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ABSTRACT

Research has demonstrated the potential of accelerators in a wide

range of use cases. However, there is a growing imbalance between

modern hardware and the CPUs that submit the workload. Recent

studies of GPUs on real systems have shown that many servers are

often needed per accelerator to generate a high enough load so the

computing power is leveraged. This fact is often ignored in research,

although it often determines the actual feasibility and overall effi-

ciency of a deployment. In this paper, we conduct a detailed study of

the possible configurations and overall cost efficiency of deploying

an FPGA-based accelerator on a commercial search engine. First,

we show that there are many possible configurations balancing

the upstream system and the way the accelerator is configured. Of

these configurations, not all of them are suitable in practice, even if

they provide some of the highest throughput. Second, we analyse

the cost of a deployment capable of sustaining the required work-

load of the commercial search engine. We examine deployments

both on-premises and in the cloud with and without FPGAs and

with different board models. The results show that, while FPGAs

have the potential to significantly improve overall performance, the

performance imbalance between their host CPUs and the FPGAs

can make the deployments economically unattractive. These find-

ings are intended to inform the development and deployment of

accelerators by showing what is needed on the CPU side to make

them effective and also to provide important insights into their

end-to-end integration within existing systems.
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1 INTRODUCTION

Hardware accelerators are becoming increasingly available in data

centres and cloud platforms, introducing a number of heteroge-

neous processing elements alongside CPUs [1, 9, 12, 26]. Many

studies have shown their potential to accelerate a variety of use

cases, often on the basis of the much higher throughput that such

devices are able to sustain, be it in terms of requests or gigabytes per

second. However, such throughput can only be achieved if enough

load can be submitted to the accelerator, which is usually beyond

the capacity of a single CPU server. In several use cases, a single

accelerator node can replace many CPU-based servers, but then the

host CPU they are attached to and the upstream system often can-

not generate a sufficient high load for the accelerator. The situation

creates an optimisation dilemma: as the accelerator improves and

yields higher throughput, more CPUs are required to feed enough

input for the accelerator to work efficiently.

This imbalance is pervasive and often quite large. For instance,

a recent study by Meta of their ML pipelines [33] shows that GPUs

used for training ML models are stalled up to 56% of the time

waiting for input data. They also show the increasing amount of

compute power, network, and memory bandwidth needed on the

CPU side to be able to match the throughput of the accelerator. A

number of other studies have also explored this problem [11, 17, 32]

confirming that the advantages a hardware accelerator can bring are

bound by the ability to generate enough load on it, often leading to a

situation where the accelerated system is larger than the initial one.

This issue is one of the reasons why new processor architectures

are emerging that try to avoid these bottlenecks [7, 8] and new

standards for peripheral interconnects are appearing [6, 24, 30].

In this paper, we study this problem in the context of FPGAs.

We use a commercial search engine and an FPGA-based accelerator

designed for it [21, 25], and explore the interplay between accel-

erator configuration and requirements on the input throughput.

Notably, we demonstrate that the proposed design is capable of

accommodating a wide range of trade-offs between latency and

throughput, as the fastest solution is not necessarily the most ef-

fective one in practical scenarios. We also look into a reasonable

estimate of the cost of a deployment involving the accelerators in

a variety of settings: data centre, cloud, and with different FPGAs.

The results are sobering in the sense that they show how the per-

formance imbalance between accelerator and the rest of the cloud

infrastructure limits the potential advantages of the FPGA.

Taken together, these insights provide a very accurate picture of

the challenges that arise when trying to deploy accelerators in gen-

eral, and an FPGA in particular into an existing commercial system.

By describing in detail the interactions between the software and

the FPGA, the use case we explore can help inform further develop-

ments regarding FPGA deployments within distributed systems, as

several of the issues we have encountered are structural limitations

https://orcid.org/0000-0003-1576-417X
https://doi.org/10.1145/3592980.3595314
https://doi.org/10.1145/3592980.3595314
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that will arise in other systems as well. Our results suggest that

successful FPGA deployments require a careful software-hardware

co-design of the entire system, as approaches that only consider the

FPGA side of the system are limited by many of the same design

considerations discussed in this paper.

2 BACKGROUND

The starting point for this study is the flight search engine offered

by Amadeus to travel companies. Like many other search engines,

Amadeus’ application is a large-scale distributed system comprising

many different components. When a user request looking for flights

needs to be processed, a large number of potential routes have to

be computed. For all non-direct routes, the Minimum Connecting

Time (MCT) between two flights must be ascertained. The MCT

module is implemented atop a Business Rule Management System,

and is used in the early stages of the search (the Domain Explorer
component), playing a key role in the performance and total cost

of operating the search engine.

