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Abstract

In biotechnological protein production processes, the onset of protein unfolding at high

gene expression levels leads to diminishing production yields and reduced efficiency.

Here we show that in silico closed-loop optogenetic feedback control of the unfolded

protein response (UPR) in S. cerevisiae clamps gene expression rates at intermediate

near-optimal values, leading to significantly improved product titers. Specifically, in a

fully automated custom-built 1L-photobioreactor, we used a cybergenetic control system

to steer the level of UPR in yeast to a desired set-point by optogenetically modulating

the expression of α-amylase, a hard-to-fold protein based on real-time feedback mea-

surements of the UPR, resulting in 60% higher product titers.

This proof-of-concept study paves the way for advanced optimal biotechnology pro-

duction strategies that diverge from and complement current strategies employing con-

stitutive overexpression or genetically hardwired circuits.
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Zusammenfassung

In biotechnologischen Proteinproduktionsprozessen führt das Einsetzen der Proteinent-

faltung bei hohen Genexpressionsniveaus zu sinkenden Produktionserträgen und gerin-

gerer Effizienz. Hier zeigen wir, dass wir mit Hilfe der optogenetischen, in silico Rück-

kopplungskontrolle der ungefalteten Protein Antwort (engl. Unfolded Protein Response

(UPR)) in S. cerevisiae die Genexpressionsraten auf mittlere, nahezu optimale Werte

kontrollieren können, was zu deutlich verbesserten Produkttitern führt. Konkret haben

wir in einem vollautomatisierten, spezialangefertigten 1L-Photobioreaktor ein Kontroll-

system verwendet, um das Niveau der UPR in Hefe auf einen gewünschten Sollwert zu

steuern. Dies konnten wir erreichen indem wir die Expression von α-Amylase, einem

schwer zu faltenden Protein, basierend auf Echtzeitmessungen der UPR, optogenetisch

moduliert haben, was zu 60% höheren Produkttitern führte.

Diese Machbarkeitsstudie ebnet den Weg für fortschrittliche, optimale biotechnolo-

gische Produktionsstrategien, die sich von den derzeitigen Strategien mit konstitutiver

Überexpression oder genetisch verankerten Schaltkreisen unterscheiden.
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1 Introduction

Heterologous protein production has been the basis for modern protein-based medicine

the last decades. In 2010, the top three sales of biologic drugs in the US fell in the

category of monoclonal antibodies (mAbs, 36.0%), hormones (21.1%) and growth factors

(19.8%) with a combined sales of 40 billion USD [1]. Since then, this number has

only increased and stands now at globally 400 billion USD [2]. A variety of organisms

exists that share the majority of production capacity. These include Escherichia coli,

Saccharomyces cerevisiae, Pichia pastoris, and a variety of mammalian cell lines, such

as Chinese hamster ovarian (CHO) cells. Currently, 56% of biopharmaceuticals are

produced in mammalian cells, while a significant portion is still produced in bacteria

(24%) and yeast (13%) [3].

1.1 Current practices in microbial metabolic engineering

and protein production

Saccharomyces cerevisiae is the most prevalent member of the yeast family. It is recog-

nized for its rapid growth kinetics as well as its capacity to fold and secrete proteins [4].

Other hosts that are readily used in production of proteins and metabolites are E. coli

[5], P. pastoris [6], Streptomyces [7], B. subtilis [8], chinese hamster ovarian cells (CHO)

and A. niger [9]. Many engineering strategies have been applied to further improve the

production capacity of yeast and increase protein yield. The following sections describe

in greater detail some strategies to improve production.
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Chapter 1. Introduction

1.1.1 Strain Engineering

The host which is used for production can be genetically altered to improve its capacity

for production. This involves modifying the genetic makeup of the microbial strain to

optimize its metabolic pathways for the production of the desired protein. Two main

ideas exist to achieve strain engineering. Rational design involves the use of computa-

tional biology methods and a general understanding of the production pathway to predict

which changes in the strain could potentially improve production of the protein. This

can be done using techniques like gene knockouts, codon optimization, overexpression of

key enzymes, regulatory gene engineering and synthetic genetic circuits. Alternatively,

directed evolution involves the iterative selection and amplification of strain variants

with desired properties from a large pool of randomly mutated strains. This approach

can be used to optimize protein production without an in-depth understanding of the

production pathway.

Huang et al. [10] developed a directed evolution, microfluidic droplet screening plat-

form for S. cerevisae. Mutations were introduced in the cells by illuminating the cells

with ultraviolet light. Subsequently, single cells of the the yeast mutant library con-

taining 105 - 106 colonies were encapsulated with a fluorogenic α-amylase substrate and

sorted. The highly active mutants were screened further in tube cultures and bioreac-

tor fermentation. The best producing strain after two rounds of microfluidic screening

resulted in 6-fold improvement in both yield and titer. The authors also whole-genome

sequence the best producing strains. Building on this work, Huang et al. [11] more deeply

characterized mutations in genes associated to protein secretion. The previous work had

identified mutations in the genes hda2, vps5, gos1 and tda3 in the best producing strains.

The authors combinatorially deleted these genes from the base strain and observed the

effect on amylase yield. Single deletions of these genes resulted in a maximum 2-fold

improvement in production, whereas combining all four deletions resulted in a nearly

5-fold increase in α-amylase production. Jakočinas et al. [12] used CRISPR/Cas9 for

selectively mutating S. cerevisiae genes for overproduction of mevalonate. This resulted

in a strain capable of producing 41-fold more product than the wild-type base strain.

The genetic code determines how the nucleotide sequence of a gene is translated into

the amino acid sequence to form a protein. Each amino acid is encoded by a set of three

nucleotides called a codon. There are multiple codons that can encode the same amino

acid, and different organisms have different preferences for which codons to use. Codon

optimization involves analyzing the codon usage of the host organism and choosing a

set of codons that are more frequently used by the host organism to replace the original

codons in the gene of interest. This process can be done manually or using computer
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1.1 Current practices in microbial metabolic engineering and protein
production

algorithms [13]. The optimized gene can then be synthesized and inserted into the host

organism for expression. Karaoğlan and Erden-Karaoğlan [14] optimized the pectinase

production in P. pastoris by varying the promoter and codon optimizing the coding gene

for pectinase. The gene originates from A. niger and was adapted to the new production

host P. pastoris resulting in an improvement in yield of 20%. In a different example,

Wiedemann and Boles [15] engineered S. cerevisiae for optimal biofuel production from

l-arabinose. L-arabinose can only be metabolized by yeast after a set of heterologous

genes is included from other hosts such as B. subtilis or E. coli. Usually, these genes are

not codon optimized for expression in S. cerevisiae. By adapting the codons of all genes

involved in the l-arabinose pathway to the highest expressing codon, production rates

of ethanol could be increase 2.5-fold highlighting the effectiveness of this approach.

In the production of a metabolite, the availability of the precursor is of key essence

to the final production outcome. Higher availability of precursors can improve the yield

significantly. Similarly, the availability of co-factors in the final production step, such as

chaperones for the folding of proteins can improve production. As an initial step, the

production of precursor or co-factor can be overexpressed to improve production. Chen

et al. [16] were optimizing the production of the biofuel isobutanol in S. cerevisiae. The

simplified metabolic pathway from glucose to isobutanol contains the intermediate prod-

ucts glucose → pyruvate → L-valine → isobutanol. The authors set about to improve

the availability of the precursor valine by overexpressing the enzymes Ilv2, Ilv3, and Ilv5

responsible for the conversion of pyruvate to valine in the mitochondria. In rich YPD

media, the increased availability of L-valine resulted in an improvement of isobutanol of

71%. In a different study, Luo and Lee [17] metabolically engineered E. coli for the pro-

duction of benzoic acid. They assessed three naturally occuring metabolic pathways for

production of benzoic acid using in silico flux response analysis. Afterwards they applied

metabolic engineering tools to improve the availability of the precursor L-phenylalanine,

finally resulting in a strain capable of producing 2.37 g/L of benzoic acid.

More specifically, overexpression of cofactors for heterologous protein production can

target a multitude of steps along the protein processing. Chaperone proteins assist in

the proper folding of newly synthesized proteins, and can be overexpressed to improve

protein folding and reduce misfolding and degradation. Signal peptides are short amino

acid sequences that direct proteins to their appropriate cellular compartment. Opti-

mizing the signal peptide sequence can improve protein secretion and reduce retention.

An example demonstrating this strategy is shown by Yao et al. [18] who optimized the

production and secretion of B. stearothermophilus α-amylase in B. subtilis by signal

peptide optimization and chaperone overexpression. Initially, they screened 173 signal

peptides to improve transport and secretion out of the host. The best signal peptide in-
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Chapter 1. Introduction

creased activity 3.5-fold. However, the authors found elevated levels of inclusion bodies

in the host, hinting towards insufficient availability of chaperones that aid folding. They

thus overexpressed two sets of chaperones (GroEL–GroES and DnaK–DnaJ–GrpE) both

negatively regulated by hrcA, by using a ∆hrcA strain. This resulted in reduced inclu-

sion bodies and a 42% improvement in extracellular amylase activity. The stability of

the mRNA encoding the desired protein can also impact protein production. Genetic

engineering can be used to optimize the mRNA stability to increase protein production.

Ito et al. [19] tuned the stability of mRNA in P. pastoris by altering the terminator

sequence. In S. cerevisiae, terminators can affect mRNA half-life [20]. The authors thus

screened a library of 72 terminator sequences with a maximum 15-fold change. They

applied 10 terminator variants to the production of betaxanthin and could see a 7-fold

improvement of the most stable terminator in comparison to the weakest one.

1.1.2 Alternative optimization targets

Apart from the engineering of the strain, and protein sequence, the optimization of the

process around the cell is also often targeted. Examples can be found around media

optimization, the design of the physical bioreactor as well as how the process is run.

The composition of the growth medium can have a significant impact on the produc-

tivity of the microbial culture. Optimization of the medium can be done by varying the

concentrations of key nutrients, pH, and other growth factors. Roberts et al. [21] devel-

oped a new optimized media for production of α-amylase in S. cerevisiae. They split

the multi-component media into five different categories (glucose, amino acids, YNB,

inositol and the nitrogen source) and then used a design of experiments approach to

optimize the ratio of these components. In the improved high cell density media, the

amylase concentration could be improved 4-fold, although the yield per gram of glucose

decreased slightly. Process conditions can also be adapted by changing temperature and

pH while keeping the media composition constant. This approach is used by Lin et al.

[22] who optimized the production of bioethanol by S. cerevisiae. Classically, the pH

in fermentations of yeast is controlled to 6.0. The authors tested different conditions

varying between 3.0 and 6.0 and found optimal production at pH=5.0, improving the

ethanol concentration 3-fold. Interestingly, when the pH is not controlled a further 5%

improvement of the concentration is achieved, although further experiments are required

to confirm this change.

The design of the bioreactor can also have an impact on production efficiency. Factors

like agitation rate, aeration, and temperature control can all be optimized to improve

productivity. Lastly, how the production process is run can be adapted to the specific
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1.2 Dynamic feedback can improve production

need of the product of interest. Classically, one differentiates between batch, fed-batch

and continuous culture (or continously stirred tank reactor, CSTR). In a batch process all

media components and the production host is added at the beginning and the reaction is

run until completion. A fed-batch phase can be performed following a batch phase, where

high concentration media is fed to the batch culture, increasing cell density further and

also potentially increasing product formation. A CSTR is operated in a single vessel

with constant inflow of fresh media without cells, and constant outflow of depleted

media with cells. This results in lower cell density and product concentration. At long

operating times, a steady-state can be achieved in these types of setups. Generally,

higher cell densities can be achieved with batch and especially fed-batch systems. If

the production host is limited by substrate (substrate inhibition), the process of choice

is CSTR, whereas with product inhibition, batch and fed-batch processes are favored.

Also, some production strains are genetically not very stable, with loss of plasmid or

mutations commonly appearing. As CSTR processes are longer, batch and fed-batch

processes are favored. Bayrock and Ingledew [23] studied the production of ethanol by

S. cerevisiae with different production methods. In a batch process, they were able to

achieve ethanol concentrations of 120 g/L compared to only 60 g/L in a CSTR process.

Relevant for the biofuel community is also the theoretical conversion rate of substrate

into product. Here, a CSTR achieved a conversion rate of close to 90% in comparison to

80% in batch process. This shows how different production setups can address different

requirements.

1.2 Dynamic feedback can improve production

The above described strategies rely mostly on gene deletions or mutations that hamper

the gene expression or massive overexpression of the target. Intuitively, increasing the

rate of gene expression should result in more secreted product. While this is true at low

protein expression rates, maximal expression does not necessarily lead to maximal pro-

duction, but can even reduce yield [24, 25]. Consequently, there exists an optimal gene

expression rate that maximizes production. The diminishing rate of protein production

can be attributed to an overwhelmed cell machinery, resulting in oxidative stress, product

misfolding, inclusion bodies, upregulated endoplasmic reticulum-associated degradation,

and stress-induced genomic instability [26–29].

Xu et al. [30] worked on improving the production of fatty acids in E. coli by tuning

the expression rates. Production of fatty acids in bacteria is a multi-step pathway, where

the conversion of substrate to product is achieved by the expression of more than 15

enzymes. The expression strength of those enzymes was combinatorially tuned. For all
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Chapter 1. Introduction

enzymes, three levels of expression copy numbers were available (low, medium and high).

In order the limit the number of permutations, These enzymes were divided in three

subclasses (GLY: upstream glycolysis module, ACA: intermediary acetyl-CoA activation

module and FAS: downstream fatty acid biosynthetic module) and expressed from the

same plasmid copy number. Optimal production is achieved when ACA is expressed

from low, GLY from medium and FAS from high-copy number plasmids. Applying this

strategy, they were able to achieve fatty acid titers in fed-batch cultures of 8.6 g/L.

This is a nice example highlighting the need of tuning of expression strength rather

than deleting or maximally over-expressing targets. The mapping between optimal gene

expression rate and optimal protein production is influenced by many different factors,

such as growth rate, process stage, and complexity of the protein of interest [31]. Thus,

fine-tuning of gene expression rates has the drawback, that a slight change in production

conditions can heavily impact production.

One possible solution is to adjust protein expression intracelluarly based on stress

levels using burden-driven, genetic feedback circuits [32]. Dynamic pathway regulation

is for example implemented by Xu et al. [33] for the production of fatty acids in E.

coli. The main bottleneck in production was found to be malonyl-CoA. The authors

genetically rewired the metabolism, so that both source production and consumption of

malonyl-CoA was regulated. This allowed the cells to compensate for critical enzymes

and redirect metabolic flux towards fatty acid synthesis. The resulting engineered strain

improved fatty acid yield 2.1-fold in comparison to uncontrolled fatty acid production. A

similar approach was used by Dahl et al. [34] in E. coli for the production of amorphadi-

ene. A negative feedback was genetically engineered to control farnesyl pyrophosphate

production, which led to a twofold improvement. However, for this strategy to work

effectively, the synthetic circuits must be carefully calibrated for a specific product and

production environment.

To circumvent this, direct in silico control on the internal states of cells, similar

to how the industry regulates process parameters like pH and dissolved oxygen, can

be applied. The feedback strength is then implemented by a computer, rather than

genetically engineering the cells. This enables the adjustment of feedback intensity to

meet the design specifications, possibly resulting in enhanced protein production.

1.3 UPR and heterologous protein production

For such an in silico feedback control loop a measurement of a relevant cellular state is

required. One option is to develop a biosensor that is specific for the product of interest as
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shown for small molecules such as muconic acid [35], xylose [36] or branched chain amino

acid metabolism [37] as well as for some proteins such as glucose dehydrogenase [38], β-

lactamase [39], anti-apoptosis protein BCL-2, IgG1 Fc domain and HER2 receptor [40].

The development of a biosensor with good sensitivity, specificity and a high dynamic

range properties is challenging [41] and could limit the applicability of this approach to

a large selection of proteins of interest. Thus, we focus our attention on the more general

target that is the unfolded protein response (UPR). The UPR coordinates the cellular

response in yeast to elevated levels of unfolded proteins in the ER and can trigger the

expression of chaperones, cofactors and the ER-associated degradation (ERAD) pathway

[42]. It is thus central to the proper folding of proteins.

The first step in protein expression is the synthesis of mRNA from DNA through

the process of transcription. After transcription, the mRNA molecule undergoes sev-

eral modifications, including the addition of a 5’ cap and a 3’ poly-A tail, as well as

the removal of introns. These modifications are necessary for proper mRNA stability,

export, and translation. Once the mRNA is processed, it is exported from the nucleus

to the cytosol through nuclear pore complexes. In the cytosol, the mRNA is bound by

ribosomes, and the process of translation begins, where the sequence of nucleotides in

the mRNA is translated into a sequence of amino acids to form a polypeptide chain.

As the polypeptide chain is synthesized by the ribosome, it is translocated across the

membrane of the rough endoplasmic reticulum (ER) through a channel formed by the

translocon complex. This process is known as co-translational translocation and en-

sures that proteins are translocated into the ER lumen as they are being synthesized

[43]. Once the protein enters the ER lumen, it undergoes folding and post-translational

modification, which includes the formation of disulfide bonds, glycosylation, and pro-

teolytic cleavage. These modifications are critical for the proper folding, stability, and

function of the protein. The unfolded protein response targets specifically this step in

the endoplasmic reticulum.

The UPR is controlled as follows. In the inactive state, Hac1 mRNA is constitutively

transcribed. Unspliced Hac1 mRNA contains an intron forming a stem loop to the

5’ UTR, preventing full translation and additionally reducing translation rate. Ire1

(Inositol requiring enzyme 1) is a sensor in the endoplasmic reticulum. The cytosolic side

of Ire1 consists of a kinase and an endoribonuclease. Upon presence of unfolded proteins,

those unfolded proteins bind to Ire1 and make them cluster on the ER-lumen-cytosol

surface. Due to the proximity of the kinases of Ire1, the kinases transautophosphorylate

each other and thus result in an activation of the endoribonucleases, which excise the

Hac1mRNA intron [42]. Ribosomes are able to now efficiently translate the spliced

Hac1mRNA to functional Hac1p transcription factor. Downstream targets of Hac1p are
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chaperones (e.g. Kar2), oxidoreductases, glycosylating enzymes, and ER degradation

components.

The UPR has been genetically modified to enhance protein production. Valkonen

et al. [45] studied the effect of overexpression of the UPR master regulator Hac1 in

S. cerevisiae on production of α-amylase. Initial deletion of Hac1 resulted in a 3-fold

decrease of amylase production. In a next step, the authors expressed Hac1 under the

PGK1 promoter, resulting in a 70% increase in amylase secretion. A similar approach

was applied in the production host A. niger. Overexpression of hacA resulted in a 7-fold

improvement of Trametes versicolor laccase production. Huang et al. [46] overexpressed

Hac1 from the AOX1 promoter increasing amylase activity 621%. As the AOX1 pro-

moter was also used for the expression of amylase transcript, the promoter for HAC1

overexpression was replaced by a GAP promotor further increasing activity by 68.2%.

The UPR also integrates over disturbances stemming from growth kinetics, nutrient

availability and protein folding state. We thus believe that implementing the sensing

channel through the UPR allows this approach to be widely generalizable beyond the

expression of α-amylase. As the basis for sensing, we use the promoter topology from

Merksamer et al. [47]. The reporter consists of a minimal CYC1 promoter and four

unfolded protein response elements (UPRE) in series. It is known that the master UPR

regulator Hac1 binds to these elements, so that this is a good readout for UPR activity

[48].

1.4 Introduction to optogenetics and its application in bio-

production

This section stems from the review on ”Unlocking the potential of optogenetics in mi-

crobial applications” by Moritz Benisch, Stephanie Aoki and Mustafa Khammash that is

currently in preparation.

1.4.1 Introduction

Optogenetics is an interdisciplinary and rapidly growing field that combines optics and

genetics to precisely control cellular processes with light [49, 50]. By expressing light-

sensitive proteins in cells, researchers can manipulate their activity with high precision,

offering a range of advantages, such as temporal reversibility and spatial control, while

being fast, often biologically orthogonal, and cheap. While often highlighting these ad-

vantages, however, many researchers use optogenetics solely as a replacement for chem-

ical inducers without taking advantage of its desirable features.
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Synthetic biology optogenetics is a powerful tool that allows researchers to control

the behavior of cells and organisms using light. Some of the first microbial synthetic

optogenetic constructs were published approximately twenty years ago in yeast [51] and

bacteria [52]. By engineering cells to express light-sensitive proteins, researchers can pre-

cisely control a wide array of cell behavior including gene expression, signaling pathways,

metabolism, and even motility [53]. These capabilities make optogenetics an attractive

tool for identifying and characterizing biological models. For example, researchers can

use optogenetics to activate or inhibit specific signaling pathways to study their roles in

different cellular processes.

In order to clearly delineate use-cases from each other, we classify applications in a

matrix consisting of induction, and measurement scheme and temporal and spatial usage

of optogenetics (figure 1.1). We believe that this classification will allow researchers to

more precisely define their induction system’s requirements and better use optogenetics

in their studies.

The induction scheme describes how light is used to regulate the activity of the

biological system. In many publications, optogenetic tools are used similarly to chemical

inducers, as it is just used in bulk cultures with or without light. This approach results

in no significant differences between the two methods, as varying the light intensity

has a similar effect on induction strength as varying the concentration of a chemical

inducer [54]. However, reversible induction experiments using chemical inducers require

a thorough washing step to eliminate any residual traces of the inducer. This can limit

their application in terms of speed and throughput. In contrast, optogenetics offers

several advantages, such as easy modulation of light intensity and the ability to generate

complex time-varying induction profiles on a fast time scale, including single light pulses,

pulse-width modulation (PWM), and arbitrary light inputs.

PWM is a special case of time-varying induction that requires further study. In

an experiment conducted by Bennett et al. [55], S. cerevisiae strains were subjected

to periodic changes in the carbon source, and the metabolic response of the cells was

tracked. It was found that cells acted as a low-pass filter with a maximum response

frequency of 0.88 h−1. Given an approximate growth rate of 0.2h−1, any input changes

that occur faster than approximately 1/5 of the growth rate of a microbiological organism

are filtered out and behave like constant inputs. Therefore, the maximum modulation

frequency that is distinguishable from constant input is limited and should be taken into

consideration.

In the spatial domain, optogenetics can be applied with ease to specific population
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regions, single-cells or subcellular compartments of the cells rather than the whole bulk.

This spatial specificity can be achieved using a variety of methods, including photomasks,

which are physical masks that can be placed over the sample to block or direct light;

and digital projection systems, which use computer-controlled light sources, such as

digital micromirror devices (DMDs), to project patterns of light onto the sample [56].

