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We study a special class of binary trees. Our results have implications on Maker/Breaker
games and SAT: We disprove a conjecture of Beck on positional games and construct
an unsatisfiable k-CNF formula with few occurrences per variable, thereby improving a
previous result by Hoory and Szeider and showing that the bound obtained from the
Lovász Local Lemma is tight up to a constant factor.

A (k,s)-CNF formula is a boolean formula in conjunctive normal form where every
clause contains exactly k distinct literals and every variable occurs in at most s clauses.
The (k,s)-SAT problem is the satisfiability problem restricted to (k,s)-CNF formulas.
Kratochv́ıl, Savický and Tuza showed that for every k≥3 there is an integer f(k) such that
every (k,f(k))-CNF formula is satisfiable, but (k,f(k)+1)-SAT is already NP-complete
(it is not known whether f(k) is computable). Kratochv́ıl, Savický and Tuza also gave

the best known lower bound f(k) =Ω
(

2k

k

)
, which is a consequence of the Lovász Local

Lemma. We prove that, in fact, f(k) = Θ
(

2k

k

)
, improving upon the best known upper

bound O
(
(logk) · 2k

k

)
by Hoory and Szeider.

Finally we establish a connection between the class of trees we consider and a certain
family of positional games. The Maker/Breaker game we study is as follows. Maker and
Breaker take turns in choosing vertices from a given n-uniform hypergraph F , with Maker
going first. Maker’s goal is to completely occupy a hyperedge and Breaker tries to prevent
this. The maximum neighborhood size of a hypergraph F is the maximal s such that
some hyperedge of F intersects exactly s other hyperedges. Beck conjectures that if the
maximum neighborhood size of F is smaller than 2n−1 − 1 then Breaker has a winning
strategy. We disprove this conjecture by establishing, for every n≥3, the existence of an n-
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uniform hypergraph with maximum neighborhood size 3·2n−3 where Maker has a winning
strategy. Moreover, we show how to construct, for every n, an n-uniform hypergraph with

maximum degree at most 2n+2

n
where Maker has a winning strategy.

In addition we show that each n-uniform hypergraph with maximum degree at most
2n−2

en
has a proper halving 2-coloring, which solves another open problem posed by Beck

related to the Neighborhood Conjecture.

1. Introduction

1.1. Trees

We first consider a special class of trees, which connect both to
Maker/Breaker games and SAT. Throughout this paper, by a binary tree
we mean a rooted tree where every node has either two or no children. In
such a binary tree we say that a leaf v is l-close to a node w if w is an
ancestor of v, at distance at most l from v. For positive integers k and d,
we call a binary tree T a (k,d)-tree if (i) every leaf has depth at least k−1
and (ii) for every node u of T there are at most d leaves (k−1)-close to u.
Clearly, every binary tree with all leaves at depth at least k−1 is a (k,2k−1)-
tree. The following lemma, which we will show in Section 4, will be the main
ingredient in proving some new results on Maker/Breaker games and SAT.

Lemma 1.1. A
(
k,

⌊
2k+2

k

⌋)
-tree exists for every k≥1.

Remark 1.2. Lemma 1.1 is not best possible. By using a series of tedious,
technical arguments we can push down the value 2k+2

k to 63
64

2k−1

k for infinitely
many k. However, we chose not to include it here because more recently (in
[8]) the smallest value r = r(k) for which there exists a (k,r)-tree has been
settled up to lower order terms: r(k)=

(
1
e +O

(
1√
k

))
2k

k .

1.2. SAT

Lemma 1.1 has implications on SAT. Following the standard notation we
denote by (k,s)-CNF the set of boolean formulas F in conjunctive normal
form where every clause of F has exactly k distinct literals and each variable
occurs in at most s clauses of F . Moreover, we denote by (k,s)-SAT the
satisfiability problem restricted to formulas in (k,s)-CNF. Tovey [18] proved
that every (3,3)-CNF formula is satisfiable. For k a positive integer let f(k)
be defined as the largest integer, so that every (k,f(k))-CNF formula is
satisfiable. Tovey also showed that f(3)=3 and that, moreover, (3,4)-SAT
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is NP-complete. Kratochv́ıl, Savický and Tuza [12] generalized this result by
showing that for every k≥3 (k,f(k)+1)-SAT is already NP-complete. This
phenomenon, that (k,f(k))-SAT is trivial while (k,f(k)+1)-SAT is already
NP-hard, is often referred to as complexity jump.