The initial implementation of MCT on FPGA (erbium
1
[21])

proved to be a significant improvement over the existing system

along several dimensions. The proposed solution translates the busi-

ness rules into a concise Non-deterministic Finite State Automaton

(NFA), and exploits the inherent parallelism and pipeline possi-

bilities available on the FPGA to simultaneously traverse active

states within the graph. In contrast, when performed on a CPU, the

search operation becomes memory bound due to the unpredictable

nature of the traversal and the increased likelihood of cache-misses

resulting from random memory access.

erbium processes queries three orders of magnitude faster than

the fastest CPU implementation, with a throughput of up to 50

million queries per second, 800 times greater than a single CPU

instance. Due to this very high throughput, the cost of running

erbium in the cloud is 60 billion queries per USD, 20 times cheaper

than the most cost-effective CPU deployment. Updating the rules

incurs only 500 µs of downtime, 4 orders of magnitude faster than

the current procedure, which improves the overall availability of

the search engine.

The performance gains and the architectural flexibility offered

by FPGAs opened up many different possibilities in terms of how

to take advantage of these significant gains. The performance im-

provements could be leveraged, e.g., to enhance the search quality

by processing a larger input than in the current system; to reduce

the amount of compute nodes needed to meet the performance

requirements; and/or to increase the architecture’s flexibility by

introducing a new microservice in the engine separated from the

other components. In [21, 25] we provide more details and a com-

prehensive discussion of these possibilities within the flight search

engine.

3 SYSTEM INTEGRATION

In this section, we discuss the integration of the hardware accelera-

tor into the existing system and how assumptions made in software

and available interfaces impact the resulting performance.

1
erbium is open source: github.com/fpgasystems/erbium
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Figure 1: System Integration setup.

3.1 Setup

We integrated erbium into a deployment of the Amadeus flight

search engine on AWS F1 instances. The structure of the system is

illustrated in Figure 1, and its main components are as follows:

The Injector module generates the workload fed to the system

by replaying user request traces captured from the real production

environment. It distributes the workload to each one of the Domain
Explorer processes, saturating their computing capacity as much as

possible.

A Domain Explorer process executes a user request in its en-

tirety. Each user request spawns a variable number of queries to

erbium. The number of processes deployed in one machine depends

on the memory and number of cores available. In the current setup,

there are 48 Domain Explorer processes per node and 400 nodes.

The communication between the Domain Explorer processes and
the MCT Wrapper uses the ZeroMQ framework, a light-weight

networking library that handles concurrent communications using

different patterns and protocols. It was already validated and de-

ployed for similar purposes in other Amadeus applications, which

facilitated its adoption in this solution. We use a Request-Reply

pattern combined with synchronous communications between the

Domain Explorer processes and the router, and asynchronous com-

munications between the router and the multiple workers.

The MCT Wrapper is a multi-threaded module that distributes

the incoming queries among the different workers, which uses

ZeroMQ dealers to support asynchronous communication to ensure

the wrapper is always ready to process new queries. Given that

libraries used for interfacing the FPGA via PCIe are vendor-specific,

the wrapper plays a crucial role in abstracting the FPGA intrinsics

by exposing a microservice interface to the rest of the system, thus

creating a clear boundary to the tight coupling to specific vendor’s

tools or boards. In case of a transition from, e.g., Xilinx to Intel FPGA

boards, any modifications would be encapsulated within the MCT
Wrapper as a new docker image. This wrapper is also responsible

for managing erbium-specific start-up and update operations, such

as programming the device and loading the static input data into

the FPGA’s internal memory.

The current erbium implementation uses dictionary encoding to

reduce both the storage requirement and the online data movement.

Therefore, queries must be encoded before being sent to the accel-

erators, just like data quantisation and normalisation in machine

learning pipelines [33]. This process is carried out individually at

the worker level in a pipeline manner, while the previous query

batch is being executed by the FPGA kernel. The significance of

github.com/fpgasystems/erbium
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Figure 2: Latency breakdown of a function invocation.

this module lies in its ability to transform software data representa-

tions into formats that are more suitable for FPGA processing. Its

absence would hinder the competitiveness of the FPGA design as it

would be mired in the overhead of parsing and processing complex

data types.

