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Preface

When speaking of quantum mechanics, one has typically a physics or chemistry student in mind.
However, research on materials is now so advanced that students of material science must be trained
to understand and above all use those deepest concepts of quantum mechanics that were reserved
to physics students in the past. It is along these lines that these lectures discuss the fundamental
concepts of modern Quantum Physics such as the failure of classical mechanics, the postulates and
mathematical structure of Quantum Physics, the electronic structure of atoms, molecules and solids,
the electron spin and time dependent perturbations. The lectures are constructed in such a way
that the various concepts are introduced by starting from the explicit and detailed treatment of a
simple example. These particular cases are then generalized and put into a ”moderately ” rigorous
framework – the word ”moderately” meaning that the mathematics is not worked out in details but
the essential steps are rigorous enough to withstand practical applications. The present manuscript
summarizes the content of the various lectures. The lectures were distributed over a semester at
ETH Zurich (about 13 weeks, four hours per week). The course included a set of problems that
were intended to complement the lectures themselves with concrete examples and that were solved
weekly by the students (one hour per week). I am grateful to the assistants (in particular, for the final
version, A.-K. Thamm and M. Demydenko) for mentoring the students during the exercises. I am
also grateful to Pascal Studer for providing an excellent graphical version of the various figures. The
manuscript contains a larger amount of information than the lectures: in my opinion, this provides
the readers with the opportunity to finding out by themselves the essential aspects and, ultimately,
to acquire a real understanding of the matter. Those section marked with ∗ are for advanced reading.
Some of the experiments presented contain a link to the site ”Vorlesungsexperimente Departement
Physik” of ETH Zurich. The team that prepared these experimental demonstrations over the years
has supported the present lectures with a large amount of experiments that could be performed
in-situ and in real time. They also made their work available online. I am grateful to the team for
their work in supporting these lectures in particular and the entire physics lecture businnes at ETH
Zurich.
The number of textbooks on Quantum Mechanics is, of course, approaching ”infinity”. One may
ask: why such a further manuscript. The best answer is: this manuscript is unnecessary. A less
straighforward answer is: when a manuscript is based on actual lectures, it takes into account the
striving of the teacher to present the various concepts in such a way that they are understandable
and can be put into practice. Material scientists need exactly this kind of approach. I hope that this
manuscript satisfies their needs for having a piece of practical quantum mechanics they can refer to
in their further career.
The knowledge used to prepare these lectures was acquired by reading a large amount of literature
on the subject. In particular, I would like to quote the lectures on quantum mechanics held by the late
Prof. R. Jost at ETH Zurich during the academic year 1977-1978, at which I had the honor to partic-
ipate as a student. Furthermore, I found the manuscript by the late Prof. W. Hunziker inspiring. The
present lectures show my personal understanding of the subject. This understanding also emerged
during the interaction with the many students that frequented my courses. A thank goes also to them.

D. Pescia, Department of Physics, ETH Zurich, March 2023
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1. The origin of quantum mechanics

1.1. The year 1911: J.J. Thomson and E. Rutherford

At the beginning of the twentieth century, numerous observations made it clear that Newtonian me-
chanics was not able to explain important experimental results. The most important discoveries con-
cern the concept and the experimental evidence about ”Atoms”. Democritus, some 24 centuries ago,
(460-371 BC) interpreted, correctly, the transformation of water from liquid to vapour as evidence
that matter consists of small, indivisible units that he called ”atoms”. This awareness was more philo-
sophical and only survived in the shadow of the doctrin of Aristoteles, according to which matter
was a combination of the four elements that, in the Middle Age, formed the basis of alchemy: wa-
ter, earth, fire, air. Exerimental evidence for the existence of atoms came from the chemists, after
Pierre Gassendi in 1647 and Robert Boyle in 1661 developed further the theory of Democrit, arguing
that matter is composed of combinations of atoms each carrying a different shape, dimension and
weight, i.e. each forming different elements – but certainly not the four elements of alchemy. Antoine
Lavoisier, considered the founder of modern chemistry, introduced, in 1789, the current concept of
the chemical element and identified some of them (oxygen, hydrogen, sulfur (soufre), phosphorus,
carbon (carbone) antimony, silver etc.). It was John Dalton, in 1803, that introduced atoms definitely
in chemistry as the only possible explanation of the fact that elements react always in quantitative
proportions of some integers to form compounds: each element consists of similar atoms, which then
undergo chemical reactions to build compounds. The contribution of physics followed much later:
J.J. Thomson observed in 1897 the motion of so-called ”cathode rays” in the presence of electric and
magnetic fields and found that they behave like negatively charged particles.

+-

U

+-

U ~B
~E

Experiment for determining e
m , carried out by J.J. Thomson in 1897. The electrons, generated by thermo-

emission from a hot wire (the cathode, left), are accelerated by a voltage U between cathode and anode.
When traversing a plate capacitor, they are deflected along the vertical direction by an electric field ~E.
If a coil applies a magnetic field ~B along the horizontal direction, the deflection caused by ~E can be
compensated so that the electrons (red beam) pass the arrangement exactly parallel along the axis of the
instrument (perpendicular to both ~E and ~B). e

m can be derived from the classical relation 1
2U

E
B

2
.

Thomson determined e
m for the electron and recognized it as a particle. From this he constructed the

first model of the atom, consisting of small point-like particles (the electrons) embedded in a positively
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charged, possibly spherical, ’sponge’ (Thomson model). Later, in 1909, E. Rutherford scattered α-
particles at a very thin gold foil and found a sizeable number of particles being backscattered.

Radioactive source

Screen

Scattering target

α-particles are positively charged and are produced by radioactive decay. In the Rutherford scattering
experiment, a beam of α particles is scattered onto a metal foil (typically gold). The α particles scattered
by the ”target” are registered on a screen. Rutherford found that most particles pass undisturbed through
the foil, but some are scattered at great angles (even backwards). This speaks against the Bohr model,
because the scattering potential of a positively charged sphere with the extension of an atom would hardly
have any great effect on the particles and would certainly not have scattered them backwards. In contrast,
a model of the atom as an empty space with a positively charged nucleous in the middle is more compatible
with the experimental results of Rutherford.

This sizable number of backscattered α particles was puzzling. Suppose that the positive atomic
charge would extend over the entire size of atoms – estimated to 0.1 nm. Then the deflection of the
α-particles by Coulomb repulsion acting at such distances was estimated by Rutherford to be almost
negligible. A much smaller size of the positive charge - the emergence of a ”nucleous” with a radius
less that 10−5 nm – was necessary to explain the backscattered particles, indicating that most of the
mass of the atom is concentrated in a very small charged atomic nucleous in the center of the atom
(Rutherford’s atomic model), around which the electrons under the influence of the Coulomb force
circle as point particles. The Rutherford model had a drawback: orbiting electrons around a nucleous
fall into the nucleous by emission of radiation after a very short time. This was the end of the line
for classical models of the atom that included Coulomb interaction, Newton mechanics (leading to
centrifugal forces that prevented electrons to fall into the nucleous) and classical electrodynamics.

3
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A summary of the models of atoms. Democritus (a) considered matter as consisting of small, indivisible
particles. Dalton (b) suggested that matter consists of indivisible atoms, the atoms of different elements
always differ in their mass and size. Moreover, he proposed that an integer number of atoms of differ-
ent elements form compounds. Thomson (c) recognized that the electrons are components of the atoms
and can escape from matter (”cathode rays”). Each atom consists of an electrically positively charged
sphere, in which electrically negatively charged electrons are stored - like raisins in a cake. Rutherford
(d) summarized the findings from his experiment as an atom model: in Rutherford’s atom, the positive
charge is concentrated within a point (the nucleous) that is in the atomic center. The diameter of the
atomic nucleous is only one ten-thousandth of the total atomic diameter. The atomic shell contains the
negatively charged electrons that revolve around the atomic nucleous. The atomic shell is almost empty
because the electrons are much smaller than the atom. Bohr (e) (see later) proposed circular orbits for
the electrons that develop with a discrete (”quantized”) set of angular momenta. Electrons are ”protected”
by the quantization to decay into the nucleous.

1.2. The year 1900: Planck.

Any body at finite temperature emits radiation in a continuum range of frequencies. An atomic model
of the source of this radiation foresees that the atoms building the body can be modelled as an ensem-
ble of harmonic oscillators (possibly interacting, but this is not an essential element of the model). We
know now that the frequency of the oscillations can vary over a certain continuous range (depending
on the material properties of the medium), but this is also a non-essential element of the model. What
is essential is the fact that the oscillators at a finite temperature can assume different total amplitudes
of oscillation – the probability that a certain amplitude A is realized being proportional to

e−
1
2 ·m·Ω

2 ·A2

kB ·T
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In this expression we use, for the sake of simplicity and to stick with the conventional wisdom prior
to the year 1900, 1

2 ·m ·Ω
2 ·A2 to express the energy of the harmonic oscillator – this is therefore the

classical energy of a single oscillator. m is the mass of the oscillating particle and Ω a characteristic
frequency of oscillation. A2 can vary in a continuous manner. T is the equilibrium temperature and
kB is the Boltzmann constant, that translates temperatures into energies. The exponential law for
the probability is an exact result of equilibrium thermodynamics of macroscopic bodies and is still a
valid one – its is called the Boltzmann-Gibbs or canonical distribution. To understand the origin of
radiation, is enough to think that the equilibrium state is one where the individual oscillators might
assume amplitudes which differ for short times from the thermal average < A2 > but decay, after
enough long times, to < A2 >. The body therefore is seen as a macroscopic set of jittering oscillators
which might absorb or emit radiation is the process of keeping the equilibrium value < A2 >. By this
absorpion and emission of electromagnetic waves the body becomes a container of a further system
besides a gas of harmonic oscillators: a system consisting of electromagnetic radiation with a certain
energy density. This model was of course very clear to all involved in measuring and computing the
radiation emitted by a body at finite temperature. Rayleigh and Jeans, for instance ( L. Rayleigh:
Remarks upon the Law of Complete Radiation, Phil. Mag. Series 1, 49, 1900, p. 539–540; J. H.
Jeans, On the partition of energy between matter and Aether, Phil. Mag. Series 6, 10, 1905, p. 91–98)
computed the spectral energy density of the radiation field as a function of the radiation frequency
ω using a classical model in which the amplitude A2 is taking continuous values and found that
the intensity of the radiation at a given temperature was increasing as ω2 (we will find later this
result, using a model of the oscillators proposed by Einstein). This represented a clear contrast with
experiments at high frequencies. These experiments measured the intensity of the emitted ”black
body” radiation (this intensity being related to the energy density of the electromagnetic radiation
in the body) and found that the initial ω2-dependence turned into a decreasing behaviour at higher
frequencies.

The emitted radiation as a function of the radiation frequency is expected in the classical approach to
grow as ω2 (dashed line). Experimentally, the graph follows closely the functional dependence on ω
computed by Planck (solid lines), shown for different temperatures T .

It was Planck (M. Planck, Faksimile aus den Verhandlungen der deutschen Physikalischen
Gesellschaft, 2, (1900) p.237-245, Zur Theorie des Gesetzes der Energieverteilung im Normalspec-
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trum) who found an explanation for this deviation from the classical ω2-dependence: He assumed
that oscillations could only take place with some discrete amplitudes. More precisely: he assumed that
the energy of oscillators could only assume discrete values En with En= const ·n ·Ω, with n=0,1,2,....
He then computed the frequency dependence of the energy density of the radiation field (we will ob-
tain Planck result later, using a method proposed by Einstein) in thermal equilibrium, and adjusted the
proportionality constant arising in En = const ·n ·Ω and appearing in the equilibrium energy density
in order to fit the shape of the experimentally measured ω-dependence. He found that the propor-
tionality constant assumes the value which is now known as Planck constant of action

ħh = 1.04 ·10−34Joule ·seconds= 6.582 ·10−16eV ·seconds

h
.
= 2π ·ħh= 6.626 ·10−34Joule ·seconds= 4.136 ·10−15eV ·seconds

1.3. The year 1905: Einstein.

A system of electromagnetic radiation at a given frequency ω and given temperature T has not only
an energy density, given by Planck formula, but, as recognized by Einstein, it must be assigned, from
a thermodynamic point of view, an entropy as well. Einstein computed the entropy of the radiation
in a frequency interval [ω,ω+dω] as amounting to

kB ·
U
ħhω
· ln(

V
V0
)

with U being the total energy of the radiation in the interval [ω,ω+dω] and V the volume of the
system. V0 is some constant that, for the purpose of finding the significance of this formula, does not
play a role. This formula is very much telling when compared to the entropy of an ideal gas of N
independent particles:

kB ·N · ln(
V
V0
)

Einstein concluded, by comparing the two formulas, that monochromatic light behaves from the
thermodynamical point of view just as if it were made up of mutually independent ”particles” each
carrying the energy

E =ħh ·ω
In 1917 Einstein proposed that the ”particles” be assigned a ”momentum” as well, to be computed
from the wavenumber k of the light (recall that k = 2π

λ , λ being the wavelength of the radiation)
acccording to

p=ħh ·k
Nowadays we call these ”Einstein particles” ”photons” and Einstein hypothesis is called the ”photon
hypothesis’.

In his work, Einstein proceeds to find an application of this hypothesis: he proposes that the
photon hypothesis explains the (so far) mysterious photoelectric effect, discoverd by Hertz in 1887
and quantitatively underlying to experiments by Lenard in 1902. Lenard found that the maximum
kinetic energy of electrons emitted by illuminating a metal with light does not depend on the
intensity of the radiation but on the frequency of the light. Einstein proposed to use the photon
hypothesis to explain this behaviour and found that the experimental data were properly described
by the particle like energy conservation relation

Emax =ħhω−ϕ
e.g. the slope of the graph Emax versus ω should be just ħh. The constant ϕ is a minimum energy
barrier that the electrons have to overcome when exciting the plate (the so-called work function)

6



and is typically 4.5 eV.
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The photoelectric effect is illustrated in the Figure. A simple experimental arrangement which can be
used to measure the photoeffect consists of a metallic plate (the cathode) and a collector (the anode). If
light hits the cathode at a certain frequency, electrons leave the cathode at suitable light frequencies and
are collected by the collector, which charges negatively. This creates an electric field that slows down the
electrons. The electric field continues to grow until the potential energy difference U between the cathode
and the anode equals the maximum kinetic energy of the electrons. If we plot the voltage between the
cathode U and the anode as a function of the light frequency, we find that the data lie on a straight
line U = ν · 2π·ħh

e −
ϕ
e . From the slope of the line, ħh can be determined by known electron charge. If one

try to excite electrons with a frequency below that of the photothreshold ϕ
ħh , no photoemission current is

recorded, even if the intensity of the light is increased. See https://experimente.phys.ethz.ch/
de/100/10002/20071/30457/

1.4. The year 1906: Einstein.

The ensemble of harmonic oscillators co-exsiting with its radiation field in a medium has itself an
equilibrium total energy E(T,V ) and a specific heat (or heat capacity) CV =

∂ E
∂ T |V which can be

7
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recorded as a function of temperature by – at that time – standard calorimetry. It was one of the most
celebrated results of thermodynamics applied to a gas of classical oscillators that the total equilibrium
energy per oscillator, computed assuming the classical mechanical energy 1

2 ·m ·Ω
2 ·A2 – originating

from Newton Mechanics – is just 3 ·kB · T , the number 3 arising from the fact that an oscillator in a
three dimensional body has three degrees of freedom. This is the result of a strict theorem of classical
statistical mechanics known as the equipartition theorem, which assigns to each degree of freedom
subject to potentials energy a total energy of kB · T . This total energy produces a Dulong-Petit con-
tribution 3 ·kB to the specific heat in solids which is, most remarkably, temperature independent and
universal. The experimental results, instead, show the completely different picture of a temperature
dependent, non-universal heat capacity in common metals. The explanation for the experimental be-
haviour residing outside the equipartition theorem was provided by A. Einstein, assuming – along the
lines of reasoning by Planck – that the solid contains a gas of harmonic oscillators with a characteristic
frequency Ω and allowed to assume only discrete values of energies, given by n ·ħh ·Ω, n= 0,1,2,3,....

T

CV

3kB

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

Sketch of the the temperature dependence of the specific heat as measured in various solids. The tempera-
ture dependence varies from material to material, but, if one divides the real temperature by a a material
specific characteristic temperature, the experimental data from different materials fall approximately
onto the same curve, sketched in the figure. The theoretical curve obtained here below in this section fits
well the experimental data. The dashed horizonal line is the purely classical Dulong-Petit result.

∗ Einstein model of the speci�c heat in solids. It is educational to follow in details the computa-
tion of the total energy along the two lines of reasoning – the classical one, leading to the equipartition
– and the one assuming quantized energy levels, leading to a pronounced deviation from classical
equipartition. For this purpose we summarize some fundamental results of statistical physics. At finite
temperarture, a system in thermodynamic equilibrium contains a set of excitations which are typically
characterized by some excitation energy En. The probability that such an excited state is realized is
given by the Boltzmann-Gibbs distribution

Pn =Ωn ·
e−

En
kB ·T

∑

n ·Ωn · e−En/kB T
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Ωn is the degeneracy of the excited state with energy En. For instance, a given energy state 1
2 ·m·Ω

2 ·A2

is at least twice degenerate, taking into account that a state with amplitude +A and −A have the same
excitation energy. The denominator is the sum over all possible excited states and normalizes the
probability of assuming any excited state to 1. Once Pn is known, one can compute thermal averages,
such as the average energy at a temperature T by the recipe

< E >|T,V,N=

∑

n En ·Ωn · e−En/kB T

∑

nΩn · e−En/kB T

These rules govern equilibrium statistical mechanics. The problem of computing thermal averages
reduces to compute the energies of all possible excited states – a problem which is, in general, ex-
tremely difficult to solve with the exception of very few special models. The best one can do is to find
a set of relevant excitations and hope that the thermal average computed over them is representative.
Notice that we have chosen a formulation with discrete energy levels, which is strictly speaking only
correct in quantum mechanics. When Newton mechanics governs the motion, one has a continuum
set of excitation energies and the formulation has to be modified accordingly. The lore of classical sta-
tistical mechanics foresees that the possible states of a classical system are described with the phase
space of the variables q - the coordinates of the space where the system can reside (the so-called
configuration space) - and p - the possible values of the momenta that the system can assume. The
total energy is described by the Hamiltonian function H(q, p) which contains e.g. the kinetic energy
and potential energies of the various interactions. The q, p parameter space is a continuum one so
that the Boltzman-Gibbs probability distribution translates into an integral:

∑

n
(. . .)−→

∫

(. . .)ρ(q, p)dq ·dp

The number of possible states in the intervall (q+dq, p+dp) is the density of states ρ(q, p). This quan-
tity is ill- defined in classical statistical physics but in order to recover results of statistical physics based
on classical mechanics starting from results based on quantum mechanics one can set ρ(q, p) = 1

hd ,
d being the dimensionality of the system. This means that the phase space is thought of an ensemble
of cells with volume hd and containing 1 possible state of the system. The probability of finding the
system in the interval state (q+dq, p+dp) does not contain ρ(q, p) explicitely and writes

P(q+dq, p+dp) =
e−

H(q,p)
kB ·T ·dq ·dp

∫

dq ·dp · e−H(q,p)/kB T

We would like to use this expression to compute the average energy e(T ) of one single classical har-

monic oscillator with one degree of freedom, i.e. with H(q, p) = p2

2m +
mΩ2q2

2 . Of course, a real system
hosts many of such oscillators, but if they are not interacting one can deal with one single particle
and the thermal averages for the real system are obtained by multiplying the thermal average of one
particle with the number of particles. We find that Gaussian integrals appear in the computation,
which gives finally the classical equipartition result:

e(T ) =

∫ ∞

−∞
dq

∫ ∞

−∞
dp ·(

p2

2m
+

mΩ2q2

2
) · P(q+dq, p+dp) = kB ·T

with

P(q+dq, p+dp) =
e−

p2
2m+

mΩ2q2
2

kB ·T ·dq ·dp
∫∞
−∞

∫∞
−∞ dq ·dp · e−(

p2
2m+

mΩ2q2
2 )/kB T

We now assume that the energies of the harmonic oscillator are quantized to
εn = n ·ħh ·Ω
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Later, when dealing with the quantum mechanical harmonic oscillator, we will prove this assumption
starting from ”first principles”. e(T ) writes now

e(T ) =

∑∞
n=0 n ·ħhΩ · e−ħhΩn/kT

∑∞
n=0 e−ħhΩn/kT

where the sum runs over the discrete index n. To evaluate the sums, we write

ħhΩ

∑

n n · xn

∑

n xn
x

.
= e−ħhΩ

and use the identities
∑

n
xn =

1
1− x

∑

n
n · xn = x

d
d x

∑

n
xn =

x
(1− x)2

so that we obtain

< e(T )>=ħhΩ ·
1

eħhΩ/kT −1
and

cV (T ) = kB

(ħhΩ)2
kB ·T
· e
(ħhΩ)2
kB ·T

eħhΩ/kB T −1
This result, obtained first by Einstein, shows two important facts: First, the specific heat contains the
material parameter Ω, which makes it material- dependent. Second, the temperature dependence of
the specific heat, sketched in the previous figure, is not just a straight horizontal line and is found to
better fit the experimental data.
The understanding of the experimental specific heat data was an important achievement that sup-
ported the original intuition by Planck of quantized energies for harmonic oscillators. One important
comment: for large temperatures, e(T ) approaches the classical limit kB · T . We point out that the
cross-over to classical behavior at high temperatures is a generally valid trend in matter and suggests
that quantum behavior in matter is only observable at sufficiently low temperatures.

1.5. ∗The year 1917: Einstein.

Einstein provides an intuitive derivation of Planck results by considering a system of harmonic os-
cillators with discrete energy levels En (possibly with some degeneracy Ωn) in equilibrium with the
radiation system originating from transitions between the states n,m and having the sought for en-
ergy density u(ω, T ). Einstein starts with the number Nn of oscillators in the state n being given by
the Boltzmann-Gibbs distribution Pn. These oscillators can decay into a state m with Em < En bei
spontaneous emission of radiation of frequency ħhω= En− Em, the transition rate being

dN s
nm

d t
= Nn ·Anm

Anm is some coefficient that describes the process of spontaneous emission of radiation and was, at
that time, unknown. On the other side, the existing radiation field can induce a transition from the
state n to m with a rate

dN i
nm

d t
= u(ω, T ) ·Nn ·Bnm

Again, Bnm is some coefficient describing the process of interaction between harmonic oscillator and
radiation field, at that time unknown. The state n, hovewer, can also be occupied when radiation of
the frequency ħhω= En− Em is absorbed by the system in state m with En > Em, the absorption rate
being

dNmn

d t
= u(ω, T )Nm ·Bmn
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Notice that, again, the coefficient Bmn is unknwon, but Einstein made the educated guess that Bnm=
Bmn. We will prove the identity of the so called Einstein coefficients during the course of this lecture
and we will compute them explicitly. In equilibrium we must have the relation

dNmn

d t
=

dN s
nm

d t
+

dN i
nm

d t
which translates to

u(ω, T )Nm ·Bmn = Nn ·Anm+u(ω, T ) ·Nn ·Bnm

Using Pn,m =
Nn,m

N , with N being the total number of oscillators we obtain
Pm ·u(ω, T ) ·Bnm = Pn ·Anm+u(ω, T ) · Pn ·Bnm

Solving for the sought for density u(ω, T ) and taking into account that
Pn− Pm

Pn
= 1− e

ħhω
kB ·T

we obtain

u(ω, T ) =
Anm

ħh ·ω ·Bnm
·
ħh ·ω

e
ħhω

kB ·T −1
u(ω, T ) consists of two factors: the one on the right hand side is similar to the average energy of a
quantum mechanical harmonic oscillator with a frequency ω. This tells us that the radiation system
also behaves as a gas of harmonic oscillators. The prefactor contains the ratio of two transition rates
and must be further specified in order to find the result originally written down by Planck for u(ω, T ).
To determine the prefactor we use the strategy of considering the radiation ensemble, from the point
of view of thermodynamics, as a set of independent harmonic oscillators and we count the number
of such oscillator in a cavity of volume V . To count the number of radiation degrees of freedom we
consider the radiation field in the volume V with a continuum of frequencies ω, so that we have to
consider the eigenmodes of a cavity of size L3 with the density of eigenmodes at a given frequency. The
eigenmodes are characterized, under the assumption of proper boundary conditions for the radiation
field within the cavity, by the ~k values

~k=
π

L
(nx ,ny ,nz)

with ni = 0,±1,±2,..... The number of eigenmodes within a sphere of radius q in the ~k reciprocal

space is given by L3

3π2 ·
ω3

c3 , using the relation ω = c ·q. The density of states at ω amounts to the

derivative of L3

3π2 ·
ω3

c3 with respect to ω:

dN
dω
=

L3

π2c3
·ω2

Assigning the kB T equipartition value to any of these eigenmodes we obtain the Rayleigh-Jeans clas-
sical spectral density

u(ω, T ) |classical=
1
π2c3

·ω2 ·kB ·T

We require now that the high temperature limit of the expression

u(ω, T ) =
Anm

ħh ·ω ·Bnm
·
ħh ·ω

e
ħhω

kB ·T −1
be u(ω, T ) |classical. This procedure fixes the pre-factor uniquely and produces the Planck result

u(ω, T ) |Planck=
1
π2c3

·ω2 ·
ħh ·ω

e
ħhω

kB ·T −1
This expression also allows to determine a general law between the coefficients Anm for spontaneous
emission and Bnm for induced emission:

Anm

Bnm
=
ħhωnm

π2 · c3
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which can be computed within the framework of advanced quantum mechanics.

1.6. The year 1913: Bohr

The most compelling experimental evidence for the existence of quantized energy levels were the
emission spectrum of hydrogen and other atoms, which were measured accurately e.g. already at
the end of the 19th century by optical spectroscopy. The light emitted by an ensemble of atoms was
analyzed by a prism into its color-components, and only a set of well-defined colors were observed.
Alternatively, one sends white light through a medium and observe the formation of well-defined
black lines after analyzing the transmitted light according the its frequency.
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Within a tube, a gas – in this case He – is brought to glow. The light emitted is sent into a prisms and
analyzed according to its colors. Characteristic peaks are observed in the intensity distribution, indicat-
ing that optical excitation in atoms occurs at well defined wave-lengths. This points to the presence of
discrete energy levels in atoms that can absorb or emit light only with characteristic frequencies. See
https://experimente.phys.ethz.ch/de/100/10002/20004/30559/

Of all atoms, atomic hydrogen emits the simples spectrum which was explained in 1885 by Balmer
with the empirical formula

ωnm = R(
1

m2
−

1
n2
)

where n,m= 1,2,... n>m and the constant R (known as the Rydberg frequency) R= 2π ·3.31015s−1,
which was introduced to match the discrete emission lines observed by spectroscopy of the H-vapor.
A further experimental outcome was the observation by Franck and Hertz between 1911 and 1914.
In a vacuum tube, filled with typically mercury vapor, electrons are generated by means of a hot
cathode and are accelerated by a controllable electrical voltage U between the emitting cathode and
a grid. When U is increased the current grows, producing, at low voltages, a characteristic Ohm I−V -
curve. The electrons collide with the Hg atoms and this provide an observable resistance. At some
characteristic voltages (in H g e.g. about 4.9 eV) the current drops sharply. This is interpreted as the
kinetic energy of the electrons high enough to excite the H g atom into a state H g∗. By doing this
excitation, the incoming electron looses its energy and ”vanishes” from the current. Evidently this
excitation occurs at a well defined energy. The successive decay produces light with a well defined
wavelength (λ= 253.6nm in Hg) corresponding to a far-ultraviolet light frequency. The outcome of
the Franck and Hertz experiment is thus to be considered as a proof of discrete energy levels in an
atom.
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Top: Frank-Hertz experimental set-up. The glass tube is filled with e.g H g vapor . An electron beam is
accelerated by a variable voltage U. Most electrons are absorbed on the metal wires of the grid, but
some pass through the grid and are collected at a collector. Their intensity is measured as a function
of U. The collector has a negative voltage with respect to the grid, so that only electrons are detected
which exceed a certain threshold for the kinetic energy. Bottom: typical current-voltage characteristic in
a Franck-Hertz experiment. Because of inelastic collisions the electrons lose some of their kinetic en-
ergy, which is used to excite the atoms. Therefore, the inelastically scattered electrons are prevented
from reaching the collector by the reverse voltage between the grid and the collector and are absent
in the intensity measurement. This corresponds to a decrease of current in the I −V characteristic. See
https://experimente.phys.ethz.ch/de/100/10002/20004/30210/

The existence of quantized frequencies led Bohr to postulate the formation of quantized energy lev-
els for the electronic structure of atoms. The simplest formula that would immediately explain the
empirical Balmer law for the Hydrogen atom would be a set of discrete energy levels given by

En =−R y ·
1
n2

with R y =ħh ·R being what will be known as the unit of energy ”1 Rydberg” (about 13.6 eV).
The contribution of Bohr is the development of a simple, empirical, model that explains the quanti-
zation and compute R in terms of known natural and universal constants. He suggested to consider
the electrons perfoming circular orbits around the nucleous (Rutherford model), at a well-defined
energy E and with a well defined angular momentum L. The solution of the Newton problem of a
central potential provides following equations for circular orbits:

E =−
1

4πε0
·
e2

r
+

L2

2mr2
r =

L2 ·4πε0

m · e2
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Eliminating r from these equations one obtains

E =−
1
2
·

e4

(4πε0)2
·

1
L2

This result shows that a quantization of the energy levels in the Hydrogen atom is tantamount of
imposing a quantum rule for the angular momentum of

L= n ·ħh
with n= 1,2,3,..... This produces the correct energy levels

En =−
1
2
·

e4 ·m
(4πε0)2 ·ħh2 ·

1
n2

Notice a very important element of the Bohr quantization rule: the ground state circular orbit has
angular momentum 1 ·ħh. This result will be contradicted later by Schrödinger, which finds for the
ground state of the Hydrogen atom an angular momentum of 0. From this result one can read out
that the Rydberg energy:

1
2
·

e4 ·m
(4πε0)2 ·ħh2

is actually made up of physical constants such as the mass and the charge of the electron, 4πε0 and
ħh.

1.7. ∗The years 1913-1917: A. Sommerfeld.

A. Sommerfeld proposed that the quantization rules
En = nħhΩ

for the harmonic oscillator and
L= nħh

for the angular momentum are special cases of a more general quantization rule. Consider one degree
of freedom characterized by the spatial coordinate q and the momentum p. Consider e.g. the closed

orbit p(q) at a given energy resulting from the classical equation p2

2m +V (q) = E (one dimensional
motion). Then Sommerfeld suggested the empirical rule of quantization for a classical closed orbit
p(q) as

∮

dqp(q) = n ·h

where the integral extends over a certain range of values q allowed for the orbit. Take, as example,
the one-dimensional classic harmonic oscillator. Then energy conservation writes

p2

2m
+

1
2

m ·Ω2 ·q2 = E

and the quantity
∫

dq · p is the area of the ellipse determined in the (p,q) coordinate-space by this
equation. This means that

∮

pdq=π
p

2mE ·

√

√2E
m
·Ω−1 =

2π · E
Ω

Sommerfeld quantization rule, applied to this results, reads
2π · E
Ω
= n ·h

which is equivalent to Planck result
E = n ·ħh ·Ω

Sommerfeld quantization rule is important because it can be applied to a larger class of system that
the ones investigated by Planck (one dimensional harmonic oscillator) and Bohr (circular orbits). For
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instance, using the quantization rule of Sommerfeld one can proceed to quantize elliptic orbits in the
Kepler problem as well. When applied to systems with more that one degree of freedom, Sommerfeld
quantization rule reads

∮

pkdqk = nk ·h

the index k labeling the corresponding degree of freedom. This generalization allows to introduce
more quantum numbers – each referring to a separate degree of freedom. By means of the hypothesis
of Sommerfeld, the electronic structure of atoms and the atomic spectra could be organized in a more
systematic way and transitions between the various quantized states could be e.g. excluded because
prohibited by some selection rules (see later in this lecture). Finally, the quantization rule of Sommer-
feld set a very specific classical quantity at the center of more rigorous essays to develop a quantum
mechanics from first priciples: the

∮

pdq which is known in classical mechanics as the ”action”. How-
ever, despite its generality and usefulness, the quantization rule of Sommerfeld is a tautology: it
explains the quantization of some quantities by starting with a quantization. The Schrödinger equa-
tion is fundamentally different: is finds quantized quantities without imposing any quantization to
start with.

1.8. 1921: Hendrika Johanna van Leeuwen.

Bohr, in his dissertation, and later Mrs. van Leeuwen in a rigorous paper, provided and exact proof
of a very interesting result of statistical mechanics. If one assume that electrons in matter follow
Newton mechanics, than the average magnetic moment arising from the electron system at finite
temperatures is exactly vanishing. In other words, there is no magnetic matter. Yet the experimental
facts about magnetism in solids are as old as the history of mankind: some materials have the property
of producing a sizable magnetic field that attracts or repel other materials. One of the first references
to the magnetic properties of what we know now to be magnetite Fe3O4 (lodestone) is by 6th century
BCE Greek philosopher Thales of Miletus. The name ”magnet”may come from the lodestones found in
Magnesia. In China, the earliest literary reference to magnetism lies in a 4th century BC book called
Book of the Devil Valley Master: "The lodestone makes iron come or it attracts it". The lodestone based
compass was used for navigation in medieval China by the 12th century. To explain the observation
of magnetism in matter Ampere proposed, using Maxwell equations, that the origin of the magnetism
in matter are the electrons that circulate at atomic levels and produce an atomic current, which, in
turn, generates, via Maxwell equations, the magnetic field responsible for the magnetic behavior of
matter. This model of magnetism is indeed correct: we now know with certainty that it is the finite
angular momentum of electrons in atoms which generates the so-called atomic magnetic moment
µ, which, in turn, produces the magnetic field. Bohr-van Leeuwen theorem is about the statistical
average of the magnetic moment – a kind of equipartition theorem for magnetic moments –: at finite
temperatures one must integrate over all states that can produce a magnetic moment in an atom, and
this integration makes the average magnetic moment vanishing. We have seen that the equipartition
theorem for the contribution of the oscillations to the specific heat in solids gives the temperature
independent average Dulong-Petit value of kB. The equipartition theorem, applied to the ensemble of
magnetic moments, gives a vanishing value of the average magnetic moment at any temperature. We
have learned from Einstein that the wrong result of classical physics can be bypassed by quantizing
the energy of the mechanical motion. We will indeed learn that the Bohr-van Leeuwen catastrophe
can be bypassed by quantizing the values of the angular momentum (Landau, 1930).
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1.9. The years 1896-1900: Becquerel and M. Curie

The unstable atomic nuclei change spontaneously into other nuclei. They emit particles and very
short-wave radiation. Natural radioactivity was discovered by Becquerel in 1896 and studied in depth
by Pierre and Marie Curie. The emitted particles are either electrons or so-called α particles, i.e. He-
cores. Later, Rutherford discovered the artificial nuclear transformation i.e. the ability, by shelling
of particles, to transform nuclei of an element into nuclei of another element. Understanding the α
decay of the heavy nuclei represents a challenge that is beyond the reach of classical physics.

Eα

ECb
E

r

Potential energy of a α particle as a function of the distance to the nucleus.

In fact, consider the reaction
U238

92 −→ Th234
90 +α

4
2

where the emitted α particle has an energy of about 7.1 MeV (Eα in the figure). If one model the
potential energy of an α particle within the nuclous by a potential well and outside it we allow the
Coulomb law, one finds that the particle has to overcome a so-called Coulomb-barrier (EC b in the
figure) in order to escape the nucleus. According to Coulomb’s law, the Coulomb barrier amounts to
EC b= zα ·ZK e2/(4πε0RK), with the core radius RK ≈1.310−15A1/3 (A: mass number)), ZK the nuclear
charge and zα the charge number of the α particle. For a U238

92 decay one obtains, with zα = 2 and
Zk=92−2=90 a barrier of EC b=32.1MeV . The ejected α particles have an energy of 7.1MeV . This
means that the α particle originates from a level of the potential well which is below the Coulomb
barrier. On its way out off the nucleus, theα particle in a radioactive decay must have traveled through
a classically forbidden space region. The explanation of this one major failure of classical physics in
term of tunnel effect by G. Gamov was one of the most convincing proofs of the validity of quantum
mechanics at atomic level.

1.10. The year 1923: De Broglie

The photon hypothesis of Einstein foresees that electromagnetic waves consist of particles with energy
ħh ·ω and momentum ħh · k. With the photon hypothesis, Einstein established as system of particles
that has the strange (for particles) property of undergoing e.g. diffraction from a small object. De
Broglie, in his dissertation, translated the classical energy and classical momentum of a particle into
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its frequency and wavenumber:

ω=
E
ħh

k=
p
ħh

thus assigning to ordinary matter a ”wave-like” character. De Broglie did not know what was the
physical meaning of his hypothesis, although he proposed a possible consequence of it. He used

the relation ~p2

2m = E to compute the wavelength for a free particle of a given energy E and found
(expressed with practical units)

λ[in nm] =

√

√ 1.54
E[in eV]

Inserting E = 100 one obtains λ≈ 0.1 nm. Accordingly, De-Broglie proposed that one should expect
to observe diffraction patterns when electrons are scattered e.g. at crystals (lattice constant: 0.1 nm).
This prediction was indeed confirmed in 1927 (Davisson and Germer) by electron scattering at Ni
crystal surfaces and was one of the most significant discoveries in the history of science. Diffraction
was then observed with other particles, like neutrons. Recent experiments have observed diffraction
even in atomic-and cluster- beam scattering experiments at artificial lattices (see e.g. J.P. Tonnies et
al., Physikalische Blätter 56, 53-55, 2000 and, for C70, A. Zeilinger et al., Phys. Blätter, March 2000,
p. 379)). The mathematical and physical aspects of diffraction will be the subject of an advanced
topics chapter in this manuscript.

Left: Low-energy electron diffraction on a surface with tenfold symmetry (courtesy of M. Erbudak).
The electrons are directed with about 100 eV kinetic energy onto the surface of a quasi-crystal
and the backscattered electrons are visualized on a phosphorescent screen. Right: diffraction of
red light at a small circular aperture. The laser beam arrives at a circular aperture with diameter
comparable to its wavelength. The diffraction pattern recorded at a screen placed behind the aper-
ture consists of concentric rings of intensity maxima separated by dark rings of intensity minima.
https://experimente.phys.ethz.ch/de/100/10002/20012/30164/
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2. Quantum mechanics 1.0: The

Schrödinger equation.

2.1. The year 1926

(E. Schrödinger, Quantisierung als Eigenwertproblem I, Annalen der Physik 79 (1926), 361–376).
The development of wave mechanics involved a lot of guessing and is therefore somewhat non-
rigorous. We do not need to follow exactly the historical pathway, due originally to Schrödinger. His
way of thinking was based on recognizing the action of classical mechanics as the central quantity
and on assigning to it the unit ħh in order to generalize Hamilton-Jacobi mechanics to quantum me-
chanics. Here we prefer to follow an argument proposed a posteriori by M. Born.
• The eigenvalue hypothesis. The appearance of discrete energy levels reminds us of a similar dis-
cretization in classical physics. A classical model that contains discrete values as solutions is that of
an oscillating string with boundary conditions. Let us recall the solution of this model in one spatial
dimension, for mathematical simplicity. It starts with the amplitude of the oscillation (transversal to
the string) being described by a scalar function u(x , t). This scalar function obeys the wave equation

∂ 2u(x , t)
∂ t2

= v2 ·
∂ 2u(x , t)
∂ x2

In classical physics this equation describes the propagation of a disturbance u(x , t), like ripples on the
surface of water, sound waves, electromagnetic waves and so on. v is the velocity of the disturbance
in the medium and depends on the properties of the medium. Referring to light waves, we can think
of v as c

µ , c being the velocity of light in vacuum and µ the material-dependent refractive index.
This equation is often formulated together with some boundary conditions. An example of boundary
conditions is provided by the requirement that, at all times, u(0, t)= u(L, t)= 0, i.e. the amplitude is
required to by vanishing at the ends of the interval [0, L]. We know from classical wave mechanics
that these boundary conditions are referring to a situation of a vibrating string held fixed at two
different points. We know that this physical system has well defined vibrational frequencies ωn and
we would like to find them by solving the wave equation. To findωn we insert the eigenmode Ansatz

u(x , t) =ψ(x) · e−i·ωn·t

into the wave equation, leading to the classical Helmholtz equation for the x-dependent part ψ(x)
and the sought-for frequencies ωn:

∂ 2ψ(x)
∂ x2

=−
ω2

n

v2
·ψ(x)

One can also write this equation using, on the right-hand side, the sought-for wave number kn:
∂ 2ψ(x)
∂ x2

=−k2
n ·ψ(x)

• The eigenvalue problem. We recall that, mathematically speaking, an equation were, on the left-
hand side, one operates onto a sought-for function f with some kind of ”device”(more precisely: an
”operator”)1 while on the right-hand side one has the sought-for function multiplied by a scalar λ,
is referred to as an ”eigenvalue” equation:

L f =λ · f
1In the case of the Helmholtz equation, the operator is the negative of the second derivative

18



DEFINITION. The eigenvalue equation AND the boundary conditions build the so-called eigenvalue
problem for the sought-for eigenvalues λn and the sought-for eigenfunctions fn, n being a (possibly
discrete) number that is used to label the solutions.
DEFINITION. The set of values {λn} that solve the eigenvalue problem builds the spectrum of the
operator L .
COMMENTS.
1. An eigenvalue equation has, in general, solutions for any value of λ, but if BOUNDARY CONDI-
TIONS are introduced – such as keeping the spring fixed at some edges ± L

2 (ψ(± L
2 )= 0) – it has only

solutions for a discrete set of values λn (the eigenfrequencies ωn (or the eigen-wavenumbers kn) in
the case of the vibrating spring with fixed ends).
2. Schrödinger thought, in his seminal paper, that one should search for an equation similar to the
Helmholtz equation, augmented with adequate boundary conditions, for finding quantized energy
values.
• The Schrödinger equation (SE). The Helmholtz equation, as it is, does not contain ħh. To introduce
ħh, we follow a method suggested later by M. Born. One starts from the Helmholtz equation

∂ 2ψ(x)
∂ x2

=−k2
n ·ψ(x)

and then enforce De Broglie hypothesis for a particle with a potential energy Φ(x):

k2
n =

p2

ħh2 =
2m

ħh2 ·[E−Φ(x)]

to write the ”Helmholtz equation” (or time independent Schrödinger equation) for a particle (here
generalized to three coordinates):

−
ħh2

2m
4ψ(x , y,z)+Φ(x) ·ψ(x , y,z) = En ·ψ(x)

COMMENTS.
1. Mathematically speaking, the SE consists, on the left-hand side, of an operator acting on the sought-
for wave function. The right hand side contains the sought-for eigenvlaues multiplied by the sought-
for eigenfunctions. Provided some suitable boundary conditions are attached to it, it should become
an eigenvalue problem.
2. This equation is non-classical, as it contain ħh and one expects this equation to produce discrete
”energy eigenvalues” En, provided some adequate boundary conditions are attached to the function
ψ(x , y,z) – just as the classical Helmoltz equation produces discrete ”eigenfrequencies” when sup-
plemented with suitable boundary conditions.
• The boundary condition. The finding of a suitable boundary condition is related to the inter-
pretation of the sought-for wave functions. Schrödinger suggested to allow complex valued wave
functions2. He than suggested to dispose of the electron as being point-like matter and to replace
it with a continuous charge density ρ(x) which he set to be the square of the absolute value of the
complex wave amplitude ψ(x):

ρ(x) = e· |ψ(x) |2
(e is the charge of the electron). The motive of using |ψ(x) |2 as the physically relevant quantity for
expressing the charge density can be found within a precise evaluation of the classical Helmholtz
equation.
Given is a complex valued solution ψ(x) of the classical Helmholtz equation

4ψ(x , y,z)+k2(x) ·ψ(x , y,z) = 0

2He knew that the solutions of the classical Helmholtz equation must be real valued functions: think that the amplitude of
a wave propagating on the surface of a see is a measurable, real valued quantity.

19



CLAIM: The quantity

J
.
=

1
2i

�

ψ̄(x)∇ψ(x)−ψ(x)∇ψ̄(x)
�

has the property
∇·J= 0

PROOF: We write, without loss of generality,

ψ(x , y,z)
.
= A(x) · ei·S(x)

and show that
∇(A2(x) ·∇S(x) = 0

For this purpose, we rewrite the Helmholtz equation in terms of A(x) and S(x). From

∇(A(x) · ei·S(x)) =
�

~∇A(x)+ i ·A(x)∇S(x)
�

ei·S(x) 4=∇·∇

we obtain

4(A(x) · ei·S(x))+k2(x) ·(A(x) · ei·S(x)) =
�

[4A(x)−A(x) ·(∇S(x))2]
�

· ei·S(x)+k2(x) ·(A(x) · ei·S(x))

+ i ·([A(x)4S(x)+2 ·∇A(x) ·∇S(x)]) · ei·S(x)

= 0

The vanishing of the imaginary part produces the equation
A(x)4S(x)+2 ·∇A(x) ·∇S(x) = 0

This equation writes also
∇
�

A2(x) ·∇S(x)
�

︸ ︷︷ ︸

J

= 0

and this concludes the proof.
COMMENTS.
1. The vanishing of the divergence establishes the vector J as a stationary current density vector that
propagates an excitation with density

A2(x) =|ψ(x) |2

2. It turned out later (see the discussion in the Chapter on ”QM 2.0: the foundations”) that
Schrödinger did the right thing by using the square of the absolute value of the wave function as
the physically relevant quantity, and not the wave function itself.
3. It, however, turned out (see the discussion in the Chapter on ”QM 2.0: the foundations”) that the
assigning of the square of the absolute value of the wave funtion to a charge density is probably
wrong, as recent experiments show (see the Nobel prize 2022). However, when dealing with the
bound states of single-electron quantum mechanical problems in atoms, molecules and solids the
Schrödinger interpretation is qunatitatively correct in predicting the actual charge distribution. We
therefore will stick, for the time being, to Schrödinger interpretation.
4. Boundary conditions to the SE are, e.g., the continuity of the wave function and of its partial deriva-
tive, because only in this case the SE has a physical meaning. A further important boundary condition
is originating from the charge density interpretation: the wave function must be square integrable,
i.e.

∫

R3
dV |ψ(x , y,z) |2<∞

5. We summarize here some facts about the wave function for a single electron in Euclidean space.
• (x , y,z)

.
= x specify the possible coordinates that a particle can assume. Typically, they extend over

the entire Euclidean space.
• ψ(x) is called the ”amplitude” of the ”electron wave” and can be a complex function.
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• |ψ(x) |2 is called the ”charge density” of the ”electron wave”.
• The integral

∫

R3
|ψ(x) |2 dV

must be finite as the electron has a finite”charge” and can be normalized to ”1”.
• In the literature one also finds

|ψ(x) |2 ·dV
as the ”charge” within a volume element dV .
6. As the SE is, mathematically speaking, related to the classical Helmholtz equation, it can generate
the phenomena of diffraction predicted by De-Broglie and later indeed discovered using electrons in
1927 by Davisson and Germer and, independently, by G.P. Thomson. We will treat problems related
to ”scattering states” in a specific Chapter.
7. This equation was a great achievement of Schrödinger: he obtained the correct value for the discrete
energy levels of hydrogen, containing the correct physical constants, starting from an equation which
did not explicitly show neither the discreteness nor the value of the sought for energy levels – one
speaks of such a computation as ”starting from first-principles”.3

8. In the literature one also finds the following, equivalent version of the SE:

4ψ(x , y,z)+
2m

ħh2 ·[En−Φ(x , y,z)] ·ψ(x , y,z) = 0

This version stresses the fact that the SE is a partial differential equation with coefficients that can
depend on the variables (x , y,z) (non-constant coefficients).

The correspondence principle. Schrödinger proposed a simple translation key to guess quantum
mechanics from classical mechanics This translation key goes under the name of ”correspondence
principle”.
In classical mechanics, Newton equation can be, ultimately, obtained by a so called variational prin-
ciple, applied to the Hamilton function. The Hamilton function expresses the energy of a particle as
a function of its coordinates x,p:

H(x,p) =
p2

2m
+Φ(x)

He noticed that the operator acting (on the left hand side) onto the wave function in the equation
�

−
ħh2

2m
4+Φ(x)

�

ψ(x , y,z) = En ·ψ(x)

can be simply obtained if one makes the following substitutions
x→ x

p→−i ·ħh ·∇
in the classical Hamilton function.
COMMENTS.
1. Considering the Hamilton function of classical physics for a given system and using the correspon-
dence principle will turn out to be a very useful starting point to formulate the SE for that system.
2. The more formal aspect of the correspondence principle is that it systematically introduces a set of

3(quote: ”In dieser Mitteilung mochte ich zunächst an dem einfachsten Fall des (nichtrelativistischen und ungestörten)
Wasserstoffatoms zeigen, dass die übliche Quantisierungsvorschrift sich durch eine andere Forderung ersetzen lässt, in
der kein Wort von ”ganzen Zahlen” mehr vorkommt. Vielmehr ergibt sich die Ganzzahligkeit auf dieselbe natürliche Art,
wie etwa die Ganzzahligkeit der Knotenzahl einer schwingenden Saite”.
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mathematical entities – called ”operators” – that ”act” onto wave functions, such as
position operator x

momentum operator −i ·ħh ·∇

Hamilton operator

�

−
ħh2

2m
4+Φ(x)

�

In the Schrödinger quantum mechanics, operators are, typically, constructed using the coordinates or
their derivatives.
3. In the operator language, the Schrödinger equation is ”the eigenvalue equation of the Hamilton
operator”.
4. In the Chapter ”Quantum mechanics 2.0: the foundations” we will learn more about the wider
significance of operators in quantum mechanics and about possible ways to represent them.

2.2. Applications

We leave the solution of the quantum mechanical hydrogen atom to a later chapter and instead
provide here an application of the ideas by Schrödinger to mathematically simple but physically
representative model systems.

2.2.1. One dimensional potential well

In this problem, we actually simulate an atom as providing a one-dimensional potential well for a
particle with mass m.

Φ(x) =
§

Φ0 > 0 L/2≤ x ≤−L/2
0 − L/2≤ x ≤ L/2

L

2

x

−
L

2

Φ(x)

n = 1
n = 2

n = 3

L

2
−
L

2

x

|Ψ(x)|2

Left: one-dimensional potential well for a particle with mass m. The position of some bound states –
labeled n= 1,2,3 is indicated. They will be computed in this section. Right: the ”charge” density for the
bound state wave functions for n = 1-state (knots at x = ± L

2 ), n = 2-state (knots at x = ± L
2 ,0) and

n= 3-state (knots at x =± L
2 ,0,± 1

3
L
2 ). The bound state wave functions will also be computed explicitely

in this section.

Of course, this model is far away from the realistic case of an electron moving within the Coulomb
field of a proton: the motion is a one-dimensional one, the depth of the well is finite and its shape
is not similar to the Coulomb potential. Yet it provides a localized decrease of the potential energy
which mimics the situation in a more realistic Coulomb potential. The configuration space (the range
of the variables in the amplitudeψ(x)) is the entire x-coordinate. The Schrödinger equation (SE) for
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time independent – also called ”stationary” – states of well-defined energy E reads
d2

d x2
ψ(x)+

2m

ħh2 ·(E−Φ(x))ψ(x) = 0

It is a differential equation of the type

a2
d2

d x2
f (x)+a0(x) · f (x) = 0

f (x) is the sought for solution, a2,a0 are coefficients. We know such differential equations from the
physics of the classical harmonic oscillator, but there is a fundamental difference: the x-dependent
potential introduces a dependence of at least one coefficient from the independent variable x (in this
case a0). The solution of such equations with non-constant coefficients is not trivial and we will learn
more about this later. We therefore proceed with a simplified model. As the sought for quantities are
the possible energies of the bound states of the particle, which we suspect to be close to the bottom
of the potential well, we replace the problem with a similar but simpler one: we just set Φ0 to infinity,
hoping that this approximation will not affect too much those states which a closest to the bottom
of the potential well. In the domain where Φ(x) =∞, we have to look for a solution for which
the term Φ(x) ·ψ(x) in the Schrödinger equation remains finite, despite the potential diverging, so
that the SE still makes sense. For Φ(x) ·ψ(x) to remain finite we choose ψ(x)≡ 0 in the segments
L/2≤ x ≤−L/2. In the interval [− L

2 , L
2 ] the wave function may take on finite values. One important

”boundary condition” is that the integral |ψ(x) |2 be finite:
∫ L/2

−L/2
ψ∗(x) ·ψ(x) ·d x = 1

This is not the only boundary condition: ψ(x) must be continuous – a physical ”charge density” at
one point cannot depend on whether we approach that point from right or from letf:

ψ(x) |± L
2
= 0

for the solutions of SE in the interval [− L
2 , L

2 ].
In the interval [− L

2 , L
2 ] the SE reads









d2

d x2
+

2mE

ħh2
︸︷︷︸

.
=k2









ψ(x) = 0

The new sought for parameter k
.
=
Ç

2mE
ħh2 has been introduced for simplicity. The choice of the letter

k is due to the fact that
Ç

2mE
ħh2 has the unity of a wave number.

The mathematical structure of the SE is the one typical of the classical harmonic oscillator (but only
the mathematical structure, this is NOT a classical harmonic oscillator) and is familiar enough to be
able to state that this differential equation has two linearly independent solutions:

cos(k · x) and sin(k · x)
At first glance, k can assume any real value and the set of k′s produces a non-countable set of linearly
independent solutions. The general solutions are linear combinations of cos(k · x) and sin(k · x) and
the integral over the absolute square in certainly finite: the square integrability of the solutions is
therefore given. This specific boundary condition is, in the present instance, fulfilled for any k, i.e. it
does not lead to any quantization.
The vanishing of the solutions at the edge of the interval is a further boundary condition.
a) Requiring that

cos(k · L/2) = 0
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restricts the allowed k to a discrete set given by

kn =
(2n+1) ·π

L
n= 0,1,2,...

(negative n-values do not produce further linearly independent solutions). The corresponding energy
levels are QUANTIZED by this boundary condition:

En =
π2ħh2

2mL2
·(2n+1)2

The normalized wave functions read
√

√2
L

cos
(2n+1)π

L
· x n= 0,1,2,...

b) Requiring that
sin(k · L/2) = 0

restricts the allowed k to a discrete set given by

kn =
(2n) ·π

L
n= 0,1,2,...

(negative n-values do not produce further linearly independent solutions). The corresponding energy
levels are QUANTIZED by this boundary condition:

En =
π2ħh2

2mL2
·(2n)2

The normalized wave functions read
√

√2
L

sin
(2n)π

L
· x n= 0,1,2,...

Notice that n= 0 is not allowed, as the corresponding wave function is identical to 0 and therefore
cannot be normalized to 1.
COMMENTS.
1. The solution of this problem produces a quantization of the energy values of the bound states of
a particle in a potential well. The boundary conditions act to produce this quantization. The energy
values are described by the expression

En =
π2ħh2

2mL2
·(n)2 ; n= 1,2,,3,....

2. The index n, used to label the energy levels, is called a ”quantum number”.
3. The energy values obtained by solving the SE with boundary conditions are usually represented by
a graphic called ”term scheme” or ”electronic structure”.

n

ε

5

10
15
20

25

1 2 3 4 5

Term scheme (electronic structure) for a particle in an infinite potential well. The energy (in units of
π2·ħh2

2·m·L2 is plotted as a function of the quantum number n.