The best known lower bound for f(k), a consequence of the Lovász Local
Lemma, is due to Kratochv́ıl, Savický and Tuza [12].

Theorem 1.3. (Kratochv́ıl, Savický and Tuza [12]) f(k)≥⌊
2k

ek

⌋
.

From the other side Savický and Sgall [15] showed that f(k) =
O(k(1−α) · 2k

k ) where α=log3 4−1≈ 0.26. This was improved by Hoory and
Szeider [9] who proved that f(k) = O((logk) · 2k

k ), which is the best known
upper bound. We close the gap between upper and lower bound up to a
constant factor by showing that f(k)=Θ

(
2k

k

)
. More precisely, in Section 2

we will show (in the proof of Lemma 1.6) that for every given (k,d)-tree we
can construct an unsatisfiable (k,2d)-CNF formula. Together with Lemma
1.1 this directly implies the following.

Theorem 1.4. For every integer k,

f(k) <
2k+3

k
.

Hence the lower bound in Theorem 1.3 is best possible up to a factor 8e.
Recently Moser [14] showed that for s≤ 2k−6

k not only every (k,s)-CNF
formula has a satisfying assignment but there is also an algorithm comput-
ing such an assignment efficiently. Theorem 1.4 proves that this bound is
asymptotically tight. Indeed, for some (k, 2k+3

k )-CNF formulas we can not
find a satisfying assignment efficiently, simply because there is none.

A special class of unsatisfiable formulas. The class MU1 of minimal
unsatisfiable CNF formulas F where m(F)−n(F)=1 with m(F) denoting
the number of clauses of F and n(F) denoting the number of variables of
F has been widely studied (see, e.g., [1], [5], [11], [13], [17]). While it is not
known whether f(k) is computable Hoory and Szeider investigated f1(k),
the largest integer such that no (k,f1(k))-CNF formula is in MU1. They
showed that f1(k) is computable. With f(k) ≤ f1(k) this allowed them to
derive the best known upper bounds for f(k) for small k: f(5)≤7, f(6)≤11,
f(7)≤17, f(8)≤29, f(9)≤51.

While the derivation of the previous bound of f(k)= O
(
(logk) · 2k

k

)
by

Hoory and Szeider did not go via an MU1 formula the construction for
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proving Theorem 1.4 resides in MU1 (c.f. Lemma 1.6). As a consequence,
Theorem 1.4 remains true if we replace f(k) with f1(k).

Corollary 1.5. For every integer k we have f1(k) < 2k+3

k , implying that

f1(k)=Θ(2k

k ) and f1(k)=(1+o(1))f(k).

It is an open question whether f(k)= f1(k), i.e., whether some unsatis-
fiable CNF formulas with the smallest possible number of occurrences per
variable (i.e. some unsatisfiable (k,f(k) + 1)-CNF formulas) are members
of MU1. Scheder [16] showed that for almost disjoint k-CNF formulas (i.e.
CNF formulas where any two clauses have at most one variable in common)
this is not true, i.e., no almost disjoint unsatisfiable (k, f̃(k)+1)-CNF for-
mula is in MU1, with f̃(k) denoting the maximum s such that every almost
disjoint (k,s)-CNF formula is satisfiable.

Bounded neighborhood size. The neighborhood Γ (C) of a clause C in a
CNF formula F is the set of clauses in F that share at least one variable with
C, excluding C itself. Analogously to f(k) let l(k) denote the largest integer
d such that every k-CNF formula for which |Γ (C)|≤d for every clause C of
F is satisfiable. In fact, the proof of Theorem 1.3 shows that every k-CNF
formula F with |Γ (C)| ≤ 2k

e − 1 for all clauses C of F is satisfiable. (Note
that Theorem 1.3 is a direct consequence of this; for, if in a k-CNF formula
every variable occurs at most �2k

ek � times then no clause can collect more

than k
(
�2k

ek �−1
)
≤ 2k

e −1 neighbors.) Thus,

(1) l(k) ≥
⌊2k

e

⌋
− 1.

This bound is asymptotically tight. The simplest reason is that the com-
plete formula consisting of all 2k clauses of size k over k variables is clearly
unsatisfiable and has neighborhoods of size 2k−1 at each clause. In Section
2 we will show (in the proof of Lemma 1.6) that for every given (k,d)-tree
we can construct an unsatisfiable k-CNF formula F where |Γ (C)| ≤ kd for
every clause C of F . So the construction of appropriate (k,d)-trees (as, for
example, those mentioned in Remark 1.2) allows to further tighten the gap
between the known lower and upper bounds.

