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Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Limit state function

• The failure criterion is cast as a limit state function (performance function) g : x ∈ DX 7→ R such that:

g (x, M(x)) ≤ 0 Failure domain Df

g (x, M(x)) > 0 Safety domain Ds

g (x, M(x)) = 0 Limit state surface

e.g. g(x) = yadm − M(x) when Failure ⇔ QoI = M(x) ≥ yadm

Failure domain Df

Safe domain Ds

x1

x2

Probability of failure

Pf = P
({

X ∈ Df

})
= P
(

g (X, M(X))
)

=
∫

Df ={x∈DX : g(x,M(x))≤0}
fX(x) dx ≤ 0

• Multidimensional integral (d = 10 − 100+), implicit domain of integration

• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8
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Classical methods

Approximation methods Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

• First-/Second- order reliability method (FORM/SORM)

– Relatively inexpensive semi-analytical methods
– Convergence is not guaranteed (e.g. in presence of multiple failure regions)

Simulation methods Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

• Monte Carlo simulation

– Unbiased but slow convergence rate

• Variance-reduction methods

– e.g. Importance sampling, subset simulation, line sampling, etc.
– Their computational costs remain high (i.e. O(103−4) model runs)

Surrogate models can be used to leverage the computational cost of simulation methods
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M with the following features:
• It is built from a limited set of runs of the original model M called the experimental design

X =
{

x(i), i = 1, . . . , n
}

• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = β
T · f(x) + Z(x, ω) β , σ2

Z , θ

Support vector machines M̃(x) =
n∑

i=1

ai K(xi, x) + b a , b

(Deep) Neural networks M̃(x) = fn (· · · f2 (b2 + f1 (b1 + w1 · x) · w2)) w, b

• It is fast to evaluate
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of input
parameters: Latin hypercube sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as in Monte Carlo simulation

• Smartly post-process the data {X , M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages
• Non-intrusive methods: based on runs of the

computational model, exactly as in Monte Carlo
simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges
• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Gaussian process modelling

Gaussian process modelling (a.k.a. Kriging) assumes that the map y = M(x) is a realization of a Gaussian process:

Y (x, ω) =
p∑

j=1

βj fj(x) + σ Z(x, ω)

where:
• f = {fj , j = 1, . . . , p}T are predefined (e.g. polynomial) functions which form the trend or regression part

• β = {β1, . . . , βp}T are the regression coefficients

• σ2 is the variance of Y (x, ω)

• Z(x, ω) is a stationary, zero-mean, unit-variance Gaussian process

E [Z(x, ω)] = 0 Var [Z(x, ω)] = 1 ∀ x ∈ X

The Gaussian measure artificially introduced is different from the aleatory uncertainty on the
model parameters X
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Kriging equations

Data
• Given is an experimental design X = {x1, . . . , xn} and the output of the computational model

y = {y1 = M(x1), . . . , yn = M(xn)}

• We assume that M(x) is a realization of a Gaussian process Y (x) such that the values yi = M(xi) are known
at the various points {x1, . . . , xn}

• Of interest is the prediction at a new point x0 ∈ X, denoted by Ŷ0 ≡ Ŷ (x0, ω), which will be used as a surrogate
M̃(x0)

Ŷ0 is obtained as as a conditional Gaussian variable:

Ŷ0 = Y (x0 | Y (x1) = y1, . . . , Y (xn) = yn)
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Joint distribution of the predictor / observations

• For each point xi ∈ X , Yi ≡ Y (xi) is a Gaussian variable:

Yi =
p∑

j=1

βj fj(xi) + σZi = fT
i · β + σ Zi Zi ∼ N (0, 1)

• The joint distribution of {Y0, Y1, . . . , Yn}T is Gaussian:{
Y0

Y

}
∼ N1+N

({
fT

0 β

F β

}
, σ2

[
1 rT

0
r0 R

])

• Regression matrix F of size (N × p)