4. When the wall of the potential well is ”soft” (i.e. not infinity) the wave function leaks into the
forbidden segments L/2≤ x ≤−L/2, but, as long as the states are close to the bottom of the well,
this leakage does not modify essentially the solutions.
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6. Sommerfeld quantization. One can obtain the quantized energy levels just computed by using
Sommerfeld quantization rule. In classical mechanics, the motion of a mass moving in the interval
[− L

2 , L
2 ] and bounded by impenetrable potential walls occurs at a given energy E, which can assume

continuous values. The motion can be described with a graph in a p versus x diagram. p describes
the momentum. The graph corresponds, in the present case, to a rectangle with horizontal side L and
vertical height±p, where p=

p
2mE. The classical path of a particle is along the sides of this rectangle.

The px- parameter space is called in classical mechanics the phase space (the ”phase space” is not
to be confused with the ”configuration space”, describing the set of possible values of the variable
x). Classical mechanics foresees the possibility for the particle to assume continuous values for x
(the spatial coordinate). This element is maintained in quantum mechanics. p assumes in classical
mechanics also continuous values. From this situation one can move to quantum mechanics using
Sommerfeld quantization rule. For this particular system the quantization rule requires that the area
of a rectangle, when its lateral sides are run across clockwise, must be an integer multiple of h:

2p · L= n ·h ⇔ p=
n ·π

L
·ħh

Sommerfeld quantization rule therefore selects a discrete number of rectangles in phase space. We
can translate the quantized momentum to a quantized energy by using the classical translation key
p=
p

2mE and we obtain, for the possible energy values of the quantum mechanical motion, exactly
the result that we have computed by solving the SE with boundary conditions:

En =
π2ħh2

2mL2
·n2 ; n= 0,1,2,,3,....

A small but significant detail: Sommerfeld quantization rule allows the energy level with n=0, which
we have found to be excluded from the solutions of the SE.

Practical application: QUANTUM WELL

Modern technology has found important applications of this solution in the form of ”artificial atoms”.
The most spectacular application of a particle in the box comes probably from semiconductor tech-
nology. A semiconductor, such as GaAs, has an energy gap in which stationary states of the electrons
cannot exist. The energy gap is about 1 eV: an electron must overcome this barrier in order to con-
tribute to current transport. When some of the Ga atoms are substituted by Al the energy gap gets
bigger. If two layers of GaAlAs include a layer of pure GaAs, a potential box in the conduction band
in the direction of stacking appears: a so-called quantum well is built.
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Top: energy of the conduction band (top) and valence band (bottom) as a function of the stacking coor-
dinate x. AlGaAs barrier layers a few nanometer thick bracket a GaAs layer of comparable thickness to
form a quantum potential well for electrons. The potential well energy states are indicated by horizontal
lines. Middle: The potential well is biased with application of a gate voltage VG and the energy levels are
bent. Bottom: Plot of a drain to source current as a function of the voltage VG . The three peaks indicate
resonant tunnelling (resonant tunnelling diode, Esaki, Chang and Tsu, IBM).

The height of the potential well is about 0.3 eV. The steepness of the potential barrier depends on
how abrupt is the Al doping. Molecular Beam Epitaxy allows the concentration of the Al to drop to
zero within an atomic location. That’s why the steepness of the potential well can be very large and
one obtain a box with walls that resemble a jump (even if not with infinite potential jump). One can
also, if necessary, let the Al concentration decrease slowly, making a parabolic potential well in which
harmonic vibrations are possible (an artificial quantum harmonic oscillator). For the quantization to
be effective, the distance between adjacent energy levels in the potential well must be greater than,
for example, their width. Scattering on crystal defects and/or on phonons are responsible for the
broadening of discrete energy levels: the width at room temperature is at least 0.03 eV (corresponding
to kB ·300K). From the inequality

0.03eV <π2ħh2/(2mL2)
one obtains a maximum length of L ≤ 4 nm for the quantization of energy levels in the well to be
observable. This length represents a great challenge to the accuracy of MBE growth but is now
achieved as a standard in routine semiconductor based devices.
Once the quantized levels have been established, one can bias the junction with a certain voltage
across the quantum well between source (cathode, left) and anode (right, drain). At some bias
voltage the quantized levels in the box match the energy levels of the source. If the potential barrier
is sufficiently thin, source electrons can pass through the potential barrier via discrete energy levels
in the box by quantum mechanical tunnelling (the phenomenon of tunnelling through a classically
forbidden energy range, classically prohibited because in that region the particle has a negative
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kinetic energy, is a pure quantum mechanical effect and will treated later as a possible solution of
the SE) and thereby reaching the anode. The presence of discrete energy levels offers an additional
channel for electrons to flow through the well structure. The generation of additional current is
only possible if the levels in the structure are properly positioned: one speaks of a resonant tunnel
diode. The current-voltage characteristic goes through a series of maxima, which occur only at the
resonant voltages, and a clear sign of energy quantization in the box. This non-linear current-voltage
characteristic can be used, for example, as an amplifier or switch. There is a possibility that the
electrons in the box loose energy by emitting light: thus one can also build a light-emitting diode,
which emit light only at certain voltages.

SUPERLATTICE.
A super-lattice with many periodic potential wells opens new possibilities. The potential barriers
must still be sufficiently thin, so that the electrons can easily tunnel. In a) the voltage is small,
the energy levels in the box are practically at the same height: According to quantum mechanics,
a one-dimensional artificial band structure is formed (analogous to the phonon bands): a one
dimensional crystal appears. Typically, electrons can flow across the super lattice, forming a kind of
artificial metal. In b), no band is formed because the slope is too strong and the levels do not overlap:
an insulator builds up. Such artificial super-lattices are an ideal tool to drive a metal-insulator
transition by applying a voltage. In c) the voltage is chosen so that in each case the 1st level coincides
with the 2nd of the following box.
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a

b

c

d

Electron transport in a super lattice. a): Conduction-band profile showing alternating layers of two
semiconductor materials of different band-gap width. The darker area represents an allowed energy mini-
band arising from the super-lattice periodicity. Its slope is due to an applied voltage bias. b): A stronger
bias field causes enough slope to misalign the energy levels in successive wells. As a result, the mini band
is replaced by a Wannier-Stark ladder of discrete states. c): In a super-lattice with weak coupling between
the wells one can increase the field until the lowest level in each well is aligned with one of the excited
states in the next well. This produces electron transport with an alternating sequence of tunnelling and
energy relaxation. This scheme,with electrons tunnelling into the second excited state of a neighboring
well, forms the basis for a all solid state infrared laser. d): Quantum well infrared detector. Electrons from
the wells are excited by the incident photons into the extended states above the barriers and transported
to the contacts.

The electron can only traverse the structure by emitting light. The emission of light takes place be-
tween discrete levels, so that the emitted light is monochromatic. If one insert the structure between
reflecting mirrors, an infrared laser is produced, which is pumped by the application of voltage. In
modern communication technology such solid state lasers are often used. The layer structure can also
work as an infrared detector (d in the Figure).
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2.2.2. Periodic boundary conditions

Consider a particle moving along the x-axis with vanishing potential. Assume that the wave functions
are subject to periodic boundary conditions at the edge of the interval [− L

2 , L
2 ]:

ψ(−
L
2
) =ψ(+

L
2
)

The SE reads








d2

d x2
+

2mE

ħh2
︸︷︷︸

.
=k2









ψ(x) = 0

We find a solution of this equation using the Ansatz ψ(x) = eλ·x with λ to be determined so that the
SE is fulfilled. Inserting this Ansatz we obtain the algebraic equation

λ2+k2 = 0
One possible solution is λ= i ·k, so that a possible wave function solving the SE is ei·k·x . The boundary
condition, applied to this solution, reads:

ei·k· L2 = e−i·k· L2 ⇔ ei·k·L = 1
The values of k solving this last equation can be expressed as

kn =
2π
L
·n; n∈Z

The possible values of the energy are quantized and amount to

En =
ħh2

2m
·(

2π
L
)2 ·n2

The solutions of the SE can be normalized to ”1”: one has to find the normalization constant a so that
∫

L
2

− L
2

d x · | a |2 · | ei·kn·x |2= 1

One possible value for a is
q

1
L . This leads to an infinite set of numerable wave functions

{un(x) =
1
p

L
· ei 2π·n

L ·x} ; n= 0,±1,±2,...

The index n is a quantum number used to numerate the discrete energy levels and the set of corre-
sponding wave functions.
COMMENT.
We observe here (see the next figure) that to a given energy level there are two linearly independent
eigenfunctions. This multiplicity is known in the terminology of quantum mechanics as ”degener-
acy” of the eigenvalue En. One speks of ”degenerate” eigenvalue. We will encounter degenerate
eigenvalues in more complex problems.

n

ε
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Term scheme (electronic structure) for a free particle with periodic boundary conditions. The energy (in
units of π

2·4·ħh2

2·m·L2 is plotted as a function of the quantum number n.
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2.2.3. The QM Harmonic Oscillator

We consider a particle of mass m moving in a one-dimensional space under the influence of the
potential energy

Φ(x) =
K
2

x2+φ0
.
=

mω2

2
x2+φ0

K is a ”material” parameter used to express the strength of the ”spring” at which the mass is attached.
In an atomic system, K is related to the second derivative of the potential energy between two next-
neighbour constituents of the material. In the literature of both the classical and quantum mechanical
harmonic oscillator K is often transformed into a characteristic frequencyω2 .

=K/m for convenience.
The SE reads

d2ϕ(x)
d x2

+
2m

ħh2 (E−
mω2

2
x2−φ0)ϕ(x) = 0

E are the sought for energies. The boundary condition is the square integrability of the sought for
wave functions:

∫ +∞

−∞
|ϕ(x) |2 d x <∞

We will show that the fulfillment of this boundary condition leads to a quantization of the energy
states of a harmonic oscillator, as originally postulated by Planck. We will find that

En =ħhω(n+
1
2
)+φ0

with n= 0,1,2,.... The wave functions to the energy values En are given by

ϕn(x) =
�mω
πħh

�
1
4 1
p

2nn!
Hn

�s

mω
ħh

x
�

e−
1
2

mω
ħh x2

The Hn(ξ) are the Hermite polynomials:

Hn(ξ) = (−1)neξ
2 dn

dξn

�

e−ξ
2�

also
H0(ξ) = 1

H1(ξ) = 2ξ
H2(ξ) = 4ξ2−2

H3(ξ) = 8ξ3−12ξ
H4(ξ) = 16ξ4−48ξ2+12

and so on. The energy of the ground state is not 0 but has a higher value: it is a ” zero point energy ”,
which represents a ”dithering” (quantum fluctuation). We recall e.g. the wave function of the ground
state:

ψ0(x) =
�mω
πħh

�
1
4

e−
1
2

mω
ħh x2

This is a Gaussian centered at x = 0. In the wave functions one recognizes a characteristic length

ξ
.
=

√

√ ħh
mω

For a Silicon atom vibrating in a lattice with a characteristic phonon frequency in the terahertz regime
this characteristic length, over which the square of the absolute value of the wave function has a
sizeable value, is about 0.01 nm. The characteristic length can be used to plot the (dimensionless)
square of the wave functions as a function of the dimensionless quantity y

.
= x
ξ (from top to bottom:

the probability density for the n= 1,2,3 states as a function of the position).

| ϕ̃(y) |2=
1
p
π
·

1
2n ·n!

·H2
n(y)e

−y2
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From top to bottom: the probability density for the n= 1,2,3 states as a function of the position.

∗Details of the mathematical solution

We will discuss the details of the mathematical solution, with the aim of showing the link between
boundary conditions and quantization. We start from the equation

d2ϕ(x)
d x2

+
2m

ħh2 (E−
mω2

2
x2−φ0)ϕ(x) = 0

and carry out the variable substitution
2(E−φ0)
ħhω

≡ ε ξ= x
s

mω
ħh

We obtain the ordinary differential equation of the second degree
d2ϕ

dξ2
+(ε−ξ2)ϕ= 0

For the wave function to be normalizable, ϕ(ξ) must decay with ξ for ξ→±∞. We use therefore

the Ansatz ϕ(ξ) = v(ξ) · e−
ξ2

2 and find the equation for the function v(ξ)
v′′−2ξv′+(ε−1)v = 0
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(the dash means derivative with respect to ξ). Its solution is based on the general theory of ordinary
differential equations with non-constant coefficients: one try to find a solution using a series of powers
of the variable.

v(ξ) =
∞
∑

ν=0

cνξ
ν

Inserting into the DE one obtains
∞
∑

ν=0

[cν+2(ν+2)(ν+1)+ cν(−2ν+ε−1))]ξν = 0

This is a sum of powers of ξ which can only vanish if the coefficient of each power vanishes:
cν+2

cν
=

2ν+1−ε
(ν+1)(ν+2)

With the help of this recursion formula one can start by setting c0 or c1 and determine all coefficients
of the power series. By starting with c0 a solution ϕ(ξ) is produced, which contains only even powers
of ξ. These solutions are even with respect to change of the sign of ξ. Those solutions that start from
c1 are therefore uneven.
It is particularly important now to check whether the exponential factor multiplied with the power
series provide solutions which are really normalizable, because only when solutions of the DE can be
normalized they can also be regarded as physically meaningful. For the normalizability, the behaviour
of the solutions at infinity is decisive, so that we have to study the asymptotic behavior of the power
series. For large ν the recursion formula goes to

cν+2

cν
→ 2/ν

This asymptotic behaviour has the same recursion formula of the coefficients of

e2ξ2
=
∞
∑

µ=0

ξ2µ 2µ

µ!

The infinite series thus behaves asymptotically as e2ξ2
. When considered with the factor e−ξ

2/2, this
asymptotic behaviour destroy the sought for quadratic integrability of ϕ(ξ). To avoid this ”catastro-
phe” one must find a way of terminating the series at a certain finite ν= n. A polynomial results,
which does no longer repesents a ”danger” for the square integrability of the solutions. Let us then
terminate the series by requiring that cn+2 = 0, where n can be 0,1,2,..... The equation cn+2 = 0 is
equivalent to requiring

2n+1−ε= 0
But this last equation is physically very relevant: it imposes the condition that ε (i.e. the energy) can
only assume discrete values, namely ε= 2n+1, n= 0,1,.... This condition produces a quantization
of the allowed energy levels of a linear harmonic oscillator:

En =ħhω(n+
1
2
)+φ0

numerated by a quantum number n= 0,1,2,....
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ħhω is plotted versus the quantum number
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3. The Hydrogen atom

3.1. Introduction

Any fundamentally new theory, to be accepted at all, had to deal, in particular, with the discrete energy
levels of the H-atom and explain the resulting spectroscopic laws. This is because the experimental
evidence of atomic spectra about their discreteness and their exact values were absolutely certain –
and inexplicable on the basis of classical physics. E. Schrödinger saw this task as his main concern in
his first communication (1926) on the quantization of the eigenvalue problem. The solution proposed
by Bohr

En =−
1
2
·

e4 ·m
(4πε0)2 ·ħh2 ·

1
n2

(n= 1,2,3,...) on the basis of an empirical quantization rule of the angular momentum was, in fact,
correct, but it was based on an empirical fact, i.e. suggested ad hoc to explain the specific experimental
result represented by Balmer formula. The scope of a fundamentally new theory was to obtain the
same results but from first principles – such as starting from the wave equation and, possibly, some
boundary conditions. Schrödinger did exactly this and in doing so created a fundamentally new theory
of nature.

3.2. General symmetry aspects of the solution

The Schrödinger equation for a mass in the field of force represented by a spherically symmetric
potential V (r) = V (x2+ y2+z2) reads

[−
ħh2

2m
4+Φ(x2+ y2+z2)]ψ(r) = Eψ(r)

E are the sought for eigenvalues. The model of the atom underlying this equation is one where the
proton – which is much heavier than the electron – is assumed to have an infinite mass and reside
at the origin of the coordinate system. In this way, one eliminates from the problem the degrees of
freedom represented by the coordinates of the proton. The boundary condition reads

∫

dV · |ψ(r)|2 <∞

We will show that requiring the square integrability of the eigenfunctions will finaly lead to the quan-
tization of the energy eigenvalues and to the formula empirically proposed by Bohr.
The spherical symmetry of Φ(x) is best considered with the choice of the spherical coordinates
(r,ϑ,ϕ):

x = r sinϑcosϕ y = r sinϑsinϕ z= r cosϑ
r ∈ [0,∞[ ϑ ∈ [0,π] ϕ ∈ [0,2π]

The inverse transformations read
r =

Æ

x2+ y2+z2 ϑ= arccos(
z
r
) ϕ= arctan(

y
x
)
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In order to transform the Laplace operator, which includes derivatives, we need to learn how to write
expressions like ∂

∂ x in spherical coordinates. We use the chain rule to write




∂
∂ x
∂
∂ y
∂
∂ z



=





∂ r/∂ x = sinϑcosϕ ∂ ϑ/∂ x = 1
r ·cosϑcosϕ ∂ϕ/∂ x =− sinϕ

r·sinϑ
∂ r/∂ y = sinϑsinϕ ∂ ϑ/∂ y = 1

r ·cosϑsinϕ ∂ϕ/∂ y = cosϕ
r·sinϑ

∂ r/∂ z= cosϑ ∂ ϑ/∂ z=− 1
r sinϑ ∂ ϕ/∂ z= 0



 ·





∂
∂ r
∂
∂ ϑ
∂
∂ ϕ





The transformation matrix for the partial derivatives is called the Jacobi matrix. We write then
∂ 2

∂ x2
= sinϑcosϕ

∂

∂ r
[
∂

∂ x
]+

1
r

cosϑcosϕ
∂

∂ ϑ
[
∂

∂ x
]−

sinϕ
r ·sinϑ

∂

∂ ϕ
[
∂

∂ x
]

∂ 2

∂ y2
= sinϑsinϕ

∂

∂ r
[
∂

∂ y
]+

1
r
·cosϑsinϕ

∂

∂ ϑ
[
∂

∂ y
]+

cosϕ
r ·sinϑ

∂

∂ ϕ
[
∂

∂ y
]

∂ 2

∂ z2
= cosϑ

∂

∂ r
[
∂

∂ z
]−

1
r

sinϑ
∂

∂ ϑ
[
∂

∂ z
]+0 ·

∂

∂ ϕ
[
∂

∂ z
]

Inserting in this second set of equations the transformation rules for [ ∂∂ x ],
∂
∂ y ] and [ ∂∂ z ], we obtain

finally (after a lengthy computation)

4=
1
r2

∂

∂ r
(r2 ∂

∂ r
)+

1
r2
Λ

with

Λ≡ [
1

sinϑ
∂

∂ ϑ
(sinϑ

∂

∂ ϑ
)+

1

sin2ϑ

∂ 2

∂ ϕ2
]

The SE in spherical coordinates reads:
�

−
ħh2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)−
ħh2

2mr2
Λ+Φ(r)

�

ψ(r) = Eψ(r)

This is an homogeneous partial differential equation with some symmetries: the potential depends
only on one of the variables (the radius r). One could also think, technically speaking, of a partial
differential equation with boundary conditions specified along a surface (or a line, in two dimensions)
where one coordinate is constant (e.g. the surface of a sphere in spherical coordinates or a circle
in polar coordinates). In such ”symmetric situations” the method of choice for solving the partial
differential equation is the so-called separation Ansatz, where a solution is sought for consisting of
the product of function of one independent variable only:

ψ(r,ϑ,ϕ) = f (r) ·Y (ϑ,ϕ)
The rationale of this Ansatz will become clear soon. The SE writes now (let us introduce the notation
∂
∂ r ≡

′ for simplicity):

(r2 f (r)′)′Y (ϑ,ϕ)+ f (r) ·ΛY (ϑ,ϕ)+
2m

ħh2 · r
2[E−Φ(r)] f (r) ·Y (ϑ,ϕ) = 0

Let us divide by f (r) ·Y (ϑ,ϕ):
(r2 f (r)′)′

f (r)
+

2m

ħh2 · r
2[E−Φ(r)] =−

ΛY (ϑ,ϕ)
Y (ϑ,ϕ)

By means of the separation Ansatz we have achieved an interesting result: the SE writes as an equation
between a left-hand side, which depends only on the variable r (for this it is important that the
potential only depends on r) and a right-hand side which only depends on the angle variables ϕ,ϑ.
As this equation must hold for any value on the variables, we have

(r2 f ′(r))′

f (r)
+

2m

ħh2 · r
2[E−Φ(r)] =λ −

ΛY (ϑ,ϕ)
Y (ϑ,ϕ)

=λ

where λ is some constant to be determined and is called the separation constant. By means of the
separation Ansatz, we have achieved a separation of the problem into two equations: one for the
variable r and one for the variables ϕ,ϑ. These two separate problems are often easier to solve than
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the original one. The radial equation reads

(r2 f ′(r))′+
2m

ħh2 · r
2[E−Φ(r)] f (r)−λ · f (r) = 0

It contains the sought for eigenvalues E and the yet to be determined separation constant λ and must
be solved with the boundary conditions of the square integrability of f (r):

∫ ∞

0
dr · r2 · | f (r)|2 <∞

Notice that the SE contains parts which have different singular behaviour at the origin. We must
require that the wave function be finite at the origin. With this requirement, we can achieve that
singularities at the origin cancel out (the left-hand side of the SE must be equal zero everywhere,
including the origin). The square integrability is therefore supplemented with the boundary condition
that

f (0) = const.
The second problem contains the angular variables ϑ,ϕ, i.e. it is defined on the sphere:

ΛY (ϑ,ϕ) =−λY (ϑ,ϕ)
We recognize here that the separation constant −λ is the solution of an eigenvalue problem for the
operator Λ, as the eigenvalue equation on the sphere comes about with the boundary conditions

Y (ϕ+2π,ϑ) = Y (ϕ,ϑ) Y (ϕ,ϑ+2π) = Y (ϕ,ϑ)
COMMENT.
Solving the Laplace equation

4u(x , y,z) = 0
or the Helmholtz equation

4u(x , y,z)+k2u(x , y,z) = 0
with a separation Ansatz leads to the same eigenvalue problem on the sphere. This is the reason why
the eigenvalue problem on the sphere is discussed e.g. in problems of electrostatics.

3.2.1. The eigenvalue problem on the unit sphere

The solution of the eigenvalue problem on the sphere is worked out in textbooks of mathematical
physics. Here we quote those results that are relevant for finding the sought for eigenvalues E. It
turns out that the boundary conditions narrow down the values of −λ to a discrete set:

−λl =−l ·(l+1); l = 0,1,2,3,.....
One also find that each of these eigenvalues is exactly 2l+1-times degenerate: The eigenspace El
contains the 2l+1 linearly independent spherical harmonics Y m

l (ϑ,ϕ) (m= l, l−1,...,−l):

{Y m
l }=



























Y l
l (ϑ,ϕ)

Y l−1
l (ϑ,ϕ)

.

.

.
Y−l

l (ϑ,ϕ)
The spherical harmonics are given for positive m= 0,1,...l by

Y m
l (ϑ,ϕ) =

(−1)l+m

2l · l!

√

√ (2l+1)(l−m)!
4π(l+m)!

· Pm
l (cosϑ)eimϕ

and
Y−m

l = (−1)mY m
l
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The associated Legendre functions Pm
l (cosϑ) are defined in terms of the derivative of the Legendre

polynomials:

Pm
l (cosϑ) = (−1)m(1−cos2ϑ)

m
2

dm

d cosϑm
Pl(cosϑ)

Pl(cosϑ) =
1

l! ·2l

d l

d(cosϑ)l
[(cosϑ2−1)]l

The spherical harmonics fulfill the normalization and orthogonality relations
∫

Yl,m(ϑ,ϕ)Yl′,m′(ϑ,ϕ)sinϑdϑdϕ=δl l′δmm′

We give now a list of some useful spherical harmonics (from E.U. Condon, G.H. Shortley, ”Theory of
atomic spectra”, Cambridge University Press, 1953).

Y 0
0 =

1
p

4π










Y 1
1 =−

q

3
8π sinϑeiϕ

Y 0
1 =

q

3
4π cosϑ

Y−1
1 =

q

3
8π sinϑe−iϕ



























Y 2
2 =

1
4

q

15
2π sin2ϑe2iϕ

Y 1
2 =−

q

15
8π sinϑcosϑeiϕ

Y 0
2 =

q

5
4π (

3
2 cos2ϑ− 1

2 )

Y−1
2 =

q

15
8π sinϑcosϑe−iϕ

Y 2
2 =

1
4

q

15
2π sin2ϑe−2iϕ

By solving the eigenvalue problem on the sphere we have generated a set of possible values for the
separation constant. These values will be now plugged into the radial eigenvalue problem, which will
be solved to find the sought for energy eigenvalues. For a given separation constant – specified by the
number l – there will be, possibly, an energy eigenvalue that we can designate with El , as its value
depends on the integer l. In addition, we already know that the eigenspace to El will be at least 2l+1
degenerate, and its eigenfunctions will be of the type

{ fl,E(r) ·Y m
l (ϑ,ϕ)}=



























fl,E(r) ·Y l
l (ϑ,ϕ)

fl,E(r) ·Y l−1
l (ϑ,ϕ)

.

.

.
fl,E(r) ·Y−l

l (ϑ,ϕ)
The indexes (l,m) used to label the basis functions in the eigenspace El provide quantum numbers
that characterize the energy level (E, l).

At this point, before we tackle the radial problem, it is important to discuss the physical meaning of
the quantum numbers l,m and the eigenvalues −λl . We recall that classical orbits in a spherically
symmetric potential were characterized by some conserved total energy, indicated by the parameter
E, and the conserved component Lz of the angular momentum. These parameters assume, in classical
physics, continuous values. In quantum mechanics the energy is used to classify the eigenstates –
with the difference that, as shown by Bohr empirically, it assumes discrete values. The conserved
angular momentum was also shown by Bohr to play a key role for determining the energy values.
We therefore set up to search for the fingerprint of the angular momentum in the radial and angular
problems. We find immediately this fingerprint after using the correspondence principle to translate
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the classical angular momentum to a quantum mechanical angular momentum:
L

.
= r×p

to
L=−iħh[r×∇]

i.e.

−iħh ·

�

�

�

�

�

�

ex ey ez
x y z
∂
∂ x

∂
∂ y

∂
∂ z

�

�

�

�

�

�

=−iħh





y ∂
∂ z −z ∂

∂ y

z ∂
∂ x − x ∂

∂ z
x ∂
∂ y − y ∂

∂ x





We now compute this operator in spherical coordinates. We compute, e.g.,

Lz = −iħh ·[x
∂

∂ y
− y

∂

∂ x
]

= −iħh
§

r sinϑcosϕ
�

∂ r
∂ y

∂

∂ r
+
∂ ϑ

∂ y
∂

∂ ϑ
+
∂ ϕ

∂ y
∂

∂ ϕ

�

= −r sinϑsinϕ
�

∂ r
∂ x

∂

∂ r
+
∂ ϑ

∂ x
∂

∂ ϑ
+
∂ ϕ

∂ x
∂

∂ ϕ

�ª

Using again to the Jacobi matrix we obtain

Lz =−iħh
∂

∂ ϕ
The x and y components write

Lx = iħh ·
�

sinϕ
∂

∂ ϑ
+cotϑcosϕ

∂

∂ ϕ

�

L y =−iħh ·
�

cosϕ
∂

∂ ϑ
−cotϑsinϕ

∂

∂ ϕ

�

We can finally compute L2 = L2
x + L2

y + L2
z and find

L2 =−ħh2

�

1
sinϑ

∂

∂ ϑ
(sinϑ

∂

∂ ϑ
+

1
sinϑ

∂ 2

∂ ϑ2

�

We recall that

Λ= [
1

sinϑ
∂

∂ ϑ
(sinϑ

∂

∂ ϑ
)+

1

sin2ϑ

∂ 2

∂ ϕ2
]

from which we can read out the relation between the Λ operator and L2

L2 =−ħh2 ·Λ
Because of this relation, we can make following statements:

• The 2l+1-degenerate spaces El are eigenspaces of L2

• The within El , L2 has the eigenvalues
ħh2 · l ·(l+1)

Henceforth we call l the ”orbital momentum quantum number”.

• The equation

−iħh
∂

∂ ϕ
︸ ︷︷ ︸

Lz

Y m
l (ϑ,ϕ) =ħh ·m ·Y m

l (ϑ,ϕ); m=−l,−l+1,..., l

shows that Y m
l (ϑ,ϕ) is an eigenfunction of Lz with eigenvalue ħh ·m. Henceforth we call m the

”magnetic quantum number” (the name ”magnetic” originates from the fact that m plays a
special role in magnetic phenomena).
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• When a particle is in a state within El one speak of the particle having orbital angular momen-
tum l. l itself is NOT the eigenvalue of any operator.

• as
Æ

l(l+1)> l
one can think of the orbital angular momentum never being exactly along the z-axis.

• For the states for the different values l =0,1,2,... one often use the terminology that designates
them with small Latin letters s, p, d, f, .... and so on. For example, the states with the orbital
angular momentum zero (l =0) are s-states, the states with l =1 are called p-states, and so on.

• We are now ready to draw a provisional term-scheme for the possible energy states of a system
in a spherical symmetric potential. We suspect that, for a given l – i.e. for a given separation
constant – a set of energy levels will be produced by solving the radial equation, these energy
levels being labeled by a further quantum number that we call nr as it refers to the solutions
of the radial SE.

E

(1)

0s

(3)

0p

(5)

0d

(1)

1s

(3)

1p

(5)

1d

(1)

2s

(3)

2p

(5)

2d

s p d

A general term scheme for a quantum system with spherical symmetric potential. The vertical scale is
the energy, the horizontal scale the orbital quantum number. The bulk of the figure contains possible
energy levels which are supposed to form a discrete set. For a given value of l they are labeled by a
quantum number nr , which together with l is used to lebel the energy level: Enr ,l . In one dimensional
problems the orbital momentum quantum number is absent. The degeneracy of each level is indicated. The
degeneracy is absent in one dimensional problems. For the specific case of a spherical symmetric potential
the degeneracy is said to be essential, i.e. is dictated by the spherical symmetry and cannot be removed
by modifying the potential – except if the potential is modified to depart from spherical symmetry. The
relative position of the levels must be computed by solving explicitely the radial eigenvalue problem. We
also do not know, at this point, whether the discrete set of energy levels continues to infinity or whether
it stops at some value. We also do not know, at this point, whether there are eigenvalues which occupy a
continuous set. All these matters are the results of the radial SE.

• The energy levels displayed in the figure have an important property: they are degenerate with

39



respect to the quantum number m. Degeneracy is much rare in one dimensional problems,
as the symmetry elements of a potential in one-dimension are limited to the identity and the
inversion. For the specific case of a spherical symmetric potential the degeneracy with respect
to m is said to be essential, i.e. is dictated by the spherical symmetry and cannot be removed by
modifying the potential – except if the potential is modified to depart from spherical symmetry.

3.2.2. Solution of the radial problem

We now proceed toward solving the radial SE. As we know that the space spanned by { fE,l(r) ·
Y m

l (ϑ,ϕ)} is an eigenspace of the Hamilton operator, we limit ourselves to solve the SE within this
eigenspace. The SE within this eigenspace reads:

�

−ħh2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)+Φ(r)+

ħh2 · l ·(l+1)
2mr2

�

fE,l(r) = E · fE,l(r)

Technical aspects

We now proceed to write the SE in a mathematically simple shape. We first set fE,l
.
=

RE,l
r and

require that
RE,l(r = 0) = 0

The SE for RE,l(r) reads

−
ħh2

2m

d2RE,l

dr2
+[φ(r)+

ħh2l(l+1)
2mr2

]RE,l = El ·RE,l

This equation cannot be solved, in general, exactly: only for some special forms of the potential φ(r)
and exact solution exists. One of these potentials is the Coulomb potential of an electron in the field
of Z protons, i.e.

φ(r) =−Ze2/(4πε0r)
Z = 1 describes the H-atom, Z = 2,3,.. describes ”hydrogen like” ions such as He+, Li++, etc., which
contain only one electron. The SE now reads

d2RE,l

dr2
+[

2mE

ħh2 +
2mZe2

4πε0ħh2r
−

l(l+1)
r2

]RE,l = 0

It is convenient to introduce now the characteristic atomic quantities such as

a=
4πε0ħh2

me2
≈ 0.529 ·10−10m

(the so called Bohr radius) and

Ea =
e2

4πε0a
=

me4

(4πε0)2ħh2 = 27.21eV
.
= 1Ha

(a unit of energy called ”Hartree”). We rewrite then the SE in terms of the dimensionless quantities
ρ

.
= r/a ε= E/Ea

to obtain

[
d2

dρ2
+2 ·ε+

2Z
ρ
−

l(l+1)
ρ2

]R(ρ) = 0

Case a
If we think of the classical situation, we can conjecture that the souhgt-for bound states belong to a
range of energies 2ε < 0. We therefore seek the solution of the SE in a situation where

2ε < 0
To make this instance explicit, we set 2ε

.
=−α2 and obtain

[
d2

dρ2
−α2+

2Z
ρ
−

l(l+1)
ρ2

]R(ρ) = 0
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• To gain a physically reasonable Ansatz we investigate the behaviour of this equation at large values
of ρ. For ρ→∞ one can neglect the two last summands: the asymptotic equation reads

[
d2

dρ2
−α2]R(ρ) = 0

The asymptotic solution (ρ→∞) reads
R(ρ)→ A· e−αρ+B · eαρ

As the wave function must vanish in the limit ρ→∞ we set B= 0.
• In order to determine the asymptotic behaviour of RE,l(ρ) for small ρ we insert the Ansatz RE,l(ρ)∼
ργ into the SE, γ≥ 0 to be determined. In the lowest order in ρ the SE reads

[γ ·(γ+1)− l(l+1)]ρ−γ−2+ ......= 0
As this equation must hold for any ρ we must set the coefficient to vanish. This gives a conditional
equation for γ:

[γ ·(γ+1)− l(l+1)] = 0
The solutions are

γ=−l
or

γ= (l+1)
The solution γ=−l violates the condition that RE,l(ρ) must vanish at ρ = 0. This leaves us with a
unique solution for γ.
• We put now an Ansatz forward that takes the asymptotic behaviour into account:

RE,l(ρ) = e−αρ ·ρl+1 ·
∞
∑

k=0

akρ
k

When we insert this Ansatz into the SE, we obtain that an infinite sum of powers of ρ must vanish for
any ρ. This requires the vanishing of the coefficient of any power of ρ individually. The coefficient to
the k-power contains a term proportional to ak+1 and a term proportional to ak. Setting the coefficient
to zero produces a recursion formula for the coefficients:

ak+1 = ak
2[α(k+ l+ l)−Z]

(k+ l+2)(k+ l+1)− l(l+1)
For large k, the recursion formula crosses over to

βk+1

βk
→

2α
k

Such a recursion formula applies for the function
e2αρ

If we do not limit the series expansion to a finite number of terms, then we get a non-square integrable
function from the exponential growth for ρ→∞. We therefore require that the power series stops
at some integer k= nr which can have the values 0,1,2,3..... This requirement can be implemented
with the equation

α(nr + l+1)−Z = 0
i.e.

α=
Z

nr + l+1
Recalling the relation between α and the dimensionless energy ε we obtain that the requirement of
square integrability limits the energy to a discrete set given by

Enr ,l =−
me4Z2

2(4πε0)2ħh2 ·
1

(nr + l+1)2
; nr = 0,1,2,3,...; l = 0,1,2,3,....

This result contains the new quantum numbers nr which labels the discrete energy eigenvalues, in
addition to l. The term-scheme of the hydrogen, based on this exact result, is given in the figure.
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√

ε
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-0.5

nr = 0(n = 1)
l = 0

nr = 1
l = 0

nr = 2
l = 0

nr = 0
l = 1

nr = 1
l = 1

nr = 0
l = 2

s p d

Term-scheme of hydrogen like atoms as resulting from the solution of the radial equation. In the liter-
ature, the levels are often labelled by the quantum number n= nr + l+1 rather than by (nr , l). This is
confusing as it masks the fact that in more general spherical symmetric potentials two separate quantum
numbers are necessary to label the eigenvalues.

In the literature, one uses the quantum number n
.
= nr + l+1 to label the energy levels, so that the

contact with the empirical formula by Bohr

En =−
me4Z2

2(4πε0)2ħh2 ·n2

is made explicitely. n is known as the main quantum number. For nr = l = 0 (n= 1), e.g, we have
the ground 1s-state at −13.6 eV, i.e. one Rydberg (1Ry = 1/2Ha). Its distance from E = 0 is the
ionization energy of an electron in H-atom. Further states are found at l = 0 an nr = 1,2,3,4,....
(see the figure caption for further discussion and n-assignment). One notices in the term-scheme
that some states with different quantum numbers nr and l are actually degenerate (for a given
n, those states with l = 0,1,2,...,n−1 are degenerate) i.e. they have the same energy. We point
out that this degeneracy is so called an ”accidental” degeneracy: one can show that a small
change away from the exact Coulomb potential (e.g. produced by screening, see later in atomic
physics) removes the accidental degeneracy. The essential 2l+1-degeneracy is, of course, maintained.

The limiting of the series to finite terms introduces characteristic polynomials in the build-up
of the eigenfunctions: the Laguerre polynomials. The eigenfunctions of Z atoms, normalized to 1
read:

ψn,l,m(r,ϑ,ϕ) = (a)−
3
2 ·Nnl ·(

2Z r
a ·n
)l · F

�

l+1−n,2l+2,
2Z r
a ·n

�

· e−
2Z r
a·n ·Y m

n (ϑ,ϕ)

Nnl =
1

(2l+1)!
·

√

√ (n+ l)!
2n ·(n− l−1)!

·(
2Z r
a ·n
)

3
2

is a normalization factor. F(a,c,z) is the confluent hyper-geometric function. It is typically defined as
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a infinite power series

F(α,β ,z) = 1+
α

β

z
1!
+
α(α+1)
β(β+1)

·
z2

2!
+ ...

For α = 0,−1,−2,... F(α,β ,z) is a polynomial. Some hydrogen-like orbitals are given here and
sketched in the figures.
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Case b

We go back to the radial SE in the form

[
d2

dρ2
+2 ·ε+

2Z
ρ
−

l(l+1)
ρ2

]R(ρ) = 0

In classical Newton physics, open orbits appear in the range ε ≥ 0. We consider therefore the range
ε≥ 0 in the radial SE. Considering only the leading terms for ρ→∞ the radial SE in the range ε≥ 0
reads:

[
d2

dρ2
+2 ·ε]R(ρ) = 0

The general solution is

R(ρ,ρ→∞)≈ A· ei·
p

2ε+B · e−i·
p

2ε

R(ρ,ρ→∞) remains finite for any value of ε≥ 0 and the requirement of square integrability cannot
be enforced. Accordingly, we do not have any tool to discretize the energy values: in the range ε≥0 we
expect a continuum spectrum. The corresponding eigenstates are called ”scattering states”. They are
orthogonal to the bound states appearing in the discrete part of the spectrum and build and essential
component of the space of states of the SE for a radial potential. They are not square integrable. We
will learn how to deal with such non-square integrable scattering states in a separate Chapter.
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Foundations of quantum

mechanics
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4. Formal aspects of the Schrödinger

QM and QM 2.0.

4.1. Introduction

Schrödinger quantum mechanics introduces wave functions, operators acting on them and the eigen-
values of these operators, resulting from the solution of an eigenvalue problem. J. von Neumann, in
his fundamental work ”Mathematische Grundlagen der Quantenmechanik”, Springer, Berlin, 1932
established a rigorous general mathematical framework for hosting the new elements entailed by
Schrödinger quantum mechanics. The formulation of this framework is one scope of this Chapter. We
will find that this mathematical framework is the key to the transition from Schrödinger quantum
mechanics to an entirely equivalent formulation of quantum mechanics, based on using vectors to
represent ”wave functions”, matrices to represent ”operators” and the eigenvalue problem of a ma-
trix to represent the eigenvalue problem of an operator. The matrix formulation is due, originally,
to Heisenberg. It has the advantage that problems of quantum mechanics can be cast and solved in
situations where the wave functions and the operators cannot be represented with standard spatial
variables, for instance situations involving the ”spin” state of the electron or the ”color” state of a
quark. A second scope of this Chapter, accordingly, is to get aquainted with the matrix formulation of
quantum mechanics. These are the ”formal” aspects dealth with in this chapter. Finally, the third topic
of this Chapter: the finding of the ”observables” and their link to the outcome of an experiment. This
third topic (in particular the ”jump” postulate by Dirac) we call QM 2.0, as it represents a genuine de-
velopment with respect to QM 1.0 (the Schrödinger Quantum mechanics). QM 2.0 is currently much
debated, because experiments aimed at verifying such fundamental questions have been recently de-
signed and performed. Our approach will be one of establishing a fundamental understanding of the
topic rather than discussing the recent advances.

4.1.1. The year 1926: M. Born

The proposal of interpreting the square of the absolute value of the wave function as a charge or
particle density and thus of substituting point like particles with some continuous distribution of
matter was controversial at the time Schödinger proposed it (and at later times as well). We quote,
at this point, verbatim from the Nobel lecture by M. Born (1954):
”Schrödinger thought that his wave theory made it possible to return to deterministic classical
physics. He proposed (and he has recently emphasized his proposal anew’s), to dispense with the
particle representation entirely, and instead of speaking of electrons as particles, to consider them as
a continuous density distribution (or electric density e· |ψ |2). To us in Göttingen this interpretation
seemed unacceptable in face of well-established experimental facts. At that time it was already
possible to count particles by means of scintillations or with a Geiger counter, and to photograph
their tracks with the aid of a Wilson cloud chamber.”......”Again an idea of Einstein’s gave me the lead.
He had tried to make the duality of particles - light quanta or photons - and waves comprehensible
by interpreting the square of the optical wave amplitudes as probability density for the occurrence of
photons. This concept could at once be carried over to the ψ-function: |ψ(x) |2 ought to represent
the probability density for electrons (or other particles).
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This is the most celebrated ”statistical interpretation of the wave function” by M. Born.
As pointed out by Born, bound states are not suited to distinguishing the statistical character of
the wave function, but scattering states such as those found in diffraction, are more telling. The
diffraction pattern recorded e.g. in electron or atom scattering consists of registered ”bips” along a
well-defined channel at a certain angle. The ”bips” mark the arrival of the particles. The number of
”bips” registered depends on the scattering angle, and the distribution of the number of registered
”bips” as a function of scattering angle follow the characteristic diffraction pattern consisting of
maxima and minima. In other words: atoms and electrons are particles that have a certain probability
to appear at some geometrical point. The statement by Born is that this probability is related to
|ψ(x , y,z) |2.

The statistical interpretation by Born produces a well-defined mathematical scheme for char-
acterizing the Schrödinger wave functions.

POSTULATE (M. Born). Let ∆ denote a region of the configuration space Ω of a particle. Ω
is the set of all coordinates {q} where the particle can be found. For one particle, e.g., Ω=R3, i.e
the Euclidean space and q represents e.g. the Cartesian coordinates (x , y,z) (but one can use also
spherical coordinates (r,ϑ,ϕ). Let ψ(q, t) the Schrödinger wave function, computed by solving an
appropriate, possible time dependent wave equation, describing the state of the particle. Then

Wψ(∆)
.
=

∫

∆
|ψ(q, t) |2 dΩq

∫

Ω
|ψ(q, t) |2 dΩq

is the probability that the particle is within ∆ when its coordinate q is measured (dΩq is an
infinitesimal volume element suitable for Ω).

COMMENTS.

• An alternative interpretation of Born statistical principle reads: the particle spends a fraction
W (∆) of its lifetime in the region ∆.

• The integral
∫

Ω

|ψ(q, t) |2 dΩq

is the probability that a particle is located somewhere within Ω, and may be chosen as ”1”.
This last equation represents a strong constraint on physically relevant wave functions, which
must be square integrable over the configuration space, i.e. the integral of the square of |ψ |
must be a finite number. Physically relevant wave functions can therefore be suitably redefined
(”normalized”) so that

∫

Ω

|ψ(q, t) |2 dΩq = 1

• Note that, when one multiplies a wave function with a complex number with absolute value 1,
one obtains a state that physically leads to the same Wψ(∆). Such states that differ by a phase
factor are considered to be equivalent.

• The quantity
Wψ(dΩq) =|ψ(q, t) |2 ·dΩq

is the probability to find a particle in the volume dΩq surrounding the point q. For the Euclidean
space, dΩq is the volume d3 x located at the apex of the position vector x.
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•
ρ(q, t)

.
=|ψ(q, t) |2

is the probability density, i.e. a probability per unit volume to find the particle at the coordinate
q.

• The – possibly complex wave function –
ψ(q, t)

is called the amplitude to find the particle at the coordinate q.

• We have presented the statistical interpretation following the original version of M. Born, having
in mind the q can assume continuous values. However, there are quantum mechanical systems
where q can only assume discrete values. The statistical interpretation is also valid when the
configuration space is a discrete set and we will discuss this case in details later in this lecture.

• The statistical interpretation is still considered to be valid and has undergone solid experimental
proof (see e.g. the Nobel prize 2022). For obtaining the discrete set of energy values of bound
states of a quantum mechanical system, one can still formally proceed having still in mind
Schrödinger interpretation.

4.2. Formal aspects 1: Hilbert spaces.

There is a shift of paradigm when going from classical to quantum mechanics. In classical mechanics,
the information about the motion of a particle at a given energy E is stored in a graph defined over
the variables (p,q) building the phase space. In quantum mechanics, instead, the ”state” of a system is
a string of complex numbers distributed over the coordinates q – the ”wave function”. We use, in the
following, the symbol ”q” to represents all variables {q1, .....,q f } tha span the configuration space, i.e.
the f -dimensional space that provides the f -degrees of freedom to the physical system. For instance,
the configuration space of one single quantum mechanical particles in a potential Φ(x , y,z) isR3 ( f =
3). The configuration space of N point particles is the set of spatial variables (x1, y1,z1, ..., xN , yN ,zN )
corresponding to f = 3N degrees of freedom. The configuration space of a rigid body,e.g., consists
of the three spatial variables identifying the center of mass and of the three angles describing its
rotational degrees of freedom. Notice that a particle, like the electron, can have an internal degree of
freedom (a spin) described by a variable s which can assume a discrete set of values. The mathematical
structure introduced in the following covers both types of configuration spaces, those with continuous
and those with discrete variables.
COMMENT: Wave functions versus ”states”.
The solutions of the SE are scalar functions of the variable q, denoted by ψ(q). Von Neumann and
Dirac describe this situation as the system being in a ”state”ψwhich is specified by giving a continuous
string of complex values ψ(q). Dirac introduces a special symbol to label states: instead of the greek
letterψ he uses the ”ket” |ψ>. The idea behind this abstract thinking is the following: the Schrödinger
representation of the physical state is one where the state is specified at the position q. However, there
might be other, equivalent representations of the state, e.g. by using the variable p. The use of abstract
”state” (designated byψ or |ψ>) therefore offers a new degree of freedom within the formal structure
of quantum mechanics.

Rule A: the superposition principle. The SE for a given solution E has the specific property
that if ψ1(q) and ψ2(q) are solutions of the SE to a given value E, so is any linear combination
α ·ψ1(q)+β ·ψ2(q). Because of this linearity, a quantum mechanical particle with a given energy
eigenvalue can therefore ”reside simultaneously in two or more different states” (we will specify
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later what this sentence exactly means). In classical mechanics, instead, a particle is prepared in
some state (p0,q0) and then driven state-by-state – i.e. one state after the other – to other states
by the time evolution provided by Newton equations, under the constraint of energy conservation.
As a result one single trajectory in phase space is designed, in the specific case of a particle with
hard wall the trajectory is one specific rectangle in phase space. A second trajectory (such as the
one belonging e.g. to a different direction of the angular momentum vector in the classical problem
of a particle moving in a radially symmetric potential) is not interfering with the first one, in the
sense that when the particle is along one trajectory, it does not jump onto the other so to form a
kind of mixed trajectory. Thus, while in classical mechanics the superposition of states or trajectories
is meaningless – and is not even foreseen because of the non-linearity of Newton equations –
in quantum mechanics the used of ”mixed” states is foreseen by the linearity of the Schrödinger
equation and a suitable mathematical structure must be developed that incorporates this property.
This mathematical structure is the superposition principle:

SUPERPOSITION PRINCIPLE: If ψ1 and ψ2 are states of a system, so does the linear combi-
nation

ψ=λ1 ·ψ1+λ2 ·ψ2

(λi being complex numbers).

This equation is the first rule of computation encountered when defining the fundamental
mathematical structure of quantum mechanics. Because of this principle, the set of states becomes a
”vector space” and the states themselves – as the elements of this vector space – are ”vectors”. When
states are specified onto e.g. a variable q one designates {ψ(q)} as a ”function space’.

POSTULATE A: The set of states of any quantum mechanical system builds a vectors space,
with the superposition principle as a computation rule.

EXAMPLES.
1. If we think of the function set

{

√

√2
L

cos
(2n+1)π

L
· x ,

√

√2
L

sin
(2n)π

L
· x} ; n= 1,2,3,....

than the set of all these wave functions, including their linear combinations build a vector space of

functions that have the property of vanishing at − L
2 , L

2 .
2. The set

{un(x) =
1
p

L
· ei 2π·n

L ·x} ; n= 0,±1,±2,...

and all linear combinations build a vector space of periodic functions with period L.

COMMENTS.
1. The superposition principle allows to define the concept of linearly independent vectors.
DEFINITION. The vectors {ψ1, ...,ψn} are linearly independent if the equation

n
∑

1

aiψi = 0

can only be satisfied by a1, ...,an = 0.
2. DEFINITION. A vector space is n-dimensional if it contains n-linearly independent vectors.
If n is finite, then the vector space is said to be finite-dimensional. If n is infinite than the vector space
has infinite dimension. For instance, the space of states of one particle in a potential well is a function
space. We have computed in this function space an infinite number of wave functions for the bound
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states. These functions are manifestly linear independent: we conclude that the function space has
infinite dimension.

Rule B: Hermitic (Hilbert) metric (scalar product). Born’s postulate requires wave functions
to be square integrable. A rule of computation in the vector space that takes this property into account
is the ”scalar product of vectors”. A scalar product associates to a pair of vectorsψ,ϕ a scalar quantity

(ϕ,ψ)
such that
• (ϕ,ψ) = (ϕ,ψ)
• (λ1ϕ1+λ2ϕ2,ψ) = λ̄1 (ϕ1,ψ)+ λ̄2 (ϕ2,ψ)
• (ϕ,λ1ψ1+λ2ψ2) =λ1 (ϕ,ψ1)+λ2 (ϕ,ψ2)
• positivity: (ϕ,ϕ)≥ 0 and (ϕ,ϕ) = 0⇐⇒ϕ= 0
In Dirac notation, the state on the left hand side is an adjunct – ”bra” – vector and the scalar product
writes as a ”braket”:

(ϕ,ψ)→<ϕ |ψ>
EXAMPLE 1.
The vector space C n (n being a finite integer) is a vector space with Hermitic metric. The elements
|ϕ> of this vector space are vertical columns of the type















a1
a2
.
.
.

an















The adjunct (transpose complex conjugate) states <ψ | are horizontal columns of the type
�

b1, b2, ...., bn

�

and the scalar product is the matrix multiplication

<ψ |ϕ>=
�

b̄1, b̄2, ...., b̄n
�

·















a1
a2
.
.
.

an















=
n
∑

i=1

b̄i ·ai

EXAMPLE 2.
In a function space one can define an Hermitic metric by

(ψ,ϕ)
.
=

∫

K
dΩqψ(q) ·ϕ(q)

(the case ϕ =ψ (corresponding to Born postulate) being a special one). dΩq is the infinitesimal
volume element in the configuration space and takes into account which type of variables one uses.
For instance, in Cartesian coordinates we have dΩq= d x ·d y ·dz. This integral over the configuration
space involving the product of functions has all the properties that we know for the scalar product
between two vectors in the vector space C n.

COMMENTS.
The existence of an Hermitic metric allows to define useful concepts and operations.
1. The name ”metric” used in this paragraph refers to the fact that using the scalar product one can
”measure” the ”length” – the ”norm”– of a vector ψ as

‖ψ ‖ .
=
Æ

(ψ,ψ)
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2. One can also define the distance d(ψ,ϕ) between two vectors
d(ψ,ϕ) =‖ψ−ϕ ‖

3. One can define orthogonal vectors as two vectors ψ, ϕ which fulfill
(ψ,ϕ) = 0

4. A set of n-vectors {ψ1, ...,ψn} with the property
�

ψi ,ψ j
�

=δi j

is called an orthonormal set (ONS).1

EXAMPLES.
1. The set















0
1
.
.
.
0





























1
0
.
.
.
0















....















0
0
.
.
.
1















builds an orthonormal set (ONS) in C n.
2. The set

¨√

√2
L

cos
(2n+1)π

L
·q,

√

√2
L

sin
(2n)π

L
·q

«

; n= 1,2,3,....

provides a set with infinite orthonormal elements in the vector space of functions that vanish at ± L
2 ,

which is therefore an infinite dimensional vector space.
3. Similarly, in the function space consisting of L-periodic functions one can find an infinite number
of mutually orthogonal functions – e.g. the set

§

un(x) =
1
p

L
· ei 2π·n

L ·x
ª

; n= 0,±1,±2,...

This function space is also infinite dimensional.

POSTULATE B: The set of states of a quantum mechanical system builds a vector space with
Hermitic metric (scalar product).

Rule C: Complete orthonormal set (expansion theorem). There is a third rule of computation
in quantum mechanics, called expansion theorem.
EXPANSION THEOREM (FINITE DIMENSIONAL VECTOR SPACE WITH SCALAR PRODUCT). Let a
set of n orthonormal vectors {ψ1, ...,ψm} be given.
CLAIM: any vector ψ can be expressed as a linear combination of the ψi:

ψ=
n
∑

i=1

ciψi

1THEOREM: n-orthonormal vectors {ψ1, ...,ψn} are linearly independent.
PROOF: Assume that one of the states can be expressed as a linear combination of the others:

ψ j =
n
∑

i=1,i 6= j

aiψi 6= 0

Multiplying with ψ j from the left and taking the scalar product we obtain
�

ψ j ,ψ j
�

= 0

This leads to ψ j = 0 which is contrary to the assumption.
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PROOF: by scalar multiplication of the expansion from the left hand side with ψi one obtains
ci = (ψi ,ψ)

ci are the so-called ”coordinates” of the state ψ. �.
DEFINITION. The set {ψ1, ...,ψm} is said to build a complete orthonormal system of basis states.
COMMENTS:
Complete means that all basis state are known. Completeness of the orthonormal system is extremely
important: only when all basis states of a quantum mechanical system are known, one has an exact
and complete knowledge of all his possible quantum states. In a finite dimensional vector space,
completeness is a straighforward property.
One would like to generalize the expansion theorem to an infinite dimensional vector space

ψ=
∞
∑

i=1

ciψi ; ci = (ψi ,ψ)

This is not a simple task. First, in an infinite dimensional space one has an infinite number of basis
functions, and completeness is not straightforward: one must show that one has found all mutually
orthogonal vectors. Second, the infinite sum must be provided with a convergence criterium.
The search for a CONS (Complete Othornormal System) in an infinite dimensional vector space and
the definition of convergence are simoultaneous tasks. Assume that we have an infinite number of
orthonormal states {ψi}; i= 1,...,∞ and a vector ψ. Build the partial sum

n
∑

i=1

ciψi ; ci = (ψi ,ψ)

as an approximation of the state ψ. We notice that the difference vector

ψ−
n
∑

i=1

ciψi

is orthogonal to any ψ j , as
�

ψ j ,ψ−
n
∑

i=1

ciψi

�

=
�

ψ j ,ψ
�

−

� n
∑

i=1

ciψi ,ψ j

�

=
�

ψ j ,ψ
�

−
∑

i

ci
�

ψi ,ψ j
�

︸ ︷︷ ︸

δi j
︸ ︷︷ ︸

c j

= 0

We use this result to compute the length of the difference vector:
�

ψ−
n
∑

i=1

ciψi ,ψ−
n
∑

i=1

ciψi

�

= (ψ,ψ)−
n
∑

i=1

| ci |2

(Bessel formula). Bessel formula proves the following theorem for infinite dimensional vector spaces:
THEOREM: The length of the difference vector decreases with increasing n.
DEFINITION. The set of orthonormal states {ψi}; i = 1,...,∞ is complete if, for any vector ψ, the
length of the difference vector tends to zero with increasing n.
COMMENT: In general, the proof of orthonormality of a given set of states is quite easy and most
used in computations. The proof of completeness, instead, might be quite ”painful” and is, typically,
referred to advanced textbooks of mathematical physics. For the purpose of this lecture, we recall that
the physical consequences of completeness are significant. Because of completeness, the elements of
a CONS build a basis set in the vector space, in the sense that their knowledge is enough to describe,
by means of a linear superposition, any other element of the vector space. Accordingly, the solving
of the Schrödinger equation and, in general, of quantum mechanical problems ”reduces” to find a
suitable CONS. Using the words of R. Feynman, physical research is about finding the ”base states of
the world”.
POSTULATE C: The set of states {ψ} of a quantum mechanical system is vector space with scalar
product and with a complete set of orthonormal states. Such a vector space is said to be a Hilbert
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space.
COMMENT.
Because of the relation

(ψ,ψ)− lim
n→∞

n
∑

i=1

| ci |2= 0

and of the requirement of finiteness of (ψ,ψ) (Born), postulate C rewrites:
POSTULATE C’: The set of states {ψ} of a quantum mechanical system is vector space with scalar
product and comprises all possible states with coordinates c1,c2, .... such that

∞
∑

i=1

| ci |2

converges. (This is an alternative, equivalent definition of a Hilbert space).

