shifts in the data makes the use
of deep learning methods much more attractive to the industry as they need less adaptation or
human supervision. Each of the modules can be applied individually and flexible for problems
where data scarcities apply, as it is the case in many real-world applications. Moreover, the
modules applied progressively within one framework provide solutions for practitioners that
just started to monitor an industrial asset and have not gained much experience on the system
or the data yet. The framework will guide the practitioner to increase the maturity level of
the condition monitoring solution within a shorter period of time compared to other methods.
By providing reliable models for fault detection and diagnostics on a component level, the
modules resp. the framework do not only enable safe operations but can significantly support
efficient maintenance planning.
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4 Contrastive Learning for Fault Detection and Diagnostics in
the Context of Changing Operating Conditions and Novel
Fault Types

This chapter corresponds to the published article:1

Rombach, Katharina, Gabriel Michau, and Olga Fink (2021). “Contrastive Learning for Fault
Detection and Diagnostics in the Context of Changing Operating Conditions and Novel
Fault Types”. In: Sensors 21.10, p. 3550. doi: https://doi.org/10.3390/s21103550.

Abstract: Reliable fault detection and diagnostics are crucial in order to en-
sure efficient operations in industrial assets. Data-driven solutions have shown
great potential in various fields but pose many challenges in Prognostics and
Health Management (PHM) applications: Changing external in-service factors
and operating conditions cause variations in the condition monitoring (CM)
data resulting in false alarms. Furthermore, novel types of faults can also cause
variations in condition monitoring data. Since faults occur rarely in complex
safety critical systems, a training dataset typically does not cover all possible
fault types. To enable the detection of novel fault types, the models need to be
sensitive to novel variations. Simultaneously, to decrease the false alarm rate,
invariance to variations in CM data caused by changing operating conditions
is required. We propose contrastive learning for the task of fault detection
and diagnostics in the context of changing operating conditions and novel fault
types. In particular, we evaluate how a feature representation trained by the
triplet loss is suited to fault detection and diagnostics under the aforementioned
conditions. We showcase that classification and clustering based on the learned
feature representations are 1) invariant to changing operating conditions while
also being 2) suited to the detection of novel fault types. Our evaluation is
conducted on the bearing benchmark dataset provided by the Case Western
Reserve University (CWRU).

4.1 Introduction

Modern industrial processes are increasingly subject to oversight by condition monitoring
(CM) devices. The recorded data opens up the possibility of data-driven maintenance models
(Fink, 2020). Purely data-driven solutions are especially interesting with regard to complex
assets for which model-based approaches are limited or don’t exist. Recent successes in deep
learning have demonstrated the potential of data-driven solutions (Devlin et al., 2019; Chen
et al., 2020). However, for the task of fault detection and diagnostics, particular challenges
arise when applying deep learning to CM data from an industrial asset.

Complex industrial assets are often subject to a variety of operating conditions as well as
external (e.g. environmental) factors that strongly influence the acquired data. Changing
ambient temperature, for example, might affect the roughness of the asset, which could then
be sensed by accelerometer measurements resulting in changes of the signals. The ambient

1Please note, this is the author’s version of the manuscript published in Sensors. Changes resulting from
the publishing process, namely editing, corrections, final formatting for printed or online publication, and
other modifications resulting from quality control procedures may have been subsequently added. The final
publication is available at https://doi.org/10.3390/s21103550.
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temperature is therefore a factor that causes variations in the data but cannot be controlled.
That means that a complete training dataset that is recorded in summer will deviate from
the data experienced in the winter season. Predicting or foreseeing all of these influential
factors is not always possible as some factors of variations are simply not known or cannot be
controlled. Even if all future operating conditions are completely controllable and known (e.g.
defined in the specifications of a working environment), the multitude of possible combinations
makes it often infeasible to collect a dataset with a sufficient representation of all possible
combinations of operating conditions within the specifications. Hence, a training dataset
might only represent a subset of all possible conditions. Ultimately, often in real applications,
it is not realistic to assume that a training dataset contains all possible future conditions that
the asset will experience (Michau and Fink, 2021). In this paper, we distinguish between
conditions or factors that are represented in the training dataset and those that are not. The
later ones are referred to as novel operating conditions. Yet, the performance of data-driven
models often relies on the fact that the data collected during inference time is similar to the
training dataset (independent and identically distributed (IID)) (Tan et al., 2018). I.e. the
training dataset needs to be representative of all ambient factors and operating conditions the
asset will encounter in the future. If a model is subjected to new variations in the data caused
by, e.g. unexpected ranges of ambient temperature, it might perform poorly in identifying
the exact system condition of the asset (Fink et al., 2020). This can result in false alarms. To
prevent this, a fault diagnostic model needs to be invariant to all variations in the data that
correspond solely to varying operational or environmental factors rather than to a change in
the asset’s condition.

On the other hand, while faults arise very rarely in operating industrial assets, there is
a multitude of different fault types with various severities that can possibly occur (Michau
and Fink, 2021). It is not realistic to assume that the training dataset contains all possible
fault types at all possible intensities. However, robust fault diagnostics entails the task of
identifying fault types in general. This includes those faults that are unknown at training
time and, therefore, are not represented in the training dataset. Similarly to the terminology
used for operating conditions that are not reflected in a training dataset, we refer to these
faults as novel fault types. A safety issue can arise if a model is not capable of detecting
novel fault types or is underestimating a fault’s severity. Therefore, to ensure safe operation,
a robust fault diagnostic model needs to be sensitive to novel variations in the data that
correspond to novel fault types.

Ultimately, the goal is to train a fault diagnostics model that is both invariant to the
variability in the CM data caused by novel operating conditions or external factors and,
simultaneously, sensitive to the changes corresponding to novel fault types that were not
considered or known when the model was developed. In this work, we show that features
trained with contrastive learning are able to achieve both of the aforementioned objectives.
This is the first work that applies contrastive learning to PHM applications in order to tackle
both of the above objectives: 1) invariance of the models to novel operating conditions and
2) sensitivity of the models with respect to variations caused by novel fault types.

4.2 Related Work

Contrastive learning is a discriminative approach that aims to group semantically similar
samples close to each other in the feature space while pushing semantically dissimilar samples
far apart from each other (Jaiswal et al., 2021; Hermans et al., 2017). To achieve this, a
contrastive loss is formulated based on a similarity metric quantifying how close different
features are (Hadsell et al., 2006). In contrast to other frequently used losses - such as cross-
entropy loss or mean squared error loss, whose objective is to directly predict a label or
values - contrasive learning aims to train a semantically meaningful feature representation of
the data. This has recently shown great promise, mainly in the context of computer vision,
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achieving or exceeding state-of-the-art results in both a supervised (Hadsell et al., 2006;
Gomez et al., 2018; Hermans et al., 2017) and unsupervised setting (Dosovitskiy et al., 2014;
Oord et al., 2018; Bachman et al., 2019). Franceschi et al. applied contrastive learning also
successfully to timeseries data (Franceschi et al., 2019).

If the contrastive loss function is based on triplets of training data samples, it is referred to
as triplet loss. The idea of using data triplets (instead of data pairs) for contrastive learning
was first introduced in 2009 for nearest-neighbor classification (Weinberger and Saul, 2009).
For each sample (the ”anchor” xa), the distance to both a positive sample (xp) and a negative
one (xn) is calculated in order to formulate the loss function. Different techniques have been
proposed to select these positive and negative samples. For supervised tasks, for example,
the hard triplet loss (Hermans et al., 2017) chooses the sample with the same label that is
farthest away from the anchor (xa) as the positive sample. Whereas, the nearest sample with
a different label is selected as the negative sample. By contrast, the soft margin loss function
(Schroff et al., 2015) randomly selects a negative sample and regards all samples with the
same labels within the batch as the positives. Regardless of the exact implementation, the
objective is to group data with the same label and increase the distance to other classes of
data in the feature space, i.e. to give the feature clusters a semantic meaning.
Feature extraction or learning has been identified as one of the most important el-

ements in PHM applications (Nguyen et al., 2018). Manually engineered features (feature
extraction) as well as learned features (feature learning) have been proposed for the purpose
of fault detection and diagnostics (Krummenacher et al., 2017; Chao et al., 2021). The re-
sulting feature space is then classified (Patel and Giri, 2016; Krummenacher et al., 2017) or
clustered (Yoon et al., 2017; Chao et al., 2021) in order to detect and classify faults and their
severity, but also to detect novel fault types (Chao et al., 2021). Robust feature learning is
the objective of many publications of fault diagnosis (Abid et al., 2019; Shen et al., 2018).
These works typically focus on robustness with respect to noisy environments. That means
they assume to have representative (but noisy) samples of all classes. On the contrary, this
paper focuses on robustness with respect to a shift of the underlying data distribution e.g.
caused by changing operating conditions. Contrastive learning has been applied in domain
adaptation settings for PHM applications (see below) (Wang and Liu, 2020) but not yet for
robust feature learning in the context of unknown changing conditions and novel fault detec-
tion. However, the idea of learning low-dimensional representations of high-dimensional data
that correspond solely to their semantic meaning is very promising. It offers the potential to
filter out variations of the data that are caused by changing conditions and do not contain
information regarding the asset’s condition.
Transfer learning in general relaxes the hypothesis that the training data must be IID

with the test data (Tan et al., 2018). By transferring knowledge that is learned in source
tasks to a related target task, it aims to alleviate the issue of insufficient training data (Torrey
and Shavlik, 2010; Tan et al., 2018). This has attracted a lot attention in machinery fault
diagnostics, where, for example, changing operating conditions or external factors cause a
shift in the CM data that is not reflected in the training dataset (Li et al., 2020a). Means
of domain adaption - a branch of transfer learning - have been widely used to address the
challenge of adapting a model to new conditions (Wang et al., 2020a, 2019; Zhang et al.,
2018; Lu et al., 2016). Noteworthy is the approach of Wang and Liu where contrastive
learning is used for domain adaptation. However, these approaches require both a) a clear
identification of the target domain and b) representative data for all classes from this target
domain. Pioneering work by Wang et al. (Wang et al., 2020a) has enabled the application
of domain adaptation even if certain class data (e.g. certain faults) is missing in the target
domain. Nevertheless, it still requires to identify and foresee the target domain, which is not
always possible (e.g. if these new conditions are caused by external factors that are neither
known nor controllable). Further, representative data of all classes is required in the source
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domain. This is not given if the novel emerging fault types are those that have not been
anticipated before.

4.3 Methodology

Contrastive learning is evaluated in the context of the PHM application of detecting, clas-
sifying, and determining the type and severity of bearing faults. Specifically, we evaluate
whether fault detection and diagnostics based on the learned feature representation is, on the
one hand, invariant to variations in the CM data caused by novel operating conditions and,
on the other hand, sensitive to variations caused by novel fault types. To achieve that, the
retrieved features are both, classified and clustered. The feature representations are learned
via the semi-hard implementation of the triplet loss LTriplet (Schroff et al., 2015), where the
negative loss is calculated based on one negative sample that is randomly sampled within a
batch. The positive loss is computed based on the average distance of all positive samples
within the batch to the anchor sample. The distance metric used for all case studies is the
L2 Norm. The feature learning models are then applied to test datasets that contain novel
operating conditions in Case Study 1 and in Case Study 2 the models are exposed to novel
fault types.

To evaluate the suitability of the learned feature representation for detecting and classi-
fying known fault types (but also for detecting novel fault types), the learned features are
classified and clustered. A support vector machine (SVM) is trained for classification. The
classification performance showcases whether the models are affected by a change in the op-
erating conditions. For the identification of novel fault types, the feature space is clustered
with two different clustering algorithms: Ordering points to identify the clustering structure
(OPTICS) (Ankerst et al., 1999) as well as k-means (Lloyd, 1982), for which the silhouette
score (Rousseeuw, 1987) is used to determine the number of clusters.

A scheme of the methodology can be seen in Figure 4.1.

(a) (b)

Figure 4.1: Methodology schemes of (a) training a feature representation with the triplet loss and (b) evaluat-
ing the learned feature representation (classification and clustering) with respect to the objectives
of achieving invariance to novel operating conditions and sensitivity to novel faults.
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4.4 Case Studies

4.4.1 Dataset

All case studies are conducted on a bearing dataset provided by the Case Western Reserve
University Bearing Data Center (CWRU dataset) (Smith and Randall, 2015). The publicly
available dataset is often used as a benchmark dataset in the field of PHM in general. It
has been used for different tasks within the field of fault detection and diagnostics. Recently
published methods include stacked denoising autoencoder (Lu et al., 2017) or recurrent neural
networks (Shenfield and Howarth, 2020) (a comprehensive overview is given by Neupane and
Seok (Neupane and Seok, 2020)). The dataset is especially suited to demonstrate solutions
related to diagnosing faults under different operating conditions (different loads in this case)
and transferring models between these different conditions (domain adaptation) (Wang et al.,
2020a, 2019; Zhang et al., 2018; Lu et al., 2016).

However, we would like to emphasize that the setup that we are dealing with in this
research, has not yet been tackled by other researchers: the algorithms we are seeking to
develop are on the one hand supposed to be sensitive to novel types of faults, however on
the other hand they are supposed to be robust to novel operating conditions. Unfortunately,
there are no other case studies that could be used to compare our proposed approach to
directly. In fact, we reformulate the problem setup to make it applicable to the problem of
novel fault type detection. Therefore, previous results obtained on this dataset are also not
directly comparable.

The accelerometer measurements are recorded under four different loads 0, 1, 2, 3, which
correspond to different operating conditions in our case studies. Ten different health condi-
tions of the bearing are represented in the dataset (see Table 4.1): Healthy condition (N),
three different fault types (inner race faults [IR], outer race faults [OR], and ball faults [B]),
and three different fault severities for each of the fault types (7, 14, 21). The sample dataset
was collected from the CWRU dataset with sampling frequency of 48 kHz.

Class 0 1 2 3 4 5 6 7 8 9

Severity [mils] - 7 7 7 14 14 14 21 21 21
Type N B IR OR B IR OR B IR OR

Table 4.1: Classes in the CWRU dataset.

Preprocessing: The original signals are divided into sequences of 512 points with no overlap
between the sequences. Each sequence is scaled by the mean and standard deviation of the
healthy data. This results in a dataset containing one-dimensional timeseries of length 512,
each labeled by the label of the original signal.

The proposed algorithm and most of the baseline methods (see Section 4.4.3) uses raw
signals as input data. However, we also compared the performance to that of algorithms
based on feature engineering and used the frequently applied Fast Fourier Transform (FFT)
for extracting features in the frequency domain (Heideman et al., 1984).

The FFT features are calculated based on the previously extracted timeseries dataset
whereby the absolute value of the FFT coefficients is considered as the FFT features. Due
to the symmetry of the resulting features, only the first half is considered, resulting in a
256-dimensional feature space.

4.4.2 Case Study Setup

Two case studies are conducted to evaluate the suitability of contrastive learning with re-
spect to the objectives of achieving 1) invariance of the models similar but novel operating
conditions (interpolation - see Experiment 1) as well as 2) sensitivity to novel fault types
(extrapolation - Experiment 2). In the following, these objectives and their corresponding
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setups are elaborated.
Case Study 1: Invariance to Novel Operating Conditions
This case study tests the invariance of the trained models to novel changes in the operating
conditions. As defined in Section 4.1, novel operating conditions are those that are not
represented in the training dataset. In the CWRU dataset, the different loads are considered
as different operating conditions (see Section 4.4.1). The models are trained under a subset
of operating conditions and evaluated on two test datasets: Data recorded under the same
operating conditions as the training dataset (T) and a second test dataset containing data
recorded under the operating condition that was not part of the training dataset (Tp). For
example, if no data under the load 1 is available at training, the training dataset is defined
as Dtrain = Dtrain/Dload=1 (19,129 samples) and the two test datasets are defined as 1) T =
Dtest/Dload=1 and 2) Tp = Dload=1. This case study setup corresponds to the scenario where a
model experiences novel operating conditions or factors influencing the measurements during
inference time that were not known at training time. The goal here is not to extrapolate to
novel operating conditions but rather to train a feature representation that is not impacted
by a shift in operating conditions. Therefore, the case study includes two data selections,
whereby the two intermediate loads are being withhold for training. (This setup deviates
from the typical experimental setup in the field of domain adaptation since we do not assume
any knowledge about the missing conditions or target domain during training time.)
Case Study 2: Sensitivity to Novel Fault Types
To test the ability of the model to distinguish known fault types and severities from novel
ones, a model is trained on a subset of fault types and evaluated on two test datasets: One
containing the same subset of fault types as the training dataset (T) and the second test
dataset including the novel fault types that were not in the training dataset (Tp). The
CWRU dataset used in this research (see Section 4.4.1) allows for multiple data selection
choices to evaluate the objective at hand. Two different exemplary data selections are chosen
to evaluate the objective at hand. First, the fault B is withheld from the training dataset
and second, the IR fault with all fault severities. For example, the first data selection results
in a the training dataset Dtrain = Dtrain/Dfault=1,4,7 (18,195 samples) and the test datasets
T = Dtest/Dfault=1,4,7 (4,549 samples) and Tp = Dfault=1,4,7 (4,998 samples).
Evaluation: To evaluate the learned features with respect to the objective of achieving
invariance to changing operating conditions, a classification model is trained based on the
known classes at training time (see Section 4.4.4). To evaluate the objective of achieving
sensitivity to novel fault types, the feature space of the test dataset containing the novel
fault types is clustered. To evaluate the clustering performance, we closely follow the work of
Chao et al. (Chao et al., 2021) by reporting the following metrics: R: the number of detected
clusters; AMI: the adjusted mutual information, measuring how closely the clustering al-
gorithm replicates the true classes (Vinh et al., 2010); h: the homogeneity, which indicates
whether clusters contain only data points which are members of a single class; c: the com-
pleteness, which measures whether members of a given class are elements of the same cluster
(Rosenberg and Hirschberg, 2007). Furthermore, a two-dimensional t-Distributed Stochastic
Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008) is used for visualization
of the feature representation with a fixed perplexity value of 100.

4.4.3 Baseline Methods

Contrastive learning results in models that provide an informative feature representation of
the data. To evaluate the performance of the contrastive learning framework, we defined
several baseline models with the focus on encoding features in the latent space with differ-
ent types of learning setups, ranging from supervised learning to autoencoding architectures.
Different loss functions are used to optimize the encoder network. First, an autoencoder is
trained with the objective to reconstruct the input signal with the mean squared error loss.
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The bottleneck layer activations provide the feature representation. Second, a classification
model that is directly trained to predict the labels with cross-entropy loss. The latent space
activations provide the feature representation. To provide a clear comparison for the evalua-
tion of the different loss functions with respect to the different objectives, the same encoder
model architecture is used for all the encoding models (the concrete choice is explained in
Section 4.4.4). Third, experiments are also conducted on features extracted from the raw
input signals: Fast Fourier Transform (FFT) coefficients. The forth evaluation model is an
autoencoder architecture that is optimized with respect to the goal to ideally reconstruct the
FFT coefficient and not the raw data.

4.4.4 Models

Encoder

A small latent feature space dimensionality is chosen arbitrarily with the purpose of creating
a bottleneck that needs to select the most informative content and, thus, may help to remove
some factors of variability. Therefore, the dimensionality of the latent feature space was set
to 16. The feature encoders share the same architecture - with one exception (see below).
The architecture was chosen such that good performance could be achieved on all training
objectives given a feature space of 16 dimensions. The encoder network consists of four
1D-convolution layers (64, 32, 16, 8 kernels) with a kernel size of 12, activated with Leaky
ReLu (alpha=0.5), followed by a MaxPooling (with strides of 2), and a Dropout layer (with
a dropout rate of 0.1). The output of the convolution layers is flattened before passing it to a
fully connected layer with 16 dimensions, again, activated by Leaky ReLu (alpha=0.5). The
triplet encoder has an additional L2 normalization layer. The classifier is followed by a fully
connected layer with number of classes in the training dataset and softmax activation. The
autoencoder (AE) model is followed by a decoder model (reverse architecture of the encoder).
To enable convergence, all models are trained with the Adam optimizer for 100 epochs and
a batch size of 64.

The process to encode the FFT features is elaborated in Section 4.4.1. While the fixed,
small feature space size allows for comparison of the different feature spaces, training an
autoencoder successfully (minimizing the reconstruction error of the input signal) required
an adaption of the model architecture. Additionally, it is beneficial to train it on the FFT
features and not on the raw signals (as often done in literature (Neupane and Seok, 2020)).
Therefore, a second autoencoder model to reconstuct the FFT features is trained to enable
a fair comparison (see Section 4.4.3) with the following encoder architecture. It consists of
four 1D-convolution layers (64, 32, 16, 8 kernels) with a kernel size of 12 and a stride of 2,
activated with Leaky ReLu (alpha=0.5). The output of the convolution layers is flattened
before passing it to a fully connected layer with 64 dimensions, again, activated with Leaky
ReLu (alpha=0.5).

Classification

To evaluate the performance of the learned or extracted features, a supervised architecture
was chosen that uses the learned or extracted features as input. It is important to highlight
that supervised evaluations are not feasible for all the case studies. For the supervised
evaluation case studies, an SVM with a Radial Basis Function kernel is trained based on the
learned or extracted feature representations. For the supervised classifier, the outputs of the
classifier are used directly without training an additional SVM on the learned features as in
the case of the other two models. In Section 4.4.5, the specific hyperparameters are shown.

Clustering

Since particularly the discovery of novel fault types requires unsupervised evaluation of the
feature space, clustering approaches were applied to the learned or extracted features. Two
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different clustering methods are used for comparison purposes: a partitioning clustering ap-
proach and a density-based clustering approach.

The features of the classifier encoder and the AE are scaled by the mean value before
applying the clustering.
OPTICS: the density-based algorithm Ordering points to identify the clustering structure

uses a distance metric to group points that are close to each other. Compared to density-
based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996), OPTICS
allows for clusters of varying density. The utilized implementation deviates from the original
OPTICS algorithm by first performing k-nearest-neighborhood searches on all points. This
is then used to calculate core distances in order to identify core sizes. For details, please refer
to (Buitinck et al., 2013). One benefit of using OPTICS is that it has the ability to detect
”noisy samples” as outliers. These are samples that are not contained in any cluster as they
are not density-reachable as defined in (Ankerst et al., 1999). This property is particularly
useful for detecting novel fault types.
K-means + silhouette score: K-means is a clustering algorithm which assigns each

sample to the cluster with the nearest mean (MacQueen, 1967). In our research, the number
of clusters is determined by the silhouette score (Rousseeuw, 1987). It measures how similar
an object is to its own cluster (cohesion) as compared to other clusters (separation) based on
the euclidean distance.

4.4.5 Hyperparameter Tuning

The hyperparameters of the supervised classification algorithm SVM are tuned on a valida-
tion dataset split from the training dataset (see first columns in Table 4.2). Although the
unsupervised clustering algorithms do not rely on the availability of labels, it is beneficial
to tune certain hyperparameters. To do this, we again exploit the availability of the labeled
training dataset: The minimum number of clusters considered for Kmeans + Silhouette was
set to the number of classes in the training dataset (ten for case study 1 and seven for case
study 2). The maximum number of clusters was set to a fixed value of 20. When applying
OPTICS, the explicit clustering method can be chosen, as well as the minimal number of
samples per class and the maximum distance between two samples for one to be considered
as being in the neighborhood of the other ϵ. These parameters were tuned to achieve high
performance on a fraction of the training dataset corresponding to the size of the dataset T.
Whenever possible, the smallest fixed value of ϵ was chosen such that an AMI of 98% was
achieved in the fraction of the training dataset. Otherwise, the value was set to infinity. Each
setting is shown in Table 4.2.

Classification - SVM Clustering - Exp. 1 Clustering - Exp. 2
C γ method # ϵ method # ϵ

AE/AEFFT/FFT 5.99 0.001 xi 10 ∞ xi 10 ∞
CLE - - xi 10 ∞ xi 10 ∞
TE 1.67 0.046 DBSCAN 10 0.2 DBSCAN 10 0.08

Table 4.2: Classification and Clustering Hyperparameters Based on the Feature Spaces of the FFT, the Au-
toencoder based on the FFT (AEFFT ), the Autoencoder (AE), the Classifier Encoder (CLE), and
Triplet Encoder (TE) Models

4.5 Results

4.5.1 Case Study 1: Invariance to Novel Operating Conditions

For visualization purposes, the 2-D t-SNE of the feature spaces of the models that share the
same encoder architecture (AE, the classifier encoder and the triplet encoder) are shown with
the true labels (ytrue) on T ∪ Tp in Figure 4.2. Exemplary, the figures of sample selection
1 (Dtrain = Dtrain/Dload=1) are displayed. Visually, the triplet encoder features appear to
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cluster the different classes best (see Figure 4.2). All clusters are well separated, cohesive, and
contain only one class of data. The silhouette score per class confirms the visual impression
(see Table 4.3), as the feature space of the triplet encoder shows the highest silhouette score
calculated on the true labels. However, a slight deviation is visible within the classes from T
to Tp.

FFT AEFFT AE CLE TE
0.04 0.10 -0.18 0.38 0.81

Table 4.3: Silhoutte Score of the Class Clusters in the feature representation based on the FFT features (FFT),
the autoencoder with FFT features (AEFFT ), the autoencoder (AE), classifier encoder (CLE) and
triplet encoder (TE) on T ∪ Tp

Hence, the classification performance based on the triplet encoder features is not impacted
by the change in operating conditions of the different test datasets (accuracy of 100% on T
and Tp on both of the sample selections - see classification results in Table 4.4). Similarly,
the classification performance based on classifier encoder features is hardly impacted by the
change of operating conditions - only a negligible performance drop of 1% is observed from
T to Tp for both sample selections - see Table 4.4. On the contrary, all other models show
a more significant accuracy drop from test dataset T to Tp on both sample selections (more
pronounced in sample selection 1). This showcases the issue of changing operating condition
for the fault diagnostic task and disqualifies these methods to be used in these scenarios of
changing operating conditions.

Clustering methods are used for the second objective of detecting novel fault types (see
Exp. 2). However, the clustering needs to perform well on T ∪ Tp, even if no novel fault
types - but rather only a shift in the operating conditions - is present. If this were not be the
case, it would not be possible to distinguish between variations in the data due to changes in
the operating conditions and the presence of novel fault types. In Table 4.4, the clustering
performance on the respective feature representations is shown. It is apparent that only the
clustering of the triplet encoder feature space is not impacted by the change in operating
conditions. Hardly any performance change is observed between clustering based on T and
clustering based on T∪Tp on the sample selection 1 (Dtrain = Dtrain/Dload=1) - see clustering
results in Table 4.4. For data selection 2 (Dtrain = Dtrain/Dload=2), a slight change is observed
when using OPTICS (AMI changed by 3%). However, this is still the highest AMI compared
to the other methods. Clustering based on the other features perform considerably worse.
For example on sample selection 1 (Dtrain = Dtrain/Dload=1), OPTICS underestimated the
number of classes present in the feature spaces of the classifier encoder (R=6) and the AE
(R=3). Hence, data from different classes are assigned to the same cluster, resulting in a
lower h score compared to the c score. Clustering with k-means performs slightly better
for all methods. This is due to the fact that the minimum number of clusters was set to 7
(see Section 4.4.5). Hence, the number of clusters is closer to the number of true classes in
the data resulting in a better performance compared to the density-based clustering method
OPTICS. We again see a higher c score compared to the h score for all evaluation models.
This means that multiple classes are assigned to one cluster, whereas other classes are split
into multiple clusters.

4.5.2 Case Study 2: Missing Faults

In Figure 4.3 the feature space is depicted for T∪Tp for sample selection 1 (Dtrain = Dtrain/
Dfault=1,4,7) and the models sharing the same encoder architecture (AE, classifier encoder,
triplet encoder). The true labels as well as the predicted cluster class of the two methods
(OPTICS and k-means) is displayed.