Fij = fj(xi)
i = 1, . . . , N, j = 1, . . . , p

• Vector of regressors f0 of size p

f0 = {f1(x0), . . . , fp(x0)}

• Correlation matrix R of size (N × N)

Rij = R(xi, xj ; θ)

• Cross-correlation vector r0 of size N

r0i = R(xi, x0; θ)

Active learning for reliability ICASP14 – July 11, 2023 B. Sudret 10 / 41



Kriging mean predictor and variance

Santner, William & Notz (2003)

The conditional distribution of Ŷ0 given the observations {Y (xi) = yi}n
i=1 is a Gaussian variable:

Ŷ0 ∼ N (µ
Ŷ0

, σ2
Ŷ0

)

Mean predictor : used as surrogate model

µ
Ŷ0

= fT
0 β̂ + rT

0R−1
(

y − F β̂
)

where the regression coefficients β̂ are obtained from the generalized least-square solution:

β̂ =
(

FT R−1 F
)−1

FT R−1 y

Kriging variance : local prediction uncertainty

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1 − rT

0 R−1 r0 + uT
0
(

FT R−1 F
)−1

u0

)
u0 = FT R−1 r0 − f0
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One-dimensional example

Computational model

x 7→ x sin x for x ∈ [0, 15]

Experimental design

Six points selected in the range [0, 15] using Monte
Carlo simulation

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp.design
Kriging predictor

Confidence intervals

As Ŷ0 ∼ N (µ
Ŷ0

, σ2
Ŷ0

), a 95% confidence interval on the prediction reads:

µ
Ŷ0

− 1.96 σ
Ŷ0

≤ M(x0) ≤ µ
Ŷ0

+ 1.96 σ
Ŷ0
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Active learning for global accuracy

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp. design
Add. point
Updated predictor
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Kriging for reliability analysis: basic approach

• From a given experimental design X =
{

x(1), . . . , x(n)
}

, Kriging yields a mean predictor µĝ(x) and the Kriging
variance σĝ(x) of the limit state function g

• The mean predictor is substituted for the “true” limit state function, defining the surrogate failure domain

Df
0 =
{

x ∈ DX : µĝ(x) ≤ 0
}

• The probability of failure is approximated by: Kaymaz, Struc. Safety (2005)

P 0
f = IP

[
µĝ(X) ≤ 0

]
=
∫

D0
f

fX(x) dx = E
[

1D0
f

(X)
]

• Monte Carlo simulation (resp. subset simulation, etc.) can be used on the surrogate model:

P̂ 0
f

=
1
N

N∑
k=1

1D0
f

(xk)

Active learning for reliability ICASP14 – July 11, 2023 B. Sudret 14 / 41



Confidence bounds on the probability of failure

Shifted failure domains Dubourg et al. , Struct. Mult. Opt. (2011)

• Let us define a confidence level (1 − α) and k1−α = Φ−1(1 − α/2), i.e. 1.96 if 1 − α = 95%, and:

D−
f

=
{

x ∈ DX : µĝ(x) + k1−α σĝ(x) ≤ 0
}

D+
f

=
{

x ∈ DX : µĝ(x) − k1−α σĝ(x) ≤ 0
}

• Interpretation (1 − α = 95%):

– If x ∈ D0
f it belongs to the true failure domain with a 50% chance

– If x ∈ D+
f

it belongs to the true failure domain with 95% chance: conservative estimation

Bounds on the probability of failure

D−
f

⊂ D0
f ⊂ D+

f
⇔ P −

f
≤ P 0

f ≤ P +
f

See also Picheny et al. (2010, 2013), Chevalier & Ginsbourger (2014), work on excursion sets by Azzimonti et al. (2016)
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Active learning reliability using a Kriging surrogate

Procedure
• Start from an initial experimental design X and build the initial Kriging surrogate of the limit state function ĝ0

• At each iteration k

– Compute an estimation of Pf (and a confidence interval from the current surrogate)

– Check a convergence criterion

– Select the next point(s) to be added to X : enrichment (a.k.a. in-fill) criterion