We are now able to formulate precisely the expansion theorem in an infinite dimensional
Hilbert space.
EXPANSION THEOREM (INFINITE DIMENSIONAL VECTOR SPACE WITH SCALAR PRODUCT AND
CONS). Any element ψ in an Hilbert space can be written as

ψ=
∞
∑

i=1

(ψi ,ψ)ψi

The ”equality” means that

lim
n→∞

||ψ−
n
∑

i=1

(ψi ,ψ)ψi ||2= 0

(normwise convergence) or, equivalently,

||ψ ||2=
∞
∑

i=1

| (ψi ,ψ) |2

This last expression is known as the completion relation (or Parseval identity). Its fulfillment shows
that the system of basis functions used is complete, i.e. no basis function was left out. It also establishes
an isometry between any Hilbert space and the Hilbert space (c1,c2, ....) with

∑

i | ci |2<∞.
COMMENTS.
1. The use of a CONS to generate elements of the Hilbert space calls for a discussion about which
functions can be reached by such an infinite sum. This is because the relation

ψ=
∞
∑

i=1

(ψi ,ψ)ψi

does not necessarily imply that ψ(q) and
∑∞

i=1 (ψi ,ψ)ψi(q) are equal at any point q (pointwise
convergence). Let, for instance, the expansion

∑

i

(ψi ,ψ) ·ψi

be given. It is not difficult to imagine that one could alter the graph of ψ(q) pointwise to produce an
infinite number of singular functions that differ from the function ψ ”pointwise” (more precisely:
within a so called ”Lebesque null set”2) but have the same expansion coefficients as the function
ψ. Accordingly, the expansion coefficients are set into correspondence with an entire class of

2The famous Dirichelet function provides an example of such a Lebesque null set and also introduces the need to use Lebesque
integration when defining functions in an Hilbert space. This function is almost everywhere zero in the interval [0,1] except
at the position of the rational values in the same interval, where it is given the value of ”1”. This function is not Riemann-
integrable but it can be integrated – like all functions which have an finite or countably infinite set of point-discontinuities
– by the method of Lebesque, in this case to give a vanishing integral, as the function is almost everywhere vanishing.
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”equivalent” functions.3 The elements of the Hilberts space generated by the expansion with the
CONS are the ”classes of equivalent functions”.
2. According to V. Moretti (Valter Moretti, Do continuous wavefunction form a Hilbert space?,
https://physics.stackexchange.com/q/719681), the classes contain ”true monsters”.
For any practical purposes, however, (except for advanced ”proof mathematics”) one deals with
representatives of the classes which are, typically continuous and at least once differentiable, so that
they can be solution of the Schrödinger equation.
3. The infinite linear conbinations of continuous CONS functions might produce discontinuos func-
tions (recall the building of, for instance, a square signal by a suitable Fourier series). Accordingly,
classes with a discontinuous function as representative can also belong to the Hilbert space of a
quantum mechanical system. They are, however, exotic appearances in practical physical problems
related to atoms, molecules and solids (see again the comments by V. Moretti).

EXAMPLES OF CONS.
1. n orthogonal vectors in a vector space with finite dimensions n.
2. The set of infinite dimensional vectors

f1 = (1,0,0,...), f2 = (0,1,....), ... fn = (0,0,...,1,0,0,...), ....
in the Hilbert space `2 of all sequences (a1,a2, ....) for which

∑∞
i=0 | ai |2<∞.

3. The set

{

√

√2
L

cos
(2n+1)π

L
·q,

√

√2
L

sin
(2n)π

L
·q} ; n= 1,2,3,....

builds a CONS in the vector space of functions that vanishes at − L
2 , L

2 .
4. A famous theorem by Fourier establishes that the plane waves

uk(x) =
1
p

L
· ei·k·x

with k= 2π
L ·n and n∈Z build a CONS in the function space of L-periodic functions.

5. The eigenfunctions
�
√

√ 1
p
π
·

1
2n ·n!

·Hn(x) · e−
x2
2

�

of the one dimensional oscillator build a CONS in the Hilbert space of square integrable functions in
the variable x ∈R .

The Fourier Transform

Mathematics endows the set of square integrable functions with basis functions labeled by an in-
dex that takes continuum values: this technology is known as Fourier-transform. This is a kind of
”improper” CONS that requires a special treatement. The starting point is the Fourier expansion for
L-periodic functions, that uses the basis functions

uk(x) =
1
p

L
· ei·k·x

3Two functions f (q) and g(q) belonging to the same class are considered to be equivalent f ∼ g if {q : f (q)− g(q) 6= 0} is
a Lebesque null set. In words: f ∼ g if f (q) = g(q) for almost all q. This relation is an equivalence relation and therefore
allows to build equivalence classes [ f ]. The set of all equivalence classes {[ f ]} is a vector space with Hermitic metric:

[ f ]+[g]
.
= [ f + g]; α[ f ]

.
= [α · f ]; ([ f ],[g])

.
= ( f , g)

i.e. the operations between the classes can be performed using their representatives. As each class is generated by a set of
expansion coefficients, the space is complete.
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with k= 2π
L ·n and n∈Z and orthonormality relation

�

uq,uk
�

=
1
L

∫
L
2

− L
2

d xe−i·q·x ei·k·x =δqk

For any periodic functions one obtains the Fourier series

ψ(x) =
∑

k

ψ̃(k) ·uk(x) with ψ̃(k) = (uk,ψ) =

∫
L
2

− L
2

d x uk(x) ·ψ(x)

We would like to find out how the Fourier series develop in the limit L→∞, so that it covers the
space of physical functions defined over the entire configuration space R , also without imposing
periodic boundary conditions. For this purpose we write

ψ(x) =
∑

k

ψ̃(k)uk(x) =
1
p

2π

∑

k

p
L

p
2π
·ψ̃(k) ·

2π
L
· eikx =

1
p

2π

∑

k

ψ̃′(k)∆keikx

with

ψ̃′(k) =
1
p

2π

∫
L
2

− L
2

d x ·ψ(x) · e−ikx and ∆k =
2π
L

Let now L→∞: then ∆k→ 0 and the Riemann sum
1
p

2π

∑

k

ψ̃′(k)∆keikx

converges to

ψ(x) =
1
p

2π

∫ ∞

−∞
dk ·ψ̃(k) · eikx

with

ψ̃(k) =
1
p

2π

∫ ∞

−∞
d x ·ψ(x) · e−ikx

This equation tells us e.g. that any square integrable function ψ(x) can be expressed as a Fourier-
integral. The square integrable function ψ̃(k) is its Fourier transform. The Parseval identity writes

∫ ∞

−∞
d x |ψ(x) |2=

∫ ∞

−∞
dk | ψ̃(k) |2

and is called the Plancherel relation.

Dirac delta function technology. The Fourier transform technology introduced in the last sub-
section is an example of an expansion of a function into a set of basis functions labeled by a continuous
index, namely k. In fact, one can interpret the expression

ψ(x) =
1
p

2π

∫ ∞

−∞
dk ·ψ(k) · eikx

formally as the superposition of basis states uk with

uk(x) =
1
p

2π
· eik·x ; k ∈R

The basis states themselves are not square integrable and cannot be realized as physical states. How-
ever, we can use them provided they gives physically plausible results. In order to use them as basis
states, we need to establish the meaning of the orthonormality relation

(uk′ ,uk) =
1

2π

∫

R
d x e−ik′ x · eikx

This is a very important integral that must be discussed with some care. The result of this integral,
in fact, must be an expression containing k,k′ (by integration, the variable x is eliminated). But the
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expression we will obtain is not a function of k,k′ in the usual sense, but a ”generalized function”.
Such a generalized function (or distribution) was first introduced by Dirac and later a very rigorous
mathematical framework was worked out by L. Schwartz and I.M. Gel’fand. We will learn how to use
it without being ”too” rigorous. Let us now compute the integral as

lim
L→∞

�

1
2π
·
∫ L

−L
d x · ei x ·(k−k′)

�

First we use the Euler formula to write
ei x ·(k−k′) = cos(x ·(k−k′))+ i ·sin(x ·(k−k′))

We point out that the sin-function is uneven and its integral from −L to +L vanishes for symmetry
reasons. We are left with the elementary integral over the cos-functions. This gives:

lim
L→∞

1
2π

∫ L

−L
cos(x ·(k−k′))d x = lim

L→∞

1
π

sin(L ·(k−k′))
(k−k′)

The function
1
π

sin(L ·(k−k′))
(k−k′)

has some interesting properties (see the graph):

The function 1
π

sin(L·(k−k′))
(k−k′) plotted as a function of (k− k′) for L = 2 (black line), L = 5 (red line) and

L= 20 (green line).

• for k= k′ it amounts to L
π . Accordingly, for L→∞ it diverges at k= k′.

• For k 6= k′ it oscillates with the period 2π
L . Accordingly, for L→∞ it ”averages” to zero for

k 6= k′.

• Furthermore
∫ ∞

−∞
dk

1
π

sin((k−k′) · L)
(k−k′)

=

∫ ∞

−∞
dk′

1
π

sin((k−k′) · L)
(k−k′)

= 1

for any L.

DEFINITION: The function that
1. diverges when its argument is 0;
2. vanishes elsewhere so that
3. its integral is”1”
is the so called Dirac Delta function, δ(x).
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It is used, among other, to write the orthonormality relation for plane waves:

(uk′ ,uk) =
1

2π

∫

R
d x e−ik′ x · eikx .

=δ(k−k′)

δ(k−k′) =







∞, k= k′

0, k 6= k′
∫

dk ·δ(k−k′) = 1

THEOREM. For any continuos, integrable function f (x) we have
∫ ∞

∞
d x ·δ(x) · f (x) = f (0)

and in general
∫ ∞

∞
d x ·δ(x− y) · f (x) = f (y)

and
∫ ∞

∞
d y ·δ(x− y) · f (y) = f (x)

i.e. the delta-function is actually a functional that associates to every continuous function f (x) its
value f (0) (this result points out that the Dirac function is a so-called ”distribution” or ”generalized
function”: a ”distribution” is also a ”functional”.)
”PROOF”: Approximate e.g. f (x) in the vicinity of x = 0 with f (0)+O(x) and write

∫ ∞

−∞
d xδ(x) · f (x) = lim

k→∞

∫ ∞

−∞
d x

1
π

sink ·(x)
(x)

· f (x)

= f (0) · lim
k→∞

∫ ∞

−∞
d x

1
π

sink ·(x)
(x)

︸ ︷︷ ︸

1

+ lim
k→∞

∫ ∞

−∞
d x

1
π

sink ·(x)
(x)

·O(x)

= f (0)+O

�

lim
k→∞

∫ ∞

−∞
d x

1
π
·sin(k · x)

�

We compute now the rest integral:

lim
k→∞

∫ ∞

−∞
d x

1
π
·sin(k · x) =

1
π

lim
k→∞

�

−
cos(k · L)

k
|L→∞L→−∞

�

The cos-function is limited to the ±1 interval, so that the limit k→∞ produces the vanishing of the
rest integral. We are now left with the sought for result.

This is the summary of useful formulas:

δ(x) =







∞ ; x = 0
0 ; x 6= 0

∫∞
−∞ d x ·δ(x) = 1

∫ ∞

∞
d x ·δ(x) · f (x) = f (0)

(uk′ ,uk) =
1

2π

∫

R
d x e−ik′ x · eikx .

=δ(k−k′)

ψ(x) =
1
p

2π

∫ ∞

−∞
dk ·ψ̃(k) · eikx ψ̃(k) =

1
p

2π

∫ ∞

−∞
d x ·ψ(x) · e−ikx
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4.3. Formal aspect 2: Operators

4.3.1. Introduction

By virtue of the correspondence principle, there are further mathematical objects (besides wave func-
tions) that play a central role in quantum mechanics: the so called ”operators”. This principle is,
however, an heuristic one. In the following, we obtain operators by starting from a more fundamen-
tal principle, the statistical interpretation of the wave function by M. Born.
Once a probability amplitude ψ(x) is defined, one can ask about the result of performing one single
act of determining the particle position. The answer is that the particle will be registered at the site
x1 with the probability dV1 |ψ(x1) |2. Making sure that the particle is prepared into the same stateψ,
one can repeat the measurement with a detector placed at the site x2. The particle will be registered
at the site x2 with the probability dV2· |ψ(x2) |2, and so on. Upon repeating the measurement many
times the outcome of the position determination will approach asymptotically the ”average” position4

x̄ |ψ
.
=

∫

R
dV ·x· |ψ(x) |2

In the framework of quantum mechanics, one can obtain the same result for the average position re-
sorting to introducing an operator q̂ that maps any stateψ into a new state q̂ψ, defined by evaluating
the result at any point x:

(q̂ψ)(x) = x ·ψ(x)
The map is linear, i.e. it preserves the linearity of the vector space:

q̂(λ1ψ1+λ2ψ2) =λ1q̂ψ1+λ2q̂ψ2

(this equation can be proved by evaluating its validity at any point x). Linearity of operators is essen-
tial in order to keep the validity of the superposition principle. Once such an operator is defined, one
can compute the scalar product of q̂ψ onto ψ:

(ψ, q̂ψ) =

∫

R
dV ·ψ∗(x) ·x ·ψ(q) .

=< q>ψ

This scalar product is called the quantum mechanical expectation value of the operator q̂ in the state
ψ. By explicit computation, we have just established the identity

x̄ψ =< q̂>|ψ
We have therefore succeeded in expressing the statistical average by means of the expectation value
of an operator. It appears therefore that a classical physical quantity such as the position vector has
a counterpart in quantum mechanics, in agreement with the heuristic correspondence principle.
To corroborate this hypothesis we would like to find such an operator for the momentum of the par-
ticle as well. In order to keep the mathematics as comprehensible as possible we consider a single
particle moving along the x-axis. Let the state of the particle being given by ψ. We are used to spec-
ifying this state at any value of x but we recall that Dirac and v. Neumann has opened the possibility
of specifying this state over the variable p. ψ(p) would then be the amplitude that the momentum of
the particle assumes the value p. Accordingly, we can write

p̄ |ψ=
∫ ∞

−∞
dpψ(p) · p ·ψ(p)

4In this expression we have assumed that the state ψ has been normalized to 1, i.e.
∫

R dV · |ψ(x) |2= 1, otherwise the
statistical average amounts to

x̄ |ψ=

∫

R dV ·q· |ψ(x) |2
∫

R dV · |ψ(x) |2

For the sake of simplicity we will continue with normalized states.
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We would like to compute this statistical average as the quantum mechanical expectation value of a
suitable operator p̂ over the state ψ(x), i.e. to write

∫ ∞

−∞
dpψ(p) · p ·ψ(p) as (ψ, p̂ψ) =

∫

R
d x ψ(x)(p̂ψ)(x)

To solve this task we use

ψ(p) =
1

p
2π ·ħh

∫ ∞

−∞
d x ·ψ(x) · e−i p

ħh x

and
∫ ∞

−∞
dpψ(p) · p ·ψ(p) =

∫ ∞

−∞
dp

�

1
p

2π ·ħh

∫ ∞

−∞
d x ·ψ(x) · ei p

ħh x
�

· p ·
�

1
p

2π

∫ ∞

−∞
d y ·ψ(y) · e−i p

ħh y
�

=
1

2π ·ħh

∫ ∞

−∞
d x ·ψ(x) ·

�∫ ∞

−∞
d y ·

∫ ∞

−∞
dp · ei p

ħh x · p · e−i p
ħh y ·ψ(y)

�

We evaluate
∫ ∞

−∞
d y

∫ ∞

−∞
dp · ei p

ħh x · p · e−i p
ħh y ·ψ(y)

using

p · e−i p
ħh y = i ·ħh ·

∂

∂ y
e−i p
ħh y

and partial integration:
∫ ∞

−∞
d y · i ·ħh ·

∂

∂ y
e−i p
ħh y ·ψ(y) = e−i p

ħh y ·ψ(y) |∞−∞ +
∫ ∞

−∞
d y · e−i p

ħh y
�

−i ·ħh ·
∂

∂ y

�

ψ(y)

The first term of the right hand side of this last equation vanishes because of the square integrability of the
amplitude ψ(y), leaving

∫ ∞

−∞
dpψ(p) · p ·ψ(p) =

∫ ∞

−∞

∫ ∞

−∞
d x ·d y ·ψ∗(x) ·

�

−i ·ħh ·
∂

∂ y

�

ψ(y) ·
1

2π ·ħh
·
∫ ∞

−∞
dp · ei p

ħh (x−y)

︸ ︷︷ ︸

1
2π ·
∫∞
−∞ dk·eik(x−y)=δ(x−y)

=

∫ ∞

−∞
d x ·ψ(x) ·

�

−i ·ħh ·
∂

∂ x

�

ψ(x)

We recognize that we can express p̄ |ψ as <ψ, p̂ψ> with

(p̂ψ)(x)
.
=−i ·ħh ·

∂

∂ x
ψ(x)

This result is in agreement with the heuristic correspondence principle.

EXAMPLES OF OPERATORS.
1. The position operator is defined as

q̂ψ(x) = x ·ψ(x)
2. The momentum operator is defined as

p̂ψ(x) =−i ·ħh∇ψ(x)
3. The operator of the orbital angular momentum is defined as

L̂= x̂× p̂
This is a vector operator with Cartesian components

(L̂x )ψ(x) =−iħh
�

y
∂

∂ z
−z

∂

∂ y

�

ψ(x)
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(L̂ y)ψ(x) =−iħh
�

z
∂

∂ x
− x

∂

∂ z

�

ψ(x)

(L̂z)ψ(x) =−iħh
�

x
∂

∂ y
− y

∂

∂ x

�

ψ(x)

4. For a particle with mass m in a potential fieldΦ(x) the classical Hamilton function – which expresses
the total energy in the classical variables (x,p) reads

H(x,p) =
p2

2m
+Φ(x)

One can construct an Hamilton operator by building Ĥ(x̂, p̂):
�

Ĥ(x̂, p̂)
�

ψ(x) =−
ħh2

2m
4ψ(x)+Φ(x) ·ψ(x)

5. Functions of x̂ and p̂. Given a function f (x) one can define the operator f̂ (x̂) by
( f̂ψ(x)

.
= f (x) ·ψ(x)

Similarly, one can define formally polynomial operators (or any function that can be written as power
series) of p̂ by means of

( f̂ψ(x)
.
= f (−i ·ħh

∂

∂ x
) ·ψ(x)

Operator calculus In general, a linear operator is a ”device” that maps a state ψ into Âψ, such
that

Â(a1ψ1+a2ψ2) = a1Âψ1+a2Âψ2

An operator is specified by evaluating
(Âψ)(x)

Â is typically some differential or integral operator.
The set of linear operators builds an algebra, i.e. operators can be composed with the two operations
of ”sum” and ”product”, with the following computation rules:

(Â+ B̂)ψ = Âψ+ B̂ψ

(Â· B̂)ψ = Â(B̂ψ)
(λ · Â)ψ = Â(λ ·ψ)

An operator is only well defined if its domain of definition D(Â) is also specified. The domain of
definition establishes the set of states onto which the operator can be applied. It is related to some
boundary conditions. A consequence of attaching boundary conditions to some given operator is that
two operators might be formally identical but have a different domain of definition. For instance,

the operator − ħh
2

2m
d2

d x2 applied to functions that vanishes at ± L
2 has different eigenvalues than the

formally identical operator with periodic boundary conditions. Notice that D(Â) needs not to be the
entire Hilbert space, but ifϕ is any state in the Hilbert space, there is a stateψ∈D(Â) that is arbitrarily
close to ϕ. For instance, the momentum operator −i d

d x in one dimension is only defined for square
integrable functions which are also differentiable with respect to the variable x , while the Hilbert
space might contain functions that are not everywhere differentiable.
DEFINITION.
The quantum mechanical expectation value of the operator Â in a given state ψ writes:

< Â>|ψ
.
=

�

ψ, Âψ
�

(ψ,ψ)
∈C

In Dirac notation:

< Â>||ψ>=
<ψ | Â |ψ>
<ψ |ψ>
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4.3.2. Matrix representation of operators (W. Heisenberg)

In virtue of the expansion theorem one can achieve a matrix representation of linear operators . Take
f =

∑∞
j=1 a j f j and let the operator Â map this state into the state g =

∑∞
j=1 b j f j . Our aim is to write

the equation
Âf = g

as a relation involving the coordinates {ai} and {bi}. For this purpose we insert the expansions:

Â
∞
∑

j=1

a j f j =
∞
∑

j=1

b j f j

We multiply both sides from the left with fi and take the scalar product, obtaining
 

fi ,
∞
∑

j=1

a jÂf j

!

︸ ︷︷ ︸

∑∞
j=1( fi ,Âf j)·a j

=
∞
∑

j=1

b j
�

fi , f j
�

︸ ︷︷ ︸

δi j
︸ ︷︷ ︸

bi

The left-hand side contains new quantities: the so called matrix elements of the operator Â with
respect to the base states { fi}:

Ai j =
�

fi , Âf j
�

and the sought for relation between {ai} and {bi} reads


















A11 A12 ... A1n ..
A21 A22 ... A2n ..
.. .. ... ... ...
.. .. ... ... ...

An1 An2 ... Ann ..
.. .. ... ... ..
.. .. ... ... ..





































a1
a2
.
.
.

an
.



















=



















b1
b2
.
.
.

bn
.



















DEFINITION. The matrix


















A11 A12 ... A1n ..
A21 A22 ... A2n ..
.. .. ... ... ...
.. .. ... ... ...

An1 An2 ... Ann ..
.. .. ... ... ..
.. .. ... ... ..



















is the matrix representation of the operator Â with respect to the base states { fi}. In the following we
will use the same symbol Â to label both the operator and its matrix representation.

4.4. Observables

In the context of classical physics several quantities appear that are the subject of measurement in-
tended to detect their value. Referring to one single particle for simplicity, measurable quantities are
e.g. the position of a particle, its momentum, its energy and its angular momentum. The measure-
ment instruments consists e.g. of cloud chambers for detecting the position of a particle, calorimeters
for measuring the energy of particles, speed sensor for detecting the velocity, polarizers and analyzer
for detecting the polarization state, etc. For such measurable quantities we adopt the term of ”ob-
servables”, which was used e.g. by Dirac in his attempt to find such measurable quantites within the
realm of wave mechanics (Landau and Lifshitz use the terminology ”physical quantity”).
Our experience with the correspondence principle tells us that observables will be a subset of the
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linear operators. The type of experiment we have ideally performed to define the position operator is
one where an act of detection is performed and the outcome is a probability density |ψ(q) |2 to find
the particle in q. If we restore the original state again and again after having performed again a single
act of detection, the outcome of the experiment will approach asymptotically the quantum mechan-
ical expectation value of the position operator operator in the state ψ, in line with Born postulate.
This outcome sets the accent onto the quantum mechanical expectation value as a way of gauging
whether an operator corresponds to an observable or not. In fact, an obvious necessary condition for
operators to represent observables is that their quantum mechanical expectation value, taken over
any of the elements onto which the operator can be applied, is a real number. The requirement that
the expectation value is a real number reads

�

ψ, Âψ
�

=
�

ψ, Âψ
�

Using the property of scalar product, the right hand side can be transformed to
�

Âψ,ψ
�

so that the requirement that the expectation value is a real number can be written as an equation
that the operator Â must fulfill, for any ψ to which A can be applied (i.e. in the domain of Â):

�

ψ, Âψ
�

=
�

Âψ,ψ
�

The set of linear operators for which this last equation hold are called symmetric operators. We have
just proven following

Theorem: A necessary condition for operators to represent observables is that they are
symmetric.

EXAMPLES OF SYMMETRIC OPERATORS.
1. The operators x̂ and p̂ are symmetric. The proof of this is given by partial integration. The
boundary integrals occurring upon partial integration vanishes if the wave functions are required to
vanish at infinity. The vanishing of the wave functions at infinity is necessary in order to ensure that
the norm of the functions is finite.
2. The Hamilton operator Ĥ(x,p) for atoms and molecules is symmetric (T. Kato, Trans. Amer. Math.
Soc. 70, p.195 (1951)).
3. A further example of symmetric operator is e.g. the Hilbert-Schmidt integral operator

F̂ψ(x)
.
=

∫ b

a
d yG(x , y)ψ(y)

provided the kernel obeys the relation G(x , y) = G(y, x).
Proof:

〈ϕ(x), Fψ(x)〉=
∫ b

a

∫ b

a
d xd yϕ(x)G(x , y)ψ(y)

=

∫ b

a

∫ b

a
d xd y[G(y, x)ϕ(x)]ψ(y) =

∫ b

a

∫ b

a
d xd y[G(x , y)ϕ(y)]ψ(x) = 〈Fϕ(x),ψ(x)〉

Whether all symmetric operators are also ”observables” depends on more subtle details of the relation
between quantum mechanics and the outcome of an experiment. We first discuss these details for the
simple case of a finite dimensional Hilbert space. The infinite dimensional case is, mathematically
speaking, much more difficult to handle an we will only quote the main results.
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4.4.1. The spectral theorem and the outcome of a measurement (�nite
dimensional space).

Let the space have a dimension n and let a CONS {ei} be defined in it. The CONS are a set of wave
functions that fulfills some boundary condition. If the operator is symmetric, its matrix elements have
the property

A ji =
�

e j ,Aei
�

=
�

Ae j ,ei
�

=
�

ei ,Ae j
�

= Ai j

i.e. symmetric operators are represented by so called Hermitic matrices. These are matrices for which
the transpose complex conjugate is identical with the matrix itself.
THEOREM 1: The eigenvalues of a symmetric matrix are real.
THEOREM 2: Eigenfunctions of a symmetric matrix belonging to different eigenvalues are orthogonal.

PROOF OF 1: Let e be an eigenfunction of Â, i.e. Âe=λe. Than, from
�

e, Âe
�

=λ(e,e) =
�

Âe,e
�

=λ(e,e)

we obtain λ=λ.
PROOF OF 2: Let e1 and e2 be eigenfunctions of Â belonging to different eigenvalues λ1, λ2: Âe1,2=
λ1,2e1,2. By the requirement of symmetricity we have

�

e1, Âe2

�

=
�

Âe1,e2

�

⇐⇒ (λ1−λ2)(e1,e2) = 0⇐⇒ (e1,e2) = 0
SPECTRAL THEOREM (finite dimensional Hilbert space): An n×n Hermitic (or symmetric) matrix
has n-real eigenvalues and n-corresponding, mutually orthogonal eigenvectors, i.e. it can be brought
into diagonal form, all diagonal matrix elements (the eigenvalues of the matrix) being real.
PROOF.
The proof of the spectral theorem is typically performed by induction. First we show that the theorem
holds for n= 1. In n= 1 Â is the multiplication by a scalar Âa= λa ∀a, λ being a real number. The
eigenvalue is λ and the number 1 is the eigenvector. Thus, the theorem is true in this particular case.
We now assume that the theorem holds for dimension n−1. Because of the fundamental theorem of
algebra, which asserts that the determinantal equation of Â has at least one non-zero solution, we
know that at least one non-zero eigenvalue λn exists, and we call the corresponding eigenfunction
fn. We now perform the Gram Schmidt orthogonalization procedure to construct a set of vectors
f1, ..., fn−1 orthogonal to fn. This means that the matrix elements

Ân j
.
=
�

fn, Âf j
�

=
�

Âfn, f j
�

=λn
�

fn, f j
�

= 0= A∗jn
are vanishing and in the orthonormal basis f1, f2, ... fn the matrix representation of Â reads

�

[An−1] [0]
[0] λn

�

[] indicates (n−1)× (n−1) block matrices. As we assumed that the [An−1] matrix can be diagonal-
ized, we have proven the spectral theorem for finite Hermitic matrices.

COMMENTS:
1. The space belonging to one single eigenvalue might be one-dimensional or multi-dimensional.
The number nλ of eigenvectors to the eigenvalue λ is called the degeneracy of the eigenvalue. Given
nλ linearly independent vectors within the eigenspace of λ, the Gram–Schmidt ortho-normalization
algorithm allows to construct an orthonormal set within each finite eigenspace itself. The entire set
of orthonormalized eigenvectors builds a CONS.
2. In virtue of this theorem, in the basis set in which Â is diagonal, we have, for any e

e=
m
∑

k=1

nk
∑

n=1

�

fk,n,e
�

︸ ︷︷ ︸

akn

fk,n
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nk being the degeneracy of the k-th eigenvalue and the completeness relation reads

‖ e ‖=
√

√

√

∑

k,n

| akn |2

This relation expresses the fact that the set {akn} is enough to express the length of any vector, i.e.
no coordinate (no basis vector) was left out.

Outcome of a single act of measurement. The main consequence of the existence of a spectral
decomposition of the Hermitic matrix Â is the outcome of a single act of measurement performed
in a state e. In fact, the spectral decomposition can be used to compute the quantum mechanical
expectation value of Â in the state e. Write

e=
m
∑

k=1

nk
∑

n=1

akn fk,n

and compute the result of applying the operator Â onto the state e:

Âe=
m
∑

k=1

nk
∑

n=1

λk ·akn fk,n

Use this equation to compute the expectation value of Â in the state e:

(e, Âe) =
m
∑

k=1

nk
∑

n=1

..
∑

k′=1

nk′
∑

n′=1

ak′n′ ·akn ·λk ·( fk′n′ , fk,n)
︸ ︷︷ ︸

δkk′ ·δnn′ =
m
∑

k=1

nk
∑

n=1

λk· | akn |2

COMMENTS.
1. The right hand side indicates that the building of the expectation value takes place by a set of
single acts of measurements, the outcome of which is one of the eigenvalues λk. The probability of
measuring λk in a single act of measurement is

nk
∑

n=1

| ( fkn,e) |2

In other words: the set of eigenvalues of the symmetric matrix Â contains all possible outcomes of a
measurement for the associated observable A.
2. For example, if the state e is an eigenstate, then the result of the measurement is the eigenvalue
itself with a probability of 1.
3. Through this result, the coefficients forthcoming in the expansion of e in terms of the eigenstates
of the operator Â have a central significance for the outcome of a measurement. Roughly speaking:
akn are the amplitudes that a system in the state e possesses the ”typical features” of the eigenstate
fkn of the observable A under consideration.
4. This result establishes that the eigenvalue problem of an operator and the set of eigenvalues are
playing a central role in quantum mechanics.

4.4.2. HILBERT-v. NEUMANN SPECTRAL THEOREM for in�nite
dimensional Hilbert spaces (without proof).

On the base of the previous result for finite dimensional spaces we update our definition of an
observable as follows:

DEFINITION: An operator represents an observable if and only if it has a complete set of
eigenvalues and eigenfunctions, i.e. if the spectral decomposition is complete.

This definition can be certainly adopted in infinite dimensional Hilbert spaces, where most of
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the quantum mechanical systems actually reside. The question is, however, about which class of
operators has a complete set of eigenvalues and eigenvectors. The spectral theorem foresees that,
for finite dimensional Hilbert spaces, symmetric matrices are the sought for class of operators
representing observables. However, the proof of the spectral theorem for the finite dimensional case
relied on the existence of at least one eigenvalue. The one eigenvalue was found from the main
theorem of algebra, which cannot be applied to polynomials with an infinite power. Accordingly, the
generalization of the spectral theorem to infinite dimensional Hilbert spaces is not straightforward.
Let us make some examples of the difficulties one encounters when working with symmetric
operators in infinite dimensional function spaces. For the spectrum (i.e. the set of eigenvalues)
of a symmetric operator in an infinite dimensional Hilbert space we can have, in fact, following
situations:
•The spectrum is an empty set. Consider e.g. the differential operator

−i
d

d x
and define it within the function space of differentiable square integrable functions f (x) in the inter-
val [0, L]. The operator is not symmetric:

( f , p̂g) =

∫ L

0
d x f (x) ·[−i

d
d x

g(x)]
P.I .
︷︸︸︷

= −i f (x) · g(x) |L0 +
∫ L

0
d x(−i

d
d x

f (x)) · g(x)

= −i f (x) · g(x) |L0 +(p̂ f , g) 6= (p̂ f , g)

as the constant −i f (x) · g(x) |L0 arising from the integration by parts is, in general not vanishing.
However, the operator can be rendered symmetric by imposing some boundary conditions. A possible
set of boundary conditions is to allow only functions that vanish at x = 0 and x = L, so that the
constant −i f (x) · g(x) |L0 arising from the integration by parts is made to be vanishing. Under this
boundary condition, however, the eigenvalue equation

−i
d

d x
f (x) =λ f (x)

has no solution, as the only functions solving the differential equation and fulfilling the boundary
condition is the function f (x)≡ 0, which cannot be considered as an eigenfunction: the operator,
with the boundary condition introduced, has neither eigenfunctions nor eigenvalues. According to
our understanding of the measurement process, it cannot be an observable, although it is symmetric.
• Infinite number of countable eigenvalues. This is e.g. the case of the Hamilton operator of
a particle in a one-dimensional motion with boundary conditions ψ(− L

2 ) =ψ(
L
2 ) = 0 or periodic

boundary conditions. It is also the case of the quantum mechanical harmonic oscillator. Consider
further the operator −i d

d x . With periodic boundary conditions it is a symmetric operator. Enforcing
the specific boundary condition of L-periodicity onto the solution eiλx of the eigenvalue equation
−i d

d x f (x)=λ f (x) produces an algebraic equation eiλL = 1 for the sought for eigenvalues λ which is
solved by the infinite set of discrete eigenvalues λn

2π
L ·n n∈Z and the infinite set of orthonormalized

eigenfunctions 1p
L
eiλn·x .

In the situation that the infinite, countable set of eigenfunctions is complete – i.e. that there are no
further functions orthogonal to the discrete spectrum eigenfunctions – the spectral theorem for finite
dimensional can be generalized to this case: the operator corresponds to an observable and the out-
come of a single act of detection is one of its eigenvalues. The only difficulty with the generalization
is a technical one: one has to be sure that the eigenstates form a complete set.
•symmetric operators with a continuum spectrum There are situations where the problem Âf =λ f
cannot be solved exactly by square integrable functions, but only in the approximate sense of Weyl,
i.e. there is a (Weyl) sequence ( fn)∞0 of square integrable functions such that

‖ Âfn−λ fn ‖<ε
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for a sufficiently large n. Values of λ obtained in this way occupy typically some continuous inter-
val and build the continuum spectrum. As an example of this situation we consider the symmetric
operator p̂. The eigenvalue equation for p̂ reads

−i
d

d x
f (x) =

p
ħh
︸︷︷︸

.
=k

· f (x)

It has the solutions

uk(x) =

√

√ 1
2π
· ei·k·x

to any real value of k. These functions are not square integrable. Yet, one can think of using them
within an integral to express any square integrable function according to

ψ(x) =
1
p

2π

∫ ∞

−∞
dk ·ψ̃(k) · eikx ψ̃(k) =

1
p

2π

∫ ∞

−∞
d x ·ψ(x) · e−ikx

The orthonormality relation writes
1

2π

∫ ∞

−∞
e−i·k′·x · ei·k·x =δ(k−k′)

and the completeness relation writes (Plancherel)
∫ ∞

−∞
d x |ψ(x) |2=

∫ ∞

−∞
dk | ψ̃(k) |2

This example shows that on one side we have technically simple solutions at disposal, which are
not really acceptable because not square integrable. On the other we have Weyl sequence approach,
that tells us of the existence of square integrable functions that are acceptable but solve the problem
only approximately and are not really useful. P.A.M. Dirac (and later rigorously L. Schwartz and I.M.
Gel’fand) has provided us with the simple algorithm explained above, where a non square integrable
function is incorporated into an integral containing a square integrable function to produce finite and
useful results.
COMMENTS.
1. Regarding the outcome of an experiment aiming at measuring the momentum of the particle,
we point out that the set of ”eigenfunctions” is a complete one (by virtue of the theory of Fourier
integrals). However, the possible eigenvalues occupy a continuous range and the question about the
result of a single act of detection must be formulated accordingly. Given a certain wave function ψ,
we would like to compute the probability to find a value of the momentum in a certain interval ∆.
We compute this probability by generalizing the expression for the discrete spectrum:

∑

k:λk∈∆,

nk
∑

n=1

| ( fk,n,e) |2

to
∫

∆

dk ·ρ(k) | (uk,ψ) |2=
∫

∆

dk· | ψ̃(k) |2

(ρ(k) is a ”weight” that takes into account the degeneracy of the eigenvalues and their density in
the interval dk. In the present case ρ(k)is just 1). This results is Born postulate for the variable ”k”
computed on the base of the spectral decomposition of the operator k̂.
2. A further example of symmetric operator with continuous spectrum is the position operator x̂ . The
eigenvalue equation

x̂ f (x) =λ f (x)
is solved, for any real λ, by

f (x) =δ(x−λ)
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This functions are not square integrable but can be used to express any square integrable function
when incorporated within an integral, by virtue of the definition of the Dirac delta function. Accord-
ingly, given a wave function ψ, the probability of finding a value of the position operator in a given
interval ∆ amounts to

∫

∆

dλ |
∫

d x ′δ(x ′−λ) ·ψ(x ′) |2

︸ ︷︷ ︸

|ψ(λ)|2

This result is Born’s postulate for the variable ”x” computed on the basis of the spectral decomposition
of the operator x̂ .
•Self-adjoint operators. The anomalies observed in an infinite dimensional Hilbert space when deal-
ing with symmetric operators show that being a symmetric operator is a necessary condition for repre-
senting an observable (because they have real eigenvalues), but it is not a sufficient one. The spectral
theorem by Hilbert and v. Neumann finds exactly that subset of the symmetric operators that have a
complete spectral decomposition in an infinite dimensional Hilbert space and correspond therefore
to observables: the so called self-adjoint operators.
For the purpose of defining this class of operators we consider again, as an example, the differential
operator

k̂
.
=−i

d
d x

and search first for those boundary conditions that render it symmetric.

�

f , k̂g
�

=

∫
L
2

− L
2

d x f (x) ·[−i
d

d x
g(x)]

P.I .
︷︸︸︷

= −i f (x) · g(x) |
L
2

− L
2
+

∫
L
2

− L
2

d x(−i
d

d x
f (x)) · g(x)

= −i f (x) · g(x) |
L
2

− L
2
+
�

k̂ f , g
�

The operator can be rendered symmetric by e.g. letting it act only onto functions f , g for which
g(± L

2 ) = 0 and f (± L
2 ) = 0. However, the boundary conditions for the function f , i.e. when the oper-

ator is on the left-hand side, need not to be the same as for the function g, as the partially integrated
part vanishes even if g(± L

2 ) 6= 0. The operator acting on the right hand side and on the left hand side
are not precisely the same, as the equality

�

(k̂)L f , g
�

=
�

f ,(k̂)R g
�

can have solutions f , g which have different boundary conditions. The operator (k̂)L that fulfills the
equation is called the operator adjoint to k̂ and designated as k̂†. It is formally the same as k̂ but it
has a different domain of definition. When the boundary conditions are chosen so that k̂† is defined
exactly for the same functions as k̂ and no more, then the operator k̂ becomes a so called self-adjoint
operator. k̂ is e.g. self-adjoint if one choses periodic boundary conditions: under this assumption, the
integrated part vanishes only if both set of functions f and g have periodic boundary conditions.

DEFINITION. The operator fulfilling the equation
�

X̂ f , g
�

=
�

f , Âg
�

is called the adjoint of Â and labeled Â†. If Â† is formally identical to Â and has the same domain of
definition as Â (and not larger) than Â is a self adjoint operator.
THEOREM (Hilbert and v. Neumann): Self-adjoint operators have a complete spectral decomposition,
i.e. have a complete set of eigenvalues and eigenfunctions and are, accordingly, the observables of
quantum mechanics.
COMMENTS.
1. T. Kato, Trans. Amer. Math. Soc. 70, p.195 (1951) has provided the proof that the Hamiltonian of
an atom or a molecule is self-adjoint.
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2. The most general situation of self-adjoint operators is that their eigenvalues assume discrete values
within some range inR and continuous values within a different range. The following figures provides
example of the various situations one can encounter, depending on the potential.
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a: the spectrum of the quantum mechanical harmonic oscillator: the energy ε is plotted in units of ħhω.
The spectrum (the dots along the vertical axis) is purely discrete. b: the spectrum of a particle moving in
one dimension with periodic boundary conditions (period L). The square root of the energy

p
ε is plotted

in units of
Ç

ħh2

2m ·(
2π
L )2 as a function of κ= k

2π
L

.

x

√

ε

φ(x)

c)

0

ε

x
0

φ(x)

d)

c: The spectrum of a particle moving in a one dimensional potential well, typical of artificial atoms.
The square root of the energy

p
ε is plotted schematically. For negative energies the spectrum consists of

discrete levels. For positive energies all energy values are possible and the spectrum builds a continuum. d:
The spectrum of a particle moving in a one dimensional potential step. The spectrum has only a continuum
component.

r

√

ε

0

φ(r)

e)

e: The spectrum of a particle moving in a spherically symmetric potential (sketched). The spectrum has a
discrete component for negative energies. The eigenvalue accumulate in the vicinity of E= 0. For positive
energies the spectrum has a continuum of values.
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3. For the general case of operators with discrete and continuous spectra, any wave function of the
Hilbert space can be expanded as a sum of two components. One component consists of the sum over
the eigenstates of the discrete spectrum. The second component is the integral over the (non-square
integrable) basis states belonging to the continuum spectrum.
4. The outcome of an experiment will be either one of the eigenvalues in the discrete sector or some
interval of values within the continuum spectrum. The probabilities are computed either as the sum
or the integral of the absolute square of the suitable expansion coefficients. We will give below, as an
optional part, the mathematical details of points 3 and 4.

Optional: the spectral decomposition for operators with discrete AND continuous eigen-
values. Suppose that we have a self-adjoint operator Â and that the eigenvalue equation

Âψ=λψ
has produced discrete eigenvalues λn and eigenfunctions fn in some interval ∆d with

( fn, fn′) =δnn′

In addition, we assume a continuous interval of eigenvalues λ and (non-square integrable) eigen-
functions fλ in the interval ∆c = [a, b] (a, b can assume infinite values), with

( fλ, fλ′) =

∫

K
dΩq fλ(q) · f ′λ(q) =δ(λ−λ

′)

δ(λ−λ′) is the Dirac-delta function. There is possibly an extra discrete index m(n) that must be
introduced to take into account the degeneracy of a discrete eigenvalue λn and a continuous (or
discrete) density ρ(λ,ν) which is required for taking into account the degeneracy and the density of
the eigenvalue λ. In the following, sum and integrals must be intended to include the index m and
the density ρ(λ,ν).
• PROPOSITION: fn and fλ are orthogonal to each other.
PROOF. By definition, we have Âfn =λn fn and Âfλ =λλ fλ. We choose a function

g(q) =

∫ b

a
dλ g̃(λ) · fλ(q)

i.e. we include the non-square integrable function into a ”test integral”: g̃(λ) is any ”test function” (a
concept borrowed from the theory of distributions), i.e. a smooth function such that the ”test integral”
exists. We now compute. On one side

�

fn, Âg
�

=

�

fn, Â

∫ b

a
dλ g̃(λ) · fλ

�

=

∫ b

a
dλ g̃(λ) ·λ ·( fn, fλ)

On the other
�

fn, Âg
�

= λn ·
∫ b

a
dλ g̃(λ) ·( fn, fλ)

Assuming that λn 6∈ [a, b], the right hand side of both equations can only be equal, for any g̃(λ), if
( fn, fλ) = 0.
According to this result, the Hilbert space consists of the orthogonal sum of two subspaces: the one
carrying the discrete spectrum and the one carrying the continuous spectrum. The expansion theorem
reads therefore

f (q) =
∑

n:λn∈∆d

dn
∑

m=1

�

fn,m, f
�

fn,m(q)+

∫ b

a
dλ

∫

dνρ(λ,ν)
�

fλ,ν, f
�

· fλ,ν(q)
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The completeness relation writes

‖ f ‖=

√

√

√

√

∑

n:λn∈∆d

dn
∑

m=1

|
�

fn,m, f
�

|2 +
∫ b

a
dλ

∫

dνρ(λ,ν) |
�

fλ,ν, f
�

|2

Finally the probability of finding one of the eigenvalues of Â within the interval ∆d of the discrete
spectrum amounts to (we include the index m and the density ρ for completeness of results)

∑

n:λn∈∆d

dn
∑

m=1

| ( fnm, f ) |2

and the probability of finding one of the eigenvalues of Â within the interval ∆c of the continuum
spectrum amounts to

∫

∆c

dα

∫

dν ·ρ(α,ν)· |
�

fα,ν, f
�

|2

The existence of a complete set of eigenvalues and eigenfunctions allows to compute functions of
self-adjoint operators. From

Âψ=
∑

n,m
λn ·

�

fn,m,ψ
�

fn,m+

∫

∆c

dλ

∫

dνρ(λ,ν) ·λ ·
�

fλ,ν,ψ
�

fλ

one defines F(Â) as

F(Â)
.
=
∑

n,m
F(λn) ·

�

fn,m,ψ
�

fn,m+

∫

∆c

dλ

∫

dνρ(λ,ν) · F(λ) ·
�

fλ,ν,ψ
�

fλ,ν

4.5. QM 2.0: Reduction of the state vector.

We now turn to a crucial question concerning the process of measurement of an observable A. The
measurement process involves the coupling between a macroscopic device used to perform the
measurement and a system which is described by the state ψ. After the measurement, the device has
changed its state: we use this change to read out the value of the observable under detection. The
question now is: given the fact that the macroscopic device has changed its state, what happens to
the original state ψ itself?
This question is currently a much debated one. The determination of the eigenvalues of the
Hamilton operator was at the very origin of the quantum mechanics. The finding of the energy
levels in atoms, molecules and solids followed the next 50 years. Currently, very refined methods
of computational physics help solving the eigenvalue problem of the Hamilton operator of complex
materials and devices. We can call this aspects of quantum mechanics as QM 1.0. There is however
a modern research topic – quantum technology (QM 2.0). Quantum technology is about testing
the postulate that the result of one single act of measurement is one of the eigenvalues. It is also
about finding an answer (both theoretical and experimental ) to the question that inspires this section.

The origin of QM 2.0 is actually the answer provided by Dirac and von Neumann about the
fate of the quantum mechanical state as a result of one single act of detection ; the ”projection
(or ”reduction” or ”jump”) postulate. To properly formulate this postulate, we design an experi-
ment involving a photon propagating along the z-direction that can be prepared in some state of
polarization

|ψ>= a· | x >+b· | y >
The basis states | x > and | y > refer to states of the photon where its electric field is along the x-
direction respectively y-direction. | x> and | y> can be considered as the eigenstates of a polarization
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operator P̂ to the eigenvalues ±1.
P̂ | x >=+1 | x >
P̂ | y >=−1 | y >

The instrument to determining the observable P consists of a Wollastone prism placed along the path
of the photon.

+1

−1

5 n

λ

+1

−1

Top: A Wollastone prism directs photon with different polarisation along different paths. When they
impact the counter, a signal is sent that writes a ”+1” or ”-1” into a register, depending on which counter
has recorded the impact. Bottom: a possible sequence of measurements consists of ”+1” or ”-1”. The
dashed line gives the expectation value, which is a number in the interval [−1,+1].

A Wollaston prism is a set of crystals that have the property of sending light polarized along x and
y along a different path – say upwards for x and downwards for y . The two spatially separated
beams are directed toward a counter that detects the arrival of light. When the upper counter register
a photon, it writes the eigenvalue +1 on a register, when the lower counter register a photon it
writes the eigenvalue −1. Let us now send a photon toward the measurement set up which we have
prepared in the state |ψ>. The photon will be registered by one of the counters and the corresponding
eigenvalue will be written down. We then repeat the experiment after having prepared the photon in
the same state |ψ>. One of the counters will register a beep and will write down the corresponding
eigenvalue. We repeat the measurement again and again – say a large number N and we might find a
sequence of outcomes that are distributed between +1 and−1 exactly - no other outcome is expected.
The question now is? How many times will we register +1, how many time will we register −1? The
lore of quantum mechanics tells us the answer: the probability of measuring the eigenvalue +1 is
namely | a |2, the probability of measuring −1 is | b |2. Of the N outcomes sampled by our instrument,
N+ =| a |2 ·N will be ” plus one’s”, N− =| b |2 ·N will be ”minus one’s”. The quantum mechanical
expectation value is some number lying in the interval [−1,1] and given by

< P >||ψ>=
(+1) ·N++(−1) ·N−

N++N−
=
| a |2 − | b |2

| a |2 + | b |2
The experiment can also be performed with a stationary collimated beam of non-interacting photons
with almost the same state of polarization | ψ > such as the beam delivered by common laser
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sources: this would allow to measure the current of photons arriving at the two detectors almost

instantaneously. The ratio of the two currents should be very much |a|
2

|b|2 .

There is a further aspect of this experiment that can be observed when a polarization ana-
lyzer it inserted between prism and detector. A polarization analyzer is a crystal with a preferred
orientation that absorbs photon with a certain polarization. If we insert such an analyzer between the
prism and the upper detector, oriented in such a way that photon with x polarization are completely
absorbed, one registers a very peculiar outcome: the current arriving to the upper detector, that
typically detect x-polarized photon, vanishes completely. This means that the Wollaston prism not
only splits the beam into two components with different intensity, but is also changes the state
|ψ> of the incoming photon, projecting it into either one of the eigenstates. This is expression of
a more general principle related to the measuring process in quantum mechanics (von Neumann:)
”when an observable A is measured, the outcome of the measurement is one of the eigenvalues of
Â. Simoulteneously, the state of the system is changed, and it is projected into the corresponding
eigenspace”. And Dirac wrotes: ” From physical continuity, if we make a second measurement of
the same observable Â immediately after the first, the result of the second measurement must be
the same as that of the first. Hence, after the first measurement has been made, the system is in an
eigenstate of the dynamical variable Â, the eigenvalue belongs to being equal to the result of the first
measurement. This conclusion must still hold if the second measurement is not actually made. In
this way we see that the system JUMPS into an eigenstate of the observable that is being measured,
the eigenvalue this eigenstate belongs to being equal to the result of the measurement. ”
If the observable has a continuum spectrum, the result of the outcome of measuring the observable
will be in some interval∆, and the original state will be reduced to a superposition of the eigenstates
belonging to ∆. For instance, when a positional detector has been placed to register the position of
particle in some interval ∆, then the particle will consist of a wave function which is localized in the
interval ∆.

EXAMPLES.
1. A particle with mass m in a segment of length L with periodic boundary conditions. A CONS
consists of the plane waves

1
p

L
ei·k·x

with k= 2π
L ·n∈Z and

∫ L

0
d x

1
p

L
e−i·k·x 1

p
L

ei·k′·x =δkk′

The amplitude for the particle with wave-number k to be in the position x is given by

ψk(x) =
1
p

L
· ei(k·x)

Its probability density of being in the interval [x , x+d x] is given by

|ψk(x)|2 =
1
L

regardless of x! If a segment δ is filled with a particle-tracer, one can ask about the probability of
registering the particle within δ. Remember: the particle is a ”point” (except for some inner structure
that we do not consider here). It moves around in the plane wave state 1p

L
ei·k·x . Then

Wψ

x̂ (δ) =

∫

δ

d x |
1
p

L
ei·k·x |2=

δ

L

It follows that all positions x are equally likely: the state 1p
L
ei·k·x represents a so-called ”completely

72



delocalized” state, where the particle can be detected everywhere with the same probability.
2. After performing the position measurement, the particle is localized within the segment δx . For
describing this state, we use a simple function with

ψ(x) =
1

p

δx
x ∈ [x−

δx

2
, x+

δx

2
]

and
ψ(x) = 0

elsewhere. We ask ourselves: what is the probability of measuring values of k in some interval δk?
To answer this question we compute (let think of L→∞)

ψ(k) =

∫ x+ δx
2

x− δx
2

d x ′
1
p

2π
· e−i(k·x ′) 1

p

δx
=−

1
p

2π ·δx
·2 · e−i·k·x ·

sin(k · δx x
2 )

k

The probability density amounts to

|ψ(k) |2=
4

2π ·δx
·
sin2(k · δx

2 )

k2

The k-dependence is an oscillating function concentrated around k= 0 and decaying as 1
k2 .

If we define the width of the function in the k variable as, approximately, the distance between the
two zero’s closer to k= 0, we find an interesting relation. As the zero’s of this function are given by
π ·n 2

δx
, the width of the function amounts to δk =

4π
δx

. The width of the probability density in the

variable x is given by δx . If we use the De Broglie hypothesis to rewrite k as p
ħh we can formulate the

relation between δx and δp as follows:
δx ·δp = 4π ·ħh

The constant on the right hand-side is independent of the width of the wave functions. We therefore
can change the width δx and we will observe that the width δp must change according to our
relation! The smaller is δx (the width in the direct space) – i.e. the sharper the particle is localized
in space, – the larger is δp – i.e. the broader is the wave function in p-space. In other words: trying
to ”localize” a particle in a narrow spatial area δx is only at the cost of greater uncertainty about its
momentum, which can assume any value in the interval [− 2π·ħh

δx
, 2π·ħh
δx
].