In the first row of the figure, the true labels of the different feature spaces are shown. The
light grey (fault B7), light orange (fault B14), and light purple (fault B21) correspond to
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(a) CLE (b) AE (c) TE

Figure 4.2: Case Study 1: t-SNE Plot of Feature Space on T ∪ Tp of the Classifier Encoder (CLE), the
Autoencoder (AE) and the Triplet Encoder (TE).

Classification Clustering - OPTICS Clustering - k-means
T Tp T T ∪ Tp T T ∪ Tp

acc acc R AMI h c R AMI h c R AMI h c R AMI h c

Sample Selection 1: Dtrain = Dtrain/Dload=1; T = Dtest/Dload=1 and Tp = Dload=1

FFT 97% 91% 5 27% 16% 84% 5 26% 15% 89% 11 47% 41% 56% 10 53% 47% 60%
AEFFT 97% 91% 3 26% 17% 88% 6 26% 16% 87% 11 46% 40% 56% 10 46% 38% 58%

AE 67% 60% 3 1% 1% 36% 4 1% 1% 32% 11 29% 22% 46% 14 29% 22% 46%
CLE 100% 99% 6 23% 14% 67% 6 23% 13% 80% 11 70% 62% 81% 11 70% 61% 82%
TE 100% 100% 11 96% 98% 95% 11 97% 98% 95% 10 100% 100% 100% 10 99% 99% 99%

Sample Selection 2: Dtrain = Dtrain/Dload=2; T = Dtest/Dload=2 and Tp = Dload=2

FFT 97% 95% 6 26% 15% 87% 5 25% 15% 94% 11 47% 41% 56% 11 47% 39% 58%
AEFFT 97% 94% 7 6% 4% 42% 6 25% 15% 93% 10 46% 40% 56% 10 45% 38% 57%

AE 65% 59% 2 4% 2% 5% 3 2% 1% 4% 20 29% 23% 43% 20 30% 23% 45%
CLE 99% 98% 8 28% 17% 72% 7 26% 16% 80% 13 70% 63% 80% 11 70% 60% 85%
TE 100% 100% 11 96% 97% 94% 10 93% 92% 95% 10 99% 99% 99% 10 99% 99% 99%

Table 4.4: Case Study 1: Classification and Clustering Results on Various Operating Conditions Based on
Feature Spaces of the FFT, the Autoencoder based on the FFT (AEFFT ), the Autoencoder (AE),
the Classifier Encoder (CLE), and Triplet Encoder (TE) Models.

the novel fault types. These are not well isolated in any of t-SNE visualizations, as can be
seen in the first row Figure 4.3. Therefore, none of the clustering algorithms can identify
the novel fault types as distinct clusters. Yet the original clusters in T in the triplet encoder
feature space are still being found in T ∪ Tp using both clustering methods (third column
in Figure 4.3). While k-means simply assigns the novel fault types to the already existing
clusters, OPTICS identifies some data of the novel fault types as outliers (labeled with 0):
For example on data selection 1 (Dtrain = Dtrain/Dfault=1,4,7) considering the triplet encoder
feature space, a total of 2,036 noisy samples or outliers are detected, of which 166 are B7
faults (11% of all B7 faults), 1,140 are B14 faults (76% of all B14 faults), and 623 are B21
faults (43% of all B21 faults). Ultimately, 94% of the outliers are from the novel fault type.

The evaluation metrics are shown in Table 4.5. Only the class clusters of the triplet encoder
are similarly compact such that a fixed value of ϵ could be set (see Section 4.4.5). Therefore,
outliers could be identified as samples that are not density reachable. For the other baseline
methods, this was not possible (see Section 4.4.5). As the novel faults are not well isolated
in either of the resulting feature spaces, OPTICS performs well only in identifying novel
faults as outliers on the triplet encoder features, where the cluster densities are compact.
It is apparent that the feature space of the different AE as well as the FFT features does
not provide a feature representation that is able to group the different fault types. This is
also true for the feature space of the classifier. Many classes are grouped in the same cluster
whereas other classes are split into multiple clusters, resulting in a higher c score compared
to the h score for both clustering methods.
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(a) CLE ytrue (b) AE ytrue (c) TE ytrue

(d) CLE ypred kmeans (e) AE ypred kmeans (f) TE ypred kmeans

(g) CLE ypred OPTICS (h) AE ypred OPTICS (i) TE ypred OPTICS

Figure 4.3: Case Study 2: t-SNE plot of feature space of the classifier encoder (first column), AE (second
column), and triplet encoder (last column) model on T ∪ Tp with the true labels (first row), the
predicted labels with k-means (second row), and the predicted labels with OPTICS (last row)
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Classification Clustering - OPTICS Clustering - k-means
T Tp T T ∪ Tp T T ∪ Tp

acc acc R AMI h c R AMI h c R AMI h c R AMI h c

Sample Selection 1: Dtrain = Dtrain/Dfault=1,4,7; T = Dtest/Dfault=1,4,7 and Tp = Dfault=1,4,7

FFT 100% 0% 4 37% 24% 86% 5 23% 13% 87% 9 57% 53% 61% 7 41% 31% 59%
AEFFT 100% 0% 4 37% 24% 86% 4 23% 13% 89% 8 51% 47% 57% 7 39% 30% 56%
AE 84% 0% 3 4% 2% 4% 3 3% 1% 43% 13 21% 17% 29% 8 16% 11% 35%
CLE 100% 0% 8 7% 4% 34% 8 7% 4% 41% 9 75 % 68 % 83% 5 54% 41% 80%
TE 100% 0% 8 96% 98% 94% 10 73% 69% 77% 7 100% 100% 100% 7 72% 64% 82%

Sample Selection 2: Dtrain = Dtrain/Dfault=2,5,8; T = Dtest/Dfault=2,5,8 and Tp = Dfault=2,5,8

FFT 97% 0% 3 36% 23% 88% 6 23% 13% 85% 7 35% 28% 50% 7 50% 41% 65%
AEFFT 97% 0% 5 37% 24% 84% 5 23% 14% 87% 7 42% 36% 51% 11 53% 48% 59%
AE 73% 0% 2 1% 1% 3% 2 1% 0% 4% 18 26% 23% 36% 7 28% 21% 43%
CLE 100% 0% 9 36% 25% 68% 9 24% 14% 73% 7 66% 58% 77% 7 61% 50% 78%
TE 100% 0% 8 97% 99% 96% 7 76% 65% 93% 7 99% 99% 99% 7 79% 71% 90%

Table 4.5: Case Study 2: Classification and Clustering Results with Novel Faults Based on Feature Spaces
of the FFT, the Autoencoder based on the FFT (AEFFT ), the Autoencoder (AE), the Classifier
Encoder (CLE), and Triplet Encoder (TE) Models.

4.6 Discussion

The goal of this research is to learn a feature representation that allows for robust classifi-
cation under changing operating conditions as well as identification of novel faults. None of
goals is a classification task per se. However, the classification results on test dataset (T)
allow for comparison with results of other State-of-the-Art (SOTA) publications on the used
benchmark dataset. Accuracies above 99% have been achieved by various SOTA methods
(see Section 4.4.1). Despite the rather simple model architectures evaluated in this paper
(compared to other SOTA models - see Section 4.4.1), the classification results on the test
dataset T of up to 100% showcase the validity of the proposed methods including the chosen
baseline methods.

Over all the case studies, the performance based on the AE with the 16-dimensional feature
space is very low. However, we consider a low-dimensional feature space more suited to
filtering out uninformative variations from the input data, which is one of the objectives of
this work. Therefore, we consider this a fair comparison. The lack of robustness of these
autoencoding methods to new operating conditions becomes particularly apparent in the
high classification performance drop in case study 1 from T to Tp (see Table 4.4). This
is not surprising as the AE is trained to fully reconstruct the input signal. Hence, the
objective is to pass all information regarding the measurements through the bottleneck layer,
including information related to various operating conditions. Therefore, variations in the
operating conditions appear in the feature space as well, making this approach not suitable
if the objective is to achieve invariance or robustness to operating conditions. Similarly, the
FFT features contain all information of the signal including variations caused by operating
conditions. Therefore, the classification performance based in these features are equally
affected by the change in operating conditions.

The labels are directly considered when training the classifier encoder and triplet encoder,
enabling the models to focus on the semantic meaning. This results in a better classification
performance. Remarkably, the classification performance based on the classifier encoder and
triplet encoder features is hardly affected if the operating conditions change at inference time.
The clustering performance on the features of these two models varies significantly, both on
T and T∪Tp. As the features of a certain class are represented in a more compact way by the
triplet encoder, the space is more suited for clustering. Yet, a shift can be visually observed
between the data of T and Tp within the respective clusters. This means that the model is not
invariant to the shift in operating conditions. However, the different classes in T∪Tp are still
cohesive and separable. Therefore, neither the classification nor the clustering performance is
negatively impacted by the novel operating conditions. Both clustering methods perform well
on T∪Tp, with k-means even delivering results comparable to the classification performance.
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All feature encodings are sensitive to variations in the data corresponding to novel faults.
However, they do not provide a representation that allows the clustering algorithms to iso-
late them in the feature space. Therefore, none of the clustering methods identifies clusters
including most of a novel fault class. Yet the compactness of the learned feature represen-
tations per class of triplet encoder enables to set a fixed value of ϵ in OPTICS, i.e. a fixed
maximal value for two samples to be considered neighbors in a cluster. This enables us to
detect novel faults at least as outliers (if not as distinct clusters). A detected outlier could
raise an alarm to the operator and initiate a further evaluation. For example, in the sample
selection 1 of case study 2, 94% of the outliers actually correspond to novel faults, relatively
few false alarms will be raised. However, many novel faults will not be detected but simply
registered as another fault class. In this case, fault detection will still be ensured.
Limitations: The performance of the OPTICS clustering algorithm depends strongly

on the data at hand: If the dataset contains mainly novel faults (|Tp| >> |T|), these will
primarily determine the clusters and will not be detected as outliers anymore. Therefore, it
is important to keep the dataset T with known conditions as a reference for the clustering
algorithm. Continuously, a novel dataset with unknown conditions Tp can be added. Our
case studies have been conducted under an approximate balance between the two datasets
(|T| ≈ |Tp|); this ratio can be tuned according to the safety criticality of the system.

4.7 Conclusion

In this research, contrastive learning has been evaluated in the context of PHM applications.
Specifically two typical scenarios in PHM were investigated: A trained model is faced with
new operating conditions and new faults at inference time. We were able to show that
a feature representation trained with a contrastive learning paradigm is well suited to the
clustering of classes under different and partially novel operating conditions. This enables
clustering that is invariant to fluctuation in the data corresponding to similar but novel
operating conditions, as seen before. Simultaneously, the compactness of the retrieved feature
representations enables density-based clustering that is sensitive to novel faults. Ultimately,
contrastive learning seems to be a promising paradigm for PHM applications. To further
establish contrastive learning in PHM applications, we propose to dedicate future work to
the question of how contrastive learning can be applied in a semi-supervised or unsupervised
setting.
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This chapter corresponds to the published article: 1

Rombach, Katharina, Gabriel Michau, and Olga Fink (2023). “Controlled generation of
unseen faults for Partial and Open-Partial domain adaptation”. In: Reliability Engi-
neering & System Safety 230, p. 108857. doi: https://doi.org/10.1016/j.ress.

2022.108857.

Abstract: New operating conditions can result in a significant performance
drop of fault diagnostics models due to the domain shift between the training
and the testing data distributions. While several domain adaptation approaches
have been proposed to overcome such domain shifts, their application is limited
if the fault classes represented in the two domains are not the same. To enable a
better transferability of the trained models between two different domains, par-
ticularly in setups where only the healthy data class is shared between the two
domains, we propose a new framework for Partial and Open-Partial domain
adaptation based on generating distinct fault signatures with a Wasserstein
GAN. The main contribution of the proposed framework is the controlled syn-
thetic fault data generation with two main distinct characteristics. Firstly, the
proposed methodology enables to generate unobserved fault types in the tar-
get domain by having only access to the healthy samples in the target domain
and faulty samples in the source domain. Secondly, the fault generation can
be controlled to precisely generate distinct fault types and fault severity levels.
The proposed method is especially suited in extreme domain adaption settings
that are particularly relevant in the context of complex and safety-critical sys-
tems, where only one class is shared between the two domains. We evaluate
the proposed framework on Partial as well as Open-Partial domain adaptation
tasks on two bearing fault diagnostics case studies. Our experiments conducted
in different label space settings showcase the versatility of the proposed frame-
work. The proposed methodology provided superior results compared to other
methods given large domain gaps.

5.1 Introduction

A reliable operation of complex (safety-critical) assets can be achieved by monitoring the
condition of the assets in real time, detecting the faults in an early stage and distinguishing
between the different fault types to enable an informed schedule of the recovery maintenance
or fault mitigation actions (Abid et al., 2021). Data-driven models based on real-time condi-
tion monitoring (CM) data have shown a great potential for fault detection and diagnostics
(Zhao et al., 2020; Guan et al., 2021). However, CM data is often affected by distribu-
tional shifts (referred to as domain shifts), that can significantly decrease the performance of
data-driven models (Miao et al., 2022; Zhou et al., 2022d). For example, changing operating
conditions can cause such a distributional shift (Michau and Fink, 2021; Rombach et al.,

1Please note, this is the author’s version of the manuscript published in Reliability Engineering and System
Safety. Changes resulting from the publishing process, namely editing, corrections, final formatting for printed
or online publication, and other modifications resulting from quality control procedures may be subsequently
added. The final publication is available at https://doi.org/10.1016/j.ress.2022.108857.
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2021). Similarly, CM data of two units of a fleet can differ quite significantly due to differ-
ences in their configurations and operating regimes (Michau and Fink, 2019; Li et al., 2021c).
To enable the transfer of a data-driven model to new operating conditions or new units in
a fleet, domain adaptation (DA) methods have been successfully applied in fault diagnostics
(Deng et al., 2022; Lee et al., 2022). Most of the proposed approaches, however, require that
the same fault classes are represented in the source and the target domain. This DA setting,
where the source and target domain datatsets cover the same classes, is referred to as Closed-
Set DA - see Figure 5.1. However, in real-world datasets, the classes represented in the two
domains are not always congruent. Due to the rareness of faults in complex industrial assets,
for example, observing each possible fault in all assets of a fleet and/or under all possible
operating conditions may not be practically feasible, particularly for safety-critical systems
(Michau and Fink, 2021). Practical fault diagnostics solutions, typically, need to be taken
into operation within a short period of time, not allowing to wait until all possible fault types
have occurred. This results in cases where not all fault classes have been observed in all units
or under all operating conditions, leading to label space discrepancies in CM datasets.

Figure 5.1: Four DA configurations according to label space discrepancies: (a) ClosedSet ; (b) Partial ; (c)
OpenSet ; (d) both Open-Partial (Boris et al., 2021).

In the literature, different DA settings have been distinguished by their type of discrepancy
in the label space (Boris et al., 2021). This is illustrated in Figure 5.1. In the Partial DA
setting, the target domain covers only a subset of the source classes (source domain has
private classes), whereas in the OpenSet DA setting, the source domain covers only a subset
of the target domain classes (target domain has private classes). The Open-Partial DA setup
is a combination of both previous settings where both domains have private classes that are
not represented in the other domain. Most existing DA methods are designed for only one
of the above mentioned DA settings (mainly ClosedSet DA) and are often not transferable
to other DA scenarios (see Section 5.2). This poses a challenge for successful DA in real
applications, where different types of discrepancies in the label space can occur. Since safety-
critical systems are reliable by design, faults occur very rarely. In some cases, only healthy
data (one class) is available in different domains, not allowing to perform fault diagnostics at
all. Instead, Michau and Fink (2021), proposed to train a one-class classification model that
is transferable between domains. If faults did occur in one of the domains, fault diagnostic
is possible. For the DA task, however, we are presented with an extreme case of label
space discrepancy in prognostics and health management (PHM) applications, where often
only one class, the healthy one, is shared between the two domains (Wang et al., 2020a).
For example, if a system starts operating under a new operating condition, only data of

38



5555

5 Controlled Generation of Unseen Faults for Partial and Open-Partial
Domain Adaptation

the assets’s current condition will be available. For safety-critical systems, this is usually the
healthy condition, meaning that only the healthy class is shared between datasets from various
operating conditions (an extreme case of Partial DA). As illustrated in Figure 5.2, such an
extreme case of label space discrepancy between two domains can pose a significant challenge
for Partial DA methods based on feature alignment. With only one class shared between
the two domains, there exist many possible alignment solutions (see Figure 5.2b) and their
performance can only be evaluated after the model is employed and the real target faults have
been observed (see Figure 5.2c). Extreme discrepancies in the label space of training datasets
can also arise if two units of a fleet are experiencing different fault types during the data
collection (and model development) period. Then, in the available training dataset, the only
common health class experienced so far by both units may be the healthy class. However, both
of the units can be affected during their life times (during the deployment of the developed
models) by the same failure modes. Therefore, the fault diagnostics algorithms should be
able to diagnose all possible fault types and not only those that have been experienced by
the specific unit at the training time. The results of previous studies show that, generally,
the less classes are shared between the domains, the harder the DA task becomes (Wang
et al., 2020a; Zhang et al., 2021b). For example, compared to the ClosedSet setting, the
classification performance on a bearing dataset dropped by 20% when only three out of ten
classes were shared between the two domains (Zhang et al., 2021b). Despite the relevance
to PHM applications, there is hardly any work tackling the extreme cases of discrepancies
in the label spaces (with only one shared class between two domains) for fault diagnostics in
different DA settings. These extreme scenarios are in the focus of the research in this paper.

(a) Real source and target datasets in the
extreme Partial DA setting.

(b) Alignment problem. (c) A-posteriori
evaluation.

Figure 5.2: Illustration of the source and target alignment challenge when only one class is shared between
the domains on the example of the Partial DA setting: The source and the target datasets are
shown in Figure 5.2a whereby only one class (green class) is represented in the target domain. The
alignment step based on one class only is shown in Figure 5.2b, whereby the challenge of finding
the optimal alignment is indicated. The quality of chosen alignment method can only be tested
during the a-posteriori evaluation, when the target classes have been observed ( see Figure 5.2c).

We propose to address the challenge raised by the label space discrepancies for DA by
enabling the generation of domain- and class-specific data from fault conditions that have
not been observed before in the target domain. The generated fault data can compensate
for unseen domain-specific fault classes and, thereby, transform the given Partial or Open-
Partial DA setting into a ClosedSet DA setting. The generation of previously unobserved
target fault data is based on observed faults in the source domain i.e. we propose to perform
unsupervised domain mapping. This is particularly challenging since it is unknown how
an unobserved fault in the target domain should look like. The unsupervised target fault
generation needs to fulfill two requirements. Firstly, the generated data should be adapted
to the specificities of the desired domain and secondly, the faults should be specific to a
desired class in the label space. We address for the first time such an unsupervised but
controlled generation of fault data based only on the healthy data in the target domain and
faulty data in the source domain. The proposed work is based on the hypothesis that the
Fourier spectrum from faulty data can be disentangled in data signatures that represent (1)
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solely fault class characteristics and (2) domain-specific characteristics within the data. The
validity of this hypothesis is evaluated implicitly by conducting different DA experiments.
The main contribution of this research is a novel framework FaultSignatureGAN based on a
Wasserstein GAN (Arjovsky et al., 2017) that enables to generate domain-independent fault
class signatures that are transferable to any new domain, given only healthy data of that
domain. This is, on the one hand, a particularly challenging task since no samples of faulty
data in the target domain are available and, on the other hand, a particularly relevant case
for real safety-critical applications where a representative dataset of fault data is typically
not available. FaultSignatureGAN enables a controlled way to generate physically plausible
faults of previously unobserved distinct classes in the target domain and thereby, enables to
complement label spaces with different types of class discrepancies for DA tasks. Since the
proposed framework relies solely on the availability of source faults and healthy target data,
its benefits are particularly pronounced for targeting the extreme case of DA where only one
class (the healthy class) is shared between the two domains. However, it is applicable to any
number of shared and missing fault classes in the two domains. The proposed framework
FaultSignatureGAN is not limited to only one type of label space discrepancy since it is
applicable in Partial as well as Open-Partial setups.

The remainder of the paper is organized as follows. First relevant related work is summa-
rized in Section 5.2, the proposed framework is explained in Section 5.3. The case studies are
introduced in Section 5.4 and the exact setup of the conducted experiments is stated in Sec-
tion 5.5. The results of the conducted experiments for Partial DA are shown in Section 5.6.1
and for Open-Partial settings in Section 5.6.2. The findings are discussed in Section 5.7 and
conclusions are drawn in Section 5.8.

5.2 Related Work

Domain Adaptation has been intensively studied in recent years in the context of PHM
applications (Li et al., 2022). Most of the proposed approaches, however, have been exclu-
sively developed for the ClosedSet DA setting where the source and target domain cover
the same classes - see left column in Figure 5.1. As exemplified in Section 5.1, the assump-
tion of a ClosedSet setting is not realistic in many practical applications. Hence, ClosedSet
DA methods do not meet the requirements of industrial applications. There has been an
increasing interest to develop methods that address more realistic DA scenarios with label
space discrepancies. Approaches for Partial (Liang et al., 2020), OpenSet (Li et al., 2021b)
as well as Open-Partial (Saito and Saenko, 2021) DA have been mainly developed in the
field of computer vision. Recently, several research studies have developed the ideas fur-
ther to adapt them to the challenges of real CM data. In the context of fault diagnostics,
adversarial approaches have been proposed for OpenSet DA with different degrees of label
space discrepancies i.e. with a different number of shared classes between the two domains.
For example, in (Zhao and Shen, 2022c), an auxiliary domain discriminator was introduced
to attribute less weight to private target samples and fault diagnostics experiments were
conducted on three bearing datasets with two shared classes between the two domains. In
another study on OpenSet DA for fault diagnostics, Zhang et al. (2021b) used an instance-
level weighted mechanism to identify private target classes and tested the proposed method
i.a. with three (out of ten) shared classes between the domains on two rotating machinery
datasets. The results demonstrated that, generally, the less classes are shared between the
domains, the harder the DA task becomes. Another method proposed a source class-wise
and target instance-wise weighting mechanism combined with an additional outlier identifier
for OpenSet fault diagnostics on two rotating machine datasets. The proposed method has
even been applied on multiple label space discrepancy settings (Zhang et al., 2021c). Despite
its relevance to fault diagnostics in safety-critical complex technological system, none of the
above mentioned studies has tackled the extreme case of the OpenSet or Open-Partial DA
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setting, where only one class (the healthy class) is shared between the domains. Another
major limitations of the previously proposed approaches on OpenSet DA is that they only
aim to classify known classes (i.e. source classes) and do not enable to distinguish private
target samples into different classes. In safety-critical applications, however, it is important
to distinguish between different health conditions within the private target samples to plan
appropriate maintenance actions.

Methods targeting the Partial DA setting have also been developed for PHM applications.
For example, a class-weighted adversarial DA method was proposed that uses the domain
discriminator’s output to detect private classes (Li et al., 2020d). The output of two classifiers
has also been employed to estimate the target distribution and train domain-invariant rep-
resentations (Jiao et al., 2019). Also, randomly selected source data is used to augment the
target domain to align the conditional distributions combined with a class-wise adaptation
(Zhao et al., 2022). Some research studies have even dealt with the extreme case of Partial
DA where only the healthy state is shared between the two domains (Li and Zhang, 2020;
Li et al., 2018b; Wang et al., 2020a). For example, Li and Zhang (2020) proposed a condi-
tional data alignment step (using the maximum mean discrepancy) that is only applied to
the healthy data from the source and target domain to prevent misalignment due to the label
space discrepancy. In addition to the conditional alignment, the authors proposed prediction
consistency schemes using multiple classifier models for fault diagnostics in Partial DA set-
tings. Wang et al. (2020a) proposed a unilateral alignment approach (Unilateral) for Partial
DA with extreme label space discrepancy. The proposed method made use of the inter-class
relationships of the source domain and aligned the target features to the pre-trained source
domain features. Although the results of previous studies using different feature source and
target alignment techniques in extreme Partial DA settings are promising, the methods have
mainly been tested on CM datasets with small domain gaps (indicated by the high Baseline
classification performance). The employed methods may fail under large domain shifts, where
the inter-class relationships might have changed significantly.

One fault data generation approach was investigated in the extreme case of Partial DA
combined with an additional alignment step (Li et al., 2018b). However, the proposed target
data generation method required extrapolation abilities of the generative model. Given the
limited extrapolation abilities of deep models, it is not to be expected that the generated
data resembles realistic target faults - especially given large domain gaps. Instead of gener-
ating target data as performed in (Li et al., 2018b), Zhao et al. (2022) adapted the idea of
Liang et al. (2020) and proposed to augment the target data with source data to compensate
the missing class data and performed adversarial feature alignment on the augmented and
class-weighted datasets combined with a class-center-alignment loss. While the source data
augmentation stabilized the alignment process, the proposed method may fail in settings
where the inter-class relationships might have changed significantly. Further, the above men-
tioned approaches tackling different settings of label space discrepancy in DA have usually
been developed for one specific DA setting, eitherPartial or OpenSet, and are typically not
applicable in other settings. Furthermore, large domain gaps have not been tackled so far in
the extreme case of label space discrepancy where only the healthy class is shared between
the domains. Another limiting factor in applying the above mentioned DA methods based on
feature alignment to new safety-critical assets is finding an optimal hyperparameter setting.
With only one class being shared between the domains, there exist multiple possible align-
ment solutions and their quality can only be evaluated a posteriori, posing a safety risk in
industrial assets. Therefore, previous works used, e.g., data and labels from target faults for
one validation domain shift to tune the hyperparameters (Wang et al., 2020a). This solution
to find the optimal hyperparameter settings is, however, not possible in real applications
where data from unobserved target faults is not available.

In this work, we aim to develop a framework that performs well in the extreme case of
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DA under different label space discrepancy settings with a particular focus on the Partial
and Open-Partial setting. We aim to develop a framework that enables DA also in the cases
where the domain gaps are large. Further, we aim to achieve this without relying on target
validation data to tune our methodology, as this is one of the limiting factors in existing DA
methods to new safety-critical assets.
Domain generalization addresses the challenge of fault diagnostics under unforeseen

domain shifts (contrary to one explicit shift between two domains). Different techniques have
been proposed in the context of fault diagnostics (Zhou et al., 2022d; Zhao and Shen, 2022b).
However, these methods generally require access to multiple source domains, mainly with
shared labeled spaces . This is often not given in industrial applications and therefore, domain
generalization approaches are not applicable to the challenges addressed in this research.
Controlled Synthetic Data Generation has raised a lot of attention in recent years

(Gui et al., 2021). In the context of DA for computer vision tasks, for example, conditional
generative models have been employed for domain mapping i.e. to translate a source input
image to an image that closely resembles the target distribution (Wilson and Cook, 2020).
However, these approaches require a ClosedSet DA setting since the target domain typically
inherits the labels from the source domain. In the context of PHM applications, generative
models have mainly been applied to balance imbalanced datasets, whereby e.g. conditional
GANs have been used to control the generation process to generate desired distinct classes
(Luo et al., 2021). However, those approaches are solely suited to generate data from classes
that have been observed before and not to generate previously unobserved classes in a
specific domain. The latter is the focus of our research.

Contrary to using generative models, Wang et al. (2021) proposed to use expert knowledge
about different fault type patterns to generate synthetic fault data without access to any real
fault data. This enabled to address fault diagnostics if only little real target fault data is
available by performing DA in a subsequent step to close the synthetic-to-real domain gap.
The expert knowlege enables to transfer different fault types to different types of bearings.
However, this approach requires a substantial domain knowledge. Furthermore, patterns of
different fault types (as in (Wang et al., 2021)) are typically easier to distinguish compared to
different severity levels of the same fault type, as addressed in this research. To distinguish
between different fault severities as well as types, synthetic data representing also different
fault severities is required.

