

mNARX - A novel surrogate model for the uncertainty quantification of dynamical systems

Other Conference Item

Author(s): Schär, Styfen (D; Marelli, Stefano (D; Sudret, Bruno (D

Publication date: 2023-07-04

Permanent link: https://doi.org/10.3929/ethz-b-000621798

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement: 101006689 - HIghly advanced Probabilistic design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND (EC)

mNARX - A novel surrogate model for the uncertainty quantification of dynamical systems

Riley 160,000

EURODYN 2023

S. Schär, S. Marelli, B. Sudret July 4, 2023

Motivation

Uncertainty quantification of (offshore) wind turbines

- Design for ultimate and fatigue limit state
- Subject to wind loads with high aleatory uncertainty
- Responses are time series

https://www.hiperwind.eu

Modified from Perez-Becker at al. (2021). Energies 14(3):783.

Many runs of computationally expensive simulators required. Need a fast surrogate!

Surrogate modelling for dynamical systems

Setup

Computational model *M* with time-dependent exogenous input *x* and output *y*:

$$oldsymbol{x}:\mathcal{T}
ightarrow\mathbb{R}^{M},\,oldsymbol{y}:\mathcal{T}
ightarrow\mathbb{R}$$

• Discrete time axis
$$\mathcal{T} = \{0, \delta t, 2\delta t, \dots, N\delta t\}$$

Objective

▶ Replace computational model with a fast-to-evaluate surrogate $\hat{\mathcal{M}}$

 $y(t) = \mathcal{M}(\boldsymbol{x}(\mathcal{T} \leq t)) \approx \tilde{\mathcal{M}}(\boldsymbol{x}(\mathcal{T} \leq t))$

• Surrogate is built on a limited number of model runs ($\approx O(10^2)$)

Challenge

- High-dimensional input
- Highly nonlinear and non-smooth response

Multistep surrogate modelling

Rationale

- Using the original input can result in a complex nonlinear problem
- Constructing the surrogate on a more informative manifold $\zeta \in \mathbb{R}^{N \times M_{\zeta}}$ can simplify the problem:

$$ilde{\mathcal{M}}: oldsymbol{\zeta}(\mathcal{T} \leq t)
ightarrow y(t)$$
 where $oldsymbol{\zeta} = \mathcal{F}(oldsymbol{x})$

We propose

Manifold Nonlinear AutoRegressive with eXogenous input (mNARX) modelling - A multistep surrogate modelling approach

1) Input preprocessing	2) Manifold construction	3) Surrogate training
 Dealing with high dimensionality in x Upsampling, scaling, etc. 	 Incremental process Incorporate prior knowledge of the system 	 Built on the manifold Use of autoregressive surrogate

S. Schär et al. (2023). Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX)

Input preprocessing

Reduce dimensionality of the system excitation x along non-temporal coordinates:

 $ilde{m{x}} = \mathcal{G}(m{x})$

where $\boldsymbol{x} \in \mathbb{R}^{N imes M}$ and $\tilde{\boldsymbol{x}} \in \mathbb{R}^{N imes m}$ such that $m \ll M$

- Original time scale T is preserved
- E.g. N-dimensional discrete cosine transform (DCT)
- Many more methods available

ARX modelling

AutoRegressive with eXogenous inputs (ARX) models predict new values of a time series based on

- Past values of the same series
- Current and past values of exogenous time series

 $\hat{y}(t+\delta t) = \tilde{\mathcal{M}}(\hat{y}(t), \hat{y}(t-\delta t), \dots), \boldsymbol{x}(t+\delta t), \boldsymbol{x}(t), \boldsymbol{x}(t-\delta t), \dots)$

Polynomial nonlinear ARX models are well-established

S. A. Billings (2013). Nonlinear system identification

- Simple parametrization
- Training takes just a few seconds
- Very fast to evaluate