Let us quote some sentences by W. Pauli (Pauli lectures on Physics, Dover Editions, Volume 5,
ISBN 0-486-41462-0) on this issue. ”If we consider a current of particles which passes through
two small holes in a diaphragm, then we discover that the probability of finding a particle behind
the diaphragm is a typical diffraction pattern, as in optics. This interference of the probability is
independent of the intensity, that is independent of the density of particle current. It depends only
on the locations of the holes; the holes define for us a state”. One could continue: when a spatially
localized state is defined, the momentum aquires a certain spread and the particles, afterwards, are
redirected in space to follow a number of trajectories that are different from the original one and
give rise to a ”diffration pattern”. ”If we consider the state represented by a single, force-free atom,
we find that this state is completely changed by every measurement of position or momentum.
If we measure the position of the particle, for example, then an indeterminable momentum will
be transferred to the particle during the process; this will make a precise determination of the
position of the particle at a later time impossible. Although the trajectory of a celestial body can be
determined more and more accurately by marking successive measurements to which the laws of
classical mechanics are applied, every measurement on an elementary particle throws the particle
out of its trajectory; that is, earlier measurements of position are useless for further determination
of the trajectory”.
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The equation
δx ·δp = 4π ·ħh

has been obtained assuming a well-definded shape of the wave function. It is a special case of the
famous uncertainty relation of Heisenberg:

(δx ) ·
�

δp
�

≥
ħh
2

The = sign is realized when the wave function in real space has a Gaussian profile.

COMMENT.
1. The Heisenberg uncertainty relation can be generalized to any pair of observables, as shown by
the following
THEOREM. Let Â, B̂ be to two operators and define for any operator the square of the standard
deviation

(∆ψÂ)2
.
=<

�

Â−< Â>ψ 1
�2
>ψ=< Â2 >ψ −< Â>2

ψ

The following inequality holds true (Robertson inequality)

(∆ψÂ)2 ·(∆ψB̂)2 ≥
1
4
|< [Â, B̂]>ψ|2

where the operation [Â, B̂] = ÂB̂− B̂Â is the so called ”commutator” of the operators Â, B̂. As an ex-
ample:

[ x̂ , p̂] = iħh ·1
Inserting this result into the Robertson inequality gives the Heisenberg uncertainty principle.

• Commuting operators. The Robertson inequality for commuting operators simplifies to,
(∆ψÂ)2 ·(∆ψB̂)2 ≥ 0

This means that when a certain value of the observable A is detected and the original state is reduced
to an eigenspace of Â (∆Â= 0), a successive measurement of the observable B can also give a sharp
value, i.e. ∆B̂ can be also vanishing.
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5. The Spin, the algebra of the angular

momentum and the merging of

degrees of freedoms.

5.1. 1925: the Stern-Gerlach experiment and the spin
hypothesis.

The states originating within the SE for a spherical potential have following properties:

• L2Y m
l =ħh

2 · l ·(l+1) ·Y m
l , l = 0,1,2,...

• LzY m
l =ħhm ·Y m

l , m= l, l−1,...,−l

• {Y m
l } (Dirac: {| l,m>}) build a 2l+1-dimensional space, i.e. the degeneracy of the eigenvalue

ħh2 · l ·(l+1) is 2l+1. Moreover
�

Y m
l ,Y m′

l′

�

=δl l′ ·δmm′

• l is the orbital angular momentum quantum number, m is the magnetic quantum number

• Y m
l is a state that can be specified by giving its (possibly complex valued) wave function defined

onto the unit sphere at the spherical coordinates ϑ,ϕ i.e. Y m
l (ϑ,ϕ) (we have seen some of these

wave functions). Dirac:
| l,m> →<ϑ,ϕ | l,m>

• The above equalities can be obtained by applying the differential operators L2(ϑ,ϕ) and Lz(ϕ)
onto the spherical harmonics Y m

l (ϑ,ϕ).

The quantum numbers n, l are not enough for defining reliable basis states for the purposes of comput-
ing properties of atoms, molecules and matter. In 1921, O. Stern and W. Gerlach did a very remarkable
experiment that added a new quantum number.

Ag-Oven

S

N

Screen

They placed at the entrance of an instrument that nowadays is known as the Stern-Gerlach apparatus
an Ag furnace. If the furnace is heated, Ag atoms evaporate. At that time the Ag-atom was known to
have one single electron circulating around a set of shells – to be indented as Bohr circular orbits –
containing the remaining electrons. According to the quantization rule by Bohr, such an electron has
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angular momentum quantum number 1. In such a state, the z-component of the quantized angular
momentum was expected to be either ħh, 0 or −ħh. In classical physics, all values in-between would
also be possible. This means that the Ag-atoms were expected to leave the furnace equally distributed
in some state of the z-component of the angular momentum – one of the three quantized states in
the Bohr-Sommerfeld quantized model – or a continuous value in the interval [−ħh,ħh] in the classical
model. Such an experiment was therefore designed to discriminate between the two models. After
leaving the furnace, the beam is introduced in an area where there is a strong magnetic gradient: B
- predominantly in the z direction - is highly inhomogeneous along the z axis. Such inhomogeneity
can be achieved by properly designing the poles of the magnet. It is known form classical electro-
magnetism that the magnetic field couples with the angular momentum (better expressed: with the
magnetic moment associated with the angular momentum). The inhomogeneous magnetic field along
z is able to send atoms with different z-component of the angular momentum along different path
along the vertical z-axis. In other words: in the absence of magnetic field the Ag-atoms passes the re-
gion of B-inhomogeneity unperturbed and arrive at the center of the screen. When the magnetic field
is on, two scenarios were expected: in the Bohr-quantized scenario three separate beams would form
and produce three separate spots along z on the screen. In the scenario based on classical physics the
particles would distribute themselves along a continuous line in the z-direction. Stern and Gerlach
observed none of these two expected scenarios: they observed two separate spots. This was taken
as partial proof of quantization of angular momentum, but led to speculations by e.g. Sommerfeld
about the absence of the third spot. Could it be possible that, by some reason, one of the three beams
was somehow ”suppressed”? The correct interpretation of this result was formulated as an hypothesis
by Goudsmit and Uhlenbeck in 1925: the electron is actually in a state of vanishing orbital angular
momentum (s-state, as we know from the Schrödinger quantum mechanics) but must have had some
internal degree of freedom with angular momentum character and quantum number 1

2 – in order
to explain the existence of only two z-components. This internal degree of freedom was called the
”spin” of the electron.
The hypothesis by Goudsmit and Uhlenbeck was based on further observations that pointed to a new
double valued quantum number: in the same year 1925 Pauli suggested his principle of double occu-
pancy of the Bohr circular orbits – suggesting the existence of a new double valued quantum number.
In the meantime there were spectroscopic observations on the Na vapor. The transition drawn in the
figure is the well-known Na-D line (λ≈ 589 nm), which causes a yellow colour of the Na-flame. At suf-
ficiently high resolution of the spectrometer it can be seen that it consists of two closely spaced lines -
a so-called doublet (fine structure of the spectral lines, a term introduced by A. Sommerfeld). Again,
this observation pointed to a new, doubled-valued quantum number for the angular momentum.
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Term-scheme of the Na-atom indicating the transitions producing the ”Na-doublet”. The energy levels are
labeled with the main quantum number 3, the orbital quantum number 1 and a third quantum number
referring to the quantum number of the total angular momentum – orbital plus spin quantum number.
This third quantum number will be explained later.

COMMENTS.
1. The existence of half-integer spin quantum numbers raises the question of the existence of
S= 1

3 ,S= 1
4 , and so on. The charge, e.g., occurs in integer multiples of | e |, but 1

3 | e | exists too! The
answer to this question is provided by general symmetry arguments: it is the rotational symmetry of
the space that allows only integer and half-integer angular momenta.

2. The Schrödinger equation foresees that quantum numbers for orbital angular momenta are
integer numbers l = 0,1,2,3,.... Half-integer numbers can only be assigned to the intrinsic spin state
of particles. Of course, there are particles that have an integer intrinsic spin state quantum numbers,
such as photons which have spin 1 and gravitons (spin 2).

3. Orbital angular momentum quantum numbers are often given with the Latin letter small l
(or large L). Intrinsic spin angular momentum quantum numbers are often given with the small
Latin letter s or large S. Quantum numbers resulting from both (see later for how to add angular
momenta) are given with the small Latin letter j or large J .

4. The angular momentum operators defined as differential operators in the variables ϑ,ϕ produce
integer orbital quantum numbers l and integer magnetic quantum numbers m= l, l−1,...,−l. The
eigenstates are described by the spherical harmonics {Y m

l (ϑ,ϕ)}. The spherical harmonics give the
amplitude that a particle with angular quantum numbers l,m is found along the spatial direction
specified by the angles (ϑ,ϕ). The configuration space for specifying the states of the orbital angular
momentum is the unit sphere. For the operators of orbital angular momentum a representation in
terms of differential operators over the variables ϑ and ϕ exists. For the operators with half integer
spins there is no representation in terms of differential operators over the variables (ϑ,ϕ) and the
eigenstates for half-integer spins cannot be specified by amplitudes that refer to angular variables.
This is because when, e.g., a spin-state of an half-integer spin is rotated by 2π it gets multiplied
by −1. Only rotations by 4π restore the original state. This specific rotational property cannot be
described using the variables (ϑ,ϕ) on a unit sphere in Euclidean space: Non-integer spin states do
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not have a configuration space residing in Euclidean space.
The question is now: how do we define operators and states for the non-integer spin angular
momenta? The answer is

DEFINITION. One defines basis states Y m
s , m = s,s− 1,...− s for half integer spins s (so called

spinors) and spin operators Ŝx , Ŝy , Ŝz by assuming that these abstract items obey the same compu-
tations rules obtained in the Schrödinger quantum mechanics for integer l.

For instance,
ŜzY m

s =ħhm ·Y m
s Ŝ2Y m

s =ħh
2 · s(s+1)Y m

s

For the particular case of s= 1
2 one defines the basis states Y±:

ŜzY± =±ħh
1
2
·Y± Ŝ2Y± =ħh2 ·

3
4

Y±

Further symbols for these basis states are ψ±, ψ↑↓, |↑> and |↓> oder | up> and | down> and so on.
The Hilbert space of for the internal spin-s degree of freedom is labeled as Θs.

5. One can obtain the description of a spinor as a C -valued scalar field by introducing a con-
figuration space Ks = {+s, ...,−s} for the variable m and a map

Ys : m∈Ks→ Y (m)∈C
Ys(m) is the amplitude for the spin to assume the value m of the z-component of the spin angular mo-
mentum. In this notation the z-component of the spin angular momentum works as an independent
variable over which the wave function is described. For the basis states Y ms

s , ms =+s, ...,−s we write
Y ms

s (m) =δm,ms

We have the computation rules:
ŜzY ms

s (m) =ħhms ·Y ms
s (m) Ŝ2Y m

s (m) =ħh
2 · s(s+1)Y ms

s (m)
In summary: a spinor can be written as a sum of basis states

YS =
S
∑

m=−S

cm ·Y m
S

or as a sum of basis functions
YS(m) =

∑

mS

cmS
·Y mS

S (m)

5.2. The algebra of angular momentum: a summary

The orbital angular momentum plays a crucial role in quantum mechanics because it appears as
”good” quantum number in many problems of atomic and particle physics. i.e it can be used to label
the eigenstates. In addition, particles have not only an orbital angular momentum (as the one we
have encountered in the term scheme of the Hydrogen atom) but have an intrinsic spin that, via Pauli
principle, profoundly determine their physical behaviour: macroscopic states of matter like metals,
semiconductors, magnetism, superconductivity, Bose condensation, all depend of the spin of the in-
dividual particles involved. The quantum mechanical orbital and spin angular momentum operator
have a particular algebra that we need to learn about.
The path toward learning how to do computations with angular momenta starts with the expression
that we have obtained within Schödinger representation. The representation of the operator of the
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orbital momentum in spherical coordinates reads

L̂x = iħh ·
�

sinϕ
∂

∂ ϑ
+cotϑcosϕ

∂

∂ ϕ

�

L̂ y = −iħh ·
�

cosϕ
∂

∂ ϑ
−cotϑsinϕ

∂

∂ ϕ

�

L̂z = −iħh
∂

∂ ϕ

L̂2 = −ħh2

�

1
sinϑ

∂

∂ ϑ
(sinϑ

∂

∂ ϑ
+

1
sinϑ

∂ 2

∂ ϕ2

�

When these operators are applied onto the spherical harmonics Y m
l (ϑ,ϕ) – applied means that one

operates onto the spherical harmonics by taking the appropriate derivatives with respect to appro-
priate variables, a set of results are produced that can be summarized as computation rules. As an
example we apply L̂z =−iħh d

dϕ onto the generical spherical harmonic Y m
l (ϑ,ϕ):

−iħh
d

dϕ






alm
︸︷︷︸

normalization constant

· Pm
l (cosϑ)
︸ ︷︷ ︸

depends only onϑ

·ei·m·ϕ






=

−iħh ·al,m · Pm
l (cosϑ) ·

dei·m·ϕ

dϕ
=ħh ·m ·Y m

l ((ϑ,ϕ)

What we have just computed is the computation rule
L̂z(ϕ)Y

m
l (ϑ,ϕ) =ħh ·m ·Y m

l (ϑ,ϕ)
In words: ”the operator L̂z lowers the upper index m of any spherical harmonics and places it as a
multiplicative factor, together with ħh in front of the spherical harmonic itself.”
Using the differential expressions for Lx , L y and L̂2 we can produce a set of such computation rules
that concern all components of the orbital angular momentum operator and its square. For instance,
by explicitly applying the differential operator for L̂2 we obtain

L̂2Y m
l (ϑ,ϕ) =ħh2 · l(l+1)Y m

l (ϑ,ϕ)
In words: the operator of the square of the vector of the angular momentum takes the lower index
of any spherical harmonics (independent on m) and puts it as a prefactor l · (l+1), together with
ħh2 in front of the spherical harmonics itself. There is a main difference with L̂z: the index is l but
the prefactor is not just ħh2lbut ħh2l · (l+1). This is because the eigenvalues of L̂z are related to the
m-values (the magnetic quantum numbers), the eigenvalues of L̂2 are not just the orbital angular
momentum quantum numbers ħh2l but ħh2l ·(l+1). We can of course rewrite these computations rules
in terms of the states Y m

l :

L̂zY m
l =ħhm ·Y m

l L̂2Y m
l =ħh

2 · l(l+1)Y m
l

and produce similar computations rules for L̂x and L̂ y (these are less frequently used). These com-
putation rules must be supplemented by an important information: The eigenspaces to a given l are
2l+1-times degenerate, corresponding to the 2l+1 values for the eigenvalues of L̂z .
The values for l allowed for describing the orbital degree of freedom are, according to the Schrödinger
quantum mechanics, strictly integers 0,1,2,.... We have just found that half-integer angular momenta
are also possible. Their computations rules can be obtained by translating those for integer l to half-
integer values, although a differential operator for half integer spins does not exist. In the following,
we give the full set of computation rules, valid for any angular momentum quantum number J –
orbital or spin, integer or half-integer (after Condon, E. U. and Shortley, G. The Theory of Atomic
Spectra. Cambridge, England: Cambridge University Press, 1951).

• Ĵx Y m
j =

ħh
2 ·
p

j(l+1)−m(m+1) ·Y m+1
j + ħh2 ·

p

j( j+1)−m(m−1) ·Y m−1
j
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• Ĵy Y m
j =−i ħh2 ·

p

j( j+1)−m(m+1) ·Y m+1
j + i ħh2 ·

p

j( j+1)−m(m−1) ·Y m−1
j

• ĴzY m
j =ħhm ·Y m

j

• Ĵ2Y m
J =ħh

2 · J(J+1)Y m
J

COMMENT.
For spin 1

2 particles there is a special terminology: one introduces a vector operator σ by the equation

Ŝ
.
=
ħh
2
σ

σ is the so called Pauli operator.It is used for short writing Ŝ. We have

Ŝx Y± =
ħh
2
·Y∓ ⇔ σx Y± = Y∓

Ŝy Y± =±i ·
ħh
2
·Y∓ ⇔ σy Y± =±i ·Y∓

ŜzY± =±
ħh
2
·Y∓ ⇔ σzY± =±Y±

~̂S2Y± =ħh2 3
4
·Y∓ ⇔ σ2Y± = 3 ·Y±

EXAMPLES.
1. We use the computation rules to obtain the matrix representation of Lz and (L)2 within the subspace
provided by p-states. From

L2Y m
1 =ħh

2 ·1 ·(1+1) ·Y m
1

and
LzY m

1 =ħhm ·Y m
1

(m= 1,0,−1) we compute the matrix representations of Lz and L2 in the space (Y 1
1 ,Y 0

1 ,Y−1
1 ). We

need the nine matrix elements
�

Y m
1 , LzY m′

1

�

and the nine matrix elements
�

Y m
1 ,L2Y m′

1

�

. We know

that the operator Lz just lowers the upper index m′, to produce the result LzY m′
1 = ħh ·m′ ·Y m′

1 . We
then use the ortho-normality relations for spherical harmonics to obtain

�

Y m
1 , LzY m′

1

�

=ħh ·m′ ·δmm′

This shows that the matrix representation of Lz in the subspace {Y 1
1 ,Y 0

1 ,Y−1
1 } has only diagonal matrix

elements:

Lz =ħh ·





1 0 0
0 0 0
0 0 1̄





We compute now
�

Y m
1 ,L2Y m′

1

�

. We know that L2 applied to Y m′
1 just multiply Y m′

1 with ħh2(1(1+1)),
for any m′! This, together with the orthogonality relations, produce

�

Y m
1 ,L2Y m′

1

�

=ħh2 ·1(1+1) ·δmm′

This shows that the matrix representation of L2 in the subspace {Y 1
1 ,Y 0

1 ,Y−1
1 } has only the identical

diagonal matrix elements:

L2 =ħh2





2 0 0
0 2 0
0 0 2




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2. Here are some useful matrices for the operators L̂x , L̂ y , L̂z and (L2 in the subspaces of s, p and d
electrons.

ħh ·
�

0
�

; ħh ·





1 0 0
0 0 0
0 0 1̄



 ; ħh ·











2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1̄ 0
0 0 0 0 2̄











︸ ︷︷ ︸

L̂z

ħh ·
�

0
�

; ħh ·
p

2
2
·





0 1 0
1 0 1
0 1 0



 ; ħh ·















0 1 0 0 0

1 0
q

3
2 0 0

0
q

3
2 0

q

3
2 0

0 0
q

3
2 0 1

0 0 0 1 0















︸ ︷︷ ︸

L̂x

ħh ·
�

0
�

; ħh ·
p

2
2
·





0 −i 0
i 0 −i
0 i 0



 ; ħh ·















0 −i 0 0 0

i 0 −i
q

3
2 0 0

0 i
q

3
2 0 −i

q

3
2 0

0 0 i
q

3
2 0 −i

0 0 0 i 0















︸ ︷︷ ︸

L̂ y

ħh2 ·
�

0
�

; ħh2





2 0 0
0 2 0
0 0 2



 ; L2 =ħh2 ·











6 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6











︸ ︷︷ ︸

L̂2

3. Spin 1
2 : Referring to the basis states {Y+,Y−}, the matrix representation of the basis spinors is

�

1
0

�

;
�

1
0

�

This representation establishes the isomorphism between Θ 1
2

and C 2. In general, the Hilbert space

of a S-spinor ΘS is isomorphic to C 2S+1. The spin 1
2 matrices reads

Ŝz =ħh
�

1
2 0
0 − 1

2

�

Ŝx =ħh
�

0 1
2

1
2 0

�

Ŝy =ħh
�

0 − i
2

i
2 0

�

and

σz =
�

1 0
0 −1

�

σx =
�

0 1
1 0

�

σy =
�

0 −i
i 0

�
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5.3. Coupling of degrees of freedom in quantum
mechanics

5.3.1. Introduction

For a complete description of a quantum mechanical particle the specification of its orbital angular
momentum quantum number L is not sufficient: its spin S, if any exists, must be ”added” to it. This
operation of ”adding angular momenta” is an example of a more general task that we have not yet
discussed: the coupling of degrees of freedom in quantum mechanics.
Suppose a particle is moving along the x-axis in a state ψ, specified by the wave function ψ(x ∈R).
Along y let the state ϕ be specified by ϕ(y ∈R). Suppose now to open both degrees of freedom
to the particle. By this operation, the configuration space is enlarged from the x- and y -lines to
the (x , y)-plane. Technically: the configuration space is the cartesian productR×R , i.e. the particle
coordinates become the pair (x , y). In classical physics, the joint system is described by enlarging
the phase space to include both coordinates and both momenta. The question in quantum physics is
about how the states of the joint system are described, given the knowledge of the states defined onto
the two separate coordinates. Von Neumann and Dirac introduce, for this purpose, the operation of
a ”product” of the states |ψ> and | ϕ >. Exactly this product we would like to specify accurately.
Notice that a product of states defined onto the same variable is not allowed in quantum mechanics: it
violates the requirement of linearity. On the other side, we have encountered a product of states while
solving the Schrödinger equation for the Hydrogen atom, in the form of a very important technical
tool: the separation Ansatz. With this Ansatz we have created a trial wave function which consists of
the product between wave functions specified on different spatial variables – in that specific case r, ϑ,
ϕ. The separation Ansatz is the practical proof that a product of wave functions does not violate the
superposition principle – provided the functions are defined onto different variables. Looking back
at the physical significance of the separation Ansatz, a trial wave function consisting of a product
gives the amplitudes to be at a certain radius r and along a certain direction specified by ϑ,ϕ. The
product of amplitudes thus provides us with the correct probability amplitude for the realization of
the joint variables r,ϑ,ϕ, given the amplitudes for the realization of the single variables. It makes
therefore sense to introduce a product between states that is designed to realize the coupling of
different degrees of freedom along the lines indicated by the separation Ansatz.

5.3.2. The Kronecker (tensor) product of states.

The general situation is one where the configuration space foresees two degrees of freedom q1 and
q2. The variables qi might be e.g. different spatial coordinates of one given particle – in this case
each qi takes a continuum set of values extending to infinity or, possibly, limited to some segment of
finite length. qi , however, can also give the coordinates of a further particle that is added to build
a composite system. Or qi can indicate the z-component of the spin, in which case qi can take the
2S+1 discrete values between +S and −S. Let ψ be a state of a system with configuration space
{q1} and ϕ the state of a system with configuration space {q2}.

DEFINITION. The state ψ ⊗ ϕ is defined in such a way that, when evaluated at (q1,q2) it
gives ψ(q1) ·ϕ(q2), i.e.

(ψ⊗ϕ)(q1,q2) =ψ(q1) ·ϕ(q2)
and is called the Kronecker (or tensor) product of the two states ψ and ϕ. The product on the
right-hand side is the standard product between complex numbers.
The tensor product is a way of signalling that the two states being coupled contain variables that
refer to different degrees of freedom. Dirac, starting from |ψ> and |ϕ>, writes simply |ψ>|ϕ>
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COMPUTATION RULES.
This definition that translates the tensor product of states onto the product of complex numbers
implies following rules of computation:
a) ⊗ is linear in each slot in the sense that for any complex number α, β we have

(αψ1+βψ2)⊗ϕ=αψ1⊗ϕ+βψ2⊗ϕ
and

ψ⊗(αϕ1+βϕ2) =ψ⊗(αϕ1)+ψ⊗(βϕ2)
and

α(ψ⊗ϕ) = (αψ)⊗ϕ=ψ⊗(αϕ)
By these rules, the set of all linear combinations of {ψ⊗ϕ} becomes a vector space.
b) In this vector space a scalar product is defined by

(ψ1⊗ϕ1,ψ2⊗ϕ2) = (ψ1,ψ2) ·(ϕ1,ϕ2)
c) If {e1, .....} and { f1, ....} are CONS in the respective Hilbert spaces, then the set {e1 ⊗ f1,e1 ⊗
f2, .....,e2⊗ f1,e2⊗ f2, ......} builds a CONS in the tensor product space, which also becomes an Hilbert
space. Given the existence of a CONS, every state in the tensor product space can be expanded as
linear combination of basis states:

Ψ =
∑

i, j

ci j · ei⊗ f j

d) The scalar product rule (ψ1⊗ϕ1,ψ2⊗ϕ2) and the CONS expansion lead to the general rule for
the scalar product between states:

(Ψ,Φ) =

∫

dq1

∫

dq2 Ψ(q1,q2) ·Φ(q1,q2)

COMMENT.
Notice that the CONS expansion can be such that Ψ cannot be written as a product ψ⊗ϕ: in
this case, Ψ represents a so called entangled state. In other words, by means of this expan-
sion one can create wave functions Ψ(q1,q2) which cannot be written as the product ψ(q1) ·ϕ(q2).
Entangled states are the subject of modern research on quantum technology and quantum computing.

EXAMPLES.

1. The set
ei 2π

L ·n·x

with n∈Z builds a CONS for the Hilbert space of periodic function in the variable x . Similarly, the
set

ei 2π
L ·m·y

with m ∈Z builds a CONS for the Hilbert space of periodic function in the variable x . The Hilbert
space of periodic functions over the configuration space [0, L]×[0, L] is spanned by the tensor prod-
ucts

{ei 2π
L ·n·x · ei 2π

L ·m·y}= {ei 2π
L ·(n·x+m·y)}= {eikr}

with k= 2π
L (n,m) and r= (x , y).

2. The tensor product is used to construct the full Hilbert space of an electron with spin. The
spatial degrees of freedoms are spanned by the Hilbert space L (R3). The Hilbert space describing
the spin degree of freedom is Θ2. The full Hilbert space of a spinning electron is

L (R3)⊗Θ2
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Let {ψi} build a CONS in L (R3). Then a spinor wave function writes

ψ(r,m) =
∑

i,+

ci,+ψi(r) ·Y+(m)+
∑

i,−
ci,−ψi(r) ·Y−(m)

= ψ+(r) ·Y+(m)+ψ−(r) ·Y−(m)
or

ψ=ψ+⊗Y++ψ−⊗Y−

3. Consider a composite system consisting of two particles with orbital angular momentum quantum
number L1 and respectively L2(Li = 0,1,2,...). The (2L1+1) ·(2L2+1) product functions

Y m1
L1
(ϑ1,ϕ1)

︸ ︷︷ ︸

2L1+1

·Y m2
L2
(ϑ2,ϕ2)

︸ ︷︷ ︸

2L2+1

with mL = L1, ...,−L1, m2 = L2, ...,−L2 build a subspace of L (S2,dΩ1)⊗L (S2,dΩ2). The set of all
basis functions to any L1 and L2 build a CONS inL (S2,dΩ1)⊗L2(S2,dΩ2) and can be used to expand
periodic functions defined onto the four variables (ϑ1,ϕ1,ϑ2,ϕ2).

5.3.3. The tensor (Kronecker) product of operators

We need to find out how operators act onto a tensor product state. For this purpose one defines the
tensor product of operators by following operation:

DEFINITION. Let Â1 and Â2 be operators acting onto the Hilbert space ”1” and ”2” respectively. Then
the tensor product

Â1⊗ Â2

is defined on a product of states by
(Â1⊗ Â2)(ψ⊗ϕ)

.
= (Â1ψ)⊗(Â2ϕ)

and on the expansion of a state in CONS as

(Â1⊗ Â2)ψ
.
=
∑

i, j

ci j ·(Â1ei)⊗(Â2 f j)

This definition implies that
((A1⊗B1)+(A2⊗B2))(ψ⊗ϕ) = (A1⊗B1)(ψ⊗ϕ)+(A2⊗B2)(ψ⊗ϕ)

(A1⊗B1) ·(A2⊗B2)(ψ⊗ϕ) = (A1 ·A2)ψ⊗(B1 ·B2)ϕ
where the ”·”-operation means multiplication of two operators.
EXAMPLE.

(
∂

∂ x
⊗
∂

∂ y
)( f ⊗ g)(x , y) = (

∂

∂ x
f ⊗

∂

∂ y
g)(x , y) =

∂

∂ x
f (x) ·

∂

∂ y
g(y)

and

(
∂

∂ x
⊗
∂

∂ y
)( f )(x , y) =

∂

∂ x
∂

∂ y
f (x , y)

We will use this operation systematically, anytime we add some new degree of freedom like other
coordinates, other particles, other angular momenta and so on. Here we present examples related to
the sum of two angular momenta – let it be the angular momenta of two different particles or the
orbital and spin angular momenta of one single particle.

Example 1: The summing of the z-components of angular momenta in quantum me-
chanics. The operator of the total angular momentum of two subsystems, each having angular
momentum quantum number J1 and J2 (Ji = 0, 1

2 ,1, 3
2 , ....) is defined as

Ĵ
.
= Ĵ1⊗1+1⊗ Ĵ2
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or, component-wise
Ĵx = Ĵ1,x ⊗1+1⊗ Ĵ2,x

Ĵy = Ĵ1,y ⊗1+1⊗ Ĵ2,y

Ĵz = Ĵ1,z⊗1+1⊗ Ĵ2,z

In the literature one often use the abbreviated form
Ĵ

.
= Ĵ1+ Ĵ2

and adopts the convention that the operator with the lower index 1 acts on the state residing on the
left hand side, the operator with the lower index 2 acts on the state residing on the right hand side
of the tensor product of states. For the specific case of the z-component we have

(J1z+ J2z)Y
m1
J1
⊗Y m2

J2
= (JzY m1

J1
)⊗Y m2

J2
+Y m1

J1
⊗ JzY m2

J2
In Dirac writing

(J1z+ J2z) | J1,m1 >| J2,m2 >= (J1z | J1,m1 >) | J2,m2 >+ | J1,m1 > (J2z | J2,m2 >)
THEOREM: The product states Y m1

J1
⊗Y m2

J2
with m1= J1, ...,−J1 and m2= J2, ...,−J2 are eigenfunctions

of J1,z⊗1+1⊗ J2,z to the eigenvalues ħh ·(m1+m2)
PROOF. One can use the computation rules JzY m

l =ħhmY m
l and write

(J1,z⊗1+1⊗ J2,z)Y
m1
J1
⊗Y m2

J2
= (J1,zY m1

J1
)

︸ ︷︷ ︸

ħhm1Y
m1
J1

⊗Y m2
J2
+Y m1

J1
⊗ J2,zY m2

J2
︸ ︷︷ ︸

ħhm1Y
m1
J2

= ħh(m1+m2) ·Y
m1
J1
⊗Y m2

J2
�.

m2

m3

3

2̄

1

Cartan-Diagram for finding all possible eigenvalues of 3z ⊗1+1⊗2z . It illustrates the use of Cartan
diagrams for keeping track of the magnetic quantum numbers of a system consisting of subsystems.

In order to facilitate the bookkeeping of these eigenvalues, Cartan has used a simple diagram summa-
rizing them. Given a subsystem with angular momentum quantum number J1 and a subsystem with
angular momentum quantum number J2, a Cartan lattice is defined by the set {J1,J1−1,...,−J1}×
{J2, ...,−J2}. Then all possible magnetic quantum numbers m1+m2 appear as a ”weight” (m1+m2)
associated to the lattice point (m1,m2). The Cartan diagram is applicable to both orbital and spin
angular momenta.
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Example 2: The summing of the quantum numbers of angular momenta in quantum
mechanics. We have learned how to sum the z-components of the angular momenta, but the ques-
tion we would like to answer now is: how does one sum the ”length” of the vectors of the angular
momenta? Remember that the angular momentum quantum number J is a measure of the ”length”
of the quantum mechanical angular momentum as it enters the eigenvalue of Ĵ2 through the formula
ħh2J(J+1)! So, the question is: given an angular momentum with a certain ”lenght” J1 and a second
angular momentum with a certain length J2, what is the ”length” (i.e. the quantum number) of the
total angular momentum J1+J2? In classical physics two vectors can be aligned parallel or antiparal-
lel, or forming an angle so that the length of the total vector is some positive number in the interval
[J1+J2,J1−J2]. Notice that merely reading out the Cartan weights is not enough to find the possible
values of the total length. The situation is very similar to classical physics: two vectors can add to a
different total length but have the same z-component. In quantum mechanics the ”sum of lengths” is
perfomed by an algorithm proposed by Cartan and is based on a particular strategy of ”reading” the
Cartan diagram.

m2

m3

5

4

3

2

101̄2̄3̄4̄5̄

Illustration of the strategy to find the possible total angular momentum quantum numbers for the oper-
ator 3⊗1+1⊗2.

• Pick up the lattice point with the highest Cartan weight – if you have just started, it is the
lattice point with coordinate (J1,J2). Move vertically down until you have reached the end
of the column and then move toward the left until you have reached the end of the line. In
doing this, sample all Cartan weights you encounter during your walk. You will notice that you
have sampled exactly 2 ·(J1+ J2)+1 Cartan weights. Think that they would perfectly fit as the
2(J1+ J2)+1 z-components of a total angular momentum quantum number J1+ J2! Conclude
that you have found one of the possible values of the total angular momentum quantum number
you were looking for!

• You have used Cartan weights – you may discard them. Go back to your diagram and pick up
the highest Cartan weight remaining. If this is your second attempt, it will be (J1−1+J2). Start
again your walk. At the end you will have used all Cartan weights corresponding to the total
angular momentum quantum number J1−1+ J2!

• Discard the weights just found during the second walk, start again the walk and repeat it until
you have used all Cartan weights! At the end you will have found all possible values for the an-
gular momentum quantum numbers of the composite system (the ”total angular momentum”)
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and you will notice that they obey a simple rule. If one defines the operation of sum of angular
momentum quantum numbers with the symbol ⊕, the result is

J1⊕ J2 =



























J1+ J2 or
J1+ J2−1 or

.

.

.
J1− J2

This rule of summation is called as the Clebsch-Gordan series. This is the central result of this section
and tells us how to sum angular momentum quantum numbers i.e. how to find the length of the
sum of two angular momenta. It is apparent that summing angular momenta in quantum mechanics
is an operation that is somewhat different than the arithmetic sum.

SUMMARY.
1. The operator Ĵ1z+ Ĵ2z . Each product state

Y m1
J1
⊗Y m2

J2

is an eigenstate of the z-component of the total angular momentum operator: Ĵz = Ĵ1,z⊗1+1⊗ Ĵ2,z .
Its eigenvalues are given by

ħh(m1+m2) m1 ∈ [J1, ...,−J1] m2 ∈ [J2, ...,−J2]
2. The operator (Ĵ1+ Ĵ2)2. The possible quantum numbers for the total angular momentum are given
by

J1+ J2,J1+ J2−1,...,J1− J2

These quantum numbers are not eigenvalues of any operator, but contain the necessary informations
to give the eigenvalues of the operator of the square of the total angular momentum. This operator
is defined, in a ”friendly” notation, as

(Ĵ1+ Ĵ2)
2 =

�

Ĵx ,1+ Ĵx ,2

�2
+
�

Ĵy,1+ Ĵy,2

�2
+
�

Ĵz,1+ Ĵz,2

�2

or, more precisely,
�

Ĵ1,x ⊗1+1⊗ Ĵ2,x
�2
+
�

Ĵ1,y ⊗1+1⊗ Ĵ2,y
�2
+
�

Ĵ1,z⊗1+1⊗ Ĵ2,z
�2

This operator is difficult to handle but according to the rule of computations of angular mo-
menta we do not need to solve explicitely its eigenvalue problem. We expect that in the subspace
{Y

mp
p ⊗ Y

mq
q }, the eigenvalues of this operators are given in terms of the quantum numbers

J1+ J2,J1+ J2−1,...,J1− J2 as follows:

a) The quantum number J1+ J2 generates the eigenvalue
ħh2 ·(J1+ J2) ·(J1+ J2+1)

This eigenvalue is 2(J1+ J2)+1-times degenerate.
b) The quantum number J1+ J2−1 generates the eigenvalue

ħh2 ·(J1+ J2−1) ·(J1+ J2−1+1)
This eigenvalue is 2(J1+ J2−1)+1-times degenerate.
c) The quantum number ... generate the eigenvalue

ħh2 ·(...) ·(...+1)
This eigenvalue is 2(...)+1-times degenerate.
and so on.

A warning: the Clebsch-Gordan coe�cients. We have found the eigenvalues of (Ĵ1+ Ĵ2)2 by
using our knowledge on the quantum numbers, without doing one single bit of computation. We
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must, however, point out that the product functions
Y m1

J1
⊗Y m2

J2

are not necessarily eigenfunctions of the operator (Ĵ1+ Ĵ2)2. It is a most intriguing and significant
result of quantum mechanics that the eigenfunctions of the operator (Ĵ1+ Ĵ2)2 in the subspace {Y m1

J1
⊗

Y m2
J2
} are special linear combinations of these product functions – an example of entanglement! These

special linear combinations are then eigenstates of both
Ĵz,1+ Ĵz,2 AND (Ĵ1+ Ĵ2)

2

simultaneously. These linear combinations build new basis states which play a crucial role in physics.
The coefficients of the linear combinations are called CLEBSCH-GORDAN coefficients and are given
in tables in the literature. We will introduce them at the right place when necessary.
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6. Perturbation theory of discrete

eigenvalues: the Ritz-method.

• As a starting point we consider an Hermitian operator Ĥ0 – typically the Hamilton operator of a
system. The eigenvalues of Ĥ0 are supposed to be known and we concentrate on the section of the
spectrum that contains discrete eigenvalues:

• Eigenvalues {E0
n}, n = 1,2, ....

• Let E0
n be f-time degenerate:

{ϕ0
n,i}; i= 1,..., f

are the known eigenfunction to the eigenvalue E0
n:

Ĥ0ϕ
0
n,i = E0

nϕ
0
n,i

As an example, Ĥ0 is the Hamilton operator of the Hydrogen atom. We have solved this problem
exactly and found a set of eigenvalues which are partly degenerate and the corresponding eigenfunc-
tions.
• We add a small perturbation operator V̂ to Ĥ0. The perturbation takes into account e.g. some fur-
ther interaction that was excluded in the original operator Ĥ0 – e.g. with the aim of simplifying the
solution of the eigenvalue problem of Ĥ0. An example of interactions which are not included in the
original Hamilton operator of the hydrogen atom are those containing an external magnetic field.
The complete operator of the system is now

Ĥ
.
= Ĥ0+ V̂

• The goal of perturbation theory is to specify formulas for the calculation of the eigenvalues and
eigenfunctions of Ĥ starting from the known eigenvalues E0

n and the known wave functions ϕ0
n,i of

the ’unperturbed’ operator Ĥ0. A convenient situation for perturbation theory to be successful is that
V̂ represents a ”small” perturbation of Ĥ0. This means that the change of the eigenvalue E0

n produced
by the operator V̂ is much smaller than the distance between E0

n and the neighbouring eigenvalues
E0

n±1

|E0
n− E0

n±1|� |En,1− En, f |

E0
n+1

E0
n (f

−
time degenerate)

En,f

En,1

E0
n−1

Ĥ0 Ĥ0 + V̂
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• The method of Ritz (W. Ritz, Prof. ETH Zurich, 1897-1909) consists in establishing a finite dimen-
sional Ritz space of trial wave functions within which the eigenvalue problem of Ĥ is solved. If we
intend to find the small corrections to the eigenvalue E0

n produced by the perturbation operator V̂ ,
the Ritz space of choice is the eigenspace of the unperturbed operator Ĥ0 belonging to the eigenvalue
E0

n . Within this finite space, one solves the eigenvalue problem














�

ϕ0
n,1, V̂ϕ0

n,1

� �

ϕ0
n,1, V̂ϕ0

n,2

�

. . .
�

ϕ0
n,1, V̂ϕ0

n, f

�

�

ϕ0
n,2, V̂ϕ0

n,1

� �

ϕ0
n,2, V̂ϕ0

n,2

�

. . .
�

ϕ0
n,2, V̂ϕ0

n, f

�

. . . . . .

. . . . . .
�

ϕ0
n, f , V̂ϕ0

n,1

� �

ϕ0
n, f , V̂ϕ0

n,2

�

. . .
�

ϕ0
n, f , V̂ϕ0

n, f

�















︸ ︷︷ ︸

Ritz matrix











a1
a2
.
.

a f











= EV
n,i ·











a1
a2
.
.

a f











The computed eigenvalues
E0

n+ EV
n,i

i= 1,... f are approximate eigenvalues of the complete operator Ĥ and the resulting linear combina-
tions

f
∑

j=1

a(i)j ϕ
0
n, j

are the approximate eigenfunctions.

COMMENTS.
1. This is a linear homogeneous system of algebraic equations for the sought for coefficients
a1,a2, ...a f . It has a non-trivial solution only if the determinant of the f × f matrix

[
�

ϕ0
n,i , V̂ϕ

0
n, j

�

]−1
vanishes.

2. The eigenvalue problem of the complete Hamiltonian operator Ĥ has been reduced, by the
Ritz method, to the solution of the determinantal equation of a finite matrices.

3. The determinantal equation has certainly f real solutions, as Ĥ is supposed to be Hermitic.
If all solutions are different, the original f -degeneracy is completed lifted and the original eigenvalue
splits into f -different levels En,1, ...En, f . The eigenfunction to each of these levels is given by

ϕn,i =
∑

k

a(i)k ϕ
0
n,k

In the basis {ϕ0
n,i} only Ĥ0 is diagonal. In the basis {ϕn,i} both Ĥ0 and Ĥ are diagonal.

4. If some solutions of the determinantal equation coincide, then the degeneracy is only par-
tially lifted and the eigenspaces to En,i can be further degenerate.

5. If the original eigenvalue is non-degenerate ( f = 1), then the perturbed eigenvalue trivially
writes

E0
n+

�

ϕ0
n,1, V̂ϕ0

n,1

�

The perturbing Hamiltonian produces a shift of the original eigenvalue.

6. The perturbative computation of eigenvalues just illustrated provides the eigenvalues of Ĥ
in 1. order approximation and the eigenvectors of Ĥ in 0th-order approximation. For the corrections
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in the higher order approximations the wave function of the neighbouring eigenstates E0
n±1, E0

n±1, ...
must be included in the Ritz space.

7. In summary, to solve the eigenvalue problem of Ĥ in the vicinity of E0
n , the recipe is ”work

within the subspace spanned by the eigenvectors to E0
n”.
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Part III.

Atomic and chemical physics
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7. Energy levels, Pauli principle and

the shell model of the atoms.

7.1. The energy levels of an atom.

For a system with atomic number Z there are Z electrons that interact via Coulomb interaction with
the nucleus and with themselves. The problem of determining the energy levels of the electrons is
a many-body one: the Coulomb repulsion among the electrons causes a complicated multi-particle
problem whose solution can only be found approximately. There are many approximate methods for
calculating the wave functions and energy states of atoms. These methods are described in advanced
textbooks. The main result of these computational methods is the proof that in atoms the energy
levels can be computed considering one single electron moving in the field of the nucleus AND a
mean field of the remaining electrons (single-electron approximation, independent particle model).
The mean field is found to have, to very good approximation, spherical symmetry. Accordingly, one
can use the same terminology adopted for the hydrogen atom and label each energy level (so called
” shell”) by the quantum numbers n, l.

√

|E|

s p d f

2

3

4
5

1s

2s

2p

3s

3p
3d4s

The energy levels of an electron in a spherically symmetric potential. Dashed lines join levels belonging
to the same main quantum number. Dotted lines join levels with the same nr -quantum number.

The one-electron approximation uses the operator

−
ħh2

2m
4+Φmean field(r)

to compute the energy levels of one electron in the mean field of the proton and all other electrons.
The resulting energy levels are said to describe the configuration (nl)1 and the operator used to
generate them is known as the configuration Hamiltonian. In the next section, we will generate a
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N -electron configuration by locating all the electrons forming an atom within these energy levels,
starting from the lowest energy and according to a well defined recipe, called the ”shell” model. The fi-
nal configuration will then be of the type (1s)x ,(2s)x ,(2p)x , .... until all Z-electrons are accomodated.

COMMENTS.
1. The most important result of solving the eigenvalue problem of the configuration operator within
the independent model is that there is an energy difference between levels with the same n but
different l. This means that the accidental degeneracy encountered in the hydrogen atom is lifted in
more complex atoms, so that En,l−1 6= En,l−2 6= ...En,0. This difference can be understood on the basis
of simple qualitative considerations, considering the effect of the field of the other electrons on the
electron in question. To take this effect into account, one can use the wave functions of hydrogen-like
atoms as a first approximation. The radial part of the wave function for states with a given orbital an-
gular momentum (quantum number l) vanishes for r→0 as r l . The electrons in s states can therefore
come closer to the nucleus than the electrons with higher numbers l. Therefore, the full attraction
of the nucleus on the electrons in s states is stronger than on the electrons in p, d, and f states. This
causes an upward shit of the levels with higher l with respect to those with smaller l, see the fig-
ure. The states with given n, l quantum numbers form a shell (shell model of the electronic structure).

7.2. Pauli principle 1.0: The periodic table of the
elements.

After estimating the energy levels of an electron in the Coulomb field of the nucleus and all other
electrons using the one-electron approximation, we must specify how the Z electrons of an atom are
distributed in these energy levels, i.e. how the levels are filled with electrons.
The electronic structure of the ground state of a multi-electron atom is built according to a ”modular
construction principle” called the shell model. The most important rule that governs the filling of
energy levels with electrons is the

PAULI PRINCIPLE (W. Pauli, 1925): ”In an orbital characterized by the quantum numbers (n, L,mL),
a maximum of two electrons may reside”.
Accordingly:
s states: Maximum 2 electrons
p states: Maximum 6 electrons
d states: Maximum 10 electrons
f states: maximum 14 electrons
etc.
1st shell n= 1,s: Maximum 2 electrons
2nd shell n= 2,s+ p: Maximum 10 electrons
3rd shell n= 3,s+ p+d: Maximum 18 electrons
etc.

The Pauli principle was formulated by Pauli in 1925 on the base of observing that certain
atoms (with Z=2,8,18) were particularly stable, i.e. non-chemically reactive. Pauli proposed that an
explanation of these ”magic numbers” could be found by filling Bohr quantized orbits with a given L
and mL with a maximum of 2 electrons and proposed that each electron in the state (L,mL) assumes
the opposite z-component of the newly found degree of freedom, the ”spin”. The filling of energy
levels with electrons according to the Pauli principle produces one for each element characteristic
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electron configuration
(1s)2(2s)2(2p)6(3s)2......

indicating how many electrons occupy the np-shell. In order to find the ground state configuration,
one fills progressively the energy levels, starting from the lowest one in energy an continuing with
higher lying, until all electrons have found place. This produces the ground state configuration.
The shell structure of the electron states in the atoms, which follows from the quantum mechanical
law of motion of the electrons, has in some sense been foreseen by the most important Russian
chemist Mendeleyev in 1868, long before the emergence of quantum mechanics. Mendeleev
discovered a periodic regularity of the chemical properties of elements which he then represented in
the Periodic Table of the Elements along columns and lines. The periodic table of elements consists
of horizontal rows – with our modern understanding the beginning of a new row is characterized
by a transition to a higher number n – and vertical columns in which chemically similar elements
are arranged – in our modern understanding these elements have a similar outer shell electron
configuration. Not only the exact calculation of the energy levels of the hydrogen atom is a great
triumph of the Schrödinger equation, but – in conjunction with the Pauli principle – also the
explanation of Mendeleev’s Table of Elements and the atomic Structure.

Let us now proceed with a brief construction of the periodic table as seen from the point of
view of the shell model.

• Noble gases: He,Ne,Ar, .... In the Helium atom the two electrons fill the first shell. Electronic
configuration: (1s)2. In the neon atom Ne10 two shells are completely occupied – configuration
(1s)2(2s)2(2p)6. Ar18 has three shells completely occupied – configuration (1s)2(2s)2(2p)6(3s)6

and so on. The atoms with closed electron shells form the noble gases. They have vanishing
resulting orbital angular momentum and the total spin is zero. These atoms are very stable
and do not undergo chemical bonds with other atoms, and they interact little with each other.
They are, accordingly, arranged along the same column in the table. The particular chemical
inactivity of these atoms must be assigned to their configuration, i.e. to having closed shells.
This suggests a fundamental empirical principle that will have great application to chemistry:
the ”saturation principle” according to which a chemical compound builds to form as many as
possible closed atomic shells. When a situation of as many as possible closed atomic shells is
approached, the compound is ”chemically stable ” and thus the atoms stop undergoing further
chemical reactions.

• Alkali metals: Na,K ,Rb,Cs, .... In each newly started shell, an electron is first inserted in a s
state. All atoms with an electron outside of closed shells have similar chemical properties and
belong to the alkali metals: Li3,Na11,K19,Cs55, F r87. They can also be arranged in the same
column of a table.

• Transition metals: V,C r, Fe,Co, .... (3d), Z r,Rh, Pd, .... (4d) I r, P t,Au, ... (5d). When one gets to
the main quantum number n= 3, one notices an exception: first 3s is filled, then 3p is filled
further, but the 3d shell has an higher energy than the 4s-shell, which is filled before the 3d-shell
(K: (4s)1 then Ca with (4s)2. Then the 3d-shell starts being filled, whereby the configuration of
the outer shell is kept fixed to the one of the Ca. Therefore, those elements which are formed by
the filling of the 3d-shell and have the same outer shell configuration belong to the same column
of the periodic table (the second one) and must be separately ordered along an exceptional
line – on a paper this is rendered by setting the d-transition metals together with the suitable
element in the second column. The 3d elements, for instance, can be regarded as ”offshoots”
of the Ca (Ca is in the column of so-called ”alkaline earth metals”). The d transition metals
all have similar outer electron configurations s2 (with a few exceptions), and can therefore be
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considered chemically equivalent.

• Lanthanide (= rare earths). The 4 f shell is lower in energy than the 5d shell and will be
filled accordingly. The 4f states are filled in after the element Lanthan La57, which contains 54
electrons inside fully filled shells. The state of the three remaining electrons is determined by the
configuration (5d)1,(6s)2. In the 14 elements, which are called rare earths or lanthanides, the
4 f states are occupied. Since the electrons of the 4 f states are accommodated in inner regions
of the atom, the (spatially seen) outer shell remains almost unchanged that of the Lanthanum
and the rare earths outer shell configuration is (6s)2. The chemical properties of these elements
are very similar to each other, and they belong to a place in the periodic table, the place of the
Lanthanum.

• Actinides. In another group of elements, the electrons are incorporated into the atom by filling
in the 5f shell without changing the configuration of the external electrons. The configuration
of the outer electrons (7s)2 is the same for all these elements.

7.3. Pauli principle 2.0: Multiplets

The single-electron approximation of the configuration Hamiltonian, supplemented by the Pauli prin-
ciple in its most elementary form (the one of Pauli itself), provides electronic configurations where
the many electrons of an atom find place. Such configurations, however, are generally degenerate,
i.e. their eigenspace is built by a certain number of product functions. It is foreseable that the spin of
each electron will sum up to produce a set of values S for the total spin angular momentum. Similarly,
the orbital angular momenta will sum up to produce a set of values L for the total orbital angular
momentum.
DEFINITION. The states characterized by the pair of values (L,S) hosted by a configuration are called
”multiplets”. The symbol for a multiplet is 2S+1 L.
Organizing the basis states of a configuration in multiplet states is not just using a different set of basis
states. The question is one of finding whether there is an interaction that breaks the degeneracy of
the multiplets in a given configuration and which multiplet ends up to be the one with lower energy
(the ground state) and which multiplets are the excited states, and what are the eigenfunctions in
the subspaces belonging to the various multiplets. Which one of the multiplets is the ground state is
an important physical question: depending on the values of L and S, the atom (and, ultimately, the
matter made up of given atoms), will have different physical properties. For example, it will respond
differently to a magnetic field. We need therefore to find the various multiplets and order them en-
ergetically.
• The (ns)2 configuration. Let us consider, as an example of the situation, the simple configuration
of two electrons in s-states, i.e. the (ns)2-configuration. The four product basis states read (in the
Dirac notation)

|n,0,↑> |n,0,↑> |n,0,↑> |n,0,↓> |n,0,↓> |n,0,↑> |n,0,↓> |n,0,↓>
The ket on the left refer to the state of the first particle, the ket on the right to the state of the second
particle. We now show that the configuration (ns)2 sustains two multiplets. The total orbital angular
momentum of the two electrons in s state can only be 0, i.e. L = 0. To find the total spin quantum
number, we must consider that the (ns)2-configuration represents a composite system with two spin
1
2 -particles and, according to the rules of summation of angular momenta, the total spin quantum
number of the composite system is either S = 0 or S = 1. The two possible multiplet-states are thus
1S and 3S. The multiplet 1S is once degenerate: its basis function will be one linear combination of
the four basis functions above. The multiplet 1S is three times degenerate and its eigenspace will be
determined by three linear combinations of the four basis functions above.

96



In order to find out more about the multiplets, we now search for those linear combinations of the
basis states that are the eigenstates of S2. We know that these linear combinations are determined
by the Clebsch-Gordan coefficients. These coefficients are often found in suitable Tables. We use the
tables reported in M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)). The
table suitable for the sum of two 1

2 -spins is reproduced in the following figure.

1
2o
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1
+1 1 0

0 0
1

3/2

1/2
-1 -1/2

-3/2-1
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1/2 +1/2
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1
1/2 1/2
1/2 -1/2

1 1/3
1/3

1
2

+1/2

Table for the Clebsch-Gordan coefficients of S2 = 0 and S2 = 1.

• How to read the table.

• The top entries provide the quantum numbers of the sought-for eigenstates. In the specific case
we expect the eigenstates to S2 = 0

| 0,0>
and S2 = 1

| 1,1> | 1,0> | 1,0>
For instance,

| 1,0>
appears in the middle block as

1
0

• The left entries are the product basis states entering the eigenstates. For instance

|↑>|↓>≡|
1
2

,−
1
2
>

appears in the second block on the left as
+ 1

2 − 1
2

• The numbers appearing at the intersection between vertical and horizontal lines are the actual
Clebsch-Gordan coefficients (for simplicity of writing the sqrt-sign has been omitted in the
tables). Accordingly, we read out from the table that

| 1,0>=

√

√1
2
|

1
2

,+
1
2
>+

√

√1
2
|

1
2

,−
1
2
>

According to the table, the multiplet 0S has the eigenstate

| n, L= 0,mL = 0>

�√

√1
2
|↑>↓>−

√

√1
2
|↓>↑>

�

The spin part of this S=0 state is referred in the literature as the ”singlet” state. It is an eigenfunction
of the total spin angular momentum S2 to the spin quantum number S= 0 and also an eigenfunction
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to the z-component m= 0 of the total spin angular momentum.
The multiplet 3S has the eigenstates

| n, L= 0,mL = 0>↑↑> | n, L= 0,mL = 0>

�√

√1
2
|↑>↓>+

√

√1
2
|↓>↑>

�

| n, L= 0,mL = 0>|↓↓>

The spin part of these S = 1 states are referred in the literature as the ”triplet” states. They are
eigenfunction of the total spin angular momentum S2 to the spin quantum number S = 1 and also
eigenfunctions to the z-components m= 1, m= 0 and and m=−1, respectively.

The rules of summing angular momenta in a composite system has produced, starting from
the original four product functions, linear combinations for the subspaces of the respective multi-
plets. Besides of re-organizing the initial states, we have not been able to order energetically the
multiplets. This is a quite common situation encountered when organizing the eigenspaces of any
configuration into mutliplets. Something is still missing, that possibly favors one multiplet with
respect to others.

