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Abstract

This paper presents a three-dimensional finite element model to predict the shake-table re-
sponse of a rocking bridge-like specimen. The numerical model is statistically validated
against experimental results, which involved testing of the system under 169 three-directional
ground motions. The model comprises four cylindrical rocking columns capped with a con-
crete slab. The columns are connected to the slab with flexible tendons and they are allowed
to uplift and wobble. The use of flexible tendons allows for large displacements of the system
and negative post-uplift stiffness. This mechanism acts as a form of seismic isolation, limiting
the accelerations transmitted to the superstructure.

The rocking columns, the slab and the shake table are modeled using elastic elements. The
tangential behavior of the contact surfaces is modeled with Coulomb friction, which is the
main energy dissipation mechanism. The tendons are modeled with equivalent elastic springs.
The numerical analysis accounts for the geometric non-linearity of the response.

Rocking motion is sensitive to the parameters that define it and experimental tests are often
non-repeatable. Hence, this study employs a statistical approach to validate the proposed
numerical model. The cumulative distribution function (CDF) of the response quantity of in-
terest (e.g., maximum displacement at the center of the slab) is employed, instead of compar-
ing the numerical and experimental results one-by-one for each test (deterministic
comparison). The deterministic validation of the model shows a moderate correlation of the
experimental and the numerical results. However, the model can accurately predict the statis-
tical response for both parameters of interest (i.e., maximum displacement and maximum ro-
tation) of the system under 169 ground motion excitations.

Keywords: Finite Element Modeling, Bridge Design, Rocking Bridge, Earthquake-Resistant
Bridges, Statistical Model Validation, Seismic Isolation.
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1 INTRODUCTION

Rocking structures are the ones that are allowed to uplift from their base when they are
subjected to strong ground motion excitation (Figure 1). The rocking oscillator has been used
to describe a wide range of structural systems, namely the out-of-plane behavior of masonry
[1-10], the seismic response of monumental structures [11-15], and free-standing equipment
[16-29]. Moreover, uplift works as a fuse, capping the accelerations transmitted to the struc-
ture. Hence, rocking can be used as a seismic design (seismic isolation) methodology, both
for buildings [30-36] and bridges [37-56].

Recently, statistical methods based on "rocking spectra” or on the Incremental Dynamic
Analysis (IDA) [57-60] were proposed for the design and analysis of rocking structures. Nev-
ertheless, performing nonlinear time-history analyses remains the most widespread approach
for the prediction of the rocking response. When performing such analyses, several issues
emerge, such as the definition of parameters that are: i) merely numerical and have no physi-
cal meaning (e.g., time step), ii) related to the physical problem and are hard to measure (e.g.,
damping parameters). Moreover, both the experimental and the numerical models of rocking
structures are very sensitive to the parameters that define them, and the shake table response
of rocking structures is often non-repeatable. Hence, it is almost impossible to select a single
"correct" test that can be used as a benchmark for the time-history analysis.

The seismic design problem is inherently stochastic since the design load (excitation) is
stochastic. This means that one does not seek the response to an individual ground motion but
a statistical measure of the response to a set of ground motions that define the seismic hazard.
Following the early work of Yim, Chopra, and Penzien [61], the concept of statistical model
validation was used by Bachmann et al. [62]: They tested a planar rocking structure under 600
ground motions and focused on the Cumulative Distribution Function (CDF) of the time max-
ima of each time history response. The CDF was both repeatable and predictable by the 1963
Housner model [63]. Vassiliou et al. [64] applied the same concept to a 3D rocking podium
structure. The tests were repeatable and predictable, both with FEM [65] and with DEM [66].
Notably, the concept of statistical validation is also applicable to masonry [67], Reinforced
Concrete (RC) [68-70], or seismically isolated structures [71].

This paper focuses on the 3D motion of a bridge model with rocking piers. The piers are
connected to the top slab with flexible tendons. Initially, it describes the extensive shake-table
testing of the bridge model under three-directional excitation, with the tests serving as the
benchmark for the numerical model. Subsequently, it describes the proposed three-
dimensional finite element model that was developed to capture the statistical response of the
columns. Finally, it compares the experimental to the numerical results. The goal is to pro-
pose a statistically validated numerical model for the analysis of rocking bridges.
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Figure 1: Schematic representation of a free-standing rocking body.