Connection to (k,d)-trees. The following lemma establishes a connection
between SAT and the (k,d)-trees described above.

Lemma 1.6. Let T be a (k,d)-tree, k and d positive integers. Then there
is an unsatisfiable k-CNF formula F=F(T ) with the following properties.
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(a) Every literal occurs in at most d clauses of F .
(b) For every two distinct clauses C, D having a variable in common there

is a variable that appears in C and D with opposite signs.
(c) If T is minimum with respect to the number of leaves then F belongs

to MU1.
(d) |Γ (C)|≤kd for all clauses C in F .

In particular, f(k),f1(k)≤2d−1 and l(k)≤kd−1.

Lemma 1.6 will be proved in Section 2. Note that Theorem 1.4 and Corol-
lary 1.5 follow directly from Lemma 1.6, Lemma 1.1 and Theorem 1.3.

Implications on (k,d)-trees. By (1) and Lemma 1.6 we obtain the fol-
lowing.

Observation. There is no (k,d)-tree for d≤ 2k

ek −1.

1.3. Maker/Breaker Games

A hypergraph is a pair (V,E), where V is a finite set whose elements are called
vertices and E is a family of subsets of V , called hyperedges. A hypergraph
is n-uniform if every hyperedge contains exactly n vertices. We study the
following Maker/Breaker game. Maker and Breaker take turns in claiming
one previously unclaimed vertex of a given n-uniform hypergraph F , with
Maker going first. Maker wins if he claims all vertices of some hyperedge
of F , otherwise Breaker wins. We say that Maker uses a pairing strategy if,
after claiming his first vertex, he divides all but at most one of the remaining
vertices of F into pairs and whenever Breaker claims one vertex of a pair he
takes the other one.

Let F be an n-uniform hypergraph. The degree d(v) of a vertex v is
the number of hyperedges containing v and the maximum degree Δ(F) of a
hypergraph F is the maximum degree of its vertices. The neighborhood N(e)
of a hyperedge e is the set of hyperedges of F which intersect e, excluding
e itself, and the maximum neighborhood size of F is the maximum of |N(e)|
where e runs over all hyperedges of F .

The famous Erdős-Selfridge Theorem [6] states that for each n-uniform
hypergraph F with less than 2n−1 hyperedges Breaker has a winning strat-
egy. This upper bound on the number of hyperedges is best possible as the
following example shows. Let V ={v}∪{v1, . . . ,vn−1}∪{w1, . . . ,wn−1} and let
E be the union of all hyperedges containing v and exactly one vertex of every
pair (vi,wi). G := (V,E) is an n-uniform hypergraph with 2n−1 hyperedges.
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By first claiming v and then pairing vi with wi for every i∈ {1, . . . ,n−1},
Maker can occupy all vertices of some hyperedge.

Note that the maximum degree of G is 2n−1, thus equally large as the
number of hyperedges of G. This provides some evidence that in order to
be a Maker’s win a hypergraph must have largely overlapping hyperedges.
Moreover, Beck [3] conjectured that the main criterion for whether a hy-
pergraph is a Breaker’s win is not the cardinality of the hyperedge set but
rather the maximum neighborhood size, i.e., the actual reason why each hy-
pergraph H with less than 2n−1 edges is a Breaker’s win is that the maximum
neighborhood size of H is smaller than 2n−1−1.

Neighborhood Conjecture (Open Problem 9.1(a), [3]) Assume that F
is an n-uniform hypergraph, and its maximum neighborhood size is smaller
than 2n−1−1. Is it true that Breaker has a winning strategy on F?