7.3.1. Dirac formulation of the Pauli principle

The Pauli principle – a maximum of two electrons in an orbital – was suggested in 1925 on the base
of empirical observations. A more precise and general formulation is due to Dirac (1926). It is based
on the proper way of handling identical particles in quantum mechanics.
In order to illustrate the thinking of Dirac we take a system consisting of two electrons in the field of
two protons – in fact the simplest two-electron model we can think of, i.e. the He-atom. The classical
Hamilton functions writes

H(p1,p2,r1,r2) =
p2

1

2m
+

p2
1

2m
+

e2

4πε0 | r1−r2 |
−

2e2

4πε0 | r1 |
−

2e2

4πε0 | r2 |
This classical Hamilton function has an interesting symmetry: it is invariant with respect to an op-
eration that changes p1 into p2, p2 into p1, r1 into r2 and r2 into r1. Such an operation is called
”permutation” and written mathematically as

Π21 =
�

p1 p2
p2 p1

�

;
�

r1 r2
r2 r1

�

In fact, one can convince onself that the classical Hamilton function of N identical interacting parti-
cle is invariant with respect to any permutation of the particle coordinates and momenta – there are
N ! of such permutations, according to the rule of mathematics. We know that in classical mechanics
symmetries are very important: they produce conservation laws. For instance, the invariance of an
Hamilton function with respect to rotation produces the conservation law for the angular momen-
tum. Sadly, the invariance with respect to permutations does not have any relevant consequence in
classical physics!
What about quantum mechanics? In quantum mechanics one must first translate the Hamilton func-
tion into an Hamilton operator. This is done by substituting p1 with −iħh∇1 and p2 with −iħh∇2,
whereby −iħh∇i means that the partial derivatives are done with respect to the i-th variable. The
Hamilton operator then reads

Ĥ(r1,r2) =−
ħh2

2m
·[41+42]+

e2

4πε0 | r1−r2 |
−

2e2

4πε0 | r1 |
−

2e2

4πε0 | r2 |
The Hamilton operator is invariant with respect to permutation of the two particle coordinates. It is
realistic to assume that the Hamilton operator – and the other observable – of a system consisting of
N identical particles are invariant with respect to permutations of the particle coordinates – including
those coordinates that describe the spin. The question is: is there any practical consequence of this
symmetry for the quantum mechanical behaviour of the N -particle systems?
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The answer was found by Dirac. Let us see how it looks like for a two-particle system and then
generalize it to N -particles. In quantum mechanics, a symmetry operation can always be associated
with some operator acting onto the states. In the present case the symmetry operation is one of the
two permutations

Π12 =
�

1 2
1 2

�

(this is the identical permutation) and

Π21 =
�

1 2
2 1

�

To account for these operations, Dirac introduced the permutation operators P̂12 ≡ 1 and P̂21 acting
in the space of states and defined as follows. Take a wave functions describing the state ψ of the
two particles and containing the variables r1,m1,r2,m2. The variables ri are continuous vectors in a
three dimensional space, the variables mi assume the discrete values S,S−1,...,−S. For simplicity of
writing, we join the two variables relating to the i− th- particle into one single variable ξi and the
wave function is written as ψ(ξ1,ξ2). Now define P̂i j by let it act onto the wave function:

P̂12ψ(ξ1,ξ2) =ψ(ξ1,ξ2) P̂21ψ(ξ1,ξ2) =ψ(ξ2,ξ1)
The operators just permute the arguments of every thing that resides on their right. Why did Dirac
introduce these operators? Because it was aware of important mathematical consequences that are
described by the following two theorems.

THEOREM 1: Provided Ĥ(ξ1,ξ2) = Ĥ(ξ2,ξ1), the permutation operators commute with Ĥ,
i.e.

�

P̂i, j , Ĥ(ξ1,ξ2)
� .
= P̂i, j Ĥ(ξ1,ξ2)− Ĥ(ξ1,ξ2)P̂i, j = 0

or equivalently
P̂−1

i, j Ĥ(ξ1,ξ2)P̂i, j = Ĥ(ξ1,ξ2)

PROOF. We must show that P̂i, j Ĥ(ξ1,ξ2)ψ(ξ1,ξ2) = Ĥ(ξ1,ξ2)P̂i, jψ(ξ1,ξ2). We compute:

P̂i, j Ĥ(ξ1,ξ2)ψ(ξ1,ξ2) = Ĥ(ξ2,ξ1)ψ(ξ2,ξ1)

Ĥ(ξ1,ξ2)P̂i, jψ(ξ1,ξ2) = Ĥ(ξ1,ξ2)ψ(ξ2,ξ1)
Provided Ĥ(ξ1,ξ2) = Ĥ(ξ2,ξ1) the two expression of the right hand side are identical.
�.
Why is the commutativity of two operators Â and B̂ so important? Suppose that one has solved
the eigenvalue problem of the operator Â and one has divided the Hilbert space into eigenspaces
of the operator Â. Consider then the eigenspaces {ψ1

i ,ψ2
i , ...,ψli

i } to the eigenvalue Ai of Â. The

commutativity allows to prove that {ψ1
i ,ψ2

i , ...,ψli
i } is also an eigenspace of B̂! In other words:

THEOREM 2: commuting operators have common eigenspaces. This means that one can often
find the eigenspaces of an operator Â by studying other, perhaps simpler operators, provided they
commute with Â.

PROOF: The proof of this theorem is as follows. Take one function ψ j
i and operate first B̂ and

then Â on it.
ÂB̂ψ j

i = B̂Âψ j
i = Ai B̂ψ

j
i

The chain of equations proves that B̂ψ j
i also belongs to the eigenspace {ψ1

i ,ψ2
i , ...,ψli

i } and that

applying B̂ to any eigenfunction ψ j
i does not conduct us outside the eigenspace {ψ1

i ,ψ2
i , ...,ψli

i }. The

space {ψ1
i ,ψ2

i , ...,ψli
i } is also invariant with respect to B̂.
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�.
Notice however that the function {ψ1

i ,ψ2
i , ...,ψli

i } need not to be eigenfunctions of B̂ as well, but one

can find li linear combinations of the functions {ψ1
i ,ψ2

i , ...,ψli
i } that diagonalize B̂. At the end of this

second diagonalization process one can find out that B̂ might have more than one eigenvalue within
the space {ψ1

i ,ψ2
i , ...,ψli

i } where Â was degenerate! This second set of functions then diagonalize
both Â and B̂, so that the theorem can be more sharply formulated as ”Commuting operators have
(after enough work is done) common eigenvectors”.

The commuting of P̂ and Ĥ means that we can find the eigenspaces of Ĥ by searching for the
eigenspaces of P̂i, j . For this purpose, of particular interest is the operator P21. The eigenvalue
equation of this operator reads

P̂2,1ψ(ξ1,ξ2) =λ ·ψ(ξ1,ξ2)
with the sought for eigenvalue λ being some real number. We use the property

P̂2
2,1 =1

To write
P̂2

2,1ψ(ξ1,ξ2) =λ
2 ·ψ(ξ1,ξ2) =ψ(ξ1,ξ2)

→λ2 = 1
→λ=±1

The eigenfunctions to the eigenvalue +1 must obey the equation
P̂2,1ψ(ξ1,ξ2) =ψ(ξ2,ξ1) =ψ(ξ1,ξ2)

In other words: the eigenfunctions to the eigenvalue +1 must be symmetric with respect to the per-
mutation (1,2)→ (2,1). The eigenfunctions to the eigenvalue −1 must obey the equation

P̂2,1ψ(ξ1,ξ2) =ψ(ξ2,ξ1) =−ψ(ξ1,ξ2)
In other words: the eigenfunctions to the eigenvalue −1 must be antisymmetric (change sign) with
respect to the permutation (1,2)→ (2,1). The symmetry of the Hamilton operator with respect to
permutation of two identical particles has divided the possible eigenfunctions of the two-particle
Hamilton operator into two sets: those symmetric and those antisymmetric with respect to a
permutation of the particle coordinates. The spin coordinate must be interchanged as well, even if
the Hamilton operator is not spin-dependent.

COMMENTS.

1. When N identical particles are involved, the above consideration are generalized as
follows. The wave function describing the state ψ of the particles contain the variables
r1,m1 ≡ ξ1,r2,m2 ≡ ξ2, ...,rN ,mn ≡ ξN : ψ(ξ1,ξ2, ....,ξN ). In general, by N particles we have
the N ! permutations

Π=
�

1 2 . . . N
i1 i2 . . . iN

�

and the N ! permutation operators
P̂Πψ(ξ1,ξ2, ....ξN ) =ψ(ξi1 ,ξi2 , ....,ξiN )

The set of permutation builds a group and the rules of group theory allow to find a number of
invariant subspaces into which the Hilbert space of a N -identical particle system is divided. Each
”invariant subspace” has a well defined behaviour with respect to permutations. For instance, one
invariant subspace is represented by symmetric wave functions – i.e. wave functions invariant with
respect to all permutation operators – and a further invariant subspace is represented by antisym-
metric wave functions – wave functions changing the sign if the permutation is uneven. There are,
however, invariant subspaces where the wave functions have a more complicated behaviour.
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2. A (yet) mysterious principle of Nature reduces greatly the number of subspaces allowed for
identical particles: The Pauli exclusion principle, as formulated by Dirac, limits the subspaces that
identical particles can occupy to those hosting either symmetric or antisymmetric wave functions.
More precisely:

The states of a system of identical particles with integer spin (so-called bosons) lie in the sub-
space of the symmetric functions. The states of a system of identical particles with half-integer spin
(so-called fermions) lie in the subspace of antisymmetric functions. Other symmetries or mixed
symmetries do not occur in nature. On the base of this principle, electrons, protons and neutrons are
fermions and assume antisymmetric wave functions. α-particles, or photons (spin 1) but also atoms
at very low temperatures (see Bose-Einstein condensation) are bosons and assume symmetric wave
functions.
3. The symmetry properties relate to the entire wave function, i.e the spin function of the entire
system must be taken into account, even if Ĥ is spin-independent.

The (ns)2-con�guration

We are now ready to explore the (ns)2-configuration and to classify the two multiplets 3S and 1S at the
light of the requirement that the total wave function be antisymmetric with respect to permutation of
the particle coordinates. We start with the multiplet 1S and the associated spin singlet wave function
(we omit the radial component for simplicity of writing):

Y 0
0 (Ω1) ·Y 0

0 (Ω2) ·

√

√1
2

�

Y+(m1) ·Y−(m2)−Y−(m1) ·Y+(m2)
�

When the particle coordinates are exchanged, the spin component becomes
√

√1
2

�

Y+(m2) ·Y−(m1)−Y−(m2) ·Y+(m1)
�

=−

√

√1
2

�

Y+(m1) ·Y−(m2)−Y−(m1) ·Y+(m2)
�

i.e. the spin component is antisymmetric with respect to coordinate exchange. The orbital component,
instead, is symmetric. The total wave function is therefore antisymmetric with respect to particle
exchange: the multiplet 1S is allowed by the Pauli principle.
We turn now to the 3S multiplet with wave functions

Y 0
0 (Ω1) ·Y 0

0 (Ω2) ·
�

Y+(m1) ·Y+(m2)
�

Y 0
0 (Ω1) ·Y 0

0 (Ω2) ·

√

√1
2

�

Y+(m1) ·Y−(m2)+Y−(m1) ·Y+(m2)
�

Y 0
0 (Ω1) ·Y 0

0 (Ω2) ·
�

Y−(m1) ·Y−(m2)
�

The three spin components are symmetric with respect to particle exchange. In order for the total
wave function to be antisymmetric we need to construct an antisymmetric orbital component
using one single orbital wave function. This is impossible: any attempt of antisymmetrizing the
product wave functions of two electrons having individually exactly the same orbital wave function
produces a vanishing wave function, i.e. given two electrons that occupy the same orbital state
they can only form a spin singlet. The spin triplet is forbidden. This is a refined version of the
original Pauli principle. For the specific configuration under investigation, the application of the
Pauli principle has reduced the original degeneracy of the configuration and eliminated one multiplet.

COMMENTS.

1. We have found that all spin triplet states – corresponding to the various z-components of
the total spin angular momentum – have exactly the same behaviour with respect to particle coordi-
nate exchange. This is not an accident but it is protected by a famous theorem by I. Schur and H. Weyl:
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THEOREM (Schur-Weyl duality)
All eigenfunctions to a given total spin S of an ensemble of spin 1

2 particles have the same behaviour
with respect to particle permutation. Accordingly, a given value of S provide a so-called ”Spin-Rasse”.

This theorem divides the termal scheme of an atom into well-separated termal schemes, each
carrying a given value of S and each with well defined symmetry with respect to permutations. In
addition, each ”Spin Rasse” determines the behaviour with respect to permutations of the orbital
function allowed within the spin rasse, which has to be chosen so that the total wave function is
finally antisymmetric. It might well happen that, in the process of building a spin rasse, some levels
must be discarded from the termal scheme. For instance, the 1s-level appears in the S = 0-termal
scheme of the He atom as the ground state, while it is absent in the S= 1 termal scheme.
2. Given a certain configuration and the corresponding multiplets, by virtue of the Pauli principle
some of them are removed and the degeneracy of the configuration is reduced.

•Slater determinants. There is a technology that allows to construct antisymmetric wave
functions starting from single particle wave functions. This technology is alternative to the one based
on the Weyl theorem and has been invented by J.C. Slater. Consider e.g. the electronic configuration
(ns)2. The single particle states arising from the configuration Hamiltonian are (we omit the index n
for simplicity of writing)

Y0,0Y+(ξ) Y0,0Y−(ξ)
One can construct antisymmetrized product functions starting from these states by means of the so
called Slater determinants:

1
p

2
·det

�

Y0,0Y+(ξ1) Y0,0Y+(ξ2)
Y0,0Y+(ξ1) Y0,0Y+(ξ2)

�

= 0

1
p

2
·det

�

Y0,0Y−(ξ1) Y0,0Y−(ξ2)
Y0,0Y−(ξ1) Y0,0Y−(ξ2)

�

= 0

1
p

2
·det

�

Y0,0Y+(ξ1) Y0,0Y+(ξ2)
Y0,0Y−(ξ1) Y0,0Y−(ξ2)

�

= −
1
p

2
·det

�

Y0,0Y−(ξ1) Y0,0Y−(ξ2)
Y0,0Y+(ξ1) Y0,0Y+(ξ2)

�

This last determinant provides the non-vanishing state
1
p

2
·
�

Y0,0Y+(ξ1)Y0,0Y−(ξ2)−Y0,0Y−(ξ1)Y0,0Y+(ξ2)
�

From this example one deduces the rule that Slater determinants involving identical states vanishes.
This is in line with the original version of the Pauli principle that forbids two electrons having identical
quantum numbers. The remaining two non-vanishing determinants produce the same linear indepen-
dent antisymmetric product function that describes the spin singlet and represents a configuration
where (sloppy) ”two electrons with opposite spin” can occupy identical orbital states.
The Slater determinant can be generalized to produce antisymmetric states involving N particles
starting from M single particle states {ψαi

}, i= 1,..., M :

ψ−α1,α2,...,αN
=

1
p

N !
·det















ψα1
(ξ1) ψα1

(ξ2) . . . ψα1
(ξN )

ψα2
(ξ1) ψα2

(ξ2) . . . ψα2
(ξN )

. . . . . .

. . . . . .

. . . . . .
ψαN

(ξ1) ψαN
(ξ2) . . . ψαN

(ξN )















Taking into account that for the states used one must have αi 6=α j , there are
�

M
N

�
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such determinants. These states belong to multiplets within a given configuration that are allowed
by Pauli principle. The technology of Slater determinants is the shortest path toward finding the
antisymmetrized states within a given configuration. The Schur-Weyl theorem is the shortest path
toward finding the multiplets within a given configuration.

The p2-con�guration

The Pauli principle has eliminated all but one product function in the (s)2-configuration, leaving one
Slater determinant and the corresponding multiplet – the spin singlet. We expect similar phenomena
such as reduction of degeneracy and/or elimination of multiplets to occur in all configurations and
they must be of course analyzed case by case in response to some experimental need. We conduct
for the sake of illustrating these phenomena the analysis of the configuration of 2 electrons in the p-
orbital. Without taking the Pauli principle into account, this configuration contains 36 product states.
Using the technology of the Slater determinants we have 6 possible single-particle states and two
electrons to place into them. This amounts to

�

6
2

�

= 15

non-vanishing Slater determinants. The original degeneracy is therefore strongly reduced. The ques-
tion is now about how to find the possible multiplets. Weyl theorem is more useful: it establishes
that the multiplets will have either spin quantum number 0 (spin singlets, antisymmetric) or 1 (spin
triplets, symmetric). Considering the orbital part of the wave function, we can build three possible
total orbital quantum numbers from two L= 1 particles. In our terminology

1⊕1= 2,1,0
We find the corresponding states in the suitable Tables of Clebsch-Gordan coefficients ( p. 564 of M.
Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)), https://journals.aps.
org/prd/abstract/10.1103/PhysRevD.98.030001). There we notice an important property:
• the L= 2 wave function is symmetric with respect to coordinate exchange, so that the L= 2 orbital
wave function can only couple to the singlet wave function, producing 5 antisymmetric wave functions
that belong to the quantum numbers S= 0, L= 2 and carry the multiplet symbol 1D.
• The L= 1 wave functions, instead, are antisymmetric with respect to coordinate exchange and can
only couple to the triplet spin states giving rise to 9 antisymmetric wave functions with multiplet
symbol 3P.
• The L = 0 wave function is also symmetric and produces the antisymmetric wave function with
multiplet symbol 1S.
The total number of antisymmetric states produced using Weyl theorem is, of course, 15, as expected
from the counts of Slater determinants. In summary the configuration (n, p)2 with energy 2 ·Enp hosts
three multiplets:

1D 3P 1S
We have a new situation with respect to the (s)2 configuration: triplet states exist and provide possible
non-vanishing antisymmetric states. The question now arises: among all the multiplets remaining, is
there an interaction that – at least partially – removes the degeneracy and produces a ”multiplett
splitting”? This is a key question toward determining which multiplet is the actual ground state of an
atom and which ones are excited states. Notice that it makes a difference whether e.g. the ground
state is a triplet or a singlet: in the first case the ensemble responds a la Zeeman (see next Chapter
for the a treatement of the Zeeman effect) to a magnetic field, in the second the magnetic field just
shifts the energy level.
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7.4. The multiplet Hamiltonian: Estimate of multiplett
splitting (Hund's rules).

We are now going to find out which interaction is responsible for the lifting of the multiplet degener-
acy and find an estimate of the multiplet splitting energy by solving a simple model. We consider the
1s2s-configuration of He. This is an excited state of He that provides two multiplets 1S and 3S which
can be handled almost analytically, even using a quite complete two-body Hamiltonian. The order of
magnitude we will obtain is applicable to more complex multiplets.

The configuration Hamiltonian reads (e2 standing for e2

4πε0
)

H0(1,2) =−
ħh2

2m
(∇2

1+∇
2
2)−

Ze2

r1
−

Ze2

r2

The energy levels of H0(i) are Eni
= −Z2e2

2·a·n2
i
, a being the Bohr radius. The eigenfunctions of Eni

are

ϕni ,Li ,MLi ,m =
Rni ,Li

ri
·YLi ,MLi

(ϑi ,ϕi)⊗Y m

• The ground state. The ground state of H0 corresponds to the state in which both electrons are in
a 1s-orbital. The configuration (1s)2 has the energy

E(1s)2 = 2 · E1s = 2 ·−
Z2e2

2 ·a
=−4 ·13.6eV

The wave functions read

ϕ1s(1)ϕ1s(2)⊗Y m′ ⊗Y m =
1
π
(

Z
a
)3e−

Z
a (r1+r2)⊗Y m′ ⊗Y m

m,m=±. After anti-symmetrization, only one wave function remains in the ground state, namely
ϕ1s(1)ϕ1s(2)⊗χs

χs being the singlet spin state.
• The (1s)(2s) configuration. In order to get more than one multiplet in He one has to get to an
excited state configuration. In atoms, a many-multiplet structure can happen in the ground state con-
figuration, as worked out for the (np)2 configuration. For energy estimates, however, the He-excited
state is perfectly representative.
The configuration (1s)1(2s)1 is degenerate with respect to the configuration Hamiltonian. The anti-
symmetrized wave functions read:

1
p

2
·(ϕ1s(r1)ϕ2s(r2)−ϕ1s(r2)ϕ2s(r1))⊗χ1

t

1
p

2
·(ϕ1s(r1)ϕ2s(r2)−ϕ1s(r2)ϕ2s(r1))⊗χ0

t

1
p

2
·(ϕ1s(r1)ϕ2s(r2)−ϕ1s(r2)ϕ2s(r1))⊗χ−1

t

1
p

2
·(ϕ1s(r1)ϕ2s(r2)+ϕ1s(r2)ϕ2s(r1))⊗χ0

s

χt are the triplet spin states. The energy of the (1s)1(2s)1 configuration is E1s+ E2s.
• Perturbation of the ground state by the multiplet Hamiltonian. We now perturb the configura-
tion Hamiltonian with the Coulomb repulsion between the two electrons

V1,2 =
e2

| r1−r2 |
=

e2

r12
and obtain the so called ”multiplet Hamiltonian”

H0+V1,2
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The Ritz matrix the this Hamiltonian in the subspace
ϕ1s(1)ϕ1s(2)χs

reads
�

E0+QG
�

with

QG =

∫

dV (1)dV (2)ϕ2
1s(1)

e2

r12
ϕ2

1s(2)

In order to explicitly compute this last integral, one develops 1/r12 in spherical harmonics:

1
| r1−r2 |

=
4π
r1

∑

l,m

1
2l+1

(
r2

r1
)l ·Y ∗l,m(ϑ1,ϕ1)Yl,m(ϑ2,ϕ2)⇐⇒ r1 > r2

1
| r1−r2 |

=
4π
r2

∑

l,m

1
2l+1

(
r1

r2
)l ·Y ∗l,m(ϑ1,ϕ1)Yl,m(ϑ2,ϕ2)⇐⇒ r1 < r2

Inserting this development in QG and using the orthogonality of spherical harmonics we obtain

QG =
4e2

π
(

Z
a
)6
∫ ∞

0
dr1r2

1 · e
− 2Z r1

a [
1
r1

∫ r1

0
dr2r2

2 e−
2Z r2

a +

∫ ∞

r1

dr2r2e−
2Z r2

a ]

Partial integration leads to QG =
5Ze2

8a and positive. Notice that the correction QG is of the same order of magnitude as E0.

The energy of the ground state configuration is modified by the Coulomb repulsion between electrons
to

EG =−
Ze2

a
(Z−

5
8
)

The only multiplet possible in the ground state is 1S. The net magnetic moment is vanishing: S = 1
is prohibited in the ground state by the Pauli principle.
• Perturbation of the 1S and 3 multiplets by the multiplet Hamiltonian. The Ritz matrix for the
perturbed Hamiltonian H0+V1,2 in the subspace of the four 1S and 3 multiplets wave functions of
the 1s2s-configuration reads:






E1s+ E2s+Q1s2s+ J1s2s 0 0 0
0 E1s+ E2s+Q1s2s− J1s2s 0 0
0 0 E1s+ E2s+Q1s2s− J1s2s 0
0 0 0 E1s+ E2s+Q1s2s− J1s2s







with

Q(1s)(2s) =

∫

dV
|ϕ1s(r1) |2 ·e2· |ϕ1s(r2) |2

r12

being the electrostatic interaction between the two charges densities |φ1s |2, |φ2s |2. Q(1s)(2s) is also
expected from classical electrostatics and produces, as for the ground state energy, a shift of the
energy of the (1s)(2s) configuration. The integral J

J(1s)(2s) =

∫

dV
ϕ1s(r1)∗ϕ∗2s(r2) · e2 ·ϕ1s(r2)ϕ2s(r1)

r12
is called the exchange integral contribution, arising from the correlation of the two electron as
a consequence of anti-symmetrizing the wave functions according to the Pauli principle and it is
of purely quantum mechanical origin. J(1s)(2s) vanishes in the classical limit. J(1s)(2s) produces a
removal of the degeneracy between the multiplets and a split of the configuration energy level. The
strength of the splitting – the strength of the parameter J(1s)(2s) – is typically of the order of eV
(11605kB), i.e. the same order of magnitude as Q(1s)(2s). This is not surprising, as both Q(1s)(2s)
and J(1s)(2s) originate from the same interaction. The sign is positive, so that the triplet has a
lower energy than the singlet. There is an intuitive explanation for this positivity. The Coulomb
energy is large when the two electrons are closer to each other. In a triplet spin state the anti-
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symmetric orbital wave functions the two electrons takes care that the two electrons are as far as
possible from each other, an this reduces the Coulomb repulsion with respect to the symmetric
orbital wave function, where the two electrons are, on the average, allowed to be closer to each other.

COMMENTS.

• This quantitative result is a-posteriori justification of a famous ”rule” obtained by F. Hund
(1925) and Russel and Saunders (Astrophysics Journal, 61, 38, 1925) on the basis of empirical
atomic spectra observations (1st Hund rule): ” Multiplet splitting occurs in such a way that the
triplett spin state has the lowest energy”. Equivalently: Provided there is sufficient degeneracy that
non-equivalent orbital wave functions can be constructed, the configuration realizing the lowest
energy state corresponds to a state of maximum spin number. In other words: if the orbital states
involved have different quantum numbers, the filling of the electronic states with parallel spins
produces the lowest energy electronic configuration. Thus, provided orbitally degenerate states
exist, the triplet state is energetically favoured. If degeneracy is absent, then the singlet state is
energetically favoured, because of the Pauli principle.

• By these considerations, we have found an important result that guides the formation of a finite
total spin in an atomic system: orbital degeneracy, i.e. a configuration carrying more than one
multiplet – is required.

• There is a rule (2nd Hund rule) that further produces splitting of multiplets, should any de-
generacy be left behind after applying the first Hund rule: among the remaining multiplets, the
one that has the lowest energy is the one with highest L. Again, this is because of the intuitive
argument that the Coulomb energy is reduced for high values of L.

• The level scheme resulting from the multiplet Hamiltonian is summarized schematically in the
next figure.

n, L

n,       L
2S+1

The energy level of the configuration Hamiltonian (left) is splitted into multiplets (right) by the Coulomb
repulsion between electrons.

• Regarding the physics of He-atoms: there are two distinct termal schemes for He, consisting
of para (singlet) - and ortho (triplet) states. Disregarding the spin-orbit interaction, transitions
involving the emission or absorption of light between the triplet and the singlet states are
forbidden (due to the orthogonality of the spin functions). Because of this, singlet and triplet
states of the helium atom are independent. If a He atom reaches the lowest triplet state (1s)(2s),
it will remain in that state for longer times (months), even though it is an excited state. Because
of this long lifetime, such states are called metastable. He atoms in singlet and triplet states can
therefore be considered as two different types of atoms. Para-helium has no magnetic moment
and forms a diamagnetic gas. Ortho-helium, on the other hand, forms a paramagnetic gas.
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The levels in the t-states split due to the spin orbit interaction. Therefore, the spectral lines of
Para-helium are simple lines. In contrast, the spectral lines of ortho-helium consist of closely
adjacent lines (have a fine structure, see next chapter), and even show a hyperfine structure
(see next chapter).

1S 1P 1D 1F 3S 3P 3D 3F

3
1S

3
1P

3
1D

2
1S

2
1P

2
3S

2
3P

1
1S

S = 0 S = 1

E

The term scheme of parahelium (left) and orthohelium (right). Particularly clear is the triplet-singlet
splitting that systematically favours triplet states over singlet states energetically. Triplet states have a
fine structure as well (too small to appear in the energy scale used in the figure.

7.5. The Heisenberg-Van Vleck-Dirac operator

One can formally obtain the t− s splitting by caricaturing the exchange interaction (which is actu-
ally acting in the orbital space) with an effective spin Hamiltonian: the Heisenberg-Dirac-Van Vleck
operator. Dirac defined an operator acting in spin space

HSpin = (E1s+ E2s+Q1s2s) ·1− J1s2s · P12

with the exchange operator P12

P12Y±Y± = Y±Y±

P12Y±Y∓ = Y∓Y±

exchanging the z-components of the two particles. The eigenvalues of the operator Hspin when re-
stricted to the 1s2s eigenspace, are identical with the eigenvalues of the physical operator. A useful
way of writing P12 is

P12 =
1+σ1⊗σ2

2
or, setting S= 1

2σ

P12 =
1
2
[1+4 ·S1⊗S2]
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where σ are the two-by-two Pauli matrices and the product σi ⊗σ j must be taken as a Kronecker
product of matrices. The spin Hamiltonian simulating the original Hamiltonian acting in the orbital
space reads

HSpin = (E1s+ E2s+Q1s2s) ·1− J1s2s ·[
1
2
1+2S1⊗S2]

The non-diagonal part, generalized to any spin and some exchange parameter J
−2 · J ·S1⊗S2

is also called the Heisenberg exchange (vector) operator. A simplified version of it
−2 · J ·Sz

1⊗Sz
2

involving only the z-component of the spin operator is called the ”Ising model”. Versions of the Heisen-
berg and Ising models where S is a classical vector are also used. In physical science, but also in any
other branch of natural science and even in humanities, the Heisenberg and Ising models, in particular
in their generalization to many degrees of freedom

−2 · J ·
∑

i 6= j

Si⊗S j

respectively

−2 · J ·
∑

i 6= j

Szi
⊗Sz j

have a widespread use. They represent the simplest way of capturing and describing two-body in-
teractions – such as those appearing in a community of fishes or in the traffic of cars moving within
restricted roads – and lead to non-trivial complexity.
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8. Fine structure, Zeeman e�ect and

hyper�ne splitting.

8.1. The �ne structure of atomic levels.

After having sorted out multiplets according to the first and second Hund rule, we might still have
some degeneracy left. Let us go back to the (np)2 configuration. There we found that the configura-
tion (n, p)2 with energy 2 · Enp hosts three multiplets: 1D,3 P,1 S. Let us order them according to the
Hund rules. The multiplet with the lowest energy is certainly the 3P multiplet. 1D lies higher, fol-
lowed by 1S (2nd Hund rule). With respect to the total angular momentum quantum number J , 1D
and 1S are not degenerate, as they carry one single quantum number J , namely J = 2 (1D) and J = 0
(1S). The 3P-multiplet, instead, is degenerate with respect to the quantum numbers J =2,1,0 for the
total angular momentum. The question is now: is there any interaction that is capable of removing
this degeneracy and assigning to multiplets with different J different energies? Experimentally, this
question was answered by the observation of the Na-doublet and was called by A. Sommerfeld the
fine structure of the energy levels.
The origin of the fine structure is an interaction that corrects the multiplet Hamiltonian: the so
called spin-orbit interaction. It is the result of taking the theory of relativity into account when
formulating the Hamilton operator and describes a coupling between the spin degree of freedom
and the orbital degree of freedom. The derivation of the spin-orbit coupling operator from the
Dirac equation is beyond the scope of this lecture. We refer to advanced literature on the sub-
ject(Masud Mansuripur,”Spin-orbit coupling in the hydrogen atom, the Thomas precession, and the
exact solution of Dirac’s equation”, Proc. SPIE 11090, Spintronics XII, 110901X (16 September 2019);
https://doi.org/10.1117/12.2529885. The spin-orbit coupling operator reads1

HLS = ALS ·[ L̂x ⊗ Ŝx + L̂ y ⊗ Ŝy + L̂z⊗ Ŝz]
︸ ︷︷ ︸

L̂⊗Ŝ

In the literature, ALS has the unit of an energy and the operators L̂ and Ŝ are taken to be dimension-
sless. We will use this convention henceforth. This operator can be rewritten using the identity

(L̂⊗1+1⊗ Ŝ)2 = L̂2⊗1+1⊗ Ŝ2+2 · L̂⊗ Ŝ
as

HLS = ALS ·
(L̂⊗1+1⊗ Ŝ)2− L̂2⊗1−1⊗ Ŝ2

2
This last expression contains explicitly the square of the operator of the total angular momentum

Ĵ2 .
= (L̂⊗1+1⊗ Ŝ)2

Our having introduced an interaction that explicitly contains the square of the operator of the total
angular momentum is important to understand why this interaction is able to split the J -degenerate
levels within a given multiplet. Within the set of basis states of a given multiplet 2S+1 L

{| L,mL >| S,mS >}
1The spin-orbit coupling constant has a dependence on the radial variable. However, as spectroscopic observations relate to

the average over the radial charge density of the coupling constant ALS(r), we prefer to use the averaged quantity ALS to
write the effective spin-orbit coupling operator.
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• the operator
L2⊗1

is diagonal and has the (2L+1) ·(2S+1) degenerate eigenvalue
L(L+1)

• the operator
1⊗S2

is diagonal and has the (2L+1) ·(2S+1) degenerate eigenvalue
S(S+1)

• the operator
(L⊗1+1⊗S)2

is not diagonal but we know its eigenvalues – without solving the determinantal problem: Why do
we know the eigenvalues? Because the operator

(L⊗1+1⊗S)2

is the square of the total angular momentum, and we have learned how to compute all the possible
angular momentum quantum numbers of a composite system with orbital quantum number L and
spin quantum number S:

L⊕S= L+S L+S−1 ..... L−S
Knowing the possible values of the total angular momentum quantum number we have a rule on how
to comute the eigenvalues of the square of the vector of the total orbital angular momentum:

L+S→ (L+S) ·(L+S+1) ..... L−S→ (L−S)(L−S+1)
Accordingly, we have solved the eigenvalue problem of the spin-orbit coupling operator within the
space of product function without diagonalizing it explicitly:

EJ = ALS ·
J(J+1)− L(L+1)−S(S+1)

2
J = L+S, ..., L−S. This result confirms that

EJ − EJ−1 = ALS · J
This rule was found empirically by Lande in 1923 (Lande- interval rule).
COMMENTS.
1. The spectroscopic symbols that are used to identify the various levels are:
a) the symbol indicating the configuration
b) the symbol indicating the possible multiplets – i.e. values of L and S that can be realized in this
configuration: (2S+1)L.
c) A given multiplet can be split into terms with different J , which are indicated by the spectroscopic
symbol

2S+1 LJ

Terms have different energy because of the spin-orbit splitting.
2. In the case of one electron in a p level, for instance, we have two possible terms:

2PJ= 3
2

and 2PJ= 1
2

n = 1 L = 1

2p 3

2

2p 1

2

Figure 8.1.: Spin-orbit split energy levels.
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3. the 3P multiplet splits into three terms:
3P2
3P1
3P0

• 4. Third Hund’s rule. The order of the levels is ruled by the 3rd Hund rule, which originates from
the eigenvalue expression for the terms we have just derived. The third rule states that the ” total
angular momentum quantum number J minimizing the energy is |L+S| if the shell is more than half
full, |L−S| if the shell is less than half full.”
5. The strength of the coupling constant ASL can be computed precisely for H-similar atoms. With

ALS(r) =
Z ·ħh2 · l2

4πε0 ·2m2c2r3

we find

ASL =

∫ ∞

0
r2dr f 2

nL(r) ·
Z ·ħh2e2

4πε02m2c2r3
=

α2 ·Z4

2n3(l+1)(l+ 1
2 ) · l

·
Har t ree
︷︸︸︷

Ha

Plugging in the universal constant

α=
e2

ħhc
≈

1
137

(the so called fine-structure constant), we estimate ASL ∼ 10−4−10−5Ha. For the n= 2 level of the
H-atom (Z = 1) the energy difference between the terms

2P3
2

2P1
2

is α
2

32 Ha. This very small splitting justifies a posteriori our choosing as Ritz space the space belonging
to the multiplet 2S+1 L, without involving other configurations.
6. The absolute value of the fine structure splitting decreases with increasing main quantum num-
ber but increases rapidly with the fourth power in Z . For heavy atoms, corrections to term energies
are therefore relevant and produce the failure of 1st order perturbation theory and, accordingly, a
remixing of the energy levels that produces some exceptions in the periodic table of the elements.

8.2. An atom in the external magnetic �eld.

8.2.1. Excursus in classical magnetostatic

For treating the problem of an electron in a magnetic field we need to construct the suitable Hamilton
operator. The proper strategy could be to translate the Hamilton function of a charged particle in
an electric and magnetic field into a corresponding Hamilton operator. At disposal from classical
electrodynamics are the relations

E=−∇φ(r, t)−
∂ A
∂ t

and
B=∇×A

which relate the electric and magnetic field to the scalar potential φ(r, t) and the vector potential
A(r, t) and the Newton equation of motion

mr̈= q ·E+q(ṙ×B)
In classical physics, one can set the Hamilton function as Ansatz and prove that the Hamilton
equations of motion lead to the Newton equation of motion.
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THEOREM: The Hamilton function for a charge q in an electromagnetic field writes

H =
1

2m
(p−qA)2+qφ

PROOF:
We recall: The Hamilton equations for the variables r and p write

ṙ=
∂ H
∂ p

; ṗ=−
∂ H
∂ r

With r
.
= (x1, x2, x3) and p

.
= (p1, p2, p3) we set up to compute

mẍ i = m
d
dt
∂ H
∂ pi
= ṗi−qȦi

Now:

ṗi =
∂ H
∂ x i

=
1
m
(p−qA) ·q ·

∂ A
∂ x i
−q
∂ φ

∂ x i

=
∑

j

ẋ jq
∂ A j

∂ x i
−q
∂ φ

∂ x i

and

Ȧi =−q
∂ Ai

∂ t
−q

∑

j

∂ Ai

∂ x j
ẋ j

so that

mẍ i = −q(
∂ φ

∂ x i
+
∂ Ai

∂ t
)+q

∑

j

ẋ j(
∂ A j

∂ x i
−
∂ Ai

∂ x j
)

which is the sought for Newton equation

m
d2r
d t2
= q ·E+q(ṙ×B)

�

Before constructing the Hamilton operator from the Hamilton function with the correspon-
dence principle, let us obtain a formally more useful version of the classical Hamilton function. We
restrict ourselves to a uniform magnetic field B so that we can write

A=−
1
2

r×B

Inserting in the Hamilton function we obtain

H(p,r,A) =
1

2m
(p+

q
2

r×B)2+qφ =
p2

2m
+qΦ+

q
2m
·p ·(r×B)

︸ ︷︷ ︸

− q
2m (r×p)·B

+
q2

8m
(r×B)2

= +
p2

2m
+qΦ→ (a)

−
q

2m
(L ·B)→ (b)

+
q2

8m
(r×B)2→ (c)

Strength estimate.
• The term labeled (a) produces the Hamilton operator encountered in the original work by
Schrödinger on the Hydrogen atom. The electronic part a is of the order of eV , compute e.g.

�

ψns,(−
ħh2

2m
4+qφ)ψns

�
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for hydrogen like wave functions to find that
| E2s− E1s |≈ 10.2 eV

• Take e.g. B along the positive z-direction and compute e.g.
�

ψ2p,m=1,(
| e |
2m
· Lz ·Bz)ψ2p,m=1

�

=
| e |ħh
2m
·Bz

to find that the characteristic strength of b, assuming an orbital angular momentum ħh, is of the order
of

10−4 eV ·B
T

B in units of Tesla

(b) is therefore << (a), even when magnetic field strengths of few Tesla – which are typical for
laboratory using superconducting coils – are used.
• Let B be along +z and compute (c) for a 1s-state of Hydrogen

�

ψ1s,(
e2

8m
(x2+ y2)B2

z )ψ1s

�

=

�

ψ1s,(
e2

12m
(x2+ y2+z2)B2

z )ψ1s

�

to find that (c) amounts to about

10−11eV ·(
B
T
)2

c contributes a positive energy which is, for typical Tesla fields, much smaller than the strength of
both a and b.

COMMENTS.
1. In classical physics the angular momentum is not quantized and a most peculiar phenomenon
appears: the angular momentum can be small enough for b and c to be of the same strength.
When averaging with the suitable Gibbs probability at any finite temperature over all possible
classical orbits to compute the energy, b and c cancel out exactly, rendering the average energy
independent of B. This exact compensation between b and c is the content of Bohr-van Leuwen
theorem. In quantum mechanics, where L is quantized, our estimate shows that, unless the atomic
configuration has exactly L = 0 (it can happen, e.g. for noble gas elements), the term (b) always
dominates in strength with respect to (c) and is therefore the only one needed to be taken into
account for explaining e.g. spectroscopic observations of atoms in a magnetic field. From now on
we will therefore neglect c and work with b as a small perturbation of a, respectively b as a small
perturbation of the fine structure levels.
2. In classical physics,

q ·L .
=µ

is the so called vector of the magnetic moment and (b) is also written as
−µ ·B

This terminology is maintained when the operators are translated to quantum mechanics.

8.2.2. The Zeeman e�ect.

The translation of the coupling Hamiltonian between a charge q and magnetic field B to quantum
mechanics must take into account that quantum mechanical particles have an internal degree of free-
dom – the spin. A first attempt to build the quantum mechanical operator is to use the correspondence
principle and write

e
2m
·L ·B →

e
2m
·(L̂+ Ŝ) ·B

for a set of electrons, each with charge q=−e and mass m, total orbital angular momentum L̂ and
total spin angular momentum operator Ŝ. This translation was long thought to be correct but could
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not explain spectroscopic observations of atoms. In 1928, Dirac equation proved this translation to
be wrong: the correct Zeeman operator2 for an ensemble of electrons in a magnetic field is

HZ (B) =
e ·ħh
2m
︸︷︷︸

µB

·(gL L̂+ gS · Ŝ) ·B

gL = 1 and gS = 2 are the so called g-factors for the orbital respectively spin degrees of freedom.
The value of gS is a yet non understood consequence of the relativistic Dirac equation3. The coupling
constant

e ·ħh
2m

.
=µB = 9.274009994(57)×10−24 J

T
is the so called Bohr magneton. With this coupling constant, the operators L̂ and Ŝ become dimen-
sionless4 We want to find the eigenvalues of the operator HZ in the subspace of the eigenfunctions
of the fine structure level 2S+1 LJ

{| J ,mJ >}
i.e. we want to diagonalize the matrix

< J ,m′J | ĤZ | J ,mJ >

whereby, without loss of generality, we can set B= (0,0,B) and
HZ =µB ·B ·(gL L̂z+ gS Ŝz)

In this subspace the operators J2 and Jz are diagonal. What about L̂z and Ŝz? There is a systematic
property of the eigenspaces {| J ,mJ >} that is the consequence of a celebrated theorem of mathe-
matical physics: the Wigner-Eckart-Koster theorem. In virtue of this theorem, one can show that the
matrix elements of HZ are independent on J , i.e both Lz and Sz are diagonal matrices of the type

Ŝz =κS · Ĵz

and
L̂z =κL · Ĵz

κS and κL being some parameters dependent on L,S,J but – and this is most important – independent
on mJ . κL is determined from

κL Ĵ2 = L̂ · Ĵ=
1
2
(Ĵ2+ L̂2− Ŝ2)

κS follows from
κS Ĵ2 = Ĵ2−κL Ĵ2

Inserting these results, the Zeeman matrix writes

gLSJ ·µB ·B ·















J 0 0 . . 0
0 J−1 0 . . 0
0 0 J−2 . . 0
. . . . . .
. . . . . .
0 0 . . 0 −J















gLSJ is the Lande factor:

gLSJ =
1
2

gL(J(J+1)+ L(L+1)−S(S+1))+ gS(J(J+1)+S(S+1)− L(L+1))
J(J+1)

2Pieter Zeeman, Nobel prize 1902)
3It is not even exactly ”2”: Quantum electrodynamic provides the value 2.00231930436182 – and this is one of the physical

quantities which have been measured with the highest precision. We will continue using ”2”.
4Using the operator

µ̂
.
=−µB ·(gL L̂+ gS · Ŝ)

the Zeeman operator writes
HZ =−µ̂ ·B
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or, inserting gL = 1 and gS = 2

gLSJ = 1+
J(J+1)+S(S+1)− L(L+1)

2J(J+1)
It is a diagional matrix, so that its eigenvalues can be read out from the diagonal.
COMMENTS.
1. When a fine structure level L,S,J is embedded into a magnetic field, its degeneracy is completely
lifted and the level spits into 2J+1 sub-levels
2. The distance between the levels is

µB ·B · gLSJ

3. The distance depends on the quantum numbers L,S,J – this phenomenon is known as the anoma-
lous Zeeman effect. It is to be compared with the ”normal” Zeeman effect that foresees an universal
distance between sub-levels of just µB ·B. The non-universality is a consequence of the gyromagnetic
factor of the spin angular momentum being 2 and not 1. The observation of a non-universal distance
between sub-level in a magnetic field was a big mystery (an unexplained ”anomaly”) that could only
be solved when the Dirac equation appeared, which contained explicitely gS = 2

-2

-1

0

1

2

-1

0

1

51D2

51P1

643,8 nm

B = 0 B 6= 0 mj

∆mj 1 0 −1

Schematic diagram for the Zeeman effect in the red spectral line of a Cd atom. It corresponds to the
transition
51D2(J = 2, L= 2,S= 0)→ 51P1(J = 1, L= 1,S= 0)
The levels have S= 0 and the Zeeman effect is the ”normal” one: both lines are split by the magnetic field
into equidistant sublevels. Using left-circularly polarized light (∆mJ = 1), right circularly polarized light
(∆mJ =−1) or linearly polarized light (∆mJ = 0) one observes only three optical transitions.
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2S

Multipletts Terms B 6= 0

2P 3
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2P 1

2

2S 1

2

mj
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3

2

+
1
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− 1
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2
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1
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− 1
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+
1

2

− 1

2

Schematic diagram for the Zeeman effect in Na atom. It corresponds to the transitions
2P3

2
(J = 3

2 , L= 1,S= 1
2 )→

2 S 1
2
(J = 1

2 , L= 0,S= 1
2 )

and
2P1

2
(J = 1

2 , L= 1,S= 1
2 )→

2 S 1
2
(J = 1

2 , L= 0,S= 1
2 )

The anomalous Zeeman effect is observed with a total of 10 optical transitions with left-circularly polar-
ized light (∆mJ =1), right circularly polarized light (∆mJ =−1) and linearly polarized light (∆mJ =0)
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8.3. ∗ The hyper�ne splitting of s-states

When calculating the fine-structure and Zeeman corrections, we considered the field of the atomic
nucleus to be a spherically symmetric electric field. The nucleus of the hydrogen atom and many other
atoms have a magnetic moment. The interaction between the magnetic moment of the electron and
that of the nucleus further remove the degeneracy of the atom’s energy levels. The nuclear magnetic
moments are about 103 times smaller than the magnetic moment of the electron. The splitting of the
levels due to the nuclear magnetic moment will therefore be about 103 times smaller than the splitting
due to the electronic magnetic moment and the fine structure splitting. It is therefore called hyperfine
splitting. The measurement of the hyperfine structure of an atom is e.g. a method for determining
experimentally the spins and the magnetic moments of the atomic nuclei. We want to estimate the
HF-splitting of the s-states of an electron in an atom. We can look at the atomic nucleus as a point
like particle carrying a spin ħh ·I. This spin produces an atomic magnetic moment and a corresponding
Dirac-delta like magnetization vector:

| q |ħh
2mK

· gK · I ·δ(r)

q is the charge of the nucleus and for a proton gK
∼= 5.586. This magnetization produces a magnetic

field B that interacts ”a-la-Zeeman” with the magnetic moment of the electron. In order to compute
B we use a relation of classical magnetostatics:

A(r) =
µ0

4π
·∇×

∫

dV ′

|e|ħh
2mK
·gK ·I·δ(r)
︷ ︸︸ ︷

M(r′)
|r−r′|

= β ·∇×
I
|r|

with β summarizing the various constants:

β
.
=
µ0

4π
| e |ħh
2mK

· gK

The magnetic field B is now computed from the vector potential A, using some relations from vector
analysis:

B = ∇×A(r) = β ·∇×
�

∇×
I
|r|

�

= −β · I ·4
1
|r|
+∇

�

∇·
I
|r|

�

= β ·4πδ(r) · I+β ·
3(Ir)r− r2I
|r|5

−β ·
4π
3
δ(r) · I

When s-states are involved, only that part of B which contains Dirac-delta like functions is relevant.
The spherical symmetry of the s-wave function produces the vanishing of the remaining part, when
the spatial averaging in the matrix element is performed. This is, however, not true for p and d states,
where the usual dipole-like magnetic field term also contributes to the matrix element. The Hamilton
operator relevant for the HF-interaction in s-levels reads:

HHF =−~µS ·B=
8π
3
·β ·µB ·σ · I ·δ(r)

where precisely speaking, the scalar product σ · I means
σx ⊗ Ix +σy ⊗ I y +σz⊗ Iz

The Ritz space for solving the eigenvalue problem is given by the set of basis states
{ψn,l=0(r)⊗Y ms ⊗Y mI

I ; ms =±; mI = I , ...,−I}
The matrix elements in this subspaces amounts to

�

ψn,l=0(r)⊗Y m′s ⊗Y
m′I
I ,(

8π
3
·β ·µB ·σ · I ·δ(r))ψn,l=0(r)⊗Y ms ·Y mI

I

�
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=
8π
3
·β ·µB

�

ψn,l=0(r),δ(r)ψn,l=0(r)
�

︸ ︷︷ ︸

|ψn,l=0(0)|2

·
�

Y m′s ·Y
m′I
I ,σ · IY ms ·Y mI

I

�

The eigenvalue problem of the 2(2I+1)×2(2I+1) matrix

[
�

Y m′s ·Y
m′I
I ,σ⊗ I Y ms ·Y mI

I

�

]

is solved by the usual algebraic ”trick”. Let us introduce the operator

F
.
=1⊗ I+

1
2
σ⊗1

of the total angular momentum of the electron and the nucleus. From

F2 =1⊗ I2+
1
4
σ2⊗1+σ · I

we obtain

σ⊗ I= F2−1⊗ I2−
1
4
σ2⊗1

The possible values for
1
4
σ2 are

1
2
·(

1
2
+1)

The eigenvalues of
I2 are I(I+1)

The possible eigenvalues for

F2 are (I±
1
2
) ·
�

I±
1
2
+1
�

Using these results we can compute the sought for eigenvalues for the operator σ⊗ I:

F(F +1)− I(I+1)−
3
4
= I F(F +1)− I(I+1)−

3
4
=−I−1

COMMENTS.
1. The s-states split, in virtue of the hyperfine interaction, into two states with the energy

EI = En,s+
8π
3
·β ·µB|ψn,l=0(0)|2 · I E−I−1 = En,s−

8π
3
·β ·µB|ψn,l=0(0)|2 ·(I+1)

2. The HF-splitting amounts to

EI − E−I−1 =
8π
3
·β ·µB|ψn,l=0(0)|2 ·(2I+1)

Inserting β
.
= µ0

4π
|e|ħh
2mK
· gK and |ψn,l=0(0)|2 =

Z3

πa3n3 produces

EI − E−I−1 =
µ0

4π
| e |ħh

4mK m
· gK ·

Z3

πa3n3
·(2I+1)

3. For n= 2 in the Hydrogen atom one gets
EI − E−I−1

2πħh
' 1420MHz

This splitting corresponds to a wavelength λ∼= 21cm for n= 2 in a H atom. This characteristic radi-
ation is e.g. emitted by hydrogen clouds in the galaxies and is used in astronomy to determine the
position and concentration of hydrogen masses in space.
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9. Quantum chemistry

The main tasks of quantum chemistry is to explain how atoms can undergo a chemical bond to form
molecules and – ultimately – solids. Specific features of the chemical bond, like the bond between
identical atoms, its saturation properties – an hydrogen atom binds with exactly one single other
hydrogen atom, or a carbon atom can bind exactly four hydrogen atoms – and the particular chemical
inactivity of noble gas atoms – together with a large amount of experimental observations – point
to the fact that the chemical bond is related to the electronic configuration of the outer shells of the
atomic components. Quantum mechanics provides a quantitative explanation of the simple rule that
govern chemical bonds: the atoms undergo a chemical bond with the aim of filling their partially filled
orbitals in such a way that an electronic configuration is built which resembles as close as possible
to the configuration of a noble gas atom. Although usually the bonding mechanisms are mixed, four
types of chemical bonds can be distinguished roughly in molecular chemistry:

• Ionic or electrostatic bonding. In this type of bonding, one observes complete transfer of
electrons from the anion to the cation, when by this transfer the atomic electron configurations
of both components of the bond are rendered similar to those of some noble gases. This ionic
chemical bond is of course very strong between atoms of the first columns (which build the
cations) and atoms of the 7th column (which build the anions), and the compound built are
typically NaCl, KI, CsCl,etc. The attractive interaction that seals the chemical bond is provided
by the Coulomb interaction between the ions. Also for most of semiconductor compounds there
is a slight transfer of charge.

• Covalent (or homo-polar) bonding: Only few elements are well-defined metals and non-metal
atoms such that the electron transfer can really provide the main mechanism of bonding. The
largest part of the chemical bonds cannot be realized by electron transfer, in particular when
identical atoms are involved, like the stable molecules H2, O2, N2 etc. The chemical bond with-
out noticeable transfer of electrons from an atom to another is called as homo-polar or covalent
bond. The nature of this bonding is purely quantum mechanical and originate from the possi-
bility of electrons to ”tunnel” from one atom the the other. The covalent bonding is essentially
localized and the electrons are shared by the neighbors centers. The covalent bonding is depen-
dent on the electron orbitals, consequently the resulting molecular orbitals have well defined
directions in space. This bonding is of course the bond of choice between to identical atoms
and appears therefore also when crystals of the same element are built (Si,Ge,...).

• Delocalized (aromatic) bonding. The resulting molecular orbitals overlap strongly so that the
chemical bonding cannot be localized in space (although it has some modulation). In chemistry,
this bonding type appears e.g. in the benzene molecule C6H6. Some of the valence electrons of
the C undergo covalent bond strongly localized in between the various atoms. The pz orbitals
perpendicular to the plane overlap strongly and produce delocalized π-orbitals. In this orbital,
one electron is shared by all C-atoms in the benzene ring.

• Van der Waals’s bonding. The physical reason is the polarization of electron shells of the atoms
and resulting dipole-dipole interaction. This bonding is typical for inert gas atoms (Ar, Xe, Cr,
molecular crystals) and very weak. It leads to the formation of solids of noble atoms at very
low temperature.
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9.1. Covalent bonding: the H+2 ion

Several essential elements of the covalent bond can be deduced by computing the simplest molecule
one can think of: H+2 ion. Because of the great mathematical difficulties in the treatment of many
particle problems, one must resort to many approximations when computing the chemical bond.
One of them is called the Born-Oppenheimer approximation. It consists of freezing the motion of the
nuclei, which are then deprived of their kinetic energy. The only degree of freedom left behind is their
distances, which enter the problem as a parameter to be adjusted for minimizing the total energy.
Regarding the formation of the chemical bond, we point out that on one side there is the unbounded
state, consisting of a proton at infinite distance from an hydrogen atom. The total ground state energy
of the separated components amounts to the energy of the 1s energy level of hydrogen. On the other
side, the proton is moved to a finite distance R from the hydrogen atom. We are now seeking some
equilibrium distance R0, at which the total energy of the system is lower than the energy of the
unbounded state. The total Hamilton operator writes, in the Born-Oppenheimer approximation, and
ignoring spin orbit coupling

Ĥ =−
ħh2

2m
∇2−

e2

rA
−

e2

rB
+

e2

R
rA and rB indicate the distance between the electron and the proton A respectively B. e2 is a shorthand

symbol for e2

4πε0
. We only have one electron, so we do not need to take the Pauli principle or the Hund

rules into account. The Ritz space appropriate to find the solution of the eigenvalue problem of this
Hamilton operator is taken to consist of the two hydrogen like wave functions ψA(B)(r)

(πa3)−1/2e−rA(B)/a

a = ħh
2

me2 being the Bohr radius. These wave functions describe the two possible ground states for
R→∞. There are of course an infinite number of possible basis states, but a linear combination
of the atomic ground state wave functions is a more likely candidate for the ground state of the
molecule. In addition, by restricting the number of wave functions, one obtain a mathematically
treatable problem. If we want a more accurate computation, we should take also the excited states of
the hydrogen atom into account, but the size of the matrix increases. Although physically meaningful,
such atomic orbitals have a computational drawback: they are not, in general, orthogonal, and the
so-called overlap integral

(ψA,ψB) = (ψB,ψA) =

∫

dVψA(r) ·ψB(r) =
1
πa3

∫

dVe−(
rA+rB

a ) ≡ S

must be taken into account while formulating the eigenvalue problem. Although the overlap integrals
can be computed, often analytically, they represent a negative side of this method called ”LCAO”-
method, LCAO standing for linear combination of atomic orbitals.
Once the Ritz space has been established, the eigenvalue problem of the operator, when cast into the
eigenvalue problem for the sought for coefficients CA and CB describing the eigenfucntions as linear
combination of the two atomic orbitals, reads

�

HAA− E(R) HAB− E(R) ·S
HBA− E(R) ·S HBB− E(R)

��

CA
CB

�

= 0
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The matrix elements write

HAA = < A |H | A>= E1s+ e2/R−
∫

dVψ2
A

e2

rB

HBB = < B |H | B>= E1s+ e2/R−
∫

dVψ2
B

e2

rA

HAB = < A |H | B>=−e2

∫

dVψAψB
1
rA
+ E1s ·S+

e2

R
·S

HBA = < B |H | A>=−e2

∫

dVψBψA
1
rB
+ E1s ·S+

e2

R
·S

The various components of the matrix elements are discussed now.