In all cases, it is also possible to combine spatial control with temporal control, thereby

increasing the range of induction schemes.
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Figure 1.1: Classification matrix for applications. (Top row) Induction of cells can be achieved
temporally either with constant or time-varying light input. Spatially, we discern between induction
of the entire bulk or by spatial (i.e. population, single-cell or subcellular) induction. (Bottom row)
Measurement of cellular or global parameters in experiments can be performed using either steady-state
measurements or dynamics measurements (temporally) and in bulk or at the single cell level. (Right
column) Feedback can be performed with optogenetics through automatic measurements and time-
varying induction of the cells.

The measurement scheme is typically divided into two categories: steady-state and

dynamic measurements. While both types of measurements are useful, dynamic mea-

surements can be particularly useful to discriminate between model topologies and for

parameter inference. On the other hand, steady-state measurements can be sufficient for

certain applications, particularly when combined with time-varying or spatial induction.

Nonetheless, the higher information content and accuracy of dynamic measurements

make them a valuable tool, and they should be considered as an important component

of any experimental design.

Another advantage optogenetics offers is its use in real-time closed-loop feedback con-

trol, enabling precise manipulation and study of cellular processes. This approach relies

on automated acquisition of dynamic output measurements of cellular state, followed

by a time-varying light input computed by a controller algorithm based on these mea-
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surements. Optogenetics is particularly well-suited for feedback applications, as light

intensity can be instantaneously adjusted both positively and negatively, allowing for a

high degree of control.

Optogenetics is a rapidly expanding field with numerous comprehensive reviews of

optogenetic tools already available (e.g. Figueroa et al. [57]; Ohlendorf and Möglich

[50]). In this short review, we highlight the unique and desirable abilities of microbial

optogenetics for spatiotemporal control, and present a select number of exciting and

innovative applications that arise from this, including its potential for understanding

biology, co-cultures, protein and metabolic production, biomaterials, and therapeutics.

By presenting some of the latest research and emerging trends in this area, we aim

to complement existing literature and inspire the field to fully explore the potential of

microbial optogenetics in a diverse range of applications.

1.4.2 Deeper Understanding of Biology with Optogenetics

In dynamic experimental settings, optogenetics can give a faster response compared to

chemical inducers. The import of inducers such as galactose or β-estradiol into cells de-

pends on diffusion and can take longer than optogenetic activation. This rapid response

time is a key reason for using optogenetics to study fast-acting signalling pathways and

cellular processes. For example, Sumner et al. [69] investigated the brownian motion

dynamics of chromosomal loci towards the nuclear pore complex and confirmed initial

computational simulations of repositioning dynamics to the nuclear periphery. Similarly,

light-inducible nuclear exporter (LINX) and light-activated nuclear shuttle (LANS) were

used to control the localization of proteins inside the nucleus, enabling researchers to

study the temporal dynamics of histone ubiquitination and methylation [70, 71].

Subcellular compartmentalization is a powerful tool to locally increase the concentra-

tion of enzymes inside the cell [58, 72, 73]. Bracha et al. [58] studied phase separation

in yeast and mammalian cells using local oligomerization induced by photo-activatable

iLID domains (figure 1.2a) [74]. Full-cell oligomerization in yeast and subcellular in-

duction of oligomerization in mammalian epithelia cells allows insights into diffusion

dynamics and allow predictions of liquid-liquid phase separations in vivo.

Harrigan et al. [59] studied internal feedback structures in yeast, by deleting feedback

components in the pheromone response pathway and re-introducing this feedback with

closed loop optogenetic control (figure 1.2a). With this platform, they were able to iden-

tify not only which nodes are involved in biological signaling pathways, but additionally

what dynamic requirements are computed in each biological node. This in-depth analy-
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sis of biological signalling dynamics can only be achieved with the unique features that

optogenetics offer.

Single-cell feedback requires additional algorithm to allow single-cell tracking and

measurement. Once implemented, this unique approach can reveal dynamics that may

be hidden in bulk, as e.g. periodic oscillations in single-cell parameters are not lost to

population dynamics. Initial work of such a platform for S. cerevisiae was implemented

by Rullan et al. [75] and has since been used to study the emergence of checkerboard

patterns in cell signaling systems [76]. Furthermore, Kumar et al. [77] designed and

prototyped biomolecular controllers, testing non-ideal circuit behaviors and qualitatively

demonstrating improvements in controller function with certain network modifications.

By precisely controlling the timing and location of cellular activity through the use of

light-sensitive proteins, optogenetics provides a means to perturb and measure complex

biological networks with high spatiotemporal resolution. This has enabled researchers

to develop new experimental techniques for parameter inference, network topology iden-

tification, and quantification of information flows within and between cells.

Davidovic et al. [78] used a platform previously developed in [60]. The red/green

CcaS/CcaR optogenetic gene expression system [79] in E. coli is used in combination

with a mother machine to spatially deliver different dynamic light patterns/perturbations

in parallel to individual cells and observe their output response with frequent measure-

ments over time (figure 1.2b). The application of multiple perturbations allows for the

generation of high-throughput dynamic data for inference of parameters that may not

otherwise be identifiable from a single perturbation experiment. Another example of

parameter identification leverages trains of reversible light pulses to measure the matu-

ration times of a set of fluorescent proteins, overcoming the limitations of translational

inhibitors [80].

Lee et al. [81] measured the response of an epigenome regulator to AM and PWM

optogenetic inputs to interrogate the maximum information content transferred through

a single promoter and unveils that chromatin regulators tune the maximum information.

Benzinger et al. [61] leveraged the difference in dark-state reversion kinetics of two dif-

ferent mutants of EL222 [82] to construct complex biological circuits. The fast-reverting

mutant was mapped to a repressor, the slow-reverting mutant to an activator. After con-

stant light induction where repressor and activator cancel each other out, a falling edge

triggers the unbinding of the fast-reverting repressor, while the slow-reverting activator

stayed bound to allow the generation of a falling-edge detector. This work demonstrate

the unique possibility to leverage electrical engineering concepts in synthetic biology.
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1.4.3 Co-cultures with Optogenetics

Co-cultures have become increasingly important in synthetic biology and bioproduc-

tion. One key advantage of co-cultures is the ability to perform complex tasks that

are not possible with single-cell systems, by distributing the task among the members

of the co-culture. For example, they can be engineered to perform multi-step biosyn-

thetic pathways, where each co-culture member is responsible for a specific reaction in

the pathway. Additionally, they can be used to study naturally occurring co-culture

systems, mimicking the complex microbial interactions that occur in the gut. This can

provide insights into the metabolic pathways and signaling networks that govern the

gut microbiota and its interactions with the host. Stabilizing synthetic co-cultures of

multiple microorganisms is difficult as a slight growth advantage of one member will

lead to outcompetition of all other organisms. This section details the applications of

optogenetics to stabilize and use synthetic co-culture systems.

Lalwani et al. [62] achieve a short-lived, unstable co-culture system of E. coli and

S. cerevisiae by finely tuning the inoculation ratios of both strains. The optogenetic

pDusk/pDawn system [83] controls the growth rate of E. coli, which extends the in-

oculation ratios that lead to co-cultures. It should be noted, that optogenetics here is

used with high-frequency PWM acting chemical inducer-like. They applied this complex

co-culture in the synthesis of isobutyl acetate. Production of isobutanol from glucose

is performed in E. coli followed by the conversion of isobutanol and acetyl-CoA to the

final product in yeast (figure 1.2c).

In comparison to the short-lived, unstable co-culture system, Aditya et al. [84] suc-

cessfully maintained a two-component yeast system for up to five days. They engineered

a single yeast strain, to optogenetically express the Cre recombinase and recombine its

genome from mCerulean to mNeonGreen production. As reversible differentiation is

not possible with this system, they resorted to re-introducing the original uninduced

mCerulean producer by continuously feeding it with fresh media. The Achilles’ heel

of this approach is the need to replenish one type of cell continuously to maintain the

co-culture.

Gutiérrez Mena et al. [63] move another step further and achieve and maintain arbi-

trary ratios of two strains of E. coli using an automated platform and in silico feedback

control. Opto-T7RNAP [85] is used to regulate expression of the antibiotic resistance

gene chloramphenicol acetyltransferase in response to blue light (also done in [86]). The

higher the expression, the faster the strain grows in the presence of chloramphenicol

(figure 1.2c). By regulating only one strain, it was possible to dynamically tune and

14



1.4 Introduction to optogenetics and its application in bioproduction

stabilize the co-culture ratio for 40 hours.

1.4.4 Optogenetic Regulation in Bioproduction

For bioproduction applications, optogenetics allows one to control gene expression and

metabolic pathways in a non-invasive and reversible manner. This allows for precise

control over the production of desired products, such as pharmaceuticals, biofuels, and

industrial enzymes. Additionally, optogenetics can improve the efficiency and scalability

of bioprocessing by allowing for real-time monitoring and control of cellular processes.

Overall, the use of optogenetics in bioprocessing and bioproduction has the potential

to revolutionize the field by enabling more precise and efficient control over biological

processes.

Zhao et al. [87] are pioneers in the field of optogenetic bioproduction demonstrat-

ing the first optogenetically-driven bioproduction process in labscale bioreactors. The

authors engineered S. cerevisiae to optogenetically control the expression of PDC1 re-

quired for ethanol biosynthesis and growth. Their final 2-stage process consisted of a

full-light induced biomass forming phase followed by intermittent-light (PWM) produc-

tion phase takes advantage of the tunability and reversibility of optogenetics resulting

in six-fold higher isobutanol formation. A similar approach was also implemented in E.

coli to control between light induced growth and synthesis of muconic acid [88] and poly-

hydroxybutyrate [89]. A variety of research groups have started to use optogenetics in

bioproduction scenarios in larger volumes [90, 91], but are treating the optogenetics like

a chemical inducer without the benefits of reversibility, or speed. Care also needs to be

taken, that the product of interest is not photosensitive as in the case of Duplus-Bottin

et al. [92], where the use of optogenetics should be avoided.

Optogenetics can be used to increase the degrees of freedom in a production process.

By combinatorially testing the induction timing and type (no, PWM, constant light),

product formation can be maximized (figure 1.2d, [64]). Zhao et al. [64] applied this

principle to the production of lactic acid, isobutanol and naringenin using amplification

circuits. Cheng et al. [93] used OptoLAC [62] in E. coli to dynamically switch between

the production of photoenzyme fatty acid photodecarboxylase from Chlorella variabilis

and photocatalysis in a one-pot system for asymmetric decarboxylation and increased

yield of L-phosphinothricin. To apply more targeted optimization of process parameters

e.g. design of experiments [21] or the use of deep learning [94], higher throughput

techniques for optogenetic application and product measurement will be necessary [56].

The idea of using closed-loop optogenetic feedback control for optimal bioproduction
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has been extensively discussed in the community [95, 96]. Benisch et al. [65] and a recent

preprint [97] demonstrate closed-loop control of the unfolded protein response (UPR) as a

mean to maximize production of proteins (figure 1.2d). Automation of the measurement

of UPR stress resulting from recombinant expression of a protein of interest allows for

closed-loop feedback control. Adjusting the rate of transcription optogenetically resulted

in 60% higher production of the secreted protein of interest.

Another application is presented in [98], improving the catalytic rate of the TEV

protease, otherwise inaccessible by conventional tools. Yeast cells expressing a library

of TEV proteases under Cry2-Cib1 [99] control were exposed to short light pulses, so

that only the catalytically fast TEV versions would produced elevated signals. They

were subsequently enriched and sorted by FACS improving the TEV catalytic rate 5.4-

fold. They eventually used this optimized protease in FLARE [100] and SPARK [101]

tools reducing the processing time for the protease from 10-15 minutes to 30 seconds,

potentially having a significant impact on the biotech industry.

1.4.5 Biomaterials with Optogenetics

Optogenetics can also be used in the design and production of biomaterials [102]. By

using optogenetic tools, scientists can precisely manipulate the metabolic pathways of

microorganisms, leading to the production of specific molecules that can be used to build

biomaterials with desired properties. For example, microbes can be programmed to syn-

thesize proteins that can self-assemble into complex structures, or to produce bioplastics

that are biodegradable and environmentally friendly. Additionally, optogenetics can be

used to control the growth and differentiation of microbial communities, enabling the

construction of biofilms and other complex structures with defined shapes and functions.

Light can be spatially targeted at specific areas, single cells or subcellular regions of the

new material with the help of DMDs or photomasks.

The initial transfer of an optogenetic tool (Cph8) into E. coli Levskaya et al. [52] also

included spatial patterning of an agar plate (figure 1.2e). Since this initial demonstration

of optogenetically induced bacteriography, more complex image generation has been

demonstrated by a variety of groups [54, 84, 103, 104]. While a nice demonstration of

the spatial property, no new information is unravelled from this spatial patterning. A

more advanced technique for bacteriography is shown by Frangipane et al. [105] who use

proteorhodopsin [106] in E. coli to control cell density in response to light by regulating

proton-motive force-dependent motility. The authors were able to both spatially and

temporally control complex patterning within a time scale of minutes in contrast to

the hours required for adhesion-based biofilm lithography. Additionally, they observed
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and addressed memory effects in light response by using feedback control to improve

the spatial resolution. Combining the speed and accuracy of this system with biofilm

lithography and the production of polymers such as bacterial cellulose could lead to the

development of more complex biomaterials.

Huang et al. [11] and Walker et al. [107] move in the direction of real-world appli-

cations, by expressing genes in E. coli optogenetically, which allows cells to attach to

surfaces. In addition, Moser et al. [108] demonstrate that surfaces such as fabric and

plastic are suitable for E. coli attachment, expanding the range of material types that

can be developed. Jin and Riedel-Kruse [109] used pDawn [83] to regulate expression

of Ag43 and biofilm formation in E. coli. With the ability to spatially control and tune

biofilm formation, the authors were able to quantitatively characterize their system and

propose a biophysical model that helps to understand the role that Ag43 plays in biofilms

and may be useful in designing strategies to further improve spatial resolution.

Bacterial lithography has also been taken one step further. Zhao et al. [110] used

pDawn [83] to pattern naturally electroactive Shewanella oneidensis onto electrode sur-

faces and tune the conductance and electrochemical activity of the biofilm. They used

this material to study the intrinsic conductivity of a living biofilm. Recently, a preprint

from Walker et al. [107] describe the use of Opto-T7RNAP [85] to spatially control syn-

thesis of eumelanin in cellulose-producing Komagataeibacter rhaeticus for the purpose

of producing self-dyeing patterned textiles. The resulting product had high background

accumulation of eumelanin, which made it difficult to see the desired patterns. Even so,

this work shows potential for growing patterned textiles.

A very impressive demonstration of the spatial properties of light is shown in Rivera-

Tarazona et al. [66]. The authors embedded yeast in a hydrogel and controlled prolif-

eration signals with optogenetics resulting in the controllable increase of the material

of 400%. Especially worth mentioning is the supplementary movie S2 showing the con-

trolled UV-light patterning and subsequent folding of aforementioned material into a

helix (figure 1.2e). One can easily imagine the rise of optogenetic origami based off this

work. Collaborations between topologists and bio-engineers could enable the creation of

more complex structures.

1.4.6 Optogenetic Therapeutic applications

Live therapeutics comprise microorganisms engineered to have a therapeutic effect on the

human body. Mechanisms of action can range from interacting with the host’s immune

system or metabolic processes to direct targeting and killing of tumor cells, thereby
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promoting health and preventing or treating diseases [111]. Ideally, the therapeutic

cells should specifically target the affected area, apply the therapeutic effector, and

then clear from the body after treatment. Often, the therapeutic strain is engineered

to constitutively produce the effector of interest. However, prolonged and uncontrolled

delivery of some therapeutics can have adverse effects [112, 113], highlighting a need

for regulation. In response, researchers are starting to design strains that produce the

therapeutic only where and when needed but this requires the availability of appropriate

biosensors [113, 114]. The use of optogenetics has the potential to confer spatiotemporal

control capabilities to cells without the need for advanced biosensors.

Efforts are being made to build a variety of bacterial strains engineered to produce

therapeutics upon light stimulation. For example, Sankaran et al. [115], showed that

engineered E. coli embedded in a hydrogel matrix could produce and secrete the drug

deoxyviolacein when stimulated by light. More recently, the efficacy of optogenetic live

therapeutics has been demonstrated in mouse disease models. Light-regulated effectors

range from IL-10 [67] and TGF-β1 [67, 116] for the treatment of ulcerative colitis to

TNF-α [68] and IFN-γ [116] for the treatment of cancer in mice. In addition, Pan et al.

[117] also engineered L. lactis to produce gamma-aminobutyric acid, granulocyte-colony

stimulating factor, and glucagon-like peptide-1 in mice to treat anxiety and Parkinson’s

disease, and to influence the central nervous system by stimulating the vagus nerve,

respectively. Delivering light to optogenetic cells in animals is a challenge, as implanting

a light source is invasive. While tissue-penetrating near-infrared light (NIR) can be

externally applied, optogenetic systems that respond to NIR light are currently limited.

One solution to this problem is the use of upconversion materials, which can convert

NIR light to blue light [118]. This approach enables the use of more commonly used blue

light optogenetic systems. In these examples, the optogenetic systems were constructed

in either E. coli or L. lactis and introduced into mice with upconversion material either

orally [67, 67, 116] or via tail vein injection [68] (figure 1.2f). Post-inoculation, NIR

light was transiently and externally applied. For the oral inoculations, light was applied

to the abdomens of the mice. For the tail vein injections, light was applied directly at

the tumor site. In this way, it was possible to spatiotemporally control the application

of therapy without using specific biosensors.

Many of these live therapeutic applications rely on efficient delivery of the therapeu-

tic strain to the host gut. Diseases such as ulcerative colitis only affect the colon and

therefore strains that can specifically colonize the colon for longer periods of time are

preferable to therapies that more generally affect the entire gastrointestinal tract. Cui

et al. [67] address this issue by engineering E. coli Nissle 1917 to produce the adhesin

Ag43 and immunosuppressive cytokine TGF-β1 upon blue light stimulation using the
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pDawn [83] system. Bacteria and an NIR to blue light upconversion microgel, were

orally-delivered to a dextran sulfate sodium-colitis mouse model. NIR light was exter-

nally and periodically applied to the abdomens of the mice to stimulate cell attachment

to the colon and TGF-β1 secretion. With this system, the authors were able to both

specifically increase colon colonization as well as reduce gut inflammation.

1.4.7 Discussion and Conclusion about Optogenetic Applications

Microbial optogenetics holds immense potential for a wide range of applications, includ-

ing model identification, co-cultures, protein production, biomaterials, and therapeutics

by imparting the ability to control gene expression, metabolic and signaling pathways,

with high precision, speed, and spatiotemporal control. Despite the progress made in

optogenetic tool development, these tools are still not often used to their full poten-

tial. In this review, we aimed to present a variety of example applications, in which the

unique properties of optogenetics are used to realize goals not previously possible via

other methods.

In its most basic and common use, optogenetics is directly used as a replacement

for chemical induction with added speed benefits, since light does not depend on small

molecule diffusion for delivery. Light can be reversibly applied, allowing one to incor-

porate more complex dynamic induction schemes for better temporal control [63, 98].

Finally, light can be used to spatially control populations of cells all the way down to

single cell and subcellular resolution [58, 66, 77, 117].

The studies presented here, are still in the early proof-of-concept stage. The next

step is moving towards the ultimate goal of real-world use. If experiments are to be

run in temporal and dynamic ways, new experimental setups will be required for higher

throughput inputs and measurements [56]. For more industrial applications such as

biomaterial synthesis and bioproduction, this will require scale up and likely the need

for new light-delivery hardware and technologies. In terms of biomedical applications,

challenges that will need to be addressed include testing of the optogenetic systems for

cytotoxicity in humans and the development of NIR tools for better application of light,

preferably without reliance on upconverting nanoparticles.

Overall, the future of microbial optogenetics looks bright, and we can expect to see

many exciting developments and applications in the years to come. With further research

and development, microbial optogenetics has the potential to revolutionize the way we

study and manipulate microbial systems, and to open up new avenues for tackling a

wide range of challenges.
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1.5 Optogenetic Closed-loop Implementations

Bulk feedback of yeast liquid cultures was first demonstrated by Milias-Argeitis et al.

[119]. The authors used the light-responsive Phy/PIF red/far-red optogenetic system to

achieve robust regulation of gene expression fold change. The feedback was implemented

by manual sampling of the cultures. Melendez et al. [120] improved this setup by remov-

ing the need for manual sampling, with automatic fluorescence imaging attached to a

microfluidic device. With this setup, tight control over gene expression was achieved for

2 days. Milias-Argeitis et al. [121] used the green/red CcaS/CcaR system in E. coli to

track the GFP level at different set points leveraging model predictive control to achieve

the target levels. They additionally, controlled MetE a key metabolic enzyme for growth

in E. coli and were able to control the growth rate with this setup.

Steel et al. [122] more recently developed a cheap custom-built 25mL optogenetic

device and demonstrated closed-loop feedback control of GFP in E. coli. These papers

have in common that they use reversible light inputs, and are focused on development

of optogenetic regulators and regulation strategies in general. However, these proof of

principles are operated at small volumes (<20mL) and neglect the challenges related

to bioprocessing such as aeration, high cell densities and upscaling. Lastly, none of

the above described papers focus on the optimization of the production of a protein or

metabolite of interest. The idea of using closed-loop optogenetic feedback control for

optimal bioproduction has been extensively discussed in the community [95, 96, 123, 124].

In this thesis, we close this gap.

1.6 Objective of this work

The goal of this thesis is to demonstrate the applicability and advantage of closed-loop,

in silico, optogenetic feedback control for the production of proteins. Specifically, we are

targeting the production of the hard-to-fold protein α-amylase by optogenetic control

through the EL222 system [125].

The thesis is structured in four main results chapters, all describing a part of this

interdisciplinary work. Each chapter includes a short introduction of the relevant litera-

ture, necessary to understand the field in question. Chapter 2 describes the development

of a light illumination device centered around a commercial bioreactor that allows us

to perform optogenetic experiments. We additionally built an automatic sampling and

dilution system, in order to get real-time insights of the bioprocess and allow for au-

tomation. Chapter 3 describes the development of a S. cerevisiae strain that responds
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to blue light and produces amylase. We genetically encode two biomolecular sensors,

one for transcriptional output, one to monitor the unfolded protein response. We go on

to characterize this strain and improve the growth media, to maintain unstressed cells

for a longer duration. We develop a mathematical model in chapter 4 that describes the

progression of the two fluorescent reporters and the cell density with a set of ordinary

differential equations. The final chapter 5 shows closed-loop control of the unfolded

protein response in S. cerevisiae and how intermediate closed-loop setpoints of the UPR

maximize production of amylase.
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branched-chain amino acid metabolism in yeast and applications in isobutanol

and isopentanol production. Nature Communications, 13(1):1–14, 2022. ISSN

20411723. doi: 10.1038/s41467-021-27852-x.

