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 15 
Abstract: Resource allocation impacts the structure of microbiomes, including those associated 
with living hosts. Understanding the degree to which this dependency determines interspecies 
interactions may advance efforts to control host-microbiome relationships. Here, we combined 
synthetic community experiments with computational models to predict interaction outcomes 
between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates 20 
from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant 
carbon sources in vitro. We used this data to build curated genome-scale metabolic models for all 
strains, which we combined to simulate over 17,500 interactions. The models recapitulated 
outcomes observed in planta with over 89% accuracy, highlighting the role of carbon utilization 
and the contributions of niche partitioning and cross-feeding in the assembly of leaf 25 
microbiomes. 
 
One-Sentence Summary: Interactions between plant microbiota members are recapitulated by 
experimentally informed genome-scale models.  
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Main Text:  
 

Introduction 
Various hosts, including animals (1, 2), humans (3, 4), and plants (5), support microbial 
communities with hundreds to thousands of different species. Recent studies have revealed that a 5 
deterministic relationship exists between environmental composition and community structure, 
even for complex microbiomes (6–10). Thus, a thorough understanding of the resources 
available to a community could enable prediction of its species and functional composition. Not 
only would the ability to make such predictions help us better understand the relationship 
between environment and phenotype, but it would also provide an accessible way to rationally 10 
design synthetic communities with defined functions.  
Despite this potential, we still lack a comprehensive understanding of the information necessary 
to predict whether a specific organism will survive or be outcompeted in a particular 
environmental context. Resolving this question remains an active area of research, with studies 
that use interaction outcomes between pairs of organisms to predict overall community behavior 15 
representing a particularly attractive approach (11–13). Nonetheless, conducting the necessary 
mapping of possible interactions between all organisms remains experimentally challenging even 
for relatively simple communities, and largely out of reach for complex host-associated 
microbiomes in situ. 

Given these limitations, one may ask which ecological concepts can be used to predict the role of 20 
individual organisms within a community context. Microbial populations are fundamentally 
bounded by resource availability, where limiting amounts of micronutrients such as carbon, 
nitrogen, and phosphorus act to constrain community size and lead to the emergence of 
competition between organisms (14–16). While the prevalence of these competitive interactions 
has begun to be quantified in a variety of ecosystems (12, 17–20), the general rules by which 25 
they influence community-wide assembly patterns remain unresolved. As such, a commonly 
used approach is to infer the competitive potential between organisms using the degree of 
metabolic niche overlap between them, which relies solely on knowing their individual resource 
utilization capabilities (21, 22). Though a resource-by-resource understanding of the metabolic 
profiles of complex microbiomes can be challenging to obtain, it represents a more accessible 30 
approach for inferring interspecies interactions and has proven successful at predicting high-level 
patterns of species diversity in communities (10, 23–26).  
Despite its benefits, the predictive power of niche overlap is limited in that it cannot account for 
the emergence of positive ecological interactions between organisms – either through resource 
partitioning, cross-feeding, orthogonal resource acquisition strategies, or evolved cooperation 35 
(27–30). As a complementary approach, genome-scale metabolic models present a tractable way 
to integrate the effects of these additional mechanisms into predictions of community structure 
(31, 32). Genome-scale models are mathematical representations of the metabolic capabilities of 
individual organisms. They incorporate genes, reactions, and metabolites associated with a given 
organism’s metabolic network, and are used to quantitatively assess how organisms can use 40 
available resources for growth (32). In addition to generating predictions of resource allocation 
for individual organisms, combinations of genome-scale models of different organisms have 
been increasingly employed to mechanistically describe pairwise and community-wide dynamics 
(33–35). Combining genome-scale models with predictions of niche overlap therefore presents a 
powerful way to predict interspecies interactions within microbiomes. 45 
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Here, we generated metrics of metabolic niche overlap and a collection of genome-scale models 
to predict interaction outcomes between 224 bacterial members of the Arabidopsis thaliana leaf 
microbiome. This environment, known as the phyllosphere, is an oligotrophic habitat where 
competitive interactions between its resident microbes are prevalent (19, 36, 37). Because it 
contains a variety of different carbon sources (38, 39), it is an ecosystem that is well-suited for 5 
studying the effects of resource allocation on interspecies interactions and community structure. 
In particular, the exposed nature of the phyllosphere makes it a relatively accessible setting for 
study in controlled conditions. The microbiota of the phyllosphere has been shown to confer 
beneficial functions to the plant host (40–42), which, together with the scale of colonizable 
surfaces presented by plant leaves (37, 43, 44) and the economic significance of plant crops (45, 10 
46), underscores the importance of studying the processes underlying its assembly (47, 48).   
 

Results 
Profiling the carbon source utilization capabilities of phyllosphere bacteria 

Comprehensive collections of environmental strains are valuable resources for studying relevant 15 
host-microbe and microbe-microbe interactions (42, 49–52). To examine interaction outcomes 
among members of the Arabidopsis phyllosphere (Fig. 1), we used the At-LSPHERE: a 
collection of 224 strains isolated from leaves of wild Arabidopsis thaliana plants that represent a 
cross-section of the taxonomic and functional diversity of the phyllosphere microbiota (53). We 
first assessed the ability of each strain to grow on minimal medium agar supplemented with 20 
individual carbon sources from a set of 45 (Table S1). These carbon sources – comprising a 
range of sugars, organic acids, sugar alcohols, one-carbon compounds, aromatic compounds, and 
amino acids – were selected based on the high prevalence of resources such as glucose, sucrose, 
and some amino acids that are known to account for a substantial fraction of carbon available to 
leaf epiphytes (36, 38, 39, 54). These carbon sources were also selected in part based on the 25 
known ability of certain leaf strains to metabolize aromatic compounds, cleave glycosidic bonds, 
and/or utilize one-carbon compounds (37, 55). In addition to these carbon sources, we 
supplemented the media with vitamins to enable the growth of auxotrophs (the set of carbon 
sources included amino acids, so we did not supply additional amino acids to the media). We 
used a plate assay to evaluate the growth of a given strain on a particular carbon source, which 30 
was compared to a carbon-free control, using both manual inspection and automated image 
processing (Methods). 
Our in vitro metabolic screen revealed phylogenetically contingent patterns of carbon utilization 
capabilities across the At-LSPHERE collection (Fig. 2, Fig. S1). We found that strains belonging 
to the same genus displayed similar – or even identical – carbon source utilization profiles, 35 
suggesting trait conservation between closely-related species (Fig. 2A). We also identified 
genus-specific signatures of resource utilization, as well as cases in which strains were not able 
to grow on any of the tested carbon sources (e.g., Chryseobacterium and Exiguobacterium). 
These latter strains most likely have nutritional requirements that are not met by the minimal 
medium we provided (e.g., amino acid auxotrophies), as they were able to produce visible 40 
colonies on a complex medium (R-2A+M, Methods). In contrast, strains belonging to the genera 
Arthrobacter, Pseudomonas, and Rhizobium grew on a large number of carbon sources (27.5 ± 
6.9, 27.1 ± 3.7 and 25.8 ± 3.6, respectively (mean ± s.d.)). To quantify these differences, we 
assigned a metric of substrate versatility, 𝑉, to each strain, defined as the percentage of all 44 
growth-yielding carbon sources that each organism was able to utilize for growth (for this 45 
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analysis, methylamine was excluded as it did not support the growth of any strain). The most 
versatile strain was Arthrobacter sp. Leaf145 (𝑉 = 77%), followed by Pseudomonas spp. Leaf15 
and Leaf98, and Rhizobium sp. Leaf202 (𝑉 = 73%, 70%, and 68%, respectively). When 
comparing the phylogenetic distribution of strain-specific versatilities, we observed that Beta- 
and Gammaproteobacteria had above average versatilities (Fig. 2B), while Actinobacteria (with 5 
the exception of Arthrobacter) and Bacteroidetes had below average versatilities. Finally, our 
screen revealed the presence of a canonical niche occupied by methylotrophs that was distinct 
from and smaller than that of many other strains (Fig. 2A, Fig. S2). Indeed, the lower average 
versatility of Alpha- and Betaproteobacteria, which respectively include Methylobacterium and 
Methylophilus spp., relative to Gammaproteobacteria reflects the low versatility of 10 
methylotrophs. 