• We observe that HAA=HBB and HAB =HBA.

• For building the matrix elements we have taken into account that

[−
ħh2

2m
∇−

e2

rA
]ψA= E1sψA

• −
∫

dVψ2
A

e2

rB
≡−VAA is the Coulomb interaction of the charge density −eψA(r)2 with the proton

B

• e2/R is the Coulomb repulsion between the protons.

• The integral

−e2

∫

dVψAψB
1
rA

.
=−VAB

is the amplitude that an electron centered at B is transferred to A by the Coulomb interaction
originating from the A proton. This is a ”hopping” matrix element which has no counterpart
classically.

The eigenvalue problem resulting can be written as (ξ≡ E(R)− E1s−
e2

R )
(VAA+ξ)CA+(VAB+ξ ·S)CB = 0

(VAB+ξ ·S)CA+(VAA+ξ)CB = 0

Solving the determinantal equation gives the two eigenvalues and eigenfunctions

ξb(R) =−
VAA+VAB

1+S
, CA= CB = (2(1+S))−1/2

ξa(R) =−
VAA−VAB

1−S
, CA=−CB = (2(1−S))−1/2

Comments

• The energies associated with ξa and ξb are shown as a function of R in the figure. Because
VAB > 0 the lower energy of the system belongs to the b-state. In addition, the b-state energy
undergoes a minimum at a certain distance R0. At this distance there is also an energy gain of
the molecule against the free atoms: this sanctions the building of the chemical bond.
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Computed ∆E ≡ Eb,a − E1s as a function of R (EH = −13.6 eV), redrawn from Feynman lectures on
Physics, Vol.3.

• The b-eigenstate (CA=CB) is called the ”bonding” state, the a-eigenstate is the antibonding one.
The possibility of sharing the electron in virtue of the hopping integral renders the chemical
bond possible.

R0

2
−

R0

2

x R0

2
−

R0

2

x

Left: the b-and a-wave functions along the axis hosting the two protons. The b-wave function has a strong
charge accumulation halfway between the protons. right: The a-wave function has a knot exactly there.

• This chemical bond is essentially due to the non-diagonal matrix element VAB. The hopping
process produces the attractive interaction necessary to bind the electron. In the a-state the
Coulomb repulsion of the protons dominates.

• This one-electron bond is a (computationally simple) model example for a covalent chemical
bond and forms the basis for the independent particle model of chemical bonding: each bonding
orbital is able to host two electrons at the most – provided they have opposite spin, in agreement
with the Pauli principle. The entire electron configuration of a molecule is obtained by filling
successively bonding states, formed by atomic orbitals, with a pair of electrons.

• In the independent model of chemical bonding one can divide the electrons of any atom into two
groups: valence electrons (”unpaired ”) occupying the outer shells and paired electrons (core
electrons). The number of extra unpaired electrons in one given state of an atom determines its
chemical valence. Core electrons are not involved in the formation of the bonding. The outer
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shells, instead, provide the bonding states. As there are a finite number of valence electrons,
and as their orbitals can be filled with two electrons at the most, a saturation of the chemical
forces is achieved. Thus, quantum mechanics and the Pauli principle provide the justification
of the usual representation of a molecule as an assembly of atoms, which are linked by a finite
number of localized valence strokes – one bond per stroke, each bond containing two electrons.

Examples. In the following some examples of chemical bonds are illustrated. In each case the
chemical bond is realized as a superposition of atomic-like orbitals that are filled with two electrons
so that each atom has complete orbitals.

1. The N2-molecule. Atomic N has the configuration (1s)2(2s)2(2p)3. The wave functions of the
three p -electrons of one atom have the possibility of overlapping with the wave function of the
p-electrons of the other atom. The process of wave functions overlapping is essential to create
a b-orbital and thus for providing the chemical bond. This overlap occurs ”head-to-head” along
one direction (e.g along z, using the pz orbitals): the head-to-head bonding is called a σ bond.
The px -and py - orbitaly superposes ”side-to-side”, i.e. they give rise to two π bondings. The
bonding symbol for the N −2 molecule is therefore N ≡ N .

2. Diatomic carbon C2. Each C atom has the atomic configuration (1s)2(2s)2(2p)2. For forming C2
only the two p-orbital are needed. One undergoes a σ bond with the other C atom, the second
p-electron undergoes a π- bond: C = C .

3. Carbon is the element that has the largest chemical diversity. This diversity arises from the
fact that 2s and 2p orbitals are very close in energy and can be considered, from the point of
view of chemical bond, as almost degenerate. As such, they can be hybridised to form more
complex orbitals than p or s orbitals. For instance, the spherical harmonics Y 0

0 and Y 0
1 can be

superposed to create an orbital with a particularly directed charge distribution (see Figure).
The rationale behind the hybridization is the energy required to build the hybridized orbital
can be overcome and more than compensated by the more stable chemical bond achieved by
the hybridized orbital. A possible hybridization scheme is e.g. (see Figure)

ψ1 = ϕpz

ψ2 =
1
p

3
·ϕs+

p
2
p

3
·ϕpx

ψ3 =
1
p

3
·ϕs−

p
1
p

6
·ϕpx +

p
1
p

2
·ϕp y

ψ4 =
1
p

3
·ϕs−

p
1
p

6
·ϕpx −

p
1
p

2
·ϕp y
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sp3

Left: a s-orbital superposes ”head-to-head” with a p-orbital to produce an hybridized orbital. This is an
example of a σ bond. Top right: The hybridization of an s-orbital with two p-orbital produces the so-
called sp2 planar hybridized orbitals. Bottom right: The hybridization of an s-orbital with three p-orbital
produces the so-called sp3 tetragonally arranged hybridized orbitals.

This scheme produced three in-plane orbitals forming an angle of 120◦ and a pz-orbital perpen-
dicular to the plane. This hybridization is used e.g. to build the benzene molecule (see the three
strokes originating from the C-atoms representing the σ-bonds arising from theψ2,ψ3,ψ4 hy-
bridized wave functions. The fourth valence electron in each C atom is in the pz state perpen-
dicular to the molecular plane. These electrons undergo π-type bonds. The particular symmetry
of the molecule produce a complete delocalization of the π electrons, a situation which is de-
scribed by a ring-like stroke.

C H

C

H

C

H

CH

C

H

C

H

C H

The symbolic representation of the benzene molecule.

Because of this delocalization, the six π electrons in the benzene ring can move around almost
freely. In fact, when a magnetic field perpendicular to the plane of the benzene ring is switched
on an electric circulating current appears in the molecule, causing a magnetic moment. As the
current covers a relatively large area, the resulting magnetic moment is large. A large group
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of other organic compounds have similar molecules like the benzene, the so-called aromatic
compounds.

4. The H2O-molecule. Oxygen has 4-p electrons but only two are actually necessary for binding
the two Hydrogen atoms. The molecule show a geometrical configuration with an angle of
105◦. If only the two p-electron were involved the angle should be 90◦. A larger angle means
that the 120◦ hybridization is also involved in the chemical bond. There is also some transfer
charge: the water molecule has an electric dipole.

5. A further way of creating hybridized orbitals is given by the following linear combinations:

χ1 =
1
p

4

�

ϕs+ϕpx +ϕp y +ϕpz
�

χ1 =
1
p

4

�

ϕs+ϕpx −ϕp y −ϕpz
�

χ1 =
1
p

4

�

ϕs−ϕpx +ϕp y −ϕpz
�

χ1 =
1
p

4

�

ϕs−ϕpx −ϕp y +ϕpz
�

These hybridized orbitals point along the four directions of a tetrapod structure and build an
angle of 109.6◦. This hybridization is e.g. encountered in the methane molecule CH4. It also
builds the building unit of solids with diamond and zinc-blende structure (Si, GaAs,...).

9.2. Transition to the solid state

The linear combination of atomic orbitals and the shell model to fill the energy levels can be general-
ized to a N -atomic molecule and then to a solid (N→∞). As a way of illustration, we consider the
Hn

N molecule on a ring, n being the number of electrons hosted by the molecule. For the computation
of the single-electron energy levels we consider the N basis states built of suitable atomic orbitals
centered at the various atoms. For simplicity, we assume that the basis states have been orthogonal-
ized so that the overlap integral is set to 0. The ground state energy of the single electron is set to be
E0 – the energy of the electron in one of such basis states. We allow for some hopping amplitude −A
so that the eigenvalue problem of the single-electron reads















E0− Ei −A 0 ... 0 −A
−A E0− Ei −A ... 0 0
0 −A E0− Ei ... 0 0
... ... ... ... ... ...
0 0 0 ... E0− Ei −A
−A 0 0 ... −A E0− Ei































C i
1

C i
2

C i
3

...
C i
(N−1)
C i

N

















= 0

The ring-shaped arrangement allows not only the use of periodic, Born-von Karman boundary condi-
tions, but avoids the occurrence of boundary atoms and with them of unsaturated valencies that would
provide an increase in energy. Because of the periodic boundary conditions one can use symmetry
arguments to solve the problem: instead of solving with brute force the determinantal equation, we
try an Ansatz for the eigenfunctions themselves. The translational symmetry of the problem suggest
that eigenfunctions have this property:

| C i
1 |

2= .....=| C i
N |

2=
1
N

This property is fulfilled by setting e.g.

C i
j =

1
p

N
eiki ·a· j
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a being the atomic distance and ki a real number labelling the eigenstate ψi . Because C j+N = C j

eiki a( j+N) = eiki a j

which determines

ki =
2π

a ·N
· i(i= 1,...,N)

ki is a quantum number that labels the eigenvalues. The eigenfunction belonging to ki writes

ψi =
1
p

N

∑

j

eiki jaψ j

This expression generalizes the linear combination of atomic orbitals that we have already encoun-
tered in the H+2 molecule. The eigenvalues to ki can be obtained from

1
p

N
[E0− Ei] · eiki a−

1
p

N
·A· eiki2a−

1
p

N
·A· eiki aN = 0

with solution
Ei = E0−2 ·A·cos(ki ·a)

(ki = 2π
N ·a · i). The atomic level E0 spreads out to a set of discrete molecular levels labelled by ki .

E0 is the center of mass of the molecular levels. These are the single-particle molecular eigenvalues
that provide the eigenstates to be filled with an appropriate number of electrons. The shell model
requires that each level can be filled with two electrons. When the lower lying levels are complete,
the next ones are filled. Each atomic level E1> E0, E2> E1, ... is bound to provide a set of such discrete
molecular levels with spread around the corresponding atomic level.

Examples

• In the figure we plot the total binding energy Ei− E0 as a function of the filling number n for
the H6-molecule.

E0

E0 +A

E0 + 2A

E0 −A

E0 − 2A

(2)

(1)

(2)

(1)

2 4 6 8 10 12
n

Etotal − n · E0

Left: Term scheme of one electron in a H6 proton ring. Right: total binding energy as a function of the
filling number n.

From the diagram left we see that two of the six eigenvalues are twice degenerate, i.e. have the
same energy and different ki . Two are simply degenerate (including the lowest energy level).
Let us construct the shells for n = 6. We start by placing two electrons at the lowest level,
E0−2A. Thereafter, four electrons can be accommodated in the level E0−A, reaching the n= 6
filling factor. Higher lying levels can be used to obtain excited states or to continue filling with
electrons. The total energy of the ground state of the molecule is 6E0−8A. Compared with
the total ground state energy of the separated atoms (6E0), the chemical bond has produced a
gain in energy of −8A, which we call the binding energy. The right-hand side of the figure plots
the binding energy as a function of n. The neutral H6 molecule is the most stable form of the
molecule though H4+

6 and H4−
6 are also more stable than others. The reason for this is simple:
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with n= 2,6,10 shells are completely filled, and that’s always a reason for enhanced stability,
as we know from the noble gas configuration. A fill factor of 12 electrons does not lead to a
stable chemical bond, in this approximation.

• Even for nuclei one can construct a shell model, although the nuclear forces are very strong.
Experimentally, one has, indeed, found particularly stable nuclei, with characteristic, particu-
larly stable number of nucleons, given by the magical numbers 2,8,20,28,50,82. The idea that
the electronic structure of nuclei could be explained by a simple shell model with appearance
of ”magic numbers” originated with Maria Mayer, which received the nobel price for it.

• The transition to a one-dimensional solid is obtained by generalizing the expression

E j
i = E j−2 ·A j ·cos(ki ·a)

(ki = 2π
N ·a · i) to large N . E j is the atomic level that spreads out to a band of energy levels.

The k-values are very close to each other and occupy a segment [−πa , πa ] along the k-axis. The
segment is known as the first Brillouin zone of the one-dimensional lattice and the k-axis is the
reciprocal space of the one-dimensional lattice. In virtue of the closeness of the k-values the
energy bands are almost continuous. The filling of the energy levels with electrons proceeds
according to the Pauli principle. In three dimensions, the first Brillouin zone has a polyhedral
shape and the k vectors build a dense set within this polyhedron. Energy bands are plotted
usually along some direction and at some points within the polyhedron.

[000] [100] [111] [000]
+6A

-6A

E35

Γ X W Γ

Γ

X

W

Tight-binding s-bands in a simple-cubic structure computed including only nearest-neighbour overlaps.
The horizontal line is at the center of gravity of the band. The inset gives the first Brillouin zone of the
simple cubic lattice and the points and lines along which the bands are plotted.

9.3. The H2 molecule

The computation of energy levels for the H+2 molecule is the first essential step of the filling of energy
states within the independent particle shell model. When the states single-electron states are filled
according to the Pauli principle one produces a many-electron system that is physically plausible.
However, an accurate quantitative verification of the independent particle model actually requires
an explicit two-particle computation that confirms the strategy of filling of states with the Pauli prin-
ciple. This quantitative proof was the achievement of Heitler and London, who provided a detailed
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computation of the H2-molecule that provided an a posteriori justification of the independent particle
model for molecules. The Heitler-London computation was based again on the Born-Oppenheimer
approximation, where the two nuclei A,B are kept fixed at a distance R which enters the problem
as a parameter. However, they used as basis states for the Ritz space the spin-triplet and spin-singlet
two-particle states

χt(1,2)⊗[2(1+S2)]−1/2(ψA(1)⊗ψB(2)+ψA(2)⊗ψB(1)
︸ ︷︷ ︸

ϕt (R,1,2)

χs(1,2)⊗[2(1−S2)]−1/2(ψA(1)⊗ψB(2)−ψA(2)⊗ψB(1))
︸ ︷︷ ︸

ϕs(R,1,2)

with
ψA(1) = (πa3)−1/2e(

−rA1
a )

ψA(2) = (πa3)−1/2e(
−rA2

a )

ψB(1) = (πa3)−1/2e(
−rB1

a )

ψB(2) = (πa3)−1/2e(
−rB2

a )

being derived from the basis s-states of the separated atoms. Again, the use of atomic orbitals intro-
duces an (annoying) overlap integral

S=

∫

dV1ψA(1)ψB(1) =
1
πa3

∫

dV1e−
rA1+rB1

a

that must be computed to obtain accurate results. The Hamilton operator – neglecting both motion
of the nuclei and spin-orbit coupling – writes

Ĥ =
−ħh2

2m
(41+42)− e2[

1
rA1
+

1
rA2
+

1
rB1
+

1
rB2
−

1
r12
−

1
R
]

The indices 1,2 refer to the electrons, the indices A,B to the nuclei. If one consider that the spin-
singlet and spin-triplet states are orthogonal, ϕs⊗χs is orthogonal to ϕt ⊗χt , within the Ritz space
the matrix of Ĥ is a four-by-four diagonal matrix:

�

(ϕt , Ĥϕt) 0
0 (ϕs, Ĥϕs)

�

and there is one threefold degenerate eigenvalue Et =(ϕt , Ĥϕt) and one non-degenerate eigenvalue
Es = (ϕs, Ĥϕs). For calculating the matrix elements one must consider that

[
−ħh2

2m
41−

e2

r1A
]ψA(1) = E1sψA(1)

The computation of the matrix elements gives the two eigenvalues

Et = 2E1s+
Q− J
1−S2

Es = 2E1s+
Q+ J
1+S2

Let us now discuss now the parameters entering the eigenvalues:

Q =

∫

dV1dV2ψ
2
A(1)ψ

2
B(2)[

−e2

rB1
+
−e2

rA2
+

e2

r12
+

e2

R
]

= −
∫

dV1ψ
2
A(1)

e2

rB1
−
∫

dV2ψ
2
B(2)

e2

rA2
+

∫

dV1dV2ψ
2
A(1)ψ

2
B(2)

e2

r12
+

e2

R
contains various Coulomb energies, such as the Coulomb energy of the first electron with the nucleus
B, the Coulomb energy of the second electron with nucleus A, the Coulomb interaction of the two
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electrons and the Coulomb repulsion of the two nuclei. Q is called Coulomb-integral. The integral

J =
e2 ·S2

R
+

∫

dV1dV2ψA(1)ψB(2)
e2

r12
ψA(2)ψB(1)

−S

∫

dV1ψA(1)
e2

rB1
ψB(1)−S

∫

dV2dψB(2)
e2

rA2
ψA(2)

represents the exchange energy, arising from the requirement of anti-symmetrizing the wave
functions. Both Q and J depends on the distance R. Both can be computed exactly within the subspace
chosen in the H-L method. Q(R) is a small positive quantity. J is instead negative. Accordingly, the
singlet state has the lowest energy. Notice that the a negative sign of J is the essential ingredient
for a stable chemical bond, which then occurs in the singlet state. However, a negative J leads
to a preferred antiparallel coupling of the two spins and is a simple but very clear and robust
demonstration that anti-parallel spin alignment is the key coupling mechanism when atoms are
assembled to form a solid. We thus have a very complicated situation where the Pauli principle,
essential for the chemical bond, works against parallel spin alignment – and ultimately, e.g., against
e.g. a ferromagnetic state.

0 0.1 0.2 0.3 0.4
-0.4

-0.2

0

0.2

0.4

∆E

EH

R(nm)

Plot of the ∆E = Es− Et as a function of R. The singlet state has a minimum at a well defined distance
R0, at which the chemical bond of the two H-atoms is realized. R0 is the equilibrium distance of the nuclei
in the the H2-molecule. The experimental value is 0.7395A◦.

In summary, the two-body computation finds that the two electrons occupying a chemical bond
are in a singlet state. When we compare the energies obtained from the independent particle model
and from the explicit two-body computation, we find a similarity of the R dependence between 1.
on one side the one-particle bonding state and the two-particle singlet state and 2. on the other the
one-particle anti-bonding state and the two-particle triplet state. This similarity is explained when
we compute the charge density distribution produced by the two-particles wave functions. In the
presence of only one electron with wave functionψ(r), the charge density is given by |ψ(r) |2. When
the system has two or more particles, one must find a physical way of defining a charge density. This
was done by W. Kohn with his ”Density functional approach”: given the normalized wave function
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ψ(r1,r2, ...,rN ), the charge density ρ(r) is given by

ρ(r) = N ·
∫

dV2 ·dV3... ·dVN · |ψ(r,r2, ...,rN ) |2

The charge distribution computed with the two-particles orbital singlet wave function also gives the
same accumulation of charge halfway between the two protons as observed in the one-electron bond-
ing state – we conclude that it is the accumulation of charge between the two nuclei – and, ultimately,
the hopping matrix element – that actually drives the chemical bond. The two-body computation pro-
vides the important information that the two electrons entering the chemical bond build a singlet, in
agreement with Pauli principle.
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Part IV.

Some advanced topics
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10. Quantum scattering.

10.1. Introduction

When solving the Schrödinger equation in a spherically symmetric potential, one encounters non-
square integrable wave functions, appearing in the continuous range of the spectrum of an Hamilton
operator. We will see that they are used to describe the scattering of particles at some potential
energy. Such scattering states are encountered e.g. in the description of the quantum mechanical
tunnel effect and the diffraction of material waves at crystals: we will treat both situations in the
following sections. We point out that the computational technology described in this chapter for
purely quantum mechanical system can be translated to the description of e.g the diffraction of
classical scalar waves and light, which also fulfill the Helmholtz equation. We emphasize again one
particular characteristic of scattering states, that we have seen in the solution of the SE in spherically
symmetric potentials: in the range where E assumes continuous values, the SE is not intended as an
eigenvalue equation for some sought for eigenvalues E: E is not restricted to any particular discrete
value and the SE has solutions for any value of the parameter E.

10.2. G. Gamov (1928): the quantum mechanical tunnel
e�ect

Natural radioactivity, discovered by Becquerel in 1896 and studied in depth by Pierre and Marie Curie,
consists of unstable atomic nuclei changing spontaneously into other nuclei (e.g. U238

92 → Th234
90 +α

4
2).

In the process, particles and very short-wave radiation is emitted. The emitted particles are e.g. α
particles, i.e. He-cores He++. Later, Rutherford discovered the artificial nuclear transformation i.e.
the ability, by shelling of particles, to transform nuclei of an element into nuclei of another element.
Understanding the α decay of the heavy nuclei represented a challenge that is beyond the reach of
classical physics and was solved by quantum mechanics. The description of this decay provides a
model for any process that involves quantum mechanical tunneling.
For the sake of illustration, we consider the quantum mechanical motion of the charged He++ particle
with mass m to be along the x-axis, subject to the a potential energy that entails bound states between
0 and R (potential well) and scattering state between R+a and∞. Between R and R+a there is a
rectangular potential barrier.
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x

Φ(x)

E

R R+a

ϕ0

Schematic potential barrier in Gamov tunneling. The α particle in in a bound state of the nucleous, its
energy level is given as E (red line). The potential barrier is Φ0 > E. Accordingly, the particle cannot
penetrate, in classical mechanics, the range [R,R+a].

The α particle is, initially, caged within the nucleus (x ∈ [0,R]) at some energy level E. At R the
potential energy assumes the role of a ”wall’. According to classical mechanics, a particle impinging
on the wall from the left is reflected at the potential barrier if the energy is less than Φ0. For E >Φ0
the particle is transmitted to the positive x-axis. In other words, the potential wall is completely
transparent for the particle for E>Φ0 and a perfect mirror for E<Φ0. A classical particle is EXCLUDED
from the interval x ∈ [R,R+a] because there the kinetic energy Ekin = E−Φ0 would be negative. In
quantum mechanics, G. Gamov found a different behaviour.
For obtaining Gamov solutions, we solve explicitly the SE

d2

d x2
ψ(x)+

2m

ħh2 ·(E−Φ(x)) ·ψ(x) = 0

for E <Φ0 in a situation where the potential has a square shape.
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Rectangular potential barrier with width a and height Φ0. We are interested at the solutions of the
Schrödinger equation for a state with energy E <Φ0.

This is a homogeneous ordinary differential equation, but one where the coefficients depends on
the independent variable x through the potential energy Φ(x). We have already encountered this
mathematical situation in the case of the quantum mechanical harmonic oscillator and in the infinite
potential well problem. We have learned by solving the problem of the ”particle in box” that quantum
mechanical problems with this type of potential can be solved by finding solutions of the SE within
a certain interval (where it can be solved exactly) and then requiring these solutions (and their
derivative) to be continuous at the points that divide the intervals. This continuities are necessary
for the SE to be mathematically robust. For a potential wall going to infinity, e.g., the boundary
condition requires that the wave function vanishes at the point where the potential sets in. There, it
goes to infinity and the term Φ(x) ·ψ(x) occurring in the Schrödinger equation is only finite if ψ(x)
is vanishing. A rectangular potential barrier has two points where the potential is non-continuous.
Mathematically speaking, this discontinuity is translated to the Schrödinger equation, again through
the term Φ(x) ·ψ(x). It must be compensated by a discontinuity in the second derivative of the wave
function. A discontinuity in the second derivative implies that the wave function itself and its first
derivative are, at least, continuous. Accordingly, for a rectangular potential barrier we require the
continuity of the wave functions and of its derivatives at the site where the barrier makes a jump.
We find first the solutions of the SE in the ranges (I , I I , I I I):

ϕI (x) = Aeiαx +Be−iαx

ϕI I (x) = Ceβ x +De−β x

ϕI I I (x) = Feiαx +Ge−iαx

mit α≡
Æ

2mE/ħh2 und β ≡
Æ

2m(V0− E)/ħh2. In the range E < V0, the wave functions are not nor-
malizable, so that the total wave functions is not normalizable. A proper way to proceed would be to
introduce walls at distant points and install periodic boundary conditions. Here we adopt a different
way: we dispense with finding a normalization constant and try to find results where an hypotheti-
cal normalization constant would cancel out. The boundary conditions produce a system of coupled
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equations for the sought-for constants A to F :
Ae−iαa/2+Beiαa/2 = Ce−βa/2+Deβa/2

iα(Ae−iαa/2−Beiαa/2) = β(Ce−βa/2−Deβa/2)
Ceβa/2+De−βa/2 = Feiαa/2+Ge−iαa/2

β(Ceβa/2−De−βa/2) = iα(Feiαa/2−Ge−iαa/2)
As we investigate particles that originate on the left hand side and propagate to the right, we can set
the coefficient of the plane wave travelling from right to left to zero, i.e. G = 0. We obtain a system
of four equations for the 5 coefficients A,B,C , D, F , from which we can compute the ratios B/A, C/A,
D/A, and F/A (A 6= 0). Notice that, by building these ratios, we eliminate hypothetical normalization
constants from the problem. In the following, we will need only | B/A |2 and | F/A |2, which we give
here explicitly:

| B |2

| A |2
=

1/4(α/β+β/α)2 sinh2(2β a
2 )

1+1/4(α/β+β/α)2 sinh2(2β a
2 )

| F |2

| A |2
=

1

1+1/4(α/β+β/α)2 sinh2(2β a
2 )

In Schrödinger quantum mechanics (see the next chapter for a full explanation) one can compute,
starting from the wave function, a current density by means of the expression

~J(~r, t)
.
=
ħh

2im

�

ψ(~r, t) ~∇ψ(~r, t)−( ~∇ψ(~r, t)ψ(~r, t)
�

The currents in the regions I , I I , I I I amount to

JI =
ħhα
m
(AA−BB) = J e

I − J r
I

JI I =
ħhβ
im
(DC−DC)

JI I I =
ħhα
m

F F

where J e
I is the current density of a wave hat runs from left to right, J r

I is the current density of a
wave that is reflected at the wall and JI I I is the current density of the wave that is transmitted into
region I I I . Using J e

I , J r
I und JI I I we compute two measurable coefficients which are independent of

the putative normalization constants: the reflection coefficient

R≡
J r

I

J e
I
=
| F |2

| A |2
=

1/4(α/β+β/α)2 sinh2(2β a
2 )

1+1/4(α/β+β/α)2 sinh2(2β a
2 )

and the transmission coefficient

D
.
=

JI I I

J e
I
=
| F |2

| A |2
=

1

1+1/4(α/β+β/α)2 sinh2(2β a
2 )

with R+D=1. D 6=0 means that a particle that arrives from the left has a finite probability of passing
through a classically forbidden zone I I and being transmitted into the region I I I beyond the poten-
tial wall. One speaks of ”tunnel effect”. For large a we obtain an eponential decay of the tunneling
probability:

D∝ e−4·π a
Λ

where λ=
r

h2

2m(Φ0−E) is the De Broglie wave length for a particle with energy Φ0− E. Some limiting
cases are interesting: if the mass is very large (macroscopic objects) or ħh→ 0 (classical limit), D→ 0,
i.e. the particle cannot enter the classically forbidden region inside the potential barrier and is totally
reflected. For an electron (m= 0.9 ·10−30kg) with 1 eV energy, a barrier height of 4 eV produces
a characteristic length of about 0.6 nm. At this length, the transmission coefficient is reduced by
a factor of e−1. Sizeable electron currents are, accordingly, still obtained in artificial lattices with
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barrier width in the nm range. Protons and heavier particles have much larger mass and therefore a
much smaller transmission coefficient.

This simple model calculation of the tunnel effect makes numerous physical phenomena at
atomic level understandable in principle. These include very important ones like the escape of
nucleons and nucleon complexes from an atomic nucleus in the radioactive decay, the cold electron
emission of metals in strong electric fields (field emission) or the passage of electrons through
oxide layers between metal contacts (diode and transistors), and the operating of semiconductor
multilayers. A modern application of the tunnel effect as a method of studying the morphology of
metallic surfaces with atomic resolution is the Scanning Tunnelling Microscope.

+
-

V

x

yz

With the help of a piezoelectric actuator a tip made of platinum/iridium or tungsten is moved along
z and brought at about 1 nm distance from the surface of an electrically conductive sample. At this
distance, the electron wave function of the surface atoms overlap with those of the tip. Because of the
small distance, the electrons can tunnel between tip and sample atom through the vacuum barrier. This
produces a tunnel current, the strength of which depends on the distance between tip and sample (the
parameter a in our computation) and thus, by reading the tunnel current one can obtain a height relief
of the scanned surface. By moving the tip parallel to the sample surface (x− y-plane) and recording the
tunnel current an image of the sample surface can be generated, which clearly shows the atomic structure
of the surface.

10.3. ∗The general treatment of scattering states

We write the SE as an inhomogeneous Helmholtz equation

4qψ(q)+
2m · E
ħh2

︸ ︷︷ ︸

k2

ψ(q) =
2m

ħh2 ·Φ(q) ·ψ(q)

and solve it with an algorithm which is used to solve quite general linear inhomogeneous differential
equations occurring in both classical and/or quantum physics.
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10.3.1. The Green function method

The Green function The Green function method, widely used in physics and engineering, is an
algorithm designed to find one particular solution of equations of the type

L u(p) = f (p)
whereL is some linear differential operator, and f (p) is a function that represents an inhomogeneous
localized ”source” of perturbation. The symbol ”p” represents a set of variables like the cartesian
coordinates (x , y,z). The problem is defined in a region of p-space that we call D and the sought-for
solution must fulfill some boundary condition along the surface δD. What we have in mind is e.g.
the Poisson problem

4pu(p) =ρ(p)
where ρ(p) is a localized charge distribution and the sougth for solution u(p) is the potential of the
charge distribution. The SE written in the form quoted above is also in this class of problems. The
Green function method consists in replacing the source f (p) with the point source δ(p−q), based
at the soutce point q. The Green function G(p,q) of the problem is that linear superposition of a
particular solution of the inhomogeneous problem

L u(p,q) =δ(p−q)
with the general solution of the homogeneous problem which fulfills the boundary conditions.
We now show that, knowing the Green function of the problem, generates the sought for solution of
the original problem, defined for a more extended source f (p). We Start from

LG(p,q) =δ(p−q)
Multiply both sides with f (q)

LG(p,q) · f (q) =δ(p−q) · f (q)
Integrate both sides over the domain Ω defined by the localized source

∫

Ω

dΩqLG(p,q) · f (q) =
∫

Ω

dΩqδ(p−q) · f (q)

By virtue of the properties of the δ-function, the right-hand side gives just f (p). As L is a linear
operator and depends only on the variable p, we can transfer it before the integral and obtain

L
∫

Ω

dΩqG(p,q) · f (q) = f (p)

from which we can read out that
∫

Ω

dΩqG(p,q) · f (q)

is the sought for solution of the original inhomogeneous problem.

EXAMPLES.
1. As an application, we find the Green function of the Poisson problem

4Φ(p) =−
ρ(p)
ε0

in the three-dimensional space, i.e. the solution of
4G(p,q) =δ(p−q)

p,q being some vectors rp,rq and p−q= rp−rq. As a boundary condition we require that the differ-
ential equation is defined on a domain D =R3 with the vanishing of the solution at | p−q |→∞.
For constructing an Ansatz for G(p,q) we notice that for p 6= q the differential equation is the Laplace
equation 4G(p,q) = 0 which is solved e.g by 1

|p−q| . The Ansatz for the Green function is therefore

G(p,Q) = c ·
1

| p−q |
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c being a to be determined constant. We determine c by requiring that
∫

D
dVp ·4p(c ·

1
| p−q |

)t(p) = t(q)

for any test-function defined over the domain D. To compute the integral on the left-hand side using
Green formula to transfer the Laplace operator onto the test-function:

∫

D
dVp(4G · t(p)) =

∫

D
dVpG(p,q)4t(p)+

∫

∂ D
dOp(

∂ G
∂ n
· t(p)−

∂ t
∂ n
·G(p,q)

︸ ︷︷ ︸

→0
As the surface ∂ D is pushed to infinity, where the functions and their normal derivative vanishes,
the surface integrals vanish. We now set q at the origin of the coordinate system, take spherically
symmetric test-functions and

4t(p) =
1
r2

d
dr
(r2 d t(r)

dr
)

Inserting G(r) = c
r and performing the integration over the angular variable gives

∫

D
dVpG(p,q)4t(p) = 4π · c ·

∫ ∞

0
r2dr

1
r
·

1
r2

d
dr
(r2 d t(r)

dr
Partial integration gives

∫

D
dVpG(p,q)4t(p) = 4π · c ·

∫ ∞

0

d t
dr

dr =−4π · c · t(q)

Requiring that this integral being equal t(q) leads to

c=−
1

4π
Using this result we can write down the potential Φ(p) emanating from a localized charge distribution
ρ(p):

Φ(p) =
1

4πε0

∫

D(ρ(q))
dVq

1
| p−q |

·ρ(q)

This is the superposition principle of electrostatics.

2. We now turn to the inhomogeneous Helmholtz equation
4G(p,q)+k2ψ(p) =δ(p−q)

that we want to solve in D =R3 with the boundary condition that the wave is propagating away
from the source in q but without specifying any other boundary conditions. The Ansatz for finding
the Green function is again obtained by using the one solution of the homogeneous equation that is
fullfilling the inhomogeneous Helmoltz equation with point like source ”almost” everywhere:

G(p,q) = c ·
ei·k·(|p−q|)

| p−q |
The constant c is then determined by evaluating the test-integral and turns out to be again − 1

4π . This
is not surprising as the Green function of the Helmholtz equation is the Green function of the Poisson
equation for k= 0. The Green function is then the superposition of this particular solution with the
general solution of the homogeneous Helmholtz equation. By superposing the general solution of the
homogeneous equation one takes care of fulfilling the boundary conditions.

10.3.2. Application to potential scattering

We have now the tools to find a scattering solution of the SE

4xψ(x)+k2 ·ψ(x) =
2m

ħh2 ·Φ(x) ·ψ(x)
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Φ(x) is some potential that we consider as ”localized”. Localized means that it has a domain Ω into
which it has sizeable values. Close to the boundary of this domain it decays rapidly to zero. This is
not the case of e.g. the Coulomb potential, but take the attitude that as long as the various integrals
appearing in the solution converge one can use the solution itself. We are seeking a particular Green
function of this problem which can be used to describe scattering states, so that we impose the bound-
ary condition that the Green function decays for | x |→∞ – which is a physically plausible solution
for a localized potential. In addition, we seek a Green function that describe a wave travelling away
from the source. The sought for Green function reads

G(x,y) =−
1

4π
·
eik|x−y |
| x−y |

The scattered wave originating from the ”source” 2m
ħh2 ·Φ(x) ·ψ(x) and decaying to 0 sufficiently away

from Ω writes

ψs(x) =−
2m

4πħh2

∫

Ω

d3 y
eik|x−y |
| x−y |

·Φ(y) ·ψ(y)

The integral on the right-hand side is reminescent of the Huygens principle (1660) for the finding of
the diffracted wave at an aperture: ”The wave field behind an aperture is made up of the coherent
superposition of spherical waves, the origin of the spherical waves being the individual geometric
points in the aperture itself”. The general solution of the SE in the presence of the potential is the
superposition of the scattered wave with a solution of the homogeneous SE that describes the proper
asymptotic behaviour at large distances from Ω. There, we require the wave to be a plane wave, as
we want to describe the potential scattering of plane waves, so that the solution of the SE for plane
wave scattering writes

ψ(x) = eik·n0·x−
2m

4πħh2

∫

Ω

d3 y
eik|x−y |
| x−y |

·Φ(y) ·ψ(y)

Looking more closely to this ”solution”, we find that the sought for wave appears both on the left-
hand side and within the integral. So, this is not a solution but an integral equation for the sought for
wave – it is called the Lippman Schwinger equation. But put in this form, we are able to propose a
simple approximation for the computing of the integral on the right-hand side that produces indeed
a ”solution”, albeit an approximate one. We are guided by this from the approximation introduced
by Kirchoff and Fresnel to solving the ”Huygens” integral for diffraction: instead of using the exact
solutionψ(y) in the region Ω on the right-hand side, we plug in the plane wave itself. The plane wave
is only an approximation for the true wave in the region Ω, but its use makes the integral computable
by elementary means. In quantum mechanics, this approximation is called the Born approximation
of the scattering solution. The first step is just giving the approximate total wave as

ψ(x)≈ eik·n0·x−
2m

4πħh2

∫

Ω

d3 y
eik|x−y |
| x−y |

·Φ(y) · eik·n0·x

The second step is that we need to know the wave far away from the source – detectors are usually
placed far away from the scattering target. In the far region

| r−y |≈| r | −y
r
| r |
︸︷︷︸

n
and the approximate wave there writes

ψ(x)≈ eik·n0·x+
eik|r|

| r |
·
�

−
2m

4πħh2

∫

Ω

d3 yeik·(n0−n)·y ·Φ(y)
�

︸ ︷︷ ︸

ψs(x)
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~y

~n0

~r
−
~y

~r
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~n0
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Ω

~n

z

θ

Left: a typical situation encountered in scattering. The plane wave is impinging from above along the
+z-direction onto the plane S where the region of localized potential Ω is located. The scattered intensity
is observed e.g. on the zx-plane for a varying angle θ with respect to the forward direction +z. Right:
Cross section of the region Ω along the zx-plane. A spatial location within the region Ω is identified by
the vector y. The scattered wave is computed at a site indicated by r.

The amplitude of the outgoing spherical wave is the so-called scattering amplitude f (k,n0,n) and it
is, in Born approximation

f (k ·(n0−n))Born =−
2m

4πħh2

∫

Ω

d3 yeik·(n0−n)·y ·Φ(y)

This result is particularly simple to remember, because it associates the scattering amplitude with
the Fourier transform of the potential.

Having constructed the wave in the far region we ask ourselves what will be the result of an
attempt at detecting the scattered particles. We imagine a detector placed at large distances from
the scattering target and oriented in such a way that it accepts particles travelling along a given
observation direction n. The active surface element of the detector is therefore dF(r) =| r |2 ·dΩ ·n
and subtends the solid angle dΩ along n. The detector is set to measure the current of particles
crossing the area dF along n, and this current is given by

J(r) ·dF
where J(r) is the probability density vector carried by the wave

ψ(r) = eik·n0·x+
eik|r|

| r |
· f (k ·(n0−n))

J=
ħh

i ·2m

�

ψs(x)∇ψs(x)−ψs(x)∇ψs(x)
�

J(r) amounts to (up to terms which rapidly fluctuate around zero for large distances and therefore
averages out to zero when a small but experimentally unavoidable uncertainty of k is allowed)

J(| x |,k·,n0,n) =
ħhk
m
·n0+

| f (k,n0,n) |2

| x |2
·

r
| x |

The current density vector consists of a plane wave component arising from the incident beam. This
component is travelling only in the forward direction. It is measured by the detector when it aligned
parallel to direction of the incident beam in front of the target (the forward direction). The second
component is also detected away from the forward direction and is provided by the scattered wave:
the number of particles arriving at the detector per unit time (the scattered probability current) is
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given by
ħhk
m
| f (k,n0,n) |2 ·dΩ

An uncertain point about this result is that it has been obtained using ψs, which is a non-square in-
tegrable function. A practical way to get rid of this uncertainty is to divide the scattered probability
current by the absolute value of the current density of the incoming plane wave – J0 =ħh

k
m . This last

current is also computed with a non-normalizable wave function, so that by the operation of dividing
the two quantities one obtains a physically relevant result which is independent of the hypotheti-
cal normalization constant. The ratio between the scattered probability current into the solid angle
dΩ and the incoming probability current density is called the differential scattering cross section
dσ(k,n0,n) and amounts to

dσ(k,n0,n) =| f (k,n0,n) |2 ·dΩ
In the literature one defines often the differential cross section as

dσ(k,n0,n)
dΩ

=| f (k,n0,n) |2

This last result establishes a link between an experimental quantity – the differential cross section
– and the scattering amplitude arising from the solution of the SE. We want now to illustrate this
result with some simple, computable examples.

EXAMPLES.

1. We consider a potential that is defined on a slit-like region in space: the region has a very
small thickness a along z (say, of the order of a lattice constant, i.e. atomically thin), a very small
length a along y and a finite size s0 along x .

x

z

y

In light gray the region of space filled with a constant potential Φ0.

The plane wave with λ� a propagates along +z, i.e n0 = (0,0,1). In this region of space the
potential assume a finite value Φ0, otherwise it is zero. In the first instance, the detector is placed in
the xz-plane along n= (sinθ ,0,cosθ ). The scattering amplitude amounts to

−
1

4π
2m ·Φ0

ħh2

∫
a
2

− a
2

dz

∫
a
2

− a
2

d y

∫

s0
2

− s0
2

d x · eik·(−x ·sinθ+z·(1−cosθ ))

The integrals over y and z can be performed by setting y = z = 0 in the integrand and thus give a
multiplicative factor of a2. The only integral left to be computed is the one over x:

∫

s0
2

− s0
2

d x · e−i·k·sinθ ·x
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This integral is elementary and gives

−
2

k ·sinθ
·sin[ksinθ

s0

2
]

Accordingly, the scattered differential cross section amounts to

4 ·(
1

4π
2m ·Φ0

ħh2 )2 ·a4 ·
sin2[k ·sinθ · s0

2 ]

[k ·sinθ]2
The graph of the function

sin2[k ·sinθ · s0
2 ]

[k ·sinθ]2
allows to identify a set of angles at which the scattered intensity is vanishing

ksinθ
s0

2
= p ·π⇔ sinθp = p

λ

s0
; p=±1,±2,...

The scattered current undergoes well-defined sharp peaks at angles in-between. This specific
behaviour is referred to as diffraction of particle waves.

2. We consider the same problem as in the first example. The detector is rotated around the
z-axis by 90◦, i.e. the observation direction is in the z y-plane and n= (0,sinθ ,cosθ ). The scattering
current in this direction is

(
1

4π
)2(

2mΦ0

ħh2 )2 |
∫

a
2

− a
2

dz

∫
a
2

− a
2

d y

∫

s0
2

− s0
2

d x · eik·(−y·sinθ+z·(1−cosθ )) |2

= (
1

4π
)2(

2mΦ0

ħh2 )2a4 · s2
0

i.e. it is independent on θ . By detecting the diffracted intensity along two orthogonal directions one
would be able to establish that the scattering target has a highly anisotropic shape in the x y-plane
and by measuring the angles at which minima occur one would be able to extract the size s0. Array
of detectors covering most the entire solid angle in the hemisphere behind the target are nowadays
available for single shot measurement of the diffracted current.

3. Let now the constant potential be active in the two intervals [− L
2 ,− s0

2 ] and [ s0
2 , L

2 ]. Let
L�λ. This slit along the x-axis is complementary to the slit used in the previous examples.

s0

x

y

L/2

z

L/2

In light gray the region of space filled with a constant potential Φ0.

We are looking for the diffraction pattern in the xz-plane, i.e. n= (sinθ ,0,cosθ ). The scattering
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amplitude amounts to

−
1

4π
2m ·Φ0

ħh2 a2 ·





∫ − s0
2

− L
2

d x · eik·(−x ·sinθ )+

∫
L
2

s0
2

d x eik·(−x ·sinθ )





︸ ︷︷ ︸

−
2·sin(ksinθ

s0
2 )

k·sinθ +
2·sin(ksinθ L

2 )
k·sinθ

The scattered current amounts to

(
1

4π
2m ·Φ0

ħh2 )2a2·
�

4 ·sin2(ksinθ L
2 )

(k ·sinθ )2
+8 ·

sin(ksinθ L
2 )

k ·sinθ
sin(ksinθ s0

2 )

k ·sinθ
+4 ·

sin2(ksinθ s0
2 )

(k ·sinθ )2

�

The mixed terms contains a function which is rapidly oscillating between 1 and −1 for large L:
the contribution of this term averages to zero because of a small but unavoidably finite angle of
aperture of the detector. The first term only contributes a current in the forward direction (θ = 0)
for very large values of L. The remaining term gives exactly the diffraction pattern computed for
the complementary potential. This result is an expression of the famous classical Babinet principle
of diffraction (quoting verbatim from Wikipedia): ”In physics, Babinet’s principle states that the
diffraction pattern from an opaque body is identical to that from a hole of the same size and shape
except for the overall forward beam intensity. It was formulated in the 1800s by the french physicist
Jacques Babinet.”

4. The constant potential is defined within a prismatic region with thickness a along z, width
s0 along x and height L>>λ along y .

s0

x

y

L
z

In light gray the region of space filled with a constant potential Φ0.

The scattering amplitude along n= (sinθ ,0,cosθ ) amounts to
1

4π
2m ·Φ0

ħh2 ·a · L ·
2

k ·sinθ
·sin[ksinθ

s0

2
]

The scattering amplitude along n= (0,sinθ ,cosθ ) amounts to
1

4π
2m ·Φ0

ħh2 ·a · s0 ·
2

k ·sinθ
·sin[ksinθ

L
2
]

As L� λ the scattering amplitude is strongly peaked at θ = 0 (i.e. along the z-direction). Because
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of the length of the slit along y the scattered diffraction pattern evolves with characteristic minima
and maxima in the xz-plane, i.e. is concentrated along y = 0. This is substantially different from the
diffraction pattern computed for a slit with length a�λ in the y-direction.

5. We replicate the prism of the previous example N -times (”grating”) in the x y-plane and
consider the scattered current along n= (sinθ ,0,cosθ ).

d s0

x

y

L
z

A sequence of prism along the x-direction with thickeness s0 and distance d. Along y the slits have a
length L.

The periodicity along x-is d. The total scattered amplitude is obtained using the superposition prin-
ciple:

fN (k,n0,n) =

N
2
∑

j=0,±1...

f j(k,n0,n)

with

f j(k,n0,n) =−
1

4π
2m ·Φ0

ħh2 ·a· L·
∫

s0
2

− s0
2

d xeik·(−(x− j·d))·sinθ = f0(k,n0,n)·e−k· j·d·sinθ

Accordingly, the total scattered current form the grating of vertical slits amounts to

f0(k,n0,n)·

N
2
∑

j=0,±1...

e−i·k·d· j·sinθ

For N→∞ the
∑

is not vanishing only if
k ·d ·sinθ = p ·2π; p= 0,±1,±2,...

This equation selects a set of observation angles θp under which a constructive interference of the
diffracted waves takes place, as the sum gives N . These angles are given by the equation

sinθp =
λ

d
· p

The finite slit width s0 provides an envelope which modulates the intensity of the sharp intensity
maxima by the factor | f0(k,n0,n) |2. Thus, the diffraction pattern will consist of current maxima with
intensity

(
1

4π
2m ·Φ0

ħh2 ·a· L)2 ·N2 ·4 ·
sin2

�

π · p · s0
d

�

�

π · p · s0
d

�2

In summary: the interference of the waves from different slits ensures that the diffracted wave is
observed only at certain angles. There is no intensity at most angles. In return, the intensity in the
maxima is proportional to N2.
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d

so

-2 -1 0 1 2

I [arb.units]

θ [arb.units]

s0 = 40µm

d = 200µm

Scattered intensity as a function of the scattering angle θ in the zx-plane. The data refer to a two-slit
experiment with s0 = 40µm and d = 200µm (λ= 680nm). The intensity of the peaks is modulated by
the single slit scattering intensity as explained in the text.

Photograph of a double slit experiment with water waves.

The diffraction pattern along the x-direction (horizontal in the figure) of green light at a grating estab-
lished as fine parallel wires in the x y-plane parallel to the y-direction (vertical in the figure). The light
is incident along +z (perpendicular to the plane of the paper). https://experimente.phys.ethz.
ch/de/100/10005/20007/30064/
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6. The examples that we have worked out so far can be translated – mutatis mutandis – to the diffrac-
tion of any scalar wave at apertures and/or corresponding ”obstacles”. In the specific case one for-
mally construct the inhomogeneous Helmholtz equation which describes a wave encountering a lo-
calized region where the refraction index is modified with respect to the one in the remaining region
of space:

4ψ(r)+k2ψ(r) = (k2−k2(r))ψ(r)
The scattering amplitude from the ”potential”(k2−k2(r)) writes

f (k ·(n0−n))Born =

∫

Ω

d3 y eik·(n0−n)·y ·(k2−k2(y))
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11. Time dependent phenomena in

quantum mechanics

11.1. The time dependent Schrödinger equation

In the final paper of 1926, Schrödinger was confronted with the problem of finding an equation
for describing the temporal evolution of a quantum mechanical state ψ, given the Helmholtz like
appearance of the time-independent wave equation used to find the eigenvalues of the H-atom. Such
a temporal evolution is not explicit when dealing with eigenstates of operators, which, by definition,
are stationary states of a system. However, a temporal evolution might appear for a given time-
independent Hamiltonian when a wave function was determined at a certain time – for instance by
localizing a particle in a certain region of space – and then asking into which state the particle would
evolve, driven by the Hamilton operator. Or else one could think of a situation where the Hamilton
operator contains explicitly a time-dependent component. In both cases one needs an equation that
goes beyond the Helmholtz-like wave equation which contains not the time but a fixed energy. The
finding of the time dependence Schrödinger equation can be considered as the real element of novelty
introduced by Schrödinger: he created an entirely new equation of physics, never seen before – and
he did this by ”guessing” the simplest time-dependent equation that, suitably treated, would produce
the time-independent equation he used for the Hydrogen atom. Concretely: the classical Helmoltz
equation

4ψ(~r)+
ω2

v2
ψ(~r) = 0

is obtained by inserting the monochromatic wave Ansatz
ψ(~r, t) =ψ(~r) · e−iω·t

into the classical wave equation
∂ 2ψ(~r, t)
∂ t2

= v24ψ(~r, t)

Schrödinger had his time independent eigenvalue equation

4ψ(x , y,z)+
2m

ħh2 ·[E−φ(x , y,z)] ·ψ(x , y,z) = 0

as a starting point. This equation has as solutions the eigenstates of the system with a well defined
energy E. Such eigenstates have the property that the probability density does not change in time
(convince yourself by building the | .. |2). For eigenstates, the time dependent component can only be a
prefactor the contains the time as ei·...t . In analogy to the classical monochromatic Ansatz Schrödinger
uses for eigenstates the stationary states Ansatz

ψ(~r, t) =ψ(~r) · e−i E
ħh ·t

E being the energy eigenvalue for the sought for eigenstates. The energy of the eigenstate appears
in the exponent of the time dependent exponential prefactor e−i E

ħh ·t . Now the task is one of guessing
the simplest equation that is transformed into the time independent SE after inserting the Ansatz for
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stationary states. Schrödinger proposed the time dependent Schrödinger equation

iħh
∂

∂ t
ψ(~r, t) =−

ħh2

2m
4ψ(~r, t)+φ(~r)ψ(~r, t)

When one searches for the eigenstates of a system starting from the time dependent SE one must use
the stationary states Ansatz ψ(~r) · e−i E

ħh ·t . Such states have been the subject of the previous Chapters.
But there are other physical situations where the sought for wave-function has a different time
dependence. These situations we would like to study in the present Chapter.

COMMENTS.
1. In term of the evolution of quantum mechanical states, this equation can be generalized to any
Hamilton operator:

iħh
d
d t
ψ= Ĥψ

2. Although the time-independent SG has the structure of a Helmholtz equation, the time-dependent
SG does not have the structure of a classical wave equation and accordingly the wave functionψ(~r, t)
is not a ”wave” in the classical sense.
3. Together with the probability density

ρ(~r, t) =ψ(~r, t) ·ψ(~r, t)
one can define a probability current density

~J(~r, t)
.
=
ħh

2im

�

ψ(~r, t) ~∇ψ(~r, t)−( ~∇ψ(~r, t)ψ(~r, t)
�

which obeys the continuity equation
∂ ρ

∂ t
+ ~∇· ~J = 0

4. By expanding ψ as a superposition of basis states {ψi} we obtain:

iħh
d
d t

∑

j

c jψ j = Ĥ
∑

j

c jψ j

We scalar product both sides from the left with ψi and use the orthogonality relations for basis
functions to obtain a set of ordinary differential equations for the sought for coefficients ci:

i ·ħh ·















ċ1
ċ2
.
.

ċn
.















=















�

ψ1, Ĥψ1

� �

ψ1, Ĥψ2

�

. . .
�

ψ2, Ĥψ1

� �

ψ2, Ĥψ2

�

. . .
. . . . .
. . . . .

�

ψn, Ĥψ1

� �

ψn, Ĥψ2

�

. . .
.





























c1
c2
.
.

cn
.















(shortly:

i ·ħh · ċi =
∑

j

�

ψi , Ĥψ j
�

c j

11.2. Simple two-states problems

In this section we investigate some two-states systems subject to time-dependent phenomena. These
are mathematically speaking most elementary systems where time-dependent phenomena, relevant
in modern research, can be treated without loosing track of the physical relevance. We consider the
time dependent Schrödinger equation of a spin 1

2 system in a uniform magnetic field:

iħh
�

Ċ+

Ċ−

�

=µB ·
�

Bz Bx − i ·By
Bx + i ·By −Bz

��

C+

C−

�
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(when spinors are involved, the SE is often referred to as the Pauli equation). The sought for coeffi-
cients describe the state C+(t) ·Y++C−(t) ·Y−, i.e. when the coefficients are found one knows that
the state that solve the Pauli equation is a superposition of ”up” and ”down” z-spin components with
the amplitudes C+(t) and C−(t).

Zeeman splitting We consider as a first example the simple case where Bx = By =0, i.e. we set the
constant magnetic field along the z-axis. We look first for the stationary states of the Pauli equation.

After inserting the Ansatz C±(t) = e∓
i
ħh ·E·t we obtain the time independent eigenvalue equation

�

0
0

�

=
�

µB ·Bz− E 0
0 −µB ·Bz− E

��

C+

C−

�

This is a set of algebraic equations. The determinantal equation
(µB ·Bz− E) ·(−µB ·Bz− E) = 0

has the two solutions. One is E+ = µB ·Bz . With this energy, the system of linear equation is solved
by the eigenstate (1,0), which corresponds to the stationary state e−iµB ·Bz ·t · Y+. The second one
is E+ = −µB ·Bz . With this energy, the system of linear equation is solved by the eigenstate (0,1),
which corresponds to the stationary state e−i(−µB ·Bz)·t ·Y−. These two states correspond to the Zeeman
splitted states, with splitting 2 ·µB ·B. This result shows that the ground state of this two-state system
consists of ”down” spins and that the z component of the magnetic moment is, correspondingly, +µB.