– Update the Kriging surrogate to ĝk

Early approaches
• Efficient global reliability analysis (EGRA) Bichon et al. (2008)

• Active Kriging - Monte Carlo simulation (AK-MCS) Echard et al. (2011)
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Different enrichment criteria

Requirements

• It shall be based on the available information:
(

µĝ(x) , σĝ(x)
)

, e.g. U(x) =
|µĝ(x)|
σĝ(x)

• It shall favor new points in the vicinity of the limit state surface

• If possible, it shall yield the best K points when distributed computing is available

Different enrichment criteria
• Margin indicator function Bourinet et al. , Struc. Safety (2011)

• Margin classification function Dubourg et al. , PEM (2013)

• Learning function U Échard & Gayton, RESS (2011)

• Expected feasibility function
Bichon et al. , AIAA (2008); RESS (2011)

• Stepwise uncertainty reduction (SUR)
Bect et al. , Stat. Comput. (2012)

• Expected risk Yang et al. , SAMO (2015)

• H function Lv, Lu & Wang, CMA (2015)

• REIF Zhang et al. , RESS (2019)

• Reliability-based expected improvement Shi et al. , RESS

(2020)

• UPVC Dang et al. , JRUES (2021)

• ...
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Example: series system
Schöbi et al. , ASCE J. Risk Unc. (2016)

Consider the system reliability analysis defined by:

g(x) = min


3 + 0.1 (x1 − x2)2 − x1+x2√

2
3 + 0.1 (x1 − x2)2 + x1+x2√

2
(x1 − x2) + 6√

2
(x2 − x1) + 6√

2


where X1, X2 ∼ N (0, 1)

• Initial design: LHS of size 12 (transformed into the standard normal space)

• In each iteration, one point is added (maximize the probability of
missclassification)

• The mean predictor µ
M̂

(x) is used, as well as the bounds µ
M̂

(x) ± 2σ
M̂

(x) so as to get bounds on Pf :

P̂ −
f

≤ P̂ 0
f ≤ P̂ +

f
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Results with PC Kriging
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Active learning reliability methods
Teixeira, Nogal & O’Connor (2021) Adaptive approaches in metamodel-based reliability analysis: A review, Structural Safety, 89.

Moustapha, Marelli & Sudret (2022) Active learning for structural reliability: Survey, general framework and benchmark, Structural Safety, 96.

Numerous papers on active learning called AK-XXX-YYY in the last few
years!

• AK-MCS is a cornerstone for the
development of active learning reliability
strategies

• Most methods in the literature are built by
modifying:

– the surrogate model

– the learning function

– the algorithm for reliability estimation

– the stopping criterion
Active learning for reliability ICASP14 – July 11, 2023 B. Sudret 20 / 41
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A module-oriented survey Moustapha et al. (2022)

Monte Carlo simulation Subset simulation Importance sampling Other

Kriging
Bichon et. al (2008) Echard et. al (2011)
Hu & Mahadevan (2016) Wen et al. (2016
) Fauriat & Gayton (2017) Jian et. al
(2017) Peijuan et al. (2017) Sun et al.
(2017) Lelievre et al. (2018) Xiao et
al. (2018) Jiang et al. (2019) Tong et
al. (2019) Wang & Shafieezadeh (2019)
Wang & Shafieezadeh (SAMO, 2019)
Zhang, Wang et al. (2019)

Huang et al. (2016) Tong et al. (2015)
Ling et al. (2019) Zhang et al. (2019)

Dubourg et al. (2012) Balesdent et al.
(2013) Echard et al. (2013) Cadini et
al. (2014) Liu et al. (2015) Zhao et al.
(2015) Gaspar et al. (2017) Razaaly et
al. (2018) Yang et al. (2018) Zhang &
Taflanidis (2018) Pan et al. (2020) Zhang
et al. (2020)

Lv et al. (2015) Bo &
HuiFeng (2018) Guo et al.
(2020)

