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Design and Calibration of Large Microphone
Arrays for Robotic Applications

Florian Perrodin, Janosch Nikolit, Joél Bussétand Roland Siegwart

Abstract—Hearing is amongst the most important senses source locations. Calibration is fully automated, can be
a modern robot must exhibit. Perceiving the acoustic world performed in reverberant environments and does not rely on
enables capabilities such as natural interaction with humas, specialized equipment. Using a continuously moving noise

interpreting spoken commands or the localization of victins h hand-held ker ti diff f
during search and rescue tasks. Real-world robotic operatins source, such as €.g. a hand-held speaker, ume diirerence o

often take place in noisy, reverberant environments while arrival (TDOA) is estimated between each pair of micro-
requiring features such as source separation, accurate diction phones in a robust manner at low SNR and in reverberant
of arrival estimation or high performance noise suppressio. conditions.

This work presents a methodology to design, calibrate and To give a final proof of concept and to illustrate the

operate large microphone arrays that enable such features. b fit of havi h hard d . biliti
Recent micro electro-mechanical microphones in conjunc- enent of having such hardware and sensing capabiliies

tion with reconfigurable logic tackle the weight, size, powe at the robots disposal, Sectibn VIl demonstrates rea¢-tim
consumption and cost constraints of robotic systems. A nole operation of a state-of-the-art method to compute acoustic

automatic array shape calibration algorithm is developed 6r jmages of the scene. Such and similar information can be
2D and 3D arrays to face common experimental problems such invaluable in e.g. search and rescue scenarios.

as reverberation and poor signal-to-noise ratio when calilbating

the array. The special case of a 2D array calibrated using Il. PREVIOUS WORK

sources moving in 3D is addressed. No prior information on

array geometry is required, the process is fully automated ad Microphone arrays have been successfully employed on
does not require any specific calibration equipment. robotic systems for human-machine interactioh [2], speake

The exaf‘ml‘]?'e app”‘;ath‘?”h‘)f anl,?COUStiC far,nera is presented getection and sound source localizatibh [3], amongst many
as a proof of concept. High-quality acoustic images are com- (e "o plic ations.

puted in real-time by generalized inverse beamforming. Tts 8 . . .
demonstrates the effectiveness of the proposed design and N [4], an uncalibrated eight element microphone array is
illustrates the usefulness of such sensing capabilitiesrfearious  used in conjunction with a blind speech separation algarith
robotic applications. for robot audition. Individual speakers are successfugy-s
arated without the need for array calibration as blind speec
separation algorithms do not require knowledge about the
This work presents the design, calibration and operati@hape of the array. However, the locations of the indivigual
of large microphone arrays for robotic applications. Siz@ye not recovered.
weight, cost and power consumption are often crucial factor |n [5], a 64-channel microphone array is mounted on a
for any sensor in a robotic system. The proposed designwall, while an eight channel microphone array is embedded
therefore based on a new generation of digital micro electi@ the head of a robot. The system is able to detect,
mechanical (MEMS) microphones. A field-programmabl@calize and track sources using a particle filter. While
gate array (FPGA) interfaces up to 128 such microphonggod performances are shown, the robot's audition relies
and employs a cascade of filters to obtain samples repggr external devices that are hardly movable and need to be
senting the actual sound pressure and reducing the amagugtalled beforehand.
of data that is transmitted to a host system. Secfioh Il |n [6], a 32-channel circular array is used to localize sound
outlines the design of the array and the pre-processingstagources in 2D using a classical delay-and-sum beamformer.
performed on the sensor itself. The sampling rate is limited (11kHz) and the algorithms are
Microphone array shape calibration is often a prerequisik@pt simple to allow real time sound source localization.
for array processing algorithms such as source localizatio Shape calibration information for small arrays is often
or beamforming. Inaccuracies in the relative position & thextracted from computer aided design (CAD) models or by
elements severely degrades the performance of such methe@dsually measuring inter-element distances followed by e.
[1]. a dimension reduction method| [7]. Numerous methods for
Often, accurate knowledge about array geometry is n@itomatic microphone array shape calibration have been pro
available and needs to be estimated. Sedfidn IV addresggsed. Most of these methods require special infrastrectur
this problem of recovering the microphone positions withoyg] and tedious calibration processes. Others require @ goo
any a priori knowledge on the array geometry or sounfitial estimate of the microphone positions [9]. One négab

, . _ , exception is the method recently proposed!linl [10], which
*F. Perrodin, J. Nikolic, J. Busset and R. Siegwart are with th.