Initial conditions. We consider again the situation Bx = By = 0 but from a different point of view.
We ask: how can we deposit a spin in one of the stationary states? Let us assume that we have a
magnetic field along z and we have succeeded in placing the spin along −z at some time, which we
choose to be t = 0. We seek now a solution of the Pauli equation with a given initial condition

�

C+(t = 0) = 0
C−(t = 0) = 1

�

which describes a spin residing in the state of energy −µB ·B at t = 0. The general solution of the two
differential equations can be found to be:

�

C+(t) = a · e−i
µB ·B
ħh t

C−(t) = b · e+i
µB ·B
ħh t

�

with a and b being integration constants. The initial condition can be fulfilled by taking
�

a= 0
b= 1

�

meaning that the solution to this initial conditions is
�

C+(t) = 0

C−(t) = e−i
µB ·B
ħh t

�

As
| C−(t) |2= 1

at any time, this solution means that the spin remains in the state of energy −µB ·B at any time.
So, by choosing the suitable initial condition we have succeded in depositing the spin into one of
the stationary states. Of course, the next question is: how did we get the spin along −z at t = 0, i.e.
how did we obtain the initial condition? The answer to this question is a really difficult experimental
protocol which goes beyond the scope of this lecture.
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Spin precession. Much more interesting is the situation where the initial condition is the same
but a magnetic field of strength B1 is applied along, e.g. the x-direction. The Pauli equation writes

iħhĊ+

iħhĊ−
=µB ·B1 ·C−
=µB ·B1 ·C+

To find the general solution we add and subtract the two equations, which then are decoupled to
equations for the new variables A±

.
= Ċ+± Ċ−:

iħhȦ+

iħhȦ−
=µB ·B1 ·A+
=−µB ·B1 ·A−

with general solutions

A+ = a · e−
i
ħhµB ·B1·t

A− = b · e+
i
ħhµB ·B1·t

These general solution can be translated to general solutions for C±:

C+ = a · e−
i
ħhµB ·B1·t + b · e+

i
ħhµB ·B1·t

C− = a · e−
i
ħhµB ·B1·t − b · e+

i
ħhµB ·B1·t

We seek now to find the special solution that fulfills the initial conditions
�

C+(t = 0) = 0
C−(t = 0) = 1

�

The initial condition specifies the integration constants a and b to be −b= a= 1
2 , so that we find the

solution to the initial condition to be
C+ =−i ·sin µB ·B1

ħh · t
C− =+1 ·cos µB ·B1

ħh · t
These coefficients define a time dependent state

ψ(t) =−i sin(
µB ·B1

ħh
· t) ·Y++cos(

µB ·B1

ħh
· t) ·Y−

The probability that the spin is found in the ”up”-state amounts to

| C+ |2= sin2 µB ·B1

ħh
· t

In a static transversal magnetic field there is a finite probability for spin-flip, the probability varying
periodically with a frequency µB ·B1

ħh . If we think of an ensemble of spin polarized electrons entering
a region of transversal magnetic field, we can compute the spin polarization vector of the electrons,
defined as

< ~P >|ψ(t)
.
=
�

<σx >|ψ(t),<σy >|ψ(t),<σz >|ψ(t)
�

In this situation, we have

<σx >|ψ(t)=
�

−i sin µB ·B1
ħh · t cos µB ·B1

ħh · t
�

·
�

0 1
1 0

�

�

−i sin µB ·B1
ħh · t

cos µB ·B1
ħh · t

�

= 0

<σy >|ψ(t)=
�

−i sin µB ·B1
ħh · t cos µB ·B1

ħh · t
�

·
�

0 −i
i 0

�

�

−i sin µB ·B1
ħh · t

cos µB ·B1
ħh · t

�

=

2 ·sin(
µB ·B1

ħh
· t) ·cos(

µB ·B1

ħh
· t) = sin(2 ·

µB ·B1

ħh
· t)

<σz >|ψ(t)=
�

−i sin µB ·B1
ħh · t cos µB ·B1

ħh · t
�

·
�

1 0
0 −1

�

�

−i sin µB ·B1
ħh · t

cos µB ·B1
ħh · t

�

=

sin2(
µB ·B1

ħh
· t)−cos2(

µB ·B1

ħh
· t) =−cos(2 ·

µB ·B1

ħh
· t)
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This vector has the property that its length is 1, independent of time. It rotates in a plane perpendicular
to the axis defined by the direction of the magnetic field with the frequency

2 ·
µB ·B1

ħh
This motion of the spin is called ”precessional motion”. Excitation of precessional motion plays in
many applications an important role.

11.3. ∗Magnetic resonance

(I. Rabi, Phys. Rev. 51, 652 (1937), Nobel Preis 1944). We now solve the problem originally solved
by I. Rabi and implemented in a famous experiment demonstrating magnetic resonance. A strong,
constant in time magnetic field

(0,0,B0)
is applied along the z-axis, defining Zeeman split states in a system containing atomic magnetic mo-
ments. Transversal to it a small time-dependent magnetic field ~B1 is applied, which, for mathematical
simplicity, we take to be

~B1 = (B1 ·cosωt,B1 ·sinωt,0)
The Pauli equation for a spin 1

2 system reads:

iħh
�

Ċ+
Ċ−

�

=

�

B0µb µBB1e−iωt

µBB1eiωt −B0µB

�

�

C+
C−

�

This is a set of 1. order (in t) coupled differential equations, with coefficients depending on t explicitly.
Given the initial condition

�

C+(t = 0) = 0
C−(t = 0) = 1

�

one obtains the famous Rabi formula as solution:

| C+ |2=
4ω2

1

(ωL−ω)2+4ω2
1

·sin2(
Ω

2
t)

Those interested at the mathematical details of the solution are referred to the end of this section.
The various characteristic frequencies entering this formula are related to the original parameters
entering the Hamilton operator by the following relations:

∆= E+− E−
is the Zeeman splitting energy.

ωL =
∆

ħh

ω1 =
µB ·B1

ħh
Ω=

q

(ωL−ω)2+4ω2
1

In the experimental situation forthcoming in the Rabi experiment (see below), the time at disposal
for the transition is small but there is a finite probability for spin-down to make the transition to the
spin up state, which depends on the frequency ω by virtue of the function

4ω2
1

(ωL−ω)2+4ω2
1

A plot of this function versusω – the frequency of the transversal magnetic field ~B1 – gives the famous
Lorenz curve centered at ωL , which unequivocally defines this quantum mechanical transition as
resonance process. ωL is the so-called Larmor frequency at which the transition probability versus
frequency acquires a sharp resonance peak (the smallest ω1 the sharpest is the peak).
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For the practical application of this formula, Rabi used a modified Stern-Gerlach device.

The Rabi experiment. An ”oven” produces atoms (or any other particle such as neutrons with a net total
angular momentum). Upon entering the magnet A, they are sorted out by the gradient of the magnetic
field in separate beams according to the z component of the angular momentum. Magnet A thus estab-
lishes the initial condition under which the atoms enters magnet B. In magnet B there is an homogeneous
magnetic field B0 and a homogeneous oscillating magnetic field B1 perpendicular to B0. If B1 = 0, then
the particles leave magnet B in the same eigenstate they entered and in magnet C they will be turned back
to a position along the axis (continuos green line): almost all atoms will arrive at the detector (right).
When B1 is switched on, some atoms will change their spin state in the region of magnet B and follow
the dashed trajectory: the detector will count a lesser number of atoms.

ω

Detector current

ωL

Typical curve observed in a Rabi experiment. When the frequency ω of the oscillating magnetic field is

varied, the number of atoms detected at the counter will follow the function
4ω2

1
(ωL−ω)2+4ω2

1
and a typical

resonance signal will be observed, from which we can read out, very precisely, the resonance frequency
ωL , which gives us information about the g-factor of the particle. Such magnetic resonance experiments
are used to determine accurately the magnetic moment of particles.

Mathematical Details of the Rabi solution

Using the characteristic frequencies
B0µB

ħh
=ω0
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and
B1µB

ħh
=ω1

we obtain

i
�

Ċ1
Ċ−

�

=

�

ω0 ω1e−iωt

ω1eiωt −ω0

�

�

C+
C−

�

We insert the Ansatz
�

C+
C−

�

=

�

e−iω0 t F(t)
eiω0 t G(t)

�

and obtain

i
�

−iω0e−iω0 t F(t)+ e−iω0 t Ḟ(t)
�

= ω0F(t)e−iω0 t +ω1e−iωt G(t)eiω0 t

i
�

iω0eiω0 t G(t)+ eiω0 t Ġ
�

= ω1eiωt F(t)e−iω0 t −ω0Geiω0 t

�

i Ḟ(t)e−iω0 t = ω1e−iωt G(t)eiω0 t
�

�eiω0 t

iĠ(t)eiω0 t = ω1eiωt F(t)e−iω0 t
�

�e−iω0 t

i
�

Ḟ
Ġ

�

=ω1

�

Gei(2ω0−ω)t

Fe−i(2ω0−ω)t

�

We define further

2ω0 =
∆

ħh
.
=ωL

as the so-called Larmor frequency. Then

i
�

Ḟ
Ġ

�

=ω1

�

Gei(ωL−ω)t

Fe−i(ωL−ω)t

�

The coupled system can be decoupled by taking the time derivative:

i F̈ = ω1Gi(ωL−ω)ei(ωL−ω)t +ω1Ġei(ωl−ω)t |·i
⇒ −F̈ =−ω1(ωL−ω)Gei(ωL−ω)t +ω2

1F

⇒ −F̈ =−i(ωL−ω)Ḟ +ω2
1F

⇒ F̈ − i(ωL−ω)Ḟ +ω2
1F = 0

For finding the general solution we use the Ansatz F = eip⇒ Then

−p2+ p(ωL−ω)+ω2
1 = 0

p∓ =
(ωL−ω)∓

q

(ωL−ω)2+4ω2
1

2
q

(ωL−ω)2+4ω2
1 =Ω

F = a · ei(ωL−ω−Ω
2 )t + b · ei(ωL−ω+Ω

2 )t

a, b are integration constants that will be determined by the initial conditions. For the function G we find

G(t) = a·2ω1
ωL−ω+Ω ei(ωL−ω+Ω)t

+ b·2ω1
ωL−ω−Ω e−i(ωL−ω−Ω)t

Finally, the general solution reads

C+(t) = e−iωL/2t
�

aei(ωL−ω−Ω
2 )t + bei(ωL−ω+Ω)

2 t
�

C−(t) = eiωL/2t
�

a
2ω1

(ωL−ω+Ω)
ei(ωL−ω+Ω

2 )t + b
2ω1

ωL−ω−Ω
e−i(ωL−ω−Ω)

2 t
�

With the initial conditions
§

C+(t = 0) = 0
C−(t = 0) = 1

ª

we have
�

a+ b= 0
a2ω1

ωL−ω+Ω +
b2ω1

(ωL−ω+Ω)
= 1
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









b= (ωL−ω)2−Ω2

4Ωω1
=

(ωL−ω)2−(ωL−ω)2−4ω2
1

4
Ç

(ωL−ω)2+4ω2
1ω1

= −ω1
Ç

(ωL−ω)2+4ω2
1

a= Ω2−(ωL−ω)2
4Ωω1

= ω1
Ç

(ωL−ω)2+4ω2
1

Computing explicitely the probability of being in a state Y+ we obtain

C+(t) = e−iωL/2t





ω1
q

(ωL−ω)2+4ω2
1

ei
(ωL−ω−Ω)

2 t −
ω1

q

(ωL−ω)2+4ω2
1

ei
(ωL−ω+Ω)

2 t





= e−i
ωL t

2 ei
(ωL−ω)

2 t

�

ω1
p. . .

e−i Ω2 t −
ω1
p. . .

ei Ω2 t

�

= e−i ω2 t ω1
p. . .

�

−i sin
Ω

2
t− i sin

Ω

2
t
�

= e−i ω2 t −2iω1
p. . .

sin
Ω

2
t

and the famous Rabi formula

| C+ |2=
4ω2

1

(ωL−ω)2+4ω2
1

·sin2(
Ω

2
t)

11.4. ∗ Time-dependent Hamiltonian: perturbational
approach

We consider a situation where a system is, at a time −T , in a stationary state e−
Ei
ħh ·t ·ψi of the operator

H0. Between −T and +T the system is perturbed by an operator H1 which can depend on the time
t. The operator Ĥ0+ Ĥ1(t) translates the state

e−
Ei
ħh ·t ·ψi to ψ(T )

according to the time-dependent Schrödinger equation. Given a state

e−
Ef
ħh ·t ·ψ f with E f 6= Ei

we compute now the probability that the system is in the state ψ f at the time T , i.e.

Pi→ f =|
�

ψ f ,ψ(T )
�

|2

If we consider the CONS {ψk} of the eigenstates of H0 and write

ψ(T ) =
∑

k

ck(t) ·ψk

than the sought for probability is given by | c f (t) |2. The time-dependent Schrödinger equation trans-
lates into an exact equation for then sought for coefficient c f (t)

iħhċ f =
�

ψ f ,H0+H1(t)ψ1

�

c1+ ...+
�

ψ f ,H0+H1(t)ψi
�

ci+
�

ψ f ,H0+H1(t)ψ f
�

c f + ....
(for simplicity, we have ordered the states so that f = i+1). This equation can be simplified factorizing
the time-dependence that would arise without perturbation and writing

ck(t) = Ck(t)e
−i

Ek
ħh ·t

Inserting this Ansatz and considering the orthogonality properties of the basis functions we obtain an
equation for the coefficient C f (t):

iħhe−i
Ef
ħh ·t Ċ f =

�

ψ f ,H1(t)ψ1

�

e−i
E1
ħh ·t C1+ ...+

�

ψ f ,H1(t)ψi
�

e−
Ei
ħh ·t Ci+ .....C j 6=i ...

This equation is again formally exact but cannot be solved exactly. However, we can transform it into
a solvable equation by the following approximation:

• The system at -T is such that Ci = 1, all other coefficients are vanishing.

• At times larger than T , the coefficients C j 6=i are assumed to be small and Ci ≈ 1.
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In order to render the differential equation for C f (t) solvable, we insert Ci = 1 and C j 6=i = 0 in the
right hand side of the differential equation, which becomes

Ċ f (t) =
�

ψ f ,H1(t)ψi
�

· e
i
ħh (E f −Ei)·t

and has the solution

C f (T ) =
1

i ·ħh
·
∫ T

−T
d t
�

ψ f ,H1(t)ψi
�

· e
i
ħh (E f −Ei)·t

The assumption underlining this approximation is that | C f (T ) |<< 1. To render this assumption in
terms of the parameters ruling the transition i→ f we define the largest value that the matrix element
can take in the time interval 2T as

|
�

ψ f ,H1(t)ψi
�

|max

and obtain the inequality

| C f (T ) |≤
1
ħh
·2 ·T · |

�

ψ f ,H1(t)ψi
�

|max<< 1

Further computations of the coefficient depend on the nature of the perturbation operator H1(t).

11.4.1. Monochromatic periodic perturbation

An important situation is provided by a periodic perturbation
H1(t) =H1 · e−iωt +H†

1 · e
iωt

H1 shall depend only on ~r and ms. For this situation the transition amplitude writes

C f (T ) =
1
iħh
·[
∫ T

−T
d t · e

i
ħh (E f −Ei−ħhω)·t

�

ψ f ,H1ψi
�

+

∫ T

−T
d t · e

i
ħh (E f −Ei+ħhω)·t

�

ψ f ,H†
1ψi

�

The integral over the variable t gives
2 ·sin 1

ħh (E f − Ei−ħhω) ·T
i
ħh (E f − Ei−ħhω)

(left-hand side) respectively
2 ·sin 1

ħh (E f − Ei+ħhω) ·T
i
ħh (E f − Ei+ħhω)

It is interesting to plot the graphs of these two functions for a fixed time T as a function of the
energy ħhω. The graph on the left-hand side falls abruptly to zero when ħhω 6= E f − Ei and oscillates
with smaller amplitude around zero. The graph on the right-hand side, instead, falls abruptly to zero
when ħhω 6= Ei− E f and oscillates with smaller amplitude around zero. In both cases, the amplitude
is concentrated within a width ħh∆ω≈ 2πħh

T , meaning that, if T is sufficiently large, the two graphs
are well separated.

We apply these results to a two-states system with levels E2 > E1

1. Let the initial state i be the one with energy E1. Then the amplitude for transition into the
higher lying state reads

C1→2(T ) =
1
iħh
(ψ2,H1ψ1) ·2 ·

sin 1
ħh (E2− E1−ħhω) ·T
i
ħh (E2− E1−ħhω)

and

| C1→2(T ) |2=
1

ħh2 | (ψ2,H1ψ1) |2|
2 ·sin 1

ħh (E2− E1−ħhω) ·T
i
ħh (E2− E1−ħhω)

|2
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We evaluate

|
2 ·sin 1

ħh (E2− E1−ħhω) ·T
i
ħh (E2− E1−ħhω)

|2

by writing it has

π ·4 ·T ·
sin2 1
ħh (E2− E1−ħhω) ·T

1
ħh2 (E2− E1−ħhω)2 ·π ·T

and considering that
sin2 1
ħh (E2− E1−ħhω) ·T

1
ħh2 (E2− E1−ħhω)2 ·π ·T

resembles very much
ħhδ(E2− E1−ħhω)

for sufficiently long times T . This result can then be formally cast into a transition rate Γ1→2
.
=

|C1→2(T )|2
2T with

Γ1→2 =
2π
ħh
| (ψ2,H1ψ1) |2 ·δ(E2− E1−ħhω)

which is so important that it is called the ”Fermi golden rule”. This formula explains that the
transition from an atomic state 1 to an atomic state 2 with higher energy occurs with highest
probabilty when the frequency of the perturbation matches the energy difference between the
states (the Bohr frequency condition). The relevant matrix elements to be computed is

(ψ2,H1ψ1)

2. Let the initial state be the one with energy E2. In this case the amplitude writes

C2→1(T ) =
1
iħh
�

ψ1,H†
1ψ2

�

·2 ·
sin 1
ħh (E1− E2+ħhω) ·T
i
ħh (E1− E2+ħhω)

Using similar technical arguments we can work out the transition rate from a higher energy
states into a lower lying one:

Γ2→1 =
2π
ħh
|
�

ψ1,H†
1ψ2

�

|2 ·δ(E2− E1−ħhω)
In this case the relevant matrix element is

�

ψ1,H†
1ψ2

�

= (ψ2,H1ψ1)
We find the rather important result for the transition rates:

Γ1→2 = Γ2→1

which proves the original idea by Einstein that the absorption and emission coefficients by
transitions are identical.

Optical transitions in an atom.

We apply these results to compute optical transition rates in atomic systems. The Hamiltonian that
describes the coupling of an electron to a radiation field is given by

1
2m
·(~p−q~A)2+φ(~r)

We recognize

H0 =
~p2

2m
+φ(~r)

and
H1(t) =−

q
2m
(~p · ~A+ ~A· ~p) =−

q
2m
((~p · ~A)
︸ ︷︷ ︸

∼ ~∇~A=0

+2 · ~A· ~p) =−
q
m
· ~A(~r, t) · ~p
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We now use the relation
i
ħh
[H0,~r] =

~p
m

to find an expression for transition operator that is found often in the literature. Write first

H1(t) =−q ·
i
ħh
~A·[H0,~r]

The dipolar approximation foresees that the wavelength of the radiation is much longer than the
dimensions of an atom, so that ~A≈ ~A(~r = 0, t), the atom residing at the coordinate ~r = 0. For the
optical transition in dipolar approximation between the state i into the state f the coefficient C f (t)
writes

C f (T ) =−
1
iħh

∫ T

−T
d te

i
ħh (E f −Ei)·t ·(q ·

i
ħh
~A(t)) ·

�

ψ f ,[H0,~r]ψi
�

With

q
i
ħh
�

ψ f ,[H0,~r]ψi
�

=
i
ħh
(E f − Ei) ·

�

ψ f ,q ·~rψi
�

and after partial integration over the time variable, we obtain (using ~E =− ∂ ~A∂ t )

C f (T ) =
1
iħh

∫ T

−T
d t · e

i
ħh (E f −Ei)·t ·

�

ψ f ,(−~E(t) · ~D)ψi
�

with ~D
.
= q~r. This is the operator of the electrical dipole moment. We have therefore found an in-

teresting correspondence between the classical situation of the energy of an electric dipole in an
electrostatic field, which we know to be −~E · ~D, and the perturbation operator relevant for optical
transitions, which we have just found to be

H1(t) =−~E(t) · ~D
Assuming that we can write

~E(t) = ~E0(ω)e
−iωt + ~E0eiωt

the relevant optical transition matrix elements is therefore
�

ψ f ,−~E0 · ~Dψi
�

Let us evaluate this matrix element for some special but important situations

1. We choose monochromatic linearly polarised light propagating along some direction ~k. The
electric field of the radiation at the site of the atom reads

~E(t) = E0 ·~e0 ·cos(ω · t) =
~e0

2
· E0 ·[e−i·ω·t + ei·ω·t]

with ~e0 being a unit vector pointing along the polarization direction. The matrix element for
optical transition is therefore

−q · E0 ·
�

ψ f , ~̂r ·~e0ψi
�

For a system with spherically symmetric field, initial and final states are given by spherical
harmonics:

ψi = fi(r) ·Y
mi
li
(ϑ,ϕ)

ψ f = f f (r) ·Y
m f

l f
(ϑ,ϕ)

The spin state does not change with electric dipole transitions, so we do not need to consider
the spin state. Because of the presence of the spherical functions, conditions can generally be
established for which the matrix elements are found to be exactly vanishing. These conditions
are called selection rules. For example, we choose ~e0 in the z direction. Then

~r ·~e0 = z= r

√

√4π
3

Y 0
1 (ϑ,ϕ)
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Inserted into the matrix element we obtain
�

ψ f , ~̂r ·~e0ψi
�

=

√

√4π
3

∫

drr3 fi(r) f f (r)

∫

dΩ ·Y
m f

l f
·Y 0

1 ·Y
mi
li

Due to the orthogonality properties of the spherical harmonics and the equation
Y 0

1 ·Y
mi
li
=α1 ·Y

mi
li+1+α2Y mi

li−1

(α1,α2 being some tabulated coefficients) we find that the matrix element is different from
zero only if the conditions (selection rule)

l f = li±1,m f =mi

is fulfilled, i.e. by optical transition with linearly polarised light
∆l =±1,∆m = 0

2. We now assume circularly polarised light propagating along z. Then
~e0 = (cosωt,±sinωt,0)

With the sign + (−) ~e0 and +z build a right screw (”right circularly polarised light) respectively
a left screw (”left-circularly polarized light). We compute:

~r ·~e0 =
1
2

�

(x± i y) · e−iω·t +(x∓ i y) · e+iω·t�

From this relation we obtain the matrix elements for optical transition with circularly polarized
light:

∼
�

ψ f , x̂± i ŷψi
�

With

x+ i y =−r

√

√8π
3

Y 1
1

x− i y = r

√

√8π
3

Y−1
1

we obtain the selection rules for the emission and absorption of circularly polarized light prop-
agating in +z direction:

∆l =±1
For right circularly polarised light

∆m =+1
For left circularly polarised light

∆m =−1
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Example: Spin polarization of p→ s optical transitions in spherically symmetric potential
with spin-orbit coupling. We use e.g. left-hand polarized light propagating along +z, i.e. the
operator is ∼ Y−1

1 .

Y 0

0
Y

1

2

1

2

Y 0

0
Y

−

1

2

1

2

Y 1

1
Y

1

2

1

2

√

2

3
· Y 0

1
Y

1

2

1

2

+

√

1

3
· Y 1

1
Y

−

1

2

1

2

√

2

3
· Y 0

1
Y

−

1

2

1

2

+

√

1

3
· Y

−1

1
Y

1

2

1

2

Y
−1

1
Y

−

1

2

1

2

−

√

1

3
· Y 0

1
Y

1

2

1

2

+

√

2

3
· Y 1

1
Y

−

1

2

1

2

−

√

1

3
· Y 0

1
Y

−

1

2

1

2

+

√

2

3
· Y

−1

1
Y

1

2

1

2

2S 1

2

2P 3

2

2P 1

2

The P3
2

and P1
2

spin-orbit spitted states build the initials states, the S 1
2
-state build the final state. The basis

states were computed using the tables for Clebsch-Gordan coefficients in M. Tanabashi et al. (Particle Data
Group), Phys. Rev. D 98, 030001 (2018)), p. 564, https://journals.aps.org/prd/abstract/
10.1103/PhysRevD.98.030001.

We consider for instance the P3
2
→ S 1

2
transition. We need to compute the 8 matrix elements

〈Y 0
0 Y±,Y−1

1 · P
m j
3
2
〉

with m j =
3
2 , 1

2 ,− 1
2 ,− 3

2 . The states on the right-hand side are all possible initial states and the state
Y0,0Y± is the final state of the P3

2
→S 1

2
transition. The light operator does not act in spin space (within

the dipole approximation). To compute the matrix elements we use the simple rules
ÔlightY

m
l = c ·Y m−1

l±1

ÔlightY
± = Y±

with c being some matrix element that must be computed taking the radial parts of the wave function
into account. Accordingly, we have

〈Y 0
0 ,Y−1

1 Y 1
1 〉= c

while all others matrix elements between spherical harmonics vanish. This result implicates that the
optical transition P3

2
→ S 1

2
involves only the two initial states m j =

3
2 , 1

2 . Taking into account the
weight of the various orbital wave functions within the various states (this weight being given by a
Clebsch-Gordan coefficient!!) we can compute the relative strength of the transition from m j =

3
2 –

leading to ↑-spins and from m j =
1
2 – leading to ↓-spins:

1
1
3

= 3

This means that the optical transition P3
2
→ S 1

2
produces ↑ spins with a relative probability of 3 and

↓-spins with the relative probability of 1, giving rise to a spin polarization

〈σz〉=
3−1
3+1

= 50%
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The spin polarization of electrons photoemitted from Ge as a function of the photon energy. At the thresh-
old photon energy (left, where the experimental curve begins), Ge single crystals have a transition which
can be described by the P3

2
→ S 1

2
transition and shows the expected 50% spin polarization.
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11.4.2. ∗Periodic perturbation with �nite frequency width (technical).

Despite laser light being available almost as monochromatic source, one obtains more physical results
if one assigns a finite frequency width to a given source of light. In this case,

~E(t) =
1

2π

∫

dω
�

~̃E(ω)e−iωt + ~̃E(ω)e+iωt
�

The Fourier component is, in general, a linear combination of right and left circularly polarized. We
study for instance the excitation from E1 to E2 > E1with right circularly polarized light:

~̃E(ω) = E+(ω) ·(~ex + i~ey)
The absorption process is governed by the e−iωt components of the field. The matrix element writes
then

1
2π

∫

dω
�

ψ2,−E+(ω) ·(~ex + i~ey)e
−iωt · ~Dψ1

�

=−
�

ψ2, ~Dx + i ~Dyψ1

�

·
1

2π

∫

dωE+(ω)e
−iωt

As a consequence of the light beam being treated as a superposition of plane waves to form a narrowly
shaped beam in the frequency regime, we do not have any mathematical problems in letting T→∞,
i.e. in letting the perturbation act for an infinite amount of time. The transition probability writes

| C1→2 |2=
1

ħh2 · |
∫ ∞

−∞
d t ·

1
2π

∫

dωE+(ω)e
−iωt · e

i
ħh (E2−E1)·t |2

︸ ︷︷ ︸

|E+(E2−E1)|2

|
�

ψ2,(~Dx + i ~Dy)ψ1

�

|2

=
1

ħh2 | E+(
E2− E1

ħh
) |2|

�

ψ2,(~Dx + i ~Dy)ψ1

�

|2

The first factor is the Fourier transform of the light beam taken at a frequency which corresponds to
the energy difference E2−E1, in line with the Bohr frequency condition. The transition from the level
E2 to E1 with light emission is driven by the eiωt components has the probability

| C1→2 |2=
1

ħh2 | E+(
E2− E1

ħh
) |2|

�

ψ2,(~Dx + i ~Dy)ψ1

�

|2

in line with the identity of Einstein coefficients. The pre-factor

| E+(
E2− E1

ħh
) |2

is related to the intensity of the light at the frequency E2−E1
ħh . More precisely: The total energy trans-

ported by the light wave per unit time interval and unit area is

J = ε0 · c
1
T

∫ ∞

−∞
d t ~E(t) · ~E(t)

Using

~E(t) =
1

2π

∫ ∞

−∞
dω~E(ω)e−iωt

and inserting this expression we obtain

J = ε0 · c
1
T

∫ ∞

−∞
d t

1
2π

∫ ∞

−∞
dω~E(ω)e−iωt ·

1
2π

∫ ∞

−∞
dω′ ~E(ω′)e+iω′ t

= ε0 · c ·
1
T
·

1
2π

∫ ∞

−∞
dω~E(ω)~E(ω)

= ε0 · c ·
1
T
·

1
2π

∫ ∞

−∞
dω ·

1
2
·
�

E+(ω)
1
p

2
(~ex + i~ey)+ E+(ω)

1
p

2
(~ex + i~ey)

�2

= ε0 · c ·
1
T
·

1
2π

∫ ∞

−∞
dω | E+(ω) |2= ε0 · c ·

1
T
·

1
π

∫ ∞

0
dω | E+(ω) |2
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| E+(ω) |2 is related to the total energy transported per unit time, per unit area and per unit frequency
dJ
dω :

| E+(ω) |2= 4π2 ·
dJ
dω ·T
4πε0c

and obtain

Γ1→2 = 4π2 ·
dJ
dω (

E2−E1
ħh )

4πε0cħh2 |
�

ψ2,(~Dx + i ~Dy)ψ1

�

|2

This expression avoids using the Dirac delta function in the expression for the transition rate. The
relevant component of the transition rate – the matrix element – is maintained also in this physically
more accurate expression.
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Part V.

Exercises
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12. Exercises.

12.1. Exercises to Chapter 1.

In this section, we solve some simple exercises that allow us to become acquainted with quantities
and units used in quantum mechanics.

1. De Broglie Wavelength.

According to de Broglie the wavelength of a free particle is given by

λ=
2πħh

p

2m · Ekin
Ekin being the kinetic energy of the particle and m the mass. Use this relation to express the wave-
length of an electron as

λ[nm] =

√

√ 1.504
Ekin[eV ]

In this formula, Ekin[eV ] and λ[nm] means that if you plug in a number representing Ekin in eV you
obtain a number representing λ in nm.

Solution.

Insert
ħh= 6.582 ·10−16 eV ·sec

and

m= 0.911 ·6.242 ·10−30 ·
(eV )2 · sec2

(nm)2
(the unit of kg for the mass has been converted in suitable units) into De-Broglie relation to obtain
the desired useful formula.

2. Energy of the ground state of Hydrogen.

The Bohr model foresees that the energy of the ground state of the hydrogen is given by

En =−
1
2
·

e4 ·m
(4πε0)2 ·ħh2 ·

1
n2

with n= 1. Compute this energy in eV.

Solution

Use
e≈ 1.6 ·10−19A· sec m≈ 9.11 ·10−31kg

ε0 ≈ 8.85 ·10−12 A· sec
V ·m

ħh≈ 1.05 ·10−34J · sec
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Inserting these values one obtains
E1 ≈−2.2 ·10−18Joule

as
1 Joule= 6.2421018eV

one obtains
E1 ≈−13.6eV

3. Classical circular orbits.

Bohr computation of the quantized energy levels of the Hydrogen atom uses results from the Newton
mechanics of circular orbits in the radially symmetric Coulomb potential

−
1

4πε0
·
e2

r
(r being the radial coordinate).
• 1. Find the radius of the circular orbits by minimizing the effective radial potential energy

Ue f f (r) =−
1

4πε0
·
e2

r
+

L2

2mr2

• 2. Insert the radius in the expression for the total energy to obtain the relation between E and L
used by Bohr.

Solution

• 1.
d
dr

Ue f f (r) =
1

4πε0
·

e2

r2
−

L2

mr3
=!0⇔ r =

L2 ·4πε0

m · e2

• 2. Inserting

r =
L2 ·4πε0

m · e2

in

E =−
1

4πε0
·
e2

r
+

L2

2mr2

produces

E =−
1

4πε0
·
e2

r
+

L2

2mr2
=−

1
4πε0

·
e2 me2

L2 4πε0
+

L2 m2 e4

2m L4(4π)2ε2
0

=

−
1

(4πε0)2
·
e4 m
L2
+

me4

2 L2(4πε0)2
=−

1
2
·

e4

(4πε0)2
·

m
L2

.

4. Wavelength of a Photon.

Compute the wavelength λ of a photon in nm as a function of the photon energy E given in eV.

Solution.

From the quantum relation
E =ħh ·ω

and the classical relation for waves

ω=
2π
λ
· c
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(c: light velocity) one finds

λ=
ħh2πc

E
Inserting

ħh= 6.582 ·10−16 eV ·sec and c= 3 ·1017 nm
sec

one finds the ”easy to remember” relation

λ[nm] =
1240
E[eV ]

12.2. Exercises to Chapters 2,3,4.

1. Schrödinger current.

Use the time independent Schrödinger equation for the motion of a mass m along the x-axis in a
general potential Φ(x) to show that

d
d x

�

ħh
2im

�

ψ̄(x)
d

d x
ψ(x)−ψ(x)

d
d x
ψ̄(x)

�

�

= 0

Solution.

Solution:

d
d x

�

ħh
2im

�

ψ̄(x)
d

d x
ψ(x)−ψ(x)

d
d x
ψ̄(x)

�

�

=
ħh

2im
·
�

ψ̄(x)
d2

d x2
ψ(x)−ψ(x)

d2

d x2
ψ̄(x)

�

=
ħh

2im
·
2m

ħh2 ·
�

−(E−Φ(x)) ·ψ(x)ψ(x)+(E−Φ(x)) ·ψ(x)ψ(x)
�

= 0

2. Matrix algebra.

This is an exercise to remind of some notions of matrix algebra. Given is the matrix

R :=
�

cosϕ −sinϕ
sinϕ cosϕ

�

ϕ ∈ [0,2π]. This matrix represents rotations in the x y-plane around the z-axis.

1. Show that this matrix is not hermitic.

2. Compute the eigenvalues of this matrix.

3. Compute the eigenvectors.

4. Compute the transformation of the vectors (1,0) and (0,1) under the action of this matrix.

5. As a generalization of this exercise, consider a rotation of any vector in our three dimensional
space by an angle ϕ around a given axis specified by the unit vector n. Do not try to find the
general matrix representation of this rotation. Instead, define one, very particular, coordinate
system that allows to express the matrix representation of this rotation with as many vanish-
ing matrix elements as possible and write the matrix representation in this coordinate system.
Compute the eigenvalues of this matrix and find the eigenvectors (use, if pertinent, the results
of the previous questions).
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Solution.

1.

RT =
�

cosϕ sinϕ
−sinϕ cosϕ

�

6= R

2. To find the eigenvalues of R we have to solve

det
�

cosϕ−λ −sinϕ
sinϕ cosϕ−λ

�

= (cosϕ−λ)(cosϕ−λ)−(−sinϕ sinϕ)

= cos2ϕ−2λcosϕ+λ2+sin2ϕ

= λ2−2λcosϕ+1

!= 0
The Eigenvalues of R are the solutions of the equation

λ2−2λcosϕ+1= 0
i.e.

λ1,2 = e±iϕ

3. The eigenvectors to eiϕ are the solution of
�

cosϕ −sinϕ
sinϕ cosϕ

��

v1
v2

�

= eiϕ
�

v1
v2

�

The eigenspace is one-dimensional, i.e. we can set v1 = 1 and solve e.g. the equation
cosϕ ·1−sinϕv2 = eiϕ ·1

to find
v2 =−i

Accordingly, the eigenspace to eiϕ consits of all vectors parallel to

�

1
−i

�

.

In a similar manner we find that the eigenspace to e−iϕ consists of all vectors parallel to
�

1
i

�

4.
�

cosϕ −sinϕ
sinϕ cosϕ

��

1
0

�

=
�

cosϕ
sinϕ

�

�

cosϕ −sinϕ
sinϕ cosϕ

��

0
1

�

=
�

−sinϕ
cosϕ

�

i.e. the columns of the matrix contain the transformed vectors.

5. For solving this task we need to find a suitable coordinate system. If one choose the z axis so
that n is along z, we can use the results from the previous matrix and write

R(ϕ) =





cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1





For calculating the eigenvalues we need to solve the determinantal equation
det(R−λ1) = 0

We observe that the rotation matrix is in block form, so that the determinant can be computed
easily and the determinantal equation writes
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(λ2−2λcosϕ+1) ·(1−λ) = 0
The solutions are the three eigenvalues

eiϕ e−iϕ 1
and the eigenvectors





1
−i
0



 .





1
i
0



 .

and




0
0
1





respectively.

3. The Dirac delta function, seen by W. Pauli (Pauli Lectures on
Physics, Vol. 5: Wave Mechanics).

Consider the set of functions defined by the following conditions:

δi(x) =

�

0 | x |> a
i·2

i
a | x |< a

i·2
i= 1,2,....

1. Make yourself familiar with these functions by plotting their graph for some values of i.

2. Show that
∫ ∞

−∞
δi(x)d x = 1

for any value of i.

3. Compute
lim

i→∞
δi(x)

for x = 0 and x 6= 0.

4. Now the difficult part. Consider any function f (x) which is continuous in x = 0. Show that

lim
i→∞

∫ ∞

−∞
δi(x) · f (x) ·d x = f (0)

Hint: make use of the following exact result of Analysis (which probably you do not know, but
now you learn it):

lim
ε→0

1
ε

∫
ε
2

− ε2

f (x)d x = f (0)

If you have some time, you can even demonstrate this result as an application of your knowledge
of Analysis.
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Solution.

1. The graph of one such functions is given in the figure.

x

y

a/(2i)-a/(2i)

i/a

The graph of a rectangular function. The graph of the Dirac-delta functions can be obtained by letting
the index i go to infinity.

2. The area of the rectangles is
i
a
·
a
i
= 1 independent of i

3. δi(x) for x = 0 tends to infinity for i→∞. δi(x) tends to 0 for x 6= 0 for i→∞.

4.
∫ ∞

−∞
δi(x) · f (x) ·d x =

i
a
·
∫

a
2i

− a
2i

d x · f (x) =
1
a
i
·
∫

a
2i

− a
2i

d x · f (x)

Now you can use the analysis result to obtain (set a
i = ε)

lim
i→∞

1
a
i
·
∫

a
2i

− a
2i

d x f (x) = f (0)

A final comment: when you have shown all these points, than you have learned that
lim

i→∞
δi(x) =δ(x)

i.e. you have found a further representation of the Dirac delta functions. You can imagine: there
are many representations of the Dirac delta function, in fact there is an infinite number of them,
because ”A distribution is a class of equivalent testseries {tn(x)}” (this is how Distributions are
often defined in mathematics).

4. f-level of the hydrogen Atom.

The f -level of an hydrogen atom contains the 7 wave functions
f (r) ·Y 3

3 (θ ,φ) f (r) ·Y 2
3 (θ ,φ) f (r) ·Y 1

3 (θ ,φ)

f (r) ·Y 0
3 (θ ,φ) f (r) ·Y−1

3 (θ ,φ) f (r) ·Y−2
3 (θ ,φ)

f (r) ·Y−3
3 (θ ,φ)

f (r) is some radial dependent, normalized function and Y (θ ,φ) are spherical harmonics.
Write the matrix representation of Lz and L2 in the f -subspace.
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Solution.

We must compute the matrix elements
< Y m

3 , Lz Y m
3 > < Y m

3 , L2 Y m
3 > m= 3,2,1,0,−1,−2,−3

We find

Lz =



















ħh ·3 0 0 0 0 0 0
0 ħh ·2 0 0 0 0 0
0 0 ħh ·1 0 0 0 0
0 0 0 ħh ·0 0 0 0
0 0 0 0 ħh ·(−1) 0 0
0 0 0 0 0 ħh ·(−2) 0
0 0 0 0 0 0 ħh ·(−3)



















L2 =



















ħh2 ·12 0 0 0 0 0 0
0 ħh2 ·12 0 0 0 0 0
0 0 ħh2 ·12 0 0 0 0
0 0 0 ħh2 ·12 0 0 0
0 0 0 0 ħh2 ·12 0 0
0 0 0 0 0 ħh2 ·12 0
0 0 0 0 0 0 ħh2 ·12



















5. Inversion operator and Hamilton operator for a mass in an in�nite
potential well.

A particle undergoes a motion in the interval [− L
2 , L

2 ] along the x-axis. The motion is determined by
the Schrödinger equation. The boundary conditions are the vanishing of the wave function at the
edges of the interval. The potential energy is taken to be zero inside the interval, infinite outside. The
inversion operator is defined by

Iψ(x) =ψ(−x)
1. Show that I is Hermitic.
2. Find the eigenvalues of I .
3. Find a CONS of eigenfunctions of I .
4. Which energy-eigenvalue and which eigenfunction describe the ground state of the system?

Assume now that an experimental device has localized the particle within the interval in a
state

ψ(x) =
1
p

L
5. Which values are the possible results of measuring the observable related to the operator I in this
state?
6. What is the probability of measuring these values?
7. Compute the expectation value of I in this state.
8. Which values are the possible results of measuring the energy in this state?
9. What is the probability of measuring these values?
10. Compute the expectation value of the energy in this state.
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Solution.

1.

(I ψ,ψ) =

∫ ∞

−∞
ψ(−x) ·ψ(x)d x =

︸︷︷︸

y=−x ,d x=−d y

−
∫ −∞

∞
ψ(y)ψ(−y)d y

=

∫ ∞

−∞
ψ(y)I ψ(y)d y

= (ψ,I ψ)

2. We use
I 2 =1

to transform the eigenvalue equation
I ψ(x) =λ ·ψ(x)

Into
(I )2ψ(x) =ψ(x) = (λ)2ψ(x)

so that
λ2 = 1 λ=±1

3. The elements of the CONS have to fullfill two conditions:
First: They have to fullfill the SE for the given potential and boundary conditions.
Second: They have to be eigenfunctions of the specific operator we are looking at.
For the first part we see that the potential between [− L

2 , L
2 ] is vanishing and that the wavefunc-

tion has to be zero at the edges. This reminds us of the infinite 1d potential well, so that we
can use the results from Chapter 2 and find the set of basis functions

pn(x) =

√

√2
L

cos
�

(2n+1)π
L

x
�

n= 0,1,2,...

and

qm(x) =

√

√2
L

sin
�

(2m)π
L

x
�

m= 1,2,3,...

For the second part we apply I to pn and qm in order to check if they are eigenfunctions or
not. Indeed

I pn(x) = 1 · pn(x)
and

I qm(x)−1 ·qm(x).

4.

E0 =
ħh2

2m
·
π2

L2
p0(x) =

√

√2
L

cos
�π

L
x
�

5. The wave function is a constant in the interval. A constant is even with respect to change of
sign and therefore it is an eigenstate of I to the eigenvalue +1.

6. The probability of measuring (+1) is 1.

7. The expectation value is
<I >|ψ= 1 ·(+1) =+1

8. The constant function is not an eigenstate of the Hamilton operator and does not have a trivial
expansion into the eigenstates pn and qm. Accordingly, in principle, the possible outcomes of
measuring the energy are all eigenvalues, with some probability.
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9. The amplitude of measuring the eigenvalues En amounts to
∫

L
2

− L
2

d x ·
1
p

L
·

√

√2
L

cos(
(2n+1)π

L
x) =

2
p

2 ·(−1)n

π ·(2n+1)

The amplitude of measuring the eigenvalues Em amounts to
∫

L
2

− L
2

d x ·
1
p

L
·

√

√2
L

sin(
(2m)π

L
x) = 0

n= 0,1,2,... and m= 1,2,...... Both amplitudes were computed using Wolfram Alpha software,
available online.

10. The expectation value of E amounts the
π2ħh2

2mL2

∞
∑

n=0

(2n+1)2 ·
8

π2 ·(2n+1)2
=∞

This anomalous result is due to the fact that there is an infinite number of energy bound states
which can be assumed with a high enough probability.

6. Particle in a Quadratic Potential.

A point mass m moves according to the laws of quantum mechanics in spaceR3 and is subject to the
potential energy

Φ(x , y,z) =
1
2
·α ·

�

x2+ y2+z2
�

α> 0 being a ”spring” constant.

1. Write the time independent Schrödinger equation of the particle, using cartesian coordinates.

2. Use the separation Ansatz
ψ(x , y,z) = f (x) · g(y) ·h(z)

to write the SG as the sum of four terms, the first depending only from x , the second only from
y , the third depending only from z and the 4th being exactly the sought for energy eigenvalue
E. Set then term ′′1′′ equal to the separation constant λx , term ′′2′′ equal to the separation
constant λy and term ′′3′′ equal to the separation constant λz .

3. You obtain in this way separate ordinary differential equations in x , y and z. Find the sepa-
ration constants by solving these differential equations. HINT: You do not have to solve these
differential equations explicitly, you have already seen the solution in the lecture.

4. Find all possible energy eigenvalues of the original problem.

5. How many quantum numbers are necessary to describe the energy eigenvalues?

Solution.

1.
−ħh2

2m
∇2ψ(x , y,z)+

α

2

�

x2+ y2+z2
�

ψ− E ·ψ(x , y,z) = 0

2. We plug the given Ansatz into the Schrödinger equation from a):
−ħh2

2m
∂ 2 f (x)
∂ x2

g(y) ·h(z)−
∂ 2 g(y)
∂ y2

f (x) ·h(z)−
∂ 2 h(z)
∂ z2

f (x) · g(y)+
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α

2

�

x2+ y2+z2
�

f (x) · g(y) ·h(z)− E · f (x) · g(y) ·h(z) = 0

By dividing with ψ(x , y,z) = f (x) · g(y) ·h(z) and rearranging the terms we obtain:

ħh2

2m

d2 f
d x2

f
−
α

2
x2

︸ ︷︷ ︸

=λx

+
ħh2

2m

d2 g
d y2

g
−
α

2
y2

︸ ︷︷ ︸

=λy

+
ħh2

2m

d2h
dz2

h
−
α

2
z2

︸ ︷︷ ︸

=λz

+E = 0.

This equation must hold for any x , y,z. It can only do it if each summand is equal to a constant:
the separation constant.

3. By the separation Ansatz, the original SE is divided into four separate equations:

−
ħh2

2m
d2 f
d x2

+
α

2
x2 · f =−λx f

−
ħh2

2m
d2 g
d y2

+
α

2
y2 · g =−λy g

−
ħh2

2m
d2h
dz2
+
α

2
z2 · g =−λz g

E =−λx −λy −λz

From the lecture, we know that the three ordinary differential equations describe quantum
mechanical harmonic oscillators, so that we know their solutions:

⇒ λx =−ħh
s

α

m

�

nx +
1
2

�

λy =−ħh
s

α

m

�

ny +
1
2

�

λz =−ħh
s

α

m

�

nz+
1
2

�

with
nx = 0,1,2,... ny = 0,1,2,... nz = 0,1,2,....

4. Inserting the separation constants we find

E(nx ,ny ,nz) = −λx −λy −λz =ħh
s

α

m

�

nx +
1
2

�

+ħh
s

α

m

�

ny +
1
2

�

+ħh
s

α

m

�

nz+
1
2

�

=

= ħh
s

α

m

�

nx +ny +nz+
3
2

�

5. To describe the eigenvalues of the energy we need the 3 quantum numbers nx ,ny ,nz .

7. Particle in the x y-plane with in�nite potential walls.

A particle with mass m moves according to the Schrödinger equation in the x y-plane. Within a the
square region

−
L
2
≤ x ≤

L
2

and−
L
2
≤ y ≤

L
2

the potential is zero. Outside this region the potential is infinite.
•. Write the time independent Schrödinger equation for the particle in the square region.
• Determine the boundary conditions.
• Find the eigenvalues.

Solution.

•
�

−ħh2

2m

�

∂ 2

∂ x2
+
∂ 2

∂ y2

��

ψ(x , y) = E ·ψ(x , y)
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•
ψ

�

x =±
L
2

, y
�

= 0 and ψ

�

x , y =±
L
2

�

= 0 .

• Set
ψ(x , y) = f (x) · g(y)

and insert in the SE:
�

−ħh2

2m

�

∂ 2

∂ x2
+
∂ 2

∂ y2

��

f (x) g(y) = E f (x) g(y) || : f (x) · g(y)

ħh2

2m
f ′′

f
︸ ︷︷ ︸

=−λx

+
ħh2

2m
g ..

g
︸ ︷︷ ︸

=−λy

+E = 0 .

The separation Ansatz has divided the original SE into a differential equation for the separation
constant λx , a differential equation for the separation constant λy and an algebraic equation

E =λx +λy

λx and λy are the eigenvalues of differential equations for the one one-dimensional infinite walls in
the variables x respectively y and are therefore known to be

λx =
π2ħh2

2m L2
(nx )

2 nx = 1,2,...

and

λy =
π2ħh2

2m L2
(ny)

2 ny = 1,2,...

The algebraic equation leads to

E(nx ,ny) =
π2ħh2

2m L2
[n2

x +n2
y] nx = 1,2,... ny = 1,2,...

8. Separation Ansatz.

Consider the time-independent Schrödinger equation in three dimensions for the wave function
ψ(x , y,z). Let the potential energy depend only on the variable x , y . Along z assume periodic bound-
ary conditions in the interval [− L

2 , L
2 ]. Use your knowledge from the lectures to write the most accu-

rate separation Ansatz.

Solution.

As the potential is only dependent on x , y , a possible separation Ansatz reads
ψ(x , y,z) = f (x , y) · g(z)

i.e. the z-component can be separated out. As along z we have periodic boundary conditions, we can
specify our Ansatz to

ψ(x , y,z) = f (x , y) · g(z) ·
1
p

L
· eikn·z kn = 0,±

2π
L

,±2 ·
2π
L

, .....

9. Particle in an in�nite potential wall.

In the lecture we have solved the problem of a particle with mass m subject to infinite potential walls:

Φ(x) =
§

∞; L/2≤ x ≤−L/2
0; −L/2≤ x ≤ L/2

1. Find in the manuscript the wave function describing the ground state of the particle
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2. What is the amplitude of finding the particle at x = 0 in the ground state?

3. What is the probability density of finding the particle at x = 0 in the ground state?

4. Compute the probability of finding the particle in an interval [−ε,ε] in the ground state

5. Find in the manuscript the wave function describing the lowest lying excited state

6. What is the amplitude of finding the particle at x = 0 in this state?

7. What is the probability density of finding the particle at x = 0 in this state?

8. Compute the probability of finding the particle in an interval [−ε,ε] in this state

Solution.

We recall from the lecture the general solution of the problem:
√

√2
L

cos
�

(2n+1)π
L

x
�

En =
π2ħh2

2m L2
(2n+1)2 n= 0,1,2,...

and
√

√2
L

sin
�

(2n)π
L

x
�

Ep =
π2ħh2

2m L2
(2p)2 p= 1,2,3,...

1. The ground state is the solution with the lowest possible energy, i.e.

n= 0 E0 =
π2ħh2

2m L2
ψ0(x) =

√

√2
L

cos(
π

L
x)

2.

ψ0(x0 = 0) =

√

√2
L

3.

|ψ0(x0)|2 = |

√

√2
L
|2 =

2
L

4.

Wψ0
(x ∈ [−ε,ε]) =

∫ ε

−ε

�√

√2
L
·cos(

π

L
x)

�2

·d x =
2
L
ε+

sin
� 2πε

L

�

π

5. The lowest lying excited state is

p= 1 Ep=1 =
π2ħh2

2m L2
(2)2. ψ1(x) =

√

√2
L

sin(
2π
L

x)

6. The amplitude is ψ1(x0 = 0) =
q

2
L sin( 2π

L 0) = 0.

7. The probability density in the point x0 = 0 is given by: ρ= |ψ1(x0)|2 = |
q

2
L sin( 2π

L 0)|2 = 0.

8.

Wψ1
(x ∈ [−ε,ε]) =

∫ ε

−ε |ψ1(x)|2 d x
∫ L/2
−L/2 |ψ1(x)|2 d x

=
2
L
ε−

sin
� 4πε

L

�

2π
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10. Free particle with periodic boundary conditions.

The Fourier theorem states that the superposition of plane waves

un(x) =
1
p

L
· ei 2π·n

L ·x n= 0,±1,±2,.....

can be used to express any L periodic function in the interval [−L
2 , L

2 ]
• Show that the plane waves are eigenfunctions of the momentum operator and find all possible
eigenvalues of the momentum operator.
Assume now that one has prepared, by a suitable experimental device, a particle in a state with wave
function

ψ(x) =
1
p

3

1
p

L
ei 2π

L ·x +
i ·
p

2
p

3

1
p

L
e−i 2π

L ·x

• Find all possible outcomes of an experiment that measures the momentum in the state ψ(x).
• With which probability are these values detected? Hint: you do not have to compute one single
integral explicitely for solving this exercise! Use the orthonormality relations to compute any scalar
product forthcoming in the computation.
• Compute the quantum mechanical expectation value of the momentum operator in the state ψ by
computing the scalar product

�

ψ, popψ
�

.
• Use now the possible outcomes of the measurement of the momentum and their probabilities to
compute again the quantum mechanical expectation value.
• Find all possible outcomes of an experiment that measures the energy in the state ψ(x).
• Compute the probability of these outcomes.
• Find the expectation value of the energy operator in this state.

Solution.

•
−iħh

d
d x

1
p

L
· ei 2π·n

L ·x =ħh ·
2π ·n

L
︸ ︷︷ ︸

eigenvalue

·
1
p

L
· ei 2π·n

L ·x

︸ ︷︷ ︸

eigenfunction

• The given function ψ(x) is a linear combination of two eigenfunctions of the momentum operator:
u1(x) and u−1(x). From the lecture, we know that the detection of the momentum of the particle in
this state will produce the two corresponding eigenvalues:

±ħh
2π
L

• The given function is normalized to ”1” so that

Wψ(ħh
2π
L
) = |< u1,ψ> |2 = |< u1,

1
p

3
u1+

i
p

2
p

3
u−1 > |2

= |< u1,
1
p

3
u1 >+< u1,

i
p

2
p

3
u−1 > |2 = |

1
p

3
< u1,u1 >+

i
p

2
p

3
< u1,u−1 > |2

= |
1
p

3
< u1,u1 >+0|2 = |

1
p

3
|2 =

1
3

and

Wψ(−ħh
2π
L
) = |< u−1,ψ> |2 = |

i
p

2
p

3
< u−1,u−1 > |2 =

2
3

• The wave function is normalized to ”1”. Using the orthonormality properties of the plane waves we
find

p̂ψ(x) =−iħh
d

d x
ψ(x) =ħh

2π
L
·

1
p

3
u1−ħh

2π
L
·
i ·
p

2
p

3
u−1
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and

(ψ, p̂ψ) = ħh
2π
L
·
�

1
p

3
u1+

i ·
p

2
p

3
u−1,

1
p

3
u1−

i ·
p

2
p

3
u−1

�

= ħh
2π
L
·

�

1
p

3
·

1
p

3
−

i ·
p

2
p

3
·
i ·
p

2
p

3

�

= −
1
3
·ħh

2π
L

• We can, alternatively, compute the expectation value by using the outcomes of the measurement
and their probabilities:

< p>|ψ = Wψ(ħh
2π
L
) ·ħh

2π
L
+Wψ(−ħh

2π
L
) ·(−ħh

2π
L
)

=
1
3
·ħh

2π
L
+

2
3
·(−ħh

2π
L
)

= −
1
3
·ħh

2π
L

• The state is a superposition of plane waves. These are also eigenstates of the Hamilton operator.
Therefore we can read out the possible outcomes of a measurement of the energy by applying the
Hamilton operator onto these states. For example:

−ħh2

2m
∂ 2

∂ x2

1
p

L
ei 2π

L ·x =
ħh2

2m
·(

2π
L
)2

1
p

L
ei 2π

L ·x

Both plane waves carry the same energy eigenvalue. Accordingly, we have one possible outcome:
ħh2

2m
·(

2π
L
)2

• The probability of measuring this eigenvalue is ”1”.
•. The expectation value of the Hamilton operator is

ħh2

2m
·(

2π
L
)2

11. The parity operator.

The parity operator P̂ is defined is one dimension as the operator that changes the sign of the spatial
variable of a wave function:

P̂ψ(x) =ψ(−x)
In particle physics it plays an important role – in particular because the weak interaction violates
parity conservation (this means that when a process involves a weak interaction it proceeds in a
different way in opposite spatial directions). It is therefore interesting to study its properties.