[38] Zhong Guo, Wayne A. Johnston, Jason Whitfield, Patricia Walden, Zhenling

Cui, Elvira Wijker, Selvakumar Edwardraja, Ignacio Retamal Lantadilla, Fer-

nanda Ely, Claudia Vickers, Jacobus P.J. Ungerer, and Kirill Alexandrov. Gen-

eralizable Protein Biosensors Based on Synthetic Switch Modules. Journal of

the American Chemical Society, 141(20):8128–8135, 2019. ISSN 15205126. doi:

10.1021/jacs.8b12298.

[39] Saurabh R. Nirantar, Kun Song Yeo, Sharon Chee, David P. Lane, and Farid J.

Ghadessy. A generic scaffold for conversion of peptide ligands into homogenous

biosensors. Biosensors and Bioelectronics, 47:421–428, 2013. ISSN 09565663. doi:

10.1016/j.bios.2013.03.049. URL http://dx.doi.org/10.1016/j.bios.2013.03.049.

[40] Alfredo Quijano-Rubio, Hsien Wei Yeh, Jooyoung Park, Hansol Lee, Robert A.

Langan, Scott E. Boyken, Marc J. Lajoie, Longxing Cao, Cameron M. Chow,

Marcos C. Miranda, JiminWi, Hyo Jeong Hong, Lance Stewart, Byung Ha Oh, and

David Baker. De novo design of modular and tunable protein biosensors. Nature,

591(7850):482–487, 2021. ISSN 14764687. doi: 10.1038/s41586-021-03258-z. URL

http://dx.doi.org/10.1038/s41586-021-03258-z.

26

http://www.pnas.org/cgi/doi/10.1073/pnas.1406401111
http://www.pnas.org/cgi/doi/10.1073/pnas.1406401111
http://dx.doi.org/10.1016/j.bios.2013.03.049
http://dx.doi.org/10.1038/s41586-021-03258-z


Bibliography

[41] Colin Jackson, Alisha Anderson, and Kirill Alexandrov. The present and the

future of protein biosensor engineering. Current Opinion in Structural Biology,

75(July):102424, 2022. ISSN 1879033X. doi: 10.1016/j.sbi.2022.102424. URL

https://doi.org/10.1016/j.sbi.2022.102424.

[42] Sebastián Bernales, Feroz R. Papa, and Peter Walter. Intracellular signaling by

the unfolded protein response. Annual Review of Cell and Developmental Biology,

22:487–508, 2006. ISSN 10810706. doi: 10.1146/annurev.cellbio.21.122303.120200.

[43] Yvonne Nyathi, Barrie M. Wilkinson, and Martin R. Pool. Co-translational tar-

geting and translocation of proteins to the endoplasmic reticulum. Biochimica

et Biophysica Acta - Molecular Cell Research, 1833(11):2392–2402, 2013. ISSN

01674889. doi: 10.1016/j.bbamcr.2013.02.021. URL http://dx.doi.org/10.1016/j.

bbamcr.2013.02.021.
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Toettcher, and José L. Avalos. Optogenetic Amplification Circuits for Light-

Induced Metabolic Control. ACS Synthetic Biology, 10(5):1143–1154, 2021. ISSN

21615063. doi: 10.1021/acssynbio.0c00642.

[65] Moritz Benisch, Dirk Benzinger, Sant Kumar, Hanrong Hu, and Mustafa Kham-

mash. Optogenetic closed-loop feedback control of the unfolded protein response

optimizes protein production. Metabolic Engineering, 77(March):32–40, 2023.

ISSN 1096-7176. doi: 10.1016/j.ymben.2023.03.001. URL https://doi.org/10.

1016/j.ymben.2023.03.001.

29

https://doi.org/10.1016/j.cell.2018.09.044
https://doi.org/10.1016/j.cels.2022.02.004
https://doi.org/10.1016/j.ymben.2023.03.001
https://doi.org/10.1016/j.ymben.2023.03.001


Chapter 1. Introduction

[66] L. K. Rivera-Tarazona, V. D. Bhat, H. Kim, Z. T. Campbell, and T. H. Ware.

Shape-morphing living composites. Science Advances, 6(3):1–10, 2020. ISSN

23752548. doi: 10.1126/sciadv.aax8582.

[67] Meihui Cui, Gaoju Pang, Tao Zhang, Tao Sun, Lili Zhang, Ruru Kang, Xin Xue,

Huizhuo Pan, Chun Yang, Xinyu Zhang, Jin Chang, Jing Liu, Shufang Zhang,

and Hanjie Wang. Optotheranostic Nanosystem with Phone Visual Diagnosis and

Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care. ACS Nano,

15(4):7040–7052, 2021. ISSN 1936086X. doi: 10.1021/acsnano.1c00135.

[68] Huizhuo Pan, Lianyue Li, Gaoju Pang, Chunli Han, Baona Liu, Yingying Zhang,

Yue Shen, Tao Sun, Jing Liu, Jin Chang, and Others. Engineered NIR light-

responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

Chemical Engineering Journal, 426:130842, 2021.

[69] Michael Chas Sumner, Steven B. Torrisi, Donna G. Brickner, and Jason H. Brick-

ner. Random sub-diffusion and capture of genes by the nuclear pore reduces

dynamics and coordinates inter- chromosomal movement. eLife, 10:1–25, 2021.

ISSN 2050084X. doi: 10.7554/eLife.66238.

[70] Hashem A. Meriesh, Andrew M. Lerner, Mahesh B. Chandrasekharan, and

Brian D. Strahl. The histone H4 basic patch regulates SAGA-mediated H2B

deubiquitination and histone acetylation. Journal of Biological Chemistry, 295

(19):6561–6569, 2020. ISSN 1083351X. doi: 10.1074/jbc.RA120.013196. URL

http://dx.doi.org/10.1074/jbc.RA120.013196.

[71] Andrew M. Lerner, Austin J. Hepperla, Gregory R. Keele, Hashem A. Meriesh,

Hayretin Yumerefendi, David Restrepo, Seth Zimmerman, James E. Bear, Brian

Kuhlman, Ian J. Davis, and Brian D. Strahl. An optogenetic switch for the Set2

methyltransferase provides evidence for transcription-dependent and -independent

dynamics of H3K36 methylation. Genome Research, 30(11):1605–1617, 2020. ISSN

15495469. doi: 10.1101/gr.264283.120.

[72] Ellen H. Reed, Benjamin S. Schuster, Matthew C. Good, and Daniel A. Ham-

mer. SPLIT: Stable Protein Coacervation Using a Light Induced Transition. ACS

Synthetic Biology, 9(3):500–507, 2020. ISSN 21615063. doi: 10.1021/acssynbio.

9b00503.

[73] Mikael V. Garabedian, Wentao Wang, Jorge B. Dabdoub, Michelle Tong, Reese M.

Caldwell, William Benman, Benjamin S. Schuster, Alexander Deiters, and

Matthew C. Good. Designer membraneless organelles sequester native factors for

control of cell behavior. Nature Chemical Biology, 17(9):998–1007, 2021. ISSN

30

http://dx.doi.org/10.1074/jbc.RA120.013196


Bibliography

15524469. doi: 10.1038/s41589-021-00840-4. URL http://dx.doi.org/10.1038/

s41589-021-00840-4.

[74] Gurkan Guntas, Ryan A Hallett, Seth P Zimmerman, Tishan Williams, Hayretin

Yumerefendi, James E Bear, and Brian Kuhlman. Engineering an improved light-

induced dimer (iLID) for controlling the localization and activity of signaling pro-

teins. Proceedings of the National Academy of Sciences, 112(1):112–117, 2015.

[75] Marc Rullan, Dirk Benzinger, Gregor W. Schmidt, Andreas Milias-Argeitis, and

Mustafa Khammash. An Optogenetic Platform for Real-Time, Single-Cell In-

terrogation of Stochastic Transcriptional Regulation. Molecular Cell, 70(4):745–

756.e6, 2018. ISSN 10974164. doi: 10.1016/j.molcel.2018.04.012. URL https:

//doi.org/10.1016/j.molcel.2018.04.012.

[76] Melinda Liu Perkins, Dirk Benzinger, Murat Arcak, and Mustafa Khammash.

Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell sig-

naling. Nature Communications, 11(1):1–10, 2020. ISSN 20411723. doi: 10.1038/

s41467-020-15166-3. URL http://dx.doi.org/10.1038/s41467-020-15166-3.

[77] Sant Kumar, Marc Rullan, and Mustafa Khammash. Rapid prototyping and de-

sign of cybergenetic single-cell controllers. Nature Communications, 12(1), 2021.

ISSN 20411723. doi: 10.1038/s41467-021-25754-6. URL http://dx.doi.org/10.

1038/s41467-021-25754-6.

[78] Andela Davidovic, Remy Chait, Gregory Batt, and Jakob Ruess. Parameter infer-

ence for stochastic biochemical models from perturbation experiments parallelised

at the single cell level. PLoS Computational Biology, 18(3):1–22, 2022. ISSN

15537358. doi: 10.1371/journal.pcbi.1009950.

[79] Sebastian R Schmidl, Ravi U Sheth, Andrew Wu, and Jeffrey J Tabor. Refactoring

and optimization of light-switchable Escherichia coli two-component systems. ACS

synthetic biology, 3(11):820–831, 2014.

[80] Paolo Guerra, Luc Alban Vuillemenot, Brady Rae, Valeriia Ladyhina, and Andreas

Milias-Argeitis. Systematic in Vivo Characterization of Fluorescent Protein Mat-

uration in Budding Yeast. ACS Synthetic Biology, 11(3):1129–1141, 2022. ISSN

21615063. doi: 10.1021/acssynbio.1c00387.

[81] Jessica B. Lee, Leandra M. Caywood, Jennifer Y. Lo, Nicholas Levering, and

Albert J. Keung. Mapping the dynamic transfer functions of eukaryotic gene

regulation. Cell Systems, 12(11):1079–1093.e6, 2021. ISSN 24054720. doi: 10.

1016/j.cels.2021.08.003. URL https://doi.org/10.1016/j.cels.2021.08.003.

31

http://dx.doi.org/10.1038/s41589-021-00840-4
http://dx.doi.org/10.1038/s41589-021-00840-4
https://doi.org/10.1016/j.molcel.2018.04.012
https://doi.org/10.1016/j.molcel.2018.04.012
http://dx.doi.org/10.1038/s41467-020-15166-3
http://dx.doi.org/10.1038/s41467-021-25754-6
http://dx.doi.org/10.1038/s41467-021-25754-6
https://doi.org/10.1016/j.cels.2021.08.003


Chapter 1. Introduction

[82] Brian D Zoltowski, Laura B Motta-Mena, and Kevin H Gardner. Blue light-

induced dimerization of a bacterial LOV–HTH DNA-binding protein. Biochem-

istry, 52(38):6653–6661, 2013.

[83] Robert Ohlendorf, Roee R Vidavski, Avigdor Eldar, Keith Moffat, and Andreas
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2 Platform development

The production of recombinant proteins in yeast is performed in tightly controlled stirred

tank reactors (STRs) at optimal oxygen, nutrient and pH conditions [1, 2]. Commercial

bioreactors exist for a wide range of volumes and can be made of glass, steel or plastic

(single-use).

The ultimate goal of this PhD thesis is to implement closed-loop optogenetic feedback

control on a bioreactor for microbiology applications. We want to leverage optogenetics

for actuation of the cells. In order to achieve this, we developed an illumination device

that is able to supply light to the bioreactor contents. Furthermore, real-time data of the

cell state is required to feed into the control algorithms. We thus extended the platform

to additionally include automatic sampling and dilution.

Usage of optogenetics for protein production requires proper illumination devices.

Most experiments in the microbiology setting are performed at smaller volume scales

[3–7]. Steel et al. [8] developed a 20mL platform termed “Chi.Bio” which allows for the

automatic measurement of a variety of fluorophores and optical density. Additionally,

the authors implemented continuous culture capabilities in their platform and an LED

for the usage as an optogenetic input. Tandar et al. [9] used the red-light CcaS/CcaR

system in E. coli to regulate the metabolic allocation between the Embden-Meyerhof-

Parnas (EMP) and the oxidative pentose phosphate (oxPP) pathways at the 20mL scale.

Here, the authors placed single LEDs below shaking flasks or tubes. The test tube scale

is good to quickly test the functionality of optogenetics, but lacks control over pH and

aeration that bioreactors offer and which are required in full-scale bioprocesses.

The field of photobioreactors in the algae world is much more mature [10]. The goal

here is to maximize the surface area so that liquid culture algae can transform CO2

and ambient light into biomass for later energy usage. While these platforms are more
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mature, the focus here is on delivering the maximum amount of light to the cells. Thus,

control over the light wavelength or keeping the system dark from external influences

is not important. Additionally, the operating volumes of algae reactors are much larger

than necessary for laboratory experiments. For our applications however, it is crucial

to apply a defined wavelength to the cells, as well as to be able to turn off all light

activation.

Chen et al. [11] and Chang et al. [12] have demonstrated the usage of optogenetic

tools in a bioreactor setting. In both cases however the setup can not efficiently be

shielded from ambient light. A hallmark publication stems from Zhao et al. [13], where

they demonstrated the usage of optogenetics at the 5L scale to produce isobutanol

and 2-methyl-1-butanol optogenetically and achieve considerably higher titers. They

achieved this by wrapping the glass-walled bioreactor with flexible LED panels. The

same approach was used in more recent publications from the Avalos Research Group

[14, 15]. What is missing for further development is a robust platform that allows the

easy application of light for optogenetic induction at the bioreactor scale without the

need of manual attachment of LEDs to the bioreactor after sterilization.

All taken together, there is no commercial standard for a photobioreactor platform for

microbiology cultivations available giving rise to the need to develop a platform ourselves.

We used a commercially available bioreactor and developed an light delivery system

around it in order to run optogenetic experiments under industrial conditions. In the

first part of this chapter (section 2.1), we discuss the development of the photobioreactor

platform, which allows the illumination of a 1.2L bioreactor with red, green and blue

LEDs.

In recombinant protein production, the organism of choice acts as a catalyst con-

verting substrate to a product. Consequently, a prerequisite for high productivity is a

sufficiently large cell density [16]. Conditions allowing for this are achieved in batch and

fed-batch high cell density cultivations (HCDC). Most bioreactor platforms are equipped

with sensors for temperature, dissolved oxygen and pH. Additionally, platforms can in-

clude conductivity, pressure and turbidity measurements, off-gas analysis systems and

the in situ measurement of a variety of metabolites (e.g. glucose, acetate). For our

specific purpose, we would like to measure the abundance of fluorescent proteins inside

of our cells. Quantification of fluorescent proteins is usually performed by a fluorometer

or flow cytometer. These devices have a narrow operating range, meaning that the cell

densities encountered in HCDCs pose a significant challenge for measurements. We have

thus implemented an automatic sampling and dilution system to meet the requirements

posed by the measurement devices.
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2.1 Developing a photobioreactor

Automatic sampling devices have been around for a long time [17, 18] and some

systems are commercially available [19] or can be assembled for a relatively low price

[8, 20]. Sampling systems have also been developed in our research group [5, 21] and

provide some inspiration on how to develop automatic sampling. These devices were

all used in experiments where the cell density was controlled to a low, constant optical

density, allowing direct measurement of the sample without prior dilution. With the rise

of pipetting robots, automatic dilution of samples is also possible (e.g. Opentrons). An

affordable combination of monoseptic sampling and dilution is however not affordable

and often not open for modifications.

Due to the lack of available and affordable combined monoseptic sampling and di-

lutions systems, we developed an automatic sampling and dilution setup (section 2.2),

which allows for the robust sampling of bioreactor culture and dilutions of up to 400-

fold. It gives us an easy way to modify the system, is inexpensive and integrateable with

a flow cytometer, resulting in an automatic way to quantify the fluorescence of cells in

exponentially growing cultures.

2.1 Developing a photobioreactor

Figure 2.1: Picture of the bioreactor
BioFlo®120 [22]. Shown is the heat-
blanketed 2L version.

The bioreactor we used as the basis for the photo-

bioreactor platform is an Eppendorf BioFlo®120

with a total volume of 1.2L and an operating vol-

ume of 1L (figure 2.1). It is equipped with sen-

sors for measuring pH, dissolved oxygen (DO) and

temperature, and has a control unit for regulating

these parameters. To provide heating and cool-

ing, we used a water-jacketed version rather than

a heat-blanketed bioreactor, so that the bioreactor

liquid could be continouously illuminated from the

side. The bioreactor is placed on a heat plate to

warm the the water-jacket from below, and cold

water (5°C) can be pumped into the water jacket for cooling.

For illuminating the bioreactor, we built a hexagonal prism with sides of 18.5cm length

and a height of 28cm. Into the sides of the prism, we placed six Adafruit NeoPixel

NeoMatrix LED light panels with 8x8 individual LEDs (see figure 2.2). To prevent

overheating of the light panels, we placed custom-made 7.5x10cm heat sinks on the

outside of each panel. The prism can be sealed at the top with covers to completely
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block ambient light, resulting in a measured irradiance of 0.02 µW
cm2 when all light panels

are turned off.

Figure 2.2: Schematic view of the photobioreactor from the side (left) and top (center). The bioreactor
is placed inside a hexagon container, which shields the bioreactor from ambient light. Six light panels
are placed on the inside of the hexagon with six heat sinks on the outside, to avoid overheating of the
light panels. right Additional covers can be placed at the top of the hexagon to shield all sides of the
bioreactor from light.

Figure 2.3: Picture of the
photobioreactor platform in-
side the hexagonal prism with-
out the additional covers.

All of the light panels are controlled by an Arduino Mega

2560, with two panels connected in series and each pair

controlled by one digital pin of the Arduino. The electrical

current for the light panels is supplied by a custom-built

power driver (5V) with a maximum current of 2A per light

panel (12A total). A picture of the bioreactor with all LEDs

set to 10% brightness can be seen in figure 2.3.

To understand the range of brightness levels at which the

photobioreactor can be operated, we measured the irradi-

ance inside the bioreactor at various input brightness levels

of the Arduino. The measurements were performed with

the Thorlabs PM100USB Power and Energy Meter at the

excitation wavelength of EL222 (λ = 450nm) [23] with aver-

aging over 1’000 datapoints. The sensor was placed inside

the bioreactor adjacent to the glass wall facing one indi-

vidual light panel and only this light panel was turned on

for measurements. Figure 2.4 shows the irradiance plotted

against the digital brightness input level on a log-log plot

with a clear linear correlation (Adj. R-squared = 0.99997). A threshold input level

≥ 0.008 needs to be supplied to be in the linear range of the light panels. The maximum
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irradiance with one light panel is 267.5 µW
cm2 . When all light panels are turned on, this

number increases to 625 µW
cm2 . The actual experienced irradiance of cells at the bioreactor

wall is a function of the cell density, as light panels opposite of the measurement point

will contribute less irradiance at higher cell densities than when the cell density is close

to zero. The two maximum values can be used to assess whether cells could be exposed

to phototoxic effects when illuminated with maximum brightness in the bioreactor.

Figure 2.4: Irradiance given in µW
cm2 plotted against the brightness in a.u. that is set with the Arduino

Mega.

2.2 Automatic measurements

2.2.1 Development of an automatic sampling and dilution module

The bioreactor is operated in batch mode to closely mimic the operating conditions

in industry. This is because higher cell densities result in more “biocatalyst” that is

producing the product leading to higher productivities. We inoculate our bioreactor

at OD600 ≈ 0.02 and cell densities reach OD600 ≈ 20 at the end resulting in a 1’000

fold range where reliable measurements need to be obtained. Typical lab measurement

devices can produce reliable measurement output in a much smaller cell density range.

For example, the NanoDropTM has a 20-fold measurement range, a Beckman Coulter

CytFLEX S flow cytometer a 30-fold range. This results in the need for dilution of the

sample before measurement, to bring the cell density into the measurement range.

We built an automatic sampling and dilution platform which is able to automatically

sample from the bioreactor, dilute the sample and transfer it to a measurement device.

Initially in the batch run, the sample can be fed into the sampling device undiluted. At
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the end of the bioreactor run a dilution of 50-fold is required to be in the measurement

regime of our flow cytometer. We split this dilution task into two dilution stages so that

each dilution step doesn’t exceed a 10-fold dilution (lab standard for dilution series).

Both dilution stages are shown in figure 2.14.

The sampling relies on the usage of a set of pumps taking inspiration from Milias-

Argeitis et al. [5]. Four pumps are dedicated to each dilution stage, one for air, sample,

diluent and waste, as well as a glass vial for sample storage, dilution and mixing. For

practical implementation a pump board from Chi.Bio [8] containing four peristaltic pump

heads is used for each dilution stage. Finally, one custom developed pump is used to

transfer the sample from the second dilution vial to the measurement device.

Figure 2.5 depicts the steps performed at each dilution stage. Simply put, sample is

drawn by the air pump (P1) into tubing connecting the bioreactor to the glass vial. A

defined pulse of sample is drawn by the sample pump (P2) and pushed to the sample

vial. The sample residing in the tubing is pushed back to the bioreactor and the sample

is diluted with diluent (P3). The sample is mixed with the diluent and transferred to

the next dilution stage and finally to the measurement device. Lastly, the vial is rinsed

with diluent and all liquids are transferred to a waste container (P4).

The amount of dilution depends on the measurement device. For our application,

we used the CytFLEX S. If the cell density in the sample is too large, then cells will

enter the flow cell too close to each other and the instrument can not discern between

the cells. In order to avoid wrong measurements, the instrument labels those events as

aborted. The abortion rate is now all cells aborted divided by all events measured by

the instrument. Operating at low cell densities also ensures that the flow cell doesn’t

clog. We aim for an abortion rate < 2% which for yeast cells corresponds to event counts

of 5000 events
µL (see figure 2.6). In order to safely work in this regime we set a target

cell density of 2500 events
µL to be fed into the flow cytometer. The dilution rate for each

new measurement is calculated from the previously measured cell density and previous

dilution rate. With a fixed sample pump rate and duration, the dilution is tuned by

varying the time that the diluent pump is turned on.

A picture of the automatic sampling and dilution can be seen in figure 2.7. Addition-

ally, figure 2.8 shows a sample 150-fold dilution achieved with the automatic sampler
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Figure 2.5: Automatic sampling setup in detail. (a) Initially, pump P1 is turned on and the pump
direction of P1 is reversed three times to ensure proper mixing of sample in the sample tubing. Then,
the sample is pumped from the bioreactor through a T-piece into tubing of pump P1. This allows a more
precise amount of sample to be transferred through pump P2 towards the sample vial, as the sample is
primed until the T-piece. (b) The sample is pumped by pump P2 into the sample vial. (c) The pump
direction of P1 is reversed and the sample remaining in the tube is pushed back into the bioreactor. A
sterile filter behind P1 ensures continuous sterility during sampling. (d) The remaining sample between
T-piece and vial is pushed into the sample vial, while the sample is diluted with pump P3 which pumps
diluent from the diluent reservoir into the vial. (e) The sample is mixed with pump P1’ of the next
dilution stage and finally transferred on to the next dilution step or measurement device, similar as in
step a from bioreactor to sample vial 1. (f) After transfer, the sample is removed with pump P4 into a
waste reservoir. The vial is rinsed with more diluent (P3) and the diluent removed again with P4.

