

Active learning methods for structural reliability analysis and optimal design

Other Conference Item

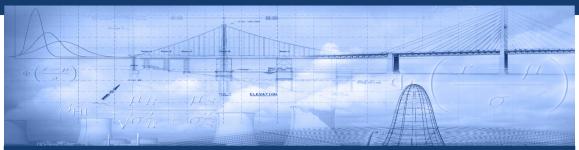
Author(s): Sudret, Bruno

Publication date: 2023-07-11

Permanent link: https://doi.org/10.3929/ethz-b-000621796

Rights / license: In Copyright - Non-Commercial Use Permitted

ETHzürich



Active learning methods for structural reliability analysis and optimal design

B. Sudret

Chair of Risk, Safety and Uncertainty Quantification

How to cite?

This presentation is a keynote lecture given at the 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Trinity College (Dublin), July 11, 2023.

How to cite

Sudret, B., *Active learning methods for structural reliability analysis and optimal design*, 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Trinity College (Dublin), July 11, 2023 (Keynote lecture).

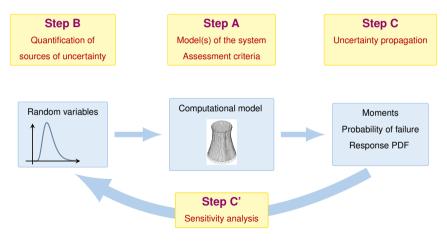
Trinity College Campanile

Main references

Risk, Safety &

- Moustapha, M. and Sudret, B. (2019). Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework. Structural and Multidisciplinary Optimization 60, 2157–2176.
- Moustapha, M., Marelli, S. & Sudret, B. (2022) Active learning for structural reliability: Survey, general framework and benchmark, Structural Safety, 96, 102174.

Global framework for uncertainty quantification



B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral methods (2007)

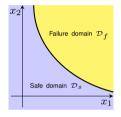
Active learning for reliability

Limit state function

• The failure criterion is cast as a limit state function (performance function) $g: x \in \mathcal{D}_X \mapsto \mathbb{R}$ such that:

 $\begin{array}{ll} g\left(\boldsymbol{x},\mathcal{M}(\boldsymbol{x})\right) \leq 0 & \mbox{ Failure domain }\mathcal{D}_{f} \\ g\left(\boldsymbol{x},\mathcal{M}(\boldsymbol{x})\right) > 0 & \mbox{ Safety domain }\mathcal{D}_{s} \\ g\left(\boldsymbol{x},\mathcal{M}(\boldsymbol{x})\right) = 0 & \mbox{ Limit state surface } \end{array}$

 $\textit{e.g.} \hspace{0.2cm} g(\boldsymbol{x}) = y_{adm} - \mathcal{M}(\boldsymbol{x}) \hspace{0.2cm} \text{when Failure} \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} QoI = \mathcal{M}(\boldsymbol{x}) \geq y_{adm}$



Probability of failure

Risk, Safety &

$$P_{f} = \mathbb{P}\left(\left\{\boldsymbol{X} \in D_{f}\right\}\right) = \mathbb{P}\left(g\left(\boldsymbol{X}, \mathcal{M}(\boldsymbol{X})\right)\right) = \int_{\mathcal{D}_{f} = \left\{\boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}}: g\left(\boldsymbol{x}, \mathcal{M}(\boldsymbol{x})\right) \leq 0\right\}} f_{\boldsymbol{X}}(\boldsymbol{x}) \, d\boldsymbol{x} \leq 0$$

- Multidimensional integral ($d = 10 100^+$), implicit domain of integration
- Failures are (usually) rare events: sought probability in the range 10^{-2} to 10^{-8}

ETHzürich

Classical methods

Approximation methods

Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

- First-/Second- order reliability method (FORM/SORM)
 - Relatively inexpensive semi-analytical methods
 - Convergence is not guaranteed (*e.g.* in presence of multiple failure regions)

Simulation methods

- Monte Carlo simulation
 - Unbiased but slow convergence rate
- Variance-reduction methods
 - e.g. Importance sampling, subset simulation, line sampling, etc.
 - Their computational costs remain high (i.e. $\mathcal{O}(10^{3-4})$ model runs)

Surrogate models can be used to leverage the computational cost of simulation methods

Outline

Introduction

Surrogate modelling General principles Gaussian processes (a.k.a. Kriging)

Active learning for structural reliability

Principle General framework and benchmark

Reliability-based optimization

ETHzürich

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ x^{(i)}, i = 1, \dots, n \right\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