Our screen also revealed the varying degrees to which each resource promotes growth (Fig. 2C). 
To quantify these patterns, we assigned a measure of substrate fertility 𝐹 to each tested carbon 
source, defined as the percentage of strains that was able to grow on that particular carbon 
source. The most fertile or commonly used carbon source was glucose (𝐹 = 81% of strains), 15 
followed by succinic acid (𝐹 =	80%) and glutamate (𝐹 =	78%) (Fig. 2C, Table S2). Among the 
most rarely used carbon sources were aromatic compounds including tryptophan (𝐹 =	9%) and 
coniferyl alcohol (𝐹 =	8%), a common component of lignin.  
Given the largely orthogonal metabolic niche occupied by methylotrophs relative to all other 
strains, we repeated our calculations of substrate fertility without methylotrophs in order to more 20 
clearly detect patterns of fertility among the other substrates. This analysis revealed that mono- 
and disaccharides build a core set of carbon sources commonly used by the large majority (𝐹 ≥ 
75%) of tested strains and the most fertile substrate, glucose, was consumed by 95% of the 
strains. The next most common group of carbon sources (≥ 50%) included organic acids and 
amino acids that feed into the tricarboxylic acid (TCA) cycle (Fig. S3). 25 

These experimentally determined carbon source utilization capabilities allowed us to calculate 
the degree of niche overlap among our strains. Here, we defined a niche overlap index (NOI) for 
each focal strain, 𝐴, with respect to any other strain, 𝐵, as the set of usable carbon sources shared 
by the focal strain and the competitor divided by the total number of carbon sources used by the 
focal strain (23, 56), i.e.: 30 

𝑁𝑂𝐼!,#	 =
𝑁%&'()*+,,	!#
𝑁%&'()*+,,	!

 

We calculated NOI values for all pairs of strains, setting a threshold of 75% as likely prone to 
competitive exclusion (57) (Fig. 2D). In accordance with the similar carbon source utilization 
profiles, we found high niche overlap within most genera, suggesting frequent intra-genus 
competitive interactions. Additionally, we found methylotrophic strains to form two 35 
interconnected interaction spaces: one comprising Methylobacterium and the other 
Methylophilus strains, underscoring their degree of metabolic specialization compared to all 
other strains. Finally, members of the Microbacteriaceae had high niche overlap with a high 
number of other taxa, largely owing to their low versatilities. We also observed the opposite 
case: Rhizobium strains had a low NOI with other taxa, while essentially all strains (except 40 
Methylobacteria) had a high NOI with Rhizobium strains.  
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An in silico representation of phyllosphere bacterial communities 
Having screened the carbon source utilization capabilities of the At-LSPHERE collection, we 
sought to model how these bacteria would interact metabolically in a leaf environment. To do 
this, we adopted a stoichiometric metabolic modeling approach because it allowed us to 
explicitly simulate strain- and substrate-specific patterns of resource utilization, conversion, and 5 
exchange in a multitude of defined environmental conditions. We thus began by creating draft 
genome-scale metabolic reconstructions (58) for each member of the At-LSPHERE. This process 
yielded a separate metabolic network for each of the 224 At-LSPHERE strains, containing all the 
metabolic reactions predicted to be contained by each organism based on its genome annotation. 
Upon generating these draft metabolic reconstructions, we used flux balance analysis (31) to 10 
simulate the growth of each one individually within a complete medium containing all 45 carbon 
sources used in our in vitro screen. We found that, while some of our reconstructions were 
predicted to produce biomass using this complete medium, the majority could not do so when 
only individual carbon sources were provided (Fig. 3A). While this inability to grow was at odds 
with our experimental results, it was not unexpected since models generated solely from genomic 15 
information are often missing key metabolic pathways and thus have limited predictive power 
without additional experimental curation (33, 59–61). We therefore used the results of our 
carbon source screen to fill the apparent gaps in each metabolic reconstruction by using the tool 
NICEgame (62), which suggests biologically relevant alternative pathways to account for 
missing reactions by leveraging information on reaction thermodynamics. We followed this step 20 
with additional manual curation (Methods, Fig. S4), and then compared each of the resulting 224 
models to their corresponding strains based on their ability (or inability) to utilize the 45 carbon 
sources used in our in vitro screen (Fig. S5). In sum, this process resulted in each genome-scale 
model having a final balanced accuracy of 0.98 ± 0.07 (Fig. 3A, mean precision 1, mean recall 
0.96), with 214 models (96%) having a balanced accuracy of at least 0.85, and 189 models (84%) 25 
being 100% accurate. 