PCE
Chang & Lu (2020) Marelli & Sudret
(2018) Pan et al. (2020)

SVM
Basudhar & Missoum (2013) Lacaze &
Missoum (2014) Pan et al. (2017)

Bourinet et al. (2011) Bourinet (2017)

RSM/RBF
Li et al. (2018) Shi et al. (2019)

Rajakeshir (1993) Rous-
souly et al. (2013)

Neural networks Chojazyck et al. (2015) Gomes et al.
(2019) Li & Wang (2020) [Deep NN] Sundar & Shields (2016)

Chojazyck et al. (2015)

Other
Schoebi & Sudret (2016) Sadoughi et al.
(2017) Wagner et al. (2021)

− U − EFF − Other variance-based − Distance-based − Bootstrap-based − Sensitivity-based − Cross-validation/Ensemble-based − ad-hoc/other
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General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...
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Extensive benchmark: Set-up

Reliability method Surrogate model Learning function Stopping criterion

Monte Carlo simulation
Kriging U

Beta bounds

Subset simulation Beta stability 3 · 2 · 2 · 3 = 36 strategies

Importance sampling
PC-Kriging EFF

Combined

Monte Carlo simulation
PCE FBR Beta stability 3 strategiesSubset simulation

Importance sampling

Subset simulation, Importance sampling w/o metamodel 2 strategies

In total 39 + 2 = 41 strategies are tested

Moustapha, Marelli & Sudret (2022) Active learning for structural reliability: Survey, general framework and benchmark, Structural
Safety, 96.
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Extensive benchmark: options for the various methods

Kriging

� Trend: Constant

� Kernel: Gaussian

� Calibration: MLE

Monte Carlo simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

PCE

� Degree: 1− 20

� q-norm : 0.8

� Calibration: LAR

Importance sampling

� Max. sample size: 104

� Target C.o.V: 2.5%

� Instrumental density:
Standard Gaussian
centered on the MPFP

PC-Kriging

� Same as Kriging

� same as PCE but...

� Degree 1− 3

Subset simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

� Conditional probability:
p0 = 0.25
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Selected problems

• 20 problems selected from the literature

• 11 come from the TNO benchmark
(https://rprepo.readthedocs.io/en/latest/)

• Wide spectrum of problems in terms of

– Dimensionality
– Reliability index β = −Φ−1(Pf )

~
~

Problem M Pf,ref Reference

01 (TNO RP14) 5 7.69 · 10−4 Rozsas & Slobbe 2019

02 (TNO RP24) 2 2.90 · 10−3 Rozsas & Slobbe 2019

03 (TNO RP28) 2 1.31 · 10−7 Rozsas & Slobbe 2019

04 (TNO RP31) 2 3.20 · 10−3 Rozsas & Slobbe 2019

05 (TNO RP38) 7 8.20 · 10−3 Rozsas & Slobbe 2019

06 (TNO RP53) 2 3.14 · 10−2 Rozsas & Slobbe 2019

07 (TNO RP54) 20 9.79 · 10−4 Rozsas & Slobbe 2019

08 (TNO RP63) 100 3.77 · 10−4 Rozsas & Slobbe 2019

09 (TNO RP7) 2 9.80 · 10−3 Rozsas & Slobbe 2019

10 (TNO RP107) 10 2.85 · 10−7 Rozsas & Slobbe 2019

11 (TNO RP111) 2 7.83 · 10−7 Rozsas & Slobbe 2019

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schoebi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011,2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3 Sadoughi et al. (2017)

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008)

19 (Transmission tower 1) 11 5.76 · 10−4 FEM (172 bars, 51 nodes)

20 (Transmission tower 2) 9 6.27 · 10−4 FEM (172 bars, 51 nodes)
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Comparison of the various strategies

Approximately 12, 000 reliability analyses were run:
41 strategies - 20 problems - 15 replications

Three evaluation criteria:

• Number of model evaluations: Neval

• Accuracy: ε = |β − βref| /βref

• Efficiency: ∆ = ε · Neval

Neval

where Neval is the median number of model
evaluations for each problem

For each criterion:

• Ranking of the strategies as a whole

• Performance of the methods w.r.t. problem
feature (dimensionality, range of Pf )
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Ranking of the strategies: accuracy of β

Percentage of runs

How many times a method ranks best in terms of
smallest error on beta (resp. within 5, 10 or 20 times
this relative error)?