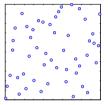
Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
Low-rank tensor approximations	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{l=1}^{R} oldsymbol{bla}_l \left(\prod_{i=1}^{M} v_l^{(i)}(x_i) ight) \ ilde{\mathcal{M}}(oldsymbol{x}) = oldsymbol{eta}^T \cdot oldsymbol{f}(oldsymbol{x}) + Z(oldsymbol{x}, \omega)$	$b_l,z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$ ilde{\mathcal{M}}(oldsymbol{x}) = oldsymbol{eta}^{T} \cdot oldsymbol{f}(oldsymbol{x}) + Z(oldsymbol{x},\omega)$	$oldsymbol{eta},\sigma_Z^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum^n a_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$oldsymbol{a},b$
(Deep) Neural networks	$ ilde{\mathcal{M}}(oldsymbol{x}) = f_n \left(\cdots f_2 \left(b_2 + f_1 \left(b_1 + oldsymbol{w}_1 \cdot oldsymbol{x} ight) \cdot oldsymbol{w}_2 ight) ight)$	$oldsymbol{w},oldsymbol{b}$

It is fast to evaluate

Risk, Safety 6

Ingredients for building a surrogate model

- Select an experimental design X that covers at best the domain of input parameters: Latin hypercube sampling (LHS), low-discrepancy sequences
- Run the computational model $\mathcal M$ onto $\mathcal X$ exactly as in Monte Carlo simulation



• Smartly post-process the data $\{\mathcal{X}, \mathcal{M}(\mathcal{X})\}$ through a learning algorithm

Name	Learning method
Polynomial chaos expansions	sparse grid integration, least-squares, compressive sensing
Low-rank tensor approximations	alternate least squares
Kriging	maximum likelihood, Bayesian inference
Support vector machines	quadratic programming

Advantages of surrogate models

Usage

 $\mathcal{M}(x) ~~pprox$ hours per run

 $ilde{\mathcal{M}}(m{x})$ seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Suited to high performance computing: "embarrassingly parallel"

Challenges

- Need for rigorous validation
- Communication: advanced mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo

Outline

Introduction

Surrogate modelling General principles Gaussian processes (a.k.a. Kriging)

Active learning for structural reliability

Reliability-based optimization

Gaussian process modelling

Gaussian process modelling (a.k.a. Kriging) assumes that the map $y = \mathcal{M}(x)$ is a realization of a Gaussian process:

$$Y(\pmb{x},\omega) = \sum_{j=1}^p \beta_j f_j(\pmb{x}) + \sigma Z(\pmb{x},\omega)$$

where:

- $f = \{f_j, j = 1, ..., p\}^T$ are predefined (*e.g.* polynomial) functions which form the trend or regression part
- $\boldsymbol{\beta} = \{\beta_1, \ldots, \beta_p\}^{\mathsf{T}}$ are the regression coefficients
- σ^2 is the variance of $Y(\pmb{x}, \omega)$
- $Z(x,\omega)$ is a stationary, zero-mean, unit-variance Gaussian process

 $\mathbb{E}\left[Z(\boldsymbol{x},\omega)\right] = 0$ $\operatorname{Var}\left[Z(\boldsymbol{x},\omega)\right] = 1$ $\forall \, \boldsymbol{x} \in \mathbb{X}$

The Gaussian measure artificially introduced is different from the aleatory uncertainty on the model parameters \boldsymbol{X}

Kriging equations

Data

- Given is an experimental design $\mathcal{X} = \{x_1, \dots, x_n\}$ and the output of the computational model $y = \{y_1 = \mathcal{M}(x_1), \dots, y_n = \mathcal{M}(x_n)\}$
- We assume that $\mathcal{M}(x)$ is a realization of a Gaussian process Y(x) such that the values $y_i = \mathcal{M}(x_i)$ are known at the various points $\{x_1, \ldots, x_n\}$
- Of interest is the prediction at a new point $x_0 \in \mathbb{X}$, denoted by $\hat{Y}_0 \equiv \hat{Y}(x_0, \omega)$, which will be used as a surrogate $\tilde{\mathcal{M}}(x_0)$

 \hat{Y}_0 is obtained as as a conditional Gaussian variable:

 $\hat{Y}_0 = Y(x_0 \mid Y(x_1) = y_1, \dots, Y(x_n) = y_n)$

Joint distribution of the predictor / observations

• For each point $x_i \in \mathcal{X}, Y_i \equiv Y(x_i)$ is a Gaussian variable:

$$Y_i = \sum_{j=1}^{p} \beta_j f_j(\boldsymbol{x}_i) + \sigma Z_i = \boldsymbol{f}_i^{\mathsf{T}} \cdot \boldsymbol{\beta} + \sigma Z_i \qquad Z_i \sim \mathcal{N}(0, 1)$$

• The joint distribution of $\{Y_0, Y_1, \ldots, Y_n\}^{\mathsf{T}}$ is Gaussian:

$$\left\{ \begin{array}{c} Y_0 \\ \boldsymbol{Y} \end{array} \right\} \sim \mathcal{N}_{1+N} \left(\left\{ \begin{array}{c} \boldsymbol{f}_0^{\mathsf{T}} \boldsymbol{\beta} \\ \boldsymbol{\mathbf{F}} \boldsymbol{\beta} \end{array} \right\}, \, \sigma^2 \, \left[\begin{array}{c} 1 & \boldsymbol{r}_0^{\mathsf{T}} \\ \boldsymbol{r}_0 & \boldsymbol{\mathbf{R}} \end{array} \right] \right)$$