Figure 2.6: The abort rate as given by the flow cytometer as a function of the measured cell density.
The inset shows the data for abort rates below 2%.
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Figure 2.7: Picture of the photobioreactor platform with attached automatic sampling and dilution
stages. Samples are transferred from the bioreactor through the first and second dilution stage and are
finally pumped to the measuring device (in our case a flow cytometer, not shown).

Figure 2.8: Example of dilutions achieved with the automatic dilution device. The sample shown on
the left in the Eppendorf tube is sampled manually from the bioreactor. The vial in the center shows the
sample after the first dilution (1̃2-fold) and the vial on the right the dilution after the second dilution
(1̃50-fold total dilution). Samples are pumped from that second vial to the measuring device.
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2.2.2 Beckman Coulter CytFLEX S automation workflow

In order to fully automate the sampling, dilution and measurement with a flow cytometer

the procedure for measurement also needs automation.

The CytFLEX S flow cytometer has two different sample injection modes; tube and

plate. For convenience we used the tube injection mode, as bigger volumes can be

supplied in comparison to standard 96-well plates. Beckman Coulter does not provide

a simple interface to communicate with the flow cytometer software CytExpert. For a

typical measurement, a new and empty tube sample needs to created, the machine needs

to be initialized, the sample line backflushed and boosted, the sample measurement needs

to be recorded for 30 seconds, followed by another cleaning step and finally export of

the data to a csv file.

To automate these steps, we initially leveraged robotics process automation (RPA)

with the RPA software UiPath. RPA tries to mimic the software workflow that is

otherwise implemented by a human. One can record the software workflow, by clicking on

required fields and play this workflow again upon request. Old software implementations

of RPA clicked on defined pixels on a defined screen. In contrast, the newer software

packages like UiPath record the field that is clicked on rather than the pixel position,

making it more robust to changes in e.g. screen resolution. One such workflow can

be seen in figure 2.9 which automates the clicking for a measurement. For maximal

robustness, additional steps and cases need to be introduced, so that UiPath can always

control CytExpert, even when it is e.g. running in the background.

Two such workflows were implemented, one for measurement automation and one for

automation of the export of raw data into a csv file. The workflow could be run through

the command line of Matlab and allowed the successful automation of measurements.

These scripts were improved over time, incorporating more and more special cases and

were used for experiments until August 2021.

For longterm experiments (> 24 hours), some limitations arise from the CytExpert

software. The graphical user interface requires a manual system startup of the machine

every 24 hours which requires manual intervention. In parallel to this PhD project a

similar setup was developed in the Control Theory and Systems Biology Laboratory,

which also automates the measurement with a CytFLEX S [21], though without the

need of dilutions. This project leveraged an application programming interface (API)

from CytExpert, which overruled the need for daily system startups and daily cleans.

Thus, the RPA was replaced with the API module to automate measurements with the

CytoFLEX S. The code of the API module was developed by Sant Kumar.
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Figure 2.9: Robotic process automation (RPA) workflow for automation of the measurement procedure
in CytExpert. Initially, the script checks whether CytExpert is running. If it is running, we need to
identify from the active windows, whether CytExpert is selected and in the foreground or whether it
needs to be selected first. If it is not running, CytExpert is started from the Windows Start menu. After
this process, the actual measurement steps are implemented (lower half). Note that between some steps
an additional delay is implemented, so that the machine can perform the previous step (e.g. between
record sample, which takes 30 seconds and backflush).

2.3 Amylase sampling and automation

We decided to collect samples of cells with supernatant separately in order to measure

the concentration of amylase offline.
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2.3.1 Automation of amylase sampling

We custom-built an amylase sampling device that can collect up to 14 individual samples

for later offline quantification. The sampler is based around a set of pneumatic manifolds

with fitted pneumatic valves that allow the distribution of liquids through several chan-

nels. In our case, we used two manifolds with each one inlet and eight outlets. Figure

2.10 shows the sample origin (here the bioreactor), a pump P, two manifolds (grey box)

and a total of 16 pneumatic valves (stacked triangles).

Figure 2.10: Graphic depiction of the amylase sampling station with two pneumatic manifolds, each
with one inlet and 8 outlets and a pump P driving the liquid from sample origin to sample vials. Valves
(stacked triangles) control the flow of liquid. Samples are filled in order from left (1) to right (14). In
the depicted example, sample vials 1 and 2 have already been filled in previous steps. The valve for
sample vial 3 is opened while all other valves are closed resulting in liquid flowing into sample vial 3.

For implementation we used the pneumatic manifold pneumadyne msv10-8 with pneu-

madyne S10MM-30 24-3 valves to control the flow. Each outlet can be fitted with a

pneumatic valve stopping any liquid from passing through the output. Sample from the

bioreactor is pumped with a pump P to the inlet of manifold one. For samples that

should be stored in sample vials 1-7, only this specific valve is opened. For samples that

should be stored in vials 8-14, the valve V’ is additionally opened to allow the liquid to

pass through manifold 1. A final outlet V” is used to flush back any remaining liquid in

the tube back to the sample origin, by switching the flow direction of the pump while

keeping valves V’ and V” open. The outlet at V” is equipped with a sterile filter, so that

air is filtered before being pushed back to the bioreactor. The valves are controlled by

an arduino and can be opened by sending a digital ”HIGH” signal to the pin to which

the valve is connected.

To stop microbial growth, 10 µL of 11mM sodium azide are placed in each sample

vial, sufficient to stop microbial growth in a 1mL sample. The sample is kept at room

temperature until measurement.
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2.3.2 Automation of the amylase offline quantification

We used the Megazyme alpha-amylase assay kit to measure the concentration of alpha-

amylase in samples. Commercial α-amylase (Sigma-Aldrich) from Aspergillus oryzae

(Cat. Nr. 10065) was used as a standard. The sample was centrifuged at 4’000 rcf for

5 minutes to separate cells from the amylase containing supernatant. The Megazyme

alpha-amylase assay reaction volume was scaled-down from 3.4 ml total volume to 250 µl

total volume to enable automation and quantification in 96-well plates. The assay was

further performed at room temperature, to reduce the amount of evaporation in the

96-well plate and the incubation time with HR reagent was extended to 15 minutes.

The following steps for quantification were performed. 50 µl of biologically inactivated

supernatant was transferred into a 96-well plate and incubated at room temperature for

5 minutes. 50 µl of HR solution was added to each sample to start the reaction. The plate

was shaken at 1’000 rpm for 15 minutes before adding 150 µl of 40 g/l Na3PO4 (pH=11).

The stop buffer was prepared by dissolving 92.768 g of Na3PO4 · 12 H2O in 1l water.

The pipetting was performed on a Hamilton microlab star and measurement of the

absorbance at 400nm with a Tecan Infinite M200Pro. The Hamilton automation protocol

was developed together with Gregor Schmidt from the ETH, D-BSSE automation facility.

2.3.3 Maintaining a monoseptic fermentation

Initially, the platform with installed automatic sampling was running well with no ob-

served contamination of the monoseptic culture. After the installment of the amylase

sampling device significant and persistent contaminations of the bioreactor with E. coli

and hyphae were observed (see figure 2.11). The pneumatic valves can not be autoclaved

and cleaning of the setup with 70% ethanol did not remove the contaminations.

Four alterations were performed that in combination removed any further contami-

nation. First, we identified that hyphae could survive in the O-rings of the bioreactor

even after autoclaving and keeping the rings in 70% ethanol (see figure 2.11). We thus

replaced all O-rings in the setup in an effort to remove any remaining spores.

Secondly, we observed that small amounts of liquid could travel back from the first

dilution vial into the bioreactor potentially contaminating the fermentation. Thus, we

replaced the needle used to transfer the liquid into the dilution vial with a shorter

one. Thus, the liquid is now dropped into the mixture rather than directly added at

the bottom of the vial. Previously, the sampling apparatus was sterilized in situ by

rinsing the apparatus with 70% ethanol. This is improved by autoclaving the entire
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Figure 2.11: (left) Microscope picture of the bioreactor liquid after an experimental run. Visible are
some yeast cells at the top of the image, a colony of hyphae and small dots representing E. coli. (right)
Culture of hyphae after culturing YPD at 30°C for 2 days with an O-ring placed in the tube.

tube apparatus with tubes passing through the pump heads P1 and P2 together with

the bioreactor.

Figure 2.12: Improvement to the sampling setup by replacing the long needle at dilution vial 1 (left)
with a shorter one (right). This results in a monoseptic environment containing the bioreactor and all
tubes until the tip of the needle.

Sheath fluid used to run flow cytometry experiments contains a variety of biocides that

prevents microbial growth inside the machine. Taking inspiration from this, the diluent

buffer was supplemented with the biocide sodium azide at a concentration of 5.5µM to

prevent extensive accumulation of bacteria and fungi in the sampling apparatus. We

tested, whether the measurement of fluorescent reporters was impacted by this addition

of sodium azide but found no difference between treated and untreated cells.
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Lastly, the amylase autosampler is not directly connected to the bioreactor as shown

in figure 2.10 but is connected to the first dilution vial (see figure 2.14). This removes

any backspilling from the pneumatic manifold or valves into the bioreactor.

2.4 Matlab-bioreactor interfacing

Matlab®is used as the leader software for the photobioreactor platform. The code is

designed in a modular way, allowing to weave different tasks into each other. Matlab is

designed in a way that only one function can be executed at a time. This extends to

functions such as “pause” that could be used to time different steps. We can circumvent

this by using timers. A timer can be set for a specific task, e.g. initiating the sampling

sequence every 30 minutes, but allows simultaneous other functions to run, until the

initiation sequence needs triggering. Thus, each module is controlled by an internal

timer, which allows the user to schedule the command execution of individual modules.

Using timers allows the user to still interact with code and data outputs, as in the

breaks between timers, no processing from Matlab is required. Six modules were coded in

Matlab, spanning tasks from data communication with the bioreactor, data visualization,

light control, automatic sampling, data analysis and closed-loop control (illustrated in

figure 2.13).

A first module allows the connection and communication with the bioreactor con-

trol unit. This connection is opened using the open platform communication (OPC)

standard. After creating the OPC object, all process parameters can be read from the

bioreactor (temperature, pH, heating/cooling rate, stirring rate, gas flow rates, dissolved

oxygen (DO), and process control parameters). This allows easy access to data for fur-

ther analysis. Data is read once every second, for maximum information For example,

we were able to improve the speed of the temperature control, so that minute changes

in the temperature profile could be observed and extracted.

A second module controls the light intensity of the light panels of the photobioreactor.

The arduino adafruit neopixel library is used to create a connection from Matlab through

an arduino to the light panels. The module allows the quick and easy change of the light

intensity of all 384 LEDs in a single line of code. We built a module for the setup and

updating of data plots. Plots show the temporal evolution of temperature, pH, DO,

light intensity, pump flow rates, and flow cytometry measurements and are updated

every three seconds.

A big portion of the development work happened in the module for automatic sam-

pling and measurement, implementing the steps described in section 2.2.1. The sampling,
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Figure 2.13: Chart illustrating the data and information flows required to run the photobioreactor
platform. Unidirectional arrows indicate a flow of data or information in one direction only, whereas a
bidirectional arrow indicates flow of information in both directions. Matlab acts as the leader software
with a main code orchestrating the different core units. The bioreactor module connects through the
OPC interface to the bioreactor control unit. The unit receives sensor data about temperature (T), pH
and dissolve oxygen (DO) and regulates the heating and cooling rate, the acid and base pump rate and
the stirring and gas flow rate accordingly, without interaction with the main Matlab code. Both, light
intensity and automatic sampling are executed on arduino microcontrollers. Three arduinos are dedicated
to sampling, one for each pump board and a third for valve switching of the amylase sampler. Finally,
the Matlab module for automatic sampling additionally connects to the flow cytometry application
processing interface (CytFLEX API).

dilution, measurement and cleaning procedure requires ≈12 minutes. During the sam-

pling procedure 62 individual actions of pump turn on/off are triggerd followed by 74

pump turn on/off actions for cleaning the vials. In order to allow user inputs during

this time, the sequence of steps is coded in five submodules in the arduino itself. As an

example, one such submodule takes the sample and dilution rate as input from Matlab

and performs all sampling steps (figure 2.5a-d) whilst other submodule are designed for

sample transfer (figure 2.5e) or cleaning vials (figure 2.5f). With all substeps executed

on the arduinos, Matlab only needs to initiate these submodules in a single line. The

physical wiring of the computer running Matlab to the different arduinos is shown in

figure 2.14.

The data analysis module imports data from the flow cytometry data, saves them in

data structs and calculates the next dilution rate for the next measurement including

the actual pulse lengths for sample pump and diluent pump. Finally, the closed-loop

control module takes information of the cell state and calculates the next light input.
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2.5 Conclusion

We have successfully developed a photobioreactor platform with added automatic sam-

pling, dilution and quantification. This platform allows us to run closed-loop control

experiments on a volume scale not demonstrated so far. The photobioreactor allows

easy access to all hardware, while simultaneously shielding the bioreactor contents from

any ambient light source. The light illumination device can also be equipped onto any

glass-walled bioreactor, quickly transforming it into a photobioreactor.

The mechanical module for automatic sampling, dilution and measurements allows

quantification of cellular parameters over a whole bioreactor run. While it is practically

infeasible to manually sample and dilute every 30 minutes for 72 hours, this task can be

achieved through automation. Standard sampling frequencies for fermentations in the

academic research are in the order of once every 12 to 24 hours. Many biological processes

can happen faster than these frequencies and not be picked up on. Our sampling system

alone could thus be a useful tool for studying biological process during fermentation.

After setup and inoculation of the bioreactor no user interactions are required until the

end of the run, making this economically efficient and decreasing required labor costs.

The modular structure of the control code allows future modifications to the platform.

This project implemented closed loop control using proportional integral controllers. Fu-

ture projects could e.g. implement more advanced algorithms, such as model predictive

control. Also changes in the light source, different pumps or measuring devices can be

adjusted readily in the code.

2.6 Outlook

During the course of the project, some technical issues were observed that could be

improved on in the future. The pump heads used for sampling, mixing, diluting and

transferring liquids are cheap and are unreliable for long duration use. Specifically, the

motor running the pumps broke in several instances with no prior indication of a failure.

This results in some failed runs, when e.g. the waste pumps are not operating properly

forcing an overflow of the liquid in the sample vials. In order to improve this, more

reliable peristaltic pumps could be used. Furthermore, the implementation of automatic

dilution was performed with peristaltic pumps. With the rise of affordable pipetting

robots (e.g. Opentron), these steps could be replaced by a pipetting routine. While not

necessary for closed-loop feedback, this could improve the accuracy of the cell density

measurements.
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[21] Joaqúın Gutiérrez Mena, Sant Kumar, and Mustafa Khammash. Dynamic cy-

bergenetic control of bacterial co-culture composition via optogenetic feedback.

Nature Communications, 13(1):1–16, 2022. ISSN 20411723. doi: 10.1038/

s41467-022-32392-z.

[22] Eppendorf. https://bioflo120.eppendorf.com/, 2023.

[23] Laura B. Motta-Mena, Anna Reade, Michael J. Mallory, Spencer Glantz, Orion D.

Weiner, Kristen W. Lynch, and Kevin H. Gardner. An optogenetic gene expression

system with rapid activation and deactivation kinetics. Nature Chemical Biology,

10(3):196–202, 2014. ISSN 15524469. doi: 10.1038/nchembio.1430.

56

https://doi.org/10.1016/j.ohx.2021.e00177
https://doi.org/10.1016/j.ohx.2021.e00177


3 Development of a S. cerevisiae

strain for optogenetic production

of α-amylase and UPR sensing

The biopharmaceutical market has been evergrowing and is expected to hit a project

size of 900 billion USD in 2030 [1]. Currently, S. cerevisiae is one of the most commonly

used production systems for fine chemicals and proteins and there is a continuous need

to improve production efficiency [2]. Protein production consists of a multitude of inter-

mediate steps similar to a conveyor belt manufacturing line, starting from transcription

from the DNA template, running through translation, translocation, post-translational

modifications and folding in the endoplasmic reticulum (ER) and finally being processed

for delivery through cleavage of peptides, sorting and secretion [3].

When expressing a biopharmaceutical protein, limitations or bottlenecks can be en-

countered on a process level (e.g. insufficient aeration [4]) or along the previously de-

scribed cellular conveyor belt production line [3]. During maximum gene overexpression

one often observes that proteins will accumulate in a cell compartment with negative

effects for the cell [5]. Engineering of the protein expression [6], folding [7] or secretory

system [8] can remove those bottlenecks in the production line and increase product

titers.

A limitation on the cellular level is generally present when the rate of incoming

molecules into a specific cell compartment is higher than the rate of outgoing molecules.

For optimal usage of the cellular resources, the rate of in- and out-going molecules in

each cell compartment is equal. This can be achieved by finely tuning the reaction

rates (e.g. promoter strength) of each step. Xu et al. [9] tuned the transcription and

translation rates of three modules in the fatty acid synthesis pathway resulting in higher

yield of the product. While this approach works nicely with given process and biological

conditions, changes in the process conditions could result in sub-optimal production.

Introducing genetic feedback (i.e. dynamic pathway regulation) is a way to ensure
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more robustness over a wider variety of process conditions [10]. In simple terms, a nega-

tive feedback from a downstream cell machinery to a more upstream flux is implemented,

so that upon overburdening of the downstream machinery, new influx is reduced. Zhang

et al. [11] engineered a promoter to dynamically sense the presence of a biodiesel inter-

mediate and repress upstream metabolic fluxes, allowing the cell to reach homeostasis by

converting the intermediate to the final biodiesel product (fatty acid ethyl ester) before

derepressing the ingoing flux. We want to generalize the approach of genetic feedback

by implementing the feedback outside the cell in silico. An in silico feedback control

loop comprises the measurement of a cell state, computation of the next control input

and application of a new stimuli.

We chose optogenetics as the stimuli of choice as it allows time-varying and tunable

control over the gene expression of cells, while light is an inexpensive inducer [12, 13].

A variety of different optogenetic systems exist for S. cerevisiae [14–16]. Kennedy et al.

[17] for example reconstituted the function of a split Gal4 transcription factor consisting

of the Gal4 DNA-binding domain (GalBD) and Gal4 activation domain (GalAD). This

was achieved by fusing GalBD to the cryptochrome 2 (Cry2) from A. thaliana and

GalAD to it its blue-light induced binding partner CIB1. Upon blue light illumination,

Cry2 and Cib1 dimerized and increased expression from a Gal-responsive promoter was

observed in comparison to the dark state control. We chose to work with EL222 as

optogenetic actuator due to the vast expertise of our group in this area [18–20]. Our

optogenetic transcription factor consists of the blue-light-sensitive DNA-binding domain

EL222 fused to the Msn2 activation domain (Msn2AD-EL222) [20, 21]. Additionally,

EL222 has also been used in high cell density culture [22], validating our choice for this

project.

As a target protein, we chose the model protein α-amylase. Amylase is a relatively

large protein with a size of 49-51 kDa and requires the formation of four disulfide bonds

between pairs of cysteine, making it a hard-to-fold protein [23, 24]. Amylase production

is subject to the bottlenecks discussed previously [8, 23], making it an ideal target

protein. It has been used in a variety of protein production screens [8, 23–25] and

commercial quantification assays are available.

The last part for the in silico feedback control loop is the measurement of a cellular

state to feedback on. One option is to develop a biosensor that is specific for the

product of interest as shown for small molecules such as muconic acid [26], xylose [27]

or branched chain amino acid metabolism [28] as well as for some proteins such as

glucose dehydrogenase [29], β-lactamase [30], anti-apoptosis protein BCL-2, IgG1 Fc

domain and HER2 receptor [31]. The development of a biosensor with good sensitivity,
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specificity and a high dynamic range properties is challenging [32] and could limit the

applicability of this approach to a large selection of proteins of interest. Thus, we

focus our attention on the more general target that is the unfolded protein response

(UPR). The UPR coordinates the cellular response in yeast to elevated levels of unfolded

proteins in the ER and can trigger the expression of chaperones, cofactors and the ER-

associated degradation (ERAD) pathway [33]. It is thus central to the proper folding of

proteins and is often tuned to enhance protein production [25, 34] hinting towards an

ideal UPR induction level. The UPR also integrates over disturbances stemming from

growth kinetics, nutrient availability and protein folding state. We thus believe that

implementing the sensing channel through the UPR allows this approach to be widely

generalizable beyond the expression of α-amylase. As the basis for sensing, we use the

promoter topology from Merksamer et al. [35].

3.1 Methods

3.1.1 Media

YPD and SD-URA medium for transformations was prepared according to the Clontech

Yeast Protocols Handbook [36]. The YPE medium contains 10 g/L yeast extract, 20 g/L

peptone and 25 ml/L ethanol. Just before usage, acetaldehyde is added to YPE at a

concentration of 0.01 % to reduce the lag time in growth observed otherwise. The

SD-2xSCAA medium [37] (designed for heterologous protein secretion) is used for all

precultures and experiments and contains 20 g/L D-glucose, 6.9 g/L yeast nitrogen base

without amino acids, folic acid and riboflavin, 1 g/L bovine serum albumin (BSA), amino

acids as listed in supplementary table S4, 5.4 g/L Na2PO4 and 8.56 g/L NaH2PO4 · H2O

(pH = 6.0 by H2SO4). Initial experiments for characterization were performed without

inositol supplementation. Final experiments were performed in media supplemented

with myo-inositol to a final inositol concentration of 20mg/l. To prepare SD or YPD

agar plates, 20 g/L agar is added to the medium. For SD-2xSCAA plates, BSA was not

added.

For precultures and characterization experiments, the antibiotics Hygromycin B and

Geneticin G418 were added at a final concentration of 200 µg
ml . For transformations with

Zeocin resistance YPD plates were poured with Zeocin at a concentration of 100 µg
ml .

Zeocin was not added during experiments as it is highly unstable when exposed to

light. Amino acids, α-amylase, D-glucose, phosphate buffers, myo-inositol and BSA

were purchased from Sigma-Aldrich. Geneticin was purchased from Gibco, Zeocin and

Hygromycin B from Invitrogen, agar, yeast extract, peptone from BD, yeast nitrogen
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base from Formedium and ammonium sulfate from Roth.