Autonomous Systems Lab, Swiss Federal Institute of TedgyoKfirst- is able to recover th? Qeometry of the array without any
name.name}@mavt.ethz.ch loudspeaker nor a priori on the array geometry. However,

I. INTRODUCTION



the diffuse noise field assumption is not easy to satisfy and E E é(li(l:inx Spartan-6
the final precision may remain limited. pateygp129Mbps | FIR Stage | 22mbps |
. . 1 [MicsH Filter ——> Host
Most of the existing work on microphone arrays related to ! ! _
robotics focuses on arrays with few microphone elements. ! ! !’“H'l'\'\'r'\'n'n‘m1‘,1‘.'.‘.';;_ -

While adapted for simple DOA estimation, these systems ) o )
are unable to provide acoustic images and are less sensiti/gure 1: MEMS microphone data acquisition, preprocessing
Moreover, as under certain assumptions the signal to nof¥a transmission to a host system.
ratio (SNR) of beamformers scales linearly with the number___
of microphone elements, these systems remain limited
their ability to reduce the background noise. Thus, large mE=]
crophone arrays are of primary interest to perform acoust
imaging as well as to amplify distant sound sources.
The algorithm proposed in this work aims at a calibratio
process that is fully automated, requires no specialize® ,
equipment and can be performed in the normal operatifa?gd'\’”cmphone array (b) Dual microphone element out-

. FPGA processing board. putting a digital differential signal
(reverberant) environment of the robot. requiring no subsequent signal con-

ditioning or analog to digital conver-
sion.

I1l. MICROPHONEARRAY DESIGN

One of the most important factors that prohibits th%igure 2: Flexible 44 element microphone array prototype
employment of current large microphone arrays for rea1l(—)r robotic applications

world robotic applications is their size and the complexity
of their (often analog) electronic front-ends. Recentigitdl
MEMS microphones have been introduced and are nowadays
found in most cell-phones on the market. Their quality is
continuously improving, and pre-amplifier, signal corafiti The calibration process for small microphone arrays is of-
ing and analog-to-digital conversion are often integratad ten simplified: all microphones are soldered on a single PCB
a single chip. This results in very compact and lightweighiesulting in sub-millimeter accurate knowledge of the geo-
designs. metric shape calibration parameters beforehand. If reduir
However, the problem of managing a high number dhese calibration parameters can be refined by employing
input/outputs (10s) as well as real-time signal decodirg batch smoother. For large microphone arrays however,
remains: standard microcontrollers and digital signatpss calibration is more difficult. The microphones are typigall
sors (DSPs) have a limited number of 10s and convertimpt mounted on a single planar PCB but follow more
the digital output from the microphones (often encodedgisitomplex shapes to optimize performance. Also, thermal
pulse density modulation (PDM)) to a more practical formatresses can lead to bending of larger PCBs, and available
is computationally expensive: a standard implementatienpriori knowledge of shape parameters is less accurate.
[11] includes a four-stage process (a cascaded integrafbhus automatic shape calibration is necessary to achieve
comb (or CIC) filter followed by two half-band filters andacceptable performance of e.g. beamforming algorithms.
an FIR low-pass filter) that requires at least 616 processoWe propose a shape calibration pipeline that can be
cycles per sample (with 8x vectorization), resulting in applied in almost any environment: we slowly move a sound
30MHz requirement only to process one single microphoiseurce from a distance of a few meters from the array (that is
at 48kHz and 16-bit width. This limits the use of low-powein the far-field) assuming that we do not know the position of
DSPs for large microphone arrays (40 to 100+ elements)the sounding source. Then we estimate both the geometry of
These two problems are solved by using programmalitee array and the position of the sources. The starting ®int
logic: with an FPGA, numerous |Os are available antb find the time-difference of arrival (TDOA) between each
massive parallelization makes the filtering process easlg: wpair of microphones and for each source position.
the proposed design it is possible to handle up to 128Shape calibration algorithms based on TDOA measure-
microphone elements with a fraction of the total resourcesents can usually be divided into two main parts. The
available on the low-cost XILINX Spartan-6 LX45 that wadirst part consists of estimating the TDOA between each
employed. pair of microphones, using for example generalized cross-
At last the microphone array must be able to transnibrrelation (se€ [12] for a comprehensive study) or adaptiv
94Mbit/s for 128 microphones at 48kHz, 16bits. This igigenvalue decomposition [13]. These TDOA measurements
achieved through a USB2 port which enables a maximuserve as an input to the second part, where the positions of
throughput of up to 480Mbit/s while being an interfacéhe microphones are estimated by fitting a model on the
commonly available on embedded computers employed dbserved measurements. A classical approach consists of
robotic applications. The whole process is depicted in Fifinding by some means all inter-element distances and to
[@. An image of the arrays and one of a dual microphortken apply the Multi-Dimensional Scaling (MDS) method to
element are shown in Figl 2. get the besp-dimensional explanation for the microphone