The communication between the different workers and the FPGA

kernels is managed by the Xilinx Runtime Library (XRT). It sched-

ules data movement and execution so that while the kernel is pro-

cessing a batch of queries, a different thread is being served by trans-

ferring its query data into the FPGA internal memory. We leverage

this mechanism by having at least two threads per FPGA kernel.

3.2 System Overhead Characterisation

We evaluate the simplest scenario where a single Domain Explorer
process generates queries, a singleWorker handles data encoding
and communicationwith the FPGA, and a single erbium kernel eval-

uates the queries. In this configuration, we measure the response

time of each element for varying query batch sizes. Reported num-

bers correspond to the 90
th

percentile of a series of 1000 iterations.

Figure 2 shows the communication and synchronisation over-

heads of the different layers of the architecture as a function of the

batch size. Due to PCIe bus constraints and FPGA shell protocols,

data movement overheads dominate the actual processing time for

small batch sizes up to 4096 queries, an input payload of 2MiB. For

larger batch sizes, the encoder introduces a linear and significantly

high execution time, exceeding the actual kernel invocation time of

erbium. ZeroMQ communication overheads are also noteworthy,

accounting for between 60% to 30 % of the total response time for

both query and response data movements respectively. Since the

kernel execution time on the FPGA is in themicrosecond range, data

encoding and data movements become equally or more expensive,

a well-known issue in data centre applications [2].

The relative latency incurred inside theMCTWrapper worker for
data transfer to and from the FPGA, as well as the XRT invocation

overheads and the actual kernel execution are plotted in Figure 3.

In absolute numbers, the erbium kernel execution time can be

as low as 70 µs for batches up to 64 queries, a payload of 32 KiB.

Up to this batch size, the invocation overhead, which represents

the synchronisation time between host CPU and the accelerator
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Figure 3: Latency breakdown of the erbium invocation.

carried out by XRT, can be as high as the kernel execution time. The

execution latency only becomes dominant for batch sizes equal or

greater than 2048 queries, or 1MiB of input payload. In Section 4,

we explore the challenges and current approaches to overcome the

PCIe bandwidth limitation in the context of small query payload

sizes. We expect that future interconnects such as CXL 3.0 will

provide a much higher bandwidth and reduced latency, which will

address this concern in the current design.

3.3 Parallel Evaluation

The configuration depicted in Figure 1 is highly amenable to par-

allelisation, which affords a wide range of deployment choices for

each component, but may also crease disparities in workload dis-

tribution across the system. To achieve optimal performance, it

is necessary to select the most appropriate parameters for each

component, taking into account both the latency threshold from

SLAs and system utilisation. The system’s overall throughput is

measured in queries per second, and the execution time of a user

request (i.e., a batch of queries) is measured as seen by the Injector.
In the graphs that follow, series are labelled according to the num-

ber of processes (p), number of workers (w), number of kernels (k)
and number of engines (e) per kernel.

Varying the number of engines per kernel The number of

kernels that can be accommodated on a single FPGA is contingent

upon the finite physical resources available on the board and the

number of engines they have. The FPGA can fit one erbium ker-

nel with four parallel engines, two kernels with two engines each,

or four kernels with one engine each. To evaluate the individual

throughput gain for a single kernel, we measure performance while

varying the number of engines within it, while keeping the up-

stream system fixed. Figure 4 plots the global throughput of the

system when deploying kernels with one, two, and four engines.

By design, a kernel allocates the workload of a single user request

to all available engines. Increasing the number of engines, thus,

reduces the request execution time, resulting in increased through-

put in a single-process, single-worker setup. The circuit complexity

increases with the number of engines, leading to a 30 % lower op-

erating frequency. As a result, performance metrics do not scale

linearly with the number of engines.

Varying the number of parallel components uniformly

In a complementary analysis to the previous experiment, we keep
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Figure 4: Varying the number of engines per kernel.
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Figure 5: Varying the number of parallel components uniformly.