3.1.2 Plasmid construction and strains

The genotype of the background, all further strains and plasmids is shown in supplemen-

tary table S1 and S3. The phototoxicity experiments (figure 3.8) were performed with

yMB9, all other experiments with yMB44. The yeast production strain S. cerevisiae

Cen.PK 530-1C (kindly provided by Jens Nielsen, Chalmers University of Technology,

Sweden) was used for all work in this publication. Cen.PK 530-1C has a triose phosphate

isomerase (tpi1) deletion and is thus unable to metabolize glucose and can only grow on

ethanol. The high-copy production plasmid pAlphaAmyCPOT (kindly provided by Jens

Nielsen, Chalmers University of Technology, Sweden [24]) contains a S. pombe POT1

expression cassette, enabling metabolization of glucose in the tpi1-deletion background,

thus allowing for selection of plasmid retention by using glucose as carbon source.

We created pYMB10, a plasmid with amylase expression under optogenetic EL222

control, by replacing the original tpi1 promoter of the pAlphaAmyCPOT plasmid with

the optogenetic PEL222 promoter. To do this, the pAlphaAmyCPOT plasmid was cut

with FseI and KpnI and the 8.5 kbp fragment gel-extracted. The optogenetic PEL222

promoter was prepared by PCR amplifying pYTKmk216 with the oligos oMB020 and

oMB021 and cutting with FseI and KpnI. Finally both parts were ligated. This results

in the plasmid pYMB10 with the α-amylase expression cassette consisting of the PEL222

promoter, the amylase gene and the TPI1 terminator under POT1 selection.

The Msn2AD-EL222 expression cassette was expressed from the constitutive ScRPL18B

promoter and integrated in the URA3 locus by uracil selection (pYTKmk48). The

transcriptional reporter pYMB12v consists of the yellow fluorescent protein Venus [38]

tagged with an N-degron Ubiquitin (Ubi-Y, [39]), under the control of the PEL222 pro-

moter and was genomically integrated in the HO locus and selected for by Hygromycin

B. It was constructed by combining the MoClo parts pYTK042, pYTK045, pYTK054,

pYTKmk110 and pYTKmk217 using the Molecular cloning protocol [39].

We implemented a UPR sensor (UPRS) by placing mScarlet-I [40] tagged with an

N-degron Ubiquitin (Ubi-Y, [39]) under the control P4xUPRE), resulting in pYMB15m.

The UPRS was integrated in the YIRC∆6 locus [41] and selected for by Zeocin. It

was constructed by combining the MoClo parts pYTK042, pYTK054, pYTKmk227,

pYTKmk110 and pYTKmk123.

Top 10 competent E. coli was used for all molecular cloning. Plasmid construction was
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done using standard molecular cloning techniques or using the yeast molecular cloning

toolkit (YTK) from Lee et al. [39]. Yeast transformations were performed according

to the protocol from Gietz and Schiestl [42]. For genomic integrations plasmids were

cut with Not-I HF (New England Biolabs) and purified using with a DNA Clean &

Concentrator Kit (Zymo Research). Successful transformation was checked with the

genotyping protocol from Lõoke et al. [43].

3.1.3 Culture conditions

All precultures and experiments were grown at 30°C in SD-2xSCAA. Experiments for

characterization were performed at two different volume scales. Experiments for initial

characterization of the UPRS and experiments to determine the ideal concentration of

inositol were performed in 10ml culture tubes in 3ml media in a shaking incubator (New

Brunswick). Optogenetic characterization experiments were performed in a water bath

setup [18] in 4mL cultures with individual blue light illumination (λ = 450nm) and

stirred at 900 rpm.

For all experiments, yeast strains were streaked from the frozen glycerol stock on a SD-

2xSCAA plate and incubated at 30°C for 3 days. Precultures were inoculated from single

colonies into 10 ml of SD-2xSCAA media in a 125 baffled flask and incubated overnight

to an OD600 ≈ 1.25. The preculture cell density was measured by flow cytometry and

experiments started at a cell density of 200 cells
µl (OD600 ≈ 0.02). All experiments were

shielded from ambient light to avoid unwanted optogenetic activation of the circuit.

3.1.4 Flow cytometry

Fluorescence and cell density measurements were performed on a Beckman Coulter

CytoFLEX S. The internal quality control program was run before experiments us-

ing CytoFLEX Daily QC Fluorospheres. Events were gated in the FSC-A and SSC-A

channels to remove measurements of debris (see figure 3.1). Samples were diluted with

PBS to cell densities of 100-4’000 cells
µl . All fluorescence measurements are reported as

the mean of the gated population in arbitrary units (a.u.).

3.2 Final design

We engineered S. cerevisiae to express the hard-to-fold, secreted protein α-amylase under

control of an optogenetic transcription factor (TF), consisting of the blue-light-sensitive

DNA-binding domain EL222 fused to the Msn2 activation domain (Msn2AD-EL222)
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Figure 3.1: Gating strategy for all experiments. An elliptical gate is drawn in the forward scatter
(FSC-A) - side scatter (SSC-A) plane. The gate is chosen sufficiently large to remove any debris that is
present in the sample and measured by the flow cytometer.

[20, 21]. Msn2AD-EL222 is expressed constitutively from pScRPL18B and results in

EL222 monomers. Under blue light, EL222 dimerizes, enabling it to bind to its target

promoter PEL222 and thus activate gene expression. In the dark, Msn2AD-EL222 reverts

to its transcriptionally inactive state within minutes [20, 21], enabling highly dynamic

expression regulation. To dynamically measure α-amylase transcription, we further con-

structed a transcriptional reporter (referred to as TR) by placing the fluorescent protein

Venus under control of PEL222.

The exact mechanism for UPR activation in yeast is reported in Bernales et al. [33].

In the inactive state, Hac1 mRNA is constitutively transcribed. Unspliced Hac1 mRNA

contains an intron forming a stem loop to the 5’ UTR, preventing full translation and

additionally reducing translation rate. Ire1 (Inositol requiring enzyme 1) is a sensor

in the endoplasmic reticulum. The cytosolic side of Ire1 consists of a kinase and an

endoribonuclease. Upon presence of unfolded proteins, those unfolded proteins bind to

Ire1 and make them cluster on the ER-lumen-cytosol surface. Due to the proximity of

the kinases of Ire1, the kinases transautophosphorylate each other and thus result in an

activation of the endoribonucleases, which excise the Hac1mRNA intron. Ribosomes are

able to now efficiently translate the spliced Hac1mRNA to functional Hac1p transcription

factor. Downstream targets of Hac1p are chaperones (e.g. Kar2), oxidoreductases,

glycosylating enzymes, and ER degradation components.

We leverage this mechanism to implement a UPR sensor (UPRS) by incorporating

Hac1p responsive elements [35] in a CYC1 minimal promoter [44] (P4xUPRE) that drives
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Figure 3.2: Illustration of the optogenetic expression system and UPR sensor. Constitutive expression
of Msn2AD-EL222 from the genome results in Msn2AD-EL222 monomers that reversibly dimerize under
blue light and allows binding to the Msn2AD-EL222 binding site (EL-bs) activating transcription from
the PEL222 promoter. PEL222 drives the expression of α-amylase and transcriptional reporter (TR), from
a high-copy plasmid and chromosomal integration respectively. Unfolded proteins trigger the unfolded
protein response (UPR), which leads to expression of the Hac1p transcription factor, subsequent binding
to the P4xUPRE and expression of a UPR sensor (UPRS) from a chromosomal integration.

the expression of the fluorescent protein mScarlet-I.

The strain containing the constitutive EL222 expression cassette, integrated tran-

scriptional reporter, integrated UPR sensor and the CPOT plasmid with α-amylase

under EL222 control is named yMB44.

3.3 Results

The following section details the testing of the biological parts required for cybergenetic

control.

Figure 3.3 shows the mean fluorescence level of the TR over time for cells grown in the

dark, at intermediate duty cycles 15 min/6 h and with constant blue light illumination.

We observed a noticeable difference between dark and light conditions after 30 minutes.

Additionally, the promoter shows a high dynamic range with a 300-fold increase in the

level of TR after 12 hours. Cells exposed to light pulses, on the other hand, reach an

intermediate expression level with a steep increase due to optogenetic gene expression

and a gradual decline pattern corresponding to degradation and dilution of the reporter.
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Figure 3.3: left Optogenetic gene expression cassette. right Dynamic response of the mean fluores-
cence level of TR to no light, 15 minutes of light every 6 hours (as indicated in small blue bars) and to
constant light measured in the water bath setup (n=3, lines represent means of replicates)

We tested the functionality of the UPRS with dithiothreitol (DTT). DTT is a global

reducing agent that breaks intramolecular disulfide bonds, leading to protein unfolding

and activation of the UPR. Figure 3.4 shows a graded response of the UPRS to DTT

concentrations between 0.2 and 2 mM and changes in the reporter levels can be observed

1 hour after the addition of DTT.

Figure 3.4: left Unfolded protein response sensor (UPRS) in response to global unfolding of proteins
triggered by DTT. right Dynamic response of the mean fluorescence level of UPRS in the dark to
different concentrations of the global chemical stressor dithiothreitol (DTT) in culture tubes (n=3, lines
represent means of replicates)

Leber et al. [45] reported that the unfolded protein response could be activated upon

inositol starvation. The SD-2xSCAA media that is used for all experiments already

contains 2 mg/L inositol, which stems from the yeast nitrogen base (YNB), but the
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additional availability of amino acids could mean that an inositol deficiency is encoun-

tered by the cells after some growth. We thus decided to track the level of UPRS over

time in the SD-2xSCAA media. Figure 3.5 shows that cells grown in normal, unsupple-

mented SD-2xSCAA media (cinositol = 2 mg/L) start expressing the unfolded protein

response sensor after 17 hours indicating a UPR induction and inositol deficiency. To

counteract this inositol-dependant induction, we supplemented the media with addi-

tional myo-inositol to final concentrations of inositol of 4-200 mg/L and tracked the

UPRS response again. Supplementation of the media with inositol delayed the UPRS

response and decreased the induction fold-change. Given these results we supplemented

our media to a final inositol concentration of 20 mg/l for all subsequent experiments.

Even with supplementation, a slight induction of the UPRS is observed after 20 hours.

This is due to the onset of stationary phase, where cells are dividing slower, resulting in

decreased apparent dilution rates and higher total levels of UPRS.

Figure 3.5: left Hac1p activation is modulated by inositol availability and can trigger the UPRS
independently of the presence of unfolded proteins. right Dynamic response of the mean fluorescence
level of UPRS in the dark to different concentrations ofmyo-inositol in culture tubes (n=3, lines represent
means of replicates). UPR induction upon inositol starvation is observed at different times for different
initial concentrations of inositol. The initial SD-2xSCAA media contains 2mg/l of inositol and was
supplemented with myo-inositol to reach the inositol concentrations given on the right.

In this supplemented media, we tested whether the optogenetic expression of α-

amylase is working and further, whether its expression would trigger the UPR. Figure 3.6

show that upon blue light illumination, the α-amylase proxy TR is expressed and the

UPRS levels follow this rise. Elevated levels of TR also correspond to increased amounts

of amylase (see figure 3.7). This indicates that expression of α-amylase induces the UPR.

Turning off the blue light stopped the transcription of amylase, reducing the influx of

new unfolded proteins to the ER and decreasing the level of UPRS. Light pulses as short

as 15 minutes were able to induce the UPRS five-fold. A decrease in UPRS was observed

roughly 1 hour after turning the light off, highlighting the reversibility and fast dynamics
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of the optogenetic expression system and UPR. Light-mediated activation was graded

and could be adjusted by increasing the duration of blue light illumination.

Figure 3.6: Dynamic response of the mean fluorescence level of TR left and UPRS right to no light,
pulses of 15 minutes, 1 hour and 2 hours of light and constant light measured in the water bath setup
(n=3, lines represent means of replicates).

Figure 3.7: Comparison of the mean fluorescence level of transcriptional reporter (TR), unfolded
protein response sensor (UPRS) and amylase concentration in tube cultures of inositol-supplemented
SD-2xSCAA media measured after 17 hours of growth. Cells were grown either in the dark or with
constant light illumination (n=2).

We performed further controls to ensure that UPRS is not triggered through photo-

toxicity. To this end, we integrated the UPRS in a strain lacking the amylase expression

plasmid and tested whether the UPRS would sense induction by DTT and light. Fig-

ure 3.8 shows that only induction with DTT triggered a detectable change in UPRS

expression. Shining blue light on cells results in no detectable difference in UPRS com-

pared to cells grown in the dark. The maximum used irradiance of 660 µW
cm2 also poses

an upper limit of light irradiance that can be supplied in the bioreactor (see figure 2.4),

so that light toxicity is also not experienced in the bioreactor at maximum irradiance.
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Figure 3.8: left UPRS in response to DTT and blue light. right Progression of the unfolded protein
response sensor over time in a strain lacking the α-amylase gene expression cassette (yMB9) in response
to different inducers. Cells were induced with 2mM DTT or blue light (38 and 660 µW/cm2) at t0 = 0h
(n=3)

3.4 Conclusion

In this chapter, we described the development of S. cerevisiae to optogenetically express

α-amylase, a hard-to-fold model protein [23, 24], as well as a fluorescent sensor of UPR

activity. We characterized this strain and showed reversible, tunable, optogenetic acti-

vation and relaxation of the UPR with blue light. We optimized the growth conditions

to ensure the measurability of the reporters over a longer time horizon.

This biological circuit alone could be a valuable tool to study the dynamics of the

UPR in vivo. Most experimental studies of the UPR use knockout strains or global chem-

ical stressors like tunicamycin and DTT to trigger a cellular response [35, 46, 47]. While

inducing the UPR efficiently, those chemicals do not alter the influx of new unfolded

proteins into the ER but rather lead to global protein unfolding. In order to understand

microbial cell factories for protein production better, a UPR induction mechanism mim-

icking the normal process could generate novel biological insights. We believe that the

usage of optogenetic expression of hard-to-fold proteins are ideal for this purpose.
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4 Mathematical modelling

Mathematical modeling has become an essential tool in many fields of science, includ-

ing synthetic biology. It allows researchers to distil complex biological systems and

observations into a set of defined equations and parameters, providing a framework for

understanding the underlying mechanisms and predicting the behavior of these systems

[1]. In the context of this project, mathematical modeling can bridge the gap between

small-scale characterization experiments and complex fermentation runs.

One of the key advantages of mathematical modeling is that it provides a way to

test and refine hypotheses in silico before carrying out costly and time-consuming ex-

perimental studies. This is particularly important in synthetic biology, where it can

be difficult to predict the behavior of complex biological systems from first principles.

Mathematical modeling can help identify key parameters and design constraints, guide

experimental design, and provide insight into the underlying mechanisms of biological

systems. For example, Alvarez-Vasquez et al. [2] used mathematical modelling to predict

the metabolic behaviour of S. cerevisiae in the ergosterol pathway to drug treatment.

Similarly, Dessauges et al. [3] evaluated different model topologies to unravel MAPK

network nodes that shape ERK dynamics.

The unfolded protein response (UPR) in particular has been a center for the develop-

ment of mathematical models, trying to understand the complex structure and feedback

channels that are present [4]. Briefly, the main sensor of the UPR in S. cerevisiae is

inositol-requiring enzyme 1 (Ire1). Upon sensing of unfolded proteins in the endoplasmic

reticulum (ER), it splices unspliced Hac1 mRNA, allowing translation to the transcrip-

tion factor Hac1p. Hac1p regulates the expression of chaperones, glycosilating enzymes

and ER associated degradation (ERAD) [5].

Axelsen and Sneppen [6] developed a minimal model of the UPR in yeast, assum-
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ing a rapid equilibrium between unfolded proteins and Ire1. Four ordinary differential

equations (ODEs) capture the dynamics of unspliced and spliced mRNA, translation of

Hac1p and transcription of the chaperone Kar2. They find that the cost of degraded

proteins is minimized with a feedback on translation rather than on transcription. No-

tably, the main focus of modelling is to understand the dynamics of the UPR actors

(Ire1, Hac1 and Kar2) and not the dynamics of unfolded proteins, although the authors

briefly touch on the unfolded protein dynamics. Trusina et al. [8] build on this minimal

modelling framework. They approximate the steps between Ire1 sensing and Hac1 ac-

tivation (namely dynamics of Hac1 unspliced and spliced mRNA), into one differential

equation. In the model for mammalian UPR, they take into account the two additional

UPR sensing branches (PERK and ATF6) to propose an explanation of the advantages

of translational attenuation specifically for pancreatic β-cells. They find that transla-

tional attenuation reduces the amount of unfolded proteins in the ER during stress and

decreases the accumulation of excess chaperones between pulses of ER stress. We use

this second model as a basis for the description of UPR.

Another area where mathematical modeling is increasingly important is in upscaling.

As biological systems move from the laboratory to large-scale production, it becomes

more challenging to predict how the system will behave. Mathematical modeling can

help address this challenge by providing a way to predict the behavior of the system

under different conditions and optimize production processes [9, 10].

Overall, mathematical modeling is an essential tool for advancing synthetic biology

and developing new applications in fields such as medicine, biotechnology, and environ-

mental engineering. By distilling complex observations into a set of defined equations

and parameters, mathematical modeling provides a way to understand and predict the

behavior of complex biological systems. This has the potential to revolutionize our un-

derstanding of the natural world and help us develop new and more efficient ways of

harnessing its power.

In this chapter, we describe the development of a deterministic mathematical model

that allows us to understand the biological processes and reduce the experimental effort

to scale up our experiments from initial characterization scale (4 mL) to production scale

(in a 1L-bioreactor). Rather than developing these modules from scratch, we decided

to use the model structure of two publications as base for the modeling work. The

modelling of the upstream optogenetic circuit with activation of the transcription factor

Msn2-EL222 and EL222 dependent mRNA expression is captured in the first module

with three ODEs (previously described in Benzinger and Khammash [11]). The second

module describes the dynamics of the unfolded protein response and is based on the
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minimal model of the UPR by Trusina et al. [7]. The interaction between the basic

components of these two modules can be seen in figure 4.1.

Figure 4.1: Structure of the mathematical model, encompassing the description of the optogenetics [11]
(first module, left) with activation of the transcription factor TF by light and subsequent transcription
to mRNA and translation to TR and unfolded proteins (U). The second module (right) describes the
UPR dynamics [7] with activation of Hac1p (H) in the presence of U. H triggers the upregulation of
chaperones and related enzymes (C) and UPRS, while C reduces the amount of U by folding, secretion or
degradation. In section 4.1.2 we describe in more detail the equations governing TR, UPRS and growth
rate (µ).

4.1 Detailed description of the model

4.1.1 Description of previous modelling work

The first module consists of three ODEs (previously described in Benzinger and Kham-

mash [11]) modelling the upstream optogenetic circuit with activation of the transcrip-

tion factor Msn2-EL222 (eq. 4.1) and EL222 dependent mRNA expression (eq. 4.2).

Additionally, the translation of TR from mRNA is modelled (eq. 4.12). In more detail,

blue light input (Ieff ) triggers structural changes and homodimerization of the tran-

scription factor Msn2-EL222 (TF) (eq. 4.1). The intensity between 0% and 100% is

scaled by kon. We assume that the total amount of transcription factor TFtot and the

rate of monomerization koff are both constant. Promoter binding of the transcription

factor is fast, so that the rate of mRNA transcription is a direct function of TF, n and

Km with km as a scaling factor (eq. 4.2). The degradation rate of mRNA is the basal

degradation rate plus dilution from growth (eq. 4.4). After initial fitting the values for

km,basal and n in equation 4.2 were close to 0 resp. 1. To avoid overfitting, they were

fixed to 0 and 1, resulting in equation 4.3.
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dTF

dt
= konIeff (TFtot − TF)− koffTF (4.1)

dmRNA

dt
= km,basal + km

TFn

Km
n +TFn − km,degmRNA (4.2)

dmRNA

dt
= km

TF

Km +TF
− km,degmRNA (4.3)

km,deg = km,deg,b + µ (4.4)

The second module describes the dynamics of the unfolded protein response and is

based on the minimal model of the UPR by Trusina et al. [7]. It consists of mRNA

translation to unfolded proteins (U, eq. 4.5a), activation of Hac1p (H) by U (4.6) and

the resulting upregulation of chaperones, oxidoreductases, glycosylating enzymes and

ER degradation components (all combined in node C, eq. 4.7). C reduces the amount

of unfolded proteins in the ER, by either folding, secreting the proteins or degrading it

and at the same time inhibits H (eq. 4.5b). The UPRS is transcribed as H binds to the

Hac1p specific promoter (P4xUPRE , eq. 4.13).

In more detail, upon presence of U, Ire1 clusters on the ER surface. Due to the

proximity of Ire1, they transautophosphorylates eachother resulting in an activation of

the endoribonuclease function of Ire1 (Ire1act, eq. 4.8). This endoribonuclease excises

an intron of the unspliced Hac1 mRNA [5]. The translation process of now spliced

Hac1 mRNA is then initiated to produce the potent transcription factor Hac1p (H, eq.

4.6). The minimal model reduces the splicing and translation steps of Hac1 mRNA

into one ODE (eq. 4.6), assuming that at any time point Hac1p protein concentration

is proportional to Hac1 mRNA. The assumption is valid because the half-life of Hac1

protein (∼ 1.5min, [12]) is much shorter than Hac1 mRNA (∼ 30min, [5, 13]). The

basal degradation rate of H was assumed to follow mRNA kinetics, because of the short

half-life. The model describes the regulation of the UPR with strength parameters α,

β, γ and δ (eq. 4.5, 4.6 and 4.7).
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dU

dt
= kribku,transmRNA− δ

CU

U+KCU
− µU (4.5)

dH

dt
= kribβ

IRE1act
IRE1total

− km,degH (4.6)

dC

dt
= krib(γ + αH)− µC (4.7)

IRE1act
IRE1total

=
U

U+KIU + C
1+U/KCU

· KIU
KCI

(4.8)

4.1.2 Novel modelling performed in this PhD thesis

So far, we have explained the modelling performed by Benzinger and Khammash [11]

and Trusina et al. [7]. The main change in the mathematical modelling lies in the source

of unfolded proteins for the UPR module in equation 4.5. In the original UPR model

[7] the formation of new unfolded proteins U is modelled through a switch-like stress

term or a constant translation rate of new polypeptides into the ER. Such a switch

could be a drastic environmental change or the addition of a global unfolding agent (e.g.

DTT or tunicamycin). With the biological circuit described in chapter 3 we are able

to control the creation of new unfolded proteins much more gradually and temporally.

Thus, a simple source pulse is not sufficient to capture the circuit behaviour. We connect

these two modules by using the time-varying translation rate of mRNA (ku,transmRNA)

from our optogenetic module as input to the second module (i.e. the production rate of

unfolded proteins (U, eq. 4.5a).

Our experiments are performed in batch cultures. In such cultures, cells are initially

growing exponentially, until some limiting substrate S is running out (in our case the

main sugar D-glucose). As the substrate S is running out, the growth rate is slowing

down, until eventually all substrate is consumed and cells are resting in the stationary

phase. In our experiments, cells are growing exponentially for 16-20 hours before ex-

periencing substrate limitations and finally reaching stationarity around 24 hours after

inoculation. We thus want to ensure, that these growth stages are accurately captured,

as e.g. the dilution rate is heavily impacted by altered growth rates.