The concept of disentenglement, which is based on the hypothesis that real-world data is
generated by a few independent explanatory factors of variation (Locatello et al., 2019), has
also been studied in the context of controlled data generation. However, although disentan-
gled representations should be general and are expected to be generalizable to new domains,
recent studies found that disentanglement does not guarantee combinatorial generalization
(understand and produce novel combinations of familiar elements) (Schott et al., 2021). To
mitigate the lack of generalizability of disentangled representations, it is possible to constrain
the disentanglement using a-priori knowledge on the data structure. For example, Yang and
Soatto (2020) assumed that, in image datasets, the domain-specific information is solely
represented in the low frequency range whereas the semantic information is reflected only in
the high frequency range. This assumption allowed the authors to generate unseen target
data simply by swapping the domain-specific low-frequency block of the source and target im-
ages and perform DA with the synthetically generated data. This block-wise distinction into
a domain-specific and a semantic-specific frequency ranges can be considered as a disentan-
glement in the Fourier space. Unfortunately, such a block-wise distinction of fixed frequency
ranges representing either solely the domain-specific or semantic-specific components is not
possible for CM data from mechanical systems with complex dynamic behaviour. Instead,
we expect a fault as well as a domain shift to affect the entire frequency spectrum. Based
on the intuition that the OCs are independent of defects, we can assume that faults create
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disturbances on top of existing signals. We, therefore, assume that the Fourier spectrum can
be expressed as the sum of domain-specific components and fault-specific components. This
assumption, that both information content (domain-specific and semantic-specific) does not
only affect constrained frequency ranges but rather impact the entire spectrum, generalizes
the work of (Yang and Soatto, 2020) to data from other application domains, in particular to
CM data from complex industrial systems. Further, the assumptions enables the generation
of unseen data while neither relying on combinatorial generalization of disentangled features
nor relying on extrapolation abilities of the generative model.
In this work, we aim to develop a framework that enables a controlled generation of novel

distinct fault classes in a target domain where the fault condition has not been observed
before. Thereby, the contribution of our proposed framework is the generation of
unseen domain-specific fault data, that enables DA with extreme label space discrepancies,
also under large domain gaps. Contrary to other generative approaches, we do not only
control the class being generated but also the specific domain of the data. Further, the data
generation is unsupervised since the respective target fault has not been observed before
in the specific target domain i.e. we enable the controlled generation of out-of-distribution
data. Although the developed framework enables the generation of previously unseen data,
it does not rely on extrapolation abilities of the generative model but instead, it relies on
a disentanglement assumption. This assumption enables to transfer the fault information
between different domains and, ultimately, to generate physically plausible data of unseen
fault types and fault severities. The proposed framework, therefore, enables to generate
data that can substitute for missing domain-specific class data for DA problems with label
space discrepancies. Our methodology is especially suited for DA in the extreme case of label
space discrepancy, where only one class is shared between the domains and thereby, addresses
an important requirement of reliable fault diagnostics in complex industrial (safety-critical)
assets. However, it is also applicable to DA setups with any number of missing classes.
Furthermore, contrary to other DA approaches, the proposed methodology is universally
applicable to both Partial, Open-Partial DA setups.

5.3 Methodology

We propose a framework, referred to as FaultSignatureGAN, that enables to generate distinct
domain-independent fault signatures based on the hypothesis that the faulty signal can be
represented as the sum of domain-specific components and fault-specific components. These
fault signatures can be transferred to new target domains such that the transferred data is
representative of distinct fault classes in a target domain where they have not been observed
before. The generated data is then used in a subsequent step to substitute for missing class
data in different DA settings with label space discrepancies: Partial (see Figure 5.3) and
Open-Partial DA (see Figure 5.4). Finally, a classification model is trained on the augmented
datasets.

(a) Real data. (b) Generate
data.

(c) Real and generated data. (d) Classifier.

Figure 5.3: FaultSignatureGAN in the Partial DA settings: the original data setting is depicted in Fig-
ure 5.3a; the missing target classes are generated in Figure 5.3b; the target dataset is augmented
with synthetically generated data in Figure 5.3c and a classifier is trained on the augmented dataset
in Figure 5.3d.
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(a) Real data. (b) Generate data. (c) Real and generated data. (d) Classifier.

Figure 5.4: FaultSignatureGAN in the Open-Partial DA settings: the original data setting is depicted in
Figure 5.4a; the missing source and target classes are generated in Figure 5.4b; the source and
target dataset is augmented with synthetically generated data in Figure 5.4c and a classifier is
trained on the augmented dataset in Figure 5.4d.

5.3.1 Training the generative model

FaultSignatureGAN comprises three parts (A-C) as illustrated in Figure 5.5: (A) The first
part ensures that generated fault signatures are easily transferable to a specific domain; (B)
the second part ensures that the transformed fault signatures represent plausible domain
data; and (C) the last part ensures that the transformed fault signatures are representative
of the desired fault classes. Part (A) of the framework is tackled by a generative network that
generates domain-independent fault signatures from distinct classes in the Fourier domain.
These fault signatures are then transferred to a specific domain by adding them to randomly
sampled data from the domain’s healthy class. The ability of the generated data to represent
true domain fault data is imposed in part (B) by an adversarial discriminator. The semantic
plausibility of the generated data to represent a desired fault class (as sampled from the
sampling module) is tackled by a cooperative classifier in part (C). The different parts of the
framework are detailed below.

Figure 5.5: FaultSignatureGAN : Training Phase: Training the A) generative model to generate domain
independent fault characteristics while imposing B) plausibility with the discriminator in the source
domain and C) semantic consistency with the classifier. Execution Phase: The generation of
unseen target data.

The underlying hypothesis: The proposed approach is based on the hypothesis that
the Fourier spectrum of fault data can be expressed as the sum of 1) domain-specific compo-
nents (the spectrum of a signal from normal operation) and 2) of fault-specific components
representing the specific fault characteristics. Further, we assume that the latter (spec-
trum of a signal representing the specific faulty condition) corresponds to a general domain-
independent fault signature that is adjusted to new domains simply by linear scaling. In
other words, this hypothesis allows us to express Fourier coefficients (Cooley and Tukey,
1965) of the fault data of a certain class c from a specific domain X (xc,FFT

fault,X) as a sum of (1)
domain-specific characteristics that are represented by the healthy class data of that domain
xFFT
S and (2) the fault class specific characteristics that are domain-independent xc,FFT

fault and
scaled by a factor w- see Equation 5.1.
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xc,FFT
fault,X = xFFT

X + w ∗ xc,FFT
fault (5.1)

The linear scaling with w is performed to account for the fact that the fault signature is
affected by operational changes and, therefore, we alleviate the strong assumption that the
fault-specific variations of real fault data are independent from operating conditions. Between
a source domain S and target domain T, the weight factor w is defined as in Equation 5.2.

w = E(Th,S/Th,T) (5.2)

(Part A) The generative model Gθ: The final goal is to generate faults in a target
domain that have not been observed before. However, from the two components of the faulty
signal in the target domain as given in Equation 5.1, we only have access to the healthy
data representing the domain-specific variations (xFFT

T ) in the target domain T. Therefore,

to generate unseen faults in the target domain xc,FFT
fault,T, we need to design a framework that

enables the generation of the domain-independent characteristics of a fault class xc,FFT
fault . We

train the proposed architecture on the data from the source domain, where we do not only
have access to the healthy data xFFT

S but also to true fault data xc,FFT
fault,S. In the source

domain S, the scaling factor equals to 1. Due to the variability in the healthy class, simply
subtracting the individual healthy samples from faulty ones (the reverse operation) is not
sufficient to retrieve a domain independent fault signature. Therefore, we propose a generative
model. The generative model is trained such that its output (blue signal in Figure 5.5) can
be transformed in a real source fault by adding it to a healthy source sample (according
to Equation 5.1). Thus, the generated signal can be transformed to real domain faults
with any of the samples from the healthy data distribution. In this study, we train one
generative model to generate all severity levels of one fault type. This process is depicted
in Figure 5.5. To ensure plausibility of the generated signals in the specific domain, the
generator is trained to fool a discriminator Dw (see below). To ensure semantic or class
consistency, we condition the generative model on the desired fault class by simply sampling
the distinct desired fault class from a categorical distribution. Each of the discrete values
drawn from the categorical distribution corresponds to a specific fault class. The probability
of each category is defined based on the class distribution in the training dataset Tf,S, from
which the fault signatures should be learned from. In other words, the probability of category
i is defined by Equation 5.3. The value sampled from the uniform distribution is then passed
to two vectors (µ and σ in Figure 5.5), that parameterize a Gaussian distribution (mean and
deviation), from which we sample using the reparametrization trick (Kingma and Welling,
2013). The generative model is updated based on the consistency of the desired class with
the classifier’s prediction (see below).

pi =
|{(xj , yj)|((xj , yj) ∈ Tf,S)&(yj = i)}|

|Tf,S|
(5.3)

To enable a better distinction, we will refer to the signal representing the domain independent
fault characteristics (depicted in blue in Figure 5.5) as the generated fault signature, and to
the signal representing the domain-specific fault data (depicted in red or orange in Figure 5.5)
as the generated data sample throughout the paper. Further, in the following, we will consider
the data always in the Fourier domain without emphasizing it specifically.
(Part B) The discriminator Dw: We need to ensure that the generated data represents

plausible domain data. Our final goal is to generate unseen data from a target domain.
However, this target fault data has not been observed so far. Hence, we cannot ensure
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plausibility of the generated data in the target domain directly while training the generative
model. Instead, we train the generator to generate plausible fault samples in the source
domain. Therefore, the discriminator is trained to discriminate between real fault data of
the source domain and the generated synthetic source data. We implement a Wasserstein
GAN (Arjovsky et al., 2017) that is optimized with gradient penalty (Gulrajani et al., 2017)
since its training has proven to be more stable compared to other GAN implementations,
mitigating mode collapse. The adversarial loss function is defined by Equation 5.4.

LD = Ex̃c,xh,S [Dw(x̃c + xh,S)] − Exc
f,S

[Dw(xcf,S)] + λGPEx̂∼Px̂
[(||∇x̂Dw(x̂)||2 − 1)2], (5.4)

where Dw is the discriminator model, x̃ is a generated fault signature, xh,S is a healthy
source sample, xf,S is a faulty source sample and x̂ is drawn from Px̂, a newly defined data
distribution used to impose the gradient penalty. For more details on the calculation of the
gradient penalty, the interested reader is referred to (Gulrajani et al., 2017).
(Part C) The classifier Cγ: A classifier is added to the framework to ensure semantic

consistency of the generated data to a desired class. The classifier is optimized with the semi-
hard triplet loss (Schroff et al., 2015) on real source data. In Equation 5.5, the corresponding
loss function is shown, where Cγ is the classifier network, α is a fixed margin, xa is the anchor
sample, xp the positive sample and xn the negative one.

LC = max(||Cγ(xa) − Cγ(xp)||2 − ||Cγ(xa) − Cγ(xn)||2 + α, 0) (5.5)

For updating the generative model Gθ, the semi-hard triplet loss is calculated using only
synthetic data (x̃+xh) as anchors and real fault data xf,S as positive resp. negative samples.
A pseudo algorithm of the Training Phase is shown in Algorithm 1.

5.3.2 The generation of unseen data in the execution phase

After training the generative model Gθ in the Training Phase, the generation of target faults
in the Execution Phase is straight forward: First, we sample the input of the generative
model from a categorical distribution, which determines the desired fault classes to generate.
The number of generated samples per class can be chosen freely. This input is then passed to
the generative model to generate the respective fault class signatures. The fault signature is
then transferred into the target domain (instead of the source domain) by (1) linearly scaling
the fault signature (with w) and (2) adding it to the healthy data of the target domain (yellow
data in Execution Phase of Figure 5.5). The scaling of the fault signature is defined as the
ratio between the mean signal of the healthy source data and the mean of the healthy target
data per frequency component (as defined in Equation 5.2). Hence, the unseen target data
is generated as defined in Equation 5.6.

xc,FFT
fault,T = xFFT

T + w ∗ xc,FFT
fault (5.6)

5.3.3 Alternative approaches used for comparison

In this work, we address two DA settings with label space discrepancies: Partial DA and
Open-Partial DA, with a particular focus on the extreme case where only one class is shared
between two domains. While for Partial DA, some approaches have been proposed, only few
are suitable for this extreme scenario. These few approaches are used for comparison for
the Partial DA experiments. (1) First, we report the Baseline results, where we train a
classifier on real source domain data only. It shows the minimal achievable performance if
no adaptation is performed. (2) The adversarial feature alignment approach Unilateral DA
(Wang et al., 2020a) is chosen as a comparison method as it has been evaluated in a Partial
DA setting before (as elaborated in Section 5.2). It aims to achieve the same goals but uses a
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Algorithm 1 Training Phase of FaultSignatureGAN

Require: TS (Source Dataset); λGP , λD, λE , α (Loss Function Parameter); ncritic, es (Early Stopping Criteria), m
(Batch Size)

Ensure: Gθ

▷ Prepare Dataset
Th,S = {(x, y) ∈ TS | y is healthy }; Tf,S = {(x, y) ∈ TS | y is a fault class }
Cat(Tf,S) Categorical Distribution of the classes in Tf,S
while es == False do

for t = 1,..,ncritic do
▷ Sample data batches
{z(i)}mi=0 ∼ Cat(Tf,S)
{(xf,S, yf,S)}mi=0 ∼ Tf,S; {xh,S}mi=0 ∼ Th,S, {(xS, yS)}mi=0 ∼ TS
ϵ ∼ U [0, 1]
▷ Generate data
x̃← Gθ(z)
x̃f ← x̃+ xh,S
x̂← ϵxf,S + (1− ϵ)x̃f

▷ Update discriminator D
Li
D ← Dw(x̃f )−Dw(xf,S) + λGP ((||∇x̂Dw(x̂)||2 − 1)2)

w ← Adam(∇w1/m
∑m

i=1 L
i
D, w)

end for
▷ Update classifier C
From {xh,S}mi=0 form triplets (Schroff et al., 2015) according to label xS,a, xS,p and xS,n
Li
C ← max(||Cγ(xS,a)− Cγ(xS,p)||2 − ||Cγ(xS,a)− Cγ(xS,n)||2 + α, 0)

γ ← Adam(∇γ1/m
∑m

i=1 L
i
C , γ)

▷ Update generator G
Li
D ← −Dw(Gθ(z))

Li
C ← max(||C(x̃f )− C(xS,p)||2 − ||C(x̃f )− C(xS,n)||2 + α, 0)

Li
G = λD ∗ L

(i)
D + λC ∗ L

(i)
C

θ ← Adam(∇θ1/m
∑m

i=1 L
i
G, θ)

end while
return Gθ

different strategy (feature alignment vs. data generation in our proposed framework). While
originally proposed as a completely unsupervised DA method, the authors also conducted
experiments on the extreme scenario (where only the healthy class is shared between the
two domains). For these experiments, the healthy data label from the target domain was
used for alignment (Wang et al., 2020a). We compare our method to both implementations
and denote the completely unsupervised implementation as Unilateral and the one using the
target’s healthy label for alignment as Unilateral∗. (3) The adversarial approach BA3US
balances each batch of target data with randomly sampled source data. It, therefore, presents
an interesting comparison method to the proposed FaultSignatureGAN, where we balance
the target domain with generated data that has been mapped to the target domain in an
unsupervised manner. (4) Last, the data generation approach GenAlign is used for
comparison (Li et al., 2018b) (see Section 5.2), where target data is generated by passing
novel input to the generative model. This approach is used to challenge the hypothesis that
generative models are limited in their extrapolation abilities and therefore, the novel target
data generation should not rely on extrapolation abilities of the model (as we do in our
work).

For the Open-Partial domain experiments, however, there is no other suitable comparison
method that is applicable to the same extreme case scenario as we consider here where only
the healthy class is shared between the two domains. Therefore, only the Baseline is used
for comparison in these experiments.

5.4 Case Studies

The proposed approach is tested on two bearing datasets that have been commonly applied
for DA tasks in fault diagnostics in different settings. Our proposed framework is evaluated
on both datasets in Partial and Open-Partial DA experiments. Both datasets are adjusted
to the problem formulation to the respective DA setup.
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5.4.1 CWRU

The CWRU dataset is a publicly available benchmark bearing dataset (bearing type SKF
6205) provided by the Case Western Reserve University Bearing Data Center (CWRU dataset)
(Smith and Randall, 2015). The data was collected on a test rig in laboratory conditions. It
contains data recorded under four different loads (referred to as domain 0,1,2 and 3). The
different load settings resulting in different rotational speeds are shown in Table 5.1. Data
under healthy and nine different faulty conditions is available: Three fault types - Ball, Inner
Race and Outer Race - with three severity levels each. An overview of the fault types and
severity levels is shown in Table 5.2. The CWRU dataset has been extensively used to demon-
strate ClosedSet DA methods under different operating conditions as well as for Partial DA
setups (Wang et al., 2020a; Li and Zhang, 2020).

5.4.2 Paderborn

The Paderborn dataset is a publicly available bearing dataset (bearing type SKF 6203) pro-
vided by the Chair of Design and Drive Technology from Paderborn University (Lessmeier
et al., 2016). It incorporates both artificially induced bearing faults and realistic damages
caused by accelerated lifetime tests (Zhang et al., 2020) under different operating conditions
(rotational speed, load torque and radial force) (Chen et al., 2018). In this study, we only
consider real fault data and not the artificially induced one. The represented health condi-
tions in the dataset are healthy conditions, Inner Race faults (three severity levels) as well
as Outer Race faults (two severity levels). The different operating conditions are shown in
Table 5.1 and the different classes in Table 5.2. The data was also collected on a test rig under
laboratory conditions and was also previously used in different DA studies (Pandhare et al.,
2019; Chen et al., 2018; Wang et al., 2020a). Previous publications mainly focused on 3-class
classification of the different fault types (Wang et al., 2020a) and suggested that the domain
gaps in the Paderborn dataset are larger compared to the CWRU dataset. Further, previous
publications typically neglected the domain 1, since the domain gap to the other domains is
considerably large compared to the other domain gaps. In this research, we focus on the type
and severity classification (6-class classification) and also aim to bridge large domain gaps.
Contrary to previous works, we, therefore, included domain 1 in our DA evaluation.

Moreover, we use less data compared to previous publications, such as e.g. (Wang et al.,
2020a), for our evaluation (only using the datasets K002-5; KA04, KA15-16 and KI16,18,21
whereas KA22, KA30, KI04 and KI14 have not been used in this study). This enables us to
evaluate if we can extract transferable fault characteristics from only limited fault data.

CWRU Paderborn

Domain
Rotational
Speed [rpm]

Rotational
Speed [rpm]

Load
Torque [Nm]

Radial
Force [N]

Setting

Name
0 1797 1500 0.7 1000 N15 M07 F10
1 1772 900 0.7 1000 N09 M07 F10
2 1750 1500 0.1 1000 N15 M01 F10
3 1730 1500 0.7 400 N15 M07 F04

Table 5.1: Operating conditions under which the two case studies (CWRU and Paderborn) are recorded. Each
setting corresponds to one domain.

Healthy
Outer Race

(OR)
Inner Race

(IR) Ball (B)

CWRU
Size - 7 14 21 7 14 21 7 14 21
Class 0 1 2 3 4 5 6 7 8 9

Paderborn

Extent of
Damage - 1 2 - 1 2 3 - - -
Class 0 1 2 - 3 4 6 - - -

Table 5.2: Health conditions represented in the the case studies (CWRU and Paderborn).
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5.5 Experimental Setup

To test if FaultSignatureGAN is capable of generating unseen domain faults, Partial and
Open-Partial DA experiments are conducted, whereby the different domains correspond to
the different operating conditions in the case studies. The experimental setups are shown in
Table 5.3 (Partial) and Table 5.4 (Open-Partial) on an exemplary domain shift from some
domain X to some target domain Y (X −→ Y ).

Partial

Dataset Domain
Shift

Source
Domain

Source
Classes

Target

Domain

Target Classes

during Training

CWRU X → Y X 0,1,2,3,4,5,6,7,8,9 Y 0
Paderborn X → Y X 0,1,2,3,4,5 Y 0

Table 5.3: Experimental Setup for Partial DA on an exemplary domain shift X −→ Y .

Open-Partial

Task
Domain
Shift

Source
Domain

Source
Classes

Target

Domain

Target Classes

during Training

Source (IR)
⇌

Target (OR)
X → Y X 0,3,4,5 Y 0,1,2

Source (OR)
⇌

Target (IR)
X → Y X 0,1,2 Y 0,3,4,5

Table 5.4: Experimental Setup for Open-Partial DA on an exemplary domain shift X −→ Y on the Paderborn
dataset.

The experiments are conducted as follows: First, a generative model is trained on data from
one domain (as described in Section 5.3 and depicted in Training Phase in Figure 5.5). In
this work, we train one generative model to generate all severity levels of one fault type.
Second, the label space of the target domain is completed by generating synthetic target
fault data as depicted in Execution Phase in Figure 5.5 based on healthy target data. The
number of generated data samples per class is chosen to match the mean number of samples
per class in the source domain. In the third step, a new training dataset is composed of the
generated and real data from both domains and used to train a classification model. The
performance of the classifier is then evaluated on a test dataset composed of all unseen faults
and 30% of the class data, from which the conditions have been observed before.
Hyperparameter Tuning: Data-driven solutions based on neural networks come with

many hyperparameters to tune including those of the network architecture (layer type, acti-
vation, kernel size, initialization etc. ). These choices strongly influence the performance of
the final model including its generalizability to new data. There is no commonly accepted
procedure for optimizing the hyperparameters for an unknown target domain (Bousmalis
et al., 2017). Some works rely, therefore, on a target validation dataset (Bousmalis et al.,
2017) or validation tasks (Wang et al., 2020a). In many practical applications, especially
in the context of safety-critical systems, where no target fault data is available, this is not
possible. Hence, in this work, we do not make the assumption of having target data available
for hyperparameter tuning, since it is a strong limitation of applying existing DA methods
to real PHM applications.

For training the generative model (Training Phase in Figure 5.5), only criteria related
to the source dataset are used: In addition to optimizing the loss functions (see Section 5.3)
on the source dataset, a stopping criterion is implemented. The training is stopped if an
auxiliary classifier trained on the synthetic source data returns an accuracy of at least 98%,
evaluated on the real source data. Since this callback function is computationally expensive,
it is only executed after each 50 epochs of training.
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Further, the hyperparameters of the final classification model need to be tuned as well.
In absence of real target fault data, we used synthetically generated data as a validation
dataset. To showcase and evaluate the impact that hyperparameter settings have on the
ability of the model to generalize to an unseen domain, we trained three different model
architectures: Model (1) equals the one used in previous publications (Li et al., 2018b; Wang
et al., 2020a) , Model (2) equals Model (1) but has the ReLu activation function and Model
(3) equals Model (1) except that the kernel size is set to 12 (compared to 3 used in (Li et al.,
2018b)). Exemplary, we only evaluate the domain shifts from source domain 0 on the CWRU
dataset for hyperparameter tuning. The final accuracies on a source validation dataset, a
synthetic fault dataset as well as on the true target test dataset of the three models are
shown in Figure 5.6. The performance on the target dataset varies considerably depending
on the architecture used. For example, on domain shift 0 → 2, the final performance on the
target dataset varies by 10% depending on the model used. This evaluation shows clearly
that even small changes in hyperparameters can impact the generalization ability strongly
i.e. have a big effect on the performance in the target domain. The source validation dataset
does not provide a good indication which model to choose since the performance on the
source dataset always results in 100%. The accuracy of the synthetically generated dataset
does not correlate strongly with the target accuracy in all instances. However, it gives a
clear indication to choose Model 3 in all instances. This is also the best choice for the highest
accuracy on the target dataset in the first two domain shifts. Only for domain shift 0 → 3 this
is not an ideal choice. Although not ideal, we want to emphasize that the synthetic validation
dataset provides information on which model to choose compared to the source validation
dataset. On average, that information results in the best final model choice. Therefore, we
conduct our experiments on Model (3) for the CWRU dataset. We train the classification
model for 2000 epochs (since the source as well as the synthetic validation datasets suggest
that no considerable change happens after 2000 epochs). To enable a better comparison, we
use only one model architecture for all domain shifts per case study.

Figure 5.6: Visualisation of the effect of hyperparameter tuning on the generalizability of different model
architectures on different domain shifts: Model 1 as in (Wang et al., 2020a), Model 2 as in (Wang
et al., 2020a) but with the ReLu activation function, Model 3 as in (Wang et al., 2020a) with the
kernel size of 12 (compared to 3 used in (Wang et al., 2020a)). Three different datasets are used
for evaluation: 1)source validation dataset (orange); 2) dataset with synthetic faults (green), and
3) the real target dataset (blue).

Apart from using a synthetic validation dataset, we propose to use the following strategy
for certain hyperparameters: (1) Applying a heavy regularization (since it leads to better
generalization); (2) running the optimization for multiple epochs - more than indicated by
the validation dataset. The latter choice is motivated by the findings of learning theory that
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hypothesize that there are two phases of deep learning: a fitting and a compression phase. It
is indicated that the latter is responsible for the excellent generalization performance of deep
networks (Shwartz-Ziv and Tishby, 2017). Even though this hypothesis has been challenged
recently (Saxe et al., 2019), we still decided to set the number of optimization steps high.

The final model architectures being used and hyperparameter settings are elaborated in
Section 5.9.
Label Availability: Similarly to previous studies conducted on the extreme case of label

discrepancy (Wang et al., 2020a; Li and Zhang, 2020), we assume to know the label of the
healthy data in the target domain for the Partial and Open-Partial DA experiments. Since
healthy data is ubiquitous, this is considered to be a realistic assumption. In addition, for
the Open-Partial setup, we assume that if at training data acquisition time fault classes
have been observed, we also have the labels for the fault classes, both for source and target
domains. This is a particularly realistic setup for fleets of complex systems with different
ages for each of the units (each of the domains). Some units will have experienced one subset
of fault types and other units will have experienced another subset of fault types. However,
at testing time, we would like to be able to diagnose all of the fault types for all of the units.

Data Pre-Processing: To enable a fair comparison, the datasets are pre-processed in
the same way as in previous publications (Wang et al., 2020a; Li et al., 2018b). The CWRU
datasets are first truncated (at 12000 timesteps) and divided into 200 sequences of 1024
points. After applying the Fast Fourier Transform (Cooley and Tukey, 1965), only the first
512 coefficients are used (excluding the first one).

The same process is applied to the Paderborn dataset. However, the data is not truncated
and the 1024 long samples are sliced with a stride of 4096.

5.6 Evaluation and Results

Partial (see Section 5.6.1) as well as Open-Partial DA experiments are conducted (see Sec-
tion 5.6.2) to test the ability of the generated data to bridge domain gaps in different DA
settings. Last, to evaluate the physical plausibility of the generated data qualitatively, we
visualise the generated data (see Section 5.6.3).

5.6.1 Partial DA

First, we conduct experiments in the extreme case of Partial DA where only the healthy class
is shared between the domains. The experimental setup is exemplified in Figure 5.7 for the
Paderborn dataset, where only the healthy data of the target domain is available. Therefore,
we first generate the missing data in the target domain (darker blocks in Figure 5.7) and
evaluate on a target test dataset.

(a) Real datasets. (b) Real and generated training
datasets.

(c) Real test dataset.

Figure 5.7: Example of an extreme experimental Partial DA Settings on the Paderborn case study. In the
Figure 5.7a The real datasets are shown where only the healthy class is shared between the source
and the target dataset and the source dataset has five private classes. In Figure 5.7b The training
dataset is shown where the missing fault classes in the target domain are synthetically generated
and in Figure 5.7c the test dataset consisting of real target data is shown.