 -

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  10  100  1,000  10,000  100,000

Q
U

ER
IE

S/
SE

C
O

N
D M

IL
LI

O
N

S

BATCH SIZE

1p 1w 1k 4e 2p 2w 1k 4e 4p 4w 1k 4e

8p 8w 1k 4e 16p 16w 1k 4e

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

 1  10  100  1,000  10,000  100,000

SE
C

O
N

D
S

BATCH SIZE

1p 1w 1k 4e 2p 2w 1k 4e 4p 4w 1k 4e

8p 8w 1k 4e 16p 16w 1k 4e

Figure 6: Multiple Process-Worker couple for a single kernel.
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the number of engines per kernel fixed and assess the impact of

adding new kernels on performance. Each kernel has its own feed-

ing flow, i.e., one process and one worker each. The system capacity

to process parallel requests increases as we add parallel processing

elements. However, the complexity of the FPGA circuits leads to a

slower operating frequency, resulting in slightly increased latency

per request. In this setup, global throughput is prioritised at the

cost of a slower execution time per request (compare Figure 4 with

lower throughput, and Figure 5 with higher throughput but also

higher latency).

Multiple Process-Worker couple for a single kernel We

measure the computing capacity of a single kernel as the upstream

workload increases. Given that the FPGA kernel stand-alone out-

performs the global throughput, the stress test of this experiment

focuses on how much synchronisation overhead the XRT driver

imposes, since it schedules different calls from different workers

down to a single kernel. As shown in Figure 6, this configuration

maximises the global throughput, with a peak of 40 million queries

per second. However, the synchronisation overhead at the XRT
scheduler imposes a latency proportional to the number of feeding

threads, while remaining constant with respect to the batch size.

Multiple processes per workerWe stress the parallel workers

by varying the number of processes a single worker is fed from. In

this setup, the worker is responsible for scheduling different user

requests and batching them into a single erbium call. The kernel

configuration is kept constant as the best-case setup from the first

experiment, with four engines per kernel. As depicted in Figure 7, a

single worker is not saturated by a single process and can deliver a

higher throughput when coupled with several processes, e.g., when

connecting from 2 to 8 processes per worker. The gain decreases

as we approach 16 processes per worker, indicating saturation at

the worker level. In terms of execution time, the scheduling at the

worker level imposes a similar latency than the one imposed at the

XRT level, but the former does depend on the batch size.

Comparison Figure 8 presents the compromise between latency

and throughput, and indicates which would be the best configura-

tion according to the performance priority. For a given minimal

throughput, e.g., 20 million queries per second, one can identify

that a configuration with 4p 4w 1k 4e would impose the lowest

execution time; however if the maximum execution time is fixed at,

e.g., 500 µs, the configuration with 2p 2w 1k 4e would be the one

which yields the best throughput. Having such a flexibility in the

configuration of the system and the degrees of parallelism is cru-

cial in search engines. Additional performance demands, whether

higher throughput or lower latency, can be addressed by choos-

ing the right combination of parameters. This flexibility also helps

avoiding over-provisioning by adjusting the size of the system to

the target performance and in determining what element to scale

when needed.

3.4 Discussion

When configuring a system with parallel processing elements, it is

important to consider not only the direct gain in throughput, but

also how the different elements are interconnected [3, 23]. Moreover,

the trade-off of generality and easy of maintenance at the cost of

designs that do not achieve maximum performance is a common
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Figure 8: A pareto comparison of execution time as a function

of the throughput for selected configurations.

one in software, but one that still needs to be considered in many

FPGA-based systems where performance often trumps all other

considerations [13]. As our use case illustrates, the practical viability

of a design hinges not only on its performance, but also on its ability

to match changing performance targets.

The performance comparison shows the importance of consider-

ing the life cycle of a real system of this scale. In practice, the load

on all components tends to grow over time. Thus, a design whose

performance is maximised for a particular problem size might not

be the best option on the medium and long term. Instead, a flexible

design is preferred as it facilitates maintenance and evolution. The

choice of using ZeroMQ as the middleware between theMCT Wrap-
per and the Domain Explorer emphasises the significance of easy

maintenance. Exposing it as a library, rather then using a microser-

vice architecture, would reduce isolation and increase technology

stack dependencies. Given that the MCT Wrapper encompasses

vendor-specific implementations and has a limitation in terms of

threads interfacing XRT, the reduced messaging overhead of using

it as a library would incur an extreme development and mainte-

nance cost, exposing software developers to the intricacies of FPGA

development. It is crucial to consider the scalability and adaptability

of a system design over time as a key takeaway. Ultra-optimised de-

signs that require being re-designed from scratch to accommodate

changes are unlikely to be successful in real-world deployments.