Our curation process yielded a collection of 224 genome-scale models that revealed further 
metabolic capabilities and physiological characteristics of the At-LSPHERE collection (Fig. 3). 
The models contained between 1,568 (Flavobacterium sp. Leaf359) and 3,004 (Pseudomonas sp. 
Leaf15) reactions (Fig. 3B), which moderately correlated with the genome size of their 30 
corresponding strain (𝑅- =	0.54, Fig. S6A). Reactions involved in the biosynthesis of 
glycerophospholipids, key components of the cell membranes of Gram-negative bacteria, were 
enriched in members of the Proteobacteria within our collection (Fig. 3C). We also found 
Firmicutes and Actinobacteria to contain more reactions related to degradation of plant 
polysaccharides (e.g., melibiose, raffinose, and sucrose) relative to other taxonomic classes, and 35 
identified an enrichment for benzoate degradation capabilities as previously reported in 
Betaproteobacteria (63, 64). The high degree of similarity to our strains’ known carbon source 
utilization capabilities was supported by a clustering analysis of the reactions contained in each 
model (Fig. 3D). Here, Methylobacteriaceae spp. and Methylophilaceae spp. formed clusters 
distinct from most other models, and Acidovorax strains clustered together with the majority of 40 
Pseudomonas and Rhizobium organisms. These clusters largely mirrored those generated from 
our in vitro data alone (Fig. 3E), which underscored the phylogenetic contingency of resource 
utilization patterns and may underlie the deterministic assembly of microbiomes in general. With 
this in silico representation of the At-LSPHERE collection, we proceeded to use our genome-
scale models to simulate the ecological outcomes of mixed culture experiments. 45 
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Computational models recapitulate ecological patterns in planta 
We assessed the predictive power of the genome-scale models and the NOI against experimental 
data in two in planta experiments (Fig. 4A, B). To do this, we inoculated A. thaliana seedlings 
with pairwise combinations of 7 bacterial strains, or with a community consisting of all 7 strains 
(referred to as SynCom7), and compared the colonization level of each strain in combination to 5 
the colonization density achieved in mono-association (Fig. 4B). To represent a range of 
metabolic capabilities, we selected strains across a gradient of substrate versatility values and 
hence a gradient of NOI. For the first experiment, we selected representative strains from the 
highly versatile Arthrobacter spp., Pseudomonas spp., and Rhizobium spp. (Leaf145, 𝑉 = 77%; 
Leaf15, 𝑉 = 73%; and Leaf202, 𝑉 = 68%; respectively), along with four additional strains with 10 
intermediate to low versatility values: Rhodococcus sp. Leaf233, Sphingomonas spp. Leaf34 and 
Leaf257, and Microbacterium sp. Leaf179 (𝑉 = 55%, 36%, 45%, and 41% respectively). Based 
on NOI, we expected the strains with lower versatilities to more frequently decrease in 
abundance upon co-colonization with other strains, either in pairwise combinations or in a 
community context (Fig. 4C). However, all other strain pairings had low NOI values (< 75%), 15 
limiting the degree to which we could infer interaction outcomes for these combinations. 
We used the genome-scale models corresponding to these seven strains to simulate their growth 
within an environment reflecting the carbon source availability of the Arabidopsis phyllosphere 
(Methods). As an indicator of the ecological outcomes of these pairings, we compared the 
predicted growth of each strain on its own with that in co-association with another organism: a 20 
strain was deemed to have experienced a negative interaction outcome if its biomass production 
rate in co-association was lower than that on its own, and a positive outcome if its biomass 
production rate was higher co-association. These simulations predicted an approximately even 
distribution of positive and negative outcomes for all seven organisms (Fig. 4C). However, when 
we considered the magnitude of the changes in growth experienced by each strain, we found that 25 
predictions skewed more strongly negative than positive. This observation is consistent with 
previous descriptions of the prevalence of competitive interactions in the phyllosphere (18, 19), 
which suggests the commonality of exclusion of one strain by another. Indeed, when we 
compared the growth of each strain on its own to that in the presence of all six other strains, we 
predicted almost exclusively negative outcomes. Despite this overall distribution, we found that 30 
the number of positive or negative outcomes differed depending on the strain in question – with 
Microbacterium sp. Leaf179 and Sphingomonas sp. Leaf257 almost always experiencing a 
reduction in growth when paired with another strain. In contrast, Rhizobium sp. Leaf202, 
Pseudomonas sp. Leaf15, and Arthrobacter sp. Leaf145 were most often predicted to benefit 
from co-inoculation with another of our selected strains. These predicted positive outcomes 35 
corresponded to instances of low NOI values (Fig. 4C), suggesting that these strains could be 
able to metabolically evade competition by a partner strain and may additionally benefit from 
changes in the ecosystem (e.g., cross-feeding) induced by the partner strain. 
The interaction outcomes of these seven strains in planta were largely congruent with those 
predicted by NOI and metabolic modeling. Of the outcomes that showed a fold change greater 40 
than 2 or less than 0.5, we found that a majority were negative, confirming the dominance of 
competition between these strains (Fig. 4D). In the SynCom7 condition, a significant abundance 
reduction was observed for all strains except for Rhizobium sp. Leaf202, matching our 
predictions and supporting the presence of increased competitive pressure in a community 
context. Our experimental data also highlighted the predictive power of NOI data alone for 45 
predicting interaction outcome directionality, with 93% of instances of negative outcomes 
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corresponding to an NOI greater than 0.75. Predictions generated by the genome-scale models 
yielded an increased degree of granularity, recapitulating the significant interaction 
directionalities we observed in planta with a balanced accuracy of 89% (Table S4, Table S5). 
These predictions additionally captured the weaker directionalities of border cases that did not 
meet our experimental cut-off, as seen in the positive interaction outcome for Sphingomonas sp. 5 
Leaf34 paired with Microbacterium sp. Leaf179, of Arthrobacter sp. Leaf145 paired with 
Rhizobium sp.  Leaf202, and of Rhizobium sp. Leaf202 in the SynCom7 condition. These weakly 
positive effects occurred despite high predicted NOI, suggesting the influence of additional 
metabolic mechanisms not encompassed by competition.  
We sought to further validate our predictions with a second set of pairwise and community 10 
experiments spanning more extreme degrees of niche overlap. Here, we generated pairings 
encompassing the two highly versatile strains Rhizobium sp. Leaf202 and Arthrobacter sp. 
Leaf145 (𝑉 = 68% and 77% respectively) as well as the low-versatility strains Frigoribacterium 
sp. Leaf8, Curtobacterium sp. Leaf154, Rathayibacter sp. Leaf164, and Frondihabitans sp. 
Leaf304 (𝑉 = 27% for all four strains). All pairings resulted in a high degree of niche overlap for 15 
the low-versatility strains, while the NOI for either Leaf202 or Leaf145 with any other strain was 
low. Correspondingly, the genome-scale models predicted almost exclusively negative 
interaction outcomes for all low-versatility strains, with weakly positive outcomes for Leaf202 in 
combination with all strains except Leaf145, as well as stronger positive outcomes for Leaf145 
in combination with most other strains (Fig. 4E). We additionally predicted interaction outcomes 20 
for each of the three low-versatility strains paired with a combination of Leaf202 and Leaf145 
(referred to as SynCom3), which resulted in strongly negative interaction outcomes for each 
strain. These predictions were tested via in planta experiments for these pairings: as predicted, all 
significant instances of log2 fold changes greater than 1 were negative, including those for each 
low-versatility strain in the SynCom3 condition (Fig. 4F). Additionally, Leaf202 and Leaf145 25 
each experienced two instances of weakly positive outcomes when paired with other low-
versatility strains, which were captured by our genome-scale modeling predictions. Taken 
together, our experiments confirmed the validity of the computational predictions (Table S4, 
Table S5) and highlighted the strong contribution of resource competition to strain-specific 
interaction outcomes in situ. 30 

To test the specificity of our predictions to a leaf environment, we carried out a series of in vitro 
cultivations in which we cultured the same strain pairs and communities in shake flasks 
(Methods). These cultivations resulted in exclusively negative interaction outcomes for all strains 
in the SynCom7 and SynCom3 conditions (Fig. S7), similar to our in planta experiments. These 
outcomes, which are consistent with an additional set of community simulations using randomly 35 
selected strains (Fig. S8), highlight the increased degrees of competition that organisms may be 
subject to in multispecies settings. However, our in vitro experiments also resulted in 
substantially fewer positive outcomes of pairwise interactions when compared to in planta, 
suggesting competitive pressures inherent to batch cultures that are not captured by our use of 
NOI and genome-scale models. In particular, the lack of spatial structure may favor strains that 40 
experience fast growth when substrate availability is high, and thus outcompete slower-growing 
strains within the timescale of a batch experiment. Moreover, this rapid depletion of nutrients 
contrasts with the resource dynamics of leaf surfaces, which exhibit a steady resupply of 
resources that can be accessed by epiphytic microbes (38). Though we do not explicitly consider 
spatial structure in our use of NOI and genome-scale models, these tools generate predictions 45 
based on a broader consideration of the various resources that can be utilized by the organisms at 
steady state. This assumption may therefore better reflect a broader and more continuously 
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supplied pool of resources, which can be utilized by microbes on a population level in spatially 
structured settings. 