CWRU: We compare the results of the proposed methodology with the methods outlined
in Section 5.3.3. If available, the exact results from previous publications are shown. If not, we
re-implement the methods while using exactly the same setup as in the original publications.
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Only for Ba3US, a new architecture needed to be tuned as elaborated in Section 5.9 since this
method has not yet been applied to any of the presented case studies. Since hyperparameter
tuning without fault data did not lead to satisfying results, we followed the protocol of
Wang et al. (2020a) and used the domain shift experiment 0 −→ 3 as a validation task.
For the source-only experiments, we report on the one hand the previously reported results
based on the originally proposed classifier architecture (Wang et al., 2020a) with a kernel
size of 3 (referred to as Baseline). On the other hand, we report the results of the source-
only experiments conducted with the classifier architecture optimized based on the synthetic
data as reported in Section 5.5. This architecture has a kernel size of 12 (referred to as
BaselineSyn). The balanced accuracy of all experiments is shown in Table 5.5. The overall
performance of all approaches is high - even for the two source-only Baselines, suggesting
that the domain gaps are small in this dataset. This also leaves only limited room for
improvement. The baseline model with optimized hyperparameters (BaselineSyn), however,
outperforms the existing Baseline by 1.71%, showcasing that the generated data is beneficial
for hyperparameter tuning. Moreover, adding the data generated by FaultSignatureGAN to
the training dataset, results in an additional improvement of 0.96% - resulting in a total
improvement of 2.67% compared to the previously reported baseline method. This shows
that the generated data is beneficial in order to bridge domain gaps.

The two methods based on data generation used for comparison, (PixelDA+ and GenAlign),
where the generative model is conditioned on novel input data (the real signal in PixelDA+

and the target features in GenAlign) perform worse than FaultSignatureGAN. These results
suggest that it is not beneficial to condition the generative model on unseen input and rely
on extrapolation abilities of the generative model as in GenAlign and PixelDA. Therefore,
these approaches are not used as comparison methods in the following experiments on the
Paderborn dataset. From the two unsupervised adversarial alignment approaches (Unilateral
and BA3US ), the Unilateral approach performed consistently better on all domain shifts.
Unilateral∗, where the label of the healthy target data is used for alignment, results in
the highest performance compared to all other approaches. On average, FaultSignatureGAN
performs within the same range of Unilateral∗. In the following experiments on the Paderborn
dataset, only Unilateral∗ is used as a comparison method.

Domain
Shift Baseline1 BaselineSyn Unilateral2 Unilateral∗1 BA3US

Pixel
DA+

Gen
Align

(Li et al., 2018b)1

Fault
Signature

GAN
0 → 1 93.49±1.75 99.49±0.06 97.04±0.86 98.08±0.16 91.07±3.98 92.45 97.81 99.87±0.07
0 → 2 93.65±0.96 99.96±0.02 96.38±2.34 99.56±0.18 91.12±1.28 91.37 96.02 99.36±0.36
0 → 3 91.02±0.02 90.27±0.69 94.14±0.56 98.22±0.65 96.33±1.71 86.01 94.24 94.50±1.10
1 → 0 97.93±0.93 96.79±0.45 97.48±0.45 98.08±0.32 96.98±1.02 99.59 97.27 97.62±0.19
1 → 2 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.95±0.04 99.38 96.32 99.95±0.00
1 → 3 98.26±1.63 99.46±0.19 98.40±0.91 99.20±0.19 99.23±0.66 93.81 94.59 99.35±0.11
2 → 0 91.63±1.63 96.15±0.15 90.13±3.66 96.43±0.43 93.7±3.59 94.98 95.44 96.50±0.16
2 → 1 97.09±0.09 97.78±0.09 97.84±0.26 97.48±0.40 95.58±1.93 98.97 96.55 97.06±0.09
2 → 3 99.78±0.17 99.63±0.12 99.71±0.10 98.97±0.21 99.75±0.21 96.00 96.13 99.63±0.09
3 → 0 87.96±0.18 88.58±0.19 86.50±4.56 94.85±2.16 86.75±0.21 96.65 92.82 92.81±0.92
3 → 1 89.42±0.42 92.68±0.64 93.22±0.97 96.18±0.50 85.53±3.19 94.07 93.04 95.41±0.21
3 → 2 99.65±0.17 99.68±0.44 99.82±0.04 99.78±0.09 98.68±2.23 98.72 95.49 99.99±0.01
Mean 94.99 96.70 95.88 98.07 94.56 95.17 95.49 97.66

1 Results as reported in the original publication.
2 Models used as in original publication for reproducing results.

Table 5.5: Extreme Partial DA results on the CWRU dataset (10-class classification) under all domain shifts.

Paderborn: In this case study, we only use the best performing comparison DA method
Unilateral∗. We neglect those that were not performing well on the CWRU case study.
Moreover, contrary to other publications on the Paderborn case study that focus only on
fault type classification (3-class classification), we focus on the task of fault type and severity
classification in this work (6-class classification). Since the size of the domain gap differs
considerably from domain 1 to the other three domains (as indicated by the Baseline results),
we report the results for all DA tasks related to the domain 1 separately. Please note that in
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previous DA studies, the results on these DA tasks were never reported (Wang et al., 2020a).
Therefore, we report the results separately. In the upper part of Table 5.6, only the results
on domains 0,2 and 3 are reported (smaller domain gaps) and in the lower part all results
on DA shifts related to domain 1 are reported (large domain gap).

The DA approaches (Unilateral∗ and FaultSignatureGAN ) outperform the Baseline on all
domain shift experiments - see Table 5.6. While the performance gain is comparable between
the two approaches on domains 0,2 and 3, FaultSignatureGAN results in a considerably better
performance on domain 1, where the domain gap is large (as indicated by the low Baseline
performance). In all settings, there is a substantial relative gain. On domains 0,2, and
3, an average improvement of 3.82% was achieved by FaultSignatureGAN compared to the
Baseline. On domain 1, the relative improvement is even 23.76%. The absolute performance
differs between the different domain shift experiments: If domain 1 is the target domain,
the absolute performance of all approaches is still rather low (< 50%) despite the relatively
high improvement. In the opposite direction, when domain 1 is the source domain, higher
absolute results were achieved (average performance of the three domain shift experiments
with FaultSignatureGAN is 79.72%). Although the domain gap should be the same in both
directions (domain as source or target), this difference in the performance could potentially
be explained if the fault data in domain 1 shows more variability compared to the other
domains. This leads to better generalization on tasks from domain 1 to other domains.
Especially in these instances, FaultSignatureGAN shows a superior performance.

Domain
Shift Baseline Unilateral∗ FaultSignatureGAN

0 → 2 99.78±0.06 99.92±0.02 99.76±0.24
0 → 3 69.49±0.73 69.98±1.73 72.08±1.24
2 → 0 99.42±0.01 99.67±0.08 99.54±0.16
2 → 3 74.66±0.40 75.71±1.69 75.49±0.23
3 → 0 67.43±0.6 71.29±1.61 78.87±0.65
3 → 2 68.37±1.5 77.14±1.42 76.35±0.42
Mean 79.86 82.29 83.68
0 → 1 22.88±1.51 29.37±1.20 45.88±2.21
1 → 0 58.66±1.71 74.54±0.53 84.34±0.21
1 → 2 63.28±1.77 75.16±3.56 86.34±0.77
1 → 3 47.99±0.22 61.87±1.77 68.50±0.51
2 → 1 21.77±0.53 29.96±1.83 47.59±1.66
3 → 1 22.77±1.31 26.47±0.24 45.30±0.61
Mean 39.23 49.56 62.99

Table 5.6: Extreme Partial DA results on the Paderborn dataset (6-class classification). In the upper part all
results with domain shifts including domains 0,2 and 3 are shown and in the lower part all domain
shifts including domain 1.

5.6.2 Open-Partial Domain Experiments

(a) Real datasets. (b) Real and generated training
datasets.

(c) Real test dataset.

Figure 5.8: Example of an extreme experimental Open-Partial DA Settings on the Paderborn case study. In
the Figure 5.7a the real datasets are shown where only the healthy class is shared between the
source and the target dataset and the source dataset has five private classes. In Figure 5.8b The
training dataset is shown where the missing fault classes in the target domain are synthetically
generated and in Figure 5.8c), the two test datasets are shown where one consists of the real source
and the other of the real target data.
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To showcase the versatility of our framework, we conduct Open-Partial DA experiments
in addition to the Partial DA experiments (Section 5.6.1). These experiments are only
conducted on the Paderborn dataset since the domain gaps are larger compared to the CWRU
dataset. The other DA methods used for comparison for the Partial DA setup are not directly
applicable for the Open-Partial setup. Therefore, we only report the baseline results for
comparison. Figure 5.8 depicts an example for the the experimental setup: For the Open-
Partial DA experiments, we assume that in each of the two domains, one fault type occurred
with different severities. The outer race fault with severity 1 and 2 (OR1 and OR2) occurred
in the target domain, whereas the inner race fault (severity 1, 2 and 3; IR1, IR2 and IR3)
occurred in the source domain. Hence, in a first step, two generative models are trained.
The fault signature of the outer race fault is trained on the target data, the fault signature
of the inner race fault on the source data (see Training Phase in Section 5.3). In a second
step, the missing fault data is generated: In the example of Figure 5.8, the outer race fault
is generated for the source domain and the inner race fault classes with severity 1,2 and 3
for the target domain. This generated and real data composes the training dataset. Usually,
only the performance on the target dataset is evaluated. However, in the experimental setup
for Open-Partial DA, there is missing data in each of the domains. Therefore, we evaluate
the performance on two test datasets - the source S and the target T. The test datasets
comprise the real missing fault data as well as of a 30% of known health conditions. The
results on the 6-class classification task are reported in Table 5.7. The baseline was trained
on all available real data from the source and target domain.

The experiments show that the synthetically generated data enables to achieve a good
classification performance on all settings (> 90%) excluding domain 1, by far exceeding the
performance of the Baseline method of 83.37% on average. On the DA task related to domain
1, the absolute performance of the classifier is considerably lower, however, it still results in
a large relative improvement in all instances compared to the Baseline method.

Domain
Shift Baseline Proposed Baseline Proposed

Source
(IR)
⇌

Target

(OR)

0 ⇌ 2
S 99.41±0.15 99.81±0.02

Source
(OR)
⇌

Target

(IR)

S 99.12±0.42 99.96±0.05
T 99.88±0.01 99.97±0.02 T 99.53±0.14 99.85±0.10

0 ⇌ 3
S 73.65±0.13 91.74±0.05 S 78.99±0.69 91.59±0.18
T 72.80±0.51 95.33±0.01 T 75.41±0.48 96.18±0.75

2 ⇌ 3
S 75.30±1.04 93.99±0.61 S 78.10±1.17 97.13±0.70
T 72.93±1.16 94.82±0.23 T 75.31±0.81 91.67±0.77

Mean
S 82.79 95.18 S 85.40 96.22
T 81.87 96.71 T 83.42 95.90

Source
(IR)
⇌

Target

(OR)

0 ⇌ 1
S 56.91±1.44 66.55±0.61

Source
(OR)
⇌

Target

(IR)

S 51.53±1.43 53.90±1.33
T 65.53±0.09 71.04±0.22 T 69.06±1.28 81.48±1.53

1 ⇌ 2
S 53.62±0.23 56.21±1.18 S 51.93±1.21 65.65±1.10
T 69.71±0.16 76.08±1.41 T 65.76±0.26 67.54±0.34

1 ⇌ 3
S 51.83±1.66 66.10±1.40 S 63.66±0.56 67.64±0.15
T 66.50±0.02 74.75±0.65 T 65.25±0.06 71.14±0.62

Mean
S 54.12 62.95 S 55.71 62.39
T 67.24 73.96 T 66.69 73.39

Table 5.7: Open-Partial DA results on the Paderborn dataset (6-class classification). In the upper part all
results with domain shifts including domains 0,2 and 3 are shown and in the lower part all domain
shifts including domain 1. As shown in Figure 5.8, the trained classification model is evaluated on
two datasets: The source test dataset (S) and the target test dataset (T).

5.6.3 Qualitative evaluation

To evaluate the physical plausibility qualitatively, we visualise the mean of the generated
signals (blue line in Figure 5.9a), of the true faults in the target domain (orange line in
Figure 5.9a) and of the true faults in the source domain (green line in Figure 5.9a). A batch of
1000 data samples was used for the illustration including its standard deviation. Exemplary,
we chose the fault type OR and severity 1 on the domain shift 0 → 1 on the Paderborn
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dataset. To better visualize the differences, the residual of the generated target to the true
target mean signal is visualized as well as the residual of the true source to the true target
(which can be considered as the baseline) - see Figure 5.9b. The proposed framework appears
to generate the true target data considerably well. It performs substantially better compared
to the baseline (just using the source faults without any adaptation for the target domain).
Especially in the higher frequency range, it represents the true target faults noticeably better
than the true source faults.

(a) Mean Fault Signal OR Severity 1 of the synthetic data (blue line), the true target
fault class data (orange line) and the true source fault class data (green line).

(b) Mean Absolute Residual Signal OR Severity 1 of the Target to Synthetic (red line)
and Target to Source (purple line).

Figure 5.9: Paderborn data visualization of the OR severity 1 fault comparing real fault data with generated
fault data.

5.7 Discussion

The experiments performed in this research demonstrate the validity of the proposed frame-
work FaultSignatureGAN to generate previously unobserved fault data, that can be used for
DA with different types of extreme label discrepancies, where only the healthy class is shared
between the domains. The obtained results open interesting points for discussion.
FaultSignatureGAN for DA with label space discrepancies: Given small domain

gaps, FaultSignatureGAN outperforms most of the comparison methods, especially when
comparing the results to GenAlign, the other generative approach . This particularly sup-
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ports the assumption that the unsupervised generation of unseen data should not rely on
extrapolation abilities of the generative model (as it does for the comparison methods). In-
stead, our approach enables the generation of unseen faults building on the hypothesis that
domain-specific fault data can be disentangled in domain-specific characteristics and class
specific ones and therefore, requires no extrapolation ability of the generative model. The
comparison method BA3US outperforms FaultSignatureGAN solely on domain shift 0 −→ 3
(by 1.83%), where target data has been used to tune the hyperparameters of BA3US . In
practical safety-critical applications, target data to tune the hyperparameters of a model
is typically not available. Therefore, FaultsignatureGAN did not rely on this information
and thus, satisfies more realistic requirements for PHM applications.The improvement that
BA3US provided on that one domain shift could not be translated to other domain shifts.
This, once again, showcases the importance of hyperparameter tuning for DA methods based
on feature alignment and in particular the importance of the access to fault data for hy-
perparameter tuning. Only the feature alignment approach Unilateral∗ provides a similar
performance as FaultSignatureGAN under small domain gaps in Partial DA settings (see
all results on CWRU in Section 5.6.1 and on Paderborn with domains 0,2 and 3). This
is not surprising since synthetic data generation is never perfect. Therefore, when the do-
main gap is small, the source data represents the target data already quite well and one
would expect little benefits in generating synthetic target specific data. On large domain
gaps (those including domain 1 on the Paderborn dataset), however, the performance of the
feature alignment method Unilateral drops. These are the scenarios where the proposed gen-
erative approach FaultSignatureGAN outperforms other approaches (see Section 5.6.1 and
Section 5.6.2). Therefore, if the size of the domain gap is unknown, FaultSignatureGAN is the
best option to choose in safety-critical systems since it provides a comparable performance
under small domain gaps but a considerably better performance under large domain gaps.
Versatility of FaultSignatureGAN : Many different scenarios of label discrepancies are

possible in real operations as exemplified in Section 5.1. Having one versatile method that can
be applied in multiple of these scenarios is, therefore, utterly important for practical applica-
tions. The versatility of the proposed approach is demonstrated by applying it successfully to
DA experiments with different types of label discrepancies (Partial and Open-Partial) (if the
respective labels are known in the source domain), where it consistently outperforms other
comparison methods under large domain gaps. We consider the versatility of the proposed
approach as a one of the key benefits for practical PHM applications.
Plausibility of Unsupervised Data Generation and Validity of the Underlying

Hypothesis: The generation of unseen target data is unsupervised and the plausibility of
the target data cannot be directly imposed while training the generative model. Therefore,
it is required to evaluate how realistic the target data generated by FaultSignatureGAN is;
to which extent it can be used as a surrogate of real target data. The data visualization (see
Section 5.6.3) shows that the generated data represents real target data well. In particular, it
represents the target fault data substantially better compared to the source data. This find-
ing is also supported by the findings in the DA experiments (both Partial and Open-Partial)
where FaultSignatureGAN consistently outperforms the Baseline method. This supports
the validity of the underlying hypothesis to enable controlled generation of previously un-
observed data. We can draw the following conclusions: (1) Equation 5.1 serves as a good
approximation of real fault data, (2) the disentanglement of domain-specific and fault-specific
characteristics was successful and (3) that domain-invariant fault signatures can be extracted
by FaultSignatureGAN given only one source domain. However, our assumption about the
structure of domain-specific and fault-specific components composing real fault data as de-
fined in Equation 5.1 could be extended and further refined in future work, in particular, the
assumption that the OCs impact the fault-specific components linearly. Moreover, the DA
experiments show that the generative process succeeds in preserving the semantic meaning
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of the generated data. If this would not be the case, the generated data would introduce
label noise to the training data and, quite likely, result in a performance drop in the target
domain.
Synthetic Data for Hyperparameter Tuning: Our results have shown that the clas-

sification performance of the Baseline method in the target domain is highly dependent on
the chosen classifier architecture (see evaluation in Section 5.5). This is also observed in the
literature, where different Baseline results on exact same tasks are reported with different
hyperparameters of classifier architectures. For example, Wang et al. (2020a) reported a
mean performance 99.78% on the domain shift 2 → 3, whereas (Li et al., 2020b) reported
a baseline performance of 92.2% using a different classifier architecture. The classification
improvements in the target domain gained by an appropriate choice of hyperparameters is
even larger compared to improvements gained by other DA methods. This emphasizes the
importance of hyperparameter tuning including the choice of the network architecture for the
task of DA with extreme label space discrepancies. Previous publications, therefore, rely, for
example, on the availability of target data and labels for one domain shift experiment. This
availability of any target faults is not realistic in real safety-critical applications, where faults
did not occur. In absence of fault target data, there is no possibility to tune these hyperpa-
rameters with respect to the classification task in the target domain, which can pose a major
risk in safety-critical assets. If, however, synthetic data is available that represents the real
target data well, the data can be used for validation. In this study, we showed that synthetic
fault data generated by FaultSignatureGAN can support selecting the optimal architecture
without relying on real target fault data that is usually not available in real satefy-critical
applications. Herein lays one major benefit of the proposed data generative approach
FaultSignatureGAN. Although a proof of optimality is impossible (as the real target data has
not been observed), the synthetic data provides a better indication of which hyperparameters
to choose compared to the hyperparameter choice based on the source dataset performance
or even a random choice.
Decreasing Data Acquisition Time: In practice, a short data acquisition phase is

essential to enable to start monitoring the condition of a new asset within a short period of
time. However, faults are extremely rare in complex (safety-critical) systems. This lack of
real fault data is a major limitation to applying data-driven solutions for fault diagnostics.
FaultSignatureGAN allows to transfer fault patterns to a new target domain. Once a fault
occurred in one domain providing sufficient fault data to train a generative model, the fault
signature can be learned, which then can be used to generate new fault data for any newly
emerging domain. This ultimately can speed up the data collection process significantly,
enabling the application of data-driven solutions within a shorter time span.

5.8 Conclusion

In this research, we proposed the FaultSignatureGAN framework for controlled generation
of unseen faults in the target domain. The resulting generated fault data is (1) specific to
a desired domain and (2) specific to a certain fault type and the severity level of the fault
in that domain. Therefore, FaultSignatureGAN enables to start monitoring the condition of
new assets without any faults observed in the target domain since plausible faulty data can be
generated for all future target domains. While we considered different operating conditions
as domains in this research, the proposed framework is also applicable to generate synthetic
faults in new units of a fleet.

We demonstrated the potential of the FaultSignatureGAN to complement partial label
spaces in different DA experiments - Partial as well as Open-Partial DA settings. The re-
sults show that the generated data represents true faults in the target domain considerably
better than the source fault data, leading to an improved classification performance on the
target domain. Our proposed method excels particularly on large domain gaps. FaultSigna-
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tureGAN also enabled hyperparameter tuning for unseen target domain which can be applied
in combination with any other DA approach. Without any access to target faults, tuning
existing methods optimally is not possible. This demonstrates one of the benefits of plausible
data generation in the evaluated tasks.

For future work, an additional step integrating real but unlabeled target data in addition
to the synthetically generated data is an interesting direction to explore. Additional unsu-
pervised or semi-supervised DA approaches could be employed to bridge the synthetic to
real gap. Furthermore, the transferability of the generated fault signatures between different
bearing types is of high interest for future research. One further direction of future research
would be to investigate the source data demand for FaultSignatureGAN, evaluating how many
samples and how diverse they need to be in order to train a representative generative model.
On a bigger scale, the integration of novel or evolving fault detection (those that have not
been observed neither in the source nor in the target domain) in addition to the performed
fault classification would be of a significant practical relevance.

5.9 Appendix

Unless stated otherwise, the following model architectures were used:

Generation Model: The first layer of the generation model is a single neuron. The ac-
tivation of this neuron is sampled from a categorical distribution corresponding to
the number of fault classes (fault type severities). The second fully connected layer
is the sampling layer (mean and variance), containing three units each, activated by
LeakyReLu (α=0.001).

The following fully connected layers successively increase the dimensionalty to the de-
sired final output shape. Each layer is activated by LeakyReLu (α=0.001), using no
bias and followed by a BatchNormalization (BN) layer.

Three 1D convolutional layers follow, each layer is activated by LeakyReLu (α=0.001),
and followed by a BatchNormalization (BN) layer.

At last the generated signal is added to a randomly drawn data point from the base
dataset.

The Adam optimizer used with a learning rate of 0.0001, beta1 = 0.5 and beta2 = 0.999.

Triplet Encoder Model: The triplet encoder model consists of 6 fully connected layers,
each activated with Leaky ReLu (alpha=0.1) and followed by a dropout layer (rate=0.4).
The final layer is 4 dimensional and is L2 normalized.

The Adam optimizer used with a learning rate of 0.0001, beta1 = 0.5 and beta2 = 0.999.

Discriminator Model: The discriminator model consists of six fully connected layers, each
activated with Leaky ReLu (alpha=0.1) and followed by a dropout layer (rate=0.1).
The final layer is 1-dimensional. The Adam optimizer used with a learning rate of
0.0001, beta1 = 0.5 and beta2 = 0.999.

Classification Model for Early Stopping: It consists of 4 1-D convolutions layers (8 fil-
ters in each layer and kernel size is 3), each activated with Leaky ReLu (alpha=0.1)
and followed by a dropout layer (rate=0.1). Followed by a flattening layer and a fully
connected layer with the appropriate number of units according to the number of classes
in the dataset.

The Adam optimizer used with default parameters.

Classification Model for Evaluation: The classification model for evaluation is inspired
by Wang et al. (2020a) . It consists of three 1D convolutional layers (10 filters in each
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layer, activated by ReLu) and dropout layers (0.4). The Adam optimizer used with
default parameters.

For training the CWRU classification models a batch size of 64 is chosen, for Paderborn
2000.

Model Architecture for the comparison method BA3US: The comparison method BA3US
has not yet been applied to any timeseries data. Without using target fault data, the
methodology could not be tuned to give satisfying results. Therefore, we followed the
procedure of Wang et al. (2020a) and tuned BA3US on a validation task 0−→3. We
started using the exact same generator, discriminator and classifier architecture as well
as optimizer setting as proposed by Wang et al. (2020a). All hyperparameters (model
architecture and weighting of the different loss terms) are then consecutively optimized
on the validation task. Ultimately, the following architecture was used: The feature
extractor consists of a 3 layer 1D-convolutional layer with kernel size 3 and 10 fil-
ters per layer. Each layer is batch normalized and activated by the sigmoid function,
followed by a dropout layer (rate= 0.5). Last, based on the flattened activations, a
fully connected layer is added with 256 units. The classifier model consists of two
fully connected layers. The first with 256 units is activated with the ReLU activation
function and followed by a dropout layer (rate 0.5). The second contains 10 units (cor-
responding to the number of classes) and is activated by the softmax function. The
discriminator contains three fully connected layer, each with 256 ReLU activated
units. Only the last layer contains only one unit and is Sigmoid activated. The model
is optimized on batches of 64 samples in the target and the source domain using the
StochasticGradientDescent algorithm with a learning rate of 0.005. The initial ratio of
augmented source samples is set to 1.0 (ρ0 = 1), the test interval Nu is set to 50. The
loss conditional entropy loss is weighted with a factor of 10−3 and the transfer loss with
a factor of 10−1. The weighted complement entropy loss is not considered since it did
not lead to satisfying results (w = 0).
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6 Improving generalization of deep fault detection models in
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This chapter corresponds to the published article:1

Rombach, Katharina, Gabriel Michau, and Olga Fink (2020). “Improving generalization
of deep fault detection models in the presence of mislabeled data”. In: 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp. 3103–
3110. doi: https://doi.org/10.1109/SMC42975.2020.9283002.

Abstract: Mislabeled samples are ubiquitous in real-world datasets as rule-
based or expert labeling is usually based on incorrect assumptions or subject
to biased opinions. Neural networks can ”memorize” these mislabeled sam-
ples and, as a result, exhibit poor generalization. This poses a critical issue in
fault detection applications, where not only the training but also the validation
datasets are prone to contain mislabeled samples. In this work, we propose a
novel two-step framework for robust training with label noise. In the first step,
we identify outliers (including the mislabeled samples) based on the update in
the hypothesis space. In the second step, we propose different approaches to
modifying the training data based on the identified outliers and a data aug-
mentation technique. Contrary to previous approaches, we aim at finding a
robust solution that is suitable for real-world applications, such as fault de-
tection, where no clean, ”noise-free” validation dataset is available. Under an
approximate assumption about the upper limit of the label noise, we signifi-
cantly improve the generalization ability of the model trained under massive
label noise.

6.1 Introduction

Many real-world datasets exhibit label noise (Krishna et al., 2016). In practical applica-
tions of fault detection, labels for distinguishing between healthy and faulty conditions are
often generated by predefined rules or else based on assumptions. For example, a system
is considered to be healthy within a defined period of time after a performed maintenance
action. However, this assumption does not always hold, which results in mislabeled samples
in both the training and validation datasets. While deep neural networks (NN) have been
applied successfully in the field of Prognostics and Health Management (PHM) (Abdeljaber
et al., 2017; Krummenacher et al., 2017), their performance is heavily impacted if trained
on a dataset with label noise. As universal approximators, NNs are capable of fitting to any
labels (Zhang et al., 2017a). This ability is referred to as ”memorization” (Arpit et al., 2017)
and leads to poor generalization of the resulting models. In the absence of a clean validation
dataset, this lack of generalization cannot be detected since the model might exhibit good
performance on a validation dataset that is impacted by the same label bias as the training
dataset. However, the model may not have learned the true relationship between input and

1Please note, this is the author’s version of the manuscript published in 2020 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC). Changes resulting from the publishing process, namely
editing, corrections, final formatting for printed or online publication, and other modifications resulting
from quality control procedures may have been subsequently added. The final publication is available at
https://doi.org/10.1109/SMC42975.2020.9283002.
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output. This is especially problematic in the context of fault detection in industrial assets,
where faults are safety-critical.

In this work, we tackle the challenge of training a robust model despite the presence
of label noise and without exact knowledge about the label noise or a clean dataset with
which to perform hyperparameter (HP) tuning. We propose a two-step framework that first
identifies outliers based on the samples’ consistency with the hypothesis update and second,
modifies the training dataset based on the identified outlier samples. An adaptation of the
data augmentation technique called mixup (Zhang et al., 2017b) is introduced for the data
modification. We aim at providing universally applicable recommendations for learning under
label noise.

To the best of our knowledge, this is the first study to tackle the inability to tune certain
HP if no reliable ground truth information is available. Our proposed solution relies only on
a rough assumption regarding the level of label noise. Ultimately, we significantly improve
the generalization ability of the trained models under massive label noise on an image dataset
and a time series dataset for fault detection.