ε = |β − βref| /βref

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Kriging + IS + EFF + BS
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Ranking of the strategies: number of model evaluations

Percentage of runs

How many times a method ranks best (resp. within
2, 3, 5 times the lowest cost denoted N∗

eval) ?
• Best approach: PC-Kriging + SuS + EFF + BS

• Worst approache: Direct IS
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Ranking of the strategies: efficiency

Percentage of runs

How many times a method ranks best according to
efficiency ∆ (resp. within 5, 10, 20 times the best)?

∆ = εβ
Neval

Neval

where Neval is the median number of model evaluations
for a particular problem (over all methods and replications)

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Direct SuS and Direct IS
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Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. ∆ (regardless of the strategy)

• Surrogates: PC-Kriging dominates by far

• Reliability: Slight advantage to subset simulation

• Learning function: U dominates both EF F and F BR

• Stopping criterion: Slight advantage to the stability criterion
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Summary of the results

Recommendations w.r.t. the problem feature

Module Dimensionality Magnitude of the reliability index

M < 20 20 ≤ M ≤ 100 β < 3.5 β ≥ 3.5
Surrogate model PCK PCE PCE/PCK PCK

Reliability method SuS SuS SuS SuS

Learning function U FBR U/FBR U

Stopping criterion βbo,βco βbo / βco βbo,βco βbo

Main take-away

There is no drawback in using surrogates compared to a direct solution
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

• Truly black-box benchmark with 27 problems

• Limit state functions not known to the participants and only accessible through an anonymous server

• Our solution: the “best approach” previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)
• Reference solution: black line

• Zero, one or more points per participant

• X: number of runs (log scale)

• Y: obtained β index

best approach: “on the line / to the left”
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability System reliability
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Outline

Introduction

Surrogate modelling

Active learning for structural reliability

Reliability-based optimization
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Reliability-based design optimization

General RBDO formulation Dubourg et al. (2011)

d∗ = arg min
d∈D

c (d) s.t.:

{
fj (d) ≤ 0 {j = 1, . . . , ns}
P [gk (X(d), Z) < 0] ≤ P̄fk

{k = 1, . . . , nh}

• d: Design parameters

• X ∼ fX|d: Associated random variables

• Z ∼ fZ : Environmental parameters

• c: Cost function

• f : Soft constraints

• g: Hard constraints

Solution of the RBDO problem Chateauneuf & Aoues (2008)

• Approximation methods

– Two-level approach (e.g. RIA, PMA)
– Mono-level approach (e.g. SLA)
– Decoupled approach (e.g. SORA)

• Simulation-based methods

• Surrogate-assisted methods
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Surrogate-assisted RBDO Moustapha & Sudret (2019)

Surrogate-assisted RBDO

I. Approximate Pf /β

Goschi et al. (2002)
Lehký et al. (2017)

II. Approximate g

1. Local approximation

Argawal & Renaud (2004)
Papadrakakis et al. (2005)

2. Global approximation

a. Trust region

Lee (1997); Kharmanda et al. (2002)
Lee et al. (2011); Song (2013)
Taflanidis and Medina (2014)

Zhang et al. (2017); Gaspar et al. (2017)
Gao and Li (2017)

b. Global region

Chen et al. (2015); Li et al. (2016)
Taflanidis (2007); Taflanidis and Beck (2008)

Dubourg et al. (2011)
Moustapha et al. (2016)

Moustapha and Sudret (2017)
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Generalized and unified framework Moustapha & Sudret (2019)

Initialization

Surrogate modeling

Reliability analysis

Optimization

Set initial design d(0)

Set design space D
Set metamodeling options

Set reliability analysis options
Set optimization options

Build the aug-
mented space W × Z

Create the experi-
mental design W × Y

(Adaptively) Build
the metamodel(s)

Local distribution
X ∼ fX|d(i) , Z ∼ fZ

Simulation methods

Estimate Pfk(d
(i))

Get current design d(i)

Compute c(d(i)) Get Pfk(d
(i))

i = i+ 1

Update design
d(i+1) ← d(i)

Converged?