 
Compensatory metabolic mechanisms offset resource competition 

Beyond predicting interaction outcome directionalities, we used genome-scale modeling to 5 
explore the metabolic mechanisms that could be underlying the observed ecological patterns. We 
first examined experimentally validated interactions to determine changes in resource uptake 
rates that emerged as a result of pairing two strains together. As representative examples, we 
looked specifically at two interactions involving Arthrobacter sp. Leaf145, a highly versatile 
strain that experienced a weakly positive effect when paired with Frigoribacterium sp. Leaf8 and 10 
a negative effect when paired with Rhodococcus sp. Leaf233 (Fig. 4C-F, Fig. 5A). Our flux 
balance simulations had predicted that in both cocultures, Leaf145 would have a lower net 
uptake flux of sugars compared to those experienced in monoculture (Fig. 5B). This was also the 
case for Leaf8, which was additionally predicted to experience a reduction in amino acid uptake 
flux when paired with Leaf145. While a similar reduction in amino and organic acid uptake 15 
occurred for Leaf233, Leaf145 was able to take up amino acids at similar rates as in 
monoculture. The contribution of this re-allocation of resources to the dominance of Leaf145 can 
be seen in its interaction with Leaf8, in which Leaf145 is able to shift its metabolism to take up a 
slightly greater quantity of amino acids as in monoculture. The increased availability of these 
resources – in part a product of the low metabolic activity of Leaf8 – suggests metabolic cross-20 
feeding as a contributing factor in the positive effect experienced by Leaf145 in coculture.  
The emergence of distinct resource allocation patterns between these strain pairs prompted us to 
ask how widespread they could be across a wider ecosystem. We thus used the genome-scale 
models to generate predictions of pairwise interaction outcomes for all non-methylotrophic 
strains in the At-LSPHERE, carrying out a total of 17,578 pairwise simulations (Fig. 5C). These 25 
simulations revealed the high prevalence of competitive effects, with 63.2% of outcomes 
predicted to be negative (Fig. 5D). Of these, the large majority (representing 58.2% of all 
outcomes) were predicted to be strongly negative, which we defined as a strain’s biomass 
production rate in coculture being less than 90% of that in monoculture. Conversely, 25.5% of all 
outcomes were predicted to be strongly positive (biomass production in coculture more than 30 
110% that in monoculture), further underscoring the strength of competitive pressures within leaf 
bacterial communities. We combined these strain-specific effects to define interaction outcomes 
between pairs, which revealed that 94% of interactions involved at least one participant 
experiencing a negative outcome (Fig. 5E). As such, cooperative interactions were predicted to 
be relatively rare, with 3% of all pairwise interactions resulting in commensalism and only 1% 35 
resulting in mutualism. 

An analysis of metabolic fluxes across our simulations revealed key differences in rates of 
resource uptake between positive and negative interaction outcomes (Fig. 5F). As expected, the 
models predicted significantly lower resource uptake rates for organisms that decreased in 
abundance relative to monoculture than for organisms that increased in abundance. However, 40 
while nearly all flux ratios associated with negative outcomes were below 1 (occurring for 
sugars, amino acids, and organic acids in 88.6%, 90.7%, and 78.4% of negative outcomes, 
respectively), many positive interaction outcomes displayed increases in amino acid and organic 
acid uptake flux (in 70.1% and 49.9% of positive outcomes, respectively). These patterns thus 
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suggest a stronger degree of competition for sugars among phyllosphere bacteria, which is more 
likely to be offset by increased uptake of amino and organic acids.  

These predicted compensatory mechanisms suggested that strains with higher versatilities would 
be more likely to increase in abundance when in the presence of another strain. Indeed, strains 
with very high versatilities (e.g., Acidovorax spp. and Pseudomonas spp.) were predicted to have 5 
higher than average rates of experiencing positive outcomes (Fig. S9). However, strain-specific 
versatility itself was a poor predictor of positive outcome frequency (𝑅- =	0.10), as strains with 
very low versatilities (e.g., Chryseobacterium spp., which did not grow on any of the supplied 
carbon sources individually, or Bosea sp. Leaf344) were also predicted to experience strongly 
positive outcomes in rare cases. These effects suggest a role of cross-fed amino or organic acids 10 
as valuable sources of metabolic complementation (65), which in addition to enabling highly 
versatile strains to outcompete a partner strain, can also facilitate the survival of specialized 
organisms. 
 

Discussion 15 

Understanding the factors that contribute to the assembly of microbiomes remains a challenge 
for the study of natural ecosystems. Here we have shown how predictions based on the resource 
utilization capabilities of individual bacteria enable recapitulation of interaction outcomes 
observed in the phyllosphere. These predictions underscored the prevalence of competitive 
interactions between leaf strains. Additionally, their high accuracy (Fig. 4) suggested that 20 
competition for resources is responsible for many outcomes observed in situ, as also recently 
observed in community contexts (19). In particular, our experiments showed how high degrees 
of niche overlap were reliably predictive of negative interaction outcomes in planta. This 
relationship demonstrates the role that highly versatile organisms play in communities, as well as 
the implications for the design of microbial consortia based on cooperative interactions, where 25 
pairings of highly competitive organisms can be avoided with greater certainty. Our work 
highlights how a resource-by-resource understanding of an organism’s catabolic potential in 
monoculture is sufficient for making high-level predictions of competition in an ecologically 
relevant setting. 

Beyond cataloging the metabolic capabilities of a large strain collection at high resolution, our in 30 
vitro carbon source screen informed the curation of genome-scale metabolic models for each of 
the 224 strains. Our experimentally curated collection of genome-scale models allowed us to go 
beyond the potential of niche overlap by predicting positive interaction outcomes and suggesting 
their molecular mechanisms. Our curation process provided a quantitative basis for the need to 
incorporate experimental data into model generation, given the low accuracy of the initial draft 35 
models based on genome annotations alone. While improved annotation resources, as well as 
organism-specific biomass compositions, may serve to reduce this source of uncertainty (60, 61), 
we expect experimental curation to remain essential for selecting the optimal combination of 
gap-filled reactions to recapitulate an organism’s exact resource utilization profile.  

Our metabolic modeling predicted interaction outcomes based on carbon source utilization 40 
capabilities. Further curation that integrates additional properties such as vitamin auxotrophies 
and storage (66), as well as metabolic shifts occurring from gene regulation (67, 68), is likely to 
improve the quantitative predictive power of this framework (33, 69). Moreover, while our 
predictions based on metabolic mechanisms are informative of key aspects underlying the 
assembly of plant-associated microbiomes, they do not consider additional factors that are 45 
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known to shape leaf communities such as signaling molecules, antagonistic interactions, or host 
immunity (5, 70–73). A potential consequence of this limitation may be seen in the example of 
Pseudomonas sp. Leaf15, which experienced a strong negative interaction in planta when paired 
with Rhizobium sp. Leaf202 (Fig. 4C, D). While this outcome was qualitatively predicted by our 
simulations, the presence of a type VI secretion system in Leaf202 previously described to be 5 
active against a Pseudomonas strain (42) may also be producing an additional inhibitory effect 
not captured in our modeling framework. Moreover, while our experimental approach that 
quantified community composition based on bulk sampling aligns with our use of flux balance 
analysis, it abstracts away the influence of spatial structure on interaction outcomes. Leaf 
surfaces are known to exhibit significant nutrient heterogeneity, which, together with the 10 
aggregation of microbes around leaf pores or in microdroplets, are likely to affect interaction 
directions at the microscale (36, 74, 75). Capturing varying degrees of uncertainty in our 
modeling predictions can partially represent this heterogeneity (Fig. S10), but an improved 
understanding of the nutrient compositions at specific locations on the leaf may enable future 
parametrization of existing metabolic modeling tools that can explicitly consider spatial structure 15 
(76–79).  

Our present results underscore the strengths of an integrated approach for generating ecological 
predictions in a mechanistic yet scalable way, while establishing a computational resource for 
further exploration of the molecular mechanisms that underlie the assembly of complex 
microbiomes. 20 

 

Materials and Methods 
 
Cultivation of bacteria 

At-LSPHERE strains were grown on R-2A agar (Sigma-Aldrich) supplemented with 0.5% 25 
(v/v) methanol (R-2A+M) at 22°C. Strains were routinely streaked out from a cryo stock stored 
at -80°C, grown for 4 days, streaked on fresh R-2A+M plates and grown for three more days 
prior to the start of experiments. If necessary, streptomycin (20 μg mL-1) was added to the 
medium for selection.  