Manifold construction

Manifold ζ includes of features z_i called auxiliary quantities:

$$oldsymbol{\zeta} = \{oldsymbol{x}, oldsymbol{z}_1, \dots, oldsymbol{z}_n\}$$

Auxiliary quantities are constructed incrementally

$$\begin{aligned} \boldsymbol{z}_1(t) &= \mathcal{F}_1(\boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_1(\mathcal{T} < t)) \\ \boldsymbol{z}_2(t) &= \mathcal{F}_2(\boldsymbol{z}_1(\mathcal{T} \leq t), \boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_2(\mathcal{T} < t)) \\ &\vdots \\ \boldsymbol{z}_n(t) &= \mathcal{F}_n(\boldsymbol{z}_1(\mathcal{T} \leq t), \dots, \boldsymbol{z}_{n-1}(\mathcal{T} \leq t), \boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_n(\mathcal{T} < t)) \end{aligned}$$

- Transform \mathcal{F} can be an ARX model
- Auxiliary quantities can depend on each other
- E.g. control system outputs, moving averages or integrals/derivatives

Case study

Input turbulence box

 $oldsymbol{v}:\mathcal{T}
ightarrow\mathbb{R}^{
u_w imes
u_y imes
u_z}$

- Movie of wind speeds
- Wind speed components ν_w
- Discrete spatial grid $\nu_y \times \nu_z$

Computational model

NREL 5-MW

Onshore

ROSCO

OpenFAST

Turbine

Controller

Simulator

Type

Quantity of interest

 $M^{\mathsf{Bld}}:\mathcal{T}\to\mathbb{R}$

- Flapwise blade root bending moment M^{Bld}
- Sensitive to blade pitch ϕ and azimuth α

mNARX for wind turbine simulations

1. Reduce turbulence box to low frequency spatial coefficients:

 $\boldsymbol{\xi}(t) = \mathsf{DCT}(\boldsymbol{v}_x(t))$

2. Build surrogate for blade pitch:

$$\hat{\phi}(t) = \tilde{\mathcal{M}}(\boldsymbol{\xi}(\mathcal{T} \leq t), \hat{\phi}(\mathcal{T} < t))$$

3. Build surrogate for rotor speed:

$$\hat{\omega}(t) = \tilde{\mathcal{M}}(\boldsymbol{\xi}(\mathcal{T} \le t), \hat{\phi}(\mathcal{T} \le t), \hat{\omega}(\mathcal{T} < t))$$

4. Reconstruct rotor azimuth α and its harmonics *h*:

$$\hat{\alpha}(t) = \int_{0}^{t} \hat{\omega}(\tau) d\tau \text{ and } \hat{\boldsymbol{h}} = \{\cos\left(\hat{\boldsymbol{\alpha}}\right), \dots, \cos\left(4\hat{\boldsymbol{\alpha}}\right), \dots, \sin\left(\hat{\boldsymbol{\alpha}}\right), \dots, \sin\left(4\hat{\boldsymbol{\alpha}}\right)\}$$

5. Build final surrogate:

$$\hat{M}^{\mathsf{Bld}}(t) = \tilde{\mathcal{M}}(\boldsymbol{\xi}(\mathcal{T} \leq t), \hat{\phi}(\mathcal{T} \leq t), \hat{h}(\mathcal{T} \leq t), \hat{M}^{\mathsf{Bld}}(\mathcal{T} < t))$$

Final surrogate performance

Summary & Conclusion

Surrogating complex dynamical systems following a multistep approach can be beneficial since

- even simple model structures can yield accurate results
- it allows to incorporate prior knowledge
- it requires relatively few data ($\mathcal{O}(10^2)$ 10-min simulations used)
- The surrogate provides stable predictions in time (no drift) over a wide range of operating conditions and long time horizons
- Huge speedup: $\mathcal{O}(10^4)$ faster than the simulator
- mNARX is a universal algorithm that is not restricted to wind turbine simulations
- Automating construction of mNARX surrogate is work in progress

Chair of Risk, Safety & Uncertainty Quantification www.rsuq.ethz.ch

www.uqlab.com

www.uqpylab.uq-cloud.io

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006689

Read the EU report C