End

no

yes

Three governing principles:

• Problem-agnostic

• Independent blocks

• Non-intrusive
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Practical implementation Taflanidis & Beck (2008), Dubourg et al. (2011), Moustapha et al. (2016)

Surrogate modelling

Build the aug-
mented space W × Z

Create the experi-
mental design W × Y

(Adaptively) Build
the metamodel(s)

d−1

fX1|d−
1

d+1

fX1|d+
1

x−1 x+1

x+2 = d+2

x−2 = d−2

αz/2

µ
Z

z
−

z
+

D
X
Z

• Considers a unique and global surrogate model

• Requires a confidence region over which the metamodel is built (avoid extrapolation)

• Use of an augmented space to support the reliability analysis for any design choice

The metamodel is built using an active learning scheme
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Practical implementation

Reliability analysis

Local distribution
X ∼ fX|d(i) , Z ∼ fZ

Simulation methods

Estimate Pfk(d
(i))

Optimization

Get current design d(i)

Compute c(d(i)) Get Pfk(d
(i))

i = i+ 1

Update design
d(i+1) ← d(i)

Converged?
no

• Favor simulation- over approximation-based
techniques

• Use of Common random numbers

• Use of general-purpose optimization algorithms

• Favor global over local optimizers

• Finite difference scheme rather than analytical
gradients
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120-bar dome structure

Torre et al. 2017, Kaveh et al. 2009

The structure consists of
• 120 bars divided in 7 groups

• 49 nodes in four levels

• Computational model in ABAQUS

• Deterministic vertical loading (60/30/10 kN)

• Random surface loading: Gumbel distributed on four sectors (1/0.5/0.25 kN/m2)

Optimization problem
• Cost: Weight of the structure

• Constraint: Maximum vertical displacement below 10 mm

• Target failure probability : 0.0228

• 7 deterministic design d ∈ [10, 40]7 cm2

• 9 random environmental variables (loads on sectors A - H)
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Dome: Results
Solution obtained using Framework #3 (Kriging +
MCS + CMA-ES + two-stage enrichment): 510 model
evaluations

• Initial experimental design: 80
• First stage of enrichment: 220
• Second stage of enrichment: 210

Design Weight (Tons)

Initial design 12.474
Optimal design 8.032
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Conclusions

• Estimating low probabilities of failure in high-dimensional problems requires more refined algorithms than plain MCS

• Recent research on surrogate models (e.g. Kriging and polynomial chaos expansions) and active learning has
brought new extremely efficient algorithms

• Accurate estimations of Pf ’s (not of β !) are obtained with O(100) runs of the computer code regardless of their
magnitude

• Reliability-based design optimization can be achieved using global surrogates in an augmented space

• All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab (V.2.0,
“Active learning reliability” module) and its python version UQ[py]Lab
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www.uqlab.com
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UQLab: The Uncertainty Quantification Software

• BSD 3-Clause license:

Free access to academic, industrial,
governmental and non-governmental users

• 6,200 registered users from 94 countries since
2015 (∼600+ since 01/2023)

http://www.uqlab.com

• The cloud version of UQLab, accessible via an
API (SaaS)

• Available with python bindings for beta testing

https://uqpylab.uq-cloud.io/

Country # Users

China 1041

United States 889

France 498

Germany 454

Switzerland 405

United Kingdom 246

India 236

Brazil 216

Italy 214

Belgium 118

Canada 118

The Netherlands 108

As of July 6, 2023
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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