 30 
Carbon source screen 

The minimal medium agar plates were prepared with a common minimal medium 
composition (83). One liter of the final medium contained 2.4 g K2HPO4, 1.08 g NaH2PO4 ∙ 
2H2O, 1.62 g NH4Cl and 0.2 g MgSO4 ∙ 7H2O and 15 g noble agar (Becton, Dickinson and 
Company). The medium was supplemented with the following trace elements: 15 mg Na2EDTA 35 
∙ 2H2O, 3 mg FeSO4 ∙ 7H2O, 4.5 mg ZnSO4 ∙ 7H2O, 3 mg CoCl2 ∙ 6H2O, 0.64 mg MnCl2, 1 mg 
H3BO3, 0.4 mg Na2MoO4 ∙ 2H2O, 0.3 mg CuSO4 ∙ 5H2O and 3 mg CaCl2 ∙ 2H2O and vitamins: 
500 μg D-pantothenic acid hemi calcium salt, 100 μg biotin, 400 μg riboflavin, 400 μg thiamine 
HCl, 200 μg pyridoxal HCl 150 μg p-amino benzoic acid, 200 μg cobalamin, 50 μg lipoic acid, 
150 μg nicotinic acid and 100 μg folic acid. All media components were prepared with Milli-Q® 40 
quality water (Millipore). Each carbon source was added as a 10x stock solution to the premixed 
medium, except for coniferyl alcohol and tyrosine, which were added to the medium directly as 
powder. The concentration of each carbon source was normalized to 30 mM carbon (e.g., 5 mM 
glucose and 30 mM methanol). A list of all 45 carbon sources and final concentrations can be 
found in Table S1. 45 
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At-LSPHERE isolates grown on R-2A+M medium were suspended (1 μL loopful) in 1 mL 
10 mM magnesium chloride solution, which corresponds to an optical density at 600 nm (OD600) 
of approximately 0.1-0.3. The cell suspensions were transferred to 96-well plates before spotting 
on agar plates, leaving every other well empty in a checkerboard manner to reduce the risk of 
contamination and allow more space on the agar plate for each strain. Increasing the distance 5 
between spots also strongly reduces the risk of strain interactions based on secondary metabolite 
production (e.g., antibiotics) that could lead to false negative results (42). Cell suspensions (2 
μL) were spotted on top of each minimal medium plate containing individual carbon sources, as 
well as on a minimal medium plate without carbon source and a R-2A+M plate. Spotting was 
carried out using a Rainin Liquidator Manual Pipetting System (Mettler Toledo). Plates were 10 
dried under laminar flow. Bacteria were incubated at 22 °C and photographs were taken at 5, 7, 
and 10 days after spotting. In sum, the screen comprised three total rounds including 96 strains 
each, and the last round also comprised 56 randomly selected strains that were screened a second 
time for validation purposes (Table S7). Plate images are available through Zenodo (82).  
 15 
Analysis of bacterial growth in carbon source screen 

Colony growth was scored for all strains after 7 days (0 = no growth, 1 = growth) by 
comparing growth on each carbon source to the control plate without a carbon source. Here, we 
employed a dual approach incorporating automated growth scoring based on pixel intensities 
using a common threshold for all strains and manual scoring through visual inspection. 20 

For the automated analysis, we developed the software tool ‘platescan’ 
(github.com/MicrobiologyETHZ/platescan), which enables unbiased scoring of all strains over 
different conditions with a firm growth cutoff. Briefly, platescan uses cross-correlation 
techniques to crop the plate image, locate the colony grid layout and then determine the best 
fitting colony size and location based on the assumption that they are approximately circular. 25 
The pixel intensities are rescaled between 1% and 99% of the intensity distribution to ensure that 
the images have approximately the same contrast. The program then reports foreground and 
background pixel intensities in red, green, blue and grayscale, which are then used to threshold 
growth vs. no growth. An example can be found on the program’s GitHub repository.  

We used platescan to assign growth values to each strain using the following parameters: 30 
-r:20, -p: 10, --min_r: 15, --max_r: 40, --edge: 200 40 200 40. In addition, two parameters were 
set individually for each screening round due to variation in picture zoom level. Screen1: -x 105 
-y 108, screen2: -x 110 -y 109, screen3: -x 114 -y 113. We used the pixel intensities reported in 
the red channel with a defined minimum threshold to consider a strain as having grown. Pixel 
intensities were obtained by subtracting background values from foreground values for each 35 
colony and subsequently subtracting the no carbon control value. For the few cases in which 
strains spread into the area used for background intensity calculation, the background value of 
the neighboring colony was subtracted. 

For a fraction of strains, we also observed substantial growth without the addition of a 
carbon source to the medium, suggesting that these strains could either grow on a component or 40 
impurity within the agar or were able to grow on volatile compounds present in the surrounding 
environment. Therefore, we also manually scored growth for all strains relative to the control 
plate containing no carbon. Since the magnitude of colony formation differed between carbon 
sources, assigning a binary growth (1) or no growth (0) value was challenging for strains that 
exhibited residual growth on the no carbon control or were generally slow growing. We therefore 45 
introduced a third category of non-significant (NS) growth for the initial screen analysis but 
considered them as no growth for subsequent analyses to keep the number of false positives low 
(Fig. S11A).  
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The results of the computational analysis using platescan and the manual analysis showed a 
very high overlap between the two methods. The highest overlap (with 94.6% of matches 
compared to the manually scored data) was obtained with a cut-off of 20 arbitrary units (a.u.). 

The comparison of the manually- and computationally scored data showed that the 
computational method scored growth more often than the manual analysis (𝑛 = 485), but most of 5 
these were scored as NS initially (𝑛 = 332) (Fig. S12).  To achieve the best accuracy possible, 
we applied a rigorous curation process to the screening data. First, we reinspected all cases that 
did not agree between the manual and computational analysis (20 a.u. cut-off) and all cases that 
were scored as non-significant manually. This revealed few false positive and negative scores for 
both the manual and computational analysis. In case of the computational analysis, these 10 
mistakes were either due to a slight misalignment of the grid or reflections on the plate. To 
account for slow growing strains and strains that exhibited high background growth on the no 
carbon control condition, we also reinspected all instances that were close to the chosen pixel 
cutoff (10-40 a.u.). For these, we also inspected the growth after 10 days and scored growth 
based on whether there was an increase in colony density over time. This latter step reduced the 15 
number of non-significant values observed in the initial analysis and mainly improved scoring of 
the previously mentioned slow growing Actinobacteria (Fig. S11B). The curation procedure 
reduced the false positive rate compared to the original analysis from 3.3% to 2.3%, while the 
false negative rate increased from 5.8% to 6.5%, with most uncertainty remaining for 
Methylobacterium spp. and some members of the Actinobacteria. 20 

 
Plant cultivation 

Plants were cultivated as described previously (19). In brief, Arabidopsis thaliana Columbia 
(Col-0) seeds were surface sterilized (84) and stratified for 4 days at 4°C. Arabidopsis were 
cultivated in six-well tissue culture plates (TechnoPlasticProducts) filled with 5 mL washed and 25 
heat sterilized calcined clay mixed with 2.5 mL half strength Murashige & Skoog medium pH 
5.8 including vitamins (½ MS, Duchefa). Seeds were placed in the center of each well. If a 
seedling did not germinate, a seedling was transplanted from a separate plate after 7 days. 
Starting at day 7, each well was supplemented twice per week with 200 μL ½ MS respectively. 
Plates were incubated in a growth chamber (Percival, CU41-L4) set to 22°C and 54% relative 30 
humidity with a 11 h photoperiod, fitted with full spectrum lights (Philips Master TL-D 
18 W/950 Graphica) and lights emitting a higher fraction of UVA and UVB (Sylvania Reptistar 
F18W/6500 K). The combined light intensity was set to 200-210 µmol m-2 s-1 for wavelength 
400-700 nm and 4-5 µmol m-2 s-1 for wavelength 280-400 nm. 