IV. SHAPE CALIBRATION



array geometry in a least square setise [7]. However, MIxroduces an invertible matri’ € GL, (R) and one can
is very sensitive to erroneous data (outliers) and oftels faivrite
to recover the microphone positions in practice. vC eGL,(R), A, =U,%,.C7CV,T

A. Affine structure from sound (ASFS) whereC' can be arbitrarily chosen (provided it is invertible).

An algebraic method to find the 2D microphone position-ghu_s' using a non-linear optimization procedure, one can
knowing the TDOA was presented by Thrun [14]. It hafind:
the advantage to fully exploit the structure of the problem . . H . T Y _ H2
while being computationally tractable. Here, this aldguonit ¢ = ng[m(%) dlag((CVT ) (CVT )) 1 2
is presented and generalized to théimensional case where !
p=2o0r3. The C matrix that has to be found in the previous equation

M incoming sounds are emitted from unknown location§ @ full homography. Since we cannot recover the real
Vj € {1,2,...,M},s; € R? and N microphones are system coordinate, we can remove the rotations from the
located inVi € {1,2,...,N}, m; € RP. The origin is set Seét of candidate matrices by imposing th@t is upper
to my, that ism; = 0. An incoming sound; is recorded triangular. Thus, the optimization procedure involvesyonl
at time A; ; by the microphone. Note that for a given ”(”;1) parameters. Then, the minimization can be performed
source, only the relative arrival time between microphonéd’ C' € T, (R). One has to check afterwards that the
is used. Thus, one can arbitrarily set the time origin arfg@lution is invertible or not close to singular. In the neise
Vi, Ay =0. free case(C* is invertible by construction.

If u;; € R? is the unitary vector that uniquely defines One finally obtains
the direction of the incoming sound sourgewith respect X — 5.0 andT* = VT
to the microphoné, the algebraic distance (denoted oy e r

between this source and that microphone is: B. Extension for planar arrays with 3D source distribution
Vi € [2,N],Vj € [1, M],|m; — s;| = u;j - (m; —s) Two dimensional microphone arrays are very common
_ o because they are easy to build, and they avoid to deal with
In the far field approximationyi, Vj, u; ; ~ u; and occlusion issues: a source emitting a sound is either heard

by all the microphones (if it lies in the front of the array)

i e
V(0.9) Bij = ujom; or by none of them (if it lies in the back) whereas in a 3-

wherec is the sound velocity in air. By defining dimensional array, the structure, if not properly desigad
prevent a source from being heard by all the microphones.
I = (ur...un) € Mpum (R) If the array is planar but the calibrating sources are moved
X = (mg_“mN)T € Mpy_1,(R) in 3D, the rank ofA, will be 2 and not 3 leading to
A — (Aiwj)2<i<N.1<j<M € My_1.m (R) degeneracyX, = diag(A1, A2, 0) has only two non-zero

values. Thus, the'd line of V.. is arbitrary which leads to
the previous equalities can be written in a matrix form: an indetermination in the sources and microphones position
To overcome this issue, we propose an extension of the
previous algorithm by replacing the procedure to determine