• Regression matrix \mathbf{F} of size $(N \times p)$

$$\mathbf{F}_{ij} = f_j(oldsymbol{x}_i)$$

 $i = 1, \dots, N, \ j = 1, \dots, p$

• Vector of regressors \boldsymbol{f}_0 of size p

1

Risk, Safety &

$$f_0 = \{f_1(x_0), \ldots, f_p(x_0)\}$$

• Correlation matrix \mathbf{R} of size $(N \times N)$

$$\mathbf{R}_{ij} = R(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})$$

• Cross-correlation vector $m{r}_0$ of size N

$$\boldsymbol{r}_{0i} = R(\boldsymbol{x}_i, \boldsymbol{x}_0; \boldsymbol{\theta})$$

Kriging mean predictor and variance

Santner, William & Notz (2003)

The conditional distribution of \widehat{Y}_0 given the observations $\{Y(x_i) = y_i\}_{i=1}^n$ is a Gaussian variable:

$$\widehat{Y}_0 \sim \mathcal{N}(\mu_{\widehat{Y}_0}, \sigma_{\widehat{Y}_0}^2)$$

Mean predictor : used as surrogate model

$$\mu_{\widehat{Y}_{0}}=oldsymbol{f}_{0}^{\mathsf{T}}\widehat{oldsymbol{eta}}+oldsymbol{r}_{0}^{\mathsf{T}}\mathbf{R}^{-1}\left(oldsymbol{y}-\mathbf{F}\,\widehat{oldsymbol{eta}}
ight)$$

where the regression coefficients $\hat{\beta}$ are obtained from the generalized least-square solution:

$$\widehat{oldsymbol{eta}} = \left(\mathbf{F}^{\mathsf{T}} \, \mathbf{R}^{-1} \, \mathbf{F}
ight)^{-1} \, \mathbf{F}^{\mathsf{T}} \, \mathbf{R}^{-1} \, oldsymbol{y}$$

Kriging variance : local prediction uncertainty

$$\sigma_{\widehat{Y}_0}^2 = \mathbb{E}\left[(\widehat{Y}_0 - Y_0)^2 \right] = \sigma^2 \, \left(1 - \boldsymbol{r}_0^\mathsf{T} \, \mathbf{R}^{-1} \, \boldsymbol{r}_0 + \boldsymbol{u}_0^\mathsf{T} \left(\mathbf{F}^\mathsf{T} \, \mathbf{R}^{-1} \, \mathbf{F} \right)^{-1} \, \boldsymbol{u}_0 \right) \qquad \boldsymbol{u}_0 = \mathbf{F}^\mathsf{T} \, \mathbf{R}^{-1} \, \boldsymbol{r}_0 - \boldsymbol{f}_0^\mathsf{T} \, \boldsymbol{u}_0 = \mathbf{F}^\mathsf{T} \, \mathbf{R}^{-1} \, \boldsymbol{r}_0 - \boldsymbol{f}_0^\mathsf{T} \, \boldsymbol{u}_0 = \mathbf{F}^\mathsf{T} \, \mathbf{R}^{-1} \, \boldsymbol{r}_0 - \boldsymbol{f}_0^\mathsf{T} \, \boldsymbol{u}_0 \right)$$

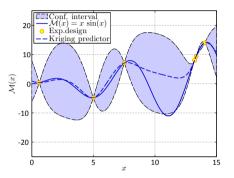
One-dimensional example

Computational model

 $x \mapsto x \sin x$ for $x \in [0, 15]$

Experimental design

Six points selected in the range $\left[0,\,15\right]$ using Monte Carlo simulation



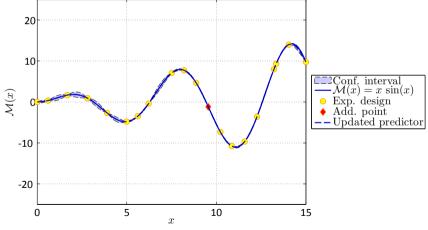
Confidence intervals

As $\widehat{Y}_0 \sim \mathcal{N}(\mu_{\widehat{Y}_0}, \sigma_{\widehat{Y}_0}^2)$, a 95% confidence interval on the prediction reads:

$$\mu_{\widehat{Y}_0} - 1.96\,\sigma_{\widehat{Y}_0} \le \mathcal{M}(\boldsymbol{x}_0) \le \mu_{\widehat{Y}_0} + 1.96\,\sigma_{\widehat{Y}_0}$$

Active learning for reliability

Active learning for global accuracy



Risk, Safety 6 Uncertainty Quantification

Active learning for reliability

Outline

Introduction

Surrogate modelling

Active learning for structural reliability Principle General framework and benchmark