From the research and practitioners perspective, these results

yield an important lesson, which is that the overall performance

is determined more by how the accelerator is integrated rather

than the FPGA design itself. As evidenced by the performance

measurements, there is a surprisingly large range of setups that

can achieve varying levels of latency and throughput as a result of

constraints imposed by the system surrounding the FPGA. These

findings support the conclusions drawn earlier that the absolute

performance on the FPGA is not the only factor to consider, and

that aspects such as flexibility, ease of maintenance, evolution, and

integration are equally important.



DaMoN ’23, June 19, 2023, Seattle, WA, USA Fabio Maschi and Gustavo Alonso

0

2

4

6

8

10

12

14

P
C

Ie
 T

h
ro

u
gh

p
u

t 
[G

iB
/s

]

Batch Size

Figure 9: PCIe throughput of data transfer fromhost to device

memory.

4 INVOCATION ANALYSIS

In this section, we explore the performance implications associated

with the function invocation of the accelerator, specifically from

the perspective of a top-level user request.

4.1 Optimising the input channel

The various setups seen in the previous section stress different

components of the system, each one presenting different overhead

constraints. Maximising global throughput can come at the cost

of longer execution time per user request, while prioritising fast

response time may lead to lower throughput. It is important to high-

light that this is not a characteristic imposed by the accelerator, but

rather by the PCIe bus and the existing synchronisation protocols,

which require batching thousands of queries in a single function

invocation to be efficient. Batching is a standard workaround for

PCIe-attached accelerators to achieve high throughput [3, 16, 25],

but it comes at the cost of strict higher latency to the individual

queries composing the batch.

Different communication interfaces might play a key role in

alleviating this effect, such as streaming [14], where queries can be

fed to the accelerator, executed, and returned while the rest of the

stream is still being processed. Future developments of intercon-

nects, such as CXL and NVLink, and accelerator interfaces have

the potential of lifting the current limitations and enable new use

cases [15, 17]. Notably, GPU starvation by lack of incoming data

from the CPU is one of the motivations for NVIDIA’s Grace CPU

architecture, which provides a much higher bandwidth between

CPU and GPU than conventional approaches [7, 8].

Differently from GPUs, which by essence process a large amount

of data in a single-instruction-multiple-data fashion, FPGA appli-

cations do not necessarily need to follow the same pattern. FPGA

kernels can be designed as a very precise data-flow, where multi-

ple pieces of data are executed independently in parallel. This is

the case of erbium, where the query payload is very small (64 B)

and the internal graph search [21] is carried out in a multiple-
instruction-multiple-data fashion. As a consequence, the ratio of

memory bandwidth versus computation is flagrantly different com-

pared to GPUs and to how the PCIe bus is traditionally intended to

be used [33]. Figure 9 shows the transfer speed of input data, from
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processing user requests.

the host to the device memory. This bandwidth does not depend

on the accelerator, but solely on the PCIe bus, device memory char-

acteristics and on the XRT driver. Batches with small number of

queries are not sufficient to reach a high enough throughput over

PCIe. Notice that not even packing 65 536 queries in the same batch,

as a payload of 4MiB, barely reaches half of the maximum speed,

so the XRT ’s DMA engine is always operating below PCIe band-

width capacity. As seen in the previous section, attempts to achieve

higher throughput by batching more queries together incurs higher

individual query latency, which is a key performance metric in an

online system such as Amadeus’ flight search engine.

4.2 Related Query Batching

To mitigate the latency versus throughput dilemma illustrated in

Figure 9, each FPGA invocation should be optimised in such a man-

ner that a maximum number of related queries are batched together.

In our use case, a top-level user request spawns a variable num-

ber of erbium queries in the Domain Explorer, which can usually

range from zero to about 6000 queries, but it is only known during

runtime. The current implementation of the Domain Explorer is
optimised for a CPU architecture, where the notion of batch pro-

cessing is not required. In this way, the module executes queries

sequentially, and stops the search as soon as a sufficient number of

valid results are found. In the case of the FPGA, where there is a

need of batching, the number of queries needed to be checked is

not known before aggregating them into an FPGA invocation.

To measure how efficient the current CPU implementation is

regarding the evaluation of independent user requests, we conduct

an experiment deploying a single Domain Explorer process, a single
MCT Wrapper, and a single erbium kernel with four engines. In

this experiment, instead of imposing the batch size, we rely on

the workload of individual user requests generated by the Domain
Explorer. For the FPGA flow, if the number of queries in the first in-

vocation is not enough to satisfy the user request, a new invocation

is performed with further queries.