Further motivation for the Neighborhood Conjecture is the well-known
Erdős-Lovász 2-coloring Theorem – a direct consequence of the famous
Lovász Local Lemma – which states that every n-uniform hypergraph with
maximum neighborhood size at most 2n−1

e −1 has a proper 2-coloring. An
interesting feature of this theorem is that the size of the hypergraph does
not matter. By another application of the Local Lemma we prove (in The-
orem 1.8) that, moreover, every n-uniform hypergraph with maximum de-
gree at most 2n−2

en has a so called proper halving 2-coloring, i.e., a proper
2-coloring where the number of red vertices and the number of blue vertices
differ by at most 1. This guarantees the existence of a course of the game
such that at the end Breaker owns at least one vertex of each hyperedge and
thus is the winner. Moreover, the existence of a proper halving 2-coloring is
a necessary condition for Breaker having a winning strategy. Indeed, assume
for a contradiction that Breaker has a winning strategy on a hypergraph F
which does not admit a proper halving 2-coloring. Suppose further that dur-
ing the game Maker colors his vertices red and Breaker colors his vertices
blue. Note that by the end of the game the vertices are colored in such a
way that the number of red vertices and the number of blue vertices differ
by at most 1. By assumption Breaker has a winning strategy, thus every hy-
peredge contains at least one blue vertex. Since F does not admit a proper
halving 2-coloring there must be at least one hyperedge containing only blue
vertices. Since Maker starts the game he can now “steal” Breaker’s strat-
egy by starting with an arbitrary first vertex and then following Breaker’s
strategy (if this strategy calls for a vertex he occupied before he takes an
arbitrary free vertex: no extra move is disadvantageous for him). This en-
ables him to occupy all vertices of some hyperedge, which contradicts the
assumption that Breaker has a winning strategy.
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We first prove that the Neighborhood Conjecture, in this strongest of its
forms, is not true, even if we require Maker to use a pairing strategy.

Theorem 1.7. For every n ≥ 3 there is an n-uniform hypergraph H with
maximum neighborhood size 2n−2+2n−3 where Maker has a winning pairing
strategy.

In Section 3 we prove Theorem 1.7 by constructing an appropriate binary
tree T , which gives rise to the required hypergraph. In his book [3] Beck also
poses the following weaker version of the Neighborhood Conjecture.

Open problem 1. (Open Problem 9.1(b), [3]) If the Neighborhood Con-
jecture is too difficult (or false) then how about if the upper bound on the

maximum neighborhood size is replaced by an upper bound 2n−c

n on the
maximum degree where c is a sufficiently large constant?

In the hypergraph H we will construct to prove Theorem 1.7 one vertex
has degree 2n−2+1, which is still high. However, the existence of vertices with
high degree is not crucial. We also construct a hypergraph with maximum
degree 2n+2

n on which Maker has a winning strategy (c.f. Corollary 1.11).
In his book [3] Beck also poses several further weaker versions of the

Neighborhood Conjecture. The last one is as follows.

Open problem 2. (Open Problem 9.1(f), [3]) How about if we just want
a proper halving 2-coloring?

It is already known [3] that the answer to Open Problem 2 is positive if
the maximum degree is at most

(
3
2 −o(1)

)n. According to Beck [3] the real
question is whether or not 3

2 can be replaced by 2. We prove that the answer
is yes.

Theorem 1.8. For every n-uniform hypergraph F with maximum degree

at most 2n−2

en there is a proper halving 2-coloring.

We will prove Theorem 1.8 in Section 3.

Connection to trees. Let T be a binary tree where every leaf has depth
at least n−1. By HT =HT (n) we denote the n-uniform hypergraph whose
hyperedges are the vertex sets of paths that start at a leaf and go up n−1
levels. The next lemma will be proved in Section 3.

Lemma 1.9. Let T be a binary tree where every leaf has depth at least
n−1. Then Maker has a winning pairing strategy on HT .
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By the construction of HT and Lemma 1.9 we can immediately connect
(k,d)-trees to the game we study.

Observation 1.10. Let T be an (n,d)-tree. Then (i) Maker has a winning
pairing strategy on HT and (ii) every vertex of HT occurs in at most d
hyperedges.

The next corollary is then a direct consequence of Observation 1.10 and
Lemma 1.1.

Corollary 1.11. For every n there is an n-uniform hypergraph with max-

imum degree at most 2n+2

n where Maker has a winning pairing strategy.

Notation. Ceiling and floor signs are routinely omitted whenever they are
not crucial for clarity. Throughout this paper log stands for the binary log-
arithm. Let T be a binary tree. For any integer l we let level l denote the
set of nodes at depth l. Moreover, a path of T is a sequence of vertices
v1,v2, . . . ,vj of T where vk is a child of vk−1 for every k=2, . . . , j. Depending
on the context we consider a hyperedge e of a hypergraph HT either as a
set or as a path in T . So we will sometimes speak of the start or end node
of a hyperedge.