Thus, the progression of the cell density X and limiting substrate concentration S is

modelled with equations 4.9 and 4.10. Production of biomass X leads to the depletion of

the substrate S with a yield factor YX/S . Figure 4.3 shows the progression of substrate

concentration and biomass over time.
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dX

dt
= µX (4.9)

dS

dt
= −µ

X

YX/S
(4.10)

The growth rate µ is described through Monods law [14] with a limiting substrate

S. Additionally, We observed the impact of a high transcriptional load on growth rate

(figure 4.2). Cells which are illuminated with constant light and light pulses of 2h

duration every 6h grew slower than cells in the dark. We thus chose to use an inhibitory

factor in the growth law of µ that incorporates the dose-dependent growth reduction

caused by the presence of unfolded proteins (eq. 4.11). The hypothesis is that the cell

growth rate is primarily affected by metabolic burden [15] and correlates with unfolded

proteins U. Equation 4.11 describes the burden to cell growth, where µmax and Umax

correspond to the maximal cell growth rate and maximal amount of unfolded protein

that the optogenetic circuit can induce. Further factors influencing growth rate such as

possible toxicity of fluorescent reporters are not considered here.
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Figure 4.2: Cell density as measured by flow cytometry in cells/µl over time for the five conditions
shown in figure 3.6. The impact of a high translational load on growth rate can be observed. Cells which
are illuminated with constant light and light pulses of 2h duration every 6h grew slower than cells in the
dark. (n=3)
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µ = µmax(
S

KS + S
)(1− U

U+ Umax
) (4.11)

Our biological circuit contains two fluorescent reporters that are modelled for later

fitting. The fluorescent transcriptional reporter (TR, eq. 4.12) is translated from mRNA

with translation rate ku,transkrib. The contribution of krib is explained later in equation

4.16. For the UPRS, we assume a linear activation from H to UPRS with strength

kUPR,trans and degradation rate kUPRS,deg (eq. 4.13).

dTR

dt
= kribku,transmRNA− µTR (4.12)

dUPRS

dt
= krib(kUPRS,transH+ kUPRS,stat)− kUPRS,degUPRS (4.13)

kUPRS,stat = kUPRS,0
(S0 − S)nS

Kd,UPRS + (S0 − S)nS
(4.14)

kUPRS,deg = kUPRS,deg,b + µ (4.15)

While supplementation of the media with additional inositol reduced the amount of

induction of the UPRS (see figure 3.5), still some activation of the UPRS at the end of

exponential growth (around 24h) was observed. To capture this induction, a substrate

dependant production term of UPRS was introduced (kUPRs,stat, eq. 4.14). Figure 4.3

shows that for substrate concentrations close to the initial concentration S0 resulting in

no additional UPRS activation. As substrate S is reaching the hill constant Kd,UPRS

this stationary induced UPRS activation is triggered. Figure 4.3 also shows when this

activation is present in a batch culture. As cells are inoculated at a very low cell density

not consuming a lot of substrate, no activation is observed in the first 15 hours. Only

as significant biomass starts consuming significant substrate concentrations, can we see

the stationary induced induction of the UPRS.

Metzl-Raz et al. [16] report that the ribosomal fraction correlates with the growth

rate. While the cells are growing exponentially the fraction of ribosomes is higher, than

when cells are going into stationary phase. We see this effect as well, where exponentially

growing cells are highly expressing the transcriptional reporter, whereas the amount of

TR reduces as cells are in stationarity (see e.g. figure S1). To capture this behaviour

all translation rates are multiplied with the factor krib (eq. 4.16) making the translation

rates growth rate dependent.
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Figure 4.3: left Normalized UPRS activation (
kUPRS,stat

kUPRS,0
) as a function of substrate concentration S

with parameters from table S5. right Simulation of a reduced ODE system modelling the progression
of cell density X and substrate concentration S with no growth rate reduction through U.

krib = krib,max
µ

µmax
(4.16)

Lastly, the model can be extended to capture the secretion of amylase. The folding

term of the equation describing unfolded protein dynamics (eq. 4.5) can be used as

production term for intracellular amylase Ain. Assuming a secretion rate ksec and simple

dilution of amylase, equation 4.17 can be derived. The concentration of amylase in the

supernatant ASN is then a direct function of the secretion rate of the individual cells

and the cell density X (eq. 4.18).

dAin

dt
= δ

CU

U+KCU
− µAin − ksecAin (4.17)

dAin

dt
= ksecAinX (4.18)

Overall, the mathematical model consists of the following eleven states; EL222 tran-

scription factor (TF), mRNA (M), unfolded proteins (U), Hac1p (H), Chaperones (C),

transcriptional reporter (TR), UPR sensor (UPRS), cell density (X), substrate concen-

tration (S), intracellular amylase concentration (Ain), and amylase concentration in the

supernatant (ASN).
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4.2 Fitting of the model to the data

4.2 Fitting of the model to the data

For simulating the set of eleven ODEs an initial condition has to be provided. In line

with the actual physical experiment, we take as initial condition the steady state value

for exponentially growing cells in the dark. Consequently, the light intensity is Ieff = 0

and the growth rate µ = µmax. With these conditions all states are zero except for

C0 = Css = γkrib
µ . Additionally, the initial substrate concentration and initial cell

density are parameters from the experiment: S0 = 5 g
L and X0 = 144 cells

µL .

To fit the model to data, experiments for 5 different light conditions were recorded in

triplicates in the waterbath. In these experiments, we recorded three different channels;

the fluorescence of TR (fig. 3.6a), UPRS (fig. 3.6b), as well as the cell density in

Events/µl (fig. 4.2) with a CytFLEX S. Briefly, cells were plated on an agar plate, a

single colony inoculated into a liquid culture and grown overnight, while ensuring that

they are always exponentially growing, and not reaching stationarity. Cells from these

liquid cultures are inoculated into fresh media and exposed to various light induction

profiles, measuring their cellular response. Specifically, cells were exposed to no light,

pulses of 15 minutes, 1 hour and 2 hours every 6 hours and to constant light. The

fluorescence data was preprocessed, by subtracting the background fluorescence from

the data. The mean of the triplicates was used for fitting. As not enough measurements

of amylase concentration are available, the parameter ksec is set.

The objective function is the normalized sum of squares of the error between data

and model. Specifically, for each of the five conditions (subscript i), the sum of squares

of the difference between data (subscript data) and model (subscript sim) is calculated

over all timepoints (subscript j) separately for all three channels (TR, UPRS and cell

density X, eqns. 4.19-4.21).

SSi,TR =
∑
j

(TRdata,i,j − TRsim,i,j)
2 (4.19)

SSi,UPRS =
∑
j

(UPRSdata,i,j − UPRSsim,i,j)
2 (4.20)

SSi,X =
∑
j

(Xdata,i,j −Xsim,i,j)
2 (4.21)

The magnitude of those sums (SSi,TR, SSi,UPRS , and SSi,X) is vastly different and

so they are weighted by the square of the mean of the experimental data to give rise to

the normalized sum of squares (SS), done exemplary in equation 4.22 for the TR (J is
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the total number of all timepoints in a condition). This ensures that all measurements

contribute equally to the fitting objective function. The normalization is also performed

within each condition rather than for all. Additionally, a penalty is applied to the fitting

of the initial point (j = 0).

SSi,TR =
SSi,TR(∑J

j=1(TRdata,i,j)

J

)2
+

(TRdata,i,0 − TRsim,i,0)
2

TR2
data,i,0

(4.22)

Figure 4.4 shows the contribution of the data of each condition and channel to the to-

tal sum of squares without (left) and with normalization (right). Without normalization

close to 97% of the fitting sum of squares is determined by SSTR for the two conditions

”constant light” and ”2h of light every 6h”. After normalization, the contribution of

each channel and condition is distributed more equally. The resulting fit now fits UPRS

and cell density well. The error metric SStotal is calculated by taking the sum over all

conditions and channels (equation 4.23).

Figure 4.4: Percentage contribution of experimental data to the total sum of squares for fitting either
without normalization (left) or with normalization as done in eqn. 4.22.

SStotal =
∑
i

(SSi,TR + SSi,UPRS + SSi,X) (4.23)

All simulations and the model fitting were performed using Matlab (R2020b, Math-

works). For optimal computational performance when solving the system of ODEs, we

use the built-in variable order ode-solver ode113 for all simulations. To fit the mathemat-

ical model to the data we chose an interior-point gradient based algorithm (implemented

through fmincon), minimizing SStotal and repeated the optimization for a variety of ini-
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tial conditions.

Figure 4.5 shows the results of fitting the model to the experimental data with final

model parameters listed in table S5. The mathematical model is able to capture the

dynamics of UPRS, TR and cell density well. Both data and model show a quicker

dark-state reversion in TR levels than in the UPR, highlighting the longevity of the

UPR. A discussion about model mismatches can be found in section 4.4.

4.3 Sensitivity analysis

We performed a sensitivity analysis of the fitted parameters to understand what the

critical parameters are in the model. To do this we perturbed each parameter by the

perturbation hj and computed the total sum of squares (eq. 4.23, SStotal). Figure 4.6

shows the objective function SStotal as a function of the perturbation for each parameter.

Generally, one can observe, that the parameters are all optimized within numerical

accuracy. The only non-smooth behaviour is obtained with γ, which however has a

negligible effect on SStotal.

Sensitivity measures how the change in one parameter i changes the value returned by

the objective function. The sensitivity of each parameter (Si) is quantified with equation

4.24, where SSi,total is the total sum of squares when the parameter i is perturbed and

SSo,total is the optimized (minimized) sum of squares from the fitting results. hj with

j = 1...M is the level of perturbation applied to each parameter. The sensitivity is the

average change in SStotal of M perturbations. Parameter sensitivities are shown in the

title of each panel in figure 4.6.

Si =
1

M

M∑
j

| 1
hj

| · |
SSi,total

SSo,total
− 1| (4.24)

If we consider parameters with sensitivities >2 as sensitive parameters, 7 parame-

ters are classified as sensitive, namely kon, koff , km,deg,b, Km, µmax, krib,max, and KS .

These parameters can be grouped in two classes, one being the immediate optogenetic

activation of transcription (kon, koff , km,deg,b and Km) and the other class holding pa-

rameters related to the growth kinetics (µmax, krib,max, and KS). Surprisingly, none of

the parameters related to the actual unfolded protein response are present in the set of

sensitive parameters.
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4.4 Model inaccuracies

Figure 4.6: Fold change in the total sum of squares (SStotal) when single parameter is perturbed (from
-80% to +80%). The sensitivity of each individual parameter is shown in the title. The majority of the
parameters are optimized (at 0 perturbation). The only parameter with a non-smooth curve and where
the fitting has not converged, γ has a negligible effect on SStotal.

4.4 Model inaccuracies

This section goes into further details about the model inaccuracies, where the model fit is

unable to capture the dynamics of the data. These discussions should highlight potential

improvements leading to a deeper understanding of the circuit. At the same time, the

final usage of this mathematical model as a quick predictor for control parameters for

closed-loop control (see section 4.5) is still fulfilled.

4.4.1 Jump behaviour after induction

Highly dynamic induction of the circuit can be observed when cells are exposed to a new

optogenetic input. Figure 4.7 shows the behaviour of transcriptional reporter and UPR

sensor of cells that are growing exponentially in the dark and are then exposed to blue
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light at time t=0h for 60 minutes. The observed data shows a delay of more than 30

minutes before a significant increase in the reporter levels is observed. The mathematical

model predicts a much quicker response in both reporters. It is noteworthy, that this

quick response in the states is especially present in the model fit of the TR. The fitting

algorithm is compromising between accurately capturing the positive induction time

dynamics and negative degradation and dilution time dynamics.
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Figure 4.7: Progression of TR (left) and UPRS (right) as a function of time as measured (Data) and
fitted by the mathematical model (Model).

In order to understand how the model predicts reporter expression, we looked at the

hidden states of the mathematical model. Figure 4.8 shows the predicted response of

transcription factor, mRNA, unfolded proteins and the fluorescent reporters. In general,

the further away from the optogenetic input, the later the response of the state, i.e.

activation of TF, then mRNA, followed by U and TR and finally activation of UPRS.

In order to better capture the jump behaviour of the circuit, one approach could be

to introduce more intermediate states that “delay” the activation of a reporter (e.g.

applied in Korsbo and Jönsson [17]). These states could be TF-binding to the promoter,

polymerase binding to DNA, Hac1 mRNA transcription and splicing [6] or the two-step

process of transcribing and translating the UPRS. Alternatively, one could work with

delay differential equations to capture the multiple intermediate states, as for example

applied in Glass et al. [18].
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4.4 Model inaccuracies

Figure 4.8: (top) Model prediction of the progression of transcription factor (TF), mRNA, unfolded
proteins (U), transcriptional reporter (TR) and UPR sensor (UPRS) to a pulse of light. The states are
normalized to the maximum that is experienced during the jump, to better compare the time dynamics.

4.4.2 Model inaccuracies in capturing the growth dynamics

When observing the cell density measurements in comparison to the fitted mathematical

model (figure 4.5), one can observe that a model mismatch is present in the time win-

dow around 12 hours. The simulations yield higher cell densities than what is actually

measured. In order to analyze this effect more clearly, we calculated the instantaneous

growth rate µinst from the cell density dataX of each replicate between two measurement

points Xt and Xt+1 (see eq. 4.25, [19]). Because the data is very noisy, we additionally,

smoothed over µinst using a moving average filter with n=7.

µinst =
ln Xt+1

Xt

∆t
(4.25)

We can observe in figure 4.9 that the instantaneous growth rate is increasing over

time, reaching a maximum before the cells go into stationarity and µinst tends to zero.

In the first two hours, the measured growth rate is increasing from ≈ 0.15h−1 to an

initial steady state between 0.25 − 0.35h−1. This lag-phase effect is usually observed,

as cells are transferred to fresh media and require some adjustment time for sensing

the new environment. The mathematical model does not incorporate this effect (see eq.

4.11).
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Figure 4.9: The instantaneous growth rate µinst plotted as a function of time (shown are individual
replicates, n=3). Shown is the model fit as well as the data.

We can further observe a slow increase of the growth rate after the lag phase between

3 and 18 hours after inoculation. This is an initially surprising result, as we expect cells

to adapt rather quickly to growth conditions and grow exponentially with a constant

maximum growth rate µmax. We developed several hypotheses that could explain this

increase in the growth rate over time.

• Metabolic adaptation

The growth media is composed of different sources of growth, including glucose, a

variety of amino acids and the complex bovine serum albumin. Because of the mul-

titude of potential carbon sources, the cells may be growing on different carbon

sources throughout the experiment, leading to different growth rates. Alterna-

tively, the cells may be producing a different intermediate metabolite over time,

which enhances the growth rate as well.

• Morphology differences

We observe, that the cell size (as measured by the forward-scatter of the flow cy-

tometer) is increasing up to 20% in the first 12 hours, before decreasing as time

progresses. Possibly, cells are initially favoring cell size growth, before preferen-

tially favoring cell division.

• Genomic mutation resulting in growth advantages

Another possible explanation is the appearance of a mutation in one cell, which

has a growth advantage, and out-competing the mother population. This would

result in an increased apparent population growth rate, as the mutated strain is

taking over the culture. We can exclude this possibility, as the onset and increase

follows very similar behaviour over all replicates and conditions.

90



4.4 Model inaccuracies

A way to further understand this observation, would be to perform metabolic studies

on cells sampled at different time points. This would allow us to more clearly delineate

where the growth rate increase is coming from. From a modeling perspective, we could

capture this behaviour phenomenologically, which would surely improve the fit. For our

application however, the fit is satisfactory, capturing the main driving force of growth

rate reduction as a substrate is used up (t > 20h).

4.4.3 Constant light inaccuracies

The mathematical model is able to capture the general increase and decrease of TR and

UPRS for most conditions shown in figure 4.5. The constant light case is an exception

where both TR and UPRS response are underestimated and the mathematical model

does not follow the trends that are observed in the experimental data. The fitted model

shows a saturation of the level of TR with constant light where in reality, TR accumulates

in the cells until ribosomal activity decreases (see equation 4.16), resulting in a drop of

TR (after 14 hours). The model also predicts a UPRS overshoot and subsequent return

to a high homeostatic state. In reality, the cells remain on a highly-stressed state.
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Figure 4.10: Experimental data (single replicate with dots, mean data in black solid line) plotted with
mathematical model fit (red) for transcriptional reporter (TR, left) and UPR sensor (UPRS, right). Blue
shaded areas indicate blue light illumination.

Two possible explanations can explain the model mismatch in UPRS.

• The underestimation of the transcriptional reporter expression (TR) by the math-

ematical model could directly explain the lower levels of UPRS.

• Secondly, the UPR model from Trusina et al. [7], which we have adapted here,
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excludes unmitigated stress and the onset of a super-UPR as previously reported

in Bernales et al. [5]. A constant high UPR can result in a second signalling

level termed super-UPR, which triggers a new set of genomic targets, such as

the endoplasmic associated degradation (ERAD) pathway and further chaperones.

Including these driving forces in the model could further improve the model fit

and explain the experimental observation.

4.5 Prediction of control parameters

We can leverage the fitted mathematical model to prototype controllers and predict

parameter regimes that will result in robust behaviour.

4.5.1 Choice of controller input

Importantly, before running any controller simulations, we need to ensure that the auto-

matic sampling implemented in chapter 2 can sample fast enough to capture the dynam-

ics of the UPRS without aliasing. Aliasing is an artifact in signal processing, where the

recorded or reconstructed signal does not accurately represent the original, continuous

signal. It occurs when the sampling rate of a continuous signal is too low relative to

the highest frequency component in the signal, causing high-frequency components to

be represented as lower frequency components. This results in an ”aliased” signal that

has a different frequency content than the original.

To avoid this, we fitted a linear first order plus delay model to our experimental

data and calculated the Nyquist frequency fNyq to be 0.6 h−1. The minimum sampling

rate should be at least twice as large as the Nyquist frequency. We had initially run

experiments with a sampling rate of 0.667 h−1, which is lower than 2 · fNyq. After this

calculation we increased the sampling frequency to 2 h−1 (=sampling interval of 30min).

This is also in agreement with experimental findings. Bennett et al. [20] performed an

experiment where they were exposing S. cerevisiae strains to periodic changes in the

carbon source and tracked the metabolic response of the cells. They find, that cells

are acting as a low-pass filter with a maximum response frequency of 0.88 h−1. This

suggests that a sampling rate of 2 h−1 is sufficient for yeast.

Due to the non-linearity of light intensity to gene expression, we chose to modulate

the light input by altering the duty cycle at constant light intensity [11]. Given the

analysis of the sampling frequencies in the previous paragraph, we varied the duty cycle

within a 30-minute period. For a duty cycle of e.g. 20%, light is turned on for 6 minutes
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after measurement and turned off for the remaining 24 minutes.

4.5.2 Choice of controller for initial proof of concept

In this initial proof of concept study, we want to control the expression of the unfolded

protein sensor UPRS to a constant. We chose to use a simple proportional-integral con-

troller architecture. Initially, preliminary experiments were yielding quite noisy measure-

ment data. As the derivative portion in a possible PID controller is known to be sensitive

to measurement noise, we opted for the simpler PI controller. For future applications,

the addition of the derivative term could lead to better control.

4.5.3 Method to predict PI parameters

In order to predict the performance of control parameters, we simulate the system of

equations for 30 minutes (= ∆t) resulting in a predicted measurement of UPRS levels

(ypred). The difference between target UPRS (y∗UPRS) and the sum of predicted mea-

surement of UPRS (ypred) and background fluorescence (ybg,UPRS) is the new error en

(eq. 4.26). The controller with control parameters KP and KI is then calculating the

next light input un+1 from the error terms e0, e1, ... en−1, en according to equation

4.27. The next light input un+1 is bounded to stay between zero and the sampling time

(30 minutes).

en = y∗UPRS − (ypred + ybg,UPRS) (4.26)

un+1 = Kpen +
n∑

j=0

Kiej∆t (4.27)

Figure 4.11 shows an example of using the mathematical model to predict the per-

formance of a PI control parameter set. Rather than manually tuning the control pa-

rameters, we ran simulations for a set of 50 Kp and 50 Ki parameters. To quantify the

performance of each parameter combination, we calculate the area between prediction

and target UPRS by forming the Riemann integral.

Figure 4.12 shows the mean error in the first 24 hours between UPRS setpoint and

UPRS as predicted by the model on a grid of 2’500 KP and KI parameter combinations.

This PI parameter tuning is repeated for 3 setpoints of the UPRS. Only a limited set

of parameter combinations is predicted to achieve tracking of the setpoint (blue shaded
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Figure 4.11: Model prediction of the UPRS as a function of time with a proportional-integral control
with parameters Kp = 5 · 10−4 and Ki = 7 · 10−4.

areas). One can observe that the higher the setpoint, the steeper the resulting surface

response and thus the smaller the operating range.

Figure 4.12: Surface response of the mean error in a.u. to varying values of proportional (KP) and
integral (KI) controller gain for three different target values of the UPRS. Shown is additionally, the
operating point, predicted optimal point, as well as the parameter with Ziegler-Nichols tuning.

The initial parameter choice was based off preliminary experiments, data and model

fits. The experiments that are described in later chapters are performed with these

parameter sets (“Operating point” in figure 4.12). Since then, new experimental data

and further characterization refined the model yielding the heatmaps shown in the figure.

Still, the chosen operating points are in parameter regions which are predicted to yield

adaptation.

94



4.6 Conclusion

4.5.4 Comparison of different controller architectures

We also calculated the PI parameter set using the Ziegler-Nichols heuristic method. Fol-

lowing general practice, the control loop is closed using a proportional gain, increasing

the proportional gain until at Kp = Kcrit sustained oscillations with period (Tcrit) are

obtained. The Ziegler-Nichols PI parameters (Kp,ZN and Ki,ZN ) follow directly from

these constants (eqns. 4.28-4.29). The derived model never achieves sustained oscilla-

tions, as cells are going into stationarity, limiting the expression of new proteins and

fluorescent reporters. Thus, we adapted our model, by setting the initial cell density

X0 to zero, effectively allowing cells to grow exponentially indefinitely. After these ad-

justments, we can see that the predicted parameters fall into a similarly robust regime

on the heatmaps in figure 4.12, highlighting the effectiveness of these parameter tuning

methods. All control parameters are shown in table S6.