Reliability-based optimization

ETHzürich

Kriging for reliability analysis: basic approach

- From a given experimental design $\mathcal{X} = \{x^{(1)}, \dots, x^{(n)}\}$, Kriging yields a mean predictor $\mu_{\hat{g}}(x)$ and the Kriging variance $\sigma_{\hat{g}}(x)$ of the limit state function g
- The mean predictor is substituted for the "true" limit state function, defining the surrogate failure domain

$${\mathcal D}_{f}{}^{0}=\left\{ oldsymbol{x}\in \mathcal{D}_{oldsymbol{X}}\ :\ oldsymbol{\mu}_{\hat{oldsymbol{g}}}(oldsymbol{x})\leq 0
ight\}$$

• The probability of failure is approximated by:

Kaymaz, Struc. Safety (2005)

$$P_f^0 = \mathbb{P}\left[\mu_{\hat{g}}(oldsymbol{X}) \leq 0
ight] = \int_{\mathcal{D}_f^0} f_{oldsymbol{X}}(oldsymbol{x}) \, doldsymbol{x} = \mathbb{E}\left[oldsymbol{1}_{\mathcal{D}_f^0}(oldsymbol{X})
ight].$$

• Monte Carlo simulation (resp. subset simulation, etc.) can be used on the surrogate model:

$$\widehat{P_f^0} = \frac{1}{N} \sum_{k=1}^N \mathbf{1}_{\mathcal{D}_f^0}(\boldsymbol{x}_k)$$

Confidence bounds on the probability of failure

Shifted failure domains

Dubourg et al., Struct. Mult. Opt. (2011)

• Let us define a confidence level $(1 - \alpha)$ and $k_{1-\alpha} = \Phi^{-1}(1 - \alpha/2)$, *i.e.* 1.96 if $1 - \alpha = 95\%$, and:

$$\mathcal{D}_{\boldsymbol{f}}^{-} = \left\{ \boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}} : \mu_{\hat{g}}(\boldsymbol{x}) + k_{1-\alpha} \, \sigma_{\hat{g}}(\boldsymbol{x}) \le 0 \right\}$$
$$\mathcal{D}_{\boldsymbol{f}}^{+} = \left\{ \boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}} : \mu_{\hat{g}}(\boldsymbol{x}) - k_{1-\alpha} \, \sigma_{\hat{g}}(\boldsymbol{x}) \le 0 \right\}$$

- Interpretation $(1 \alpha = 95\%)$:
 - If $\pmb{x} \in \mathcal{D}^0_f$ it belongs to the true failure domain with a 50% chance
 - If $x \in \mathcal{D}_f^+$ it belongs to the true failure domain with 95% chance: conservative estimation

Bounds on the probability of failure

$$\mathcal{D}_f^- \subset \mathcal{D}_f^0 \subset \mathcal{D}_f^+ \qquad \Leftrightarrow \qquad P_f^- \le P_f^0 \le P_f^+$$

See also Picheny et al. (2010, 2013), Chevalier & Ginsbourger (2014), work on excursion sets by Azzimonti et al. (2016)

Risk, Safety 6 Uncertainty Quantification

Active learning for reliability

Active learning reliability using a Kriging surrogate

Procedure

- Start from an initial experimental design X and build the initial Kriging surrogate of the limit state function \hat{g}_0
- At each iteration k
 - Compute an estimation of P_f (and a confidence interval from the current surrogate)
 - Check a convergence criterion
 - Select the next point(s) to be added to X: enrichment (a.k.a. in-fill) criterion
 - Update the Kriging surrogate to \hat{g}_k

Early approaches

- Efficient global reliability analysis (EGRA)
- Active Kriging Monte Carlo simulation (AK-MCS)

Bichon et al. (2008)

Echard et al. (2011)

Different enrichment criteria

Requirements

- It shall be based on the available information: $(\mu_{\hat{g}}(x), \sigma_{\hat{g}}(x))$, e.g. $U(x) = \frac{|\mu_{\hat{g}}(x)|}{\sigma_{\hat{a}}(x)}$
- · It shall favor new points in the vicinity of the limit state surface
- If possible, it shall yield the best K points when distributed computing is available

Different enrichment criteria

- Margin indicator function
 Bourinet *et al.*, Struc. Safety (2011)
- Margin classification function
 Dubourg et al., PEM (2013)
- Learning function U
 Échard & Gayton, RESS (2011)
- Expected feasibility function

Bichon et al. , AIAA (2008); RESS (2011)

• Stepwise uncertainty reduction (SUR)

Bect et al., Stat. Comput. (2012)

Expected risk Yang et al., SAMO (2015) *H* function Lv, Lu & Wang, CMA (2015)
REIF Zhang et al., RESS (2019)
Reliability-based expected improvement Shi et al., RESS (2020)
UPVC Dang et al., JRUES (2021)
...