Organization of this paper. In Section 2 we establish a connection be-
tween the trees we study and SAT by proving Lemma 1.6. In Section 3 we
show Lemma 1.9, which connects trees to the Maker/Breaker game we con-
sider, and prove Theorem 1.7 refuting the Neighborhood Conjecture in the
strongest of its forms. Moreover, we also show Theorem 1.8.

In Section 4 we finally prove Lemma 1.1 by constructing suitable (k,d)-
trees.

2. Constructing Unsatisfiable k-CNF Formulas
with Small Neighborhood

In order to prove Lemma 1.6 we will consider the following construction of
an unsatisfiable k-CNF formula. Let T be a given (k,d)-tree and let T̂ denote
the binary tree obtained by attaching the roots of disjoint copies of T as the
two children of a new root. Note that T̂ is a (k,d)-tree where every leaf has
depth at least k. For every non-leaf node w ∈ V (T̂ ) we create a variable
xw and label one of its children with the literal xw and the other with the
negated version x̄w. Note that the root does not receive a literal. With every
leaf v of T̂ we associate a clause Cv by walking along a path of length k−1
from v towards the root and taking the disjunction of all labels encountered
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on this path (i.e., the labels of all nodes to which v is (k−1)-close). Finally,
we let F(T ) denote the conjunction of all such clauses Cv.

Clearly, every assignment α over the variables of F(T ) defines a path in
T from the root to a leaf, say v, by always proceeding to the unique child
whose label is mapped to 0 by α; thus the clause Cv associated with v is
violated by α. Hence we have the following.

Observation 2.1. For every (k,d)-tree T , the corresponding formula F(T )
is unsatisfiable.

Moreover, in the proof of Lemma 1.6 we will use a powerful characteri-
zation of MU1-formulas given by Davydov, Davydova, and Kleine Büning
[5]. (Here a clause C =(x1∨x2∨. . .∨xk) is represented as the set {x1, . . . ,xk}
of its literals, and a CNF formula F=C1∧C2∧. . .∧Cn is represented as the
set {C1, . . . ,Cn} of its clauses. “vbl(F)” denotes the set of variables which
occur in F .)

Lemma 2.2 (Davydov, Davydova, and Kleine Büning [5]). F ∈MU1
if and only if either F = {∅} or F is the disjoint union of formulas F ′

1,F ′
2

such that for a variable x we have

• vbl(F ′
1)∩vbl(F ′

2)={x} and {x,x̄}⊆⋃
C∈F C;

• F1 :={C\{x} :C ∈F ′
1}∈MU1;

• F2 :={C\{x̄} :C∈F ′
2}∈MU1.

Two nodes of a binary tree are called siblings if they share the same
parent. Let T be a binary tree and suppose that we label the nodes of
T other than the root by literals such that every literal appears exactly
once and siblings get complementary literals. We can now construct a CNF
formula G by associating with every leaf v of T a clause Cv that is the
disjunction of some literals along the path from v to the root, and taking
the conjunction of all the Cv. Every CNF formula G which can be obtained
in this way is called a T -formula.

Note that for every (k,d)-tree T , the formula F(T ) is a T̂ -formula. The
following characterization of MU1-formulas is an immediate (and known)
consequence of Lemma 2.2.

Corollary 2.3. A CNF formula G is in MU1 if and only if G is a T -formula
for some binary tree T where every literal associated to a vertex of T does
appear in G.

We are now ready to prove Lemma 1.6.
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Proof of Lemma 1.6. Let T be a (k,d)-tree and let F =F(T ). Recall that
T̂ is the binary tree obtained by attaching the roots of disjoint copies of T
as the two children of a new root. By Observation 2.1 F is unsatisfiable.
Moroever, the defining property of (k,d)-trees guarantees that no literal
appears in more than d clauses (hence (a)). We now settle (b). Let u and v

be two leaves of T̂ such that the clauses Cu and Cv associated with u and
v share at least one variable. Moreover, let w denote the lowest common
ancestor of u and v (i.e. the node of maximum depth in T̂ that appears
on both paths from u and v, respectively, to the root). Then one child of
w occurs in Cu whereas the other child occurs in Cv. Since siblings have
complementary literals (b) is shown.

Next we prove (c). By construction F is a T̂ -formula. Due to the mini-
mality of T , every non-root node w of T has one leaf descendant at distance
at most k−2, since otherwise the subtree of T rooted at w would be a (k,d)-
tree with fewer leaves than T . Hence every node of T (including the root)
has one leaf descendant at distance at most k−1, and thus every literal as-
sociated to a vertex of T̂ does appear in F . So, by Corollary 2.3, F belongs
to MU1.