Kp,ZN = 0.45 ·Kcrit (4.28)

Ki,ZN =
Kp,ZN

0.85 · Tcrit
(4.29)

4.6 Conclusion

In this chapter, we have developed a deterministic mathematical model that captures the

response of engineered S. cerevisiae to pulses of light. The model describes the dynamics

of components of the UPR, cell density, as well as the progression of reporter dynamics in

stationarity. More states describing the dynamics (e.g. Hac1 mRNA transcription and

splicing, [6]) and a better understanding of the growth dynamics could further improve

the model fit. We used the model to predict the performance of proportional-integral

control parameters. In chapter 5, we demonstrate, that we indeed achieve robust control

with these parameters, highlighting the versatility of the model. More advanced control

schemes such as proportional-integral-derivative (PID), model predictive control (MPC)

or lead-lag controllers could be tuned very quickly with this model and generate even

more robust transient behaviour.

The model part for amylase secretion is in its infancy and not fitted to experimental

data. Thus, only limited information can be gained from this part. In the future, with

the availability of more amylase measurements, this part of the mathematical model

should be characterized in more detail. Once present, this would then further allow to

predict more ideal production schemes.
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5 Closed-loop bioreactor experi-

ments

The goal of this PhD thesis is to study how we could use closed-loop feedback control

to improve heterologous protein expression. Poor heterologous protein expression can

stem from several sources including but not limited to transcription, translation, folding,

post-translational modification and secretion [1]. Intuitively, increasing the rate of gene

expression should result in more secreted protein. While this is true at low protein ex-

pression rates, maximal expression does not necessarily lead to maximal protein produc-

tion, but can even reduce protein yield [2, 3]. Consequently, there exists an optimal gene

expression rate that maximizes production. The diminishing rate of protein production

can be attributed to an overwhelmed cell machinery, resulting in oxidative stress, product

misfolding, inclusion bodies, upregulated endoplasmic reticulum-associated degradation,

and stress-induced genomic instability [4–7].

The mapping between optimal gene expression rate and optimal protein production is

influenced by many different factors, such as growth rate, process stage, and complexity

of the protein of interest [8]. Thus, a constant, fine-tuned gene expression level [9] is

generally only optimal during a limited process window and for a single product. One

possible solution is to adjust protein expression automatically based on stress levels using

burden-driven, genetic feedback circuits [10]. However, for this approach to function

optimally, the synthetic circuits themselves need to be fine-tuned to a given product

and production condition. Additionally, hard-wired feedback cannot adapt when process

requirements change over time.

These challenges can be solved by applying direct in silico control on cell internal

states similar to what has been established in the industry for process parameters like

pH and dissolved oxygen. This allows for the adjustment of feedback strength to the

design criteria, ultimately improving protein production (figure 5.1).
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Chapter 5. Closed-loop bioreactor experiments

Figure 5.1: Cybergenetic control of the UPR optimizes protein yield. We postulate that an optimal
UPR stress (UPR*) exists which maximizes protein yield. A cybergenetic controller takes this optimal
stress input and the measured UPR stress and computes the optimal next protein expression strength.
The engineered S. cerevisiae produce protein given the protein expression strength and its growth pa-
rameters (disturbance).

Bulk feedback of yeast liquid cultures was first demonstrated by Milias-Argeitis et al.

[11]. The authors used the light-responsive Phy/PIF red/far-red optogenetic system to

achieve robust regulation of gene expression fold change. The feedback was implemented

by manual sampling of the cultures. Melendez et al. [12] improved this setup by remov-

ing the need for manual sampling, with automatic fluorescence imaging attached to a

microfluidic device. With this setup, tight control over gene expression was achieved for

2 days. Milias-Argeitis et al. 2016 used the green/red CcaS/CcaR system in E. coli to

track the GFP level at different set points leveraging model predictive control to achieve

the target levels. They additionally, controlled MetE a key metabolic enzyme for growth

in E. coli and were able to control the growth rate with this setup. Building on this

idea, Harrigan et al. [14] studied internal feedback structures in yeast, by deleting feed-

back components in the pheromone response pathway and re-introducing this feedback

with closed loop optogenetic control. With this platform, they were able to identify not

only which nodes are involved in biological signaling pathways, but additionally what

dynamic requirements are computed in each biological node. Steel et al. more recently

developed a cheap custom-built 25mL optogenetic device and demonstrated closed-loop

feedback control of GFP in E. coli. A different approach was used by Aditya et al.

[16] to maintain a coculture system. The Cre recombinase was placed under optogenetic

control, so that upon light induction the strain would irreversibly switch from mCrin pro-

duction to mNeon production. Operating in a turbidostat and constantly re-introducing

the mCrin producer, a coculture at different ratios of mCrin/mNeon producer, could be
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maintained for up to 100 hours. These papers have in common that they use reversible

light inputs, and are focused on development of optogenetic regulators and regulation

strategies in general. However, these proof of principles are operated at small volumes

(<20mL) and neglect the challenges related to bioprocessing such as aeration, high cell

densities and upscaling. Lastly, none of the above described papers focus on the op-

timization of the production of a protein or metabolite of interest. The idea of using

closed-loop optogenetic feedback control for optimal bioproduction has been extensively

discussed in the community [17, 18] and this work should fill this gap.

In this chapter, we optimize the production of α-amylase by using in silico feedback

control of the unfolded protein response (UPR). We have chosen the UPR as target

control as it is central to the proper folding of proteins and is often engineered to en-

hance protein production [19, 20] hinting towards an ideal UPR induction level. The

UPR also integrates over disturbances stemming from growth kinetics, nutrient avail-

ability and protein folding state. Chapter 3 described the engineering of S. cerevisiae

to optogenetically express α-amylase, a hard-to-fold model protein [21, 22], as well as

a fluorescent sensor of UPR activity. In chapter 2, we describe the development of

a cybergenetic bioreactor platform that automates sampling, dilution, measurement,

and dynamic real-time feedback of our culture. Lastly, we describe the development

of a mathematical model in chapter 4, which predicts control parameters for closed-

loop feedback control. This chapter brings together the work of the previous three and

demonstrates closed-loop feedback of the UPR in exponentially growing S. cerevisiae.

Ultimately, we study how clamping the mean population stress level to different con-

stant levels of UPR affects the final yield of the model protein α-amylase. We show that

intermediate unfolded protein response levels achieved by cybergenetics result in 60%

increased protein production in comparison to maximal UPR levels.

5.1 Overview and mode of operation

Figure 5.2 shows the full photobioreactor operated in closed-loop. Cells are automat-

ically sampled and diluted as shown in figure 2.14. The sample is delivered to a flow

cytometer (CytoFLEX S), where an API allows the automatic measurement, and export

of single-cell fluorescence data. Here, we measure the level of unfolded protein response

sensor (UPRS) as produced by the individual cells. The mean of the single-cell UPRS

measurements is taken and fed into the controller. As discussed in chapter 4, the con-

troller is a proportional-integral controller (PI). It computes the next duty cycle light

input which is implemented by a microcontroller and activates the blue light LEDs in

the photobioreactor LED housing. Samples for α-amylase measurements are collected
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Chapter 5. Closed-loop bioreactor experiments

automatically every 6 hours in the first 24 hours and then once every 12 hours. Addi-

tionally, an end-point manual sample for amylase quantification is drawn at the end of

the run.

Figure 5.2: Closed-loop optogenetic 1L-bioreactor platform and engineered S. cerevisiae. The bioreac-
tor is placed in a light house to allow illumination of the culture broth. The culture broth is automatically
sampled by peristaltic pumps at regular intervals, diluted in two stages with diluent and finally trans-
ferred to a flow cytometer for measurement of the cell density and UPRS. The measurements of the
UPRS are automatically analyzed, and the PI controller calculates the next light input, closing the
feedback loop.

The bioreactor is operated in batch mode, mimicking industrial conditions and allow-

ing cell densities to reach high levels. This means, that cells are initially exponentially

growing (approximately for the first 24 hours) until they reach stationarity. The biore-

actor run is stopped when a rise in dissolved oxygen signals the end of fermentation

(≈ 70h, fig. S2). Batch fermentation resembles the bioprocessing operating conditions

more closely as systems that are operated in turbidostat mode (constant optical den-

sity OD600), but makes the control harder. In production facilities, the batch phase

is followed by a nutrient feeding phase, allowing the cell density to reach even higher

levels and increasing productivity further. To reduce complexity, a feeding phase was

not carried out.
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5.2 Methods

5.2.1 Media

The SD-2xSCAA medium [23] (designed for heterologous protein secretion) is used for

all precultures and experiments and contains 20 g/L D-glucose, 6.9 g/L yeast nitrogen

base without amino acids, folic acid and riboflavin, 1 g/L bovine serum albumin (BSA),

amino acids as listed in supplementary table S4, 5.4 g/L Na2PO4 and 8.56 g/L NaH2PO4

· H2O (pH = 6.0 by H2SO4). For bioreactor experiments the phosphate buffer is replaced

with 2 g/L KH2PO4 (pH = 6.0 by H2SO4). To inhibit foaming, we added 250 µL of

20% polypropylenglycol (PPG) to the bioreactor media at the beginning of the run.

All experiments were performed in media supplemented with myo-inositol to a final

inositol concentration of 20mg/l. To prepare SD-2xSCAA plates (containing the higher

concentration of phosphate buffer), BSA is not added while 20 g/L agar is added to the

medium. For precultures, the antibiotics Hygromycin B and Geneticin G418 were added

at a final concentration of 200 µg
ml .

Amino acids, α-amylase, D-glucose, phosphate buffers, myo-inositol and BSA were

purchased from Sigma-Aldrich. Geneticin was purchased from Gibco, Hygromycin B

from Invitrogen, yeast nitrogen base from Formedium, ammonium sulfate from Roth

and PPG from Fluka.

5.2.2 Culture conditions

For all experiments, yeast strains were streaked from the frozen glycerol stock on a SD-

2xSCAA plate and incubated at 30°C for 3 days. Precultures were inoculated from single

colonies into 25 ml of SD-2xSCAA media in a 250 baffled flask and incubated overnight

to an OD600 ≈ 1.25. The preculture cell density was measured by flow cytometry and

experiments started at a cell density of 200 cells
µl (OD600 ≈ 0.02). All experiments were

shielded from ambient light to avoid unwanted optogenetic activation of the circuit.

For the final amylase production, cells were grown in a 1.0L Eppendorf BioFlo120

water-jacketed bioreactor with a working volume of 500 ml, 300 rpm agitation and

2.0 SLPM (standard liter per minute). Before autoclaving, the bioreactor was fully

assembled and YNB and water added in the bioreactor. The bioreactor plus the tubing

leading up to the first dilution stage are autoclaved with the bioreactor autoclaving

program at 120◦C for 120 minutes with a 2L reference volume. Autoclaving is usually

performed in the evening before an experiment. The bioreactor is cooled down and

stirring and air flow are turned on to 50 rpm and 0.5 SLPM as soon as the temperature
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decreases below 40◦C. The remaining components for the media are added in the morning

in the following order PPG, Glucose, Amino Acids, KH Buffer, BSA, Inositol. pH and

DO control are switched on sequentially, and the lights of the light housing are tested.

The dissolved oxygen was controlled above 20% using the InPro 6800 Series O2 Sensor

(Mettler Toledo, Switzerland) by automatic adjustment of the impeller speed (between

300 and 500 rpm) and air flow rate (between 2.0 and 3.0 SLPM). The pH was maintained

between 5.95 and 6.05 by a Type 405-DPAS-SC pH sensor (Mettler Toledo, Switzerland)

using 4 M NaOH and 10% H2SO4. All fermentations were done in biological duplicates

(figure S5 and S6).

5.2.3 Flow cytometry

Fluorescence and cell density measurements were performed on a Beckman Coulter

CytoFLEX S. The internal quality control program was run before experiments us-

ing CytoFLEX Daily QC Fluorospheres. Events were gated in the FSC-A and SSC-A

channels to remove measurements of debris (see figure 3.1). Samples were diluted by

the automatic dilution device to cell densities of 100-4’000 cells
µl . All fluorescence mea-

surements are reported as the mean of the gated population in arbitrary units (a.u.).

To run the CytFLEX S API successfully, MATLAB needs to be run in “admin” mode.

5.3 First closed-loop proof of principle

As a first test we wanted to show that the individual components of the platform could

work together and allow closed-loop control. Figure 5.3 on the left shows a first test of

closed-loop control. The controller implemented was a PID with initial guesses of the

PID parameters. One can observe clear sustained oscillations with significant over- and

undershoots. The right part of the figure shows a closed-loop run with the predicted

PI control parameters from section 4.5. The control is much improved with clear signs

of damping of the UPRS response over time. The control is not perfect and could be

further improved with the usage of e.g. PID or MPC control architecture.

5.3.1 Error rejection and anti-windup

After a couple of runs, we observed that in some rare instances, the sampling or dilution

did not work and the flow cytometer would produce negative values for cell density, TR

or UPRS. This is likely hardware related, where the final pump does not transfer liquid

to the flow cytometer sampling port. The flow cytometer in these cases “measured” air
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Figure 5.3: Closed loop control of the UPRS with a target (UPRStarget=1200 a.u.). left For initial
demonstration we leveraged a PID controller with guessed parametersKP = 4.6·10−6, KI = 1.8·10−2 and
KD = 9.9 ·101. right Control with a PI controller with parameters KP = 8.5 ·10−3 and KI = 9.2 ·10−5.

and thus produced negative fluorescence data (see figure 5.4). This of course negatively

impacted the performance of the closed-loop control. This effect is relatively rare (1.4%

of all measurements), but can have negative effects on a whole bioreactor run, especially,

if it happens early on. Rather than running a filter over the measured data, we put in a

conditional statement that flagged measurements with negative values in either one of

the three channels (TR, UPRS or cell density). For the error calculation, the previously

measured value was taken to calculate the next controller input. With measurement

error rejection, the control input is improved.

Figure 5.4: Examples of closed loop control of the UPRS without error rejection left and with error
rejection right. Marked with a red circle is the measurement producing negative fluorescence values.
Additionally, we plot the control contribution of the proportional and integral gain.

Integrator windup in PI feedback control is well known and present if a physical
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variable limit is reached. In this case, the integral term of the controller can accumulate

error over time, and if the process being controlled cannot respond quickly enough, the

integral term can continue to increase, causing the controller to wind up [24]. This can

happen in our system as well, as the light duty cycle can not take negative values or be

above 100%. We use a conditional anti-windup scheme to counteract this effect. The

control output is constantly monitored and compared to these two limits. If saturation

occurs, the integral action is turned off.

5.4 Closed-loop control of the unfolded protein response

optimizes the production of a model, hard-to-fold pro-

tein

We first evaluated UPR activity during a batch process without and with constant,

maximum blue-light induction, respectively (figure 5.5a). Without light, cells express

a basal level of UPRS throughout the run, with a transient, stationary-phase-induced

increase after 18 hours. Blue-light induction results in a fast and sharp increase of UPR

activity which reaches its maximum at 6 h post-induction, after which the UPR adapts

to an intermediate activity. The dynamic behaviour of the UPR highlights the need for

closed-loop control to achieve constant levels of activity during a run. The experiment

is stopped after 70 hours as the dissolved oxygen plateaus (figure S2).

To evaluate the relationship between UPR activity and protein production, we aimed

to clamp the UPR to three different levels by optogenetic feedback control. As explained

in chapter 4, we chose to modulate the light input by altering the duty cycle at constant

light intensity, because of the non-linearity of light intensity to gene expression [25].

Due to the onset of the stationary phase we decided to limit the control to the first 24h

and set the light duty cycle to 100% for the next 46 hours (see figure S4 and S6 for full

timeline) [26]. Three setpoints were chosen based off the range of UPRS achieved by

constant light and in the dark.

Generally, the maximum UPRS that can be achieved by maximum light is 80% lower

than in the waterbath setup (compare figures 4.10 and 5.5a). As the transcriptional

reporter expression reaches similar levels (compare figures 4.10 and S3) this hints to-

wards more stressful conditions in the waterbatch setup in comparison to the bioreactor.

Reasons for this could be lower dissolved oxygen levels in the waterbath system, as the

culture is only stirred with a small magnetic stirrer and no air bubbling through the

cultures. Increased sensitivity of hypoxic cultures to UPR stress is observed compared

to well aerated cultures [27]. Similarly, pH control in the waterbath is only provided
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through the addition of a phosphate buffer, so that a pH of 6.0 is not guarenteed through-

out the waterbath run. Kawazoe et al. [28] found that non-physiological pH can also

trigger the UPR.

We predicted the performance of proportional-integral (PI) control parameters for

three setpoints (see section 4.5). For closed-loop control, the operating point in figure

4.12 is chosen for the three setpoints. Performing closed-loop feedback experiments

with these parameters, we achieved tracking of all three setpoints (600, 900, and 1200

a.u. UPRS). This tracking is maintained, after an over- and undershoot, while cells are

growing exponentially (100-fold range of cell density, fig. S7). To our knowledge, this

is the first implementation of closed-loop feedback of a cell state in a high cell density

culture.

We collected the supernatant after 70 hours and measured the α-amylase concentra-

tion. Figure 5.6 shows the final amylase concentration vs. the mean controlled UPRS in

the first 24 hours after inoculation. One can observe that at higher levels of UPRS (con-

stant illumination), the final α-amylase concentration is lower than for the intermediate

UPRS setpoints that were achieved using the closed-loop control setup. This follows our

hypothesis from figure 5.1. For optimal protein production, the cells should be kept at

900 a.u. of UPRS to improve the titer of α-amylase by 60% over maximally inducing

the cells as well as an increase of 159% over cells grown in the dark. We hypothesize

that the cells are running into a limitation of the protein production machinery, most

likely in the folding machinery. There is additional evidence, that strong and consistent

induction of the UPR over a long time, will lead to the formation of inclusion bodies

and trigger the ER-associated degradation machinery [29].
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Figure 5.5: a Progression of the UPRS over time for dark and maximum light conditions with respective
yield of α-amylase. b-d Progression of the UPRS over time in the bioreactor setup in the first 24h during
which feedback control is performed (second run is shown in figure S5). Black solid line represents the
measured UPRS, dashed the target UPRS level with 15% area around it. The blue line represents the
blue light duty cycle in % resulting from closed-loop control. The closed-loop UPRS setpoints are 600
(b), 900 (c) and 1200 a.u. (d) resp.
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Figure 5.6: Mean and standard deviation of the final amylase concentration after 70 hours is plotted
against the mean and standard deviation of the UPRS during the controlled time (first 24 hours) as
shown for panels b-e (two independent experiments per condition, three for maximum light). We perform
Welch’s t-test and find that the α-amylase yield at the closed-loop setpoints 600 and 900 a.u. is higher
than the yield with maximal induction at a significance level of 4.6% and 1.5%. The closed-loop setpoint
at 1200 a.u. achieves a yield that can not be deemed statistically higher from maximal induction
(α = 6.2%).

109



Chapter 5. Closed-loop bioreactor experiments

5.5 Insights into the time dynamics of α-amylase produc-

tion

We had also implemented an automatic amylase sampler in section 2.3. This sampler

allowed the collection of samples every six to twelve hours during the 72 hour fermen-

tation run. Samples were either acquired automatically, or manually at the end of the

run. The amylase concentration was quantified offline.

Figure 5.7 shows the progression of amylase concentration in the supernatant over

time for the different experimental conditions. One can see that the production in the

first 18 hours is very low, followed by a jump around 25 hours after inoculation. This

suggests that the control of UPRS that was achieved in the first 24 hours has a long-

lasting effect on production. It would also be interesting to see whether maintaining

the cells in the state achieved around 25 hours (early stationary phase), can boost

productivity for a longer period.

Figure 5.7: The progression of the concentration of α-amylase in the supernatant as a function of time
for the five different experimental conditions. Shown are the individually acquired samples, the mean
of the samples (if more than one sample was acquired) and the manually sampled measurement. Note
that only one replicate for the condition of UPRSset = 1200 a.u. is shown.

While allowing to gain some general insights, the valves of the amylase sampler proved

to be prone to clog or fail. Thus, over the course of the experiments only 85% of possible

samples were able to collected. Additionally, to biologically inactivate the sample and

kill any yeasts, the biocide sodium azide (NaAz) was added to each vial. The assay

to quantify amylase is highly pH sensitive. Thus it is important to keep the ratio of
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sodium azide to sample constant. With constant amount of NaAz, the sampled mass of

sample was 0.889 ± 0.29 g. Thus, while allowing insights into the general dynamics of

production, this setup does not allow to differentiate between different runs. We have

thus reported only the manually acquired samples in figure 5.6.

5.6 Discussion

We leveraged the platform to control the level of our UPR sensor to different setpoints

and study the effect on protein yield. To our knowledge, closed-loop control of a cellular

internal parameter has not been performed in exponentially growing liquid cultures and

at the high cell densities obtained in this fermentation. The control architecture for

closed-loop cybergenetic control of the UPR is centered around simple proportional-

integral control as a first proof-of-principle. More advanced control schemes such as

model predictive control (MPC) or lead-lag controllers could generate even more robust

transient behaviour. The existing mathematical model can be quickly adapted for such

an implementation. With the rise of new in situ measurements of the cell physiological

state at high cell densities (e.g. online raman spectroscopy probes), we could potentially

further improve the process control.

The idea of using closed-loop optogenetic feedback control for optimal bioproduction

has been extensively discussed in the community [17, 18, 30, 31]. However, a demon-

stration of improved bioproduction by closed-loop optogenetic feedback control at an

industrially relevant volume scale is still missing. In this study, we close this gap. We

demonstrate that controlling the level of UPR to intermediate levels maximizes pro-

duction of proteins in comparison to maximal protein expression. The bioprocessing

community has historically focused to control global process parameters such as tem-

perature, dissolved oxygen and pH. This study highlights the importance of cell internal

states for bioproduction. We hypothesize that with a given cell background, media and

all other things unchanged, the UPR-yield map (figure 5.6) could be applicable to other

proteins of interest. However, further investigation is required to show this. This new

way of producing proteins using cybergenetics has the potential to revolutionize and

massively simplify the upscaling of new proteins of interest. Additionally, simultaneous

characterization of the production process in combination with closed-loop real-time

feedback could allow a reduction of overall turnaround and upscaling times. This im-

plementation of in silico closed-loop feedback at a high cell density cultivation (HCDC)

level opens new possibilities about how to express and produce proteins efficiently.
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6 Discussion and Outlook

In this PhD thesis I have described the development of an illumination system for a

commercial bioreactor setup and the development for an automatic sampling and dilution

system for automation. Moreover, I have genetically engineered S. cerevisiae to respond

to blue light [1, 2], express transcriptional reporter and unfolded protein response sensor

[3] and produce α-amylase. I have proposed a mathematical model on the basis of

previous mathematical model [2, 4], which is able to capture the key dynamics of the

UPR as a response of the optogenetic input. I use this model to tune a proportional-

integral (PI) controller in silico. Lastly, I demonstrate that controlling the UPRS to

intermediate levels improves α-amylase production by 60% in comparison to maximal

UPR stress. This work has been published in Metabolic Engineering (Benisch et al. [5]).