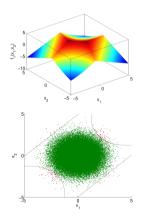
Example: series system

Consider the system reliability analysis defined by:

$$g(\boldsymbol{x}) = \min \begin{pmatrix} 3 + 0.1 (x_1 - x_2)^2 - \frac{x_1 + x_2}{\sqrt{2}} \\ 3 + 0.1 (x_1 - x_2)^2 + \frac{x_1 + x_2}{\sqrt{2}} \\ (x_1 - x_2) + \frac{6}{\sqrt{2}} \\ (x_2 - x_1) + \frac{6}{\sqrt{2}} \end{pmatrix}$$

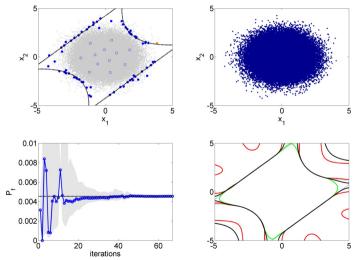
where $X_1, X_2 \sim \mathcal{N}(0, 1)$

- Initial design: LHS of size 12 (transformed into the standard normal space)
- In each iteration, one point is added (maximize the probability of missclassification)



• The mean predictor $\mu_{\widehat{\mathcal{M}}}(x)$ is used, as well as the bounds $\mu_{\widehat{\mathcal{M}}}(x) \pm 2\sigma_{\widehat{\mathcal{M}}}(x)$ so as to get bounds on P_f : $\hat{P}^-_{\underline{m} \in \underline{M}} \leq \hat{P}_f^0 \leq \hat{P}_f^+$

Results with PC Kriging



Active learning for reliability

Outline

Introduction

Surrogate modelling

Active learning for structural reliability

Principle

General framework and benchmark

Reliability-based optimization

Active learning reliability methods

Teixeira, Nogal & O'Connor (2021) Adaptive approaches in metamodel-based reliability analysis: A review, Structural Safety, 89. Moustapha, Marelli & Sudret (2022) Active learning for structural reliability: Survey, general framework and benchmark, Structural Safety, 96.

Numerous papers on active learning called AK-XXX-YYY in the last few years!

- AK-MCS is a cornerstone for the development of active learning reliability strategies
- Most methods in the literature are built by modifying:
 - the surrogate model
 - the learning function
 - the algorithm for reliability estimation
 - the stopping criterion

Risk, Safety & Incertainty Quantification

A module-oriented survey

Moustapha et al. (2022)

	Monte Carlo simulation	Subset simulation	Importance sampling	Other
Kriging				
	Bichon et. al (2008) Echard et. al (2011)	Huang et al. (2016) Tong et al. (2015)	Dubourg et al. (2012) Balesdent et al.	Lv et al. (2015) Bo &
	Hu & Mahadevan (2016) Wen et al. (2016	Ling et al. (2019) Zhang et al. (2019)	(2013) Echard et al. (2013) Cadini et	HuiFeng (2018) Guo et al
) Fauriat & Gayton (2017) Jian et. al		al. (2014) Liu et al. (2015) Zhao et al.	(2020)
	(2017) Peijuan et al. (2017) Sun et al.		(2015) Gaspar et al. (2017) Razaaly et	
	(2017) Lelievre et al. (2018) Xiao et al. (2018) Jiang et al. (2019) Tong et		al. (2018) Yang et al. (2018) Zhang & Taflanidis (2018) Pan et al. (2020) Zhang	
	al. (2019) Wang & Shafieezadeh (2019)		et al. (2020)	
	Wang & Shafieezadeh (SAMO, 2019)		et al. (2020)	
	Zhang, Wang et al. (2019)			
PCE				
	Chang & Lu (2020) Marelli & Sudret			
	(2018) Pan et al. (2020)			
SVM		Bourinet et al. (2011) Bourinet (2017)		
	Basudhar & Missoum (2013) Lacaze &			
	Missoum (2014) Pan et al. (2017)			
RSM/RBF				Rajakeshir (1993) Rous-
	Li et al. (2018) Shi et al. (2019)			souly et al. (2013)
Neural networks	Chojazyck et al. (2015) Gomes et al.		Chojazyck et al. (2015)	
	(2019) Li & Wang (2020) [Deep NN]	Sundar & Shields (2016)		
Other				
	Schoebi & Sudret (2016) Sadoughi et al.			
	(2017) Wagner et al. (2021)			

- U - EFF - Other variance-based - Distance-based - Bootstrap-based - Sensitivity-based - Cross-validation/Ensemble-based - ad-hoc/other

General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model	Reliability estimation	Learning function	Stopping criterion
Kriging	Monte Carlo	U	LF-based
PCE	Subset simulation	EFF	Stability of eta
SVR	Importance sampling	FBR	Stability of P_f
PC-Kriging	Line sampling	СММ	Bounds on eta
Neural networks	Directional sampling	SUR	Bounds on P_f

Active learning for reliability

Extensive benchmark: Set-up

Reliability method	Surrogate model	Learning function	Stopping criterion	
Monte Carlo simulation	Kriging		Beta bounds	
Subset simulation	PC-Kriging	EFF	Beta stability	$3 \cdot 2 \cdot 2 \cdot 3 = 36$ strategies
Importance sampling	PO-Kinging		Combined	
Monte Carlo simulation				
Subset simulation	PCE	FBR	Beta stability	3 strategies
Importance sampling				
Subset simulation, Importance sampling w/o metamodel				2 strategies

In total 39 + 2 = 41 strategies are tested

23/41

Moustapha, Marelli & Sudret (2022) Active learning for structural reliability: Survey, general framework and benchmark, Structural Safety, 96.