After reviewing the existing relevant literature in Section 6.2, the proposed framework is
introduced in Section 6.3. The methodology is evaluated on the experimental setup as defined
in Section 6.4 and the results are shown in Section 6.5. Based on the discussion in Section 6.6,
final recommendations about training deep models with label noise are given in Section 6.7.

6.2 Related Work

Robust learning on noisy datasets has attracted increasing attention - especially in the context
of deep learning. In the literature review, we aim at giving a brief overview of different
approaches and their limitations with respect to the scenario relevant for fault detection. We
elaborate in more detail only closely related methods. For a detailed survey on classification
under label noise, the reader is referred to (Frénay and Verleysen, 2013).
Direct approaches aim at detecting mislabeled samples explicitly. E.g. all samples are

ranked by their probability of being assigned to the original label (based on the current
model’s prediction) and a fraction α of this ranked list is then presented to experts for
relabeling (Müller and Markert, 2019). Hence, this approach i.a. relies on human intervention.

Other approaches based on the model’s prediction aim at automatic relabeling (Tanaka et
al., 2018; Reed et al., 2014). However, these tend to favor trivial solutions to the classification
task. To counteract this, they require prior knowledge, such as the prior distribution over all
classes (Tanaka et al., 2018). In addition to the model’s prediction, logits (Pleiss et al., 2020)
and the training loss (Shen and Sanghavi, 2018) were also considered to identify mislabeled
samples.

As an alternative to relabeling, several researchers have proposed altering the current
model’s prediction to match the label noise as in (Vahdat, 2017; Patrini et al., 2017; Sukhbaatar
et al., 2015). Yet, some approaches presuppose e.g. the ground truth noise model (Vahdat,
2017; Patrini et al., 2017). Others aim to learn this model but do not carefully focus on the
memorization ability of DNNs (Tanaka et al., 2018). We argue that a clean validation dataset
is required to tune crucial HP such as when to start updating the noise model Q (Sukhbaatar
et al., 2015).

Learning to reweight samples of a noisy dataset has been proposed in the field of meta-
learning (Jiang et al., 2017; Ren et al., 2018). For example, a meta-gradient step was proposed
in (Ren et al., 2018) to reweight samples by evaluating the gradient directions based on a
noise-free dataset before the network is updated. These methodologies usually rely on a
small, noise-free validation dataset (Jiang et al., 2017; Ren et al., 2018) and are therefore not
applicable in our setting.
Indirect approaches deal with mislabeled data only implicitly. They aim at robust

optimization in general, resulting in good generalization of the model despite the presence of
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Figure 6.1: Process Flow.

mislabeled samples. Modified loss functions have been proposed, including generalized cross
entropy (Zhang and Sabuncu, 2018) and an information-theoretic loss function (Xu et al.,
2019). Also, different regularization techniques have been shown to yield good generalization
(Hu et al., 2020; Arpit et al., 2017). Each of the proposed approaches comes with a set of
specific HP. We argue that tuning these optimally requires a clean validation dataset, which
is not available in the scenario considered here.

Vicinal Risk Minimization (VRM) (Chapelle et al., 2001) has been proposed as an alterna-
tive to Empirical Risk Minimization (ERM) (Vapnik, 1998), and not only in the context of
label noise. It relies on the assumption that the true density function of the data is smooth
in the vicinity of any data point and therefore opts to represent it by a vicinity distribution
instead of the empirical one as in ERM (Vapnik, 2013). Recently, VRM has been shown to
stabilize the training of NNs on noisy data with mixup (Zhang et al., 2017b). The data is
augmented by drawing samples from a generic vicinal distribution, resulting in convex com-
binations of the datapoints and their respective labels. Thus, linear behaviour between the
classes is favored, which has been shown to prevent the model from overfitting to individual
mislabeled samples.

In this work, we tackle the problem in a more general context compared to previous works,
by relaxing two strong assumptions that do not hold for many practical applications: 1) we
rely neither on a clean dataset for tuning the methodology nor 2) on the exact knowledge of
the label noise. We only assume a rough upper estimation of the noise level. The proposed
end-to-end approach does not require any human intervention. It combines elements of
both direct approaches (outlier detection (OD)) and indirect approaches since the detected
outliers are used to adapt the model training. Since mixup has shown good performance in
other contexts and introduces only one additional HP that can be related to the noise level
estimation, we also evaluate its performance and compare it to the proposed approaches.

6.3 Methodology

6.3.1 Problem Formulation

In a classification task, we aim at finding a function h that captures the true relationship
between a variable X and a label Y , which follow the joint distribution P (X,Y ). In reality,
only a finite number of samples of this joint distribution are available - a finite dataset D.
The set of functions h ∈ A(D) that can be reached depends i.a. on the provided dataset D
(Arpit et al., 2017). Given a training dataset D′

with unknown label noise, we aim at finding
a deep model h that performs well on the underlying true but unknown data distribution
P (X,Y ). Since no ground truth is available, all HP can only be tuned on D′

.
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6.3.2 Proposed Framework

We introduce a novel two-step framework for robust training with label noise (see Figure 6.1).
In a first step, we identify a set of outliers including mislabeled samples (see Section 6.3.4 and
Step 1 in Figure 6.1). The novel algorithm aims at early detection based on the gradient
update in the hypothesis space, i.e. mislabeled samples are identified before they have been
considered for the model update in order to prevent the NN from overfitting to these samples.

In a second step, the training data is modified based on the previously identified out-
liers. A new adaptation of the data augmentation technique called mixup is proposed. In
Equation 6.1,

x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj
(6.1)

the original mixup augmentation of (xi, yi) is defined as proposed in (Zhang et al., 2017b),
where λ ∼ Beta(α, α) and the sample-label pairs (xj , yj) are randomly chosen. The novel
adaptation of the data augmentation is explained in Section 6.3.4. Multiple data modifica-
tion techniques, including the automatic relabeling of the training dataset, are proposed in
Section 6.3.5 (seeStep 2 in Figure 6.1).

6.3.3 Assumptions

We aim at developing a universal approach for the scenario in which label noise is suspected
but no ground truth information is available. In such situations, necessity compels us to
make only rough assumptions. Hence, we make the following rough assumptions regarding
the label noise:

1. the number of mislabeled samples is less than 50% of the entire dataset

2. we use a rough estimate of the upper limit of label noise (little, medium, massive) to
set a maximum threshold of possibly detected outliers and to set the HP

We argue that this is a very loose assumption compared to those required in previous
studies where, e.g. the exact label noise must be known (Tanaka et al., 2018). We also
evaluate extreme scenarios in which the estimated upper noise limit is 10-20% above the
actual noise ratio. Furthermore, we assess the sensitivity of the proposed framework to these
assumptions. To evaluate potential limitations, the scenarios are evaluated for cases in which
the assumptions concerning the noise level are wrong (see Section 5.7).

6.3.4 Outlier Detection

Outliers are defined as samples that are inconsistent with the update in the hypothesis space,
i.e. samples with gradients surpassing certain thresholds as defined in Algorithm 2. The
gradient ∂k

i in the parameter space for all samples i and nodes k is calculated (see line 7 in
Algorithm 2), representing the gradient distribution in the parameter space. The thresholds
are set based on the confidence interval of the gradient distribution: whllower and whlupper
are set to be below the 25th percentile and above the 75th percentile by a factor of 1.5
of the Interquartile Range (IQR) (see lines 9 - 13 in Algorithm 2). Furthermore, to enable
convergence, a minimal threshold is set for the IQR. The gradients are calculated with respect
to the cross-entropy loss as it emphasizes difficult samples (Zhang and Sabuncu, 2018). For
all proposed approaches, hard labels (the maximum-a-posterior (MAP) estimates) are used
for the gradient calculation. Furthermore, we use assumptions about the upper limit of the
label noise to set a maximum number of outliers that can be detected. This limit is defined in
Table 6.1. All samples that are not detected as outliers are considered consistent in updating
the hypothesis.
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Computational Complexity: Since the parameter space of NNs can be very high-
dimensional, the proposed outlier selection algorithm is computationally expensive. Thus,
we propose to represent the gradient distribution over all samples in a compact way by only
considering the mean gradient per layer l ∈ L of the NN, defined as

∂l
i,mean =

1

K

∑
k∈K

(
∂fi(w)

∂wk,l

)
, (6.2)

where f is the loss function, k ∈ K the nodes in the respective layers l ∈ L and w the weights
of the NN.

Outliers are defined as samples whose mean gradient surpasses the defined thresholds in
any of the layers. Furthermore, we only consider the weights of the NN and neglect the biases.
In this research, the outlier selection is performed for each class individually. It is important
to note that this is not necessary but rather a design choice. The per-class detection enables
the approach to be applied to imbalanced datasets as well. This makes the proposed approach
more universally applicable.

Algorithm 2 Outlier Detection

1: procedure DetectOutlier(D′
, h)

2: C: # classes ∈ D′

3: L: # layers ∈ h
4: for all c ∈ C do
5: for all l ∈ L do
6: for all (xi, yi) ∈ c do

7: ∂l
i,mean = 1

K

∑
k∈K

(
∂fi(w)
∂wk,l

)
8: end for
9: pl25 = Percentile25({∂l

i,mean}i∈c)
10: pl75 = Percentile75({∂l

i,mean}i∈c)
11: IQRl = pl75 − pl25
12: whlc,low = pl25 − 1.5 ∗ IQRl

13: whlc,up = pl75 + 1.5 ∗ IQRl

14: end for
15: end for
16: O = {i | i ∈ c;∃l ∈ L; ∂l

i,mean /∈ [whlc,low, wh
l
c,up]}

17: D∗ = D′ \ O
18: return O,D∗
19: end procedure

6.3.5 Data Modification

We propose different approaches to stabilizing the training through data modification using
the detected set of outliers. These range from ERM on the non-outliers to VRM on the
complete dataset. All approaches are visualized in Step 2 of Figure 6.1.

More concretely, we propose to enforce different degrees of data augmentation, i.e. of linear
interpolation between outliers and non-outliers, by using different values of α in Equation 6.1.
Furthermore, all samples are only mixed with non-outliers (xj in Equation 6.1). We refer
to this as Adapted MixUp. If no outliers are detected, we optimize based on the empirical
distribution, i.e. α = 0. Thereby, memorization of outliers (incl. mislabeled samples) is
prevented while, simultaneously, the model is still able to learn nonlinear relationships based
on the dataset that is consitent with the hypothesis. The different approaches for the data
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augmentation step are introduced below: The identified outliers are removed from the training
set for the next model update, i.e. for the next ERM optimization step. Yet the dataset for
the OD remains unaltered, i.e. the OD is always performed on the original dataset. All
samples are augmented with Adapted MixUp. A higher value of α is used on the currently
detected set of outliers and a lower one for the current set of non-outliers. Again, the dataset
for the OD is left unaltered.

This approach is equivalent to MixOutlier except that samples that were detected as an
outlier in any of the iterations are treated as outliers in each subsequent augmentation step.

This is based on MixAllOutlier. However, the labels in the dataset are permanently
altered by building convex combinations with a factor of 0.6 from the label and the current
prediction of the model - similar to Reed et al. (Reed et al., 2014).

6.4 Experimental Setup

The proposed two-step framework is evaluated based on two different datasets with different
characteristics. We aim at evaluating the following properties: (1) Exp.1: different train-
ing dynamics on two datasets given symmetric label noise; (2) Exp.2: feasibility of Adapted
MixUp; (3) Exp.3: performance of the proposed OD approach and (4) Exp.4: the gener-
alization capabilities of the resulting deep models evaluated on a clean test dataset. All
experiments are repeated 5 times and the mean and standard deviation are reported. Sym-
metric label noise is added to the inherently clean training datasets as described in (Chen
et al., 2019; Jiang et al., 2017; Ma et al., 2018).

For evaluation purposes only, the test dataset is not corrupted by label noise. Our eval-
uation focuses on binary classification tasks as this is a relevant setup for fault detection.
However, the proposed framework is also applicable to multi-class classification tasks. We
compare the proposed framework, comprising the OD combined with the different variants
of data augmentation, to the two baseline methods ERM and mixup.

6.4.1 Dataset

We evaluate the approaches on the MNIST dataset (LeCun et al., 1990) containing images
of handwritten digits from 0 to 9. We reformulate it as a binary classification task for
demonstration purposes - i.e. digits 0-3 are grouped into class 0 (30596 training samples,
5139 test samples) and digits 4-9 are grouped into class 1 (29404 training samples, 4862 test
samples) - to simulate defect detection in PHM where fault types, as well as the healthy states,
can have multiple patterns (which can be regarded as different operating conditions). The
dataset contains 60000 training samples and 10000 test samples in total and has previously
been used as a benchmark dataset for anomaly detection in PHM applications (Ducoffe et al.,
2019). The images are normalized.

Furthermore, we apply the proposed framework to a simulated time series dataset - the
Building Defect Detection dataset (BDD dataset) - to detect faults in buildings (Granderson
et al., 2020). We conducted the experiments on the multi-zone variable air volume AHU
dataset (MZVAV-2-2). The dataset contains measurements in a healthy state as well as
measurements from three different fault patterns (leaking valve of heating coil, stuck valve
of cooling coil, and stuck outdoor air damper). The sensor readings are recorded once per
minute over 26 days. Half-hour time windows are selected for the classification as this is
sufficient to distinguish healthy from faulty conditions. In total, this resulted in 1247 sample-
label pairs, of which 623 are considered healthy and 624 are considered faulty. 20% of the
data is randomly selected for the test dataset. In total, we consider 15 sensor readings, i.e. all
besides one set point and one control signal (AHU: Supply Air Temperature Set Point, AHU:
Exhaust Air Damper Control Signal). Therefore, one sample consists of 450 measurements
(30 minutes x 15 sensors). The measurements for each sensor are standardized.
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Assumption
Noise
Ratio

Upper
Threshold

α

Little Noise 0− < 10% 10% 0.4
Medium Noise 10− < 30% 30% 8
Massive Noise 30− < 50% 50% 32

Table 6.1: Setting of α under different noise assumptions based on proposed values in (Zhang et al., 2017b).

6.4.2 Hyperparameter Settings

As we assume that no clean, reliable validation dataset is available for HP tuning, we can
only rely on metrics based on the training dataset and on the aforementioned assumptions.
All parameters regarding the model and the standard optimization algorithm were chosen
such that a training accuracy of at least 75% is achieved for all label noise ratios for each
dataset under ERM.

The model used for MNIST dataset is a four-layer fully connected NN with 128, 32, 10
nodes activated by ReLU, and 2 nodes activated by the sigmoid function. It is updated with
Adam (Kingma and Ba, 2014) (initial learning rate of 0.001). The batch size is set to 64. The
model used for the two BDD datasets is a five-layer fully connected NN with 256, 128, 64,
16 nodes activated by ReLU, and 2 nodes activated by the sigmoid function. The optimizer
Adam (Kingma and Ba, 2014) is used (initial learning rate of 0.0001) and the batch size is set
to 16. Both models are trained by minimizing the cross-entropy loss as well as the entropy
calculated based on the model’s prediction as an additional regularization loss (Tanaka et al.,
2018).

The minimal IQR for the OD is set heuristically to 0.0001 and is kept constant over all
experiments - see Section 6.3.4. For mixup, the default values for α proposed in the original
paper are used (Zhang et al., 2017b) based on a basic assumption about the label noise as
defined in Table 6.1. Unless stated otherwise, for our proposed approaches, we set α = 0.4 for
the set of non-outliers D∗ (as it corresponds to the assumption of Little Noise) and α = 32
for the outlier dataset (corresponding to the Massive Noise setting). As mentioned above,
if no outliers are detected at all during the training process, we revert to ERM by using a
value of α = 0.

6.5 Results

6.5.1 Experiment 1 - Training Dynamics on Mislabeled Data

As preliminary results, we demonstrate the overfitting behaviour leading to poor generaliza-
tion as described in the introduction. For this purpose, we train a model with ERM on a
noisy dataset and plot the accuracy on the mislabeled training dataset and the test accuracy
on a ”clean” test dataset. In Figure 6.2a and Figure 6.2b, results with different noise ratios
are plotted. This demonstrates how the models overfit to noisy labels.

6.5.2 Experiment 2 - Adapted MixUp

As a preliminary exploration, we evaluate the feasibility of enforcing different degrees of
interpolation as described in Section 6.3.5 to demonstrate the rationale behind the proposed
methodology. Therefore, we assume that we know the ground truth labels of the noisy
training set and can thus identify the mislabeled samples. The results are compared to the
original mixup augmentation (Zhang et al., 2017b). While α for the original mixup is set as
stated in Section 6.4.2, for the Adapted MixUp a fixed value of α = 32 is set for the mislabeled
samples and a value of α = 0 is set for the non-outliers as it is known to be noise-free given
the ground truth information.
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(a) MNIST dataset.

(b) Building Defect Detection dataset.

Figure 6.2: Training and Test Accuracy.
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Label Noise

Dataset Method 10% 20% 30% 40%

MNIST
mixup 97 ± 0 % 95 ± 0 % 90 ± 1 % 80 ± 1 %
MixOutlier 98± 0% 98± 0% 98± 0% 98± 0%

BDD
mixup 93± 0% 90 ± 1 % 87 ± 1 % 78 ± 1 %
MixOutlier 93± 1% 93± 0% 93± 2% 94± 0%

Table 6.2: Final Accuracy on Clean Test Dataset with Ground Truth Information.

(a) MNIST

(b) Building Defect Detection Dataset

Figure 6.3: No. of mislabeled and correctly labeled samples ∈ O for MixOutlier.

The results for 10%−40% label noise are shown in Table 6.2. For 0% label noise, the
approach is equivalent to ERM under the assumption that ground truth information is avail-
able. Therefore, this evaluation is not listed in the table. The Adapted MixUp augmentation,
given ground truth information, leads to better generalization capabilities compared to de-
fault mixup - especially under massive noise. The final performance of Adapted MixUp is
independent of the label noise ratio for both datasets.

6.5.3 Experiment 3 - Outlier Detection

We evaluate the proposed algorithm for OD on the first 10 epochs on one iteration of the
MixOutlier approach, which is representative for all other approaches - see Figure 6.3a and
Figure 6.3b, where mislabeled samples in the outlier dataset are distinguished from those
that are correctly labeled.

Given no label noise, only correctly labeled samples are identified as outliers. While the
number of outliers quickly decreases on the MNIST dataset from 4521 (7.5% of the entire
dataset) to 281 (0.5% of the entire dataset) within the first 10 epochs, it stays rather constant
over the first 273 epochs with 141±18 outlier samples on the BDD dataset. In the subsequent
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epochs, considerably fewer outliers are detected (64 ± 11).
Given medium noise levels, the detection of mislabeled samples is very efficient. 99% of

the mislabeled samples are identified within the first few epochs on the MNIST dataset for
both noise settings. On the BDD dataset, 95% of mislabeled samples are initially identified
on the dataset with 10% label noise and 87% on the dataset with 20% label noise. Yet the
detection approach is lacking precision at the medium noise level as the set of outliers also
includes correctly labeled samples. For example, on the BDD dataset 144 (on the dataset
with 10% label noise) and 141 (on the dataset with 20% label noise) correctly labeled samples
are initially in the set of outliers. This corresponds to 16% and 18% of all correctly labeled
samples in the respective datasets. Yet, as the training continues, the number of mislabeled
samples in the set of outliers stays approximately constant over all epochs (88% ± 4% and
81% ± 6% of the truly mislabeled samples), whereas in the last training epoch, the number
of correctly labeled samples decreases to 8% and 9% of the correctly labeled samples in the
respective training datasets.

Given a massive noise level (40% label noise ratio), the algorithm is more precise but less
effective on both datasets. Initially on MNIST, 13% of all mislabeled samples are detected
and 2% of all correctly labeled ones. As the training continues, up to 67% of mislabeled
samples are detected and 20% of the correctly labeled ones.

6.5.4 Experiment 4 - Binary Classification

All introduced approaches combining the proposed OD with Adapted MixUp, as introduced
in Section 6.3.5, are applied to the MNIST dataset and to the BDD dataset mislabeled by
different ratios as described in Section 6.4. The approaches are compared to ERM and mixup.
The results are shown in Table 6.3.

While all proposed approaches show similar performance to the baseline method mixup
on MNIST with 0 and 10% label noise, they outperform mixup on higher noise ratios. The
performance gain compared to the baseline methods is most visible when using the MixAll-
Outlier+Relabel approach on the MNIST dataset with a label noise ratio of 40% (accuracy
gain of 31% accuracy compared to ERM and 14% compared to mixup).

On the BDD dataset, the best-performing approach depends on the label noise ratio. On
the datasets with little to medium noise levels, mixup performs about as well as MixOutlier,
whereas all of the other proposed approaches perform worse. At massive noise levels, most
of the proposed approaches outperform both baseline methods (ERM and mixup). Again,
the model trained with MixAllOutlier+Relabel on 40% label noise achieves the biggest gain
in accuracy compared to the models trained on the baseline methods.

6.6 Discussion

Training Dynamics on Two Datasets: The models trained on both datasets provide a
suitable testbed for evaluating the universality and sensitivity of the proposed approaches as
they show different dynamics under label noise.
Outlier Detection: Given the ground truth information about all labels, Adapted MixUp

augmentation leads to a good generalization capability for both datasets and all label noise
settings. However, the detection of mislabeled samples is a challenging task. While the
OD shows similar behaviour on both datasets, its precision and effectiveness depends on
the label noise ratio: it is more effective and less precise at medium noise levels and vice
versa - more precise but less effective at massive noise levels. The lower precision at medium
noise levels does not negatively impact the performance of the models trained on the larger
MNIST dataset. It does, however, decrease the model’s final performance on the smaller BDD
dataset compared to the baseline method mixup (e.g. with the DeleteOutlier, MixAllOutlier,
or MixAllOutlier+Relabel approach). The low effectiveness at massive noise levels especially
affects the performance of models that are able to ”memorize” the mislabeled samples faster
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MNIST

Method - Label Noise 0% 10% 20% 30% 40%

ERM 99± 0% 91 ± 1 % 82 ± 1 % 72 ± 1 % 62 ± 2 %
mixup 98 ± 0 % 97 ± 0 % 94 ± 0 % 91 ± 1 % 79 ± 1 %
DeleteOutlier 98 ± 0 % 98± 0% 97± 0% 94 ± 0 % 80 ± 1 %
MixOutlier 98 ± 0 % 98± 0% 97± 0% 93 ± 0 % 80 ± 2 %
MixAllOutlier 98 ± 0 % 97 ± 0 % 97± 0% 95 ± 0 % 88 ± 1 %
MixAllOutlier+Relabel 98 ± 0 % 97 ± 0 % 97± 0% 97± 0% 93± 2%

BDD

ERM 94 ± 1 % 90 ± 2 % 83 ± 1 % 79 ± 1 % 63 ± 4 %
mixup 94 ± 0 % 92± 2% 89± 1% 83 ± 2 % 73 ± 5 %
DeleteOutlier 92 ± 1 % 87 ± 2 % 84 ± 1 % 85± 3% 77 ± 3 %
MixOutlier 95± 1% 91 ± 1 % 89± 2% 85± 3% 72 ± 2 %
MixAllOutlier 94 ± 1 % 85 ± 3 % 87 ± 3 % 84 ± 3 % 79 ± 2 %
MixAllOutlier+Relabel 94 ± 1 % 86 ± 2 % 86 ± 2 % 84 ± 2 % 83± 3%

Table 6.3: Final Accuracy on Clean Test Dataset Trained on Mislabeled Datasets for Various Label Noise.

than they are detected. This becomes particularly evident looking at the final performance
of the models trained with DeleteOutlier or MixOutlier on MNIST with 40% label noise.

Generalization Capabilities of the Trained Models: Contrary to the previous study
of Zhang et al. (Zhang et al., 2017b), mixup does not outperform ERM in our experiments if
no label noise (0%) is present. This is most likely due to the fact that α has not been tuned
but rather set based on assumptions about the upper limit of the label noise as defined in
Section 6.4.2. MixOutlier slightly outperforms ERM on the clean BDD training dataset. This
might hint towards findings in the literature on curriculum learning where a curriculum that
sorts the training dataset can guide optimization towards a preferable optimum (Hacohen
and Weinshall, 2019). However, the performance gain in our experiments is not significant
and the results on MNIST do not support the hypothesis that the proposed approach acts as
a curriculum that is beneficial for optimization. Therefore, this is left for future research.

If the dataset is truly mislabeled (label noise ratio ¿ 0%), all of our proposed approaches
along with mixup outperform the baseline method ERM. mixup results in a satisfactory
performance at medium noise levels on both datasets. However, MixOutlier yields a superior
performance on MNIST and a comparable performance on the BDD dataset. Most of the
other proposed approaches in Section 6.3.5 suffer from the insufficient precision of the OD on
the smaller BDD dataset, as described above at medium noise levels. In the case of massive
noise, the performance of the baseline method mixup drops compared to the other noise
levels. While some of the proposed approaches suffer from the initially low effectiveness of
the OD (as decribed above), they still perform as well as or better than baseline method
mixup. Moreover, MixAllOutlier and MixAllOutlier+Relabel outperform mixup significantly
on both datasets at high noise levels (accuracy gain of 6-14%).

Based on the above evaluations, we recommend choosing the optimization methodology
based on the assumption regarding the label noise. We recommend using MixOutlier or the
baseline mixup for scenarios in which little to medium noise is suspected and the MixAllOutlier
approach for massive noise.
Sensitivity Analysis of the Recommendations: To evaluate the sensitivity of these

recommendations, the behaviour of the proposed approaches is evaluated for cases in which
the assumption regarding the upper limit of label noise is incorrect. We assess only the
best-performing approaches per noise level, i.e. MixAllOutlier and MixOutlier+Relabel
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Assumed
Noise Limit

Actual Label Noise

Dataset Method 0% 10% 20%

MNIST
Massive

50%

mixup 98± 0% 97± 0% 95 ± 0 %
MixAllOutlier 98± 0% 97± 0% 96 ± 0 %

MixAllOutlier
+Relabel 97 ± 0 % 97± 0% 97± 0%

BDD
Massive

50%

mixup 94± 0% 93± 0% 89± 2%
MixAllOutlier 92 ± 1 % 89 ± 2 % 87 ± 2 %

MixAllOutlier
+Relabel 86 ± 0 % 85 ± 1 % 83 ± 2 %

Table 6.4: Final Accuracy with Overestimated Noise Level.

Assumed Noise Limit
Actual Label Noise

Dataset Method 20% 30% 40%

MNIST

Little
10%

mixup 89± 1% 81± 1% 69± 1%
MixOutlier 82 ± 1 % 76 ± 3 % 69± 1%

Medium
30%

mixup 94 ± 0 % 89 ± 1 % 78 ± 1 %
MixOutlier 97± 0% 93± 2% 79± 2%

BDD

Little
10%

mixup 90± 2% 82± 2% 69± 3%
MixOutlier 86 ± 2 % 80 ± 2 % 69± 2%

Medium
30%

mixup 89± 1% 86± 1% 76± 1%
MixOutlier 89± 2% 84 ± 4 % 74 ± 3 %

Table 6.5: Final Accuracy with Underestimated Noise Level.

(Table 6.4) for a massive assumed noise level, and MixOutlier (Table 6.5) for a little to
medium assumed noise level. The performance is compared to the baseline method mixup
given the same assumptions, i.e. the HP setting of α as described in Table 6.1.

The sensitivity analysis reveals that the baseline mixup approach is less sensitive to erro-
neous assumptions of the label noise. This is particularly true if the noise level is underes-
timated, as the number of detected outliers surpasses the threshold and, therefore, hardly
any outliers are considered. However, if the noise level is overestimated, the best-performing
approaches depend on the dataset. Yet the baseline mixup shows, on average, the best perfor-
mance over all settings and on both datasets. Hence, one drawback of the proposed framework
is its sensitivity to inaccurate assumptions - especially if the noise is underestimated. How-
ever, these false assumptions can be easily identified: For example, if the number of detected
outliers constantly surpasses the estimated upper noise level, it is a clear indication of faulty
assumptions.