 35 
Phyllosphere inoculation 

Bacteria grown on R-2A+M agar plates were suspended in 10 mM MgCl2 solution and the 
OD600 was adjusted to 0.2 for each strain. The final inoculation suspension had an OD600 of 0.02 
for all treatments. For single strain inoculations, 150 μL of OD-adjusted strain suspension was 
added to 1.35 mL 10 mM MgCl2 solution. For two- and three-strain combinations, 75 or 50 μL 40 
of each strain were added, respectively. For the seven-strain community, 100 μL of each OD-
adjusted strain suspension was mixed and then a ten-fold dilution was prepared for the final 
inoculum. The final suspension was mixed well and then 10 day-old Arabidopsis seedlings were 
inoculated by slowly pipetting 50 μL over the whole seedling. A ten-fold dilution series was 
prepared of each inoculum and spotted on R-2A+M agar plates to enumerate total bacterial load. 45 
For strain mixes appropriate dilutions were plated on R-2A+M agar plates to verify presence of 
all strains based on colony morphology. 
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Phyllosphere harvest and bacterial CFU enumeration 

Bacterial colonization in the phyllosphere was enumerated when plants were 28 or 29 days 
old. The whole phyllosphere was harvested with sterile tweezers and a scalpel, and was placed in 
a 2 mL tube containing 200 μL 100 mM phosphate buffer pH 7 and a sterile 5 mm metal ball. 5 
The weight of the tube was recorded with and without the plant for plant fresh weight 
calculation. The harvested phyllosphere was subsequently crushed for 45 s at 30 Hz with a 
TissueLyser II (Qiagen). Phosphate buffer (600 μL) was added to the crushed plant material and 
was mixed thoroughly, 100 μL of this suspension were transferred to a 96-well plate to prepare a 
10-fold dilution series in 100 mM phosphate buffer. The dilution series was spotted on R-2A+M 10 
agar plates. In addition, 50 μL of each 10-3 and 10-4-fold dilutions were plated on 9 cm round R-
2A+M agar plates. If selective plates containing streptomycin were used (for Sphingomonas 
selection), 50 μL of dilutions 10-1 and 10-2 were plated in addition. Plates were incubated at room 
temperature and CFU were counted after 1-3 days on dilution series and after 4-7 days on round 
plates. If a strain was not found on the lowest available dilution, its value was set to 0.9 CFU for 15 
this sample for further analysis. Rhodococcus sp. Leaf233 was selectively grown on minimal 
medium supplemented with maltose (5 mM) when combined with Pseudomonas sp. Leaf15. 
Colonies of Leaf233 in mixtures with Microbacterium sp. Leaf179 were differentiated by re-
streaking colonies on minimal medium containing isoleucine. Mock treated plants (𝑛 = 12) were 
included in each plant experiment to detect any systematic contamination with external bacteria. 20 

 
Shake flask cultivations 

At-LSPHERE isolates grown on R-2A+M medium were suspended in 4 mL 10 mM 
magnesium chloride solution at an approximate OD600 of 3. Each strain was inoculated at an 
OD600 of 0.025 into 100 mL baffled Erlenmeyer flasks containing 10 mL of a liquid minimal 25 
medium with the same base composition (ions and vitamins) as in the carbon source screen. This 
medium contained all 44 growth yielding carbon sources used in the in vitro screen (Table S1) at 
a total concentration of 10 mM C, with each carbon source at a relative concentration 
corresponding to the medium composition used in the modeling. Strains were inoculated in four 
biological replicates in monocultures and in the pairwise and community combinations used in 30 
the plant experiments. Cultures were grown at 22˚C with shaking at 200 rpm for 60 h to allow 
strains to reach stationary phase. Cell numbers in each culture were enumerated via a 10-fold 
dilution series spotted on R-2A+M agar plates. 

 
Data analysis 35 
Carbon source utilization data, plant colonization experiments, and shake flask experiments were 
analyzed with R 4.04 in RStudio. For the carbon source screen, false positive and false negative 
rates were calculated based on 56 isolates that were screened twice (Table S7). The strain 
phylogeny was based on full length 16S rDNA gene sequences extracted from the genome 
sequence of each strain as described previously (18). Strains that did not grow on any carbon 40 
source were excluded from all further analyses. The Manhattan distances of all strains based on 
carbon source utilization were calculated with the vegdist function of the vegan 2.5 package (95). 
Hierarchical clustering was conducted with the hclust function with Ward method (ward.D2). 
Principal coordinate analysis was performed with the cmdscale function in MATLAB R2021a. 
Bacterial colonization data was log10 transformed to calculate the median colonization and 45 
statistical significance based on Wilcoxon rank sum test. P-values were corrected for multiple 
testing with the Holm method. Effect sizes for the shake flask experiments were calculated using 
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the cohens_d function (var.equal = FALSE, hedges.correction = TRUE) in the rstatix package 
(96). Log2 fold changes (combination/mono association) were calculated based on the median 
absolute abundance.  

Data was visualized in R with the package ggplot2 (97) and was further annotated with 
Adobe Illustrator. For data analysis and visualization, the following R packages were used: 5 
tidyverse (98), ape 5.4-1 (99), ggridges 0.5.3 (100), shades1.4 (101), phylloR (18), and 
dendextend 1.14 (102). 

 
Generation and curation of genome-scale models  

We first used the tool CarveMe (58) to generate draft metabolic models based on the 10 
assembled genomes of each strain in the At-LSPHERE collection ((53), BioProjects 
PRJNA297956 and PRJEB47672). The quality of these genomes was assessed using the tool 
CheckM (85), (Table S8), which reported a mean completeness of 0.993 ± 0.007 and a mean 
contamination of 0.005 ± 0.007 (mean ± s.d., [0,1]). We then compared the predicted growth 
capabilities of each draft model against data from our in vitro carbon source screen, and 15 
performed the following steps on each draft model: first, we used the tool NICEgame ((62), 
github.com/EPFL-LCSB/NICEgame) to generate sets of new biosynthetic and transport reactions 
(drawn from the BiGG database (86)) that would allow the model to produce biomass from each 
growth-supporting carbon source identified in our in vitro screen. We used this process, which 
relies on known reaction thermodynamic constraints (87, 88), to produce at most five alternative 20 
sets of reactions for each growth-supporting carbon source. We separately integrated each set of 
reactions into the draft model and tested whether or not it could produce biomass on a simulated 
minimal medium (Table S6) supplemented with each of the 45 carbon sources used in the in 
vitro screen. We also tested the growth of the model when combinations of reaction sets from up 
to three carbon sources were integrated, selecting the most accurate model (i.e., the most 25 
representative with the fewest false positives) as measured by Matthews Correlation Coefficient 
((𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁) 3(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)⁄ ) for further curation. 
Most models reached this stage having had sets of reactions from only one (111 models) or two 
(82 models) growth-supporting carbon sources integrated, as adding reactions that enable growth 
on one resource can resolve additional gaps that enable growth on other resources. The carbon 30 
sources most often used for gap-filling were maltose, succinate, gluconate, and xylose (being 
used to gap-fill 40, 26, 23, and 21 models, respectively). To correct for remaining false negatives 
(i.e., the model did not grow on a carbon source that supported growth in vitro), we further added 
reactions from a different model in our collection that did recapitulate growth on the relevant 
carbon source. A maximum false positive rate of either 10 carbon sources or half of all true 35 
positives for the model, whichever was smaller, was set to avoid integrating an excessive number 
of new reactions. False positives for a given carbon source were corrected by removing internal 
reactions relevant to its metabolism, or by restricting the relevant transport reaction when this 
was not successful. Model- and carbon source-specific accuracies are summarized in Fig. S5, and 
reactions added to the models as part of the curation are enumerated in Fig. S4 and Table S3. We 40 
identified no relationship between model accuracy and either the size (Fig. S6B) or the 
completeness of the underlying genome (Figure S13). A final quality control was performed on 
each model (59), consisting of testing for mass and charge balance, performing a leak test to 
ensure no metabolites could be produced from nothing, standardizing the metabolite namespace, 
adding reaction subsystems, and adding additional gene, metabolite, and reaction identifiers 45 
when available. A final report was generated for each model using the validation tool MEMOTE 
(total score = 0.84 ± 0.02 (mean ± s.d., 𝑛 = 224)) (89), and balanced accuracies for individual 
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models and pairwise interaction predictions were calculated as (𝑇𝑃𝑅 + 𝑇𝑁𝑅) 2⁄ , where 𝑇𝑃𝑅 
and 𝑇𝑁𝑅 represent the true positive rate and false positive rates, respectively. All scripts for 
model generation and simulation, as well as the models and quality reports, are available at 
github.com/VorholtLab/i-At-LSPHERE. 