(d) follows from (a) and (b): Indeed, if we define occ(u) as the number
of clauses of F containing a literal u, and if we abbreviate ,,the clause C
contains the literal u” by ,,u ∈ C”, then (b) allows us to write |Γ (C)| as∑

u∈C occ(ū), which is at most kd for every clause C of F .

3. Counterexample to the Neighborhood Conjecture

Recall that, for a given binary tree T where every leaf has depth at least
n−1, we let HT =HT (n) denote the n-uniform hypergraph whose hyperedges
are the vertex sets of paths that start at a leaf and go up n−1 levels.

Proof of Lemma 1.9. The set of non-root nodes of T can be divided into
pairs of siblings. By first claiming the root of T and then pairing every node
with its sibling Maker can finally achieve a path from the root to a leaf,
which by assumption contains a hyperedge.

Proof of Theorem 1.7. Due to Lemma 1.9 it suffices to show the next
lemma.

Lemma 3.1. For every n≥3 there is a binary tree T where every leaf has
depth at least n−1 such that HT has maximum neighborhood size 2n−2+2n−3.

Proof. Let T ′ be a full binary tree with n−1 levels. For each leaf u of T ′ we
proceed as follows: We add two children v, w to u and let v be a leaf. Then
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we attach a full binary tree S with n−2 levels to w (such that w is the root
of S). For each leaf u′ of S we add two children v′, w′ to u′ and let v′ be a
leaf. Note that the hyperedge ending at v′ starts at u. Finally, we attach a
full binary tree S′ with n−1 levels to w′ (such that w′ is the root of S′), see
Figure 1. Let T denote the resulting tree.

u

v w

u′

v′ w′

n − 1

n − 2

n − 1

n − 1

Figure 1. An illustration of HT . The marked paths represent exemplary
hyperedges.

Clearly, every leaf of T has depth at least n−1. It remains to show that
the maximum neighborhood of HT is at most 2n−2 +2n−3.

Claim. Every hyperedge e of HT intersects at most 2n−2 +2n−3 other hy-
peredges.

In order to prove this claim, we fix six vertices u,u′,v,v′,w,w′ according
to the above description, i.e., u is a node on level n−2 whose children are v
and w, u′ is a descendant of w on level 2n−4 whose children are v′ and w′.
Let e be a hyperedge of HT . Note that the start node of e is either the root
of T , a node on the same level as u or a node on the same level as u′. We
now distinguish these cases.
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(a) The start node of e is the root. By symmetry we assume that e ends
at v. According to the construction of T the hyperedge e intersects the
2n−2−1 other hyperedges starting at the root and the 2n−3 hyperedges
starting at u. So altogether e intersects 2n−2+2n−3−1 other hyperedges.

(b) The start node of e is on the same level as u. By symmetry we suppose
that e starts at u and ends at v′.

The hyperedges intersecting e can be divided into the following three cate-
gories.

• The hyperedge starting at the root and ending at v,
• the 2n−3−1 hyperedges different from e starting at u, and
• the 2n−2 hyperedges starting at u′,

implying that e intersects 2n−2 +2n−3 other hyperedges in total.

(c) The start node of e is on the same level as u′. By symmetry we assume
that e starts at u′. Then e intersects the 2n−2 − 1 other hyperedges
starting at u′ and the hyperedge starting at u and ending at v′, thus
2n−2 other hyperedges altogether.

Establishing a Proper Halving 2-Coloring

Proof of Theorem 1.8. Let F = (V,E). We can assume without loss of
generality that |V | is even. (Otherwise we let V ′ be the vertex set obtained by
adding a dummy vertex x to V , and we consider the hypergraph F ′=(V ′,E).
Since every proper halving 2-coloring of F ′ yields a proper halving 2-coloring
of F , it suffices to show that F ′ has as proper halving 2-coloring.) We will
show the following, stronger claim.

Proposition 3.2. Let F = (V,E) be an n-uniform hypergraph with 2r
vertices and maximum degree at most 2n−2

en . Then for every partition
(v1,v

′
1), . . . ,(vr,v

′
r) of V into pairs, there is a proper 2-coloring such that

vi and v′i have different colors for every i, i=1, . . . ,r.