Knowing A, the problem of findingX and I" can be .

cA =XTI

summarized by the optimization program First, this problem cannot be solved without additional
assumptions on the measurements: for example, a far field
(X*,T*) = argmin|XT — cA|? (1) source lying at positior («, 3), wherea is the azimuth
X and 5 is the altitude, produces exactly the same TDOAs
stdiagl'"-I)=(1 1 ... 1)) on the array as a source Iyin(g)in positish(a’, ') where

9 9 .o = «a and g’ = arccos(=5**) on the same array but
wherevy € M R), !YH - Zi,j [i4l™ The constraint scaled by a factok. Thus, ifkthe source distribution does
enforces thatj, ||u,||, = 1. This problem is solved by a ot jnclude positions with altitude undek,;,, there is an
tvyo—step minimization metr_u_)d. Firsh is decomposed using |,nder-determined scale factor in the ran@e (Smin), +09).
Singular Value Decomposition (SVD): In other words, one can always explain the same measured

A=UsyT TDOAs with a smaller array sliding the estimations of the

source positions toward the horizon (ie. the plan of the

whereU € My_1(R), ¥ € My_1m(R) andV € array). More generally, the calibration of the array can be
M (R), and one reduced this equation to jislargest solved up to a linear transform represented by a 2D matrix :
componentsA, = U, X, V, whereX, € M, (R), U, € two scale factors along two orthogonal axis, a shearingfact
Mny_1,(R) and V., € M, (R). We cannot yet set and a rotation. The recovery of the rotation is unnecessary
X* = U,X, andT* = V" since there is no reason thatn the case we are not searching for the orientation of the
the constraint[{2) is satisfied. Thus, in a second step, omeay. Thus three parameters are missing.



To overcome these ambiguities, one has to add some
hypothesis on the placement of the sources. Vgt €
Mo ar (R) be the first two rows o¥;.. If I was known, then
the 2D column vectors oV,p would lie on the projection
of the unit sphere onto theOy plane, that is a disc centered
in 0 and of radius 1. In the case whdreis known up to a : o o
matrix C3p € GL3 (R), the column vectors ofzp lie in an (@) In a highly reverberant envi- (b) At low SNR.
ellipse centered in zero. Finding this ellipse allows to find ronment.

the .2.D transforma_ltiom;D that is .needed to recover the_ZDFigure 3: Maxima of the cross-correlation with respect to
position of the microphones. Without further assUMplionge The vertical axis represents the position of the peaks
this ellipse cannot be recovered, because the column Bectar - oters (time multiplied by, the sound velocity). The

of V2p are not enforced to touch the border of the eIIilosecolor shows how high a maxima is (red is the highest). The

A. ;imple hypothesis to add is that some sources Wherr(.?d circles highlight the highest peak at a given time.
positioned on the plane of the array at least in two different

directions (ie. there are sources with zero-altitude féfedi
ent azimuths). This ensures thatl at least two.column V.eCtoresriods of time (seé = 10s). To explain the other peaks,
of V5 touch the border of the ellipse at two different points. . . )
. . . S - o one can write at the first order:
Since the ellipse is centered, this is sufficient to fit it.
Thig f_it can be _dqne by searching the ellipse centered at Vi, i (1) = s (t —751) 4+ as (t — 7.2)
the origin, with minimal area such that all the 2D column
vectors ofVap lie inside it. This can be done by classicaiherey; is the signal received by the microphohe is the
minimization techniques. signal output by the speakers is the signal due to the main
Once the ellipse is found, one wants to find the mdeflection 0 < a < 1), 7;,; andr; » are the propagation time
trix C%, — that one constrains to be upper trianguldretween emission and receptian { > 7;1 sincer; ; is the
C3p € T2 (R) since the rotational part is not needed direct path). When computing the cross-correlation of a pai
that transforms the ellips€ into a unit circleC. £ can of microphoneg, j) (denoted byx), one obtains:
be represented as a matrik € M; (R) such thatvx €
E,x"Ex = 1, and each poiny on C verifiesy 'y = 1. yixy; = f(rig—70) +af (Ti1 = 752) ®)
Thus Cj, is such thatyx € &, (C5px) ' (C3px) = 1, that +af (riz —7j) +a’f (T2 — 7j2)
isVx € £,x"Cs), Cspx = 1. If € is not degenerated, this
meansE = C3},Cs,. One can show that ifZ is of the
following form, C* can be computed as follows.