 5 
Computing mono- and coculture growth 
All growth simulations were performed using the COBRA Toolbox v2.24.3 (90) with the 
CPLEX solver v12.10 (IBM) in MATLAB R2021a (MathWorks). Nonlimiting amounts (𝑣./0 = 
1000 mmol/gDW/hr) of a minimal medium composition containing ions, water, and sources of 
nitrogen, sulfur, and phosphorus were provided to the models, along with vitamins at 𝑣./0 = 10 
0.15 mmol/gDW/hr (Table S6). Limiting amounts of the 45 carbon sources tested in our in vitro 
screen were provided at abundances intended to broadly estimate the relative availabilities of 
resource types on leaf surfaces (36, 38, 39, 54) (𝑣./0 = 0.15 mmol/gDW/hr for sugars and 
organic acids, 0.075 mmol/gDW/hr for amino acids, and 1.5 mmol/gDW/hr for methanol). 
Model growth was simulated with biomass as the objective function and a minimal ATP 15 
maintenance flux of 0.5 mmol/gDW/hr. Optimizations were also set to minimize all reaction 
fluxes to more closely simulate efficient proteome utilization and minimize metabolite cycling 
(91). For each pair or community, the growth of each strain was first simulated individually, and 
the resulting biomass flux values and resource uptake fluxes were recorded. Models were then 
merged by integrating them into a common extracellular compartment (92, 93). Coupling 20 
constraints were introduced in order to avoid infeasible solutions in which one organism 
produced metabolic flux for the other without producing biomass itself (34, 94). Additionally, 
metabolite uptake directionalities were fixed to those observed in monoculture to minimize 
inconsistencies in resource preferences between mono- and coculture. The sum of biomass 
reactions was set as the objective to be optimized, and exchange reaction 𝑣./0 values were set as 25 
equal to those of the models in monoculture, thus simulating an equal abundance of resources 
between the mono- and coculture conditions. The resulting biomass flux values were recorded 
and used to calculate interaction scores, which were defined as the log2 ratio of biomass flux in 
coculture to that in monoculture. Interaction scores were limited to between -5 and 5, with 
extreme log2 fold changes falling outside this range being set to -5 or 5. 30 
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Figures 
 