6.1 Strain development

The goal of the strain development was to produce a S. cerevisiae strain that is expressing

α-amylase only in the presence of light and for long production runs. In contrast to many

publications in the literature using optogenetic promoters that run experiments only in

exponential growth and for short time periods (<12h), protein production is highest at

high cell densities that are reached in the late-exponential phase. Significant work was

performed to ensure tight optogenetic regulation, by changing the promoter sequence

and adapting the media composition. While we achieve tight optogenetic regulation

during exponential growth in the first 18 hours (figure 3.6), upon the onset of stationary

phase the expression of reporters is reduced, while amylase secretion is present in all

conditions, whether exposed to light or not (figure 5.7). This is in line with previous work

observing considerable activity of some promoters when cells transition from exponential

to stationary growth [6]. Closed loop control was thus stopped after 24 hours and the
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production system was run in open loop at maximum induction.

We had originally engineered our yeast with an EL222-responsive promoter from

Benzinger and Khammash [2] and had subsequently moved to a synthetic CYC1 minimal

promoter from Ottoz et al. [7]. While this new promoter contains less transcription

factor binding sites, expression of amylase was still observed. Characterization of this

observation is additionally hampered, as the fluorescent reporters for transcriptional

and UPR readout indicate a leveling off of transcription and folding stress. This is likely

due to reduced maturation rates of the fluorescent reporters. To understand the gene

expression from the PEL222 promoter in the stationary phase, one could run a qPCR or

Western Blot analysis to quantify the mRNA transcripts and protein levels respectively

of the reporters and amylase inside the cell. Transcription in the stationary phase is

not well understood [8]. Korber and Barbaric [9] e.g. found that chromatin state has

an effect on transcription factor site occlusion massively impacting gene transcription.

Similarly, the different control mechanisms to regulate intracellular pH in stationary cells

[10] could lower the functionality of the optogenetic system. Two possible strategies can

be applied to overcome these issues.

One could try to engineer the promoter and fluorescent reporters to be fully opera-

tional in the stationary phase. In E. coli at the onset of stationary phase, many targets

are controlled by the sigma factor sigmaS [11]. This could be a potential starting site

for engineering a synthetic promoter that is tight but also responsive during stationary

phase. Yu et al. [12] engineered a promoter in B. subtilis for high-level expression during

stationary phase. They used publicly available genome-wide microarray data to identify

potential promoters that were active during late exponential and early stationary phase.

This approach could be used to find promoter regions also in yeast that allow tran-

scriptional control during stationary phase. With such an improved promoter-reporter

system, closed-loop control could be run for longer times reaping potentially greater

benefits for production.

An alternative strategy would be to run the process differently, moving away from

batch production with glucose limitation to a fedbatch or continuous culture. In both

these systems, cells are initially grown in a batch phase, after which a nutrient feed is

switched on to allow for further growth. Because the cells are not in nutrient starvation

mode, it is expected that optogenetical control and fluorescent protein maturation works

better. The difference between fedbatch and continuous culture is that in continuous

cultures, part of the cell-containing media is removed, resulting in a steady-state. Both

processes would ensure nutrient availability after the initial batch phase, thus possibly

allowing further control over the production system. Continuous culture would be addi-
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tionally advantageous for process control, as steady-states are inherently reached with

a constant input. This has been shown in Carrillo et al. [13] who run their optogenetic

production of amylase in turbidostat mode at very low optical densities and achieve

constant UPR with constant input even without process control. While disadvantages

of turbidostat mode of operation are apparent as massively reduced cell density and thus

production efficiency, this may still be a possible direction for future work.

With the current version of the strain, we stopped closed-loop control at the onset

of stationary phase after 24 hours. Following this, we set the light intensity to 100%, to

allow comparibility of the closed-loop conditions with maximum constant light. At the

same time, the initial 24 hours yielded much lower duty cycles of 20-30%. We expect

that setting the light duty cycle after 24 hours to these values, could result in improved

product formation.

In [5], we demonstrated single-input single-output control. Already now, we are able

to track the dynamics of multiple nodes of the circuit allowing multi-objective control.

Our photobioreactor platform is equipped with three different LEDs (blue, red and

green), allowing the illumination of the culture with three different wavelenghts. The

first publication of an optogenetic system in S. cerevisiae was from Shimizu-Sato et al.

[14] and demonstrated the implementation of the red-light optogentic tool PhyB-PIF3.

Implementing such a second optogenetic tool with different actuation wavelength would

double the degrees of freedom. Similarly, the multiplexing approach from Benzinger

et al. allows multi input with a single wavelengths. These strategies could target a

second actuating knob in protein production, such as the availability of chaperone or

the upregulation of the heat shock response transcription factor Hsf1p [16].

So far, we also have not investigated the effect of transcriptional reporter expression

on the unfolded protein response. There is clear evidence however, that the expression

of an easy-to-fold protein such as fluorescent proteins will likely not significantly upreg-

ulate the UPR [13]. There may also be an effect of the high-level expression of amylase

and thus overburdening of the ER on the expression and folding rate of the fluorescent

reporters. A worry is, that a significant downregulation of the fluorescent proteins will

hinder control of the UPR itself. To study this, one could introduce a constitutive ex-

pressing fluorescent color and observe how the levels are varying as a function of amylase

induction. This would allow the quantification of burden, whether stemming from the

transcriptional or folding side. Additionally, one could replace a fluorescent protein with

fluorescent RNA aptamers, which would allow quantification of transcriptional and fold-

ing stress, as RNA aptamers in contrast to fluorescent proteins do not require folding in

the ER.
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We also propose using the circuit for some in-depths studying of the unfolded protein

response in yeast. Currently, this part has not been explored. For example, the strain

would lend itself ideally for culturing in a microfluidic device with single-cell measure-

ment and tracking. With this, we could be able to understand different subpopulations

of UPR response (as suggested in [13]). Further, a more frequent measurement of the

cellular response with more light inputs, could allow a rigorous identification of param-

eters of the unfolded protein response. Lastly, Leber et al. [17] report the presence of a

super UPR (SUPR) in the presence of two stressors (inositol deficiency and unfolding).

We suspect, that this effect is also present at sustained high UPR stress, but were unable

to rigorously show this.

Overall, the strain is a nice tool to study expression-induced unfolded protein response

in vivo especially during exponential growth. Usage of it for characterization of the UPR

in different setups (e.g. microscope and mother machine), even without the described

changes, could reap quick wins.

6.2 UPR-yield map

The project demonstrates the advantage of closed-loop control on the production of a

single model protein. We show that intermediate levels of UPR achieve higher yield

than maximum gene expression. In our publication [5], we do not propose an exact

mechanism that explains the shape of the curve. However, we believe that the presence

of excessive amounts of unfolded proteins in the endoplasmic reticulum has a long lasting

negative impact on the cell as necessary maintenance can not be carried out to sufficient

levels. Possibly, there is also an upregulation of the ER-associated degradation pathway,

resulting in many unfolded proteins being degradated rather than secreted. PDI1 is

responsible for the formation of disulfide bonds in yeasts [18]. In the case of unsuccessful

formation of the cystein bonds, either a glucosyltransferase binds and initiates another

cycle of PDI1 aided folding or YOS9 binds and initiates ER associated degradation

(ERAD) [19]. One can imagine that high levels of unfolded proteins in the ER increase

the chance of unsuccessful disulfide bond formation and thus elevated ERAD levels.

We also believe that the obtained UPR-Yield map (figure 5.6) could be extended to

other proteins of different size, and complexity, as well as other metabolites. Carrillo

et al. [13] have already moved in this direction. In their recent preprint, they expressed

six different proteins of varying complexity in S. cerevisiae to different induction levels

and followed the stress and secretion levels over time. These experiments were performed

in turbidostat cultures at optical densities of OD600 = 0.5. For the two most complex
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proteins (single chain antibody variable fragment 4M5.3, scFv) and α-amylase, they

find a similar optimum between production and UPR stress. Finally, they perform

feedback on their UPR sensor for cells producing scFv and find an optimum with 60%

increased production over maximum induction. These are very exciting findings, as

this preprint confirms our findings, even in different experimental contexts (turbidostat

vs. batch), strain backgrounds (BY4741 vs. Cen.PK) and proteins of interest (scFv

vs. α-amylase). It should also be noted, that for simple proteins of interest, with the

same expression strength range, the trade-off may not be present. I predict that for

very simple proteins such as common well-folding fluorescent proteins, the expression

strengths that are accessible by our current optogenetic toolkit, all result in UPR stress

levels in the left, upwards branch of figure 5.6.

Generally, this approach could also be extended to metabolite production, where

either the product itself or intermediates are toxic. Here again, we propose that there

exists an optimum expression level, which does not overburden the cell while achieving

maximal production. Xu et al. [20] for example tuned the expression levels and found

optimal production for non-maximal gene expression. One common bottleneck that is

observed in biofuel production is the excessive concentration of biofuel inside the cell

resulting in cell death. Swidah et al. [21] report end-product toxicity of butanol at

1%, which severely hampers efficient conversion of substrate into final product. Here,

our approach could work nicely, by using closed-loop control to achieve product titers

below toxicity levels and continuously separate product from cells, thus allowing more

production of biofuels.

We also have to put the yield improvement of 60% in context with the existing litera-

ture. Generally, the strain that we had used for amylase production has seen significant

production improvements in the last years. Both using random mutagenesis, as well

as rational design of the secretory pathway allowed the authors to improve product

titer of amylase 6-fold [22, 23]. Other publications presented in the introduction often

achieve similar fold improvements. Potentially, these genetic variations have removed

any remaining bottlenecks in the expression of proteins. Thus, it is yet to be investi-

gated whether our proposed approach is able to always improve significantly over these

genetically modified variants.

6.3 Platform

The platform developed in this PhD has shown reliable performance and has allowed

us to achieve closed-loop control of a cell internal state in batch cultures, so far not
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achieved in the literature. Full automation of all processes involved have allowed me to

prepare and start a fermentation and then walk away for the next 65 hours. The data of

cell growth and fluorescent reporters that we were able to generate as a side product are

rarely found in the literature. In comparison to the standard bioproduction literature,

our data on expression, stress, cell density and product concentration is much more

finely resolved. Thus, this dataset has allowed significant insights into the production

dynamics of proteins.

Figure 5.7 shows the evolution of amylase concentration during the run. Interestingly,

the instantaneous production rate of product is highest in the late exponential phase.

This could be because of genetic upregulation of chaperones and secretion factors, thus

increasing production in the short term. Fedbatch systems reproduce these growth

conditions, by intermittently adding fresh nutrients to the growth chamber. Thus, it

could be possible to improve production efficiency by even varying the feeding timing,

rather than just concentration and nutrients.

The throughput of testable conditions was limited to one condition every week, as

the fermentation run time plus preparation, autoclaving and finally dissassembling and

cleaning take a majority of a regular work week. For future work in this direction, paral-

lelization of the setup is required to test more conditions and gain more knowledge in a

shorter amount of time. Since the beginning of my PhD alternative platforms have come

to market and could be useful for this goal. The development of the evotron in the CTSB

[24] as well as commercial solutions for mini-bioreactors (e.g. Eppendorf DASbox® Mini

Bioreactor or Beckman Coulter BioLector), could fulfill the main requirements for this

proposed parallelization.

Additionally, we are currently operating our closed-loop optogenetic control system

with a flow cytometer attached to the photobioreactor platform. While feasible for this

work, cheaper solutions [25] would be possible. One idea is to develop a custom-built flow

cell with attached microscope or fluorimeter to measure the mean fluorescence. Such an

approach is performed in Melendez et al. [26]. The disadvantages have been discussed

extensively in chapter 2, but further development could broaden the applicability in a

real industrial setting.

Not presented in this thesis is the distributions of cells that are measured using

the flow cytometer. Both transcriptional reporter and UPR sensor show a bimodal

behaviour. We had tested a strain that only contained the transcriptional reporter and

where the TR was on the production plasmid. We sorted for the two populations and

found that only the high-expressing population was able to grow. This hints towards

122



6.4 Modelling and Control

the second population experiencing plasmid loss and thus the inability to metabolize

glucose. The UPR reporter exhibits similar bimodal behaviour. It could be interesting

to sort for these two populations as well and see, whether highly producing cells are

enriched in the highly expressing UPR cell line, or whether the low UPRS cells are able

to better cope with UPR stress. Secondly, as the two populations arise spontaneously,

one could think about using the shape of the two distributions as variable for process

control. After identifying the high-amylase expressing strain (=producers), one could

instead of targetting constant UPRS, try the maximize the portion of producers as a

variable for process control.

6.4 Modelling and Control

The mathematical modelling presented in chapter 4 has been sufficient for this project.

However, we have discussed several possibilities to further improve the model. Currently,

we are also assuming instant maturation of the fluorescent reporters, while in reality

fluorescent reporters mature in the order of 10s of minutes to a couple of hours. More

specifically, the fluorescent reporters used in this study mature in 17.6 minutes (Venus)

and 36 minutes (mScarlet-I) [27]. Some delays that were described in section 4.4.1 could

thus be easily captured by including these mechanisms.

At the moment, the data used for characterization stem from a different platform

(waterbath) and are limited to the exponential and early stationary phase. At the same

time, since the initial model development, at least 11 experimental runs in the bioreactor

have been performed, each with finely resolved data about cell size, density and the two

fluorescent reporters. This data (chapter 5) could be used to further improve the model

fit. Firstly, because the data stems from the bioreactor experiments, better predictions

for bioreactor experiments can be made. Secondly, because this data also includes the

stage of stationary phase, growth parameters can be fit more accurately.

A missing link in the current model is the understanding of amylase secretion. The

next steps in modelling should focus on identifying mechanisms that can clearly explain

the transition of unfolded amylase proteins to secreted proteins in the supernatant. Feizi

et al. [28] developed a genome-scale model of the secretory pathway in S. cerevisiae and

allows a comprehensive insights into the underlying processes. The last experimental

runs on the bioreactor also contain granular amylase concentration data sampled every

6-12 hours. So far this data has not been used for any model structure identification.

Currently, characterization is limited by the lack of sensitivity of the amylase assay

for low amounts of product. Thus experiments only yield discernable concentrations

123



Chapter 6. Discussion and Outlook

after >18 hours. Thus, for further characterization, the implementation of a secretion

sensor, similar as in [13] would be helpful, as its sensitivity is superior to traditional

ELISA-based assays.

Industrial heterologous production is run in markedly bigger bioreactor volumes

(m3 vs. L) and at higher cell densities. As the surface to volume ratio decreases with

increasing volumes, sufficient illumination of the entire cellular population could be a

problem. Pouzet et al. [29] discussed several strategies in their review. Besides the

classical illumination of the bioreactor from the sides, they discuss the possibility of

adding illumination sources inside the bioreactor, thus increasing irradiation. Lastly,

using photobioreactors for algae and repurposing them for microbial fermentation could

be investigated. Generally, all these strategies try to overcome the decrease of surface to

volume ratio by more lights. Zhao et al. [30] propose the usage of amplification circuits

which achieve activation at light duty cycles as low as 1%. Lastly, using slow revert-

ing optogenetic variants [15] could overcome the limitations of insufficient illumination.

All these strategies should be investigated first theoretically, before implementing them.

Initial efforts in this direction (data not shown) showed, that internal illumination does

not increase area sufficient to overcome the needs. With our automated photobioreac-

tor platform, experimental data could be generate that mimic industrial conditions and

serve as a basis for future theoretical work on this topic.

As discussed at various points in this thesis the implementation of PI control is only

the first step for performing closed-loop control. The platform is easily extendable to

run control with PID, model-predictive (MPC), extremum seeking (ESC) or machine

learning control systems [31]. Milias-Argeitis et al. [32] nicely demonstrated the ad-

vantages of MPC over PID in a turbidostat setup of E. coli controlling the expression

of a fluorescent protein with the optogenetic CcaS/CcaR. Given the complex nature

of the control task, with limited time horizon, the implementation of MPC could reap

quick benefits. Additionally, as the dynamics of amylase production are more rigorously

understood, one could derive more optimal operating conditions, that could further im-

prove productivity. In a recent preprint Espinel-Ŕıos et al. [33] propose the usage of

dynamic constraint-based models to formulate a model-based optimal control problem

and identify optimal optogenetic inputs in a fedbatch production process. In their theo-

retical work they can only improve production of the product lactate by ≈ 14% raising

the questions, how much improvements can be gained in real-life scenarios.
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6.5 Final Remark

Overall with this work, we have demonstrated the successful implementation of optoge-

netic feedback control at unmatched size and volume. Additionally, we finally close this

gap and demonstrated the benefits that closed loop control can have on bioproduction of

proteins. We are excited to see, in which direction the field will be moving and looking

forward to real industrial implementations of optogenetic closed loop control
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[31] Robert J. Lovelett, José L. Avalos, and Ioannis G. Kevrekidis. Partial Obser-

vations and Conservation Laws: Gray-Box Modeling in Biotechnology and Opto-

genetics. Industrial and Engineering Chemistry Research, 59(6):2611–2620, 2020.

ISSN 15205045. doi: 10.1021/acs.iecr.9b04507.

[32] Andreas Milias-Argeitis, Marc Rullan, Stephanie K. Aoki, Peter Buchmann, and

Mustafa Khammash. Automated optogenetic feedback control for precise and robust

regulation of gene expression and cell growth. Nature Communications, 7(May):1–

11, 2016. ISSN 20411723. doi: 10.1038/ncomms12546. URL http://dx.doi.org/10.

1038/ncomms12546.
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Supplement

S1 Supplementary figures

Figure S1: yMB44 is grown in the bioreactor with constant light and the cell density (right y-axis) and
transcriptional reporter (left y-axis) are measured with the automatic sampling and dilution device.
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Figure S2: Progression of the dissolved oxygen (DO) normalized by the initial DO value at t=0h.

Figure S3: Progression of the TR for constant maximum light and in the dark for repetition 1.
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Figure S4: Progression of UPRS over the entire 72 hours of experiment for repetition 1.
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Figure S5: Progression of UPRS for the 2nd replicate and 3rd replicate for maximum light over the
first 24 hours of experiment.
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Figure S6: Progression of UPRS for the 2nd replicate over the full 72 hours of experiment.
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Table S1: Plasmids used for strain construction. Promoters are represented by “pr”, terminators are
represented by “t”.

Plasmid Description Marker Source

pAlphaAmyCPOT TPIpr-Amylase POT1 [1]

pYMB4 4xUPREpr-UbiY-Venus-ScPGK1t Hygromycin B This study

pYMB10 EL222pr-Amylase-TPI1t POT1 This study

pYMB12v EL222pr-UbiY-Venus-ScPGK1t Hygromycin B This study

pYMB15m 4xUPREpr-UbiY-mScarletI-ScPGK1t Zeocin This study

pYTKmk48 ScRPL18Bpr-Msn2AD-EL222-
ScENO2t

URA [2]

pYTK042 3a Part, Ubi-Y (medium) Chloramphenicol [3]

pYTK045 3b Part, Venus Chloramphenicol [3]

pYTK054 4 Part, tPGK1 Chloramphenicol [3]

pYTKmk110 Backbone: Hygromycin B resistance,
HO-locus homology arms

Kanamycin [2]

pYTKmk123 3b Part, mScarlet-I Chloramphenicol This study

pYTKmk190 2 Part, UPRE-pCYCmin Chloramphenicol This study

pYTKmk216 new EL222 promoter Chloramphenicol This study

pYTKmk217 MoClo compatible pYTKmk216 Chloramphenicol This study

pYTKmk227 Backbone: Zeocin resistance, YIRC∆6-
locus homology arms

Kanamycin This study

Table S2: Oligos used in this study.

Oligo name Sequence

oMB020 attaagcggccgcGcagctgaAGCTTGCGTT

oMB021 attaagcggccgcGcagctgaAGCTTGCGTT
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Table S3: Strains used in this study.

Name Genotype Source

CEN.PK 530-1D MATα ura3-52 HIS3 LEU2 TRP1 SUC2 MAL2-8c

tpi1(41-707)::loxP-KanMX4-loxP
[1]

CEN.PK 113-7D MATα URA3 HIS3 LEU2 TRP1 SUC2 MAL2-8c Euroscarf

yMB9 CEN.PK 113-7D, HO::pYMB4 This study

yMB31 CEN.PK 530-1D, pYMB10 This study

yMB32 yMB31, URA3::pYTKmk48 This study

yMB39 yMB32, HO::pYMB12v This study

yMB44 yMB39, YIRC∆6IX::pYMB15m This study

Table S4: Amino acid concentration for SD-2xSCAA.

Amino acid Concentration (mg/l)

Arginine 190

Aspartic Acid 400

Glutamic acid 1260

Glycine 130

Histidine 140

Isoleucin 290

Leucine 400

Lysine 440

Methionine 108

Phenylalanine 200

Threonine 220

Tryptophan 40

Tyrosine 52

Valine 380
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Table S5: Estimated parameters for the optogenetic-UPR model.

Parameter Fitted or fixed Value Unit

koff Fitted 4.77 min−1

TFtot Fitted 2.23 · 103 -

kon Fitted 1.86 · 10−3 -

km,basal Fixed 0 min−1

km Fitted 2.51 · 104 min−1

n Fixed 1 -

Km Fitted 1.50 · 103 -

km,deg,b Fitted 5.24 · 10−2 min−1

ku,trans Fitted 1.81 · 101 min−1

δ Fitted 2.55 · 10−2 min−1

KCU Fitted 2.51 · 104 -

β Fitted 4.08 · 102 min−1

γ Fitted 9.11 · 10−3 min−1

α Fitted 3.75 · 101 min−1

KIU Fitted 9.93 · 105 -

KCI Fitted 2.55 · 103 -

kUPRS,trans Fitted 2.36 min−1

kUPRS,0 Fitted 2.14 · 101 min−1

S0 Fitted 5.00 g L−1

nS Fitted 4.20 -

Kd,UPRS Fitted 2.60 (gnS L−nS )

kUPRS,deg,b Fitted 1.73 · 10−3 min−1

YX/S Fitted 3.89 · 104 L g−1 Events µL−1 = 106 Events g−1

µmax Fitted 1.47 · 10−2 min−1

Umax Fitted 4.42 · 105 -

KS Fitted 8.31 g L−1

krib,max Fitted 1.04 -

ksec Fixed 1.00 · 10−4 U (activity of amylase)
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Table S6: Proportional-Integral control parameters as plotted in figure 4.12.

UPRStarget (a.u.) Kp(−) Ki(min−1)

Operating point 600 1.6 · 10−3 4.2 · 10−5

900 3.0 · 10−3 7.7 · 10−5

1200 8.5 · 10−3 9.2 · 10−5

Ziegler-Nichols 600 9.0 · 10−3 4.4 · 10−5

900 10.8 · 10−3 5.3 · 10−5

1200 11.7 · 10−3 5.7 · 10−5

Predicted optimal operating point 600 2.7 · 10−3 2.3 · 10−5

900 3.6 · 10−3 4.1 · 10−5

1200 3.6 · 10−3 4.9 · 10−5
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