2 EXPERIMENTAL BENCHMARK DATASET

This section briefly describes the experimental tests performed in [72-73] that are used as a
benchmark dataset for the validation of the proposed numerical model. The interested reader
is referred to [72-73] for the detailed description of the shake-table tests and to [74] for the
lateral cyclic tests of the same system. The specific dataset was selected since it fulfills the
requirements of the statistical validation procedure, with a single specimen excited by multi-
ple ground motions.

A rocking bridge model was constructed and tested in 1:5 scale (Figure 2). The model
comprised four cylindrical free-standing RC columns with a diameter of 197 mm and a height
of 1450 mm. The columns were capped with a RC slab with dimensions of 3150x3150x350
mm. An ungrouted steel tendon passed through a duct within the column. The bottom end of
the tendon was anchored at the base of the column, whereas the top end was anchored at the
top of the slab. The top end of the tendon was equipped with flexible Belleville (disc) springs
(Figure 2) to reduce its axial stiffness. The axial stiffness of the tendon was 13,318 kN/m,
whereas the axial stiffness of the whole tendon-spring system was 1,975 kN/m. The low axial
stiffness of the tendon-spring system allowed for negative post-uplift stiffness of the bridge
model. The displacement capacity of the restrained bridge model (equipped with tendons and
springs) was equal to 394 mm, meaning two times higher than the displacement capacity of
the unrestrained model (without tendons/springs). The shake table platen and the bottom face
of the RC slab were equipped with steel plates and sliding restrainers (noted as "Column
Top/Bottom Plate™ in Figure 2) to restrain the columns from stepping out of their base.

The used ground motions were selected from all three categories of FEMA (far-field, near-
field pulse-like, near-field non-pulse-like) and were scaled according to the geometric scaling
of the model. A total of 181 shake-table tests were performed. A detailed description of the
used ground motions appears in [72]. It is noted that the intensity of many of the ground mo-
tions exceeded the design spectra of Athens, Greece.
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Figure 2: Schematic representation of the rocking bridge model. Figure adopted from [72].

Figure 3: View of the numerical model developed in ABAQUS.

3 NUMERICAL MODEL

A three-dimensional finite element model was developed using ABAQUS software [75]
(Figure 3). The objective of the numerical model was to statistically predict the experimental
results using the Cumulative Distribution Function (CDF). Each experimental shake-table test
corresponded to one nonlinear time-history analysis. All parts of the experimental setup, in-
cluding the restrainers, were modeled in detail. The rocking columns, the RC slab, and the
shake table platen were modeled using 8-node hexahedral (brick) elements with full integra-
tion and linear geometric order (C3D8 elements) [76-77]. The input motions were applied as
motions of the shake table platen. All numerical analyses considered the geometrical non-
linearity since it is crucial in the rocking problem.

Each tendon-spring system (four in total) was modeled with an equivalent linear spring
that connected the base of each column with the corresponding top point of the RC slab. The
stiffness of this equivalent spring was 1,975 kKN/m, as in the experimental campaign [72]. The
spring had zero energy dissipation.

Contact interface elements were used to model contact between the following surfaces: i)
the base of the columns and the shake-table platen, ii) the top of the columns and the RC slab,
iii) the side of the columns and the top/bottom sliding restrainers. In all cases, a surface-to-
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surface formulation was used. The lateral response of the contact elements was characterized
by Coulomb friction with a friction coefficient of 4 = 0.3 [29,78]. The definition of these ele-
ments is crucial as their friction constitutes the energy dissipation mechanism of the numerical
model. Their normal behavior was characterized as "hard"”, allowing no penetration of the
contact surfaces.

The Young's modulus of the RC and steel elements was 33 GPa and 200 GPa, respectively.
Both materials were modeled as elastic since the developed stresses were well below the
yielding point. The mesh of the columns close to the contact areas (top and bottom of the col-
umn) and at the main part of the column (mid-height) had a size of 30 mm and 50 mm, re-
spectively (Figure 3). The main mesh of the RC slab had a size of 300 mm, whereas the
vicinity of the contact area had a size of 30 mm (Figure 3). Finally, the shake table platen had
a main mesh size of 250 mm, whereas, in the vicinity of the contact area, the mesh was 30
mm (Figure 3).