 
Fig. 1. 
Overview of experimentally- and computationally-guided prediction and testing of metabolic 5 
interactions among bacterial members of the Arabidopsis phyllosphere microbiota. 
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Fig. 2. 
Carbon source utilization screen reveals hotspots of high nutritional niche overlap. A) Carbon 
source utilization map of 224 At-LSPHERE strains. Fill color of the boxes indicate growth 
(black) or no growth (grey) for each strain on the x-axis on a given carbon source on the y-axis. 5 
Top-level clustering for strains reflects phylogeny based on full length 16S rRNA gene 
sequences. Colored bars indicate phylum or Proteobacterium class and correspond to the order in 
the legend. Carbon sources are sorted by compound groups. B, C) Density plots showing (B) 
strain-specific versatility grouped by phylum or Proteobacterium class (corresponding to the 
order in the legend) and (C) substrate fertility grouped by compound group. Black dots indicate 10 
individual values, and the red vertical line shows the median for each group. Substrates in classes 
C1 and aromatic compounds that also fall into another substrate group are only shown once and 
omitted from the other. D) Heatmap of niche overlap indices (NOI) for all binary combinations 
of 215 At-LSPHERE strains. The color of the tile indicates high (> 0.75, blue shades) or low (< 
0.75, grey shades) degree of niche overlap for the strain on the y-axis in combination with the 15 
strain on the x-axis. Strains are sorted by phylogeny and the colored bars indicate the phylum or 
Proteobacterium class. NOI was only calculated for strains that grew on ≥1 C-source in vitro.  
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Fig. 3. 
Overview of collection of metabolic models for 224 bacterial members of the Arabidopsis 
thaliana leaf microbiota. A) Distributions of balanced accuracy as tested on 45 carbon sources 5 
for models generated solely from genomic information (top) and after curation (bottom). B) 
Attributes of models as clustered by taxonomic phylum/class. Numbers bordering phylogenetic 
tree denote strain identity (e.g., 220 corresponds to Xylophilus sp. Leaf220). Innermost ring 
represents the balanced accuracy of each model, second ring indicates the size of the genome 
used to generate each model (53), and third ring represents the versatility 𝑉 of each model. 10 
Outermost bars represent the number of reactions contained in each model (min = 1,568, max = 
3,004). C) Clustered heatmap of 60 most highly represented reaction types, scaled by the number 
of models corresponding to each phylum/class. D, E) Principal coordinates analysis of strains as 
determined by (D) reactions in genome-scale models and (E) in vitro carbon source screen, with 
select genera highlighted. 15 
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Fig. 4. 
Model predictions and in planta validation of interactions. A, B) Schematic overview of 
interaction simulations using genome-scale models (A) and of phyllosphere inoculation and 5 
interaction mapping procedure (B). Interactions are inferred by comparing a strain’s growth in 
combination with another strain with that in monoculture. This is computed as the log2 ratio of 
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biomass fluxes for the genome-scale models or as the log2 fold change in CFUs per gram plant 
fresh weight for the in planta experiments. C, E) Predicted interaction outcome for the strain 
indicated on the y-axis in combination with the strain or SynCom indicated on the x-axis based 
on niche overlap index (NOI, top left) and genome scale models (GSM, bottom right). The fill 
color indicates high (> 0.75, blue shades) or low (< 0.75, grey shades) degree of niche overlap 5 
and predicted positive (red shades) or negative (blue shades) interactions based on genome scale 
metabolic models. D, F) Interaction outcomes observed in planta. Heatmap showing the log2FCs 
(pairwise/SynCom inoculation vs mono-association) for the strain on the y-axis in combination 
with the strain or SynCom indicated on the x-axis based on absolute abundances obtained by 
CFU enumeration (𝑛 =11-12). The color of the boxes reflects the observed log2FC and the black 10 
frames around the boxes indicate a significant difference compared with the mono-association 
condition (two-sided Wilcoxon rank-sum test, Holm adjusted P ≤ 0.05). |Log2FC| < 1 are 
overlaid with a crosshatched pattern. Confusion matrices comparing modeling predictions and in 
planta outcomes are provided in Table S4, and colony counts for the in planta experiments are 
provided in Table S5. 15 
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Fig. 5. 
Model-predicted interaction outcomes and mechanisms. A, B) Log2 fold changes of biomass (A) 
and resource uptake (B) fluxes for two representative interactions validated in planta. Dots 5 
indicate absolute log2 fold changes of less than 0.05 mmol/gDW/hr. C) Predicted pairwise 
interaction outcomes between all 188 non-methylotrophic strains in the At-LSPHERE (𝑛 = 
35,156 outcomes for 17,578 pairs). Hierarchical clustering was performed on interaction 
outcomes, with strain-specific phylogeny highlighted. White cells denote instances of no 
predicted growth in both mono- and coculture. D) Distribution of pairwise interaction outcomes 10 
(𝑛 = 35,156). Dashed lines separate outcomes in which a strain’s predicted biomass flux in 
coculture was either: less than 90% of that in monoculture (strongly negative), within 10% of 
that in monoculture (neutral), or more than 110% of that in monoculture (strongly positive). E) 
Classification of pairwise ecological outcomes (𝑛 = 17,578). F) Distributions of flux ratios 
between resource uptake in coculture and monoculture, according to corresponding interaction 15 
outcome. Only simulations in which a strain achieved growth both in monoculture and coculture 
are considered (𝑛 = 28,316 outcomes). Differences between uptake rates of resource types 
provided in the simulated medium are highlighted for sugars (left), amino acids (center), and 
organic acids (right). Distributions of uptake fluxes are statistically significant for all three 
resource types (𝑝 ≪ 1 × 10123) as determined by one-tailed Mann-Whitney U-tests. For clarity, 20 
horizontal axes are truncated and show 98.8% of outcomes for sugars, 98.7% for amino acids, 
and 94.7% for organic acids. Dashed line at ratio of 1 separates instances of lower or higher 
uptake flux between coculture and monoculture with percentages highlighting the number of 
instances less than or greater than 1. 
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Fig. S1. 
Hierarchical clustering of At-LSPHERE strains based on carbon source utilization profiles. 
Strains were clustered on Manhattan distances with Ward D2 method. Strain labels are color 
coded by bacterial family and the bar indicates the corresponding Phylum or Proteobacterium 
class.  
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Fig. S2. 
Density plots of family-level strain-specific versatilities. Black dots indicate individual values, 
and the red vertical line shows the median for each group. Fill colors represent phylum or 
Proteobacterium class.  
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Fig. S3. 
Carbon source utilization map of non-methylotrophic At-LSPHERE strains that experienced 
growth on at least one carbon source (𝑛 = 179). Fill color of the boxes indicate growth (black) or 
no growth (grey) for each strain on the x-axis on a given carbon source on the y-axis. The strains 
and carbon sources are sorted by decreasing versatility and substrate fertility, respectively.   
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Fig. S4. 
Summary of reactions added to draft models using NICEgame and additional curation. Black 
squares indicate addition of a reaction to the draft model of a given strain. Gap-filling resulted in 
a median of 23 reactions added to each draft model (IQR = 11 - 102). 220 out of 224 models had 
fewer than 200 reactions added, while only two models (Rathayibacter sp. Leaf167 and 
Variovorax sp. Leaf267) had more than 500 reactions added. 2,366 out of 5,231 total reactions 
were added to a model at least once, while only 1,336 (25.5%) reactions were added more than 
once. The top 5 gap-filled reactions (with corresponding EC number when available) were: CO2 
transporter, asparagine synthetase (6.3.1.1), O-succinylbenzoate-CoA ligase (6.2.1.26), calcium 
transporter (3.6.3.8), and O-succinylbenzoate-CoA synthase (4.2.1.113) (added to 116, 95, 73, 
72, and 71 models respectively). A complete overview of gap-filled reactions per model is found 
in Table S3.  
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Fig. S5. 
Mapping of strain- and carbon source-specific accuracies. Carbon sources and strains are sorted 
by false negative rate (FNR). TP, TN, and FN refer to true positive, true negative, and false 
negative, respectively. 
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Fig. S6.  
Comparison of model characteristics to genome size, with select genera highlighted. A) 
Correlation between genome size and model size (quantified by number of reactions). Linear 
model 𝑅! =	0.54, 𝑃 = 	9.97 × 10"#$. B) Correlation between genome size and model balanced 
accuracy. Linear model 𝑅! =	0.06, 𝑃 = 	2.08 × 10"%. 
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Fig. S7.  
Interaction outcomes observed in shake flask experiments. A, B) Heatmaps showing the log2FCs 
(pairwise/SynCom inoculation vs monoculture) for each strain on the y-axis in combination with 
the strain or SynCom indicated on the x-axis based on absolute abundances obtained by CFU 
enumeration (𝑛 = 4 flasks per treatment). The color of the boxes reflects the observed log2FC 
and shade of the frames around the boxes denote the effect size (Cohen D). 
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Fig. S8.  
Interaction outcomes (A) and niche overlap indices (B) for strains in 10 random 7-member 
communities. As in the SynCom7 condition tested in silico and in planta (Fig. 4C, D), the 
interaction outcomes shown correspond to each focal strain within a community composed of all 
7 strains. 80% of interactions resulted in negative outcomes for the focal strain, with 15% 
resulting in positive outcomes. 
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Fig. S9.  
Relationship between predicted resource use versatility 𝑉 for each model and frequency of 
positive interaction outcomes, with select genera highlighted. Mean number of positive outcomes 
= 61.9. Linear model 𝑅! =	0.10, 𝑃 = 	7.25 × 10"&  (trendline not shown). 
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Fig. S10.  
Representation of uncertainty in interaction predictions for 6-species experiments (Fig. 4E, F), 
which estimates the space of feasible interaction outcome directionalities for each strain using 
flux balance analysis. For each strain pair or community, we first set the sum of the biomass 
reactions of all organisms as the objective to be optimized. The strain-specific changes in 
biomass flux resulting from these optimizations are denoted by the white boxes and are 
equivalent to the outcomes shown in Fig. 4E. We then carried out a flux variability analysis to 
determine the species-specific biomass fluxes that would still result in a pairwise or community 
growth rate of at least 95% of the optimum. The range of strain-specific changes in biomass flux 
resulting from this analysis are represented by the whiskers. 
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Fig. S11.  
Carbon source utilization profiles of 224 At-LSPHERE strains when scored manually after seven 
days of growth (A) or when combining manual scoring with computational scoring through 
image analysis and reassessment of non-significant growth conditions after 10 days of growth 
(B). Fill color represents growth (black), no growth (light grey) or residual/non-significant 
growth (grey) for each strain on minimal medium agar plates containing a single carbon source 
indicated on the left. Strains are grouped by phylum or Proteobacterium class in the same order 
as in the legend.  
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Fig. S12.  
Comparison of the carbon source utilization profiles obtained based on manual- and platescan 
software-based growth scoring. The fill color represents the overlap (light grey and black) and 
differences (purple and green shades) respectively between the two scoring methods. Strains are 
grouped by phylum or Proteobacterium class in the same order as in the legend. 
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Fig. S13.  
Relationship between model accuracy and completeness of underlying genome. Linear model 
𝑅! = 0.003, 𝑃 = 	0.201. 
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Table S1 (separate file). Carbon sources used in in vitro screen.  
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Table S3 (separate file). Summary of reactions added to draft metabolic models during 
curation.  

Table S4 (separate file). Accuracy statistics for genome-scale modeling interaction 
predictions. 

Table S5 (separate file). Colony counts for in planta competition experiments. 
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Table S7 (separate file). Carbon source utilization profiles of 56 At-LSPHERE isolate 
validation set. 
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