whereVt, f (1, — ) (1) = s(t —74) x s (t — 7).
Equation[8 consists of two types of terms: terms one
and four that correlate two signals coming from the same
a g . e1v/a 52% spatial source (the reflection can be replaced by a coherent
E=1{ 5 5 Cip = source symmetrical to the original source with respect¢o th
2 reverberating plane). When turning the pair of microphones
wheree; » = +1 corresponding to the two reflections acrostie TDOA 7, — 7, corresponding to this type of terms

0 €1 — =

Oz andOy. should cross zero (when the vector formed by the pair of
S ) microphones is orthogonal to the direction of the sourae). |
C. TDOA estimation in reverberant environments particular TDOA of term one and four can cross each other.

The method described in the previous section assumes thathe second type of terms (terms two and three) correlate
all TDOAs are known. In outdoor or in low reverberant consignals coming from different coherent spatial sources On
ditions, this can be achieved relatively easy using maxinterm comes from the direct path while the other comes from
detection in generalized cross-correlation (GCC). Howevéhe indirect path. We havej, 7, > 71, which implies
in highly reverberant rooms this estimation can be plagu&ds, j), 7,1 — 75,1 < 75,1 — 75,2. Therefore the peak coming
by false peaks in GCC that have a higher amplitude than tfiem term two is always strictly above the one coming from
one due to the direct path. This is illustrated in an expemimeterm one. Similarly, the one coming from term three is
(Fig.[3) where a pair of microphones (sampling frequencglways strictly below the one coming from term one. Thus,
16kHz) is rotated slowly while a speaker emits white nois¢ghis peaks coming from this type of terms can never cross
Cross-correlation between a pair of microphones is corthe one coming from term one.
puted for each window of 1024 samples and the maximaThe explanation of Fig3a is the following: the main curve
of this function are represented as a function of time. Thaf peaks corresponds to term ond_bf 3 because it has overall
color of the points corresponds to the maxima height. Thiee highest amplitude and it is continuous. The curve apart
red circles indicate the global maximum at each time, whidhom the main one correspond to term 2 and 3: they never
is commonly used to compute the TDOA. cross the main curve.

In a highly reverberant environment (F[g.] 3a), the global If the SNR is smaller as in Fig._B8b, the true maxima
maximum is not always the direct path TDOA even for largeecomes smaller and results in false TDOA estimation.



D. Using continuity for TDOA estimation r

To overcome the problems of the previous Section, a
framework where a sound source is moving slowly is pro-
posed. Thus, the continuity of the TDOA with respect to
time is exploited to obtain robust estimates.

A sound source is considered slowly moving if its move- Tw oty ome ;
ment is not discernible within a same window of the cros$2) Input graph of the algorithrtb) Result of the Dijkstra algorithm.
correlation. If 75 is the sampling frequency andy, the Figure 4: The Dijkstra’s algorithm can be used to enforce

number of samples per winddi#iy = Nw Ts. Givenv, the  continuity on the TDOASs.
angular speed of the sound soureg]y < 1 is desired.

=

For Ts = 1/i6000S, Nyw = 1024 and a moving source at (e o o o s s
a distance ofD = 3m from the array, the linear speed % Ground truth
of the source should be negligible comparediém - s~ 1, A PP PR v el
for example [v|] < 50cm - s™! which is not restrictive. o ol o ol o
Equivalently, one can use a fixed source while moving array e e e o e & b o & o
slowly (Jv,| < 16rad- s71).