ETHzürich

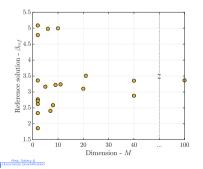
Extensive benchmark: options for the various methods

KrigingTrend: ConstantKernel: GaussianCalibration: MLE	 PCE Degree: 1 - 20 q-norm : 0.8 Calibration: LAR 	 PC-Kriging Same as Kriging same as PCE but Degree 1 - 3
 Monte Carlo simulation Max. sample size: 10⁷ Target C.o.V: 2.5% Batch size: 10⁵ 	 Importance sampling Max. sample size: 10⁴ Target C.o.V: 2.5% Instrumental density: Standard Gaussian centered on the MPFP 	Subset simulation • Max. sample size: 10^7 • Target C.o.V: 2.5% • Batch size: 10^5 • Conditional probability: $p_0 = 0.25$

ETH zürich

Selected problems

- 20 problems selected from the literature
- 11 come from the TNO benchmark (https://rprepo.readthedocs.io/en/latest/)
- Wide spectrum of problems in terms of
 - Dimensionality
 - Reliability index $\beta = -\Phi^{-1}(P_f)$



Problem	M	$P_{f,\mathrm{ref}}$	Reference
01 (TNO RP14)	5	$7.69 \cdot 10^{-4}$	Rozsas & Slobbe 2019
02 (TNO RP24)	2	$2.90 \cdot 10^{-3}$	Rozsas & Slobbe 2019
03 (TNO RP28)	2	$1.31 \cdot 10^{-7}$	Rozsas & Slobbe 2019
04 (TNO RP31)	2	$3.20 \cdot 10^{-3}$	Rozsas & Slobbe 2019
05 (TNO RP38)	7	$8.20 \cdot 10^{-3}$	Rozsas & Slobbe 2019
06 (TNO RP53)	2	$3.14 \cdot 10^{-2}$	Rozsas & Slobbe 2019
07 (TNO RP54)	20	$9.79 \cdot 10^{-4}$	Rozsas & Slobbe 2019
08 (TNO RP63)	100	$3.77 \cdot 10^{-4}$	Rozsas & Slobbe 2019
09 (TNO RP7)	2	$9.80 \cdot 10^{-3}$	Rozsas & Slobbe 2019
10 (TNO RP107)	10	$2.85 \cdot 10^{-7}$	Rozsas & Slobbe 2019
11 (TNO RP111)	2	$7.83 \cdot 10^{-7}$	Rozsas & Slobbe 2019
12 (4-branch series)	2	$3.85 \cdot 10^{-4}$	Echard et al. (2011)
13 (Hat function)	2	$4.40 \cdot 10^{-3}$	Schoebi et al. (2016)
14 (Damped oscillator)	8	$4.80 \cdot 10^{-3}$	Der Kiureghian (1990)
15 (Non-linear oscillator)	6	$3.47 \cdot 10^{-7}$	Echard et al. (2011,2013)
16 (Frame)	21	$2.25 \cdot 10^{-4}$	Echard et al. (2013)
17 (HD function)	40	$2.00 \cdot 10^{-3}$	Sadoughi et al. (2017)
18 (VNL function)	40	$1.40 \cdot 10^{-3}$	Bichon et al. (2008)
19 (Transmission tower 1)	11	$5.76 \cdot 10^{-4}$	FEM (172 bars, 51 nodes)
20 (Transmission tower 2)	9	$6.27 \cdot 10^{-4}$	FEM (172 bars, 51 nodes)

Comparison of the various strategies

Approximately 12,000 reliability analyses were run: 41 strategies - 20 problems - 15 replications

Three evaluation criteria:

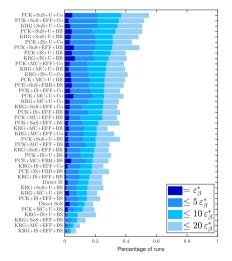
- Number of model evaluations: $N_{\rm eval}$
- Accuracy: $\varepsilon = \left|\beta \beta_{\text{ref}}\right| / \beta_{\text{ref}}$
- Efficiency: $\Delta = \varepsilon \cdot \frac{N_{\text{eval}}}{\overline{N}_{\text{eval}}}$

where $\overline{N}_{\rm eval}$ is the median number of model evaluations for each problem

For each criterion:

- Ranking of the strategies as a whole
- Performance of the methods w.r.t. problem feature (dimensionality, range of *P_f*)