6.7 Conclusion

In this study, we proposed multiple variations of a two-step framework to train fault de-
tection models that are robust to label noise. The framework first identifies outliers based
on the hypothesis update and then modifies the training dataset accordingly. The frame-
work’s hyperparameters are set on the basis of a rough assumption regarding the label noise.
Ultimately, we demonstrate that the different strategies handle the level of noise and the un-
certainty of this level very differently. Our proposed approaches outperform other approaches
from the literature when the level of noise is expected to be high. In practical applications,
it is considered realistic to obtain a good estimate regarding an upper noise limit. This is

71



6666

6 Improving generalization of deep fault detection models in the presence
of mislabeled data

particularly the case for technical systems, where a rough assumption can be made as to how
noisy the labels are expected to be (representing how unsure the domain experts are about
the labels). In addition, our extensive evaluation can be used by practitioners to choose
the appropriate approach based on a rough estimation of the upper limit of the label noise
level. Lastly, our framework enables the early detection of outliers in the optimization pro-
cess. This can provide additional information about the dataset that can be used for further
evaluation. For example, analyzing the set of outliers already in the first training iteration
provides information on the label noise in the dataset. Still, in real applications, the success
of the optimization cannot be evaluated if no clean test dataset is available to measure the
performance of the resulting model. However, the analysis of the detected outliers could be
used to validate the model instead. Evaluating the proposed methodology on more datasets
is left for future research, particularly in terms of assessing the robustness of the approaches
with respect to intra-class variability. Furthermore, evaluating the proposed OD in terms of
its ability to act as a curriculum for efficient learning will be subject to further research.
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7 Contrastive Feature Learning for Fault Detection and
Diagnostics in Railway Applications

This chapter corresponds to the published article:1

Rombach, Katharina and Michau, Gabriel and Ratnasabapathy, Kajan and Ancu, Lucian-
Stefan and Bürzle, Wilfried and Koller, Stefan and Fink, Olga. “Contrastive Feature Learning
for Fault Detection and Diagnostics in Railway Applications.” under review in scientific
journal. 2022.

Abstract: Recently, the application of data-driven algorithms for fault de-
tection and diagnostics in railway applications has been increasing, for both
infrastructure and rolling stock applications. In practice, the performance of
data-driven models can be compromised if the training dataset is not represen-
tative of all possible future conditions. We propose to approach this challenge
by learning a feature representation that is, on the one hand, invariant to op-
erating or environmental factors but, on the other hand, sensitive to changes
in the asset’s health condition. We evaluate the proposed contrastive learning
framework under different degrees of label availability and representativeness
of training data on two different case studies from railway infrastructure and
rolling stock. First, we evaluate the performance of supervised contrastive
feature learning on a railway sleeper defect classification task given a labeled
image dataset that is collected by a diagnostic vehicle. Second, we evaluate
the performance of unsupervised contrastive feature learning without access to
faulty samples on an anomaly detection task on a railway wheel dataset that
is collected by wayside monitoring systems (equipped with strain gauge sen-
sors). Here, we test the hypothesis of whether a feature encoder’s sensitivity
to degradation is also sensitive to novel fault patterns in the data. Our results
demonstrate that contrastive feature learning improves the performance on the
supervised classification task regarding sleepers compared to a state-of-the-art
method by 13.3%. Moreover, on the anomaly detection task on railway wheels,
the detection of shelling defects is improved compared to state-of-the-art meth-
ods.

7.1 Introduction

Train travel is expected to be safe, affordable, and punctual. Hence, railway operators need to
ensure safe and reliable operations while being economically efficient. There is an increasing
investment in condition monitoring (CM) devices in the railway system. For example, in
Switzerland, sleepers are monitored by cameras installed on diagnostic vehicles and railway
wheels are monitored by wayside monitoring (WSM) systems that are installed on the railway
tracks (Krummenacher et al., 2017). The collected CM data enables the implementation of
data-driven solutions for fault detection and diagnostics (Asplund, 2016; Xie et al., 2020;
Ghofrani et al., 2018). Especially solutions based on machine learning algorithms have been
increasingly applied for fault detection and diagnostics of different assets within the railway

1Please note, this is the author’s version of the manuscript that is currently under review in a scientific
journal. Changes resulting from the future publishing process, namely editing, corrections, final formatting
for printed or online publication, and other modifications resulting from quality control procedures may have
been subsequently added.
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system (Tang et al., 2022). While the captured CM data differ substantially between
different assets, fault detection and diagnostics solutions based on real CM data from in-
service assets are often facing similar challenges. These challenges include variability of
operating conditions, missing or scarce fault data at training time, missing ground truth
information, as well as partial observability.

In-service assets are constantly subject to changing operating and environmental condi-
tions, causing domain shifts in the CM data. These domain shifts can significantly decrease
the performance of data-driven models. In literature, domain adaptation methods were pro-
posed to mitigate the negative effect of domain shifts (Li et al., 2021b). However, these
solutions require the identification of distinct domains. In systems that operate in the wild
such as railway systems, it is often impossible to identify all factors that cause variations
in the CM data and therefore, it is impossible to identify each distinct and discrete domain
shift, especially since these factors of variations change continuously. In the following, we
will refer to data variations that are caused by changes of the operational and environmental
conditions as non-informative variations as they are not informative on the asset’s health
condition.

While domain shifts negatively impact the performance of data-driven models per se, the
challenges are especially pronounced if the available fault data is either scarce or not available.
This is typically the case in CM datasets since (safety) critical assets are reliable by design
and therefore, faults occur very rarely which results in either scarcity of fault data or, more
commonly, no available fault data in the training dataset. In the first case, when fault data
is available but scarce, the available fault data might not be representative of the entire
fault class. Equally so, the data of the healthy class might not be fully representative of all
possible future operational or environmental conditions (non-informative variations). This
low representativeness of the healthy and faulty classes impacts the performance of diagnostics
models negatively, especially if fault patterns in the data resemble normal healthy variations in
the data closely and it is inherently difficult to distinguish between different health conditions.
This is often the case in fault diagnostics tasks within a railway system where early indications
of faults might not impact the CM data significantly but need to be classified correctly to
enable safe and efficient operations. The second case, when no fault data is available for
training a model for CM, is even more common. Since practical CM solutions need to be
taken into operation within a short period of time, it is often not feasible to wait until any fault
has occurred. In this case, fault detection models are typically trained, to detect any novel
variation in the data. As elaborated above, the CM data is not only impacted by a change
in the asset’s health condition, but also by domain shifts. If the CM data is impacted by
novel data variations caused by domain shifts, reliable fault detection can be very challenging.
Sensitive fault detection models might raise many false alarms if domain shifts cause novel
variations in the data (Michau et al., 2020). False alarms significantly reducing the usability
of the implemented model to real operations. On the contrary, if an anomaly detection (AD)
model is trained to be robust to domain shifts, e.g. by implementing a domain generalization
method (Li et al., 2020c), it is potentially also robust to detecting novel data variations that
are caused by faults as well. The tradeoff between reducing the amount of false alarms and
increasing the sensitivity to defect is especially challenging since it is important to detect
faults in an early stage to operate an asset reliably and efficiently where the data might be
impacted only minimally. Therefore, a reliable solution to fault detection needs to be able to
be sensitive to early signs of unseen faults while being insensitive to novel non-informative
variations in the data due to domain shifts.

Furthermore, expert annotation is not always reliable. This raises the challenge of noisy
labels in CM datasets and increases the challenge of implementing a reliable fault detection
and diagnostics solution.

Moreover, some CM systems are only capable of monitoring parts of the assets. For exam-
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ple, the WSM systems in Switzerland with strain gauge sensors monitor only limited sections
of the entire wheel circumference. The available CM data, therefore, only holds partial infor-
mation on the condition of the assets, which makes reliable data-driven fault detection and
diagnostics difficult.

The challenges elaborated above limit the application of data-driven solutions in railway
applications. This can be exemplified on two case studies of railway applications considered
in this paper: (1) Monitoring of railway sleepers with a camera system. (2) Monitoring of
railway wheels with a WSM system.

For some assets within the railway system a meticulous fault annotation process has been
established. For these assets, a labeled training dataset is available. For example, railway
sleepers are monitored with a camera system by the Swiss Federal Railways and the recorded
images are labeled by domain experts. Also, since the entire railway network is monitored, a
sufficient number of faulty samples can be collected. However, certain faults in this dataset
resemble normal variations in healthy conditions. Stones on the sleeper, for example, can
easily be mistaken for spalling defects or a shadow can easily be mistaken for a crack defect.
As elaborated above, if all possible variations are not sufficiently represented in the training
dataset, they can harm the performance of data-driven fault detection and diagnostics models
(Rombach et al., 2021). This is especially the case if the distinction between normal variations
and faults in the data is difficult. Therefore, sleeper defect diagnostics based on an image
dataset collected under varying environmental conditions is a challenging task. Previous
works on sleeper fault diagnostics mainly worked with more expensive sensor installations
and conducted only in-workshop experiments (Jing et al., 2021). As elaborated above, in-
workshop experiments are not representative of real conditions.

WSM systems with strain gauge sensors have been proposed for monitoring the condition
of railway wheels in literature before. Alemi et al. (2017), for example, investigated how many
strain gauge sensors are required to monitor the wheel circumference to enable reliable fault
detection of wheel flats in workshop experiments. However, in real operations, the number
of sensor needs to be kept low as each additional sensor increases the maintenance cost. In
Switzerland, for example, only eight widely spread sensors are installed providing only partial
observable CM data. Furthermore, experiments conducted in workshop experiments do not
face the challenges real CM data from in-service assets such as data variations caused by
external factors in real operations. Additionally, in reality not only wheel flats occur but
also other fault types with less distinct fault patterns can occur and need to be detected.
In summary, the work does neither address the challenge of real in-service conditions, nor
the partial observability of real WSM systems, nor the fact that multiple wheel defects can
possibly emerge.

Ni and Zhang (2021) considered real CM data from one WSM system of in-service wheels.
However, experiments were conducted with a fixed train speed. The acquired dataset is,
therefore, not representative of real operating conditions where data is captured under differ-
ent speed conditions and multiple WSM systems might be used. Further, 21 densely deployed
sensors are used in the conducted experiments to have a full coverage of the wheel circumfer-
ence. In our considered case study from an operational WSM system in Switzerland installed
in the entire railway network, the amount of available sensors is lower. While the measure-
ment setup in (Krummenacher et al., 2017) is similar to our case study: Krummenacher et al.
(2017) worked on real CM data from WSM systems with only eight widely spaced sensors.
However their proposed approach requires a fully labeled dataset, which is often not avail-
able in real applications. Moreover, they did not consider the challenge of a limited label
reliability. Also the challenge of the partial observability of the available CM data has not
been addressed.

In this work, we propose to improve the robustness of fault detection and diagnostics by
inducing a robust encoding in the feature space based on contrastive learning. We evaluate
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how this can be achieved in supervised and unsupervised tasks for real railway applications.
The main novelty of the proposed framework is in the unsupervised setup without any ob-
served faults. We evaluate the performance of the proposed method on two CM datasets
of railway applications. First, we conduct experiments in a supervised setting on a sleeper
defect classification task on a labeled image dataset of different sleeper conditions. Second,
we conduct experiments on a CM dataset of railway wheels (recorded on WSM systems)
where presumably no fault data is available for training. In this task, we use the feature
representation learned with unsupervised contrastive learning to detect anomalies (shelling
and cracks) and monitor the evolution of the fault condition over time.

Our results demonstrate that contrastive feature learning achieves a higher performance
on the supervised task of sleeper defect classification and improves the performance on the
AD task regarding the railway wheels as compared to state-of-the-art methods.

The remainder of the paper is organized as follows: in Section 7.2, the related work is
reviewed, followed by the introduction to the case studies in Section 7.3. The proposed
methodology is introduced in Section 7.4, the performed experiments are detailed in Sec-
tion 7.5 and the results are reported in Section 7.6. The findings are discussed in Section 7.7
and conclusions are drawn in Section 7.8.

7.2 Related Work

Detecting and preventing failures is essential to improving the railway’s system efficiency
and safety (Davari et al., 2021; Yamashita et al., 2022). Data-driven approaches have been
proposed to diagnose the condition of infrastructure and vehicle components (Hu et al.,
2017; Tatarinov et al., 2019). However, to date, human inspection remains the most common
assessment method for sleepers (Jing et al., 2021), whereby human inspectors walk along the
tracks to find defects. This process is time- and resource-consuming and its quality depends on
the experience and attention to detail of the individual inspector. To automate this process,
approaches based on different CM devices, such as acoustic emission sensors (Janeliukstis et
al., 2019) or laser speckle imaging sensors (Pang et al., 2020), have been proposed. (Rui et al.,
2020; Tatarinov et al., 2019; Mori et al., 2010). However, most of the proposed approaches
are limited to laboratory applications that may be challenging to adapt for real applications.
For example, analysis based on acoustic emission of in-workshop experiments (Janeliukstis
et al., 2019) might not be transferable to real operating settings, where additional sources of
acoustic emission exist. A detailed overview of current approaches to sleeper monitoring and
their limitations is given by Jing et al. (2021). Moreover, none of the existing publications
focused on making the approaches robust to changes in real environmental conditions. In this
study, we utilize data from cameras mounted on the diagnostic vehicles for crack and spalling
classification. Therefore, the utilized data is easy to acquire and recorded under various real
environmental conditions.

Also for railway wheels, different approaches have been proposed to monitor their condi-
tion (Alemi et al., 2017). Several studies have focused on using on-board health monitoring
systems, which enable continuous monitoring (Baasch et al., 2021; Li et al., 2017; Bosso
et al., 2018; Wang et al., 2020b). However, with the ongoing increase in rolling stock in
European rail networks (Mosleh et al., 2021), on-board systems do not scale well due to
cost- and time-intensive installations and maintenance. Moreover, they are not particularly
well suited for freight transportation. An alternative to on-board systems are WSM systems
(Asplund, 2016). These are permanently installed in the railway tracks and therefore scale
better as they can be frequented by an increasing quantity of rolling stock. Previous studies
developed approaches on simulated (Mosleh et al., 2021; Song et al., 2013) or test rig data
(Alemi et al., 2017). These may not be transferable to real conditions. For example, the
approach proposed by (Alemi et al., 2017) requires a reference point on the wheels that is not
known in real operations. Furthermore, previous studies have mainly focused on the fault
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type ’flat’, which is a rather easily detected fault type due to its high impact force on the
wheel–rail surface (Alemi et al., 2017; Bian et al., 2013). A characteristic sensor response
to a flat defect is shown in the paper of Krummenacher et al. (2017). Only a few studies
have considered other common types of faults such as shelling or cracks. Krummenacher
et al. (2017), for example, trained binary classification models to detect out-of-roundness and
shelling defects in addition to flats. The proposed approach, however, needs to be trained on
a fully labeled dataset. Faults rarely occur on safety-critical assets in general and accessing
the true condition of railway wheels is difficult. Therefore, acquiring a sufficient amount of
fault data is time-consuming and the labeling requires additional effort. Solutions that can
be applied on unlabeled data are therefore preferable.
Feature learning, both supervised and unsupervised, has attracted a lot of attention

in recent years (Fink et al., 2020; Zhong et al., 2016). The learned feature representation
has been typically combined with classification models in supervised setups (Rombach et
al., 2021), clustering methods in unsupervised settings (Chao et al., 2021), or One-Class
Classification (OCC) models in unsupervised settings without fault data (Michau et al., 2020).
Different types of autoencoders (AE) have been proposed for feature learning in unsupervised
settings (Chao et al., 2021; Michau et al., 2020). In the context of fault detection given only
healthy data, the hierarchical extreme learning machine (HELM) was proposed, whereby
each layer of an AE was trained separately by solving a single-variable convex optimisation
problem (Michau et al., 2020). The objective of training any AE is to compress all information
contained in the data, not distinguishing based on the type of information - whether it is
descriptive of a health condition or not. It was demonstrated that AEs are not robust when
applied to varying OCs (Rombach et al., 2021). Therefore, these approaches might not be
suitable if the data sample is affected by large variations that are non-informative of health
conditions.
Contrastive feature learning has been shown to achieve robustness against changing

operating conditions (Rombach et al., 2021) and is, therefore, a promising feature learning
paradigm. The learning objective of the encoder model is to group data with similar semantic
meaning close to each other in the feature space and spread dissimilar data far apart (Chopra
et al., 2005). In supervised settings, the semantic similarity has typically been determined
by the sample’s label (Rombach et al., 2021). However, neither full supervision nor full
representation of possible data classes (such as different fault types) is available in real CM
datasets (Fink et al., 2020). Hence, unsupervised implementations of contrastive feature
learning have been proposed (Chen et al., 2020). Franceschi et al. (2019), for example,
proposed employing time-based negative sampling for contrastive feature learning for time-
series data in an unsupervised setup. It is assumed that a randomly picked sample that is far
in time is highly dissimilar to the currently observed sample. This assumption would not hold
for time series with seasonalities (if the sample would coincide with the same periodicity).
Equally so, if the semantic meaning of the timeseries data is not changing over time, time-
based negative sampling would not result in a semantically reasonable feature space as the
objective functions would push semantically similar patterns apart in the feature space. CM
data is recorded either continuously or in discrete time intervals and the condition of an
asset typically changes over time due to normal degradation processes. Therefore, measuring
the similarity of different data samples in time, presents a very promising direction to form
data pairs for semantically similar and dissimilar conditions for contrastive learning. In
order to achieve robustness to the various operating and external factors of variations of
real CM datasets, it needs to be ensured that semantically similar pairs are recorded under
different and diverse conditions. A selection criteria as proposed by Franceschi et al. (2019),
where the positive pair consists of subsamples of the same measurement, is not sufficient
as one measurement of CM data is typically only recorded under the same operating and
environmental conditions. Furthermore, workshop visits need to be taken into account to
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reset the time criteria that is used for selecting negative pairs to prevent the above mentioned
problem of seasonality when employing time-based negative sampling. Previous approaches
to unsupervised feature learning of time-series data have also not yet been evaluated in
settings where the data is not only unlabeled but also in which, presumably, only data from
one class (healthy data) is available during the learning process. In absence of different
health conditions in the training dataset, it is impossible to directly impose sensitivity to
different health conditions. In other words, in absence of fault data, the encoder model can
not be trained to be sensitive to patterns in the data that correspond to faulty conditions.
Therefore, in this study, we aim to evaluate if a model trained to be sensitive to degradation
of railway wheels is also sensitive to fault patterns of different types. Contrastive learning
has not yet been applied to the real data collected under real operating conditions in railway
applications.

In this research, we propose to utilize contrastive feature learning for learning a compact
representation of the CM data that is, on the one hand, invariant to data variations caused by
non-informative factors and, on the other hand, sensitive to changing health conditions. We
showcase how this can be achieved for tasks with different degrees of data and label availability
within the railway system. A special focus is put on how contrastive learning can be used
in an unsupervised setting where, presumably, only normal degradation data is available for
training but no fault data. We test the hypothesis that selecting negative samples based on
time may be better suited for fault types that are more similar to degradation. Based on the
learned feature representation, in a second step, the condition of the assets is monitored by
implementing a fault detection or diagnostic solution.

7.3 Case Studies

Two real CM datasets from the Swiss national railways were used in this research: 1) an
image dataset for infrastructure and 2) a time-series dataset for vehicles. Both datasets are
affected by variability caused by factors that are non-informative of health conditions.

7.3.1 Sleeper Defect Classification (supervised)

The sleeper dataset comprises images of concrete sleepers and slab tracks partitioned into
three classes: healthy conditions, cracks, and spalling. The images were collected by three
line scanners mounted on diagnostic vehicles positioned to get a view of the left, right, and
middle part of the sleepers (see Fig. 7.1). Each image was labeled by domain experts.
The initially single-channel, large-scale images (3000x1024 pixels) are split into images of
1024x1024 pixels with an offset of 1024 pixels. Only if a bounding box of a defect is split
into two separate images, the split is shifted such that the entire bounding box is included in
the image. Furthermore, the single channel is replicated to three channels. The final training
dataset comprises 1209 images with no defects, 1209 images with crack defects, and 964
images with spalling defects. 20% of the training dataset is chosen for the validation dataset.
The test dataset contains 241 images of healthy sleepers, 229 images with cracks, and 199
images with spalling. Difficulties in the dataset arise from the similarity of defects to normal
variability in the dataset. For example, a stone on the sleeper is difficult to distinguish from a
true spalling defect (see Figure 7.2). Pre-Processing: All images are downscaled to images
with a 512x512 pixel resolution using the area interpolation method from the OpenCV library
and are normalized.

7.3.2 Railway Wheel Monitoring (unsupervised)

For the wheel defect detection dataset, the data was collected from WSM systems, referred to
as Wheel Load Checkpoints (WLCs). They are permanently installed in the railway tracks
and equipped with eight strain gauge sensors for each side of the train that measure the
vertical force at a frequency of 10kHz when a train passes. The exact setup is described in
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Figure 7.1: Diagnostic vehicle and illustration of monitoring system

Figure 7.2: Examples of sleeper defects

Krummenacher et al. (2017). WLCs are distributed over the entire infrastructure network in
Switzerland and trains pass them approximately five times a day, although the exact value
can differ significantly depending on the travel plan of individual compositions. Apart from
changing health conditions of the wheels, variability in the data can be caused, for example,
by different measurement locations and changing environmental factors. In this study, we
monitor one fleet of passenger trains. These are less prone to wheel flats but rather to
other defect types. We extract all signals for each wheel from each of the eight sensors and
concatenate these signals to one measurement, such that each sensor measurement covers
only parts of the wheel. The length of each signal depends on the speed of the train while
passing.

For training, three trains comprising 20 coaches were considered. However, since coaches
with reported defect wheels were excluded, data from 16 coaches were considered. Hence,
no defect was documented for any of the measurements in the training dataset. However,
the supervision process of the railway wheels is prone to error due to human inattention,
different definitions or perceptions of defects and also errors in reporting. Due to the lenient
supervision process, there is the possibility that some wheels are affected by faults. Still,
building on the lenient supervision process, we consider the training dataset as presumably
healthy. Due to the assumed absence of fault data and the lacking supervision in the training
dataset, supervised learning as proposed in other studies – e.g. (Krummenacher et al., 2017)
– cannot be applied.

For the test dataset, supervision of the wheel condition is provided during the workshop
visit (see data sources in Figure 7.3a), where the wheels are inspected and re-profiled. A
protocol is maintained to report wheels that have obvious tread defects. During the moni-
toring phase of one year, two defect types occurred: wheels with cracks (26 wheels) and with
shelling (53 wheels). Examples of the defect types are shown in Figure 7.4. An initial test
dataset split is performed as shown in Figure 7.3a (see ’Initial Split’), whereby all data from
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(a) Process Flow

(b) Point in Time Annotation

Figure 7.3: Data acquisition for the railway wheel dataset: First, all data sources are linked to individual
wheels (’Source’), resulting in a first data split into train and test (’Initial Split’). For the defective
wheels, the time of defect initiation is provided by domain experts, as shown in Figure 7.3b. The
preliminary healthy label of the wheels in the test dataset is challenged by fault detection models
and evaluated by domain expert feedback.

defective wheels and randomly chosen healthy wheels comprise the test dataset.
In general, it is difficult to obtain a ground truth health condition of the wheels. On the

one hand, wheels are not inspected between workshop visits. Therefore, we do not have
any ground truth information on defect initiation. Instead, we rely on the labeling provided
by domain experts who investigated the corresponding wheel data as shown in Figure 7.3a
(’Domain Expert’) and Figure 7.3b. The domain experts were asked to label the test dataset:
The green zone corresponds to the timespan in which the fault is not yet manifested in the
data. The orange zone corresponds to the transition phase in which the fault manifests
itself in the data. The domain experts were asked to mark the first possible point in time
they would be able to detect the fault. The time period after that is marked as red (red
zone). Wheels that have not been reported as having defects might nevertheless be defective.
Different degrees of attention or detail of reporting by the inspectors, as well as non-obvious
defect types, can quickly lead to overlooked defects - also in the test dataset. Since the exact
condition of the presumably healthy wheels in the test dataset is not known, the measurements
from healthy wheels that are labeled as faults by the fault detection model (see ’Model’ in
Figure 7.3a) are discussed with domain experts (see ’Domain Expert’ in Figure 7.3a). Only
those data samples of the wheels that are labeled as healthy by the domain experts are added
to the test dataset (see ’Decision’ in Figure 7.3a).
Pre-Processing: First, we resample the concatenated signals via linear interpolation such

that each signal has a length of 1024 to compensate for the different speeds of the train. Next,
we normalize each recorded signal to compensate for the different loads of the train.
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7.4 Methodology

The proposed methodology comprises two parts: 1) learning a contrastive feature represen-
tation (see Section 7.4.1) and 2) health monitoring based on the feature representation (fault
detection or diagnostic - see Section 7.4.2). The entire methodology in its supervised and
unsupervised application is illustrated in Figure 7.5.

7.4.1 Contrastive Feature Learning

The core of the proposed methodology is the contrastive loss function with which we train
an encoder model to impose invariance to non-informative factors and sensitivity to chang-
ing health conditions. More concretely, the semi-hard triplet loss is used as defined in
Equation 7.1, whereby xa is the anchor sample, xp the positive sample (that shares the se-
mantic meaning resp. health condition with the anchor), and xn is the negative sample with
a different semantic meaning resp. health condition (Schroff et al., 2015), f(.) is the encoded
sample, ||.|| is a distance metric, and ϵ is a margin parameter. By minimizing the distance
between the anchor and positive sample pair, the invariance to non-infomrative variations is
imposed and by increasing the distance between the anchor and negative pair, the sensitivity
to faults is increased. To emphasize on the invariance within the same health condition, the
sum over all positive samples within a batch is used. To enable smooth learning, a semi-hard
negative sample is chosen as defined in (Schroff et al., 2015). This loss function is the core
of the proposed approach. However, given different data and label availabilities of different
tasks within complex systems such as the railway system, the implementation of the loss
function needs to be adapted. More concretely, it needs to be adapted on how the data
triplet are selected for calculating the loss function. Furthermore, the feature space needs to
be regularized according to the respective data setting.

L(xa, xp, xn) =
∑
xa∈X

max(0,
∑
xp∈P

(||f(xa) − f(xp)||)

− ||f(xa) − f(xn)|| + ϵ)

(7.1)

Supervised implementation of contrastive feature learning: If the available training
dataset contains data from different health conditions, and this data is even labeled, the
implementation of the triplet loss resp. the choice of the data triplets is straightforward: The
positive samples are selected as those that share the same label as the anchor sample and
the negative sample is selected as one sample with a different label as illustated in the upper
half of Figure 7.5. Therefore the invariance to variations within one health condition as well
as the sensitivity to other health conditions can be directly imposed.
Unsupervised implementation of contrastive feature learning without faults:

If the available training dataset presumably does not contain data from faulty conditions,
it is neither possible to directly impose sensitivity to faults, nor to select the data triplets
based on the labels. In this work, we exploit the fact that (a) the condition of industrial

(a) Crack (b) Shelling

Figure 7.4: Examples of railway wheel defects
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Figure 7.5: Illustration of the proposed framework: In a firts step, an encoder model f is trained on with the
triplet loss function L(xa, xp, xn), whereby the selection of the data triplets xa, xp and xn depends
on the data availability. In the supervised setting (upper half), the triplets are chosen based on
the label. In the unsupervised setting without fault data, the triplets are chosen with respect to
the time that has passed since the last maintenance action. In a second step, the trained feature
space is exploited to perform health monitoring. In the supervised setting a fault classification
model is trained. In the unsupervised setting, a health index is extracted to detect anomalies.

assets is typically monitored in discrete time periods and (b) the health condition of each
asset typically changes over time due to normal degradation. Therefore, even though we may
not have faulty data available in the training dataset, it contains data from various non-
informative variations as well as data from various states of degradation. The different states
of degradation can be considered as different health states within the healthy class. This is
exploited in our proposed implementation of the triplet loss where we aim to train a feature
space that is sensitive to degradation and evaluate if this is transferable to sensitivity to faults.
However, the dataset is not labeled with the different states of degradation either. Therefore,
training a feature space sensitive to degradation is not straightforward. We propose to use
the time passed after the last workshop visit as a proxy for the different states of degradation.
This proxy only holds under the assumption that assets degrade similarly over time. Building
on that assumption, we propose to choose the data triplets as illustrated in the lower half of
Figure 7.5 to impose this sensitivity to degradation and invariance to other non-informative
factors. We track the time that has passed since the last maintenance action of the asset.
Starting from the maintenance actions, we consider the degradation process of the individual
assets to increase in time. Therefore, measurements that are recorded close in time relative
to the last workshop visit are considered to have a similar health condition while being
recorded under different non-informative factors (positive pair). Whereas a data sample that
is recorded at a more distant point in time is considered being dissimilar (negative sample). In
other words, samples that are far in time have a different degradation state. The selection of
the data triplets, therefore, is similar to the one proposed by Franceschi et al. (2019) with the
difference, that they are just sampling the negative sample randomly from distant time points
and the positive sample as a subsample from the anchor without considering the operational
context as in our case. We propose to choose data samples that are recorded within a fixed
timeperiod after a workshop visit as the positive pair ( xa as an anchor sample and xp as the
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positive sample) to ensure variability in the different operating and environmental conditions.
All other samples are considered being dissimilar (xn).