Additionally, the sound source is supposed to be moved all S — N
around the array. This is especially important in degeeerat o o ol @ o o
cases (e.g. a planar array in a 3D space). 0 s 1 15 20 2z fem

The method is the following: first, cross-correlations arkigure 5: Microphone element positions after automatic
computed and local peaks extracted. Then Dijkstra’s alalibration (ground truth and output of the algorithm). The
gorithm ([15]) is applied and TDOAs are estimated. Amean error is 1.6mm
optional dimension reduction step can be performed. Binall
the geometry of the microphone array is recovered using the

ASFS algorithm. TDOAs relative to the first microphone while the full
computation provides th& — 1 required TDOAs and the
V. CONTINUITY ENFORCEMENT linear combination of these TDOAs. It is either possible

The idea of using continuity comes from the fact tha® compute onlyN — 1 TDOAs (e.g for all microphone
peaks due to reverberation do not lead to a continuopair1, j)) to save computational power, or one can process
line because the reverberating material has a limited alpa@ll pairs and apply a dimension reduction algorithm.
extent: to receive the reverberated signal, the array ghoul For a finite cross-correlation window lengthyy, all
be in a cone whose vertex is the virtual source and whoggasurements); ; have a limited precision, thus it can
base is the surface of the material. be worth to combine them to reduce the error. MDS is a

The shortest path algorithm proposed by Dijkstra is d€lassical method to infer relative positions given a distan
scribed in [15]. It finds the shortest path between two givenatrix like A; ;. Since we are looking for the time sequence,
vertices of a connected graph. Here, the vertices are the final dimension will be one.
maxima of the cross-correlation and the edges are defined
as shown in Fig[_4a: For each time-step, a directed edge _
is added between each peak of the current time and eacllf_xpenments were conducted on a 44 element planar

peak of the next time-step. The weight of this edge depen'a'écrOphone array sampled attkHz in a room Where_
on the difference between the two TDOAS; — Tes1v, ;. RTgo = 0.5s. The number of samples per cross-correlation
' W E%indow is Ny = 1024 with an overlap ob12 samples. The

used. Edges can be added to allow to skip one time-st und source is fixed in the far-field while the array is ratate
in ve.ry low SNR conditions, some peaks due to the dire%giw'y in all directions. It is ensured that the sound source
path could disappear and the algorithm would fail. Note thfosses the _plan_e of the array twice in _tWO approximately
the amplitude of the maxima is not used here, but could Béthogonal directions. Results are shown in Elg. 5. The mean
taken into account. Figufe#b shows the result of Dijkstra® 0" iS under 2mm.

algorithm in the reverberant case. VIIl. EXAMPLE: REAL-TIME ACOUSTIC IMAGING

VI. DIMENSION REDUCTION Sound can be a very rich source of information and
. . . . may aid robots to accomplish their goals in a wide variety
For ea~ch pair - of mlcrophor_1es(z,j) & tme- ot tasks. Victims in a search and rescue operation might
sequencéAm,t)KKM of TDOAs is recovered. Thus, for instance be invisible to normal cameras, while acoustic
more information is available than required by the ASFSensor arrays are able to detect and accurately localize
method which requires a two dimensional array dhdividuals. To demonstrate the effectiveness of the psedo
measurements. However, the informationAinis redundant. design we implemented a real-time acoustic camera based

At each time-stept, the ASFS algorithm need® — 1 on generalized inverse beamformingl[16] as an example.

VII. CALIBRATION EXPERIMENTS



Time > in robotic applications. Lightweight and low-cost MEMS
. . digital microphones in conjunction with pre-processing-pe

3 3 3 2 3 formed on an FPGA enables real-time operation of different
44FFTs 8 44FFTs 3 44FFTs 3 44FFTs 8 44FFTs 8 X X
- - - - - array processing algorithms.
GINV BF | GINV BF An automatic shape calibration method was presented that
‘ allows for quick array calibration on-site and without the
GINV BF GINV BF . . . . .
‘ need for special equipment. This gives the robot designer
GINV BF | GINV BF more flexibility in microphone placement and allows to
seamlessly integrate the array. The calibration algoritfas
Graphic threads tested on a 44 element array and gives good results.

A real-time acoustic camera algorithm was implemented
as a case study of the large microphone array on robotic plat-
Figure 6: Thread overview of the real-time acoustic camefarms and demonstrated the feasibility of running complex
application: whenever a block of sound samples is receiveghund processing algorithms on embedded platforms.
an FFT is computed for each microphone and the spatial
covariance matrix is computed. Then generalized inverse
beamformers are computed at the desired set of frequenciég. P. M. Schultheiss, “Optimum range and bearing estinmatieith
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