An implicit dissipative integration method (Hilber-Hughes-Taylor) was employed for the
solution of the numerical model [79]. The time integration algorithm is defined by the integra-
tion time step (dt) and the alpha parameter (annT). Since dt is variable, dt expresses the maxi-
mum allowed time step. The values of dt and anHT considered in the present study were dt=
107 sec and annt = -0.2. This set of parameters and mesh size was proved to be accurate for
simulating rocking members [29].

4 RESULTS

This section presents the predictions of the experimental results using the proposed model.
Out of the 181 ground motions performed in [72], a total of 169 ground motions was selected
for consideration in the present study. The 12 tests that were not considered were the ones
where the displacement of the model exceeded the design limits, and external safety restrain-
ers were engaged to control the motion of the model. Therefore, the objective of the proposed
numerical model is to predict the behavior of the structure only when the restrainer was not
engaged.

The scatter plot of Figure 4 compares the experimental and the numerical response in terms
of maximum displacement at the center of the slab (umax) and maximum rotation of the slab
around its vertical axis (Rmax). The correlation coefficients of the scatter plots (R) ranges be-
tween R = 0.74 for the maximum rotations and R = 0.79 for the maximum displacements, in-
dicating a moderate-to-strong correlation. However, there are several cases where the
numerical model over- or underestimates the experimental response.

Figure 5 compares the experimental to the numerical response for the two response quanti-
ties of interest, Umax and Rmax, using the Cumulative Distribution Function (CDF). The CDF
plots the different values of the response on the horizontal axis. On the vertical axis, it shows
the probability that the response is going to be equal to, or smaller than, the value of the hori-
zontal axis. The probability of collapse of the structure is equal to unity minus the final (top-
right) point of the graph. Under the selected excitations, the probability of collapse is equal to
zero (Figure 5). The statistical comparison shows that the numerical results match very well
the experimental ones, with both CDF curves being almost identical.

The classical two-sample Kolmogorov-Smirnov (KS) p-value test is used to quantify the
statistical accuracy of the numerical model [80-81]. In this test, two hypotheses, Ho (which is
tested) and its opposite Hz, are considered. The tested null hypothesis Ho is rejected when the
p-value of the KS hypothesis test is lower than a given statistical significance threshold os.
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Figure 4: One-by-one comparison of the numerical and the experimental results. Left, maximum displace-
ments of the RC slab; Right, maximum rotations of the RC slab
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Figure 5: Statistical comparison of the numerical and the experimental results. Left, maximum displacements
of the RC slab; Right, maximum rotations of the RC slab

A relatively large value of statistical significance is selected (as = 0.1). The p-value is the
outcome of the KS test. A p-value higher than 0.1 shows that the two CDF curves originate
from the same distribution. Noted in Figure 5, the p-values were p=0.92 and p=0.86 for Umax
and Rmax, respectively, with both values being well above the 0.1 limit (as). Hence, the numer-
ical and the experimental CDFs indeed originate from the same distribution, further confirm-
ing the accuracy of the numerical model.

5 CONCLUSIONS

This study presents a three-dimensional finite element model to predict the response of a
bridge model with free-standing rocking piers. Four cylindrical rocking RC columns support-
ed a heavy RC slab. The columns were allowed to uplift and were restrained from sliding out
of their initial position. The columns were connected to the slab with unbonded tendons. The
tendons were fixed at the bottom of the columns and on top of the slab in series with flexible
disc springs. The flexible tendon-spring system allowed for negative post-uplift stiffness of
the system and large lateral displacements.

The proposed three-dimensional finite element model explicitly represented all parts of the
bridge model, including the rocking columns, the steel tendons, and the restrainers. The pur-



Antonios A. Katsamakas and Michalis F. Vassiliou

pose of the numerical model was to accurately predict the statistical response of the experi-
mental tests under 169 ground motions. The conclusions are summarized as follows:

e The one-by-one comparison of the experimental and the numerical results indicates
a moderate-to-strong correlation, with the correlation coefficient being equal to
R=0.79 and R=0.74 for the maximum displacements and the maximum rotations of
the slab, respectively.

e The statistical comparison of the response under 169 ground motion excitations un-
veils that the numerical response is practically identical to the experimental. The p-
value of the two-sample Kolmogorov-Smirnov test is equal to p=0.92 and p=0.86
for the maximum displacements and the maximum rotations of the slab, respective-
ly. Since both p-values are well above the 0.1 limit, the two CDF curves originate
from the same distribution, and the numerical model accurately matches the exper-
imental response.
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