We evaluate the hypothesis that a model that is sensitive to normal degradation, is also
sensitive to different fault types. However, certain fault types may be very dissimilar to de-
graded system conditions. It is not guaranteed that the sensitivity of a model to degradation
patterns transfers to sensitivity to all fault types. If the fault data is very dissimilar to the
the degradation, it may not provide any benefit. If however the data variations caused by a
fault type resembles extreme degradation processes, the learned feature space will not only
provide high sensitivity to this fault type but also the distances in the feature space can
correlate to the severity of a fault.

To provide a solution to detecting all fault types, those that are similar to extreme degra-
dation processes and those that are not, a combination of the contrastive model with other
AD techniques is also possible as long as they are set not to be too sensitive to domain shifts
in data. In this study we combine the contrastive model with one of the comparison method
called HELM as described in Section 7.4.5 (Michau et al., 2020).

The encoder model f that is trained with the above loss function implementations de-
pending on the data and label availability of the specific task. It, therefore, provides the
desired feature representation. The model used in the paper is a deep convolutional model.
Depending on the task and the type of the available dataset, the encoder model needs to be
adapted. For the image dataset (railway sleepers as described in Section 7.3), a 2D convolu-
tional model is used. For the timeseries dataset (railway wheel as described in Section 7.3), a
1D convolutional model is used. Details on the exact architecture are provided in Section 7.5.
The last layer of the encoder model spans the feature space. The size of the feature space
is set as described in Section 7.5. Depending on the data and label availability, this feature
space is regularized differently.
Feature Space Regularization in a Supervised Setting: If this space is trained for a

supervised task, where the goal is to distinguish between health conditions that are already
represented in the training dataset, we regularize the feature space with a l2-normalization.
Feature Space Regularization in a Unsupervised Setting without faults: If this

space is supposed to be used for anomaly detection in a subsequent step, it is beneficial not
to have a restricted feature space (e.g. through l2 regularization). Since we aim to distinguish
healthy from faulty conditions, we assume that a fault will be even more dissimilar to the
degraded conditions.

7.4.2 Health Monitoring

In the second step, the learned feature representation is used for health monitoring of dif-
ferent assets within the railway system. Different methods are used depending on the data
availabilities and characteristics of the railway case studies.
Supervised Health Monitoring: In the supervised case where a labeled dataset with

different health conditions is available, a fully connected classification model is trained based
on the feature representation using the cross entropy loss to distinguish between the different
health conditions.
Unsupervised Health Monitoring without faults: In the more common case, where

presumably only healthy data is available to train a model for health monitoring, we extract a
health index that allows to monitor the health condition of an asset over time and ultimately
to detect anomalies. We first train a OC-SVM on the learned feature representation. Once
trained, the health index is extracted. At test time, the distance of the encoded data samples
to the decision boundary of the OC-SVM in the feature space is measured. The feature
space is trained to be semantically feasible in Section 7.4.1. I.e. we aimed to group similar
health conditions close to each other, data from slightly different health conditions slightly
further apart and data from substantially different health conditions far apart in the feature
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space. If this is the case, the distance from the healthy class in the feature space can be
representative of the severity of a defect. Therefore, the distance in the feature space to
the decision boundary of the OC-SVM can represent an health index that is used to detect
anomalies and monitor the health condition over time.

7.4.3 Health Monitoring with Partial Observable Railway Wheels

If the CM data is only capable of observing parts of the asset, reliable fault detection and
diagnostics is challenging. WLC measurement sites with strain gauge sensors in Switzerland
(see Section 7.3), for example, are only capable of covering parts of the railway wheel i.e. the
wheel’s condition is only observed partially by the measurement system. This is illustrated
in Figure 7.6 whereas a lower limit of the observed region on the wheel per sensor is 28 cm.

Figure 7.6: Illustration of the partial observation of railway wheels provided by a strain gauge sensor in a
WSM measurement site.

If individual measurements from the measurement sites monitor only parts of the asset,
data samples from defective wheels might not show any signs of faults in the data. Therefore,
multiple consecutive measurements are required to decide on the asset’s condition since this
increases the probability that a defect is observed by the CM data. Furthermore, we aim
to desensitise the fault detection model to variations caused by domain shifts e.g. due to
measurement site calibration. To account for that, we choose to model the probability of
a fault being sufficiently represented in the data with a binomial distribution, whereby we
assume that the defect should be represented in at least K out of N measurements. The
value N is chosen such that monitoring within a reasonable time span is possible, K is
chosen by setting a desired probability threshold T as defined in Equation 7.2, whereby p
corresponds to the probability that a defect is represented in an individual measurement from
the measurement site.

T <
N∑

k=K

(
N

k

)
pk(1 − p)(N−k) (7.2)

For the concrete application of railway wheel monitoring with WSM by strain gauge sensors,
the probability of a fault being represented in an individual measurement from the WSM site
corresponds to the percentage of the wheel circumference that is covered by the strain gauge
sensors. However, this probability value depends on the current diameter of the railway
wheel. This is shown in Figure 7.7 where the colored regions correspond to the parts on
the circumference being monitored by the eight different sensors. The figure was produced
with the lower limit of possible circumference coverage of the measurement site (28 cm of
the circumference being observed by an individual sensor) and provides an lower limit of
the probability of a defect being represented in a measurement. Moreover, wheel diameters
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are used that are within the specifications of the monitored fleet. In the application case of
railway wheel monitoring, where approximately five measurement sites are frequented within
a day, we set N to five since we want to have a decision within a day of monitoring. Given that
value, the lower limit of probability that an existing defect is represented in a measurement
is shown in Figure 7.8, where the detection probability is shown in dependency of K and the
diameter. In this study, we choose a value of 3 for K. Although the probability of detection is
rather low for some diameter settings with K = 3, we consider this value to be an appropriate
trade-off to prevent many false alarms due to measurement site failures. Furthermore, we
would like to emphasize that the calculated probability corresponds to a lower limit (see
above). To implement this rule, a wheel is labeled defective if the median of n consecutive
health indices is above the defined threshold.

Figure 7.7: Wheel circumference regions monitored by the eight strain gauge sensors (blue regions) in depen-
dency of different diameters compared to the entire wheel circumference.

Figure 7.8: Probability of a defect being detected in at least K measurements out of 5 in dependency of the
wheel diameter.
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7.4.4 Performance Evaluation of Railway Applications

Supervised Health Monitoring of Railway Sleepers: We report the balanced classifi-
cation accuracy of the trained classification model.
Unsupervised Health Monitoring of Railway Wheels: We report the balanced de-

tection accuracy of the wheels in the test dataset. Since it is also important to detect the
defect at an appropriate point in time, we also evaluate the detection time of the defects (see
Figure 7.3b). For defective wheels, the time interval dt (number of days) of the detection
before or after wheel defect manifested itself in the CM data according to expert labeling is
reported (see Figure 7.3b). A negative value (dt < 0) corresponds to a detection in the green
zone (see Figure 7.3b), a positive value (dt > 0) corresponds to a detection in the red zone,
and a value of 0 corresponds to a detection in the orange zone (dt = 0). Since detections in
the red zone can potentially be critical and the length of the red zone differ quite substantially
between the different wheels, we additionally evaluate those with a relative measure dr of the
total delay time interval dt > 0 to the entire time interval DT in which the defect is present
(see Figure 7.3b). An early detection (in the green zone) could be considered favourable, as
it allows for early maintenance planning. However, it can also indicate that the model is too
sensitive to be used in real operations. Therefore, we consider detection in the orange zone
as desirable.

7.4.5 Alternative Methods for Comparison

For the supervised sleeper dataset, a supervised comparison method is used. An end-to-end
classification model is trained with cross entropy loss. The same CNN architecture is used
for the proposed method and the comparison method; only the loss functions differ.

For the unsupervised AD task, unsupervised methods are used for comparison. First, we
compare our results to a statistical measure called the dynamic coefficient (dynCoeff ) - see
Equation 7.3. This coefficient describes the ratio of the maximum dynamic to the static wheel
load within each sensor measurement x. It is currently used in operations with a threshold
of 1.8.

dynCoeff =
max(x)

mean(x)
(7.3)

Furthermore, as a comparison method for feature learning, HELM is used that was used in
previous case studies in similar setups(Michau et al., 2020). This method is not only suited
for AD but also allows to track the evolving condition over time in the form of a health index.
As the feature encoder model of HELM is trained to reconstruct the signal, a different model
architecture is chosen compared to that of the proposed method.

7.5 Experimental Setup

Details on the exact experimental set up are provided in the following.

7.5.1 Sleeper Defect Classification

For all experiments on the sleeper dataset, a ResNet50 model (He et al., 2016) is used as the
backbone architecture for the feature encoder model. On top of that, nine ReLu-activated
fully connected layers are stacked (2048, 1024, 512, 256, 128, 64, 32, 16, 8 units). The
architecture is chosen based on the performance of a validation dataset. The feature space
is chosen to be eight-dimensional and the triplet loss is applied on the eight-dimensional
features. The last fully connected layer has three units (three-class classification), that are
trained in the second step with the cross-entropy loss. All models are updated over 50 epochs
on batches of 48 samples using Stochastic Gradient Descent (SGD) with a learning rate of
0.001. The comparison model is trained using the identical architecture and hyperparameter
setting, although the cross-entropy loss is applied on the last layer directly.
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7.5.2 Health Monitoring Algorithm for Railway Wheels

A five-layer 1D convolutional model (with ReLu activation with a degree of 0.1) is used with
10 filters and a kernel size of 16 in each layer. Last, a fully connected layer is added with four
nodes. The architecture is chosen based on a validation dataset (10% of the entire training
dataset), whereby the feature space dimensionality of four is chosen to be as small as possible
to encourage the encoder model to focus only on the relevant data variations. The model
is trained with the Adam optimizer with default settings. To calculate the contrastive loss
function, positive pairs are defined as data measurements that are recorded within the same
month after the workshop visit. This timeframe is chosen based on domain knowledge. An
OC-SVM is applied to the extracted features with a Radial Basis Function (RBF) kernel
function and a threshold of 0.88. The threshold is set rather low due to the characteristics
of the real data: First, the exact condition of the training dataset is not known. Second,
individual sensors can be calibrated poorly, leading to anomalies in the training dataset. The
health index is calculated at test time as the distance to the decision boundary of the OC-
SVM. The comparison method HELM is trained using a single layer AE with 30 neurons,
and a one-class classifier with 100 neurons. The multiplicative factor for determining the
threshold is set to 1.0 and the threshold is set based on 88% of the training data (same
setting as for the contrastive model), whereby an ensemble of five models were trained and
ran. Other values were chosen to be the standard values for HELM (C = 1e− 5, λ = 1e− 3).

7.6 Results

The results obtained by the conducted experiments are reported below. The result on the
supervised case of railway Sleeper classification is reported in Section 7.6.1, the results on
the unsupervised case of railway wheel monitoring is reported in Section 7.6.2.

7.6.1 Classification for Railway Sleepers (supervised)

The confusion matrices of the three-class classification on the sleeper dataset are shown in
Table 7.1. A balanced accuracy gain of 13.3% was achieved by employing contrastive feature
learning. Spalling defects were misclassified more often by both models. They appear to
provide a bigger challenge in terms of fault detection.

Predicted
Cross-Entropy Contrastive
H C S H C S

A
ct

u
al H 171 12 58 235 3 3

C 4 231 12 3 226 0

S 16 26 165 11 10 178

Balanced
Accuracy 81.1% 94.4%

Table 7.1: Confusion matrix of three-class classification of the sleeper dataset including healthy conditions
(H), spalling defects, (S) and cracks (C).

7.6.2 Railway Wheel Monitoring (unsupervised)

The results from the railway wheel case study are presented based on the extracted health
index that is monitored over time and the decision rule for partial observable measurements.
First, the AD results are displayed and second, the detection time is evaluated (see Sec-
tion 7.4.4). In Table 7.2 the AD results are shown. The dynCoeff appears to be the least
sensitive model to faults. It recognizes all healthy wheels correctly. However, it detects only
four defective wheels. By contrast, both feature learning methods perform better than the
dynCoeff and equally well in detecting 63 out of 79 faults. Additionally, we report the results
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of an ensemble of the HELM and the Contrastive+OC-SVM model. The decision rule of
the ensemble is the following: Any wheel that is detected as having a defect by either of the
models (HELM or the Contrastive+OC-SVM) is labeled as defective.

Predicted

dynCoeff HELM
Contrastive HELM +
+ OC-SVM Contrastive

Defect Healthy Defect Healthy Defect Healthy Defect Healthy

A
ct

u
a
l Defect 4 75 63 16 63 16 71 8

Healthy 0 16 1 15 1 15 2 14

Balanced
52.5% 87.7% 86.7% 88.7%

Accuracy

Table 7.2: AD results on the railway wheel dataset.

Two examples of health monitoring over time are shown for one wheel with spalling defects
(see Figure 7.9a) and one with crack defects (see Figure 7.9b), whereby the background color
indicates the ground truth label from the domain experts as defined in Figure 7.3b and the x-
axis shows the number of days left until the wheel was inspected and the defect was identified.
The HELM health index is scaled by the threshold as proposed in (Michau et al., 2020) and
the contrastive health index is scaled by a constant value of 50. On top, the dynCoeff is
plotted over time (green line), in the middle, the HELM health index is plotted (blue line)
and on the bottom the health index extracted from the contrastive feature space is shown
(red line). The dynCoeff is neither able to detect the shelling defect nor the crack defect. But
both other methodologies are capable of detecting the shelling defect - even at the same point
in time. However, for the contrastive model (on the bottom) a clear jump is visible at an early
point in time, suggesting that the learned feature representation is sensitive to variation in
the data caused by shelling defects. For crack defect, both models show less sensitivity. The
HELM model, however, shows a higher sensitivity since the defect is detected considerably
earlier (in the orange zone).
Shelling Defect Detection Time: The detection time of each model is evaluated in

Table 7.3, where the model’s detection time is compared with the domain experts’ annotation
as described in Section 7.5. The model based on the dynCoeff detected 3 out of 26 shelling
defects (see TP column) and all of these were detected after the fault became obvious in the
data (in the red zone), shortly before the next workshop visit (dr close to 1). HELM is more
sensitive and detected 21 of the 26 shelling defects, most of them (10 wheels) in the green
zone, before the defect became obvious in the data. The two wheels detected in the red zone
were still detected close to the expert’s label (dr < 0.5). The contrastive model detected
most shelling defects (23 out of 26 defective wheels), of which the majority were detected in
the orange zone (15 wheels).
Crack Defect Detection: The results for the cracks are shown in the lower half of

Table 7.3. The dynCoeff detected 1 out of 53 crack defects and it was detected late, shortly
before the next workshop visit (dr close to value 1). HELM detected most of the crack defects
(42 of the 53 wheels), most of which were detected in the orange zone, i.e. exactly when the
fault manifested in the data. The contrastive model detected 40 crack defects in total, most
of which were detected late (17 wheels).

7.7 Discussion

In this work, we proposed contrastive learning to improve the robustness of fault detection
and diagnostics and induce a robust encoding in the feature space. We proposed how this can
be achieved in supervised and unsupervised tasks for real railway applications and evaluated
the suitability of the learned feature representations for health monitoring of railway assets.
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(a) Shelling Defect (b) Crack Defect

Figure 7.9: Health Index of Wheel Trajectories before the Workshop visit. The dynCoeff is plotted in green
on top, HELM is shown in blue in the middle and the contrastive model is shown in red at the
bottom.

Supervised vs. unsupervised contrastive learning: On the sleepers fault diagnostics
task based on the image dataset, if the features were trained in a supervised way, the classi-
fication performance was improved considerably. This showcases the benefits of contrastive
learning in cases when faulty conditions and normal variations in the data are inherently hard
to distinguish based on the available CM data. On the wheel health monitoring dataset, in the
unsupervised setup with presumably no faults, the result depends on the fault type. While
both feature extraction methods performed considerably better compared to the dynCoeff,
both feature learning methods performed equally well on the AD task over all the defect
types. HELM performed better on the crack defects and the contrastive learning model
performed better on the shelling defects. Combining the two methods resulted in the best
detection performance with the HELM being more sensitive to cracks and the contrastive
model being more sensitive to shelling.
Learning Sensitivity to Degradation without Ground Truth Information: To

learn a contrastive feature representation in the unsupervised setup without any observed
faults, we aimed to train a feature encoder that is sensitive to the normal degradation process
of a wheel. However, training a feature space that is sensitive to normal degradation is
challenging given an unlabeled dataset. Due to the lack of labels for degraded conditions
during training, it was not known which data samples would form a suitable triplet pair.
A suitable positive pair needs to represent the same degradation condition under different
operating conditions. Whereas a suitable negative pair needs to have different degrees of
degradation represented in the CM data. This is challenging without any ground truth
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Total Time dt [days] Relative Time dr = dt
DT

Method FN TP dt < 0 dt = 0 dt > 0 dr < 0.1 dr <= 0.5 dr > 0.5
Shelling

dynCoeff. 23 3 0 0 3 0 0 3

HELM 5 21 10 9 2 1 1 0

Contrastive+OCSVM 3 23 4 15 4 1 1 2

Cracks
dynCoeff 52 1 0 0 1 0 0 1

HELM 11 42 15 23 4 0 0 4

Contrastive+OCSVM 13 40 7 16 17 1 2 14

Table 7.3: Time of railway wheel fault detection on shelling and crack defects. Column 1 shows the defects
that were falsely labeled as healthy (FN) and the true positive (TP) detected defective wheels.
Column 2 shows the total number of correctly labeled defective (TP) wheels that were labeled in
the green (dt < 0), orange (dt = 0), or red (dt > 0) zone in Figure 7.3b. Column 3 shows the
relative value of the time difference to the total time of the defect (DT) of the wheels detected in
the red zone.

information on the true degree of degradation, especially since degradation of railway wheels
does not affect the CM data substantially. Without access to the ground truth information,
we used the time passed from the last workshop visit as a proxy for the degree of degradation
relying on the hypothesis that coaches of a fleet are operated in a similar way and therefore,
the degradation process can be assumed to be comparable in time between the different
wheels. One of the interesting lessons of the case study was that the choice of a suitable
time interval to define similar and dissimilar degradation states is essential to train a feature
space that is sensitive to degradation. If the degree of degradation in the positive pair would
differ substantially, we would impose invariance to different degrees of degradation. Vica
versa, if the condition in the negative pair would not be in different degradation states, the
contrastive loss function would impose sensitivity to other factors of variations in the data
instead of sensitivity to a change in the health condition. To circumvent this challenge,
domain knowledge it required to find an appropriate time interval.

From Degradation Sensitivity to Fault Detection: The goal of training a feature
space based on degradation was to evaluate to which extent an encoder model that is sensitive
to degradation is also sensitive to faults. However, different fault types induce different
patterns in the CM data and the model might only be sensitive to certain patterns and display
insensitivity to others. This observation was also found in our experiments. The contrastive
encoder’s sensitivity to degradation transfers well to sensitivity to shelling defects but not
to crack defects. For shelling defects, the contrastive model not only detected most of the
defects but also determined the time of fault occurrence best. For cracks, however, this good
performance could not be replicated. The proposed model detected fewer cracks compared
to HELM. One possible explanation for this could be that shelling defects may be more
similar to the inherently occurring degradation than cracks. Another possible explanation
is that due to the lack of labels in the training dataset, it is not known if faulty data is
also present in the training dataset. If indeed faulty data may have been present in the
training dataset, faulty and healthy data of various degradation states may have formed
a positive pair. This would inevitably result in insensitivity of the encoder model to the
respective fault pattern. Therefore, if many crack defects were present in the training dataset,
it would explain the poor performance of the contrastive model to detect crack defects.
This is plausible since crack defects are generally less visible compared to shelling defects,
increasing the probability that a crack defect is not identified and reported by the workshop
inspectors. Furthermore, from qualitative visual evaluations of the test dataset, it is apparent
that crack defects impact the strain gauge signals less compared to the shelling defects,
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making the cracks more difficult to detect with strain gauge sensors. This might be another
explanation why a model trained to be invariant to certain variations in the data (caused
by operating or environmental factors) showed lower sensitivity to cracks. When combining
the two approaches the highest balanced accuracy of 88.7% is achieved since the ensemble
of both approaches benefits from the sensitivity of HELM to cracks and the sensitivity from
the contrastive model to shelling.
Detection Time: The evaluation of the detection time showed that HELM is the best

in performing early detection (green zone in Figure 7.3b). Early detection might be consid-
ered desirable as it enables early maintenance planning. However, premature detections can
also lead to additional work and wasted resources if the wheel is sent to the workshop too
early. Surprisingly, HELM is not the most sensitive model with respect to all fault types as it
detected fewer shelling defects compared to the contrastive model. Further, the contrastive
model detected most of the shelling defects in the same timespan as the domain experts - 15
out of 26 wheels detected in the orange zone. However, the contrastive learning model is less
sensitive to cracks, where it often resulted in late detections (17 out of 53). In general, the
sensitivity of the models can be adapted to the requirements of the users. If, for example,
the user immediately stops operating the train given a detected defect, then early detec-
tion would result in machine downtime. If, however, the model is used to make long-term
maintenance plans, then early detection is desirable. Furthermore, early detection of faults
and the corresponding health index as a severity measure can provide additional information
since fault severity has not been defined yet or tracked before, early detection could provide
additional information on how faults evolve. This information can be verified in the future
when the trains are entering the depot or workshop. Thus, the severity evolution of faults
can be verified in the future and the model will enable to monitor the severity evolution.
Fault Occurrence: A surprising finding in the labeling process depicted in Figure 7.3a

of the wheel defect dataset is that many of the healthy wheels in the preliminary test dataset
were identified as anomalous by the domain experts, which resulted in a small number of
healthy wheels in the test dataset. It should be noted that the domain experts who evalu-
ated the data did not have access to the real condition of the wheel but only to the data.
In contrast, the maintenance technicians in the workshops primarily use visual inspection
information to label the health condition of the wheel. In the future, it would be interesting
to investigate whether the wheels that have been detected as defective by the domain experts
and the contrastive model, show a different type of defect that the maintenance technicians
in the workshop might not be familiar with and may not be used to detecting through visual
inspection.

7.8 Conclusion

In this work, we proposed to use contrastive learning to improve the robustness of fault de-
tection and diagnostics by learning a robust feature encoding. We proposed how this can be
achieved and implemented in a supervised and a unsupervised tasks without faults for two real
railway applications: Supervised railway sleeper diagnostics and health monitoring of railway
wheels, where no labeled fault data was available for training the model (unsupervised) but
the training dataset was presumed to be mainly healthy. Although the tasks of classifying
sleeper conditions and monitoring railway wheels and detecting defects differ in many aspects,
the conducted experiments demonstrated that contrastive learning improves the performance
of different fault detection and diagnostics tasks in the railway system in both supervised and
unsupervised setups as compared to state-of-the-art methods. This supports our initial as-
sumption that contrastive learning is a suitable learning paradigm for different applications
in railway systems. In future work, we will integrate a monoticity constraint for the health
index and will explore the suitability of the feature space for prognostics tasks. One poten-
tially promising direction could be to incorporate some observed faults in feature learning
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and investigate semi-supervised setups rather than applying solely unsupervised approaches.
Generalization to other fleets will also be investigated in the future.
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Throughout the dissertation, we addressed different types of data scarcity and label quality
challenges. Methods were developed for different maturity levels of assessing the health con-
dition of a complex industrial system and detailed discussions on the individual contributions
were presented in the respective papers. The major motivation was to address label and data
scarcity settings that are relevant in monitoring the condition of a complex industrial asset.
Additionally, constraints that previously limited the application of deep neural networks to
fault detection and diagnostics in changing operational environments of industrial assets were
relaxed and alleviated. This opens many interesting points of discussion. We will elaborate
on each of the modules whereby we first discuss the key findings, followed by a discussion
of the mitigated limitations as well as the applicability of the proposed modules in the real
world. Lastly we will summarize the contribution of the entire framework with respect to the
limitations mitigated and the application of deep learning to PHM tasks.

8.1 The modules

The key findings of the four modules are summarized from the respective chapters.

8.1.1 Module 1: Contrastive Learning for Fault Detection and Diagnostics in the
Context of Changing Operating Conditions and Novel Fault Types

In Chapter 4, we proposed a contrastive learning model that is able to achieve the follow-
ing two objectives simultaneously: (1) robustness towards domain shifts and (2) sensitivity
towards novel faults.

Contrastive Learning for Domain Generalization under Small Domain Gaps:
First, we evaluated if the proposed model can generalize well to unforeseen domain shifts. The
proposed contrastive learning model performed best in classifying known health conditions
under small previously unknown domain shifts (accuracy of 100%). One of the comparison
methods (normal classification model optimized with the cross-entropy loss) performed only
slightly worse but within a comparable range. However, both, the silhouette score of 0.81 and
the visualization of the respective feature embeddings in Chapter 4, showed that the class
clusters of the contrastive model are considerably more cohesive within the same class clus-
ter and separated towards other class clusters compared to the best performing comparison
method where only a silhouette score of 0.38 was reached. This suggests that the contrastive
model could be more suited if the domain gaps increased. Evaluating this, however, is subject
of future work. Considering that real faults tend to evolve in a continuous manner rather
then in a discrete manner, it would be of high interest to evaluate the physical plausibility of
the learned feature representation. To this end, two key aspects of the learned feature repre-
sentation should be evaluated: (1) whether the different severities from the same fault type
are grouped close to each other in the feature space, in comparison to other fault types and
(2) whether the feature representations of faults with intermediate severities are positioned
between the discrete severity levels (i.e., lower and higher) of the same fault type. Due to
the limitations of the dataset, it was not possible to conduct any further analysis on domain
generalization in this particular case study. However, in Chapter 7, we evaluated the distance
in the contrastive feature space with respect to the fault evolution over time.

Contrastive Learning for Novel Fault Detection: Second, we evaluated if the proposed
model is suited to detect novel health condition as outliers by clustering the feature space.
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The constrastive learning model performed best in clustering the learned feature space and
identifying outliers by a large margin. An adjusted mutual information (AMI) of 73.5% on
average was reached with the proposed model. In comparison, the next best performing
comparison method reached only an AMI value of 45.5% on average. Moreover, 94% of
the outliers detected by the proposed contrastive learning model actually corresponded to
real new fault types and severity levels. The compactness of the known class clusters in
the contrastive feature space enables the identification of outliers in the feature space more
reliably compared to the comparison methods, where the class clusters are less compact.
Thus, the invariance to small domain shifts of the contrastive model does not impact the
model’s sensitivity to novel faults i.e. does not translate to invariance towards changes in the
health condition.