Before starting with the proof we need some notation. First, let P =
(v1,v

′
1), . . . ,(vr,v

′
r) be a partition of V into pairs. By a (proper) P -2-coloring

we denote a (proper) 2-coloring of F such that vi and v′i have different colors
for every i, i=1, . . . ,r. Moreover, for every vertex x∈V we denote by f(x)
the vertex which is paired with x in P (i.e., f(vi)=v′i and f(v′i)=vi).
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Proof of Proposition 3.2. We fix a partition P =(v1,v
′
1), . . . ,(vr,v

′
r) of V

into pairs. Our goal is to show that there is a proper P -2-coloring. For each
hyperedge e=(w1, . . . ,wn) we add e and e′ =(f(w1), . . . ,f(wn)) and denote
the resulting hypergraph by F ′. Note that Δ(F ′)≤2 ·Δ(F)≤ 2n−1

en . We now
transform F ′ into a SAT instance. For every hyperedge e=(u1, . . . ,un) of F ′
we form a clause Ce =(u1∨u2∨. . .∨un) and set H :=∧e∈E(F ′)Ce with E(F ′)
denoting the hyperedge set of F ′. Then we replace (in H) vi and v′i with
xi and x̄i, respectively, for every i, i = 1, . . . ,r. Note that every variable xi

occurs in at most 2Δ(F ′)≤ 2n

en clauses of H. Due to Theorem 1.3 there is a
satisfying assignment α of H. Note that by construction, there is no clause
where every literal is set to 1 by α (indeed, every clause where all literals
are set to 1 corresponds to a clause where all literals are set to 0). So every
clause C of H contains two literals x,y where α(x) = 1 and α(y) = 0. For
every variable xi where i∈{1, . . . ,r} we proceed as follows. If α(xi)=1 then
we color vi red and v′i blue, otherwise we do it the other way round. Clearly,
this yields a proper P -2-coloring of F ′. Since every proper P -2-coloring of
F ′ is also a proper P -2-coloring of F this concludes the proof.

4. Constructing Suitable (k,d)-Trees

We need some notation first. Let T be a binary tree (not necessarily with
all leaves having depth at least k− 1) and let v be a vertex of T . In the
following we denote by the degree d(v) of v the number of leaf descendants
which have distance at most k−1 from v.

Proof of Lemma 1.1. Note that the full binary tree of height k−1 is a
(k,2k−1)-tree. We have �2k+2

k �≥2k−1 for k≤8 so we can assume that k>8.
Let r=2k+1−�logk� and note that r≤�2k+2

k �. Let T ′ be a full binary tree of
height k−1. For every vertex vj on level k−�logk� we denote by the interval
Ij the set of all leaf descendants of vj. So we can subdivide the leaves of T ′

into s = 2k−�logk� intervals I1, . . . ,Is of cardinality 2�logk�−1 each. For every
such interval Ij = {v0, . . . ,v2�logk�−1−1} and every vi ∈ Ij we attach a full
binary subtree of height i to vi. Let T denote the resulting tree. Figure 2
shows an illustration for the case where k is a power of 2. It suffices to prove
the following.

Proposition 4.1. Let v be a vertex of T . Then d(v)≤r.

Proof. We apply induction on the depth i of v. For i=0 the claim is clearly
true. Indeed, the degree of the root is 2k−1

2�logk�−1 =2k−�logk�= r
2 . Now suppose
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k
2 − 1

log k − 1

k − 1

k/2

Figure 2. The construction of T where k is a power of 2.

that v has depth i∈{1, . . . ,2�logk�−1−1}. Note that the set of descendants
of v on level k−1 can be subdivided into 2k−1−i

2�logk�−1 intervals, i.e., at least one
interval for the values of i we consider. Let v′ denote the parent of v. By
construction the number of leaf descendants which have distance at most k−2
from v equals d(v′)

2 . Moreover, every interval {v0, . . . ,v2�logk�−1−1} gives rise
to 2i leaves on level k−1+i, implying that the number of leaf descendants of
v which have distance exactly k−1 from v equals 2k−1−i

2�logk�−1 ·2i =2k−�logk�= r
2 .

So altogether, d(v)≤ d(v′)
2 + r

2 ≤ r. It remains to consider the case where v

has depth at least 2�logk�−1. By construction no leaf of T has depth larger
than k+2�logk�−1−2, implying that the degree of v is at most the degree of
its parent.
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