1. Show by explicit computation of the integral that P̂ is an Hermitic operator, i.e.
�

P̂ϕ,ψ
�

=
�

ϕ, P̂ψ
�

2. Find all its possible eigenvalues (there are actually only two). Hint: solve the eigenvalue equa-
tion by using the fact that applying P̂ twice gives the identity operation, i.e. (P̂)2 =1.

3. In the space defined by the set {un(x)}, n=0,±1,±2,.... (see Exercise 10) P̂ has eigenfunctions.
Find all of them and establish which ones belong to which eigenvalue.

4. Consider again the wave function of Exercise 10

ψ(x) =
1
p

3

1
p

L
ei 2π

L ·x +
i ·
p

2
p

3

1
p

L
e−i 2π

L ·x
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and find what are the possible outcomes of measuring the parity of a system in the state ψ and
with which probability these values are measured.

5. Compute the quantum mechanical expectation value of the operator P̂ in the state ψ by two
methods: first use the values you have just computed for the possible outcome of an experiment
and their probability. Second, by computing explicitly

�

ψ, P̂ψ
�

.

Solution.

1.
�

P̂ ψ,ψ
�

=

∫ ∞

−∞
ψ(−x) ·ψ(x)d x =

︸︷︷︸

y=−x ,d x=−d y

−
∫ −∞

∞
ψ(y)ψ(−y)d y

=

∫ ∞

−∞
ψ(y) P̂ψ(y)d y

=
�

ψ, P̂ ψ
�

2. The sought for eigenvalues are the solution of the equation
P̂ψ(x) =λ ·ψ(x)

As
(P̂)2ψ(x) =ψ(x) = (λ)2ψ(x)

we obtain
λ2 = 1↔λ=±1

3. From
P̂ψ(x) =ψ(−x) = 1 ·ψ(x)

we learn that the eigenfunctions to λ= 1 are even with respect to change of sign. The eigen-
functions to λ=−1 are the uneven ones. The set of plane waves

{un(x)} n= 0,±1,±2,....
are neither even nor uneven, so that they are not eigenfunctions of P̂. However, we can construct
a set of eigenfunctions for P̂ by guessing suitable linear combinations:

vn(x) =
1
p

2
(un(x)+u−n(x)) =

√

√2
L

cos
�

2πn
L

x
�

P̂ vn = 1 · vn

wn(x) =
1
p

2
(un(x)−u−n(x)) = i ·

√

√ 2
·L

sin
�

2πn
L

x
�

P̂ wn = (−1) ·wn

We have taken care that the set of eigenfunctions of P̂ are normalized to ”1”, for further use.

4. To read out from a given wave function the possible outcome of an experiment aimed at de-
tecting the parity, it is necessary to expand the given wave function as a linear combinations of
eigenfunctions of P̂. We use

un =
1
p

2
(vn+wn) u−n =

1
p

2
(vn−wn)

to write

ψ=
1
p

6
(1+ i

p
2)v1+

1
p

6
(1− i

p
2)w1

or

ψ(x) =
1
p

6
(1+ i

p
2)

√

√2
L

cos
�

2πn
L

x
�

+
1
p

6
(1− i

p
2)

√

√2
L

i sin
�

2πn
L

x
�
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We can now read out that a possible outcome of measuring the parity is the eigenvalue +1 with
probability

Wψ(+1) = |< v1,ψ> |2 = |< v1,
1
p

6
(1+ i

p
2)v1+

1
p

6
(1− i

p
2)w1 > |2

= |
1
p

6
(1+ i

p
2)|2 =

1
6
(1+ i

p
2)(1− i

p
2)

= 1/2
and the eigenvalue −1 also with probability

Wψ(+1) = 1/2

5.

< P̂ >|ψ=
1
2
·(+1)+

1
2
·(−1) = 0

or (with 1p
6
(1+ i

p
2)=̇A and 1p

6
(1− i

p
2)=̇B)

P̂ψ(x) = P̂(Av1+B w1) = A v1−B w1

and
�

ψ, P̂ ψ
�

= < Av1+B w1,A v1−B w1 >=< Av1,Av1 >+< B w1,−B w1 >

= | A |2 − | B |2

= 0

12. Self-adjoint operators.

DEFINITION. The operator that solves the equation
�

L† g, f
�

= (g, L f )
is called the adjoint operator to L.
DEFINITION. If L† is formally identical to L AND the domain of definition of (L†) coincide with the
domain of definition of L, then the operator is said to be self-adjoint.
•Example 1: Study the momentum operator −i d

d x in the interval [a, b].

• Example 2: study the kinetic energy operator H0
.
=− d2

d x2 in the interval [a, b].
Boundary conditions:
a. No boundary conditions at a and b.
b. Dirichlet boundary conditions.
c. Generalized periodic boundary conditions.

Solution.

• Example 1. We compute p† using integration by parts:

(g, p f ) =−i
�

f (b)g(b)− f (a)g(a)
�

+
�

−i
d g
d x

, f
�

=
�

p† g, f
�

a. No boundary conditions at a and b. Because of the boundary term, p† 6= p.
b. Dirichlet boundary conditions. If we require f (a) = f (b) = 0 the boundary term evaluates to 0
and p†=−i d

d x = p, i.e. p is certainly Hermitic. However, the boundary terms vanishes even if g(a) 6=
g(b) 6= 0, i.e. D(g) is a larger set that D( f ). With these boundary conditions, p is not self-adjoint.
c. Generalized periodic boundary conditions. We require now

f (b) = f (a) · eiθ

179



with some real θ (the case θ =0 is called Born-von Karman boundary conditions). With these bound-
ary conditions, the boundary terms become

f (a) · eiθ g(b)− f (a)g(a)
In order for this boundary term to vanish we must have

g(b) = eiθ g(a)
i.e. the set of functions in the domain of p† must obey the same boundary conditions as the set of
functions in the domain of p. With these boundary conditions, p is self-adjoint.
• Example 2. Using partial integration we obtain

(g,H0 f ) = g(a) f ′(a)− g(b) f ′(b)+ g ′(b) f (b)− g ′(a) f (a)+

�

−
d2 g
d x2

, f

�

=
�

H†
0, f

�

a. No boundary conditions at a and b. Because of the boundary term, H†
0 6=H0.

b. Dirichlet boundary conditions. Two boundary terms vanish because f (a) = f (b) = 0. For the re-
maining two to vanish, g(a)= g(b)= 0, i.e. the domain of definition for H†

0 and H0 are identical and
the operator H0 is self-adjoint.
c. generalized periodic boundary conditions. We assume generalized periodic boundary conditions
for f AND f ′:

f (b) = f (a)eiθ

f ′(b) = f ′(a)eiθ

The boundary terms write

g(a) f ′(a)− g(b) f ′(a) · eiθ + g ′(b) f (a) · eiθ − g ′(a) f (a)

= f ′(a)
�

g(a)− g(b) · eiθ
�

− f (a)
�

g ′(a)− g ′(b) · eiθ
�

The boundary term only vanishes if exactly the same boundary conditions are imposed on the g-
function, so that these boundary conditions render H0 self-adjoint.

13. The Hamilton operator H =− d2

d x2 +V (x) in the intervals [0,∞] and
[a, b].

Discuss the self-adjointness of this operator.

Solution.

We start with the interval [0,∞] and boundary condition f ′(0) = a · f (0):

(g,H f ) = g(0) f ′(0)− g ′(0) f (0)−
�

g(x) f ′(x)+ g ′(x) f (x)
�

|x→∞+
�

−
d2 g
d x2

+V (x)g, f

�

=
�

H† g, f
�

Provided all functions are square integrable, all boundary terms vanish if g obey the same boundary
condition at x = 0. With this boundary condition, H is self-adjoint.
In case of the interval [a, b], we have:

�

g,−
d2 f
d x2

+V (x) f

�

= g(a) f ′(a)− g ′(a) f (a)− g(b) f ′(b)+ g ′(b) f (b)

+

�

−
d2 g
d x2

, f

�

+(V (x)g, f )

– Dirichlet boundary condition f (a) = g(b) = 0. The boundary term vanishes if g(a) = g(b) = 0, i.e.
the operator is self-adjoint. – von Neumann boundary condition f ′(a) = f ′(b) = 0. The boundary
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term vanishes if also g ′(a) = g ′(b) = 0, i.e. the Hamilton operator is self-adjoint.
– Generalized periodic boundary conditions. In the case of generalized periodic boundary conditions

f (a) = g( f )eiθ f ′(a) = f ′(b)eiθ

the boundary term writes

f ′(b)
�

g(a)eiθ − g(b)
�

+ f (b)
�

g ′(b)eiθ − g ′(a)
�

and vanishes if g also fulfills the conditions g(a) = g(b)eiθ and g ′(a) = g ′(b)eiθ , i.e. the operator is
self-adjoint.

12.3. Exercises to Chapter 5.

1. Spin 1
2 algebra.

The matrix representation of the x-, y- und z-components of the Pauli operators reads:

σx =
�

0 1
1 0

�

, σy =
�

0 −i
i 0

�

, σz =
�

1 0
0 −1

�

.

• Compute explicitely the matrix representation of σ2

• Show that the vectors
�

1
0

�

;
�

0
1

�

are eigenvectors of σz and σ2.
• Consider the rules of computation for Pauli matrices:

σx Y± = Y∓ σy Y± =±iY∓ σzY± =±Y± σ ·σY± = 3Y±

(you have just demonstrated two of these rules). Show that
√

√1
2
(Y+⊗Y−−Y−⊗Y+)

(the singlet spin state) is indeed an eigenstate of the operator
(σ⊗1+1⊗σ)2

of the composite system of two spin 1
2 -particles to the total spin quantum number S= 0.

Solution.

•

σ2 = σx ·σx +σy ·σy +σz ·σz

=
§�

0 1
1 0

��

0 1
1 0

�

+
�

0 −i
i 0

��

0 −i
i 0

�

+
�

1 0
0 −1

��

1 0
0 −1

�ª

=
§�

1 0
0 1

�

+
�

1 0
0 1

�

+
�

1 0
0 1

�ª

= 3 ·
�

1 0
0 1

�

•

�

1 0
0 1̄

��

1
0

�

= 1 ·
�

1
0

� �

1 0
0 1̄

��

0
1

�

= 1̄ ·
�

0
1

�
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3 ·
�

1 0
0 1

��

1
0

�

= 3
�

1
0

�

3 ·
�

1 0
0 1

��

0
1

�

= 3 ·
�

0
1

�

•
(σ⊗1+1⊗σ)2 = (σ⊗1)2+(1⊗σ)2+2σ⊗σ

= σ ·σ⊗1+1⊗σ ·σ+2σ⊗σ
= 61⊗1+2σ⊗σ

[61⊗1+2σ⊗σ]

√

√1
2
(Y+⊗Y−−Y−⊗Y+) = 6 ·

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

+ 2[σx ⊗σx]

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

+ 2[σy ⊗σy]

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

+ 2[σz⊗σz]

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

= 6 ·

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

+ 2(

√

√1
2
(Y−⊗Y+−Y+⊗Y−)

+ 2 ·(i · ī)(

√

√1
2
(Y−⊗Y+−Y+⊗Y−)

+ 2 ·(1 · 1̄)(

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

= 0 ·(

√

√1
2
(Y+⊗Y−−Y−⊗Y+)

2. Algebra of angular momentum for composite systems.

Given is a composite system consisting of two particles with angular momentum quantum numbers
J1 and J2.
• Show by using the rules of computation for angular momentum operators that the (2J1+1)·(2J2+1)
product states

{Zm1
J1
⊗Zm2

J2
}

are eigenfunctions of the operators J1,z , J2,z , J2
1 und J2

2. Find the corresponding eigenvalues and
degeneracy.
Remark: the states

{Zm
J }

obey the relations

Jz Zm
J =ħh ·m ·Z

m
J (J)2Zm

J =ħh
2 · J(J+1)Zm

J J = 0,
1
2

,1,.....

Solution.

1.
(J1,z⊗1)Z

m1
J1
⊗Zm2

J2
=ħh ·m1 ·Z

m1
J1
⊗Zm2

J2
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Eigenvalue: ħh ·m1, 2J2+1-times degenerate.

2.
(1⊗ J2,z)Z

m1
J1
⊗Zm2

J2
=ħh ·m2 ·Z

m1
J1
⊗Zm2

J2

Eigenvalue: ħh ·m2, 2J1+1-times degenerate.

3.
(J2

1⊗1)Z
m1
J1
⊗Zm2

J2
=ħh2J1(J1+1) ·Zm1

J1
⊗Zm2

J2

Eigenvalue: ħh2 · J1(J1+1), (2J1+1) ·(2J2+1)-times degenerate.

4.
(1⊗J2

2)Z
m1
J1
⊗Zm2

J2
=ħh2J2(J2+1) ·Zm1

J1
⊗Zm2

J2

Eigenvalue: ħh2 · J2(J2+1), (2J1+1) ·(2J2+1)-times degenerate.

3. Cartan diagram.

Consider a composite system consisting of one particle with angular momentum quantum number 2
and one particle with angular momentum quantum number 1

2 .

1. Build the corresponding Cartan lattice and find the possible eigenvalues of Ĵ1z+ Ĵ2z as Cartan
weights (set ħh= 1 for simplicity).

2. Encircle on the Cartan diagram the possible quantum numbers for the operator (Ĵ1+ Ĵ2)2.

3. Find the possible eigenvalues for the operator (Ĵ1+ Ĵ2)2.

4. Write all possible eigenstates of Ĵ1z+ Ĵ2z

5. Write the matrix representation of Ĵ1z+ Ĵ2z in this set of basis functions.

6. The matrix representation of (Ĵ1+ Ĵ2)2 in this basis set is not diagonal. However, there are
special linear combinations that diagonalize the matrix. How does the matrix representation of
(Ĵ1+ Ĵ2)2 look like after diagonalization?

Solution.

1. The Cartan weigths read: 5
2 , 3

2 , 3
2 , 1

2 , 1
2 , − 1

2 , − 1
2 , − 3

2 , − 3
2 , − 5

2

m

J=2

J=1/2

-1 +1 +20-2

+1/2

-1/2

m

5/23/2

Cartan diagram for 2⊗1+1⊗ 1
2 . The dots are the Cartan lattice. The Cartan weigths indicating the pos-

sible values for the total angular momentum quantum numbers are encircled and given in the diagram:
follow the arrows to sample their z-components.
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2. The possible quantum numbers for (Ĵ1+ Ĵ2)2 are

J =
5
2

J =
3
3

3. The eigenvalues write
35
4

15
4

4. There are 10 product states

Zm2
2 ⊗Z

m 1
2

1
2

The values of m2 and m 1
2

are along the horizontal respectively vertical axis of the Cartan
diagram.

5. Let us use now ħh:

Jz =

































5
2 0 0 0 0 0 0 0 0 0
0 3

2 0 0 0 0 0 0 0 0
0 0 3

2 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 − 1

2 0 0 0 0
0 0 0 0 0 0 − 1

2 0 0 0
0 0 0 0 0 0 0 − 3

2 0 0
0 0 0 0 0 0 0 0 − 3

2 0
0 0 0 0 0 0 0 0 0 − 5

2

































6. Solution:

(J)2 =ħh2

































35
4 0 0 0 0 0 0 0 0 0
0 35

4 0 0 0 0 0 0 0 0
0 0 35

4 0 0 0 0 0 0 0
0 0 0 35

4 0 0 0 0 0 0
0 0 0 0 35

4 0 0 0 0 0
0 0 0 0 0 35

4 0 0 0 0
0 0 0 0 0 0 15

4 0 0 0
0 0 0 0 0 0 0 15

4 0 0
0 0 0 0 0 0 0 0 15

4 0
0 0 0 0 0 0 0 0 0 15

4

































4. Clebsch-Gordan coe�cients.

The Table for the Clebsch-Gordan coefficients (taken from M. Tanabashi et al. (Particle Data Group),
Phys. Rev. D 98, 030001 (2018)), p.564) related to an electron with orbital angular momentum
quantum number ”1” and spin quantum number ” 1

2 ” is given in the next figure.
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1 1
2o

-2/3

3/2
+3/2 3/2 1/2

+1/2 +1/2
3/2

3/2

1/2
-1/2 -1/2

-3/2-1
-1/2

+1+1/2
+1 -1/2

0 +1/2

+1/2
0 -1/2

-1-1

1
1/3 2/3
2/3 -1/3

2/3 1/3
1/3

Table of the Clebsch-Gordan coefficients (in red) for 1⊕ 1
2 .

1. Obtain from the Table the two eigenstates of the total angular momentum (L⊗1+1⊗S)2 to
the total angular momentum quantum number J = 1

2 call them | a> and | b>.

2. What is the outcome of an experiment that measures the square of the total angular momentum
J2 = (L+S)2 in | a> and | b>?

3. What is the outcome of an experiment that measures the z-component of the total angular
momentum Jz

.
= Lz+Sz in the states | a> and | b>?

4. Compute the matrix representation of Jz in the subspace built by the two states | a> and | b>.

5. What is the outcome of an experiment that measures the z-component of the orbital angular
momentum Lz in the states | a > and | b >? What are the amplitudes for the respective out-
comes?

6. Compute the expectation value of Lz is the states | a> and | b>.

7. Compute the matrix representation of Lz in the subspace built by the two states | a> and | b>
(the matrix is diagonal)

8. Show that, despite the matrix being diagonal, | a> and | b> are NOT eigenfunctions of Lz .

9. Compute the matrix representation of Sz in the subspace built by the two states | a> and | b>
(the matrix is diagonal).

10. Show that the matrix of Lz added to the matrix of Sz gives indeed the matrix of Jz .

11. Show that, despite the matrix being diagonal, | a> and | b> are NOT eigenfunctions of Sz .

Solution.

1. The eigenstate to J = 1
2 and Jz = +

1
2 is found by using the Clebsch-Gordan coefficients that

appear in the intersection of the two dashed rectangles:

|
1
2

,
1
2
>

.
=| a>

√

√2
3

Y 1
1 ⊗Y−−

√

√1
3
·Y 0

1 ⊗Y+

The second eigenstate is

|
1
2

,−
1
2
>| b>=

√

√1
3
·Y 0

1 ⊗Y−−

√

√2
3

Y−1
1 ⊗Y+
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2. In both states, the outcome is

J(J+1)ħh2 =ħh2 ·
3
4

3. From the Table, we read out that | a> is an eigenstate of Jz to the eigenvalue

ħh
1
2

and | b> is an eigenstate to the eigenvalue

−ħh
1
2

so that the outcome of a measurement of Jz is ħh 1
2 in | a> and − 1

2ħh in | b>.

4. We know that | a> and | b> are eigenstates of the operator Jz which means that the matrix
representation of Jz in this basis is diagonal with the eigenvalues of | a > and | b > on the
diagonal:

ħh
�

1
2 0
0 − 1

2

�

5. In | a> one will detect the value

0 ·ħh amplitude −

√

√1
3

ħh amplitude +

√

√2
3

In | b> one will detect the value

0 amplitude

√

√1
3

−ħh amplitude −

√

√2
3

6.

< Lz >a= 0 ·ħh ·(−

√

√1
3
)2+ħh ·(

√

√2
3
)2 =

2
3
·ħh

< Lz >b= 0 ·ħh ·(

√

√1
3
)2−ħh ·(

√

√2
3
)2 =−

2
3
·ħh

7.

< a | Lz | a> =













−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−, Lz(−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−)

︸ ︷︷ ︸

Ç

2
3 ·ħhY 1

1 ⊗Y−













=

�√

√2
3

Y 1
1 ⊗Y−,

√

√2
3
·ħhY 1

1 ⊗Y−
�

= =ħh ·
2
3

Similarly, one finds that

< b | Lz | b>=−ħh ·
2
3
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The non-diagonal matrix elements are zero so that the matrix representation of Lz in this sub-
spaces writes

ħh
�

2
3 0
0 − 2

3

�

8.

Lz(−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−) = Lz(−

√

√1
3
·Y 0

1 ⊗Y+)+ Lz(

√

√2
3

Y 1
1 ⊗Y−)

= −

√

√1
3
·(LzY 0)
︸ ︷︷ ︸

0

⊗Y++

√

√2
3
·(LzY 1)
︸ ︷︷ ︸

ħh·1

⊗Y−

=

√

√2
3
·ħhY 1

1 ⊗Y− 6∝ (−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−)

9. The top left matrix element reads

< a | Sz | a> =













−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−,Sz(−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−)

︸ ︷︷ ︸

ħh
2 ·(−

Ç

1
3 ·Y

0
1 ⊗Y+−

Ç

2
3 Y 1

1 ⊗Y−)













= −
ħh
6

The second diagonal matrix elements is ħh6 , the non diagonals are vanishing.

Sz =

�

−ħh6 0
0 ħh

6

�

10. The matrix of Lz plus the matrix of Sz should give the matrix of Jz in this subspace:
�

2ħh
3 0
0 − 2ħh

3

�

+

�

−ħh6 0
0 ħh

6

�

=

�ħh
2 0
0 −ħh2

�

11.

Sz(−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−) =

ħh
2
·(−

√

√1
3
·Y 0

1 ⊗Y+−

√

√2
3

Y 1
1 ⊗Y−)

6∝ (−

√

√1
3
·Y 0

1 ⊗Y++

√

√2
3

Y 1
1 ⊗Y−)

5. Eigenvectors of the σ1 ·σ2 operator.

This operator for the composite system of two-spin 1
2 particles is defined, precisely speaking, as fol-

lows:
σ1x ⊗σ2x +σ1y ⊗σ2y +σ1z⊗σ2z

In the space of the four product states
Y+Y+ Y+Y− Y−Y+ Y−Y−

find the eigenvalues and the eigenvectors of the operator.
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Solution.

We build the four-by-four matrix representing this operator in this subspace and diagonalize it. We
need only 10 matrix elements, as the operator is hermitic. We compute using the rules of computation

σx Y± = Y∓ σy Y± =±iY∓ σzY± =±Y± σ ·σY± = 3Y±

For example:
(σ1⊗σ2)23 = (Y+Y−,σx ⊗σx Y−Y+)

+ (Y+Y−,σy ⊗σy Y−Y+)

+ (Y+Y−,σz⊗σzY−Y+)
= 1 ·1+(−i · i)+0 ·0
= 2

We find the matrix representation






1 0 0 0
0 1̄ 2 0
0 2 1̄ 0
0 0 0 1







One eigenvalue can be read out from the matrix directly, as the matrix is partially diagonal:
+1 twice degenerate

The remaining eigenvalues are found by solving the determinantal equation of the central block of
the matrix:

(−1−λ)2−4= 0 ↔λ= 1 λ=−3
Accordingly +1 is three times degenerate, −3 once degenerate. The eigenvectors are found by solving
the set of coupled linear algebraic equations for the sought-for coeffcients x1, x2, x3, x4 (inserting the
known eigenvalues):







1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1













x1
x2
x3
x4






=λ ·







x1
x2
x3
x4







The eigenvector to the eigenvalue −3 is (singlet)

0,1,1̄,0 ↔

√

√1
2
[Y+(1)Y−(2)−Y−(1)Y+(2)]

The three eigenvectots to +1 are (triplet)
1. Y+(1)Y+(2)

2.

√

√1
2
[Y+(1)Y−(2)+Y−(1)Y+(2)]

3. Y−(1)Y−(2)

12.4. Exercises to Chapter 7, 8.

1. Multipletts, terms and the Zeeman e�ect in the Si-atom.

The Si atom has 14 electrons.

1. What is the electron configuration of the ground state?

2. What is the spectral symbol of the ground state?
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3. What is the outcome of measuring the square of the vector of the total angular momentum in
the ground state?

4. What is the outcome of measuring the square of the vector of the orbital angular momentum
in the ground state?

5. What is the outcome of measuring the square of the vector of the spin angular momentum in
the ground state?

6. How much is the degeneracy of the ground state?

7. One electron from the outer shell is removed and only one is left in the outer shell. Which
multiplet 2S+1 L can be built in this one electron configuration?

8. Write the two spectral terms that are obtained from the remaining multiplet.

9. Which spectral term is the excited state?

10. How much is the degeneracy of the excited state?

11. Find the four basis eigenfunctions in the excited state from the table of Clebsch-Gordan coeffi-
cients.

1 1
2o

-2/3

3/2
+3/2 3/2 1/2

+1/2 +1/2
3/2

3/2

1/2
-1/2 -1/2

-3/2-1
-1/2

+1+1/2
+1 -1/2

0 +1/2

+1/2
0 -1/2

-1-1

1
1/3 2/3
2/3 -1/3

2/3 1/3
1/3

Table of the Clebsch-Gordan coefficients (in red) for 1⊕ 1
2 .

12. Construct the matrix representation of Lz+2 ·Sz in this space (note that the matrices for Lz and
Sz are diagonal.)

13. Obtain from this matrix the matrix representation of the Zeeman operator, assuming a magnetic
field of strength B is applied along +z.

14. Compute the Landé factor for this spectral term

15. Show that the matrix representation of the Zeeman operator obtained using the Landé factor
is identical to the matrix representation you have obtained by summing Lz and 2Sz .

16. Find all possible eigenvalues of the Zeeman operator.

17. Which eigenvalue describes the state with highest energy?

18. Which one is its eigenfunction?

19. What is the outcome of an experiment that measures the value of J2 in this state?
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20. What is the outcome of an experiment that measures the value of Jz in this state?

21. What is the outcome of an experiment that measures the value of µz (the z-component of the
magnetic moment) in this state?

Solution.

1. The electronic configuration writes
(1s)2 (2s)2 (2p)6 (3s)2 (3p)2

2. To find the spectral symbol of the ground state we need to apply the three Hund’s rules. The
next figure shows the filling of the states according to the Hund’s rules.

L=1

m=+1 m=0 m=-1

The two electrons are placed both with spin up in the orbitals with m=+1 and m= 0, thus maximizing
both the spin and the orbital angular momentum.

The total spin is S= 1 and the total orbital angular momentum is L= 1+0= 1, i.e. the ground
state multiplett of the Si-atom is 3P. There are three possible values for the total angular mo-
mentum quantum number: J = 2,1,0 The third’s Hund rule prescribes that, by less than half
filling, the total orbital momentum quantum number is | L−S |, in this case J = 0. The spectro-
scopic symbol of the ground state is

3P0

3. Outcome for J2: J(J+1) ·ħh2 = 0.

4. Outcome for L2: L(L+1)ħh2 = 2ħh2.

5. Outcome for S2: S(S+1)ħh2 = 2ħh2.

6. The degeneracy of the ground state belonging to J = 0 is given by 2J+1= 1.

7. If one electron is removed, the multiplett is changed to 2P, with S= 1
2 and L= 1.

8. One can obtain two spectral terms by using J = |L−S| and J = |L+S|. The first one describes
the ground state and the second one describes an excited state: 2P1/2 and 2P3/2.

9. The excited state is described by the spectral term which violates the third Hund’s rule: 2P3/2

(the spectral term 2P1/2 describes the ground state).

10. The degeneracy is given by 2J+1= 4.
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11. We find the wavefunctions for 2P3/2 if we use the columns with heading ”J = 3/2”:

ψ1 = Y 1
1 Y+

ψ2 =

√

√1
3

Y 1
1 Y−+

√

√2
3

Y 0
1 Y+

ψ3 =

√

√2
3

Y 0
1 Y−+

√

√1
3

Y−1
1 Y+

ψ4 = Y−1
1 Y−

12.
<ψ1,(Lz+2Sz)ψ1 > = < Y 1

1 Y+,(Lz+2Sz)Y
1
1 Y+ >

= 2ħh< Y 1
1 Y+,Y 1

1 Y+ >

= 2ħh

<ψ2,(Lz+2Sz)ψ2 > =
2
3
ħh

<ψ3,(Lz+2Sz)ψ3 > = −
2
3
ħh

<ψ4,(Lz+2Sz)ψ4 > = −2ħh

Lz+2Sz =







2ħh 0 0 0
0 2/3ħh 0 0
0 0 −2/3ħh 0
0 0 0 −2ħh







13.

HZ =
µB

ħh
(Lz+2Sz)B=µB B







2 0 0 0
0 2/3 0 0
0 0 −2/3 0
0 0 0 −2







14.

gLSJ = 1+
J(J+1)+S(S+1)− L(L+1)

2J(J+1)
=

4
3

by using J = 3
2 , S= 1

2 and L= 1.

15.

HZ =
4
3
µB B









3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2









=µB B







2 0 0 0
0 2/3 0 0
0 0 −2/3 0
0 0 0 −2






=µB(Lz+2Sz)B.

16. The eigenvalues of the Zeeman operator van be read out from the diagonal of the matrix to be

±2µBB ±
2
3
µBB

17. The highest energy is
Eterm+2µBB

18. The eigenstate with highest energy is
ψ1 = Y 1

1 Y+

191



19. For the state ψ1 the quantum number J is still 3
2 , which means that the outcome of measuring

J2 is

J(J+1)ħh=
15
4
ħh

20. ψ1 is the eigenstate with Jz =
3
2 , so that the outcome of measuring Jz is

3
2
ħh

21. The vector of the magnetic moment operator is defined as

µ=−µB · gLSJ ·
J
ħh

Applying this definition to the highest Jz eigenvalue we obtain

µz =−
4
3
·µB ·

3
2
=−2µB

2. Multipletts, terms and the Zeeman e�ect in the Z r-atom.

We consider a Z r-Atom (40 electrons). This is one of the atoms where the 5s level if filled before the
4d levels.

1. Write the electron configuration for the ground state.
Solution: (Kr)(5s)2(4d)2

2. Write the multiplet symbol of the ground state.
Solution: 3F

3. Write the spectral symbol of the ground state.
Solution: 3F2

4. What is the total angular momentum quantum number of the ground state?
Solution: 2

5. What is the eigenvalue of the square of the total angular momentum vector in the ground
state?
Solution: ħh2 ·6

6. Write the matrix representation of the operator (L+S)2 in the eigenspace of the ground state.
Solution:

ħh2 ·











6 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6











7. Write the matrix representation of the operator (L)2 in the eigenspace of the ground state.
Solution:

ħh2 ·











12 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 12 0
0 0 0 0 12










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8. Write the matrix representation of the operator (S)2 in the eigenspace of the ground state.
Solution:

ħh2 ·











2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2











9. What are the possible outcomes for measuring the z-component of the total angular momentum
vector in the ground state?
Solution: ħh · {2,1,0,1̄, 2̄}

10. A magnetic field with strength B along the z-direction is applied to the system. The energy level
E0 of the ground state splits into so called Zeeman sublevels. Compute the distance between
two neighboring Zeeman levels as a function of B.

11. In the lowest lying Zeeman level, which value will be detected when the z-component of the
total angular momentum vector is measured?

12. In the lowest lying Zeeman level, which value will be detected when the z-component of the
magnetic moment is measured?

Solution of 10, 11 and 12.

10. The Zeeman splitting is given by
µB · gLSJ ·B

We compute

gLSJ = 1+
J(J+1)+S(S+1)− L(L+1)

2J(J+1)
=

2
3

In this case, the Zeeman splitting amount to
2
3
·µB ·B

11. The state with the lowest Zeeman energy is the one with
Jz =−2 ·ħh

12.

µz =−µB · gLSJ · Jz =
4
3
µB

3. One and two identical particles in quadratic potential.

We consider a spinless particle with mass m moving according to the Schrödinger equation in the
xz-space. The potential energy is taken to be K

2 ·(x
2+z2).

1. Write the Schrödinger equation that must be solved to determine the eigenstates to a given
eigenvalue E, ψE(x ,z).

2. Find all possible energy eigenvalues, E, using your knowledge from the lecture, without solving
equations. Notice: your expression for the energy must include the parameter K .

3. Which energy eigenvalue corresponds to the ground state state?

4. Find the energy value of the lowest lying EXCITED STATE.
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5. What is the degeneracy of the lowest lying EXCITED STATE

6. Find the energy value of the next lowest lying EXCITED STATE.

7. What is the degeneracy of the next lowest lying EXCITED STATE?

8. The parity operator was defined in the lecture. Define it here again for this specific case.

9. What is the possible outcome of measuring the parity in the ground state? Your answer must
be supported by an approximate hint about how the ground state wave function looks like.

10. Let us add a second, identical spinless particle with the same mass. The second particle also
moves in the same potential energy and is not interacting with the first one. We have therefore
two non-interacting particles with the same potential energy given by the expression above.
Write the Schrödinger equation for the system consisting of the two particles.

11. Use your knowledge from the lecture to write the general expression for the energy eigenvalues
of the two-particle system.

12. Let us give to the ground state the two-particle spinless system the lable | 0,0,0,0> (orψ0,0,0,0
is you like). Can you relate the four ”0”’s to the energy of the ground state of the two-particle
spinless system?

13. Write the (approximate) ground state wave function, i.e.
< .... | 0,0,0,0>

or, if you prefer
ψ0,0,0,0(....)

14. Let us give now to each particle a spin 1
2 , but let us first ignore the Pauli principle. Write all

basis states building the ground state, including the spin components.

15. ”Switch on” the Pauli principle. Write again all basis states remaining in the ground state of the
system.

Solution.

1.

−
ħh2

2m

�

∂ 2

∂ x2
+
∂ 2

∂ z2
+

�

ψ(x ,z)+
K
2
·(x2+z2)ψ(x ,z) = Eψ(x ,z)

2. Along both degrees of freedom x and z one recognizes the quantum mechanical harmonic
oscillator. According to the rules of merging two non-interacting degrees of freedom, the energy
eigenvalues of both degrees of freedom are added to produce the total eigenvalues. Accordingly

E(nx ,nz) =ħh

√

√ K
m
·(nx +nz+1) ni = 0,1,2,3....

nx ,nz are the quantum numbers necessary to lable the energy eigenvalues.

3. Set nx = nz = 0
E =ħh

p
Km ·1

4. Set nx = 0,nz = 1 or nx = 1,nz = 0
E =ħh

p
Km ·2
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5. The corresponding excited state is twice degenerate, as two possible choices of the quantum
numbers give the same eigenvalue.

6. Set nx = nz = 1
E =ħh

p
Km ·3

7. This state is, as the ground state, once degenerate.

8.
Pψ(x ,z)

.
=ψ(−x ,−z)

9. We remember: the ground state function of the one-dimensional harmonic oscillator is a gaus-
sian centered at the origin of the quadratic potential. The wave function of the composite system
is therefore

∝ e−[(
x
a )

2+( z
a )

2]

(a being some characteristic length, not relevant for discussing the parity). This function is
even with respect to change of sign, so that the we will detect the eigenvalue +1 of the parity
operator.

10. The SE for the two-particle system writes

−
ħh2

2m

�

∂ 2

∂ x2
1

+
∂ 2

∂ z2
1

+
∂ 2

∂ x2
2

+
∂ 2

∂ z2
2

�

ψ(x1,z1, x2,z2)

+[
K
2
·(x2

1+z2
1)+

K
2
·(x2

2+z2
2)]ψ(x1,z1, x2,z2) = Eψ(x1,z1, x2,z2)

11. The the energy eigenvalues of the two non-interacting, identical particles are obtained by sum-
ming the energy eigenvalues:

E =ħh

√

√ K
m
·(nx ,1+nx ,2+nz,1+nz,2+2) ni = 0,1,2,3....

Four quantum numbers ni are necessary to label the energy eigenvalues: two pertaining the
xz-degrees of freedom, two partaining the two-particles degrees of freedom.

12. The energy of the ground state of the two-particles system is obtained by inserting
nx ,1 = nx ,2 = nz,1 = nz,2 = 0

in the general expression for the eigenvalues. The four ”0”s in the labeling of the ground state
refer to the values of the quantum numbers.

13. The ground state wave function is the representation of the ground state with the variables
(x1,z1, x2,z2):

< x1,z1, x2,z2 | 0,0,0,0>=ψ0,0,0,0(x1,z1, x2,z2)∝ e−[(
x1
a )

2+(
z1
a )

2] · e−[(
x2
a )

2+( z2
a )

2]

14. There are four eigenstates in the ground level:

ψ0,0,0,0⊗















Y+Y+

Y+Y−

Y−Y+

Y−Y−

15. The Pauli principle requires that, for half-integer spins, only antisymmetric states are allowed.
With the four basis states one can build only one antisymmetric state, namely the so called
”spin singlet”:

1
p

2
ψ0,0,0,0⊗

�

Y+Y−−Y−Y+
�
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12.5. Exercises to Chapter 9.

1. Total energy of an Hn
10 molecule.

In the lecture, we have computed the single-particle energy levels for an electron moving in a one-
dimensional crystal with N atoms (lattice constant: a):

E i
0 = E0−2 ·A·cos(ki ·a) ki =

2π
Na
· i

E0 is the value of the energy of the atomic-like state, A> 0. The index i labels the energy levels: it
covers the range 1 to 10, hosting 10 possible eigenstates. The maximum number of electrons we can
place in the crystal is 20, as we can occupy each level with two electrons (Pauli principle).
• 1. Compute the possible ki-values for a H10-molecule.
• 2. Compute the total energy of the neutral molecule H10

10 , using the shell model.
• 3. From the total energy, obtain the binding energy of the H10

10 - molecule.
• 4. Can you predict some magic filling numbers n for which the molecule Hn

10 is particularly stable?

Solution.

• 1. The specification of the general formula to N = 10 writes

ki = ki =
2π

10 ·a
· i

The resulting energy levels are summarized in the following figure:

i ki 𝑬𝑬𝒊𝒊 = 𝑬𝑬𝟎𝟎 − 𝟐𝟐𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜(𝒌𝒌𝒊𝒊 𝒂𝒂)

1 2𝜋𝜋
10 𝑎𝑎

1 =
𝜋𝜋

5𝑎𝑎
𝑬𝑬𝟎𝟎 − 𝟏𝟏. 𝟔𝟔𝟔𝟔𝟔𝟔

2 2𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 − 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟔𝟔

3 3𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 + 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟔𝟔

4 4𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 + 𝟏𝟏. 𝟔𝟔𝟔𝟔𝟔𝟔

5 𝜋𝜋
𝑎𝑎

𝐸𝐸0 + 2𝐴𝐴

6 6𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 + 𝟏𝟏. 𝟔𝟔𝟔𝟔𝟔𝟔

7 7𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 + 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟔𝟔

8 8𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 − 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟔𝟔

9 9𝜋𝜋
5𝑎𝑎

𝑬𝑬𝟎𝟎 − 𝟏𝟏. 𝟔𝟔𝟔𝟔𝟔𝟔

10 2𝜋𝜋
𝑎𝑎

𝑬𝑬𝟎𝟎 − 𝟐𝟐𝟐𝟐

E0

E0 + 0.6 A

E0 + 1.6 A

E0 + 2 A

E0 - 0.6 A

E0 - 1.6 A

E0 - 2 A
k10

k1, k9

k2, k8

k3, k7

k4, k6

k5

Left: the ki values and the correspoding energy eigenvalues. Right: the energy eigenvalues marked along
the vertical. Some ki-values produces the same energy eigenvalue, which is, accordingly, more than once
degenerate.

We find the following energy levels, with their degeneracy given in brackets
E0+2A(1) E0+1.62A(2) E0+0.62A(2) E0−0.62A(2) E0−1.62A(2) E0−2A(1)

For computing the total energy of the neutral molecule H10
10 , fill the energy eigenvalues starting from

the lowest one, and taking into account their degeneracy and the Pauli principle.

196



– 2 electrons in the level E0−2A. These electrons contribute the energy
2 ·(E0−2A) = 2E0−4A

– 4 electrons in
E0−1.62A → 4E0−6.48A

– 4 electrons in
E0−0.62A → 4E0−2.48A

The total enery of the 10-electrons molecule amounts to
Etot = (2E0−4A)+(4E0−6.48A)+(4E0−2.48A) = 10E0−12.96A.

• 3. The binding energy is
Etot −10 · E0 =−12.96 ·A

• 4. From the lecture we know that we obtain a ’magic filling number’ whenever one level is full. The
level E0−2A is not degenerate, so we can fill 2 electrons there. The next magic filling number is the
one for which the level E0−1.62A is full. This level is filled with 6 electrons in total (2 in E0−2A and
four in E0−1.62A). We obatain therefore the magic filing numbers

nmagic = 2,6,10,14,18

12.6. Exercises to Chapter 10.

1. One dimensional SE with Dirac-delta potential spike.

Find the transmission coefficient of a Dirac-delta potential barrier
Φ(x) =Φ0 ·a ·δ(x)

a is a characteristic length that mimics finite width of a realistic potential barrier. Φ0 is a parameter
that mimics the finite height of a realistic potential barrier.

Solution.

• The SE reads
∂ 2

∂ x2
ψ(x)+

2m

ħh2 ·(E−Φ0 ·a ·δ(x)) ·ψ(x) = 0

This is an ordinary linear differential equation in one variable. One coefficient depends on the variable
x , so that the solution is not straightforward. We notice that right and left from the singularity the
potential is simple (in the specific case exactly vanishing) so that there we can solve the SE exactly.
In the regions | x |> 0 the SE to be solved is

∂ 2

∂ x2
ψL,R(x)+

2m

ħh2 · E
︸ ︷︷ ︸

.
=k2

ψL,R(x) = 0

ψL,R indicating the sought-for solutions for x < 0 (L) and x > 0 (R). The general solutions in the
regions L and R read:

ψL(x) = A
1
p

2π
eikx +B

1
p

2π
e−ikx

ψR(x) = C
1
p

2π
eikx +D

1
p

2π
e−ikx

We use basis states which are, strictly speaking, non-square integrable and are normalized by the
Dirac condition

∫ ∞

−∞

1
p

2π
e−ikx ·

1
p

2π
eik′ x =δ(k−k′)
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We hope that, despite the infinite norm, a procedure can be applied to obtain finite results. The
meaning of these basis states is shown by explicitly computing the ”current” associated with them.
As an example the Schrödinger current associated with the basis state 1p

2π
ei·k·x amounts to

ħh
2im

� 1
p

2π
ei·k·x ∂

∂ x
1
p

2π
ei·k·x −

1
p

2π
ei·k·x ∂

∂ x
1
p

2π
ei·k·x

�

=
1

2π
·
ħhk
m

The plane wave basis state 1p
2π

ei·k·x produces a steady flow of probability in the direction specified
by the sign of k.
As we want to describe a situation where a particle travel from the left toward the barrier, it is possibly
transmitted and/or reflected, we allow non-vanishing coefficients A – describing the incident wave –
B – describing the reflected wave and C – describing the transmitted wave – but we set D= 0, i.e. we
do not allow a source of particles in the R-segment. So far A,B,C are not specified and we need some
physical conditions on how to determining A,B,C – or at least on how to relate them. One of this
physical – boundary – conditions consists in requiring the continuity of the wave functions over the
entire configuration space, even at singularities of the potential – the probability of a particle being
at some site cannot depend on how one approaches the site. This means that

ψL(0) =ψR(0)
which leads to the first relation between A,B,C:

A+B= C
As delta functions can only be dealt with upon integrating over them, we take into account the
singularity of the potential by integrating over an interval containing the origin and then letting the
interval approach zero: (we call 2m

ħh2 Φ0 ≡ k2
0):

∫ +ε

−ε
d x ·ψ′′(x)

︸ ︷︷ ︸

[ψ′R(0)−ψ
′
L(0)]

−
∫ +ε

−ε
d x ·k2

0 ·a ·δ(x) ·ψ(x)
︸ ︷︷ ︸

k2
0 ·a·ψL(0)

+

∫ +ε

−ε
d xk2ψ(x)

︸ ︷︷ ︸

0

= 0

From this equation one can read out the second boundary condition:
[ψ′R(0)−ψ

′
L(0)]−k2

0 ·a ·ψL(0) = 0
which produces a further relation between A,B,C:

§

A+B= C
ik ·[C−A+B]−k2

0 ·a(A+B) = 0
This is a linear system of equation for the sought for coefficients A,B,C and k (i.e. E). The system
has solutions for any k: this means that the energy is not quantized. The energy spectrum builds a
continuum of values. The solutions for A,B,C are

C
A
=

2ik
2ik−k2

0 ·a

B
A
=

k2
0 ·a

2ik−k2
0a

Finally, by requiring that
| A2 |+ | B |2 + | C |2= 1

the coefficient A can be determined up to a phase factor (we do not need explicitely this step to draw
physically relevant conclusions, so we will avoid this algebra). We have therefore found the solution
of the SE with a delta-like barrier:

ψL(x) =
A
p

2π
· eikx +

A
p

2π

k2
0 ·a

2ik−k2
0a

e−ikx

ψR(x) =
A
p

2π

2ik
2ik−k2

0a
· eikx
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The appearance of a finite coefficient C in the solution allows to compute a finite transmitted
Schrödinger current:

JT =
| A |2

2π
· |

2ik
2ik−k2

0 ·a
|2
ħhk
m

The transmission coefficient is defined as

T
.
=

JT

JI

JI =
|A|2
2π
ħhk
m being the current arriving from the left hand side to the barrier. We find

T =|
2ik

2ik−k2
0 ·a
|2=

4k2

k4
0

·
1

a2+ 4k2

k4
0

Notice that both incident and transmitted waves are non-square integrable, but when a ratio of cur-
rents is computed, a technically diverging normalization constant is divided out and the final result
is free of unphysical divergencies. Our result about the finite transmission coefficient tells a very
non-classical behaviour: we observe a finite probability for a particle crossing a classically forbidden
spatial range. This phenomenon is known as quantum mechanical tunnelling. The transmission prob-
ability decay with a following a Lorentzian curve with full width at half maximum of 2k

k2
0
. In term of

the parameter E and Φ0 the FWHM is
s

ħh2E
m·Φ2

0
.

a

T :[
4k2

k4
0

] =
1

1 + a2

1 2 3 4 5

0.2

0.4

0.6

0.8

1

FWHM

Transmission coefficient for a delta-like barrier. a is in units of 2k
k2

0
.

For an electron (m=0.9 ·10−30kg) with 1 eV energy, a barrier height of 4 eV produces a characteristic

length of
s

ħh2E
m·V 2

0
∼ 0.6nm. At this length, the transmission coefficient is reduced by a factor of 2.

Sizeable currents are still obtained in artificial lattices with barrier width in the nm range.
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12.7. Exercises to Chapter 11.

1. Pauli equation: spin 1
2 in magnetic �eld.

Let us assume that we have prepared a spin 1
2 system in the state

1
p

2

�

1
1

�

at the time t = 0.
• 1. Show that this state is an eigenstate of Sx .
• 2. Which value will a measurement of the z-component of the spin operator detect in this state?
• 3. Suppose now that the spin, obeying this initial condition, is subject to a uniform magnetic field
pointing in the z-direction. Compute the spin polarization vector as a function of t.

Solution.

• 1.
ħh
2

�

0 1
1 0

�

� 1p
2

1p
2

�

=
ħh
2

� 1p
2

1p
2

�

The given state is an eigenstate of Sx to the eigenvalue ħh2 .
• 2. We write

1
p

2

�

1
1

�

=
1
p

2
(Y++Y−)

This writewise makes clar that the sate is a superposition of a state witrh spin alonf +z and a state
with the spin along −z. A measurement of Sz will detect

ħh ·
ħh
2
−ħh ·
ħh
2

with the same probability 1
2 .

• 3. The Pauli-Equation for Bx = By = 0 is:

iħh ·
�

Ċ+
Ċ−

�

=µB ·
�

Bz 0
0 −Bz

�

·
�

C+
C−

�

From this matrix equation we can obtain two ordinary differential equations:
iħhĊ+ =µB ·B ·C+

iħhĊ− =−µB ·B ·C−
We solve the upper one:

iħhĊ+ =µB ·B ·C+⇔
Ċ+
C+
=
µB Bz

iħh
=−i

µB Bz

ħh
So we can integrate both sides and obtain the solution of the differential equation:

C+ = a · e−i
µB ·B
ħh ·t

With the same calculation for the second equation we obtain:

C− = b · e+i
µB ·B
ħh ·t

The general solution is the superposition

Y (t) = a · e−i
µB ·B
ħh ·t ·Y++ b · e+i

µB ·B
ħh ·t ·Y−

The integration constants are determined from the initial condition:

Y (t = 0) = aY++ bY− =!
1
p

2
(Y++Y−)
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We read out

a= b=
1
p

2
and the special solution fulfilling the initial conditions writes

Y (t) =
1
p

2
· e−i

µB ·B
ħh ·t ·Y++

1
p

2
· e+i

µB ·B
ħh ·t ·Y−

The spin polarization vector is defined as
P=

�

<σx >Y (t),<σy >Y (t),<σz >Y (t)
�

We recall the rules of computation with Pauli matrices:
σx Y+ = Y− σx Y− = Y+ σy Y+ = i Y− σy Y− =−i Y+ σzY+ = Y+ σzY− =−Y−

Than we compute:

<ψ(t),σxψ(t)> = <
1
p

2
· e−i

µB ·B
ħh ·t ·Y++

1
p

2
· e+i

µB ·B
ħh ·t ·Y−,

1
p

2
· e−i

µB ·B
ħh ·t ·Y−+

1
p

2
· e+i

µB ·B
ħh ·t ·Y+ >

= <
1
p

2
· e−i

µB ·B
ħh ·t ·Y+,

1
p

2
· e+i

µB ·B
ħh ·t ·Y+ >+<

1
p

2
· e+i

µB ·B
ħh ·t ·Y−,

1
p

2
· e−i

µB ·B
ħh ·t ·Y− >

=
1
p

2
· e+i

µB ·B
ħh ·t ·

1
p

2
· e+i

µB ·B
ħh ·t < Y+,Y+ >+

1
p

2
· e−i

µB ·B
ħh ·t 1
p

2
· e−i

µB ·B
ħh ·t < Y−,Y− >

=
1
2
· e+2i

µB ·B
ħh ·t +

1
2
· e−2i

µB ·B
ħh ·t =

1
2

�

e+2i
µB ·B
ħh ·t + e−2i

µB ·B
ħh ·t

�

= cos
�

2
µB ·B
ħh
· t
�

In a similar calculation we obtain

Py =<ψ(t),σyψ(t)>= sin
�

2
µB ·B
ħh
· t
�

Pz =<ψ(t),σzψ(t)>= 0

Therefore the spin polarization vector is:

P=





Px
Py
Pz



=







cos
�

2 µB ·B
ħh · t

�

sin
�

2 µB ·B
ħh · t

�

0






.

2. Optical transistions from the 2P1/2-level to the 2S1/2-level

We consider the two basis states building the 2S 1
2

level as final states of an optical transition. The two

initial states are the two states building the 2P1
2

level.
• 1. Find the wavefunctions for the initial and final states from the corresponding tables.
• 2. The operator Ol i ght of left circularly polarized light acts as following:

Ol i ght Y
m
l = cY m−1

l±1
Ol i ght Y± = Y±

(c is an unknown constant arising from the scalar product over the radial parts of the wave functions).
Compute all matrix elements for the possible transitions.

�

ψ
S 1

2

Jz=+
1
2
,[Ol i ght]ψ

P1
2

Jz=+
1
2

�

�

ψ
S 1

2

Jz=−
1
2
,[Ol i ght]ψ

P1
2

Jz=+
1
2

�

�

ψ
S 1

2

Jz=+
1
2
,[Ol i ght]ψ

P1
2

Jz=−
1
2

�
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�

ψ
S 1

2

Jz=−
1
2
,[Ol i ght]ψ

P1
2

Jz=−
1
2

�

Summarize the results in a energy-level-diagram.
• 3. Compute the spin polarization vector of those electrons that, after having made the transition,
are in the level 2S 1

2
. Hint: which basis state is populated, with which probability?

• 4. Assume now that the 2P3
2
-states also contribute to the transition. Compute the spin polarization

vector of those electrons that have made the transitions
2P1

2
→2 S 1

2
or 2P3

2
→2 S 1

2

Solution.

• 1. The 2S 1
2
-level has two eigenstates

| J =
1
2

,Jz =+
1
2

, L= 0>= Y 0
0 Y+ | J =

1
2

,Jz =−
1
2

, L= 0>= Y 0
0 Y−

From the Table

1 1
2o

-2/3

3/2
+3/2 3/2 1/2

+1/2 +1/2
3/2

3/2

1/2
-1/2 -1/2

-3/2-1
-1/2

+1+1/2
+1 -1/2

0 +1/2

+1/2
0 -1/2

-1-1

1
1/3 2/3
2/3 -1/3

2/3 1/3
1/3

Table of the Clebsch-Gordan coefficients (in red) for 1⊕ 1
2 .

we obtain, for the two basis states of the 2P1
2
-level:

| J =
1
2

,Jz =+
1
2

, L= 1>=

√

√2
3

Y 1
1 Y−−

√

√1
3

Y 0
1 Y+

| J =
1
2

,Jz =+
1
2

, L= 1>=

√

√1
3

Y 0
1 Y−−

√

√2
3

Y−1
1 Y+

Because of the rules of the application of the light operator, only one matrix element is different from
zero. We compute it explicitely:

< J =
1
2

,Jz =−
1
2

, L = 0 | [OLight] | J =
1
2

,Jz =+
1
2

, L= 1> = < Y 0
0 Y− | c

√

√2
3

Y 0
0 Y− >

= c

√

√2
3
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�2
3

 𝑌𝑌11𝑌𝑌− − �1
3

 𝑌𝑌10𝑌𝑌+ �1
3

 𝑌𝑌10𝑌𝑌− − �2
3

 𝑌𝑌1−1𝑌𝑌+ 
𝑷𝑷𝟏𝟏

𝟐𝟐�
𝟐𝟐  

S = ½, L = 1 

𝑺𝑺𝟏𝟏
𝟐𝟐�

𝟐𝟐  

S = ½, L = 1 

 𝑌𝑌00𝑌𝑌+  𝑌𝑌00𝑌𝑌− 

∆𝒎𝒎 = −𝟏𝟏 
∆𝑳𝑳 = −𝟏𝟏 

The only transition possible with left-circularly polarized light is marked in the energy diagram.

• 3. there is only one final state: the spin polarization vector of the electrons excited into the 2S 1
2

level is
P= (0,0,−1)

• 4. The transition
2P1

2
→2 S 1

2

produces ”down” spins with probability

| c |2 ·
2
3

The transition
2P3

2
→2 S 1

2

produces spin ”up” electrons with probability
| c |2 ·1

and ”down” electrons with probability

| c |2 ·
1
3

The net spin polarization resulting from the combined trasitions is along the z-directions and writes
(the unknown constant | c |2 cancels out)

Pz =
1− 1

3 −
2
3

1+ 1
3 +

2
3

= 0
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