Figure 10 plots the execution time of 6300 individual user re-

quests being processed by the CPU and the FPGA modules as a

function of the number of checked queries, which is determined
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at runtime. We also plot the number of FPGA calls required to

fully complete the execution. Given that the CPU is able to finish

a user request as early as it finds enough valid queries, but the

FPGA invocation is carried out by batches, the FPGA is penalised

by having to process on average 23% more queries than the CPU.

For small workloads of up to 400 queries, the CPU implementa-

tion presents a smaller execution time. For bigger workloads, the

FPGA outperforms the CPU even when called several times in the

same request. These latency numbers, however, are not close to the

performance speed-up originally achieved when not taking into

account the origin of queries and their relation [21].

4.3 Discussion

FPGAs are fundamentally different from CPUs and GPUs. While

in all cases a certain amount of tuning to the underlying hardware

makes sense, in the case of the FPGAs it is usually crucial to get

the necessary performance. We have already seen this effect when

considering the impact of the encoder in the overall overhead, which

is necessary to adapt the incoming data types to formats the FPGA

can process efficiently. In this section, the experimental results

indicate that the batch size has to be large enough for the FPGA to

be competitive. However, the batch size is dictated by the search

engine and how it works. We have been able to find a compromise

solution, but the overall result is that the performance on the FPGA

suffers. At small batch sizes, there is not enough load for the FPGA

to be fully exploited, and the overhead of sending the queries to

the FPGA dominates. The size of the batch that can be processed

is determined by the business logic of the flight search engine. We

can delay submitting queries to batch several requests, but that

has an impact on latency and requires additional logic before the

FPGA. Moreover, not all user requests result in enough erbium

queries, naturally leading to small batch sizes and infra-utilisation

of the FPGA. One could argue that the flight search engine could be

modified to accommodate the FPGA. This is not a realistic option in

the short term as it would be very costly and still does not address

the fact that the query load is not uniform across different user

requests. These effects play no role in the CPU implementation,

but turn the FPGA deployment into a rather complex compromise

in terms of design and performance with the added factor that the

FPGA cannot always be fully exploited.

5 SYSTEM DEPLOYMENT

In this section, we present a brief analysis of deploying the search

engine solution for both on-premises and in the cloud, and an ap-

proximate cost that gives an accurate picture of the issues involved.

5.1 Application co-location

The PCIe bus is the traditional interface to interact with FPGAs

supported by the major vendors. In this setup, the FPGA acts as a

subordinated accelerator attached to a host CPU, which is responsi-

ble of provisioning, programming, and executing the FPGA kernels

through a vendor-specific driver. In order to maximise server utilisa-

tion and reduce communication overheads, upstream applications

are often co-located in the host CPU of the FPGA board, which is

the case of the Amadeus’ flight search engine, as depicted in Fig-

ure 1. User requests come from the network and are served by the

CPU application, which then generates queries to be accelerated

by the FPGA. This setup is the only one available in both AWS F1

and Azure NP-series, as of March 2023.

FPGA wrappers like the MCT Wrapper can be seen as a simple

middleware, or proxy, between the business application and the

accelerator kernel. Its computing demand is very low, so not co-

locating any upstream application on the host CPU very often leads

to waste of resources. Moreover, the inter-POD communication car-

ried out by ZeroMQ is optimised so it is routed internally, without

actually going through the network. The latency increase caused by

the network communication would only be tolerated if the servers

running the upstream application and the host CPU are connected

through the same network switch (i.e, top-of-rack switch), which is

uncontrollable in cloud deployments. From a throughput perspec-

tive, the limit caused by the PCIe-bus and the number of threads

that can actually be used per kernel would nonetheless remain

constant, making the disaggregation of containers into two PODs

unprofitable overall.

5.2 Resource optimisation

Amadeus uses 400 large multi-core servers for the Domain Explorer,
and the current computing footprint of the MCT module accounts

for up to 40 % of CPU time on them. By offloading it to the FPGA,

it is theoretically possible to handle 40% more user requests per

server. For a constant global workload of the system, this indicates

that the current allocation of CPU servers could drop to only 244

CPU servers attached to an FPGA.