Limitations Mitigated: Our proposed model is able to generalize to variations in the
data caused by domain shifts that are similar to those that it has seen before while staying
sensitive to variations in the data that are caused by a change in the health condition.
Previous methods were only able to achieve either one of the objectives: either generalization
or sensitivity. This makes the proposed methodology more applicable in real applications.

Applicability in Real Applications: Chapter 4 represents a mature and robust solution
for condition assessment as (1) undetected domain shifts do not pose a safety risk; (2) detected
domain shifts do not require immediate retraining of the health monitoring model and (3)
safe operation can still be enabled as novel faults can be detected and investigated.

8.1.2 Module 2: Controlled Generation of Unseen Faults for Partial and
Open-Partial Domain Adaptation

In Chapter 5, we proposed a data generative approach that enables domain adaptation, also
under extreme cases of label space discrepancies when the domain gap is large.

Domain Adaptation with Different Sizes of Domain Gaps: While one comparison
method achieved comparable results to our proposed method under small domain gaps, the
performance gain of the comparison method with respect to the baseline method dropped
considerably under a large domain gap compared to our method. For example, the perfor-
mance gain achieved with the best comparison method based on feature alignment on large
domain gaps was 10.32% under the extreme Partial domain adaptation setup. In comparison,
the performance gain achieved with our proposed method was 23.46%. This demonstrates
that our proposed data generative approach performs better compared to feature alignment
approaches on large domain gaps.

Domain Adaptation with Different Types of Extreme Label Space Discrepancies:
As demonstrated in Chapter 5, our proposed method is not limited to one type of label
space discrepancy. Instead, it can be universally applied to Partial (performance gain of
23.46% on large domain gaps with respect to the baseline method) as well as to Open-Partial
domain adaptation tasks (performance gain of 6.21% on average with respect to the baseline
method). Previous methods are typically only applicable in either one of the settings. While
this is not a hard constraint in applying previously proposed methods, our solution satisfies
the requirements of industrial applications by providing one solution that is applicable in
many possible scenarios without major adaptions. We also want to point out that, although
we have only demonstrated the transfer of knowledge between two domains, the proposed
method can be easily adapted to distribute the experience on the fault types between many
domains. Once the fault signatures are trained on one domain, they can be transferred to
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each new domain that emerges in the future. This makes the proposed method particularly
flexible.

Unsupervised and Controlled Data Generation: In Chapter 5, we proposed unsu-
pervised generation of domain-specific fault data that was not observed beforehand. The
generated data needed to satisfy two requirements to be usable for domain adaption: (1)
it needed to satisfy the specifities of the particular target domain and (2) it needed to be
specific to a certain fault type and severity level. In absence of any real domain-specific fault
data, however, it is impossible to know how the target fault data should look like, making
it impossible to learn a generative model directly. To overcome this limitation, we assumed
that we can disentangle fault data in the frequency space into domain-specific components
that are independent of the fault class and into class-specific fault signatures. The validity
of this assumption was implicitly demonstrated in the domain adaptation experiments. The
improved performance (see above for concrete performance gains) achieved with the synthet-
ically generated data samples, suggests that the synthetic data in fact resembled true target
data better than the initially available source faults, even when the domain gap is larger.
Therefore, the proposed method enables the controlled generation of previously unseen data
and thus, also provides a significant step forward in the data generation literature where the
generation is typically limited to known classes or approximations between known domains.

Limitations Mitigated: In Chapter 5, we demonstrated the effect that even small changes
in the hyperparameter settings can have on the performance of deep neural networks in the
target domain. By generating physically plausible target fault data, a synthetic validation
dataset can be generated to tune the hyperparameters of any applied domain adaptation
method. We showed how this can lead to a more optimal setting of the hyperparameters.
Therefore, our proposed method can be employed when target data is not available in contrast
to other methods that rely on an available target validation dataset that includes target faults
that have not yet been observed or validation domain shift tasks to tune its hyperparameters.

Applicability in Real Applications: The developed methodology lends itself especially
to the extreme but highly relevant case for PHM applications, where only one class is shared
between the domains and the size of the domain gap is unknown but potentially large.
Furthermore, the method is applicable if no validation tasks are available and, thus, satisfies
real requirements. Moreover, it is applicable to different types of label space discrepancies
(Partial and Open-Partial). Thus, Chapter 5 is a pivotal pillar in transferring the models
between different domains under realistic conditions.

8.1.3 Module 3: Improving generalization of deep fault detection models in the
presence of mislabeled data

In Chapter 7, we proposed a method that can stabilize the optimization process of a deep
learning model in presence of label noise if neither exact ground truth information is available
on the type and amount of label noise, nor a clean validation dataset. We proposed to identify
mislabeled samples in the gradient space of the deep learning model’s optimization.

Detection of Mislabeled Samples in the Model’s Gradient Space By investigating
the gradient space of the classification models in Chapter 6, we prevent ’memorization’ of
mislabeled samples before they were even used for the actual model update step. The re-
sults of our proposed method and also the comparison methods differed per noise level in
the data (percentage of mislabeled samples). However, our proposed method outperformed
almost consistently the comparison methods. Only in two experimental setups on the smaller
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dataset (998 data samples for training) with a low label noise level, one comparison method
slightly outperformed our proposed method (+8.5%). In all other experiments, however, our
proposed method was the best performing one. The benefits of our proposed method is par-
ticularly pronounced under a severe label noise level (40% label noise). A performance gain of
+20% resp. +10% was achieved with respect to the two comparison methods on the smaller
timeseries dataset and on the bigger image dataset a performance gain of +31% resp. +14%
was reached. Thus, the proposed method demonstrates to be effective in enabling robust
classification despite the presence of label noise.

Limitations Mitigated In Chapter 6, we relaxed the assumption about requiring ground
truth information on the exact type and amount of label noise. We developed a method that
can perform well under just a rough estimate of label noise. As a rough estimate we defined
three different label noise levels, each with an upper threshold for the percentage of mislabeled
samples. We consider such a rough estimate to be easily accessible in real operations as it
could , for example, represent how unsure the domain experts are about the labels. This
makes this method more applicable under real-world constraints where such rough estimates
can typically be provided.

Applicability in Real Applications: Chapter 6 is particularly relevant for systems that
are relatively low on the safety-criticality scale, have been operational for an extended period,
and possess a dataset containing information on typical faults. Accurate labeling, however, is
impossible to obtain as the system is not being monitored by experts constantly. An example
of such a scenario is provided in Section 8.3. If fault data is available but the labeling is
unreliable, the robust model developed during the condition monitoring phase can then be
used to collect a sufficiently large and reliably labeled dataset within a particular domain.
This dataset can facilitatedomain adaptation in the subsequent monitoring phase, even in
presence of unreliable labels.

8.1.4 Module 4: Contrastive Feature Learning for Fault Detection and Diagnostics in
Railway Applications

In Chapter 6, we proposed a contrastive model for fault diagnostics and fault detection on
two real condition monitoring datasets within a railway system. Contrary to conducting
experiments on datasets that were acquired under laboratory conditions, in Chapter 7 we
conducted experiments on condition monitoring datasets that were acquired under real in-
service conditions. Datasets of controlled in-workshop conditions typically only partially
represent the complexities and challenges of real in-service conditions of systems that operate
in an open environment. Thus, models developed for datasets recorded under real condition
face bigger challenges such as a larger variability within the healthy class or a less pronounced
fault patter per fault type.

Fault diagnostics for railway sleepers: On the fault diagnostics task of railway sleeper
defect classification, the proposed methods achieved a considerable performance gain com-
pared to a normal classification model (+13%). This showcases that the contrastive learning
idea is especially suited for tasks where the fault pattern in the condition monitoring data is
less pronounced and resembles normal variations in the healthy class closely.

Fault detection for railway wheels: While contrastive learning has shown to be suc-
cessful on fault diagnostics tasks in Chapter 4, its application is not directly transferable to
an anomaly detection setting where presumably only healthy data is available. Typically, to
induce sensitivity to faults, the contrastive learning paradigm requires the availability of fault
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data (labeled or unlabeled). This is typically not available when a new system starts to be
monitored or when the condition monitoring system is newly installed. To alleviate this, in
Chapter 7, we show how contrastive learning can be applied in this anomaly detection setting
where no fault data is available. We proposed to train a feature encoding that is sensitive
to degradation processes and evaluate if this sensitivity translates well to sensitivity towards
faults. The experiments conducted on the task of detecting railway wheel faults show that
this is partially true. The contrastive model has shown a higher detection rate for one defect
type (shelling), where two more defective wheels were detected. However, for a second defect
type (cracks) two defective wheels were not detected by the proposed method but by the
comparison method. This suggests that either the sensitivity to degradation translates only
well to some fault types that resemble the characteristics of degradation or that the imposed
invariance to operational conditions translates to insensitivity to other fault types. The exact
reason, unfortunately, cannot be determined due to the lack of ground truth system condi-
tions. However, the results show that the proposed method is a valuable addition to other
fault detection methods as it provides more sensitivity for certain fault types.

Limitations mitigated: Although contrastive learning has shown to be very useful in the
context of PHM tasks, its application is limited when no fault data is available. In this
module we alleviated this limitation.

Applicability in Real Applications: This module is applicable in the beginning of the
monitoring of an industrial asset, where either no faults have occurred yet or where fault
data is available but it is unknown how representative it is. It therefore provides a first step
of a condition assessment solution.

8.2 The framework

Lastly, we discuss the contribution and effectiveness of the proposed framework.

Reaching a Mature Solution for Condition Assessment: The solution proposed in
’Domain Generalization module’ represents a mature level of condition assessment solutions
due to the following two reasons: (a) domain shifts do not decrease the performance of the
deployed fault diagnostics model without any further adaptation of the model and (b) novel
faults can be detected as such and distinguished from known faults. Reaching such a mature
solution, however, cannot be achieved within a short period of time after taking a condition
monitoring system into operation as the initially recorded data will not be very representative
of future conditions. A long data acquisition time to increase the representativeness is often
not acceptable in practice since an industrial asset needs to be operated safely from the very
beginning. Furthermore, providing accurate supervision e.g. by domain experts during a long
data acquisition time may not be accepted in practice. Instead, data-driven solutions can be
deployed at different phases of monitoring an asset in order to (a) enable safe and efficient
operation at earlier phases of the life cycle of an asset and (b) make the models better adapted
to the realistic data scarcity settings by overcoming the realistic lack of information in each
phase. The four modules developed in this dissertation provide more reliable solutions for
different phases of monitoring complex assets, where the data availability and the constraints
differ and they enable the condition assessment solution to reach a higher maturity level
within a shorter amount of time.

Progressively Increase the Maturity Level of the Condition Assessment Solution:
Each of the four developed modules can be applied in different phases of monitoring the
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condition of a system. Thus, the proposed framework comprising four modules enables to
progressively and efficiently increase the maturity level of the condition assessment solution.

When a condition monitoring system is taken into operation, the ’No Fault Label module’
has shown to detect certain fault types more reliably (see Chapter 7) than other anomaly
detection methods. The module can be deployed in an operational system such that gradually
the condition monitoring data is assessed and potential faults are detected. Thus, the module
helps the operators to investigate, document and label the ground truth status of the asset
e.g. about the fault type and the severity in a more targeted way. If a labeled dataset of
different health conditions is available, a fault diagnostics model can be trained. If however
the labels in the datasets are noisy, the ’Label Noise module’ can be applied. The module has
demonstrated to provide more robust classification of known health conditions if the training
dataset is subjected to label noise. Thus, the module can provide more reliable labels during
operations on the recorded condition monitoring for future developments. If one domain (e.g.
one operating condition or one unit of a fleet) can be monitored reliably, it is desirable to
transfer the model to new domains. The ’Extreme Domain Adaptation module’ demonstrated
that it can outperform other domain adaptation methods even under extreme label space
discrepancy settings and large domain gaps. The module, therefore, enables the transfer of
fault diagnostics models to new domains within a shorter period of time. We want to point
out that the data generative method developed in this module provides synthetic data that
could be sufficient to directly implement the method proposed in the ’Domain Generalization
module’ : Once the synthetic dataset is generated for some domains where only healthy data
is available, the contrastive learning model as proposed in Chapter 5 can be trained on the
synthetically generated data. This will enable us to make the fault diagnostics even more
robust and may require the generated data to be less precise. Furthermore, it enables to reach
a higher maturity level for the condition assessment solution within a shorter period of time,
as no fault data needs to be available in most of the source domains. However, evaluating
this is subject to future work. Lastly, a mature solution to condition assessment should
be robust towards domain shifts while being sensitive to novel fault types. The ’Domain
Generalization module’ demonstrated that it can achieve both objectives and this provides
a mature solution to condition assessment. It neither poses a safety risk if a domain shift
stays undetected nor requires retraining once a domain shift was detected. Moreover, it still
is capable of detecting novel health conditions that can be investigated by operators and then
consecutively be added to the method.

Common Constraints Mitigated in Data-Driven Condition Monitoring: One ma-
jor motivation behind each methodological development in this dissertation was to further
relax or alleviate non-realistic requirements and constraints of previously proposed methods.

One limitation that is very important from a practical point of view and that we overcame
in this research is the dependency on ground truth information when validating the developed
deep learning methods. In previous research, most of the methods proposed for classification
with label noise, for example, rely on either a clean validation dataset or some prior knowl-
edge about the label noise. Similarly, methods proposed for domain adaptation with label
space discrepancies required a validation task to find optimal parameters of the proposed
methodology. Despite the impressive advances in both fields, in practical applications, such
assumptions cannot be fulfilled. It is unrealistic to assume the availability of ground truth
information for methods that aim to overcome the lack of exactly that ground truth informa-
tion. The methodological developments in this dissertation relaxed these limitations in two
ways. Firstly, the method proposed in Chapter 6 enables robust classification under only an
approximate estimation of the magnitude of the label noise. Secondly, the method proposed
in Chapter 5 enables the generation of a synthetic fault dataset of previously unobserved
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faults. We have demonstrated that the synthetically generated data can be used for hyperpa-
rameter tuning, alleviating the requirement of a validation task that includes real previously
unobserved fault data. The methodological developments in this dissertation advance the
applicability of deep learning models under more realistic settings and are therefore flexible
to be applied in many different applications that are not limited to fault diagnostics.

In addition to addressing the lack of ground truth information, we also aimed to tackle ex-
treme setups of data scarcity that are common in PHM tasks and have not been sufficiently
addressed in the current literature. Most notably, we have achieved this in the ’Domain
Adaptation Module’, where we enabled domain adaptation under extreme label discrepancy
settings. Moreover, also in the other modules (’No Fault Label Module’ and ’Domain Gen-
eralization Module’ ), we developed methods that are applicable when neither all fault types
were represented in the training dataset, nor all non-informative factors. These scenarios are
especially important in the context of PHM tasks. The superior performance of our pro-
posed methodology demonstrates that this thesis has advanced deep learning techniques to
be applicable also in extreme cases of data scarcity.

8.3 Datasets

In this thesis, we conducted experiments on benchmark datasets that are recorded under test
rig conditions and commonly used in research studies as well as datasets that are recorded
under real operating conditions from real applications.

Although real datasets provide a realistic test bed as they represent real challenges (such as
the railway sleeper dataset or the railway wheel dataset in Chapter 7), they may not allow for
concrete evaluations of specific challenges such as domain shifts. If not all factors of variation
in the data are known or can be controlled, the identification of distinct domains is not
possible. This makes these datasets less suitable candidates to demonstrate the effectiveness
of domain adaptation or generalization approaches. Furthermore, data collected under real
conditions are often not available in open source making reproducibility and comparison of
the results impossible. Therefore, it is often impossible to use those as benchmark datasets.
The lack of accurately labeled data is another challenge of datasets from real applications
as addressed in Chapter 5. One example for this is the railway wheel case study presented
in cha:5 where label noise can be introduced by rule-based labeling: Defective wheels are
typically only detected during workshop visits that are not very frequent. During these
workshop visits, it is impossible to determine when exactly the fault has been initiated in
hindsight and accurate labeling of the respective data around initiation time is impossible. To
circumvent this problem, basic labeling rules have been applied in this application previously
to train binary fault diagnostics models (Krummenacher et al., 2017) whereby wheels that
just left the workshop (after maintenance) have been labeled as healthy within a certain
time span and detected defects are labeled as faults within a certain time span before the
workshop visit. If the considered time span used for labeling is small, these fixed rules can
result in biased models as they are only trained on freshly maintained wheels (not considering
normal degradation processes) and pronounced faults (not considering the initiation phase
of a fault). If the considered time span for labeling is larger, label noise is introduced as
real defects might have been undetected and thus, are falsely labeled as healthy or detected
defects might have occurred later in time as the fixed time span considered for labeling and
thus, healthy conditions are falsely labeled as faulty. This scenario, that faults can only be
detected in non-frequent workshop visits and fixed rules need to be applied to label the real
time data, introducing label noise, is common in PHM applications.

Contrary to datasets from real applications, the first kind of datasets (those that are
recorded under test rig conditions) allow for benchmarking and detailed analysis under do-
main shifts since typically all parameters under which the data is recorded are controlled
and known. Thus, these datasets allow to demonstrate the effectiveness of the proposed
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methods concretely with respect to e.g. domain adaptation or domain generalization and are
often used in several research studies as benchmarks to compare to state-of-the-art methods.
One of the benchmark datasets used in this thesis (CWRU dataset) has been reported to
be affected by artifacts (Smith and Randall, 2015) and its suitability for domain adaptation
experiments has been questioned recently as the transferrability to other physical bearings
cannot be tested (Hendriks et al., 2022).

In this thesis, we still used the CWRU dataset as a benchmark dataset as it has been used
extensively in the literature and thus, provides a good comparison to current state-of-the-
art methods. First, the CWRU dataset is used in the domain generalization experiments
outlined in Chapter 4, within an experimental setup that differs from that of conventional
fault diagnostics (as described by Smith and Randall (2015)). The goal of the experiments
in this thesis is not to determine whether the proposed algorithm is particularly suited to
extract features that are unique to bearing faults for diagnostics purposes. Rather, the aim
is to assess if the learned features for fault diagnostics are robust to domain shifts while
being sensitive to changes in the health condition. Consequently, the artefacts present in
the CWRU data do not diminish the validity of the conducted experiments with respect
to robustness to domain shifts. Second, the CWRU dataset is used for benchmarking in
the domain adaptation experiments outlined Chapter 6. In addition to the experiments on
the CWRU dataset, we have conducted experiments using a second dataset, the Paderborn
dataset. Interestingly, the performance improvement of our proposed method is more evident
in the case of the Paderborn dataset.

Furthermore, datasets recorded under test rig conditions might lack expressiveness. To
name one example, typically only discrete severities (e.g. discrete sizes of defects) of the same
fault type are represented in the datasets as the faults are artificially imposed and do not
evolve naturally. Therefore, continuously evolving fault severities cannot be evaluated on
these datasets. Identifying not only different fault types but also severity levels could either
be defined as an ordinal regression problem for the different severity levels or as a classifica-
tion problem where the different severity levels from the same fault type are considered as
individual and discrete classes. In this thesis, we adopt the problem formulation commonly
used in the field of fault diagnostics, as described in (Neupane and Seok, 2020). Specifically,
we assume that fault severities can be categorized in discrete classes, which we believe is a
reasonable and realistic assumption. However, we also recognize the importance of addressing
the continuous evolution of fault severities, in addition to the discrete classification problem
discussed in Chapter 4. Hence, we explore the continuous evolution of fault severities in
Chapter 7, in order to provide a more comprehensive analysis.

100



9999

9 Conclusions

9.1 Research Objectives Revisited

The overarching aim of this research was to develop methods that can efficiently deal with the
different types of data and label scarcity in different phases of condition monitoring under
real-world constraints.

This aim was accomplished by focusing on four objectives: (1) The development of a
fault diagnostics and detection method which relaxes the need to retrain the used models
given each domain shift but rather is capable of generalizing well to unknown domains while
being sensitive to novel faults (Chapter 4); (2) The development of an approach which can
transfer fault diagnostics models from one domain to another under extreme label space
discrepancies and large domain gaps (Chapter 5); (3) The development of a classification
method that enables robust fault diagnostics in the presence of label noise (Chapter 6); (4)
The development of a fault detection method that particularly takes the challenge of large
non-informative variations within the healthy class into account (Chapter 7).

9.2 Summary

Based on the main research aim, this dissertation proposes a framework consisting of four
modules. Each of the four modules can be applied at different phases of monitoring the health
condition of an industrial asset and aims to progressively increase the maturity level of the
condition assessment solution within a short period of time: Starting from enabling the detec-
tion of faults under large variability in the healthy class to being able to distinguish different
fault types and severities in known and unknown domains while being able to identify the
the occurrence of novel previously unobserved fault types. In each of the modules previously
existing challenges, constraints and limitations are addressed and mitigated or relaxed. This
dissertation pushes the boundary of state-of-the-art research in the field of fault detection
and diagnostics by answering the following four research questions:

How can we train a fault diagnostics model that is both, able to perform well
on known and unknown domains as well as able to detect novel fault types?
Chapter 4 enables fault diagnostics that is robust towards small domain shifts and, thus,
provides a reliable solution for fault diagnostics in a real operational context by providing
robustness towards domain shifts. Additionally, the module also enables the detection of
novel fault types. The module can be considered as a stable and mature solution for condition
assessment.

How can we enable universal domain adaptation for fault diagnostics models
with extreme label space discrepancies and large domain gaps? In Chapter 5,
the importance of enabling the transfer of knowledge between domains is addressed in the
relevant case where only one class (the healthy one) is shared between the domains and the
domain gap can be large. By enabling the generation of previously unobserved faults that are
domain- and class-specific, we can transform a Partial or Open-Partial domain adaptation
task into a ClosedSet one. Experiments have not only resulted in superior results under large
domain gaps but also, the proposed method alleviates the requirements of real target data
to tune the method.
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How can effective fault diagnostics be enabled in the presence of label noise if no
preliminary knowledge about the amount of label noise and no clean validation
dataset is available? In Chapter 6, the harmful effect of label noise has been demon-
strated. To relax the requirements of previous methods, a method was developed that can
deal with only a rough estimation of the label noise. By identifying mislabeled data samples
already in the gradient space, they can be disregarded before preforming the actual model
update step. The experiments on the a image dataset (MNIST) and one condition monitoring
dataset validated that a rough estimate of the label noise is sufficient to considerably improve
the classification performance of the proposed method.

How to concurrently achieve invariance to non-informative factors and sensitivity
to fault types for fault diagnostics but also for fault detection, where only healthy
data and no fault data is available? In Chapter 6, contrastive learning was applied
to fault diagnostics and also to fault detection on in-service assets within different railway
systems. Namely, fault diagnostics for in-service railway sleepers based on image data and
fault detection for in-service railway wheels based on timeseries data. Thus, we evaluated
the proposed method under challenges that arise when working on real datasets recorded
under in-service conditions as opposed to datasets recorded under laboratory conditions. For
fault detection under in-service conditions, a multitude of factors might not be sufficiently
represented in the training dataset that can cause variability in the healthy class. For the
task of fault diagnostics under real in-service conditions, the fault pattern might not be as
pronounced in the condition monitoring data and thus, it can be hard to distinguish early
faults from normal variations in the healthy class. The superiority of the proposed method
was demonstrated in both tasks. On the fault diagnostics task, a considerable performance
gain could be achieved. On the fault detection task, the proposed method has achieved higher
sensitivity to the detection of certain fault types. This lets us conclude that sensitivity to
degradation can only translate to some fault types.

In summary, the four modules address specific challenges of data and label scarcity in
different phases of monitoring the condition of an industrial asset. Each of the modules can
be used and combined flexibly to meet the given requirements towards a condition assessment
solution. Chapter 4 can be seen as a final adaption of the fault detection and diagnostics
solution as it generalizes to novel domains without the need to retrain while maintaining
sensitivity to novel faults to ensure safe operations; Chapter 5 then enables the transfer of
models from one domain to other distinct domains and thus, is a pivotal step in extending the
automated monitoring; Chapter 6 can effectively decrease the negative effect of label noise and
enable the robust distinction between different fault types and severities; Chapter 7 enables
more reliable fault detection and diagnostics in the context of real operational conditions.

9.3 Limitations and Outlook

Although this dissertation has extended the applicability of deep learning methods for data
scarcity settings that are common in PHM tasks, there are still ways to extend the framework
and address some potential remaining limitations. This section points out some of these
remaining limitations, and discusses possible future directions.

Integration of Unlabeled Data: In this thesis, we have developed methods that can
perform well under label noise as well as extreme data scarcity. We consider it to be realistic
that in safety-critical systems, the condition of an asset is documented if it enters a workshop
or if a fault has occurred. In less safety critical assets, this might not be the case. Instead,
there might be a plethora of unlabeled data available that could be utilized for developing
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methods. The integration of unlabeled data has not yet been considered in some of the
developed modules and thus, provides an interesting and promising direction to explore.

Domain Generalization for Larger Domain Gaps: While we have tested the domain
adaptation method in Chapter 5 on small domain gaps as well as on large ones, the suitability
for the ’Domain Generalization module’ proposed in Chapter 4 still has to be tested in the
context of large domain gaps. It needs to be evaluated to which extent the two competing
objectives of achieving robustness towards domain shifts and sensitivity towards novel faults
can be achieved even under larger domain gaps.

Regression Tasks: A natural extension of our work is to advance or apply the developed
methods to regression tasks such as the prediction of the remaining useful life. While we
did not approach the task of remaining useful life prediction in this thesis, several of the
proposed approaches can be applied or adapted to this task. For example, the proposed
idea on learning a contrastive feature representation with time as a proxy for the asset’s
health condition (presented in Chapter 7) lends itself to be tested in the context of regression
tasks. Testing contrastive feature learning as proposed in Chapter 7 in the context of domain
generalization (as in Chapter 4) for regression tasks would be a natural extension and an
interesting future direction to explore.

Continuous Domain Shifts: In this thesis, discrete domain gaps were investigated for
domain adaptation and domain generalization. While distinct domain shifts can be a good
approximation for some applications, there exist other scenarios where, for example, environ-
mental or operational conditions evolve continuously, causing continuous domain shifts. The
methods developed in Chapter 7 for domain generalization or in Chapter 7 for domain adap-
tation can be applied and tested on continuous domain shifts without any methodological
adaption.

Prior Knowledge for Domain Generalization: In recent works, the progress of domain
generalization has been evaluated on image datasets (Wiles et al., 2021; Gulrajani and Lopez-
Paz, 2020). One recommendation for future developments to achieve domain generalization
is to integrate previous knowledge if possible (Wiles et al., 2021). While this has remained
a rather vague recommendation, exploring the integration of prior knowledge in the context
of PHM tasks presents a very interesting direction to explore. One possible way to integrate
prior knowledge is proposed in Chapter 5, where fault signatures are learned that can be
made transferable across domains. Exploring further ways of integrating knowledge e.g. by
physics induced deep learning could hold much potential.

Generative Adversarial Networks Architecture Search for Fault Generation: The
architecture of the generative adversarial model can affect the quality of the generated data
immensely. Finding the correct architecture can be a tedious process. Architecture search
algorithms for generative adversarial networks have already been applied in computer vision.
Adapting these algorithms to condition monitoring datasets could enhance the performance
of generative approaches for PHM applications.

Meta-Learning: Meta-learning studies aims to extract higher order knowledge (meta-
knowledge) on a variety of tasks such that new tasks can be achieved more quickly or that
existing models can be adapted to new environments with only very little data available. This
paradigm provides an opportunity to tackle many conventional challenges of deep learning,
including data and computation bottlenecks, as well as generalization. So far, we have solved
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problems on the individual components’ levels. Meta-learning could help the extraction of
higher order knowledge on individual components of a system and enable the transfer of
knowledge to either similar components that are operated in a new machines or in a drasti-
cally different environment, or to a new task that needs to fulfilled.
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