Ranking of the strategies: accuracy of β



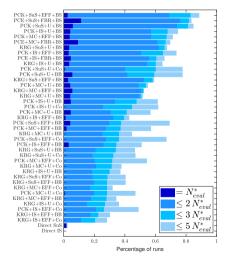
How many times a method ranks best in terms of smallest error on beta (resp. within 5, 10 or 20 times this relative error)?

$$\varepsilon = \left|\beta - \beta_{\mathrm{ref}}\right| / \beta_{\mathrm{ref}}$$

- Best approach: PC-Kriging + SuS + U + Combined stopping criterion
- Worst approaches: Kriging + IS + EFF + BS

ETHzürich

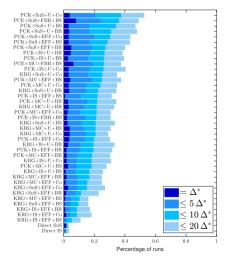
Ranking of the strategies: number of model evaluations



How many times a method ranks best (resp. within 2, 3, 5 times the lowest cost denoted $N_{\rm eval}^{*})$?

- Best approach: PC-Kriging + SuS + EFF + BS
- Worst approache: Direct IS

Ranking of the strategies: efficiency



How many times a method ranks best according to efficiency Δ (resp. within 5, 10, 20 times the best)?

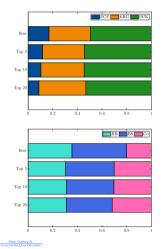
$$\Delta = \varepsilon_{\beta} \frac{N_{\text{eval}}}{\overline{N}_{\text{eval}}}$$

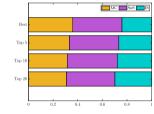
where \overline{N}_{eval} is the median number of model evaluations for a particular problem (over all methods and replications)

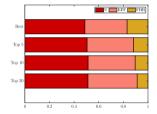
- Best approach: PC-Kriging + SuS + U + Combined stopping criterion
- Worst approaches: Direct SuS and Direct IS

Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. Δ (regardless of the strategy)







- Surrogates: PC-Kriging dominates by far
- Reliability: Slight advantage to subset simulation
- Learning function: U dominates both EFF and FBR
- Stopping criterion: Slight advantage to the stability criterion

Summary of the results

Recommendations w.r.t. the problem feature

Module	Dimensionality		Magnitude of the reliability index	
	M < 20	$20 \le M \le 100$	$\beta < 3.5$	$\beta \geq 3.5$
Surrogate model	PCK	PCE	PCE/PCK	PCK
Reliability method	SuS	SuS	SuS	SuS
Learning function	U	FBR	U/FBR	U
Stopping criterion	β_{bo}, β_{co}	eta_{bo} / eta_{co}	β_{bo}, β_{co}	β_{bo}

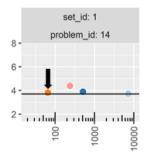
Main take-away

There is no drawback in using surrogates compared to a direct solution

TNO Benchmark: performance of UQLab "ALR" module

Rozsas & Slobbe (2019)

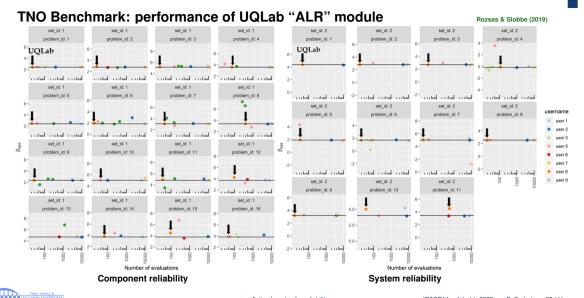
- Truly black-box benchmark with 27 problems
- · Limit state functions not known to the participants and only accessible through an anonymous server
- Our solution: the "best approach" previously highlighted (PCK + SuS + U + Co)



Summary plot (TNO)

- Reference solution: black line
- Zero, one or more points per participant
- X: number of runs (log scale)
- Y: obtained β index

best approach: "on the line / to the left"



Outline

Introduction

Surrogate modelling

Active learning for structural reliability

Reliability-based optimization

Reliability-based design optimization

General RBDO formulation

Dubourg et al. (2011)

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} f_{j}\left(eldsymbol{d}
ight) \leq 0 & \{j=1,\ldots,n_{s}\} \ & \mathbb{P}\left[g_{k}\left(oldsymbol{X}(oldsymbol{d}),oldsymbol{Z}
ight) < 0
ight] \leq ar{P}_{f_{k}} & \{k=1,\ldots,n_{h}\} \end{aligned}$$

- d: Design parameters
- $\boldsymbol{X} \sim f_{\boldsymbol{X}|\boldsymbol{d}}$: Associated random variables
- $\boldsymbol{Z} \sim f_{\boldsymbol{Z}}$: Environmental parameters