The approach to leverage the new design depends onwhether the

deployment is on-premises or in the cloud. In on-premises settings,

one theoretically has the flexibility to choose a specific combina-

tion of CPU and FPGA boards. However, in practice, this choice is

driven by not only the acquisition costs, but also the compatibility

with existing hardware and the technical maintenance overhead

within the organisation. For instance, the existing computing re-

sources for the Amadeus’ flight search engine are already defined

and accounted for. An eventual re-allocation of resources within

the organisation should also be considered, e.g, allocating surplus

CPUs to a different service or product.

On the other hand, for deployments in the cloud, the choices are

limited to the currently available configurations of CPU and FPGA

models, FPGA shells (and hence, communication interface such as

batching vs. streaming), and how they are attached together. As

of March 2023, both the AWS F1 and Azure NP-series instances

offer a relatively large FPGA (UltraScale+ VCU9P and Alveo U250,

respectively), PCIe-attached to a relatively small CPU (8 and 10

vCPUs, respectively). Although other instances offer further FPGA

and CPU resources, the vCPU-to-FPGA ratio remains the same. This

is currently a major handicap in a co-located service architecture,

since the workload of a few vCPUs is insufficient to fully utilise the

computing capacity of the FPGA. More importantly, to match the

CPU current load capacity of a single on-premises CPU-only server,

approximately six AWS F1 instances would be necessary. Although

a possible solution may come from multiple CPU instances sharing

the same FPGA, or FPGA-to-FPGA communication, this is not yet

available in cloud environments. Thus, while the FPGA can process
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Table 1: Cost estimate of the proof-of-concept deployment.

Element Units Unit Cost
2

Total

(USD) (USD)

On-Premises

Original engine CPU 400 10 k 4 M

With erbium CPU + Alveo U200 244 20 k 4.88 M

With erbium CPU + Alveo U55c 244 13 k 3.17 M

AWS

Original engine c5.12xlarge 400 1.452/h 5.0 M/year

With erbium f1.2xlarge 1,464 1.2266/h 15.7 M/year

Azure

Original engine F48s v2 400 1.2084/h 4.2 M/year

With erbium NP10s 1,171 1.0411/h 10.6 M/year

2
Hourly prices for AWS instances in Europe (Ireland) region, and for Azure

instances in United States (Washington), both for a savings plan of one year.

a large workload, the CPU side is simply not powerful enough to

generate enough load.

5.3 Cost efficiency

Table 1 summarises a simplified cost calculation associated to dif-

ferent deployments based on the current production load. This

calculation is not intended to provide a comprehensive comparison

between on-premises and cloud deployments, since it does not con-

sider factors such as maintenance, facility, energy and operational

on-premises costs. This being said, it does provide a good base of

comparison for the different system layouts among each category.

Notably, these numbers demonstrate that, on-premises, the new de-

sign is cost-effective when using some of the more modern FPGAs

(U55c) that provide good performance at a much lower price than

previous comparable models (U250, U280). In fact, considering that

the co-located application cannot fully utilise the FPGA and the

hardware design fits on a smaller board, one could consider even

smaller FPGA boards to make the system more cost-efficient and

increase resource utilisation. On top of that, FPGAmodels are evolv-

ing fast, offering increasing resources at the same price, or even at a

lower cost for a fixed capacity (e.g., the U55c is more powerful than

the U200 with a far lower list price). On the other hand, for cloud

deployments, the current configurations are simply inadequate for

the proposed design. Due to the small vCPU-to-FPGA ration avail-

able, 1464 f1.2xlarge or 1171 NP10s would be necessary to sustain

the current load on the rest of the system. The cost increase of 3x

for AWS and 2.5x for Azure over a CPU-only design is prohibitive.

5.4 Scalability

Equally important to the availability of the provisioning instances,

the flexibility of the scalability plays a major role in the deploy-

ment of production systems. In fact, despite the relatively higher

development and integration efforts, this is what makes distributed

systems attractive [5], as they allow applications to be decomposed

into smaller, independent computing nodes, enabling fine-grained

scaling according to their individual demand. However, the cur-

rent offering of PCIe-attached FPGAs tends to favour application

co-location, which in turn imposes a tight scalability dependency

between the module running on the CPU and the accelerated kernel.

The fact that even small models of FPGA boards can consume

the workload of several CPU servers stresses the difficult optimisa-

tion equation: in the best scenario of smaller FPGAs PCIe-attached

to powerful CPU servers, they are expected to scale in and out

together. In realistic scenarios, given the current limited cloud offer-

ings, the FPGA nodes in applications such as the Amadeus’ flight

search engine are certainly under-utilised. This is a key element

that deserves more research attention, as one could easily imagine

the FPGA-accelerated function as a microservice that can scale in

and out independently from the upstream flow, which would signif-

icantly enhance its flexibility and scalability. This research direction

is being recognised, e.g., from SAP SE, who recently analysed the

tightly coupling of accelerators to hosts as an important limiting

factor for data processing [22].