Solution of the RBDO problem

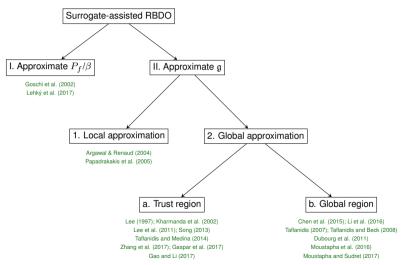
- Approximation methods
 - Two-level approach (e.g. RIA, PMA)
 - Mono-level approach (e.g. SLA)
 - Decoupled approach (e.g. SORA)
- Simulation-based methods
- Surrogate-assisted methods

Risk, Safety 6

- c: Cost function
- f: Soft constraints
- g: Hard constraints

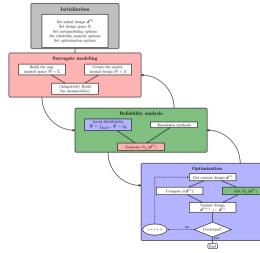
Surrogate-assisted RBDO

Moustapha & Sudret (2019)



Generalized and unified framework

Moustapha & Sudret (2019)

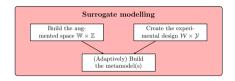


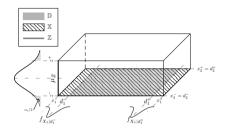
Three governing principles:

- Problem-agnostic
- Independent blocks
- Non-intrusive

Practical implementation

Taflanidis & Beck (2008), Dubourg et al. (2011), Moustapha et al. (2016)

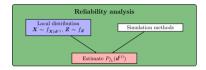




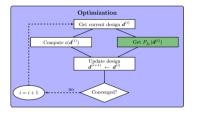
- Considers a unique and global surrogate model
- Requires a confidence region over which the metamodel is built (avoid extrapolation)
- Use of an augmented space to support the reliability analysis for any design choice

The metamodel is built using an active learning scheme

Practical implementation



- Favor simulation- over approximation-based techniques
- Use of Common random numbers



- Use of general-purpose optimization algorithms
- Favor global over local optimizers
- Finite difference scheme rather than analytical gradients

120-bar dome structure

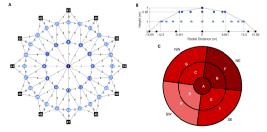
The structure consists of

- 120 bars divided in 7 groups
- 49 nodes in four levels
- Computational model in ABAQUS
- Deterministic vertical loading (60/30/10 kN)
- Random surface loading: Gumbel distributed on four sectors $(1/0.5/0.25 \text{ kN/m}^2)$

Optimization problem

Risk, Safety 6

- Cost: Weight of the structure
- Constraint: Maximum vertical displacement below 10 mm
- Target failure probability : 0.0228
- 7 deterministic design $\boldsymbol{d} \in [10, 40]^7 \text{ cm}^2$
- 9 random environmental variables (loads on sectors A H)

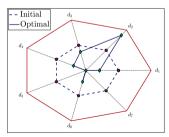


Torre et al. 2017, Kaveh et al. 2009

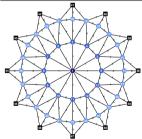
Dome: Results

Solution obtained using Framework #3 (Kriging + MCS + CMA-ES + two-stage enrichment): 510 model evaluations

- Initial experimental design: 80
- First stage of enrichment: 220
- Second stage of enrichment: 210



Design	Weight (Tons)
Initial design	12.474
Optimal design	8.032



Conclusions

- Estimating low probabilities of failure in high-dimensional problems requires more refined algorithms than plain MCS
- Recent research on surrogate models (e.g. Kriging and polynomial chaos expansions) and active learning has brought new extremely efficient algorithms
- Accurate estimations of P_f's (not of β !) are obtained with O(100) runs of the computer code regardless of their magnitude
- Reliability-based design optimization can be achieved using global surrogates in an augmented space
- All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab (V.2.0, "Active learning reliability" module) and its python version UQ[py]Lab

UQLab The Framework for Uncertainty Quantification

"Make uncertainty quantification available for anybody, in any field of applied science and engineering"

www.uqlab.com

- MATLAB®-based Uncertainty
 Quantification framework
- State-of-the art, highly optimized open source algorithms
- · Fast learning curve for beginners
- · Modular structure, easy to extend
- · Exhaustive documentation

ETHzürich

UQLab: The Uncertainty Quantification Software

• BSD 3-Clause license:

Free access to academic, industrial, governmental and non-governmental users

 6,200 registered users from 94 countries since 2015 (~600⁺ since 01/2023)

http://www.uqlab.com

- The cloud version of UQLab, accessible via an API (SaaS)
- Available with python bindings for beta testing

https://uqpylab.uq-cloud.io/

Country	# Users
China	1041
United States	889
France	498
Germany	454
Switzerland	405
United Kingdom	246
India	236
Brazil	216
Italy	214
Belgium	118
Canada	118
The Netherlands	108

As of July 6, 2023

Questions ?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification Software

www.uqlab.com

www.uqpylab.uq-cloud.io

UQ[py]Lab

The Uncertainty Quantification Community

www.uqworld.org

Rink, Safety 6 Uncertainty Quantification