As seen before, the accelerator can achieve high throughput

or low latency when the workload is simply fed to the system

without concerns of relation (i.e, origin user request) or composition

(i.e., batching queries from different user requests in a reasonable

size). When these business constraints must be respected, both

metrics can simply never be met. To solve this problem, it is not

sufficient to shuffle around modules into different servers or try

to fully optimise some implementations to earn few microseconds.

The solution requires a more disruptive change, mainly in what

concerns the critical data path that queries navigate through. This

can be achieved in two ways. One is through new interconnects

such as CXL, which in future versions (3.0) promises a much higher

bandwidth and lower latency than existing PCIe solutions [10, 15,

18]. The other is by making the FPGA directly callable through

the network, so as to remove the host CPU and the interconnect

completely from the interaction.

Until CXL becomes more established and future versions avail-

able, the network channel seems the most promising at the moment

and could be used in our use case. This would involve making the

erbium engine a microservice that be called using a standard cloud

interface like HTTP [20]. This can potentially even be done without

a regular server such as what has been done in Amazon’s AQUA [1].

AQUA allows Redshift to offload advanced query processing to the

FPGA via the network to implement a caching layer with SSDs

directly attached to the FPGA that is, in turn, directly connected

to the network. In this configuration, the ability of the FPGA to

process data at line rate is used to maximise the bandwidth of the

storage and of the network without requiring a conventional CPU.

In such configurations, it is also possible to incorporate additional

functionality such as compression and encryption to make the

system even more efficient [4].

5.5 Discussion

Although these results are undoubtedly rough cost calculations

and some of the prices of servers, boards, and cloud instances can

vary in the near future, they do provide a sobering perspective on

large-scale FPGA deployments using today’s systems. The main

issue that these results bring to the fore is the significant imbalance

between the CPU and the FPGA in the cloud instances. We have

shown throughout the paper that turning the initial prototype into

a real system results in a performance loss over the ideal case,

performance that is further reduced by impedance mismatches
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between the current system and what the FPGA needs in order

to provide maximum performance. Add to that the fact that the

instances in the cloud do not provide enough computing capacity for

the software part of the engine to put enough load on the FPGA, and

the result is a high cost for FPGA deployments. The obvious solution

to this is to have access to instances with a different configurations.

On the research front, these findings point out at the importance of

considering how to put enough load on the FPGA and the overhead

of getting results back.

As pointed out above, at the moment, a better way to use FP-

GAs seems to be as first-class processors directly accessible from

the network. This could look like the configuration used in Mi-

crosoft Azure [9], where the FPGA processes packages at line-rate

directly from the network. Alternatively, one could think of having

stand-alone FPGAs or FPGA clusters also directly connected to the

network, as IBM has proposed on their CloudFPGA [27, 31] or as

in Amazon’s AQUA. As future work, we plan to explore the impact

of different communication interfaces on the overall system, such

as using TCP/IP communication [28], as well as RDMA [29].

6 CONCLUSION

Data centres make computing heterogeneity affordable. While re-

search has been showing great potential for the use of hardware

accelerators, integrating them into complex and legacy systems is

yet a challenge. The acceleration nature of such devices requires a

high throughput input, but current interconnects limit this to what

conventional CPUs are able to submit. In this paper, we provide an

extensive study of such imbalance using a commercial flight search

engine as a use case. We took a research prototype of an FPGA-

based accelerator and made it a Proof-of-Concept integrated within

a realistic search engine under realistic constraints. We show that,

while orders of magnitude better performance may be achieved

in a stand-alone setup, mismatches between the upstream system

and the accelerator significantly reduce the benefits. Additionally,

the FPGA offerings currently available in the cloud are still too

constrained, preventing a full utilisation of the FPGA computing

power due to a mismatch with the CPU power and interconnect

bandwidth. We shed light on the current integration and deploy-

ment issues of such solutions, and show how scalability, resource

optimisation, and cost efficiency remain a challenge if accelerators

are subordinated to a conventional host CPU. We hope that these

insights will encourage further research on the end-to-end aspects

of accelerator deployments and also inform existing deployments

to expand the range of options available.
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